
Calibration of Material 
Models for Estimating Impact 

of Construction Quality on 
Life Cycle Performance of 

Pavements 
 
 
 
 

Research Report Number 0-4046-3 
 

TxDOT Project Number 0-4046 
 
 
 

Conducted for: 
Texas Department of Transportation & 

Federal Highway Administration 
 
 

 

February 2006 
 

 

 
 

Center for Transportation Infrastructure Systems 
The University of Texas at El Paso 

El Paso, TX 79968 
(915) 747-6925 

htpp://ctis.utep.edu 



TECHNICAL REPORT STANDARD TITLE PAGE 
1. Report No. 
FHWA/TX-06/0-4046-3 

2. Government Accession No. 
 

3. Recipient's Catalog No. 
 

4. Title and Subtitle 
Calibration of Material Models for Estimating Impact of Construction Quality on 
Life Cycle Performance of Pavements 

5. Report Date  
February 2006 

 6. Performing Organization 
Code  
 

7. Authors 
Brett. T. Haggerty, Imad Abdallah and S. Nazarian 

8. Performing Organization 
Report No. 
Research Report 0-4046-3 

9. Performing Organization Name and Address 
Center for Transportation Infrastructure Systems 
The University of Texas at El Paso 
El Paso, Texas 79968-0516 

10. Work Unit No. 

 11. Contract or Grant No. 
Project No. 0-4046 

12. Sponsoring Agency Name and Address 
Texas Department of Transportation 
Office of Research and Technology Implementation 
P.O. Box 5080 
Austin, Texas 78763-5080 

13. Type of Report and 
Period Covered 
Technical Report 9/02– 1/05 

 14. Sponsoring Agency Code 

15. Supplementary Notes 
Project performed in cooperation with the Texas Department of Transportation 
and the Federal Highway Administration 
Research Study Title:  Impacts of Construction Quality on Life Cycle Performance of Pavements Using 
Mechanistic Analysis 
16. Abstract 
Constructing a pavement that will perform well throughout its expected design life is the main goal of any 
highway agency. The relationship between construction parameters and pavement life, defined by structural 
models, can be described using material models. An algorithm that can model the complexity and identify 
construction parameters that affect the stiffness and consequently remaining life of the pavement system has been 
developed.  Such an algorithm can provide contractors with the ability to concentrate on the parameters that can 
significantly improve the quality of the pavement. By reducing variability of construction parameters and by 
improving the material stiffness, one can thereby statistically minimize the impact of construction activities on 
pavement deterioration.  In this report, the process used to calibrate material models that relate the construction 
parameters to moduli has been carried out.  
 
17. Key Words 
Construction parameters, Material models, 
Pavement Performance, Statistical analysis, 
Variability 

18. Distribution Statement 
No restrictions.  This document is available to the public 
through the National Technical Information Service, 5285 Port 
Royal Road, Springfield, Virginia 22161, www.ntis.gov . 
 

19. Security Classified (of this report) 
Unclassified 

20. Security Classified (of this 
page) 
Unclassified 

21. No. of Pages 
109 

22. Price 

Form DOT F 1700.7 (8-69) 



  

Calibration of Material Models for 
Estimating Impact of Construction Quality on 

Life Cycle Performance of Pavements 
 

by 
 

Brett Haggerty, MSCE 
Imad Abdallah, MSCE 

and 
Soheil Nazarian, Ph.D., P.E. 

 
 

Research Project TX-0-4046 
 
 

Impacts of construction Quality on the Life-Cycle 
Performance of Pavements Using Mechanistic Analysis 

 
 

Performed in cooperation with the 
 

Texas Department of Transportation 
and the Federal Highway Administration 

 
 
 
 
 

Research Report 0-4046-3 
 
 

The Center for Transportation Infrastructure Systems 
The University of Texas at El Paso 

El Paso, TX 79968-0516 
February 2006 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DISCLAIMER 
 
 
The contents of this report reflect the view of the authors, who are responsible for the facts and 
the accuracy of the data presented herein.  The contents do not necessarily reflect the official 
views or policies of the Texas Department of Transportation or the Federal Highway 
Administration.  This report does not constitute a standard, specification, or regulation. 
 
The material contained in this report is experimental in nature and is published for informational 
purposes only.  Any discrepancies with official views or policies of the Texas Department of 
Transportation or the Federal Highway Administration should be discussed with the appropriate 
Austin Division prior to implementation of the procedures or results. 
 
 
NOT INTENDED FOR CONSTRUCTION, BIDDING, OR 

PERMIT PURPOSES 
 
Brett Timothy Haggerty, MSCE 
Imad Abdallah, MSCE 
Soheil Nazarian, Ph.D., P.E. (69263) 



 

 iii 

 
 
 
 
 
 
 
 
 

ACKNOWLEDGMENTS 
 
 
The successful progress of this project could not have happened without the help and input of 
many personnel of TxDOT.  The authors acknowledge Mr. Steve Smith, the project PD and 
David Head, the project PC for facilitating the collaboration and with TxDOT Districts.  They 
have also provided valuable guidance and input. 
 
Special thanks to the PAs, Ms. Lisa Lukefahr, and Mr. Tomas Saenz whom were involved in 
development of the protocol for data collection and have helped in the success of the product 
being developed under this project. 
 
There was extensive field and laboratory work involved with this project and several districts 
were visited.  The authors would like to thank all the TxDOT personal that helped in the data 
collection process.  Special appreciation to the following people who were very instrumental in 
the process: Karl Bednarz (Director of Construction, San Angelo), Gary Humes (Director of 
Construction, Brownwood), Luis Peralez (Transportation Engineer, Pharr), Mohammad Moabed 
(Area Office Engineer, Fort Stockton), Richard Williammee (Laboratory Engineer, Fort Worth), 
and Alan Easterling (Laboratory Supervisor, Fort Worth).   
 
 



 

iv 

 



 

 v 

 
 
 
 
 
 
 
 
 
 

EXECUTIVE SUMMARY 
 
 
The ability of a flexible or rigid pavement to perform adequately throughout its design life is one 
of the biggest challenges that transportation agencies face.  One factor that has a large impact on 
the performance of a pavement is the quality of construction.  The implementation of an effective 
performance-based construction quality management program is one way of ensuring that 
pavements are meeting their expected service life.  As a part of that program a tool for 
determining impact of construction quality on life-cycle performance of pavements is required. 
 
Ideally, if a pavement section is designed with the same cross section and constructed with the 
same materials, its performance should be uniform throughout the section.  This is not the case in 
the real world.  Almost every constructed road develops distresses randomly in different 
subsections of the pavement.  One reason for the random development of distress is the 
variability in construction quality.  As such the goal in this project is to devise a tool that can be 
used to identify and minimize variability in material properties that impact the performance of 
the pavement to ensure a performance period compatible with the expected life of the pavement.  
With that framework, structural models that predict performance of pavements and material 
models that relate construction parameters to primary design parameters were identified.  Finally, 
a statistical algorithm that relates the impact of each construction parameter to the performance 
of a pavement is incorporated into the algorithm.   
 
To arrive at realistic conclusions, the material models have to be calibrated to the local 
conditions.  This report contains the information and process necessary for calibrating such 
models. 
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IMPLEMENTATION STATEMENT 
 
 
At this stage of the project the tools developed can be used for limited implementation.  The 
software has undergone major changes to increase its flexibility and expand its ability to identify 
and minimize variability in material properties that impact the performance of the pavement to 
ensure a performance period compatible with the expected life of the pavement.  The software is 
called Rational Estimation of Construction Impact on Pavement Performance (RECIPPE).  It can 
be used to reconcile the results from realistic pavement-performance models used in the state of 
practice, or those widely accepted by state agencies, with statistical process control techniques 
and uncertainty analysis methods, to determine project-specific parameters that should be used in 
construction quality management 
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CHAPTER ONE 

INTRODUCTION 
 
 
PROBLEM STATEMENT 
 
Constructing a pavement that will perform well throughout its expected design life is the main 
goal of any highway agency.  Hence, it becomes necessary to develop a process that reflects the 
effect of construction on the life of a pavement.  This process, in practice, can show the impact 
of construction quality on how a pavement performs.  As a result, cost incentive/disincentive can 
be quantitatively implemented that incorporates future expenditures due to rehabilitation costs 
for a poorly constructed pavement. 
 
The relationship between construction parameters and pavement life, defined by structural 
models, can be described using material models.  Material models are created to show 
connections between construction parameters and quality of pavement materials.  For example, if 
a layer of asphalt concrete pavement (ACP) is completely uniform in properties, no change in its 
modulus is expected at any location.  However, in real world situations this layer will not be 
completely uniform.  This non-uniformity can be attributed to a number of construction 
parameters, such as aggregate gradation, or binder stiffness or compaction efforts. 
 
Fortunately, the complexities of relating the material stiffness to different constituents can be 
modeled by applying a statistical analysis.  The statistical analysis estimates the average and 
variance in stiffness for the entire section of an AC layer by considering variability in the 
constituents.  By introducing multiple layers and a larger number of relevant construction 
parameters, the relationship becomes more complex.  Part of this research effort is the 
development of an algorithm that can model this complexity and identify construction 
parameters that affect the stiffness, and consequently remaining life of the pavement system.   
 
The goal of this algorithm is to identify, in a quantitative matter, construction parameters that are 
important to the remaining life of a pavement.  Such an algorithm can provide contractors with 
the ability to concentrate on the parameters that can significantly improve the quality of the 
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pavement.  By reducing the variability of construction parameters and by improving the material 
stiffness, one can thereby statistically minimize the impact of construction activities on pavement 
deterioration.   
 
This type of algorithm provides a tool that can determine project-specific parameters that should 
be used in construction quality management based on statistical process control techniques and 
uncertainty analysis methods. 
 

OBJECTIVE 
 
The first objective of this study is the development of rational algorithms to reconcile the results 
from several pavement-performance models used in the state of practice to determine project-
specific parameters that should be the focus of the construction quality management.  The 
algorithms incorporate systematic statistical process control techniques and uncertainty analysis 
methods.   
 
The research effort presented is a continuation of previous work documented by Abdallah et al. 
(2002).  They demonstrated the feasibility of such an algorithm and prototyped it in a program 
using MS Excel.  The work presented in this report describes the optimization of that work.  
Since several material models found in the literature are used in the algorithm, the second 
objective is to validate the appropriateness of these models and algorithms, and when necessary, 
to develop new material models.   
 
The third objective is to improve the prototype program that was developed by Abdallah et al. to 
be used in practice for the construction of pavements.  Once important construction parameters 
are identified, contractors and inspectors can focus their efforts on those parameters to ensure 
optimal construction quality. 
 

ORGANIZATION 
 
Chapter 2 of this report introduces information on existing methods, presents an overview of 
performance-based methodologies, and provides a background on some of the mathematical and 
analysis tools used in this project.  In Chapter 3, an illustration of the algorithm’s statistical 
theory is presented, showing the credibility of the process.  Chapter 4 describes adjustments 
made to the previous prototype to provide optimal results.  Also included in Chapter 4 are the 
additions to the prototype process, including: a) Reliability Analysis, b) Automation of 
Prototype, c) Sample Size Calculations, d) Control Chart Analysis, and e) Cost Allocation.  
Chapter 5 describes the calibration of the current material models using regression analysis based 
upon empirical information.  Chapter 6 presents a case study that demonstrates the use of the 
analysis tool and how the impact of variability of construction parameters impacts variability of 
performance.  Chapter 7, the final chapter, includes the summary of the work accomplished, 
conclusions based on the results, and future recommendations. 
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CHAPTER TWO  

BACKGROUND 
 

BACKGROUND 
 
Abdallah et al. (2002) showed that a statistics-based algorithm may provide project-specific 
parameters for construction quality management that may lead to a more efficient use of funds 
and resources.  The basic concept of the process is to first quantify relevant construction 
parameters for their ideal values and corresponding variances.  Once each value has been 
defined, a mechanistic analysis is employed to estimate the resulting probabilistic remaining life, 
or performance.  The purpose of the developed algorithm is to provide the contractors and 
designers with the necessary resource to measure the impact of the construction activities on the 
performance of a project.  Ultimately, the production and inspection costs can be optimized and 
the quality of road can be improved, if the guidelines provided by the algorithm are followed. 
 
Other than Abdallah et al.’s work, several major studies have been carried out relating quality of 
constructed materials to pavement performance.  Weed (1998) describes a conceptual method 
that utilizes the AASHTO 1993 design procedure with the statistical quality control to predict the 
as-built life of the pavement, and to tie it to a value using engineering economy principles. 
 
Patel and Thompson (1998) also provide a comprehensive probabilistic-based method for 
estimating the as-built performance of a pavement using statistical quality control.  Unlike Weed 
(1998), they used a calibrated mechanistic-empirical model developed for the Illinois 
Department of Transportation.   
 
Ferregut et al. (1999) summarize a large number of mechanistic or mechanistic-empirical models 
that can be used to predict the remaining lives of pavements based on pavement layer stiffness 
parameters.  The authors also developed a systematic approach to assess the impact of variability 
of these parameters on the variability of the pavement remaining life. 
Ayres and Witczak (1998) describe a probabilistic mechanistic performance model very similar 
to the one used in the newly-developed mechanistic-empirical design program (Witczak, 2003). 
The model comprehensively considers a large number of parameters that can impact the 
performance.  For example, moduli of layers and their variations with time and temperature are 
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Construction 
Parameters 

 
Gradation, Degree 

of Compaction, 
Maximum Dry 
Density, etc. … 

the primary parameters used in the predictive models.  However, all moduli are predicted from 
surrogate parameters using regression equations.   
  
The approach that Abdallah et al. (2002) developed is the basis for this report and is summarized 
below.   
 
Methodology 
 
The general methodology described by Abdallah et al. (2002), as shown in Figure 2.1, is divided 
into several phases.  The first phase is the determination of the construction parameters 
(represented by the inner circle).  The second phase is the selection of the material characteristics 
models (represented by the middle circle), which is the link between the construction parameters 
and the pavement performance (represented by the outer circle).  These phases form the 
mechanistic process, and are used in a tool to estimate the impact of construction variability on 
performance.  Once the parameters and models from the three phases are established, the 
probabilistic algorithms allow pavement engineers to maximize the effectiveness of inspection 
and to optimize the testing resources during the construction process. 
 

 
Figure 2.1 - Conceptual Framework for Optimization of Construction Parameters through 

Mechanistic Analysis 
 
In practical terms, the contractor is trying to achieve acceptable limits for pavement life (with 
respect to fatigue cracking, rutting, etc. …) as specified by the designer.  The only way the 
contractor can hope to meet the designer’s specifications is by manipulating elements within the 
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Enter in mean and coefficient of variation 
(COV) values for all relevant parameters 

Run statistics-based algorithm 

Analyze pavement performance model results and variabilities 

Are the results 
acceptable?

Analyze the impact 
of the construction 
parameters on the 

performance 
models 

Adjust mean 
and/or COV 

values for 
impactful 

parameters 

END

NO 

YES 

contractor’s control (the construction parameters).  Hence, the conceptual framework, as 
depicted in Figure 2.1, shows how the contractor can accomplish the designer’s specifications.   
 
This methodology can also be utilized as an iterative process that adjusts construction parameter 
variability until acceptable pavement performance variability is achieved.  To be specific, Figure 
2.2 shows how this methodology can be used to obtain the desired performance by focusing on 
the most important construction parameters. 

