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1. Introduction 

The implementation of Intelligent Transportation Systems (ITS) carries a high 
promise of more efficient use of already existing transportation networks. The main 
elements of ITS are Advanced Transportation Management Systems (ATMS) and Advance 
Traveler Information Systes (ATIS). Advance Traffic Management Systems (ATMS) are 
intended to assist operators of the Traffic Management Center (TMC) to manage the traffic 
network, and to provide assistance to travelers in order to reach a particular destination via 
a private vehicle, public transportation, or a combination of the two. ATMS systems rely 
mainly on real time traffic data collection for incident detection and traffic estimation. 

Traffic Management Centers (TMCs) are metropolitan agencies charged with 
managing traffic on highways to enable better and safer driving conditions for motorists. 
Most major U.S. cities house traffic management centers in one location to facilitate 
communications and collaboration between agencies to detect, eliminate, and inform 
motorists about hazardous road conditions. To carry out their tasks, TMC agencies utilize 
several automated and non-automated methods to estimate the conditions on highways. 
Examples of automated methods are Inductive Loop Detectors (ILD), Automated Vehicle 
Identification (AVI), and machine vision (e.g. Autoscope). Examples of non-automated 
methods are Police Patrols (PP), reports from motorists with cellular phones, and Closed-
Circuit TVs (CCTV). 

In the past, the majority of surveillance systems were location based, and measured 
occupancy, flow rate, and average vehicle speeds, describing traffic flow characteristics at 
a fixed point on the highway. The most widely used detector for point-based estimation is 
the inductive loop, which provides speed, volume, and occupancy data. Inductive loops are 
extremely useful in determining traffic conditions at a particular point, but provide no 
direct information on the traffic conditions between successive detectors. More 
sophisticated sensors such as Automated Vehicle Identification (AVI) have the capability 
of measuring densities (usually indirectly) over a section of a road.  

Currently the San Antonio traffic management center, TransGuide, deploys side-by-
side ILD and AVI systems in a study corridor along the I-410. The two systems have 
different levels of performance, based on the percentage of breakdowns, sensor penetration, 
accuracy, and consistency. These two sensor systems are also different in the nature of the 
data they collect. ILDs are capable of estimation of speed, occupancy, and flow for a 
specific point but are not very reliable to estimate travel time. Conversely, the AVI system 
is reliable in measuring travel time of highway links but doesn’t reliably measure point-
based speeds. Currently, the AVI system has a very low level of penetration in San Antonio 
(2 – 5 %) compared to the ILD system (Haynes 2000).  

1.1 Research Motivation 
This study served three main objectives.  First, it analyzes the information flow and 

architecture of traffic management centers in Texas; secondly, it proposes ways to integrate 
the data of the AVI and ILD systems for speed and travel time measurement; and thirdly, it 
develops a simulation model to integrate incident detection sensors. Additional goals of 
this study were to compare the performance of AVI and ILD detector systems in terms of 
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accuracy, reliability, range of use, and net benefits, and to develop guidelines to integrate 
the respective advantages of both systems, while compensating for their weaknesses.  

This study achieved its objectives primarily through analysis of field data, made 
possible through the study corridor installation in San Antonio. Some data from a previous 
study conducted by the same research team was used. Part of the information for this study 
was collected from visits and interviews with TransGuide operators, as well as operators of 
the other major TMCs in the state.  

1.2 Research Structure 
This report is divided into seven chapters. Chapter 1 is an introduction to the repor,t 

while Chapter 2 is a review of the literature and of the background of the research. Chapter 
3 investigates the ITS national and local architecture along with the information flow in 
different Texas Traffic Management Centers as they relate to the objectives of the study. 
Chapter 4 investigates the performance of the point-based and link-based traffic sensors, as 
well as their weaknesses and strengths. Chapter 5 contains analysis of speed and travel 
estimation using ILD and AVI systems and guidelines to integrate their performance. 
Chapter 6 presents a proposed Monte Carlo model that simulates sensors integration for 
incident detection. Chapter 7 summarizes the research results, findings, conclusions, and 
recommendations for future work.  
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2. Background 

2.1 Incident Detection Methodologies 
Typical incident detection systems might include police patrol, motorist reports by 

cellular phone or call boxes, and surveillance cameras. Each of these systems are discussed 
in further detail below.  

2.1.1 Police Patrols (PP) and Motorist Assistance Programs (MAP) 
Until recently, Police Patrol (PP) and Motorist Assistance Programs (MAPs) were the 

most widely used incident detection methods. They provide several advantages over 
“blind” Automated Incident Detection systems. When an incident is detected immediately 
by Police Patrol passing though the incident site, no incident verification is required since 
police officers are trained to provide concise incident information.  The mean time to 
detection by PP depends upon the staffing level, since there is a direct correlation between 
the number of officers available to be dispatched or assigned to cover a specific area and 
the length of time before an incident is detected. Prior research (Tavana 1999) supports the 
fact that at normal staffing levels, Police Patrols do not detect all incidents in a reasonably 
short time.  

2.1.2 Closed Circuit TV (CCTV) 
Surveillance cameras are the main technology relied upon to visually verify incidents 

and determine response action by TMCs. CCTVs like most conventional incident detection 
methods are very reliable and provide incident verification capabilities when incidents are 
detected using AID systems. However, visual detection using surveillance camera systems 
is labor intensive and inefficient. The detection resources are often wasted because of the 
lack of the advanced data processing technologies and integration with other approaches. 
Practically, the number of false alarms generated from CCTV systems is minimal and 
occur only during extreme weather conditions (i.e., snow, fog, and rain). 

2.1.3 Automated Incident Detection 
Conventional Police Patrol and motorists’ reports via cellular phones are still the 

primary traffic management approaches utilizez; however, many large North America 
cities are seeking alternative approaches using Automated Incident Detection (AID) 
systems to relief congestion on highways.  

The AID systems collect traffic data from highways by utilizing electronic sensors, 
such as ILD and AVI, and process the data sets using online algorithms. Traffic incidents 
cause differences in highway occupancy and speed in the areas upstream and downstream 
of the incident. A number of ILD algorithms have been developed to implement incident 
detection. These include the comparative algorithms (California logic), time-series 
algorithms, and the catastrophe theory algorithms (McMaster). These algorithms operate on 
typical detector outputs of occupancy, volume, and average speed data (Zhou 2000).  
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2.2 Comparison of Traffic Detection Technologies 
Klein et al. (1996) conducted a comprehensive field test on the accuracy of the 

emerging traffic detection technologies in different locations between 1993 and 1994. 
Table 2.1 summarizes the quantitative advantages and disadvantages of these technologies 
and other options (Klein 2001).  

Although some of the technologies included in Table 2.1 perform satisfactorily, only 
AVI and ILD systems were considered in this study. 
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Table 2.1    Strength and Weakness of Commercially Available Sensor Technologies 

 

Technology Strengths Weaknesses
* Flexible design to satisfy large 
variety of applications 

* Installation requires pavement cut

* Mature, well-understood technology * Decreases pavement life

* Large experience base * Installation and maintenance require lane 
closure 

* Provides basic traffic parameters 
(e.g. volume, presence, occupancy, 
speed, headway, and gap)

* Wire loops subject to stresses of traffic and 
temperature

* High-frequency excitation models 
provide classification data

* Multiple detectors usually required to 
monitor a location
* Accuracy may decrease when design 
requires a large variety of vehicle classes

* Less susceptible than loops to 
stresses of traffic

* Installation requires pavement cut

* Some models transmit data over 
wireless Radio Frequency (RF)  link

* Decreases pavement life

* Installation and maintenance require lane 
closure 
* Models with small detection zones require 
multiple units for full lane detection

* Can be used where loops are not 
feasible (e.g., bridge decks)

* Installation requires pavement cut or tunnel 
underway roadway

* Some models installed under 
roadway without need for pavement  
cuts

* Cannot detect stopped vehicles unless 
special sensor layouts and signal processing 
software are used

* Less susceptible than loops to 
stresses of traffic
* Typically insensitive to inclement 
weather at the relatively short ranges 
encountered in traffic management 
applications

*CW Doppler sensors cannot detect stopped 
vehicles

* Direct measurement of speed
* Multiple lane operation available
* Transmits multiple beams for 
accuracy measurement of vehicle 
position, speed, and class

* Operation may be affected by fog when 
visibility is ?  20ft (6 m) or blowing snow is 
present

* Multiple lane operation available

Magnetometer 
(two-axis 
fluxgate 
magnetometer)

Magnetic 
(induction or 
search coil 
magnetometer)

Microwave 
Radar

Inductive Loop

Active Infrared



2.  BACKGROUND 

 6

Table 2.1    Strength and Weakness of Commercially Available Sensor Technologies 
(Continued) 

 

Technology Strengths Weaknesses
* Multizone passive sensors measure 
speed

* Passive sensor may have reduced sensitivity 
to vehicles in heavy rain and snow and dense 
fog
* Some models not recommended for 
presence detection

* Multiple lane operation available * Environmental conditions such as 
temperature change and extreme air 
turbulence can affect performance; 
temperature compensation is built into some 
models

* Capable of overheight vehicle 
detection

* Large pulse repetition periods may degrade 
occupancy measurement on freeways with 
vehicles traveling at moderate to high speeds

* Large Japanese experience base
* Passive detection * Cold temperatures may affect vehicle count

* Insensitive to precipitation * Specific models are not recommended with 
slow-moving vehicles in stop-and-go traffic

* Multiple lane operation available 

* Monitors multiple lanes and multiple 
detection zones/lane

* Inclement weather such as fog, rain, and 
snow; vehicle shadows; vehicle projection 
into adjacent lanes; occlusion; day-to-night 
transition; vehicle/road contrast; and water, 
salt grime, icicles, and cobwebs on camera 
lens can affect performance

* Rich array of data available * Requires 50 to 60 ft (15 to 18 m) camera 
mounting height (in a side-mounting 
configuration) for optimum presence 
detection and speed measurement

* Provides wide-area detection when 
information gathered at one camera 
location can be linked to another

* Some models susceptible to camera motion 
caused by strong winds

* Generally cost-effective only if many 
detection zones within the field view of the 
camera or specialized data are required

Video Image 
Processing

Passive Infrared

Ultrasonic

Acoustic
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3. National and Local ITS Information Flow Architecture 

The National ITS architecture provides a common framework for planning, defining, 
and integrating intelligent transportation systems. It is a product that reflects the 
contribution of a broad cross-section of the ITS community (transportation practitioners, 
systems engineers, system developers, technology specialists, consultants, etc). The 
architecture defines: 1) functions that are required for ITS, 2) physical entities or 
subsystems where these functions reside, and 3) information flow and data flows that 
connect these functions and physical subsystems together into an integrated system 
(USDOT & Odetics 1996). 

The architecture consists of four major physical subsystems: 1) traffic management, 
2) roadside equipment, 3) vehicles (passenger cars and commercial vehicles), and 4) 
traveling population. Figure 3.1 shows the different physical components of the National 
ITS Architecture. This research focuses only on parts of the first and second subsystems. 
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Figure 3.1    The National ITS Architecture Physical Subsystems (USDOT & Odetics 1996) 

3.1  Roadway Subsystems 
Roadway subsystems consist of all equipment distributed on and along the roadway 

which monitors and controls traffic. Equipment includes highway advisory radios, dynamic 
message signs, cellular call boxes, CCTV cameras and video image processing systems for 
incident detection and verification, vehicle detectors, traffic signals, grade crossing 
warning systems, and freeway ramp metering systems. This subsystem also provides the 
capability for emissions and environmental condition monitoring including weather 
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sensors, pavement icing sensors, and fog detectors. In advanced implementations, this 
subsystem supports automated vehicle safety systems by safely controlling access to and 
exit from an Automated Highway System (AHS) through monitoring of and 
communications with AHS vehicles. The four primary traffic parameters used in ATIS 
applications are travel time, speed, volume, and percent of occupancy. These parameters 
are affected by:  

 
1. Nature (types of data collected) 
2. Accuracy 
3. Confidence 
4. Delay (time elapses before data collect is made available) 
5. Availability 
6. Breadth of Coverage 
7. Depth of Coverage (sensor spacing).  

3.2 Traffic Management Subsystems 
The Traffic Management Subsystem operates within a traffic management center or 

other fixed location. This subsystem communicates with the Roadway Subsystem to 
monitor and manage traffic flow. Incidents are detected and verified and incident 
information is provided to the Emergency Management Subsystem, travelers (through 
Roadway Subsystem Highway Advisory Radio and Dynamic Message Signs), and to third 
party providers. The subsystem supports High Occupancy Vehicles (HOV) lane 
management and coordination, road pricing, and other demand management policies that 
can alleviate congestion and influence mode selection. The subsystem monitors and 
manages maintenance work and disseminates maintenance work schedules and road 
closures. It also manages reversible lane facilities, and processes probe vehicle information 
and communicate with other Traffic Management Subsystems to coordinate traffic 
information and control strategies in neighboring jurisdictions. In addition, it coordinates 
with rail operations to support safer and more efficient highway traffic management at 
highway-rail intersections. The Traffic Management Subsystem also provides the 
capabilities to exercise control over those devices utilized for AHS traffic and vehicle 
control. 

