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Chapter 1.  Introduction 

As the technological complexities of communication systems and public demands upon 
our ITS infrastructure increase, new opportunities and requirements arise regarding how best to 
manage existing Intelligent Transportation Systems (ITS) assets and select future deployments. 
This research project aims to support such decision making by developing methods that clearly 
relate sensor coverage (and other ITS data sources) to Dynamic Message Sign (DMS) 
performance via algorithms that predict freeway traffic time.  

A fully functioning dynamic message sign (DMS) system provides full public value only 
when predicted travel time information is integrated into it. Currently, the San Antonio District is 
routinely displaying such information on their DMS systems, which has resulted in positive 
public reaction. The state-of-the-practice allows engineers to utilize existing high coverage 
detectors to design algorithms for calculating predicted travel times for DMS display. The basic 
idea of the algorithm is to divide distance between the DMS and prediction destination into 
segments; then determine travel time between two detectors by dividing the segment distance by 
detector measured speed and sum up travel times along the segments using conservative figures 
generated by different detector data. These algorithms are activated during off-peak hours and 
are often turned off in times of congestion and/or incidents because of unreliability of the 
prediction quality. 

Given the success of the San Antonio district, one may think that the natural extension of 
this work is to apply the above methodology to other districts. One potential difficulty of such 
direct transfer of system capability is that different districts have differing levels of congestion, 
traffic flow compositions, and prediction accuracy requirements. Further, the requirements of 
detector coverage and algorithm structure are location specific. The optimal configuration in one 
district may not work well in others. 

The travel time calculated, based on current freeway conditions as done in San Antonio, 
is essentially an instantaneous travel time measured at the particular time of calculation, which 
could significantly deviate from the travel time that drivers actually experience, particularly 
during onset or dissipation of congestion. The obvious reason for this potential deviation is fast 
changing traffic dynamics. To take a practical application; if a freeway segment takes 15 minutes 
to travel, freeway inflow/outflow could significantly vary during the period with congested and 
unstable traffic flows, not to mention the occurrence of incidents. The core concept of providing 
reliable freeway travel time prediction during unstable traffic conditions is to have a short-term 
traffic prediction capability, or alternatively, to have a certain level of artificial intelligence that 
discerns predicted travel time given a traffic condition. 

Another issue with travel time prediction is the type of sensors used and the data 
necessary. Single and dual loop detectors are the most widely used traffic detectors measuring 
primarily counts, speed, and occupancy data. Even though the accuracy of prediction systems 
will improve if AVI data is available, travel time prediction models based on AVI data may not 
be widely used because AVI technologies have not been widely deployed. Therefore, there is a 
need to develop prediction models that use either counts, speed, or occupancy as the inputs. 

Furthermore, existing practice employs a half-mile detector spacing scheme. The 
relationship between the accuracy of travel time prediction and spacing of detectors is unknown. 
It would seem intuitive to think that the quality of travel time prediction degrades with sparser 
detector spacing. Moreover, how large a spacing is acceptable under what accuracy 
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requirements? What degree of accuracy can one expect given a level of detector coverage? These 
unanswered questions are of great importance to any district considering developing the 
capability for specifying prediction accuracy requirements and budgeting capital investment for 
detectors.  

In the current literature, there are a limited number of simulated or empirical studies 
addressing the issues discussed above, particularly the relationship between detector spacing and 
prediction accuracy using different detection data. Investigating such issues could be of great 
benefit to all Texas Department of Transportation (TxDOT) districts with DMS systems or 
where web-based systems are being considered for the dissemination of point-to-point travel 
time information. In this regard, this project considers the following research objectives: 

1. Investigate the performance and features of existing algorithms deployed in the 
U.S. and Europe  

2. Conduct a detailed review of existing travel time prediction models available in 
the literature and identify the advantages and disadvantages of each type of 
models 

3. Based on the review conducted, identify a couple of potential prediction models 
for evaluation 

4. Develop, calibrate, and demonstrate potential prediction models that complement 
and improve existing capabilities 

5. Understand the performance of existing and proposed travel time prediction 
algorithms with respect to differing detector spacing specifications and various 
types of detection data 

6. Determine detection data coverage requirements given a prediction accuracy 
requirement 

7. Identify potential issues that may arise in real-time deployment and traffic 
management center (TMC) integration of the developed prediction models and 
provide recommendations to overcome the same 

 
The next section illustrates the difference between different types of travel times 

available and emphasizes the difficulty involved in accurate travel time prediction. 

1.1 Types of Freeway Travel Time 
Travel time on freeway sections can be generally classified into: 

• Instantaneous Travel Time (ITT),  

• Reconstructed Travel Time (RTT), and 

• Forecasted Travel Time (FTT).  
 

Instantaneous Travel Time stands for the travel time of a vehicle traversing a freeway 
segment at time t if all traffic conditions remain constant until the vehicle exits the freeway 
segment. ITT generally underestimates travel time at the onset of congestion and overestimates 
at the dissipation of congestion. In other words, ITT is reliable during the off-peak hours in 
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which traffic conditions remain stable. San Antonio TransGuide’s existing algorithm produces 
Instantaneous Travel Time, and it has been shown to produce reliable travel time estimation only 
during off-peak hours (Quiroga, 2000.) 

Reconstructed Travel Time (RTT) means the travel time realized at time t when a vehicle 
leaves a freeway segment. An Automatic Vehicle Identification (AVI) travel time measure is a 
typical type of RTT because a vehicle’s actual travel time is not measured until the vehicle 
passes a toll tag beacon or a Road Side Terminal (RST). While this type of travel time 
measurement can give precise actual travel times, it has been shown not to be a good measure for 
online travel time prediction because it introduces non-trivial time-lag in actual travel time 
detection (Chen and Chien, 2001.) The AVI data is however, very suitable for calibrating online 
algorithms in an offline manner because the precisely measured travel times allow the validation 
of model prediction accurately. The AVI data collected by Houston and TRANSCOM produce 
RTT.  

Forecasting Travel Time (FTT) is defined as the travel time that is actually experienced 
by drivers who will traverse the freeway segment. This is the most useful information from a 
driver’s perspective, yet the most difficult to produce precisely, particularly during peak-hours in 
which traffic conditions are less stable. The FTT is certainly the focus of this research because it 
is intended to be disseminated to the traveling public via Dynamic Message Signs (DMS) or the 
Internet. The traveling public demands FTT instead of ITT or RTT.  

Estimating FTT requires predicting the short-term traffic conditions in the intended 
freeway segment for the next 10-20 minutes at each prediction instance. Historically, real-time 
combined with historical loop detector data are used by regression, time-series, artificial neural 
networks (ANN), etc. models. The following section gives a short review of past studies on 
freeway travel time studies. 

1.2 Existing Freeway Travel Time Prediction Systems 
Important features of existing travel time prediction systems such as algorithms used, 

data requirements, and prediction accuracy under different traffic flow conditions are 
summarized in this section, with special focus on the TransGuide System in San Antonio and the 
DACCORD Project in Netherlands. Outside of the travel time prediction models, some of the 
existing traffic detection capabilities in the U.S. and Europe are also identified. 

1.2.1 San Antonio TransGuide, U.S. 
The TransGuide traffic management center in San Antonio monitors traffic operations on 

a network of freeways and major arterial streets covering most of the metropolitan area (Figure 
1.1). One of the main components of the monitoring system is a series of sensors (mainly loop 
detector pairs and sonic detectors) that provide the capability to measure point speeds. These 
detectors are roughly 0.5 miles apart. Based on these point speeds, the system estimates travel 
times to specific landmarks and displays the estimated travel times on dynamic message signs 
(DMSs) that are roughly 2 to 3 miles apart. The sign messages are usually made available on the 
TransGuide website (Figure 1.2). 
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Figure 1.1: TransGuide Traveler Information system website 

For travel time estimation, TransGuide uses very simple rules to predict the travel time 
between a specific DMS to an intended interchange or landmark. The traffic detection system in 
the San Antonio network consists of both inductive loop detector pairs and radar detectors that 
are roughly 0.5 miles apart. The key feature of the calculation relies on the rules that determine 
the detector stations that are located between the DMS location and the major interchange. For 
each pair of adjacent detector stations, the system determines the lowest of the two detector 
station speeds and assigns that speed to the road segment that connects the adjacent detector 
stations. For example, if the speeds associated with two adjacent detector stations are 52 and 58 
mph, the system assigns 52 mph to the road segment that connects the two adjacent detector 
stations. The main effect of using this approach for estimating road segment speeds is that the 
system tends to underestimate speeds which, in turn, should result in slightly overestimated 
travel times under light traffic conditions. 
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Figure 1.2: TransGuide DMS messages as shown on TransGuide website 

The system converts each partial road segment speed into an equivalent travel time and 
adds all of the partial segment travel times to produce an estimate of the total travel time between 
the DMS location and the major interchange. Doing so creates systematic overestimation during 
off-peak and underestimation during peak hours, because traffic congestion builds up in a non-
linear manner (Morin and Fevre, 1997). The study on the TransGuide DMS travel time 
estimation accuracy concludes that the currently employed schemes generate reasonable travel 
time prediction only in off-peak hours (still systematically overestimate actual travel time), in 
which travel time prediction capabilities do not seem very beneficial to drivers because drivers 
can easily estimate the travel time based on their own cruising speeds. As shown in Figure 1.3, 
the travel time accuracy significantly degrades during AM peak hours, in which accurate travel 
time prediction is needed far more than in off-peak hours. 
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Figure 1.3: TransGuide travel time prediction accuracy during AM peak and off-peak hours 

(Quiroga, 2000) 

Figure 1.4 clearly indicates that if a driver traverses a DMS site on IH-10 that is far (more 
than 10 miles away) from the intended interchange (i.e., IH-35) during the onset of congestion 
(7:10 or 7:30 AM onward), he/she will see the DMS travel time underestimated by 5-7 minutes 
(more than 30 percent) compared to the actual experienced travel time. If the traversed sign is 
less than 6 miles from the intended interchange, then the predicted travel time is overestimated 
by 1-3 minutes.   
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Figure 1.4: Travel time from specific DMS location to IH-410 and IH-35 on IH-10 (travel time 

runs made during the AM peak on May 5, 2000) (Quiroga, 2000) 

1.2.2 Amsterdam (DACCORD, Netherlands) 
The Development and Application of Coordinated Control of Corridors (DACCORD) 

project (1996–) aims at developing and testing coordinated control measures for motorway 
networks. It is part of the European Union Telematics Application Programme, sector Transport. 
CWI contributes with theoretical research into integrated control and routing control of 
motorway networks. The main objective of DACCORD is to create a practical Dynamic Traffic 
Management System (DTMS) for integrated and coordinated control of inter-urban motorway 
corridors. It addresses the needs of road authorities and traffic operators responsible for (parts of) 
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the European motorway network, as well as the drivers’ needs. The project in particular aims to 
increase effective road capacity and reduce travel times and number of accidents. 

An essential element is the integrated operation of control at a network-wide (i.e., not 
local) level, using the following control measures: 

• Dynamic information on queue lengths, travel times, and routing directions 
through variable message signs 

• Ramp metering systems for motorway access control 

• Motorway-to-motorway control systems (ramp metering at motorway merges) 

• Variable speed limits and lane closure signals 

• Pre-trip and en-route information by broadcasting and radio data systems. 
 

DACCORD mainly builds on the CHRISTIANE, EUROCOR, DYNA, and GERDIEN 
projects, which were parts of the EU program DRIVE. The research and development (R&D) 
work focuses on the optimization of the simultaneous use of multiple control instruments in 
order to maximize their combined effect and to avoid unwanted side effects. Three major test 
sites are used for practical validation in real life situations (the particular aspects are explored in 
brackets): 

• The Amsterdam network, part of the EuroDelta initiative (traffic state 
monitoring and estimation, short time prediction models for traffic flows, 
speeds, queue and travel time, display of estimated dynamic travel times using 
VMS [shown in Figure 1.5], coordination and integration of ramp metering 
control, and VMS control) 

• The Paris network, including the ringroad and the connecting motorways 
(motorway-to-motorway control including real-time ramp metering 
techniques, estimated travel time display on the Corridor Peripherique of Paris 
and the SIER motorway, and real data screening) 

• Padua-Venice motorway, part of the Pitagora initiative (on-line traffic model 
system, including the OD estimation and prediction) 

 
In general, DACCORD is a forward-looking advanced freeway management initiative 

and has demonstrated satisfactory traffic management capabilities. However, like other systems, 
it also faces technical challenges in providing accurate freeway travel time prediction.  
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Figure 1.5: Freeway travel time prediction via DMS in the DACCORD system in Amsterdam 

1.2.3 Other Traffic Detection Capabilities in the U.S. 
Outside of TransGuide there are three other major traffic data detection and archiving 

programs in Texas: TransVista in El Paso, TransStar in Houston and DalTrans in Dallas. The 
TransVista system uses a combination of point loop detectors and fifty-five cameras to monitor 
sections of the roadway. Dynamic Message Signs and Lane control signs are used to disseminate 
information about freeway conditions to the travelers. The freeway sections visible through the 
cameras can be accessed on the web. 

The TransStar system in Houston uses Automatic Vehicle Identification (AVI) to monitor 
freeway traffic and disseminate information through popular media outlets such as radio, 
television outlets, and dynamic message signs. Primary information transmitted are travel time 
estimates and speed data. Vehicles with transponders are used as probes. AVI antennas are 
readers installed along freeways that detect when the probe vehicles pass the point of installation. 
The time difference between detection of a probe vehicle at successive AVI reader locations is 
used to arrive at travel time estimates and speed.  

The DalTrans/TransVision system in Dallas uses a combination of loop detectors and 
closed circuit cameras to provide information about incidents, lane closures, and speeds in the 
Dallas and Fort Worth area. The information is provided to the public using dynamic message 
signs or it can be accessed on the web. 

The Florida DOT collects real-time data on a 40-mile I-4 corridor near Orlando using 
dual loop detectors. A nonlinear time series model developed at the University of Central Florida 
was used to predict travel times. This forecasted travel time information was transmitted to the 
public through a website. The Wisconsin DOT provides an estimate of current travel times on the 
I-94, I 894, and I 43 corridors near Milwaukee using traffic sensors and freeway cameras. 

According to the Federal Highway Administration (FHWA), there are around 300 traffic 
information sites in the United States. Some of the popular ones include NAVIGATOR in 
Atlanta, Statewide Traveler Information by WA DOT, TRI MARC maintained by Indiana DOT, 
and GCM travel along the Gary-Chicago Milwaukee corridor. However, many of these traffic 
information sites do not archive the travel time data and they are not readily accessible. One of 
the best data archiving systems in the U.S. is the PEMS Freeway Performance Measurement 
System and Berkeley Highway Laboratory in California.  
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In California a study is underway to start using remote sensor nodes to monitor traffic. 
Several magnetic sensors are placed in or above the road. These sensors detect vehicles and 
transmit the data back to an access point. The system is controlled by an energy saving protocol 
called PEDAMACS. This protocol controls the data transfer between the access point and the 
sensors via radio signals in order to minimize the time the sensors are functioning. When the 
sensors are not needed they go into sleep mode to save energy. The access point, which can be 
placed adjacent to the road, can be access by the TMCs to remotely obtain data and control the 
nodes.  

Even though most point detectors can provide adequate information, they have several 
drawbacks as opposed to Wireless location technology (see Figure 1.6). Several papers and tests 
have been conducted in the U.S. in cooperation with cell phone providers to test wireless 
location technology. Wireless location technology uses the signal from cell phones to track the 
vehicles they are in. This way any number of vehicles can be tracked on any desired road so long 
as the vehicle contains a wireless device, such as a cell phone or GPS device. The advantage to 
using wireless location technology is its ability to obtain data from an existing infrastructure 
without the need to worry about power supply or environmental effects. A cell phone can be 
tracked even if it is not being used, as long as it is turned on. The location of the cell phone can 
be obtained using the signals sent to and from the tower; or if the phone has built-in GPS it can 
give the exact location of the phone.  

Some companies have been commissioned to use wireless location technology by some 
states to provide data. One company, AirSage, conducted several tests in the past few years in 
Virginia, Utah, and California; however, they could not provide adequate information. Other 
companies such as Cellint, Delcan, Globis, and IntelliOne are still testing their wireless location 
technology; however the data is also not accurate enough. The difficulty with wireless location 
technology is accurately mapping the received data depending on how the location of the vehicle 
is obtained. It is crucial to accurately position the vehicle in order to determine the speed and the 
distance travel by a vehicle over a certain link.  
 

 
Figure 1.6:  Schematic of wireless location technology 

This section summarized the travel time prediction and data detection capabilities in the 
U.S. The next section provides a brief overview of travel time forecasting system in Europe. 
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1.2.4 Travel Time Prediction in Europe 
Catalan Traffic Service, the department of transportation for the city of Barcelona and 

surrounding areas, collects real-time traffic data such as speed, flow, occupancy, and vehicle 
classification every minute using inductive loops and 127 closed circuit television cameras. 
Travel time forecasting is conducted based on a combination of historic information and real-
time travel data. Travel time information and alternate route information to specific destinations 
is disseminated through sixty-seven Dynamic Message Signs. Level of service of the roadway 
sections is calculated and information is provided on the website using color codes (Figure 1.7).  

 

 

 
Figure 1.7:  Catalan Traffic Service DMS 

(Source: http://international.fhwa.dot.gov/travelinfo/barcelona.htm) 

In Berlin, the VMZ Berlin project headed by Siemens AG and Daimler Chrysler has led 
an effort to provide travel time and incident information on a website. The travel time 
information is calculated based on historical travel times and updated based on real-time reports 
obtained from the police. Efforts are underway to develop a travel time prediction model using 
detectors. 

In Scotland, traffic detectors coupled with closed circuit television cameras are used to 
estimate travel time and congestion on freeways. Travel time estimation and prediction efforts 
along the lines of the DACCORD project described in Section 2.1.4 are currently underway in 
Amsterdam, Paris, Venice, and Athens.  

In Scotland, research is being conducted to develop traffic detection devices that are 
placed into road studs. The road studs are built to withstand a lot of wear and tear as they are 
meant to delineate the lanes on a road. Traffic is monitored by two light-activated optical sensors 
placed in the road stud. The sensors will be equipped with temperature and light sensors to detect 
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inclement weather and warn against incidents and hazards. In the future, there will also be planes 
to add video detection to the studs in order to track vehicles using license plates.  

1.2.5 Summary of the State-of-the-Practice 
The fundamental deficiency of the existing travel time prediction system is that it is not 

predictive in nature. It does not anticipate the short-term evolution of traffic dynamics 
downstream. As concluded by Quiroga (2000), such a simple but non-robust travel time 
prediction scheme cannot provide satisfactory prediction during recurrent peak hours, during 
which travel time prediction is more important than the off-peak hours. 

Similarly, the current practices for travel time predictions will not perform well under 
non-recurrent traffic conditions such as work zones, accidents, and special events. When 
motorists are stuck in a long queue without knowing the exact cause of the delay, reasonable 
travel time prediction on DMS becomes critical to help ease road rage and to assist motorists in 
evaluating whether to divert to alternative routes. 

Based on the research team’s personal communication with traffic engineers in the San 
Antonio district, the DMS travel time prediction messages are usually turned off during peak-
hours, work zones, and accidents. Apparently, there is ample room for improving the freeway 
travel time prediction under different traffic conditions with an improved framework for all the 
DMS systems operated in Texas. 

1.3 Travel Time Prediction—Literature Survey 
Past work on travel time prediction can be classified into statistical models and heuristic 

models. Statistical techniques primarily use regression techniques or time series analysis to 
estimate travel times based on historical or real-time information. Purely statistical techniques do 
not perform very well during abnormal traffic conditions, i.e., conditions that may not be present 
frequently in the data sample used for calibration. Hence, purely statistical techniques may not be 
accurate during peak hours. Heuristic models use techniques like Artificial Neural Networks and 
the Kalman filtering approach for short term prediction of traffic flow models. Other types of 
methods include using dynamic traffic assignment and simulation-based techniques in 
combination with the above methods to better predict travel times. Some of the recent work on 
short term travel time prediction models are summarized in Figure 1.8. 

1.3.1 Regression Models 
Kwon, Coiffman et al. (2000) used linear regression and advanced statistical methods 

such as tree methods to develop models for predicting travel time. Simple prediction models, like 
linear regression based on current flow and occupancy etc., were found to be beneficial for short 
term travel time forecasts. However, the model uses travel time estimated using probe vehicles as 
the response variable. It might not be possible to obtain current travel time measurements using 
probe vehicles on a regular basis. Also, the model performance is not tested under irregular 
traffic conditions, such as incidents that may commonly occur during peak periods. Chakraborty 
and Kikuchi (2004) used transit bus vehicles as probe vehicles and developed a simple linear 
equation using regression to predict automobile travel time based on the bus travel time. Zhang 
et al. (2003) developed a linear model with time varying coefficients for short term travel time 
prediction. However, the above model may not perform well in the presence of incidents and 
other special traffic conditions. 
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1.3.2 Neural Networks-Based Models 
Van Lint et al. (2002) used recurrent neural networks to predict freeway travel time. The 

model was tested on synthetic data and found to perform very well. One of the drawbacks of the 
above methodology is that it requires that the traffic data contain a sufficient amount of great 
detail. In another work conducted by the same authors in 2003, the researchers improved the 
robustness of the model to corrupt data by using simple imputation schemes where the missing 
data are replaced by reasonable ad hoc approximations. Van Lint (2004) extended the above 
work to develop an approach to quantify the uncertainty around the travel time predictions. 
Confidence intervals are developed around the travel time predictions. Uncertainty in travel time 
predictions can be caused due to uncertainty in data or due to the uncertainty in the model. 
Huisken et al. (2002) developed a travel time prediction method based on Artificial Neural 
Networks and compared the same with the current travel time prediction model in use in a 
corridor in the Netherlands.  

Different methodologies for travel time estimation were tested to arrive at more accurate 
estimates of current travel time. The estimates of current travel time are used for short term 
prediction of future travel times. Predicted travel times using artificial neural networks are found 
to be more accurate than the currently used naïve methods. Mark and Sadek (2004) conducted a 
comprehensive statistical analysis of the impact of various factors, such as temporal resolution of 
the data, speed, flow, etc. on the experienced travel time predictions obtained using artificial 
neural networks in the presence of incidents. The data for this study was synthetically generated 
by simulation using the Cell Transmission Model as the traffic flow model. 
 

INPUT DATA 
MODELING TECHNIQUE 
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 Chakraborty et al., 2004  
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Figure 1.8: Overview of travel time prediction literature 
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1.3.3 Kalman Filtering  
Chien et al. (2002) used a Kalman filtering algorithm for short term prediction of travel 

time. Predictions using link-based travel times were found to be more accurate than prediction 
using path-based travel times. The study used a combination of historical and real-time data. 
Filtering of biased data was found to improve the accuracy of the model. 

Chien et al. (2003) integrated concepts of traffic simulation and statistics to develop a 
model for predicting travel times based on spot speed/volume data obtained from various sensors 
on the freeway corridor. The spot speed/volume data was used to calibrate a traffic simulation 
model and the travel times in the corridor were obtained through simulation. The simulated 
travel times were fed into a Kalman filtering framework to predict the future travel times. 
Nanthawichit et al. (2002) developed a method for short term travel time prediction by 
combining a Kalman Filtering approach with a macroscopic traffic flow model. The proposed 
model was found to perform better for hypothetical traffic flow data. However, this model 
requires data about traffic flow states from probe vehicles, which may not be feasible. Kuchipudi 
et al. (2003) developed a model in which both path-based data and link-based data are used to 
predict travel times using a Kalman filtering framework. Depending on the prediction error 
obtained using path-based and link-based data, the corresponding travel times are chosen. Fan et 
al. (2004) developed an online adaptive least squares method for short term prediction of traffic 
parameters. The methodology proposed was shown to be a special case of the Kalman filtering 
approach. 

