

Sponsored by the Texas Department of Transportation

TECHNICAL REPORT 0-6905-R1 TxDOT PROJECT NUMBER 0-6905

Investigation of Performance of Skewed Reinforcing in Inverted-T Bridge Caps

Jiaji Wang Yagiz Oz Bhagirath Joshi Satya Sapath Roy Y.L. Mo Thomas T.C. Hsu

August 2020; Published November 2020

University of Houston College of Technology Department of Civil & Environmental Engineering

1 Demont Ma	2. Desinisantis Cotole a No		
1. Report No. 2. Government Accession No.	3. Recipient's Catalog No.		
111WA/1A-21/0-0703-K1 1 1 Title and Subtitle	5 Papart Data		
4. The and Subline Investigation of Parformance of Skewed Deinforcing in Invested T Bridge	5. Report Date August 2020: Published November		
Cons			
Caps	6 Performing Organization Code		
7 Author(a)	8. Performing Organization Code		
/. Author(S) Ligit Wang, Vagin On Dhagingth Laghi Satua Sanath Day, V.L. Ma and	6. Performing Organization Report No.		
Thomas T.C. Hay	0-0903-K1		
0 Derfemning Operation News and Address	$10 \text{ W}_{\text{cut}} \text{ Lu}(1) \text{ (TDAIC)}$		
9. Performing Organization Name and Address	10. WORK UMI NO. (TRAIS)		
University of Houston	11. Contract or Grant No.		
4800 Calnoun Road	0-0903		
Houston, 1X //204-4003			
12. Sponsoring Agency Name and Address	13. Type of Report and Period Covered		
Personal and Technologie	l echnical Report		
Research and Technology	January 2016–August 2020		
D O Day 5000	14 Sponsoring Agency Code		
P. O. BOX 5080 Austin Tayon 78762 5080	14. Sponsoring Agency Code		
Austin, Texas / 0/05-3000	1		
15. Supplementary Notes	and the Endersel III channels A durinistration		
rioject performed in cooperation with the rexas Department of Transportation	and the Federal Highway Administration.		
16. Abstract			
Reinforced concrete inverted-T bridge caps (ITBCs) have been widely used in	n the bridges in the United States as they		
Reinforced concrete inverted-1 bridge caps (ITBCs) have been widely used in the bridges in the United States as they			
are aesthetically pleasing and offer a practical means to increase vertical cleara	nce. Many of the ITBCs are skewed when		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of t	nce. Many of the ITBCs are skewed when the construction requirements. The Texas		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of the ITBCs are designed using the traditional empirical procedures outlined in the	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of t ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of t ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs.		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of t ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure.		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of t ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenance	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of 1 ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenance be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can ecording to the results of lab tests, skewed		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of a ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD. However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenance be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional des	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can ecording to the results of lab tests, skewed sign. In addition, using skewed transverse		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of t ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenance be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de- reinforcement throughout ITBCs will result in fewer cracks and smaller crack	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenance be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional des reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to the	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can ecording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenance be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional des reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAOUS. The analysis indicated that the critical locations to paste the strain ge	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using muses and attach LVDTs are the cantilever		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenance be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional des reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcing	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional des reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcing and ultimate state loading. Three cases of rainforcement design for LTBCs are in	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ing were observed to be safe under service wastigated. The parametric FE simulation		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concreta which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional des reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcing and ultimate state loading. Three cases of reinforcement design for ITBCs are ir of 96 specimens and the cost-benefit analysis results yielded these conclusion	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ng were observed to be safe under service investigated. The parametric FE simulation s: (1) The skew transverse reinforcement		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional des reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are in of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans-	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ng were observed to be safe under service nvestigated. The parametric FE simulation s: (1) The skew transverse reinforcement were reinforcement (Case 2 and Case 3)		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional det reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcing and ultimate state loading. Three cases of reinforcement design for ITBCs are ir of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans- with potably reduced construction cost. Therefore, the skewed transverse reinfor	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ng were observed to be safe under service nvestigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3)		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de- reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are ir of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans- with notably reduced construction cost. Therefore, the skewed transverse reinfor of skewed ITBCs. (2) The increase of the S Bar area notably enhances the strift	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ng were observed to be safe under service investigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) Forcement can well be used for the design person and ultimate strength. In addition, the		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de- reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are ir of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans- with notably reduced construction cost. Therefore, the skewed transverse reinfor of skewed ITBCs. (2) The increase of the S Bar area notably enhances the stiffr increase of the S Bar area also reduces the crack width. The increase of the	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever and were observed to be safe under service nvestigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) Forcement can well be used for the design ness and ultimate strength. In addition, the S Bar area will contribute notably to the		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de- reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are in of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans- with notably reduced construction cost. Therefore, the skewed transverse reinfor increase of the S Bar area also reduces the crack width. The increase of the construction cost. Based on the parametric simulation results, the current design	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can be cording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever and were observed to be safe under service investigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) forcement can well be used for the design mess and ultimate strength. In addition, the S Bar area will contribute notably to the of the S bar area is adequate for structurel		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de- reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcin and ultimate state loading. Three cases of reinforcement design for ITBCs are in of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans- with notably reduced construction cost. Therefore, the skewed transverse reinfor of skewed ITBCs. (2) The increase of the S Bar area notably enhances the stiffr increase of the S Bar area also reduces the crack width. The increase of the construction cost. Based on the parametric simulation results, the current design seferty and crack resistance. (3) The increase of the G Bar area notably reduces the	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ng were observed to be safe under service nvestigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) forcement can well be used for the design ness and ultimate strength. In addition, the S Bar area will contribute notably to the of the S bar area is adequate for structural a maximum crack width with a negligible		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de- reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are ir of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans with notably reduced construction cost. Therefore, the skewed transverse reinfor of skewed ITBCs. (2) The increase of the S Bar area notably enhances the stiff increase of the S Bar area also reduces the crack width. The increase of the construction cost. Based on the parametric simulation results, the current design safety and crack resistance. (3) The increase of the G Bar area notably reduces th	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever my were observed to be safe under service nvestigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) forcement can well be used for the design mess and ultimate strength. In addition, the S Bar area will contribute notably to the of the S bar area is adequate for structural me maximum crack width with a negligible event design of the G Bar (No. 7 Bare) is		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de- reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcin and ultimate state loading. Three cases of reinforcement design for ITBCs are in of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans with notably reduced construction cost. Therefore, the skewed transverse reinfor increase of the S Bar area also reduces the crack width. The increase of the construction cost. Based on the parametric simulation results, the current design safety and crack resistance. (3) The increase of the G Bar area notably reduces the influence on the stiffness, ultimate strength, and construction cost. The current safety and crack resistance. (4) When the construction cost. The current design	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ing were observed to be safe under service investigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) forcement can well be used for the design hess and ultimate strength. In addition, the S Bar area will contribute notably to the of the S bar area is adequate for structural he maximum crack width with a negligible ent design of the G Bar (No. 7 Bars) is kei to 7 ksi the ultimete strength and the		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de- reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain gr end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are ir of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans- with notably reduced construction cost. Therefore, the skewed transverse reinfor increase of the S Bar area also reduces the crack width. The increase of the construction cost. Based on the parametric simulation results, the current design safety and crack resistance. (3) The increase of the G Bar area notably reduces the influence on the stiffness, ultimate strength, and construction cost. The curr adequate for crack control. (4) When the concrete strength increases from 5 1 giffness of ITBCs increase with reduced crack width. In <i>e influence</i> the <i>influence</i> to <i>i influence</i> the <i>influence informate influence interval influence interval</i>	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ng were observed to be safe under service investigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) Forcement can well be used for the design ness and ultimate strength. In addition, the S Bar area will contribute notably to the of the S bar area is adequate for structural ne maximum crack width with a negligible ent design of the G Bar (No. 7 Bars) is ksi to 7 ksi, the ultimate strength and the a of anonrate strength on the construction		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de- reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain gr end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are in of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans- with notably reduced construction cost. Therefore, the skewed transverse reinfor fincrease of the S Bar area also reduces the crack width. The increase of the construction cost. Based on the parametric simulation results, the current design safety and crack resistance. (3) The increase of the G Bar area notably reduces the influence on the stiffness, ultimate strength, and construction cost. The current dequate for crack control. (4) When the concrete strength increases from 5 I stiffness of ITBCs increase with reduced crack width. In addition, the influenc event is negligible. Undetas from AASHTO (2010) to AASHTO (2017) or other set is negligible. Undetas from AASHTO (2010) to AASHTO (2017) or other set is negligible. Undetas from AASHTO (2010) to AASHTO (2017) or other set is negligible.	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ng were observed to be safe under service investigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) forcement can well be used for the design ness and ultimate strength. In addition, the S Bar area will contribute notably to the of the S bar area is adequate for structural ne maximum crack width with a negligible ent design of the G Bar (No. 7 Bars) is ksi to 7 ksi, the ultimate strength and the e of concrete strength on the construction upmarized in A prendix 1		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de- reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain gg end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are ir of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans with notably reduced construction cost. Therefore, the skewed transverse reinfor increase of the S Bar area also reduces the crack width. The increase of the construction cost. Based on the parametric simulation results, the current design safety and crack resistance. (3) The increase of the G Bar area notably reduces the influence on the stiffness, ultimate strength, and construction cost. The curr adequate for crack control. (4) When the concrete strength increases from 5 I stiffness of ITBCs increase with reduced crack width. In addition, the influenc cost is negligible. Updates from AASHTO (2010) to AASHTO (2017) are sum	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ng were observed to be safe under service newstigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) forcement can well be used for the design ness and ultimate strength. In addition, the S Bar area will contribute notably to the of the S bar area is adequate for structural ne maximum crack width with a negligible ent design of the G Bar (No. 7 Bars) is ksi to 7 ksi, the ultimate strength and the e of concrete strength on the construction umarized in Appendix 1.		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de- reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain gg end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are ir of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans with notably reduced construction cost. Therefore, the skewed transverse reinfor increase of the S Bar area also reduces the crack width. The increase of the construction cost. Based on the parametric simulation results, the current design safety and crack resistance. (3) The increase of the G Bar area notably reduces the influence on the stiffness, ultimate strength, and construction cost. The curr adequate for crack control. (4) When the concrete strength increases from 5 I stiffness of ITBCs increase with reduced crack width. In addition, the influenc cost is negligible. Updates from AASHTO (2010) to AASHTO (2017) are sum 17. Key Words	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ng were observed to be safe under service newstigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) forcement can well be used for the design ness and ultimate strength. In addition, the S Bar area will contribute notably to the of the S bar area is adequate for structural ne maximum crack width with a negligible ent design of the G Bar (No. 7 Bars) is ksi to 7 ksi, the ultimate strength and the e of concrete strength on the construction umarized in Appendix 1. atement		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de: reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to p ABAQUS. The analysis indicated that the critical locations to paste the strain gr end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are ir of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans with notably reduced construction cost. Therefore, the skewed transverse reinfor increase of the S Bar area also reduces the crack width. The increase of the construction cost. Based on the parametric simulation results, the current design safety and crack resistance. (3) The increase of the G Bar area notably reduces th influence on the stiffness, ultimate strength, and construction cost. The curr adequate for crack control. (4) When the concrete strength increases from 51 stiffness of ITBCs increase with reduced crack width. In addition, the influenc <u>cost is negligible. Updates from AASHTO (2010) to AASHTO (2017) are sum</u> 17. Key Words [TBC, inverted-T bridge cap, reinforcement design	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever and were observed to be safe under service investigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) forcement can well be used for the design ness and ultimate strength. In addition, the S Bar area will contribute notably to the of the S bar area is adequate for structural ne maximum crack width with a negligible ent design of the G Bar (No. 7 Bars) is ksi to 7 ksi, the ultimate strength and the e of concrete strength on the construction marized in Appendix 1. terment is document is available to the public		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de: reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to J ABAQUS. The analysis indicated that the critical locations to paste the strain gr end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are ir of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans with notably reduced construction cost. Therefore, the skewed transverse reinfor increase of the S Bar area also reduces the crack width. The increase of the construction cost. Based on the parametric simulation results, the current design safety and crack resistance. (3) The increase of the G Bar area notably reduces th influence on the stiffness, ultimate strength, and construction cost. The curr adequate for crack control. (4) When the concrete strength increases from 5 I stiffness of ITBCs increase with reduced crack width. In addition, the influence <u>cost is negligible. Updates from AASHTO (2010) to AASHTO (2017) are sum</u> 17. Key Words ITBC, inverted-T bridge cap, reinforcement design	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ng were observed to be safe under service newestigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) forcement can well be used for the design ness and ultimate strength. In addition, the S Bar area will contribute notably to the of the S bar area is adequate for structural ne maximum crack width with a negligible ent design of the G Bar (No. 7 Bars) is kis to 7 ksi, the ultimate strength and the e of concrete strength on the construction marized in Appendix 1. Itement is document is available to the public al Technical Information Service, ia 221(1) supervise reinforcement		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are ir of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans with notably reduced construction cost. Therefore, the skewed transverse reinfor increase of the S Bar area also reduces the crack width. The increase of the construction cost. Based on the parametric simulation results, the current design safety and crack resistance. (3) The increase of the G Bar area notably reduces the influence on the stiffness, ultimate strength, and construction cost. The curr adequate for crack control. (4) When the concrete strength increases from 5 I stiffness of ITBCs increase with reduced crack width. In addition, the influenc cost is negligible. Updates from AASHTO (2010) to AASHTO (2017) are sum 17. Key Words ITBC, inverted-T bridge cap, reinforcement design	nce. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can coording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ma were observed to be safe under service newstigated. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) forcement can well be used for the design mess and ultimate strength. In addition, the S Bar area will contribute notably to the of the S bar area is adequate for structural ne maximum crack width with a negligible ent design of the G Bar (No. 7 Bars) is ksi to 7 ksi, the ultimate strength and the e of concrete strength on the construction umarized in Appendix 1. thement is document is available to the public al Technical Information Service, ia 22161; www.ntis.gov.		
are aesthetically pleasing and offer a practical means to increase vertical cleara two roads are not aligned perpendicularly and exceed the 45-degree angle of ITBCs are designed using the traditional empirical procedures outlined in the BDM) LRFD that conform to the AASHTO LRFD (2014) Bridge Design Speci methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BD However, any kind of improper detailing can cause poor placement of concrete which would reduce the load-carrying capacity and increase future maintenanc be obtained if the skew transverse reinforcing throughout ITBCs is utilized. Ac transverse reinforcement will yield the same load capacity as the traditional de reinforcement throughout ITBCs will result in fewer cracks and smaller crack design. The Research Team selected three bent caps from an existing bridge to ABAQUS. The analysis indicated that the critical locations to paste the strain ga end faces of the bent caps. All the bent caps with skewed transverse reinforcir and ultimate state loading. Three cases of reinforcement design for ITBCs are ir of 96 specimens and the cost-benefit analysis results yielded these conclusion (Case 1) achieves better structural performance compared to traditional trans with notably reduced construction cost. Therefore, the skewed transverse reinfor increase of the S Bar area also reduces the crack width. The increase of the construction cost. Based on the parametric simulation results, the current design safety and crack resistance. (3) The increase of the G Bar area notably reduces the influence on the stiffness, ultimate strength, and construction cost. The curr adequate for crack control. (4) When the concrete strength increases from 5 I stiffness of ITBCs increase with reduced crack width. In addition, the influenc cost is negligible. Updates from AASHTO (2010) to AASHTO (2017) are sum 17. Key Words ITBC, inverted-T bridge cap, reinforcement design 18. Distribution Sta No restrictions. Thi through the Nation Springfield, Virgin	ncc. Many of the ITBCs are skewed when the construction requirements. The Texas TxDOT Bridge Design Manual (TxDOT fications. There are no precise calculation M-LRFD (2015) to design skew ITBCs. e and cracks within the concrete structure, e costs. Faster and easier construction can be cording to the results of lab tests, skewed sign. In addition, using skewed transverse widths when compared to the traditional perform the preliminary FE analysis using auges and attach LVDTs are the cantilever ing were observed to be safe under service hyperbalance. The parametric FE simulation s: (1) The skew transverse reinforcement verse reinforcement (Case 2 and Case 3) forcement can well be used for the design hess and ultimate strength. In addition, the S Bar area will contribute notably to the of the S bar area is adequate for structural he maximum crack width with a negligible ent design of the G Bar (No. 7 Bars) is ksi to 7 ksi, the ultimate strength and the e of concrete strength on the construction umarized in Appendix 1.attement is document is available to the public al Technical Information Service, ia 22161; www.ntis.gov.22. Price		

TxDOT Project 0-6905

Investigation of Performance of Skewed Reinforcing in Inverted-T Bridge Caps

Jiaji Wang, Yagiz Oz, Bhagirath Joshi, Satya Sapath Roy, Y.L. Mo and Thomas T.C. Hsu Department of Civil and Environmental Engineering University of Houston

Research Report 0-6905-R1

DISCLAIMERS

Author's Disclaimer: The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the Federal Highway Administration or the Texas Department of Transportation (TxDOT). This report does not constitute a standard, specification, or regulation.

Patent Disclaimer: There was no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine manufacture, design or composition of matter, or any new useful improvement thereof, or any variety of plant, which is or may be patentable under the patent laws of the United States of America or any foreign country.

Research Supervisor: Y.L. Mo

Professional Engineer License State and Number: Texas No. 110677 P. E.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the Texas Department of Transportation (TxDOT) for their financial support and collaborative efforts for this project. This research is supported by TxDOT for Grant 0-6905. The authors would like to specifically thank the contributions of the project supervisory committee, which consists of Jade Adediwura and Chris Glancy, RTI (Research and Technology Implementation Office); Michael Carlson, HOU; Bobby Bari, HOU; Walter "Ray" Fisher, DAL; Courtney Holle, BRG; Aaron Garza, BRG; Hector Garcia, DOT and Andrew Smyth, DOT. Finally, the authors appreciate the rest of the support staff at the Thomas T.C. Hsu Structural Lab at UH (University of Houston) and the many other researchers who helped with instrumentation, testing, and analysis of results.

ABSTRACT

In the past several decades, reinforced concrete inverted-T bridge caps (ITBCs) have been widely used in the bridges in Texas and the United States as they are aesthetically pleasing and offer a practical means to increase vertical clearance. Many of the ITBCs are skew when two roads are not aligned perpendicularly and exceed the angle of 45 degrees based on the construction requirements. The ITBCs in Texas are designed using the traditional empirical procedures outlined in the TxDOT Bridge Design Manual (TxDOT BDM) LRFD that conform to the AASHTO (American Association of State Highway and Transportation Officials) LRFD (2014) Bridge Design Specifications. There are no precise calculation methods or guidelines given in the AASHTO LRFD (2014) or TxDOT BDM-LRFD (2015) to design skew ITBCs. For a skew ITBC, the TxDOT Manual states that hanger and ledge reinforcement should be placed perpendicular to the centerline of the skew bent and the detailing of the skew ends of the bent should be done with a section of skewed stirrups and ledge reinforcements. Typically, the transition of perpendicular bars to the skew bars is carried out over column support, where the transverse reinforcement spacing is less critical. The designer of ITBC flares the bars out to match the skew angle while trying to maintain a minimum and maximum spacing based on the outcome of the design calculations. Such detailing of transverse reinforcements creates unequal spacing on both sides of the web, producing congestion of reinforcements on one side. The traditional method of flaring the transverse reinforcement out in skew ITBCs brings in significant complexity in design and during the construction process. In addition, the detailing of the transverse reinforcement has a profound influence on the overall shear capacity of the bent cap as well as the performance of the support ledge. Therefore, any kind of improper detailing can cause poor placement of concrete and cracks within the concrete structure, which would reduce the load-carrying capacity and increase future maintenance costs. Faster and easier construction can be obtained if the skew transverse reinforcing throughout ITBCs is utilized, and it can provide an alternative approach that will significantly reduce the design complexities and construction period. According to the results of lab tests (TxDOT Project 0-6905), using skewed transverse reinforcement throughout ITBCs will have the same load capacity as the traditional design. In addition, it is found that using skewed transverse reinforcement throughout ITBCs will have less number of cracks and smaller crack widths when compared to the traditional design.

Skewed transverse reinforcement has been applied to the design of ITBCs in TxDOT bridges because of its advantages. The Research Team (RT) selected Bent Cap 2, Bent Cap 6 and Bent Cap 7 of the bridge on Donigan Road over IH 10 to perform the preliminary FE analysis using ABAQUS. Once the overall structural behavior of actual ITBCs with skewed transverse reinforcement is better understood, the critical loading patterns during the load tests and crucial strain gage locations can be determined. Later, the developed numerical models will be calibrated against the field test results for the numerical simulation, considering unexplored parameters. From the preliminary FE analysis, it was observed that the critical locations to paste the strain gauges and attach LVDTs are the cantilever end faces of the bent caps. Moreover, it was also observed that all the bent caps with skewed transverse reinforcing are safe under service and ultimate state loading.

Due to the construction delays, a task (named Task 9a) is added and completed. In Task 9a, three cases of reinforcement design for ITBCs are investigated to cover the majority of the design detailing in Texas bridges. Based on the parametric FE simulation of 96 specimens and the cost-benefit analysis results, the

conclusions are summarized as follows: (1) The skew transverse reinforcement (Case 1) achieves better structural performance compared to traditional transverse reinforcement (Case 2 and Case 3) with notably reduced construction cost. Therefore, the skewed transverse reinforcement can well be used for the design of skewed ITBCs. (2) The increase of the S Bar area notably enhances the stiffness and ultimate strength. In addition, the increase of the S Bar area also reduces the crack width. The increase of the S Bar area will contribute notably to the construction cost. Based on the parametric simulation results, the current design of the S bar area is adequate for structural safety and crack resistance. (3) The increase of the G Bar area notably reduces the maximum crack width with a negligible influence on the stiffness, ultimate strength, and construction cost. The current design of the G Bar (No. 7 Bars) is adequate for crack control. (4) When the concrete strength increases from 5 ksi to 7 ksi, the ultimate strength and the stiffness of ITBCs increase with reduced crack width. In addition, the influence of concrete strength on the construction cost is negligible.

With skewed transverse reinforcement, the RT presents four design examples of ITBCs with skew angles of 0, 30, 45, and 60 degrees by using AASHTO (2017) and TxDOT (2020). The design examples are based on the TxDOT Inverted Tee Bent Cap Design Example (2010), which follows the AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010), as prescribed by TxDOT Bridge Design Manual -LRFD (May 2009). The design steps of skewed ITBCs are also illustrated. In addition, the updates from AASHTO (2010) to AASHTO (2017) are also summarized in Appendix 1 of R1A, including the section number, the equations, and the tables, which are required to design an ITBC.

TABLE OF CONTENTS

CHAR	PTER	1: INTRODUCTION	1
1.1	PR	OJECT OVERVIEW	1
1.2	PR	OJECT OBJECTIVES	4
1.3	PR	OJECT SIGNIFICANCE	5
1.4	OR	GANIZATION	5
CHAI OF	PTER THE	2: DEVELOPMENT OF PRELIMINARY FINITE ELEMENT MODELS SIGNIFICANT ITBCs	6
2.1	IN7	TRODUCTION	6
2.2	FIN	IITE ELEMENT MODELING OF BENT CAPS IN ABAQUS	7
2.3	MA	TERIAL MODELS	11
2.4	3D	FINITE ELEMENT RESULTS OF BENT CAPS	13
2	.4.1	Stresses in Transverse Rebars at Service Load	13
2	.4.2	Stresses in Transverse Rebars at Strength Limit State	16
2	.4.3	Comparison of Displacements at Service Load	18
2	.4.4	Comparison of Principal Tensile Strains	19
2.5	SU	MMARY	21
CHAF OF	PTER THE	3: DEVELOPMENT OF PRELIMINARY FINITE ELEMENT MODELS SIGNIFICANT ITBCs	22
3.1	INT	TRODUCTION	22
3.2	CA	SES OF PARAMETRIC STUDY	22
3.3	3D	FINITE ELEMENT MODELING OF BENT CAPS IN ABAQUS	31
3	.3.1	Boundary Conditions at Service Load	31
3	.3.2	Boundary Conditions at Ultimate Load	33
3.4	3D	FINITE ELEMENT ANALYTICAL RESULTS OF BENT CAPS	33
3	.4.1	Displacement and Stiffness Comparisons at Service Load	34
3	.4.2	Principal Tensile Strain and Crack Width Comparisons at Service Load	40
3	.4.3	Comparisons of Ultimate Capacity	46
3.5	CO	ST-BENEFIT ANALYSIS	50
3	.5.1	Basic Assumptions	50
3	.5.2	Comparison of Costs	56
3	.5.3	Comparison of Benefits	58
3.6	SU	MMARY	66

CHA	PTER	4: DESIGN RECOMMENDATIONS AND DESIGN EXAMPLES	67
4.	1 DES	SIGN RECOMMENDATIONS	67
4.2	2 INV	ERTED-T BENT CAP DESIGN EXAMPLE 1 (0° SKEW ANGLE)	69
	4.2.1	Design Parameters	69
	4.2.2	Determine Cap Dimensions	72
	4.2.3	Cross Sectional Properties of Cap	75
	4.2.4	Cap Analysis	76
	4.2.5	Locate and Describe Reinforcing	87
	4.2.6	Check Bearing	89
	4.2.7	Check Punching Shear	91
	4.2.8	Check Shear Friction	92
	4.2.9	Flexural Reinforcement for Negative Bending (Bars A)	93
	4.2.10	Flexural Reinforcement for Positive Bending (Bars B)	96
	4.2.11	Ledge Reinforcement (Bars M & N)	100
	4.2.12	Hanger Reinforcement (Bars S)	106
	4.2.13	End Reinforcements (Bars U1, U2, U3, and G)	113
	4.2.14	Skin Reinforcement (Bars T)	114
	4.2.15	Design Details and Drawings	116
4.3	3 INV	ERTED-T BENT CAP DESIGN EXAMPLE 2 (30° SKEW ANGLE)	156
	4.3.1	Design Parameters	156
	4.3.2	Determine Cap Dimensions	159
	4.3.3	Cross Sectional Properties of Cap	162
	4.3.4	Cap Analysis	163
	4.3.5	Locate and Describe Reinforcing	173
	4.3.6	Check Bearing	175
	4.3.7	Check Punching Shear	177
	4.3.8	Check Shear Friction	178
	4.3.9	Flexural Reinforcement for Negative Bending (Bars A)	180
	4.3.10	Flexural Reinforcement for Positive Bending (Bars B)	183
	4.3.11	Ledge Reinforcement (Bars M & N)	187
	4.3.12	Hanger Reinforcement (Bars S)	193
	4.3.13	End Reinforcements (Bars U1, U2, U3, and G)	200
	4.3.14	Skin Reinforcement (Bars T)	201

	4.3.15	Design Details and Drawings	203
4	.4 INV	ERTED-T BENT CAP DESIGN EXAMPLE 3 (45° SKEW ANGLE)	243
	4.4.1	Design Parameters	243
	4.4.2	Determine Cap Dimensions	246
	4.4.3	Cross Sectional Properties of Cap	249
	4.4.4	Cap Analysis	250
	4.4.5	Locate and Describe Reinforcing	261
	4.4.6	Check Bearing	263
	4.4.7	Check Punching Shear	265
	4.4.8	Check Shear Friction	266
	4.4.9	Flexural Reinforcement for Negative Bending (Bars A)	268
	4.4.10	Flexural Reinforcement for Positive Bending (Bars B)	271
	4.4.11	Ledge Reinforcement (Bars M & N)	275
	4.4.12	Hanger Reinforcement (Bars S)	281
	4.4.13	End Reinforcements (Bars U1, U2, U3, and G)	288
	4.4.14	Skin Reinforcement (Bars T)	289
	4.4.15	Design Details and Drawings	291
4	.5 INV	ERTED-T BENT CAP DESIGN EXAMPLE 4 (60° SKEW ANGLE)	331
	4.5.1	Design Parameters	331
	4.5.2	Determine Cap Dimensions	334
	4.5.3	Cross Sectional Properties of Cap	337
	4.5.4	Cap Analysis	338
	4.5.5	Locate and Describe Reinforcing	349
	4.5.6	Check Bearing	351
	4.5.7	Check Punching Shear	353
	4.5.8	Check Shear Friction	354
	4.5.9	Flexural Reinforcement for Negative Bending (Bars A)	356
	4.5.10	Flexural Reinforcement for Positive Bending (Bars B)	359
	4.5.11	Ledge Reinforcement (Bars M & N)	363
	4.5.12	Hanger Reinforcement (Bars S)	369
	4.5.13	End Reinforcements (Bars U1, U2, U3, and G)	376
	4.5.14	Skin Reinforcement (Bars T)	377
	4.5.15	Design Details and Drawings	379

CHAP	TER 5: SUMMARY AND CONCLUSIONS	419
5.1	SUMMARY OF THE RESEARCH WORK	419
5.2	CONCLUSIONS	419
REFE	RENCES	421
APPE	NDIX 1	423

LIST OF FIGURES

Figure 1.1 Design Detail of ITBC	1
Figure 2.1 Proposed bridge on Donigan Road over IH 10 near Brookshire in Waller County	7
Figure 2.2 Section View and Reinforcing Bars	9
Figure 2.3 3D FE Model of Bent Caps in ABAQUS	10
Figure 2.4 Partial 3D Finite Element Mesh of a Bent Cap	11
Figure 2.5 Stress-Strain Curves of Concrete in Tension and Compression	12
Figure 2.6 Stress-Strain Curve of Mild Steel	13
Figure 2.7 Tensile Stress Contour at Service Load of Bent Cap 2	14
Figure 2.8 Tensile Stress Contour at Service Load of Bent Cap 6	15
Figure 2.9 Tensile Stress Contour at Service Load of Bent Cap 7	15
Figure 2.10 Tensile Stress Contour at Strength Limit State of Bent Cap 2	16
Figure 2.11 Tensile Stress Contour at Strength Limit State of Bent Cap 6	17
Figure 2.12 Tensile Stress Contour at Strength Limit State of Bent Cap 7	17
Figure 2.13 Displacement at Service Load for Bent Caps	19
Figure 2.14 Comparison of Principal Tensile Strain at Service load	21
Figure 3.1 Case 1 for Bent 2 (Current Design of Skew Reinforcement, unit: inch)	22
Figure 3.2 Case 1 for Bent 6 (Current Design of Skew Reinforcement, unit: inch)	23
Figure 3.3 Case 1 for Bent 7 (Current Design of Skew Reinforcement, unit: inch)	23
Figure 3.4 Case 2 for Bent 2 (Traditional Detailing of Reinforcement without End Bars, unit: inch)	24
Figure 3.5 Case 2 for Bent 6 (Traditional Detailing of Reinforcement without End Bars, unit: inch)	24
Figure 3.6 Case 2 for Bent 7 (Traditional Detailing of Reinforcement without End Bars, unit: inch)	24
Figure 3.7 Bent 2-End View of Traditional Design Without End Bars in Case 2 (unit: inch)	25
Figure 3.8 Bent 2-End View of Traditional Design with End Bars in Case 3 (unit: inch)	26
Figure 3.9 Loads on the Bearing Pads in ABAQUS Models	32
Figure 3.10 Coupling Constraint between the Reference Point and Bearing Pads for Ultimate Loads	33
Figure 3.11 Location of Mid-Points of Both Ends D1 and D2	34
Figure 3.12 Comparison of Stiffness at the Service Load	40

Figure 3.13 Principal Tensile Strains in Current Design of Bent 2 at the Service Load (Specimen C3B2C5S0)	41
Figure 3.14 Comparison of Crack Width at the Service Load	46
Figure 3.15 Stress and Strain Contours in Specimen C3B2C5S0 at the Ultimate Load	48
Figure 3.16 Comparison of Ultimate Capacity	50
Figure 3.17 Comparison of Estimated Cost for Case 1, Case 2, and Case 3	57
Figure 3.18 Cost and Stiffness Comparison of Bent 2, Bent 6, and Bent 7	61
Figure 3.19 Cost and Crack Width Comparisons of Bent 2, Bent 6, and Bent 7	62
Figure 3.20 Cost and Ultimate Load Comparisons of Bent 2, Bent 6, and Bent 7	63
Figure 3.21 Influence of S Bar Area on Cost and Performance of Bent 2 with 5 ksi concrete	64
Figure 3.22 Influence of G Bar Area on Cost and Performance of Bent 2 with 5 ksi concrete	65
Figure 4.1 Skewed Transverse Reinforcement in skewed ITBCs	67
Figure 4.2 Typical Section View of ITBCs	68
Figure 4.3 Spans of the Bridge with 0 Degree Skewed ITBC	69
Figure 4.4 Top View of the 0 Degree Skewed ITBC with Spans and Girders	71
Figure 4.5 Section View of 0 Degree Skewed ITBC	72
Figure 4.6 Ledge Section of 0 Degree ITBC	73
Figure 4.7 Elevation View of 0 Degree ITBC	75
Figure 4.8 Continuous Beam Model for 0 Degree ITBC	76
Figure 4.9 Cap 18 Model of 0 Degree ITBC	76
Figure 4.10 Live Load Model of 0 Degree ITBC	78
Figure 4.11 Live Load Model of 0 Degree Skewed ITBC for CAP18	79
Figure 4.12 Girder Reactions on the Ledge of 0 Degree Skewed ITBC	81
Figure 4.13 Live Load Model of 0 Degree Skewed ITBC for Girder Reactions on Ledge	81
Figure 4.14 Live Load Model of 0 Degree Skewed ITBC for Torsional Loads	84
Figure 4.15 Loads on the Ledge of 0 Degree Skewed ITBC for Torsion	84
Figure 4.16 Elevation View of 0 Degree ITBC with Torsion Loads	85
Figure 4.17 Torsion Diagram of 0 Degree ITBC	85
Figure 4.18 Section View of 0 Degree Skewed ITBC	87
Figure 4.19 Plan View of 0 Degree Skewed ITBC	89
Figure 4.20 Bearing Check for 0-degree Skew Angle	89

Figure 4.21 Punching Shear Check for 0-degree Skew Angle
Figure 4.22 Stresses on the Cross Section for Service Loads of 0 Degree Skewed ITBC
Figure 4.23 Stresses on the Cross Section for Bars B for Service Loads of 0 Degree Skewed ITBC
Figure 4.24 Failure Surface of 0 Degree Skewed ITBC for Combined Shear and Torsion110
Figure 4.25 End Face Section View of 0 Degree ITBC113
Figure 4.26 End Face Elevation View of 0 Degree ITBC113
Figure 4.27 Section View for T Bars of 0 Degree Skewed ITBC114
Figure 4.28 Spans of the Bridge with 30 Degree Skewed ITBC156
Figure 4.29 Top View of the 30 Degrees Skewed ITBC with Spans and Girders158
Figure 4.30 Section View of 30 Degrees Skewed ITBC159
Figure 4.31 Ledge Section of 30 Degrees ITBC160
Figure 4.32 Elevation View of 30 Degrees Skewed ITBC162
Figure 4.33 Continuous Beam Model for 30 Degrees Skewed ITBC163
Figure 4.34 Cap 18 Model of 30 Degrees Skewed ITBC
Figure 4.35 Live Load Model of 30 Degrees Skewed ITBC165
Figure 4.36 Live Load Model of 30 Degrees Skewed ITBC for CAP18166
Figure 4.37 Girder Reactions on the Ledge of 30 Degrees Skewed ITBC167
Figure 4.38 Live Load Model of 30 Degrees Skewed ITBC for Girder Reactions on Ledge
Figure 4.39 Live Load Model of 30 Degrees Skewed ITBC for Torsional Loads170
Figure 4.40 Loads on the Ledge of 30 Degrees Skewed ITBC for Torsion170
Figure 4.41 Elevation View of 30 Degrees Skewed ITBC with Torsion Loads171
Figure 4.42 Torsion Diagram of 30 Degrees Skewed ITBC172
Figure 4.43 Section View of 30 Degrees Skewed ITBC173
Figure 4.44 Plan View of 30 Degrees Skewed ITBC175
Figure 4.45. Bearing Check for 30 Degrees Skew Angle175
Figure 4.46 Punching Shear Check for 30 Degrees Skew Angle177
Figure 4.47 Stresses on the Cross Section for Service Loads of 30 Degrees Skewed ITBC182
Figure 4.48 Stresses on the Cross Section for Bars B for Service Loads of 30 Degrees Skewed ITBC
Figure 4.49 Failure Surface of 30 Degrees Skewed ITBC for Combined Shear and Torsion
Figure 4.50 End Face Section View of 30 Degrees Skewed ITBC

Figure 4.51 End Face Elevation View of 30 Degrees Skewed ITBC	200
Figure 4.52 Section View for T Bars of 30 Degrees Skewed ITBC	201
Figure 4.53 Spans of the Bridge with 45 Degrees Skewed ITBC	243
Figure 4.54Top View of the 45 Degrees Skewed ITBC with Spans and Girders	245
Figure 4.55 Section View of 45 Degrees Skewed ITBC	246
Figure 4.56 Ledge Section of 45 Degrees ITBC	247
Figure 4.57 Elevation View of 45 Degrees Skewed ITBC	249
Figure 4.58 Continuous Beam Model for 45 Degrees Skewed ITBC	250
Figure 4.59 Cap 18 Model of 45 Degrees Skewed ITBC	250
Figure 4.60 Live Load Model of 45 Degrees Skewed ITBC	252
Figure 4.61 Live Load Model of 45 Degrees Skewed ITBC for CAP18	253
Figure 4.62 Girder Reactions on the Ledge of 45 Degrees Skewed ITBC	255
Figure 4.63 Live Load Model of 45 Degrees Skewed ITBC for Girder Reactions on Ledge	255
Figure 4.64 Live Load Model of 45 Degrees Skewed ITBC for Torsional Loads	258
Figure 4.65. Loads on the Ledge of 45 Degrees Skewed ITBC for Torsion	258
Figure 4.66 Elevation View of 45 Degrees Skewed ITBC with Torsion Loads	259
Figure 4.67 Torsion Diagram of 45 Degrees Skewed ITBC	259
Figure 4.68 Section View of 45 Degrees Skewed ITBC	261
Figure 4.69 Plan View of 45 Degrees Skewed ITBC	263
Figure 4.70 Bearing Check for 45 Degrees Skew Angle	263
Figure 4.71 Punching Shear Check for 45 Degrees Skew Angle	265
Figure 4.72 Stresses on the Cross Section for Service Loads of 45 Degrees Skewed ITBC.	270
Figure 4.73 Stresses on the Cross Section for Bars B for Service Loads of 45 Degrees Skewed ITBC	273
Figure 4.74 Failure Surface of 45 Degrees Skewed ITBC for Combined Shear and Torsion	285
Figure 4.75 End Face Section View of 45 Degrees Skewed ITBC	288
Figure 4.76 End Face Elevation View of 45 Degrees Skewed ITBC	288
Figure 4.77 Section View for T Bars of 45 Degrees Skewed ITBC	289
Figure 4.78 Spans of the Bridge with 60 Degrees Skewed ITBC	331
Figure 4.79 Top View of the 60 Degrees Skewed ITBC with Spans and Girders	333
Figure 4.80 Section View of 60 Degrees Skewed ITBC	334

Figure 4.81 Ledge Section of 60 Degrees ITBC	335
Figure 4.82 Elevation View of 60 Degrees Skewed ITBC	337
Figure 4.83 Continuous Beam Model for 60 Degrees Skewed ITBC	338
Figure 4.84 Cap 18 Model of 60 Degrees Skewed ITBC	338
Figure 4.85 Live Load Model of 60 Degrees Skewed ITBC	340
Figure 4.86 Live Load Model of 60 Degrees Skewed ITBC for CAP18	341
Figure 4.87 Girder Reactions on the Ledge of 60 Degrees Skewed ITBC	343
Figure 4.88 Live Load Model of 60 Degrees Skewed ITBC for Girder Reactions on Ledge	343
Figure 4.89 Live Load Model of 60 Degrees Skewed ITBC for Torsional Loads	346
Figure 4.90 Loads on the Ledge of 60 Degrees Skewed ITBC for Torsion	346
Figure 4.91 Elevation View of 60 Degrees Skewed ITBC with Torsion Loads	347
Figure 4.92 Torsion Diagram of 60 Degrees Skewed ITBC	347
Figure 4.93 Section View of 60 Degrees Skewed ITBC	349
Figure 4.94 Plan View of 60 Degrees Skewed ITBC	351
Figure 4.95 Bearing Check for 60 Degrees Skew Angle	351
Figure 4.96 Punching Shear Check for 60 Degrees Skew Angle	353
Figure 4.97 Stresses on the Cross Section for Service Loads of 60 Degrees Skewed ITBC	358
Figure 4.98 Stresses on the Cross Section for Bars B for Service Loads of 60 Degrees Skewed ITBC	361
Figure 4.99 Failure Surface of 60 Degrees Skewed ITBC for Combined Shear and Torsion	373
Figure 4.100 End Face Section View of 60 Degrees ITBC	376
Figure 4.101 End Face Elevation View of 60 Degrees ITBC	376
Figure 4.102 Section View for T Bars of 60 Degrees Skewed ITBC	377

LIST OF TABLES

Table 1.1. Details of the Bent Caps for the Instrumentation	4
Table 2.1 Material Parameters for the Concrete Damaged Plasticity Model	13
Table 2.2 Service Loading for Bent Caps	14
Table 2.3 Strength Limit State Loading for Bent Caps	16
Table 3.1 Specimens of Parametric Finite Element Simulation	27
Table 3.2 Material Parameters for the Concrete Damaged Plasticity Model	31
Table 3.3. Service Load for Bent Caps	31
Table 3.4 Deflection Results at Points D1 and D2 under the Service Load	34
Table 3.5 Principal Tensile Strain and Maximum Crack Width of Concrete at Service Load	42
Table 3.6 Quantity Takeoff for Specimen C1B2C5S0	51
Table 3.7 Quantity Takeoff for Specimen C2B2C5S0	51
Table 3.8 Quantity Takeoff for Specimen C3B2C5S0	53
Table 3.9 Estimated Construction Time	55
Table 3.10 Estimated Labor Wage	55
Table 3.11 Estimated Design Time	55
Table 3.12 Estimated Design Wage	56
Table 3.13 Cost Estimation for Specimen C1B2C5S0	56
Table 3.14 Cost-Benefit Analysis Results	58
Table A1.1 Comparison between AASHTO (2010) and AASHTO (2017)	423

CHAPTER 1: INTRODUCTION

1.1 PROJECT OVERVIEW

The Inverted-T Bridge Caps (ITBCs) are widely adopted in many bridges in Texas and all over the United States to reduce the beam height. In addition to the increased vertical clearance of the bridges, the ITBCs minimize the visible size of transverse bent caps and presents an aesthetically pleasing design. Another significant advantage of the ITBC system is its usage of precast beams, which can be quickly assembled on-site without any extra formwork (Synder et al., 2011). The precast components also enable higher quality and reduced construction periods. Figure 1.1 shows the component details and reinforcement details of the ITBCs. Unlike traditional rectangular bridge girders, the cross-section of the ITBC consists of the web and the ledge. The web is the primary section to transfer the shear forces, while the ledge serves as brackets to transfer girder load to the web. In order to transfer the vertical load, two types of reinforcements have been introduced in the ITBC, including the web shear reinforcements and the ledge reinforcements are web vertical stirrups that transfer the ledge load from the bottom of the web to the top of the web, and the ledge reinforcements are horizontal stirrups that help the cantilevered ledge to resist flexural tension forces in the transverse direction.

The skewed ITBCs serve as beam elements with concentrated loads applied to the bottom ledge (Coletti et al., 2011). Unlike traditional top-loaded beam structure, the force transfer mechanism of the skewed ITBC is as follows: (1) the loads are transferred from the ledge to the web in the transverse direction through the vertical hanger reinforcements; (2) the loads are transferred into the web section and reach the supports in the longitudinal direction (Zhou et al., 2020). During this process, the unequal loading position on the cantilevered skewed ledge may induce a three-dimensional flexural-shear-torsional combined load and complex cracking problem. Several experimental studies were conducted on the ITBC. Furlong et al. (1971) first investigated and demonstrated the shear and anchorage behavior of the ITBC reinforcements and provided suggestions for the design procedures of the ITBC specimens. Mirza and Furlong (1983a; 1983b; 1985) first investigated the failure mechanisms and serviceability behavior of the reinforced concrete ITBC by testing 27 simply supported specimens at a scale ratio of 1/3. Six typical failure mechanisms were reported as (1) flexural failure, (2) flexural shear failure, (3) torsional failure, (4) hanger failure of shear reinforcement, (5) flange punching failure, and (6) flange shear friction failure. The first three failures are the main control modes, while the others are premature failures and should be avoided during the design. Zhu and Hsu (2003) investigated the crack control of ITBCs and predicted the diagonal crack widths observed in tests based on a two-dimensional analytical model. Ambare and Peterman (2006) performed a finite element (FE) simulation of inverted T bridge systems to check the effects of live loads distribution on the behavior of the inverted T bridge system. The results were also compared with AASHTO LRFD (2014) and AASHTO Standard Specifications (2002), which indicated that loading distribution patterns have a direct effect on the bridge system, and the code method was more conservative than the FE method.