Most major U.S. cities have a Traffic Management Center (TMC) that houses 
personnel, equipment, and computer systems that communicate to highway devices and 
sources to estimate and control traffic conditions. Collecting data and information from the 
highway follows a systematic procedure that differs from one TMC to another. The 
information flow setup varies between TMCs based on 1) size of highway system covered, 
2) number and diversity of traffic sensors and sources, 3) level of staffing, 4) level of 
automation in the TMC, and 5) quality of services to travelers.  The project team visited 
San Antonio’s TransGuide, Houston’s TranStar, and Fort Worth’s TransVision to analyze 
the different information flows of Texas TMCs for the purpose of ultimately determining 
the potential application and the most appropriate methods for combining point and link 
data.  

Information flow provided by a TMC is documented to provide up to four services. 
These include incident detection, travel time and average speed, lane closure and 
construction, and special events. 
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3.2.1 TransGuide TMC 
TransGuide is San Antonio’s Traffic Management Center designed by the Texas 

Department of Transportation (TxDOT). This "smart highway" project provides 
information to motorists about traffic conditions, such as accidents, congestion, and 
construction. The TMC collects information about traffic situations on highways from 
several sources (Inductive Loop Detectors, Automatic Vehicle Identification, Closed-
Circuit TV, Police Patrols, etc). The TMC operators utilize the collected information to 
make informed decisions and take systematic steps to expedite incident management and 
minimize undesirable situations on highways. 

Inductive loop detection is a mature sensing technology that most Traffic 
Management Centers use to collect traffic speed. TransGuide maintains two thousand ILDs 
distributed an average of a half a mile interval throughout the San Antonio highway 
network. According to its operators, an estimated fifteen percent break down rate is 
experienced for the whole network annually, while there are some ILD sites that have not 
required any maintenance over the last six years. TransGuide recently conducted several 
experiments to evaluate the merits of acoustic sensors for traffic speed estimation. The 
majority of the acoustic sensors evaluated, which are mounted over I-410 and I-10 
highways, were not functional due to thunder. 

The second important source of traffic data in TransGuide is the Automated Vehicle 
Identification (AVI) technology. The cost of installing one AVI station ranges from 
$48,000 to $49,000 based on the number of monitored lanes and type of equipment. Only 
forty out of the total fifty-three AVI stations originally installed are functional. In the last 
two years, overloaded vehicles hitting AVI stations have rendered a high number of AVI 
stations non-functional (60–65 %). TransGuide operators see the maintenance cost of AVI 
stations as high (approximately $12,000 per month for all stations). This high maintenance 
cost has motivated some TMC managers to search for better alternatives. Consultations 
between the TMC and the City of San Antonio have called for expansion of the ILD 
network rather than future AVI system expansion.  

Traffic data collected by different sensors are transferred to the TMC building 
through fiber optics phone lines. Data collected from ILD systems are processed using the 
Texas Algorithm, which fires an alarm when traffic speed reaches a value lower than 25 
miles per hour (mph). The TransGuide operators estimated that the Texas Algorithm 
produces from 200 to 215 false alarms a day (30–35% FAR). Currently, San Antonio 
witnesses 140 to 150 incidents a day in normal conditions and 400-500 incidents on rainy 
days. TransGuide deploys several Variable Message Signs (VMS) to communicate an 
incident occurrence to travelers.  
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3.2.2 TranStar TMC 
TranStar is Houston’s Traffic Management Center. It consists of several traffic 

agencies responsible for planning, designing, operating and maintaining transportation 
operation and traffic emergency management in the Houston metropolitan area, which is 
5,436 square miles with a population of approximately four million. The center costs 
approximately $13.5 million to construct and contains a central control room, 
communication room, telephone switch room, and an emergency operation center along 
with three floors of offices for participating agencies. 

TranStar utilizes groups of sensors distributed on Houston highways for traffic 
management. Currently, 270 CCTV cameras positioned approximately one mile apart and 
153 AVI stations are used to cover 225 miles of highway. The AVI system began with the 
distribution of 50,000 anonymous tags. This number significantly increased to almost half a 
million tags with the advent of the Harris County Toll facility. The monthly cost for 
maintaining the AVI system in TranStar is estimated by its operators to be around $20,000. 
Data collected from the AVI system is transferred to the center through cable line, then 
processed using software that assigns different colors to different speeds on the operator’s 
screens (Green represents “Average speed”, Yellow represents “Below average”, Red 
represents “Very slow speed”, and Grey represents “No data gathered”). Since the 
algorithm does not generate incident alarms automatically, operators are required to 
continuously monitor the system. However, AID (automated incident detection) would 
always be challenging in Houston given the random spatial and temporal variation in traffic 
flow normally experienced, and the TransStar floor environment, which rivals a major 
stock exchange in terms of the complexity of information flow and human interaction.  
Certainly AID use in the past resulted in excessive false alarms because of the nature of the 
algorithms used. 

A few vivid detectors were installed along three highways (I-288, Loop 610, and I-
225) for speed estimation. The vivid detectors proved non-functional for that purpose. 
These are currently being used for ramp metering purposes only. Operators are optimistic 
that the vivid detector system might hold some promise to replace the ILD system if 
carefully tuned. 

TranStar deployed a large number of ILD detectors (up to 800 stations), however, 
excessive maintenance costs render these sensors impractical in Houston’s traffic 
conditions.  Accessibility and user costs at $15.59 per user hour make the cost of replacing 
a malfunctioning sensor prohibitive.  Additionally, maintenance funds have been sparse or 
non-existent for this purpose.  While the high probability of failure renders the system 
imperfect for speed estimation, it is currently utilized for ramp metering. 

Part of the TranStar mission is to help stranded motorists. For this purpose, the 
Motorist Assistant Program (MAP) was initiated to provide basic automotive emergency 
aid, i.e., for overheating, flat tires, and start jumps. The TMC receives approximately 200 
daily calls and services approximately 3,600 stranded motorists a month. Additionally, 
TranStar deploys several weather monitoring sensors that are installed in different part of 
the city to collect information about bridge icing, floods, and other hazardous weather 
conditions that hinder the safety of motorists on highways. To improve traffic flow, 
TxDOT assigned 87 miles of High Occupancy Vehicle (HOV) lanes to encourage group 
ridership of passenger cars and buses. Cars with between 2 or more or 3 or more 
passengers are allowed to use HOV lanes depending on the time of the day. Furthermore, 
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TxDOT deploys several Variable Message Signs (VMS) to communicate information to 
travelers. Since 1989, the MAP has helped more than 100,000 stranded motorists. The 
MAP program is a joint effort of the following agencies: 

 
• Metropolitan Transit Authority of Harris County 
• Texas Department of Transportation 
• Harris County Sheriff’s Department 
• Houston Automobile Dealers Association, and 
• A Houston Cellular Phone Company. 

 
Site visits and interviews with operators have enabled the research team to model the 

flow of information and the TMC system architecture. Figures 3.5 to 3.8 depict a schematic 
representation of the information flow and architecture in TranStar, for the purposes of 
incident detection, lane closure, speed estimation, and special events planning.  
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3.2.3 TransVision TMC 
TransVision, which started operation in 1986 to improve traffic management in the 

Fort Worth area, is Fort Worth’s Traffic Management Center. The $8.4 million 
TransVision center has 29,622 square feet of space. The system has inductive loop 
detectors that are distributed half a mile apart and, in some instances, the density is greater. 
Following a system analysis focused on the high maintenance costs of loops by the center’s 
engineers, a recommendation was made to exchange the loop system with microwave 
sensors.  

Unlike the TransGuide and TranStar TMCs which were primarily designed with the 
aid of outside professional consultants, the TMC engineers designed the TransVision TMC 
in-house. Currently, the system does not provide or support AVI services.  This may 
change as plans for future toll systems may include AVI services.  It must be noted that one 
of the main reasons for not currently implementing a toll system is the nature of the Fort 
Worth-Dallas Metropolitan area, which consists of small-dispersed cities. 

ILDs are mainly used for ramp metering (i.e, entrance ramps) in TransVision. Several 
sources of information are used to gather information about traffic on Fort Worth’s  
highways. These include: 

 
• Four police patrols covering approximately 300,000 miles annually 
• Two helicopters owned by local TV stations 
• Sixty-six video cameras, and 
• One thousand four hundred and ninety-five traffic sensors. 

 
The following components of the system facilitate the flow of traffic and 

communicate information to travelers: 
 

• Fifty variable message signs (VMS) 
• Two hundred twenty-nine Lane Control Signals (LCS) 
• Six satellite buildings 
• Five flow signals, and  
• Two kiosks. 

 
The information flow architecture at TransVision TMC is characterized by the fact 

that no sensors are deployed to collect travel time or speed. Figures 3.9, 3.10, and 3.11 
illustrate the information flow architecture for TransVision. 
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4. Link-Based and Point-Based Traffic Sensor Characteristics and 
Performance 

ITS is structured to provide real-time traveler information regarding expected delays, 
potential bottlenecks and other information that could help users to make informed 
decisions to avoid congested highway sections. Advanced Traveler Information Systems 
(ATIS) and Advanced Transportation Management Systems (ATMS) are the two major 
systems upon which ITS is based.  

Speed and the travel time of a highway are the most important information that 
affects the commute decision of motorists. Informed motorists are able to make wise 
decisions regarding trip departure times and alternative routes to avoid delays. Travel time 
has typically been estimated in the past using probe vehicles. The last decade witnessed a 
significant increase in using Automated Vehicle Identification (AVI) technology for travel 
time estimation.  This increase is stimulated by the advent of the automated highway toll 
system.   

This chapter summarizes the research conducted to estimate travel time by fusing 
link-based and point-based speed information gathered from different sensors.  On-line 
AVI and ILD data were extracted from the archives of San Antonio’s TransGuide TMC for 
analysis. The highway speed is estimated based on the fundamental speed-flow-density 
relationship and fusion theories. 

Several studies investigated the relationship between average vehicle speed, flow, and 
density. In 1965, Edie proposed a generalized definition for computing average speed, 
density, and flow. While the original effort is based on data from link-based sensors, 
Cassidy and Coifman (1997) extended Edie’s definitions to loop data. 

4.1 Study Area 
San Antonio’s TransGuide collects traffic data from installed side-by-side ILD and 

AVI systems.  The study corridor under consideration is illustrated in Figure 4.1.  
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Figure 4.1    San Antonio Study Corridor 

There are 52 reader sites monitoring 193 lanes throughout the metropolitan region 
(Haynes 2000).  The Texas Department of Transportation initially distributed about 58,000 
tags to San Antonio drivers. This resulted in about a 2% penetration rate during the study 
period. For this research, three ILDs were selected which are located on the northbound 
lanes of I-35 between AVI 144 and AVI 145.  In this link three ILDs, L-0035N-164.412, L-
0035N-164.909, and L-0035N-165.409, measured spot speed.  Figure 4.2 illustrates the 
Corridor Specific Study Link.   

TransGuide provides traffic data of ILD and AVI via their anonymous FTP site 
(www.transguide.dot.state.tx.us).  TransGuide was identified in the fall of 1996 as one of 
four traffic management centers taking part in the ITS Model Deployment Initiative (MDI).  
The goal of this ITS MDI is to showcase various ITS technologies for the Federal Highway 
Administration (FHWA).  The daily files are observed individually and converted to Excel 
spreadsheets. 

The study corridor considered is a ten-mile stretch of Interstate 35 north of downtown 
San Antonio between New Braunfels Avenue and Randolph Boulevard.  The Corridor 
Specific Study Link contains three ILDs and two AVI stations located in the northbound 
direction as shown in Figure 3.1.  In this link, all the three lanes were monitored by ILD, 
while only the inner two lanes were monitored by the AVI. 
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Figure 4.2    Corridor Specific Study Link 

 

4.2 Inductive Loop Technology 
Since its introduction in the early 1960s, the inductive loop detector has become the 

most popular detection system for traffic state sensing. The principle components of an 
inductive loop detector system include one or more turns of insulated loop wire wound in a 
shallow slot installed in the pavement, a lead-in cable from the curbside pull box to an 
intersection controller cabinet, and a detector electronics unit housed in the intersection 
controller cabinet.  Loops used for freeway operate on a pulse mode where a pulse is sent 
every 100 or 150 milliseconds if a vehicle has been detected (Dudek, C. L. 1996). 
Although inductive loops are still the most widely deployed and still often considered the 
most reliable transportation sensor system, over 25% of all inductive loops are 
malfunctioning at any given time.  In the early 1980’s, FHWA began to explore ways of 
reducing the malfunction rate of traffic sensors and particularly of loops (Gibson, D. et al. 
1998).  