 
Figure 2.2 – General Flow of Methodology 

 
The initial input, shown in Figure 2.2, is based on the mean and variance of each construction 
constituent found either in historical data or required specifications.  These constituents are then 
simulated in the statistics-based algorithm by varying the inputs according to a normal 
distribution and placing the simulations into the material models.  The results from the material 
models are, in turn, entered into the performance equations to estimate the pavement life and 
pavement life variance.  If the simulated pavement life meets the design specifications, the 
algorithm can provide the contractor with the necessary construction parameter mean and 
coefficient of variation (COV) values.  If the results are not acceptable, the user can adjust COV 
and/or mean values of relevant construction parameters until the pavement performance 
specifications are met. 
 
The result of this iterative process is a statistics-based algorithm that provides viable information 
to improve the quality of pavement through quality assurance/quality control (QA/QC) 
techniques.  The goal of this approach is to minimize the variability in material properties that 
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impact the performance of the pavement.  This effort will promote a pavement that develops 
distress uniformly.  
 
Abdallah et al. (2002) developed a prototype of an algorithm called “Rational Estimation of 
Construction Impact on Pavement Performance (RECIPPE).”  The prototype was equipped with 
features that include: 
 

• Material Models 
• Performance Models 
• Impact Charts 

 

PROTOTYPE DESCRIPTION 
 
The features utilized by the prototype program are detailed by Abdallah et al., but a brief 
summary is provided within this section. 
 
Material Models 
 
Figure 2.1 showed that material models tie construction parameters to performance models.  
Material models provide the modulus for individual layers that can be established through the 
construction parameters.  In the initial prototype, a three-layer system could be calculated with 
an asphalt concrete pavement (ACP) layer, a base layer and a layer of subgrade.   
 
A popular model, known as the “Witczak” model, (see Patel and Thompson, 1998, or Ayers and 
Witczak, 1998) is a regression-based equation used to determine the modulus of the ACP layer.  
This equation is shown below: 
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where EAC is the dynamic modulus of AC mix (in 105 psi), η is bitumen viscosity (in 106 poise) 
at 70oF, f is the load frequency (in Hz), Vv is percent air voids in the mix by volume, Pac is 
percent effective bitumen content by volume, and P200 is percent passing No. 200 sieve by total 
aggregate weight. 
 
Material models for base and subgrade layers are separated for granular and cohesive soils.  The 
popular universal constitutive equation (Barksdale et al., 1997), was adopted for this study.  The 
general form of the universal equation is: 
 

32
1 k

d
k

R kM σθ=                                                                (2.2) 
where 321 σσσθ ++= = bulk stress, and 31 σσσ −=d = deviator stress (σ1, σ2 and σ3  are the 
three principal stresses). Parameter MR represents the resilient modulus of a specimen.  
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Parameters k1, k2 and k3 are material and physical parameters that are obtained from equations 
developed from a multiple regression procedure (Santha, 1994).  These parameters are defined 
separately for granular soils, including the base, and cohesive soils.  For granular materials, these 
parameters are found using:  
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In Equations 2.3 through 2.5, MCR represents the ratio of moisture content (MC) to optimum 
moisture content (MOIST), COMP is the degree of compaction and SATU is the degree of 
saturation.  Also, S40 represents the percent passing sieve #40, SLT is the percent of silt, CLY is 
the percent of clay in the layer, SW is the percent of swell value, SH is the percent of shrinkage, 
DEN is the maximum dry density (in pcf) and CBR is the California bearing ratio. 
 
For cohesive materials, the following set of equations is used:  
 

             
( )

SATUSDENSW
PILLSLTCOMP

MCMOISTkLog

*40*00001.0*052.0*021.0
*016.0*015.0*0037.0*

171.9*131.0*045.0813.191

+−−
−++
−−−=

                         (2.6) 

 
                                                02 =k                                                                       (2.7) 

 

                   
DEN

SHPISCOMP
MCRMOISTk

*046.0
*014.0*0087.040*0088.0*

471.3*06.1*097.0274.103

−
+−+

−−−=

                                  (2.8) 

The dependent parameters used in Equations 2.6 through 2.8 are the same as described for the 
granular materials, except for the PI and LL values, which stand for the plasticity index and 
liquid limit, respectively.   
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Performance Models 
 
Once the modulus of each layer has been determined, it can be translated to the remaining life of 
the pavement through pavement performance models.  To benchmark similar analyses, four 
performance models that represent possible modes of failure for flexible pavements have been 
used.   
 
The first model, which deals with the permanent deformation in the ACP layer, is (Finn et al., 
1984):   
 

      cNwRR σlog118.1)log(167.0log343.4617.5log 180 −−+−=                        (2.9) 
  
Equation 2.9 is applicable to ACP layers that are less than 6 in. thick.  For full-depth asphalt 
pavement with ACP equal to or greater than 6 in. in thickness: 
 
   cNwRR σlog666.0)log(658.0log717.0173.1log 180 +−+−=                     (2.10) 

 
where RR is the rate of rutting in micro-inches (1 µin. =10-6 in.) per axle load repetition, wo is 
the surface deflection in mil (1 mil=10-3 in.), σc is the vertical compressive stress under the ACP 
in psi, and N18 is the equivalent 18-kip single-axle load in 105 ESALS.  Since the pavement has 
not been constructed, the surface deflection, wo, is obtained by executing the forward model with 
the mean values for the pavement layer properties under 9000 lb load. 
 
The second pavement performance method concentrates on finding permanent deformation in 
the subgrade, as defined in Equation 2.11 (Huang, 1993).   
 

                                        5)(4
f

cd fN −= ε                                                           (2.11) 
 

In addition to permanent deformation, pavement failure may also result from cracking.  This 
particular type of pavement failure is calculated using the following equation (Huang, 1993):   
 

                                        32 )()( 11
ff

tf EfN −−= ε                                                   (2.12) 
 

where Nf  and Nd are the allowable number of load repetitions to prevent fatigue cracking and 
rutting respectively, εt is the tensile strain at the bottom of the ACP layer, E1 is the elastic 
modulus of asphalt-concrete layer (in psi), εc is the compressive strain at the top of subgrade and 
parameters f1 through f5 are design constants derived from field and laboratory testing.  
Commonly used coefficients are based on the Asphalt Institute equation where f1 through f5 are 
0.0796, 3.291, 0.854, 1.365x10-9 and 4.477, respectively (Huang, 1993). 
 
The final model was developed by the American Association of State Highway and 
Transportation Officials (AASHTO) for flexible pavements to estimate the cumulative expected  
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18-kip equivalent single-axle load.  This model was developed to consider environmental, 
serviceability and reliability factors, in the form of: 
 

   07.8log32.2

)1(
10944.0

]
5.12.4

[log
20.0

)1(log36.9)(log

10

19.5

10

1001810

−×+

+
+

−
∆

+−

+×+×=

R

R

M

SN

PSI
SNSZW

                                       (2.13) 

 
2211 DaDaSN +=                                                       (2.14) 

 
where W18 is the number of 18-kip equivalent single axle load repetitions to failure, ∆PSI is the 
design serviceability loss, ΖR is the reliability factor, S0 is the overall standard deviation, SN is 
the structural number of pavement.  Parameters a1 and a2 are layer coefficients for the surface 
and base layers, respectively; and D1 and D2 are the thicknesses of the surface and base layers, 
respectively.  Parameter MR is the effective roadbed soil resilient modulus. 
 
In the AASHTO model for flexible pavements, the only parameters that can be related to design 
or construction are SN and MR.  Parameter SN is a function of layer coefficients and layer 
thicknesses.  AASHTO design guide proposes a relationship between layer coefficients and the 
resilient modulus of the corresponding layer approximated by: 
 

   70.0278 - 0.295  0.0967 - 0.0174  0.0012-  1
2

1
3

1
4

11 EEEEa ++=                      (2.15) 
 

where E1 is modulus of top layer.  Similarly, layer coefficient for granular base, a2, can be related 
to its modulus, E2, using:  
 

                                   977.0)(log249.0 22 −= Ea                                                (2.16) 
 
The AASHTO equation, although empirically developed, was incorporated into the analysis for 
completeness.  The methodology developed provides flexibility to incorporate several types of 
performance models as long as the parameters of the equation can by tied into the layer 
properties. 
 
Impact Charts 
 
Through the models and methodology discussed above, it is possible to estimate the performance 
for each of the failure modes based on the mean value of the construction parameters (also 
referred to as deterministic remaining lives).  However, in real-world situations, no construction 
parameter can be constant, and (some variability needs to be considered) consequently, the 
performance models will also carry variabilities.  Hence, for each performance model, the COV 
is found through a statistical algorithm.  The impact charts compare the influence of each 
construction parameter’s corresponding COV on the remaining life COV values.  The COV of 
remaining life is estimated based on two types of probabilistic analysis: 1) Monte Carlo 
Simulation and 2) Two Point Mass (TPM) Simulation. 
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Monte Carlo simulations randomly generated values for uncertain variables.  In this case, the 
construction parameters are randomly created multiple times to simulate a continuous model.  
For example, if the base thickness would vary according to a normal distribution with a mean of 
6 inches and a COV of 2%, a continuous curve can be created, as shown in Figure 2.3. 
 

Figure 2.3 – Theoretical Continuous Curve for Base Thickness 
 
Similarly, the TPM simulation is used to approximate low-order moments of functions for 
construction parameters (Rosenblueth, 1981).  This is achieved by replacing continuously 
randomly generated values with a few discrete values. In this case, the base thickness continuous 
random variable (represented by a mean, a COV and a skewness coefficient) is replaced by two 
discrete variables that provide the same mean, COV and skewness coefficient as the continuous 
distribution.  The result is a simulated curve similar to the one shown in Figure 2.4. 
 

 
Figure 2.4 – TPM Simulated Curve for Base Thickness with Normal Distribution 

 
The methodology described accounts can handle several different distributions and not just 
normal.  However, the normal distribution was implemented here to simplify the process, since 
many distributions such as the chi-square can be derived from the normal distribution.  Also, 
RECIPPE is developed to accommodate new material models and perhaps new construction 
parameters and therefore it would be much easier at this time to assume a single distribution.  At 
a later date and depending on the successful use of this program,, the selection of the distribution 
for each parameter can be implemented as part of the input.  With the current assumption that all 
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parameters follow a normal distribution, the skewness coefficient has an equal weight of 0.5 for 
each mass in the TPM simulation.  In the event that the parameter in question does not follow a 
normal distribution, both the Monte Carlo and Two Point Mass approximations would have to be 
altered.  This occurrence will not be discussed in this study.   
 
The major difference between the Monte Carlo and TPM simulations is the number of iterations 
it takes to complete a simulation.  With a Monte Carlo simulation, 500 simulations are 
considered adequate enough to model a normal distribution (Abdallah et al., 2002), while the 
number of iterations for TPM varies with the number of random variables represented by: 
 

                                VariablesRandomofNumber2IterationsTPM =                                      (2.17) 
 
For all material and performance models used, two types of statistical analyzes are performed: 1) 
varying values for a single construction parameter and 2) varying all parameters at once.  In this 
project, the TPM and Monte Carlo simulations can be used independently or in unison.   
 
For the two types of statistical analyses, 31 construction and design parameters are used.  In the 
first type of statistical simulation, the point of interest is varying 31 parameters independently to 
show how the life of the pavement will vary when only a single parameter is varied.  
Consequently, using the 31 defined parameters in the Monte Carlo simulation would generate 
500 iterations for each parameter.  The result would be 15,500 total iterations (31 parameters 
times 500 simulations for each parameter).  With the TPM, the number of iterations is reduced to 
62 (31 times 21), while still maintaining a high level of accuracy when compared to a continuous 
function.   
 
The TPM is a more efficient use of simulation time, but only when varying a small number of 
parameters at a time.  Because Equation 2.17 is used to find the number of simulations for all of 
the parameters in question, only two simulations are needed for each parameter.  However, when 
all of the parameters are changed simultaneously, the number of calculations using TPM 
increases exponentially.  For example, if one was interested in finding how the material model 
would vary when all of the construction parameters changed, using TPM would require 231 
simulations.  This is why the Monte Carlo simulation is a good replacement for this situation, 
with 500 iterations.   
 
This does not imply, however, that one is limited to using only the Monte Carlo or TPM 
simulations alone, they can also be run in unison.  Due to the modularity of the material and 
pavement performance equations, the TPM simulations can be used to calculate the variance of 
the remaining life when one parameter changes, and the Monte Carlo simulations can be used 
when all of the construction parameters are simulated together.  This results in 2062 total 
simulations; 62 TPM simulations, 500 simulations when only varying ACP parameters, 500 
when only varying base parameters, 500 when only varying subgrade parameters and 500 when 
varying all parameters together.  These simulations provide users with the pavement 
performance variance when one parameter is run, when only the layer moduli changes and when 
all parameters vary at once. 
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When the simulation is carried out for a single construction parameter, it is possible to create pie 
charts showing how each parameter impacts the variability of a performance model with respect 
to the other construction parameters.  The values that are entered into the pie charts are called 
normalized impact values, shown in Equation 2.18: 
 

                                     
∑

=

= n

i 1 ALL

i

ALL

i

i

COV
COV

COV
COV

NIV                                                     (2.18) 

 
where NIV is the normalized impact value for construction parameter i, the COVi is the 
coefficient of variation of the pavement performance model for construction parameter i and the 
COVALL represents the coefficient of variation for the same pavement performance model when 
all input parameters, for a single layer, are simultaneously varied.  
 
By placing all of the NIVs in a pie chart, a new definition for the impact of construction 
parameters on the variability of a remaining life model, or material model, can be created called 
an impact chart.  Figure 2.5 is an example of an impact chart that exhibits the relative impact 
values of six parameters labeled P1 to P6.  In this example, P1 is very significant and impacts the 
performance indicator the most, while parameters P3 and P6 have negligible impact on the 
performance indicator.  If one is interested in changing the mean and COV of the performance 
indicator associated with these parameters, she/he should focus on P1.  By reducing the COV for 
this parameter, not only will the model COV reduce, but so will the parameter’s NIV. 
 

 

Figure 2.5 – Impact Chart 
 
The material models, pavement performance models and impact charts compromise the 
statistical algorithm mentioned in Figure 2.2.  Now that these processes have been described in 
detail, the updated flow can be shown in Figure 2.6.  Figure 2.6 follows the same flow as the 
general method, depicted in Figure 2.2.  However, the statistical based process, shown in Figure 
2.2, has been changed in order to show how impact charts and pavement performance are 
estimated.  
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Figure 2.6 – RECIPPE Methodology with Specification of Statistical Algorithm Flow 
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CHAPTER THREE 

ILLUSTRATIVE EXAMPLE USING ACP PARAMETERS 
 

 

INTRODUCTION 
 
In this chapter, a limited implementation of the algorithms is presented to illustrate the 
consequence of variability in construction.  This process will also demonstrate the use of 
RECIPPE to identify the impact of construction variability on the pavement performance.  In this 
sample case, the focus will be on the ACP layer.  The moduli for the base and subgrade layer are 
assumed constant with values of 50 ksi and 10 ksi, respectively.   
 
The parameters used in the ACP layer simulation are based on the material model presented in 
Chapter 2 (Equation 2.1).  The model is a function of the following parameters: viscosity of 
binder, load frequency, percent air voids, percent asphalt content, and percent passing No. 200 
sieve.  Table 3.1 contains three sets of values for the parameters used in analyzing the ACP layer.  
Two of the parameters, temperature and loading frequency, are not controlled by the contractor 
during construction, and as such, these parameters are fixed as illustrated in Table 3.1.  The 
remaining four parameters are controlled by the contractor and the variability of these parameters 
could change due to construction practices.  In this study two parameters (asphalt content and air 
voids) were selected to illustrate their impacts on pavement performance.  The performance 
models selected for illustrating the methodology were fatigue cracking, subgrade rutting and 
ACP rutting.   
 