In design practice, many bridges have to be skewed according to the landscaping or construction requirements. Some of the ITBCs in practice have the skew-angle over 45° based on the angle of the bridges crossing roadways, waterways, and railways. The ITBCs in Texas are widely designed using the traditional empirical procedures outlined in the TxDOT (Texas Department of Transportation) Bridge Design Manual-LRFD that conforms to the AASHTO LRFD 2014 Bridge Design Specifications. There are no precise calculation methods or guidelines given in the AASHTO LRFD or TxDOT Bridge Design Manual-LRFD to design skew ITBCs. The TxDOT Bridge Design Manual states only that hanger and ledge reinforcement should be placed perpendicular to the centerline of the skew bent. The detailing of the skew ends of the bent should be done with a section of skew stirrups and ledge reinforcements. Typically, the transition of straight bars to the skew bars is carried out over the column support, where the transverse reinforcement spacing is less critical. The designer of the ITBC flares the bars out to match the skew angle while trying to maintain a minimum and maximum spacing based on the outcome of the design calculations. Such detailing of transverse reinforcement in skew ITBCs brings complexity to the design and construction process. This transverse reinforcement has a profound influence on the shear capacity of the bent cap and the performance of the support ledge. Therefore, any kind of improper detailing can cause poor placement of concrete and cracks within the concrete structure, which may reduce the load-carrying capacity and increase future maintenance costs. In addition, the provision of end face reinforcement to control the displacement at the free end of the ITBCs is necessary. Faster and easier construction can be obtained if skew transverse reinforcing steel is utilized, and it can provide an alternative approach that will significantly reduce the design complexities and construction period.

To understand the structural behavior of skewed ITBCs, Project 0-6905 started in 2016 with the following eight tasks included:

- Task 1: Literature Review
- Task 2: Parametric Study
- Task 3: Examination of Diverse Design Methodology
- Task 4: Design, Fabrication, and Testing of 1/2-Scale Skewed Inverted-T Bent Caps
- Task 5: Analysis of Task 4 Experimental Results
- Task 6: Advanced Numerical Analysis
- Task 7: Development of Details for Skewed Reinforcing Steel
- Task 8: Preparation of Final Report & Close Out Meeting

According to the results of lab tests (TxDOT Project 0-6905), using skewed transverse reinforcement throughout ITBCs will have the same load capacity as the traditional design. In addition, it is found that using skewed transverse reinforcement throughout ITBCs will have less number of cracks and smaller crack widths when compared to the traditional design. Because of the advantages of skewed transverse reinforcement, skewed transverse reinforcement has been applied to the design of ITBCs in TxDOT

bridges. The Research Team (RT) has selected Bent Cap 2, Bent Cap 6 and Bent Cap 7 of the bridge on Donigan Road over IH 10 to perform the preliminary FE analysis using ABAQUS. After these eight tasks were completed and the final report was submitted, the project was extended in February 2019 with the following tasks:

- Task 9: Development of Preliminary Finite Element (FE) Models of the Significant ITBCs
- Task 10: Instrumentation of the Significant Skewed ITBCs to Conduct the Load Test
- Task 11: Analysis of Experimental Results
- Task 12: Calibration of the FE Models Developed in Task 9 with the Measured Load Test Data
- Task 13: Design Recommendations

Due to the construction delays, after Task 9, a new task was added to improve the knowledge on design methods and reinforcement detailing in the design of the skewed ITBCs:

• Task 9a: Development of Preliminary FE Models of the Significant ITBCs

Because of the environmental issues in the construction site, the project 0-6905 was decided to be on pause by the end of October 2020. Starting from Task 10, the tasks will be completed under a new project when the site becomes available.

From the experimental and analytical studies in Tasks 4 and 6, the following observations were made:

- The peak load-carrying capacity of the ITBC with skew reinforcing is almost equal to the traditional one.
- The number of cracks observed is fewer in the case of the ITBC with skew reinforcing; the observed maximum crack width is smaller in the case of skew reinforcing.
- The design and construction complexities can be significantly reduced, and a faster and easier construction process can be achieved when skew reinforcing is used.

Based on the above observations, implementation of the skew transverse reinforcing in inverted-T bridge caps was suggested; hence the project extension was proposed to implement the research findings to the actual full scale skewed ITBC in the bridge system. For the implementation task (Task 10), a seven-span bridge is proposed, which is under construction on Donigan Road over IH 10 near Brookshire in Waller County. The primary reasons for selecting this bridge for instrumentations and load tests are:

- Proximity to the UH research lab
- In agreement with the TxDOT project team
- Easy accessibility to bent caps and field equipment (lower bent heights)
- Limited traffic control required to instrument the bent caps and perform controlled load tests

A controlled load test will be performed on this bridge to investigate the performance of the skew ITBCs with skew reinforcing. Three bent caps are selected for instrumentation and load tests based on the severity and criticality of the loading condition. The primary features of these three bent caps are provided in Table 1-1. Strain gauges and other necessary sensors will be attached at the critical locations of rebars

during the fabrication stage of the selected bent caps based on the analytical results in Task 9. Once the bridge construction is completed, the controlled load tests will be carried out based on standard procedure. During the load tests, transverse rebar stresses and bent deflections will be measured under known loading conditions. A wireless data acquisition system will be developed and used to monitor and record the data as it requires less on-site setup time than traditional wired systems and significantly minimizes traffic control time and disruptions to traffic. Each load test will continue for 5-20 minutes. In Task 9, the Research Team (RT) performed the preliminary FE analysis of the selected skewed inverted-T bridge caps using ABAQUS to understand the overall structural behavior of skewed reinforcement in actual large-scale ITBCs and to determine critical loading patterns during the load tests and crucial strain gauge locations. Later, the developed numerical models will be calibrated against the field test results for the numerical simulation assigned in Task 12, considering unexplored parameters. Based on the literature review, the FE simulation and the cost-benefit analysis for the ITBCs have not been reported (Bhargava 2009). The parametric FE modeling and cost estimation can be effectively used in the engineering design (Yazdani et al. 2017). The scope of the added Task 9a will significantly leverage the impact of this project and solve the dearth of reliable design methods and reinforcement detailing in the design of the skewed ITBCs.

Description	Bent 2	Bent 6	Bent 7
Skew angle	43 ⁰	330	33 ⁰
Loading condition	unsymmetrical dead loading	symmetrical dead loading	unsymmetrical dead loading
Elevation from ground level	18 ft	19 ft	19 ft
Span length	100 ft (back station) / 135 ft (forward station)	125 ft (back station) / 135 ft (forward station)	135 ft (back station) / 115 ft (forward station)
No. of girders	9 (back station) / 15 (forward station)	11 (back station) / 15 (forward station)	15 (back station) / 9 (forward station)

Table 1.1. Details of the Bent Caps for the Instrumentation

1.2 PROJECT OBJECTIVES

The objectives of this project are summarized as follows:

- 1. To understand the overall structural behavior of skewed reinforcement in actual large-scale ITBCs and to determine critical loading patterns during the load tests and crucial strain gage locations.
- 2. To compare and evaluate the structural performance of skew transverse reinforcement with traditional reinforcement in ITBCs regarding strength criteria.
- 3. To compare and evaluate the structural performance of skew transverse reinforcement with traditional transverse reinforcement in ITBCs in terms of serviceability criteria considering the cracking widths and stiffness.
- 4. To compare and evaluate the structural performance of skewed ITBCs with end bars and skewed ITBCs without end bars.

- 5. To compare and evaluate the cost-benefit analysis of skew transverse reinforcement with traditional reinforcement in ITBCs regarding design and construction cost.
- 6. The ITBC test specimens will be modeled in finite element software ABAQUS.
- 7. The general design recommendations and changes to the TxDOT practice to design skewed reinforcements in ITBCs will be proposed.

1.3 PROJECT SIGNIFICANCE

This project will provide the following benefits to the TxDOT and other stakeholders:

- 1. By replacing a traditional transverse reinforcement with a skewed one, proper placement of concrete and less complex fabrication of reinforcement could be ensured. As a result, the construction costs involved would be reduced.
- 2. Skewed reinforcement would reduce the congestion in the skew region of the bent cap. As a result, proper placement of concrete could be achieved. It would reduce the complexity in detailing the skew region of the bent cap by providing uniform spacing and the same size reinforcing bars. Therefore, lesser working hours and laborers would be required for the fabrication/construction of the ITBC with skewed reinforcement.
- 3. So far, no significant research has been undertaken to study the performance of skew transverse reinforcement in ITBC. A lack of experimental research has thwarted the use of skew reinforcing. Therefore, there are no specific design guidelines for the design of skew reinforcements in inverted-T bent caps, which makes the design unreliable with increased risks of failure. By providing proper design guidelines for different skew angles, high levels of lifetime uncertainties and risks of failure could be prevented. The skew reinforcement approach could reduce the replacement cost and increase the reliability, thereby benefiting the TxDOT and other stakeholders financially.

1.4 ORGANIZATION

This report is divided into five chapters. Chapter 1 introduces an overview and the objectives of the research in addition to an outline of this report. Chapter 2 presents the analytical results of the three skewed ITBCs (Task 9), that are shown in Table 1.1, to understand the overall structural behavior of skew reinforcement in actual ITBCs. Chapter 3 shows the cases of parametric study and finite element analysis results (Task 9a) for different design parameters to compare the cost-benefit analysis results of skew transverse reinforcement with those of traditional transverse reinforcement. Following the finite element analysis results, the design recommendations for skewed ITBCs are presented in Chapter 4. Moreover, to explain the step-by-step design procedures, four skewed ITBCs design examples are presented. All findings and conclusions of the research program are summarized in Chapter 5.

CHAPTER 2: DEVELOPMENT OF PRELIMINARY FINITE ELEMENT MODELS OF THE SIGNIFICANT ITBCs

2.1 INTRODUCTION

In this chapter, the preliminary finite element (FE) analysis of the selected skew inverted-T bridge caps is performed using ABAQUS to understand the overall structural behavior of skew reinforcement in actual large-scale ITBCs and to determine critical loading patterns during the load tests and crucial strain gauge locations. As significant ITBCs, Bent Cap 2, Bent Cap 6, and Bent Cap 7 of a seven-span bridge, which is under construction on Donigan Road over IH 10 near Brookshire in Waller County, are selected. The primary features of these three bent caps are provided in Table 1.1. Figure 2.1 shows the Google Map image of the proposed new bridge location and the existing old bridge.

(a) Proposed new bridge location

(b) Existing old skewed bridge

Figure 2.1 Proposed bridge on Donigan Road over IH 10 near Brookshire in Waller County

2.2 FINITE ELEMENT MODELING OF BENT CAPS IN ABAQUS

The finite element models of the actual ITBCs were developed using ABAQUS (2014). Figure 2.2(a) and Figure 2.2(b) show the typical cross-sectional view with reinforcing details of all the bent caps at the inner and end face locations, respectively. A partial plan view of the bent caps showing the transverse rebar details is shown in Figure 2.2(c). The 3D FE model of the bent caps depicting a cross-section view at the end face is shown in Figure 2.3. The typical FE mesh of a partial bent cap is provided in Figure 2.4. The concrete of the ITBCs is modeled using an eight-node, reduced integration, hourglass control solid element (C3D8R). A two-node linear three-dimensional (3-D) truss element (T3D2) was used to model the reinforcement because it is only subjected to axial force. The fours square rigid supports representing columns under the bridge bent cap 2, Bent Cap 6, and Bent Cap 7, respectively. The superstructure loads from bridge girders are transferred to the bridge bent caps through these loading pads. The analysis was performed with two loading cases. The first one is the service load, which includes dead load and live load with the load combination factor equal to one. The second loading case is the factor load.

(b) Finite Element Model of Bent Cap 6 with Skew Angle 33⁰

(c) Finite Element Model of Bent Cap 7 with Skew Angle 33⁰ Figure 2.3 3D FE Model of Bent Caps in ABAQUS

Figure 2.4 Partial 3D Finite Element Mesh of a Bent Cap (C3D8R Solid Element for Concrete and T3D2 Truss Element for Reinforcements)

2.3 MATERIAL MODELS

The Concrete Damaged Plasticity (CDP) model was used as the constitutive model of concrete in the FEM model (Lee and Fenves, 1998). The CDP model requires the definition of uniaxial behavior in compression and tension. The stress-strain curves of concrete considered in the constitutive model are adopted from the book "Unified Theory of Concrete Structures" by Hsu and Mo (2010).

The uniaxial compression stress-strain behavior of concrete can be defined using the parabolic stressstrain model as shown in Figure 2.5. Equation 2-1 is used to develop the compression stress-strain curve.

$$\sigma_{c} = f_{c}^{t} \left[\frac{2\varepsilon_{c}}{\varepsilon_{0}} - \left(\frac{\varepsilon_{c}}{\varepsilon_{0}} \right)^{2} \right] \text{ (psi)}$$
(Eq. 2-1)

In ABAQUS, the model of concrete (Lubliner et al., 1989) requires the definitions of initial elastic modulus E_c and Poisson ratio v. The initial elastic modulus E_c can be calculated using the AASHTO empirical equation (AASHTO 2014):

$$E_c = 57000 \sqrt{f_c'} \text{ (psi)}$$
 (Eq. 2-2)

The Poisson ratio of concrete under uniaxial compressive stress ranges from about 0.15 to 0.22, with a representative value of 0.19 or 0.2 (AASHTO). In this report, the Poisson ratio of concrete is assumed to be v = 0.2.

The uniaxial tension stress-strain behavior of smeared (average) concrete was proposed by Belarbi and Hsu (1994), as shown in Figure 2.5. Equations 2-3 and 2-4 are used to develop the tensile stress-strain curve.

Ascending branch:

$$\sigma_{\rm c} = E_{\rm c} \varepsilon_{\rm c} \varepsilon_{\rm c} \leq \varepsilon_{\rm cr} \tag{Eq. 2-3}$$

Descending branch:

$$\sigma_{c} = f_{cr} \left(\frac{\varepsilon_{cr}}{\varepsilon_{c}}\right)^{0.4} \varepsilon_{c} > \varepsilon_{cr}$$
(Eq. 2-4)

where E_c = the elastic modulus of concrete, ε_{cr} = the cracking strain of concrete taken as 0.00008, and f_{cr} = the cracking stress of concrete taken as 0.00008E_c.

Figure 2.5 Stress-Strain Curves of Concrete in Tension and Compression

The stress-strain curve of the reinforcing bar is assumed to be elastic and perfectly plastic, as shown in Figure 2.6. In the ABAQUS program, the bond-slip effect between concrete and steel is not considered. In order to properly model the steel bars, the cross-section area, position, and orientation of each steel bar within the concrete element need to be specified.

Elastic branch:

$$f_s = E_s \varepsilon_s \ \varepsilon_s \le \varepsilon_y$$
 (Eq. 2-5)

Plastic branch:

$$f_s = f_y \varepsilon_s > \varepsilon_y$$
 (Eq. 2-6)

where E_s = the elastic modulus of steel taken as 29000 ksi and ε_v =the yielding strain of steel.

Figure 2.6 Stress-Strain Curve of Mild Steel

The details of the material parameters of the concrete damaged plasticity model for full-scale bent caps are listed in Table 2.1.

Specimen designation	Young's modulus (ksi)	Poisson's ratio	Compressive strength (ksi)	Tensile strength (ksi)	Dilation angle (°)	Flow potential eccentricity	K
Bent 2	4031	0.2	5.0	0.325	31	0.1	0.67
Bent 6	4031	0.2	5.0	0.325	31	0.1	0.67
Bent 7	4031	0.2	5.0	0.325	31	0.1	0.67

Table 2.1 Material Parameters for the Concrete Damaged Plasticity Model

2.4 3D FINITE ELEMENT RESULTS OF BENT CAPS

The analysis is performed for service load, which includes dead load and live load with the load combination factor equal to one. The ultimate load (strength limit state 1) is calculated by multiplying a factor of 1.25 with dead load, 1.75 with live load and 1.5 with overlay.

2.4.1 Stresses in Transverse Rebars at Service Load

The service loads for each of the interior girder locations and all the exterior girder locations of each bent cap are described in Table 2.2. Figure 2.7, Figure 2.8, and Figure 2.9 illustrate the contour plot of tensile stresses in the transverse reinforcement of skewed Bent Caps 2, 6, and 7, respectively, corresponding to skew angles of 43°, 33°, and 33°. As shown in Figure 2.7 the maximum tensile stress in the rebars of Bent Cap 2 is 9.08 ksi, which is within the stress limit prescribed by TxDOT and occurs in the transverse rebars at the end face (marked in the circle). Hence, the bent cap is safe in the service load condition. Similarly, as shown in Figure 2.8 and Figure 2.9, the maximum tensile stress in the rebars of Bent Cap 7 is 7.56 ksi and 9.73 ksi, respectively. The rebar stresses in Bent Cap 7 are higher than those in Bent Caps 2 and 6, due to the higher service load. It is evident that the stresses in rebars of all the bent caps under the service load are low and hence safe.

Bent	Service Load at Interior Bearing Pads (kips)	Service Load at Exterior Bearing Pads (kips)
Bent 2	222.48	240.19
Bent 6	226.64	238.86
Bent 7	244.52	258.00

Table 2.2 Service Loading for Bent Caps

Figure 2.8 Tensile Stress Contour at Service Load of Bent Cap 6 [S11 = Tensile stresses in ksi in Rebars] [Top (Red in color): Maximum stress, Bottom (Blue in color): Minimum stress]

Figure 2.9 Tensile Stress Contour at Service Load of Bent Cap 7 [S11 = Tensile stresses in ksi in Rebars] [Top (Red in color): Maximum stress, Bottom (Blue in color): Minimum stress]

2.4.2 Stresses in Transverse Rebars at Strength Limit State

The strength limit state loads for each of the interior girder locations and all the exterior girder locations of each bent cap are described in Table 2.3. Ultimate load (strength limit state 1) is calculated by multiplying a factor of 1.25 with dead load, 1.75 with live load and 1.5 with overlay. Figure 2.10, Figure 2.11, and Figure 2.12 illustrate the contour plot of tensile stresses in the transverse reinforcement of the skewed Bent Caps 2, 6, and 7, respectively, corresponding to skew angles of 43°, 33°, and 33°. As shown in Figure 2.10, the maximum tensile stress in the rebars of Bent Cap 2 is 24.20 ksi, which is within the stress limit prescribed by TxDOT. Hence, the bent cap is safe at the ultimate load condition.

Similarly, as shown in Figure 2.11 and Figure 2.12 the maximum tensile stress in the rebars of Bent Caps 6 and 7 is 23.25 ksi and 26.95 ksi, respectively. The rebar stresses in Bent Cap 7 is higher than those of Bent Caps 2 and 6, due to the higher ultimate load demand as shown in Table 2.3. It is evident that the stresses in rebars of all the bent caps under the ultimate load are lower than the yielding stress of steel rebars, which is considered to be 60 ksi and hence safe.

Bent	Strength Limit State Load at Interior Bearing Pads (kips)	Strength Limit State Load at Exterior Bearing Pads (kips)				
Bent 2	334.84	365.82				
Bent 6	335.83	357.22				
Bent 7	365.23	388.82				

Table 2.3 Strength Limit State Loading for Bent Caps

Figure 2.10 Tensile Stress Contour at Strength Limit State of Bent Cap 2 [S11 = Tensile stresses in ksi in Rebars] [Top (Red in color): Maximum stress, Bottom (Blue in color): Minimum stress]

[S11 = Tensile stresses in ksi in Rebars] [Top (Red in color) : Maximum stress, Bottom (Blue in color): Minimum stress]

Figure 2.12 Tensile Stress Contour at Strength Limit State of Bent Cap 7 [S11 = Tensile stresses in ksi in Rebars] [Top (Red in color) : Maximum stress, Bottom (Blue in color): Minimum stress]

2.4.3 Comparison of Displacements at Service Load

Figure 2.13 shows the magnitude of the deformations of three bent caps at the service loading. As can be seen from the figure, for Bent 2 (43-degree skew case) there is a maximum deformation of 0.05 inch. This deformation is in a downward direction and occurs at the acute angle skew end location (blue color). Similarly, for Bent Caps 6 and 7, the maximum observed deformation is 0.043 inch and 0.05 inch, respectively. The maximum deformation in the bent cap under service loading always occurs at the acute angle skew end, and the net deflection is in the downward direction. Though Bent Caps 6 and 7 have the same skewed angle, the magnitude of deformation is more in Bent Cap 7 because of the higher demand for service load. The maximum displacement is shown in the deep blue color contour, and the negative sign indicates that the displacement is downward. The larger deformation at the end face can be attributed to torsion generated by the unsymmetrical locations of the bearing pads on the ledges of the bridge cap. This deformation pattern will be verified during the load tests.

Figure 2.13 Displacement at Service Load for Bent Caps

2.4.4 Comparison of Principal Tensile Strains

Figure 2.14 shows the FE analysis results which address the comparison of the cracking among all the three bent caps. In the figure, the contour of the principal tensile strain in concrete is illustrated. To show the cracking zone, a lower limit of the principal strain (i.e., 0.00008) was defined so that the regions at which principal strain is less than cracking strain have a different color than the cracked regions. The other regions with different colors, therefore, represent the higher tensile strains. As can be seen from the
figure, the tensile strains in most of the parts of bent caps are much lower than the cracking strain. These regions are represented by deep blue color. Locations near loading pads and the re-entrant corner between ledge and web have higher tensile strain, which is represented by light blue and red colors. Hence, under the application of service load, no cracks should be observed in most of the regions of the bent caps. There may be some microcrack formations in some local regions of the bent caps. The principal tensile strain of Bent Cap 7 is observed to be higher because of higher service load.

Figure 2.14 Comparison of Principal Tensile Strain at Service load

2.5 SUMMARY

Because of the advantages of skewed transverse reinforcement, skewed transverse reinforcement has been applied to the design of ITBCs in TxDOT bridges. The Research Team (RT) has selected Bent Cap 2, Bent Cap 6 and Bent Cap 7 of the bridge on Donigan Road over IH 10 to perform the preliminary FE analysis using ABAQUS. Once the overall structural behavior of actual ITBCs with skewed transverse reinforcement is better understood, the critical loading patterns during the load tests and crucial strain gage locations can be determined. Later, the developed numerical models will be calibrated against the field test results for the numerical simulation, considering unexplored parameters. From the preliminary FE analysis, it was observed that the critical locations to paste the strain gauges and attach LVDTs are the cantilever end faces of the bent caps. Moreover, it was also observed that all the bent caps with skewed transverse reinforcing are safe under service and ultimate state loading.

CHAPTER 3: DEVELOPMENT OF PRELIMINARY FINITE ELEMENT MODELS OF THE SIGNIFICANT ITBCs

3.1 INTRODUCTION

In this chapter, the preliminary finite element (FE) analysis of the selected three bent caps (explained in Chapter 2) are performed using ABAQUS to conduct the cost-benefit analysis of skew ITBCs considering different parameters (Task 9a). Due to the construction delays, a task (named Task 9a) was added. Based on the literature review, the FE simulation and the cost-benefit analysis for the ITBCs have not been reported (Bhargava 2009). The parametric FE modeling and cost estimation can be effectively used in the engineering design (Yazdani et al. 2017). In cost-benefit analysis, stiffness of the bent caps under the service load, maximum crack width under the service load, and the ultimate strength of the bent caps are compared as structural behavior. The design parameters, FE Modeling, and the cost-benefit analysis of the bent caps are explained in the following sections.

3.2 CASES OF PARAMETRIC STUDY

The parametric study on the full-scale was performed on Bent 2, Bent 6, and Bent 7 of the bridge on Donigan Road over IH 10, including Case 1, Case 2, and Case 3 for each bent. For the detailing of transverse reinforcement, the following three cases of reinforcement design for the ITBCs have been investigated to cover the majority of the design detailing in Texas bridges.

(1) Case 1: the skew transverse reinforcement is applied, and the U1 Bars, U2 Bars, U3 Bars, and G Bars are also applied at both ends of the bent cap. This case is the same as that presented in Task 9. However, in Task 9, only critical locations were determined from the analytical results. In this additional task, detailed analyses in Case 1 have been completed, including the investigation of the effect of the G Bars and S Bars on the structural performance of the ITBCs. Figure 3.1, Figure 3.2, and Figure 3.3 show the skew reinforcements (Case 1) for Bent 2, Bent 6, and Bent 7, respectively.

Figure 3.1 Case 1 for Bent 2 (Current Design of Skew Reinforcement, unit: inch)

Figure 3.2 Case 1 for Bent 6 (Current Design of Skew Reinforcement, unit: inch)

Figure 3.3 Case 1 for Bent 7 (Current Design of Skew Reinforcement, unit: inch)

(2) Case 2: the traditional method of flaring the transverse reinforcement out in skew ITBCs is adopted. Figure 3.4, Figure 3.5, and Figure 3.6 show the traditional detailing of reinforcement without end bars (Case 2) for Bent 2, Bent 6, and Bent 7, respectively. Figure 3.7 shows the sectional and elevation end view of Bent 2 without end bars.

Figure 3.4 Case 2 for Bent 2 (Traditional Detailing of Reinforcement without End Bars, unit: inch)

Figure 3.5 Case 2 for Bent 6 (Traditional Detailing of Reinforcement without End Bars, unit: inch)

Figure 3.7 Bent 2-End View of Traditional Design Without End Bars in Case 2 (unit: inch)

(3) Case 3: in addition to the traditional detailing of flaring transverse reinforcement in Case 2, the U1 bars, U2 bars, U3 Bars, and G bars are applied at both ends of the bent cap. Figure 3.8 shows the sectional and elevation end view of Bent 2 with end bars.

Figure 3.8 Bent 2-End View of Traditional Design with End Bars in Case 3 (unit: inch).

Table 3.1 shows the specimens for the parametric FE simulation. The defined nomenclature of the specimens is as follows: For Specimen C3B2C5Smin, the first "C" denotes Case (1, 2, or 3) for the transverse reinforcement detailing; the second character "B" denotes Bent (2, 6, or 7); the third character "C" denotes the concrete strength (5 or 7 ksi); the last character "S" denotes S Bar area [minimum (i.e. 26% less than current design), 0% more (i.e. current design), 20% more or 40% more than current design]. In order to investigate the minimum reinforcement design of the AASHTO (American Association of Highway and Transportation Officials) LRFD (2014) Bridge Design Specifications, the RT calculated the minimum reinforcement area of S Bars for each bent based on the design service load and the AASHTO specifications to serve as the reference group and denote it as "Smin.," which is 26% less than the current design. If "G3" to "G6" are used at the end of the nomenclature, they denote the size of G Bars (No. 3 to No. 6 bars). Specimens C1B2C5S0, C1B6C5S0, and C1B7C5S0 denote the current design of Bent 2, Bent 6, and Bent 7, respectively.

			I	Bent Ca	ıp	Con Stre (k	crete ngth si)	Transv	verse Reinforce	ment Detailing	Amou	nt of Trans	verse Reł	oar	(GΒ	ar S	Size	
No.	Name	Case	Bent 2	Bent 6	Bent 7	5	7	Skew w/ end bars	Traditional w/o end bars	Traditional w/ end bars	Minimum (M)	Current Design	20% higher than current design	40% higher than current design	#3	#4	#5	#6	#7
1	C1B2C5Smin	1	Х			X		X			Х								Х
2	C1B2C5S0	1	Χ			X		X				Χ							Х
3	C1B2C5S20	1	Х			X		X					Х						Х
4	C1B2C5S40	1	Х			X		X						X					Х
5	C1B2C7Smin	1	Х				X	X			Х								Х
6	C1B2C7S0	1	Х				X	X				Х							Х
7	C1B2C7S20	1	Х				X	X					Х					1	Х
8	C1B2C7S40	1	Х				X	X						X				1	Х
9	C1B6C5Smin	1		Х		X		X			Х								Х
10	C1B6C5S0	1		Х		X		X				X							Х
11	C1B6C5S20	1		Х		X		X					Х					1	Х
12	C1B6C5S40	1		Х		X		X						X					Х
13	C1B6C7Smin	1		Х			Х	X			Х							1	Х
14	C1B6C7S0	1		Х			Х	X				Х							Х
15	C1B6C7S20	1		Х			Х	X					X						Х
16	C1B6C7S40	1		Х			Х	X						X				1	Х
17	C1B7C5Smin	1			Х	X		X			Х								Х
18	C1B7C5S0	1			Х	X		X				X						1	Х
19	C1B7C5S20	1			Х	X		X					Х						Х
20	C1B7C5S40	1			Х	X		X						X				1	Х
21	C1B7C7Smin	1			Х		X	X			Х								Х
22	C1B7C7S0	1			Х		X	X				Х						1	Х
23	C1B7C7S20	1			Х		Х	X					X						Х
24	C1B7C7S40	1			Х		Х	X						X				1	Х
25	C1B2C5G3	1	Х			X		X				Х			X				
26	C1B2C5G4	1	Х			X		X				X				Χ			
27	C1B2C5G5	1	Х			X		X				Х					Χ		
28	C1B2C5G6	1	Х			X		X				X						Х	
29	C1B6C5G3	1		Х		Х		Х				Х			Χ				

Table 3.1 Specimens of Parametric Finite Element Simulation

			F	Bent Ca	р	Con Stre (k	crete ngth si)	Transverse Reinforcement Detailing		Amour	nt of Trans	verse Reł	bar		G B	ar S	Size	;	
No.	Name	Case	Bent 2	Bent 6	Bent 7	5	7	Skew w/ end bars	Traditional w/o end bars	Traditional w/ end bars	Minimum (M)	Current Design	20% higher than current design	40% higher than current design	#3	#4	#5	#6	#7
30	C1B6C5G4	1		Х		X		X				Х				Х			
31	C1B6C5G5	1		Х		X		X				Х					Х		
32	C1B6C5G6	1		Х		X		X				Х						Х	
33	C1B7C5G3	1			Х	X		X				Х			X				
34	C1B7C5G4	1			Х	X		X				Х				Х			
35	C1B7C5G5	1			Х	Х		Х				Х					Х		
36	C1B7C5G6	1			Х	X		Х				Х						Х	
37	C2B2C5Smin	2	Х			X			Х		Х								
38	C2B2C5S0	2	Х			Х			Х			Х							
39	C2B2C5S20	2	Х			X			Х				Х						
40	C2B2C5S40	2	Х			Х			Х					Х					
41	C2B2C7Smin	2	Х				Х		Х		Х								
42	C2B2C7S0	2	Х				Х		Х			Х							
43	C2B2C7S20	2	Х				Х		Х				Х						
44	C2B2C7S40	2	Х				Х		Х					Х					
45	C2B6C5Smin	2		Х		Х			Х		Х								
46	C2B6C5S0	2		Х		Х			Х			Х							
47	C2B6C5S20	2		Х		Х			Х				Х						
48	C2B6C5S40	2		Х		Х			Х					Х					
49	C2B6C7Smin	2		Х			Х		Х		Х								
50	C2B6C7S0	2		Х			Х		Х			Х							
51	C2B6C7S20	2		Х			Х		Х				Х						
52	C2B6C7S40	2		Х			Х		Х					Х					
53	C2B7C5Smin	2			Х	X			Х		Х								
54	C2B7C5S0	2			Х	X			Х			Х							
55	C2B7C5S20	2			Х	X			Х				Х						
56	C2B7C5S40	2			Х	Х			Х					Х					
57	C2B7C7Smin	2			Х		Х		Х		Х								
58	C2B7C7S0	2			Х		Х		Х			Х							
59	C2B7C7S20	2			Х		Х		Х				Х						

			E	Bent Ca	р	Con Stre	crete ngth si)	Transv	Transverse Reinforcement Detailing Amount of Transverse Rebar		oar	G Bar Size						
No.	Name	Case	Bent 2	Bent 6	Bent 7	5	7	Skew w/ end bars	Traditional w/o end bars	Traditional w/ end bars	Minimum (M)	Current Design	20% higher than current design	40% higher than current design	#3	#4	#5	#6 #7
60	C2B7C7S40	2			Х		Х		Х					Х				
61	C3B2C5Smin	3	Х			Х				Х	Х							X
62	C3B2C5S0	3	Х			Х				Х		Х						X
63	C3B2C5S20	3	Х			Х				Х			Х					X
64	C3B2C5S40	3	Х			Х				Х				Х				X
65	C3B2C7Smin	3	Х				Х			Х	Х							X
66	C3B2C7S0	3	Х				Х			Х		Х						X
67	C3B2C7S20	3	Х				Х			Х			Х					X
68	C3B2C7S40	3	Х				Х			Х				Х				X
69	C3B6C5Smin	3		Х		Х				Х	Х							X
70	C3B6C5S0	3		Х		Х				Х		Х						X
71	C3B6C5S20	3		Х		Х				Х			Х					X
72	C3B6C5S40	3		Х		X				Х				Х				X
73	C3B6C7Smin	3		Х			Х			Х	Х							X
74	C3B6C7S0	3		Х			Х			Х		Х						X
75	C3B6C7S20	3		Х			Х			Х			Х					X
76	C3B6C7S40	3		Х			Х			Х				Х				X
77	C3B7C5Smin	3			Х	Х				Х	Х							X
78	C3B7C5S0	3			Х	Х				Х		Х						X
79	C3B7C5S20	3			Х	Х				Х			Х					X
80	C3B7C5S40	3			Х	Х				Х				Х				X
81	C3B7C7Smin	3			Х		Х			Х	Х							X
82	C3B7C7S0	3			Х		Х			Х		Х						X
83	C3B7C7S20	3			Х		Х			Х			Х					X
84	C3B7C7S40	3			Х		Х			Х				Х				X
85	C3B2C5G3	3	Х			Х				Х		Х			Х			
86	C3B2C5G4	3	Х			Х				Х		Х				X		
87	C3B2C5G5	3	Х			Х				Х		Х					Χ	
88	C3B2C5G6	3	Х			Х				Х		Х						X
89	C3B6C5G3	3		Х		Х				Х		Х			X			
90	C3B6C5G4	3		Х		Х				Х		Х				Χ		

			I	Bent Ca	p	Cone Stree	crete ngth si)	Transv	erse Reinforce	ment Detailing	Amou	nt of Trans	verse Reł	oar		G B	ar S	ize
No.	Name	Case	Bent 2	Bent 6	Bent 7	5	7	Skew w/ end bars	Traditional w/o end bars	Traditional w/ end bars	Minimum (M)	Current Design	20% higher than current design	40% higher than current design	#3	#4	#5	#6 #7
91	C3B6C5G5	3		X		Х				Х		X					Х	
92	C3B6C5G6	3		X		Х				Х		X						X
93	C3B7C5G3	3			Х	Х				Х		X			Х			
94	C3B7C5G4	3			Х	Х				Х		Х				Χ		
95	C3B7C5G5	3			Х	Х				Х		Х					Χ	
96	C3B7C5G6	3			Х	Х				Х		Х						X

3.3 3D FINITE ELEMENT MODELING OF BENT CAPS IN ABAQUS

The FE models of three different cases (Case 1, Case 2, and Case 3) of ITBCs were developed using ABAQUS (2020). 3D FE modeling of large-scale ITBCs are described in "2.2. FINITE ELEMENT MODELING OF BENT CAPS IN ABAQUS". To model the specimens in this chapter, the same method is followed. The same material model is used for the concrete and the steel in the ABAQUS models as defined in "2.3. MATERIAL MODELS". Table 3.2 shows the details of the material parameters of the concrete damaged plasticity model for full-scale bent caps for 5 ksi and 7 ksi concrete.

Concrete grade	Young's modulus (ksi)	Poisson's ratio	Tensile strength (ksi)	Density (<u>lb/ft³</u>)	Dilation angle (°)	Flow potential eccentricity	K
5 ksi	4031	0.2	0.325	150	31	0.1	0.67
7 ksi	4770	0.2	0.382	150	31	0.1	0.67

 Table 3.2 Material Parameters for the Concrete Damaged Plasticity Model

There is a total of 24, 26, and 24 bearing pads tied on top of the ledges of Bent Cap 2, Bent Cap 6, and Bent Cap 7, respectively. The superstructure loads are transferred from the bridge girders to the bridge bent caps through these bearing pads. The analysis was performed with two loading cases. The first loading case is the service load, which includes dead load and live load with the load combination factor equal to one. The second loading case is the ultimate load.

3.3.1 Boundary Conditions at Service Load

The service load for the bent caps is calculated following the AASHTO LRFD Bridge Design Specifications, 8th Ed. (2017) as prescribed by the TxDOT Bridge Design Manual – LRFD (2020). According to this specification, the service load is applied differently on the exterior and interior bearing pads. Figure 3.9 shows the surfaces for exterior and interior bearing pads in ABAQUS models. The calculated service load is applied as a uniform pressure to these surfaces. The service loads for Bent Cap 2, Bent Cap 6, and Bent Cap 7 are shown in Table 3.3.

Bent	Service Load at Interior Bearing Pads (kips)	Service Load at Exterior Bearing Pads (kips)
Bent 2	222.48	240.19
Bent 6	226.64	238.86
Bent 7	244.52	258.00

Table 3.3. Service Load for Bent Caps

(b) Interior Bearing Pads Figure 3.9 Loads on the Bearing Pads in ABAQUS Models

3.3.2 Boundary Conditions at Ultimate Load

To calculate the ultimate load capacities of the bent caps, the uniform and equal loads are applied to all bearing pads. This load is provided through a reference point assigned to the top of the bent caps. Figure 3.10 shows the coupling constraint between the reference point and the bearing pads for calculating ultimate capacity. As shown in Figure 3.10, a coupling constraint is defined between the reference point and all bearing pads. Subsequently, a deflection of two inches is applied to the reference point in order to provide the load.

Figure 3.10 Coupling Constraint between the Reference Point and Bearing Pads for Ultimate Loads

3.4 3D FINITE ELEMENT ANALYTICAL RESULTS OF BENT CAPS

The 96 specimens are modeled in ABAQUS in order to investigate structural performances of ITBCs under the service load and ultimate load. Design parameters are skew angle (43° or 33°), detailing of transverse reinforcements (skew transverse reinforcement or traditional transverse reinforcement), end bars (with or without U1 Bars, U2 Bars, U3 Bars, and G Bars), size of S Bars (minimum, current design, 20% more or 40% more than current design), size of G Bars (No. 3 to No. 7 bars), and concrete strength (5 or 7 ksi). Based on these parameters, the displacement and the stiffness at the service load, the principal tensile strain of concrete and crack widths at the service load, and the ultimate capacities of the bent caps are investigated.

3.4.1 Displacement and Stiffness Comparisons at Service Load

The deflections at the midpoints of the two ends of the bent caps, named as D1 and D2 as shown in Figure 3.11, are obtained by the FE simulation results. To calculate the stiffness, the total vertical load is divided by each of both the deflections at these points. Table 3.4 shows the deflection results of each specimen under the service load.

Figure 3.11 Location of Mid-Points of Both Ends D1 and D2

No.	Name	Deflection @ D1 (in.)	Deflection @ D2 (in.)
1	C1B2C5Smin	-0.0179	-0.0190
2	C1B2C5S0	-0.0177	-0.0188
3	C1B2C5S20	-0.0176	-0.0187
4	C1B2C5S40	-0.0176	-0.0187
5	C1B2C7Smin	-0.0151	-0.0161
6	C1B2C7S0	-0.0151	-0.0160
7	C1B2C7S20	-0.0150	-0.0159
8	C1B2C7S40	-0.0150	-0.0159
9	C1B6C5Smin	-0.0153	-0.0160
10	C1B6C5S0	-0.0152	-0.0159
11	C1B6C5S20	-0.0152	-0.0158
12	C1B6C5S40	-0.0151	-0.0158
13	C1B6C7Smin	-0.0130	-0.0135
14	C1B6C7S0	-0.0129	-0.0134
15	C1B6C7S20	-0.0129	-0.0134
16	C1B6C7S40	-0.0128	-0.0134
17	C1B7C5Smin	-0.0176	-0.0164
18	C1B7C5S0	-0.0174	-0.0163
19	C1B7C5S20	-0.0172	-0.0162

Table 3.4 Deflection	Results at	Points D1 a	and D2 ur	nder the S	ervice Load
----------------------	------------	-------------	-----------	------------	-------------

No.	Name	Deflection @ D1 (in.)	Deflection @ D2 (in.)
20	C1B7C5S40	-0.0172	-0.0161
21	C1B7C7Smin	-0.0147	-0.0138
22	C1B7C7S0	-0.0146	-0.0138
23	C1B7C7S20	-0.0145	-0.0137
24	C1B7C7S40	-0.0145	-0.0137
25	C1B2C5G3	-0.0179	-0.0190
26	C1B2C5G4	-0.0178	-0.0189
27	C1B2C5G5	-0.0178	-0.0189
28	C1B2C5G6	-0.0178	-0.0189
29	C1B6C5G3	-0.0154	-0.0160
30	C1B6C5G4	-0.0153	-0.0160
31	C1B6C5G5	-0.0153	-0.0159
32	C1B6C5G6	-0.0152	-0.0159
33	C1B7C5G3	-0.0176	-0.0164
34	C1B7C5G4	-0.0175	-0.0164
35	C1B7C5G5	-0.0175	-0.0164
36	C1B7C5G6	-0.0174	-0.0163
37	C2B2C5Smin	-0.0182	-0.0194
38	C2B2C5S0	-0.0180	-0.0192
39	C2B2C5S20	-0.0179	-0.0191
40	C2B2C5S40	-0.0177	-0.0190
41	C2B2C7Smin	-0.0154	-0.0166
42	C2B2C7S0	-0.0153	-0.0165
43	C2B2C7S20	-0.0152	-0.0164
44	C2B2C7S40	-0.0151	-0.0163
45	C2B6C5Smin	-0.0150	-0.0158
46	C2B6C5S0	-0.0148	-0.0156
47	C2B6C5S20	-0.0148	-0.0154
48	C2B6C5S40	-0.0147	-0.0153
49	C2B6C7Smin	-0.0125	-0.0131
50	C2B6C7S0	-0.0125	-0.0130
51	C2B6C7S20	-0.0125	-0.0130
52	C2B6C7S40	-0.0125	-0.0129
53	C2B7C5Smin	-0.0170	-0.0162
54	C2B7C5S0	-0.0166	-0.0158
55	C2B7C5S20	-0.0165	-0.0156
56	C2B7C5S40	-0.0164	-0.0155
57	C2B7C7Smin	-0.0140	-0.0135
58	C2B7C7S0	-0.0139	-0.0132
59	C2B7C7S20	-0.0138	-0.0132
60	C2B7C7S40	-0.0138	-0.0131
61	C3B2C5Smin	-0.0180	-0.0192
62	C3B2C5S0	-0.0178	-0.0190
63	C3B2C5S20	-0.0177	-0.0189
64	C3B2C5S40	-0.0176	-0.0189
65	C3B2C7Smin	-0.0152	-0.0162
66	C3B2C7S0	-0.0151	-0.0161

No.	Name	Deflection @ D1 (in.)	Deflection @ D2 (in.)
67	C3B2C7S20	-0.0151	-0.0161
68	C3B2C7S40	-0.0150	-0.0160
69	C3B6C5Smin	-0.0147	-0.0155
70	C3B6C5S0	-0.0146	-0.0153
71	C3B6C5S20	-0.0146	-0.0152
72	C3B6C5S40	-0.0146	-0.0152
73	C3B6C7Smin	-0.0124	-0.0130
74	C3B6C7S0	-0.0124	-0.0129
75	C3B6C7S20	-0.0124	-0.0129
76	C3B6C7S40	-0.0124	-0.0129
77	C3B7C5Smin	-0.0164	-0.0157
78	C3B7C5S0	-0.0163	-0.0155
79	C3B7C5S20	-0.0162	-0.0154
80	C3B7C5S40	-0.0162	-0.0154
81	C3B7C7Smin	-0.0138	-0.0132
82	C3B7C7S0	-0.0137	-0.0131
83	C3B7C7S20	-0.0137	-0.0131
84	C3B7C7S40	-0.0137	-0.0131
85	C3B2C5G3	-0.0179	-0.0191
86	C3B2C5G4	-0.0179	-0.0191
87	C3B2C5G5	-0.0179	-0.0191
88	C3B2C5G6	-0.0179	-0.0190
89	C3B6C5G3	-0.0147	-0.0155
90	C3B6C5G4	-0.0147	-0.0154
91	C3B6C5G5	-0.0147	-0.0154
92	C3B6C5G6	-0.0146	-0.0154
93	C3B7C5G3	-0.0165	-0.0157
94	C3B7C5G4	-0.0164	-0.0157
95	C3B7C5G5	-0.0164	-0.0156
96	C3B7C5G6	-0.0163	-0.0156

The total vertical load is the summation of the service load on the interior and exterior bearing pads and is calculated as 5413 lb, 5950 lb, and 5920 lb for Bent Cap 2, Bent Cap 6, and Bent Cap 7, respectively. The stiffness is calculated by the following equation.

$$k = \frac{F}{\Delta}$$
(Eq. 3-1)

where *F* is the total vertical load, and Δ is the deflection.