4.3 Automatic Vehicle Identification (AVI) Technology 
Vehicles equipped with Automatic Vehicle Identification (AVI) transponders can be 

used to determine travel times between fixed points as the vehicles move along a roadway 
network. AVI tags have been deployed for electronic toll collection. As electronic toll 
collection continues to increase, the numbers of tag-equipped vehicles will increase  
providing travel time measurement as an auxiliary benefit. With this capability, real-time 
traffic data such as origin-destination pairs, travel time, and spot speeds can be collected 
from the vehicle while the driver obtains motorist information such as congestion delays, 
parking availability, and alternative route choices. There are a number of research projects 
being conducted in the area of commercial vehicle operations that anticipate the use of 
Automated Vehicle Identification (AVI),  Automated Vehicle Location (AVL), and 
Automated Vehicle Classification (AVC) for fleet operations and regulatory uses. 
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Obtaining the necessary number of observations can be challenging if few probe 
vehicles traverse the corridor. The AVI penetration of San Antonio’s I-35 route is currently 
approximately 2%. ILD penetration is hypothetically 100% when all lanes are equipped, 
however, the point data produced is limited by its nature as it is an instantaneous measure. 

4.4 Data Fusion Concepts for ITS 
Gold, et al. (1996) defined data fusion as “having to do with combination of 

complementary and sometimes competing sensor data into a reliable estimate of the 
environment to achieve a ‘whole that is greater than the sum of its parts’.”  According to 
Linn and Hall’s 1991 taxonomy of data fusion algorithms, five goal-oriented general data 
fusion methods are in use today (data association, positional estimation, identify fusion, 
pattern recognition, and artificial intelligence, Linn & Hall 1991). 

The value of fusing or integrating points and link data is to complement the sources 
of information about the traffic state. 
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5. Travel Time and Traffic Speed Estimation 

The objective of this chapter is to analyze and propose ways to estimate travel time 
and average speed by integrating link-based speed and point-based speed information from 
ILD and AVI, respectively. On-line data from ILD and AVI were collected from San 
Antonio’s TransGuide from the study corridor described in the previous chapter. The data 
is filtered, checked for errors, and processed to be in a format suitable for analysis. Average 
highway speed and travel time are estimated from each individual sensor. Comparisons are 
made between the travel time estimates from the two sensors. Finally, the Bayesian 
updating procedures were used and proposed for estimating the average travel time and 
space mean speed based on raw estimates from each sensor.    

5.1 Background 
Several works have studied and discussed the relationship between average vehicle 

speed, flow, and density.  Edie’s (1965) generalized definitions for computing the average 
speed, density, and flow are regarded as the original and classic definitions as illustrated in 
Figure 5.1. These definitions are then applied to the AVI data set. 

 

 

Figure 5.1    Proof of Edie’s Relationship 

 
Eisele and Rilette (2002) confirm that the most direct method to obtain the average 

and standard deviation of the travel time for a corridor link is by using vehicle probes that 
traverse the corridor link. Their study also concluded that if the link travel time is thirty 
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minutes or more, by the time the necessary observations are made, the traffic situation 
might change making the variance estimates and the corresponding confidence interval 
inaccurate.  Eisele and Rilette (2002) suggested that the simplest method to obtain an 
estimate of the mean corridor travel time and variance is by adding the corridor links mean 
travel time. 

Keechoo Choi et al.(1998) researched ‘Travel Time Estimation Algorithms Using 
Global Positioning Systems (GPS) Probe and Loop Detector Data Fusion’.  This work 
focused on the development of a traffic information fusion algorithm based on the voting 
technique, fuzzy regression, and Bayesian pooling technique for estimating dynamic link 
travel time in the congested network. GPS probes and loop detector data were collected 
over a selected study area.  

Woods (1994) studied information source adequacy for traffic management strategies 
purposes and demonstrated that speed measurements from inductive loops were reasonably 
accurate at trap lengths of 20 to 78 feet.  This study showed that there is an increase in the 
probability that vehicles will begin a lane change in a trap as its length increases and thus 
miss one of the detectors providing an erroneous speed value.  Therefore the optimal speed 
trap for ILDs is estimated to be 30 feet (Woods 1994). 

5.2  Data Collection and Preliminary Analysis 
After downloading AVI and ILD data sets from the study corridor described earlier, 

the data sets were uncompressed and sorted by detector station to retain only the data 
associated with the link of interest.  Different computer programs were developed to 
process the AVI and ILD data. A C++ program was developed to sort detector stations of 
interest during the entire day; and a Visual Basic program ( Haynes 2000) was used to filter 
AVI match data for specified AVI stations. The programs utilized archived files from the 
TransGuide system to produce a standard spreadsheet for further analysis. 

5.2.1 AVI Data 
This section describes the format of the traffic data obtained from AVI sources.  For 

the purposes of data fusion, the non-peak period (12:00 noon to 1:00 p.m.) and the evening 
peak period (5:00 p.m. to 6:00 p.m.) will be considered. Each AVI tag data contains station 
identification, tag identifier, and the date and time of day when the read was recorded.  
Direction information, however, is not recorded. The unique tag identifier should be 
consistent over a period of time so that tag reads at successive detector stations can be 
matched and link travel times can be generated. For security reasons, tag identifiers are 
scrambled with the UNIX crypt function using the date as the seed value. This plays a role 
in preventing any users of the data from tracking the anonymously assigned tags from day 
to day. Table 5.1 presents a sample of the AVI data. 
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Table 5.1    Raw San Antonio AVI Data 

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

137 5CU1a4iKk7k9L7RJM4hdo.e8.A/UDe2/ 00:00.9 3/18/2002 2D-04 0

141 ktQpmnGmMSUHcW.FBNz.vgZnMtIcX 00:06.9 3/18/2002 32-06 0

143 UbT3831Jm2.FnkfaFIvR52e8.A/UDe2/. 01:44.9 3/18/2002 17-OB 1

144 Wj191bjc9ZwGzm1JI0l.a6ZBGK7pFpd 57:26.4 3/18/2002 1A-11 1

142 efQpUCJb3IoFHhb/wy8SlEb5sDyqTC6 59:56.9 3/18/2002 15-01 0

144 rUDUMNCIvrEGefqdLvrh8oZnMtIcX06b 59:12.0 3/18/2002 1A-1D 1

147 1Hs2OE0fuCM1D9gIUP4lf.eClmuYPjp 54:01.9 3/18/2002 22-04 0

147 1Hs2OE0fuCM1D9gIUP4lf.eClmuYPjp 54:01.9 3/18/2002 22-04 0  
 

The first column in Table 5.1 represents the station identification and the second 
column represents the scrambled tag identifier. For the purposes of this research, the station 
identifiers are reduced by one hundred  (e.g. site 147 will be referred to as simply 47).  In 
Columns 3 and 4, the time and date are recorded.  The fifth column represents the strength 
of the read in a hexadecimal and Column 6 represents the lane of travel. The travel time 
computations require that the individual clocks of the AVI sites be synchronized with the 
system clock (Haynes 2000).  

5.2.2 Inductive Loop Data 
This section describes the format of the traffic data obtained from ILD sources.  For 

the purposes of data fusion, the same periods are considered as were used for the AVI data. 
Loop detector stations monitor all lanes of traffic and the detectors have been paired on 
main lanes of travel to produce vehicle speed in addition to average volumes and 
occupancies. TransGuide provided the data in a format similar to the AVI data.  ILDs 
record the pulses of individual vehicles while the data is aggregated over a specified time 
window.  Average speed in 20-sec time intervals are computed in the field and transmitted 
to TransGuide. Loop sites do not report at exactly the same time; however, a rolling 
average is maintained within each site. TransGuide has the capability of querying the 
system about the state of the loop detectors. After thoroughly processing the loop data, two 
distinct types of errors were identified (time and data errors).  It should be noted that it is 
not within the scope of this research to investigate the root causes of loop malfunctions and 
of errors in the data.  Errors were corrected before the data was used for analysis. Table 5.2 
presents a sample of the loop data. Each record consists of six fields: date, time, location of 
loop, speed, volume, and occupancy, respectively.  The location of the loop is further 
detailed as follows: 1) the first part represents the lane designation (The character 
differentiates between detectors on a freeway lane (L), an entrance ramp (EN), or an exit 
ramp (EX).  The integer corresponds to the number of the lane with lane one being the 
furthest inside and with the number increasing as we move towards the outside of the 
freeway.  You might note that the main lane considered for this research is indicated by 
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“L”); 2) the following characters represent the highway designation and the third and final 
part of the detector address field corresponds to the highway milepost.   

Consider the first entry in Table 5.2 as an example.  The detector is monitoring travel 
lane 1 located at milepost 26.515 going west on Highway 410. The speed for all ramp 
monitoring detectors is set at –1. 

Table 5.2    Sample of InductiveLoop Data 

 

5.2.3 Data Quality 
AVI data has two main types of errors which are include entry duplication and 

direction reporting.  Duplicate entries are defined as entries with similar date, time, tag 
identifier, and location (Khoury 2000). The AVI data was processed to remove duplicate 
entries before being fused with ILD data.  

It is important to re-emphasize that the loop detectors monitor all lanes of traffic 
while the AVI readers only monitor the inner two lanes in the analysis section. The average 
market penetration is estimated to be 2% (Haynes 2000).  With the low level of AVI 
market penetration experienced, losing the directional flow of tagged vehicles further 
reduces the size of the data sample that can be used with the detection algorithms.  

5.3 AVI-Based Average Speed 
Edie (1965) defined average speed, density and flow in time and space as illustrated 

in Figure 5.1. The Visual Basic Program referred to earlier was used to match AVI tag 
reads (Haynes 2000). During each time window, every match is confirmed if it is within 
the study corridor.  The sum of the individual travel times and distances traveled by all 
vehicles on the link are computed.  If a vehicle traverses past the end of the link, it is 
tagged out of the link and only the portion traveled on the link during the current time 
window is considered.  Likewise, if a vehicle is still on the link at the conclusion of a time 
window, the location is stored and the vehicle will resume for the stored location for the 
next time window.  The flow, volume and density computations were tested to guarantee 
proper calculation according to the definitions defined by Edie (1965).  The average speed 
in a Region A is measured by using the following equation (5.1). 

 

D a t e T im e L a n e  S t a t io n S p e e d V o lu m e O c c u p a n c y

3 /1 8 /2 0 0 2 0 :0 7 :1 7 L 1 - 0 4 1 0 W - 0 2 6 .5 1 5 S p e e d  =  7 1 V o l= 0 0 2 O c c = 0 0 2
3 /1 8 /2 0 0 2 0 :0 7 :1 7 L 2 - 0 4 1 0 E - 0 2 6 .5 1 5 S p e e d  =  6 1 V o l= 0 0 0 O c c = 0 0 0
3 /1 8 /2 0 0 2 0 :0 7 :1 7 L 2 - 0 4 1 0 W - 0 2 6 .5 1 5 S p e e d  =  6 8 V o l= 0 0 2 O c c = 0 0 2
3 /1 8 /2 0 0 2 0 :0 7 :1 7 L 3 - 0 4 1 0 E - 0 2 6 .5 1 5 S p e e d  =  6 6 V o l= 0 0 1 O c c = 0 0 1
3 /1 8 /2 0 0 2 0 :0 7 :2 4 E N 1 - 0 0 3 5 S - 1 6 0 .1 7 8 S p e e d  =  - 1 V o l= 0 0 2 O c c = 0 0 0
3 /1 8 /2 0 0 2 0 :0 7 :2 4 L 1 - 0 0 3 5 N - 1 6 0 .8 9 2 S p e e d  =  6 1 V o l= 0 0 0 O c c = 0 0 2
3 /1 8 /2 0 0 2 0 :0 7 :2 4 L 2 - 0 0 3 5 N - 1 6 0 - 8 9 2 S p e e d  =  5 7 V o l= 0 0 2 O c c = 0 0 2
3 /1 8 /2 0 0 2 0 :0 7 :2 4 L 2 - 0 0 3 5 S - 1 6 0 - 8 9 2 S p e e d  =  6 1 V o l= 0 0 0 O c c = 0 0 0
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Where: 

∑
=

n

j
jx

1
represents the total distance traveled by all trajectories in Region A 

∑
=

n

j
jt

1
represents the total time spent by all trajectories in Region A. 
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Figure 5.2    Space Diagram with n Trajectories 

tj = time a trajectory traveled with in Region A. 

xj = distance a trajectory traveled within Region A. 

T = period of measurement  

X = distance between two AVI stations. 

 
This rectangular region in space and time includes n vehicle trajectories and each jth 

trajectory spends time tj   while traveling a distance xj.   For a spatial AVI system, accurate 
distance between AVI was given and individual travel time must be known to capture 
vehicles’ speeds.  As shown in Equations 5.2 and 5.3, the travel time of the vehicle on the 
given link is measured based on the real time AVI data. 

 

dniupii TTTT ,, −=   (Eq. 5.2) 

Where: 

iTT = travel time of vehicle I 

upiT , = time vehicle i passes the upstream detector 

dniT , = time vehicle i passes the downstream detector 

Speed is likewise computed as: 

i

j
i TT

L
U =   (Eq. 5.3) 

X 

(1) 

(n) 
(2) 

(3) 
(4) xj 

tj  
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iU = speed of vehicle i 

jL =length of link j 
  

It is important to emphasize that the implementation described here is limited to real-
time data only; and could not be replaced by historical data. For this reason, strict 
measurements have been followed to estimate traffic parameters.  