1.3.4 Time Series/Multivariate State-Based Models  
Stathapoulos and Karlaftis (2002) developed a multi-variate time series model for short 

term prediction of traffic flow parameters. Multi-variate time series models were found to 
perform better than univariate models for short term traffic predictions. Kamarianakis and 
Prastacos (2003) compared the forecasting performance of two univariate and two multivariate 
models of traffic flow. The main variable under study was the relative velocity, which was 
defined as the traffic volume divided by the occupancy. Multivariate models are found to be 
more effective than univariate models in capturing disturbances in traffic flow. An analysis of 
the performance of the traffic prediction system implemented on the I-4 corridor in Orlando, 
Florida was conducted by Ishak and Al-Deek (2003). The system was evaluated under a wide 
range of traffic conditions and prediction errors. The model used in this study is a non-linear 
time series model and was developed by D’Angelo et al. (2000). The performance of the model 
was found to deteriorate rapidly with the onset of congestion, with errors up to 25-30 percent. 

Lindveld and Thijs (2000) provide an overview of the performance of several travel time 
estimation and prediction methods at three test sites in Europe. The travel time prediction was 
conducted using a statistical model, a time series analysis, and a real-time dynamic traffic 
assignment-based model. The real-time dynamic traffic assignment-based model was found to be 
more accurate. However, the performance of this model under congested conditions has not been 
studied. 

1.3.5 Summary of the State-of-the-Art 
Based on the survey conducted above, some of the benefits and deficiencies of each of 

these types of approaches are being identified to aid in development of a better model. Some of 
the salient findings of the study are summarized below. 
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(i) Most of the prediction methodologies developed in research or implemented in 

practice (like in The Hague-Rotterdam motorway in Netherlands and I-4 in the 
Orlando) have been calibrated and tested on one particular data set only. There is a 
need to calibrate and test the prediction capability of the developed model over 
multiple data sets to get a better idea of the model performance.  

 
(ii) Prediction capability of most of the approaches is dependent on the data set used. For 

example, the performance of artificial neural network-based models is found to be 
dependent on whether future traffic states are present in the training samples. Short 
term forecasts during peak periods made by statistical techniques using purely 
historical data sets are found to inaccurate. Short term forecasts made using real-time 
data or a combination of real-time data and historical information are found to be 
more accurate in capturing real-time dynamics. 

 
(iii) In some cases, the data set might contain some erroneous data due to detection errors 

or atypical traffic conditions. Smoothing of such data might result in better 
predictions during steady state conditions. However, care should be taken while 
smoothing to avoid losing valuable information about the state of the traffic. 

 
(iv) Most of the information about the states of the system is obtained through spot 

detectors. The information provided by these detectors is primarily speeds, flows, or 
occupancy. There is a need to estimate travel time information from speeds or flows. 
A lot of techniques are available to estimate the current travel time from speed 
volume data; however, many of them are based on simple linear relationships. There 
are relatively few studies that use analytical traffic flow relationships or simulation 
based models to determine the current travel times. Usage of traffic flow theoretic 
relationships or simulation-based models may be more useful in extrapolating local 
conditions (like spot speed data) to that of a link (like travel time on a link). Because 
the accuracy of the predicted travel times is dependent on the accuracy of the 
estimated current travel times, it is very important to explore such methods to arrive 
at better estimates of current travel time. Another way to explore better methods of 
estimating current travel times would be to forecast future traffic states in terms of 
speed and flow, and use travel time flow relationships to extract future travel time 
information from future estimates. 
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Chapter 2.  Overview of Selected Models 

Based on the literature review conducted, four different models were selected for 
preliminary testing. The first three models are simple speed-based models. The speed-based 
models were selected as they are relatively easy to implement and are widely used in the field. 
The fourth model selected for implementation is the time series-based models applied in the 
DACCORD project. This innovative model uses both speed and traffic counts to estimate travel 
times. This model was primarily used for estimating travel times. In this project the efficacy of 
this model for prediction purposes is tested. 

2.1 Speed-Based Estimation Models 
Speed-based estimation models are one of the most common methods of estimating travel 

times in the system. They provide a relatively easy way of arriving at current travel times which 
are one of the primary inputs for most travel time forecasting models. Speed-based models 
estimate travel times by dividing the length of a section by the average travel time in the section. 
The data necessary for implementing these models can be collected using a variety of methods, 
such as probe vehicles with transponders, Automatic Vehicle Identification (AVI) readers, and 
simple dual loop detectors. Loop detectors are, however, the most commonly used data source 
for speed-based estimation models. In this section an overview of three speed-based estimation 
models will be provided: (i) Instantaneous Model (ii) Dynamic Instantaneous Model, and (iii) 
Dynamic Time Slice Model. 

2.1.1 Instantaneous Model 
In the instantaneous model, the corridor D1-D4 (see Figure 2.1) is split into reasonably 

sized sections S1, S2, and S3. Travel time in the corridor at time interval i is calculated by 
calculating the travel time in the individual sections at time interval i and summing them up. The 
travel time in the individual sections is calculated using the formula explained below. 

Let ),( 1iv , ),( 2iv , ),( 3iv and ),( 4iv represent the speed on the freeway at time interval i. 
Let )( 1sL , )( 2sL and )( 3sL denote the length of the section S1, S2, and S3, respectively. Now the 
travel time in the section S1 at time i )(iTTS1  is calculated using the following formula: 
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In a similar manner, the travel time in the section S2 at time i )(iTTS2  is calculated using 

the following formula: 
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Figure 2.1: Instantaneous Model 

 
The travel time in the corridor at time i )(iTT DD 41−  is calculated as: 
 

)()()()( iTTiTTiTTiTT sssDD 32141 ++=−  
 

2.1.2 Dynamic Instantaneous Model 
One of the defects of the instantaneous model is that it does not account for spatial and 

temporal congestion along the freeway section. A person departing from D1 at time i is assumed 
to experience the same travel time in section S2 as a person departing from D2 in time i. To 
address this defect, the dynamic instantaneous model (see Figure 2.2) attempts to calculate the 
travel time in the corridor at time i , )(iTT DD 41− by cascading the travel times. The travel time in 
the section S1 at time i )(iTTS1  is calculated using the following formula: 
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The travel time in the section S2 at time )(iTTik S1+=  ))(( iTTiTT SS 12 +  is calculated 

using the following formula: 
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Figure 2.2: Instantaneous Model 

The travel time in the section S3 at time )(kTTkl S2+=  )(lTTS3  is calculated using the 
following formula: 
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The travel time in the corridor at time i )(iTT DD 41−  is calculated as: 
 

)()()()( lTTkTTiTTiTT sssDD 32141 ++=−  
 

2.1.3 Dynamic Time Slice Model 
Despite accounting for dynamics across sections, dynamic instantaneous models do not 

account for the evolution of congestion within the section. To address this defect, a time slice 
model calculates travel times as given below. 

The travel time in the section S1 at time i )(iTTS1  is calculated by solving the equation 
presented below using approximate solution techniques: 
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In a similar manner (Figure 2.3), the travel time in the section S2 at time )(iTTik S1+=  
)(kTTS2  and the travel time in the section S3 at time )(kTTkl S2+=  )(lTTS3  is calculated. 
 
The travel time in the corridor at time i )(iTT DD 41−  is calculated as: 
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)()()()( lTTkTTiTTiTT sssDD 32141 ++=−  
 

 
Figure 2.3:  Dynamic Time Slice Model 

Despite its obvious limitations in detecting the spatial and temporal evolution of 
congestion, speed-based estimation methods are often used, as they provide a relatively 
simplistic method of obtaining current travel times. Data requirements are relatively minimal and 
basic dual loop detectors, which are commonly deployed, can be used to obtain the required 
input data. The travel times obtained from speed-based methods are used as a basis to compare 
the performance of more complicated forecasting techniques and are sometimes used as inputs 
for many of the prediction techniques. These methods perform well under steady state conditions 
when there is relatively little congestion on the freeways. However, when the traffic conditions 
are unstable, such as during congestion build up and dissipation regimes, the speed-based 
methods are found to be relatively inaccurate as there is no mechanism to capture the congestion 
evolution.  

2.1.4 Time Series-Based Models—Van Arem 
A time series-based model was developed by Van Arem et. al. (1994) as a part of the 

GERDIEN project. As a part of the project, a network state monitoring and prediction (NSMP) 
system was developed, one of the primary functions of which is travel time estimation on the 
freeways. The NSMP has traffic detectors measuring speed, traffic volume, and occupancy on a 
temporal aggregation level of 1 minute. The model operates in two phases (see Figure 2.4). The 
first phase is to detect the presence of congestion. If the freeway section is found to be 
uncongested, the travel time on the freeway section is approximated to be equal to the free flow 
speed. If the freeway section is congested, the travel time on the freeway is equal to the sum of 
the free flow speed and the time delay experienced by a vehicle. 
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Figure 2.4: Travel time estimation framework of Van Arem model (Van Arem et al.1997) 

Speed-based and time series-based criteria are used for congestion detection. In the 
speed-based criterion, if the minimum of the average speeds of vehicles entering or departing the 
freeway section is found to be lesser than a pre-specified threshold value, the freeway section is 
assumed to be congested. However, this does not account for cases when the congestion is in the 
middle of the section. In such cases, an ARMA time series-based model is used to detect 
congestion. In the time series model, the outflow in the section at time )(iY is written as a linear 

function of the outflow in the last on intervals and the inflow )(iX  in the previous in  intervals 
starting at time Δ−i  where Δ  is the average time delay between inflow and outflow. 
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The coefficients of the model ja and kb  are calibrated from the data obtained from the 
previous M intervals. An impulse response function of the above ARMA model is calculated and 
used to detect the presence of congestion in the middle of the section. Thus if there is no 
congestion in the freeway section then the travel time in the section )(iTT is approximated to be 
equal to the free flow speed )(iTTF . If there is congestion in the system the travel time in the 
section is calculated as  

WiTTiTT F += )()(  
Where W is a measure of time delay in the section. W is calculated as the ratio of the 

total number of excess vehicles in the system and the cumulative outflow. 
In this study, the above model is extended in the following manner (see Figure 2.5). 
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speeds. Freeway segments with both in-ramps and out-ramps are considered and the time series 
model is used for prediction of travel times in the future instead of estimation.  

 
Figure 2.5: Applying Van Arem Model for Prediction 

2.1.5 Numerical Analysis 
In this section, the performance of two types of models—speed-based and time series-

based estimation models—were compared using both simulated and real data. The simulated 
data was obtained from a 3.5-mile segment of El Paso, micro-simulated using the VISSIM 
model. The real-time data was obtained from the Berkeley highway laboratory. More details on 
the data sources will be provided in Chapter 5. The models were coded in C++ and speeds and 
counts were used as input. Half of the data set was used for calibrating the models, whereas the 
other half was used for testing the performance of the model. 

The results for the estimation in the El Paso and the Berkeley Highway network are 
shown in Figure 2.6 and Figure 2.7: 
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Figure 2.6: El Paso Speed-Based and Time Series Methods 

 
Figure 2.7: Berkeley Highway Network Speed-Based and Time Series Methods 

The speed-based models were found to perform very well under uncongested conditions 
with an error rate of around 10 percent, while the time series models were found to over-estimate 
the travel times with an error rate of nearly 30 percent. Under congested conditions, the time 
series-based models over-perform the speed-based models, especially in the longer sections, with 
an error rate of around 10 percent. 
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For prediction, the performance of the model on a freeway section in El Paso is given in 
Figure 2.8. 

 

 
Figure 2.8: El Paso Network Travel Time Prediction 

The analysis also shows that the model is highly sensitive to the temporal coverage of the 
data (see Figure 2.9). The model performance was found to deteriorate significantly when the 
temporal aggregation was 5 minutes compared to a 1-minute aggregation. 

 

 
Figure 2.9: Temporal Aggregation 

As with estimation, for prediction, the speed-based models were found to outperform the 
time series models during uncongested conditions, whereas the time series models outperformed 
the speed-based models for congested conditions.  

2.1.6 Summary 
The accuracy of the speed-based models is highly dependent on the quality and 

availability of speed data, which is generally more difficult to obtain than count data. Time series 
models require only count data and the parameters can be adjusted to reflect the current 
congestion levels. However, time series models require heavy detector coverage, especially in 
ramps. One of the disadvantages of the above models is that it does not account for traffic flow 
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relationships in the determination of the congestion state and in estimation of current travel 
times. To account for the evolving spatial and temporal dynamics, a simulation-based model 
complemented with a time series model for predicting inflows has been developed in this study. 
The simulation-based model also provides an excellent framework for analyzing detector 
locations and can handle absence of detectors on ramps.  
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Chapter 3.  Integrated Traffic Simulation-Statistical Analysis 
Framework for the Online Prediction of Freeway Travel Time 

Over the past few decades, congestion on the nation’s highways has become a growing 
problem, especially in urban areas. Increasing the capacity of the transportation infrastructure by 
building new roads, or by adding lanes to the existing ones, is not always a feasible or desirable 
solution. Therefore, more emphasis is being placed on the implementation of Intelligent 
Transportation Systems (ITS) to enhance the efficient utilization of the available roadway 
capacity. An important component of ITS is the dissemination of information about the current 
and future state of the network, which is commonly done by displaying section travel-time 
estimates on Dynamic Message Signs (DMS). The provision of information to network users 
allows them to make better decisions, improving the system performance.  

The information supplied by DMS can consist of instantaneous or future travel times. 
Instantaneous travel time estimates are based on present traffic conditions, and are therefore 
relatively easy to calculate. However, these predictions do not consider the impact of future 
downstream traffic conditions and can deviate significantly from experienced travel times during 
periods of moderate to high congestion. Therefore, methodologies capable of providing accurate 
and reliable travel time information should account for the evolution of traffic along the freeway. 

The main objective of this chapter is the development of a simulation-based framework 
for the point-to-point freeway travel time prediction in the short term (3 to 7 minutes). The 
proposed methodology relies on traffic counts, provided by the simplest types of detectors, as its 
primary input, which makes it widely applicable.  

While most of the research previously conducted in the area uses statistical or heuristic 
techniques to predict future travel time as a function of current and historical traffic flows (Chien 
et al., 2003), the present work derives travel time predictions from a calibrated traffic flow model 
fed by forecasted demands. The two-stage travel time prediction process introduced in this 
framework involves the use of a time series model to forecast the inflows into the traffic corridor 
and a Cell Transmission Model (CTM) to simulate the flow of these vehicles through the 
network. By doing this, the proposed approach takes advantage of the best characteristics of 
statistical techniques and traffic flow theory relationships. The utilization of a CTM (Daganzo, 
1994, Daganzo, 1995) ensures that queue formation/dissipation, link spillovers, shockwave 
propagation, and other elements of traffic dynamics are accounted for. Additionally, the 
presented framework is computationally efficient, allowing for online updates of the freeway 
travel time estimates by means of a rolling-horizon approach (Wagner, 1977).  

The overview of travel time prediction literature reveals the existences of deficiencies, 
some of which are addressed by the novel methodology developed in this work. First, by 
deriving travel times via simulation, the new approach is expected to be more effective than 
existing methods, which tend to approximate the complex, non-linear relationship between flows 
and travel times by a single statistical function. In addition, the proposed framework reserves the 
use of statistical methods for the forecast of the main sources of uncertainty (i.e., traffic 
demands), whereas it models explicitly the better-known traffic flow relationships. Finally, the 
model described in the next sections considers smaller prediction intervals (3 to 7 minutes) than 
the majority of previous work and relies on traffic counts as its principal input, which are 
available more often than probe-vehicle or automatic vehicle identification data.  
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3.1 Methodology 
As described earlier, this work proposes a combined simulation-statistical analysis 

framework for the online, point-to-point freeway segment travel time prediction. Statistical 
techniques are used to predict vehicle inputs into the segment. The characteristics of the flow 
induced by these inputs, along with the corresponding travel times, are obtained via simulation. 
The proposed methodology requires the knowledge of online vehicle counts at the starting point 
of the segment under study. Besides, it makes use of the information provided by additional 
detectors located throughout the segment, when available.  

For the purpose of this study, the traffic simulation is accomplished by means of a Cell 
Transmission Model (CTM), while vehicle inflows are predicted using Auto-Regressive 
Integrated Moving Average (ARIMA) time-series models. The following sections describe the 
implementation details of these approaches and the rolling horizon framework into which both 
model components have been integrated. 

3.1.1 Traffic Simulation Component: a Cell Transmission Model 
Cell transmission models, first introduced by Daganzo in 1994, simulate traffic behavior 

at a mesoscopic level. In these models, networks are represented as a string of connected cells in 
which vehicles are contained. CTMs use a discrete representation of time and compute cell-state 
variables (usually occupancy or density) at every time step via relatively simple numerical 
operations. The equations governing the displacement of vehicles from one cell to another are 
derived from the hydrodynamic theory of traffic flow (May 1990). Given that the modeling of 
individual freeway segments requires a relatively small number of cells, CTMs are highly 
efficient for online travel time prediction purposes. In addition, the discretization of the freeway 
segment into cells allows for an easy representation of traffic detectors, the location of 
entrance/exit ramps, and multiple origins and destinations for the point-to-point travel-time 
computation.  

Despite some implicit simplifying assumptions, such as a trapezoidal flow-density 
relationship, the CTM framework adequately captures traffic dynamics, including queue 
formation and dissipation, link spillovers, and shockwave propagation. CTM is the traffic flow 
model embedded in VISTA (Waller et al., 1998, Ziliaskopoulos, 2000), a dynamic traffic 
simulator which has been successfully utilized by several transportation authorities to evaluate 
priority corridors, signal priority strategies, and impacts of network disruptions.  

The next two sections provide details about the CTM implementation accomplished in 
this study and the travel time computation approach, respectively.  

3.1.2 CTM Implementation 
Figure 3.1 depicts the typical cell representation of a freeway segment in the context of 

this study. At each entrance ramp or traffic detector location, an auxiliary “gate cell”, holding an 
infinite number of vehicles at all times, is used to generate the appropriate inflows, which are 
regulated by the maximum capacity of the corresponding link. In order to accurately model the 
location of detectors and exit/entrance ramps, the flow of vehicles between cells is described 
according to a density-based CTM formulation (Munoz et al., 2004), which enables the use of 
variable cell lengths along the segment. For cells not connected by merge or diverge links, 
equation 1 relates the density (expressed in vehicles per mile) at time intervals k and k+1 as 
follows: 



29 

 

))()(()()1( 1,,1 kqkq
l

kk iiii
i

ii +− −Δ+=+ ρρ    

where Δ  is the simulation interval and il  stands for the length of cell i. The flows 
leaving from and arriving to cell i during time interval k are given by )(1, kq ii + and )(,1 kq ii−  
respectively. These are obtained as the minimum of two quantities: the highest flow which can 
be supplied by the upstream cell ( )(1 kSi− ), and the maximum flow that the downstream cell can 
receive ( )(kRi ). Equations 2 and 3 describe the computation of these values for every cell: 
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where υ  refers to the free flow speed, 1, −iMQ  is the capacity (in vehicles per hour) of cell 
i-1, and Jρ  is the jam density. The above equations constitute the core of a CTM. The reader 
may refer to Muñoz et al., 2004, for a detailed description of their derivation. Additionally, these 
relationships need to be modified appropriately in order to model flows among cells connected 
by merge or diverge links. The corresponding equations (for an occupancy-based CTM) are 
presented in Daganzo, 1994, and can be easily modified to fit in the density-based CTM 
formulation applied in this study. 

The CTM formulation is based on the assumption that, at any simulation time step, 
vehicles can travel, at most, the length of a cell. Therefore, the selections of free-flow speeds, 
minimum cell length, and simulation time steps are closely related, and constitute a fundamental 
modeling component. Given that the CTM formulation implies an even distribution of vehicles 
within a cell (single density value per cell and time interval) along with constant link flows 
(including input flows) throughout a simulation step, small cell lengths and simulation steps are 
desirable. However, these values are limited by practical and computational considerations. Past 
experience in the usage of CTM for freeway traffic simulation (Chien et al., 2003, Daganzo, 
1994) suggests the convenience of adopting step lengths between 3 and 6 seconds. For the model 
implementation presented in Section 4, a 4-second interval was selected. This choice provided 
the flexibility to define sufficiently small cell lengths for free flow speeds in the 55-65 mph 
range, allowing for an appropriated modeling of detectors and ramps location.  
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Figure 3.1: Cell Transmission Model description 

3.1.3  Travel Time Computation 
In the present CTM implementation, the point-to-point travel time computation is 

performed based on the comparison of cumulative counts at the desired entrance and exit points. 
When detectors, merge links, or diverge links are present within a segment, the travel time is 
computed by sub-segments containing only regular internal links. The corresponding segment 
travel time is obtained recursively, according to equations 4 and 5: 
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where ( )kT1 is the cumulative travel time up to sub-segment s at time k, ( )k1τ is the sub-

segment travel time, and S represents the total number of sub-segments.  
If the freeway segment under analysis accounts for several traffic detectors, separate 

CTM model runs are conducted at every time interval. These simulations start at the location of 
each detector and use the corresponding input data. The travel time computation is accomplished 
on a “sector” basis, where sectors such as SD (Figure 3.1) are defined as the set of cells located 
between detectors D and D+1. For all the origins and destinations contained within SD, travel 
times are derived from the CTM simulation based on detector D.  

The presence of intermediate detectors may lead to the definition of sub-segments shorter 
than 0.5 miles, on which the travel times can be extremely short. Under this setting, accurate 
cumulative-count-based travel time estimations would demand a very precise modeling of 
vehicles’ position at each time interval, usually beyond the reach of mesoscopic traffic models. 
Therefore, a poorer framework performance can be expected when excessively short sub-
segments are modeled. 
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3.2 Statistical Analysis Component: Traffic Counts Forecasts 
Running a CTM simulation requires knowledge of the inflows at every network entrance 

point throughout the length of the simulation. The latter should be large enough to permit the exit 
of all the vehicles entering the section during the period of interest. If travel times estimates are 
desired for N time intervals starting at time k=0, the simulation should be run (at the very least) 
until all the vehicles that entered the freeway at times k=1,2…N reach the exit point. This 
demands a corresponding provision of input flows at all segment entrance points, which needs to 
be forecasted based on the traffic counts observed up to time k=0.  

In this study, an Auto-Regressive Integrated Moving-Average (ARIMA) model has been 
chosen to predict the necessary traffic inflows. Although this is a relatively simple time series 
model (readers might refer to any time-series analysis text, such as Brockwell and Davis, 2002, 
for a detailed description of ARIMA models), its performance was found to be comparable to 
that of more complex methodologies. In addition, ARIMA models are relatively easy to 
implement, do not require extensive input data, and are computationally efficient, enabling their 
incorporation within a rolling horizon framework.  

3.3 Online Framework Implementation  
Online travel time predictions are obtained by integrating the simulation and statistical 

model components within a rolling-horizon approach, in which vehicle inflow data collected 
from traffic detectors and initial/border conditions are updated in real time. The vehicle counts 
provided by traffic detectors are aggregated appropriately and used to calibrate an ARIMA 
model, which provides counts forecasts. The online information is utilized in conjunction with 
these forecasts to run an offline calibrated CTM at every desired point in time “t”, as depicted by 
Figure 3.2.  