Table 3.1 - Values of ACP Material model Parameters Used in Case Study 

Case 
% Aggregate. 
Passing Sieve 

No. 200 

Air Voids, 
% 

Asphalt 
Content, 

% 

Asphalt 
Viscosity, 
106 poise 

Temperature,* 
oF 

Loading 
Frequency*, 

Hz 
1 5 12 5 0.0022 
2 10 8 5 0.0022 
3 15 4 5 0.0022 

77 18 

        * - contractor does not have control over these parameters. 
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To show the response of the analysis on a wide range of pavement sections, four typical 
pavements are used in this study.  The sections have an ACP thickness varying from 2 in. to 6 in. 
and for the base layer varying from 6 in. to 12 in.  The matrix presented in Table 3.2 contains the 
combination of cases that were analyzed.   
 

Table 3.2 - Matrix of Pavement Sections Used for illustrating RECIPPE 
Pavement Sections Modulus (ksi) 

Thin-Thin Thin-Thick Thick-Thin Thick-Thick 
Base /Subgrade ACP* 2in. - 6in. 2in. - 12in. 6in. - 6in. 6in. - 12in. 

240 Case 1 Case 1  Case 1  Case 1 
400 Case 2 Case 2  Case 2  Case 2 50 / 10 
680 Case 3 Case 3  Case 3  Case 3 

       * - ACP moduli are determined from AC material model. 
 
As an example, the variations in the COV of the remaining life, as a function of the COV for the 
AC content in thin AC and thick base pavements for the three cases in Table 3.1, are presented in 
Figure 3.1.  The mean value of the asphalt content is fixed at 5%.  In all three cases, the 
performance indicator that is impacted the most is fatigue cracking.  In Case 1, where the mean 
air voids is 12%, the COV due to fatigue cracking is 81% for a 50% COV for the AC content.  
As the mean air voids decrease to 8% and 4%, the COVs of the remaining life due to fatigue 
cracking decrease to 39% and 19%, respectively.   
 
The variability of the asphalt content on the variability of the performance in terms of subgrade 
rutting and ACP rutting are small in all three cases.  With an AC content COV of 50%, the 
variability in remaining life due to subgrade rutting increased from 14% to 15% to 19% for 
Cases 1, 2 and 3, respectively.  For remaining life due to ACP rutting, the variability was less 
than 13%.    
 
The variations in performance indicators, as a function of the COV of AC content at a mean air 
voids of 8% for the four typical pavement sections, are shown in Figure 3.2.  The most sensitive 
performance indictor changes depending on the thickness of the layers.  For the thin ACP 
pavements (Figures 3.2a and 3.2b), the fatigue cracking is the most sensitive parameter; while 
for the thick ACP pavements (Figures 3.2c and 3.2d), the subgrade rutting is the most sensitive.  
In the case of thin ACP pavements, the subgrade rutting and ACP rutting performance indicators 
show little sensitivity to the COV of the asphalt content.  As the thickness of the ACP layer 
increases, the sensitivity of the subgrade rutting and ACP rutting performance indicators also 
increases.  This trend shows that as the ACP layer thickness increases and the base layer 
thickness decreases the impact of variability of asphalt content on pavement performance 
becomes more pronounced.  The results of all twelve cases depicted in Table 3.2, for the impact 
of varying asphalt content, are graphically presented and summarized in a tabular form in 
Appendix A. 
 
In part 2 of the case study, the variations in the COV of the remaining lives are analyzed as a 
function of the COV of the air void contents.  The air void contents of the ACP layer were 
changed from 12% to 8% to 4%.  As an example, the results from the thin ACP-thin base section 
are shown in Figure 3.3.   
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Figure 3.1 - Impact of Variability in Asphalt Content on Remaining Lives 
 
 



 

 

18

 

Figure 3.2 - Results of Impact of Variability of Asphalt Content on Remaining Life for Four Typical Pavement Sections 
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Figure 3.3 – Results of Impact of Variability of Air Voids on Remaining Life Varying AC 
Modulus 
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As in the previous case, the variability of each performance indicator increases with increasing 
the variability in this construction parameter.  Comparing the three graphs, the impact of 
construction variability on performance is less significant as the air void contents get smaller.  
The largest impact is for the air voids of 12%.  Another observation is that the fatigue cracking 
as a performance indicator is much more sensitive to the variability in air void content than the 
other two performance indicators.  
 
The variations in the variability of the performance indicators as a function of the variability in 
air void content for the four typical pavement sections are shown in Figure 3.4.  The same trends 
observed in Figure 3.2 are present here.  The fatigue cracking as a performance indicator is more 
sensitive to the variability of air void content for the thin AC pavements as compared to the thick 
AC pavements.  Also, as in Figure 3.2, the subgrade rutting criterion is more impacted by the 
variability in the air void content for the thick AC pavements than for the thin AC pavements.  
The results of all twelve cases depicted in Table 3.2, for investigating the impact of varying 
percent air voids, are graphically presented in Appendix B. 
 
The overall results of these experiments illustrate the versatility of the algorithm in RECIPPE to 
analyze different flexible pavement sections.  This case study showed two situations where the 
effect of one parameter is varied.  However, for actual field data, the number of construction 
parameters that are variable is more, and the combining effect of their variability increases the 
complexity of the analysis.  The algorithm incorporated in RECIPPE is able to handle such 
complexities.   
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Figure 3.4 - Results of Impact of Variability of Air Voids on Remaining Life for Four Typical Pavement Sections 
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CHAPTER FOUR 

IMPROVEMENTS TO ALGORITHM 
 

INTRODUCTION 
 
A framework detailing the impact of construction parameters on the remaining life of pavements 
was established from the prototype of RECIPPE.  The next stage in the development of 
RECIPPE was to expand the program to a comprehensive and flexible tool that would be of 
practical use to a state highway agency.  The following general modifications were made to the 
prototype:  
 

1) The impact value was calculated more efficiently by using fewer simulations 
2) The interface was modified to allow the following items: 
   

a) Uncertainty analysis in the performance predictions 
b) Automation of the optimization process 
c) Customization of material and performance models  
 

3) Quality control methods, based on control charts, was implemented 
 
These changes provided a more practical algorithm. 
 

EFFICIENCY OF TIME 
 
Based on test trials, a limitation with the RECIPPE prototype was the duration of time needed to 
execute the simulations.  Due to the large number of statistical simulations (using the Monte 
Carlo and TPM simulations), the execution time was more than 30 minutes on a 500 MHz 
computer with over 380 MB of RAM.  To reduce this processing time, three methods were used: 
 

• Reduction of the number of construction parameters 
• Reduction of the number of simulations 
• Improvement in necessary computer memory 
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Reduction of Parameters 
 
The first step in accelerating the simulation of the impact of construction variability on 
performance variability was to reduce the number of parameters.  This is accomplished by: 1) 
removing the insensitive parameters in the material models from the probabilistic analysis, and 
2) considering the interdependency among some of the parameters. 
 
Abdallah et al. (2002) conducted a sensitivity analysis with the RECIPPE prototype to quantify 
the impact of each construction parameter on the four pavement performance equations.  They 
showed that some parameters had no significant impact on any of the performance models.  As a 
result, these parameters were replaced with constants in the material models.  Table 4.1 lists the 
parameters that were considered constant. 
 

Table 4.1 – Insensitive Parameters Removed from Simulation 
Layer Parameter Assumed Constant Values* 

Shrinkage 2% 
Base 

Swell 2% 
Shrinkage 4% 

Subgrade 
Swell 10% 

     * - Values are extracted from Abdallah et al. (2002) 

The second method used to reduce the number of input parameters was to consider the 
relationships that existed between the inputs parameters.  Specifically, the degree of saturation 
and California Bearing Ratio (CBR) showed a direct correlation with the other parameters. 
 
The degree of saturation is actually a value that can be determined from some of the other 
parameters in the models, as opposed to being measured.  This is depicted below (Coduto, 1999): 
 

( ) 1
max

−
=

d

ws
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G

wG
S

γ
γ

                                               (4.1) 

 
Where S is the degree of saturation, w is the field moisture content, Gs is the specific gravity of 
soil (estimated as 2.7), γw is the density of water (62.4 pcf), Comp is the degree of compaction 
and γdmax is the maximum dry density.  The CBR value measured in the field or based on 
Equation 4.2, as shown below, is a good approximation for stiff and soft soils (Webster et al., 
1992).   

5625.1

55.2
⎟
⎠
⎞

⎜
⎝
⎛= soilE

CBR                                                 (4.2) 

 
In Equation 4.2, Esoil is the modulus of the soil in question, measured in ksi.  A list of all the 
input parameters is shown in Table 4.2. By removing eight parameters, the 31 initial inputs were 
reduced to 23.   
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Reduction of Simulations 
 
To further reduce the processing time, an analysis was conducted on the calculations being 
performed.  The analysis demonstrated that Equation 2.18 could be reduced to: 
 

∑
=

= n

i 1
i

i
i

COV

COV
NIV                                                        (4.3) 

 
The change in the equation was a result of a simple algebraic relationship that existed between 
the COV when all input parameters, for a single layer, are simultaneously varied (COVALL).  In 
Equation 2.18, the COVALL values are cancelled out, rendering the calculation of this parameter 
useless.  Hence, there is no need for individual layers to be simulated.  As a result, the number of 
calculations is reduced from 2,062 to 546 (46 TPM simulations and 500 Monte Carlo 
simulations).   
 
Improving Amount of Necessary Computer Memory 
 
The amount of time needed to run RECIPPE was further reduced by placing the material models 
into a dynamic link library (DLL).  DLL’s, which are executable files that are loaded into 
memory when the algorithm is executed, substantially reduce the amount of memory necessary 
for the actual execution.  This also allows for modularization, so that the DLL can be accessed 
multiple times from the same algorithm without relinquishing memory that can be allocated 
elsewhere.   
 
Consequently, these three adjustments reduced the process time from thirty minutes to about two 
minutes on the same computer. 
 

UNCERTAINTY ANALYSIS, AUTOMATION & CUSTOMIZATION 
 
Uncertainty Analysis in Performance Models 
 
To improve the user interface, and provide more flexibility, an additional enhancement was 
added to the program to offer users the ability to perform uncertainty analysis.  As depicted in 
RECIPPE’s flow chart in Figure 2.6, the users have to decide if the pavement performance 
values and associated variabilities are acceptable.  However, the levels of acceptability were 
never identified.  By introducing a reliability factor, the users are allowed to incorporate the level 
of confidence desired.   
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Table 4.2 – Input Parameters to Material Models 
Layer Parameter 

Thickness 
Modulus 

Aggregate Passing No.200 
AC Mix Air Void 
Asphalt Viscosity 
Asphalt Content 

Loading Frequency 

Asphalt/Concrete Layer 

Temperature 
Thickness 
Modulus 

Maximum Dry Density 
Optimum Moisture Content 

Moisture Content 
Degree of Compaction 

Aggregate Passing No.40 
Percent of Clay 

Base Layer 

Percent of Silt 
Thickness 
Modulus 

Maximum Dry Density 
Optimum Moisture Content 

Moisture Content 
Degree of Compaction 

Aggregate Passing No.40 
Percent of Clay 
Percent of Silt 
Liquid Limit 

Subgrade Layer 

Plastic Index 
Load in 105 

Standard Normal Deviate, ZR 
Overall Standard Deviation, S0 

The Drainage Coefficient of Second Layer , m2 

AASHTO Design 
Coefficients 

∆PSI 
 
To be specific, a normal distribution was assumed for all of the input and output values.  
Therefore, it was possible to supply the confidence level as a function of the required remaining 
life specifications.  For example, if the mean and COV for the remaining life due to fatigue 
cracking were 24 x 106 ESALs and 20%, respectively, then a probability density function could 
be generated.  To determine the acceptable confidence level, where the pavement would not fail 
due to fatigue cracking before 25 x 106 ESALs, one simply must find the area under the curve, as 
shown below. 
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Figure 4.1 – Probability Density Function for Continuous Functions 
 
Figure 4.1 depicts a one-tailed test, indicating that it is only necessary to analyze minimum 
thresholds of pavement performance.  The confidence level shows the percentage of pavement 
that will not fail before 24x106 ESALs.  Furthermore, Figure 4.1 follows a continuous curve, 
which is based upon a mean and standard deviation.  If the mean (µ) and standard deviation (σ) 
are known, then the acceptable failure level (x), at a given confidence level can be found using: 

σµ αZx +=                                                       (4.4) 

In Equation 4.4, Zα represents the standard normal variable at a given significance level, α.  The 
significance level value is calculated from the confidence level (p), using: 

p−= 1α                                                         (4.5) 

The following is a brief example that only depicts the uncertainty analysis process to find if a 
value meets the levels of acceptability for a one tailed test.  These values are arbitrarily selected, 
and not based on an actual project. 

Given:    µAC = 5%  µMt =  50kg 
          σAC = 0.1%  σMt =  0kg 
 
where, AC is the asphalt content for the ACP layer and Mt represents the total mass of HMA to 
be sampled during production.  The standard deviation for the asphalt content is indicative of 
99.7% of all samples lying +/-0.3% from the expected value.  Since during the process control, 
the mass of the binder, Mb, is used, the following equation was used to calculate that quantity: 
 

tb MACM ×=                                                    (4.6) 

Find:  The inspector is interested in finding if 90% of the binder mass is greater than 2.4 kg using 
the Monte Carlo simulations. 
 
Solution:  The results for 500 Monte Carlo simulations are shown in Table 4.3.  The table shows 
the average and COV values for the simulated mass of binder.  For a confidence level of α = 
90%, the acceptable failure level can be calculated, using Equation 4.4: 
 

( ) 5.205.028.11 +−=+= − µσαZx = 2.44 kg 
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Table 4.3 – Reliability Example for Determining Acceptable Levels of a Parameter 

Measurement AC Content Mb 
Average 5% 2.5 (kg) 
Std. Dev. 0.1% 0.05 (kg) 

COV 2% 2 % 
 
This shows that 90% of the binder mass is greater than 2.44 kg.  Therefore, because this value is 
greater than the level specified, 2.4 kg at 90% confidence, the inspector finds that the simulated 
values does meet the levels of acceptability.   
 
Automation of Reduction Process 
 
The flow chart of RECIPPE, as depicted in Figure 2.6, shows an iterative loop that continues 
until acceptable levels of pavement performance are met.  With the prototype, this process was 
repeated manually based on the user’s decision.  However, this loop can be automated for the 
pavement performance variance, using the reliability calculations mentioned above.  Assuming 
that the mean values for the construction and design parameters are constant, the designer 
becomes concerned only with reducing the variability of the pavement life.  This section of the 
report describes four automatic reduction options: 
 

• Largest Impact Value 
• N-Largest Impact Values 
• Set Minimum Level of COV 
• Manual 
 

Largest Impact Value Reduction 
 
The RECIPPE prototype had the capability to provide users with a mean and standard deviation 
for a specified pavement performance model.  Based on the reliability calculations mentioned 
previously, the users should also specify an acceptable confidence level for a pavement 
performance.  The pavement performance in RECIPPE is defined as the number of ESALs a 
pavement can withstand before failure, with respect to each pavement performance model. 
 
The program has been modified to identify the construction parameter that contributes to the 
pavement performance COV the most (from the Impact Charts), and reduce the variance of the 
parameter that most impacts the performance by a specified amount.  The program continues to 
reduce the COV of the largest impacting construction parameters until the acceptable pavement 
performance limits have been met. 
 