Figure 3.12 shows the comparison of stiffness values of the specimens for each bent cap at points D1 and D2. Based on the FE analysis results, the stiffness slightly increases with increasing the S Bar area because the S Bars reduce the tensile strain of the bent caps. In addition, increasing the concrete compressive strength from 5 ksi to 7 ksi significantly enhances the stiffness, which is attributed to the higher tensile strength and elastic modulus of higher strength concrete. As shown in Figure 3.12, the stiffness values of specimens in Case 2 are lower than that of specimens in Case 3 with end bars. Therefore, the end

bars (U1 Bars, U2 Bars, U3 Bars, and G Bars) have a significant influence on the stiffness since they reduce the deflection at the bent cap ends. Moreover, the stiffness increases with respect to the G Bar area.

(a) Influence of S Bar Area on Bent 2 with 5 ksi Concrete at D1

(c) Influence of S Bar Area on Bent 2 with 7 ksi Concrete at D1

(b) Influence of S Bar Area on Bent 2 with 5 ksi Concrete at D2

(d) Influence of S Bar Area on Bent 2 with 7 ksi Concrete at D2

(e) Influence of G Bar Area on Bent 2 with 5 ksi Concrete at D1

(g) Influence of S Bar Area on Bent 6 with 5 ksi Concrete at D1

(i) Influence of S Bar Area on Bent 6 with 7 ksi Concrete at D1

(f) Influence of G Bar Area on Bent 2 with 5 ksi Concrete at D2

(h) Influence of S Bar Area on Bent 6 with 5 ksi Concrete at D2

(j) Influence of S Bar Area on Bent 6 with 7 ksi Concrete at D2

390 Siffness Defined at D2 (10³ k/in.) 385 380 375 370 365 Case 1 360 Case 3 355 0.1 0.4 0.2 0.3 0.5 0.6 0.7 0 Area of G Bar (in²)

(k) Influence of G Bar Area on Bent 6 with 5 ksi Concrete at D1

(m) Influence of S Bar Area on Bent 7 with 5 ksi Concrete at D1

(o) Influence of S Bar Area on Bent / with ksi Concrete at D1

(l) Influence of G Bar Area on Bent 6 with 5 ksi Concrete at D2

(n) Influence of S Bar Area on Bent 7 with 5 ksi Concrete at D2

(p) Influence of S Bar Area on Bent 7 with 7 ksi Concrete at D2

Figure 3.12 Comparison of Stiffness at the Service Load

3.4.2 Principal Tensile Strain and Crack Width Comparisons at Service Load

Based on the concrete damaged plasticity model in ABAQUS, the cracking behavior of each specimen at the service load is investigated. Cracks are generally observed at the interface between the ledge and the web, and cracking is generally developed in horizontal crack surfaces. The vertical load, applied from the girders to the ledge, is transferred through the S Bars the bent cap. Since no prestress is applied to the S Bars, the bent cap is prone to micro-cracking under the concentrated loads under the service load. Figure 3.13 shows the location of micro-cracks of Specimen C3B2C5S0. As shown in Figure 3.13, most of the microcracks are observed at the interface between the ledge and the web, close to the end of the bent cap.

(a) Sectional View of Principal Tensile Strain

(e) Cutting side view of principal tensile strain

Figure 3.13 Principal Tensile Strains in Current Design of Bent 2 at the Service Load (Specimen C3B2C5S0)

The principal tensile strain is obtained from the FE analyses to calculate the crack width. The maximum principal tensile strain of the concrete section for each specimen is shown in Table 3.5. The maximum cracking strain, ε_{cr} , is calculated by subtracting the maximum tensile strain obtained from ABAQUS simulation results by the crack strain. The average crack spacing, L_m , is calculated as recommended by ACI Committee 224 (ACI, 2001). The crack width is calculated by multiplying the maximum cracking strain, ε_{cr} , with the average crack spacing, L_m . Both traditional and skewed design causes microcracking, which is difficult to see with the naked eye and will generally not affect the structural behavior. Therefore, the structural serviceability of the current design at the service load is verified. Figure 3.14 shows the comparison of the crack width of each specimen for all bent caps. Because the location of the maximum crack width is at the end of the ITBCs, the end bars (U1 Bars, U2 Bars, U3 Bars, and G Bars) have a significant influence on crack width. Besides, maximum crack width significantly decreases with

the increasing G Bar area. Increasing the S Bar area and the compressive strength of concrete notably decreases the crack width.

No.	Name	Maximum Tensile Strain	Maximum Crack Width (in.)
1	C1B2C5Smin	0.000833	0.0082
2	C1B2C5S0	0.000711	0.0069
3	C1B2C5S20	0.000644	0.0062
4	C1B2C5S40	0.000589	0.0057
5	C1B2C7Smin	0.000571	0.0054
6	C1B2C7S0	0.000511	0.0047
7	C1B2C7S20	0.000473	0.0043
8	C1B2C7S40	0.000436	0.0040
9	C1B6C5Smin	0.000700	0.0068
10	C1B6C5S0	0.000609	0.0058
11	C1B6C5S20	0.000557	0.0053
12	C1B6C5S40	0.000512	0.0048
13	C1B6C7Smin	0.000478	0.0043
14	C1B6C7S0	0.000426	0.0038
15	C1B6C7S20	0.000380	0.0033
16	C1B6C7S40	0.000339	0.0029
17	C1B7C5Smin	0.000876	0.0087
18	C1B7C5S0	0.000751	0.0074
19	C1B7C5S20	0.000683	0.0067
20	C1B7C5S40	0.000630	0.0061
21	C1B7C7Smin	0.000606	0.0057
22	C1B7C7S0	0.000544	0.0051
23	C1B7C7S20	0.000506	0.0047
24	C1B7C7S40	0.000474	0.0044
25	C1B2C5G3	0.000910	0.0091
26	C1B2C5G4	0.000867	0.0087
27	C1B2C5G5	0.000822	0.0082
28	C1B2C5G6	0.000771	0.0076
29	C1B6C5G3	0.000818	0.0081
30	C1B6C5G4	0.000766	0.0076
31	C1B6C5G5	0.000711	0.0069
32	C1B6C5G6	0.000664	0.0064
33	C1B7C5G3	0.001054	0.0107
34	C1B7C5G4	0.000969	0.0098
35	C1B7C5G5	0.000892	0.0089
36	C1B7C5G6	0.000826	0.0082

Table 3.5 Principal Tensile Strain and Maximum Crack Width of Concrete at Service Load

No.	Name	Maximum Tensile Strain	Maximum Crack Width (in.)
37	C2B2C5Smin	0.001042	0.0105
38	C2B2C5S0	0.000859	0.0086
39	C2B2C5S20	0.000724	0.0071
40	C2B2C5S40	0.000633	0.0061
41	C2B2C7Smin	0.000682	0.0066
42	C2B2C7S0	0.000590	0.0056
43	C2B2C7S20	0.000541	0.0051
44	C2B2C7S40	0.000495	0.0046
45	C2B6C5Smin	0.001058	0.0107
46	C2B6C5S0	0.000878	0.0088
47	C2B6C5S20	0.000724	0.0071
48	C2B6C5S40	0.000641	0.0062
49	C2B6C7Smin	0.000662	0.0064
50	C2B6C7S0	0.000527	0.0049
51	C2B6C7S20	0.000475	0.0044
52	C2B6C7S40	0.000450	0.0041
53	C2B7C5Smin	0.001239	0.0127
54	C2B7C5S0	0.001025	0.0104
55	C2B7C5S20	0.000885	0.0089
56	C2B7C5S40	0.000800	0.0080
57	C2B7C7Smin	0.000813	0.0080
58	C2B7C7S0	0.000665	0.0064
59	C2B7C7S20	0.000599	0.0057
60	C2B7C7S40	0.000571	0.0055
61	C3B2C5Smin	0.000863	0.0086
62	C3B2C5S0	0.000729	0.0071
63	C3B2C5S20	0.000613	0.0059
64	C3B2C5S40	0.000569	0.0054
65	C3B2C7Smin	0.000565	0.0053
66	C3B2C7S0	0.000488	0.0045
67	C3B2C7S20	0.000416	0.0037
68	C3B2C7S40	0.000402	0.0036
69	C3B6C5Smin	0.000785	0.0077
70	C3B6C5S0	0.000636	0.0061
71	C3B6C5S20	0.000565	0.0054
72	C3B6C5S40	0.000556	0.0053
73	C3B6C7Smin	0.000501	0.0046
74	C3B6C7S0	0.000418	0.0037
75	C3B6C7S20	0.000416	0.0037
76	C3B6C7S40	0.000412	0.0037

No.	Name	Maximum Tensile Strain	Maximum Crack Width (in.)
77	C3B7C5Smin	0.000866	0.0086
78	C3B7C5S0	0.000713	0.0070
79	C3B7C5S20	0.000677	0.0066
80	C3B7C5S40	0.000659	0.0064
81	C3B7C7Smin	0.000588	0.0055
82	C3B7C7S0	0.000523	0.0049
83	C3B7C7S20	0.000516	0.0048
84	C3B7C7S40	0.000507	0.0047
85	C3B2C5G3	0.000820	0.0081
86	C3B2C5G4	0.000800	0.0079
87	C3B2C5G5	0.000779	0.0077
88	C3B2C5G6	0.000756	0.0074
89	C3B6C5G3	0.000817	0.0081
90	C3B6C5G4	0.000779	0.0077
91	C3B6C5G5	0.000728	0.0071
92	C3B6C5G6	0.000686	0.0067
93	C3B7C5G3	0.000923	0.0093
94	C3B7C5G4	0.000886	0.0089
95	C3B7C5G5	0.000839	0.0084
96	C3B7C5G6	0.000783	0.0077

Figure 3.14 Comparison of Crack Width at the Service Load

3.4.3 Comparisons of Ultimate Capacity

To calculate the ultimate capacity of bent caps, the vertical force is uniformly applied at each bearing pad. Based on the FE analyses results, the deflections at point D1 as defined in Figure 3.11 are obtained and the load-displacement curve is defined for each specimen. The principal compressive strain of concrete at the ultimate capacity is obtained from the FE analyses. Figure 3.15 shows the principal compressive strain of concrete for specimen C3B2C5S0. As shown in Figure 3.15(a)–(c), the compressive softening of concrete material is localized around both ends of the specimen. The S Bars yielded at both ends of the specimen at the peak load, as shown in Figure 3.15(d). In addition, Figure 3.15(e) shows that the sectional view of reinforcement stress was not symmetrical, indicating the failure mode of Bent 2 is attributed to the combination of shear force and torsional moment instead of the shear failure.

(a) Sectional View of Principal Compressive Strain of Concrete

(b) Local View of Principal Compressive Strain of Concrete

(c) Plan View of Principal Compressive Strain of Concrete

(d) Reinforcement Stress at the Peak Load

(e) Sectional View of Reinforcement Stress at the Peak Load Figure 3.15 Stress and Strain Contours in Specimen C3B2C5S0 at the Ultimate Load

The ultimate capacity of specimens is compared in Figure 3.16. The ultimate capacity of specimens notably increases with the increase of the S Bar area and concrete compressive strength. In addition, the capacity of Case 2 and Case 3 are notably lower than Case 1, which indicates the rebar detailing has a significant influence on the ultimate capacity. For all bent caps, skew transverse reinforcement is better than the traditional transverse reinforcement. The dramatic difference between the specimens of Case 2 and Case 3 shows that end bars (U1, U2, U3, and G Bars) have a notable effect on the ultimate capacity. Moreover, the ultimate capacity of the ITBCs considerably increases with increasing the G Bar area.

(i) Influence of G Bar area on Bent 7 with 5 ksi Concrete Figure 3.16 Comparison of Ultimate Capacity

3.5 COST-BENEFIT ANALYSIS

A literature review is conducted on the cost analysis of bridges in Texas. The RT consulted many bridge engineers about the design and construction cost in bridge construction in conducting the cost-benefit analysis. In this analysis, only the direct costs of construction and design are considered. In this section, basic assumptions on cost estimation of ITBCs, and comparison of costs and benefits of the specimens are clarified.

3.5.1 Basic Assumptions

In cost estimation, only the direct costs, which are the cost for material and labor, design man-hour, and construction time schedules, of ITBCs are considered. To calculate the direct material cost, the quantity takeoff is performed for the specimens. Table 3.6, Table 3.7, and Table 3.8 show the quantity takeoff and the amount of materials of Bent Cap 2 for Case 1, Case 2, and Case 3, respectively. As a material cost, only reinforcing bars and concrete are included. The formwork, shoring tower placement, and removal are not included because these do not depend on the reinforcement detailing and concrete strength. As can be seen from Table 3.6, Table 3.7, and Table 3.8, the only difference in the material cost between the cases is the amount of M Bars, N Bars, S Bars, and the end bars (U1 Bars, U2 Bars, U3 Bars, and G Bars). The amount of the reinforcement bars for each specimen is estimated following the same steps. The total amount of concrete is calculated as 155 cubic yards for Bent Cap 2 and 135.4 cubic yards for Bent Cap 6 and Bent Cap 7. The influence of concrete strength on the cost is negligible. Therefore, the unit material cost and casting cost of 5 ksi concrete and 7 ksi concrete are assumed to be the same.

Reinforcement Bars						
Bar	No.	Size	Area (in2)	Length (in.)	Weight (lbs)	
Α	20	# 11	1.56	1389	12329	
В	16	# 11	1.56	1389	9863	
Т	24	# 7	0.6	1389	5690	
D	8	1 1/4"	1.23	20	56	
М	234	# 7	0.6	329	13142	
Ν	234	# 5	0.31	127	2621	
S	388	#6	0.44	299	14522	
G	15	# 7	0.6	150	384	
U1	12	# 6	0.44	157	236	
U2	21	# 6	0.44	134	352	
U3	12	# 6	0.44	171	257	
Total	59453					
Concrete						
Item		:	Strength (psi		Volume (cy)	
Class "F" Concrete (Cap)			5000		155	

Table 3.6 Quantity Takeoff for Specimen C1B2C5S0

Table 3.7	Quantity	Takeoff for	Specimen	C2B2C5S0

Reinforcement Bars						
Bar	No.	Size	Area (in2)	Length (in.)	Weight (lbs)	
Α	20	# 11	1.56	1389	12329	
В	16	# 11	1.56	1389	9863	
Т	24	# 7	0.6	1389	5690	
D	8	1 1/4"	1.23	20	56	
M1	14	# 7	0.6	331.5	792	
M2	2	# 7	0.6	323.7	111	
M3	2	# 7	0.6	316.5	108	
M4	2	# 7	0.6	311	106	
M5	2	# 7	0.6	305	104	
M6	2	# 7	0.6	297	101	
M7	2	# 7	0.6	292	100	
M8	2	# 7	0.6	287	98	
M9	2	# 7	0.6	282	96	
M10	2	# 7	0.6	277	95	
M11	2	# 7	0.6	273	93	
M12	2	# 7	0.6	270	92	
M13	2	# 7	0.6	268	91	
M14	2	# 7	0.6	266	91	
M15	2	# 7	0.6	265	90	

	R	einforc	ement Bars		
Bar	No.	Size	Area (in2)	Length (in.)	Weight (lbs)
M16	192	# 7	0.6	262	8587
Total M	234	# 7	0.6	#varies	10756
N1	14	# 5	0.31	127	157
N2	2	# 5	0.31	124	22
N3	2	# 5	0.31	120	21
N4	2	# 5	0.31	117	21
N5	2	# 5	0.31	114	20
N6	2	# 5	0.31	110	19
N7	2	# 5	0.31	107	19
N8	2	# 5	0.31	105	19
N9	2	# 5	0.31	102	18
N10	2	# 5	0.31	100	18
N11	2	# 5	0.31	98	17
N12	2	# 5	0.31	97	17
N13	2	# 5	0.31	96	17
N14	2	# 5	0.31	95	17
N15	2	# 5	0.31	94	17
N16	192	# 5	0.31	93	1575
Total N	234	# 5	0.31	#varies	1993
S1	28	# 6	0.44	299	1048
S2	4	# 6	0.44	296	148
S3	4	# 6	0.44	293	147
S4	4	# 6	0.44	290	145
S5	4	# 6	0.44	287	144
S6	4	# 6	0.44	284	142
S7	4	# 6	0.44	282	141
S8	4	# 6	0.44	280	140
S9	4	# 6	0.44	277	139
S10	4	# 6	0.44	276	138
S11	4	#6	0.44	274	137
S12	4	#6	0.44	273	137
S13	4	# 6	0.44	272	136
S14	4	#6	0.44	271	136
S15	4	#6	0.44	270	135
S16	304	#6	0.44	268	10199
Total S	388	#6	0.44	#varies	13212
G	0	# 7	0.6	0	0
U1	0	#6	0.44	0	0
U2	0	#6	0.44	0	0

Reinforcement Bars						
Bar No. Size Area (in2) Length (in.) Weight (lb						
U3	0	#6	0.44	0	0	
Total		53900				
		Cor	ncrete			
Item Stren			Strength (psi	i)	Volume (cy)	
Class "F" Concrete (Cap)	(Cap) 5000			155		

	Case	3 / Bent	t Cap 2 Detai	ils	
Bar	No.	Size	Area (in2)	Length (in.)	Weight (lbs)
Α	20	# 11	1.56	1389	12329
В	16	# 11	1.56	1389	9863
Т	24	# 7	0.6	1389	5690
D	8	1 1/4"	1.23	20	56
M1	14	# 7	0.6	331.5	792
M2	2	# 7	0.6	323.7	111
M3	2	# 7	0.6	316.5	108
M4	2	# 7	0.6	311	106
M5	2	# 7	0.6	305	104
M6	2	# 7	0.6	297	101
M7	2	# 7	0.6	292	100
M8	2	# 7	0.6	287	98
M9	2	# 7	0.6	282	96
M10	2	# 7	0.6	277	95
M11	2	# 7	0.6	273	93
M12	2	# 7	0.6	270	92
M13	2	# 7	0.6	268	91
M14	2	# 7	0.6	266	91
M15	2	# 7	0.6	265	90
M16	192	# 7	0.6	262	8587
Total M	234	# 7	0.6	#varies	10756
N1	14	# 5	0.31	127	157
N2	2	# 5	0.31	124	22
N3	2	# 5	0.31	120	21
N4	2	# 5	0.31	117	21
N5	2	# 5	0.31	114	20
N6	2	# 5	0.31	110	19
N7	2	# 5	0.31	107	19
N8	2	# 5	0.31	105	19
N9	2	# 5	0.31	102	18

Table 3.8 Quantity Takeoff for Specimen C3B2C5S0

	Case 3 / Bent Cap 2 Details						
Bar	No.	Size	Area (in2)	Length (in.)	Weight (lbs)		
N10	2	# 5	0.31	100	18		
N11	2	# 5	0.31	98	17		
N12	2	# 5	0.31	97	17		
N13	2	# 5	0.31	96	17		
N14	2	# 5	0.31	95	17		
N15	2	# 5	0.31	94	17		
N16	192	# 5	0.31	93	1575		
Total N	234	# 5	0.31	#varies	1993		
S1	28	#6	0.44	299	1048		
S2	4	#6	0.44	296	148		
S3	4	#6	0.44	293	147		
S4	4	#6	0.44	290	145		
S5	4	#6	0.44	287	144		
S6	4	#6	0.44	284	142		
S7	4	#6	0.44	282	141		
S8	4	#6	0.44	280	140		
S9	4	#6	0.44	277	139		
S10	4	#6	0.44	276	138		
S11	4	#6	0.44	274	137		
S12	4	#6	0.44	273	137		
S13	4	#6	0.44	272	136		
S14	4	#6	0.44	271	136		
S15	4	#6	0.44	270	135		
S16	304	#6	0.44	268	10199		
Total S	388	#6	0.44	#varies	13212		
G	15	# 7	0.6	150	384		
U1	12	# 6	0.44	157	236		
U2	21	#6	0.44	134	352		
U3	12	# 6	0.44	171	257		
Total					55129		
Concrete							
Item			Strength (psi		Volume (cy)		
Class "F" Concrete (Cap)	5000				155		

Table 3.9 shows the estimated construction time for skew and traditional reinforcement detailing in hours based on previous experiences. To estimate the values, the RT used a previous lab test where 6 laborers worked for 8 hours to prepare the caging of a skewed reinforcement detailing of a 20 ft bent cap. In addition, 6 laborers worked for 1 hour in pouring and vibrating the concrete of the same bent cap. For the 20 ft bent cap specimen with traditional reinforcement detailing, 4 more hours were spent than skewed

reinforcement to prepare the reinforcement cage, and 1 more hour was spent for casting concrete. The construction time for a 20 ft bent cap is scaled to predict the full-scale specimen with a length of 116 ft, and the total construction time is estimated as 310 hours for skewed reinforcement and 480 hours for traditional reinforcement.

Itom		Unit	
Item	Skewed	Traditional	Umt
Rebar Preparation and Placement	280	420	hr
Concrete Casting	30	60	hr
Total	310	480	hr

Table 3.9 Estimated Construction Time

The annual wage for rebar workers and concrete workers is obtained from the U.S. Bureau of Labor Statistics (Website, 2020) as \$50,960 and \$38,380, respectively. To determine the cost of employees, the payroll taxes, insurance, benefits, and supplies are also added to the annual wage. The hourly wage of rebar labor and concrete labor is calculated to be \$30.81 and \$24.30, respectively. Table 3.10 shows the items and amounts to calculate actual labor costs.

Itom	Rebar L	abors	Concrete Labors		
Item	Quantity	Unit	Quantity	Unit	
Working Hour	2080	hr/year	2080	hr/year	
Wage	24.5	\$/hr	18.45	\$/hr	
Payroll Labor Cost	50960	\$/yr	38380	\$/yr	
Payroll Taxes	4120	\$/yr	3165	\$/yr	
Insurance	2000	\$/yr	2000	\$/yr	
Benefits	2000	\$/yr	2000	\$/yr	
Supplies	5000	\$/yr	5000	\$/yr	
Total	64080	\$/yr	50545	\$/yr	
Wage	30.81	\$/hr	24.30	\$/hr	

Table 3.10 Estimated Labor Wage

Another item included in the cost analysis is the design procedure of bent caps. In this section, the design time is calculated, including engineering design, technical drawings, and review. It is assumed that a design engineer designs the bent cap, a draftsman does technical drawings, and a senior engineer reviews the project. After consulting with several bridge engineers, the design of traditional reinforcement detailing is estimated to require 40% more time than skew transverse reinforcement detailing. The design time and hourly wages of design are shown in Table 3.11 and Table 3.12, respectively

8						
Itom		Unit				
Item	Skewed	Traditional	Umt			
Engineering Design	30	42	hr			
Drawing	60	84	hr			
Review	4	6	hr			

Table 3.11 Estimated Design Time
Item	Quantity	Unit
Design Engineer	150	\$/hr
Draftsman	120	\$/hr
Senior Engineer	200	\$/hr

 Table 3.12 Estimated Design Wage

3.5.2 Comparison of Costs

The direct cost of ITBCs is calculated as the sum of the material cost, the labor cost, and the design cost. As an example, the estimated cost of Specimen C1B2C5S0 is shown in Table 3.13

Table 3.13. The cost estimation is compared for Case 1, Case 2, and Case 3 in Figure 3.17. The cost analysis indicates that the cost of the specimens of Case 1 is 11% to 16% lower than the cost of the specimens of Case 3. The savings in cost are mainly attributed to the reduced construction hours and lower design costs. Therefore, the skew transverse reinforcement is notably effective in reducing the design and construction cost of skew ITBCs. In addition, the comparison in Figure 3.17 shows that adding G bars has very little influence on the direct cost while adding S bars has a larger influence on the direct cost. This is attributed to the fact that the G bars are only applied to both ends of the ITBCs while the S bars are applied uniformly in the ITBCs. Therefore, Figure 3.17 indicates that adding G bars is a more economical way of reducing the crack width observed at both ends of the ITBCs.

Item	Quantity	Unit	Unit Price	Total Price
Gr60 Reinforcing Bars	59453	lb	\$0.46	\$27,348.38
Class "F" Concrete (Cap)	155	cy	\$86.35	\$13,384.25
Design (Engineering)	30	hrs	\$150.00	\$4,500.00
Design (Technical Drawings)	60	hrs	\$120.00	\$7,200.00
Design (Reviewing)	4	hrs	\$200.00	\$800.00
Labor (Rebar)	280	hrs	\$31	\$8,624.00
Labor (Concrete)	30	hrs	\$24	\$729.00
Total				\$62,585.63

Table 3.13 Cost Estimation for Specimen C1B2C5S0

(a) Influence of S Bars on Cost for Bent 2

(c) Influence of S Bars on Cost for Bent 6

(d) Influence of G Bars on Cost for Bent 6

Figure 3.17 Comparison of Estimated Cost for Case 1, Case 2, and Case 3

3.5.3 Comparison of Benefits

Cost-benefit analysis is conducted for the specimens considering the stiffness, the crack widths, and the ultimate capacities. The FE analysis results presented in Section 3.4 "3D FINITE ELEMENT ANALYTICAL RESULTS OF BENT CAPS" are combined with the estimated costs. Table 3.14 shows all the calculated results of the cost-benefit analysis.

No	No. Name	Cost	Stiffness defined	Stiffness defined	Crack Width (in)	Ultimate
110.		Cost	at D1 (10 ³ kip/in.)	at D2 (10 ³ kip/in.)		Load (kips)
1	C1B2C5Smin	\$60,839	302.6	284.4	0.0082	12613
2	C1B2C5S0	\$62,585	305.6	287.2	0.0069	12997
3	C1B2C5S20	\$63,921	307.1	288.8	0.0062	13293
4	C1B2C5S40	\$65,257	308.2	289.8	0.0057	13488
5	C1B2C7Smin	\$60,839	357.6	336.9	0.0054	14322
6	C1B2C7S0	\$62,585	359.3	338.4	0.0047	15002
7	C1B2C7S20	\$63,921	360.4	339.6	0.0043	15394
8	C1B2C7S40	\$65,257	361.4	340.7	0.0040	15633
9	C1B6C5Smin	\$54,954	388.3	371.8	0.0068	15812
10	C1B6C5S0	\$56,368	390.9	374.8	0.0058	16719
11	C1B6C5S20	\$57,450	392.2	376.3	0.0053	17152
12	C1B6C5S40	\$58,532	393.4	377.5	0.0048	17480
13	C1B6C7Smin	\$54,954	458.8	441.0	0.0043	17743
14	C1B6C7S0	\$56,368	460.7	442.9	0.0038	18999
15	C1B6C7S20	\$57,450	462.3	444.6	0.0033	19450
16	C1B6C7S40	\$58,532	463.5	445.6	0.0029	19908
17	C1B7C5Smin	\$54,980	336.7	360.3	0.0087	13237
18	C1B7C5S0	\$56,394	341.1	364.2	0.0074	13816
19	C1B7C5S20	\$57,476	343.4	365.9	0.0067	13990
20	C1B7C5S40	\$58,558	345.2	367.4	0.0061	14415
21	C1B7C7Smin	\$54,980	403.7	428.0	0.0057	14843
22	C1B7C7S0	\$56,394	405.7	430.0	0.0051	15811
23	C1B7C7S20	\$57,476	407.0	431.3	0.0047	16245
24	C1B7C7S40	\$58,558	408.1	432.4	0.0044	16338
25	C1B2C5G3	\$62,441	303.2	285.3	0.0091	12259
26	C1B2C5G4	\$62,467	303.6	285.6	0.0087	12656
27	C1B2C5G5	\$62,500	304.1	286.0	0.0082	12870
28	C1B2C5G6	\$62,538	304.7	286.6	0.0076	12967
29	C1B6C5G3	\$56,229	387.3	371.3	0.0081	15310
30	C1B6C5G4	\$56,255	388.1	372.0	0.0076	15833
31	C1B6C5G5	\$56,286	389.4	373.3	0.0069	16368
32	C1B6C5G6	\$56,323	390.2	374.0	0.0064	16422
33	C1B7C5G3	\$56,255	336.4	360.4	0.0107	12509
34	C1B7C5G4	\$56,281	337.7	361.2	0.0098	13007
35	C1B7C5G5	\$56,312	338.7	362.1	0.0089	13522
36	C1B7C5G6	\$56,348	339.7	363.0	0.0082	13681
37	C2B2C5Smin	\$68,563	297.7	278.6	0.0105	10623
38	C2B2C5S0	\$70,152	300.8	282.0	0.0086	10830
39	C2B2C5S20	\$71,367	303.1	283.7	0.0071	10978
40	C2B2C5S40	\$72,583	305.4	285.4	0.0061	11002
41	C2B2C7Smin	\$68,563	350.9	325.7	0.0066	11989
42	C2B2C7S0	\$70,152	354.5	328.2	0.0056	12490

Table 3.14 Cost-Benefit Analysis Results

No.	Name	Cost	Stiffness defined at D1 (10 ³ kip/in.)	Stiffness defined at D2 (10 ³ kip/in.)	Crack Width (in.)	Ultimate Load (kips)
43	C2B2C7S20	\$71,367	356.3	330.5	0.0051	12536
44	C2B2C7S40	\$72,583	358.5	332.6	0.0046	12673
45	C2B6C5Smin	\$65,387	397.4	375.9	0.0107	13190
46	C2B6C5S0	\$66,736	401.2	382.6	0.0088	13881
47	C2B6C5S20	\$67,768	402.9	387.0	0.0071	14045
48	C2B6C5S40	\$68,800	404.4	389.9	0.0062	14098
49	C2B6C7Smin	\$65,387	474.9	452.7	0.0064	14705
50	C2B6C7S0	\$66,736	476.7	457.5	0.0049	15447
51	C2B6C7S20	\$67,768	477.1	459.1	0.0044	15956
52	C2B6C7S40	\$68,800	477.5	460.7	0.0041	16102
53	C2B7C5Smin	\$65,413	347.3	364.9	0.0127	10840
54	C2B7C5S0	\$66,762	356.5	373.9	0.0104	11317
55	C2B7C5S20	\$67,794	359.7	378.4	0.0089	11357
56	C2B7C5S40	\$68.826	361.7	382.6	0.0080	11400
57	C2B7C7Smin	\$65,413	423.3	439.6	0.0080	12150
58	C2B7C7S0	\$66.762	426.5	446.8	0.0064	12867
59	C2B7C7S20	\$67.794	428.5	449.6	0.0057	13211
60	C2B7C7S40	\$68.826	429.8	451.4	0.0055	13266
61	C3B2C5Smin	\$69.129	301.2	282.3	0.0086	11530
62	C3B2C5S0	\$70,717	303.5	284.7	0.0071	11725
63	C3B2C5S20	\$71,933	305.7	285.9	0.0059	11764
64	C3B2C5S20	\$73 148	306.9	286.8	0.0054	11859
65	C3B2C7Smin	\$69 129	356.5	335.0	0.0053	13277
66	C3B2C7S0	\$70,717	357.6	336.3	0.0035	13653
67	C3B2C7S20	\$71.933	359.2	337.0	0.0043	13823
68	C3B2C7S40	\$73 148	360.4	338.0	0.0036	13846
69	C3B6C5Smin	\$65,927	405.4	384.2	0.0030	14496
70	C3B6C5S0	\$67,275	407.0	388.7	0.0061	15421
71	C3B6C5S20	\$68 308	407.8	391.0	0.0054	15572
72	C3B6C5S40	\$69.340	407.3	392.1	0.0053	15798
73	C3B6C7Smin	\$65,927	478.2	457.3	0.0035	16743
74	C3B6C7S0	\$67.275	478.9	460.3	0.0040	17204
75	C3B6C7S20	\$68 308	470.3	461.7	0.0037	17204
76	C3B6C7S40	\$69.340	479.5	462.6	0.0037	17828
77	C3B7C5Smin	\$65.952	361.6	376.4	0.0037	17020
78	C3B7C5S0	\$67.301	363.8	381.7	0.0030	12589
70	C3B7C5S20	\$68 333	365.1	384.0	0.0070	12382
80	C3B7C5S40	\$69.366	366.1	385.5	0.0064	12702
81	C3B7C7Smin	\$65,952	430.1	<u> </u>	0.0004	13962
82	C3B7C7S0	\$67.301	431.4	450.9	0.0035	14408
83	C3B7C7S20	\$68 333	431.8	452.1	0.0049	14566
84	C3B7C7S40	\$69.366	432.1	453.6	0.0048	14589
85	C3B2C5G3	\$70 573	301.0	283.0	0.0047	11144
86	C3B2C5G4	\$70,500	302.2	283.0	0.0079	11794
87	C3B2C5G5	\$70.632	302.2	283.5	0.0079	11/237
88	C3B2C5G6	\$70,670	302.0	283.7	0.007/	11568
80	C3B6C5G3	\$67 137	404.0	384 7	0.0074	14380
90	C3B6C5G4	\$67 162	404.0	385.4	0.0077	14458
01	C3B6C5G5	\$67.102	405.6	386.7	0.0071	14660
92	C3B6C5G6	\$67 230	406.4	387.6	0.0071	15141
93	C3B7C5G3	\$67.163	359.7	377 3	0.0007	11717
15	03070303	$\psi_{01}, 105$	557.1	577.5	0.0075	11/1/

No.	Name	Cost	Stiffness defined at D1 (10 ³ kip/in.)	Stiffness defined at D2 (10 ³ kip/in.)	Crack Width (in.)	Ultimate Load (kips)
94	C3B7C5G4	\$67,188	361.0	378.1	0.0089	11983
95	C3B7C5G5	\$67,219	362.0	379.1	0.0084	12058
96	C3B7C5G6	\$67,256	362.9	380.2	0.0077	12391

Figure 3.18 shows the cost and stiffness comparison of the specimens. In Figure 3.18, each point stands for the result of a specimen in the parametric analysis. Case 1 is marked by blue, Case 2 is marked by gray, and Case 3 is marked by red. For Bent Cap 2, the stiffness value of Case 1 is slightly higher than that of both Case 2 and Case 3. For Bent Cap 6 and Bent Cap 7, the stiffness value of Case 1 is slightly lower than that of both Case 2 and Case 3. The cost of Case 1 is notably lower than that of both Case 2 and Case 3. The cost of Case 1 is notably lower than that of both Case 2 and Case 3.

(a) Cost versus stiffness of Bent 2 defined at D1

(c) Cost versus stiffness of Bent 6 defined at D1

(b) Cost versus stiffness of Bent 2 defined at D2

(d) Cost versus stiffness of Bent 6 defined at D2

(e) Cost versus stiffness of Bent 7 defined at D1
 (f) Cost versus stiffness of Bent 7 defined at D2
 Figure 3.18 Cost and Stiffness Comparison of Bent 2, Bent 6, and Bent 7

Figure 3.19 shows the cost and crack width comparisons of the specimens. Case 2 has the largest crack widths for all bent caps. For Bent Cap 2, the result of Case 1 and Case 3 are almost equal. For Bent Cap 6 and Bent Cap 7, specimens in Case 1 always have a smaller crack width than Case 3.

Figure 3.19 Cost and Crack Width Comparisons of Bent 2, Bent 6, and Bent 7

Figure 3.20 shows the cost and ultimate capacity comparisons of the specimens. As shown in Figure 3.20, Case 1 has a notably enhanced ultimate capacity than Case 2 and Case 3.

Figure 3.20 Cost and Ultimate Load Comparisons of Bent 2, Bent 6, and Bent 7

Figure 3.21 shows the influence of the S Bar area on the cost and performance of Bent 2 with 5 ksi concrete. As shown in Figure 3.21(a), the increase of the S Bar area contributes to the construction cost. As shown in Figure 3.21(b), the FE simulation results show that the stiffness notably increases with the S Bar area. As shown in Figure 3.21(c) and Figure 3.21(d), increasing the S Bar area reduces the maximum crack width significantly. As shown in Table 3.14, based on the parametric simulation results, the calculated maximum crack width of 0.0127 in. was observed in Specimen C2B7C5Smin. As recommended by the Article 5.6.7 of AASHTO LRFD Specifications (2017), the limit for crack width is 0.017 in. for Class 1 exposure condition and 0.013 in. for Class 2 exposure condition. Therefore, the minimum reinforcement area of S Bars based on the design service load and the AASHTO specifications (2014), which is 26% lower than the current design, is adequate for crack control. Based on the parametric simulation results, the current design of the S Bar area is adequate for structural safety and crack resistance.

(a) Influence of S Bar Area on Cost

(b) Influence of S Bar Area on Ultimate Capacity

Figure 3.21 Influence of S Bar Area on Cost and Performance of Bent 2 with 5 ksi concrete

Figure 3.22 shows the influence of the G Bar area on the cost and performance of Bent 2 with 5 ksi concrete. As shown in Figure 3.22(a), the increase of the G Bar area has little influence on the construction cost. As shown in Figure 3.22(b), the FE analysis results show that the G Bar area has little influence on the ultimate capacity. As shown in Figure 3.22(c) and Figure 3.22(d), increasing the G Bar area reduces the maximum crack width significantly. Based on the comparison between Figure 3.21 and Figure 3.22, the S Bar area has a more notable influence on the crack width than the G Bar area. As shown in Table 3.14, the maximum crack width of all specimens with the current design of G Bar (No. 7 Bars) is 0.0127 in. (Specimen C2B7C5Smin), which meets the AASHTO (2017) requirements for both Class 1 and Class 2 exposure conditions. In conclusion, the current design of G Bar (No. 7 Bars) is adequate for crack control.

Figure 3.22 Influence of G Bar Area on Cost and Performance of Bent 2 with 5 ksi concrete

3.6 SUMMARY

In Chapter 3 (Task 9a), three cases of reinforcement design for ITBCs are investigated to cover the majority of the design detailing in Texas bridges. Based on the parametric FE simulation of 96 specimens and the cost-benefit analysis results, the conclusions are summarized as follows:

- (1) The skew transverse reinforcement (Case 1) achieves better structural performance compared to traditional transverse reinforcement (Case 2 and Case 3) with notably reduced construction cost. Therefore, the skew transverse reinforcement can well be used for the design of skewed ITBCs.
- (2) For skew reinforcing, smaller number of cracks and smaller crack width will be achieved.
- (3) The increase of the S Bar area notably enhances the stiffness and ultimate strength. In addition, the increase of the S Bar area also reduces the crack width. The increase of the S Bar area will contribute notably to the construction cost. Based on the parametric simulation results, the current design of the S bar area is adequate for structural safety and crack resistance.
- (4) The increase of the G Bar area notably reduces the maximum crack width with a negligible influence on the stiffness, ultimate strength, and construction cost. The current design of the G Bar (No. 7 Bars) is adequate for crack control.
- (5) When the concrete strength increases from 5 ksi to 7 ksi, the ultimate strength and the stiffness of ITBCs increase with reduced crack width. In addition, the influence of concrete strength on the construction cost is negligible.

Task 9a will significantly leverage the impact of this project and solve the dearth of reliable design methods and reinforcement detailing in the design of skewed ITBCs.

CHAPTER 4: DESIGN RECOMMENDATIONS AND DESIGN EXAMPLES

Finite element models of the significant ITBCs explained in Chapter 2 and Chapter 3, show that all the bent caps with skew transverse reinforcing are safe under service and limit state loading. Moreover, from the cost-benefit analysis, it is observed that the skew transverse reinforcement achieves better structural performance compared to traditional transverse reinforcement with notably reduced construction cost. Therefore, the skew transverse reinforcement can well be used for the design of skewed ITBCs.

In this chapter, design recommendations for skewed ITBCs are explained and four different design examples are presented following AASHTO LRFD Bridge Design Specifications, 8th Ed. (2017) and TxDOT Bridge Manual - LRFD (January 2020). The previous ITBC design example published by TxDOT is in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010) as prescribed by TxDOT Bridge Design Manual - LRFD (May 2009). The updates from AASHTO LRFD 2010 to AASHTO LRFD 2017 are provided in Appendix 1.

4.1 DESIGN RECOMMENDATIONS

According to AASHTO LRFD (2017), TxDOT BDM (2020), and finite element analysis results of the significant ITBCs (Task 9 and Task 9a), the design recommendations for skew reinforcing bars are suggested below:

1. It is recommended to use skew transverse reinforcement for the design of skewed ITBCs. As explained in detail in Chapter 3, the skew transverse reinforcement achieves better structural performance compared to traditional transverse reinforcement with notably reduced construction cost.

Figure 4.1 Skewed Transverse Reinforcement in skewed ITBCs

- 2. It is recommended to design double S Bars throughout the bent cap. The spacing of S Bars can be increased at the location of column support, no greater than 12".
- 3. For skewed ITBCs design, M Bars and N Bars are paired together with equal spacing, which needs to be equal to or an integer multiple of the spacing of S Bars.

Figure 4.2 Typical Section View of ITBCs

- 4. The stem width (b_{stem}) is at least 3" wider than the column diameter.
- 5. As a general rule of thumb, ledge depth (d_{ledge}) is greater than or equal to 2'-3", which is the depth at which a bent from a typical bridge will pass the punching shear check.
- 6. The distance from the face of the stem to center of bearing pad is 12" for TxGirders.
- 7. The end bars (U1 Bars, U2 Bars, U3 Bars, and G Bars) notably reduces the maximum crack width. It is recommended to place #6 U1 Bars, U2 Bars, and U3 Bars at the end faces and #7 G Bars at approximately 6in. spacing at the first 30" to 35" of the end of the bent cap. U1 Bars are vertical end reinforcements, U2 Bars, and U3 Bars are horizontal end reinforcements at the stem and the ledge, respectively. G Bars are the diagonal end reinforcement.
- 8. TxDOT Bridge Design Manual LRFD Ch. 4, Sect. 5 limits the minimum concrete compressive strength as $f'_c = 3.6$ ksi. However, finite element models in Task 9a shows that concrete strength notably increases the ultimate strength and the stiffness of ITBCs and reduces crack width. Therefore, it is recommended to have concrete compressive strength at least $f'_c = 5$ ksi.

4.2 **INVERTED-T BENT CAP DESIGN EXAMPLE 1 (0° SKEW ANGLE)**

Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 8th Ed. (2017) as prescribed by TxDOT Bridge Manual - LRFD (January 2020).

Design Parameters 4.2.1

Figure 4.3 Spans of the Bridge with 0 Degree Skewed ITBC

Span 1

54' Type TX54 Girders (0.851 k/ft) 6 Girders Spaced @ 8.00' with 3' overhangs

2" Haunch

Span 2

112' Type TX54 Girders (0.851 k/ft)

6 Girders Spaced @ 8.00' with 3' overhangs

3.75" Haunch

Span 3

54' Type TX54 Girders (0.851 k/ft)

6 Girders Spaced @ 8.00' with 3' overhangs

2" Haunch

All Spans

Deck is 46 ft wide Type T551 Rail (0.382 k/ft) 1974. 8" Thick Slab (0.100 ksf) Assume 2" Overlay @ 140 pcf (0.023 ksf) Use Class "C" Concrete $f_c' = 5 \text{ ksi}$ $w_c = 150 \text{ pcf}$ (for weight)

"AASHTO LRFD" refers to the ASSHTO LRFD Bridge Design Specification, 8th Ed. (2017)..

"BDM-LRFD" refers to the TxDOT Bridge Design Manual - LRFD (January 2020).

"TxSP" refers to TxDOT guidance, recommendations, and standard practice.

"Furlong & Mirza" refers to "Strength and Serviceability of Inverted T-Beam Bent Caps Subject to Combined Flexure, Shear, and Torsion", Center for Highway Research Research Report No. 153-1F, The University of Texas at Austin, August

The basic bridge geometry can be found on the Bridge Layout located in the Appendices. (BDM-LRFD, Ch. 4, Sect. 5, Materials)

 $w_c = 145 \text{ pcf}$ (for Modulus of Elasticity calculation)

Grade 60 Reinforcing

 $F_y = 60 \text{ ksi}$

(BDM-LRFD, Ch. 4, Sect. 5, Materials)

Bents

Use 36" Diameter Columns (Typical for Type TX54 Girders)

Define Variables

<u>Forward Span</u>	
Span2 = 112ft	Span Length
GdrSpa2 = 8ft	Girder Spacing
GdrNo2 = 6	Number of Girders in Span
GdrWt2 = 0.851klf	Weight of Girder
Haunch $2 = 3.75$ in	Size of Haunch
	Skew of Bents
	Width of Bridge Deck
	Width of Roadway
	Depth of Type TX54 Girder
	Bearing Seat Buildup
	Bearing Pad Thickness
	Thickness of Bridge Slab
	Thickness of Overlay
	Weight of Rail
	Unit Weight of Concrete for Loads
	Unit Weigh of Overlay
	Concrete Strength
	Unit Weight of Concrete for E.
$\overline{E_c}$ $E_c = 4074$ ksi	Modulus of Elasticity of Concrete (AASHTO LRFD Eq. C5.4.2.4-2)
	Yield Strength of Reinforcement
	Modulus of Elasticity of Steel
	Diameter of Columns
	Forward SpanSpan2 = 112ftGdrSpa2 = 8ftGdrNo2 = 6GdrWt2 = 0.851klfHaunch2 = 3.75in

Other Variables

IM = 33%

Figure 4.4 Top View of the 0 Degree Skewed ITBC with Spans and Girders

4.2.2 Determine Cap Dimensions

Figure 4.5 Section View of 0 Degree Skewed ITBC

4.2.2.1 Stem Width

 $b_{stem} = D_{column} + 3in$

4.2.2.2 Stem Height

 $b_{stem} = 39$ in

The stem is typically at least 3" wider than the Diameter of the Column (36") to allow for the extension of the column reinforcement into the Cap. (TxSP)

Haunch2 is the larger of the two haunches.