Even though the proposed rolling horizon framework implements a CTM online, most of 
the core model parameters require offline calibration. These include jam density )(kJρ , 
capacity )(kQM , diverge split ratio for diverge cells )(kBt , priority factor for merge cells p, free 
flow speed υ  and congestion parameterω . The details of the impact and usage of the above 
parameters can be found in Daganzo, 1994 and 1995. By allowing for time-varying densities and 
capacities, the approach presented in this paper provides the flexibility to model lane closures 
and incidents. Similarly, the utilization of a time-dependent tB  parameter permits modeling 
origin-destination patterns that vary throughout the day. Although the values of tB  can be 
exogenously determined by means of historical data, it is also possible to refine or correct them 
based on online counts. 
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Figure 3.2: Rolling-horizon implementation 

Figure 3.2 describes the implementation of the rolling horizon approach. At time t, the 
prediction horizon f is the maximum time for which travel time predictions will be provided. The 
forecasting horizon m represents the time up to which the CTM will be run, allowing for the exit 
of all the vehicles that entered the section during the [t,t+f] interval. The ARIMA model uses 
detector data cumulated during the last a intervals to provide the traffic counts forecasts needed 
to feed the CTM between times t and t+m. The CTM simulation starts at time t-p, and it provides 
the travel time predictions for the interval [t,t+f]. At time t+f, the prediction horizon is moved to 
f, and a, m, and p are shifted accordingly. Notice that the initial conditions for this new CTM run 
are taken from the appropriate density values predicted by the previous CTM run (time I). 
However, when detector counts are available at intermediate points, the comparison of real 
detector counts and CTM-predicted flows on links such as j and j+1 can be used to heuristically 
improve the starting densities at the beginning of each CTM run. Section 3.3.1 presents a 
possible approach for the heuristic refinement of initial densities. 

3.3.2 Heuristic Approach for the Update of Initial Conditions. 

One important factor affecting the accuracy of a CTM is the precision of the initial 
conditions, which are given by the density at every cell at the beginning of the simulation. In the 
presented rolling-horizon approach, the initial conditions for each model run can be extracted 
from the density values provided by the previous model execution, as described in section 3.3. 
Because of unavoidable modeling imperfections, the cell densities predicted by the model may 
not correspond exactly to the actual distribution of vehicles throughout the freeway segment. 
Although these deviances are not anticipated to have a large impact in the travel time prediction 
of a single model run, their effect is likely to become noticeable as the rolling horizon moves 
forward.  

For the purpose of this study, a simple heuristic approach has been adopted as a means to 
reduce the impacts of errors in the initial conditions. The methodology makes use of the 
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information provided by additional detectors placed along the freeway segment, which are 
modeled as indicated by Figure 1. The heuristic density correction is based on the comparison of 
real cumulative flows on links such as j+1 and the cumulative link flows obtained from the 
model for links such as j. At time t, these can be computed according to equations given below: 
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 where D
tMF  is the cumulative flow predicted by the model, and D

tRF  is the real 
cumulative flow, as provided by traffic detectors.  

The heuristic approach proposed in this work is applied when D
tMF - D

tRF exceeds a pre-
defined threshold (heuristically set to 20 percent after extensive numerical analyses), and the 
appropriate refinements are decided based on the sign of this difference and the congestion level. 
If D

t
D

t RFMF <  and the density at sector SD-1 is close to Jρ , it can be concluded that the model is 
exaggerating the existing congestion. Given that the inputs to SD are obtained from detector 
counts (and therefore assumed to be correct), the excessive congestion is attributed to overly 
large initial densities at SD-1 cells, which are reduced based on D

t
D

t RFMF − . Conversely, if the 
densities at SD are low while the model underestimates the cumulative outputs, the previous line 
of reasoning leads to the need for an appropriate density increase. Similar analyses are performed 
when D

t
D

t RFMF > , resulting in heuristic augments and reductions of SD densities when these 
are low or moderate, respectively.  

3.4 Summary 
In this chapter an integrated statistical simulation based model was presented for travel 

time predictions. The model predicts the inflow into the freeway network using an ARIMA 
model. The forecasted inputs are then simulated using a Cell Transmission Model to obtain the 
travel times. The new model accounts for the evolving dynamics of traffic flow in predictions 
and is computationally efficient. Therefore, it can be run in a normal personal computer as long 
as data as available. 
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Chapter 4.  N Curve Model 

4.1 Model Description 
In 1997, Daganzo proposed travel time prediction on a freeway under work zone 

conditions [1]. Daganzo described this approach by modifying input-output diagrams to measure 
the time and distance spent by vehicles in a queue in a simpler manner than using a time-space 
diagram. This process requires the construction of a curve depicting the cumulative number of 
vehicles reaching the back of queue as a function of time, refer to Figure 4.1.  

 

 
Figure 4.1: N-Curve (Input-Output) Based Method [1] 

Figure 4.1 demonstrates the arrival time of each vehicle at an upstream observation point 
where it is measured and plotted on the figure as the curve )(tA . By translating the arrival time of 

each vehicle horizontally to the right by the free-flow travel time to the bottleneck, ft , the 
desired (or “virtual”) arrival time of each vehicle at the bottleneck can be plotted as the curve 

)(tV . Finally, the departure curve, defining the time that each vehicle departed the bottleneck, 
can then be constructed in the usual way to serve the virtual arrivals at a maximum rate m . For a 
given vehicle number n , the horizontal separation between )(tV  and )(tD  represents the delay 
for that vehicle, and is denoted nw ; and the horizontal separation between )(tA  and )(tD  

represents the total delayed travel time for that vehicle, nqt . 
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Using the relationships derived from a space time diagram, the input-output diagram of 
the figure above can be modified to include the curve )(tB , the number of vehicles to reach the 
back of the queue by time t , or equivalently the times that each vehicle reaches the back of the 
queue (Figure 4.1). Time can be determined for each vehicle that joins the back of the queue by 
“extending” its delay, nw . The locus of these points for all vehicles represents the “back of 
queue” curve, )(tB , which can now be constructed on the input-output diagram (Figure 4.1). 
Obviously, )(tB  will differ from )(tV  only for those vehicles for which )(tV  differs from )(tD ; 
i.e., whenever a queue is present. 

Daganzo’s model development and case study are based on the hind-sight information on 
a closed system of a freeway. The advantages of utilizing the N-Curve model can be summarized 
as follows: 1) It requires less data for training calibrating by only requiring traffic flow counts for 
the upstream, downstream, and ramp points; 2) less data also means more robustness and 
generality when implemented; and 3) it can handle more traffic situations than other models 
while generating more accurate results. Nevertheless, this approach assumes a closed highway 
segment without considering on- or off-ramps between the upstream and downstream detectors. 
In the case of an off-ramp existing between the upstream and downstream detector, the highway 
segment loses its conversation of flow and the cumulative curve at the downstream detector 
cannot be directly used for travel time prediction without further modifications. In the event that 
both on- and off-ramps exist in the segment of interest, the situation could become more 
complicated. 

4.2 Methodology 
A generalized model development of an N-Curve based method which accounts for 

general freeway configuration, including on- and off-ramps, is proposed to estimate and predict 
travel time on a freeway segment.  

 
Definition of Variables: 

iπ : arrival time at detector i 
iN : Cumulative curve for detector i, :{ ,..., }i I m j∀ ∈  
( )i iN π : N-curve marker when arriving at detector i at time iπ  

( ), 1i i iT π+ : travel time between detector i and i+1 when arriving at detector i at time iπ . 
, ( )m j mπΦ : arrival time at detector j when the entire journey starts at detector m at time 

mπ  

By definition, 
1

m,j 1 1 Φ ( ) ( )m j jN Nπ π−
− −⎡ ⎤= ⎣ ⎦ , we can also show (proof omitted here) that 
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This means that to find the arrival time at detector j, we can find the time-dependent 

travel time for each detector pair within m and j and sum up these travel times and the arrival 
time at detector m.  
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4.2.1 Travel Time Estimation Without Ramps  

To initiate travel time prediction utilizing the base algorithm, the origin and destination 
points (or detectors) of the traveled path must be defined; in this case the origin detector is 
defined as m while the j is the destination detector. Detector i is defined to be in the set of I, 

where :{ ,..., }I m j . Travel time, , 1( )i i iT π+ , for two sensors for the complete simulation time, 
T}{0,..., π = .  

 
The computations then iterates as follows:  
Step 0: m = i 

Step 1: 
1

, 1 1( ) [ ( )]i i i i i i iT N Nπ π π−
+ += −  

Step 2: 1 , 1( )i i i i iTπ π π+ += +  

Step3: , 1( ) ,  stop if 1  m j m i i jπ π +Φ = + =  
    otherwise 1, go to Step 1i i= +  
 
Refer to Figure 4.2 for a graphical representation of the base algorithm. 
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Figure 4.2: Mainlane N-Curve Method 

4.2.2 Travel Time Estimation with Ramps  
To account for the presence of on- and off-ramps in the prediction corridor of interest, the 

base algorithm requires of a couple of modifications. Clearly, the technique eliminates the closed 
system found in the without-ramp case, meaning traffic flow conservation is no longer true 
between sensors placed upstream and downstream of the ramp junction. Thus, the detector set I 
is now expanded to ''' III +=  , which includes the original detectors, :{ ,..., }I m j , and the 
virtual detectors , }'{' KI = . K’ is the downstream virtual detector corresponding to K, where K is 
located upstream of either an on or off-ramp and is an element of I. This results in the creation of 
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‘virtual’ detectors i’ for any main-lane detector upstream i of an on- or off-ramp. The N-curve for 
the virtual detector i then becomes: 

 
' "i i iN N N= +  if detector i is the upstream detector for an on-ramp 

' "i i iN N N= −  if detector i is the upstream detector for an off-ramp 
 
Note that this virtual detector is assumed to be at the locations immediately downstream 

adjacent to the ramp. Following the previously defined iterative travel time process, travel times 
are calculated only for sensor pairs with flow conservation, including both actual and virtual 
detectors. As to be discussed in the later statements, the travel time between the detector i and i” 
needs to be estimated. At this moment, we assume that this travel time equals to ε .  

 
Refer to Figures 4.3 and 4.4 for a graphical representation of the on- and off-ramp 

algorithm. 
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Figure 4.3: On-Ramp N-Curve Method 
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Figure 4.4: Off-Ramp N-Curve Method 
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Chapter 5.  Data Requirements  

This chapter describes the different types of data required to calibrate, validate, and 
ultimately implement the models developed for this project, along with the data sources utilized 
to obtain the results presented in the following chapters. Additionally, the final section provides 
recommendations for the pre-processing of input data, namely traffic counts, in real time. The 
later are necessary given that the measurements provided by detectors may contain errors which, 
if neglected, could have detrimental effects on the performance of some travel time prediction 
models.  

5.1 Data Types 
Two main types of data are required, alone or in combination, in order to utilize the 

models presented in this report: traffic data and travel time measurements. Traffic data consists 
of vehicle counts, as provided by detectors deployed on the field. The data may be available at 
different aggregation levels, and ideally the most disaggregated version compatible with a real-
time deployment should be utilized. Traffic data is necessary for all the stages of model 
development and implementation. Travel time measurements were used in this research to 
validate the model performance, by comparing them to the travel time predictions generated 
using the models. They are also necessary to fine-tune model parameters, and when the model is 
utilized to determine optimal deployment strategies.  

In addition to the main data types, the models need to be tailored to reflect the geometric 
characteristics (Figure 5.1) of the segment under analysis. These include the number of lanes 
throughout the segment, number and position of entry/exit ramps and the corresponding split 
ratios, and the number and location of traffic detectors. Experienced-based knowledge regarding 
prevailing driving speeds, recurrent congestion, and general drivers’ behavior may be useful 
during the model calibration and validation process. 
 

.  

Figure 5.1: Travel-time prediction data types 

5.2 Types of Data Sources 
When the models presented in this report are used to generate online travel time 

predictions, the only valid source of data is given by traffic detectors, which provide the counts 
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used as the sole input at run-time. However, the validation and calibration stages demand 
additional data, including historical traffic counts at the segment under analysis and the 
corresponding real travel time measurements. Ideally both data sets should be collected on the 
site where the model is going to be implemented (field data), as shown in Figure 5.2. Historical 
traffic counts can be obtained from the same detectors that are going to be used for the 
predictions. At least one or two peak periods, including congestion formation and dissipation, 
should be available. The most straightforward source of real travel time measurements is the 
utilization of vehicles equipped with GPS systems. Alternatively, they may be derived analyzing 
AVI data or applying vehicle re-identification algorithms (Coifman, 1998, Sun et al., 1999). The 
travel time collection handbook (FHWA 1998) describes and compares these and other 
techniques. Real travel time measurements are required throughout the period used for 
calibration/validation, and a relatively dense data set is necessary to obtain accurate results.  

Field data may not be available in the amount and/or level of aggregation demanded by 
the validation/calibration processes. In such scenario, traffic counts and real-time measurements 
may be simulated using commercial microsimulators after modeling the segment under study 
utilizing the corresponding geometric data. In order to generate traffic counts and travel times, it 
is also necessary to feed approximate vehicle counts at the main entry points to the segment 
under study, which can be collected using existing traffic detectors or estimated based on other 
sources of historical data. Simulated data has a number of advantages: it’s error-free, can be used 
to test the model under different scenarios, and is available at any desired aggregation level. 
Furthermore, when optimal sensor location is analyzed, only the use of simulated data allows 
considering arbitrary deployment patterns. However, field data reflects the actual behavior of 
local drivers under real conditions and should be preferred over simulated data when available.  

 
Figure 5.2: Travel-time prediction data sources 

5.3 Utilized Data Sources 
This section describes the different sources of data used for testing, validating, and 

calibrating the developed models. These include microsimulator-based data, as well as field data. 
Even though the latter was preferred when available, some model applications demanded 
simulated data. Furthermore, the complete set of field data became available during the final 
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project stages, and therefore most of the model validation and testing was performed using 
simulated data.  

5.3.1 Simulated Data: VISSIM 
VISSIM (PTV America Inc.) is a traffic microsimulator that models the movement of 

individual vehicles through complex equations. As are many advanced traffic simulation tools, it 
is expected to produce very realistic results by allowing for an accurate representation of 
geometric conditions, vehicles’ characteristics, and drivers’ behavior. The microsimulator can be 
adjusted to generate output files that replicate the data that would be provided by different types 
of real traffic detectors. Similarly, it can provide travel times between any pair of points in the 
roadway, consistent with the detector measurements. All the data originated from the simulator is 
available at any desired aggregation level, which permits the testing of the model performance 
under different data availability scenarios.  

A 3-mile segment of the El Paso Border Highway, including five entry ramps and five 
exit ramps, was modeled using VISSIM (Figure 5.3). Simulations were run utilizing different 
levels of randomly generated trip demands, and varying positions of traffic detectors. Two hours 
of traffic were simulated in most cases, in order to allow the model to stabilize and produce 
reliable results. The output files, consisting of traffic counts and the corresponding travel times 
computed for every 4-second interval, were processed utilizing a C++ code to match the 
requirements of the different travel time prediction models. The program split the traffic data file 
into separate files per detector and aggregated the travel time measurements at different desired 
levels. 
 

 
Figure 5.3: Snapshot of VISSIM microsimulation 
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5.3.2 Field Data: BHL 

The Berkeley Highway Laboratory is a heavily equipped 2.7-mile section of Interstate 80, 
connecting Berkeley and Emeryville. Figure 5.4 depicts the geometrical characteristics of the 
highway segment. Historical data, as well as real-time traffic detector data, is available at a 
variety of aggregation rates at http://bhl.its.berkeley.edu:9006/bhl/traffic/historicaltraffic.html. 
Traffic counts are accompanied with the corresponding real travel times, obtained via a re-
identification algorithm based on the recognition of vehicle patterns. The availability of both data 
types makes this dataset valuable, despite the relatively small length of the monitored highway 
segment and the lack of traffic volumes data for entry/exit ramps.  

The BHL data was used to test and validate preliminary models for online travel time 
prediction. Traffic counts, corresponding to the morning peak hour during a week day, were 
downloaded from the abovementioned website at the minimum possible aggregation level and 
processed to match the requirements of the different models. The corresponding travel times 
were obtained by contacting the researchers at the BHL, as suggested in the webpage, and also 
required some processing in order to be analyzed and compared to models’ results.  

 
Figure 5.4: Berkeley Highway Laboratory Layout 

Source http://bhl.its.berkeley.edu:9006/bhl/about.html 

5.3.3 Field Data: TransVista traffic detectors and GPS data 
TransVista is the El Paso Traffic Management System. It consists of a number of traffic 

detectors, changeable signs, and data processing/storing infrastructure, utilized to manage local 
traffic. Historic traffic counts for model validation and calibration were obtained from 77 of this 
system’s detectors, spanning 37 miles of highway, 11 of which correspond to the El Paso Border 
Highway. 

Detector data was processed and organized into a PostgreSQL database, spanning several 
days in June. The database, along with the corresponding usage instruction and complementary 
visualization software, were delivered as product P5. The software includes a tool to plot 
different data components, including traffic volumes and speed (Figure 5.5). Additionally, a 
Graphical User Interface (GUI) was provided (Figure 5.6), which can be used to retrieve the data 
collected by each detector in real time, provided that the database is updated accordingly. 
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Figure 5.5: Sample of data plots (speed) from the traffic data base 

 

 
Figure 5.6: Graphical User Interface 

Real travel time data was collected utilizing a vehicle equipped with a Geo Positioning 
System (GPS). The car traveled through a 10-mile section of the El Paso Border Highway on 
which TransVista traffic detectors were deployed (see Figure 5.7). Between June 4 and June 29, 
2007, real travel time data was collected during the morning peak hour (6:00–8:00 AM), by 
completing two or three trips in each direction.  
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The GPS device recorded the coordinates of the vehicle every 5–10 seconds, and a C++ 
code was developed to process the resulting data. The program read the raw GPS file and 
generated travel times between roadway sections by subtracting the corresponding time stamps. 
By comparing the coordinates of each of the points retrieved by the GPS to the coordinates of the 
desired reference points on the highway (corresponding to the position of TransVista traffic 
detectors), the code was able to select the appropriate data pairs for the travel time computation. 
Each two-way trip was recorded into the same file, and the program automatically identified the 
point at which the vehicle switched directions. A table reflecting the processed data was 
provided with the deliverables as part of product P5. 

 

 
Figure 5.7: Route followed by the GPS equipped vehicle 

5.4 Data Pre Processing 
One of the salient advantages of the models presented in this report is that they only 

require traffic count data at deployment time. Such data is typically readily available and fairly 
reliable. Nevertheless, as most automatic data collection devices, traffic detectors may produce 
flawed data. This can clearly affect a model’s performance, as it was observed during the 
experimental model deployment conducted at El Paso TMC. In order to mitigate the negative 
impacts of data errors, procedures are needed to determine whether detectors are working and 
whether their measurements are accurate. Such processes are highly dependent upon the 
characteristics of the detectors used at each TMC, the prevailing communication protocols, and 
the structure of the implemented travel time prediction models. There has been a considerable 
number of works dealing with the issue of assessing the quality of traffic detector data. The 
following paragraphs will briefly describe the basic principles underlying existing research, and 
suggest possible references for an eventual deployment of the proposed models into a TMC. The 
data filtering process involves two basic operations, depicted in Figure 5.8. 
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Figure 5.8: Simplified flow chart of the data filtering process 

Several approaches can be taken to identify whether a detector is working properly. The 
simplest ones, which are often used given the time constraints imposed by the real-time nature of 
the travel time prediction procedure, include detecting implausible values of speeds, counts, or 
their combinations (Dahlgren, 2002). Coifman (2004) presents eight event-based validation tests 
that use microscopic data to assess the working status of single and dual loop detectors. The 
techniques range from comparing on/off time at each loop of a dual detector, to analyzing the 
succession of flow regimes observed at a particular detector. Other approaches rely on simple 
comparisons of the measurements retrieved by nearby detectors, or on a time-wise analysis of the 
observations of a single detector (Chen and May, 1987). Some alternative approaches to validate 
the performance of remote traffic microwave sensors (RTMS) are introduced in Coifman, 2006. 
Historical information regarding recurrent congestion patterns and typical traffic conditions can 
be also utilized to verify the likelihood of a specific measurement at a particular time and 
location, determining the need for further analysis. 

Once malfunctioning detectors are identified, proper action needs to be taken in order to 
generate acceptable travel time predictions. The specific procedure will depend on the 
characteristics of the travel time prediction model under usage, data availability, and time 
constraints. One possible option involves imputing the missing measurements, either based on 
the values observed at nearby detectors, or by utilizing previous observations at the 
malfunctioning detector, provided that they are error free (for example, Al-Deek and Chandra, 
2004). Additionally, average historical values may be utilized. Some of these techniques are 
explained in the technical report describing the data processing for California’s PeMS (Urban 
Crossroads Inc. 2006), and in Nguyen and Scherer (2003). When imputation is not possible, a 
different type of action needs to be taken. Some models, such as the CTM-based one, can be run 
ignoring the malfunctioning detectors, with little effect on the prediction accuracy. For these 
models, each TMC should analyze the advantages in terms of model accuracy, data 
requirements, and computational efficiency, and of imputing data versus simply disregarding the 
detectors out of order at run time. Some travel time prediction models may not be able to run if 
error-free traffic measurements are not available for every detector. Under such scenario, traffic 
managers may choose to either temporarily display historic travel times for the affected sections, 
or not to display any value at all.  
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5.5 Summary 
An overview of the data necessary to calibrate, validate, and implement the models 

proposed in this study has been provided. In this study both real and simulated travel time data 
has been used to validate and calibrate the models. The real travel time data is useful for testing 
the efficacy of the model against real world dynamics, whereas the simulated data is useful for 
testing the efficiency of the model under a number of scenarios. The simulated data was 
generated using a VISSIM microsimulator. Real travel time data were obtained from the 
Berkeley Highway network and from a freeway section in El Paso. The traffic counts in El Paso 
were obtained from the TransVISTA and a GPS system was used to record the actual travel 
times. The data obtained from the field may contain numerous errors due to detector 
malfunctions. Therefore, the data needs to be filtered and pre-processed before it is used for 
travel time prediction. Various recommendations on imputing missing or erroneous data have 
been provided. 
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Chapter 6.  Models Calibration and Validation 

This section describes the procedures utilized to calibrate and test the performance of the 
travel time prediction models developed for the present project. The first set of numerical studies 
presented herein is based on synthesized data corresponding to a 3-mile freeway segment located 
in El Paso, Texas, obtained as described in the previous chapter. The second type of numerical 
tests was conducted using field data. In both cases, the datasets were split, and some points (i.e., 
data corresponding to one day or one simulation run) were used to perform the model calibration, 
whereas the remaining ones were used for validation. It is important to note that during the 
experimental runs data was fed to the prediction models in an online interface replicating a real-
time environment. By virtue of this, at each time interval the prediction software had access only 
to traffic data corresponding to previous intervals, and the observed performance is comparable 
to the expected results in an on-line setting.  

The calibration process is focused on determining the appropriate values of the model 
parameters by selecting them in such a way that the model predictions match real travel time 
computations as closely as possible. Once such values are found, the model is applied to a 
different set of data, and the resulting differences between travel time predictions and real 
measurements are an indicator of the model performance (model validation). It is clear that the 
magnitude of the error is likely to vary among datasets. However, if the model is properly 
calibrated, and a meaningful error measurement is selected, such variations are not expected to 
be significant. In this work, travel time prediction errors were measured in terms of the Root 
Mean Square Error (RMSE), a fairly standard indicator, presented below. The remaining sections 
in this chapter present and discuss the numerical results obtained for different models and 
datasets. 