N-Largest Impact Value Reduction 
 
Using the methodology discussed in the previous section, the process can be modified to 
incorporate the N parameters that impact the performance the most.  This should provide 
pavement performance values that meet the level of acceptability more rapidly.  In the Largest 
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Impact Value Reduction method, only one parameter is selected to be reduced, which may take 
more processing time than using multiple parameters.  This may be especially true if the 
reduction factor that is used to reduce the most impacting input parameter COV after each 
iteration is very small.  Hence, it seems practical to expand the theory for reducing the single 
most significant parameter COV to the Nth most significant ones. 
 
Unfortunately, there is a drawback to this method.  By considering N parameters simultaneously, 
it is possible that the reduction of the COVs of the construction parameters may become 
unstable.  Due to the high degree of nonlinearity that exists in the program, some of the COV 
parameters will reduce more quickly than others.  Hence, some input parameter COV’s may be 
reduced below a practical threshold.  When selecting this option, one should be careful in 
interpreting the results. 

 
Setting Limitations for the Input COV  
 
Furthermore, the users may not wish to reduce the COV of construction parameters below a 
certain level.  The goal of reducing the COV of a construction parameter is to reduce the impact 
of that construction parameter on pavement performance variance.  However, reducing a 
construction parameter COV past a certain point may not be practical.  For example, the air void 
content for the ACP layer will usually vary; hence, having variability close to zero may not be 
achievable by a contractor.  Therefore, constraining the input COV within a certain range allows 
the automation process to provide more practical results.  
 
Adjustment of Models 
 
The models in RECIPPE have been described as being modular in form.  This means that an 
individual equation for material and/or performance can be adjusted separately.  Because the 
equations can be adjusted individually, no model is required to be hard coded into RECIPPE.  
Hence, if a specific model needs to be changed or a new model needs to be entered, an interface 
needs to be incorporated to allow for the future adjustments.  This section describes three types 
of adjustments that may occur: 
 

• Customization 
• Generation 
• Calibration 

 
Customization of Material and Performance Models 
 
The algorithms used in the prototype program were specific for each material and performance 
type; however, it may not be completely necessary to change the entire equation for a certain 
model, but only the trend that certain parameters exhibit.  For example, the material model 
discussed for the ACP layer (Equation 2.1) currently has a value of 1 for the coefficient 
associated with the parameter associated with the aggregates passing sieve No. 200.  However, if 
alternate studies show that this coefficient should change to a value of 400, then an adjustment 
can be made to the AC Modulus equation, as shown in Figure 4.2.  
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Figure 4.2 – Customization of Models 
 
The left hand side of the interface shown in Figure 4.2 displays the constants that are used in the 
material model.  The relevant equation is shown with the constants and variable name in black, 
and again with the constants and variable abbreviation in purple.  In this example, the constant, 
C3, is replaced with the number 400, which automatically updates in the equation on the right 
hand side of the form.  With the implementation of this option, the users can change the model 
coefficients as needed.  
 
Generation of New Models 
 
The creation of completely new models is also possible.  To create a new model, the users do not 
have to use the parameters or mathematical operators that are specified in the material models 
described in Chapter Two, but an equation, such as that shown in Figure 4.3, can be easily 
entered into the graphical users interface. 
 
The interface shown in Figure 4.3 allows users to specify a current or new input parameter, as 
shown on the left hand side.  These input parameters are then used in the equation that users 
provide, as shown on the right hand side.  The entire equation is updated and shown in the box at 
the top of the figure.  This option allows the program to become more adjustable and easy to use 
with new models.  
 
Model Calibration 
 
RECIPPE would also permit users to calibrate any material model and/or performance model.  
This calibration is based upon a simple linear regression between the values calculated by the 
model and those that are measured in the field.  Once the relationship has been found, it can be 
entered into the program.  This technique is very similar to the customization of material and 
performance models process, but because calibration follows a different concept, it allows for 
easier entry into the program, as shown in Figure 4.4. 
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Figure 4.3 – Generation of New Models 

 

Figure 4.4 – Model Calibration 
 



 

 32 

RECIPPE displays the current equation and how the equation looks after it has been calibrated.  
Also shown in this calibration process is the requirement for the slope, m, and intercept, b, as 
shown in Figure 4.4.  However, the process of finding these values will be discussed in detail in 
Chapter 5, where an explanation of regression capabilities will be given. 

QA/QC METHODS 
 
Number of Samples 
 
Because RECIPPE is designed for a practical, statistical analysis of a mechanistic algorithm 
based on construction parameters, it will become necessary to gather empirical information from 
lab and/or in-situ testing methods.  The problem, however, is predicting the number of samples 
needed for each parameter so that statistical reliability is maintained while minimizing the costs 
for obtaining the data. 
 
Based on the previously mentioned assumptions that all parameters follow a normal distribution, 
it can be deduced that all parameters have a mean of µ (µ is the mean value) and a variance of σ² 
(σ² is the parameter variance) (Devore, 1995).  Hence, the sampling distribution for any 
parameter is normal with a mean of µ and a variance of σ²/n, as shown below: 
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, σµ                                                       (4.7) 

This model can then be implemented in a cumulative distribution function to replicate the 
standard normal distribution: 
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where x represents some random number, P(x) is the probability of some random number x that 
defines a discrete point on a continuous normal distribution curve, Z defines the normalized 
standard deviation value based upon the level of significant (α), and Φ is the cumulative 
distribution function of the standard normal distribution.  By combining the sampling 
distribution with the standard normal distribution, the resulting equation is: 
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However, the interest is in determining whether the sampled data follows the specifications 
previously set, rather than merely replicating the distribution.  In other words, it is necessary to 
verify that the data gathered for an input parameter gives a mean, µ1, that equals the mean set by 
the designer, µ0:  
    

µ0 ?=? µ1 
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α 
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Region 

Rejection 
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This type of analysis is called hypothesis testing.  A statistical hypothesis is a statement about the 
values of the parameters of a probability distribution (Montgomery, 2001).  For example, in this  
analysis, the null hypothesis is defined as H0 and the complement of this occurrence is called the 
alternative hypothesis, H1, as shown below. 
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:H0                                                (4.10) 

 
This indicates a one-tailed test, where the alternative hypothesis implies that the sampled mean 
can only be less than the true mean. 
 
In hypothesis testing, another parameter that must be specified is the test statistic, α.  This 
statistical test, also referred to as the probability of type I error, provides information to either 
reject or accept the null hypothesis.  As shown graphically in Figure 4.5, the equation for a 
standard normal distribution is used.  If the sample mean falls within the rejection region, the 
null hypothesis is rejected and the alternative is selected as true.   
 

 

 

 

 

 

Figure 4.5 – Statistical Rejection and Acceptance 
  
The null hypothesis tests the contractor’s level of confidence in the parameter’s variability.  The 
alternative hypothesis tests for the owner’s level of confidence in the quality of the product.  
Because the two confidence levels are based upon the amount of risk each contractor or owner is 
willing to take, there is an inherent probability that the mean is wrong.  This is called Type I 
error for contractors and Type II error for owners. 
 
 α = Probability {Type I Error} = Probability {reject H0 | H0 is true} 
 β = Probability {Type II Error} = Probability {failure to reject H0 | H0 is true} 
 
The contractor and owner, in this case, are interested only in the stiffness of the pavement.  The 
pavement can be stiffer than designed (to be able to withstand more traffic), but it should not be 
less stiff.  This is where the probabilities of Type I and Type II errors need to be considered.  
Parameter β, as described above, is the probability that the users fail to reject the null hypothesis, 
given that it is true.  Put another way, β is the probability of failure to accept the alternative 
hypothesis, given that it is false, an example of which is represented in Figure 4.6. 
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Figure 4.6 – Probability of Type II Error 
 
The calculation of the probability of Type II error can be equated in terms of the standard normal 
distribution, as shown below (Zhang et al., 2001): 
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By readjusting this equation, an algorithm can be derived to determine the sample size needed to 
find the measurements reliably. 
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Because the material model is to be a reflection of each construction parameter, the mean value 
should be changed so that it can be interpreted in relative terms.  This will allow the tolerable 
error for each construction parameter to be inferred from the layer modulus, and vice versa.  The 
tolerable error, then, is a relative value in terms of the mean value. 
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where e represents the tolerable error.  This tolerable error for a single construction parameter 
can now be applied to Equation 4.12, leading to the following sample size equation. 
 

( ) 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×+
=

e
COVZZ

n βα                                                (4.14) 

 
where, COV represents the coefficient of variation for an individual construction parameter, 
found as the standard deviation divided by the mean, σ / µ0.  This procedure is important from a 
production quality point of view.   
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Sometimes it is necessary to consider a failure whenever a test result is above or below the mean 
value, and not only one sided. For example, when testing for air voids in asphalt pavement, very 
high and very low values are considered unacceptable. In these cases, the probability of the 
known sample mean may fall between two equi-distant intervals from the mean, also called a 
two tailed test.  In situations where this may occur, Equation 4.15 is recommended. 
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For another perspective, consider the following example. 
 
Given:  The interest is in finding the number of asphalt content samples needed so that the 
asphalt content can be reliably characterized.  The following information is provided: 
 

µAC = 5% 
σAC = 0.15% 

 
Assume that the contractor is 95% confident (i.e. α = 0.05) and that the consumer needs to be 
80% (β = 0.2) confident in the binder content.  Also, assume the mean for the mass of the binder 
is 5% and that the sampled asphalt content is within 2% of the mean value.  An analysis would 
provide the following: 
 

Zά/2=2.5% = 1.96 
Zβ=20% = 0.84 

e = 0.03 
 

With this information, a Monte Carlo simulation would be able to generate the results listed in 
Table 4.4. 
 

Table 4.4 – Sample Size Example Inputs 
MEASUREMENT  AC Mb 

MEAN 5% 2.5 kg 
STD. DEV. 0.1% 0.05 kg 

COV 2.0% 2 % 
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02.0
02.0*84.096.1n  7.84 ≈ 8 samples 

 
The number of samples is rounded up to provide a more liberal value that will successfully 
achieve the Type I, Type II and/or tolerable error. 
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Control Charts 
 
Due to the fact that this analysis should be available for the contractor as well as the owner, a 
device providing practical quality control should also be considered.  One way of conducting this 
type of inspection is through control charts.  Usually used for diagnostic techniques for 
monitoring in manufacturing industries, control charts can identify instability and unusual 
circumstances in production processes.  This implies that, based upon allowable variances, 
inspectors can randomly sample road specimens and determine whether or not the pavement, 
statistically, will be stable over time (in-control or out-of-control, respectively).  Control charts 
have become increasingly popular for five major reasons: 
 

• Control charts are a proven technique for improving productivity by reducing rework. 
• Control charts are effective in defect prevention.  The charts help keep the process in-

control initially, preventing the need to rehabilitate when defects are detected. 
• Control charts prevent unnecessary process adjustments.  The charts allow for 

distinguishing between background noise and abnormal variation, which means that 
they are effective in determining whether variations are randomly occurring or the 
result of some continuous event. 

• Control charts provide diagnostic information.  They present patterns on the history of 
the process, thus predicting trends over time. 

• Control charts provide information about process capability.  They are used to identify 
whether the process can adequately meet the process limits, which will be described 
later. 

 
The first step in generating control charts is acquiring an adequate set of random variables and 
placing them into a subgroup.  Subgroups are sets of empirical information that represent a time 
order for construction processes.  Time order determines the frequency for collecting subgroup 
sizes.  This is important because the previous section described the method for determining the 
number of samples that would be required to conduct a hypothesis test, but did not describe 
when the subgroups should be sampled.  The sample size was a function of the coefficient of 
variation and tolerable error, which in turn signified the time order for sampling the subgroup, or 
the amount of time between lots.  To be specific, if the tolerable error and coefficient of variation 
were functions of a day’s production or linear travel way, then so would the time order.  This 
definition of time order allows for consecutive units to be measured so that the chance of 
variability due to assignable causes within sample is minimized, while the variability between 
samples are maximized if assignable causes are present. 
 
For instance, in the asphalt binder problem mentioned previously, it was determined that eight 
samples should be taken.  It is given that the subgroups are measured on a daily basis.  The 
empirical mean data points would then be placed into a control chart, which can be calculated as 
shown in Table 4.5. 
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Table 4.5 – Calculation of Subgroup Means 

Subgroup (Day) 
Measurement 

1 2 3 4 5 
1 4.91% 4.97% 5.05% 5.17% 5.04% 
2 5.08% 4.96% 4.93% 5.06% 5.02% 
3 5.01% 4.88% 4.84% 4.89% 4.75% 
4 4.87% 5.15% 5.07% 4.77% 4.89% 
5 4.85% 4.93% 4.97% 5.08% 5.01% 
6 5.01% 4.88% 4.83% 4.83% 5.01% 
7 4.81% 5.07% 4.94% 5.02% 4.94% 
8 5.08% 5.08% 5.03% 5.02% 4.91% 

Mean 4.95% 4.99% 4.96% 4.98% 4.95% 
 

To create the control chart for sample mean, the limits and center lines must be specified.  The 
center line represents the average value of the quality characteristics corresponding to the in-
control state.  In this case, the center line will be the mean value for the parameter in question.  
The upper and lower control limits are selected so that, if the process is in-control, then nearly all 
of the sample points will fall between them and can be assumed to be in-control.  This done, a 
general model for the mean, or x-bar, chart can be generated using: 

iixi LUCL σµ +=                                                      (4.16) 

ixiCL µ=                                                            (4.17) 

iixi LLCL σµ −=                                                      (4.18) 
 

where UCLxi is the upper control limit for construction parameter i, the CLxi value represents the 
center line for construction parameter i.  LCLxi is the lower control limit value for construction 
parameter i, µi is the mean for construction parameter i, σi defines the standard deviation for 
construction parameter i, and L is the distance of the control limits from the center line, 
expressed in standard deviation units. 
 
Because interest lies in the contractor’s and owner’s risk in modeling the pavement, L will be 
based upon the Type I and Type II errors as shown in Equation 4.19 for one tailed tests. 
 

βα ZZL +=                                                        (4.19) 
 

and for two tailed tests Equation 4.20 will be used. 
 

βα ZZL += 2/                                                        (4.20) 
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The x-bar chart shows variation of the mean, and thus graphically illustrates whether the 
alternative hypothesis should be chosen for certain time orders.  For example, using the same 
asphalt binder problem, an x-bar chart for the asphalt content can be created, given the following. 
 

Zά=2.5% = 1.96 
Zβ=20% = 0.84 

µAC = 5% 
σAC = 0.1% 

1.0)84.096.1(5 ×+−=xLCL =4.7% 
=CL 10% 

1.0)84.096.1(5 ×++=xUCL =5.3% 
 
With the construction of this control chart, it can be graphically determined whether the sample 
values of the mean fall within the control limits and exhibit no systematic pattern.  Hence, it can 
be deduced whether the process is in-control at the level indicated by the chart.  This level of 
control, however, is not the sole indicator for out-of-control systems.  For example, consider the 
x-bar chart in Figure 4.8, which is based on the data from Table 4.5.  While all five points shown 
in Figure 4.8 fall within the control limits, the points do not indicate statistical control because 
their pattern is not random. To be specific, all five points are below the center line.  If this 
control chart were to be indicative of random variance, a more even distribution of points could 
be expected above and below the center line.   
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Figure 4.7 – Typical X-Bar Chart 
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Figure 4.8 – Sample X-Bar Chart 
 
The basic criteria to determine whether a control chart is out-of-control can be shown by plotting 
points outside of the control limit.  However, supplementary criteria can sometimes be used to 
increase the sensitivity of the control charts so that inspectors can respond more quickly to 
assignable causes.  The top five rules that are widely used in practice are shown in Table 4.6. 
These rules were extrapolated from Western Electric (Montomery, 2001). 
 