 $D_{Slab to Ledge} = SlabThk + Haunch2 + GirderD + BrgPad + BrgSeat$

 $D_{Slab_to_Ledge} = 70.00$ in

Distance from Top of Slab to Top of Ledge:

StemHaunch = 3.75 in

The top of the stem must be 2.5" below the bottom of the slab. (BDM-LRFD, Ch. 4, Sect. 5, Geometric Constraints)

Accounting for the 1/2" of bituminous fiber, the top of the stem must have at least 2" of haunch on it, but the haunch should not be less than either of the haunches of the adjacent spans. $d_{stem} = D_{Slab_to_Ledge} - SlabThk - StemHaunch - 0.5in$

$$d_{stem} = 57.75$$
 in

Use: $d_{stem} = 57$ in

4.2.2.3 Ledge Width

Figure 4.6 Ledge Section of 0 Degree ITBC

cover = 2.5 in

L = 8 in

Determine the Required Development Length of Bar M:

Try # 6 Bar for Bar M.

$$d_{bar_M} = 0.750$$
 in

$$A_{bar_M} = 0.44 \text{ in}^2$$

Basic Development Length

$$L_{dh} = \frac{38.0 \cdot d_{bar_M}}{60} \cdot \left(\frac{f_y}{\sqrt{f_c}}\right) \qquad \qquad L_{dh} = 12.75 \text{ in}$$

(AASHTO LRFD Eq. 5.10.8.2.4a-2)

(AASHTO LRFD 5.10.8.2.4b)

Modification Factors for L_{dh}:

Is Top Cover greater than or equal to 2.5", and Side Cover greater than or equal to 2"?

The stem must accommodate $\frac{1}{2}$ " of bituminous fiber.

Round the Stem Height down to the nearest 1". (TxSP)

The Ledge Width must be adequate for Bar M to develop fully.

 $L_{dh,prov}$ "must be greater than or equal to " $L_{dh,reg}$ " for Bar M.

"cover" is measured from the center of the transverse bars.

"L" is the length of the Bearing Pad along the girder. A typical type TX54 bearing pad is 8" \times 21" as shown in the IGEB standard.

73

SideCover = cover
$$-\frac{d_{har_M}}{2} = 2.13$$
 in"Side Cover" and "Top Cover"
are the clear cover on the side
and top of the hook respectively.
The dimension "cover" is
measured from the center of Bar
M.No. Reinforcement Confinement Factor, $\lambda_{rc} = 1.0$
Coating Factor, $\lambda_{cw} = 1.0$ (AASHTO LRFD 5.4.2.8)The Required Development Length:
 $L_{dh_req} = max(L_{dh} \cdot \left(\frac{\lambda_{rc} \lambda_{cw}^2 \lambda_{er}}{\lambda}\right), 8 \cdot d_{bar_m}, 6in.)$ (AASHTO LRFD 5.10.8.2.4a)Therefore,
 $L_{dh_req} = max(L_{dh} \cdot \left(\frac{\lambda_{rc} \lambda_{cw}^2 \lambda_{er}}{\lambda}\right), 8 \cdot d_{bar_m}, 6in.)$ The distance from the face of
the stem to the center of
bearing is 12" for TxGirders
(IGEB).Width of Bottom Flange:
 $b_{re} = 2 \cdot b_{ledge} + b_{stem}$ $b_{re} = 87$ in4.2.2.4Ledge Depth
 $d_{ledge} = 28$ inAs a general rule of thumb,
Ledge Depth is greater than or
equal to 2'.3". This is the depth
at which a bent from a typical
bridge will pass the punching
shear check.4.2.2.5Summary of Cross-Sectional Dimensions

4.2.2.5 <u>Summary of Cross-Sectional Dimensio</u> b_{stem} = 39 in

$$d_{stem} = 57$$
 in
 $b_{ledge} = 24$ in
 $d_{ledge} = 28$ in
 $h_{cap} = 85$ in

4.2.2.6 Length of Cap

First define Girder Spacing and End Distance:

inverted T-beam shall not be less than 12in." (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria) replacing the statement in AASHTO LRFD 5.13.2.5.5 stating it shall not be less than d_f . Preferably, the stem should extend at least 3" beyond the edge of the bearing seat.

(IGEB standard)

Length of Bearing Pad

Width of Bearing Pad

Bearing Pad Dimensions:

L = 8 in

W = 21 in

4.2.3 Cross Sectional Properties of Cap

$$\begin{split} A_{g} &= d_{ledge} \cdot b_{f} + d_{stem} \cdot b_{stem} & A_{g} &= 4659 in^{2} \\ ybar &= \frac{d_{ledge} \cdot b_{f} \cdot \left(\frac{1}{2}d_{ledge}\right) + d_{stem} \cdot b_{stem} \cdot \left(d_{ledge} + \frac{1}{2}d_{stem}\right)}{A_{g}} & ybar &= 34.3 in \\ I_{g} &= \frac{b_{f} \cdot d_{ledge}^{3}}{12} + b_{f} \cdot d_{ledge} \cdot \left(ybar - \frac{1}{2}d_{ledge}\right)^{2} + \frac{b_{stem} \cdot d_{stem}}{12} + \cdots \\ b_{stem} \cdot d_{stem} \cdot \left[ybar - \left(d_{ledge} + \frac{1}{2}d_{stem}\right)\right]^{2} & I_{g} &= 2.86 \times 10^{6} in^{4} \end{split}$$

4.2.4 Cap Analysis

4.2.4.1 Cap Model

Assume:

4 Columns Spaced @ 12'-0"

The cap will be modeled as a continuous beam with simple supports using TxDOT's CAP18 program.

Figure 4.8 Continuous Beam Model for 0 Degree ITBC

TxDOT does not consider frame action for typical multi-column bents.

(BDM-LRFD, Ch. 4, Sect. 5, Structural Analysis).

The circled numbers in Figure 4.9 are the stations that will be used in the CAP 18 input file. One station is 0.5 ft in the direction perpendicular to the pgl, not parallel to the bent.

Station increment for CAP 18

Recall:

station = 0.5 ft

$$\begin{split} & E_c = 4074 \text{ ksi} & I_g = 2.86 \times 10^6 \text{ in}^4 \\ & E_c I_g = 1.165 \times 10^{10} \text{ kip} \cdot \text{in}^2 / \left(12 \frac{\text{in}}{\text{ft}} \right)^2 & E_c I_g = 8.09 \times 10^7 \text{kip} \cdot \text{ft}^2 \end{split}$$

SPAN 1

 $Rail1 = \frac{2 \cdot RailWt \cdot \frac{Span1}{2}}{\min(GdrNo1,6)}$

$$Slab1 = w_c \cdot GdrSpa1 \cdot SlabThk \cdot \frac{Span1}{2} \cdot 1.10$$

Girder1 = GdrWt1 $\cdot \frac{\text{Span1}}{2}$

$$DLRxn1 = (Rail1 + Slab1 + Girder1)$$

$$Overlay1 = w_{Olay} \cdot GdrSpa1 \cdot OverlayThk \cdot \frac{Span1}{2}$$

SPAN 2

 $Rail2 = \frac{2 \cdot RailWt \cdot \frac{Span2}{2}}{\min(GdrNo2,6)}$

Slab2 =
$$w_c \cdot GdrSpa2 \cdot SlabThk \cdot \frac{Span2}{2} \cdot 1.10$$

Girder2 = GdrWt1
$$\cdot \frac{\text{Span2}}{2}$$
 Girder2 = 47.66 $\frac{\text{kip}}{\text{girder}}$

$$DLRxn2 = (Rail2 + Slab2 + Girder2)$$
 $DLRxn2 = 104.07 \frac{kip}{girder}$

Values used in the following equations can be found on "4.2.1 Design Parameters"

Rail Weight is distributed

evenly among stringers, up to 3 stringers per rail (TxSP).

Increase slab DL by 10% to

Overlay is calculated

different load factor than the rest of the dead loads.

 $DLRxn1 = 50.17 \frac{kip}{girder}$ Overlay is calculated separetely, because it has

 $Overlay1 = 5.04 \frac{kip}{girder}$ Design for future overlay.

account for haunch and thickened slab ends.

 $Rail1 = 3.44 \frac{kip}{girder}$

 $Slab1 = 23.76 \frac{kip}{girder}$

Girder1 = $22.98 \frac{\text{kip}}{\text{girder}}$

Rail2 = $7.13 \frac{\text{kip}}{\text{girder}}$

 $Slab2 = 49.28 \frac{kip}{girder}$

$$Overlay2 = w_{Olay} \cdot GdrSpa2 \cdot OverlayThk \cdot \frac{Span2}{2} \qquad Overlay2 = 10.45 \frac{kip}{girder}$$

CAP

$$Cap = w_c \cdot A_g = 4.853 \frac{kip}{ft} \cdot \frac{0.5ft}{station} \qquad Cap = 2.427 \frac{kip}{station}$$

Figure 4.10 Live Load Model of 0 Degree ITBC

LongSpan = max(Span1, Span2)
ShortSpan = min(Span1, Span2)
IM = 0.33
Lane =
$$0.64$$
klf $\cdot \left(\frac{\text{LongSpan+ShortSpan}}{2}\right)$

Lane =
$$53.12 \frac{\text{kip}}{\text{lane}}$$

$$Truck = 32kip + 32kip \cdot \left(\frac{LongSpan - 14}{LongSpan}\right) + \cdots$$
$$8kip \cdot \left(\frac{LongSpan - 2}{LongSpan}\right)$$

2)

1

Truck =
$$66.00 \frac{ki}{lane}$$

LLRxn = Lane + Truck
$$\cdot$$
 (1 + IM)
LLRxn = 140.90 $\frac{\text{kip}}{\text{lane}}$

LongSpan = 112 ftShortSpan = 54 ft

> Use HL-93 Live Load. For maximum reaction at interior bents, "Design Truck" will always govern over "Design Tandem". For the maximum reaction when the long span is more than twice as long as the short span, place the rear (32 kip) axle over the support and the middle (32 kip) and front (8 kip) axles on the long span. For the maximum reaction when the long span is less than twice as long as the short span, place the middle (32 kip) axle over the support, the front (8 kip) axle on the short span and the rear (32 kip) axle on the long span.

Combine "Design Truck" and "Design Lane" loadings (AASHTO LRFD 3.6.1.3). Dynamic load allowance, IM, does not apply to "Design Lane." (AASHTO LRFD 3.6.1.2.4)

allowance with the reminder of the live load distributed over a 10 ft (AASHTO LRFD 3.6.1.2.1) design lane width. (TxSP) The Live Load applied to the slab is distributed to the begins

The Live Load is applied to the slab by two 16 kip wheel loads increased by the dynamic load

slab is distributed to the beams assuming the slab is hinged at each beam except the outside beam. (BDM-LRFD, Ch. 4, Sect. 5, Structural Analysis)

Input "Multiple Presence Factors" into CAP18 as "Load Reduction Factors".

The cap design need only consider Strength I, Service I,

No. of Lanes	Factor "m"
1	1.20
2	1.00
3	0.85
>3	0.65
Limit States (AASHTO	LRFD 3.4.1)

4.2.4.1.3 Cap 18 Data Input

Multiple Presence Factors, m

Strength I

	Live Load and Dynamic Load Allowance	LL+IM = 1.75	and Service I with DL (TxSP).
	Dead Load Components	DC = 1.25	TrDOT allows the Overlay
	Dead Load Wearing Surface (Overlay)	DW = 1.50	Factor to be reduced to 1.25
Service	<u>e I</u>		(TxSP), since overlay is typically used in design only to
	Live Load and Dynamic Load Allowance	LL+IM = 1.00	increase the safety factor, but
	Dead Load and Wearing Surface	DC & DW = 1.00	in this example we will use <i>DW=1.50</i> .

(AASHTO LRFD Table 3.6.1.1.2-1)

Dead Load

TxDOT considers Service level Dead Load only with a limit reinforcement stress of 22 ksi to minimize cracking. (BDM-LRFD, Chapter 4, Section 5, Design Criteria)

4.2.4.1.4 Cap 18 Output

	Max +M	Max -M
Dead Load:	$M_{posDL} = 249.2 \text{ kip} \cdot \text{ft}$	$M_{negDL} = -378.5 \text{ kip} \cdot \text{ft}$
Service Load:	$M_{posServ} = 491.6 \text{ kip} \cdot \text{ft}$	$M_{negServ} = -590.0 \text{ kip} \cdot \text{ft}$
Factored Load:	$M_{posUlt} = 740.6 \text{ kip} \cdot \text{ft}$	$M_{negUlt} = -851.0 \text{ kip} \cdot \text{ft}$

These loads are the maximum loads from the CAP 18 Output File Located in the Appendices.

4.2.4.2 Girder Reactions on Ledge

 $DLSpan1 = 50.17 \frac{kip}{girder}$

 $DLSpan2 = 104.07 \frac{kip}{girder}$

Dead Load

DLSpan1 = Rail1 + Slab1 + Girder1 Overlay1 = $5.04 \frac{\text{kip}}{\text{girder}}$

DLSpan2 = Rail2 + Slab2 + Girder2

 $Overlay2 = 10.45 \ \frac{kip}{girder}$

Live Load

Loads per Lane:

Use HL-93 Live Load. For maximum reaction at interior bents, "Design Truck" will always govern over "Design Tandem" for Spans greater than 26ft. For the maximum reaction, place the back (32 kips) axle over the support.

Figure 4.13 Live Load Model of 0 Degree Skewed ITBC

for Girder Reactions on Ledge

$$\begin{aligned} \text{LaneSpan1} &= 0.64 \text{klf} \cdot \left(\frac{\text{Span1}}{2}\right) & \text{LaneSpan1} &= 17.28 \frac{\text{kip}}{\text{lane}} \\ \text{LaneSpan2} &= 0.64 \text{klf} \cdot \left(\frac{\text{Span2}}{2}\right) & \text{LaneSpan2} &= 35.84 \frac{\text{kip}}{\text{lane}} \\ \text{TruckSpan1} &= 32 \text{kip} + 32 \text{kip} \cdot \left(\frac{\text{Span1-14ft}}{\text{Span1}}\right) + 8 \text{kip} \cdot \left(\frac{\text{Span1-28ft}}{\text{Span1}}\right) \end{aligned}$$

$$TruckSpan1 = 59.56 \frac{kip}{lane}$$

$$TruckSpan2 = 32kip + 32kip \cdot \left(\frac{Span2 - 14ft}{Span2}\right) + 8kip \cdot \left(\frac{Span2 - 28ft}{Span2}\right)$$

$$TruckSpan2 = 66.00 \frac{kip}{lane}$$

$$IM = 0.33$$

$$Combine "Design Truck" and "Design Truck" and$$

 $LLRxnSpan1 = LaneSpan1 + TruckSpan1 \cdot (1 + IM)$ $LLRxnSpan1 = 96.49 \frac{kip}{lane}$

 $LLRxnSpan2 = LaneSpan2 + TruckSpan2 \cdot (1 + IM)$ $LLRxnSpan2 = 123.62 \frac{kip}{girder}$

Lane" loadings (AASHTO LRFD 3.6.1.3).

Dynamic load allowance, IM, does not apply to "Design Lane." (AASHTO LRFD 3.6.1.2.4).

The Live Load Reactions are assumed to be the Shear Live Load Distribution Factor multiplied by the Live Load Reaction per Lane. The Shear Live Load Distribution Factor is calculated using the "LRFD Live Load Distribution Factors" Spreadsheet found in the Appendices.

The Exterior Girders must have a Live Load Distribution Factor equal to or greater than the Interior Girders. This is to accommodate a possible future bridge widening. Widening the bridge would cause the exterior girders to become interior girders.

$LLSpan1Int = gV_{Span1_Int} \cdot LLRxnSpan1$	LLSpan1Int = $78.54 \frac{\text{kip}}{\text{girder}}$
$LLSpan1Ext = gV_{Span1_Ext} \cdot LLRxnSpan1$	LLSpan1Ext = $78.54 \frac{\text{kip}}{\text{girder}}$
$LLSpan2Int = gV_{Span2_Int} \cdot LLRxnSpan2$	$LLSpan2Int = 100.63 \frac{kip}{girder}$
$LLSpan2Ext = gV_{Span2_Ext} \cdot LLRxnSpan2$	$LLSpan2Ext = 100.63 \frac{kip}{girder}$

<u>Span 1</u>

Interior Girder

 $gV_{Span1_{Int}} = 0.814$

 $gV_{Span1 Ext} = 0.814$

 $gV_{\text{Span2 Int}} = 0.814$

 $gV_{Span2 Ext} = 0.814$

Service Load (Service I Limit State, AASHTO LRFD 3.4.1)

 $V_{s_Span1Int} = DLSpan1 + Overlay1 + LLSpan1Int$

 $V_{s_Span1Int} = 134 \text{ kip}$

Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1)

 $V_{u \text{ Span1Int}} = 1.25 \cdot \text{DLSpan1} + 1.5 \cdot \text{Overlay1} + 1.75 \cdot \text{LLSpan1Int}$

 $V_{u_{span1Int}} = 208 \text{ kip}$

Exterior Girder

Service Load (Service I Limit State, AASHTO LRFD 3.4.1) $V_{s_Span1Ext} = DLSpan1 + Overlay1 + LLSpan1Ext$ $V_{s_Span1Ext} = 134 \text{ kip}$ Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1) $V_{u_Span1Ext} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1 + 1.75 \cdot LLSpan1Ext$ $V_{u_Span1Ext} = 208 \text{ kip}$

Span 2

Interior Girder

Service Load (Service I Limit State, AASHTO LRFD 3.4.1)

 $V_{s_{Span2Int}} = DLSpan2 + Overlay2 + LLSpan2Int$

 $V_{s \text{ Span2Int}} = 215 \text{ kip}$

Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1)

 $V_{u_{span2Int}} = 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot LLSpan2Int$

 $V_{u \text{ Span2Int}} = 322 \text{ kip}$

Exterior Girder

Service Load (Service I Limit State, AASHTO LRFD 3.4.1)

V_{s Span2Ext} = DLSpan2 + Overlay2 + LLSpan2Ext

 $V_{s_Span2Ext} = 215 \text{ kip}$

Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1)

 $V_{u \text{ Span2Ext}} = 1.25 \cdot \text{DLSpan2} + 1.5 \cdot \text{Overlay2} + 1.75 \cdot \text{LLSpan2Ext}$

 $V_{u_{Span2Ext}} = 322 \text{ kip}$

4.2.4.3 Torsional Loads

To maximize the torsion, the live load only acts on the longer span.

Figure 4.14 Live Load Model of 0 Degree Skewed ITBC for Torsional Loads

Figure 4.15 Loads on the Ledge of 0 Degree Skewed ITBC for Torsion

 $a_v = 12$ in

" a_v " is the value for the distance from the face of the stem to the center of bearing for the girders. 12" is the typical values for TxGirders on ITBC (IGEB). The lever arm is the distance from the center line of bearing to the centerline of the cap.

 $b_{stem} = 39$ in

LeverArm = $a_v + \frac{1}{2}b_{stem}$

LeverArm = 31.5 in

Interior Girders

Girder Reactions

 $R_{u_{Span1}} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1$

 $R_{u_Span1} = 70 \; kip$ $R_{u_Span2} = 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot gV_{Span2_Int}$

$$\cdot$$
 [LaneSpan2 + TruckSapn2 \cdot (1 + IM)]

 $R_{u Span2} = 322 \text{ kip}$

Torsional Load

$$T_{u_{Int}} = |R_{u_{Span1}} - R_{u_{Span2}}| \cdot LeverArm$$

 $T_{u_Int} = 660 \; kip \cdot ft$

Exterior Girders

Girder Reactions

$$R_{u \text{ Span1}} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1$$

$$\begin{split} R_{u_Span2} &= 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot gV_{Span2_Ext} \\ &\cdot [LaneSpan2 + TruckSapn2 \cdot (1 + IM)] \end{split}$$

$$R_{u_{Span2}} = 322 \text{ kip}$$

Torsional Load

$$T_{u_Ext} = |R_{u_Span1} - R_{u_Span2}| \cdot LeverArm$$

$$T_{u_{Ext}} = 660 \text{ kip} \cdot \text{ft}$$

Torsion on Cap

Figure 4.16 Elevation View of 0 Degree ITBC with Torsion Loads

Analyzed assuming Bents are torsionally rigid at Effective Face of Columns.

 $T_u = 660 \; \text{kip} \cdot \text{ft}$

Maximum Torsion on Cap

Ledge Loads

Interior Girder

Service Load

$$V_{s_Int} = max(V_{s_Span1Int}, V_{s_Span2Int})$$
 $V_{s_Int} = 215.15 \text{ kip}$

Factored Load

$$V_{u_{Int}} = max(V_{u_{Span1Int}}, V_{u_{Span2Int}})$$
 $V_{u_{Int}} = 321.86 \text{ kip}$

Exterior Girder

Service Load

$$V_{s_Ext} = max(V_{s_Span1Ext}, V_{s_Span2Ext})$$
 $V_{s_Ext} = 215.15 \text{ kip}$

Factored Load

$$V_{u_Ext} = max(V_{u_Span1Ext}, V_{u_Span2Ext})$$
 $V_{u_Ext} = 321.86 \text{ kip}$

Cap Loads

Positive Moment (From CAP18)

Dead Load:	$M_{posDL} = 249.2 \text{ kip} \cdot \text{ft}$
Service Load:	$M_{posServ} = 491.6 \text{ kip} \cdot \text{ft}$
Factored Load:	$M_{posUlt} = 740.6 \text{ kip} \cdot \text{ft}$

Negative Moment (From CAP18)

Dead Load:	$M_{negDL} = -378.5 \text{ kip} \cdot \text{ft}$
Service Load:	$M_{negServ} = -590.0 \text{ kip} \cdot \text{ft}$
Factored Load:	$M_{negUlt} = -851.0 \text{ kip} \cdot \text{ft}$

Maximum Torsion and Concurrent Shear and Moment (Strength I)

$T = 660 \text{ kin} \cdot \text{ft}$	Located two stations away from
$r_{\rm u} = 000 {\rm Mp}^{-1} {\rm c}$	centerline of column.
$V_{\mu} = 447.4 \text{ kip}$	U U
u i	V_u and M_u values are from
$M_u = 334.5 \text{ kip} \cdot \text{ft}$	CAP18

.

4.2.5 Locate and Describe Reinforcing

Recall:

$$b_{stem} = 39 \text{ in}$$

$$d_{stem} = 57 \text{ in}$$

$$b_{ledge} = 24 \text{ in}$$

$$d_{ledge} = 28 \text{ in}$$

$$b_f = 87 \text{ in}$$

$$h_{cap} = 85 \text{ in}$$

$$cover = 2.5 \text{ in}$$

Measured from Center of bar

4.2.5.1 Describe Reinforcing Bars

Use # 11 bars for Bar A			
$A_{bar_A} = 1.56 \text{ in}^2$	$d_{bar_A} = 1.410$ in		
Use # 11 bars for Bar B			
$A_{bar_B} = 1.56 \text{ in}^2$	$d_{bar_B}=1.410~\text{in}$		
Use # 6 bars for Bar M		In the calculation of b_{ledge} , #6	
$A_{bar_M} = 0.44 \text{ in}^2$	$d_{bar_M} = 0.75$ in	Bar M was considered. Bar M	
Use # 6 bars for Bar N		must be # 6 or smaller to allow it fully develop.	
$A_{bar_N} = 0.44 \text{ in}^2$	$d_{bar_N}=0.75~\text{in}$	To prevent confusion, use the	
Use # 6 bars for Bar S		same bar size for Bar N as Bar	
$A_{bar_S} = 0.44 \text{ in}^2$	$d_{bar_S} = 0.75$ in	М.	
Use # 6 bars for Bar T			
$A_{bar_T} = 0.44 \text{ in}^2$	$d_{bar_T} = 0.75$ in		

4.2.5.2 <u>Calculate Dimensions</u>

$d_{s_neg} = h_{cap} - cover - \frac{1}{2}d_{bar_s} - \frac{1}{2}d_{bar_A}$	$d_{s_neg} = 81.42$ in
$d_{s_pos} = h_{cap} - cover - \frac{1}{2}max(d_{bar_s}, d_{bar_M}) - \frac{1}{2}d_{bar_B}$	$d_{s_pos} = 81.42$ in
$a_v = 12$ in	
$a_f = a_v + cover$	$a_{\rm f}=14.50$ in
$d_e = d_{ledge} - cover$	$d_{e} = 25.50 \text{ in}$
$d_{f} = d_{ledge} - cover - \frac{1}{2}d_{bar_{-}M} - \frac{1}{2}d_{bar_{-}B}$	$d_{\rm f}=24.42$ in
$h = d_{ledge} + BrgSeat$	h = 29.50 in

Figure 4.19 Plan View of 0 Degree Skewed ITBC

 $\alpha = 90 \text{ deg}$

Angle of Bars S

Recall:

$$L = 8 in$$

 $W = 21 in$

4.2.6 Check Bearing

Resistance Factor (ϕ) = 0.7

 $A_1 = L \cdot W$

B = 8 in.

Interior Girders

The load on the bearing pad propagates along a truncated pyramid whose top has the area A_1 and whose base has the area A_2 . A_1 is the loaded area (the bearing pad area: L×W). A_2 is the area of the lowest rectangle contained wholly within the support (the Inverted Tee Cap). A_2 must not overlap the truncated pyramid of another load in either direction, nor can it extend beyond the edges of the cap in any direction.

 $B = \min\left[\left(b_{ledge} - a_v\right) - \frac{1}{2}L, \left(a_v + \frac{1}{2}b_{stem}\right)\right]$

 $-\frac{1}{2}L, 2d_{\text{ledge}}, \frac{1}{2}S - \frac{1}{2}W$

Dimension of Bearing Pad

Figure 4.20 Bearing Check for 0-degree Skew Angle

(AASHTO LRFD 5.5.4.2)

Area under Bearing Pad

"B" is the distance from perimeter of A_1 to the perimeter of A_2 as seen in the above figure

 $L_2 = L + 2 \cdot B$ $L_2 = 24.00$ in

 $W_2 = W + 2 \cdot B$ $W_2 = 37.00$ in

 $A_2 = L_2 \cdot W_2$ $A_2 = 888$ in²

 $A_1 = 168 \text{ in}^2$

Modification factor

$$m = \min\left(\sqrt{\frac{A_2}{A_1}}, 2\right) = 2.29 \text{ and } 2$$
 $m = 2$ AASHTO LRFD Eq. 5.6.5-3 $\phi V_n = \phi$ 0.85 fc A1 m $\phi V_n = 999.6 \text{ kips}$ AASHTO LRFD Eqs. 5.6.5-1 $V_{u_Int} = 321.86 < \phi V_n$ BearingChk = "OK!" V_{u_int} from "4.2.4.4Load
Summary".

Exterior Girders

$$B = \min\left[\left(b_{\text{ledge}} - a_v\right) - \frac{1}{2}L, \left(a_v + \frac{1}{2}b_{\text{stem}}\right) - \frac{1}{2}L, 2d_{\text{ledge}}, \frac{1}{2}S - \frac{1}{2}W, c - \frac{1}{2}W\right]$$

	B= 8 in.	"B" is the distance from perimeter of A_1 to the perimeter of A_2 as seen in the above figure
$L_2 = L + 2 B$		$L_2 = 24.00 \text{ in}$
$W_2 = W + 2 B$		$W_2 = 37.00$ in
$A_2 = L_2 W_2$		$A_2 = 888 \text{ in}^2$

Modification factor

$$m = min\left(\sqrt{\frac{A_2}{A_1}}, 2\right) = 2.29 \text{ and } 2 \quad m = 2$$
 AASHTO LRFD Eq. 5.6.5-3

$\varphi V_n = \varphi 0.85 f_c A_1 m$	$\phi V_n = 999.6 \text{ kips}$	AASHTO LRFD Eqs. 5.6.5-1 and 5.6.5-2:
$V_{u_ext} = 321.86 \text{ kips} < \Phi V_n$	BearingChk= "OK!"	V _{u_ext} from "4.2.4.4 Load Summary".

4.2.7 Check Punching Shear

AASHTO LRFD 5.8.4.3.4, the truncated pyramids assumed as failure surfaces for punching shear shall not overlap.

Figure 4.21 Punching Shear Check for 0degree Skew Angle

Resistance Factor (ϕ) = 0.90

1

Determine if the Shear Cones Intersect

Is
$$\frac{1}{2}S - \frac{1}{2}W \ge d_f$$
?
 $\frac{1}{2}S - \frac{1}{2}W = 37.5$ in
 $d_f = 24.42$ in

Is
$$\frac{1}{2}b_{stem} + a_v - \frac{1}{2}L \ge d_f$$
?
 $\frac{1}{2}b_{stem} + a_v - \frac{1}{2}L = 27.5$ in
 $d_f = 24.42$ in

AASHTO LRFD 5.5.4.2.

Yes. Therefore, shear cones do not intersect in the longitudinal direction of the cap.

TxDOT uses "df" instead of "de" for Punching Shear (BDM-LRFD, Ch. 4, Sect. 5, Design *Criteria*). This is because "df" has traditionally been used for inverted tee bents and was sed in the Inverted Tee Research (Furiong % Mirza pg. 58).

Yes. Therefore, shear cones do not intersect in the transverse direction of the cap.

Interior Girders

$V_n = 0.125 \ \mathbb{P} \ \lambda \sqrt{f_c'} \ b_o \ d_f$	$V_{\rm n} = 585.91 {\rm kips}$	AASHTO LRFD 5.8.4.3.4-3
$b_o = W + 2L + 2d_f$	$b_o = 84.84 \text{ in}$	AASHTO LRFD 5.8.4.3.4-4
$\phi V_n = 527.32 \text{ kips}$		
$V_{u_Int} = 321.86 \text{ kips} < \varphi V_n$	PunchingShearChk= "OK!"	V _{u_int} from "4.2.4.4 Load Summary".

Exterior Girders $V_n = \min[(0.125 \cdot \sqrt{f_c} \cdot (\frac{1}{2}W + L + d_f +$ $V_n = 545.15 \text{ kips}$ AASHTO LRFD 5.8.4.3.4-3 and $c \Big) * d_f, 0.125 \cdot \sqrt{f_c} \cdot (W + 2L + 2d_f) * d_f)]$ 5.8.4.3.4-5
$\phi V_n = 411.09 \text{ kips}$		
$V_{u_ext} = 321.86 \text{ kips} < \varphi V_n$	PunchingShearCh	k= "OK!" V _{u_ext} from "4.2.4.4 Load Summary".
4.2.8 Check Shear Friction		
Resistance Factor (ϕ) =0.90	AASHTO LRFD 5	5.4.2
Determine the Distribution Width		
$\frac{\text{Interior Girders}}{b_{s_{Int}}} = \min(W + 4a_{v}, S)$ $= \min(69 \text{ in, } 96 \text{ in})$	"S" is the gird	er spacing.
$b_{c \text{ Int}} = 69 \text{ in}$		
$A_{cv} = b_{s_{Int}} \cdot d_{e}$	$A_{cv} = 1759.$	5 in2
$\frac{\text{Exterior Girders}}{b_{s_{\text{Ext}}}} = \min[W + 4a_{v}, S, 2]$ $= \min[69, 96, 48]$	c) "S" is the gird	er spacing.
= 48 in		
$A_{cv} = b_{s_ext} \cdot d_e$	$A_{\rm cv} = 122$	24 in2
Interior Girders		
$V_{n} = \min(0.2 \cdot f_{c} \cdot A_{cv}, 0.8 \cdot A_{cv})$ = min (1759.5, 1408)	$V_n = 1408 \text{ kips}$	AASHTO LRFD 5.8.4.2.2-1 and 5.8.4.2.2-2
$\phi V_n = 1267 \text{ kips}$		
$V_{u_Int} = 321.86 \text{ kips } < \varphi V_n$	ShearFrictionChk= "OK!"	V _{u_int} from "4.2.4.4 Load Summary".
Exterior Girders		
$V_n = min(0.2 \cdot f_c \cdot A_{cv}, 0.8 \cdot A_{cv})$ = min (1224, 979.2)	V _n = 979.2 kips	AASHTO LRFD 5.8.4.2.2-1 and 5.8.4.2.2-2
$\phi V_n = 881 \text{ kips}$		
$V_{u_ext} = 321.86 \text{ kips} < \varphi V_n$	ShearFrictionChk= "OK!"	V _{u_ext} from "4.2.4.4 Load Summary".

4.2.9 Flexural Reinforcement for Negative Bending (Bars A)

$M_{dl} = M_{negDL} $	$M_{dl} = 378.5 \text{ kip} \cdot \text{ft}$	From Cap 18 Output
$M_s = M_{negServ} $	$M_s = 590.0 \text{ kip} \cdot \text{ft}$	Trom Cup 10 Output.
$M_u = M_{negUlt} $	$M_u = 851.0 \text{ kip} \cdot \text{ft}$	

(AASHTO LRFD 5.6.3.3)

4.2.9.1 Minimum Flexural Reinforcement

Factored Flexural Resistance, M_r , must be greater than or equal to the lesser of $1.2M_{cr}$ (Cracking Moment) or $1.33M_u$ (Ultimate Moment).

$I_{g} = 2.86 \times 10^{6} \text{ in}^{4}$		Gross Moment of Inertia
$h_{cap} = 85$ in		Depth of Cap
ybar = 34.3 in		Distance to the Center of Gravity of the Cap from the bottom of the Cap
$f_r=0.24\sqrt{f_c}$	$f_r = 0.537$ ksi	Modulus of Rupture (BDM- LRFD, Ch. 4, Sect. 5, Design Criteria)
$y_t = h_{cap} - ybar$	y _t = 50.70 in	<i>Distance from Center of Gravity</i> <i>to extreme tension fiber</i>
$S = \frac{I_g}{y_t}$	$S = 5.64 \times 10^4 \text{ in}^3$	Section Modulus for the extreme tension fiber
$M_{cr} = S \cdot f_r \cdot \frac{1ft}{12in}$	$M_{cr} = 2523.9 \text{ kip} \cdot \text{ft}$	Cracking Moment (AASHTO LRFD Eq. 5.6.3.3-1)
$M_f = minimum \text{ of:}$ $1.2M_{cr} = 3028.7 \text{ kip} \cdot \text{ft}$ $1.33M_u = 1131.8 \text{ kip} \cdot \text{ft}$		Design the lesser of $1.2M_{cr}$ or $1.33M_u$ when determining mininum area of steel required.

Thus, M_r must be greater than $M_f = 1131.8 \ \text{kip} \cdot \text{ft}$

4.2.9.2 Moment Capacity Design

Try, 6 ~ #11's Top Number of bars in tension BarANo = 6Diameter of main reinforcing $d_{\text{bar A}} = 1.410$ in bars $A_{\text{bar A}} = 1.56 \text{ in}^2$ Area of main reinforcing bars Area of steel in tension $A_s = BarANo \cdot A_{bar_A}$ $A_{s} = 9.36 \text{ in}^{2}$ Diameter of shear reinforcing $d_{stirrup} = 0.75$ in $d_{stirrup} = d_{bar S}$ bars $d = d_{s neg}$ d = 81.42 in $b = b_f$ b = 87 inCompressive Strength of Concrete $f_c = 5.0 \text{ ksi}$ Yield Strength of Rebar $f_v = 60 \text{ ksi}$ (AASHTO LRFD 5.6.2.2) $\beta_1 = 0.85 - 0.05(f_c - 4ksi)$ Bounded by: $0.65 \le \beta_1 \le 0.85$ $\beta_1 = 0.80$ Depth of Cross Section under $c=\frac{A_sf_y}{0.85f_c\beta_1b}$ c = 1.90 in Compression under Ultimate Load This "c" is the distance from the extreme compression fiber to the

neutral axis, not the distance from the center of bearing of the last girder to the end of the cap.

$$a = c \cdot \beta_1$$
 $a = 1.52$ in

Note: "a" is less than "dledge". Therefore the equivalent stress block acts over a rectangular area. If "a" was greater than "dledge", it would act over a Tee shaped area.

$$\begin{split} M_n &= A_s f_y \left(d - \frac{a}{2} \right) \cdot \frac{1 \text{ft}}{12 \text{in}} & M_n &= 3774.9 \text{ kip} \cdot \text{ft} \\ \epsilon_s &= 0.003 \cdot \frac{d - c}{c} & \epsilon_s &= 0.126 \end{split}$$

 $\epsilon_{s} > 0.005$

 $\Phi_{\rm M} = 0.90$

FlexureBehavior = "Tension Controlled"

$$M_r = \Phi_M M_n \qquad M_r = 3397.4 \text{ kip} \cdot \text{ft}$$

$$M_f = 1131.8 \text{ kip} \cdot \text{ft} < M_r \qquad \text{MinReinfChk} = "OK!"$$

$$M_u = 851.0 \text{ kip} \cdot \text{ft} < M_r \qquad \text{UltimateMom} = "OK!"$$

(AASHTO LRFD Eq. 5.6.3.1.2-4)

Depth of Equivalent Stress Block (AASHTO LRFD 5.6.2.2)

Nominal Flexural Resistance (AASHTO LRFD Eq. 5.6.3.2.2-1)

Strain in Reinforcing at Ultimate

(AASHTO LRFD 5.6.2.1)

(AASHTO LRFD 5.5.4.2)

Factored Flexural Resistance (AASHTO LRFD Eq. 5.6.3.2.1-1)

4.2.9.3 Check Serviceability

To find s_{max}:

Modular Ratio:

$$n = \frac{E_s}{E_c} \qquad \qquad n = 7.12$$

Tension Reinforcement Ratio:

$$\rho = \frac{A_s}{b \cdot d} \qquad \qquad \rho = 0.0013$$
$$k = \sqrt{(2\rho n) + (\rho n)^2} - (\rho n) \qquad \qquad k = 0.127$$

 $d \cdot k = 10.34$ in $< d_{ledge} = 28$ in

Therefore, the compression force acts over a rectangular area.

$$j = 1 - \frac{\kappa}{3}$$
 $j = 0.958$

$$\begin{split} f_{ss} &= \frac{M_s}{A_s \cdot j \cdot d} \cdot \frac{12 \text{in}}{1 \text{ft}} & f_{ss} &= 9.70 \text{ ksi} \\ f_a &= 0.6 f_y & f_a &= 36.00 \text{ ksi} \\ f_{ss} &< f_a & \text{ServiceStress} = ``OK!`` \\ d_c &= \text{cover} + \frac{1}{2} d_{\text{stirrup}} + \frac{1}{2} d_{\text{bar}_A} & d_c &= 3.58 \text{ in} \end{split}$$

Exposure Condition Factor:

 $\gamma_e = 1.00$

Check allowable M_{dl}:

$$\beta_{s} = 1 + \frac{d_{c}}{0.7(h_{cap} - d_{c})}$$
 $\beta_{s} = 1.06$

For service loads, the stress on the cross-section is located as shown in Figure 4.22.

Figure 4.22 Stresses on the Cross Section for Service Loads of 0 Degree Skewed ITBC

> If the compression force does not act over rectangular area, j will be different.

Service Load Bending Stress in outer layer of the reinforcing.

Allowable Bending Stress (BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

For Class 1 Exposure Conditions. For areas where deicing chenicals are frequently used, design for Class 2 Exposure ($\gamma_e = 0.75$). (BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

$s_{max} = min\left(rac{700\gamma_e}{\beta_s f_{ss}} - 2d_c, 12in. ight)$	$s_{max} = 12$ in	(AASHTO LRFD Eq. 5.6.7-1)
$s_{Actual} = \frac{b_{stem} - 2d_c}{BarANo - 1}$	$s_{Actual} = 6.37$ in	A good practice is to place a bar every 12 in along each surface of
$s_{Actual} < s_{max}$	ServiceabilityCheck = "O	DK!" the bent. (TxSP)
4.2.9.4 Check Dead Load		TxDOT limits dead load stress to

TxDOT limits dead load stress to 22 ksi, which is set to limit observed cracking under dead load.

Allowable Dead Load Moment

$$M_a = A_s \cdot d \cdot j \cdot f_{dl} \cdot \frac{1 f t}{12 i n} \qquad \qquad M_a = 1338.5 \text{ kip} \cdot f t$$

 $f_{d1} = 22 \text{ ksi}$

 $M_{dl} = 378.5 \text{ kip} \cdot \text{ft} < M_a$ DeadLoadMom = "OK!"

4.2.10 Flexural Reinforcement for Positive Bending (Bars B)

$$\begin{split} M_{dl} &= M_{posDL} & M_{dl} &= 249.2 \text{ kip} \cdot \text{ft} \\ M_s &= M_{posServ} & M_s &= 491.6 \text{ kip} \cdot \text{ft} \\ M_u &= M_{posUlt} & M_u &= 740.6 \text{ kip} \cdot \text{ft} \end{split}$$

4.2.10.1 Minimum Flexural Reinforcement

Factored Flexural Resistance, M_r , must be greater than or equal to the lesser of $1.2M_{cr}$ (Cracking Moment) or $1.33M_u$ (Ultimate Moment).

$$\begin{split} I_g &= 2.86 \times 10^6 \text{ in}^4 & Gross \ \text{Moment of Inertia} \\ y_t &= y \text{bar} & y_t &= 34.3 \text{ in} & Distance \ to \ the \ Center \ of \ Gravity \\ of \ the \ Cap \ from \ the \ top \ of \ the \\ Cap \\ \\ f_r &= 0.24 \sqrt{f_c} & f_r &= 0.537 \text{ ksi} & Modulus \ of \ Rupture \ (BDM-\\ LRFD, \ Ch. \ 4, \ Sect. \ 5, \ Design \\ Criteria \\ Section \ Modulus \ for \ the \ extreme \\ tension \ fiber \\ \\ M_{cr} &= S \cdot f_r \cdot \frac{1ft}{12\text{ in}} & M_{cr} &= 3732.2 \text{ kip} \cdot \text{ft} & Cracking \ Moment \ (AASHTO \\ LRFD \ Eq. \ 5.6.3.3-l) & Design \ the \ lesser \ of \ 1.2M_{cr} \ or \\ 1.33M_u &= 985.0 \text{ kip} \cdot \text{ft} & Distance \ tension \ fiber \\ \end{split}$$

Thus, M_r must be greater than $M_f = 985.0 \text{ kip} \cdot \text{ft}$

4.2.10.2 Moment Capacity Design

а

 $M_u = 740.6 \text{ kip} \cdot \text{ft} < M_r$

Try, $11 \sim #11$'s Bottom Number of bars in tension BarBNo = 11Diameter of main reinforcing $d_{\text{bar B}} = 1.41$ in bars $A_{\text{bar B}} = 1.56 \text{ in}^2$ Area of main reinforcing bars Area of steel in tension $A_s = BarBNo \cdot A_{bar B}$ $A_s = 17.16 \text{ in}^2$ d = 81.42 in $d = d_{s pos}$ $b = b_{stem}$ b = 39 inCompressive Strength of Concrete $f_{c} = 5.0 \text{ ksi}$ Yield Strength of Rebar $f_v = 60 \text{ ksi}$ (AASHTO LRFD 5.6.2.2) $\beta_1 = 0.85 - 0.05(f_c - 4ksi)$ Bounded by: $0.65 \le \beta_1 \le 0.85$ $\beta_1 = 0.80$ Depth of Cross Section under $c = \frac{A_s f_y}{0.85\ _c\beta_1 b}$ c = 7.76 in Compression under Ultimate Load

(AASHTO LRFD Eq. 5.6.3.1.2-4)

Depth of Equivalent Stress Block

(AASHTO LRFD 5.6.2.2)

1 11

This "c" is the distance from the extreme compression fiber to the neutral axis, not the distance from the center of bearing of the last girder to the end of the cap.

$$= \mathbf{c} \cdot \boldsymbol{\beta}_1$$
 $\mathbf{a} = 6.21 \text{ in}$

Note: "a" is less than "d_{stem}". Therefore the equivalent stress block acts over a rectangular area. If "a" was greater than "dstem", it would act over a Tee shaped area.

$$\begin{split} M_n &= A_s f_y \left(d - \frac{a}{2} \right) \cdot \frac{1 f t}{12 i n} & M_n = 6719.4 \text{ kip} \cdot f t \\ \varepsilon_s &= 0.003 \cdot \frac{d - c}{c} & \varepsilon_s = 0.028 \end{split} \qquad \begin{aligned} & \text{Nominal Flexural Resistance} \\ & (AASHTO LRFD Eq. 5.6.3.2.2-1) \\ & \varepsilon_s &= 0.005 \end{aligned} \qquad \\ & FlexureBehavior = "Tension Controlled" & (AASHTO LRFD 5.6.2.1) \\ & \Phi_M &= 0.90 & (AASHTO LRFD 5.5.4.2) \\ & M_r &= \Phi_M \cdot M_n & M_r &= 6047.5 \text{ kip} \cdot f t & Factored Flexural Resistance} \\ & (AASHTO LRFD Eq. 5.6.3.2.1) \\ & M_r &= 0.90 & (AASHTO LRFD 5.5.4.2) \\ & M_r &= 0.90 & (AASHTO LRFD 5.5.4.2) \\ & M_r &= 0.90 & (AASHTO LRFD Eq. 5.6.3.2.1-1) \\ & M_f &= 985.0 \text{ kip} \cdot f t < M_r & MinReinfChk = "OK!" \end{aligned}$$

UltimateMom = "OK!"