6.1 Error Measurement 
Given a set of real travel times, it is possible to compute a prediction error for each point 

in time for which travel time predictions are provided. Such errors are likely to vary across time 
and space, and a representative performance metric is necessary in order to assess model 
behavior and compare outcomes under different conditions. In this work, the travel time 
estimations produced by different model variations were evaluated based on their root mean 
squared error (RMSE): 
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where it̂ and it are the real and predicted travel time at time i, respectively, and N is the 

number of points in time for which travel time forecasts are provided. This measure was 
computed separately for each origin destination pair for which predictions were generated. 
Additionally, model outcomes were compared in terms of the frequency distribution of the 
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absolute errors ( )ii tt ˆ− , and utilizing the value-based RMSE, computed similarly to the previous 
equation, but without dividing the absolute error by the actual travel time.  

6.2 CTM-based Model: Validation and Calibration Using Simulated Data 
In order to assess the performance of the model under different traffic conditions, 

detector location patterns, and data provision schemes, simulated data was utilized, obtained as 
described in Chapter 5.  

In order to run the CTM-based travel time prediction model, a cell-transmission 
representation of the same highway segment modeled in VISSIM was created, consisting of 51 
cells and 50 links. The user manual delivered along product P2 clearly describes how to 
construct such a model for an arbitrary highway segment. It also indicates how to prepare the 
required input files, which were built based on the parameter values presented in Tables 6.2 to 
6.4 for this example. For tests conducted in this research, the CTM initial densities at every cell 
were set to zero, which is a sensible starting point if the simulation process can be deployed early 
in the morning. Otherwise, densities could be initialized to values based on historical data at the 
start time of the process. The sink cell was assigned an unbounded maximum density, implicitly 
assuming free flow conditions downstream of the analyzed segment. In any model 
implementation, this condition can be achieved by means of an appropriate selection of the 
length and location of the segment under study. Travel times were computed between the 
beginning of the first cell, and the beginning of each cell containing a detector. The highway 
segment between the starting point and detector d is denoted as Section d. 

The traffic counts predictions for every freeway entrance point were obtained from an 
ARIMA (3, 1, 2) model. The forecasts, provided at a 1-minute aggregation level, were uniformly 
distributed across the corresponding 4-second simulation intervals. The forecasting horizon was 
set equal to the sum of the prediction horizon and the section travel time under extremely high 
congestion. This guaranteed an appropriate simulation length, according to what was discussed 
in Chapter 3. 

For the purpose of this application, the core CTM parameters were calibrated using a 
simple trial-and error procedure. A set of starting values (chosen based on Muñoz et al., 2004) 
was adjusted to minimize the deviations between CTM-based and real travel times (as provided 
by VISSIM). The use of field detector data, usually more limited than the one provided by a 
simulator, may demand more complex calibration procedures. Munoz et al., 2004 (17) described 
a CTM calibration methodology that produced satisfactory results.  

For the initial model calibration, a triangle-shaped traffic demand was introduced at the 
beginning of highway segment modeled in VISSIM, and at each of the corresponding entry 
ramps. The demand curves spanned 2 hours, and represented conditions ranging from light 
traffic to congestion, including congestion build-up and dissipation stages. Figure 6.1 displays 
such demands for the main lane, and Table 6.1 shows the corresponding values for the entry 
ramps. The corresponding travel times ranged from 3 to 7 minutes. 
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Figure 6.1: Demand distribution for the main lane input (Calibration) 

Table 6.1: Demand distribution at entry ramps (Calibration) 
Ramp Min Max 

1 267.2 566 

2 273.4 647 

3 268.3 580 

4 250 360 

5 270 610 

6 269.7 536 
 

The simulation output files, consisting of detector measurements and actual travel times, 
were used to run the prediction models and compute the errors, respectively. Output files were 
also used to estimate split ratios at exit ramps. Even though the exact values can be extracted 
from the simulator, an estimation process was implemented in order to better replicate real 
implementation conditions (settings are displayed in Table 6.2). Four different split ratios were 
specified at each exit ramp, corresponding to different times of the day (Table 6.3). The 
estimation involved computing the cumulative counts every 30 minutes at two detector stations: 
the last detector before the exit ramp, and the first detector after the same (alternatively, we could 
have used a detector on the ramp, if available). The ratio was estimated as the percent of total 
flow using the ramp, and further adjusted during calibration. In a field setting, detector data may 
not be available to perform such estimation, and coarser approximations, based on experience 
and engineering judgment may be necessary. The later is also necessary to define the number and 
duration of time periods for which different split ratios are specified, given that those depend on 
the origin-destination patterns of each specific highway segment. 

Table 6.4 shows the priority coefficients utilized at the merge cells, which were initially 
assumed to be 0.9, and later adjusted during calibration. Table 6.5 displays other important 
model assumptions. 
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Table 6.2: CTM-based model settings 
Maximum travel time 1000 sec 

Prediction interval 3 min 

Sample size for arima 9 min 

Aggregation for ARIMA 1 min 

Initialization time for 
CTM 9 min 

Simulation interval 4 sec 

Free Flow Speed 50mph 

Table 6.3: Split ratios at exit ramps 
 Period 1 Period 2 Period 3 Period 4 

Exit 1 0.92 0.93 94 0.96 

Exit 2 0.92 0.92 0.92 0.9 

Exit 3 0.92 0.9 0.9 0.9 

Exit 4 0.94 0.94 0.92 0.92 

Exit 5 0.92 0.92 0.92 0.92 

Exit 6 0.92 0.92 0.92 0.92 

Table 6.4: Priority coefficients at entry ramps (priority of the mainlane flow) 
 Period 1 Period 2 Period 3 Period 4 

Ramp 1 0.9 0.9 0.9 0.89 

Ramp 2 0.9 0.9 0.9 0.9 

Ramp 3 0.88 0.88 0.89 0.89 

Ramp 4 0.88 0.88 0.88 0.88 

Ramp 5 0.89 0.89 0.89 0.89 

Ramp 6 0.9 0.9 0.9 0.89 
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Table 6.5: Cell properties and calibrated parameters 

Cell # Length (ft) Nmax
veh/ft/ln 

Qmax
veh/sec/ln 

w 
ft/sec Type Lanes 

0 400 100000 100000 20 0 4 

1 400 100000 100000 20 0 4 

2 485.8 0.162 1.9 17 0 4 

3 485.8 0.162 1.9 17 0 4 

4 485.8 0.162 1.9 17 0 4 

5 485.8 0.162 1.9 17 2 4 

6 498.8 0.162 1.9 17 0 4 

7 525.16 0.162 1.9 17 0 4 

8 525.16 0.162 1.9 17 1 4 

9 525.16 0.162 1.9 17 0 4 

10 652.9 0.13 1.9 17 0 4 

11 652.9 0.13 1.9 17 1 4 

12 515.15 0.13 1.9 17 0 4 

13 515.15 0.13 1.9 17 2 4 

14 515.15 0.13 1.9 17 0 4 

15 515.15 0.13 1.9 17 2 4 

16 515.15 0.13 1.9 17 0 4 

17 515.15 0.13 1.9 17 0 4 

18 698.9 0.13 1.9 17 1 4 

19 538.3 0.13 1.9 17 1 4 

20 538.3 0.13 1.9 17 2 4 

21 687.15 0.16 1.9 17 0 4 

22 687.15 0.16 1.9 17 0 4 

23 664.75 0.16 1.9 17 1 4 

24 664.75 0.17 2.5 17 0 5 

25 502.433 0.17 2.5 17 2 5 

26 502.433 0.17 2.5 17 0 5 

27 502.433 0.17 2.5 17 0 5 

28 525.85 0.17 2.5 17 0 5 

29 525.85 0.17 2.5 17 1 5 

30 494.42 0.17 2.5 17 2 5 

31 494.42 0.17 2.5 17 0 5 

32 494.42 0.17 2.5 17 0 5 

33 494.42 0.17 2.5 17 0 5 

34 494.42 0.17 2.5 17 0 5 

35-53 400 100000 100000 17.2 0 5 

 
Numerical experiments were used to determine the more appropriate prediction step. It 

was found that, even though the model performance remains relatively unchanged for values 
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ranging from 1 to 5 minutes, the later value led to more stable results (Table 6.6). In view of this, 
and considering that 5 minutes is a reasonable prediction interval for a real-time implementation 
(travel time forecasts are not likely to be updated at intervals smaller than 5 minutes), the 
validation experiments were conducted utilizing that aggregation level.  

Table 6.6: Model performance for various prediction steps (RMSE), utilizing the 
calibration data 

Prediction 
Step Global 1 2 3 4 5 6 7 8 9 10 11 12 

1 14 25% 13% 15% 14% 14% 11% 11% 12% 12% 10% 11% 12% 

3 15 31% 17% 15% 12% 13% 13% 12% 11% 11% 10% 11% 11% 

5 13 30% 15% 12% 13% 12% 12% 10% 9% 9% 7% 8% 9% 

10 20 24% 6% 19% 20% 7% 36% 28% 24% 14% 11% 9% 7% 

 
Calibration was achieved in two steps. In a first stage, the model was run in calibration 

mode, and free flow speed, capacities, split ratios, and priority coefficients were adjusted in order 
to minimize the difference between the cumulative counts predicted by the model at each 
detector, and the actual values provided by the simulator. Further refinements into these 
parameters, along with modifications to Qmax, Nmax, and w, were introduced on a second stage, 
based on travel time predictions errors. Table 6.5 shows cell characteristics along with the 
calibrated values for the aforementioned parameters. It is important to notice that these values 
were achieved assuming that seven detectors (1, 6, 13) were deployed and utilized for travel 
time prediction. After some numerical experiments, this reduced set of sensors was found to lead 
to more accurate results than the use of the existing 13 detectors. This is a consequence of the 
utilization of cumulative counts as the basis for the travel time computation in this particular 
model. When detectors are located close to each other, relatively small errors in the distribution 
of densities throughout the segment can lead to important differences between predicted and real 
travel times. The methodologies presented in Chapter 7 may be utilized to evaluate different 
detector deployment pattern strategies. If different sets of detectors than those utilized for 
calibration were used, modifications would be necessary in order to achieve desired levels of 
accuracy. TMCs may calibrate their models for a variety of detector availability scenarios, in 
order to be able to rapidly accommodate changes in the model due to detector malfunctioning.  

Another important finding during the calibration process was that utilizing only 
cumulative traffic counts for model calibration may not produce desirable levels of accuracy. 
Parameters leading to relatively small errors in terms of volumes (RMSE below 5 percent) were 
found to result in considerable travel time prediction errors. This is a consequence of two 
combined factors: the methodology used to compute travel times, and the fairly large value of 
cumulative counts (in the order on hundreds and even thousands). In effect, an error of 1 percent 
in volumes may actually involve a difference of 100 or more vehicles between predicted and 
actual traffic counts at a sensor, which may translate into significantly different travel time 
estimations. It is therefore recommended to always collect real travel time data in order to refine 
the calibration of fundamental model parameters. 

Tables 6.7 and 6.8 present the model performance after calibration. The error 
measurements were computed utilizing the formulas presented in the previous section, and 
discarding the values corresponding to the first 10 time intervals, which represent approximately 
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the time taken by a vehicle to traverse the segment under uncongested conditions. The error 
values range from 10 percent to 23 percent (15 percent in average), and average absolute value 
of such errors is approximately 32 seconds. Moreover, 41 percent of the total travel time 
prediction errors are below 1 minute. 

Table 6.7: Model calibration and validation results (RMSE by section). Results obtained 
using a 5-minute prediction step for profiles 1-5, and a 3 minute prediction step for 

calibration 
 Section RMSE (%) 

Demand 1 2 3 4 5 6 7 8 9 10 11 12 

Calibration 23% 21% 13% 10% 12% 19% 17% 16% 14% 12% 13% 13% 

Profile 1 31% 17% 15% 12% 13% 13% 12% 11% 11% 10% 11% 11% 

Profile 2 23% 16% 15% 13% 12% 15% 15% 14% 13% 12% 11% 10% 

Profile 3 37% 22% 15% 12% 12% 10% 9% 9% 8% 7% 7% 7% 

Profile 4 46% 23% 22% 18% 14% 19% 17% 15% 14% 13% 12% 13% 

Table 6.8: Summary of model calibration and validation results 
 Global 

RMSE 
(Val) 

Global 
RMSE 
% 

Error 
< 
60s Demand 

Calibration 32 16 41%

Profile 1 31 15 34%

Profile 2 23 14 37%

Profile 3 24 15 33%

Profile 4 35 21 38%
 

It is interesting to observe that the model fit is fairly consistent across detectors, and 
relatively independent of the length of the segment. Furthermore, the model accurately replicates 
travel times throughout the simulated period, capturing congestion build-up and dissipation. In 
order to validate the model, similar tests were performing utilizing traffic counts generated from 
different demand profiles, representing various traffic conditions. The results for such 
experiments are summarized in Table 6.8. The first demand profile corresponds to the same 
conditions assumed during calibration, but was generated using a different random seed number, 
therefore simulating a different day. Figures 6.2 and 6.3 contrast forecasted and real travel times 
under this scenario, at a 1-minute aggregation level, from the first detector to the third and 
eleventh one, respectively. As expected, the model fit is very similar to the one observed during 
calibration. 
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Figure 6.2: Example of model fit for a 2.5-mile section (demand profile 1, 5-minute prediction 

step) 
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Figure 6.3: Example of model fit for a 0.5-mile section (demand profile 1, 5-minute prediction 

step) 

The second demand profile has the same triangular shape assumed earlier, but the values 
are 30 percent lower than on the initial case. The third profile is given by Figure 6.4 and Table 
6.9. It is trapezoidal, representing a longer period of time with high traffic demands. Again, the 
model accuracy remains fairly constant, indicating that the parameters are appropriate, and the 
model is robust under varying traffic conditions. 
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Figure 6.4: Demand profile 3: Trapezoidal demand 

Table 6.9: Demand distribution at entry ramps (Profile 3) 
Ramp Min Max 

1 267.2 566 

2 273.4 647 

3 268.3 580 

4 250 360 

5 270 610 

6 269.7 536 
 

A second experiment explored the effects of changes in OD demand patterns, by 
utilizing demand profile 1 for all ramps except 2 and 5 (Figure 6.5), for which the corresponding 
volumes were increased by 30 percent. In this case, the model accuracy diminished by a 5 
percent (on average). Nevertheless, the results are still around 20 percent for most sections, and 
the model captures the travel time variations fairly accurately. 
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Figure 6.5: Example of model fit for a 0.75-mile section (demand Profile 3, 5 minute prediction 

step) 

6.3 CTM-based Model: Validation and Calibration Using Field Data 
Field data, described in Chapter 5, was used to test the model performance and to verify 

the feasibility of performing real-time travel time predictions. In order to do this, a cell 
representation of the segment for which real travels time measurements were available was 
constructed (Figure 6.6, and Table 6.11). The representation includes the actual location of 22 
detectors, 4 entry ramps, and 2 exit ramps, for the west bound direction. However, preliminary 
data analyses revealed that some detectors were clearly out of order on the days selected for 
calibration and validation (Table 6.10), and only those working throughout the analysis period 
were included in the final model runs. 
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Figure 6.6: Cell transmission representation of the analyzed segment 

Table 6.10: Map of detector data availability for day on which GPS data was collected 

Day Missing Detector Data from 6 to 
8AM 

June 4 3 11 26 28 36 

 June 5 3 11 26 28 36 

June 6 3 11 26 28 36 

June 7 All 

June 15 3 11 26 28 31 33 35 36 38  

June 18 3 11 26 28 31 35 36 38  

June 19 3 11 26 28 31 35 36 38  

June 22 3 4 11 26 28 31 35 36 38  

June 25 3 4 11 26 28 31 35 36 38  

June 26 3 4 11 26 28 31 35 36 38  

June 28 All 

June 29 All 
 

The travel time prediction model is still able to generate forecasts under when detectors 
are missing, provided that there is data for the first detector in the system, and that 
malfunctioning detectors are identified and disregarded for travel time prediction purposes. The 
condition of each detector was manually verified for each of the numerical experiments 
conducted for this project. However, automatic data filtering procedures should be utilized 
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during an online implementation. It is important to notice that when the missing data correspond 
to entry ramps, the model performance may be seriously affected. This is particularly true when 
there are no working detectors relatively close to the entry point (and before any other entry/exit 
section), able to capture the changes in total main lane volume. Under such circumstances, it 
becomes critical to impute missing data. 

Table 6.11: Cell properties and calibrated parameters for calibration and validation using 
field data 

Cell # Length 
(ft) 

Nmax 
veh/ft/ln 

Qmax 
veh/sec/ln

w 
ft/sec Type Lanes 

1 500 500 1000 1000 17 0 

2 610.104 500 1000 1000 17 0 

3 610.104 610.104 0.1 1 17 0 

4 528 610.104 0.1 1 17 0 

5 528 528 0.1 1 17 0 

6 600.072 528 0.1 1 17 0 

7 600.072 600.072 0.1 1 17 0 

8 528 600.072 0.1 1 17 0 

9 528 528 0.1 1 17 0 

10 528 528 0.1 1 17 0 

11 686.928 528 0.1 1 17 0 

12 686.928 686.928 0.1 1 17 0 

13 528 686.928 0.1 1 17 0 

14 528 528 0.1 1 17 0 

15 528 528 0.1 1 17 0 

16 555.456 528 0.1 1 17 0 

17 555.456 555.456 0.1 1 17 0 

18 555.456 555.456 0.1 1 17 0 

19 555.456 555.456 0.1 1 17 0 

20 529.5312 555.456 0.1 1 17 2 

21 529.5312 529.5312 0.1 1 17 0 

22 529.5312 529.5312 0.1 1 17 0 

23 529.5312 529.5312 0.1 1 17 0 

24 715.7568 529.5312 0.1 1 17 0 

25 715.7568 715.7568 0.1 1 17 0 

26 528 715.7568 0.1 1 17 0 

27 528 528 0.1 1 17 0 

28 709.2624 528 0.1 1 17 0 



61 

Cell # Length 
(ft) 

Nmax 
veh/ft/ln 

Qmax 
veh/sec/ln

w 
ft/sec Type Lanes 

29 709.2624 709.2624 0.1 1 17 0 

30 528 709.2624 0.1 1 17 0 

31 528 528 0.1 1 17 0 

32 528 528 0.1 1 17 0 

33 579.4272 528 0.1 1 17 2 

34 579.4272 579.4272 0.1 1 17 0 

35 579.4272 579.4272 0.1 1 17 0 

36 579.4272 579.4272 0.1 1 17 0 

37 689.7792 579.4272 0.1 1 17 0 

38 689.7792 689.7792 0.1 1 17 0 

39 528 689.7792 0.1 1 17 0 

40 528 528 0.1 1 17 0 

41 528 528 0.1 1 17 0 

42 528 528 0.1 1 17 0 

43 543.4915 528 0.1 1 17 0 

44 543.4915 543.4915 0.1 1 17 0 

45 543.4915 543.4915 0.1 1 17 0 

46 543.4915 543.4915 0.1 1 17 0 

47 543.4915 543.4915 0.1 1 17 0 

48 543.4915 543.4915 0.1 1 17 0 

49 543.4915 543.4915 0.1 1 17 0 

50 556.7654 543.4915 0.1 1 17 0 

51 556.7654 556.7654 0.1 1 17 0 

52 556.7654 556.7654 0.1 1 17 0 

53 556.7654 556.7654 0.1 1 17 0 

54 556.7654 556.7654 0.1 1 17 0 

55 697.356 556.7654 0.1 1 17 0 

56 697.356 697.356 0.1 1 17 0 

57 528 697.356 0.1 1 17 0 

58 528 528 0.1 1 17 0 

59 542.1504 528 0.1 1 17 0 

60 542.1504 542.1504 0.1 1 17 0 

61 542.1504 542.1504 0.1 1 17 0 

62 542.1504 542.1504 0.1 1 17 0 

63 784.344 542.1504 0.1 1 17 0 
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Cell # Length 
(ft) 

Nmax 
veh/ft/ln 

Qmax 
veh/sec/ln

w 
ft/sec Type Lanes 

64 771.8304 784.344 0.1 1 17 1 

65 528 771.8304 0.1 1 17 0 

66 529.2514 528 0.1 1 17 0 

67 786.984 529.2514 0.1 1 17 0 

68 786.984 786.984 0.1 1 17 0 

69 528 786.984 0.1 1 17 0 

70 528 528 0.1 1 17 0 

71 598.8576 528 0.1 1 17 0 

72 598.8576 598.8576 0.2 2 17 0 

73 598.8576 598.8576 0.2 2 17 0 

74 598.8576 598.8576 0.2 2 17 0 

75 598.8576 598.8576 0.2 2 17 0 

76 562.1405 598.8576 0.2 2 17 0 

77 562.1405 562.1405 0.1 1 17 0 

78 562.1405 562.1405 0.1 1 17 0 

79 568.3445 562.1405 0.1 1 17 0 

80 568.3445 568.3445 0.15 1.5 17 1 

81 568.3445 568.3445 0.15 1.5 17 0 

82 568.3445 568.3445 0.15 1.5 17 0 

83 568.3445 568.3445 0.15 1.5 17 0 

84 568.3445 568.3445 0.15 1.5 17 0 

85 748.968 568.3445 0.15 1.5 17 0 

86 748.968 748.968 0.15 1.5 17 0 

87 681.0672 748.968 0.15 1.5 17 0 

88 681.0672 681.0672 0.1 1 17 0 

89 528 681.0672 0.1 1 17 0 

90 528 528 0.1 1 17 0 

91 528 528 0.1 1 17 0 

92 528 528 0.1 1 17 0 

93 528 528 0.1 1 17 0 

94 528 528 0.1 1 17 0 

95 528 528 0.1 1 17 0 

96 735.9264 528 0.1 1 17 0 

97 528 735.9264 0.1 1 17 0 

98 528 528 0.1 1 17 0 
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Cell # Length 
(ft) 

Nmax 
veh/ft/ln 

Qmax 
veh/sec/ln

w 
ft/sec Type Lanes 

99 528 528 0.1 1 17 0 

100 528 528 0.1 1 17 0 

101-106 500 528 0.1 1 17 0 
 

For calibration purposes, it was taken into account that the highway segment for which 
the model parameters were found via simulation in the previous section overlaps with the section 
used for field data collection. Consequently, the value of some fundamental parameters, such as 
free flow speed, w, Qmax, and Nmax were assumed to be similar for both cases. Small 
refinements were performed based on cumulative counts at selected detectors, given the reduced 
availability of real travel time measurements. Figures 6.7 and 6.8 exemplify the final model fit 
after calibration, based on cumulative counts comparisons. Errors (%RMSE) ranged from 4 
percent to 8 percent for most detectors.  
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Figure 6.7: Predicted and observed cumulative counts at sensor 4 (2.5 miles from the origin) 
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Figure 6.8: Predicted and observed cumulative counts at sensor 14 (9.3 miles from the origin) 
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This suggests an alternative procedure to perform a preliminary model calibration 
when real travel time measurements are not available: one may develop a microsimulation model 
of the entire section under study, and run it utilizing the measured traffic volumes as demands, 
outputting travel time measurements between desired points as needed. 

Traffic demands were obtained from the database described in section 5.3 and processed 
using a C++ code to generate the appropriate input files. This included disaggregating the 
provided measurements into 4-second intervals, adding the counts reported at different detection 
zones in the same transversal section, and mapping field detector numbers to model detector and 
ramp numbers.   