In addition, changes in the mean the variance of the construction parameters must also be 
controlled so that the road may become more uniform.  For this purpose, a control chart for the 
sample variation can be provided in terms of the coefficient of variation (COV) of empirical 
measurements.  Using the same data as before, the sample coefficient of variation, COV, can be 
calculated using Equation 4.21. 
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where COV is the subgroup coefficient of variation, xi represents the ith measured value for the 
subgroup in question, x  defines the subgroup mean, and n is the subgroup sample size. 
 

Table 4.6 – Popular Sensitizing Rules Currently in Practice (Montomery, 2001) 
1.  One or more points outside of the control limits 
2.  A run of eight consecutive points on one side of the center line 
3.  Six points in a row steadily increasing or decreasing 
4.  Fourteen points in a row alternating up and down 
5.  An unusual or not random pattern in data 
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Using the data in Table 4.5, the sample COV can be determined as shown in Table 4.7.  These 
values can then be graphed in a COV control chart with center line and control limits described 
in Equations 4.22 through 4.24.  
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COVCLCOVi =                                                    (4.23) 
0=COViLCL                                                      (4.24) 

 
where UCLCOVi is the upper control limit for construction parameter i, CLCOVi defines the center 
line for construction parameter i, LCLCOVi represents the lower control limit for construction 
parameter i, and n is the sample size.  The resulting COV control chart limits can be calculated as 
follows: 
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Table 4.7 – Sample COV Subgroup’s for Control Chart Example 

  
Subgroup (Day) 

Measurement 
1 2 3 4 5 

1 4.91% 4.97% 5.05% 5.17% 5.04% 
2 5.08% 4.96% 4.93% 5.06% 5.02% 
3 5.01% 4.88% 4.84% 4.89% 4.75% 
4 4.87% 5.15% 5.07% 4.77% 4.89% 
5 4.85% 4.93% 4.97% 5.08% 5.01% 
6 5.01% 4.88% 4.83% 4.83% 5.01% 
7 4.81% 5.07% 4.94% 5.02% 4.94% 
8 5.08% 5.08% 5.03% 5.02% 4.91% 

Mean 4.95% 4.99% 4.96% 4.98% 4.95% 
COV 2.16% 2.00% 1.82% 2.73% 1.97% 
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Similarly, the resulting COV control chart for the data shown in Table 4.7 can be graphically 
depicted, as shown in Figure 4.9.  The data follows a random pattern with data varying above 
and below the center line, indicative of a process that is completely in control.   
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Figure 4.9 – Sample COV Control Chart 
 
Cost Analysis 
 
With the information that has been described, thus far, a quantitative value can be provided for 
inspection costs, which will be discussed in this section.  Production expenditures, due to 
rehabilitation and maintenance, are intuitively calculated in a qualitative manner, because the 
basic concept of the RECIPPE is to minimize variability to increase the longevity of pavement.  
However, due to time constraints, an actual cost/benefit analysis for production expenditures will 
not be performed in this report. 
 
RECIPPE, as described above, estimates the minimum number of tests to be run for inspecting a 
single parameter.  Hence, for each test run there is a corresponding cost, which can be related as 
a unit price (i.e. $10.00/Nuclear Density Gauge).  If the unit price is known for each test to be 
run, then the total inspection costs can be found using a simple mathematical operation: 
 

∑
=

=
m

i
iiinspection nCTotalCost

1

                                      (4.25) 

 
Where Ci is the unit price for parameter i and ni is the sample size for parameter i.  Typical costs 
for all of the base and subgrade parameter tests in Texas are shown in Table 4.8.  These costs are 
estimated for the entire state of Texas, and can be easily changed to account for inflation and/or 
the development of new inspection standards. 
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Table 4.8 – Typical Inspection Tests & Costs for Texas Pavements 
STATEWIDE AVG. STANDARD TEST Unit 
FY 2002 FY 2003 

2 Year 
Avg. 

Tex 103 Moisture Content each $6.00 $27.00 $16.50 
Tex 106 Plasticity Index each $33.75 $71.00 $52.38 
Tex 110, Pt1 Gradation each $32.50 $60.00 $46.25 
Tex 110, Pt2 Gradation each - $150.00 $150.00 
Tex 113 M-D Curve for Base each $162.50 $330.00 $246.25 
Tex 114 M-D Curve for Base each $155.00 $330.00 $242.50 
Tex 115 Nuclear Density hour $31.50 $37.50 $34.50 
Tex 116 Wet Ball each $135.00 $200.00 $167.50 

 
Not shown are the test costs for the ACP layer and the AASHTO design coefficients.  AASHTO 
design coefficients are based upon layer specifications, and do not require testing.  
Unfortunately, typical tests for the ACP layer were not found prior to the writing of this report.  
This information will be incorporated in the final report. 
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CHAPTER FIVE 

CALIBRATION OF AC, BASE AND SUBGRADE 
MODULUS MODELS 
 
 

INTRODUCTION 
 
The material models presented in Chapter 2 were created from regression analyses on data that 
was not specifically collected for Texas.  It is reasonable to assume that the results from the 
models are not calibrated for Texas pavements.  The focus of this chapter is to obtain data from 
either literature or field and lab testing for Texas pavements, in order to evaluate existing models 
and, if necessary, calibrate or generate new material models.  
 

DATA COLLECTION 
 
Literature 
 
When generating new equations through regression analysis, it is important to obtain as much 
data as possible to represent all possible situations.  For this reason, data that have been 
previously documented can provide an excellent source of information to generate a database.  
One valuable source for this documented information is the Long Term Pavement Performance 
(LTPP) database.  The LTPP is a 20-year program that was initiated in 1987 as part of the 
Strategic Highway Research Program (SHRP).  With more than 2,400 test sections at over 900 
locations throughout North America, the LTPP database is the world's largest pavement 
performance database (Federal Highway Administration, 2004). 
 
The online LTPP database (www.datapave.com) offers a user-friendly format for exploring, 
extracting, and organizing the extensive LTPP data.  In addition, the website provides the 
capability to identify the LTPP database tables and fields for data extraction. 
 
A filtering process was used to extract specific data, and to minimize extraction of unnecessary 
information contained in the multiple tables in the database.  The extraction effort was first 
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focused on Specific Pavement Study (SPS) sites and later expanded to other Texas sections.  For 
the AC layer, the construction parameters that were extracted from the LTPP database were: 
 

• Asphalt content 
• Viscosity 
• Percent of aggregate passing sieve #200 
• Percent air voids 
• Elastic Modulus of the ACP layer (from backcalculation) 

 
To illustrate the filtering process for the construction parameters, the example of extracting data 
for the asphalt content is discussed.  The asphalt content can be found in the Inventory IMS 
module, which contains tables with listings of plant mixed asphalt data.  One of the tables, 
“Plant-mixed asphalt bound layers original mixture properties,” contains information such as the 
following.   
 
STATE_CODE, LAYER_NO, SHRP_ID, SAMPLE_TYPEHVEEM_COHESIOMETER, 
BULK_SPEC_GRAVITY_MEAN, MAX_SPEC_GRAVITY, NUMBER_BLOW, 
PCT_AIR_VOIDS_MAX, PCT_AIR_VOIDS_MIN, PCT_AIR_VOIDS_MEAN, 
ASPHALT_CONTENT_STD_DEV, RECORD_STATUS, ANTISTRIP_AGENT_TYPE, 
ASPHALT_PLANT_TYPE_OTHER, HVEEM_STABILITY, MARSHALL_FLOW, 
RETAINED_STRENGTH_INDEX, PERCENT_STRIPPED, HVEEM_STABILITY_NO, 
TENSILE_STRENGTH_RATIO, EFFECTIVE_ASPHALT_CONTENT, 
NO_SAMP_ASPHALT_CONTENT, ASPHALT_PLANT_TYPE, CONSTRUCTION_NO, 
ASPHALT_CONTENT_MAX, ASPHALT_CONTENT_MIN, ASPHALT_CONTENT_MEAN, 
BULK_SPEC_GRAVITY_STD_DEV, BULK_SPEC_GRAVITY_MIN, 
MARSHALL_STABILITY, BULK_SPEC_GRAVITY_MAX, VOIDS_MINERAL_AGGR, 
NO_SAMP_PCT_AIR_VOIDS, PCT_AIR_VOIDS_STD_DEV, 
MOISTURE_SUSCEPT_TEST, ANTISTRIP_AGENT_AMOUNT, 
ANTISTRIP_AGENT_CODE, ANTISTRIP_AGENT_TYPE_OTHER, 
MOISTURE_SUSCEPT_TEST_OTHER 

 
This list contains a large amount of information to filter through in order to obtain the asphalt 
content.  Identification keys are used to link the variety of tables together for a given site.  
Crucial identification keys such as SHRP ID, the road identification key, are used to extract, link, 
and match the appropriate data that is required.  Few of the other identification keys that were 
used are:  
 
SHRP_ID, LAYER_NO, RECORD_STATUS, ASPHALT_GRADE, CONSTRUCTION_NO, 
and ASPHALT_SPECIFIC_GRAVITY. 
 
The LTPP database provided thirty complete Texas sites, as shown in Table 5.1.  However, when 
the backcalculated moduli are compared to the estimated moduli from Equation 2.1, some of the 
values were clearly different.  Hence, to remove data that may have inaccuracies, further data  
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mining using cluster techniques was used to remove outlier sites.  Equation 5.1 defines the 
cluster values as: 

( )
atedbackcalcul

Wiczakatedbackcalcul

M
MMabs

ueClusterVal
−

=0
0                              (5.1) 

By calculating the cluster value for each site, three groups of data can be identified: 1) cluster 
values less than 20%, 2) cluster values between 20% and 80%, and 3) cluster value greater than 
80%.  These three groups represent cluster sets of data that show similar trends between the 
FWD moduli and the calculated moduli from the Witczak equation, as shown in Table 5.2.  The 
largest cluster set is between 20% and 80%.  Therefore, this set was used in the calibration 
process. 
 
In-Situ and Laboratory Data 
 
Unfortunately, extensive literature search did not reveal adequate amounts of information for 
base and subgrade layers.  As such a matrix of test sections that represents flexible pavements in 
Texas was developed.  With the help of TxDOT personnel, a protocol was developed to allow for 
a comprehensive data collection scheme from Texas sites.  Data were collected according to an 
adjusted guide schedule that specifies the frequency and location for gathering sample 
information for each required construction parameter.  The adjustments to the guide schedule 
were developed by UTEP and TxDOT personnel for more practical testing frequencies.  The 
protocol was appended in Appendix A of Research Report 0-4046-2.  For the most part the 
protocol was followed.  As a result field and laboratory tests were performed on eleven sites and 
the results are summarized next. 
 
According to Table 4.2, nineteen parameters for the base and subgrade layers are required for 
each site.  A list of all pertinent tests is shown in Table 5.3.  The eleven sites were located in six 
different counties, representative of the major climate differences of the environments found 
within the state of Texas.  The location and pertinent information for the sites are shown in Table 
5.4.  The tests listed in Table 5.3 were performed either in-situ or in the laboratory on materials 
at each site.  The results are summarized in Table 5.5. 
 

ASPHALT CONCRETE MATERIAL MODEL CALIBRATION 
 
Calibration is the adjustment of an existing equation by comparing it with measured information.  
The calibration process assumes that there is a direct proportionality between all of the 
independent parameters and the parameters that are being predicted.  Hence, the calibration 
process can be considered as a shift between what is currently practiced and what is actually 
occurring.   
 
This calibration process is carried out using regression analysis.  Regression is the measure of the 
association between one variable (the dependent variable) and one or more other variables (the 
independent variables).  With this in mind, it can be assumed that the Witczak model for the AC 
modulus will be nonlinear and multivariable.  This section of the report will provide a step-by-
step procedure on formulating the multivariable-nonlinear regression 



 

 

46 Table 5.1 – Filtered Data Extracted from LTPP Database for AC Layer 

* Vv=Air Void Content PAC=% Asphalt Content P200=% Aggregate Passing Sieve #200 =Viscosity @ 70oF  
F=Loading Frequency  T=Temperature 
 
 

AC Material Model Parameters No. SHRP ID County 
VV (%) PAC(%) P200(%) η(poise) F (Hz) T (oF) 

Backcalculated 
Modulus (psi) 

1 1 TRAVIS 9.9 5 2 0.002139 18 70 1089450
2 1047 CARSON 7 5 5 0.00118 18 58.6 1004921
3 1048 ECTOR 4.5 5.6 3 0.00056 18 69.4 1188200
4 1049 NACOGDOCHES 3.9 7.4 6 0.00206 18 61.3 1470466
5 1050 GRIMES 3.9 5.8 4 0.00198 18 70 1673964
6 1060 REFUGIO 4.7 5.4 1 0.00205 18 81.8 1600674
7 1061 SHERMAN 7 6.6 3 0.000858 18 70 123367
8 1065 OLDHAM 2.1 5.4 3 0.0012 18 76.4 866992
9 1068 LAMAR 7.9 5.4 6 0.00198 18 54.3 662867

10 1076 TERRY 2.1 6.4 3 0.000895 18 70 238458
11 1077 HALL 3.6 4.2 1 0.00102 18 92.2 1015125
12 1092 MEDINA 3 5.2 2 0.00202 18 86.5 1425218
13 1094 BEXAR 3.2 26 2 0.001094 18 70 1845473
14 1096 MEDINA 4.7 4.5 8 0.00113 18 74.7 1281383
15 1109 WALKER 5 5.2 3 0.0018 18 70 1618405
16 1122 WILSON 2.8 4 6 0.00099 18 82 817177
17 1130 GUADALUPE 4.4 4.5 4 0.001008 18 70 1114637
18 1169 RUSK 3.7 5 4 0.00187 18 70 1100145
19 1178 BURLESON 3.2 5.9 7 0.002037 18 70 7490028
20 1181 LIVE OAK 2.4 4.3 3 0.00093 18 89.5 517531
21 1183 GARZA 10.8 6.9 3 0.00092 18 70.8 1074224
22 2133 BELL 6.3 5.3 3 0.002133 18 70 1760070
23 3559 WALKER 5.9 6.5 7 0.0025 18 78.3 2347916
24 3579 VAN ZANDT 5.3 5.8 1 0.002119 18 70 1059546
25 3629 COLORADO 2.4 5.7 4 0.001854 18 70 1337024
26 3669 ANGELINA 4.1 8.5 6 0.00211 18 55.3 1887475
27 3679 ANGELINA 3.3 6.6 5 0.0021 18 61.7 236279
28 3689 POLK 3.7 7.5 5 0.00197 18 66.9 1185704
29 3835 BRAZOS 3.4 5.7 3 0.00176 18 70.5 1273637
30 9005 BEXAR 7.2 4.7 4 0.00111 18 70.7 2399228 
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Table 5.2 – LTPP Data Used in Calibration of ACP Model 
 

AC Material Model Parameters 

No. Site 
ID VV 

(%) 
PAC 
(%) 

P200 
(%) 

η 
(poise) 

F 
(Hz) 

T 
(oF) 

MB
*

 
(psi) 

MW
**

 
(psi) 