Figure 5.3 outlines the AVI implementation procedure in a form of a theoretical time-
space diagram. The dotted lines represent the vehicle trajectories.  Each vehicle speed 
trajectory is calculated by matching upstream and downstream AVI tag reads (Haynes 
2000). Using a five-minute average moving window provides better results due to the low 
penetration of the AVI system. The number of AVI tagged vehicles in the study corridor 
during peak hours is found to be significantly higher than during non-peak hours.    

 
 

Time (second)

D
is

ta
nc

e

Upstream
AVI

Station

Space Diagram

300     600     900 1200 1500 1800

2

1

Portion A Portion B
Downstream
AVI Station

 

 
Figure 5.3    Proposed AVI Time-Space Diagram 

To reliably estimate the average speed based on the AVI system; it is important to 
consider the contribution of all AVI tagged vehicles including the vehicles that did not enter 
and exit the link within the five minutes moving window as illustrated by Portions A and B 
in Figure 5.3. After defining and implementing Edie’s traffic state definitions, it is important 
to ensure that the definitions are properly applied.   

5.4 ILD-based Average Speed 
The ILD average speed is calculated using multiple moving average windows: 1 

minute, 3 minutes, 5 minutes, and 7 minutes. Figure 5.4 illustrates four-trend lines that 
represent the link average speed during off-peak hours. The standard deviation of the speed 
is found to be smaller when the average speed is calculated using larger time windows. The 
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results of the off-peak hours are shown in Figures 5.4 and 5.5 while the results of peak hours 
are shown in Figures 5.6 and 5.7. Typically, congestion developed on highways during peak 
hours causes the frequent stop-and-go phenomena. Hence, the average speed during peak 
hours is expected to be lower than that during off-peak hours. It could be noticed from 
Figures 5.4, 5.5, 5.6, and 5.7 that the speed fluctuates less when increasing the moving 
average window regardless of the time of day. 
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Figure 5.4    Average Speeds at ILD Station 149.412, Off-Peak Hour 
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Figure 5.5    The Standard Deviation of ILD Station 149.412, Off-Peak Hour 
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Figure 5.6    Average Speeds at ILD Station 149.412, Peak Hour 
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Figure 5.7    The Standard Deviation of ILD Station 149.412, Peak Hour 
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5.5 AVI-Based and ILD-Based Speed Comparison 
 Unlike the ILD sensors which are installed on all traffic lanes in the study corridor, 

the AVI stations are deployed to monitor only the inner two traffic lanes. Figures 5.8 and 
5.9 compare the AVI and ILD systems’ speed measurements.  Figure 5.8 takes into account 
the ILD data of only the inner two lanes of the I-35 study corridor, while Figure 5.9 uses the 
average speed from the ILD data of the three lanes.  Figures 5.8 and 5.9 demonstrate that the 
average speed based on three lanes is lower than that from the inner two lanes. This result 
supports the real world situation where large and slower vehicles tend to use the rightmost 
lanes.  This result is important when performing link-based and point-based integration. For 
speed and travel estimation, a recommendation could be reasonably made to use only the 
inner two lanes of ILD data for fusion purposes, since the 3rd lane is often transitional due 
to the presence of on and off ramps.   
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Figure 5.8    AVI vs the Inner Two Lanes of ILD 
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Figure 5.9     AVI vs the Three Lanes of ILD 

Table 5.3    Results of Average Speed (Non-Peak Time) 

 Average Speed 

Time slot 

(second) ILD 164.412 ILD 164.909 ILD165.409 AVI 

0-20 63.31 52.20 63.89 60.32 

20-40 63.47 52.29 63.75 60.60 

40-60 63.15 52.37 63.88 60.65 

60-80 63.49 52.15 64.13 60.70 

80-100 63.55 52.59 64.10 60.91 

100-120 62.11 51.73 64.30 61.14 

120-140 62.08 51.61 63.89 61.39 

140-160 62.27 51.85 63.44 61.60 

160-180 62.35 51.92 63.50 61.71 

180-200 62.34 52.06 63.75 61.76 

200-220 62.42 52.02 63.72 61.56 

220-240 62.41 52.19 64.02 61.31 

 . . . . . 

3580-1600 62.47 62.47 62.47 62.47 
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Table 5.3 represents the average speed of ILDs and AVI during off-peak period 
(12:00 noon -1:00 p.m.) on March 18, 2002.   The ILD average speeds shown in this table 
are based only on data from the inner two lanes.  Average speeds of the ILD 164.412 are 
lower than those of the ILD 164.909 and the ILD 165.409. This could be justified by the 
presence of a number of exit and entrance ramps as well as the local highway geometry. 
This reality, found on most freeways, reflects the weaknesses of using a single sensing 
system to estimate the speed and travel time. Accordingly, it supports the argument for 
integration and fusion. Similar steps were followed to calculate the average speed of the 
peak hour (5:00 p.m.-6:00 p.m.).  As seen from the results of average speed, vehicles 
passing at ILD 164.412 are slower than other locations.   A critical reason of this result is 
that a lot of vehicles merged from I-410 ahead of this ILD station.  From Table 5.3 and 5.4, 
point speed data is not sufficient to estimate the link average speed, or travel time. 

Table 5.4    Results of Average Speed (Peak Time) 

 Average Speed 

Time slot (second) ILD 164.412 ILD 164.909 ILD165.409 AVI 

0-20 23.03 41.86 57.98 47.82 

20-40 23.65 41.99 58.19 47.67 

40-60 24.16 42.45 58.47 47.54 

60-80 24.91 42.21 58.33 47.32 

80-100 25.67 41.71 57.95 47.03 

100-120 26.21 41.18 57.52 46.72 

120-140 26.43 41.18 56.63 46.40 

140-160 26.91 41.26 55.90 46.08 

160-180 26.41 41.03 55.63 45.74 

180-200 26.59 40.87 55.75 45.36 

200-220 25.86 41.14 55.46 44.92 

220-240 25.23 41.50 55.79 44.48 

….. ….. …… …… …… 

3580-1600 20.55 40.17 55.95 42.77 

 

Figures 5.8 and 5.9 illustrate the trends of ILD and AVI sensor data showing a 
significant difference during off-peak hour (12:00 noon - 1:00 pm) and peak hour (5:00 
p.m. - 6:00 p.m.), when computing space mean speed as described earlier. To calculate the 
space mean speed using the ILD system, it is assumed with an acceptable level of accuracy 
that the speed of any vehicle passing through an ILD station could be assumed constant 
over a distance L. Assume that the distance between the current sensor and preceding 
sensor is X and the distance between the current sensor and the succeeding sensor station is 
Y, then the value of L could be calculated as follows: 
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2
ii

i
YX

L
+

=  (Eq. 5.4) 

Where: 
=iL   The distance over which the speed is assumed to be constant for station (i)  
=iX   The distance between the current and preceding sensor station 

=iY   The distance between the current and the succeeding sensor station 
 
The distance L, from equation (Eq. 5.4), is explained by Figures 5.10 and 5.11 for 

off-peak and peak traffic.To reliably compare the AVI and ILD speeds, it is recommended 
to offset the speed measured from the ILD system by a time that will allow an AVI tagged 
vehicle to traverse the distance between the two stations. 

Figure 5.10 compares the space mean speed from AVI and ILD systems during off-
peak periods.  The slopes of two trend lines which represent the first ILD space mean speed 
and third ILD space mean speed are usually higher than ILD space mean speed and are 
higher than second ILD space mean speed for the small section studied. Each section in the 
field would differ in its characteristics. 
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Figure 5.10     Measuring ILD Space Mean Speed during Off-Peak Hour 
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Figure 5.11    Measuring ILD Space Mean Speed during Peak Hour 

Figures 5.12 and 5.13 represent the result of space mean of ILD and AVI during each 
selected study time period.  
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Figure 5.12    Space Mean Speed of AVI and ILD during Off-Peak Hour 
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Figure 5.13    Space Mean Speed of AVI and ILD During Peak Hour 

5.6 AVI-Based and ILD-based Average Speed Integration 

5.6.1 Bayesian Updating  
Mahmassani and Sinha (1981) investigated the adequacy of using Bayesian updating 

as cross-classification technique for household trip generation analysis. Their study 
concluded that Bayesian updating provides a useful tool for updating trip generation rate 
and improves the accuracy in reflecting the trip-making behavior of households. The 
Bayesian updating method will be studied in this research to better estimate the highway 
speed based on ILD and AVI data. Bayesian updating could be used to update independent 
and sequentially incoming data based on the new data and prior information. This updated 
information is called the posterior information.  Bayes’ theorem is simply expressed as 
follows: 
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    (Eq.5.5) 

 
Although Mahmassani and Sinha (1981) used the Bayesian updating approach to 

predict the trip time, hence, the speed for the same type of sensor, the approach could be 
successfully used to integrate the point and link-based data from different types of sensors 
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provided that the data sets are collected continuously and contain the required parameters 
of average speed and sample variance.  

 
To explain the Bayesian updating approach, consider the following notations for the 

prior data:  
 1θ   = Prior Space Mean Speed  
 1n  = Number of Observations 
 1σ  = Variance of prior Space Mean Speed 
 
For this research, the first data reading will be assigned as the “a priori” information. 

Similarly, the new calculated speed will be assumed as a priori information for the next 
window speed calculation. The sampling distribution of the mean is also assumed to be 
normal with parameters sθ  and Sσ .With both prior and sampling distributions having 
normal distribution with variance, the posterior distribution of space mean speed will have 
the following parameter: 
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2θ   = Posterior Space Mean Speed  
2σ  = Standard Deviation of the Posterior Mean Speed 

 
The resulting posterior distribution is also normal, with mean and standard deviation. 

Equation 5.6 could be used initially to update the speed measured from each sensor before 
speed fusion. Figures 5.14 and 5.15 below are a comparison of the actual versus the 
Bayesian updated AVI speeds for peak and off-peak hours, respectively. Figures 5.14 and 
5.15 suggest that no significant difference is evident between the two speed estimates. 
Accordingly, speeds measured by the AVI system do not require further Bayesian updating 
before integration with ILD estimated speeds, according to the theory. 
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Figure 5.14    Actual vs Bayesian Updated AVI Speed, Peak Hours 
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The speed measured by ILD sensors could also be subjected to the Bayesian updating 
equation to justify its use. When Equation 5.6 is used to update the ILD speeds, the results 
are compared to the actual ILD estimated speeds. Similarly, Figures 5.16 and 5.17 suggest 
that no significant difference exists between the two speed estimates. Accordingly, speeds 
measured by the ILD system also do not require further Bayesian updating before 
integration with the AVI estimated speeds. 
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Figure 5.16    Actual vs Bayesian Updated ILD Speed, Peak Hours 
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Figure 5.17    Actual vs Bayesian Updated ILD Speed, Off-Peak Hours 

5.6.2 Bayesian Updating based on Accurate AVI and ILD 
When both AVI and ILD systems are assumed to be hyperthically 100% accurate, the 

Bayesian updating could be used to calculate the integrated speed of the link. Equations 5.8 
and 5.9 below are the modified versions of Equations 5.6 and 5.7.  
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Integratedθ  = Link Integrated Speed Based on Bayesian Updating and 100% Accuracy of AVI 

and ILD.   
=Integratedσ  Link Integrated Standard Deviation Based on Bayesian Updating and 100% 

Accuracy of AVI and ILD.  
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Figures 5.19 and 5.20 below show the values of the integrated speed based Bayesian 

updating for peak and non-peak hours, respectively. Notice that the Bayesian updated 
speed completely coincides with AVI speed (AVI speed curve is hard to envision, since it 
is exactly below the Bayesian updated curve). The reason for this complete alignment is the 
low value of standard deviation of AVI compared to ILD sensors, as Table 5.5 shows 
below.  
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Figure 5.18    Bayesian Updating Based on Accurate AVI and ILD, Peak Hours 
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Figure 5.19    Bayesian Updating Based on Accurate AVI and ILD, Off-Peak Hours 

Table 5.5    Maximum and Minimum Standard Deviations of AVI and ILD Speeds 

AVI ILD AVI ILD
Max 13.75 10721.10 6.18 1796.53
Min 0.52 225.05 0.87 35.42

Peak Hours Off-Peak Hours

 
 

 
This finding suggests that the AVI system is more reliable for speed estimation. This 

finding should not be taken in isolation.  Other factors such as sensor accuracy, sampling 
frequency, and availability of data from AVI tagged vehicles should also be considered.  

5.6.3 Weighted Average Method with Bayesian Updating 
Inductive loops and AVI systems, as with most electronic sensors, suffer from 

inherent measurement errors. To better estimate traffic speed and travel time of a freeway, 
the effects of these errors have to be considered in addition to variations in the signal.  

The accuracy of ILD sensors to measure speed and to count traffic has been studied 
by Woods et al. (1994). Figure 5.20 shows the expected error in speed for identical loops 
and varied trap length (Woods et al. 1994). Although the study by Woods et al. was 
comprehensive and different ILD configurations were investigated, only Figure 5.20 will 
be used in this study; since the deployed ILD sensors in San Antonio Study Corridor are 
identical. Identical ILD sensors provide more accurate speed measurements than 
unidentical ILDs. Figure 5.20 shows that for speeds less than 60 mph, the average error of 
ILD sensors for all trap lengths is less than 1.5 mph, while at 80 mph, the average error 
increases to 4.5 miles per hour. At slow speeds, the error is not very large because the 
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vehicles are on the loop longer and the on/off times of the detector unit are spread further 
apart. 