Split ratios at exit ramps were estimated based on the counts corresponding to 10 week 
days, which were not used for calibration or validation purposes (Table 6.12). For such days, the 
percent of traffic taking each exit was computed as the ratio between the cumulative counts at the 
exit ramp and the total flows at the upstream main lane detectors. Cumulative counts were 
computed starting at 6:00 AM on each day, and the split ratios were calculated every 30 minute 
interval. Due to data errors, it was not possible to estimate split ratios for ramps 1 and 3, which 
were assumed to be the same as for ramp 2. Priority coefficients at entry ramps were set to 0.9, 
based on the simulation experience. Table 6.13 shows the assumptions regarding the remaining 
model parameters. 

Table 6.12: Split ratio computation for exit ramp 2 
 Percentage of traffic remaining on main lane 

 6:00-6:30 6:30-7:00 7:00-7:30 7:30-8:00 

28-Jun 0.95 0.93 0.93 0.92 

29-Jun 0.95 0.93 0.91 0.91 

1-Jul 0.96 0.92 0.94 0.90 

3-Jul 0.98 0.92 0.91 0.91 

5-Jul 0.93 0.93 0.95 0.91 

6-Jul 0.95 0.91 0.93 0.90 

9-Jul 0.93 0.91 0.92 0.92 

10-Jul 0.96 0.91 0.93 0.91 

11-Jul 0.96 0.93 0.93 0.91 

12-Jul 0.94 0.93 0.92 0.91 

Average 0.95 0.92 0.93 0.91 
 
The calibration results, based on traffic data corresponding to the morning peak hour 

(6:00 to 8:00 AM on June 4 are summarized in Table 6.14). Based on preliminary data analyses, 
detectors 2, 7, and 12 were selected to contrast the variations in traffic volumes to the 
corresponding changes in predicted travel times, as a complement to the validation based on 
RMSE. The above-mentioned detectors capture representative portions of the traffic throughout 
the segment. The travel time predictions depicted in Figures 6.9 to 6.13 are consistent with the 
observed changes in demands (Figure 6.7), presenting fairly stable travel times for a relatively 
low demand, and a slight upward trend at the end of the period, consisting with larger traffic 
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volumes. This suggests that the model is able to capture changes in traffic volumes throughout 
the period.  

Table 6.13: CTM-based model settings 
Maximum travel time 1000 sec 

Prediction interval 3 min 

Sample size for arima 15 min 

Aggregation for ARIMA 1 min 

Initialization time for 
CTM 6 min 

Simulation interval 4 sec 

Free Flow Speed 50mph 
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Figure 6.9: Transversal plot of traffic counts from 7:55 AM to 8:00 AM  



 

66 

0

50

100

150

200

250

30
0

90
0

15
00

21
00

27
00

33
00

39
00

45
00

51
00

57
00

63
00

69
00

Seconds from 6:00 AM

In
te

rv
al

 T
ra

ffi
c 

C
ou

nt
s

Detector 2
Detector 7
Detector 14

 
Figure 6.10: Interval traffic counts on June 4 at selected detectors  
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Figure 6.11: Travel time predictions on Section 2 (June 4). 
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Figure 6.12: Travel time predictions on Section 7 (June 4). 
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Figure 6.13: Travel time predictions on Section 14 (June 4). 

Utilizing the newly adjusted parameters, the model was run in a similar way as described 
in section 5, and the real travel time measurements obtained via GPS were compared to model 
the corresponding model forecasts. The results, displayed in Table 6.14, show a very 
satisfactory model performance, with average prediction errors of 1 minute for a ~10 mile 
highway section. Additionally, notice that the errors remain fairly constant even when some 
detectors are out of order. 
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Table 6.14: Validation using field data: Prediction Errors 

 

6.4 N-Curve Model Calibration and Validation Based on Simulated Data 
A 12-mile segment of both the east and westbound direction of El Paso’s Border 

Highway were modeled utilizing DYNASMART-P (refer to Figure 6.14). The simulation 
network includes five on-ramps and six off-ramps in the eastbound direction whereas in the 
westbound direction it includes six on-ramps and four off-ramps. In total the network consists of 
117 nodes and 115 links. The simulation duration was a total of 120 minutes, while vehicle 
demand loading took place during the first 60 minutes to allow for departure from origin and 
arrival at destination of all vehicles. Simulations were run utilizing different levels of uniform 
generated trip demands, varying from 8,000 vehicles (free-flow conditions) to 18,000 vehicles 
(congested conditions). The output files consist of traffic counts and the corresponding travel 
times computed for time intervals of 1 minute. Python codes were written to process data 
according to individual detectors and determine travel time measurements according to the 
simulation and N-Curve method. Results are shown in Tables 6.15–6.18 and Figures 6.15–6.18.  
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Figure 6.14: Aerial View and DYNASMART-P Network of El Paso’s Border Highway 

Travel time values obtained through the use of simulation are presented in the following 
table. As observed, low-to-medium vehicle demand loadings (approximately 8,000 to 13,000 
vehicles) experience travel times similar to those experienced under free flow conditions. 
However, the travel times with heavy demand loading (greater than 13,000 vehicles) reflect 
higher travel times, due to congestion and queue build up.  

Table 6.15: Simulated (Actual) Travel Time: Eastbound and Westbound Freeway 
Segment 

Eastbound 
 Departure Time 
Generated Vehicles 10 min. 20 min. 30 min 40 min 50 min 60 min 
7830 13.20 13.24 13.24 13.22 13.13 13.00 
10392 14.05 13.80 14.00 14.02 13.84 13.00 
13132 19.43 25.19 30.28 34.11 36.67 40.97 
15685 24.83 31.36 37.13 42.41 48.58 51.58 
18244 31.04 39.79 47.62 58.65 66.69 72.12 

Westbound 
 Departure Time 
Generated Vehicles 10 min. 20 min. 30 min 40 min 50 min 60 min 
7830 13.23 13.26 13.35 13.23 13.26 13.22 
10392 13.66 13.60 13.53 13.72 13.59 13.17 
13132 14.57 14.80 14.58 14.84 14.63 13.21 
15685 16.05 17.20 20.11 24.37 24.09 23.58 
18244 19.25 27.74 34.93 47.19 51.39 48.19 
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Figure 6.15: Simulated Data: Eastbound and Westbound Freeway Segment 

The estimated travel time values obtained through the use of the N-Curve method are 
presented in the following table. Similarly, to results obtained from the simulation, the low-to-
medium demand loading experience travel times similar to free flow conditions. In addition, 
travel times with heavy demand loading also experience higher travel times, due to same reasons 
stated above.  

Table 6.16: Estimated Travel Time: Eastbound and Westbound Freeway Segment 
Eastbound 

 Departure Time 
Generated Vehicles 10 min. 20 min. 30 min 40 min 50 min 60 min 
7830 13.905 15.741 13.810 13.829 13.829 13.796 
10392 13.462 14.723 14.425 14.597 14.597 14.807 
13132 15.336 23.223 30.318 33.932 33.932 37.580 
15685 18.664 32.667 38.735 43.286 43.286 49.298 
18244 21.970 26.189 46.322 51.735 51.735 66.028 

Westbound 
 Departure Time 
Generated Vehicles 10 min. 20 min. 30 min 40 min 50 min 60 min 
7830 13.496 13.412 13.450 13.498 13.510 13.660 
10392 13.565 13.682 13.932 13.632 13.717 13.797 
13132 13.979 14.971 14.924 14.824 15.252 14.766 
15685 14.522 15.351 16.494 20.855 29.309 32.077 
18244 15.367 18.112 31.657 44.231 51.021 62.090 
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Figure 6.16: Estimated Data: Eastbound and Westbound Freeway Segment 

Obtaining results for both the simulated and estimated travel times allows for the 
approximation of error that may occur due to the discrepancy between the two values. The 
equation used to determine this error is the following: 

Percent Error (%) 100b a
a
−⎡ ⎤= ×⎢ ⎥⎣ ⎦

 

 
In the equation, b is defines as the estimated travel time value while a is the simulated 

travel time value, not equal to zero. The results, presented in the Table 6.17 and Figure 6.17, 
demonstrate that for the most part percentage errors range within ± 10 percent, which is rather 
satisfactory considering that the test cases also includes heavily congested scenarios. There are 
exceptions where percentage error values are greater than 10 percent, which are mostly 
associated to two factors. The first factor is high demand loading and the effects of congestion. 
The second factor is ‘warming up’ and ‘cooling down’ of both the simulation and N-Curve. This 
results in underestimation during earlier departure times and overestimation during later 
departure times.  

Percentage errors were further placed in terms of volume weighted percent error for each 
of the six time stamps of interest. The equation used each of the time stamps is the following: 

Weighted Percentage Error (%) 100
e v

v
×

= ×∑
∑

 

 
In the equation, e is equal to the error (previously obtained) and v is the volume 

associated with the error, more specifically, in terms of the number of vehicles generated at the 
specific time intervals. In both the east and westbound direction a general increase is observed 
from the beginning to end of simulation.  
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Table 6.17: Percent Error of Simulated and Estimated Data: Eastbound and Westbound 
Freeway Segment 
Eastbound 

 Departure Time 
Generated Vehicles 10 min. 20 min. 30 min 40 min 50 min 60 min 
7830 5.338 18.893 4.271 4.606 4.071 6.120 
10392 -4.183 6.689 3.033 4.097 4.460 13.898 
13132 -21.070 -7.801 0.125 -0.514 9.513 -8.271 
15685 -24.816 4.159 4.331 2.058 0.577 -4.418 
18244 -29.211 -34.174 -2.722 -11.790 0.738 -8.445 

Westbound 
 Departure Time 
Generated Vehicles 10 min. 20 min. 30 min 40 min 50 min 60 min 
7830 2.049 1.122 0.749 2.037 1.882 3.355 
10392 -0.694 0.601 2.947 -0.657 0.952 4.749 
13132 -4.033 1.158 2.350 -0.136 4.285 11.800 
15685 -9.521 -10.751 -17.999 -14.410 21.681 36.022 
18244 -20.183 -34.701 -9.380 -6.278 -0.708 28.842 
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Figure 6.17: Percent Error: Eastbound and Westbound Freeway Segment 

Table 6.18: Weighted Percent Error of Simulated and Estimated Data: Eastbound and 
Westbound Freeway Segment 

 Departure Time 
Direction 10 min. 20 min. 30 min 40 min 50 min 60 min 
Eastbound -18.390 -6.789 1.300 -1.699 3.456 -2.139 
Westbound -8.604 -11.817 -5.914 -5.104 6.251 20.247 
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Eastbound: Zone 1 to Zone 12
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Westbound: Zone 12 to Zone 1
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Figure 6.18: Volume Weighted Percent Error: Eastbound and Westbound Freeway Segment 

The estimated results produced by the N-Curve method proved to have low percentage 
error discrepancy when compared to the simulation (actual) output results for low to medium 
demand loadings. In the case of heavy demand loading, vehicles loaded on the later portions of 
the hour experienced higher travel times. In addition, the percentage errors when comparing the 
estimated and simulated heavy demand loading cases yield higher values. 

6.5 N-Curve Model Calibration and Validation Based on Field Data 
The calibration and validation of the propose N-Curve approach was attempted during the 

course of research. As discussed previously, the errors present in the real-time data received from 
TxDOT created a significant amount of “noise,” which made difficult to characterize the actual 
performance of the algorithm. That was the primary reason that the testing was primarily done in 
the simulation environment. Because in the simulation environment the traffic counts and 
experienced travel time can be accurately captured and the performance of the algorithm can 
then be corrected assessed.  

6.6 Summary 
The calibration and validation experiments conducted in this section exemplify the 

adequacy and robustness of the models developed for this project. Tests performed using 
simulated data suggests that high accuracies in travel time forecasts are possible for traffic 
conditions varying from free flow to congested states. Moreover, the model performance is not 
severely affected during the transition period, which is typically the hardest state to capture 
appropriately. Travel time prediction errors ranging between 10 and 23 percent were observed 
for a relatively short 3-mile section when the CTM-based model was implemented for a bell-
shaped demand. Furthermore, 40 percent of the values were below 60 seconds. For different 
demand profiles, the resulting errors were found to be approximately in the same range of values, 
demonstrating the robustness of the model. Slightly better performance was observed under 
lighter traffic conditions, and the demand profile involving changes in the OD demand 
configuration was found to lead to the largest deterioration in performance. However, most of the 
prediction errors remained around 15 percent. The simulation experiments also suggest that 
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predictions for intervals of 3 to 5 minutes are more likely to be stable, which is appropriate for 
practical implementations. 

 The estimated results produced by the N-Curve method proved to have low percentage 
error discrepancy when compared to the simulation (actual) output results for low to medium 
demand loadings. In the case of heavy demand loading, vehicles loaded on the later portions of 
the hour experienced higher travel times. In addition, the percentage errors when comparing the 
estimated and simulated heavy demand loading cases yield higher values. 

The numerical experiments conducted on field data are also encouraging, provided that 
necessary data filtering steps are accomplished. The average RMSE of 61 sec (18 percent) 
observed across all days for which GPS real traffic data was available also confirms the fact that 
the model is robust for varying lengths of highway segments, given that the test area spanned 10 
miles. Furthermore, the model results were still accurate on those days on which detector 
malfunctioning reduced the availability of data at run time. 

In summary, both models are capable of providing very accurate travel time predictions, 
robust with respect to traffic demands and detector location. Whereas the CTM-based model 
demands some additional work in terms of model preparation and calibration, it has the potential 
to adapt to varying conditions on the field. Moreover, once a cell-transmission representation is 
developed for a highway segment, it can be used as the basis to analyze other traffic management 
strategies. The N-Curve based model also responds the changes in traffic conditions, and is a 
powerful tool provided that appropriate data filtering and verification procedures are developed. 
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Chapter 7.  Offline Detector Coverage Analysis and Integrated 
Analytical Simulation Platform 

For this project, a specialized offline detector coverage analysis tool was developed. 
Existing literature regarding traffic sensor deployment was found to focus mainly on identifying 
optimal location of sensors for purposes other than travel time, such as improving Origin-
Destination matrix estimation (for example, Ehlert et al., 2006, Sherali et al., 2006). Moreover, 
much of the surveyed work intends to select which links of a network should be equipped 
(Thomas and Upchurch 2002, Sisiopiku et al 1994), rather than identify detector positions within 
a link that may present grater advantages. The latter has only been studied in an urban context, 
and generally for traffic management purposes, such as actuated traffic signs (Liu et al., 2004). 
By performing a fine-resolution (cell level) analysis of the impact of sensor location on travel 
time prediction accuracy, which is explicitly modeled, the proposed methodology improves 
upon existing techniques. Moreover, when combined with the previously introduced travel time 
prediction methods, the methodology constitutes a powerful integrated simulation and analytical 
framework. 

7.1 Offline Detector Coverage Analysis 
The offline detector coverage analysis tool can be used to analyze travel time prediction 

performance for different detector deployment patterns. Such patterns are defined in terms of the 
cells on which sensors are placed, providing a finer level of resolution than traditional models. 
For example, if three detectors are available (see Figure 7.1), the following are possible location 
patterns within a link: 

 
Figure 7.1: Possible detector deployment patterns on a highway segment (cell representation) 

The proposed model evaluates the performance of the CTM-based travel time prediction 
model. The same structure can be used to assess the behavior of other models. In general, one 
may expect similar results for all prediction methodologies that utilize cumulative traffic counts 
as the basis for their travel time forecasts. Given the complexity of the relationship between 
traffic volumes, actual travel times, and predicted travel times, it is not feasible to write a single 
mathematical expression capturing the model performance. The proposed optimization approach 
enumerates all desirable detector deployment patterns, compares simulated versus real travel 
times, computes error measurements, and selects the pattern leading to smaller prediction errors. 
The developed methodology requires the use of an external simulation tool for the following 
purposes: 
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• Provide “real” travel times under a range of traffic conditions 

• Provide traffic counts for every possible hypothetical location of the detectors 
 

The optimal detector deployment model can be run in two ways: allowing the software to 
generate and evaluate all possible detector deployment patterns, or providing the set of patterns 
to be analyzed as an input. 

While enumerating all possible patterns is a more comprehensive option, it may increase 
the computational work excessively, because the number of possible patterns grows very fast as 
the number of cells increases. If C is the number of cells, and D is the total number of available 
detectors, then the number of possible combinations is given by: 
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A way to reduce the number of patterns to be considered is to include a threshold, 

limiting the minimum separation between detectors. It was observed in the simulation 
experiments that errors in travel time computations increased significantly for detector spacing 
lesser than 0.5 miles apart. Moreover, deploying detectors closer than a half-mile apart may not 
be economically feasible. When the software provided in this package is used to generate all 
possible patterns (with or without a spacing threshold), it informs the user about the total number 
of strategies to be analyzed, providing a chance to cancel the model execution if such number 
were considered excessive. Furthermore, when more than one million feasible patterns are 
generated (in this context, feasible implies that they respect the threshold requirement specified 
by the user), the model execution is automatically cancelled, and the user is prompted to either 
feed a smaller number of combinations manually, or to increase the provided threshold. Other 
possibilities for path generation include the use of heuristic procedures, such as genetic 
algorithms, which may be coded separately and linked to the source. The following diagram (see 
Figure 7.2) depicts the optimal detector location process: 
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Figure 7.2: Flowchart for optimal detector location 

The output file generated by this software provides, for each analyzed pattern, a number 
of error measurements for every OD pair considered for traffic prediction, as well as a global 
error measurement. The error definitions are included in the corresponding templates. Notice 
that, in virtue of the existence of multiple origins and destinations, it is not always 
straightforward to identify whether one pattern performs better than others. A pattern exhibiting 
a low global error may involve high errors for specific OD pairs. One possible criterion to select 
an optimal pattern is to search for the one which minimizes the maximum error across OD pairs. 
The user may develop and code other criteria into the source code. 

7.2 Numerical Experiments 
Different types of numerical experiments were conducted in order to gain insights into 

the optimal sensor deployment problem. All such experiments were performed utilizing the 
network described in Chapter 6 (validation using simulation), and the second demand profile. 
New simulation runs were necessary to generate the traffic counts corresponding to each 
hypothetical sensor location.  

The first of such experiments simply considered subsets consisting of different number of 
detectors spaced as evenly as possible. The results suggest that for the travel time methodology 
proposed in this model, detector separations ranging from 0.75 mi to 1.5 miles lead to more 
accurate results than smaller ones. This was further confirmed by the second set of experiments, 
in which the best results obtained using 10 detectors were found to be less accurate that those 
based on 3 detectors. 

The second set of experiments generated all the possible detector placements for sets of 3 
and 10 detectors, and minimum spacing of 1900 ft and 1650 ft, respectively. Tables 7.1 and 7.2 
show all the feasible combinations (which respect the minimum separation threshold), and the 

Generate one possible detector 
deployment pattern or read it from the 

input file

Compute travel time prediction error 

Are there other possible 
patterns ? 

Analyze Errors and select optimal 
location 

YES

NO



 

78 

corresponding global RMSE (value and percent). The last column in Table 7.1 displays the 
maximum RMSE across sections corresponding to each deployment strategy. 

Table 7.1: Feasible deployment patterns for 3 detectors and a 1900ft separation threshold 

 
Cell RMSE 

% 
RMSE 

Sec 
MAX 

RMSE Det 1 Det 2 Det 3 

1 1 5 34 13% 25.1 25% 
2 1 6 34 14% 28.6 26% 
3 1 7 34 13% 27.8 27% 
4 1 8 34 13% 26.5 26% 
5 1 9 34 15% 30.4 29% 
6 1 10 34 15% 29.7 23% 
7 1 11 34 13% 27.9 22% 
8 1 12 34 13% 27.4 22% 
9 1 13 34 16% 36.2 22% 
10 1 14 34 12% 25.5 22% 
11 1 15 34 12% 23.8 22% 
12 1 16 34 12% 24.6 22% 
13 1 17 34 12% 24.3 22% 
14 1 18 34 12% 26.8 22% 
15 1 19 34 12% 26.5 22% 
16 1 20 34 12% 25.7 22% 
17 1 21 34 13% 26.2 23% 
18 1 22 34 13% 26.1 23% 
19 1 23 34 13% 28.1 23% 
20 1 24 34 13% 28.6 23% 
21 1 25 34 13% 27.4 23% 
22 1 26 34 12% 26.7 23% 
23 1 27 34 12% 26.1 23% 
24 1 28 34 13% 26.1 23% 
25 1 29 34 13% 26.3 23% 
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Table 7.2: Feasible deployment patterns for 10 detectors and a 1650ft separation 
threshold 

  
Cell 

RMSE 
% 

RMSE 
Sec Det 

1 
Det 
2 

Det 
3 

Det 
4 

Det 
5 

Det 
6 

Det 
7 

Det 
8 

Det 
9 

Det 
10 

1 1 5 9 13 16 19 22 25 28 34 23% 55.8 

2 1 5 9 13 16 19 22 25 29 34 23% 55.6 

3 1 5 9 13 16 19 22 25 30 34 23% 55.4 

4 1 5 9 13 16 19 22 26 29 34 24% 56.2 

5 1 5 9 13 16 19 22 26 30 34 23% 56.0 

6 1 5 9 13 16 19 23 26 29 34 23% 52.8 

7 1 5 9 13 16 19 23 26 30 34 23% 52.5 

8 1 5 9 13 16 20 23 26 29 34 22% 51.9 

9 1 5 9 13 16 20 23 26 30 34 22% 51.6 

10 1 5 9 13 17 20 23 26 29 34 22% 48.6 

11 1 5 9 13 17 20 23 26 30 34 21% 48.3 

12 1 5 9 14 17 20 23 26 29 34 17% 36.5 

13 1 5 9 14 17 20 23 26 30 34 17% 36.6 

14 1 5 10 14 17 20 23 26 29 34 16% 35.5 

15 1 5 10 14 17 20 23 26 30 34 16% 35.6 

16 1 6 10 14 17 20 23 26 29 34 18% 41.6 

17 1 6 10 14 17 20 23 26 30 34 18% 41.7 

18 1 7 10 14 17 20 23 26 29 34 19% 41.6 

19 1 7 10 14 17 20 23 26 30 34 19% 41.7 
 

An interesting observation is that the optimal results corresponding to 3 detector 
strategies are consistently lower than those obtained based on 10 detectors. This is a 
consequence of the methodology used by this model to compute travel times and it has very 
important implications. Firstly it suggests that a careful analysis of sensor deployment that 
focuses on their main purpose may reduce the required investment. The second implication of 
these outcomes is that, even though sensor deployment decisions may respond to needs other 
than travel time prediction, relatively sparse coverage may lead to fairly accurate results if the 
appropriate sensors are selected to generate the forecasts. Furthermore, thanks to this property 
the model can accommodate missing or malfunctioning with relatively little changes in its 
performance.  

The same experiment was run utilizing different thresholds (1500 ft and 1700 ft) for a 
10-detector scenario. It was observed that even though most of the feasible patterns for the 1500 
ft scenario led to higher global RMSE than those feasible for a 1700 ft one, a few of them 
actually exhibited errors in the order of 13-15 percent. This suggests that the minimum threshold 
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should be selected carefully, because it impacts the ability of the model to place detectors in 
critical positions, which may compensate for the reduced spacing between sensors.  