Cluster 
value 

1 1068 7.9 5.4 6.0 0.00198 18 54.3 662867 741162 12% 
2 1047 7.0 5.0 5.0 0.00118 18 58.6 1004921 694742 31% 
3 1122 2.8 4.0 6.0 0.00099 18 82.0 817177 511980 37% 
4 1181 2.4 4.3 3.0 0.00093 18 89.5 517531 322365 38% 
5 1065 2.1 5.4 3.0 0.0012 18 76.4 866992 468589 46% 
6 1130 4.4 4.5 4 0.001008 18 70 1114637 593957 47% 
7 1169 3.7 5 4 0.00187 18 70 1100145 586114 47% 
8 1049 3.9 7.4 6.0 0.00206 18 61.3 1470466 676469 54% 
9 1096 4.7 4.5 8.0 0.00113 18 74.7 1281383 574762 55% 
10 3629 2.4 5.7 4 0.001854 18 70 1337024 593430 56% 
11 3689 3.7 7.5 5.0 0.00197 18 66.9 1185704 517165 56% 
12 1048 4.5 5.6 3.0 0.00056 18 69.4 1188200 499365 58% 
13 3669 4.1 8.5 6.0 0.00211 18 55.3 1887475 776873 59% 
14 3835 3.4 5.7 3.0 0.00176 18 70.5 1273637 515611 60% 
15 3579 5.3 5.8 1 0.002119 18 70 1059546 411378 61% 
16 1050 3.9 5.8 4 0.00198 18 70 1673964 519705 69% 
17 1109 5.0 5.2 3.0 0.0018 18 70.0 1618405 493774 69% 
18 1 9.9 5 2 0.002139 18 70 1089450 329040 70% 
19 2133 6.3 5.3 3 0.002133 18 70 1760070 439164 75% 
20 1077 3.6 4.2 1.0 0.00102 18 92.2 1015125 245871 76% 
21 1183 10.8 6.9 3.0 0.00092 18 70.8 1074224 242947 77% 
22 1092 3.0 5.2 2.0 0.00202 18 86.5 1425218 277885 81% 
23 9005 7.2 4.7 4.0 0.00111 18 70.7 2399228 449937 81% 
24 1060 4.7 5.4 1.0 0.00205 18 81.8 1600674 277737 83% 
25 3559 5.9 6.5 7.0 0.0025 18 78.3 2347916 316691 87% 
26 1178 3.2 5.9 7 0.002037 18 70 7490028 613084 92% 
27 1094 3.2 26 2 0.001094 18 70 1845473 99415 95% 
28 1076 2.1 6.4 3 0.000895 18 70 238458 535411 125% 
29 1061 7 6.6 3 0.000858 18 70 123367 353223 186% 
30 3679 3.3 6.6 5.0 0.0021 18 61.7 236279 720591 205% 

     * MB=Backcalculated modulus from the Falling Weight Deflectometer device 
     ** MW=Witczak modulus calculated using Equation 2.1 
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Table 5.3 – Testing Techniques for Base and Subgrade Parameters 
Parameter Test 

Thickness Dynamic Cone Penetration Test 

Resilient Modulus Resilient Modulus Test 
Maximum Dry Density 

Optimum Moisture Content 

Field/Laboratory Method for Determining In-Place 
Density of Soils and Base Materials (Tex-115-E & Tex-

113-E, respectively) 

Moisture Content Determining Moisture Content in Soil Materials (Tex-
103-E) 

Degree of Compaction Field Method for Determining In-Place Density of Soils 
and Base Materials (Tex-115-E) 

Aggregate Passing No.40 
Percent of Clay 
Percent of Silt 

Particle Size Analysis of Soils (Tex-110-E) 

Liquid Limit 

Plastic Index 

Determining Plastic Limit (Section 7. Tex.-105-E) of 
Soils and Calculating the Plasticity Index (Section 8. 

Tex-106-E) of Soils 
  

Table 5.4 – Texas Test Sites Visited for Limited Calibration of Models 

Layer County Roadway Material Date of 
Testing 

El Paso Darrington Silty or Clayey Sand (A-2-4) Feb-04 
Terrel US90 (Old Base) Silty or Clayey Sand (A-2-6) Apr-04 
Terrel US90 (New Base) Silty or Clayey Sand (A-2-6) May-04 

Hidalgo US281 Silty or Clayey Sand (A-2-4) Jun-04 
Hidalgo FM2220 Silty or Clayey Sand (A-2-4) Jun-04 
Brown FM45 Silty or Clayey Sand (A-2-4) Aug-04 

Base 

Dallas FM1187 Silty or Clayey Sand (A-2-4) Aug-04 
Hidalgo Loop 499 Silty or Clayey Sand (A-2-6) Jun-04 
Hidalgo FM1016 Silty or Clayey Sand (A-2-7) Jun-04 
Brown FM45 Silty or Clayey Sand (A-2-6) Aug-04 Subgrade 

Tom Green FM2288 Crushed Limestone, Silty or 
Clayey Sand (A-2-4) Jun-04 
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Table 5.5 – Summary of Laboratory and In-Situ Data Collected for Calibration of Base Subgrade Models 

Resilient 
Modulus 

Layer Location 

Max. 
Dry 

Density 
(pcf) 

Opt. 
Moist. 

Content 
(%) 

Moist. 
Content 

(%) 

Degree 
of 

Comp. 
(%) 

Agg. 
Passing 
No.40 
(%) 

% 
of 

Clay 

% 
of 

Silt 

LL 
(%)

PI 
(%)

k1 
(ksi) k2 k3 

DARRINGTON 135.9 6.9 3.5 102.4 14.0 3.4 1.0 N/A N/A 12.0 0.5 0.0 
US90 

NEW BASE 128.9 8.8 7.0 101.3 17.3 4.0 1.6 N/A N/A 19.7 0.5 -0.2 

US90 
OLD BASE 128.4 8.6 8.5 98.8 41.4 0.9 0.3 N/A N/A 54.8 0.5 -0.4 

US281 110.2 15.3 10.4 95.5 13.8 1.0 0.0 N/A N/A 53.3 0.3 -0.2 
FM 45 BASE 137.1 6.8 3.5 100.9 9.4 2.9 0.7 N/A N/A 28.0 0.4 -0.1 

FM2220 108.0 17.0 12.7 96.6 17.1 2.9 0.5 N/A N/A 16.6 0.1 0.0 

BASE 

FM1187 132.1 8.1 8.0 101.9 18.9 6.5 3.8 N/A N/A 85.7 -0.1 -0.2 
LOOP 499 95.4 23.5 16.9 106.7 71.9 21.1 15.4 40.7 28.0 14.0 0.3 -0.1 
FM 1016 100.1 20.8 19.6 101.5 79.2 54.3 5.9 42.0 20.0 38.0 0.3 -0.3 

FM 45 SG 124.0 8.0 3.8 100.6 21.5 6.3 1.6 23.7 12.0 47.0 0.2 -0.4 SG 

US281 128.5 9.2 5.8 102.9 24.8 7.1 2.2 29.0 9.6 34.0 0.0 -0.2 
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Single Variable Linear Regression 
 
As stated before, calibration can be described as a direct proportionality between dependent and 
independent parameters.  In this case, even though a number of models could have been used for 
the calibration of the ACP model, the Witczak equation was selected.  This model has been 
currently practiced as a method for finding dynamic modulus based on multiple input 
parameters.  In order to calibrate this equation for Texas, first, the relevant parameters were 
inputted into the Witczak equation to calculate the predicted modulus of the ACP layer.   These 
values were then compared to the actual measured moduli. 

 
The first step in calibration is to fit the following linear equation to the data: 
 

ε++= bmxY                                                     (5.2) 
 

Where x is the independent variable (measured modulus), m is the slope of the line, b is the 
intercept for the dependent variable and Y represents that dependent variable (estimated 
modulus).  Parameter ε represents random analogous elements that are not considered or cannot 
be measured following a normal distribution with N(0,σ2).   
 
Once the form of the equation has been generated, the next step is to use actual measured results 
that can be placed into the form of the equation as dependent and independent variables.  Single 
variable linear regression is contingent on having more than one set of empirical data points.  
Subsequently, a linear equation that is representative of the measured data can easily be 
generated 
 
Based on the unshaded LTPP cluster points shown in Table 5.2, this linear regression analysis 
can be performed for the modulus of the ACP layer.  Where the backcalculated modulus 
represents the dependent variable (Y) and the modulus from Witczak equation represents the 
independent variable (x).  Figure 5.1 shows the results of the calibration based on Equation 5.2, 
with a slope of 2.34 and an intercept of 0.  The data used in curve fitting are presented by the 
solid points, and the data in the other clusters are presented with the hollow points.  
Unfortunately, the linearly calibrated model is highly uncorrelated, as shown by the R2 value of 
0.21 in Figure 5.1. 
 
Modifying Coefficients of Witczak Equation 
 
The next step for the calibration process consisted of adjusting the coefficients of the Witczak 
equation based on the data in Table 5.2.  Data from the middle cluster was used for that analysis 
as well.  Out of the twenty points available, seventeen were used for developing the equation and 
three randomly selected points were saved for validation.  Equation 5.2 is rewritten as follows: 
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where C1 to C6 are the coefficients to be determined.  The remaining terms were left unadjusted.  
Also, the last term in the initial Witczak equation, Equation 2.1, was combined into C1 since this 
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Figure 5.1 - Results of Calibration of Witczak Model Using Single-Variable Regression 

 
term is related to frequency.  The frequency for all points in the database was set to a constant 
value of 18 Hz.  This process is more complicated than the single variable regression.  However, 
since the form of the equation is fixed, the determination of the coefficients was straight forward.  
Equation 5.4 presents the results of the estimation process, while Figure 5.2 presents the model.   
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Even though the new model can predict the moduli better, given the low R2 value, a more 
appropriate model is desirable. 
 
Multivariable-Nonlinear Regression 
 
The development of a new ACP material model based on n independent variables requires a 
multivariable nonlinear estimation algorithm.  In general the form of the equation is: 
 

 )(...)()( 2
3

1
21

n
n xCxCxCCY ++++=  (5.5) 

 
where C1 to Cn are model coefficients, X1 to Xn are independent model variables (n is an integer 
from 1 to number of variables available) and Y is the dependent variable.  The complexity of this 
equation is in the model variables.  Each variable in Equation 5.5 can be a function of several 
parameters.  This complicates the process since an endless number of possible combinations 
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Figure 5.2 - Results of Modifying Coefficients of Witczak Model 
  
exist.  In order to solve this problem and determine a feasible solution, the possible number of 
combinations was reduced.  First, all trigonometric functions were eliminated based on the 
nature and current status of the ACP material models.  Common functions such as addition, 
subtraction, multiplication, division, logarithms, natural logarithms, and exponentials were used 
in the regression analysis.  Through an iterative process, resulting coefficients for each of the 
possible independent variable equations were determined.  The combination with the lowest least 
squares error was selected. 
 
Based on the assumptions discussed, a regression analysis process with four independent 
variables was carried out.  The analysis differed slightly from linear regression in the fact that 
each of these four variables can also be multiplied, divided, taken the logarithm of, etc.  The 
result is a nonlinear, multivariable regression equation based on the measured parameters from 
the LTPP database.  In this case, as in the previous methods, data from the middle clusters was 
used (seventeen used for generating the model and three for testing and validating the model).  
Equation 5.6 presents the results of the best model. 
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As depicted in Figure 5.3, the predicted moduli were fairly reasonable, with a much better R2 
value of 0.68 when compared to the single variable linear regression keeping in mind that 
Equation 5.6 was derived with a very limited number of points.  The validation data points, 
plotted as hollow points, exhibited higher errors than the rest of the data.   
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Figure 5.3 - Results of New AC Material Model Using LTPP Database 

 
Overall, the models generated are reasonable, keeping in mind the limited data that was available 
and used.  Four material models for the ACP layer are now available and can be used in the 
RECIPPE.  Also, the calibration and model development algorithms developed here are being 
incorporated into RECIPPE in the case that more data becomes available. 
 

BASE & SUBGRADE MATERIAL MODEL CALIBRATION 
 
The correlation, represented by the R2 value, for the multivariable nonlinear regression of the 
ACP modulus equation was considerably better than the other regression analyses discussed.  For 
this reason, the multivariable nonlinear regression is the only calibration performed for the base 
and subgrade material models.  The material models for base and subgrade layers, as discussed 
in Chapter 2, are based on the constitutive equation as presented in Equation 2.2.  Equation 2.2 
can be used for both granular and cohesive soils.  The main distinctions for these two materials 
using the model are the k1, k2 and k3 material parameters.  As stated in Chapter 2, parameters k1, 
k2 and k3 are obtained from equations developed from a multiple regression procedure.  
Equations 2.3 through 2.8 provide the k parameters as a function of construction parameters as a 
result of a study by Santha (1994).  The study was for pavement sections in Georgia.  Since these 
equations were based on empirical data, similar types of equations (estimating the k parameters 
based on construction measures) would have to be generated for pavement sections in Texas.  
Unfortunately, the LTPP database cannot be used to for this task.  As discussed previously, the 
parameters required for base and subgrade materials were not comprehensively available in the 
LTPP database.  The best solution was to use the data from the sections previously intended for 
model calibration to develop new models (summarized in Table 5.5).  When developing 
regression equations based on empirical data a large database is preferable.  Unfortunately, 
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because the database of samples obtained for these layers is only for eleven sites, an innovative 
technique was used to populate the database.  The process is presented next. 
 
The technique used in populating the database involved utilizing the values of the parameters 
collected from the sites and simulating hundreds of possible values for those parameters with 
similar attributes.  To capture the attributes for each pavement layer, correlation matrices shown 
in Tables 5.6 and 5.7 were developed.  Table 5.6 is for the base layer and Table 5.7 is for the 
subgrade layer.  Once the correlation of the parameters is established, the next step is to use a 
technique to simulate the variables.  The main assumption was to represent each variable with a 
distribution.  In this case, each variable was assumed normal with a mean and standard deviation 
equal to the values obtained from the field data for each parameter.   
 
For example, by obtaining the statistical information for each parameter from Table 5.5 (e.g. the 
mean for the maximum dry density is 124.7 pcf with a COV of 10%, moisture content is 10.6% 
with a COV of 42%, and so on) numerous simulations can be made that fit a normal distribution 
for each parameter.  These simulated values will provide a wider range of base and subgrade 
stiffness parameters that can be used in the regression analysis.  Thus the material model is not 
limited to just the specific sites, but any range of values that fall within the parameter statistics. 
 
The next step is to simulate each variable depending on its distribution while insuring that the 
correlation of that variable with the other variables is maintained.    
 
To illustrate the concept a simplistic example of predicting the deflections of a cantilever beam 
under a point load is presented.  It is expected that the deflections should follow a continuous 
curve, as shown in Figure 5.4.  In other words, the correlation between the deflection points 
shows that as the deflection point moves closer to the load, the deflection should increase 
monotonically in the beam.  Hence, if the Monte Carlo simulation was carried out to simulate the 
deflections, the simulated deflections should increase monotonically with the deflection points as 
opposed to following completely random events within the normal distribution, as shown in 
Figure 5.5.  For this reason, the correlation was included in the simulation for the base and 
subgrade parameters. 

 
Figure 5.4 – Expected Deflection of a Cantilever under a Point Load 
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Table 5.6 - Correlation Matrix of Base Construction Parameters Used for Material Model Calibration 

  Max. Dry 
Density  

Opt. Moist. 
Content 

Moist. 
Content 

Degree of 
Comp. 