4.2.10.3 Check Serviceability

To find s_{max}:

k

Modular Ratio:

$$n = \frac{E_s}{E_c} \qquad \qquad n = 7.12$$

Tension Reinforcement Ratio:

$$\begin{split} \rho &= \frac{A_s}{b \cdot d} & \rho &= 0.0054 \\ &= \sqrt{(2\rho n) + (\rho n)^2} - (\rho n) & k &= 0.242 \end{split}$$

 $d \cdot k = 19.70$ in $< d_{stem} = 57.00$ in Therefore, the compression force acts over a rectangular area.

$$j = 1 - \frac{k}{3}$$
 $j = 0.919$

$$f_{ss} = \frac{M_s}{A_s \cdot j \cdot d} \cdot \frac{12in}{1ft} \qquad \qquad f_{ss} = 4.59 \text{ ksi}$$

$$f_{a} = 0.6f_{y} \qquad f_{a} = 36.00 \text{ ksi}$$

$$f_{ss} < f_{a} \qquad \text{ServiceStress} = "OK"$$

$$d_c = cover + \frac{1}{2}d_{stirrup} + \frac{1}{2}d_{bar_B}$$
 $d_c = 3.58 in$

Exposure Condition Factor:

$$\begin{split} \gamma_e &= 1.00 \\ \beta_s &= 1 + \frac{d_c}{0.7(h_{cap} - d_c)} \end{split} \qquad \qquad \beta_s = 1.06 \end{split}$$

$$s_{max} = min\left(\frac{700\gamma_e}{\beta_s f_{ss}} - 2d_c, 12in.\right)$$
 $s_{max} = 12 in$

Try: BarBInsideSNo = 5 $s_{Actual} = \frac{b_{stem} - 2\left(cover + \frac{1}{2}d_{bar_{_}S} + \frac{1}{2}d_{bar_{_}B}\right)}{BarBInsideSNo-}$

 $s_{Actual} < s_{max}$

For service loads, the stress on the cross-section is located as shown in Figure 4.23.

Figure 4.23 Stresses on the Cross Section for Bars B for Service Loads of 0 Degree Skewed ITBC

> If the compression force does not act over rectangular area, j will be different.

Service Load Bending Stress in outer layer of the reinforcing.

Allowable Bending Stress (BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

"cover" is measured to center of shear reinforcement.

For Class 1 Exposure Conditions. For areas where deicing chenicals are frequently used, design for Class 2 Exposure ($\gamma_e = 0.75$). (BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

(AASHTO LRFD Eq. 5.6.7-1)

A good practice is to place a bar every 12 in along each surface of the bent. (TxSP)

Number of Bars B that are inside Stirrup Bar S.

 $s_{Actual} = 7.96$ in

ServiceabilityCheck = "OK

Bars Outside Stirrup Bar S

BarBOutsideSNo = 11 - BarBInsideSNo

BarBOutsideSNo = 6

 $s_{Actual} = \frac{2b_{ledge} + 2\left(cove \quad \frac{1}{2}d_{bar_S} + \frac{1}{2}d_{bar_B} - cove \quad \frac{1}{2}d_{bar_M} - \frac{1}{2}d_{bar_B}\right)}{BarBOutsideSNo}$

 $s_{Actual} = 8.0$ in $< s_{max}$

ServiceabilityCheck = "OK

Stirrup Bar S.

4.2.10.4 Check Dead Load

Check allowable M_{dl} : $f_{dl} = 22 \text{ ksi}$

TxDOT limits dead load stress to 22 ksi. This is due to observed cracking under dead load. Allowable Dead Load Moment

Number of Bars B that are inside

$M_{a} = A_{s} \cdot d \cdot j \cdot f_{dl} \cdot \frac{1ft}{12in}$	$M_a = 2354.00 \text{ kip} \cdot \text{ft}$	
$M_{dl} = 249.2 \text{ kip} \cdot \text{ft} < M_a$	DeadLoadMom = "OK!"	

Flexural Steel Summary:

Use 6 ~ # 11 Bars on Top & 11 ~ # 11 Bars on Bottom

4.2.11 Ledge Reinforcement (Bars M & N)

Try Bars M and Bars N at a 4.90" spacing.

$$s_{bar_M} = 4.90$$
 in
 $s_{bar_N} = 4.90$ in

Use trial and error to determine the spacing needed for the ledge reinforcing.

It is typical for Bars M & N to be paired together.

4.2.11.1 Determine Distribution Widths

These distribution widths will be used on the following pages to determine the required ledge reinforcement per foot of cap.

Distribution Width for Shear (AASHTO LRFD 5.8.4.3.2)	Note: These are the same	
Interior Girders	distribution widths used for the	
$b_{s_{Int}} = min(W + 4a_v, S)$ $b_{s_{Int}} = 69.00 in$	"S" is the girder spacing.	
Exterior Girders	"c" is the distance from the center	
$b_{s_Ext} = min(W + 4a_v, 2c, S)$	of bearing of the outside beam to	
$b_{s_{Ext}} = 48.00$ in	the end of the ledge.	

Distribution Width for Bending and Axial Loads (AASHTO LRFD 5.8.4.3.3)

Interior Girders

 $b_{m_{Int}} = min(W + 5a_f, S)$ $b_{m Int} = 93.50 in$

Exterior Girders

 $b_{m_Ext} = min(W + 5a_f, 2c, S)$ $b_{m_Ext} = 48.00 in$

<u>Minimum Reinforcing</u> (AASHTO LRFD Eq. 5.7.4.2-1)	For clarity, the cohesion factor is labeled " c_1 ". This is to prevent confusion with "c", the distance from the last girder to the edge of the cap. c_1 is 0ksi for corbels and ledges. (AASHTO LRFD 5.7.4.4)
$A_{vf_min} = \frac{0.05 \text{ ksi} \cdot A_{cv}}{f_y}$ $A_{cv} = d_e \cdot b_s \text{and} \qquad a_{vf} = \frac{A_{vf}}{b_s}$	"P _c " is zero as there is no axial compression.
$a_{vf_min} = \frac{0.05ksi \cdot d_e}{f_y} \qquad \qquad a_{vf_min} = 0.2$	26 ^{in²} / _{ft} Minimum Reinforcing required for Shear Friction
Interior Girders	
$A_{cv} = d_e \cdot b_{s_Int} \qquad \qquad A_{cv} = 1759$	in ²
$V_{u_Int} = 322 \text{ kip}$	From "4.2.4.4 Load Summaryry".
$V_{n} = c_{1}A_{cv} + \mu(A_{vf}f_{y} + P_{c})$	(AASHTO LRFD Eq. 5.7.4.3-3)
$\begin{split} \varphi V_n &\geq V_u \\ \varphi \cdot \left[c_1 A_{cv} + \mu \left(A_{vf} f_y + P_c \right) \right] \geq V_u \end{split}$	(AASHTO LRFD Eq. 5.7.4.3-1 & AASHTO LRFD Eq. 5.7.4.3-2)
$A_{vf} = \frac{\frac{V_{u_Int} - c_1 A_{cv}}{\Phi} - P_c}{\frac{\mu}{f_y}} \qquad A_{vf} = 4.26 \text{ in}$	n ² Required Reinforcing for Shear Friction
$a_{vf_Int} = \frac{A_{vf}}{b_{s_Int}} \qquad a_{vf_Int} = 0.74$	$4\frac{in^{2}}{ft} Required Reinforcing for Shear Friction per foot length of cap$

AASHTO LRFD 5.7.4.1

(AASHTO LRFD 5.5.4)

"µ" is 1.4 for monolithically placed concrete. (AASHTO LRFD

4.2.11.2 Reinforcing Required for Shear Friction

 $c_1 = 0$ ksi $P_c = 0$ kip

 $\phi = 0.90$

 $\mu = 1.4$

Exterior Girders

4.2.11.3

Exterior Girders

$V_{u_Ext} = 322 \text{ kip}$		From "4.2.4.4 Load Summary".
$N_{uc_Ext} = 0.2 \cdot V_{u_Ext}$	$N_{uc_Ext} = 64.4 \text{ kip}$	(AASHTO LRFD 5.8.4.2.1)
$M_{u_Ext} = V_{u_Ext} \cdot a_v + N_{uc_Ext}(h - d_e)$	$M_{u_Ext} = 343.5 \text{ kip} \cdot \text{ft}$	(AASHTO LRFD Eq. 5.8.4.2.1-1)
Use the following equations to solve for	: A _f :	

 $\Phi M_n \geq M_{u_Ext}$ (AASHTO LRFD Eq. 1.3.2.1-1) $M_{n} = A_{f}f_{y}\left(d_{e} - \frac{a}{2}\right)$ (AASHTO LRFD Eq. 5.6.3.2.2-1) $c = \frac{A_f f_y}{\alpha_1 f_c \beta_1 b_{m Ext}}$ (AASHTO LRFD Eq. 5.6.3.1.2-4) $\alpha_1 = 0.85$ (AASHTO LRFD 5.6.2.2) $\beta_1 = 0.80$ $a = c\beta_1$ $0.75 \le \Phi = 0.65 + 0.15 \left(\frac{d_e}{c} - 1\right) \le 0.90$ (AASHTO LRFD 5.5.4.2) $A_{f} = 3.05 \text{ in}^{2}$ Solve for A_f: Required Reinforcing for Flexure $a_{f_Ext} = 0.76 \frac{in^2}{ft}$ $a_{f_Ext} = \frac{A_f}{b_m Ext}$ Required Reinforcing for Flexure per foot length of cap

4.2.11.4 Reinforcing Required for Axial Tension

 $\Phi = 0.90$

Interior Girders:

$$\begin{split} N_{uc_Int} &= 0.2 V_{u_Int} & N_{uc_Int} &= 64.4 \text{ kip} \\ A_n &= \frac{N_{uc_Int}}{\Phi f_y} & A_n &= 1.19 \text{ in}^2 & Required Reinforcing for Axial Tension} \\ a_{n_Int} &= \frac{A_n}{b_{m_Int}} & a_{n_Int} &= 0.15 \frac{\text{in}^2}{\text{ft}} & Required Reinforcing for Axial Tension per foot length of cap} \end{split}$$

Exterior Girders:

$$\begin{split} N_{uc_Ext} &= 0.2 V_{u_Int} \\ A_n &= \frac{N_{uc_Ext}}{\Phi f_y} \\ a_{n_Ext} &= \frac{A_n}{b_{m_Ext}} \end{split}$$

 $N_{uc_{Ext}} = 64.4 \text{ kip}$

 $A_n = 1.19 \text{ in}^2$ Required Reinforcing for Axial Tension

(AASHTO LRFD 5.8.4.2.2)

AASHTO LRFD 5.5.4.2

 $a_{n_Ext} = 0.30 \frac{in^2}{ft}$ Required Reinforcing for Axial Tension per foot length of cap (AASHTO LRFD 5.8.4.2.1)

4.2.11.5 Minimum Reinforcing

$$a_{s_min} = 0.04 \frac{f_c}{f_y} d_e$$
 $a_{s_min} = 1.02 \frac{in^2}{ft}$ Minimum Required Reinforcing

4.2.11.6 Check Required Reinforcing

Actual Reinforcing:

$$a_{s} = \frac{A_{bar_{M}}}{s_{bar_{M}}} \qquad a_{s} = 1.08 \frac{in^{2}}{ft} \qquad Primary Ledge Reinforcing Provided$$
$$a_{h} = \frac{A_{bar_{N}}}{s_{bar_{N}}} \qquad a_{h} = 1.08 \frac{in^{2}}{ft} \qquad Auxiliary Ledge Reinforcing Provided$$

BarMCheck = "OK!"

<u>Checks:</u> $A_s \ge A_{s_min}$

$$A_{s} \ge A_{f} + A_{n}$$
$$A_{s} \ge \frac{2A_{vf}}{3} + A_{n}$$

$$A_h \ge 0.5(A_s - A_n)$$

Check if:

Check Interior Girders:

Bar M:

 $a_s \ge a_{s_min}$ $a_s \ge a_{f_Int} + a_{n_Int}$

 $a_{f_{Int}} + a_{n_{Int}} = 0.54 \frac{in^2}{ft} < a_s$

 $\frac{2a_{vf_{-}Int}}{3} + a_{n_{-}Int} = 0.64 \frac{in^2}{ft} < a_s$

$$a_{s} \ge \frac{2a_{vf_Int}}{3} + a_{n_Int}$$
$$a_{s} = 1.26 \frac{in^{2}}{ft}$$
$$a_{s_min} = 1.02 \frac{in^{2}}{ft} < a_{s}$$

 Primary Ledge Reinforcing Provided
 Auxiliary Ledge Reinforcing Provided (AASHTO LRFD 5.8.4.2.1)
 (AASHTO LRFD 5.8.4.2.2)
 (AASHTO LRFD Eq. 5.8.4.2.2-5)
 (AASHTO LRFD Eq. 5.8.4.2.2-6)

(AASHTO LRFD 5.8.4.2.1)
(AASHTO LRFD 5.8.4.2.2)
(AASHTO LRFD Eq. 5.8.4.2.2-5)

Bar N:

$$a_{h} \ge 0.5 \cdot (a_{s} - a_{n_Int})$$
$$a_{s} = The \text{ maximum of:}$$
$$a_{f_Int} + a_{n_Int}$$
$$\frac{2a_{vf_Int}}{3} + a_{n_Int}$$

$$a_s = 0.64 \frac{in^2}{ft}$$

Check if:

(AASHTO LRFD Eq. 5.8.4.2.2-6)

" a_s " in this equation is the steel required for Bar M, based on the requirements for Bar M in AASHTO LRFD 5.8.4.2.2. This is derived from the suggestion that Ah should not be less than $A_{p/2}$ nor less than $A_{vp/3}$ (Furlong & Mirza pg. 73 & 74)

$$0.5 \cdot (a_s - a_{n_Int}) = 0.25 \frac{in^2}{ft} < a_h$$

BarNCheck = "OK!"

Check Exterior Girders:

Bar M:

Check if:

$$a_{s} \ge a_{s_min}$$

$$a_{s} \ge a_{f_Ext} + a_{n_Ext}$$

$$a_{s} \ge \frac{2a_{vf_Ext}}{3} + a_{n_Ext}$$

$$a_{s} = 1.26 \frac{in^{2}}{ft}$$

 $a_{s_min} = 1.02 \frac{in^2}{ft} < a_s$

 $a_{f_Ext} + a_{n_Ext} = 1.06 \frac{in^2}{ft} \ < \ a_s$

 $\frac{2a_{vf_Ext}}{3} + a_{n_Ext} = 1.01 \frac{in^2}{ft} < a_s$

LRFD Eq. 5.8.4.2.2-6)

& Mirza pg. 73 & 74)

BarMCheck = "OK!"

Bar N:

Check if:

$$a_{h} \ge 0.5 \cdot (a_{s} - a_{n_Ext}) \qquad (AASHTO LRFD Eq. 5.8.4.2.2-6)$$

$$a_{s} = \text{The maximum of:} \qquad "a_{s}" \text{ in this equation is the steel required}$$

$$a_{f_Ext} + a_{n_Ext} \qquad for Bar M, based on the requirements for$$

$$\frac{2a_{vf_Ext}}{3} + a_{n_Ext} \qquad is derived from the suggestion that Ah$$

$$a_{s} = 1.06 \frac{\text{in}^{2}}{\text{ft}} \qquad A_{vf}/3 (Furlong \& Mirza pg. 73 \& 74)$$

$$0.5 \cdot (a_{s} - a_{n_Ext}) = 0.38 \frac{\text{in}^{2}}{\text{ft}} < a_{h}$$
BarNCheck = "OK I"

Ledge Reinforcement Summary:

Use # 6 primary ledge reinforcing @ 4.90" maximum spacing & # 6 auxiliary ledge reinforcing @ 4.90" maximum spacing

4.2.12 Hanger Reinforcement (Bars S)

Try Double # 6 Stirrups at a 7.80" spacing.

 $s_{bar S} = 7.80$ in

Use trial and error to determine the spacing needed for the hanger reinforcing.

$A_{hr} = 2 stirrups \cdot A_{bar_S}$	$A_{\rm hr}=0.88{\rm in^2}$
$A_v = 2 legs \cdot A_{hr}$	$A_v = 1.76 \text{ in}^2$

4.2.12.1 Check Minimum Transverse Reinforcement

$b_v = b_{stem}$	$b_v = 39$ in	
$A_{v_{min}} = 0.0316\lambda \sqrt{f_c} \frac{b_v \cdot s_{bar_s}}{f_v}$		(AASHTO LRFD Eq. 5.7.2.5-1)

 $\lambda = 1.0$ for normal weight concrete

 $A_v > A_{v \min}$

4.2.12.2 Check Service Limit State

(AASHTO LRFD 5.4.2.8)

 $A_{v min} = 0.36 in^2$

MinimumSteelCheck = "OK!"

AASHTO LRFD 5.8.4.3.5 with notifications from BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

Interior Girders

Vall

= minimum or:

$$\frac{A_{hr} \cdot \left(\frac{2}{3} f_{y}\right)}{\sum_{k=0}^{k} c_{k}} \cdot (W + 3a_{v}) = 217 \text{ kip}$$

s_{bar} s

(a)

TxDOT uses "2/3 f_v " from the original research (Furlong & Mirza Eq. 5.4) instead of "0.5 f_v " from AASHTO LRFD Eq. 5.8.4.3.5-1. (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria)

Bounded by: $(W + 3a_v) \le \min(S, 2c)$

$$\frac{A_{hr} \cdot \left(\frac{2}{3} f_{y}\right)}{s_{bar_{s}}} \cdot S = 433 \text{ kip}$$

(BDM-LRFD Ch.4, Sect. 5, Design Criteria modified to limit the distribution width to the girder spacing. This will prevent distribution widths from overlapping)

$$V_{all} = 217 \text{ kip}$$

 $V_{s_{Int}} = 215 \text{ kip} < V_{all}$ ServiceCheck = "OK!"

Exterior Girders

 $V_{all} = minimum of:$

Vall for the Interior Girder

$$\frac{A_{hr} \cdot \left(\frac{2}{3} f_{y}\right)}{s_{bar_{-}S}} \cdot \left(\frac{W + 3a_{v}}{2} + c\right) = 217 \text{ kip}$$

Bounded by: $(W + 3a_v) \le \min(S, 2c)$

$$\frac{A_{hr} \cdot \left(\frac{2}{3} f_y\right)}{s_{bar_S}} \cdot \left(\frac{S}{2} + c\right) = 325 \text{ kip}$$

$$V_{all} = 217 \text{ kip}$$

 $V_{s \text{ Ext}} = 215 \text{ kip} < V_{all}$

 $\Phi = 0.90$

Interior Girders:

TxDOT uses "2/3 f_{y} " from the original research (Furlong & Mirza Eq. 5.4) instead of "0.5 f_{v} " from AASHTO LRFD Eq. 5.8.4.3.5-1. (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria)

(BDM-LRFD Ch.4, Sect. 5, Design Criteria Modified to limit the distribution width to half the girder spacing and the distance to the edge of the cap. This will prevent distribution widths from overlapping or extending over the edge of the cap.)

ServiceCheck = "OK!"

(AASHTO LRFD 5.8.4.3.5)

 $\frac{A_{hr} \cdot f_y}{s_{har} s} \cdot S = 650 \text{ kip}$ (AASHTO LRFD Eq. 5.8.4.3.5-2) (AASHTO LRFD Eq. 5.8.4.3.5-3) $(0.063\sqrt{f_c} \cdot b_f \cdot d_f) + \frac{A_{hr} \cdot f_y}{S_{hrr} \cdot s}(W + 2d_f) = 772 \text{kip}$

UltimateCheck = "OK!"

Exterior Girders:

 $V_n = minimum of:$

 $\Phi V_n = 438 \text{ kip}$

 $V_{\text{u Int}} = 322 \text{ kip } < \Phi V_{\text{n}}$

 $V_n = minimum of:$

 $V_n = 650 \text{ kip}$

 $\Phi V_n = 585 \text{ kip}$

V_n for the Interior Girder $\frac{A_{hr} \cdot f_y}{s_{har} s} \cdot \left(\frac{s}{2} + c\right) = 487 \text{ kip}$ (AASHTO LRFD Eq. 5.8.4.3.5-2) $\left(0.063\sqrt{f_{c}} \cdot b_{f} \cdot d_{f}\right) + \frac{A_{hr} \cdot f_{y}}{s_{hars}} \left(\frac{W+2d_{f}}{2} + c\right) = 698 \text{ kip } (AASHTO LRFD Eq. 5.8.4.3.5-3)$ $V_n = 487 \text{ kip}$

(These equations are modified to limit the distribution width to the *edge of the cap)*

$$V_{u_{Ext}} = 322 \text{ kip } < \Phi V_n$$

UltimateCheck = "OK!"

4.2.12.4 Check Combined Shear and Torsion

The following calculations are for Station 36. All critical locations must be checked. See the Concrete Section Shear Capacity spreadsheet in the appendices for calculations at other locations. Shear and Moment were calculated using the CAP 18 program.

 $M_u = 334.5 \text{ kip} \cdot \text{ft}$ $V_u = 447.4 \text{ kip}$ $N_u = 0 \text{ kip}$ $T_u = 660 \text{ kip} \cdot \text{ft}$ Recall: $\beta_1 = 0.80$ $f_v = 60 \text{ ksi}$ $f_c = 5.0 \text{ ksi}$ $E_{s} = 29000 \text{ ksi}$ $h_{cap} = 85$ in $b_{stem} = 39$ in $b_f = 87$ in h = 29.50 in $b_{v} = 39$ in $b_v = b_{stem}$ Find d_v: (AASHTO LRFD 5.7.2.8) $A_{s} = 9.36 \text{ in}^{2}$ $A_s = A_{\text{bar }A} \cdot \text{BarANo}$ Shears are maximum near the $c = \frac{A_s f_y}{0.85 f_c \beta_1 b_f}$ column faces. In these regions the c = 1.90 in cap is in negative bending with tension in the top of the cap. $a = c \cdot \beta_1$ a = 1.52 in Therefore, the calculations are based $d_s = d_{s neg}$ $d_s = 81.42$ in on the steel in the top of the bent cap. $M_n = A_s f_v \left(d_s - \frac{a}{2} \right)$ $M_n = 3774.9 \text{ kip} \cdot \text{ft}$ $A_{ns} = 0 \text{ in}^2$ $d_e = \frac{A_{ps}f_{ps}d_p + A_sf_yd_s}{A_{ps}f_{ps} + A_sf_y}$ $d_e = 81.42$ in (AASHTO LRFD Eq. 5.7.2.8-2) $d_v = maximum of:$ $\frac{M_n}{A_s f_v + A_{ns} f_{ns}} = 80.66 \text{ in}$ $0.9d_e = 73.28$ in 0.72h = 21.24 in $d_v = 80.66$ in

The method for calculating θ and β used in this design example are from AASHTO LRFD Appendix B5. The method from AASHTO LRFD 5.7.3.4.2 may be used instead. The method from 5.7.3.4.2 is based on the method from Appendix B5; however, it is less accurate and more conservative (often excessively conservative). The method from Appendix B5 is preferred because it is more accurate, but it requires iterating to a solution.

Determine θ and β :

$$\Phi_{V} = 0.90$$

$$v_{u} = \frac{|v_{u} - (\Phi_{V} \cdot V_{p})|}{\Phi_{V} \cdot b_{v} \cdot d_{v}}$$

$$v_{u} = 0.16 \text{ ksi}$$

$$\frac{v_{u}}{f_{c}} = 0.03$$

Using Table B5.2-1 with $\frac{v_u}{f_c} = 0.03$ and $\varepsilon_x = 0.001$ $\theta = 36.4 \text{ deg}$ and $\beta = 2.23$

$$\varepsilon_{x} = \frac{\frac{|M_{u}|}{d_{v}} + 0.5N_{u} + 0.5|V_{u} - V_{p}|cot\theta - A_{ps}f_{po}}{2(E_{s}A_{s} + E_{p}A_{ps})}$$

where $|M_{u}| = 334.5$ kip · ft must be $> |V_{u} - V_{p}|d_{v} = 3012.12$ kip · ft

$$\epsilon_x = 1.38 \times 10^{-3} > 1.00 \times 10^{-3}$$

use $\epsilon_x = 1.00 \times 10^{-3}$.

 $V_p = 0 \text{ kip}$

 $A_{c} = b_{stem} \cdot \frac{h_{cap}}{2}$ $s = s_{bar S}$

(AASHTO LRFD Eq. 5.5.4.2)

Shear Stress on the Concrete (AASHTO LRFD Eq. 5.7.2.8-1)

Determining θ and β is an iterative process, therefore, assume initial shear strain value ε_x of 0.001 per LRFD B5.2 and then verify that the assumption was valid.

Strain halfway between the compressive and tensile resultants (AASHTO LRFD Eq. B5.2-3) If $\varepsilon_x < 0$, then use equation B5.2-5 and re-solve for ε_x .

For values of ε_x greater than 0.001, the tensile strain in the reinforcing, ε_t is greater than 0.002. ($\varepsilon_t = 2\varepsilon_x - \varepsilon_c$, where ε_c is < 0) Grade 60 steel yields at a strain of 60 ksi / 29,000 ksi = 0.002. By limiting the tensile strain in the steel to the yield strain and using the Modulus of Elasticity of the steel prior to yield, this limits the tensile stress of the steel to the yield stress.

"V_p" is zero as there is no prestressing.

 $\begin{aligned} A_c &= 1657.5 \text{ in}^2 & (AASHTO LRFD B5.2) "A_c" \text{ is the} \\ area of concrete on the flexural } \\ s &= 7.80 \text{ in} & tension side of the cap, from the} \\ extreme tension fiber to one half \\ the cap depth. \\ & "A_c" \text{ is needed if } AASHTO LRFD } \end{aligned}$

" A_c " is needed if AASHTO LRFL Eq. B5.2-3 is negative.

The transverse reinforcement, " A_v ", is double closed stirrups. The failure surface intersects four stirrup legs, therefore the area of the shear steel is four times the stirrup bar's area (0.44in2). See the sketch of the failure plane to the left.

Figure 4.24 Failure Surface of 0 Degree Skewed ITBC for Combined Shear and Torsion

$$\begin{split} A_v &= 2 \text{legs} \cdot 2 \text{stirrups} \cdot A_{\text{bar}_S} & A_v &= 1.76 \text{ in}^2 \\ A_t &= 1 \text{leg} \cdot A_{\text{bar}_S} & A_t &= 0.44 \text{ in}^2 \\ A_{\text{oh}} &= (d_{\text{stem}}) \cdot (b_{\text{stem}} - 2 \text{cover}) + (d_{\text{ledge}} - 2 \text{cover}) \cdot (b_f - 2 \text{cover}) \\ & A_{\text{oh}} &= 3496 \text{ in}^2 \\ A_0 &= 0.85A_{\text{oh}} & A_0 &= 2971.6 \text{in}^2 \\ p_h &= (b_{\text{stem}} - 2 \text{cover}) + 2(b_{\text{ledge}}) + (b_f - 2 \text{cover}) + 2(h_{\text{cap}} - 2 \text{cover}) \\ & p_h &= 324 \text{ in} \end{split}$$

Equivalent Shear Force

$$V_{u_{Eq}} = \sqrt{V_{u}^{2} + \left(\frac{0.9p_{h}T_{u}}{2A_{0}}\right)^{2}} \qquad V_{u_{Eq}} = 592.6 \text{ kip } (AASHTO LRFD Eq. B.5.2-1)$$

Shear Steel Required

 V_n = the lesser of:

$$V_c + V_s + V_p$$
(AASHTO LRFD Eq. 5.7.3.3-1) $0.25 \cdot f_c \cdot b_v \cdot d_v + V_p$ (AASHTO LRFD Eq. 5.7.3.3-2)

Check maximum ΦV_n for section:

 $\Phi V_{n_{max}} = \Phi \cdot \left(0.25 \cdot f_{c} \cdot b_{v} \cdot d_{v} + V_{p} \right)$

$$\Phi V_{n_{max}} = 3539 \text{ kip}$$

$$V_u = 447.4 \text{ kip} < \Phi V_{n_max}$$
 MaxShearCheck = "OK!"

Calculate required shear steel:

$$V_{u} < \Phi V_{n}$$

$$V_{c} = 0.0316 \cdot \beta \cdot \sqrt{f_{c}} \cdot b_{v} \cdot d_{v}$$

$$V_{u} < \Phi_{V} \cdot (V_{c} + V_{s} + V_{p})$$

$$V_{s} = \frac{A_{v} \cdot f_{y} \cdot d_{v} \cdot (\cot\theta + \cot\alpha) \cdot \sin\alpha}{s_{req}}$$

$$a_{v_{r}req} = \frac{\frac{V_{u}}{\Phi_{V}} - V_{c} - V_{p}}{f_{v} \cdot d_{v} \cdot (\cot\theta + \cot\alpha) \cdot \sin\alpha}$$

(AASHTO LRFD Eq. 1.3.2.1-1) V_c = 496 kip (AASHTO LRFD Eq. 5.7.3.3-3)

$$a_{v_req} = 0.002 \frac{\mathrm{in}^2}{\mathrm{ft}}$$

The transverse reinforcement is

$$a_{t_req} = 0.22 \frac{in^2}{ft}$$

Total Required Transverse Steel

 $T_n = \frac{2A_oA_tf_y cot\theta}{s_{bar_S}}$

 $a_{t_req} = \frac{T_u}{\Phi_T 2 A_o f_y cot \theta}$

Torsional Steel Required

 $\Phi_{\rm T} = 0.9$

 $T_u \leq \Phi_T T_n$

$$\begin{array}{ll} a_{req} = a_{v_req} + 2sides \cdot a_{t_req} & a_{req} = 0.44 \ \frac{in^2}{ft} & designed for the side of the section \\ a_{prov} = \frac{A_v}{s_{bar_S}} & a_{prov} = 2.71 \frac{in^2}{ft} & designed for the side of the section \\ a_{prov} = 2.71 \frac{in^2}{ft} & designed for the side of the section \\ designed for the section \\ designed for the side of the section \\ designed for the side of the section \\ designed for the section$$

Longitudinal Reinforcement

$$\begin{split} A_{ps}f_{ps} + A_{s}f_{y} &\geq \frac{|M_{u}|}{\Phi d_{v}} + \frac{0.5N_{u}}{\Phi} + \cdots \\ & cot\Theta \sqrt{\left(\left|\frac{V_{u}}{\Phi} - V_{p}\right| - 0.5V_{s}\right)^{2} + \left(\frac{0.45 \ h}{2A_{0}\Phi}\right)^{2}} \\ V_{s} &= a_{t_req} \cdot f_{y} \cdot d_{v} \cdot (cot\Theta + cot\alpha) \cdot sin\alpha \end{split} \qquad (AASHTO LRFD Eq. 5.7.3.3-4) \end{split}$$

Bounded By:
$$V_s < \frac{V_u}{\Phi_V}$$

 $V_s = 497.1 \text{ kip}$ (AASHTO LRFD Eq. 5.7.3.5-1)

$$\frac{|M_u|}{\Phi_f d_v} + \frac{0.5N_u}{\Phi_c} + \cot\theta \sqrt{\left(\left|\frac{V_u}{\Phi_V} - V_p\right| - 0.5V_s\right)^2 + \left(\frac{0.45 \text{ }_h T_u}{2A_0 \Phi_T}\right)^2} = 502 \text{ kip}$$

Provided Force:

$$A_s f_y = 561.6 \text{ kip} > 502 \text{ kip}$$
 Longitu

LongitudinalReinfChk = "OK!"

4.2.12.5 Maximum Spacing of Transverse Reinforcement		(AASHTO LRFD 5.7.2.6)
Shear Stress		
$v_u = \frac{ v_u - \Phi_V v_p }{\Phi_V b_v d_v}$	$v_u = 0.158$ ksi	(AASHTO LRFD Eq. 5.7.2.8-1)
$0.125 \cdot f_c = 0.625 \text{ ksi}$		
If $v_u < 0.125 \cdot f_c$		(AASHTO LRFD Eq. 5.7.2.6-1)
$s_{max} = min(0.8d_v, 24in)$		
If $v_u \ge 0.125 \cdot f_c$		(AASHTO LRFD Eq. 5.7.2.6-2)
$s_{max} = min(0.4d_v, 12in)$		
Since $v_u < 0.125 \cdot f_c$	$s_{max} = 24.00$ in	
TxDOT limits the maximum transverse reinforcement sp	pacing to 12".	(BDM-LRFD, Ch. 4, Sect. 5,
$s_{max} = 12.00$ in		Detailing)
$s_{\text{bar}_S} = 7.80 \text{ in } < s_{\text{max}}$	SpacingCheck= "C	<mark>K!"</mark>

Hanger Reinforcement Summary:

Use double # 6 stirrups @ 7.80" maximum spacing

4.2.13 End Reinforcements (Bars U1, U2, U3, and G)

Extra vertical, horizontal, and diagonal reinforcing at the end surfaces is provided to reduce the maximum crack widths. According to the parametric analysis, it is recommended to place #6 U1 Bars, U2 Bars, and U3 Bars at the end faces and #7 G Bars at approximately 6in. spacing at the first 30" to 35" of the end of bent cap. U1 Bars are the vertical end reinforcements, U2 Bars and U3 Bars are the horizontal end reinforcements at the stem and the ledge, respectively. G Bars are the diagonal end reinforcement.

Figure 4.25 End Face Section View of 0 Degree ITBC

Figure 4.26 End Face Elevation View of 0 Degree ITBC

4.2.14 Skin Reinforcement (Bars T)

Try 7 ~ # 6 bars in Stem and 3 ~ # 6 bars in Ledge on each side

Figure 4.27 Section View for T Bars of 0 Degree Skewed ITBC

4.2.14.1 Required Area of Skin Reinforcement

(AASHTO LRFD 5.6.7)

 $A_{sk_Req} = 0.62 \frac{in^2}{ft}$ (AASHTO LRFD Eq. 5.6.7-3)

 $A_{sk_Req} = 0.012 \cdot (d - 30)$

 A_{sk} need not be greater than one quarter of the main reinforcing ($A_s/4$)per side face within d/2 of the main reinforcing. (AASHTO LRFD 5.6.7)

"d" is the distance from the extreme compression fiber to the centroid of the extreme tension steel element. In this example design, $d = d_{s_pos} = d_{s_neg} = 81.42$ in.

$$A_{sk_max} = max \left(\frac{\frac{A_{bar_A} \cdot BarANo}{4}}{\frac{d_{s_neg}}{2}}, \frac{\frac{A_{bar_B} \cdot BarBNo}{4}}{\frac{d_{s_pos}}{2}}\right)$$
$$A_{sk_max} = 1.26 \frac{in^2}{ft}$$
$$A_{skReq} = min(A_{sk_Req}, A_{sk_max})$$
$$A_{skReq} = 0.62 \frac{in^2}{ft}$$

4.2.14.2 Required Spacing of Skin Reinforcement

 $s_{req} = minimum of:$

$$\frac{A_{bar_T}}{A_{skReq}} = 8.52 \text{ in}$$

(AASHTO LRFD 5.6.7)

$$\frac{d_{s_neg}}{6} = 13.57 \text{ in}$$

 $\frac{d_{s_pos}}{6} = 13.57 \text{ in}$
& 12 in

 $s_{req} = 8.52$ in

4.2.14.3 Actual Spacing of Skin Reinforcement

Check T Bars spacing in Stem:

$$\begin{split} h_{top} &= d_{stem} - \left(cover + \frac{d_{bar_S}}{2} + \frac{d_{bar_A}}{2} \right) + \left(cover + \frac{d_{bar_M}}{2} + \frac{d_{bar_T}}{2} \right) \\ h_{top} &= 56.67 \text{ in} \end{split}$$

$$s_{skStem} = \frac{h_{top}}{NoTBarsStem+1}$$

$$s_{skStem} = 7.08 in$$

< Sreq

Check T Bars spacing in Ledge:

$$\begin{split} h_{bot} &= d_{ledge} - \left(cover + \frac{d_{bar_M}}{2} + \frac{d_{bar_T}}{2} \right) - \left(cover + \frac{d_{bar_S}}{2} + \frac{d_{bar_B}}{2} \right) \\ h_{bot} &= 21.17 \text{ in} \\ s_{skLedge} &= \frac{h_{bot} - a}{NoTBarsLedge -} \end{split}$$

$$s_{skLedge} < s_{req}$$
 $s_{kLedge} = 7.59 \text{ in}$
SkinSpacing = "OK!"

Check if "a" is less than s_{req}

$$a = 6 in < s_{req}$$

SkinSpacing = "OK!"

Skin Reinforcement Summary:

Use $7 \sim #6$ bars in Stem and $3 \sim #6$ bars in Ledge on each side

4.2.15 Design Details and Drawings

4.2.15.1 Bridge Layout

4.2.15.2 <u>CAP 18 Input File</u>

 \$File
 Proj
 User
 Date (Today

 \$ Num
 County
 Highway
 Num
 CSJ
 Init
 if Blank)
 Comment

 \$xxxx
 xxxxxxxxxxxxx
 xxxxx
 xxxx
 xxxx
 xxxx
 xxxxx
 xxxxx

 00001

 Highwy
 Pro#
 0000-00-000
 BRG
 Comment

 \$Header
 Card 2

 Comment
 CAP18 Version 6.00 ITBC Design Example 1, Skew = 0.00 \$Problem Card -----1 E 0 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay) STABLE 1 - CONTROL DATA -----Enter 1 to keep: Number cards Options: Env Tab2 Tab3 Tab4 on Table 4 Envelope Pt Ŝ Env Tab2 Tab3 Tab4 Env Tab2 Tab3 Tab4 on Table 4 Envelope Print Skew Angle X X X X X XX XX XXXXXXXXXX 16 0.0 Ś ŝ 16 0.0 STABLE 2 - CONSTANTS -----Anly Opt (1=Working, |-Movable Load Data--| 2=Load Factor,3=Both) TABLE 2a Num Increment |Num Start Stop Step|Anly| Load Factors: Ŝ Inc Sta Sta Size| Opt| Dead Live XXX XXX XXX X X X XXXXXXXX XXXXXXX 20 2 70 1 3 1.25 1.75 S Inc Length XX XXXXXXXXX ŝ 92 0.5 Ŝ TABLE 2b Max # |-----Live Load Reduction Factors----------Overlay Ŝ Str - Stringers, Sup - Supports MCP - Moment Control Points VCP - Shear Control Points Number of input values for S Lane Str Sup MCP VCP ŝ XX XX XX XX XX XX (Num Inputs) 3 6 4 11 8 Ŝ Ŝ Left Lane Boundary Stations S Right Lane Boundary Stations Ŝ Ś Station of Stringers (two rows max, may be at tenths of stations, XX.X) (Stringers) 6 22 38 54 70 26 ŝ \$ Station of Supports (two rows max) Ś ŝ (Supports) ŝ Moment Control Point Stations (two rows max) Ś 6 10 22 34 38 46 (Mom CP) 54 58 70 82 (Mom CP) 86 Shear Control Point Stations (two rows max) Ŝ
 XXX
 XXX</th Ŝ 56 60 \$TABLE 4 - STIFFNESS AND LOAD DATA -----Bending Sidewalk, Cap & Station 1 if Stiffness Slab Stringer Moving Overlav From To Cont'd of Cap Loads SComments Loads Loads Loads, DW \$XXXXXXXXXXXXXXX XXX 2 (CAP EI & DL) 90 8.09E+07 -2.427(DL Span1, Bm1) -50.17 6 6 -5.04 (DL Span1, Bm2) 22 22 -50.17 -5.04 (DL Span1, Bm3) 38 38 -50.17 -5.04 -50.17(DL Span1, Bm4) 54 54 -5.04 (DL Span1, Bm5) 70 70 -50.17-5.04 (DL Span1, Bm6) 86 86 -50.17 -5.04 (DL Span2, Bm1) 6 6 -104.1 -10.5 -10.5 (DL Span2, Bm2) 22 22 -104.1 (DL Span2, Bm3) 38 38 -104.1 -10.5 (DL Span2, Bm4) 54 54 -104.1-10.5 (DL Span2, Bm5) 70 70 -104.1-10.5 (DL Span2, Bm6) 86 86 -104.1 -10.5 0 4 -4.92 (Dist. Lane Ld) 20 (Conc. Lane Ld) -21.3 4 (Conc. Lane Ld) 16 16 -21.3

4.2.15.3 CAP 18 Output File

AUG 06, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 1 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011) PSF HIGHWAY PD- CONTROL- CODED COUNTY NO IPE SECTION-JOB BY DATE NO 00001 ___County____ Highwy Pro# 0000-00-000 BRG AUG 06, 2020 Comment CAP18 Version 6.00 ITBC Design Example 1, Skew = 0.00 PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'la ENGLISH SYSTEM UNITS TABLE 1. CONTROL DATA OPTION TO PRINT TABLE SRS (1=YES) 0 ENVELOPES TABLE NUMBER OF MAXIMUMS 2 3 4 KEEP FROM PRECEDING PROBLEM (1=YES) 0 0 0 0 CARDS INPUT THIS PROBLEM 16 OPTION TO CLEAR ENVELOPES BEFORE LANE LOADINGS (1=YES) 0 OPTION TO OMIT PRINT FOR TABLES (TABLE DESIGNATIONS IN PARENTHESES) -1(4A), -2(5) -3(4A,5), -4(4A,5,6), -5(4A,5,6,7): 0 SKEW ANGLE, DEGREES 0.000 TABLE 2. CONSTANTS NUMBER OF INCREMENTS FOR SLAB AND CAP 92 INCREMENT LENGTH, FT 0.500 NUMBER OF INCREMENTS FOR MOVABLE LOAD 20 START POSITION OF MOVABLE-LOAD STA ZERO 2 STOP POSITION OF MOVABLE-LOAD STA ZERO 70 NUMBER OF INCREMENTS BETWEEN EACH POSITION OF MOVABLE LOAD 1 ANALYSIS OPTION (1=WORKING STRESS, 2=LOAD FACTOR, 3=BOTH) 3 LOAD FACTOR FOR DEAD LOAD 1.25 LOAD FACTOR FOR OVERLAY LOAD 1.50 LOAD FACTOR FOR LIVE LOAD 1.75 MAXIMUM NUMBER OF LANES TO BE LOADED SIMULTANEOUSLY 3 LIST OF LOAD COEFFICIENTS CORRESPONDING TO NUMBER OF LANES LOADED 1 2 3 4 5 1.000 1.200 0.850

AUG 06, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 2 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'la (CONTINUED)