Another important property of this deployment analysis tool can be observed in Table 
7.3, which shows that the deployment strategy leading to the smallest RMSE is not necessarily 
the one resulting in the least error for all sensors. This is the reason why the output file is 
designed to provide decision makers with a broader set of information about each analyzed 
detector deployment pattern. Such files include the prediction error in percentage and value 
format for each OD pair, as well as the absolute value of the average error, and the 
corresponding frequency distributions. It can be used to select the pattern that better fits the 
interests of a particular agency, and to decide between alternatives exhibiting the same global 
error measurements. 
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Table 7.3: RMSE by section for 3 detector deployment patterns (1900 ft distance 
threshold) 

 % RMSE by Section 

Combo 1 2 3 4 5 6 7 8 9 10 11 12 

1 9.4 17.1 25.5 15.7 8.0 8.8 10.0 9.7 9.1 10.6 9.8 9.2

2 9.4 18.5 26.4 17.0 9.1 10.4 11.3 10.8 10.3 11.9 11.0 10.4

3 9.4 10.8 26.9 17.8 10.0 10.7 11.0 10.6 10.3 11.7 10.8 10.3

4 9.4 10.8 25.8 17.3 10.2 10.6 10.9 10.6 10.3 10.8 10.1 9.8

5 9.4 10.8 29.2 20.0 11.3 11.9 11.7 11.2 10.9 12.6 11.8 11.3

6 9.4 10.8 22.2 22.7 21.8 12.3 12.0 11.2 10.5 13.5 12.2 11.5

7 9.4 10.8 22.2 20.8 10.9 11.3 11.1 10.5 9.9 12.3 11.2 10.7

8 9.4 10.8 22.2 13.9 9.5 11.5 11.9 11.4 10.7 12.2 11.3 10.7

9 9.4 10.8 21.8 13.5 13.3 19.2 19.3 17.3 16.7 15.9 15.8 15.0

10 9.4 10.8 22.2 13.9 9.5 10.6 11.0 10.5 9.8 10.9 10.0 9.5

11 9.4 10.8 22.2 13.9 9.2 9.2 10.0 9.7 9.2 10.2 9.4 8.9

12 9.4 10.8 22.2 13.9 9.2 10.5 11.0 10.6 10.0 10.7 9.9 9.3

13 9.4 10.8 22.2 13.9 9.2 10.4 11.0 10.6 9.9 10.4 9.6 9.2

14 9.4 10.8 21.8 13.5 8.9 9.7 11.5 11.3 11.0 10.7 10.3 10.0

15 9.4 10.8 22.2 13.9 9.2 9.9 12.0 11.4 10.7 10.9 10.3 9.9

16 9.4 10.8 22.2 13.9 9.2 9.9 11.6 11.2 10.8 10.3 9.9 9.5

17 9.4 10.8 23.0 14.7 9.7 10.3 12.1 11.5 10.9 11.4 10.8 10.2

18 9.4 10.8 23.0 14.7 9.7 10.3 12.1 11.5 11.0 11.1 10.7 10.0

19 9.4 10.8 23.2 14.9 9.9 10.4 12.3 11.6 11.6 10.4 10.9 10.5

20 9.4 10.8 23.2 14.9 9.9 10.4 12.3 11.6 11.5 10.9 11.4 11.0

21 9.4 10.8 23.0 14.7 9.8 10.3 12.1 11.5 10.9 10.4 10.8 10.4

22 9.4 10.8 23.1 14.8 9.8 10.3 12.2 11.5 10.9 10.0 10.3 9.9

23 9.4 10.8 23.1 14.8 9.8 10.3 12.2 11.5 10.9 10.2 10.1 9.7

24 9.4 10.8 23.0 14.7 9.8 10.3 12.1 11.5 10.8 11.9 11.3 10.5

25 9.4 10.8 23.2 14.9 9.9 10.4 12.3 11.6 11.0 12.2 11.3 10.5
 

The final experiments explored all possible locations of a detector within a link. Similar 
results were observed when the selected link was immediately after an exit or an entry ramp. The 
highway sections between detector 10 and 11, and between 11 and 12, were used as example of 
the former cases. The first segment is preceded by an input ramp, and it was found that the most 
accurate results were obtained when a detector was placed immediately after the ramp. Similarly, 
for the link connecting detectors 11 and 12, which leads to an exit ramp, it was observed that 
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more accurate results were obtained if the detector was placed on the diverge cell. There results, 
although clearly not conclusive, are reasonable. General observations from other numerical 
experiments suggest that whenever entry or exit ramps are not properly measured, detectors 
should be placed as close to the corresponding merge/diverge section as possible (and 
downstream of the same). In general, detectors are always desirable after diverge sections, 
particularly when the split ratios vary widely along the day. 

Another important consideration for optimal sensor placement is its robustness with 
respect to changes in demand variations. Even though the optimization process proposed in this 
work does not take explicitly into account different demand patterns, it was observed that the 
resulting deployment strategies were fairly stable for different demand profiles. For example, the 
optimal location found using profile demand 1 resulted in almost the same average error 
computed for demand profile 4 under the base deployment strategy (22 percent RMSE, with 31 
percent of the travel time estimations presenting less than a 1 minute error). However, if major 
changes in OD configurations are expected, several experiments may be conducted, 
corresponding to the various demand scenarios, and the robustness of each solution evaluated 
appropriately.  

7.3 Integrated Analytical Simulation Framework  
As a part of this project, a generic analytical and simulation-based framework (Figure 

7.3) has been developed, which can be used for conducting future travel time prediction studies. 
This framework primarily consists of the insights learned during the various phases of the project 
streamlined into one cohesive and concise flowchart.  

The first step in any travel time prediction study is to determine the data to be used as 
input for determining the travel times. The models developed as a part of this study use the count 
data as it is the easiest to obtain from the field. Single loop detectors are commonly used to 
arrive at the count data in any freeway section. However, depending on the availability of the 
technology, other data collection devices like automatic vehicle identification devices can also be 
used. Ideally another metric of the traffic flow such as speed must be collected so that the 
validity and accuracy of the count data can be verified at regular time intervals. Another factor to 
be decided is the temporal aggregation level of the count data. As the focus of this project is on 
short term forecasting accounting for traffic dynamics, efforts should be taken to make the 
aggregation level as fine as possible. Ideal case would be count data at a minute level. 
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Figure 7.3: An integrated analytical simulation framework 

The choice of the data type has a great bearing on the type of the prediction model to be 
used. If count data is available at a reasonable aggregation level, then either of the models 
developed in this project can be used. However, the parameters of both the models needs to be 
calibrated before it can be applied. For calibration two types of data will be used: (i) archived 
real-time data sets coupled with the actual travel times and (ii) simulation data. 

The advantage of using archived real data is that it captures real freeway dynamics 
subject to detector error. However, depending on the amount of effort put into data coverage 
archived data has limited availability and spatial coverage. The archived data is useful for model 
calibration and validation. A microscopic simulation model of the freeway model should be 
created. The microscopic model will be useful for generating simulation based count data and 
tracking the vehicle trajectories to obtain the actual travel times. The advantage of the simulation 
data is that it allows for detailed testing of model performance under multiple scenarios. The 
performance of the prediction model can be compared for numerous peak and off-peak demand 
scenarios. The set of scenarios to be tested should account for daily, monthly and seasonal 
variations in demand which can be obtained by studying past trends. 

For determining optimal detector locations, it is very difficult and in most cases infeasible 
to do field testing for different configurations. Therefore the microscopic simulation model must 
be used to generate counts at detector for various detector configurations and calculate the actual 
travel times from vehicle trajectories. The prediction model must be run for each set of counts 
for each configuration and then compared against actual travel times. Repeat the procedure for 
numerous scenarios and then obtain the configuration which gives the least error across multiple 
scenarios. 

Thus, in order to obtain a resilient travel time prediction model that performs well under 
numerous scenarios, it is important to conduct a detailed study involving both simulation data 
and real-time data as illustrated in this framework. 
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7.4 Summary 
This section presented a methodology to evaluate different detector deployment 

strategies, and select the one leading to the most accurate travel time predictions. The proposed 
technique is novel in several aspects: it explicitly considers the impact of the position of a 
detector in the travel time forecast accuracy, and it analyzes detector location at a cell resolution 
level, instead of the typical link-level analysis.  

The computer model developed to implement the new methodology can be run in two 
different modes. The first one analyzes a pre-defined set of possible patterns, whereas the second 
one automatically generates all possible deployment strategies. The later involves enumerating 
all possible cell combinations of “d” elements, where “d” is the number of available detectors. 
This figure can be very large, and it is possible to reduce it by incorporating a distance threshold, 
specifying the minimum spacing between contiguous detectors. The methodology is based on the 
performance of the CTM-based travel time prediction software, and demands the utilization of a 
micro-simulation tool to synthesize the corresponding input data. The results are expected to be 
valid for most cumulative-count based techniques, and the general insights obtained from its 
application can be extended to more general methods. 

The numerical experiments reported in this section suggest that the location of detectors 
does have an impact on the model performance. As was somewhat expected, the outcomes 
highlight the importance of locating sensors close to merge/diverge sections. Due to the 
characteristics of the travel time prediction procedure, it was also observed that utilizing 
detectors placed closer than half mile apart may affect the model stability. Additional insights 
from the numerical testing suggest that the optimal detector placement resulting from the 
proposed optimization process is fairly robust with respect to changes in demand patterns. These 
results are encouraging, and indicate that the model can be used to gain insights regarding the 
number an approximate location of detectors which leads to better travel time predictions. 
However, the fact that model parameters can be calibrated and adjusted for each possible 
detector deployment pattern leaves room for better observed performances than those considered 
by the optimization software. The latter implies that the results obtained using the provided 
detector deployment analysis tool should be considered as guidance, which must be 
complemented with experience regarding additional practical considerations and engineering 
judgment.  

The proposed detector coverage analysis tool, in combination with the previously 
introduced travel time prediction methods, constitutes a powerful integrated simulation and 
analytical framework. The insights learned during the various phases of the project can be 
streamlined into one cohesive and concise flowchart, which can be used to analyze future ITS 
deployment strategies, improve the utilization of existing sensors, and asses the need for system 
expansions or modifications. 
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Chapter 8.  Conclusions 

Dynamic message sign (DMS) systems provide full public value only when predicted 
travel time information is integrated into it. The research conducted towards this project lead to 
innovative travel time prediction tools, accurate for a range of traffic conditions and detector 
coverage scenarios. It also contributed to a deeper understanding of the relationship between 
sensor coverage and the quality of freeway traffic time forecasts. 

During the first stages of the project, studies were conducted to understand the state of 
the art and the practice in travel time prediction. A fundamental flaw found in most applied 
methods is that they are not predictive in nature and therefore do not anticipate the short-term 
evolution of traffic dynamics downstream. As concluded by Quiroga (2000), such a simple but 
non-robust travel time prediction scheme cannot provide satisfactory prediction during recurrent 
peak hours, in which travel time prediction is more important than the off-peak hours. Similarly, 
current practices for travel time predictions will not perform well under non-recurrent traffic 
conditions such as work zones, accidents, and special events. When motorist are stuck in a long 
queue without knowing the exact cause, reasonable travel time prediction on DMS becomes 
critical to help ease road rage, and to assist motorists to evaluate whether they will divert to 
alternative routes. Based on the research team’s personal communication with traffic engineers 
in San Antonio district, the DMS travel time prediction messages are usually turned off during 
peak-hours, work zones, and accidents. There is ample room for improving the freeway travel 
time prediction under different traffic conditions with an improved framework for all the DMS 
systems operated in Texas. 

The analysis of existing travel time prediction literature revealed that the prediction 
capability of most of existing approaches depends on the data set used for validation and 
calibration. There are relatively very few studies that use analytical traffic flow relationships or 
simulation based models to determine the current travel times. Usage of traffic flow theoretic 
relationships or simulation-based models may be more useful in extrapolating local conditions 
(like spot speed data) to that of a link (like travel time on a link). Preliminary tests of existing 
methodologies confirmed the inadequacy of simple analytical models to reflect varying traffic 
conditions. This motivated the fundamentally novel methodologies developed for this project, 
which are able to capture driver’s behavior and dynamic traffic evolution.  

The integrated simulation statistical analysis based model predicts the inflow into the 
freeway network using a time Series (ARIMA) model. The forecasted inputs are then simulated 
using a Cell Transmission Model to obtain the travel times. The new model accounts for the 
evolving dynamics of traffic flow in predictions and is computationally efficient. Therefore, it 
can be run in a normal personal computer as long as data is available. The calibration and 
validation experiments conducted to test the model confirmed their adequacy and robustness. 
Tests performed using of simulated data suggests that high accuracies in travel time forecasts are 
possible for traffic conditions varying from free flow to congested. Travel time prediction errors 
ranging between 10 and 23 percent were observed for a relatively short 3-mile section when the 
CTM-based model was implemented for a bell-shaped demand. Furthermore, 40 percent of the 
values were below 60 seconds. For different demand profiles, the resulting errors were found to 
be approximately in the same range of values, demonstrating the robustness of the model.  

The numerical experiments conducted on field data are also encouraging, provided that 
necessary data filtering steps are accomplished. The average RMSE of 61 sec (18 percent) 
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observed across all days for which GPS real traffic data was available also confirms the fact that 
the model is robust for varying lengths of highway segments, given that the test area spanned 10 
miles. Furthermore, the model results were still accurate on those days on which detector 
malfunctioning reduced the availability of data at run time. 

The estimated results produced by the N-Curve method proved to have low percentage 
error discrepancy when compared to the simulation (actual) output results for low to medium 
demand loadings. In the case of heavy demand loading, vehicles loaded on the later portions of 
the hour experienced higher travel times. In addition, the percentage errors when comparing the 
estimated and simulated heavy demand loading cases yield higher values. 

The models proposed in this study use as main inputs traffic counts, which are provided 
by point detectors, and widely available. However, additional data is necessary to calibrate and 
validate the models. An overview of such data was provided, which also described the main 
datasets used throughout the project. These involve two types of data: traffic counts and real 
travel time measurements. Whereas the first type is relatively easy to obtain, corresponding 
travel times are typically harder to gather, which is one of the main motivations behind the 
utilization of simulated data. In this study both real and simulated travel time data has been used 
to validate and calibrate the models. The real travel time data is useful for testing the efficacy of 
the model against real world dynamics whereas the simulated data is useful for testing the 
efficiency of the model under a number of scenarios. The simulated data was generated using a 
VISSIM microsimulator. Real travel time data were obtained from the Berkeley highway 
network and in El Paso. The traffic counts in El Paso were obtained from the TransVISTA and a 
GPS system was used to record the actual travel times. The data obtained from the field may 
contain errors due to detector malfunctions. Therefore, filtering and pre-processing techniques 
were also recommended.  

In addition to online travel time prediction methodologies, this project provided a 
methodology to evaluate different detector deployment strategies, and select the one leading to 
the most accurate travel time predictions. The proposed technique is novel in several aspects: it 
explicitly considers the impact of the position of a detector in the travel time forecast accuracy, 
and it analyzes detector location at a cell resolution level, instead of the typical link-level 
analysis.  

The methodology is based on the performance of the CTM-based travel time prediction 
software, and demands the utilization of a micro-simulation tool to synthesize the corresponding 
input data. The results are expected to be valid for most cumulative-count-based techniques, and 
the general insights obtained from its application can be extended to more general methods. The 
numerical experiments conducted to assess the proposed methodology suggest that the location 
of detectors does have an impact on the model performance. As was somewhat expected, the 
outcomes highlight the importance of locating sensors close to merge/diverge sections. 
Additional insights from the numerical testing suggest that the optimal detector placement 
resulting from the proposed optimization process is fairly robust with respect to changes in 
demand patterns. These results are encouraging, and indicate that the model can be used to gain 
insights regarding the number an approximate location of detectors, which leads to better travel 
time predictions. However, the fact that model parameters can be calibrated and adjusted for 
each possible detector deployment pattern leaves room for better observed performances than 
those considered by the optimization software. The later implies that the results obtained using 
the provided detector deployment analysis tool should be considered as guidance, which must be 
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complemented with experience regarding additional practical considerations and engineering 
judgment.  

The proposed detector coverage analysis tool, in combination with the previously 
introduced travel time prediction methods, constitutes a powerful integrated simulation and 
analytical framework. The insights learned during the various phases of the project can be 
streamlined into one cohesive and concise flowchart, which can be used to analyze future ITS 
deployment strategies, improve the utilization of existing sensors, and assess the need for system 
expansions or modifications.  

The final stage of the project considered the deployment of travel time prediction 
methodologies in a real TMC. During this stage, data quality, pre-processing, and 
communication protocols were identified as the vital issues to be addressed in a real-time model 
implementation. 

In summary, this project developed analytical models that can be used to improve the 
quality of travel time prediction for ITS implementations, by capturing dynamic traffic variations 
and congestion evolution. It also provided software tools to implement such models, and a 
thorough analysis of data requirement, as well as data pre- and post-processing. The latter led to 
a database software capable of displaying detector measurements and travel times in real-time. 
The online travel time prediction models, coupled with the offline detector coverage analysis 
tool, can be used in an integrated framework to assess and enhance the performance of existing 
ITS infrastructures and to plan future deployment strategies. 
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Appendix A: Travel Time Prediction Guidelines 

Dynamic message sign (DMS) systems provide full public value only when predicted 
travel time information is integrated into it. This guidebook presents the basic concepts necessary 
to develop and implement successful travel time prediction methodologies, including an 
introduction to statistical forecasting and traffic simulation, which are fundamental components 
of most advanced techniques. The main challenges faced by efficient travel time prediction 
methods are described next, along with the desirable mathematical model properties and 
corresponding data requirements. Additionally, two novel travel time prediction techniques 
developed in the context of TxDOT project 0-5141 are introduced, and their usage explained. 
The present guideline also describes a procedure to analyze detector coverage in relation to travel 
time prediction accuracy, and presents a software tool developed towards that end.  

Travel Time Types 
Travel time can be generally classified into: 

• Instantaneous Travel Time (ITT),  

• Reconstructed Travel Time (RTT), and 

• Forecasted Travel Time (FTT).  
 

Instantaneous Travel Time stands for the travel time of a vehicle traversing a freeway 
segment at time t if all traffic conditions remain constant until the vehicle exits the freeway 
segment. ITT generally underestimates travel time at the onset of congestion and overestimates 
at the dissipation of congestion. In other words, ITT is reliable during the off-peak hours in 
which traffic conditions remain stable. San Antonio TransGuide’s existing algorithm produces 
Instantaneous Travel Time, and it has been shown to produce reliable travel time estimation only 
during off-peak hours (Quiroga, 2000.) 

Reconstructed Travel Time (RTT) means the travel time realized at time t when a 
vehicle leaves a freeway segment. An Automatic Vehicle Identification (AVI) travel time 
measure is a typical type of RTT because a vehicle’s actual travel time is not measured until the 
vehicle passes a toll tag beacon or a Road Side Terminal (RST). While this type of travel time 
measurement can give precise actual travel times, it has been shown not to be a good measure for 
online travel time prediction because it introduces non-trivial time-lag in actual travel time 
detection (Chen and Chien, 2001.) The AVI data is, however, very suitable for calibrating online 
algorithms in an offline manner because the precisely measured travel times allow the validation 
of model prediction accurately. The AVI data collected by Houston and TRANSCOM produce 
RTT.  

Forecasting Travel Time (FTT) is defined as the travel time that is actually experienced 
by drivers who will traverse the freeway segment. This is the most useful information from a 
driver’s perspective, yet the most difficult to produce precisely, particularly during peak-hours in 
which traffic conditions are less stable. The FTT is certainly the focus of this research because it 
is intended to be disseminated to the traveling public via Dynamic Message Signs (DMS) or the 
Internet. The traveling public demands FTT instead of ITT or RTT.  
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Travel Time Prediction Models: Existing Work and Improvement Directions 
Important features of existing travel time prediction systems such as algorithms used, 

data requirements, and prediction accuracy under different traffic flow conditions were explored 
during the completion of TxDOT project 0-5141, and summarized in the corresponding report. 
The fundamental deficiency found in existing travel time prediction practice was that it is not 
predictive in nature. Many agencies utilize simple speed-based models, based on instantaneous 
data measured at traffic detectors. As a consequence, they do not account for the short-term 
evolution of traffic dynamics downstream, which leads to simple but non-robust travel time 
prediction schemes unable to provide satisfactory prediction during recurrent peak hours, non-
recurrent congestion, accidents, or special events (Quiroga, 2000). This is problematic, given that 
the latter circumstances are the ones that would benefit the most from accurate travel time 
predictions. When motorist are stuck in a long queue without knowing the exact cause, 
reasonable travel time prediction on DMS becomes critical to help ease road rage, and to assist 
drivers in the evaluation of alternative routes. 

From a state-of-the-art perspective, past work on travel time prediction can be primarily 
classified into statistical models and heuristic models. Statistical methods primarily use 
regression techniques or time series analysis to estimate travel times based on historical or real-
time information. Purely statistical techniques do not perform very well during abnormal traffic 
conditions, which are typically not frequent in the data sample used for calibration. Heuristic 
models implement approaches such as Artificial Neural Networks and Kalman filtering for short 
term prediction of traffic flows. Other methodologies found in the literature include using 
dynamic traffic assignment and simulation-based techniques in combination with the 
abovementioned methods in order to better predict travel times. The prediction capability of most 
of the described approaches was found to be dependent on the data set used. Furthermore, very 
few of the existing studies utilize analytical traffic flow relationships or simulation based models 
exist, which is unfortunate. In effect, such models are likely to be better suited for the 
extrapolation of local conditions (like spot speed data) to that of a link (like travel time on a 
link).  

The models developed for TxDOT project 0-5141 include many characteristics that 
mitigate some of the undesirable properties of many existing methodologies. Both models take 
into account the inherent predictive nature of any accurate travel time estimation. Furthermore, 
they are able to capture traffic dynamics, including congestion formation and dissipation, and 
shockwave propagation. More importantly, the CTM-based model explicitly represents traffic 
flow relationships, and is therefore likely to adapt appropriately to changing conditions. Another 
important advantage of using models that respond to traffic flow relationships is that such 
models are relatively data-independent. Even though appropriate calibration and validation is 
required when the model is first implemented, such procedures do not involve major changes in 
the model structure, which is expected to perform adequately in any location.  

Introduction to Statistical Forecasting 
Most travel time prediction methodologies involve some sort of statistical forecasting, a 

procedure in virtue of which the future values of a variable are predicted using analytical 
formulations. This section presents two of the most popular forecasting techniques, which are 
fundamental components of the travel time prediction methodologies developed for TxDOT 
project  0-5141 and described in the following sections. The time series technique is used in the 
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combined simulation/statistical framework in order to predict traffic counts at entry ramps. 
Kalman filtering is the statistical method used by the N Curve model to forecast cumulative 
count curves at the freeway entry points.  

Time Series Analysis 
Time Series models have been applied in numerous domains to forecast the future 

parameters characterizing the system based on the trends observed from the past data collected. 
Time series refers to a sequence of data points collected or measured at uniform intervals. 
Examples of time series include average daily temperature in Austin, monthly profit of IBM, 
population in the U.S., and total number of accidents in the U.S. for every year (see Figure A1).  
 

 
Figure A1: Time series example 

Time series models study the trend and variation in past data points and make predictions 
on future data points before they are measured and occur.  

Autoregressive Models 

Autoregressive models of order p or AR (p) models predict future data points, pred
tX , 

based on p most recent data points.    
 

ptptt
pred

t XaXaXacX −−− ++++= ......2211    
The coefficients of the model paac ,......,, 1  are estimated from past data points using the 

method of least squares estimation. The parameters are chosen such that the sum of square errors 
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between the predicted value and the actual values is minimized. Mathematically the AR (p) 
model is represented as  
 

   t

p

i
itit XacX ε++= ∑

=
−

1
 

Where tε is the error term. tε are normally distributed independent and identical random 
variables.  