Agg. 
Passing 
No.40 

% of 
Clay 

% of 
Silt k1  k2 k3 

Max. Dry 
Density  1.00 -0.99 -0.94 0.92 -0.01 0.37 0.54 -0.25 0.76 -0.16 

Opt. Moist. 
Content   1.00 0.92 -0.90 -0.07 -0.31 -0.53 0.16 -0.83 0.26 

Moist. 
Content     1.00 -0.88 0.28 -0.41 -0.49 0.31 -0.68 -0.03 

Degree of 
Comp.       1.00 -0.16 0.67 0.79 -0.56 0.67 0.09 

Agg. 
Passing 
No.40 

        1.00 -0.60 -0.30 0.57 0.26 -0.71 

% of Clay           1.00 0.90 -0.93 0.04 0.61 

% of Silt             1.00 -0.72 0.41 0.22 
k1               1.00 0.17 -0.81 
k2                 1.00 -0.57 
k3                   1.00 
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Table 5.7 - Correlation Matrix of Subgrade Construction Parameters Used for Material Model Calibration 

  
Max. Dry 
Density 

(pcf) 

Opt. 
Moist. 

Content 

Moist. 
Content 

Degree 
of Comp.

Agg. 
Passing 
No.40 

% of 
Clay 

% of 
Silt LL PI k1 

(ksi) k3 

Max. Dry 
Density 

(pcf) 
1.00 -0.98 -0.94 -0.55 -0.97 -0.72 -0.85 -0.92 -0.96 0.63 -0.26 

Opt. 
Moist. 

Content 
  1.00 0.96 0.63 0.97 0.70 0.87 0.96 0.95 -0.72 0.40 

Moist. 
Content     1.00 0.42 1.00 0.87 0.70 0.99 0.83 -0.53 0.25 

Degree of 
Comp.       1.00 0.43 -0.07 0.89 0.52 0.72 -0.99 0.89 

Agg. 
Passing 
No.40 

        1.00 0.85 0.73 0.98 0.86 -0.55 0.23 

% of Clay           1.00 0.26 0.81 0.49 -0.06 -0.16 
% of Silt             1.00 0.74 0.96 -0.92 0.63 

LL               1.00 0.83 -0.63 0.39 
PI                 1.00 -0.78 0.41 

k1 (ksi)                   1.00 -0.89 
k3                     1.00 
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Figure 5.5 – Erroneously Simulated Deflections 
  
The simulated values for this study were created using @RISK, a risk analysis software that 
performs the desired calculations using the “CORRMAT” macro (Palisade, 1996).  This 
command identifies 1) a matrix of rank correlation coefficients and 2) the location in the matrix 
of the coefficients used in correlating the distribution function to run the Monte Carlo simulation 
(Palisade, 1996).  For more accurate results, 10,000 simulations were run for each of the k1, k2 
and k3 parameters in cohesive and granular materials.  Tables 5.8 and 5.9 show the statistics for 
the parameters of the base and subgrade layers after the correlated simulation, respectively.  As 
depicted in the table, the statistical information for each parameter is very similar to those shown 
in tables 5.6 and 5.7.  Since a large population of examples exists, the development of the 
regression equation based on empirical data is performed.  The results of the regression 
equations the k parameters are presented next.   

 
Base Material Model Calibration 
 
Of the seven samples that were collected, six were used for developing the new material models, 
and one was used for validation.  As more field-testing is performed further validation can be 
carried out. 
 
The initial models for the k1, k2 and k3 parameters for granular materials are shown in Equations 
2.3 through 2.5, respectively.  The new calibrated models are shown in Equations 5.7 through 
5.9. 
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Table 5.8 – Resulting Correlation Matrix of Simulated Base Construction Parameters Used for Material Model 
Calibration 

  Max. Dry 
Density  

Opt. 
Moist. 

Content 

Moist. 
Content 

Degree of 
Comp. 

Agg. 
Passing 
No.40 

% of Clay % of Silt k1  k2 k3 

Max. Dry 
Density  1.00 -0.99 -0.94 0.92 -0.01 0.35 0.53 -0.22 0.75 -0.17 

Opt. 
Moist. 

Content 
 1.00 0.91 -0.90 -0.06 -0.29 -0.51 0.14 -0.82 0.27 

Moist. 
Content   1.00 -0.88 0.28 -0.40 -0.47 0.29 -0.67 -0.02 

Degree of 
Comp.    1.00 -0.16 0.65 0.78 -0.54 0.66 0.08 

Agg. 
Passing 
No.40 

    1.00 -0.59 -0.30 0.56 0.25 -0.71 

% of 
Clay      1.00 0.89 -0.93 0.04 0.59 

% of Silt       1.00 -0.71 0.39 0.21 
k1         1.00 0.17 -0.80 
k2         1.00 -0.57 
k3          1.00 
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Table 5.9 - Resulting Correlation Matrix of Simulated Subgrade Construction Parameters Used for Material Model 
Calibration 

  
Max. Dry 
Density 

(pcf) 

Opt. 
Moist. 

Content 

Moist. 
Content 

Degree 
of 

Comp. 

Agg. 
Passing 
No.40 

% of 
Clay % of Silt LL PI k1 

(ksi) k3 

Max. Dry 
Density 

(pcf) 
1.00 -0.98 -0.94 -0.53 -0.96 -0.71 -0.84 -0.92 -0.96 0.62 -0.81 

Opt. 
Moist. 

Content 
 1.00 0.96 0.61 0.97 0.69 0.86 0.96 0.95 -0.70 0.70 

Moist. 
Content   1.00 0.40 1.00 0.86 0.69 0.99 0.83 -0.52 0.69 

Degree of 
Comp.    1.00 0.42 -0.08 0.88 0.51 0.71 -0.99 0.09 

Agg. 
Passing 
No.40 

    1.00 0.84 0.72 0.98 0.86 -0.53 0.73 

% of Clay      1.00 0.26 0.80 0.48 -0.05 0.64 
% of Silt       1.00 0.73 0.95 -0.91 0.52 

LL        1.00 0.82 -0.62 0.58 
PI         1.00 -0.77 0.73 

k1 (ksi)          1.00 -0.15 
k3           1.00 
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As stated before, the new granular equations are based upon the simulated data. The estimated 
and measured values (for both the initial and calibrated material models) are compared in Figure 
5.6 through 5.8.  Using the three calibrated models the resulting correlation for the curve fit 
samples was considerably better than the results from the initial model.   
 

Figure 5.6 – Results of Granular Material Model for k1 
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Figure 5.7 – Results of Granular Material Model for k2 
 
 

 

Figure 5.8 – Results of Granular Material Model for k3 
 

 
Subgrade Material Model Calibration  
 
Because there are only four samples for the subgrade as shown in Table 5.5, all data points were 
used to calibrate the models.  The models for the k1, k2 and k3 parameters for cohesive soils, are 
shown in Equations 2.6 through 2.8, respectively.  The results for the calibrated values are shown 
in Equations 5.10 through 5.12.  The measured and estimated parameters (for both initial and 
calibrated models) are compared in Figures 5.9 and 5.10. 
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Figure 5.9 – Results of Cohesive Material Model for k1 
 

  

Figure 5.10 – Results of Cohesive Material Model for k3 
 

( )[ ] ( ) ( )

( )[ ] ( ) ( )[ ]

( )[ ]( ) ( )[ ] ( )[ ]MOISTPICLYLL
e

SLT
e

CLY
LL

S
COMP

COMP
PI
MOIST

COMP
DENk

MCCOMP

lnln915.0log10897.7

ln21.421025.140ln7.104

9.133683.0ln1052.11453

36

339

3

3

3

7

1

−×

−+
×

++

−−
×

−=

−

     (5.10) 

 

02 =k                                                                                     (5.11) 
 



 

 63

( ) ( ) ( ) ( )[ ]

( )( ) ( ) ( )

( ) ( )[ ]( )38

41
4

25
3

42

3

log1004.6033.0

1029.8668.01005.1

ln1065.567.1941048.106.3

CLYDEN
SLT

PI
e

LL
MOIST

SLTDENCLY

DENCOMP
LL

MC
e

MOISTk

COMP

COMP

−

−

−

×+

+
×

−−×+

×+−
×

+−=

(5.12) 

   
The results for the calibrated base and subgrade models exhibit a better general correlation to the 
simulated values, when compared to the initial models.  However, as more data becomes 
available the models can be recalibrated and show an even higher level of correlation. 
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CHAPTER SIX 

CASE STUDY 
 

CASE STUDY 
 
With the implementation of new models and QC procedures, RECIPPE can be used for pre-
construction and post-construction purposes, as well as quality assurance and quality control.  
This chapter outlines a brief example that covers all techniques described thus far, and how they 
can be incorporated into the optimization of pavement performance.  More specifically, the 
problem concentrates on the base layer only, in order to demonstrate the practicality of RECIPPE 
by simulating an actual construction process; where the subgrade currently exists and the 
contractor wishes to only focus on the pavement layer currently being built. 
 
Problem Statement 
 
Given:  TxDOT has hired a contractor to build a length of road called Darrington Road, in El 
Paso, Texas.  Darrington Road is designed to be 10 miles long and 24 feet wide.  From historical 
records, site specifications for design and construction data have been listed in Table 6.1 and 6.2, 
respectively.  Also included in the tables are the current sampling frequency values, based on 
TxDOT guide schedule. 
 
Find:  A set of construction parameters that meets a minimum performance life of 1,500,000 
ESALS with 90% reliability and a COV not greater than 45% for fatigue cracking and subgrade 
rutting criteria.  The frequency of sampling at various points in the post-construction process 
should also be determined. 
 
Assume:  Darrington Road is a three-layer system (5 in. ACP  over 12 in. flexible base over 
subgrade).  Also, TxDOT and contractor’s confidence level are both 80%, with 5% tolerable 
error. 
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Table 6.1 – Darrington Road Design Parameters from Specifications 
Parameter Mean COV(%) Current Sample Size 

ACP Thickness (in.) 5 0 N/A 
Base Thickness (in.) 12 0 N/A 
SG Thickness (in.) 225 0 N/A 
ACP Modulus (psi) 650000 0 N/A 
Base Modulus (psi) 

 80000 Based Material 
Information 

See Construction 
Parameters 

SG Modulus (psi) 30000 0 N/A 
 

Table 6.2 – Darrington Road Base Construction Parameters from Historical Data 

Parameter Mean COV(%) Current Sample Size 

Maximum Dry Density (pcf) 136 1 8 sample per 16000 yd.3  
Opt. Moisture Content (%) 6.9 10 8 sample per 16000 yd.3  

Moisture Content (%) 3.5 10 30 samples per 16000 yd.3  
Degree of Compaction (%) 102 0.3 30 samples per 16000 yd.3 

% Aggregate Passing Sieve #40 14 12.5 8 sample per 16000 yd.3  
% Clay 3.4 2 8 sample per 16000 yd.3  
% Silt 1 2 8 sample per 16000 yd.3  

 
Manual Procedure 
 
The graphical user interface (GUI) for RECIPPE is set up so that the assumptions and inputs can 
be easily entered.  Figure 6.1 shows the input screen for the design parameters and the constraint 
inputs.  The design values for the thicknesses and moduli, located at the top of the image.  This 
design information includes the mean and COV values.  The COV’s are all equal to zero except 
for the modulus of the base layer (as listed in Table 6.1).  The mean for the modulus of the base 
layer is actually a priori value that is set as a limitation in the algorithm.  The COV of the base is 
derived from the variance of the construction parameters, which are used to find the modulus 
variance using the material models, discussed before. 
 
Also shown in Figure 6.1 are the constraints set by the assumptions in the problem statement, 
displayed in the “Miscellaneous” and “Performance Indicators” frames.  For example, the 
minimum failure limit of 1,500,000 ESALs is called the “Input ESALS”, the reliability for this 
minimum remaining life of 90% is called the “Reliability Level”, and so on.  Most of the 
“Miscellaneous” inputs are self explanatory.  In order to make the reduction process manual 
(instead of automatic) the “Max # Iterations” value should be set to 1.  Similarly, the 
construction parameter values are inputted as shown below. 
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Figure 6.1 – Constraints & Design Parameter Input 
 
Figure 6.2 displays the GUI that allows users to provide the data listed in Table 6.2.  That figure 
also shows the capability for users to provide the data pertaining to sample size and sample size 
cost estimation.  Specifically, the tolerable error, owner (TxDOT) and contractor acceptable 
confidence (or risk), cost per sample and the current level of sampling are the inputs needed for 
the frequency of sampling calculations.  The “Ngl” value represents the sample size from 
guidelines, or the sample size that is provided from the TxDOT guide schedule.  The cost per 
sample is set as the same value for each construction parameter so that the importance for the 
total cost is a function of sample size only. 
 
Manual Results 
 
From the initial execution, remaining life due to subgrade rutting meets the 1,500,000 ESAL 
limit at 90% reliability, as depicted in Figure 6.3.  However, the remaining life due to fatigue 
cracking, at the 90% confidence interval, is only 1.37 million ESALs, and the COV is greater 
than 45%.  As a result the COV of the construction parameters must be adjusted to improve the 
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Figure 6.2 – Construction Parameter Inputs 
 
reliability level.  In the figure, the remaining life as per 1993 AASHTO design guide is 
unacceptable at 90% confidence interval because of the large variability in the predicted 
remaining life.  However, since this criterion was not of interest to the user, it was not 
considered.  Once again, it should be emphasized that the AASHTO model is not mechanistic, 
but it is included in the software for the sake of completeness. 
 
In order to improve the remaining life due to fatigue cracking at the 90% reliability, only the 
most important construction parameter COV value will be reduced.  This value is found using 
the impact charts, as shown in Figure 6.4. 
 

Figure 6.3 – Initial Pavement Performance Results for Manual Optimization 
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Figure 6.4 – Impact Chart for Initial Manual Optimization 
 
From impact charts the COV of the optimum moisture content affects the pavement performance 
variance the most, followed by the field moisture content and the degree of compaction, 
respectively.  
 
The manual optimization will follow the “Largest Impact Value Reduction” technique, by only 
reducing the COV of the optimum moisture content from 10% to 9%.  The result of this 
reduction is shown in Figure 6.5. 

Figure 6.5 – Secondary Pavement Performance Results from Manual Reduction 
  



 

 70 

By reducing only the COV of the optimum moisture content, the remaining life due to fatigue 
cracking at 90% reliability increased from 1.37 million ESALs to 1.38 million ESALs, and the 
COV decreased from 47.4% to 47.2%.  The remaining life due to subgrade rutting at 90% 
reliability also increased from 276 million ESALs to 277 million ESALs, and the COV reduced 
from 30.6% to 30.4%. 
 
Automation Results 
 
Unfortunately, the remaining life due to fatigue cracking still does not meet the specifications for 
reliability bounds mentioned in the problem statement.  The next step in the manual procedure 
would be to continue reducing the COV of the construction parameter with the greatest impact 
value.  However, to accelerate the process the automated feature was used.  This process 
provides the pavement performance results shown in Figure 6.6.  The remaining lives due to 
fatigue cracking and subgrade rutting meet the requirements of the problem statement.  The 
combination of construction parameters used to obtain these results is listed in Table 6.3. 
 

Figure 6.6 – Final Pavement Performance Results from Automated Optimization 
 

Table 6.3 – Change in Construction Parameter COV for Final Pavement Performance 
Results 

Parameter Mean Initial 
COV(%) New COV (%) 

Maximum Dry Density (pcf) 136  1 1 
Opt. Moisture Content (%) 6.9 9 7 

Moisture Content (%) 3.5 10 10 
Degree of Compaction (%) 102 0.3 0.3 

% Aggregate Passing Sieve #40 14 12.5 12.5 
% Clay 3.4 2 2 
% Silt 1 2 2 
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Table 6.3 depicts that only the COV of the optimum moisture content is changed, from 10% to 
7%.  With this new information, the second part of the problem statement can now be addressed 
for quality control during post-construction. 
 