  

 
 

Figure 5.20    Average Errors for Different Speed Trap Lengths  
and Identical Detector Order (Woods et al. 1994) 

The results of a study conducted by FHWA in San Antonio to estimate the accuracy 
of the AVI system for speed measurement are proposed to be adopted. The study was 
carried out with the aid of Global Positioning System (GPS) and concluded that the average 
accuracy of the AVI system is 98%. 

 
The AVI more accurately measures space mean speed than ILD. 
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Where: 
  
  AVIandLOOPofspeedmeanSpacespeedAverage i =  
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LOOP
sd   is the single standard deviation during 5 minutes for three Loops. 

 
 AVIandLOOPofspeedmeanspacemeani =   
 
 

LOOP
sd   is the single space mean speed during 5 minutes for three Loops. 

 

5.6.4 Weighted Average Method With the Use of Inverse Accuracy Factor 
 The difference between Equations 5.10 and 5.13 is the accuracy factor. In Equation 
5.13, the accuracy value of 0.98 and 0.80 for AVI and ILD, respectively, was used.  
Equation 5.13 is a modified version of Equation 5.10 in order to give more crediblity to the 
accuracy factor.  
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In this scenario, the weighted average method is applied to estimate traffic parameters 

in Equation 5.14.  The accuracy factor is included in the weighted average method.  
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Where: 
 
 AVIandILDofspeedmeanSpacespeedEstimated =θ  
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6. Modeling Sensors Integration for Incident Detection 

Congested highways create potential for delays and traffic incidents. The cost of 
incidents and secondary incidents that occur on overcrowded highways is reflected in lost 
lives, damaged property, and high insurance premiums. The Federal Highway 
Administration (FHWA) estimated that by 2005 approximately 70% of delays on urban 
highways will result from traffic incidents and will cost $35 billion (Gordon et al. 1996, and 
Lindley 1986). 

Most major U.S. cities have installed large numbers of automated traffic sensors on 
highways to monitor traffic and estimate speed. These sensors are an integral part of the 
traffic management systems. The quality of data collected by any traffic sensor is influenced 
by the sensor’s inherent measurement accuracy, precision and repeatability as well as the 
density of its distribution and its sampling frequency. The rapid advancement in computing 
and manufacturing technology improved the performance of available traffic sensors. 
Although Inductive Loop Detectors (ILDs) are considered the most mature traffic sensor, a 
new set of sophisticated sensors are evolving.  These sophisticated sensors include 
Automated Vehicle Identification (AVI), Video Image Processing (VIP), Infrared, Acoustic, 
Laser Sensors, and the latest cellular phone location technology. These automated traffic-
sensing systems are mostly coupled with visual, non-automated technologies such as: Close 
Circuit TVs (CCTV), Police Patrol (PP), and cellular phone reports from motorists. 

Generally, traffic sensors have limited reliability as was explained in Chapter 5. Most 
traffic sensors perform poorly because of the environment in which they are installed and 
operate, and because of their inherent systematic and random errors. For this reason, traffic 
management centers tend to deploy multiple side-by-side traffic sensors to reduce the 
number of missed incidents and reduce false alarms, as well as to increase detection 
reliability.  

Several studies investigated the application of data fusion concepts in incident 
detection. The ultimate goal of all these studies was to acquire the highest performance 
possible by exploiting redundant and complementary information from different sensors. 
Zhou (2000) evaluated the performance of three typical automated incident detection 
algorithms and developed a fusion method to improve the performance of incident 
detection. The method was based on Dempster-Shafer Fusion Theory. The proposed fusion 
method was used to fuse incident detection of the California # 8, McMaster, and DELOS 
detection algorithms based on traffic and incident data collected from the San Antonio 
Network. The proposed fusion method showed superior detection performance better than 
when applying detection algorithms separately. Fused algorithms were able to detect up to 
80% of traffic incidents at a low 0.12 % false alarm rate. 

The study conducted by Khoury (2000) reviewed automatic incident detection 
technologies deployed in San Antonio freeways and managed by TransGuide. Traffic and 
incident data collected from the San Antonio Network were used to compare the 
performance of Inductive Loop Detectors (ILD) and Automatic Vehicle Identification (AVI) 
for automated incident detection. In this study, the California #8 and the Texas algorithms 
were calibrated an (UCL) algorithm and the Texas algorithm were calibrated and tested 
using the AVI data collected. When traffic and incident data from the San Antonio network 
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are processed by the four different algorithms, the California #8 algorithm applied to ILD 
data performed best in terms of Detection Rate (DR) and False Alarm Rate (FAR). 

Investment on transportation systems is considerable and sometimes risky due to 
potentially high and irreversible costs of mistakes after construction. An incident detection 
system is an important part of any transportation management system and requires careful 
and informed investment decision-making. Providing a modeling technique that would 
enable traffic planners to choose the best investment of traffic sensors for incident detection 
and other TMC applications is of paramount importance. 

This chapter proposes a modeling technique that would utilize the Monte Carlo 
Simulation Model to simulate the combined performance of deployment levels of multiple 
sensor types to detect traffic incidents. The proposed technique can be used to predict the 
integrated performance of detection sensor deployment plans based on priori information.  

6.1 Measures of Effectiveness for Incident Detection 
The objective function of incident detection is to minimize the time-to-detect, false 

alarm rate, and incident duration while maintaining a high detection rate. This objective 
function is written in Equation 6.1: 

 
Max (Z) = - β1 (TTD) – β2 (FAR) + β3 (DR) – β4 (ID) (Eq. 6.1) 
 TTD = Time-to-Detect 
 FAR = False Alarm Rate 
 DR = Detection Rate 
 ID = Incident Total Duration, 
 
The length of any incident is divided into three phases (detection, clearance and  

traffic restoration). The time to clear any incident depends mainly on the method used and 
the severity of the incident. Unfortunately, the performance indicators of incident detection 
are contradicting, e.g. detecting most incidents is advantageous but usually comes at the 
expense of a higher false alarm rate. In this study, modeling the fused performance of 
different incident detection sources gradually evolved from using simple arithmetic 
equations and concluded with a robust Monte Carlo simulation model.  

6.2 Arithmetic Model 
To explain this simple model, consider a highway network with AVI, Loops and 

Closed-Circuit TV (CCTV) systems deployed to detect incidents. Hypothetically, assume 
that the Time-to-Detect of each sensor follows a normal distribution with the AVI system 
detecting incidents at 6 minutes average and 2 minutes standard deviation, the ILD system 
detecting incidents at 5 minutes average and 1.5 minutes standard deviation, and the CCTV 
system detecting incidents at 4 minutes average and 1 minute standard deviation. The 
probability of detecting an incident within (t) minutes could be estimated based on the 
probability of detection by any of the three sensors, or detection by any two sensors, or by 
all the three sensors. For independent sensors, and when t equals to 3 minutes, the first case 
could be expressed using the following probability formula: 

When t = 3 minutes, then: 
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P (TTD ≤ 3 minutes) = P (AVI TTD ≤ 3 min) + P (Loops TTD ≤ 3 min) + P (CCTV 
TTD ≤ 3 minutes) - P (AVI & Loops TTD ≤ 3 min) - P (AVI & CCTV TTD ≤ 3 min) - P 
(Loops & CCTV ≤ 3 min) + 2 (AVI, Loops & CCTV ≤ 3 min). 

 To calculate P (X ≤ X1) given the mean is µx and standard deviation is σx use 
the equation below 

 

)()1( 1

x

xX
XXP

σ
µ−

Φ=≤  (Eq. 6.2) 

Then, 
 

Table 6.1    Probability of Detection Time for Different Cases 

Sensors CCTV Loops AVI CCTV & Loops CCTV & AVI AVI & Loops All Sesnsors
P ( TTD< 3 min) 0.1586 0.0912 0.0668 0.2353 0.21486 0.1519 0.2864

P ( TTD < 3.4 min) 0.2743 0.1431 0.0968 0.3781 0.34451 0.226 0.4383
P ( TTD < 3.6 min) 0.34458 0.1753 0.1151 0.4595 0.42 0.2702 0.5217

 

 
P (TTD ≤ 3 minutes) = (0.1586) + (0.0912) + (0.0668) – (0.1586 x 0.0912) – (0.0912 

x 0.0668) – (0.1586 x 0.0668) + 2 (0.1586 x 0.0912 x 0.0668). 
 = 0.2873 
 = 28.73 % 
The following graph contains the normal distribution curves for each sensor’s Time-

To-Detect.  
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Figure 6.1    TTD Curves for Loops, CCTV, Cellular Phones, Fused Performance 
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From Table 6.1 and by using interpolation, the mean time-to-detect (the average time 
at which incidents will be detected 50% of the time) for the fused performance curve could 
be calculated. 

 P (TTD ≤ 3.4 min)                                     44.22 % 
 P (TTD ≤ 3.6 min)                                     52.87 % 
The TTD corresponding to 50% ≈ ≤ 3.5 minutes while the average time to detect the 

fused combination is 3.5 minutes compared to 4, 5 and 6 minutes intervals for individual 
sensors. The calculations above are based on the theoretical assumption that each sensor’s 
incident detection rate is 100% perfect and each sensors’ detection performance is 
completely independent. 

In practice, some incidents are missed by some or all sensors. The distribution that 
represents the case scenario where less-than-perfect detection is present could easily be 
drawn based on the original 100% detection rate. To draw this new distribution curve, 
multiply the probability of detecting incidents below certain time (t) by the DR of that 
sensor. 

For example, if 30 incidents were detected within 4 minutes at the ideal 100% 
detection rate, then the number of incidents that will be detected within the same time frame 
at 80% detection rate is equal to 0.8 * 30 = 24 incidents. This is based on the assumption, 
although not proven, that missed incidents are uniformly distributed along the detection 
time. Figure 6.2 illustrates a comparison between 100% and 75% detection rate. 
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Figure 6.2    Time to Detect Incidents at 100% vs 75% Detection Rates 

Similarly, the following scenario has been designed to explain the effect of less-than-
perfect detection on the overall fused performance. Hypothetically, assume that the time-to-
detect by AVI, ILD and CCTV is as follows: 

AVI: Average TTD = 6 min, STDV = 2, DR = 55% 
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ILD: Average TTD = 5 min, STDV = 1.5, DR = 70% 
CCTV: Average TTD = 4 min, STDV = 1, DR = 85% 
When running 1000 incidents through the three sensors and assuming mutual 

independence (which in practice is not the case), the probability of joint detection is 
calculated as: 

CCTVILDVIA

CCTVVIACCTVILDILDVIACCTVILDVIA

DRDRDR

DRDRDRDRDRDRDRDRDRDRP

***2

***)(

+

−−−++=
(Eq.6.3) 

P(DR) = 0.85 + 0.7 + 0.55 - 0.85*0.7 - 0.7*0.55 + 0.85*0.55 + 0.85*0.55*0.7 ≈ 98%. 
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Figure 6.3    Individual vs Combined Sensor Performance 

6.2.2 Detection Based on First and Second Alarms 
The high number of false alarms at  the Traffic Management Centers generated when 

automated incident detection is in use causes frustration to the operators. Waiting for a 
second alarm to fire before verifying incidents could substantially reduce the probability for 
false alarms. Utilizing this concept, two different scenarios will be considered. The first 
scenario involves incidents verified by operators as soon as the first AID alarm goes off. 
The second scenario waits for a second AID alarm before verifying incident occurrence.   
Verifying incident presence just after the first alarm results in a higher detection rate 
coupled with a high false alarm rate. Similarly, waiting for a second or corroborating alarm 
substantially reduces the probability of false alarms and at the same time allows many minor 
incidents to go undetected. Consider the numerical example mentioned above, the 
performance of the three sensors based on first alarm and second alarm is shown in Figure 
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6.4. Notice that when detecting at the first alarm, Equation 6.3 is used, while Equation 6.4 
will be used for calculation at second or more alarms. 

 
)(*2)()()()( AVIILDCCTVPCCTVAVIPAVIILDPILDCCTVPDRP ∩∩−∩+∩+∩=    (Eq.6.4) 
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Figure 6.4     Number of Incidents Detected at First vs Two or More Sensors 

6.2.3 Incorporation of False Alarms 
False alarms could be best visualized as virtual “unreal” incidents that resemble the 

situation of real incidents. These virtual incidents are detected by AID algorithms and 
respond by firing an alarm.  As the sensor’s sensitivity level is increased, so also is the 
resulting detection rate of both real and unreal incidents. Similar to the “real” incident 
detection scenario; the joint false alarm rate calculations could also be subject to the 
first/second alarm scenario that was explained earlier. Equations 6.5 and 6.6 calculate the 
joint false alarm rate based on first and second alarm scenarios, respectively. 