Moving Average models 
Moving Average models of order q or MA(q) models refer to those models where the 

current data point is a linear function of the error terms of the past q data points. 
 

t

q

i
ititX εεθ +=∑

=
−

1

 

The coefficients of the model qii ,...1=∀θ are obtained by method of least squares. Given 
n data points, and for a particular assumed value for the q coefficients, the error between the 
actual data value and the predicted data point can be calculated. Method of least squares involves 
choosing the value of the coefficients qii ,...1=∀θ , which minimizes the sum of square errors 
between the actual value and the predicted value for the n data points. 

Autoregressive Moving Average Models (ARMA) 

Autoregressive Moving Average Models (ARMA) combines the auto regression and the 
moving average concept explained in the previous sections.  

 

  t

q

i
iti

p

i
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The above ARMA model is denoted as ARMA (p, q) as there are p auto regressive 
coefficients and q moving average coefficients which need to be estimated. ARMA models are 
extremely efficient in modeling stationary time series. Stationary time series involve data points 
which vary around a constant mean value. Most stationary time series can be decomposed into a 
deterministic part and a disturbance component. Auto regressive part of the ARMA model 
captures the deterministic variation of the stationary time series while the moving average part of 
the ARMA model captures the disturbance component. 

Stationary assumption may not be valid in most time series. Many time series data points 
exhibit a clear upwards or downwards trend. An example is the volume of vehicles entering a 
ramp during the build up to peak period where an upward trend is expected. In such cases the 
trend is removed by successive differentiation. Successive differentiation is a process where a 
new time series is created by taking the difference of successive data points.  
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The order of the differentiation process is the number of times the process is repeated for 

the entire data set to generate a stationary time series. For example, if the time series 
121 ,......,, −tYYY  is not stationary and still exhibits an upward trend, then the process will have to 

be repeated again to generate another time series 221 −tZZZ ,......,, . If 221 ,......,, −tZZZ  is found to 
be stationary then the order of differentiation is 2. 

ARIMA models are used to predict time series that exhibit such upward or downward 
trends. ARIMA models are generally represented as ARIMA (p, q, r) where p represents the 
number of auto regressive terms, q represents the number of times the time series is 
differentiated to obtain a stationary series, and r denotes the number of moving average terms. 
For example, ARIMA (3,1,2) implies that the original time series data points are first differenced 
once to obtain a stationary time series 1,......,tX . The new data points are then predicted using 
three auto-regressive terms and two moving average terms.  
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Kalman Filtering  
The Kalman filter is essentially a set of mathematical equations that implement a 

predictor-corrector type estimator that is optimal in the sense that it minimizes the estimated 
error covariance—when some presumed conditions are met. Since the time of its introduction, 
the Kalman filter has been the subject of extensive research and application, particularly in the 
area of autonomous or assisted navigation. This is likely due in large part to advances in digital 
computing that made the use of the filter practical, but also to the relative simplicity and robust 
nature of the filter itself. Rarely do the conditions necessary for optimality actually exist, and yet 
the filter apparently works well for many applications in spite of this situation. 

Defining the Problem 

Discrete time linear systems are often represented in a state variable format given by the 
equation: 

jjj buaxx += −1  

where the state, jx , is a scalar, a  and b  are constants and the input ju  is a scalar; j  
represents the time variable. Note that many texts don't include the input term (it may be set to 
zero), and most texts use the variable k  to represent time. I have chosen to use j  to represent 
the time variable because we use the variable k  for the Kalman filter gain later. The equation 
above can be represented pictorially as shown in Figure A2 where the block with T in it 
represents a time delay. 
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Figure A2: Kalman Filtering Step 1 

Now imagine some noise is added to the process such that: 
jjjj wbuaxx ++= − 1  

The noise, w , is white noise source with zero mean and covariance Q  and is uncorrelated 
with the input. The process can now be represented as shown in Figure A3: 

 

Figure A3: Kalman Filtering Step 2 

With Kalman filters we can go one step further. Let us assume that the signal x  is 
measured, and the measured value is z .  

jjj vhxz +=  
The measured value z  depends on the current value of x , as determined by the gain h . 

Additionally, the measurement has its own noise, v , associated with it. The noise, v , is white 
noise source with zero mean and covariance R  that is uncorrelated with the input or with the 
noise w . The two noise sources are independent of each other and independent of the input. See 
Figure A4. 
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Figure A4: Kalman Filtering Step 3 

It seems reasonable to achieve an estimate of the state (and the output) by simply 
reproducing the system architecture. This simple (and ultimately useless) way to get an estimate 
of jx  (which we will call jx̂ ), is diagrammed in Figure A5. 

1
ˆ

−jX jX̂

jẐ

 

Figure A5: Kalman Filtering Step 4 

This approach has two glaring weakness. The first is that there is no correction. If we 
don't know the quantities a , b  or h  exactly (or the initial value 0x ), the estimate will not track 
the exact value of x . Secondly, we don't compensate for the addition of the noise sources ( w  
and v ). An improved setup that takes care of both of these problems is shown in Figure A6.  
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1
ˆ

−jX jX̂

jẐjX −ˆ

 

Figure A6: Kalman Filtering Step 5 

This figure is much like the previous one. The first difference noted is that the original 
estimate of jx  is now called jx−ˆ ; we will refer to this as the a priori estimate.  

jjj buxax += −
−

1ˆˆ  

We use this a priori estimate to predict an estimate for the output, jẑ ; the difference 
between this estimated output and the actual output is called the residual, or innovation. 

−−=−= jjjj xhzzz ˆˆResidual  
If the residual is small, it generally means we have a good estimate; if it is large the 

estimate is not so good. We can use this information to refine our estimate of jx ; we call this 

new estimate the a posteriori estimate, jx̂ . If the residual is small, so is the correction to the 
estimate. As the residual grows, so does the correction. The pertinent equation is (from the block 
diagram): 

)ˆ(ˆ)Residual(ˆˆ −−− −×−=×−= jjjjj xhzkxkxx  
The only task now is to find the quantity k  that is used to refine our estimate, and it is 

this process that is at the heart of Kalman filtering. We are trying to find an optimal estimator, 
and thus far we are only optimizing the value for the gain, k . We have assumed that a copy of 
the original system (i.e., the gains a , b and h  arranged as shown) should be used to form the 
estimator. This begs the question: "Is the estimator as developed above optimal?" In other words, 
should we simply copy the original system in order to estimate the state, or is there perhaps a 
better way? The answer is that the estimator, as shown above, is the optimal linear estimator that 
can be developed. 
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Finding K (The Kalman Filter Gain) 

To begin, let us define the errors of our estimate. There will be two errors, an a priori 
error, je− , and an a posteriori error, je . Each one is defined as the difference between the actual 

value of jx  and the estimate (either a priori or a posteriori). 

jjj

jjj

xxe

xxe
ˆ

ˆ

−=

−= −−

 

Associated with each of these errors is a mean squared error, or variance: 

}){(
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=

= −−

 

where the operator E{} represents the expected, or average, value. These definitions will 
be used in the calculation of the quantity k . 

A Kalman filter minimizes the a posteriori variance, jp , by suitably choosing the value 
of k . We start by substituting equation above. 
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To find the value of k that minimizes the variance, we differentiate this expression with 
respect to k and set the derivative to zero. Be patient here; the expression gets much messier 
before it becomes simple. 
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We take this last expression and use it to solve for k . 
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This expression is still quite complicated. To simplify it, we will consider the numerator 
and the denominator separately. We start with the numerator, and substitute for jz .  
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The measurement noise, v , is uncorrelated to either the input or the a priori estimate of 
x , so: 
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0}{})ˆ{( =Ε=−Ε −−
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This simplifies the expression for the numerator. 
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Now, in the same way, consider the denominator. 
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Again, we can use the orthogonality condition from equation above to set the last term to 
zero, so: 
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where we used the simplification from equation above for the first term in the expression, 
and using the definition of the measurement noise for the second term. 

 
Using the expression for numerator and denominator, we finally get a simple expression 

for k : 
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However, there is still a problem because this expression needs a value for the a priori 
covariance, which in turn requires knowledge of the system variable jx . Therefore our next task 
will be to come up with an estimate for the a priori covariance. 

Finding the Priori Covariance 

Finding the a priori covariance is straightforward, starting with its definition. 
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The middle term drops out as before because the process noise is uncorrelated with 

previous values of the either the state or it’s a priori estimate. 
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We are still not finished, however, because we need an expression for jp , the a posteriori 
estimate. 

Finding the Posteriori Covariance 
As with the a priori covariance, we find the a posteriori covariance by starting with its 

definition. 
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The middle term drops out as before because the measurement noise is uncorrelated with 
the current values of the either the state or it’s a priori estimate. 
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We can simplify this by using our previous definition for k  
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Kalman Filter Procedure 

Any Kalman filter operation begins with a system description consisting of gains a, b and 
h. The state is x, the input to the system is u, and the output is z. The time index is given by j. 

jjj

jjjj

vhxz

wbuaxx
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The process has two steps, a predictor step (which calculates the next estimate of the state 

based only on past measurements of the output), and a corrector step (which uses the current 
value of the estimate to refine the result given by the predictor step). 
 
Predictor Step: 

We form the a priori state estimate based on the previous estimate of the state and the 
current value of the input. 

jjj buxax += −
−

1ˆˆ  

 
We can now calculate the a priori covariance. 

Qpap jj += −
−

1
2  

 
Note that these two equations use previous values of the a posteriori state estimate and 

covariance. Therefore the first iteration of a Kalman filter requires estimates (which are often 
just guesses) of these two variables. The exact estimate is often not important as the values 
converge towards the correct value over time; a bad initial estimate just takes greater number of 
iterations to converge. 
 
Corrector Step: 

To correct the a priori estimate, we need the Kalman filter gain, k. 

Rph
hp

k
j

j
j +

= −

−

2  

 
This gain is used to refine (correct) the a priori estimate to give us the a posteriori 

estimates. 
)ˆ(ˆˆ −− −+= jjjjj xhzkxx  

 
We can now calculate the a posteriori covariance. 

)1( jjj hkpp −= −  
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Introduction to Traffic Simulation Models 
Depending on the scope and the resolution of the analysis traffic flow models can be 

classified into microscopic, macroscopic, and mesoscopic models. Microscopic simulators 
achieve the finest resolution by modeling the movement and behavior of individual vehicles. 
Various factors like lane changing behavior, gap acceptance, and individual driver characteristics 
such as compliance can be modeled. Even though microscopic models achieve a high degree of 
realism, microscopic models are computationally intensive and cannot be used to model large 
networks. Moreover, such models involve significant amount of calibration of numerous 
individual driver characteristics like gap acceptance, which are difficult to obtain. Examples of 
microscopic simulators include CORSIM, VISSIM, PARAMICS, etc.  

Macroscopic simulators, on the other hand, model the behavior of a larger platoon of 
vehicles over time. For example, macroscopic simulator can be used to model the variation of 
more aggregate performance measures such as number of vehicles in a link over time. 
Macroscopic models thus do not attempt to capture the impact of various individual driver 
factors such as lane changing, gap acceptance, or link performance. However, modeling at a 
higher resolution results in significant computational savings and macroscopic simulators can 
therefore be used to model large networks. TRANSYT-7F is an example of a macrosimulator. 

Mesoscopic simulators are defined as those models that are neither macroscopic nor 
microscopic. Mesoscopic simulators adopt an intermediate position, attempting to capture some 
of the detail of a microsimulator while performing some abstraction to allow larger regions to be 
modeled. These often use efficient traffic propagation procedures such as the cell transmission 
model (Daganzo, 1994). RouteSim is an example of a mesoscopic simulator. 

In this study the objective is to develop a simulation model that, given the input flows, 
simulates the conditions on the freeway in a computationally efficient manner without losing too 
much on the realism side. With this in mind a mesoscopic model the cell transmission model 
developed by Daganzo was chosen. The cell transmission model is easy to code, and captures 
various freeway dynamics like queue formation/dissipation and shockwave propagation. To give 
an idea about its computational efficiency, CTM can simulate a 5-mile freeway section for a time 
period of 15 minutes in less than a second. The next section provides an overview of the cell 
transmission model used in this work. 

Cell Transmission Model 
As explained in the previous section, the Cell Transmission Model simulates traffic at a 

mesoscopic level. Cell Transmission Model converts the freeway network into cells connected 
by links. Vehicles are contained in cells and are transferred from one cell to another every 
simulation interval using simple mathematical relationship. In order to use the cell transmission 
model the freeway section must be converted into a cell network representation. This is done in 
two stages. 

Choosing the Simulation Interval 

In the first step, choose an appropriate simulation interval. Choice of the simulation 
interval has a significant impact on the computational efficiency and the accuracy of the 
simulation model. High values of the simulation interval, despite causing considerable 
computational savings, result in considerable loss of accuracy especially during highly congested 
phases. If the simulation interval is too low, then the computational time increases significantly. 
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Previous studies have shown that the simulation interval in the range of 4-10 seconds is optimal. 
For future reference the length of the simulation interval will be denoted as δ .If δ = 4 seconds 
and the time period of analysis is 10 minutes, then the total number of simulation intervals is 
10*60/4 = 150.  

Converting Freeway to Cell Representation 

The second stage is to convert the freeway network into the representation of the cell 
transmission model. Before converting, three main parameters of the network must be 
determined using engineering judgment: (i) Free Flow Speed υ , (ii) Capacity Q , and (iii) Jam 
Density ρ . Consider a straight freeway section with no ramps of length L . Starting from the 
upstream node, the freeway section is then divided into cells of uniform length υδ . All of these 
cells are connected using links. Thus the total number of cells generated will be equal to 

⎣ ⎦υδ
LN =  where ⎣ ⎦υδ

L  denotes the largest integer less than or equal to υδ
L . The residual 

length υδNL − is added to the last cell. Note that all the cells in the network should have a 
minimum length of υδ . The cell length can be longer thanυδ . The model does not work if any 
one cell is shorter thanυδ .  

For example consider a freeway section of length 1500=L ft. Let it have a free flow 
speed of 80=υ mph or 117.33 fps. Consider a simulation interval 4=δ seconds. Thus the length 
of each cell is 117.33*4 = 469.33 feet. The freeway is then divided into 2 cells of length 469.33 
feet and one cell of length 561.33 feet as shown in Figure A7. 

 
Figure A7: Cell Representation of the freeway network 

The cell representation of a straight line freeway segment was presented above. Modeling 
a freeway segment will involve modeling merging on ramps, diverging off ramps, and 
intersections. The process of converting sections with ramps will be discussed next. 
 

Merge Segment 
 

A merge segment, depicted in Figure A8, consists of two links 1 and 2 entering a single 
cell C. Cell C is called a merge cell. Links 1 and 2 are called merge links. 
  
    
 
 
 

 

Figure A8: Merge Cell Representation of the freeway network 
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Diverge Segment 
 

A diverge segment, depicted in Figure A9, consists of two links 1 and 2 diverging from a 
single cell C. Cell C is called a diverge cell. Links 1 and 2 are called diverge links. 

 
 
 

 
 
 
 
 
 
 
 

Figure A9: Merge Cell Representation of the freeway network 

 
In the cell representation while modeling intersection, a single link cannot function as a 

merge link and a diverge link, because of the way flows are determined. Consider the following 
(Figure A10): 
 
 
 
 
 
 
 
 
 

Figure A10: Invalid Representation of the freeway network 

In this network, link 1 serves as both as a diverge link and a merge link, which is not 
allowed. Hence Figure A10 is an incorrect cell representation. The correct cell representation is 
given in Figure A11 where an extra cell E is introduced to split link 1 into a diverge link and a 
merge link. 
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Figure A11: Valid Cell Representation of the freeway network 

Thus an overview how to convert a normal freeway segment into a cell network 
representation. The next section describes the mathematical relationships used to transfer 
vehicles from one cell to another every simulation interval. 

Traffic Flow Relationship 

Consider a straight line freeway segment consisting of cells 1,,1 +− iii  (Figure A12). 
 
 
 
 

Figure A12: Cell Representation of the freeway network 

Let )1( +kiρ denote the density of cell i (expressed in vehicles per mile) in simulation 

interval 1+k . In the CTM model )1( +kiρ is determined from )(kiρ  using the following 
relationship: 
 

 ))()(()()1( 1,,1 kqkq
l

kk iiii
i

ii +− −+=+ δρρ   [1] 

Where δ  is the simulation interval and il  stands for the length of cell i. The flows 
leaving from and arriving to cell i during time interval k are given by )(1, kq ii + and )(,1 kq ii−  
respectively. These are obtained as the minimum of two quantities: the highest flow that can be 
supplied by the upstream cell ( )(1 kSi− ), and the maximum flow that the downstream cell can 
receive ( )(kRi ). Equations 2 and 3 describe the computation of these values for every cell: 

 
  )),(min()( 1,11 −−− = iMii QkkS υρ    [2]  
  )))((*,min()( , kQkR iJiMi ρρω −=   [3]  
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where υ  refers to the free flow speed, 1, −iMQ  is the capacity (in vehicles per hour) of cell 
i-1, and Jρ  is the jam density. Equations [1] to [3] constitute the core of the Cell Transmission 
Model for a straight line freeway segment. The next section describes how the cell transmission 
model can be applied for a merge and diverge segment.  

Consider the following merge network (Figure A13): 
 
 
 
 
 
 
 

Figure A13: Cell Representation of the freeway network 

If the amount of flow that can be received by cell C )(kRC is greater than the combined 
flow that can sent from link A , )(kS A and B, )(kSBi , then all the flow flows into cell C. In 
mathematical notation, the above statement can be represented as 
 

)()(
)()(

,

,

kSkq
kSkq

BCB

ACA

=
=

 If { )()()( kSkSkR BiAC +> }   [4] 

 
 If the amount of flow that can be received by cell C )(kRC is lesser than the combined flow that 
can sent from link A , )(kS A and B, )(kSB , then the following mathematical relationship is used 
to determine )(, kq CA  and )(, kq CB . 

)(, kq CA = Median { )(*),()(),( kRkSkRkS CBCA α− }  [5]  
)(, kq CB = Median { )(*)1(),()(),( kRkSkRkS CACB α−− }  [6] 

  
Where α  is an exogenous parameter taking values between 0 and 1, which indicates the 

priority mainline flows have over ramp flows. Once the flows are known, the densities can be 
calculated from equation 1. 

Consider the following diverge cell network (Figure A14). 
 
 

 
 
 
 
 
 
 

Figure A14: Cell Representation of the freeway network 
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For calculating the flows for diverge cell network, the splits at cell B, β  have to be pre-
specified. Calculate  
 

}
)(

),(min{
β

γ kR
kS D

B=    [7] 

}
1

)(
,min{

β
γη

−
=

kRC      [8] 

 
ηβ *)(, =kq DB     [9] 

ηβ *)1()(, −=kq CB     [10] 
Once the flows are known, the densities can be calculated from equation 1. 

Modeling input and output cells 
Output cells are modeled using a gate cell of infinite jam density and infinite capacity. 

Input cells are modeled using two cells as shown in Figure A15. Cell 1 is the gate cell. Cell 2 
serves to control the input to the simulator in accordance with the actual input flow. 
 
 
 
 

Figure A15: Input output Cell Representation 

If the observed input flow at time k  is )(kr then set )()(1 krkS = . Cell 2 is assumed to 
have infinite capacity and infinite jam density. Therefore, )(2 kR will always be equal to infinity. 
This implies that )}(),(min{)( 1212 kSkRkq = will be equal to )(kr , which is the input flow into 
the system. 

Determining the travel time of a freeway segment 
This section describes the procedure for estimating the travel time on a segment using the 

cell transmission model. The concept is illustrated using a single cell example and then extended 
to longer sections. Consider the cell A shown in Figure A16:  
 
 
 

Figure A16: Freeway Cell 

The objective is to determine the travel time experienced by a vehicle entering cell A in 
simulation interval k . Let )(kqin represent the flow into the cell A in interval k . Let 

)(kAρ denote the density of vehicles in cell A in interval k . The travel times are determined by 
comparing cumulative inflows and outflows. For example, to determine the travel time 

1 2 

A 
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experienced by )(kqin , keep track of the cumulative outflows starting from interval k . Determine 
the interval K  when 
 

  ∑
=

<+
K

kt
outinAA tqkqlk δδρ )()()(  

The travel time experienced by the vehicles entering cell A at time k  is δ)( kK − . 
The above concept can be extended to a sequence of cells to determine the travel time of 

a segment, as shown in Figure A17. 
 

   
   
   

Figure A17: Freeway Cell Network 

The travel time of the segment consisting of cells A, B, and C at interval k can be 
estimated by determining the interval K  when 

∑
=

<+++
K

kt
outinCCBBAA tqkqlklklk δδρρρ )()()()()(  

The travel time experienced by the vehicles entering cell A on the segment consisting of 
cells A, B, and C at time k  is δ)( kK − . The travel time for longer segments can be calculated by 
using the above procedure for smaller individual segments and cascading. This process is 
explained with an example in Figure A18.  
 

 
Figure A18: Cascading Travel times on freeways 

Consider a freeway section consisting of three segments: S1, S2, and S3. The objective is 
to estimate the travel time experienced by a user departing A in simulation interval k . Find the 
travel time in section S1, S2 and S3 for all simulation intervals by comparing the cumulative 
inputs and inputs as outlined above. Denote the section travel times as 
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,.....1,)(),(),( 321 +=∀ kkttttttt . Now the instantaneous travel time in the freeway segment at 
simulation interval k , )(kτ  is calculated as: 

)()()()( 321 ktktktk ++=τ  
Now the issue with instantaneous travel times is that a person who departs A at simulation 
interval k  will not experience )(kτ . This is because when the vehicle reaches B at time )(1 ktk + , 
the traffic conditions on section S2 would have changed. So the travel time experienced by the 
vehicle on section S2 would be ))(( 12 ktkt + , which is different from )(2 kt . Therefore, as the 
experienced travel time does not correspond to the calculated travel times, the information 
provided may not be useful. The actual experienced travel time must be estimated as  
  

)))(()(())(()()( 1213121 ktktktktktktktk ++++++=τ  
 

Consider a vehicle departing from A at 8:00 A.M. Let the travel time on the three 
sections be 5 minutes at 8:00. The instantaneous travel time will be reported as 15 minutes. 
However, when the person reaches B, the conditions on freeway section S2 can change so that 
the travel time on S2 is no longer 5 minutes, but 8 minutes. Thus the person will reach C at 8:13 
instead of the 8:10 reported. If the travel time on S3 is 10 minutes at 8:13 due to congestion build 
up, the experienced travel time will be 23 minutes, which is different from the instantaneous 
travel time of 15 minutes.  

Therefore, to correctly estimate the user’s experienced travel time, the traffic conditions 
on section S2 at 8:05 and the conditions on S3 at 8:13 must be predicted at 8:00 A.M itself. 
Therefore, accurate travel time estimation entails prediction of future conditions. 

Overview of the simulation process 

Step 1: Obtain the free flow speedυ , Capacity Q  and Jam density Jρ of the freeway segment 
Step 2: Determine the simulation intervalδ  
Step 3: Convert the freeway segment into the cell representation. 
Step 4: For every simulation interval k ( T,...,1 ) 
  For every cell i Calculate )(),( kRkS ii  
   )),(min()( ,iMii QkkS υρ=  
   )))((*,min()( , kQkR iJiMi ρρω −=  
  For every link )1,( +ii Calculate )(1, kq ii +  using 
      )}(),(min{)(1, kRkSkq iiii =+ if )1,( +ii  is a straight link 
   Formulas [4],[5] and [6] for a merge link 
   Formulas [7],[8],[9] and [10] for a diverge link 
  For every cell i Calculate  

  ))()(()()1( ,, kqkq
l

kk ioutiin
i

ii −+=+ δρρ  
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Data Requirements 
This chapter describes the different types of data required to calibrate, validate, and 

ultimately implement travel time prediction models in general, and the methodologies developed 
for this work in particular. Additionally, the final section provides recommendations for the pre-
processing of input data, namely traffic counts, in real-time. The latter are necessary given that 
the measurements provided by detectors may contain errors which, if neglected, could have 
detrimental effects on the performance of some travel time prediction models.  