TABLE 3. LISTS OF STATIONS

 NUM OF LANES
 NUM OF STRINGERS
 NUM OF SUPPORTS
 NUM MOM CONTR PTS
 NUM SHEAR CONTR PTS

 LANE LEFT
 2
 32
 60
 4
 11
 8

 LANE LEFT
 2
 32
 60
 90
 5
 5
 5

 LANE RIGHT
 32
 60
 90
 5
 5
 6
 90

 STRINGERS
 6.0
 22.0
 38.0
 5
 4.0
 70.0
 8
 0

 SUPPORTS
 10
 34
 58
 82
 9
 10
 34
 58
 70
 82

 MOM CONTR
 6
 10
 22
 34
 38
 46
 54
 58
 70
 82

 86
 5
 56
 60
 80
 84
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

TABLE 4. STIFFNESS AND LOAD DATA

							-			
FIXE	D-0	R-N	IOVABLE	FD	XED-POSIT	ION DAT	A	- MO	VABLE-	
STA	ST/	A C	ONTD CAP I	BENDING	G SIDEWA	LK, STR	INGER, C	VERL	AY POSITIC	ΟN
FRO	M ⁻	ГО	IF=1 STIFFN	IESS SL	AB LOADS	S CAP LC	DADS LO	ADS	SLAB LOAD	DS
		(K	(-FT*FT) (K) (K) (K)	(K)				
							-			
2	90	0	80900000.0	000 0.	000 -2.4	27 0.0	0.00	00		
6	6	0	0.000	0.000	-50.170	-5.040	0.000			
22	22	0	0.000	0.000	-50.170	-5.040	0.000			
38	38	0	0.000	0.000	-50.170	-5.040	0.000			
54	54	0	0.000	0.000	-50.170	-5.040	0.000			
70	70	0	0.000	0.000	-50.170	-5.040	0.000			
86	86	0	0.000	0.000	-50.170	-5.040	0.000			
6	6	0	0.000	0.000	-104.100	-10.500	0.000			
22	22	0	0.000	0.000	-104.100	-10.50	0 0.000			
38	38	0	0.000	0.000	-104.100	-10.50	0 0.000			
54	54	0	0.000	0.000	-104.100	-10.50	0 0.000			
70	70	0	0.000	0.000	-104.100	-10.50	0 0.000			
86	86	0	0.000	0.000	-104.100	-10.50	0 0.000			
0	20	0	0.000	0.000	0.000	0.000	-4.920			
4	4	0	0.000	0.000	0.000	0.000	-21.300			
16	16	0	0.000	0.000	0.000	0.000	-21.300			

TABLE 4A. DEAD LOAD RESULTS (WORKING STRESS)

STA	DIST X (FT) DEFLECTIO	N (FT)	MOMENT (K-FT)	SHEAR (K)
-1	-0.50	0.000000	0.0	0.0	
0	0.00	0.000000	0.0	0.0	
1	0.50	-0.000034	0.0	0.0	
2	1.00	-0.000029	0.0	-0.6	
3	1.50	-0.000025	-0.6	-2.4	
4	2.00	-0.000021	-2.4	-4.9	
5	2.50	-0.000017	-5.5	-7.3	
07	3.00	-0.000013	-9.7	-94.0	
6	3.50	-0.000009	101	-101.9	
0	4.00	-0.000003	-191./	-104.4	
10	4.50	-0.000002	-204.4	-100.0	
11	5.50	0.000000	-370.	5 1167	
12	6.00	0.000001	-261	7 1143	
13	6.50	0.000000	-205	2 111.9	
14	7.00	-0.000001	-149.	8 109.5	
15	7.50	-0.000003	-95.7	107.0	
16	8.00	-0.000005	-42.8	104.6	
17	8.50	-0.000007	8.9	102.2	
18	9.00	-0.000009	59.4	99.8	
19	9.50	-0.000011	108.	7 97.3	
20	10.00	-0.000013	156	.7 94.9	
21	10.50	-0.000014	203	.6 92.5	
22	11.00	-0.000015	249	.2 5.1	
23	11.50	-0.000015	208	.7 -82.2	
24	12.00	-0.000014	167	.0 -84.6	
25	12.50	-0.000012	124	.1 -87.0	
26	13.00	-0.000011	80.	0 -89.5	
27	13.50	-0.000009	34.	6 -91.9	
28	14.00	-0.000006	-11.	9 -94.3	
29	14.50	-0.000004	-59.	7 -96.8	
30	15.00	-0.000003	-108	.7 -99.2	
31	15.50	-0.000001	-158	.9 -101.6	
32	16.00	0.000000	-210	.3 -104.0	
34	17.00	0.000000	-202	7 450	
34	17.00	-0.000000	-217	9 196.5	
36	18.00	-0.000001	-120	2 194.1	
37	18.50	-0.000006	-23	8 191.7	
38	19.00	-0.000008	71.	4 104.3	
39	19.50	-0.000011	80.	5 17.0	
40	20.00	-0.000013	88.	4 14.6	
41	20.50	-0.000015	95.	1 12.1	
42	21.00	-0.000016	100	.5 9.7	
43	21.50	-0.000017	104	.8 7.3	

TABLE 4A. DEAD LOAD RESULTS (WORKING STRESS)

STA	DIST X (FT)	DEFLECTIO	N (FT) MO	MENT (K-FT)	SHEAR (K)
44	22.00	-0.000018	107.8	4.9	
45	22.50	-0.000019	109.6	2.4	
46	23.00	-0.000019	110.2	0.0	
47	23.50	-0.000019	109.6	-2.4	
48	24.00	-0.000018	107.8	-4.9	
49	24.50	-0.000017	104.8	-7.3	
50	25.00	-0.000016	100.5	-9.7	
51	25.50	-0.000015	95.1	-12.1	
52	26.00	-0.000013	88.4	-14.6	
53	26.50	-0.000011	80.5	-17.0	
54	27.00	-0.000008	71.4	-104.3	
55	27.50	-0.000006	-23.8	-191.7	
56	28.00	-0.000003	-120.2	-194.1	
57	28.50	-0.000001	-217.9	-196.5	
58	29.00	0.000000	-316.7	-45.0	
59	29.50	0.000000	-262.9	106.5	
60	30.00	0.000000	-210.3	104.0	
61	30.50	-0.000001	-158.9	101.6	
62	31.00	-0.000003	-108.7	99.2	
63	31.50	-0.000004	-59.7	96.8	
64	32.00	-0.000006	-11.9	94.3	
65	32.50	-0.000009	34.6	91.9	
66	33.00	-0.000011	80.0	89.5	
67	33.50	-0.000012	124.1	87.0	
68	34.00	-0.000014	167.0	84.6	
69	34.50	-0.000015	208.7	82.2	
70	35.00	-0.000015	249.2	-5.1	
71	35.50	-0.000014	203.6	-92.5	
72	36.00	-0.000013	156.7	-94.9	
73	36.50	-0.000011	108.7	-97.3	
74	37.00	-0.000009	59.4	-99.8	
75	37.50	-0.000007	8.9	-102.2	
76	38.00	-0.000005	-42.8	-104.6	
77	38.50	-0.000003	-95.7	-107.0	
78	39.00	-0.000001	-149.8	-109.5	
79	39.50	0.000000	-205.2	-111.9	
80	40.00	0.000001	-261.7	-114.3	
81	40.50	0.000001	-319.5	-116.7	
82	41.00	0.000000	-378.5	35.0	
83	41.50	-0.000002	-284.4	186.8	
84	42.00	-0.000005	-191.7	184.4	
85	42.50	-0.000009	-100.1	181.9	
86	43.00	-0.000013	-9.7	94.6	
87	43.50	-0.000017	-5.5	7.3	
88	44.00	-0.000021	-2.4	4.9	
89	44.50	-0.000025	-0.6	2.4	
90	45.00	-0.000029	0.0	0.6	

91	45.50	-0.000034	0.0	0.0
92	46.00	0.000000	0.0	0.0
93	46.50	0.000000	0.0	0.0

AUG 06, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 5 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'la (CONTINUED)

TABLE 5. MULTI-LANE LOADING SUMMARY (WORKING STRESS) (*--CRITICAL NUMBER OF LANE LOADS)

MOMENT (FT-K)

AT STA	DEAD LD EFFECT	LANE ORDE	POSITIVE R MAXIMU	LOAD AT	STA	ANE NEGATIVE LOAD AT ORDER MAXIMUM LANE STA
6	-9.7 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 1 2 3 0*	0.0 0.0 0.0 0.0		
10	-378.5 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 1 2 3 0*	-176.2 -176.2 0.0 0.0	1 2 1 2	
22	249.2 0 1 2 3 0*	202.0 201.2 9.3 0.0	0 13 1 12 3 62 2 3 0*	0 -33.4 1 -33.4 0.0 0.0	2 2	36 36
34	-316.7 0 1 2 3 0*	18.7 18.7 0.0 0.0	3 62 0 3 62 1 2 3 2*	0 -136.3 -116.6 -84.7 2 0.0	0 1 32	18 12
38	71.4 0 1 2 3 0*	83.6 83.6 3.2 0.0	2 32 0 2 32 1 3 62 2 3 0*	0 -58.8 I -58.8 0.0 0.0	1	9 9
46	110.2 0 1 2 3 0*	69.4 69.4 0.0 0.0	2 36 0 2 36 1 2 3 2*) -27.8 -27.8 -27.8 3 -27.8 3	1 1 63	9 9
54	71.4 0 1 2 3 0*	83.6 83.6 3.2 0.0	2 40 0 2 40 1 1 10 2 3 0*	0 -58.8 I -58.8 0.0 0.0	3 3	63 63
58	-316.7 0 1 2 3 0*	18.7 18.7 0.0 0.0	1 9 0 1 9 1 2 3 2*	-136.3 -116.6 -84.7 2 0.0	0 3 40	54 60

AUG 06, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 6 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'la (CONTINUED)

MOMENT (FT-K)

-----AT DEAD LD LANE POSITIVE LOAD AT LANE NEGATIVE LOAD AT STA EFFECT ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE STA _____ 70 249.2 0 1 2 3 3 0.0 0.0 0* 0* 82 -378.5 0.0 0 -176.3 3 70 0 0.0 1 -176.3 3 70 1 2 0.0 2 0.0 3 0.0 3 0.0 0* 0* 86 -9.7 0 0.0 0 0.0 1 0.0 1 0.0 2 0.0 2 0.0 3 0.0 3 0.0 0* 0*

AUG 06, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 7
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

SHEAR (K)

AT STA	DEAD LD EFFECT	LANE POSITIVE LOAD AT LANE NEGATIVE LOAD AT ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE S	ТА
8	-184.4 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
12	114.3 0 1 2 3 0*	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
32	-104.0 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
36	194.1 0 1 2 3 2*	87.6 0 28 0 -7.8 3 63 84.1 2 32 1 -7.8 3 63 30.7 1 12 2 0.0 0.0 3 0.0 0*	
56	-194.1 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
60	104.0 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
80	-114.3 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
84	184.4 0 1 2 3 0*	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

AUG 06, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 8
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

REACTION (K)

AT STA	DEAD LD EFFECT	ORDE	POSITIVE R MAXIMUN	LOAD A VI LANE	T LANE STA OR	NEGATIVE LOA DER MAXIMUM	D AT LANE STA
10	308.4 0 1 2 3 0*	127.9 127.9 1.6 0.0	1 2 0 1 2 1 3 62 2 3 0*	-5.6 -5.6 0.0 0.0	2 36 2 36		
34	307.8 0 1 2 3 2*	117.1 95.3 83.6 0.0	0 22 0 2 32 1 1 12 2 3 0*	-9.3 -9.3 0.0 0.0	3 63 3 63		
58	307.8 0 1 2 3 2*	117.1 95.3 83.6 0.0	0 50 0 2 40 1 3 60 2 3 0*	-9.3 -9.3 0.0 0.0	19 19		
82	308.4 0 1 2 3 0*	127.9 127.9 1.6 0.0	3 70 0 3 70 1 1 9 2 3 0*	-5.6 -5.6 0.0 0.0	2 36 2 36		

TABLE 6. ENVELOPES OF MAXIMUM VALUES (WORKING STRESS)

STA	DIST X	MAX + I	мом м.	AX - MOM	MAX + SHEAR	MAX - SHEAR
	(FT) (FT-K) (FT-K)	(K) ((K)	
	-0.50	0.0	0.0	0.0		
0	0.00	0.0	0.0	0.0	0.0	
1	0.50	0.0	0.0	0.0	0.0	
2	1.00	0.0	0.0	-0.6	-0.6	
3	1.50	-0.6	-0.6	-2.4	-2.4	
4	2.00	-2.4	-2.4	-4.9	-4.9	
5	2.50	-5.5	-5.5	-7.3	-7.3	
6	3.00	-9.7	-9.7	-94.6	-147.5	
7	3.50	-100.1	-152.9	-181.9	-287.7	
8	4.00	-191.7	-297.4	-184.4	-290.1	
9	4.50	-284.4	-443.1	-186.8	-292.5	
10	5.00	-378.5	-590.0	-18.1	-64.1	
11	5.50	-306.4	-507.1	170.5	110.1	
12	6.00	-230.8	-425.5	168.1	107.6	
13	0.50	-155.9	-345.1	163.7	105.2	
14	7.00	-82.2	-205.9	160.9	102.8	
16	8.00	63.6	-107.9	158.4	97.9	
17	8 50	136.3	-35.6	156.0	95.5	
18	9.00	208.8	32.7	153.5	93.1	
19	9.50	280.5	78.6	151.1	90.7	
20	10.00	351.7	123.4	148.7	88.2	
21	10.50	422.0	166.9	146.3	85.8	
22	11.00	491.6	209.2	21.1	-8.0	
23	11.50	418.8	165.0	-80.3	-147.7	
24	12.00	344.9	119.4	-82.7	-150.2	
25	12.50	270.2	72.4	-85.2	-152.6	
26	13.00	194.5	24.0	-87.6	-155.0	
27	13.50	118.3	-26.0	-90.0	-157.5	
28	14.00	47.3	-//.1	-92.5	-159.9	
29	14.50	-23.4	-129.5	-94.9	-162.3	
21	15.00	-90.0	-165.5	-97.5	-167.2	
37	16.00	-139.5	-204.0	-99.7	-107.2	
33	16.50	-741 4	-432.1	-102.2	-172.0	
34	17.00	-294.3	-518.0	88.8	27.4	
35	17.50	-200.1	-361.7	311.3	187.2	
36	18.00	-107.1	-224.4	308.9	184.8	
37	18.50	26.9	-108.8	306.5	182.4	
38	19.00	171.7	0.8	162.8	95.0	
39	19.50	177.8	14.6	26.3	7.7	
40	20.00	183.1	27.1	23.9	5.3	
41	20.50	187.3	38.4	21.4	2.8	
42	21.00	190.7	44.9	19.0	0.4	

TABLE 6. ENVELOPES OF MAXIMUM VALUES (WORKING STRESS)

STA		MAX + I	MOM MA	X - MOM	MAX + SHEAR	MAX - SHEAR
5.17	(FT) (FT-K) (FT-K)	(K) (I	()	
43	21.50	192.9	49.1	16.6	-2.0	
44	22.00	193.8	52.2	14.2	-4.4	
45	22.50	193.6	54.0	11.7	-6.9	
46	23.00	193.5	54.6	9.3	-9.3	
47	23.50	193.6	54.0	6.9	-11.7	
48	24.00	193.8	52.2	4.4	-14.2	
49	24.50	192.9	49.1	2.0	-16.6	
50	25.00	190.7	44.9	-0.4	-19.0	
51	25.50	187.3	38.4	-2.8	-21.4	
52	26.00	183.1	27.1	-5.3	-23.9	
53	26.50	177.8	14.6	-7.7	-26.3	
54	27.00	171.7	0.8	-95.0	-162.8	
55	27.50	26.9	-108.8	-182.4	-306.5	
56	28.00	-107.1	-224.4	-184.8	-308.9	
57	28.50	-200.1	-361.7	-187.2	-311.3	
58	29.00	-294.3	-518.0	-27.4	-88.8	
59	29.50	-241.4	-432.1	172.0	104.6	
60	30.00	-189.7	-347.4	169.6	102.2	
61	30.50	-139.3	-264.0	167.2	99.7	
62	31.00	-90.0	-183.5	164.7	97.3	
63	31.50	-23.4	-129.5	162.3	94.9	
64	32.00	47.3	-77.1	159.9	92.5	
65	32.50	118.3	-26.0	157.5	90.0	
66	33.00	194.5	24.0	155.0	87.6	
67	33.50	270.2	72.4	152.6	85.2	
68	34.00	344.9	119.4	150.2	82.7	
69	34.50	418.8	165.0	147.7	80.3	
70	35.00	491.6	209.2	8.0	-21.1	
71	35.50	422.0	166.9	-85.8	-146.3	
72	36.00	351.7	123.4	-88.2	-148.7	
73	36.50	280.5	78.6	-90.7	-151.1	
74	37.00	208.8	32.7	-93.1	-153.5	
75	37.50	136.3	-35.6	-95.5	-156.0	
76	38.00	63.6	-111.2	-97.9	-158.4	
77	38.50	-9.3	-187.9	-100.4	-160.8	
78	39.00	-82.2	-265.9	-102.8	-163.3	
79	39.50	-155.9	-345.1	-105.2	-165.7	
80	40.00	-230.8	-425.5	-107.6	-168.1	
81	40.50	-306.4	-507.1	-110.1	-170.5	
82	41.00	-378.5	-590.0	64.1	18.1	
83	41.50	-284.4	-443.1	292.5	186.8	
84	42.00	-191.7	-297.4	290.1	184.4	
85	42.50	-100.1	-152.9	287.7	181.9	
86	43.00	-9.7	-9.7	147.5	94.6	
AUG 06, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 11			
--------------	-----------------------	-----------------------	---------			
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)				

TABLE 6. ENVELOPES OF MAXIMUM VALUES (WORKING STRESS)

STA	DIST X	MAX	+ MOM	MAX - MO	DM MAX	+ SHEAR	MAX - SHEAR
	(FT)	(FT-K)	(FT-K)	(K)	(K)		
87	43.50	-5.5	-5.5	7.3	7.3		
88	44.00	-2.4	-2.4	4.9	4.9		
89	44.50	-0.6	-0.6	2.4	2.4		
90	45.00	0.0	0.0	0.6	0.6		
91	45.50	0.0	0.0	0.0	0.0		
92	46.00	0.0	0.0	0.0	0.0		
93	46.50	0.0	0.0	0.0	0.0		

TABLE 7. MAXIMUM SUPPORT REACTIONS (WORKING STRESS)

STA	DIST X	MAX +	REACT	MAX - REACT
(F	·T)	(K)	(K)	
10	5.00	461.8	301.	7
34	17.00	486.7	296	.7
58	29.00	486.7	296	.7
82	41.00	461.8	301	.7

TABLE 5. MULTI-LANE LOADING SUMMARY (LOAD FACTOR) (*--CRITICAL NUMBER OF LANE LOADS)

MOMENT (FT-K)

AT STA	DEAD LE EFFECT	D LANE ORDER	POSITIV	/E LOAI IUM LA	D AT ANE S	LA TA	NE	NEG. DER I	ATIVE MAXI	E LO. MUM	AD AT LAI	- NE STA
6	-12.1 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 1 2 3 0*	0.0 0.0 0.0 0.0								
10	-480.8 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 1 2 3 0*	-308.4 -308.4 0.0 0.0	1 1 1	2						
22	316.4 0 1 2 3 0*	353.5 352.1 16.3 0.0	0 13 1 12 3 62 3 0*	0 -5 1 -5 2 0. 0.0	8.4 8.4 .0	2 2	36 36					
34	-401.8 0 1 2 3 0*	32.7 32.7 0.0 0.0	3 62 3 62 2 3 2*	0 -23 1 -20 -148.2 0.0	8.5 4.0 2 2	0 1 32	18 12					
38	91.2 0 1 2 3 0*	146.3 146.3 5.6 0.0	2 32 2 32 3 62 3 0*	0 -10 1 -10 2 0.0 0.0)2.9)2.9)	1 1	9 9					
46	139.7 0 1 2 3 0*	121.4 121.4 0.0 0.0	2 36 2 36 2 3 2*	0 -4 1 -4 -48.7 0.0	8.7 8.7 3	1 1 63	9 9					
54	91.2 0 1 2 3 0*	146.3 146.3 5.6 0.0	2 40 2 40 1 10 2 3 0*	0 -10 1 -10 2 0.0 0.0	2.9 2.9	3 3	63 63					
58	-401.8 0 1 2 3 0*	32.7 32.7 0.0 0.0	1 9 0 1 9 1 2 3 2*) -238. -204. -148.2 0.0	.5 (.0 3 2) 5 3 6 40	4					

AUG 06, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 14
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

MOMENT (FT-K)

AT	DEAD LD	LANE	POSITI	VE L	OAD A	ΛT	LA	NE	NEG	ATIVE	LOA	D AT
STA	EFFECT	ORDER	MAXIN	/UM	LAN	ES	ΓA	OR	DER I	MAXIN	MUM	LANE STA
70	216.4											
/0	510.4	2525	0 50	0	FO A		2	20				
	0	353.5	0 59	0	-58.4	•	2	30				
	1	352.1	3 60	1	-58.4	ł	2	36				
	2	16.3	19	2	0.0							
	3	0.0	3	C	0.0							
	0*		0*									
82	-480.8											
	0	0.0	0	-30	08.4	3	70)				
	1	0.0	1	-30	08.4	3	70)				
	2	0.0	2	C	0	-						
	3	0.0	3	0	0							
	0*	0.0	0*									
	0		0.									
96	12.1											
80	-12.1	0.0	0	~	0							
	0	0.0	0	L L	.0							
	1	0.0	1	C	0.0							
	2	0.0	2	C	0.0							
	3	0.0	3	C	0.0							
	0*		0*									
	0*		0*									

AUG 06, 2020	TEXAS DEPARTMENT OF TRANSPORTATIO	N (TxDOT)	PAGE 15
CAP18	BENT CAP ANALYSIS Ver. 6.2 (Jul,	2011)	

SHEAR (K)

AT STA	DEAD LD EFFECT	O LANE POSITIVE LOAD AT LANE NEGATIVE LOAD AT ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE STA
8	-234.3 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12	145.0 0 1 2 3 0*	78.4 1 6 0 -9.7 2 36 78.4 1 6 1 -9.7 2 36 2.7 3 62 2 0.0 0.0 3 0.0 0*
32	-131.8 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
36	246.5 0 1 2 3 2*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
56	-246.5 0 1 2 3 0*	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
60	131.8 0 1 2 3 0*	95.6 0 57 0 -2.7 1 9 92.7 3 60 1 -2.7 1 9 19.5 2 40 2 0.0 0.0 3 0.0 0*
80	-145.0 0 1 2 3 0*	9.7 2 36 0 -78.4 3 66 9.7 2 36 1 -78.4 3 66 0.0 2 -2.7 1 9 0.0 3 0.0 0*
84	234.3 0 1 2 3 0*	154.2 3 70 0 0.0 154.2 3 70 1 0.0 0.0 2 0.0 0.0 3 0.0 0*

AUG 06, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 16
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

REACTION (K)

						-	
AT STA	DEAD LI EFFECT	D LANE ORDE	e positive R Maximu	E LOAD A JM LANE	t lane Sta o	E NEGATIVE LOA RDER MAXIMUM	D AT LANE STA
10	391.5 0 1 2 3 0*	223.8 223.8 2.7 0.0	1 2 0 1 2 - 3 62 2 3 0*	0 -9.7 1 -9.7 0.0 0.0	2 36 2 36		
34	390.4 0 1 2 3 2*	205.0 166.8 146.3 0.0	0 22 2 32 1 12 3 0*	0 -16.3 1 -16.3 2 0.0 0.0	3 63 3 63	3	
58	390.4 0 1 2 3 2*	205.0 166.8 146.3 0.0	0 50 2 40 3 60 3 0*	0 -16.3 1 -16.3 2 0.0 0.0	19 19		
82	391.5 0 1 2 3 0*	223.8 223.8 2.7 0.0	3 70 3 70 1 9 2 3 0*	0 -9.7 1 -9.7 0.0 0.0	2 36 2 36		

AUG 06, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 17
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

TABLE 0. LIVELOI LO OF MAXIMON VALUES (LOAD FACTOR	TABLE 6.	ENVELOPES	OF MAXIMUM VALUES	(LOAD FACTOR
--	----------	-----------	-------------------	---------------

STA	DIST X	MAX + I	MOM N	AX - MON	1 MAX + S	HEAR	MAX - SHEAR
	(FT)	(FT-K) (FT-K)	(K)	(K)		
	0.50			0.0	0.0		
-1	-0.50	0.0	0.0	0.0	0.0		
1	0.00	0.0	0.0	0.0	0.0		
2	1.00	0.0	0.0	-0.8	-0.8		
2	1.00	-0.8	-0.8	-3.0	-3.0		
4	2.00	-3.0	-3.0	-5.0	-5.0		
5	2.00	-6.8	-6.8	-9.1	-9.1		
6	3.00	-12.1	-12.1	-120.2	-212 7		
7	3.50	-127.0	-219.6	-231.3	-416.4		
8	4.00	-243.5	-428.5	-234.3	-419.4		
9	4.50	-361.4	-639.0	-237.4	-422.4		
10	5.00	-480.8	-851.0	-15.1	-95.5		
11	5.50	-383.1	-734.4	242.2	136.4		
12	6.00	-278.8	-619.5	239.1	133.3		
13	6.50	-174.8	-506.0	236.1	130.3		
14	7.00	-72.4	-394.0	233.1	127.3		
15	7.50	29.0	-283.6	230.0	124.2		
16	8.00	131.2	-174.6	227.0	121.2		
17	8.50	233.6	-67.2	224.0	118.2		
18	9.00	336.3	28.2	220.9	115.1		
19	9.50	438.2	85.0	217.9	112.1		
20	10.00	539.8	140.3	214.9	109.1		
21	10.50	640.4	194.0	211.8	106.0		
22	11.00	740.6	246.3	34.5	-16.4		
23	12.00	632.4	100.3	-101.2	-219.2		
24	12.00	525.T	66.0	-104.3	-222.3		
25	12.50	301.6	23	-107.5	-225.5		
20	13.00	190.1	-62.3	-113.4	-220.5		
28	14.00	88.3	-129 5	-116.4	-234.4		
29	14 50	-12.5	-198.1	-119 5	-237.4		
30	15.00	-105.4	-269.1	-122.5	5 -240.5		
31	15.50	-167.4	-385.7	-125.5	-243.5		
32	16.00	-230.9	-506.9	-128.0	-246.5		
33	16.50	-296.0	-629.7	-131.6	-249.6	,	
34	17.00	-362.5	-754.0	134.0	26.6		
35	17.50	-245.1	-528.0	450.4	233.2		
36	18.00	-129.3	-334.5	447.4	230.2		
37	18.50	59.0	-178.5	444.4	227.2		
38	19.00	266.8	-32.3	234.6	116.1		
39	19.50	272.9	-12.8	37.5	5.0		
40	20.00	278.1	5.2	34.5	1.9		
41	20.50	282.2	21.7	31.4	-1.1		
42	21.00	285.4	30.2	28.4	-4.1		
43	21.50	287.1	35.5	25.4	-/.2		
44	22.00	207.2	59.5	22.5	-10.Z		

45	22.50	285.9	41.6	19.3	-13.2	
46	23.00	285.4	42.4	16.3	-16.3	
47	23.50	285.9	41.6	13.2	-19.3	
48	24.00	287.2	39.3	10.2	-22.3	
AUG 06	, 2020	TEXAS DEP	ARTMENT	OF TRAN	SPORTATION (TxDOT)	PAGE 18
CAP18		BENT C	AP ANALY	SIS V	er. 6.2 (Jul, 2011)	

TABLE 6. ENVELOPES OF MAXIMUM VALUES (LOAD FACTOR)

STA	DIST X	MAX + N	IOM MA	AX - MOM	MAX + SHEAR	MAX - SHEAR
(FT) (FT-K) (I	-T-K) ((K) (I	<)	
49	24.50	287.1	35.5	7.2	-25.4	
50	25.00	285.4	30.2	4.1	-28.4	
51	25.50	282.2	21.7	1.1	-31.4	
52	26.00	278.1	5.2	-1.9	-34.5	
53	26.50	272.9	-12.8	-5.0	-37.5	
54	27.00	266.8	-32.3	-116.1	-234.6	
55	27.50	59.0	-178.5	-227.2	-444.4	
56	28.00	-129.3	-334.5	-230.2	-447.4	
57	28.50	-245.1	-528.0	-233.2	-450.4	
58	29.00	-362.5	-754.0	-26.6	-134.0	
59	29.50	-296.0	-629.7	249.6	131.6	
60	30.00	-230.9	-506.9	246.5	128.6	
61	30.50	-167.4	-385.7	243.5	125.5	
62	31.00	-105.4	-269.1	240.5	122.5	
63	31.50	-12.5	-198.1	237.4	119.5	
64	32.00	88.3	-129.5	234.4	116.4	
65	32.50	190.1	-62.3	231.4	113.4	
66	33.00	301.6	3.3	228.3	110.3	
67	33.50	413.0	66.9	225.3	107.3	
68	34.00	523.1	128.6	222.3	104.3	
69	34.50	632.4	188.3	219.2	101.2	
70	35.00	740.6	246.3	16.4	-34.5	
71	35.50	640.4	140.2	-106.0	-211.8	
72	36.00	239.8	140.3	-109.1	-214.9	
75	27.00	430.2	202	-112.1	-217.9	
74	37.00	222.5	20.2	110.1	-220.9	
75	32.00	121 2	-07.2	-110.2	-224.0	
70	38.50	29.0	-174.0	-121.2	-227.0	
78	39.00	-72.4	-205.0	-124.2	-233.1	
79	39.50	-174.8	-506.0	-130.3	-236.1	
80	40.00	-278.8	-619.5	-133.3	-239.1	
81	40.50	-383.1	-734.4	-136.4	-242.2	
82	41.00	-480.8	-851.0	95.5	15.1	
83	41.50	-361.4	-639.0	422.4	237.4	
84	42.00	-243.5	-428.5	419.4	234.3	
85	42.50	-127.0	-219.6	416.4	231.3	
86	43.00	-12.1	-12.1	212.7	120.2	
87	43.50	-6.8	-6.8	9.1	9.1	
88	44.00	-3.0	-3.0	6.1	6.1	
89	44.50	-0.8	-0.8	3.0	3.0	

90	45.00	0.0	0.0	0.8	0.8	
91	45.50	0.0	0.0	0.0	0.0	
92	46.00	0.0	0.0	0.0	0.0	

AUG 06, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 19 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011) PAGE 19

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'la (CONTINUED)

TABLE 6. ENVELOPES OF MAXIMUM VALUES (LOAD FACTOR)

STA	DIST X	MAX ·	+ MOM	MAX - MO	DM MAX + S	SHEAR	MAX - SHEAR
(FT)	(FT-K)	(FT-K)	(K)	(K)		
93	46.50	0.0	0.0	0.0	0.0		

TABLE 7. MAXIMUM SUPPORT REACTIONS (LOAD FACTOR)

				-
STA (DIST X FT)	MAX + (K)	REACT (K)	MAX - REACT
				-
10	5.00	660.0	379	.8
34	17.00	703.5	370	.9
58	29.00	703.5	370	.9
82	41.00	660.0	379	.8

4.2.15.4 Live Load Distribution Factor Spreadsheet

4.2.15.4.1 Spans 1 & 3

DDIDGE	County.	ANY VY VYVVV	Highway:	Any	Design:	BRG	Date:	8/15/20	2017 Rev. 10112	LRFD Spe
DIVISION	C-S-J: Descrip:	ITBC Design Exar	nple 1, Span 1 8	3	File:	Ex1 Sp	Date: an1 distrib	ution factors.x	Sheet:	2 of 8
INTER	IOR BE	AM:								
Shear L	L Distrib	ution Per Lane (Table 4.6.2.2	.3a-1):						
_	One La	ne Loaded								
		Lever Rule	(Table 3.6.)	1.1.2)						
		ma = 0.6	25 * 1.2 =	0.750						
		Modify fo	r Skew:							
			skew corre	ction =	1.000					
			mg = 0.750	* 1.000 =	0.750					
		Equation								
		g = 0.36	$5 + \left(\frac{S}{25}\right)$							
		g = 0.36	+ (8 / 25) =	0.680						
		Modify fo	or Skew:							
			skew corre	ction =	1.000					
			g = 0.680 *	1.000 =	0.680					
		Range of Appl	icability (RO/	A) Checks						
		Check S	3.5' ≤ 8.0' :	≤ 16.0'	OK					
		Check ts	4.5" ≤ 8.0"	≤ 12.0"	OK					
		Check L:	20' ≤ 50.4'	≤ 240'	OK					
		Check N	5; 6≥4		OK					
		Use Equation	from Table 4.	6.2.2.3a-1 b	ecause all	criteria i	S OK			
		gV _{int1} =	0.680							
	Two or	More Lanes Lo	aded							
		Lever Rule	(Table 3.6.)	1.1.2)						
		mg = Ma	x(0.875 * 1.0	0.875 * 0.8	5, 0.875 * 0	.65) =	0.875			
		Modify fo	or Skew:							
			skew corre	ction =	1.000					
			mg = 0.875	* 1.000 =	0.875					
		Equation	10) 10	2.0						
		g = 0.2 -	$+\left(\frac{3}{12}\right) - \left(\frac{3}{2}\right)$	2						
		a = 0.2 ·	(12) (3	25\42.0 -	0.014					
		g = 0.2 + Modify fo	(0/12) - (0/	55) 2.0 =	0,014					
		would be the	skew corre	ction -	1 000					
			a = 0.814 *	1.000 =	0.814					
		Bange of Appl	icability (BO)	A) Checks	(same as	or one l	ane loade	(be		
		Use Equation	from Table 4	62239-1 h	ecause all	riteria i	s OK	, u)		
		gV _{int2+} =	0.814	0.2.2.00 1 0	course an		5 611.			
	TXDOT	Policy states gV	Interior must be	$\geq m \cdot N_L \div N_b$						
		$m \cdot N_L \div N_b =$	0.85*3/6	=	0.425					
	ls W≥2	20ft ? Yes								
	TXDOT	Policy states the	at if $W < 20$ ft,	gV _{intenior} is th	e Maximun	n of: gV _#	in and m	N _L +N _b		
>>	TXDOT	Policy states that	at if $W \ge 20$ ft,	gV _{Interior} is th	e Maximun	n of: gV	n11, gVint2+	, m-N _L ÷N _b .		
	aV	- 0.014								

TXDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/15/20	2017	LRFD Spee
DIVISION	C-S-J: Descrip:	ITBC Design Ex	ID #: ample 1. Span 1	8 3	Ck Dsn: File:	Ex1 Sp	Date: an1 distribution	ution factors.	Rev. 10/18	3 of 8
INTER	IOR BE	AM:			11 Hor				onood	
Momen	t I I Dist	ribution Per Lar	e (Table 4.6.	2 2 2h-1):						
Momen	Onela	ne Loaded	10 (14010 4.0.1	L.L.L.U ().						
	One Eu	Lever Bule	(Table 3.6	112)						
		ma = 0	625 * 1.2 =	0.750						
		Modify 1	or Skew:	0.100						
		incomy i	skew corre	ection =	1.000					
			ma = 0.750	0 * 1.000 =	0.750					
		Equation			1.0					
		g = 0.0	$6 + \left(\frac{S}{14}\right)^{0.4}$	$\left(\frac{S}{L}\right)^{0.5} \left(\frac{K_s}{12Lt}\right)^{0.5}$						
		q = 0.06	5 + (8/14)^0.4	* (8/50.4)^0.3	3* (1,271,6	11/(12*5	50.4*8^3))^0.1 =	0.590	
		Modify I	or Skew:		. Veries					
		1.1.2.2	skew corre	ection =	1.000					
			g = 0.590 '	1.000 =	0.590					
		Range of App	olicability (RO	A) Checks						
		Check S	S: 3.5' ≤ 8.0'	≤ 16.0'		OK				
		Check t	s: 4.5" ≤ 8.0	" ≤ 12.0"		OK				
		Check I	.: 20' ≤ 50.4	'≤240'		OK				
		Check I	N _b : 6≥4			OK				
		Check I	Kg: 10,000 ≤ 1	1,271,611 ≤ 7	,000,000	OK				
		Use Equation	from Table 4	6.2.2.2b-1 b	ecause all	criteria is	s OK.			
		gM _{int1} =	0.590							
	Two or	More Lanes L	oaded							
		Lever Rule	(Table 3.6	1.1.2)						
		mg = M	ax(0.875 * 1.0	0.875 * 0.85	5, 0.875 * 0	.65) =	0.875			
		Modify 1	or Skew:							
			skew corre	ection =	1.000					
			mg = 0.875	5 * 1.000 =	0.875					
		Equation	(= > 9	6 (-> 0.2 ()	10.1					
		g = 0.0	$75 + \left(\frac{S}{9.5}\right)$	$\left(\frac{S}{L}\right) \left(\frac{1}{12}\right)$	$\left(\frac{\chi_g}{Lt_s^3}\right)$					
		g = 0.07	75 + (8/9.5)^0.	.6 * (8/50.4)^0).2 * (1,271	,611/(12	*50.4*8*	3))^0.1 =	0.794	
		Modify 1	for Skew:							
			skew corre	ection =	1.000					
			g = 0.794 '	* 1.000 =	0.794					
		Range of App	olicability (RO	A) Checks	(same as l	or one I	ane loade	ed)		
		Use Equation	from Table 4	.6.2.2.2b-1 b	ecause all	oriteria i	s OK.			
		gM _{int2+} =	0.794							
	TXDOT	Policy states gl	Mutanor must b	e≥m/N _L ÷N _N						
		$m \cdot N_L \div N_b =$	0.85 * 3 / 6	6 =	0,425					
	Is W 22	20ft ? Yes								
	TXDOT	Policy states th	at if W < 20ft	gMinterior is th	e Maximur	n of: gM	int and m	NL+NL+Nb-		
>>	TXDOT	Policy states th	at if W ≥ 20ft.	gMinterior is Un	e Maximun	n oli gM	gMiniz	m-NL=N	y	
	gMin	ation = 0.794				1.1				

TXDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/15/20	2017 LRFD Specs
BRIDGE	C-S-J:	ITBC Design Exa	ID #:	XXXX & 3	Ck Dsn:	Ex1 So	Date:	ition factors x	Rev. 10/18 - (No Interim) Sheet: 4 of 8
EXTER	BIOR BE	AM:	inple it opart i		pi na.	Last op			
Shearl	1 Distrib	ution Per Lane	(Table 4.6.2 :	2 3h-11					
onour	Onela	ne Loaded	14010 1.0.2.1						
	one Lu	Lever Bule	(Table 3.6	112)					
		ma = 0.0	525 * 1.0 =	0.625	TyDOT us	es a mil	Itiole ores	sence factor	of 1.0 for one
		Modify f	or Skew:	0.020	lane loade	d on the	exterior	beam.	
			skew corre	ection =	1.000				
			ma = 0.62	5*1.000 =	0.625				
		Use Lever Bi	le as per AA	SHTOLBE	Table 4.6.2	2.3b-1			
		aVert =	0.625	and or crime	S TELED TELE				
	-	S . Exti	M.M.S						
	Iwo or	More Lanes Lo	baded	1.1.01					
		Lever Rule	(Table 3.6	.1.1.2)		051	0.005		
		mg = Ma Modify f	ax(0.625 * 1.0 or Skew:), 0.625 * 0.8	35, 0.625 " 0	= (60.	0.625		
			skew corre	ection =	1.000				
			ma = 0.623	5 * 1.000 =	0.625				
		Equation							
		d _e = dist	b/w CL web	to curb					
		$d_e = OH$	- Rail Width						
		d _e =	3ft - 1ft =	2.01	tt.				
			(d)						
		e = 0.6	$+\left(\frac{\pi}{10}\right)$						
		e = 0.6 ·	+ (2.0/10) =	0.800					
		g = e*g\	/int2+Eq						
		g = 0.80	0 * 0.814 =	0.651					
		Skew C	orrection is in	cluded in gV	(interior).				
		Range of App	licability (RO	A) Checks	Interior	ROA is	implicitly	applied to th	he exterior beam.
		Check I	nterior Beam	ROA:	OK		1.1.3		
		Check d	l _e : -1.0' ≤ 2.0	'≤ 5.5'	OK				
		Check N	l _b : 6≠3		OK				
		Use Equation	from Table 4	.6.2.2.3b-1	because all o	criteria is	s OK.		
		$gV_{ext2+} =$	0.651						
	TXDOT	Policy states a	/ must h	e ≥ aV					
	1.45.5.1	aVistarias =	0.814	- 3 · menor					
	TXDOT	Policy states a	/Entering must b	$m \ge m \cdot N \Rightarrow N$					
		$m \cdot N_1 \div N_h =$	0.85*3/6	3 =	0.425				
	ls OH ≤	S/2 ? Yes	1122 24						
	ls W≥2	20ft? Yes							
>>	TXDOT	Policy states th	at if $OH \le S/2$	2, gV _{Exterior} is	gVintenor.				
	TXDOT	Policy states th	at if OH > S/a	2 and W < 20	off, gV _{Exterior}	s the Ma	aximum c	f: gV _{ext1} , gV	interior, and
		$m \cdot N_L \div N_b$.							
	TXDOT	Policy states th	at if OH > S/2	2 ans W ≥ 20	oft, gV _{Exterior} i	s the Ma	aximum o	f: gV _{ext1} , gV	ext2+, gVinterior
		and m·NL+Nb							
	gV _{exte}	erior = 0.814							

```
TXDOT
BRIDGE
                     ANY
           County:
                                       Highway
                                                      Any
XXXX
                                                                      Design:
                                                                                          Date
                                                                                                                      2017 LRFD Spel
                     XXX-XX-XXXX
                                                                                                                     10/18 - (No Inte
                                                                      Ck Dsn:
                                      ID #
                                                                                         Date
                                     mple 1, Span 1 &
                    ITBC Design Exa
DIVISION
                                                                                                                              5 of 8
 EXTERIOR BEAM:
Moment LL Distribution Per Lane (Table 4.6.2.2.2d-1):
          One Lane Loaded
                     Lever Rule
                           mg = 0.625 * 1.0 =
                                                     0.625
                                                                  TxDOT uses a multiple presence factor of 1,0 for one
                                                                  lane loaded on the exterior beam.
                           Modify for Skew:
                                       skew correction =
                                                                     1.000
                                       mg = 0.625 * 1.000 =
                                                                     0.625
                     Use Lever Rule as per AASHTO LRFD Table 4.6.2.2.2d-1.
                     gMext1 =
                                       0.625
          Two or More Lanes Loaded
                     Lever Rule
                                       (Table 3.6.1.1.2)
                           mg = Max(0.625 * 1.0, 0.625 * 0.85, 0.625 * 0.65) =
                                                                                          0.625
                           Modify for Skew:
                                       skew correction =
                                                                     1.000
                                       mg = 0.625 * 1.000 =
                                                                      0.625
                     Equation
                           e = 0.77 + \left(\frac{d_e}{9.1}\right)
                           e = 0.77 + (2.0/9.1) =
                                                                  0.990
                           g = e^*gM_{int2+Eq}
                           g = 0.99 * 0.794 =
                                                     0.786
                           Skew Correction included in gM(interior).
                     Range of Applicability (ROA) Checks
                                                                      Interior ROA is implicitly applied to the exterior beam.
                           Check Interior Beam ROA:
                                                                  OK
                           Check d_e: -1.0' \leq 2.0' \leq 5.5'
                                                                 OK
                           Check N<sub>b</sub>: 6 ≠ 3
                                                                  OK
                     Use Equation from Table 4.6.2.2.2d-1 because all criteria is OK.
                     gM<sub>ext2+</sub> =
                                      0.786
          TxDOT Policy states gM<sub>Exterior</sub> must be ≥ gM<sub>interior</sub>
                     gMinterior =
                                      0.794
          TxDOT Policy states gM<sub>Exterior</sub> must be ≥ m·N<sub>L</sub>÷N<sub>b</sub>
                     m \cdot N_L \div N_b = 0.85 * 3 / 6 =
                                                                     0.425
          Is OH ≤ S/2 ? Yes
          Is W ≥ 20ft ? Yes
      >> TxDOT Policy states that if OH ≤ S/2, gMExterior is gMinterior.
          TxDOT Policy states that if OH > S/2 and W < 20ft, gM<sub>Exterior</sub> is the Maximum of: gM<sub>ext1</sub>, gM<sub>interior</sub>, and
                     m·NI ÷Nn
          TxDOT Policy states that if OH > S/2 ans W \ge 20ft, gM_{\text{Extension}} is the Maximum of: gM_{\text{ext1}}, gM_{\text{ext2+r}} gM_{\text{mienormatication}}
                     and m·NL+NE
            gM<sub>exterior</sub> = 0.794
```


TXDOT County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
DIVISION Descrip:	ITBC Design Exa	mple 1, Span 1 &	3	File:	Ex1 Span	1 distribu	ution_factors.xl	Sheet:	7 of 8
LEVER RULE	s	= 8.0 ft							
INTERIOR (con't)									
For 18 ≤ S < 22: One Lane =	$\frac{16}{32} \left(1 + \frac{S-6}{S} \right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\left(\frac{-18}{S}\right)$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{S} + \frac{S-16}{S}$)		= 0.625		
For 22 ≤ S ≤ 24: One Lane =	$\frac{16}{32} \left(1 + \frac{S-6}{S} \right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\left(\frac{s-18}{s}\right)$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{S-18}{S} + \frac{S-16}{S}$	$+\frac{S-22}{S}$		= -1.500		
				ed hinge			Rail Width	S = OH = = RW =	8.0 ft 3.0 ft 1.0 ft
For X < 6	он — — — — —	- s	1				x = 0+0111	W. 21, -	0.0 1
One Lane =	$\frac{16}{32}\left(\frac{X}{S}\right)$						= 0.500		
:For 6 ≤ X < 12; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	5)					= 0.625		
For 12 ≤ X < 18; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-S}{S}\right)$	5)					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$+\frac{X-12}{S}$					= 0.375		