  
P (FARCCTV U FARILD U FARAVI) = P (FARCCTV) + P (FARILD) + P 

(FARAVI) – P (FARCCTV ∩ FARILD) – P (FARCCTV∩   FARAVI) – P (FARILD ∩ 
FARAVI) + P (FARCCTV ∩ FARILD ∩ FARAVI) (Eq.6.5) 

 
P (FARCCTV U FARILD U FARAVI) = P (FARCCTV ∩ FARILD) + P (FARILD ∩ 

FARAVI) +  P (FARAVI ∩ FARCCTV) – 2 x P (FARCCTV ∩ FARILD ∩ FARAVI)  
  (Eq.6.6) 
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6.2.4 Incorporation of Sensors Correlation 
 A specific incident can be detected by multiple sensors and, in practice, lead to some 
degree of sensor correlation. The higher the number of incidents detected by any two 
sensors, the higher the degree of correlation between the two sensors. Although deploying 
multiple sensors at the same highway link improves the overall detection effort, a group of 
incidents still can go undetected as depicted in Figure 6.5. Applying simple arithmetic 
equations does not properly address sensors correlation. Furthermore, two separate simple 
models are required to predict the detection rate and false alarm rate. The Monte Carlo 
Model has the capability to correlate each sensor’s input and develop a single unified model 
that encompasses both detection rate and false alarm rate.   
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Figure 6.5    Detection Zones for CCTV, ILD, and AVI 

6.3 Monte Carlo Model  
The Monte Carlo Simulation Model in an Excel environment is able to handle incident 

detection sensors that are correlated and also incorporate different detection rates and false 
alarm rates.  Utilizing this technique works particularly well when the underlying 
probabilities are known but the results are difficult to determine. Monte Carlo Simulation 
Model is essentially a numerical integration tool for conducting “what if” experiments 
numerically.  

Consider the following response function: )(XgY =  where Y is the response of 

interest and }{ nXXXX ,....,, 21=  is a vector of input variables with joint probability density 

function )(Xf
x

. The cumulative distribution function for Y is given by the following 

∫ ∫=≤= nnXnXY dxdxxxfyYPyF ....),....,(...)()( 11....,1  (Eq.6.7) 
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We can obtain an estimate for FY(Y) by simulating realizations of X  (the kth 
realization will be denoted x ) many times (N times to be specific), and then counting the 
number of realizations that give 0)( ≤kxg  
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 The mth moment of Y (e.g. the expected value of Y is the first moment, or m = 1) is 
given by the following 

∫∫
∞

∞−

= nnxx
mm dxdxxxfxgYE

n
....),.....,(])([....)( 11,....,1

 (Eq. 6.8) 

We can obtain an estimate for )( mYE  by simulating mxg )( N times, and then taking 

the average value of  m
kxg )(  

∑≈ m
k

m xg
N

YE )(1)(  (Eq. 6.9) 

 

6.3.1 Potential Scenarios of Incidents Detection 
There are several scenarios that should be covered when modeling the performance of 

fused incident detection. These include first vs. second or more alarms, correlated vs. 
independent (non-correlated) sensors, and ideal 100% vs. less than perfect detection rate. 

6.3.2 Monte Carlo Model Initiation 
As stated earlier, Monte Carlo simulation model uses probabilistic distributions as an 

input. In this model, the sensors’ Time-to-Detect (TTD) is based on Normal distribution. To 
explain the different phases of the model hypothetical values will be used. Assume that the 
Time-to-Detect (TTD) for CCTV is N (4 min, 1 min), for ILD is N (5 min, 1.5 min), and for 
AVI is N (6 min, 2 min). Since incidents’ TTD must always be positive, then TTD should 
not be represented using Normal distribution. Initial runs of the model using normally 
distributed TTD resulted in a negative TTD. When the distribution of Time-to-Detect has 
been changed to Lognormal distribution; better “positive” results of TTD are found. 
Consequently, the mean and standard deviation of TTD are changed to Lognormal 
parameters using the following equations: 

Coefficient of Variance for Normal Distribution = C. O. V. =  
µ
σ  

Variance of Lognormal distribution = ξ2 = Ln (1+c.o.v2 
Mean of Lognormal Distribution = λ = Ln (µ) – 0.5 ξ2 
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When using the hypothetical values of TTD mean and standard deviation proposed in 
the arithmetic model, the values of λ, ξ could be calculated. Table 6.2 contains the mean and 
standard deviation for Normal and Lognormal distributions: 

Table 6.2    Hypothetical Values of TTD for CCTV, ILD, and AVI 

Parameter Values for CCTV Values for ILD Values for AVI
Mean of Normal Dist. 4.00 5.00 6.00
Standard Deviation of Normal Dist. 1.00 1.50 2.00
Mean of Lognormal Dist. 1.36 1.57 1.74
Standard Deviation of Lognormal Dist. 0.25 0.29 0.32  

 

6.3.3 Steps of Development of Monte Carlo Simulation Model 
This section details the steps for developing a Monte Carlo Simulation Model.  The 

general rule for each step is stated along with the specific example at hand. The steps are 
ordered systematically from initiation to performance analysis as follows: 

1. Generate vector ku  of statistically independent and uniformly distributed random 
numbers between 0 and 1. For our example, u1, u2 and u3 represent the random numbers 
generated as in Table 6.1. Also, S1, S2 and S3 are the values of iX  that correspond to the 
probability values u1, u2 and u3, respectively. In Excel, the value of iS  could be calculated 
using 

 )( ii uNORMSINVS =  

2. Transform ku   to kx   using transform matrix  )(1
kxk uFx −=  

3. Use the correlation matrix to develop multivariate joint distribution. Cx represent 
the correlation matrix: 

⎥
⎥
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 (Eq. 6.10) 

When the CCTV, ILD and AVI sensors are completely independent, then the 
correlation matrix could be written simply: 

Correlation matrix =  

1 0 0
0 2.25 0
0 0 4  

The values of the three variables (Xn1, Xn2, and Xn3) after incorporating the 
correlation matrix could be calculated as: 

}:)}:(,{{,, 3131321 µµ+= SSTRANSPOSEMatrixAMMULTTRANSPOSEXXX nnn  
4. Transform variables distribution from standard normal to the intended distribution 

(Lognormal, beta, gamma, etc). In our specific case, the Normal distribution is transformed 
to Lognormal distribution  by applying the following formula: 

 ))(*(( 1
1

11
11 λ

σ
µξ +

−
= nX

NORMDISTNORMSINVEXPX  (Eq. 6.11) 
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5. Apply variables governing rules and drive output. Several governing rules used in 
the example include: 

a. Detect at first alarm ≡ Minimum TTD, in Excel: MIN(X1: X3) 
b.  Detect at second alarm ≡ Second Largest TTD, in Excel: Largest(X1: X3, 2) 
 
Table 6.3 contains numerical values of the model outputs. The results illustrate outputs 

of performing 10 runs when each sensor was represented by 1,000 realizations (random 
variables). [Excel performance is low when attempting to run 10,000 realizations instead of 
1,000.] 
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6.3.4 Preliminary Results at Ideal 100% DR, Prior to FAR Consideration 
Better performance was found when averaging the results of ten runs of independent 

sensors as illustrated in Tables 6.4 and 6.5. Table 6.4 was based on first alarm detection, 
meaning the joint time to detect is equal to the minimum of the three sensors. Table 6.4 
shows that the average TTD for the three sensors was lower than any individual sensor. 
The standard deviation was also lower thus producing more consistent TTD values. Table 
6.5 was constructed based on second alarm detection, i.e. when waiting for a confirmatory 
alarm before start incident verification process. Notice that the average TTD incidents from 
the 10 runs was higher then that of CCTV, however, this result needs to be weighted 
against the lower false alarm rate generated from this scenario.  

Table 6.4    Simulation Results of Independent Sensors at First Alarm and 100% DR 

Sets Average TTD STDEV (TTD) P ( TTD > 7 min) P ( TTD > 10 min)
Set 1 3.28 0.95 0.001 0
Set 2 3.27 0.97 0.002 0
Set 3 3.34 0.97 0.002 0
Set 4 3.30 0.92 0 0
Set 5 3.26 0.89 0 0
Set 6 3.28 0.96 0.001 0
Set 7 3.29 0.94 0.002 0
Set 8 3.33 0.96 0.001 0
Set 9 3.24 0.97 0 0
Set 10 3.21 0.93 0.001 0

Average 3.28 0.95 0.1000% 0.0000%  
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Table 6.5    Simulation Results of Independent Sensors at Second Alarm and at 100% DR 

Sets Average TTD STDEV (TTD) P ( TTD > 7 min) P ( TTD > 10 min)
Set 1 4.64 1.36 0.059 0.004
Set 2 4.77 1.47 0.08 0.007
Set 3 4.71 1.46 0.065 0.01
Set 4 4.76 1.56 0.078 0.013
Set 5 4.77 1.56 0.087 0.01
Set 6 4.83 1.59 0.08 0.016
Set 7 4.69 1.48 0.071 0.007
Set 8 4.73 1.56 0.073 0.014
Set 9 4.75 1.44 0.073 0.005
Set 10 4.77 1.47 0.073 0.01

Average 4.74 1.49 7.3900% 0.9600%  
 
In real world situations, sensors monitoring traffic tend to share some level of 

dependency that could be represented by correlation factors. To study the effects of sensors 
dependency on the overall performance, assume the correlation factors between different 
sensors in the example at hand is as follows: 

 R (CCTV & ILD) = 0.5 
 R (CCTV & AVI) = 0.4 
 R (ILD & AVI) = 0.3 
Table 6.6 below contains results of TTD for the ten simulation runs (sets) based on 

the given correlation factors and assuming incidents are detected at the first sensor alarm. 
Table 6.7 contains the results when detecting at second sensor alarm. The simulation 
results in Tables 6.4, 6.5, 6.6, and 6.7 infer that correlated sensors produce higher average 
and standard deviation of TTD than independent sensors. It could also be noticed that more 
incidents are detected within 7 minutes by correlated sensors than independent sensors.  

Table 6.6    Simulation Results of Correlated Sensors at First Alarm 

Sets Average TTD STDEV (TTD) P ( TTD > 7 min) P ( TTD > 10 min)
Set 1 3.9496 1.6987 0.055 0.006
Set 2 3.9051 1.5023 0.037 0.002
Set 3 3.8605 1.6976 0.055 0.003
Set 4 3.9199 1.7236 0.045 0.007
Set 5 3.8323 1.5123 0.032 0.003
Set 6 3.8165 1.6220 0.036 0.005
Set 7 3.8757 1.6239 0.043 0.003
Set 8 3.8742 1.6504 0.053 0.001
Set 9 3.9390 1.7235 0.051 0.009
Set 10 3.9145 1.5992 0.05 0.004

Average 3.89 1.64 4.57% 0.43%  
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Table 6.7    Simulation Results of Correlated Sensors at Second Alarm 

Sets Average TTD STDEV (TTD) P ( TTD > 7 min) P ( TTD > 10 min)
Set 1 4.9141 2.5482 0.142 0.041
Set 2 5.0164 2.6438 0.163 0.043
Set 3 4.9624 2.3945 0.161 0.047
Set 4 5.0456 2.4641 0.17 0.047
Set 5 4.8198 2.4273 0.149 0.039
Set 6 4.9721 2.4941 0.166 0.041
Set 7 5.0081 2.4980 0.162 0.039
Set 8 5.1203 2.4392 0.195 0.043
Set 9 4.9894 2.4196 0.157 0.047
Set 10 5.0967 2.8793 0.179 0.056

Average 4.99 2.52 16.44% 4.43%  
 

6.3.5 Preliminary Results at Less Than 100% DR, Prior to FAR 
Consideration 

The final scenario assumes that each sensor detects 100% of the incidents in the ideal 
situation.  In practice, sensors tend not to detect all incidents within a reasonable time 
window. In such circumstances, deploying multiple sensors may not only reduce the 
average time to detect incidents, but also increase the number of detected incidents. To 
incorporate this scenario in the model, missed incidents are randomly assigned with an 
infinite time to detect. Table 6.8 contains the results of the simulation when considering no 
correlation between sensors and when the detection rates of the CCTV system is 85%, the 
ILD system is 70%, and the AVI system is 55%. In this scenario, the sensors jointly 
detected 98% of the incidents. Alternately, when detecting at second alarm, the joint 
performance declined to 81%, which is lower than the performance of CCTV.  