Data types 
Two main types of data are required, alone or in combination, in order to calibrate and 

validate travel time prediction models: traffic data and travel time measurements. 
Traffic data, in the context of this work, consists of vehicle counts, as provided by 

detectors deployed on the field. The data may be available at different aggregation levels, and 
ideally the most disaggregated version compatible with a real-time deployment should be 
utilized. Traffic data is necessary for all the stages of model development and implementation.  

Even though vehicle counts are the most readily available (and reliable) form of traffic 
data, some travel time predictions models rely on different traffic data, such as average speed or 
occupancy. Moreover, given the increasing popularity of AVI systems, some models have been 
developed that utilize the sample of existing travel times measured by the automatic system to 
predict the conditions throughout the freeway.  

Travel time measurements were used in this research to validate the model performance, 
by comparing them to the travel time predictions generated using the models. They are also 
necessary to fine-tune model parameters, and when the model is utilized, to determine optimal 
deployment strategies.  

In addition to the main data types, the models need to be tailored to reflect the geometric 
characteristics of the segment under analysis. These include the number of lanes throughout the 
segment, number and position of entry/exit ramps and the corresponding split ratios, and the 
number and location of traffic detectors. Experience-based knowledge regarding prevailing 
driving speeds, recurrent congestion, and general driver behavior may be useful during the model 
calibration and validation process. 

Types of Data Sources 
When the models presented in this report are used to generate online travel time 

predictions, the only valid source of data is given by traffic detectors, which provide the counts 
used as the sole input at run-time. However, the validation and calibration stages demand 
additional data, including historical traffic counts at the segment under analysis and the 
corresponding real travel time measurements. Ideally both data sets should be collected on the 
site where the model is going to be implemented (field data). Historical traffic counts can be 
obtained from the same detectors that are going to be used for the predictions. At least one or 
two peak periods, including congestion formation and dissipation, should be available. The most 
straightforward source of real travel time measurements is the utilization of vehicles equipped 
with GPS systems. Alternatively, they may be derived analyzing AVI data, or applying vehicle 
re-identification algorithms (Coifman, 1998, Sun et al., 1999). The travel time collection 
handbook (FHWA, 1998) describes and compares these and other techniques. Real travel time 
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measurements are required throughout the period used for calibration/validation, and a relatively 
dense data set is necessary to obtain accurate results. 

Field data may not be available in the amount and/or level of aggregation demanded by 
the validation/calibration processes. In such a scenario, traffic counts and real-time 
measurements may be simulated using commercial microsimulators, after modeling the segment 
under study utilizing the corresponding geometric data. In order to generate traffic counts and 
travel times, it is also necessary to feed approximate vehicle counts at the main entry points to 
the segment under study, which can be collected using existing traffic detectors, or estimated 
based on other sources of historical data. Simulated data has a number of advantages: it’s error-
free, can be used to test the model under different scenarios, and is available at any desired 
aggregation level. Furthermore, when optimal sensor location is analyzed, only the use of 
simulated data allows considering arbitrary deployment patterns. However, field data reflects the 
actual behavior of local drivers under real conditions, and should be preferred over simulated 
data when available. See Figure A19. 

 
Figure A19: Travel-time prediction data sources 

Data Filtering 
One of the salient advantages of the models presented in this report is that they require 

only traffic count data at deployment time. Such data is typically readily available and fairly 
reliable. Nevertheless, as most automatic data collection devices, traffic detectors may produce 
flawed data. This can clearly affect models performance, as it was observed during the 
experimental model deployment conducted at El Paso TMC (see Chapter 5). In order to mitigate 
the negative impacts of data errors, procedures are needed to determine whether detectors are 
working, and if their measurements are accurate. Such processes are highly dependent upon the 
characteristics of the detectors used at each TMC, the prevailing communication protocols, and 
the structure of the implemented travel time prediction models. There has been a considerable 
number of works dealing with the issue of assessing the quality of traffic detector data. The 
following paragraphs will briefly describe the basic principles underlying existing research, and 
suggest possible references for an eventual deployment of the proposed models into a TMC.  

The data filtering process involves two basic operations, depicted in Figure A20. 
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Figure A20: Simplified flow chart of the data filtering process 

Several approaches can be taken to identify whether a detector is working properly. The 
simplest ones, which are often used given the time constraints imposed by the real-time nature of 
the travel time prediction procedure, include detecting implausible values of speeds, counts, or 
their combinations (Dahlgren, 2002). Coifman (2004) presents eight event-based validation tests 
which use microscopic data to assess the working status of single and dual loop detectors. The 
techniques range from comparing on/off time at each loop of a dual detector, to analyzing the 
succession of flow regimes observed at a particular detector. Other approaches rely on simple 
comparisons of the measurements retrieved by nearby detectors, or on a time-wise analysis of the 
observations of a single detector (Chen and May, 1987). Some alternative approaches to validate 
the performance of remote traffic microwave sensors (RTMS) are introduced in Coifman, 2006. 
Historical information regarding recurrent congestion patterns and typical traffic conditions can 
be also utilized to verify the likelihood of a specific measurement at a particular time and 
location, determining the need for further analysis. 

Once malfunctioning detectors are identified, proper action needs to be taken in order to 
generate acceptable travel time predictions. The specific procedure will depend on the 
characteristics of the travel time prediction model under usage, data availability, and time 
constraints. One possible option involves imputing the missing measurements, either based on 
the values observed at nearby detectors, or by utilizing previous observations at the 
malfunctioning detector, provided that they are error free (for example, Al-Deek and Chandra, 
2004). Additionally, average historical values may be utilized. Some of these techniques are 
explained in the technical report describing the data processing for California’s PeMS (Urban 
Crossroads Inc., 2006), and in Nguyen and Scherer (2003). When imputation is not possible, a 
different type of action needs to be taken. Some models, such as the CTM-based one, can be run 
ignoring the malfunctioning detectors, with little effect on the prediction accuracy. For these 
models, each TMC should analyze the advantages, in terms of model accuracy, data 
requirements, and computational efficiency, of imputing data versus simply disregarding the 
detectors out of order at run time. Some travel time prediction models may not be able to run if 
error-free traffic measurements are not available for every detector. Under such scenario, traffic 
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managers may choose to either temporarily display historic travel times for the affected sections, 
or not to display any value at all.  

Data Products 
During the development of TxDOT project 0-5141, a database containing traffic data, as 

measured by TransVista’s detectors, was generated. TransVista is the El Paso Traffic 
Management System. It consists of a number of traffic detectors, changeable signs, and data 
processing/storing infrastructure, utilized to mange local traffic. Historic traffic counts for model 
validation and calibration were obtained from 77 of this system’s detectors spanning 37 miles of 
highway, 11 of which correspond to El Paso Border Highway. Detector data was processed and 
organized into a PostgreSQL database, spanning several days during the month of June. Such 
database, along with the corresponding usage instruction and complementary visualization 
software were delivered as product P5. The software includes a tool to plot different data 
components, including traffic volumes and speed. Additionally, a Graphical User Interface (GUI) 
was provided, which can be used to retrieve the data collected by each detector in real time, 
provided that the database is updated accordingly. 

The traffic database is complemented by a real travel time database, constructed utilizing 
the information collected by a vehicle equipped with GPS. The car traveled through a 10 mile 
section of the El Paso Border Highway on which TransVista traffic detectors were deployed. 
Between June 4 and June 29, real travel time data was collected during the morning peak hour 
(6:00–8:00 AM), by completing two or three trips on each direction.  

The GPS device recorded the coordinates of the vehicle every 5–10 seconds, and a C++ 
code was used to process the resulting data. The program read the raw GPS file, and generated 
travel times between roadway sections by subtracting the corresponding time stamps. By 
comparing the coordinates of each of the points retrieved by the GPS to the coordinates of the 
desired reference points on the highway (corresponding to the position of TransVista traffic 
detectors), the code was able to select the appropriate data pairs for the travel time computation. 
Each two-way trip was recorded into the same file, and the program automatically identified the 
point at which the vehicle switched directions. A table reflecting the processed data was 
provided with the deliverables as part of product P5. 

Combined Statistical/Simulation Framework (CTM-based model) 
This model implements a simulation-based framework for the point-to-point freeway 

travel time prediction in the short term (3 to 7 minutes). The proposed methodology relies on 
traffic counts, provided by the simplest types of detectors, as its primary input, which makes it 
widely applicable.  

While most of the research previously conducted in the area use statistical or heuristic 
techniques to predict future travel time as a function of current and historical traffic flows (Chien 
et al., 2003), the present work derives travel time predictions from a calibrated traffic flow model 
fed by forecasted demands. The two-stage travel time prediction process introduced in this 
framework involves the use of a time series model to forecast the inflows into the traffic 
corridor, and of a Cell Transmission Model (CTM) to simulate the flow of these vehicles through 
the network. By doing this, the proposed approach takes advantage of the best characteristics of 
statistical techniques and traffic flow theory relationships. The utilization of a CTM (Daganzo, 
1994, Daganzo, 1995) ensures that queue formation/dissipation, link spillovers, shockwave 
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propagation, and other elements of traffic dynamics are accounted for. Additionally, the 
presented framework is computationally efficient, allowing for online updates of the freeway 
travel time estimates by means of a rolling-horizon approach (Wagner, 1977).  

The model is implemented via computer software, utilizing a program coded in C++, 
which combines an open source statistical analysis tool (R) and simulation algorithm written at 
UT Austin. If users preferred to implement a different software and/or statistical forecasting 
technique, such as Kalman filtering, they may do so, following the suggestions presented in the 
user guide provided along with the software. The same also describes the data input process, 
which encompasses the preparation of network and link data files, and the introduction of 
additional information via a graphical user interface (GUI).  

At each specific location, this model needs to be calibrated, which may be achieved 
utilizing the same software mentioned earlier. The calibration step is used to adjust the value of 
some of the input parameters in order to match the prevailing conditions on the highway segment 
under analysis. Although some authors propose rigorous calibration procedures (Muñoz, 2004), 
the trial-and-error process presented in Figure A21 can be used to find approximate parameter 
values. 
 

 
Figure A21: Flowchart for calibration 

Table A1 describes the parameters contained in the inputs files, which can be adjusted in 
order to improve the model fit, along with reference values, based on Muñoz, 2004.  

Run model with 
estimated values for the 

input parameters

Compare model outputs 
with calibration data 

Adjust 
parameters Desired accuracy?

Calibration 
Completed 

NO

YES



 

118 

Table A1: Parameter Values 
Parameter Description Reference Values 

Nmax 
Jam density. Maximum 
number of vehicles that can 
fit per unit distance. 

150–180 vehic./mile/lane 
0.02936-0.03409 
v/ft/lane 

Qmax 
Maximum flow that can 
move from one cell to the 
other in a time interval 

1500-2000 veh/hour/ln 
0.417-0.555 veh/hour/ln 

w 

Speed of the backward 
moving shockwave. 
Reflects how fast 
congestion travels upstream 

20 fps ~13.6 mph 

f Free flow speed 75-85 mph  
102-124 fps 

 
Two types of calibration data, described below, can be used to adjust model parameters.  
Travel time data: if ACTUAL travel times are known for the desired OD pairs, for a 

sufficient number of minutes during the day (60-120), one can compare such values with the 
travel times predicted by the model. For example, if a probe vehicle departing location A at 9:00 
AM experienced a travel time of 10 minutes to destination B, it should be compared with the 
average travel time predicted by the model for the interval starting at 9:00 AM. Actual travel 
times may be obtained by measuring the travel time experienced by probe vehicles equipped 
with GPS units, or using some type of re-identification algorithm based on video data or AVI.  

Cumulative counts data: The cumulative traffic counts at each sensor can be compared to 
the cumulative counts simulated by the model, which are saved in an output file generated when 
the model is run in Calibration mode. It is important to notice that when traffic volumes are 
relatively high, and the simulation time exceeds one hour (which is advisable), cumulative 
counts may be very large. As a consequence, even small percent differences between real and 
predicted traffic volumes may involve fairly large differences in terms of the actual number of 
vehicles counted at each simulation step, which may in turn affect the travel time prediction 
quality. If only volumes are used for calibration, strict thresholds in terms of model fit should be 
enforced. Additionally, it is recommended to plot the travel time profile for the simulated period, 
and assess its feasibility based on experience and engineering judgment. 

In order to run the model simulating a real-time environment, the sample input files 
provided in the corresponding CD can be used. The model reads the input files as if data were 
provided at a given frequency by sensors, and prediction was necessary to run the model and 
compute travel times. Similar files can be created using new detector data for any given freeway 
segment. However, in order to deploy this model in a real-time environment, it is necessary to 
adjust imperfect sensor data to fit the minimum model requirements (section data requirements) 
and determine when the database should be read and the predictions computed.  

In summary, this model, implemented via computer software, provides the tools to 
deploy a travel time prediction model capable of capturing traffic dynamics, which only demands 
traffic counts as inputs at run time. The preparation of input data and model calibration demands 
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some additional data and work. The later is justifiable given the desirable characteristics of the 
prediction model. Additionally, the simulation model can be used for purposes other than travel 
time prediction, if properly adjusted.  

N Curve Model 

Model Description 
In 1997 Daganzo proposed travel time prediction on a freeway under work zone 

conditions [1]. Daganzo described this approach by modifying input-output diagrams to measure 
the time and distance spent by vehicles in a queue in a simpler manner than using a time-space 
diagram. This process requires the construction of a curve depicting the cumulative number of 
vehicles reaching the back of queue as a function of time, depicted in Figure A22: 

 

 
Figure A22: N-Curve (Input-Output) Based Method [1] 

The previous figure demonstrates the arrival time of each vehicle at an upstream 
observation point is measured, and plotted on the figure as the curve )(tA . By translating the 
arrival time of each vehicle horizontally to the right by the free-flow travel time to the 

bottleneck, ft , the desired (or “virtual”) arrival time of each vehicle at the bottleneck can be 
plotted as the curve )(tV . Finally, the departure curve, defining the time that each vehicle 
departed the bottleneck, can then be constructed in the usual way to serve the virtual arrivals at a 
maximum rate m . For a given vehicle number n , the horizontal separation between )(tV  and 
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)(tD  represents the delay for that vehicle, and is denoted nw ; and the horizontal separation 

between )(tA  and )(tD  represents the total delayed travel time for that vehicle, nqt . 
Using the relationships derived from a space time diagram, the input-output diagram of 

figure above can be modified to include the curve )(tB , the number of vehicles to reach the back 
of the queue by time t , or equivalently, the times that each vehicle reaches the back of the queue. 
Time can be determined for each vehicle joins the back of the queue by “extending” the delay of 
each vehicle, nw . The locus of these points for all vehicles represents the “back of queue” curve, 

)(tB , which can now be constructed on the input-output diagram. Obviously, )(tB  will differ 
from )(tV  only for those vehicles for which )(tV  differs from )(tD ; i.e., whenever a queue is 
present. 

Daganzo’s model development and case study are based on the hind-sight information on 
a closed system of a freeway. The advantages of utilizing the N-Curve model can be summarized 
as follows: 1) it requires less data for training calibrating, needing only traffic flow counts for the 
upstream, downstream, and ramp points, 2) less data also means more robustness and generality 
when implemented, and 3) it can handle more traffic situations than other models while 
generating more accurate results. Nevertheless, this approach assumes a closed highway segment 
without considering on- or off-ramps between the upstream and downstream detectors. In the 
case of an off-ramp existing between the upstream and downstream detector, the highway 
segment loses its conversation of flow and the cumulative curve at the downstream detector can 
not be directly used for travel time prediction without further modifications. In the event that 
both on and off ramps exist in the segment of interest, the situation could become more 
complicated. 

Methodology 
A generalized model development of an N-Curve based method that accounts for general 

freeway configuration, including on and off-ramps, is proposed to estimate and predict travel 
time on a freeway segment.  

 
Definition of Variables: 

iπ : arrival time at detector i 
iN : Cumulative curve for detector i, :{ ,..., }i I m j∀ ∈  
( )i iN π : N-curve marker when arriving at detector i at time iπ  

( ), 1i i iT π+ : travel time between detector i and i+1 when arriving at detector i at time iπ . 
, ( )m j mπΦ : arrival time at detector j when the entire journey starts at detector m at time 

mπ  

By definition, 
1

m,j 1 1 Φ ( ) ( )m j jN Nπ π−
− −⎡ ⎤= ⎣ ⎦ , we can also show (proof omitted here) that 

 
1

m,j 1 1 , 1 Φ ( ) ( ) ( )
j

m j j i i i m
i m

N N Tπ π π π−
− − +

=

⎡ ⎤= = +⎣ ⎦ ∑
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This means that to find the arrival time at detector j, we can find the time-dependent 

travel time for each detector pair within m and j, and sum up these travel time and the arrival 
time at detector m.  

 
Travel Time Estimation without Ramps  
To initiate travel time prediction utilizing the base algorithm, the origin and destination 

points (or detectors) of the traveled path must be defined; in this case the origin detector is 
defined as m while the j is the destination detector. Detector i is defined to be in the set of I, 

where :{ ,..., }I m j . Travel time, , 1( )i i iT π+ , for two sensors for the complete simulation time, 
T}{0,..., π = .  

 
The computations then iterates as follows:  
Step 0: m = i 

Step 1: 
1

, 1 1( ) [ ( )]i i i i i i iT N Nπ π π−
+ += −  

Step 2: 1 , 1( )i i i i iTπ π π+ += +  

Step3: , 1( ) ,  stop if 1  m j m i i jπ π +Φ = + =  
    otherwise 1, go to Step 1i i= +  
 
Refer to Figure A23 for a graphical representation of the base algorithm. 

1N

1+iπiπ

2N 3N
4N

)( 11, ++ iiiT π

iπ1−iπ

1+iπiπ

)( 11, ++ iiiT π

)( 11, ++ iiiT π

 
Figure A23: Mainlane N-Curve Method 

 
Travel Time Estimation with Ramps  
To account for the presence of on- and off-ramps in the prediction corridor of interest, the 

base algorithm requires of a couple of modifications. Clearly, the technique eliminates the 
‘closed system’ found in the without-ramp case, meaning traffic flow conservation is no longer 
true between sensors placed upstream and downstream of the ramp junction. Thus, the detector 
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set I is now expanded to ''' III +=  , which includes the original detectors, :{ ,..., }I m j , and the 
virtual detectors , }'{' KI = . K’ is the downstream virtual detector corresponding to K, where K is 
located upstream of either an on or off-ramp and is an element of I. This results in the creation of 
‘virtual’ detectors i’ for any main-lane detector upstream i of an on- or off-ramp. The N-curve for 
the virtual detector i then becomes: 

 
' "i i iN N N= +  if detector i is the upstream detector for an on-ramp 

' "i i iN N N= −  if detector i is the upstream detector for an off-ramp 
 
Note that this virtual detector is assumed to be at the locations immediately downstream 

adjacent to the ramp. Following the previously defined iterative travel time process, travel times 
are calculated only for sensor pairs with flow conservation, including both actual and virtual 
detectors. As to be discussed in the later statements, the travel time between the detector i and i” 
needs to be estimated. At this moment, we assume that this travel time equals to ε .  

 
Refer to the following two figures (Figures A24 and A25) for a graphical representation 

of the on- and off-ramp algorithm. 
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Figure A24: On-Ramp N-Curve Method 
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Figure A25: Off-Ramp N-Curve Method 

Detector Coverage Analysis 
The data availability, limited somehow by the detector coverage, plays an important role 

on the performance of travel time prediction models. However, most of the existing literature 
regarding traffic sensor deployment was found to focus mainly on identifying optimal location of 
sensors for purposes other than travel time, such as improving Origin-Destination matrix 
estimation (for example, Ehlert et al., 2006, Sherali et al., 2006). Moreover, much of the 
surveyed work intends to select which links of a network should be equipped (Thomas and 
Upchurch 2002, Sisiopiku et al 1994), rather than on identifying detector positions within a link 
that may present grater advantages. The latter has only been studied in an urban context, and 
generally for traffic management purposes, such as actuated traffic signs (Liu et al., 2004). By 
performing a fine-resolution (cell level) analysis of the impact of sensor location on travel time 
prediction accuracy, which is explicitly modeled, the proposed methodology improves upon 
existing techniques.  

For TxDOT project 0-5141, a software tool was developed, based on the CTM-based 
travel time prediction model. The same structure adopted in such software can be used to assess 
the behavior of other models. Furthermore, one may expect some of the results and insights 
obtained from this model to be valid for other prediction methodologies that utilize cumulative 
traffic counts as the basis for their travel time forecasts.  

Given the complexity of the relationship between traffic volumes, actual travel times, and 
predicted travel times, it is not feasible to write a single mathematical expression capturing the 
model performance. The proposed optimization approach enumerates all desirable detector 
deployment patterns, compares simulated versus real travel times, computes error 
measurements, and selects the pattern leading to smaller prediction errors. The developed 
methodology requires the use of an external simulation tool for the following purposes: 
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• Provide “real” travel times under a range of traffic conditions 

• Provide traffic counts for every possible hypothetical location of the detectors 
 

The optimal detector deployment model can be run in two ways: allowing the software to 
generate and evaluate all possible detector deployment patterns, or providing the set of patterns 
to be analyzed as an input. 

While enumerating all possible patterns is a more comprehensive option, it may increase 
the computational work excessively, because the number of possible patterns grows very fast as 
the number of cells increases. A way to reduce the number of patterns to be considered is to 
include a threshold, limiting the minimum separation between detectors. It was observed in the 
simulation experiments that travel time computations based on detectors placed very close 
together could be less accurate than those generated using detectors at least 0.5 miles apart. 
Moreover, deploying detectors closer than a half-mile apart may not be economically feasible. 
Other possibilities for path generation include the use of heuristic procedures, such as genetic 
algorithms, which may be coded separately and linked to the source. The following diagram 
(Figure A26) depicts the optimal detector location process: 

 
Figure A26: Flowchart for optimal detector location 

The output file generated by this software provides, for each analyzed pattern, a number 
of error measurements for every OD pair considered for traffic prediction, as well as a global 
error measurement. The error definitions are included in the corresponding templates. Notice 
that, in virtue of the existence of multiple origins and destinations, it is not always 
straightforward to identify whether one pattern performs better than others. A pattern exhibiting 
a low global error may involve high errors for specific OD pairs. One possible criterion to select 
an optimal pattern is to search for the one which minimizes the maximum error across OD pairs. 
The user may develop and code other criteria into the source code. 

The combination of the detector deployment tool and the previously introduced travel 
time prediction methods gives rise to a powerful integrated simulation and analytical framework, 

Generate one possible detector 
deployment pattern or read it from the 

input file

Compute travel time prediction error 

Are there other possible 
patterns ? 

Analyze Errors and select optimal 
location 

YES

NO
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which can be used to answer questions such as these: how large of a spacing is acceptable under 
what accuracy requirements, and what degree of accuracy can one expect given a level of 
detector coverage? These are of great importance to any district considering developing the 
capability for specifying prediction accuracy requirements, and budgeting capital investment for 
detectors. 
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