Post-Construction Analysis 
 
The initial frequency for inspection should follow guide schedule sample sizes, and then changes 
should be based on the inspection results from control charts. 
 
In the case of the optimum moisture content, the inspector should initially take eight random 
samples for every 16,000 yd3 of base material that is built.  Every time a subgroup is sampled, 
the measurements are entered into RECIPPE to identify changes in the mean and COV.  For 
example, for the first 48,000 yd3, the information shown in Table 6.4 was entered into RECIPPE.  
The information listed in the table is used to create the mean and COV control charts, shown in 
Figures 6.7 and 6.8, respectively.  The upper and lower control limits for the mean control chart 
are denoted by the dashed red lines, the center line is represented by the solid red line and the 
measured means are solid blocks connected by a black line.  The same style is used for the COV 
control chart, however the upper control limit for the COV is too large to be seen (UCL = 9%). 
 

Table 6.4 – Measured Optimum Moisture Content for the first 24,000 yd.3 of Darrington 
Road 

Sample # 
Subgroup 

1 2 3 4 5 6 7 8 
First 16,000 

yd3 6.0% 6.9% 7.6% 6.3% 7.8% 6.7% 6.6% 6.1% 

Second 16,000 
yd3 6.3% 7.4% 6.8% 6.5% 7.7% 6.3% 7.3% 7.4% 

Third 16,000 
yd3 6.7% 7.0% 6.8% 7.1% 6.9% 7.2% 6.8% 6.7% 

 
In Figure 6.7, the mean measured optimum moisture contents follow a random pattern and stay 
within the control limits.  Thus, the mean for the optimum moisture content is in-control, and no 
corrective action needs to be performed for the average values. 
 
For the COV control chart, none of the measured subgroups exceed the upper control limit, plus 
an encouraging trend is exhibited (see Figure 6.8).  The COV of the measured optimum moisture 
content is continually decreasing, which is the phenomenon that TxDOT and the contractors 
wish to see.  Furthermore, because the COV decreased below the centerline, along a trend that is 
not random, the control chart depicts that the contractor is exhibiting an increased level of 
consistency.  Hence, continuing to measure the optimum moisture content at the frequency 
supplied by the guide schedule is excessive.  Reducing the sample size to the final suggested 
sample size, listed in Table 6.5, is adequate enough to ensure that the optimum moisture content 
is within limits (according to Equation 4.14). 
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Figure 6.7 – Optimum Moisture Content Mean Control Chart for first 48,000 yd3 of Darrington Road 
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Figure 6.8 – Optimum Moisture Content COV Control Chart for first 48,000 yd3 of Darrington Road 
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If the COV had increased, then the guide schedule sample size could no longer be assumed 
adequate to verify that the optimum moisture content was within limits.  As a result, the 
inspector would be encouraged to increase the sample size to the initial suggested sample size, 
listed in Table 6.5.  If the initial suggested sample size was smaller, or the COV continued to 
increase, then all construction should cease so that corrective action could be performed to 
identify and resolve the factors that are leading to an increased COV.  Also, if the number of 
samples becomes excessive, the construction should be stopped for corrective action. 
 
Cost Analysis 
 
The decrease in sampling is a benefit to contractors by reducing the cost of inspection.  Just as 
increasing the sampling is a detriment to the contractors.  Therefore, calculation of the cost for 
sampling provides the cost/benefit results for increasing/decreasing the measurement frequency. 
 
Furthermore, the costs could be additionally reduced by removing the need for sampling of some 
parameters altogether.  The parameters that have no impact on pavement performance can be 
completely removed from sampling because the RECIPPE program quantitatively identifies the 
importance of each parameter.   
 
For example, the total cost of sampling only the parameters for the final combination of 
construction parameters, provided in the Automation Results section, can be compared to the 
initial cost of sampling according to TxDOT guide schedule sample sizes.  The result is a 
cost/benefit analysis for increasing the quality of pavement performance. 
 
Specifically, to calculate the total sampling cost for the optimized pavement the first step would 
be to analyze the impact chart and identify the most important parameters that contribute to the 
variance of the pavement performance.  The results from the impact chart, shown in Figure 6.9, 
identify five parameters to measure: optimum moisture content, moisture content, degree of 
compaction, maximum dry density, percent of clay, and percent of silt (with the same order of 
importance).  The impact due to percent aggregate passing sieve #40 can be considered 
negligible. 
 
By taking the final suggested sample sizes for these six parameters and comparing their total 
costs (based on FY2003 values, shown in Table 4.8) to the seven guide schedule sample sizes 
(both listed in Table 6.5) provides the results listed in Table 6.6.  The cost analysis shows that 
the initial sample sizes cost over three times as much as the samples provided by RECIPPE, for 
this situation.  However, the general idea shows the incentive of reducing the variability of 
pavement performance from construction variability. 
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Table 6.5 – Initial and Calculated Construction Parameter Sample Sizes 

Parameter Mean Initial 
COV 

Final 
COV 

TxDOT's 
Confidence 

Contractor's 
Confidence 

Tolerable 
Error 

Guide 
schedule 
Sample 
Size per 

16000 yd.3 

Initial 
Suggested 

Sample 
Size per 

16000 yd.3 

Final 
Suggested 

Sample 
Size per 

16000 yd.3 
Maximum 

Dry Density 
(pcf) 

136  1% 1% 8 1 1 

Opt. Moisture 
Content (%) 6.9 9% 7% 8 12 6 

Moisture 
Content (%) 3.5 10% 10% 30 12 12 

Degree of 
Compaction 

(%) 
102 0.1% 0.1% 30 1 1 

% Aggregate 
Passing Sieve 

#40 
14 13% 13% 8 18 18 

% Clay 3.4 2% 2% 8 1 1 

% Silt 1 2% 2% 

80% 80% 5% 

8 1 1 

 
 



 

 76 

 
Figure 6.9 – Impact Chart Used to Identify the Construction Parameters to Sample 

 
Table 6.6 – Cost Analysis for Guide Schedule and RECIPPE Sample Sizes 

Parameter 

Guide 
Schedule 
Sample 

Size 

Final 
Suggested 

Sample 
Size 

Cost per 
Sample 

Cost for 
Guide 

Schedule 
Sample 

Size 

Cost for 
Final 

Suggested 
Sample 

Size 
Maximum Dry 
Density (pcf) 4 1 $   330.00 $1,320.00 $330.00 

Opt. Moisture 
Content (%) 4 2 $   330.00 $1,320.00 $660.00 

Moisture 
Content (%) 30 12 $   27.00 $810.00 $324.00 

Degree of 
Compaction 

(%) 
30 1 $   37.50 $1,125.00 $37.50 

% Aggregate 
Passing Sieve 

#40 
4 0 $   60.00 $240.00 $0.00 

% Clay 4 1 $   150.00 $600.00 $150.00 
% Silt 4 1 $   150.00 $600.00 $150.00 

TOTAL COST $6,015.00 $1,651.50 
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CHAPTER SEVEN 

CONCLUSIONS AND RECOMMENDATIONS 
 

 

SUMMARY 
 
The goal of this report was to develop rational algorithms that reconcile the results from several 
pavement-performance models, to validate the appropriateness of these models and algorithms, 
and to create a program that can be used in practice for the construction of pavement.   
 
An overview of performance-based methodologies and a background on some of the 
mathematical and analysis tools used in this project are included in Chapter 2.  A validation of 
the algorithm’s statistical theory was performed to reduce simulation time, described in Chapter 
3.  Chapter 4 described adjustments made to the previous prototype to provide optimal results.  
Also included in Chapter 4 were the additions to the prototype process, including: a) Reliability 
Analysis, b) Automation of Prototype, c) Sample Size Calculations, d) Control Chart Analysis, 
and e) Cost Allocation.  Chapter 5 described the calibration of current material models using 
regression analysis based upon empirical information.  Chapter 6 presented a case study that 
demonstrated the use of the analysis tool and how the impact of variability of construction 
parameters impacts variability on performance.  
 

CONCLUSIONS 
 
RECIPPE presents a process that can be used in a practical manner to optimize pavement 
performance. Furthermore, the latest version of the process is versatile and avails complete 
modularity, which allows for new material and performance models to be inputted and/or 
calibrated as needed.  Even though a limited number of sites were used to develop calibrated 
material models the results from RECIPPE and the methodology presented in this study is a step 
towards a more rational estimation of pavement remaining life from construction parameters. 
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The current RECIPPE program can be used to: 
 

• Generate constructions parameter values that will meet owner’s needs for pavement 
life 

• Identify the construction parameters to focus on, in order to reduce pavement life 
variance and increase reliability 

• Track and identify out of control procedures during construction 
• Reduce sampling costs by optimizing the frequency of testing 
• Create databases that can be used in future projects 
• Lower variability of construction practices 
• Provide penalties/bonuses to contractors 
• Perform quality control and/or quality assurance of construction practices 
• Focus manpower on specific parameters and reduce costs 

 
There are several limitations to the program.  As discussed in Chapter 5, the material models 
were developed with very limited data and as such the models should be used with caution.  As 
more data becomes available and better models are developed, tested and validated using real 
data, more confidence is can be attain in using the material models in RECIPPE.  The 
performance models are not calibrated either since it was outside the scope of this project.  The 
performance models are being calibrated under other TxDOT projects. 
 

RECOMMENDATIONS FOR FUTURE STUDY 
 
Now that the proposed methodology for predicting pavement performance, and its corresponding 
variation, has been completed and calibrated and it is ready for shadow implementation.  Shadow 
implementation would allow for RECIPPE to be validated by comparing its results to current 
methods.  The results from the shadow implementation would provide the limitations/advantages 
of practically using the program in the real world. 
 
Also, an additional cost/benefit analysis can be incorporated to show the life cycle cost analysis, 
based on the results from RECIPPE.  To be specific, the present cost/benefit analysis 
concentrates on only the price of sampling and not the cost of future rehabilitation.  Due to the 
fact that RECIPPE finds the amount of pavement that will withstand a set number of ESALs (in 
the form of the reliability), it could be expanded to find the amount of pavement that will not 
withstand a set number of ESALs.  Hence, predicting how much pavement will need to be 
rehabilitated before the expected design life. 
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APPENDIX A  

RESULTS OF THE SENSITIVITY STUDY FOR ASPHALT 
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Figure A1 - Results of Impact of Variability of Asphalt Content on Remaining Life Varying 
AC Modulus for Thin-Thin Section 
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Figure A2 - Results of Impact of Variability of Asphalt Content on Remaining Life Varying 
AC Modulus for Thin-Thick Section 
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Figure A3 - Results of Impact of Variability of Asphalt Content on Remaining Life Varying 
AC Modulus for Thick-Thin Section 
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Figure A4 - Results of Impact of Variability of Asphalt Content on Remaining Life Varying 
AC Modulus for Thick-Thick Section 
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Table A1 - Summary of Results of Impact of Variability of Asphalt Content on Remaining Life Varying AC Modulus 
Fatigue Cracking Subgrade Rutting AC Rutting Case COV 

Tn/Tn Tn/Tk Tk/Tn Tk/Tk Tn/Tn Tn/Tk Tk/Tn Tk/Tk Tn/Tn Tn/Tk Tk/Tn Tk/Tk
10% 15% 12% 2% 2% 2% 2% 9% 6% 2% 2% 4% 3% 
20% 33% 25% 4% 4% 4% 5% 18% 13% 5% 5% 8% 7% 
30% 60% 39% 9% 8% 6% 7% 35% 23% 7% 8% 13% 12% 
40% 87% 51% 17% 20% 10% 10% 59% 44% 10% 10% 18% 18% 

1 

50% 108% 81% 39% 33% 16% 14% 116% 67% 13% 13% 30% 27% 
10% 9% 7% 5% 5% 2% 2% 11% 8% 2% 2% 4% 4% 
20% 17% 14% 12% 10% 4% 5% 25% 17% 4% 4% 9% 8% 
30% 26% 21% 27% 23% 8% 8% 71% 35% 6% 6% 16% 14% 
40% 35% 31% 42% 37% 13% 11% 105% 56% 8% 9% 23% 21% 

2 

50% 48% 39% 68% 61% 18% 15% 151% 90% 10% 11% 34% 30% 
10% 4% 2% 8% 7% 3% 2% 13% 9% 2% 2% 5% 4% 
20% 7% 5% 17% 19% 6% 5% 29% 24% 3% 3% 10% 10% 
30% 11% 9% 36% 25% 12% 9% 70% 32% 6% 5% 18% 14% 
40% 15% 11% 64% 48% 20% 15% 146% 65% 8% 8% 27% 21% 

3 

50% 22% 16% 90% 78% 32% 19% 177% 106% 11% 10% 38% 33% 
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APPENDIX B  

RESULTS OF THE SENSITIVITY STUDY FOR AIR 
VOIDS OF AC LAYER 
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Figure B1 - Results of Impact of Variability of Air Voids on Remaining Life Varying AC 
Modulus for Thin-Thin Section 
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Figure B2 – Results of Impact of Variability of Air Voids on Remaining Life Varying ACP 
Modulus for Thin-Thick Section 
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Figure B3 – Results of Impact of Variability of Air Voids on Remaining Life Varying ACP 
Modulus for Thick-Thin Section 
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Figure B4 – Results of Impact of Variability of Air Voids on Remaining Life Varying ACP 
Modulus for Thick-Thick Section 
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Table B1 - Summary of Results of Impact of Variability of Air Voids on Remaining Life Varying AC Modulus 
Fatigue Cracking Subgrade Rutting AC Rutting Case COV 

Tn/Tn Tn/Tk Tk/Tn Tk/Tk Tn/Tn Tn/Tk Tk/Tn Tk/Tk Tn/Tn Tn/Tk Tk/Tn Tk/Tk
10% 18% 16% 2% 2% 2% 3% 11% 8% 3% 3% 5% 4% 
20% 42% 32% 5% 4% 4% 5% 23% 15% 5% 6% 9% 8% 
30% 100% 59% 9% 8% 7% 8% 39% 25% 8% 9% 14% 13% 
40% 238% 120% 14% 11% 9% 11% 52% 33% 11% 11% 19% 17% 

1 

50% 1728% 281% 21% 18% 12% 14% 62% 41% 14% 14% 23% 21% 
10% 7% 5% 4% 4% 2% 2% 9% 6% 2% 2% 3% 3% 
20% 14% 11% 8% 7% 3% 3% 18% 12% 3% 3% 7% 6% 
30% 23% 18% 13% 11% 5% 5% 29% 17% 4% 5% 10% 9% 
40% 35% 25% 17% 16% 7% 7% 37% 25% 6% 6% 14% 13% 

2 

50% 41% 34% 23% 20% 9% 9% 49% 32% 7% 8% 17% 15% 
10% 1% 1% 3% 3% 1% 1% 5% 4% 1% 1% 2% 2% 
20% 3% 2% 6% 6% 2% 2% 10% 7% 1% 1% 4% 3% 
30% 4% 3% 10% 9% 4% 3% 16% 11% 2% 2% 6% 5% 
40% 5% 4% 12% 11% 5% 4% 20% 14% 3% 3% 7% 7% 

3 

50% 7% 6% 17% 15% 5% 5% 28% 19% 3% 3% 10% 9% 
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