Table 6.8    Simulation Results of Independent Senors at First Alarm and 85%, 70% and 
55%DR for CCTV, ILD, and AVI Sensors 

Sets Average TTD STDEV (TTD) P ( TTD > 7 min) P ( TTD > 10 min)
Set 1 3.77 1.45 0.0316 0.0071
Set 2 3.80 1.75 0.0306 0.0122
Set 3 3.74 1.52 0.0286 0.0092
Set 4 3.70 1.46 0.0235 0.0071
Set 5 3.74 1.83 0.0265 0.0071
Set 6 3.77 1.61 0.0316 0.0102
Set 7 3.75 1.47 0.0245 0.0102
Set 8 3.73 1.86 0.0286 0.0102
Set 9 3.71 1.47 0.0214 0.0071
Set 10 3.78 1.45 0.0286 0.0082

Average 3.75 1.59 2.7551% 0.8878%  
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Table 6.9    Simulation Results of Independent Senors at Second Alarm and 85%, 70% and 
55%DR for CCTV, ILD, and AVI Sensors  

Sets Average TTD STDEV (TTD) P ( TTD > 7 min) P ( TTD > 10 min)
Set 1 4.81 3.82 0.162244898 0.047959184
Set 2 4.93 3.72 0.175510204 0.07244898
Set 3 4.88 3.62 0.201020408 0.064285714
Set 4 4.68 3.15 0.155102041 0.051020408
Set 5 4.85 3.83 0.168367347 0.054081633
Set 6 4.78 3.59 0.165306122 0.064285714
Set 7 4.95 3.82 0.179591837 0.062244898
Set 8 4.78 3.43 0.176530612 0.059183673
Set 9 4.73 3.25 0.170408163 0.05
Set 10 4.68 3.35 0.159183673 0.052040816

Average 4.81 3.56 17.1327% 5.7755%
 

6.3.6  Incorporating False Alarms and Sensors Correlation  
Some changes are required on the model to incorporate the false alarms and improve 

application of the correlation factors. While the analysis until this point was based on 1,000 
observations, to incorporate the false alarm rate this number needs to be increased to 5,400 
observations. Consider a freeway where incidents occurrence rate is an average of Ψ 
incidents per peak hour. (Note: In this study, analysis will be performed on peak hours only 
where the a.m. peak is defined as 6:30 a.m. to 9:30 a.m. and the p.m. peak is defined as 
3:30 p.m. to 6:30 p.m. Monday through Friday.)  In San Antonio’s TransGuide, the data is  
transferred to the TMC every 20 seconds, thus equating to three slots of time in each 
minute. Based on these assumptions, the total number of time slots in one week will be: 

N = 3 slots/min x 60 min/hr * 6 peak hrs/day * 5 days/week = 5400 Slots 
Based on Table 6.3, the internal calculations of Monte Carlo simulation model will be 

as follows: 
 

1. Columns 1 to 3:  Function = Rand () [is a random number generator for 
sensors 1, 2 and 3] 

2. Column 4 to 6: Function = NORMSIV (Columns 1 to 3, respectively) 
represent the Z value of random number generated in columns 1 to 3 

3. Columns 7 to 9: Function = {=TRANSPOSE (MMULT (A- matrix, 
TRANSPOSE (column4: column6)) + µ1: µ3)} 

4. Columns 10 to 12: Function = {=EXP (NORMSINV (NORMSDIST 
((Column 7 – µ1)/STD (1)))*Log-STD (1) + mean log (1))} 

5. Column 13: Function = IF (RAND () <=probability of incident occurrence, 1, 
0) [1= incident occurred, 0 = no incident occurred] 

6. Column 14: Function = IF (column13 = 1, IF (RAND () <=Sensor (1)’s 
detection rate, 1, 0), 0) [1 = incident detected by sensor (1), 0 = incident not 
detected by sensor 1] 

7. Column 15: Function = IF (Column13 = 1, IF (Column14 = 1, IF (RAND () 
<=Probability of detection by sensor-2 given detected by sensor-1, 1, 0), IF 
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(RAND () <=probability of detection by sensor-2 given not detected by 
sensor-1, 1, 0)), 0) 

8. Column 16: basically, assign the number 1 if an incident is detected by 
sensor-3 the same way column 15 was calculated, with taking both sensors 1 
and 2 in consideration. 

9. Column 17: Function = IF (SUM (Columns 14 to 16) =0, 0, 1) [the incident is 
detected by one or more sensors] 
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6.4 Monte Carlo Model Validation 
To ensure the quality of Monte Carlo Simulation Model results, data from multiple 

sources will be used. The required data to validate the model is a set of basic characteristics 

of traffic sensors that include: 

1. The probabilistic distribution of sensors’ TTD which includes the type of 
distribution and its parameters.  

2. The optimal threshold values of sensors DR and FAR when calibrating the 
sensor.  

3. The degree of correlation between sensors. (Most fusion theories assume 
independence between sensors. This assumption is based on the fact that 
different sensors use different raw data and employ different decision-making 
rules.)  

 
Accurately estimating each sensor parameters that the model requires is a challenging 

task since it is difficult to assign an exact start time for each incident. Figure 6.8 below 
depicts the methodology that was implemented to validate the Monte Carlo Model denoted 
by “Logman Model” in the figure. As illustrated in Figure 6.8, the following five major 
steps are required to validate the model: 

Step 1: When running a stream of real incidents through individual algorithms (or 
sensors), the output performance resulting from each algorithm (or sensor) is gauged. The 
output performance should reflect sensors’ (or algorithm) TTD distribution, DR, and FAR. 
These parameters are denoted by the symbol (Ǿ1) for different algorithm (or sensor). 

Step 2: When using statistical analysis, the correlation between any pair of algorithms 
(or sensors) denoted by ^

γ ij

 will be measured. 

Step Results from Steps 1 and 2 are then used as an input to the Logman Model. The 
model utilizes this input to combine performances and finds the fused performance of 
different combinations of algorithms (or sensors). 

Step 4: In this step, data from real incidents are directly processed through the fusion 
algorithm while output performance is accordingly measured. 

Step 5: The Logman Model is validated by comparing the consistency among the 
values found in Steps 3 and 4 above. The lower the variability between these two output 
results, the higher the confidence level of the model performance. 
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6.4.2 The Validation Process of Logman Model 
 To validate the Logman Model numerically, conditional probability equations were 
applied to the results of incident detection by three algorithms (Cal 8, Delos, and 
McMaster) (Zhou 2000). In his study, Zhou (2000) processed incidents and traffic data 
using the three processing algorithms to investigate any potential for improved 
performance when fusing the algorithms. Table 6.10 below contains the results when 
running the incident and traffic data through the algorithms. Congestion incidents were not 
included in the study, only major, minor and stall incidents make up the numbers in the 
table. The table contains the results of detection based on varied levels of False Alarm 
Rate, i.e., 0.05%, 0.2%, 0.5%, and 1.0%, respectively.  

6.4.3 Results of Time-to-Detect Incidents 
The Time-to-Detect (TTD) of any given incident by a specific sensor at 0.05% and 

1.0% FAR levels were not accessible. The TTD incidents at 0.2% and 0.5% FAR could be 
inferred with an acceptable degree of reliability by reconstructing the DR vs TTD graphs 
that Zhou produced for each level of FAR. No exact incident number could be assigned to 
a specific Time-to-Detect from the DR vs TTD graph, therefore, incidents’ TTD were 
randomly assigned to the incident number by using a random number generator on the 
Excel spread sheet. Table 6.11 contains the assigned TTD incidents to any specific incident 
number based on 0.2% and 0.5% FAR levels, only.  
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Table 6.10    Incidents Detected by CA #8, Delos, and McMaster Algorithms (Zhou 2000) 

 

A priori FAR
Incident ID CA Delos MCM Σ CA Delos MCM Σ CA Delos MCM Σ CA Delos MCM Σ

1 1 1 1 1 1 3 1 1 1 3 1 1 1 3
3 0 0 1 1 1 1 1 3 1 1 1 3 1 1 1 3

4 1 1 1 1 1 3 1 1 1 3 1 1 1 3
8 0 0 1 1 1 1 1 3 1 1 1 3 1 1 1 3

9 0 0 1 1 1 1

12 0 1 1 2 1 1 1 3 1 1 1 3

14 0 0 1 1 1 1 2
15 1 1 1 3 1 1 2 1 1 1 3 1 1 1 3

16 0 0 1 1 1 3 1 1 1 3

21 1 1 2 1 1 1 3 1 1 1 3 1 1 1 3
24 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3
25 1 1 1 1 1 1 2 1 1 2
29 1 1 1 1 2 1 1 1 3 1 1 1 3
31 0 0 0 0 0 1 1
33 1 1 1 1 1 3 1 1 1 3 1 1 1 3
35 0 1 1 1 3 1 1 1 3 1 1 1 3
41 0 0 1 1 1 1 1 3
42 0 0 1 1 1 1 1 3 1 1 1 3 1 1 1 3
44 1 0 1 2 1 1 1 3 1 1 1 3 1 1 1 3
47 1 1 2 1 1 1 3 1 1 1 3 1 1 1 3
50 0 0 1 1 1 1 1 1 1 3 1 1 1 3
53 1 1 2 1 1 1 3 1 1 1 3 1 1 1 3
58 1 1 1 1 1 1 1 3 1 1 1 3
68 0 0 0 1 1
71 0 1 1 1 3 1 1 1 3 1 1 1 3
72 0 0 1 1 1 1 1 1 2 1 1 1 3

73 1 1 1 1 2 1 1 1 3 1 1 1 3

74 0 0 1 1 1 1

81 1 1 2 1 1 1 3 1 1 1 3 1 1 1 3
83 1 1 2 1 1 1 3 1 1 1 3 1 1 1 3

84 1 1 1 1 2 1 1 1 3 1 1 1 3

92 0 1 1 1 1 1 1 2

96 1 1 1 1 1 1 1 3 1 1 1 3

97 0 0 1 1 1 3 1 1 1 3

102 0 0 1 1 1 1 1 3
104 0 0 0 1 1 1 1 1 3 1 1 1 3
108 1 1 1 1 1 3 1 1 1 3 1 1 1 3

109 1 1 2 1 1 1 3 1 1 1 3 1 1 1 3

113 0 0 1 1 1 3 1 1 1 3
No. Detected 10 8 17 24 20 23 25 29 30 34 33 37 33 36 37 39

% Detected 0.26 0.21 0.44 0.62 0.51 0.59 0.64 0.74 0.77 0.87 0.85 0.95 0.85 0.92 0.95 1.00
% Detected 0.05 0.36 0.64 0.72

by 3
% Detected 0.23 0.56 0.79 0.90

by 2

1.00%0.05% 0.20% 0.50%
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Table 6.11    Time-to-Detect Incidents by CA #8, Delos, and McMaster Algorithms           
(Zhou 2000) 

A priori FAR

Incident ID CA Delos MCM CA Delos MCM

1 -3 -7 -1 -5 -9 1

3 -7 19 -5 -9 -7 -7

4 -9 -5 7 -9 -10 -5

8 -10 -5 11 -5 17 -7

9 -9

12 -1 11 1 -1 -1

14 -10

15 -5 -3 -7 5 -5

16 -9 -7 -7

21 -5 -7 7 7 -10 -10

24 -5 -9 1 -9 -10 -9

25 11 -9 -10

29 -10 -5 5 11 -10

31

33 -10 -1 -3 -5 15 -5

35 -1 -7 5 -7 9 -7

41 -1

42 -5 -5 -5 -5 -9 -9

44 -10 -10 -5 -7 -7 7

47 7 3 3 -10 -3 -5

50 1 -10 -10 -9

53 -3 -1 -7 -9 -10 -5

58 -5 -1 3 -9

68

71 -9 -1 -5 -9 -9 19

72 -7 -10 -3

73 -7 -10 -7 21 -7

74 -5

81 -7 13 -7 -7 11 13

83 1 -7 -1 -9 -7 -10

84 11 9 -3 -7 -5

92 -3 -10

96 -3 3 3 -10

97 -10 -1 -9

102 15

104 27 -10 -9 -5

108 -10 -10 1 -9 -10 7

109 -5 -5 -5 -10 -5 1

113 -1 3 -5

0.20% 0.50%
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[Note: To reduce the complexity of the calculations, the value -10 minutes in 
the TTD is assigned to represent the base of the calculations.  All TTD values 
are shifted (by adding 10 minutes to each TTD) to facilitate the calculations. 
This process is compensated for after processing the final results are 
analyzed.] 

6.4.4 Best Fit Probability Distribution 
Given the assumption that incidents are detected when they fall within a window of 

10 minutes before the incident start and end time, the TTD values in Table 6.11 contain 
some negative values. The probabilistic distribution of TTD for every sensor is not 
expected to be perfect for the following two major reasons: 

 
1. The incident data set is reasonably small, and  
2. Several incidents were assigned minus 10 minutes as TTD, which cause the 

distribution to start with a high value at -10, and not perfectly follow 
Lognormal distribution. 

 
BestFit© 4.0 is a software package that is capable of determining the best fitting 

curve and parameters to any set of data. Unfortunately, when using this package to find the 
best fitting curve and its parameters for the incident data found in Table 6.11, the package 
suggest the following curves as the best fitting curves.  

 
0.2% FAR 0.5% FAR

Cal 8 Expon Expon 
ExtValue ExtValue
InvGauss Pareto
Logistic InvGauss

Delos Expon Expon 
InvGauss Pareto
LogLogistic InvGauss
Lognormal

McMaster InvGauss InvGauss
LogLogistic Lognormal
ExtValue ExtValue
Pearson Expon 
Lognormal  

 
The first phase of the validation process for the Logman Model is to predict the 

performance of the model based on the probability distribution of Time-to-Detect (TTD), 
the conditional probability of detection by different sensors, and the level of false alarms 
assigned to each algorithm. This phase is schematically described in Figure 6.7. It is 
important to mention that the data that Zhou used is collected 6 hours a day in a two-month 
span [3 peak hours and 3 off-peak hours for each day of the work week (Monday through 
Friday)]. Capturing every 20 seconds of detection decision throughout the two-month span 
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is useful when attempting to exactly replicate the detection process. The number of 20-
seconds sets that needs to be generated in the model is overwhelming,  however, and 
causes Excel to take extended time to recalculate each scenario. For this reason, incidents 
were developed and allowed to randomly distribute over only one week. This process will 
not affect the outcome of real incidents detection process, but will affect the results of FAR 
calculation, which isn’t part of this validation process given the available data set.  Tables 
6.12, 6.13, and 6.14 represent the results of 10 run sets at 0.2% FAR, while Tables 6.15, 
6.16, and 6.17 contain the results at 0.5% FAR level. 