TXDOT County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spece
IVISION Descrip:	ITBC Design Exa	mple 1, Span 1	83	File:	Ex1 Spa	n1 distrib	ution_factors.xl	Sheet:	8 of 8
Carlos Santa									
LEVER RULE									
EXTERIOR (con't)	S-	8.0 1	ť.	OH =	3.0 f	t			
	RW =	1.0 f	t X = S+0	OH-RW-2ft =	8.0 f	t			
For 18 < Y < 24.									
One Lane =	$\frac{16}{22}\left(\frac{X}{x} + \frac{X-6}{x}\right)$	<u>5</u>)					= 0.625		
	32(3 3	. v . r .	2 103						
Two Lanes =	$\frac{16}{32}\left(\frac{x}{s} + \frac{x-c}{s}\right)$	$\frac{x-12}{S} + \frac{x-12}{S} + \frac{3}{2}$	$\left(\frac{c-18}{s}\right)$				= -0.250		
For 24 < X < 30		. · · · ·	0.00						
One Lane =	$\frac{16}{22}\left(\frac{X}{5} + \frac{X-6}{5}\right)$	5)					= 0.625		
	16(V V 6	× 10	191						
Two Lanes =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-x}{s}\right)$	$+\frac{x-12}{s}+\frac{3}{s}$	5				= -0.250		
-	16 (X X - 0	5 X-12	x -18 x -3	24)					
Three Lanes =	32 5 5	\$	\$ \$	_)			= -1.250		
For 30 ≤ X < 36:	15/ X X-1	12							
One Lane =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-s}{s}\right)$	-) 					= 0.625		
÷	16 (X . X - 6	x -12	(-18)						
Two Lanes =	$\overline{32}\sqrt{s}$	* <u>s</u>	S)				= -0.250		
Three Lanes -	$\frac{16}{X} + \frac{X-6}{X}$	$5 + \frac{X - 12}{4} + \frac{3}{4}$	x - 18 + x - 2	$\frac{14}{4} + \frac{X - 30}{2}$			2 625		
Thee Lanes -	321 5 5	S	S S	S)					
For 36 ≤ X < 42:	16 (X _ X - 6	5)					0.005		
One Lane =	$\overline{32}(s+s)$	1					= 0.625		
Two Lanes =	$\frac{16}{16}\left(\frac{X}{X}+\frac{X-6}{6}\right)$	$x + \frac{x - 12}{x} + 2$	(-18)				= -0.250		
The Lands	32(8 8	S	\$)				United		
Three Lanes =	$\frac{16}{32}\left(\frac{X}{5} + \frac{X-6}{5}\right)$	$\frac{5}{5} + \frac{X-12}{5} + \frac{3}{5}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{14}{4} + \frac{X-30}{5}$			= -2.625		
	JACV V		5 5 7 7 7 7	U V 20	(35. 9				
Four Lanes =	$\frac{10}{32}\left(\frac{x}{s}+\frac{x-c}{s}\right)$	$\frac{1}{s} + \frac{x - 12}{s} + \frac{1}{s}$	$\frac{1}{S} + \frac{\lambda}{S}$	$\frac{4}{5} + \frac{x-30}{5} + \frac{1}{5}$	$\frac{x-30}{s}$		= -4.375		
For 42 < X < 48		100							
One Lane =	$\frac{16}{22}\left(\frac{X}{x} + \frac{X-6}{5}\right)$	5)					= 0.625		
	3410 0 16(V V V	× 12 1	10)						
Two Lanes =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-c}{s}\right)$	$+\frac{x-12}{s}+\frac{3}{s}$	$\frac{1}{s}$				= -0.250		
-	16 (X X-0	5 X-12	x-18 x-2	(4 - X - 30)			0.005		
Inree Lanes =	32 5 5	\$	S S	s)			= -2.625		
Four Lanes =	$\frac{16}{X} + \frac{X-6}{X}$	$5 + \frac{X - 12}{4} + \frac{3}{4}$	x - 18 + x - 2	$\frac{24}{4} + \frac{x - 30}{4} + x - 30$	X-36+	(x - 42)	-6.500		
, ss, curios -	32\\$ \$	S	<i>S S</i>	S	S	S)	0.000		
INTERIOR				EXTER	IOR				
One Lane Loaded		= 0.625		One La	ne Loade	d	-	0.625	
Two Lanes Loade	d	= 0.875		Two La	nes Load	led	-	0.625	
Three Lanes Load	led	- 0.875		Three L	anes Loa	aded	-	0.625	
Four Lanes Loade	d	= 0.875		Fourla	ines Load	ded		0.625	
	7	1.010			Louit			- Colored	

4.2.15.4.2 Span 2

TXDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/14/20	2017	LRFD Spec
BRIDGE	C-S-J:	ITBC Design Fra	ID #: mole 1. Span 2	XXXX	Ck Dsn:	Ex1 So	Date:	tion factors vi	Rev. 10/18	2 of 8
INTER	IOR BE	AM.	inple it opart a		Trings	Lent op			Onder	2010
Shoarl	L Dictrib	ution Por Lana	Table 4622	20.11						
Sheart	Orala	and rei care	Table 4.0.2.2.	<u>5d-1).</u>						
	One La	Lever Dula	(Table 2.C.1	1 01						
		Lever Hule	(Table 3.6.1	.1.2)						
		mg = 0.6	25 1.2 =	0.750						
		Modify to	or Skew:							
			skew correc		1.000					
		42.120	mg = 0.750	1.000 =	0.750					
		Equation	(5)							
		g = 0.30	5+ 25							
		a = 0.36	+(8/25) =	0.680						
		Modify to	or Skew:							
			skew correc	tion =	1.000					
			q = 0.680 *	1.000 =	0.680					
		Bange of App	licability (ROA) Checks						
		Check S	35'<80'<	16.0'	OK					
		Check t	45"<80"	< 12.0"	OK					
		Check I	20' < 106.8'	< 240'	OK					
		Check N	6>4	5 240	OK					
		Use Equation	from Table 44		haballas all.	intente to	- OK			
		Use Equation	nom rable 4.0	0.2.2.38-1	oecause an	snteria is	s Un.			
		gvint1 =	0.660							
	Two or	More Lanes Lo	baded							
		Lever Rule	(Table 3.6.1	.1.2)						
		mg = Ma	ax(0.875 * 1.0,	0.875 * 0.8	35, 0.875 * 0	.65) =	0.875			
		Modify fo	or Skew:							
			skew correc	tion =	1.000					
			mg = 0.875	* 1.000 =	0.875					
		Equation	10) 10	>2.0						
		g = 0.2	$+\left \frac{3}{12}\right - \left \frac{3}{25}\right $							
		0-02	(12) (33	25\42.0 -	0.014					
		y = 0.2 4	- (0/12) - (0/	55) 2.0 =	0,014					
		would be the	skow corros	tion	1 000					
			Skew conec	1 000	0.914					
		Damas of Ass	g = 0.014	Cheeke	0.014	avera l	ana landa	(h)		
		Hange of App	icability (ROA) Checks	(same as i	or one is	ane loade	ia)		
		Use Equation	from Table 4.6	5.2.2.3a-1	because all	criteria is	SOK.			
		$gV_{int2+} =$	0.814							
	TXDOT	Policy states gV	Interior must be	$\geq m \cdot N_L \neq N_L$	2					
		$m \cdot N_L \div N_b =$	0.85 * 3 / 6 =	-	0.425					
	ls W≥	20ft? Yes								
	TXDOT	Policy states the	at if $W < 20$ ft, g	Vintenor is t	he Maximun	n of: gV	iti and m-	NL+Nb		
>>	TXDOT	Policy states the	at if $W \ge 20$ ft, g	V _{Interior} is t	he Maximun	n of: gV	11, gVint2+,	$m{\cdot}N_L{\div}N_0.$		
	gVinte	arior = 0.814								

XDOT	County:	ANY	Highway:	Any	Design:	BRG	Date:	8/14/20	2017	LRFD Spec
VISION	C-S-J: Descrip	ITBC Design Exc	ample 1. Span 2	IXXXX	Elle:	Ex1 So	Date: an2 distribution	ution factors.	Sheet:	3 of 8
NTER	IOR BE	AM:								
Iomen	nt LL Dist	ribution Per Lan	e (Table 4.6	2.2.2b-1):						
	One La	ne Loaded								
		Lever Rule	(Table 3.6	5.1.1.2)						
		mg = 0.	625 * 1.2 =	0.750						
		Modify f	or Skew:							
			skew corr	ection =	1,000					
			mg = 0.75	50 * 1.000 =	0.750					
		Equation	6 - 5 0.4	C=>0.3/ F	2.0.1					
		g = 0.0	$6 + \left(\frac{S}{14}\right)$	$\left(\frac{S}{L}\right) \left(\frac{\Lambda_s}{12L}\right)$	$\left(\frac{r}{r_s^3}\right)$					
		g = 0.06	5 + (8/14)^0.4	* (8/106.8)^0	.3 * (1,271,	611/(12	*106.8*8*	3))^0.1 =	0.453	
		Modify f	or Skew:							
			skew corr	ection =	1.000					
			g = 0.453	* 1,000 =	0.453					
		Range of App	olicability (RC	DA) Checks						
		Check S	S: 3.5'≤8.0	'≤ 16.0'		OK				
		Check t	s: 4.5" ≤ 8.0)" ≤ 12.0"		OK				
		Check L	.: 20'≤106	.8' ≤ 240'		OK				
		Check M	N _b : 6≥4			OK				
		Check H	Kg: 10,000 ≤	1,271,611 ≤ 7	,000,000	OK				
		Use Equation	from Table	4.6.2.2.2b-1 b	ecause all	criteria i	s OK.			
		gM _{int1} =	0.453							
	Two or	More Lanes L	oaded							
		Lever Rule	(Table 3.6	5.1.1.2)						
		mg = M	ax(0.875 * 1.	0, 0.875 * 0.8	5, 0.875 * 0	.65) =	0.875			
		Modify f	or Skew:							
			skew corr	ection =	1.000					
			mg = 0.87	5 * 1.000 =	0.875					
		Equation	(5)	0.6 (5)0.2 (K)0.1					
		g = 0.0	$75 + \left(\frac{5}{95}\right)$	$\left \frac{3}{L}\right \left \frac{3}{12}\right $	$\frac{1}{1+3}$					
		q = 0.07	25 + (8/9 5)^(6* (8/106.8)	0 2 * (1 27	1 611/(1	2*106.8*	8^3))^0.1 =	0.649	
		Modify f	or Skew:	(0/100.0)	0.2 (1,2)	no ma	100.0	0 0)/ 0.1 =	0.040	
		inearly i	skew corr	ection =	1.000					
			q = 0.649	* 1.000 =	0.649					
		Range of Apr	licability (RC	DA) Checks	(same as I	for one l	ane loade	ed)		
		Use Equation	from Table	46222b-1b	ecause all i	oriteria i	s OK			
		aMinta, =	0.649	1.0.2.2.2.0 1 0	occorr and	ontena i	0.010			
	TYDOT	Poliov states -	Market I	A D IN AL AL						
	1XDO1	m.N. M.	O PE # O /	C ≤ HINNL÷IND	0.405					
	10 14/ -	DOff 2 Vec	0.05 37	0 =	0.420					
	TYDOT	Policy states the	at if W - 200	M. is the	e Maximur	n of all	and	NI =NI		
60	TYDOT	Policy states th	at if W > 201	I aM. is the	e Maximun	n ol: aM	ni anu n	miNLaN		
>>	COM	roncy states in	1 1 Y 2 201	a Sumintation is th	e maannun	in our give	Alta Atauuts	++ ULLIAF = IAP		
	givinte	arior = 0.649								

TXDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/14/20	2017	LRFD Specs
BRIDGE	C-S-J:	XXX-XX-XXXX	ID #:	XXXX	Ck Dsn:	Ex1 So	Date:	tion factors v	Rev. 10/18 -	(No Interim)
FYTER	NOR BE	AM.	inple 1, opan z		It no.	Lest opt			Sildet.	4010
Shoarl	I Dietrib	ution Per Lane	Table 462	2 3h-11.						
<u>Silear</u>	Onela	ne Loaded	114010 4.0.2.1	2.50-17.						
	One La	Lever Bule	(Table 3.6	112)						
		ma = 0.1	(1 able 0,0	0.625	TYDOT		liele erer	ance Factor	of 1 D for a	00
		Modify f	or Skow:	0.025	lane loade	d on the	exterior	beam.		ille.
		woony i	skew corre	ection -	1.000					
			mg = 0.62	5*1.000 =	0.625					
		Lise Lever Bi	ile as per AA	SHTOLEE	Table 4 6	2.2 sh.1				
		aV =	0.625	GIN O LINA	1 1 auto 4.01	SPACE I				
	S	9 vext1 -	0.023							
	Two or	More Lanes Lo	oaded	1.55						
		Lever Rule	(Table 3.6	.1.1.2)						
		mg = Ma Modify f	ax(0.625 * 1.0 or Skew:	0, 0.625 * 0.8	35, 0.625 * 0	.65) =	0.625			
			skew corre	ection =	1.000					
			mg = 0.62	5 * 1.000 =	0.625					
		Equation								
		d _e = dist	. b/w CL web	to curb						
		$d_e = OH$	- Rail Width							
		d _e =	3ft - 1ft =	2.0	tt					
			(d_{c})							
		e = 0.6	$+(\frac{1}{10})$							
		e = 0.6 ·	+ (2.0/10) =	0.800						
		g = e*g\	/int2+Eq							
		g = 0.80	0 * 0.814 =	0.651						
		Skew C	orrection is in	icluded in gV	/(interior).					
		Range of App	blicability (RC	A) Checks	Interior	ROA is	implicitly	applied to the	he exterior b	beam.
		Check I	nterior Beam	ROA:	OK					
		Check d	l _e : -1.0' ≤ 2.0)' ≤ 5.5'	OK					
		Check N	N _b : 6≠3		OK					
		Use Equation	from Table 4	1.6.2.2.3b-1	because all	criteria is	OK.			
		$gV_{ext2+} =$	0.651							
	TXDOT	Policy states g	VExterior must b	$be \ge gV_{interior}$						
		gV _{interior} =	0.814							
	TXDOT	Policy states g	Exterior must b	e≥m·N _L ÷N	b					
		$m \cdot N_L \div N_b =$	0.85*3/6	5 =	0.425					
	Is OH ≤	S/2 ? Yes								
	ls W ≥ 2	20ft? Yes								
>>	TXDOT	Policy states th	at if OH ≤ S/2	2, gV _{Exterior} is	gV _{intenior} .					
	TXDOT	Policy states th	at if $OH > S/2$	2 and W < 20	Off, gV _{Exterior}	is the Ma	aximum o	f: gV _{ext1} , gV	interior, and	
		m·NL÷N _b .		and the second				and the second		
	TXDOT	Policy states th	at if OH > S/	$2 \text{ ans } W \ge 20$	oft, gV _{Exterior} i	s the Ma	aximum o	ft gV _{ext1} , gV	ext2+, gVinteric	it).
		and m·N _L ÷N _b								
	gV _{exte}	erior = 0.814								

```
TXDOT
BRIDGE
                     ANY
           County:
                                       Highway
                                                      Any
XXXX
                                                                      Design:
                                                                                          Date
                                                                                                                       2017 LRFD Spe
                                                                                                     8/14/20
                     XXX-XX-XXXX
                                                                                                                      10/18 - (No Inte
                                                                      Ck Dsn:
                                       ID #
                                                                                          Date
                     ITBC Design Exa
                                     mple 1 Sr
DIVISION
                                                                                                                               5 of 8
 EXTERIOR BEAM:
Moment LL Distribution Per Lane (Table 4.6.2.2.2d-1):
          One Lane Loaded
                     Lever Rule
                           mg = 0.625 * 1.0 =
                                                     0.625
                                                                   TxDOT uses a multiple presence factor of 1,0 for one
                                                                   lane loaded on the exterior beam.
                           Modify for Skew:
                                       skew correction =
                                                                     1.000
                                       mg = 0.625 * 1.000 =
                                                                     0.625
                     Use Lever Rule as per AASHTO LRFD Table 4.6.2.2.2d-1.
                     gMext1 =
                                       0.625
          Two or More Lanes Loaded
                     Lever Rule
                                       (Table 3.6.1.1.2)
                           mg = Max(0.625 * 1.0, 0.625 * 0.85, 0.625 * 0.65) =
                                                                                          0.625
                           Modify for Skew:
                                       skew correction =
                                                                     1.000
                                       mg = 0.625 * 1.000 =
                                                                      0.625
                     Equation
                           \mathbf{e} = 0.77 + \left(\frac{d_e}{9.1}\right)
                           e = 0.77 + (2.0/9.1) =
                                                                   0.990
                           g = e^*gM_{int2+Eq}
                           g = 0.99 * 0.649 =
                                                     0.643
                           Skew Correction included in gM(interior).
                     Range of Applicability (ROA) Checks
                                                                      Interior ROA is implicitly applied to the exterior beam.
                           Check Interior Beam ROA:
                                                                   OK
                           Check d_e: -1.0' \leq 2.0' \leq 5.5'
                                                                  OK
                           Check N<sub>b</sub>: 6 ≠ 3
                                                                   OK
                     Use Equation from Table 4.6.2.2.2d-1 because all criteria is OK.
                     gM_{ext2+} =
                                       0.643
          TxDOT Policy states gM<sub>Exterior</sub> must be ≥ gM<sub>interior</sub>
                     gMinterior =
                                      0.649
          TxDOT Policy states gM<sub>Exterior</sub> must be ≥ m·N<sub>L</sub>÷N<sub>b</sub>
                     m \cdot N_L \div N_b = 0.85 * 3 / 6 =
                                                                      0.425
          Is OH ≤ S/2 ? Yes
          Is W ≥ 20ft ? Yes
      >> TxDOT Policy states that if OH ≤ S/2, gM<sub>Exterior</sub> is gM<sub>interior</sub>.
          TxDOT Policy states that if OH > S/2 and W < 20ft, gM<sub>Exterior</sub> is the Maximum of: gM<sub>ext1</sub>, gM<sub>interior</sub>, and
                     m·NI ÷Nn
          TxDOT Policy states that if OH > S/2 ans W ≥ 20ft, gM<sub>Extense</sub> is the Maximum of: gM<sub>ext1</sub>, gM<sub>ext2+</sub>, gM<sub>menor</sub>
                     and m·NL+Nb
            gM<sub>exterior</sub> = 0.649
```


TXDOT County:	ANY	Highway:	Any	Design:	BRG	Date:	8/14/20	2017	LRFD Spec
DIVISION Descrip:	ITBC Design Exar	nple 1, Span 2	0000	File:	Ex1 Spar	12_distribu	ition factors.xl	Sheet:	7 of 8
LEVER RULE	S	= 8.0 ft							
INTERIOR (con't)									
For 18 ≤ S < 22: One Lane =	$\frac{16}{32} \left(1 + \frac{S-6}{S} \right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{s}$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{s-4}{s} + \frac{s-10}{s}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{S} + \frac{S-16}{S}$			= 0.625		
For 22 ≤ S ≤ 24; One Lane =	$\frac{16}{32} \left(1 + \frac{S-6}{S} \right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\left(\frac{-18}{s}\right)$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{S} + \frac{S - 16}{S}$	$+\frac{S-22}{S}$		= -1.500		
				d hinge			Dail Witze	S = OH =	8.0 ft 3.0 ft
L	он — Т	- s	1				X = S+OH-I	= HW = RW-2ft =	1.0 ft 8.0 ft
For X < 6: One Lane =	$\frac{16}{32}\left(\frac{X}{S}\right)$						= 0.500		
For 6 ≤ X < 12: One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$)					⇒ 0.625		
For 12 ≤ X < 18; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$)					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$+\frac{X-12}{S}$					= 0.375		

TXDOT County:	ANY	Highway:	Any	Design:	BRG	Date:	8/14/20	2017 LRFD Sp	pece
IVISION Descrip:	ITBC Design Exan	nple 1, Span 2	17777	File:	Ex1 Span	2_distrib	ution_factors.a	Sheet: 8 of 8	erim 3
16.121 Z.112									
LEVER RULE									
EXTERIOR (con't	S =	8.0 ft		OH =	3.0 ft	6			
	RW =	1.0 ft	X = S+C	H-RW-2ft =	8.0 ft	9			
For 18 ≤ X < 24:	1000 00 00 00								
One Lane =	$\frac{16}{32}\left(\frac{x}{s} + \frac{x-6}{s}\right)$)					= 0.625		
÷	16 (X . X -6	X -12 X	-18)						
Two Lanes =	32 8 5	S	S)				= -0.250		
For 24 ≤ X < 30:	16 (X X - 6	1							
One Lane =	$32 \left(\frac{s}{s} \right)^+ \frac{s}{s}$	Į					= 0.625		
Two Lanes =	$\frac{16}{22}\left(\frac{X}{2}+\frac{X-6}{2}\right)$	$+\frac{X-12}{2}+\frac{X}{2}$	-18				= -0.250		
	3215 5	S	5 / -10 V-7	a's .					
Three Lanes =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-0}{s}\right)$	$+\frac{x-12}{S}+\frac{x}{S}$	$\frac{-10}{S} + \frac{x-2}{S}$	")			= -1.250		
For 30 ≤ X < 36:	IETV V C	1							
One Lane =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-0}{s}\right)$)					= 0.625		
Two Lange -	$\frac{16}{X} + \frac{X-6}{X}$	$+ \frac{X - 12}{+} \frac{X}{+}$	-18				- 0 250		
Two Lanes =	32 5 5	S	S J	1.00			= -0.200		
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$+\frac{X-12}{S}+\frac{X}{S}$	$\frac{-18}{S} + \frac{X-2}{S}$	$\frac{4}{s} + \frac{X - 30}{s}$			= -2.625		
For $36 \le X < 42$:									
One Lane =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-6}{s}\right)$)					= 0.625		
Two Longe	16(X + X - 6)	X -12 X	-18)				0.050		
Two Lanes =	32 8 8	s	S)				= -0.250		
Three Lanes =	$\frac{16}{32}\left(\frac{X}{5} + \frac{X-6}{5}\right)$	$+\frac{X-12}{S}+\frac{X}{S}$	$\frac{-18}{s} + \frac{x-2}{s}$	$\frac{4}{4} + \frac{X-30}{S}$			= -2.625		
	16(X X-6	X-12 X	-18 X-2	4 X - 30	8 - 36)				
Four Lanes =	$\frac{1}{32}\left(\frac{1}{s} + \frac{1}{s}\right)$	+ - + - + +	s + <u>s</u>	++	s)		= -4.375		
For $42 \le X \le 48$:	16/X X-6	1							
One Lane =	$\frac{11}{32}\left(\frac{1}{s} + \frac{1}{s}\right)$	J					= 0.625		
Two Lanes =	$\frac{16}{16}\left(\frac{X}{x}+\frac{X-6}{6}\right)$	$+\frac{X-12}{+}$	-18				= -0.250		
A TOP (Heavily State)	32 8 8	S IN IN	S J						
Three Lanes =	$\frac{10}{32}\left(\frac{x}{s}+\frac{x-6}{s}\right)$	$+\frac{x-12}{S}+\frac{x}{S}$	$\frac{-18}{S} + \frac{X-2}{S}$	$\left(\frac{x-30}{s}\right)$			= -2.625		
Four Lange -	$\frac{16}{X + X - 6}$	$+\frac{X-12}{1}+\frac{X}{1}$	-18 + x - 2	$\frac{4}{4} + \frac{x - 30}{x - 30} + \frac{x - 30}{x - 30}$	x - 36 + x	(-42)	6 500		
rour canes =	32 5 5	S	5 5	S	S	s)	- 0.000		
INTERIOR				EXTER	IOR				
One Lane Loaded		0.625		One La	ne Loade	d	1.14	0.625	
Two Lanes Loade	d =	0.875		Two La	nes Load	ed	(=	0.625	
Three Lanes Load	led =	0.875		Three L	anes Loa	ded	15	0.625	
Four Lanes Loade	d =	0.875		Fourla	nes Load	ed	1.1.1	0.625	

	Highway:	ANY			-	and la		-	
Texas	C-S-J!	XXXXXX			Design:	BRGC	k Dsn:	BRG	
of Transportation	Bridge	Division	R	ev: 09/26/08		t	Date:	Aug-20	
CONCRETE SECTION SHE	AR CAPA	CITY BY A	ASHTO L	RFD BRID	GE DESIG	N SPECIFIC	ATIONS, FO	URTH EDIT	ION, 2007
Resistance Factors:			Units:	US					
φ _V =	0.9								
φ _M =	0.9								
φ _N =	0.75								
Concrete:			Mild Steel:		-	Prestressed	Steel:		
fc =[5	ksi	fy =	60	ksi	fpu =	270 k	si	
Ec =	4070	ksi	Es =	29000	ksi	Ep =	28500 k	si	
		-			SECTIONS				
	Units	8	12	32	36	56	60	80	84
Input Data									
Bending moment, Mu	kip-ft	428.5	619.5	506.9	334.5	334.5	506.9	619.5	42
Shear force, Vu	kip	234.3	239.1	128.6	447.4	230.2	246.5	133.3	419
Axial force, Nu (+ if tensile)	kip	0	0	0	0	0	0	0	
Web width, bv	in	39.00	39.00	39.00	39.00	39.00	39.00	39.00	39.0
Shear depth, dv	in	80.79	80.79	80.79	80.79	80.79	80.79	80.79	80.7
Mild steel reinf. area, As	in^2	9.36	9.36	9.36	9.36	9.36	9.36	9.36	9.3
Conc area on tension side, Ac	in^2	1657.5	1657.5	1657.5	1657.5	1657.5	1657.5	1657.5	1657.
Area of stirrups, Av	in^2	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.7
Stirrup spacing, s	in	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.
Prestressed steel area, Aps	in^2	0	0	0	0	0	0	0	
Prestress shear, Vp	kip	D	0	0	0	0	0	D	
Average prestress, fps	ksi	0	0	0	0	0	0	0	
Torsional moment, Tu	kip-ft	660	330	330	660	660	330	330	66
Shear flow area, Ao	in^2	2971.6	2971.6	2971.6	2971.6	2971.6	2971.6	2971.6	2971.
Area of one leg of stirrup, At	in^2	0.44	0.44	0,44	0.44	0.44	0.44	0.44	0.4
Perimeter of stirrup, Ph	in	324	324	324	324	324	324	324	32
Calculated Values	_		-	-					-
Vc	kip	529.9	527.6	594.4	496.5	532.1	525.4	590.0	496.
Vs	kip	1517.9	1567.9	1865.6	1363.9	1526.6	1555.7	1842.3	1363.
¢Vn €v	kip	1843 7.55E-04	1886 7.68E-04	2214 4.45E-04	1674 1.00E-03	1853 7.43E-04	1873 7.89E-04	2189 4.59E-04	167 1.00E-0
â	dea	33.74	33.90	29.60	36.40	33.60	34.10	29 90	36 4
R	ocg	2.380	2.370	2 670	2,230	2 390	2.360	2.650	2.25
Reg'd Shear reinf. Av/S	in^2/in	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Reg'd Torsion reinf. At/S	in^2/in	0.016	0.008	0.007	0.018	0.016	0.008	0.007	0.01
Maximum stirrup spacing, Smax	in	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.
Conclusion									
Shear Be	inforcing	OK	OK						
onearne		011	OK	OK	OK	OK	OK	OK	OK

4.2.15.5 Concrete Section Shear Capacity Spreadsheet

4.2.15.6 Bent Cap Details

4.3 INVERTED-T BENT CAP DESIGN EXAMPLE 2 (30° SKEW ANGLE)

Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 8th Ed. (2017) as prescribed by TxDOT Bridge Manual - LRFD (January 2020).

4.3.1 Design Parameters

Figure 4.28 Spans of the Bridge with 30 Degree Skewed ITBC

<u>Span 1</u>

54' Type TX54 Girders (0.851 k/ft)

6 Girders Spaced @ 9.24' along the axis of bent with 3' overhangs

2" Haunch

Span 2

112' Type TX54 Girders (0.851 k/ft)

6 Girders Spaced @ 9.24' along the axis of bent with 3' overhangs

3.75" Haunch

<u>Span 3</u>

54' Type TX54 Girders (0.851 k/ft)

6 Girders Spaced @ 9.24' along the axis of bent with 3' overhangs

2" Haunch

All Spans

Deck is 46 ft wide

Type T551 Rail (0.382 k/ft)

8" Thick Slab (0.100 ksf)

Assume 2" Overlay @ 140 pcf (0.023 ksf)

Use Class "C" Concrete

 $f'_c = 5 \text{ ksi}$

 $w_c = 150 \text{ pcf}$ (for weight)

 $w_c = 145 \text{ pcf}$ (for Modulus of Elasticity calculation)

"AASHTO LRFD" refers to the ASSHTO LRFD Bridge Design Specification, 8th Ed. (2017)..

"BDM-LRFD" refers to the TxDOT Bridge Design Manual -LRFD (January 2020).

"TxSP" refers to TxDOT guidance, recommendations, and standard practice.

"Furlong & Mirza" refers to "Strength and Serviceability of Inverted T-Beam Bent Caps Subject to Combined Flexure, Shear, and Torsion", Center for Highway Research Research Report No. 153-1F, The University of Texas at Austin, August 1974.

The basic bridge geometry can be found on the Bridge Layout located in the Appendices.

(TxSP)

(BDM-LRFD, Ch. 4, Sect. 5, Materials)

Grade 60 Reinforcing

 $f_y = 60 \text{ ksi}$

Bents

Use 36" Diameter Columns (Typical for Type TX54 Girders)

Define Variables

<u>Back Span</u>	<u>Forward Span</u>	
Span1 = 54 ft	Span2 = 112ft	Span Length
GdrSpa1 = 8ft	GdrSpa2 = 8ft	Girder Spacing (Normalized values)
GdrNo1 = 6	GdrNo2 = 6	Number of Girders in Span
GdrWt1 = 0.851klf	GdrWt2 = 0.851klf	Weight of Girder
Haunch1 = 2in	Haunch $2 = 3.75$ in	Size of Haunch
Bridge		
Skew = 30deg		Skew of Bents
BridgeW = 46ft		Width of Bridge Deck
RdwyW = 44ft		Width of Roadway
GirderD = 54in		Depth of Type TX54 Girder
BrgSeat = 1.5in		Bearing Seat Buildup
BrgPad = 2.75in		Bearing Pad Thickness
SlabThk = 8in		Thickness of Bridge Slab
OverlavThk = 2in		Thickness of Overlay
RailWt = 0.372klf		Weight of Rail
w = 0.150 kcf		Unit Weight of Concrete for Loads
$w_c = 0.140 \text{kcf}$		Unit Weigh of Overlay
B onts		
<u>bents</u>		Concrete Strength
$I_c = 5KSI$		Unit Weight of Concrete for E.
$w_{cE} = 0.145 \text{KCI}$ $E_c = 33000 \cdot w_{cE}^{1.5} \cdot \sqrt{2}$	$\overline{f_c}$ $E_c = 4074$ ksi	Modulus of Elasticity of Concrete (AASHTO LRFD Eq. C5.4.2.4-2)
$f_y = 60$ ksi		Yield Strength of Reinforcement
$E_s = 29000 \text{ksi}$		Modulus of Elasticity of Steel
D _{column} = 36in		Diameter of Columns

(BDM-LRFD, Ch. 4, Sect. 5, Materials)

Other Variables

Dynamic Load Allowance (AASHTO LRFD Table 3.6.2.1-1)

IM = 33%

Figure 4.29 Top View of the 30 Degrees Skewed ITBC with Spans and Girders

4.3.2 Determine Cap Dimensions

Figure 4.30 Section View of 30 Degrees Skewed ITBC

4.3.2.1 Stem Width

 $b_{stem} = D_{column} + 3in$

 $b_{stem} = 39$ in

The stem is typically at least 3" wider than the Diameter of the Column (36") to allow for the extension of the column reinforcement into the Cap. (TxSP)

4.3.2.2 Stem Height

Distance from Top of Slab to Top of Ledge:

Haunch2 is the larger of the two haunches.

 $D_{Slab_{to_Ledge}} = SlabThk + Haunch2 + GirderD + BrgPad + BrgSeat$

 $D_{Slab_to_Ledge} = 70.00$ in

StemHaunch = 3.75 in

The top of the stem must be 2.5" below the bottom of the slab. (BDM-LRFD, Ch. 4, Sect. 5, Geometric Constraints)

Accounting for the 1/2" of bituminous fiber, the top of the stem must have at least 2" of haunch on it, but the haunch should not be less than either of the haunches of the adjacent spans. $d_{stem} = D_{Slab_to_Ledge} - SlabThk - StemHaunch - 0.5in$

$$d_{stem} = 57.75$$
 in

Use: $d_{stem} = 57$ in

4.3.2.3 Ledge Width

Figure 4.31 Ledge Section of 30 Degrees ITBC

cover = 2.5 in

L = 8 in

Determine the Required Development Length of Bar M:

Try # 6 Bar for Bar M.

$$d_{bar_M} = 0.750$$
 in

 $A_{bar_M} = 0.44 \text{ in}^2$

Basic Development Length

$$L_{dh} = \frac{38.0 \cdot d_{bar_M}}{60} \cdot \left(\frac{f_y}{\sqrt{f_c}}\right) \qquad \qquad L_{dh} = 12.75 \text{ in}$$

Modification Factors for L_{dh}:

Is Top Cover greater than or equal to 2.5", and Side Cover greater than or equal to 2"?

The stem must accommodate ¹/₂" of bituminous fiber.

Round the Stem Height down to the nearest 1". (TxSP)

The Ledge Width must be adequate for Bar M to develop fully.

> " $L_{dh,prov}$ " must be greater than or equal to " $L_{dh,req}$ " for Bar M.

"cover" is measured from the center of the transverse bars.

"L" is the length of the Bearing Pad along the girder. A typical type TX54 bearing pad is $8" \times 21"$ as shown in the IGEB standard.

(AASHTO LRFD Eq. 5.10.8.2.4a-2)

(AASHTO LRFD 5.10.8.2.4b)

SideCover = cover
$$-\frac{d_{bar_M}}{2} = 2.13$$
 in"Side Cover" and "Top Cover"
are the clear cover on the side
and top of the hook respectively.
The dimension "cover" is
measured from the center of Bar
M.No. Reinforcement Confinement Factor, $\lambda_{rc} = 1.0$
Coating Factor, $\lambda_{cw} = 1.0$ The dimension "cover" is
measured from the center of Bar
M.Coating Factor, $\lambda_{cw} = 1.0$ Concrete Density Modification Factor, $\lambda = 1.0$ (AASHTO LRFD 5.4.2.8)The Required Development Length:
 $L_{dh_req} = max(L_{dh} \cdot (\frac{\lambda_{rc} \cdot \lambda_{cw} \cdot \lambda_{er}}{\lambda}), 8 \cdot d_{bar_M}, 6in.)$ (AASHTO LRFD 5.10.8.2.4a)Therefore,
 $L_{dh_req} = 12.75$ in
 $b_{ledge_min} = L_{dh_req} + cover + 12in - \frac{L}{2}$ $b_{ledge_min} = 23.25$ in
 b_{ledge_min} is 12" for TxGirders
(IGEB).Width of Bottom Flange:
 $b_f = 2 \cdot b_{ledge} + b_{stem}$ $b_f = 87$ in4.3.2.4Ledge Depth
Use a Ledge Depth of 28".
 $d_{ledge} = 28$ inAs a general rule of thumb,
Ledge Depth is greater than or
equal to 2'-3". This is the depth
or which a bar from a terminal

at which a bent from a typical

bridge will pass the punching

shear check.

Total Depth of Cap:

 $h_{\text{cap}} = d_{\text{stem}} + d_{\text{ledge}}$ $h_{cap} = 85$ in

4.3.2.5 <u>Summary of Cross Sectional Dimensions</u>

$$b_{stem} = 39$$
 in
 $d_{stem} = 57$ in
 $b_{ledge} = 24$ in
 $d_{ledge} = 28$ in
 $h_{cap} = 85$ in

4.3.2.6 Length of Cap

First define Girder Spacing and End Distance:

Figure 4.32 Elevation View of 30 Degrees Skewed ITBC

$$\begin{split} S &= 8 \text{ ft} & Girder Spacing \\ c &= 2 \text{ ft} & ``c`` is the distance from the Center \\ Line of the Exterior Girder to the \\ Edge of the Cap measured along \\ the Cap. \\ L_{Cap} &= S \cdot (GdrNo1 - 1) + 2c & L_{Cap} &= 44 \text{ ft} & Length of Cap \end{split}$$

TxDOT policy is as follows, "The edge distance between the exterior bearing pad and the end of the inverted T-beam shall not be less than 12in." (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria) replacing the statement in AASHTO LRFD 5.13.2.5.5 stating it shall not be less than d_f . Preferably, the stem should extend at least 3" beyond the edge of the bearing seat.

Bearing Pad Dimensions:	(IGEB standard)
L = 8 in	Length of Bearing Pad
W = 21 in	Width of Bearing Pad

4.3.3 Cross Sectional Properties of Cap

$$\begin{split} A_{g} &= d_{ledge} \cdot b_{f} + d_{stem} \cdot b_{stem} & A_{g} &= 4659 \text{in}^{2} \\ ybar &= \frac{d_{ledge} \cdot b_{f} \cdot \left(\frac{1}{2}d_{ledge}\right) + d_{stem} \cdot b_{stem} \cdot \left(d_{ledge} + \frac{1}{2}d_{stem}\right)}{A_{g}} & ybar &= 34.3 \text{ in } \begin{array}{c} Distance \text{ from bottom of the cap to} \\ the center of \text{ gravity of the cap} \end{array} \\ I_{g} &= \frac{b_{f} \cdot d_{ledge}^{3}}{12} + b_{f} \cdot d_{ledge} \cdot \left(ybar - \frac{1}{2}d_{ledge}\right)^{2} + \frac{b_{stem} \cdot d_{stem}}{12} + \cdots \\ b_{stem} \cdot d_{stem} \cdot \left[ybar - \left(d_{ledge} + \frac{1}{2}d_{stem}\right)\right]^{2} & I_{g} &= 2.86 \times 10^{6} \text{ in}^{4} \end{split}$$

4.3.4 Cap Analysis

4.3.4.1 Cap Model

Assume:

4 Columns Spaced @ 12'-0"

The cap will be modeled as a continuous beam with simple supports using TxDOT's CAP18 program.

Figure 4.33 Continuous Beam Model for 30 Degrees Skewed ITBC

TxDOT does not consider frame action for typical multi-column bents (BDM-LRFD, Ch. 4, Sect. 5, Structural Analysis).

Figure 4.34 Cap 18 Model of 30 Degrees Skewed ITBC

The circled numbers in Figure 4.34 are the stations that will be used in the CAP 18 input file. One station is 0.5 ft in the direction perpendicular to the pgl, not parallel to the bent.

Station increment for CAP 18

Recall:

station = 0.5 ft

$$\begin{split} E_c &= 4074 \text{ ksi} & I_g = 2.86 \times 10^6 \text{ in}^4 \\ E_c I_g &= 1.165 \times 10^{10} \text{ kip} \cdot \text{in}^2 / \left(12 \frac{\text{in}}{\text{ft}} \right)^2 & E_c I_g = 8.09 \times 10^7 \text{kip} \cdot \text{ft}^2 \end{split}$$
SPAN 1

 $Rail1 = \frac{2 \cdot RailWt \cdot \frac{Span1}{2}}{\min(GdrNo1,6)}$

$$Slab1 = w_c \cdot GdrSpa1 \cdot SlabThk \cdot \frac{Span1}{2} \cdot 1.10$$

 $Girder1 = GdrWt1 \cdot \frac{Span1}{2}$

$$DLRxn1 = (Rail1 + Slab1 + Girder1)$$

 $Overlay1 = w_{Olay} \cdot GdrSpa1 \cdot OverlayThk \cdot \frac{Span1}{2}$

SPAN 2

 $Rail2 = \frac{2 \cdot RailWt \cdot \frac{Span2}{2}}{\min(GdrNo2,6)}$

$$Slab2 = w_c \cdot GdrSpa2 \cdot SlabThk \cdot \frac{Span2}{2} \cdot 1.10$$

Girder2 = GdrWt1
$$\cdot \frac{\text{Span2}}{2}$$
 Girder2 = 47.66 $\frac{\text{kip}}{\text{girder}}$

$$DLRxn2 = (Rail2 + Slab2 + Girder2)$$
 $DLRxn2 = 104.07 \frac{kip}{girder}$

Values used in the following equations can be found on "4.3.1 Design Parameters"

Rail Weight is distributed

thickened slab ends.

Slab1 = $23.76 \frac{\text{kip}}{\text{girder}}$ Increase slab DL by 10% to account for haunch and

evenly among stringers, up to 3 stringers per rail (TxSP).

Overlay is calculated

separetely, because it has different load factor than the rest of the dead loads.

Design for future overlay.

 $Rail1 = 3.44 \frac{kip}{girder}$

Girder1 = $22.98 \frac{\text{kip}}{\text{girder}}$

 $DLRxn1 = 50.17 \frac{kip}{girder}$

 $Overlay1 = 5.04 \frac{kip}{girder}$

Rail2 = $7.13 \frac{\text{kip}}{\text{girder}}$

 $Slab2 = 49.28 \frac{kip}{girder}$

$$Overlay2 = w_{Olay} \cdot GdrSpa2 \cdot OverlayThk \cdot \frac{Span2}{2} \qquad Overlay2 = 10.45 \frac{kip}{girder}$$

CAP

$$Cap = w_{c} \cdot A_{g} = 4.853 \frac{kip}{ft} \cdot \frac{0.5ft}{station} \qquad Cap = 2.427 \frac{kip}{station}$$

AASHTO LRFD 3.6.1.2.2 and 3.6.1.2.4)

LongSpan = 112 ft

ShortSpan = 54 ft

LongSpan

ShortSpan = min(Span1, Span2)
IM = 0.33
Lane =
$$0.64$$
klf $\cdot \left(\frac{\text{LongSpan+ShortSpan}}{2}\right)$
Lane = $53.12 \frac{\text{kip}}{\text{lane}}$
Truck = 32 kip + 32 kip $\cdot \left(\frac{\text{LongSpan-14ft}}{\text{LongSpan}}\right) + 8$ kip $\cdot \left(\frac{\text{LongSpan-28ft}}{\text{LongSpan}}\right)$

LongSpan = max(Span1, Span2)

Truck =
$$66.00 \frac{\text{kip}}{\text{lane}}$$

LLRxn = Lane + Truck
$$\cdot$$
 (1 + IM)
LLRxn = 140.90 $\frac{\text{kip}}{\text{lane}}$

Use HL-93 Live Load. For *maximum reaction at interior* bents, "Design Truck" will always govern over "Design Tandem". For the maximum reaction when the long span is more than twice as long as the short span, place the rear (32 kip) axle over the support and the middle (32 kip) and front (8 kip) axles on the long span. For the maximum reaction when the long span is less than twice as long as the short span, place the middle (32 kip) axle over the support, the front (8 kip) axle on the short span and the rear (32 kip) axle on the Combine "Design Truck" and "Design Lane" loadings (AASHTO LRFD 3.6.1.3). Dynamic load allowance, IM, does not apply to "Design Lane." (AASHTO LRFD 3.6.1.2.4)

4.3.4.1.3 Cap 18 Data Input

Multiple Presence Factors, m (AASHTO LRFD Table 3.6.1.1.2-1)

No. of Lanes	Factor "m"
1	1.20
2	1.00
3	0.85
>3	0.65
Limit States (AASHTO	LRFD 3.4.1)

Strength I

	Live Load and Dynamic Load Allowance	LL+IM = 1.75	and Service I with DL (TxSP).
	Dead Load Components	DC = 1.25	TrDOT allows the Overlay
	Dead Load Wearing Surface (Overlay)	DW = 1.50	Factor to be reduced to 1.25
Service	<u>e I</u>		(TxSP), since overlay is typically used in design only to
	Live Load and Dynamic Load Allowance	LL+IM = 1.00	increase the safety factor, but
	Dead Load and Wearing Surface	DC & DW = 1.00	in this example we will use <i>DW=1.50</i> .