The data set shown in Table 6.11 is used to arithmetically calculate the expected 
output performance at different scenarios. The results of the empirical discrete validation 
and side-by-side performance comparison between the two validation phases are shown in 
Table 6.18. 

Table 6.12    Simulation Results of Detection Rate by Different Sensors at 0.2% FAR 

Detection Rate (%)

Run # Cal # 8 Delos MCM 1st Alarm 2nd Alarm 
1 53.12% 62.64% 67.08% 79.56% 58.21%
2 51.95% 61.72% 66.11% 77.63% 57.17%
3 53.43% 63.73% 64.00% 77.38% 58.19%
4 52.07% 63.85% 64.12% 78.54% 57.87%
5 51.14% 61.05% 63.42% 76.38% 55.97%
6 52.48% 62.23% 65.60% 78.63% 57.36%
7 52.97% 62.63% 63.28% 77.42% 57.11%
8 50.08% 60.11% 64.22% 75.28% 55.53%
9 50.13% 60.62% 63.48% 75.90% 56.17%
10 52.56% 61.19% 65.55% 76.61% 57.33%

Average 51.99% 61.98% 64.69% 77.33% 57.09%
Stdev 1.19% 1.26% 1.31% 1.33% 0.93%

Fused Sensors 
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Table 6.13    Simulation Results of Average Time-to-Detect Incidents by Different Sensors at 
0.2% FAR 

Average TTD (min)

Run # Cal # 8 Delos MCM 1st Alarm 2nd Alarm 
1 5.55 8.68 8.64 4.37 7.47
2 5.82 8.05 8.78 4.43 7.48
3 5.44 8.94 8.78 4.43 7.66
4 6.03 9.13 8.90 4.59 7.94
5 5.32 9.05 9.13 4.33 7.71
6 5.80 9.11 8.41 4.42 7.51
7 5.49 8.64 9.18 4.42 7.49
8 5.52 8.63 8.71 4.44 7.73
9 5.94 9.40 8.97 4.68 8.13
10 5.53 9.59 8.58 4.54 7.86

Average 5.65 8.92 8.81 4.46 7.70
Stdev 0.24 0.44 0.24 0.11 0.22

Fused Sensors 

 
  
 

Table 6.14    St. Dev. of Time-To-Detect Incidents by Different Algorithms at 0.2% FAR  

 

Std Dev. TTD (min)

Run # Cal # 8 Delos MCM 1st Alarm 2nd Alarm 
1 5.16 11.10 5.19 3.37 4.86
2 4.65 8.59 5.90 3.52 5.48
3 5.17 9.77 5.42 3.74 6.55
4 5.95 9.90 5.29 3.66 5.23
5 5.28 9.86 5.14 3.45 5.19
6 4.89 10.27 6.17 3.80 6.10
7 5.08 10.37 5.48 4.03 5.00
8 6.06 11.51 5.81 4.20 8.02
9 7.12 9.40 5.77 3.70 5.57
10 5.82 10.36 5.80 3.96 5.28

Average 5.52 10.11 5.60 3.74 5.73
Stdev 0.73 0.83 0.34 0.26 0.95

Fused Sensors 
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Table 6.15    Detection Rate by Different Sensors at 0.5% FAR 

Detection Rate (%)

Run # Cal # 8 Delos MCM 1st Alarm 2nd Alarm 
1 77.75% 87.14% 84.04% 94.37% 79.53%
2 75.95% 87.30% 81.94% 94.83% 77.50%
3 76.97% 86.79% 83.85% 95.14% 78.62%
4 78.24% 88.55% 84.01% 95.36% 80.04%
5 75.98% 87.63% 83.71% 94.90% 79.07%
6 77.58% 86.01% 84.04% 94.08% 78.92%
7 76.24% 86.98% 83.65% 95.82% 78.33%
8 76.00% 87.21% 84.87% 94.86% 80.02%
9 76.49% 85.58% 83.84% 95.22% 77.87%
10 75.16% 87.90% 84.90% 94.72% 80.16%

Average 76.64% 87.11% 83.89% 94.93% 79.01%
Stdv 0.97% 0.86% 0.81% 0.49% 0.94%

3 Fused Sensors 

 
 
 

Table 6.16    Average Time-to-Detect Incidents by Different Sensors at 0.5% FAR 

Average TTD (min)

Cal # 8 Delos MCM 1st Alarm 2nd Alarm 
1 5.00 7.47 5.30 2.91 4.68
2 4.75 7.36 6.11 2.69 4.91
3 5.21 7.36 5.63 2.62 5.00
4 4.89 7.44 5.59 2.67 4.82
5 5.12 6.96 6.07 2.80 5.00
6 4.78 8.05 5.96 2.78 4.92
7 4.92 8.29 6.04 2.78 4.96
8 5.45 7.13 5.94 2.84 4.91
9 4.66 8.23 5.57 2.76 4.95
10 5.04 7.00 5.80 2.77 4.88

Average 4.98 7.53 5.80 2.76 4.90
Stdv 0.24 0.49 0.27 0.08 0.10

3 Fused Sensors 
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Table 6.17    St. Dev. of Time-To-Detect Incidents by Different Sensors at 0.5% FAR 

Std Dev. TTD (min)

Cal # 8 Delos MCM 1st Alarm 2nd Alarm 
1 6.73 8.69 5.97 4.73 4.15
2 5.21 10.53 5.73 3.37 3.88
3 4.81 8.51 6.26 2.66 3.29
4 6.01 10.86 5.57 3.42 3.35
5 5.81 8.08 5.84 2.62 3.95
6 5.01 9.62 6.19 3.73 3.58
7 5.68 8.74 7.33 3.93 3.79
8 6.53 9.24 6.47 3.36 4.63
9 5.06 8.66 6.29 2.82 3.36
10 5.37 9.05 6.03 3.02 3.54

Average 5.62 9.20 6.17 3.37 3.75

3 Fused Sensors 
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6.4.5 Conclusions 
In this study, modeling the fused performance of different incident detection sources 

has gradually evolved from using simple arithmetic equation and concluded with a robust 
Monte Carlo simulation model.  

The arithmetic model based on simple probabilistic distribution equations is used to 
predict the combined hypothetical performance of three types of sensors. When sensors 
were combined, the arithmetic model predicted a better performance level versus from any 
individual sensor. Hypothetically, three sensors with 6 minutes, 5 minutes and 4 minutes 
time-to-detect provided an average overall 3.5 minutes time-to-detect. Applying simple 
arithmetic equations to predict the combined performance of incident sensors did not 
properly address sensors’ correlation. Furthermore, two separate simple models are 
required to predict the detection rate and false alarm rate. The Monte Carlo Model has the 
capability to correlate and develop a single model that encompasses both detection rate and 
false alarm rate. 

The Monte Carlo technique works particularly well when the underlying probabilities 
are known but the results are difficult to derive deterministically. Monte Carlo simulation is 
essentially a numerical integration tool for conducting “what if” experiments. Three 
scenarios were investigated to predict the combined performance of detection sensors: (a) 
first vs. second or more alarms, (b) correlated vs. independent (non-correlated) sensors, and 
(c) ideal 100% vs. less than perfect detection rate. 

When processing a hypothetical scenario using the proposed Monte Carlo model, the 
average TTD for the three sensors was lower than any individual sensor. The standard 
deviation of the time to detect was also lower, resulting in more consistent TTD values. 
When waiting for a second confirmatory alarm, the average time-to-detect from the three 
sensors was larger than when detecting at first alarm. This model can be used by decision 
makers to decide the detection sensor to be deployed and whether to detect at first or 
second alarm. Utilizing the assumption that the average TTD for AVI is 6 minutes, ILD is 
5 minutes, and CCTV is 4 minutes, these results are supported by running a numerical 
scenario. Based on the aforementioned hypothetical values, the model estimated the 
combined performance to be approximately 3.3 minutes and 4.8 minutes at first and second 
alarms, respectively. 

Combining CCTV at 85%, ILD at 70%, and AVI at 55% at first alarm resulted in 
98% detection rate compared to 81% at the second alarm. This result suggests that the 
combined performance at second alarm is lower than the highest performing sensor (i.e. 
CCTV). Please note that this result should not be taken in isolation since the false alarm 
rate of the combined sensors performance is lower when detecting at second alarm. 

The proposed Monte Carlo model was validated using traffic and incident data from 
San Antonio’s TransGuide. The proposed model showed higher accurate performance 
when processing the data from Zhou’s study (2000). The results showed that the model is 
capable of acting as a performance prediction tool that could be utilized to decide the types 
of algorithms or sensors that could give the highest performance. Accurately estimating 
each sensor parameters that the model requires is a challenging task since it is difficult to 
assign an exact start time for each incident. 

  



 

 82



 

 83

7. Conclusions and Recommendations 

7.1 Conclusions and Recommendations 
The information flow and decision-making in Texas varies from one traffic 

management center to another. This is primarily due to the different types of traffic sensors 
deployed, level of automation, and the size and demography of the metropolitan served. 
The expanding small size metropolitan areas in Texas could greatly benefit from the 
experience acquired by the large metropolitan areas to manage traffic. Investment decisions 
of the type of traffic sensors to be deployed in any metropolitan area should be carefully 
considered. For example, ILD systems seem to perform poorly and require costly and 
frequent maintenance in areas that have expansive soils, i.e., City of Houston. Sharing 
information about the performance of the existing AVI systems among Texas cities (i.e., 
Austin and Dallas-Fort Worth area) can be of great benefit when considering future toll 
systems.  The types of incident detection sensors and methods currently deployed in Texas 
major cities are diverse, thus conducting Benefit-Cost Ratio studies to justify further 
investment decisions for incident detection is important. 

The data obtained from TransGuide for ILD and AVI is shown to be useful for 
estimating traffic parameters.  Even at low penetration levels of AVI, obtaining reliable 
travel time and space mean speed information is possible. AVI speed data is available for 
comparison with data calculated from ILD sensors in the study corridor. One of the 
benefits of the AVI systems is its capability to directly measure travel time and calculate 
average speeds.   

Significant differences are found among the speeds recorded by different ILD stations 
on the study corridor.  The average speed of the ILD at the milepost 164.909 was lower 
than that of mileposts 164.412 and 165.409 during the non-peak period. Estimating the 
average speed of a link by simply averaging the speed of the three ILD sensors could be 
misleading, therefore, careful consideration of the local highway geometry is important to 
reliably estimate link speed. Exit and entrance ramps cause fluctuation between speed 
measurements. When ILD sensor readings are affected by local geometry, construction and 
maintenance delays, or are not representative of the overall flow of traffic, it is 
recommended to measure the speed of ILD sensors separately and use engineering 
judgment. 

The AVI system is capable of estimating highway travel time with high accuracy. 
Low penetration of AVI tagged vehicles or penetration fluctuation throughout the day can 
lower the creditibility of the AVI system.  The AVI system is not currently reliable enough 
to be implemented for automated incident detection due to the low penetration levels. This 
is particularly true for the San Antonio Network. In contrast, the ILD system is very 
reliable in measuring traffic volume and has reasonable potential to automatically detect 
incidents. Deploying the AVI and ILD systems in the same link provides a better overall 
estimate of traffic parameters and incident detection. Table 7.1 summarizes the conclusions 
for performance potentials of AVI and ILD when deployed separately versus jointly to 
measure traffic parameters and to detect incidents at low AVI penetration rate. Where AVI 
penetration is dense, there is the potential for better estimation of traffic flow parameters 
than with ILDs, but their respective performance for AID depends largely on density of 
loops or AVI readers. While the fused performance of point-based (ILD) and link-based 
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(AVI) systems for AID is demonstrated to be better than that of any system alone, the 
improvement in performance does not justify investment in a second parallel system. This 
is an important factor when making decisions regarding deployment and the use of parallel 
link and point based systems. 

Table 7.1    Performance Potential of AVI and ILD, Working Separately and Jointly 

  

Travel Time Speed Volume AID

AVI

ILD

AVI & ILD  

 

= Low Performance
= Medium Performance
= High Performance  

 

7.2 Future Work 
The major advantage of AVI (link data) is the ability to directly measure travel time 

and derive average speed information. The benefit of ILD (point data) is the ability to 
directly measure occupancy.  

The introduction of wireless location technology via cell phones and GPS systems 
will increase the potential for tracking probe vehicles through a network. Vehicles tracked 
in such a way provide the idea source of information because they can be used to acquire 
both point and link data. 

Research should be conducted to further model the combined performance of point, 
link, and probe systems at varying levels of deployment in order to estimate 1) the Benefit-
to-Cost (B/C) ratio of marginal investments when one system is already in place, 2) the 
B/C ratio of any particular approach, and 3) the B/C ratio of investing in a complete new 
combined system. 
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