Dead Load

TxDOT considers Service level Dead Load only with a limit reinforcement stress of 22 ksi to minimize cracking. (BDM-LRFD, Chapter 4, Section 5, Design Criteria)

The Live Load is applied to the slab by two 16 kip wheel loads increased by the dynamic load allowance with the reminder of the live load distributed over a 10 ft (AASHTO LRFD 3.6.1.2.1) design lane width. (TxSP)

The Live Load applied to the slab is distributed to the beams assuming the slab is hinged at each beam except the outside beam. (BDM-LRFD, Ch. 4, Sect. 5, Structural Analysis)

Input "Multiple Presence Factors" into CAP18 as "Load Reduction Factors".

consider Strength I, Service I,

The cap design need only

4.3.4.1.4 Cap 18 Output

	<u>Max +M</u>	Max -M
Dead Load:	$M_{posDL} = 294.2 \text{ kip} \cdot \text{ft}$	$M_{negDL} = -443.9 \text{ kip} \cdot \text{ft}$
Service Load:	$M_{posServ} = 574.3 \text{ kip} \cdot \text{ft}$	$M_{negServ} = -688.2 \text{ kip} \cdot \text{ft}$
Factored Load:	$M_{posUlt} = 863.4 \text{ kip} \cdot \text{ft}$	$M_{negUlt} = -991.3 \text{ kip} \cdot \text{ft}$

4.3.4.2 Girder Reactions on Ledge

Figure 4.37 Girder Reactions on the Ledge of 30 Degrees Skewed ITBC

Dead Load

DLSpan1 = Rail1 + Slab1 + Girder1 Overlay1 = $5.04 \frac{\text{kip}}{\text{girder}}$ DLSpan2 = Rail2 + Slab2 + Girder2 Overlay2 = $10.45 \frac{\text{kip}}{\text{girder}}$ $DLSpan1 = 50.17 \frac{kip}{girder}$

$$DLSpan2 = 104.07 \frac{kip}{girder}$$

Live Load

Loads per Lane:

Use HL-93 Live Load. For maximum reaction at interior bents, "Design Truck" will always govern over "Design Tandem" for Spans greater than 26ft. For the maximum reaction, place the back (32 kips) axle over the support.

Figure 4.38 Live Load Model of 30 Degrees Skewed ITBC

for Girder Reactions on Ledge LaneSpan1 = 0.64klf $\cdot \left(\frac{\text{Span1}}{2}\right)$ LaneSpan1 = 17.28 $\frac{\text{kip}}{\text{lane}}$ LaneSpan2 = 0.64klf $\cdot \left(\frac{\text{Span2}}{2}\right)$ LaneSpan2 = 35.84 $\frac{\text{kip}}{\text{lane}}$ TruckSpan1 = 32kip + 32kip $\cdot \left(\frac{\text{Span1-14ft}}{\text{Span1}}\right)$ + 8kip $\cdot \left(\frac{\text{Span1-28ft}}{\text{Span1}}\right)$ TruckSpan1 = 59.56 $\frac{\text{kip}}{\text{lane}}$ TruckSpan2 = 32kip + 32kip $\cdot \left(\frac{\text{Span2-14ft}}{\text{Span2}}\right)$ + 8kip $\cdot \left(\frac{\text{Span2-28ft}}{\text{Span2}}\right)$ TruckSpan2 = 66.00 $\frac{\text{kip}}{\text{lane}}$

$$\begin{split} IM &= 0.33\\ LLRxnSpan1 &= LaneSpan1 + TruckSpan1 * (1 + IM)\\ LLRxnSpan1 &= 96.49 \frac{kip}{lane}\\ LLRxnSpan2 &= LaneSpan2 + TruckSpan2 * (1 + IM)\\ LLRxnSpan2 &= 123.62 \frac{kip}{girder} \end{split}$$

 $gV_{Span1_Int} = 0.876$ $gV_{Span1_Ext} = 0.876$ $gV_{Span2_Int} = 0.891$ $gV_{Span2_Ext} = 0.891$ Combine "Design Truck" and "Design Lane" loadings (AASHTO LRFD 3.6.1.3).

Dynamic load allowance, IM, does not apply to "Design Lane." (AASHTO LRFD 3.6.1.2.4).

The Live Load Reactions are assumed to be the Shear Live Load Distribution Factor multiplied by the Live Load Reaction per Lane. The Shear Live Load Distribution Factor is calculated using the "LRFD Live Load Distribution Factors" Spreadsheet found in the Appendices.

The Exterior Girders must have a Live Load Distribution Factor equal to or greater than the Interior Girders. This is to

$LLSpan1Int = gV_{Span1_Int} \cdot LLRxnSpan1$	LLSpan1Int = $84.53 \frac{\text{kip}}{\text{girder}}$
$LLSpan1Ext = gV_{Span1_Ext} \cdot LLRxnSpan1$	LLSpan1Ext = $84.53 \frac{\text{kip}}{\text{girder}}$
$LLSpan2Int = gV_{Span2_Int} \cdot LLRxnSpan2$	LLSpan2Int = $110.15 \frac{\text{kip}}{\text{girder}}$
$LLSpan2Ext = gV_{Span2_Ext} \cdot LLRxnSpan2$	LLSpan2Ext = $110.15 \frac{\text{kip}}{\text{girder}}$

<u>Span 1</u>

Interior Girder

Service Load (Service I Limit State, AASHTO LRFD 3.4.1)

 $V_{s_Span1Int} = DLSpan1 + Overlay1 + LLSpan1Int$

 $V_{s_{Span1Int}} = 140 \text{ kip}$

Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1)

$$V_{u_Span1Int} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1 + 1.75 \cdot LLSpan1Int$$

 $V_{u_{Span1Int}} = 218 \text{ kip}$

Exterior Girder

Service Load (Service I Limit State, AASHTO LRFD 3.4.1)

 $V_{s_Span1Ext} = DLSpan1 + Overlay1 + LLSpan1Ext$ $V_{s_Span1Ext} = 140 \text{ kip}$ Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1) $V_{u_Span1Ext} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1 + 1.75 \cdot LLSpan1Ext$ $V_{u_Span1Ext} = 218 \text{ kip}$

Span 2

Interior Girder

```
Service Load (Service I Limit State, AASHTO LRFD 3.4.1)
```

```
V_{s_Span2Int} = DLSpan2 + Overlay2 + LLSpan2Int
```

 $V_{s \text{ Span2Int}} = 225 \text{ kip}$

Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1)

 $V_{u_Span2Int} = 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot LLSpan2Int$

 $V_{u_Span2Int} = 339 \text{ kip}$

Exterior Girder

Service Load (Service I Limit State, AASHTO LRFD 3.4.1)

 $V_{s \ Span2Ext} = DLSpan2 + Overlay2 + LLSpan2Ext$

 $V_{s \ Span2Ext} = 225 \ kip$

Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1)

 $V_{u \ Span2Ext} = 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot LLSpan2Ext$

 $V_{u_Span2Ext} = 339 \, kip$

4.3.4.3 Torsional Loads

To maximize the torsion, the live load only acts on the longer span.

Figure 4.39 Live Load Model of 30 Degrees Skewed ITBC for Torsional Loads

 $a_v = 12$ in

" a_v " is the value for the distance from the face of the stem to the center of bearing for the girders. 12" is the typical values for TxGirders on ITBC (IGEB). The lever arm is the distance from the center line of bearing to the centerline of the cap.

LeverArm = 31.5 in

 $b_{stem} = 39$ in

LeverArm = $a_v + \frac{1}{2}b_{stem}$

Interior Girders

Girder Reactions

 $R_{u_{Span1}} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1$

 $R_{u_{span1}} = 70 \text{ kip}$

$$\begin{split} R_{u_Span2} &= 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot gV_{Span2_Int} \\ &\cdot [LaneSpan2 + TruckSapn2 \cdot (1 + IM)] \end{split}$$

 $R_{u_{Span2}} = 339 \text{ kip}$

Torsional Load

$$\mathbf{T}_{\mathbf{u}_{\perp}\mathbf{Int}} = \left| \mathbf{R}_{\mathbf{u}_{\perp}\mathbf{Span1}} - \mathbf{R}_{\mathbf{u}_{\perp}\mathbf{Span2}} \right| \cdot \mathbf{LeverArm}$$

$$T_{u \text{ Int}} = 706 \text{ kip} \cdot \text{ft}$$

Exterior Girders

Girder Reactions

$$R_{u \text{ Span1}} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1$$

$$\begin{split} R_{u_Span2} &= 1.25 \cdot \text{DLSpan2} + 1.5 \cdot \text{Overlay2} + 1.75 \cdot \text{gV}_{Span2_Ext} \\ &\cdot [\text{LaneSpan2} + \text{TruckSapn2} \cdot (1 + \text{IM})] \end{split}$$

$$R_{u_{Span2}} = 339 \text{ kip}$$

Torsional Load

$$T_{u_Ext} = |R_{u_Span1} - R_{u_Span2}| \cdot LeverArm$$

$$T_{u Ext} = 706 \text{ kip} \cdot \text{ft}$$

Torsion on Cap

Figure 4.41 Elevation View of 30 Degrees Skewed ITBC with Torsion Loads

Figure 4.42 Torsion Diagram of 30 Degrees Skewed ITBC

Analyzed assuming Bents are torsionally rigid at Effective Face of Columns.

 $T_u = 706 \ \text{kip} \cdot \text{ft}$

Maximum Torsion on Cap

4.3.4.4 Load Summary

Ledge Loads

Interior Girder

Service Load

$$V_{s_Int} = max(V_{s_Span1Int}, V_{s_Span2Int}) \qquad \qquad V_{s_Int} = 224.67 \text{ kip}$$

Factored Load

$$V_{u_{Int}} = max(V_{u_{Span1Int}}, V_{u_{Span2Int}})$$
 $V_{u_{Int}} = 338.53 \text{ kip}$

Exterior Girder

Service Load

$$V_{s_Ext} = max(V_{s_Span1Ext}, V_{s_Span2Ext})$$
 $V_{s_Ext} = 224.67 \text{ kip}$

Factored Load

$$V_{u_Ext} = max(V_{u_Span1Ext}, V_{u_Span2Ext})$$
 $V_{u_Ext} = 338.53 \text{ kip}$

Cap Loads

Positive Moment (From CAP18)

Dead Load:	$M_{posDL} = 294.4 \text{ kip} \cdot \text{ft}$
Service Load:	$M_{posServ} = 574.3 \text{ kip} \cdot \text{ft}$
Factored Load:	$M_{posUlt} = 863.4 \text{ kip} \cdot \text{ft}$

Negative Moment (From CAP18)

Dead Load:	$M_{negDL} = -443.9 \text{ kip} \cdot \text{ft}$
Service Load:	$M_{negServ} = -688.2 \text{ kip} \cdot \text{ft}$

Factored Load:	$M_{negUlt} = -991.3 \text{ kip} \cdot \text{ft}$	
Maximum Torsion and Concur	rrent Shear and Moment (Strength I)	
$T_u = 706 \text{ kip} \cdot \text{ft}$		Located two stations away from centerline of column.
$V_u = 452.1 \text{ kip}$		V., and M., values are from
$M_u = 394.2 \text{ kip} \cdot \text{ft}$		CAP18

4.3.5 Locate and Describe Reinforcing

Figure 4.43 Section View of 30 Degrees Skewed ITBC

Recall:

 $b_{stem} = 39 \text{ in}$ $d_{stem} = 57 \text{ in}$ $b_{ledge} = 24 \text{ in}$ $d_{ledge} = 28 \text{ in}$ $b_{f} = 87 \text{ in}$

$$h_{cap} = 85$$
 in
cover = 2.5 in

4.3.5.1 Describe Reinforcing Bars

$d_{bar_A} = 1.410$ in	
$d_{bar_B} = 1.410$ in	
	In the calculation of b_{ledge} , #6
$d_{bar_M} = 0.75$ in	Bar M was considered. Bar M
	must be #6 or smaller to allow it fullv develop.
$d_{bar_N} = 0.75$ in	To prevent confusion. use the
	same bar size for Bar N as Bar
$d_{bar_S} = 0.75$ in	М.
$d_{bar_T} = 0.75$ in	
	$d_{bar_A} = 1.410 \text{ in}$ $d_{bar_B} = 1.410 \text{ in}$ $d_{bar_M} = 0.75 \text{ in}$ $d_{bar_N} = 0.75 \text{ in}$ $d_{bar_S} = 0.75 \text{ in}$ $d_{bar_T} = 0.75 \text{ in}$

4.3.5.2 <u>Calculate Dimensions</u>

$$\begin{split} d_{s_neg} &= h_{cap} - cover - \frac{1}{2} d_{bar_S} - \frac{1}{2} d_{bar_A} & d_{s_neg} = 81.42 \text{ in} \\ d_{s_pos} &= h_{cap} - cover - \frac{1}{2} max(d_{bar_S}, d_{bar_M}) - \frac{1}{2} d_{bar_B} & d_{s_pos} = 81.42 \text{ in} \\ a_v &= 12 \text{ in} & & \\ a_f &= a_v + cover & a_f = 14.50 \text{ in} \\ d_e &= d_{ledge} - cover & d_e = 25.50 \text{ in} \\ d_f &= d_{ledge} - cover - \frac{1}{2} d_{bar_M} - \frac{1}{2} d_{bar_B} & d_f = 24.42 \text{ in} \\ h &= d_{ledge} + BrgSeat & h = 29.50 \text{ in} \end{split}$$

Figure 4.44 Plan View of 30 Degrees Skewed ITBC

 $\alpha = 60 \text{ deg}$

Recall:

L = 8 inW = 21 in Angle of Bars S (Angle from the horizontal) Dimension of Bearing Pad

4.3.6 Check Bearing

The load on the bearing pad propagates along a truncated pyramid whose top has the area A_1 and whose base has the area A_2 . A_1 is the loaded area (the bearing pad area: L×W). A_2 is the area of the lowest rectangle contained wholly within the support (the Inverted Tee Cap). A_2 must not overlap the truncated pyramid of another load in either direction, nor can it extend beyond the edges of the cap in any direction.

Figure 4.45. Bearing Check for 30 Degrees Skew Angle

(AASHTO LRFD 5.5.4.2) Area under Bearing Pad

 $\begin{array}{l} \frac{1}{2} \mathbf{b}_{\text{stem}} \end{array} \qquad \qquad \begin{array}{l} "B" \text{ is the distance from perimeter} \\ of A_1 \text{ to the perimeter of } A_2 \text{ as seen} \\ \\ \hline \mathbf{w} \end{array} \qquad \qquad \begin{array}{l} \text{in the above figure} \end{array}$

 $A_1 = 168 \text{ in}^2$

 $L_2 = 24.00$ in

Resistance Factor (
$$\phi$$
) = 0.7

Interior Girders

 $A_1 = L \cdot W$

$$\begin{split} B &= \min\left[\left(b_{ledge} - a_v\right) - \frac{1}{2}L, \left(a_v + \frac{1}{2}b_{stem}\right) \\ &- \frac{1}{2}L, 2d_{ledge}, \frac{1}{2}S - \frac{1}{2}W\right] \end{split}$$

B = 8 in. $L_2 = L + 2 \cdot B$

175

$$W_2 = W + 2 \cdot B$$
 $W_2 = 37.00 \text{ in}$
 $A_2 = L_2 \cdot W_2$ $A_2 = 888 \text{ in}^2$

Modification factor

$$m = \min(\sqrt{\frac{A_2}{A_1}}, 2) = 2.29 \text{ and } 2$$
 $m = 2$
 AASHTO LRFD Eq. 5.6.5-3

 $\phi V_n = \phi$
 $0.85 f_c$
 A_1
 m
 $\phi V_n = 999.6 \text{ kips}$
 AASHTO LRFD Eqs. 5.6.5-1

 $v_{u_{\text{Int}}} = 338.53 < \phi V_n$
 BearingChk = "OK!"
 $V_{u_{\text{int}}} from "4.3.4.4 Load Summary".$

$$B = \min\left[\left(b_{\text{ledge}} - a_{v}\right) - \frac{1}{2}L, \left(a_{v} + \frac{1}{2}b_{\text{stem}}\right) - \frac{1}{2}L, 2d_{\text{ledge}}, \frac{1}{2}S - \frac{1}{2}W, c - \frac{1}{2}W\right]$$

	$B = 8 \text{ in.} \begin{array}{l} "B" \text{ is the distance from} \\ perimeter of A_1 \text{ to the} \\ perimeter of A_2 \text{ as seen} \\ \text{ in the above figure} \end{array}$
$L_2 = L + 2 B$	$L_2 = 24.00 \text{ in}$
$W_2 = W + 2 B$	$W_2 = 37.00$ in
$A_2 = L_2 W_2$	$A_2 = 888 \text{ in}^2$

Modification factor

$$m = min\left(\sqrt{\frac{A_2}{A_1}}, 2\right) = 2.29 \text{ and } 2 \quad m = 2$$
 AASHTO LRFD Eq. 5.6.5-3

$$\phi V_n = \phi \quad 0.85 \quad f_c \quad A_1 \quad m \qquad \phi V_n = 999.6 \text{ kips} \qquad AASHTO \ LRFD \ Eqs. 5.6.5-1 \\ and 5.6.5-2: \\ V_{u_ext} = 338.53 \text{ kips} < \Phi V_n \qquad BearingChk="OK!" \qquad V_{u_ext} \ from ``4.3.4.4 \ Load \\ Summary''.$$

4.3.7 Check Punching Shear

AASHTO LRFD 5.8.4.3.4, the truncated pyramids assumed as failure surfaces for punching shear shall not overlap.

AASHTO LRFD 5.5.4.2.

Figure 4.46 Punching Shear Check for 30 Degrees **Skew Angle**

Resistance Factor (ϕ) = 0.90

Is $\frac{1}{2}$

 $\frac{1}{2}S$

 d_{f}

Determine if the Shear Cones Intersect

$$Is \frac{1}{2}S - \frac{1}{2}W \ge d_{f}?$$

$$\frac{1}{2}S - \frac{1}{2}W = 37.5 \text{ in}$$

$$d_{f} = 24.42 \text{ in}$$

$$Is \frac{1}{2}b_{stem} + a_{v} - \frac{1}{2}L \ge d_{f}?$$

$$Yes. Therefore, shear cones do not intersect in the longitudinal direction of the cap.$$

$$TxDOT uses "df" instead of "de" for Punching Shear (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria). This is because "df" has traditionally been used for inverted tee bents and was sed in the Inverted Tee Research (Furiong % Mirza pg. 58).$$

$$Is \frac{1}{2}b_{stem} + a_{v} - \frac{1}{2}L \ge d_{f}?$$

$$Yes. Therefore, shear cones do not intersect in the transverse direction of the cap.$$

$$\frac{1}{2}b_{stem} + a_v - \frac{1}{2}L = 27.5$$
 in
d_f = 24.42 in

Interior Girders

$V_n = 0.125 \boxtimes \lambda \sqrt{f_c'} \ b_o \ d_f$	$V_{\rm n} = 585.91 {\rm kips}$	AASHTO LRFD 5.8.4.3.4-3
$b_o = W + 2L + 2d_f$	$b_o = 84.84 in$	AASHTO LRFD 5.8.4.3.4-4
$\phi V_n = 527.32 \text{ kips}$		
$V_{u_Int} = 338.53 \text{ kips} < \varphi V_n$	PunchingShearChk= "OK!"	V _{u_int} from "4.3.4.4 Load Summary"

•

Exterior Girders		
$V_{n} = \min[(0.125 \cdot \sqrt{f_{c}} \cdot \left(\frac{1}{2}W + L + d_{f} + c\right) * d_{f}, 0.125 \cdot \sqrt{f_{c}} \cdot (W + 2L + 2d_{f}) * d_{f})]$	$V_{n} = 545.15 \text{ kips}$	AASHTO LRFD 5.8.4.3.4-3 and 5.8.4.3.4-5

$\phi V_n = 411.09 \text{ kips}$		
$V_{u_ext} = 338.53 \text{ kips} < \varphi V_n$	PunchingShearChk= "OK!"	V _{u_ext} "4.3.4.4 Load
		Summary".

4.3.8 Check Shear Friction

Determine the Distribution Width

 $= \min[69, 96, 48]$

Interior Girders"S" is the girder spacing. $b_{s_{Int}} = min(W + 4a_v, S)$ "S" is the girder spacing.= min (69 in, 96 in) $b_{s_{Int}} = 69 in$ $A_{cv} = b_{s_{Int}} \cdot d_e$ $A_{cv} = 1759.5 in2$ Exterior Girders $b_{s_{ext}} = min(W + 4a_v, S, 2c)$ "S" is the girder spacing.

= 48 in $A_{cv} = b_{s ext} \cdot d_e$ $A_{cv} = 1224 in2$

Interior Girders

 $V_{n} = \min(0.2 \cdot f_{c} \cdot A_{cv}, 0.8 \cdot A_{cv}) \quad V_{n} = 1408 \text{ kips}$ $= \min(1759.5, 1408)$ $\phi V_{n} = 1267 \text{ kips}$ $V_{u_{int}} = 338.53 \text{ kips} < \phi V_{n}$ ShearFrictionChk="OK!" $V_{u_{int}} from "4.3.4.4 \text{ Load}$ Summary".

Exterior Girders

$V_n = min(0.2 \cdot f_c \cdot A_{cv}, 0.8 \cdot A_{cv})$ = min (1224, 979.2)	V _n = 979.2 kips	AASHTO LRFD 5.8.4.2.2-1 and 5.8.4.2.2-2
$\phi V_n = 881 \text{ kips}$		
$V_{u_ext} = 338.53 \text{ kips} < \varphi V_n$	ShearFrictionChk= "OK!"	V _{u_ext} from "4.3.4.4 Load Summary".

4.3.9 Flexural Reinforcement for Negative Bending (Bars A)

$M_{dl} = M_{negDL} $	$M_{dl} = 443.9 \text{ kip} \cdot \text{ft}$
$M_s = M_{negServ} $	$M_s = 688.2 \text{ kip} \cdot \text{ft}$
$M_{u} = M_{negUlt} $	$M_u = 991.3 \text{ kip} \cdot \text{ft}$

4.3.9.1 Minimum Flexural Reinforcement

Factored Flexural Resistance, M_r , must be greater than or equal to the lesser of $1.2M_{cr}$ (Cracking Moment) or $1.33M_u$ (Ultimate Moment).

enter of Gravity he bottom of the
ure (BDM- et. 5, Design
enter of Gravity n fiber
for the extreme
t (AASHTO 3-1)
of 1.2M _{cr} or
termining
steel required.

Thus, M_r must be greater than $M_f = 1318.4 \ \text{kip} \cdot \text{ft}$

4.3.9.2 Moment Capacity Design

Try, 7 ~ #11's Top Number of bars in tension BarANo = 7Diameter of main reinforcing $d_{bar A} = 1.410$ in bars $A_{\text{bar A}} = 1.56 \text{ in}^2$ Area of main reinforcing bars Area of steel in tension $A_s = BarANo \cdot A_{bar_A}$ $A_s = 10.92 \text{ in}^2$ Diameter of shear reinforcing $d_{stirrup} = 0.75$ in $d_{stirrup} = d_{bar_S}$ bars $d = d_{s neg}$ d = 81.42 in $b = b_f$ b = 87 inCompressive Strength of Concrete $f_{c} = 5.0 \text{ ksi}$ Yield Strength of Rebar $f_v = 60 \text{ ksi}$ (AASHTO LRFD 5.6.2.2) $\beta_1 = 0.85 - 0.05(f_c - 4ksi)$ Bounded by: $0.65 \le \beta_1 \le 0.85$ $\beta_1 = 0.80$ Depth of Cross Section under $c = \frac{A_s f_y}{0.85\ _c\beta_1 b}$ c = 2.22 in Compression under Ultimate Load This "c" is the distance from the extreme compression fiber to the (AASHTO LRFD Eq. 5.6.3.1.2-4)

neutral axis, not the distance from the center of bearing of the last girder to the end of the cap.

$$a = c \cdot \beta_1$$
 $a = 1.78 in$

Note: "a" is less than " d_{ledge} ". Therefore the equivalent stress block acts over a rectangular area. If "a" was greater than " d_{ledge} ", it would act over a Tee shaped area.

$$\begin{split} M_n &= A_s f_y \left(d - \frac{a}{2} \right) \cdot \frac{1 \text{ft}}{12 \text{in}} & M_n &= 4397 \text{ kip} \cdot \text{ft} \\ \epsilon_s &= 0.003 \cdot \frac{d-c}{c} & \epsilon_s &= 0.107 \end{split}$$

 $\epsilon_{s} > 0.005$

FlexureBehavior = "Tension Controlled"

$$\Phi_{M} = 0.90$$

$$M_{r} = \Phi_{M}M_{n}$$

$$M_{r} = 3957.3 \text{ kip} \cdot \text{ft}$$

$$M_{f} = 1318.4 \text{ kip} \cdot \text{ft} < M_{r}$$

$$M_{n} = 991.3 \text{ kip} \cdot \text{ft} < M_{r}$$

$$UltimateMom = "OK!"$$

Depth of Equivalent Stress Block (AASHTO LRFD 5.6.2.2)

Nominal Flexural Resistance (AASHTO LRFD Eq. 5.6.3.2.2-1)

Strain in Reinforcing at Ultimate

(AASHTO LRFD 5.6.2.1)

(AASHTO LRFD 5.5.4.2)

Factored Flexural Resistance (AASHTO LRFD Eq. 5.6.3.2.1-1)

4.3.9.3 Check Serviceability

To find s_{max}:

Modular Ratio:

$$n = \frac{E_s}{E_c} \qquad n = 7.12$$

Tension Reinforcement Ratio:

$$\rho = \frac{A_s}{b \cdot d} \qquad \rho = 0.0015$$

$$k = \sqrt{(2\rho n) + (\rho n)^2} - (\rho n) \qquad k = 0.136$$

 $d \cdot k = 11.07$ in $< d_{ledge} = 28$ in

Therefore, the compression force acts over a rectangular area.

$$j = 1 - \frac{\kappa}{3}$$
 $j = 0.955$

$$\begin{split} f_{ss} &= \frac{M_s}{A_s \cdot j \cdot d} \cdot \frac{12 \text{in}}{1 \text{ft}} & f_{ss} &= 9.73 \text{ ksi} \\ f_a &= 0.6 f_y & f_a &= 36.00 \text{ ksi} \\ f_{ss} &< f_a & \text{ServiceStress} = ``OK!`` \\ d_c &= \text{cover} + \frac{1}{2} d_{\text{stirrup}} + \frac{1}{2} d_{\text{bar}_A} & d_c &= 3.58 \text{ in} \end{split}$$

Exposure Condition Factor:

$$\begin{split} \gamma_e &= 1.00 \\ \beta_s &= 1 + \frac{d_c}{0.7(h_{cap} - d_c)} & \beta_s &= 1.06 \\ s_{max} &= \min\left(\frac{700\gamma_e}{\beta_s f_{ss}} - 2d_c, 12in.\right) & s_{max} &= 12 \text{ in} \\ s_{Actual} &= \frac{b_{stem} - 2d_c}{BarANo - 1} & s_{Actual} &= 5.31 \text{ in} \\ s_{actual} &< s_{max} & \text{ServiceabilityCheck} = "OI" \end{split}$$

4.3.9.4 Check Dead Load

Check allowable M_{dl} : $f_{dl} = 22 \text{ ksi}$

$$\begin{split} M_{a} &= A_{s} \cdot d \cdot j \cdot f_{dl} \cdot \frac{1 f t}{12 i n} & M_{a} &= 1556.7 \text{ kip} \cdot f t \\ M_{dl} &= 443.9 \text{ kip} \cdot f t < M_{a} & \text{DeadLoadMom} = "OK!" \end{split}$$

For service loads, the stress on the cross-section is located as shown in Figure 4.47.

Figure 4.47 Stresses on the Cross Section for Service Loads of 30 Degrees Skewed ITBC

If the compression force does not act over rectangular area, j will be different.

Service Load Bending Stress in outer layer of the reinforcing.

Allowable Bending Stress (BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

For Class 1 Exposure Conditions. For areas where deicing chenicals are frequently used, design for Class 2 Exposure ($\gamma_e = 0.75$). (BDM-LRFD Ch. 4, Sect. 5, Design Criteria) (AASHTO LRFD Eq. 5.6.7-1)

A good practice is to place a bar every 12 in along each surface of the bent. (TxSP)

TxDOT limits dead load stress to 22 ksi, which is set to limit observed cracking under dead load.

Allowable Dead Load Moment

4.3.10 Flexural Reinforcement for Positive Bending (Bars B)

$M_{dl} = M_{posDL}$	$M_{dl} = 294.4 \text{ kip} \cdot \text{ft}$
$M_s = M_{posServ}$	$M_s = 574.3 \text{ kip} \cdot \text{ft}$
$M_u = M_{posUlt}$	$M_u = 863.4 \text{ kip} \cdot \text{ft}$

4.3.10.1 Minimum Flexural Reinforcement

Factored Flexural Resistance, M_r , must be greater than or equal to the lesser of $1.2M_{cr}$ (Cracking Moment) or $1.33M_u$ (Ultimate Moment).

$I_g = 2.86 \times 10^6 \text{ in}^4$		Gross Moment of Inertia
y _t = ybar	y _t = 34.3 in	<i>Distance to the Center of Gravity of the Cap from the top of the Cap from the top of the Cap</i>
$f_r = 0.24\sqrt{f_c}$	$f_r = 0.537$ ksi	Modulus of Rupture (BDM- LRFD, Ch. 4, Sect. 5, Design Criteria)
$S = \frac{I_g}{y_t}$	$S = 8.34 \times 10^4 \text{ in}^3$	Section Modulus for the extreme tension fiber
$M_{cr} = S \cdot f_r \cdot \frac{1ft}{12in}$	$M_{cr} = 3732.2 \text{ kip} \cdot \text{ft}$	Cracking Moment (AASHTO LRFD Eq. 5.6.3.3-1)
$M_f = minimum of:$		Design the lesser of $1.2M_{cr}$ or
$1.2M_{cr} = 4478.6 \text{ kip} \cdot \text{ft}$		$1.33M_u$ when determining
$1.33M_u = 1148.3 \text{ kip} \cdot \text{ft}$		mininum area of steel required.

Thus, M_r must be greater than $M_f = 1148.3 \; \text{kip} \cdot \text{ft}$

4.3.10.2 Moment Capacity Design

Try,
$$11 \sim \#11^{\circ}s$$
 BottomNumber of bars in tensionBarBNo = 11Diameter of main reinforcing $d_{bar_B} = 1.41$ inDiameter of main reinforcing bars $A_{bar_B} = 1.56$ in²Area of main reinforcing bars $A_s = BarBNo \cdot A_{bar_B}$ $A_s = 17.16$ in² $d = d_{s,pos}$ $d = 81.42$ in $b = b_{stem}$ $b = 39$ in $f_c = 5.0$ ksiCompressive Strength of Concrete $f_y = 60$ ksiYield Strength of Rebar $\beta_1 = 0.85 - 0.05(f_c - 4ksi)$ $\beta_1 = 0.80$ $c = \frac{A_s f_y}{0.85 f_c \beta_1 b}$ $c = 7.76$ inDepth of Cross Section under
Compression under Ultimate Load

(AASHTO LRFD Eq. 5.6.3.1.2-4)

Depth of Equivalent Stress Block

(AASHTO LRFD 5.6.2.2)

This "c" is the distance from the extreme compression fiber to the neutral axis, not the distance from the center of bearing of the last girder to the end of the cap.

$$a = c \cdot \beta_1 \qquad \qquad a = 6.21 \text{ in}$$

Note: "a" is less than " d_{stem} ". Therefore the equivalent stress block acts over a rectangular area. If "a" was greater than " d_{stem} ", it would act over a Tee shaped area.

 $M_f = 1148.3 \text{ kip} \cdot \text{ft} < M_r$

 $M_u = 863.4 \text{ kip} \cdot \text{ft} < M_r$

$$\begin{split} M_n &= A_s f_y \left(d - \frac{a}{2} \right) \cdot \frac{1 \text{ft}}{12 \text{in}} & M_n = 6719.4 \text{ kip} \cdot \text{ft} & Nominal Flexural Resistance} \\ \epsilon_s &= 0.003 \cdot \frac{d - c}{c} & \epsilon_s = 0.028 & Strain in Reinforcing at Ultimate \\ \epsilon_s &> 0.005 & \\ \hline FlexureBehavior = "Tension Controlled" & (AASHTO LRFD 5.6.2.1) \\ \Phi_M &= 0.90 & (AASHTO LRFD 5.5.4.2) \\ M_r &= \Phi_M \cdot M_n & M_r = 6047.5 \text{ kip} \cdot \text{ft} & Factored Flexural Resistance} \\ (AASHTO LRFD Eq. 5.6.3.2.1-1) & \\ \hline FlexureBehavior = 0.90 & (AASHTO LRFD 5.5.4.2) \\ \hline FlexureBehavior = 0.90$$

MinReinfChk = "OK!"

UltimateMom = "OK!"

4.3.10.3 Check Serviceability

To find s_{max}:

Modular Ratio:

$$n = \frac{E_s}{E_c} \qquad \qquad n = 7.12$$

Tension Reinforcement Ratio:

$$\rho = \frac{A_s}{b \cdot d} \qquad \qquad \rho = 0.0054$$

$$\overline{(2on) + (on)^2} - (on) \qquad \qquad k = 0.242$$

$$k = \sqrt{(2\rho n) + (\rho n)^2} - (\rho n)$$
 $k =$

 $d \cdot k = 19.70$ in $< d_{stem} = 57.00$ in

Therefore, the compression force acts over a rectangular

$$j = 0.919$$

$$\begin{split} f_{ss} &= \frac{M_s}{A_s \cdot j \cdot d} \cdot \frac{12 i n}{1 f t} & f_{ss} &= 5.37 \text{ ksi} \\ f_a &= 0.6 f_y & f_a &= 36.00 \text{ ksi} \\ f_{ss} &< f_a & \text{ServiceStress} = "OK" \end{split}$$

$$d_{c} = cover + \frac{1}{2}d_{stirrup} + \frac{1}{2}d_{bar_B} \qquad d_{c} = 3.58 in$$

Exposure Condition Factor:

$$\begin{split} \gamma_e &= 1.00 \\ \beta_s &= 1 + \frac{d_c}{_{0.7(h_{cap} - d_c)}} \qquad \qquad \beta_s = 1.06 \end{split}$$

$$s_{max} = min\left(\frac{700\gamma_e}{\beta_s f_{ss}} - 2d_c, 12in.\right)$$
 $s_{max} = 12 in$

Bars Inside Stirrup Bar S

Try: BarBInsideSNo = 5 $s_{Actual} = \frac{b_{stem} - 2\left(cover + \frac{1}{2}d_{bar_{-}S} + \frac{1}{2}d_{bar_{-}B}\right)}{BarBInsideSNo-1}$

For service loads, the stress on the cross-section is located as shown in Figure 4.48.

Figure 4.48 Stresses on the Cross Section for Bars **B** for Service Loads of 30 Degrees Skewed ITBC

> If the compression force does not act over rectangular area, j will be different.

Service Load Bending Stress in outer layer of the reinforcing.

Allowable Bending Stress (BDM-LRFD Ch. 4, Sect. 5, Design *Criteria*)

For Class 1 Exposure Conditions. For areas where deicing chenicals are frequently used, design for Class 2 Exposure ($\gamma_e = 0.75$). (BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

(AASHTO LRFD Eq. 5.6.7-1)

A good practice is to place a bar every 12 in along each surface of the bent. (TxSP)

Number of Bars B that are inside Stirrup Bar S.

 $s_{Actual} = 7.96$ in

!"

ServiceabilityCheck = "OK

Bars Outside Stirrup Bar S

BarBOutsideSNo = 11 - BarBInsideSNoNumber of Bars B that are inside
Stirrup Bar S.BarBOutsideSNo = 6 $s_{Actual} = \frac{2b_{ledge} + 2(cover + \frac{1}{2}d_{bar_S} + \frac{1}{2}d_{bar_B} - cove}{BarBOutsideSNo}$ $\frac{1}{2}d_{bar_M} - \frac{1}{2}d_{bar_B}}{BarBOutsideSNo}$ $s_{actual} = 8.00$ in $< s_{max}$ ServiceabilityCheck = "OK

4.3.10.4 Check Dead Load

Check allowable M _{dl} :	$f_{dl} = 22 \text{ ksi}$		<i>TxDOT limits dead load stress to 22 ksi. This is due to observed cracking under dead load.</i>
$M_{a} = A_{s} \cdot d \cdot j \cdot f_{dl} \cdot \frac{1}{12}$	ft 2in	$M_a = 2354.00 \text{ kip}$	Allowable Dead Load Moment
$M_{dl} = 294.4 \text{ kip} \cdot \text{ft}$	< M _a	DeadLoadMom = "(<mark>OK!"</mark>

Flexural Steel Summary:

Use 7 ~ # 11 Bars on Top & 11 ~ # 11 Bars on Bottom

4.3.11 Ledge Reinforcement (Bars M & N)

Try Bars M and Bars N at a 4.70" spacing.

$$s_{bar_M} = 4.70$$
 in
 $s_{bar_N} = 4.70$ in

Use trial and error to determine the spacing needed for the ledge reinforcing.

It is typical for Bars M & N to be paired together

4.3.11.1 Determine Distribution Widths

These distribution widths will be used on the following pages to determine the required ledge reinforcement per foot of cap.

Distribution Width for Shear (AASHTO LRFD 5.8.4.3.2)	Note: These are the same	
Interior Girders	distribution widths used for the Shear Friction check	
$b_{s_{Int}} = \min(W + 4a_v, S)$	"S" is the girder spacing.	
$b_{s_{Int}} = 69.00$ in		
Exterior Girders	"c" is the distance from the center	
$b_{s_Ext} = min(W + 4a_v, 2c, S)$	of bearing of the outside beam to	
$b_{s_Ext} = 48.00$ in	the end of the ledge.	
Distribution Width for Bending and Axial Loads (AASHTO LRFD 5.8.4.3.3)		

Interior Girders

 $b_{m_{Int}} = min(W + 5a_f, S)$ $b_{m Int} = 93.50 in$

Exterior Girders

 $b_{m_{Ext}} = min(W + 5a_f, 2c, S)$ $b_{m_{Ext}} = 48.00 in$

4.3.11.2 Reinforcing Required for Shear Friction

$\Phi = 0.90$	

$\mu = 1.4$	$c_1 = 0$ ksi	$P_c = 0 \text{ kip}$
Recall:	$d_e = 25.50$ in	

Minimum Reinforcing (AASHTO LRFD Eq. 5.7.4.2-1)

 $\begin{aligned} A_{vf_min} &= \frac{0.05 \text{ ksi} \cdot A_{cv}}{f_y} \\ A_{cv} &= d_e \cdot b_s \quad \text{and} \qquad a_{vf} = \frac{A_{vf}}{b_c} \end{aligned}$

 $a_{vf_min} = \frac{0.05 k si \cdot d_e}{f_v}$

(AASHTO LRFD 5.5.4)

"µ" is 1.4 for monolithically placed concrete. (AASHTO LRFD 5.7.4.4)

For clarity, the cohesion factor is labeled " c_1 ". This is to prevent confusion with "c", the distance from the last girder to the edge of the cap. c_1 is 0ksi for corbels and ledges. (AASHTO LRFD 5.7.4.4)

" P_c " is zero as there is no axial compression.

 $a_{vf_min} = 0.26 \frac{in^2}{ft}$ Minimum Reinforcing required for Shear Friction

Interior Girders

 $A_{cv} = 1759 \text{ in}^2$ $A_{cv} = d_e \cdot b_{s \text{ Int}}$ V_{11} Int = 338.5 kip From "4.3.4.4 Load Summarv". $V_n = c_1 A_{cv} + \mu (A_{vf} f_v + P_c)$ (AASHTO LRFD Eq. 5.7.4.3-3) (AASHTO LRFD Eq. 5.7.4.3-1 & $\Phi V_n \ge V_n$ AASHTO LRFD Eq. 5.7.4.3-2) $\Phi \cdot \left[c_1 A_{cv} + \mu (A_{vf} f_v + P_c) \right] \ge V_{u}$ $A_{vf} = \frac{\frac{\nabla u_{\perp}Int}{\Phi} - c_{\perp}A_{cv}}{\frac{\mu}{f_{\perp}}} - P_{c}$ $A_{\rm vf} = 4.48 \text{ in}^2$ Required Reinforcing for Shear Friction $a_{vf_{Int}} = 0.78 \frac{in^2}{ft}$ Required Reinforcing for Shear $a_{vf_{Int}} = \frac{A_{vf}}{b_{s_{Int}}}$ Friction per foot length of cap

AASHTO LRFD 5.7.4.1

Exterior Girders

$$\begin{array}{ll} A_{cv} = d_{e} \cdot b_{s_Ext} & A_{cv} = 1224 \ \text{in}^{2} \\ V_{u_Ext} = 338.5 \ \text{kip} & From ``4.3.4.4 \ Load \ Summary ``. \\ V_{n} = c_{1}A_{cv} + \mu(A_{vf}f_{y} + P_{c}) & (AASHTO \ LRFD \ Eq. \ 5.7.4.3-3) \\ \Phi V_{n} \geq V_{u} & (AASHTO \ LRFD \ Eq. \ 5.7.4.3-1 \ \& AASHTO \ LRFD \ Eq. \ 5.7.4.3-2) \\ \Phi \cdot \left[c_{1}A_{cv} + \mu(A_{vf}f_{y} + P_{c})\right] \geq V_{u} & A_{vf} = 4.48 \ \text{in}^{2} & Required \ Reinforcing \ for \ Shear \ Friction \\ a_{vf_Ext} = \frac{A_{vf}}{b_{s_Ext}} & a_{vf_Ext} = 1.12 \ \frac{\text{in}^{2}}{\text{ft}} & Required \ Reinforcing \ for \ Shear \ Friction \ Parton \ LRFD \ 5.8.4.2.1 \end{array}$$

4.3.11.3 Rein

Recall: h = 29.50 in $d_e = 25.50$ in $a_v = 12$ in From "4.3.5.2 Calculate Dimensions" Interior Girders $V_{u \text{ Int}} = 338.5 \text{ kip}$ From "4.3.4.4 Load Summary". $N_{uc Int} = 67.7 \text{ kip}$ $N_{uc Int} = 0.2 \cdot V_{u Int}$ (AASHTO LRFD 5.8.4.2.1) $M_{u Int} = V_{u Int} \cdot a_v + N_{uc Int}(h - d_e)$ $M_{u Int} = 361.1 \text{ kip} \cdot \text{ft}$ (AASHTO LRFD Eq. 5.8.4.2.1-1) Use the following equations to solve for A_f: $\Phi M_n \ge M_{u \text{ Int}}$ (AASHTO LRFD Eq. 1.3.2.1-1) $M_n = A_f f_y \left(d_e - \frac{a}{2} \right)$ (AASHTO LRFD Eq.5.6.3.2.2-1) $c = \frac{A_f f_y}{\alpha_1 f_c \beta_1 b_{m \text{ Int}}}$ (AASHTO LRFD Eq. 5.6.3.1.2-4) $\alpha_1 = 0.85$ (AASHTO LRFD 5.6.2.2) $\beta_1 = 0.80$ $a = c\beta_1$ $0.75 \le \Phi = 0.65 + 0.15 \left(\frac{d_e}{c} - 1\right) \le 0.90$ AASHTO LRFD 5.5.4.2 $A_{f} = 3.18 \text{ in}^{2}$ Solve for A_f: Required Reinforcing for Flexure $a_{f_Int} = 0.41 \frac{in^2}{ft}$ $a_{f_{Int}} = \frac{A_f}{b_{m Int}}$ Required Reinforcing for Flexure per foot length of cap

Exterior Girders

 $V_{u_Ext} = 338.5 \text{ kip}$ $V_{u_Ext} = 338.5 \text{ kip}$ $V_{u_Ext} = 0.2 \cdot V_{u_Ext}$ $V_{u_Ext} = 0.2 \cdot V_{u_Ext}$ $V_{u_Ext} = 67.7 \text{ kip}$ (AASHTO LRFD 5.8.4.2.1) $M_{u_Ext} = V_{u_Ext} \cdot a_v + N_{uc_Ext}(h - d_e)$ $M_{u_Ext} = 361.1 \text{ kip} \cdot \text{ft}$ (AASHTO LRFD Eq. 5.8.4.2.1-1)Use the following equations to solve for A_f:

 $\Phi M_n \ge M_{u Ext}$ (AASHTO LRFD Eq. 1.3.2.1-1) $M_{n} = A_{f}f_{y}\left(d_{e} - \frac{a}{2}\right)$ (AASHTO LRFD Eq. 5.6.3.2.2-1) $c = \frac{A_f f_y}{\alpha_1 f_c \beta_1 b_{m Ext}}$ (AASHTO LRFD Eq. 5.6.3.1.2-4) $\alpha_1 = 0.85$ (AASHTO LRFD 5.6.2.2) $\beta_1 = 0.80$ $a = c\beta_1$ $0.75 \le \Phi = 0.65 + 0.15 \left(\frac{d_e}{c} - 1\right) \le 0.90$ AASHTO LRFD 5.5.4.2 $A_{f} = 3.21 \text{ in}^{2}$ Solve for A_f: Required Reinforcing for Flexure $a_{f_Ext} = 0.80 \frac{in^2}{ft}$ $a_{f_Ext} = \frac{A_f}{b_m Ext}$ Required Reinforcing for Flexure per foot length of cap

(AASHTO LRFD 5.8.4.2.2)

AASHTO LRFD 5.5.4.2

4.3.11.4 Reinforcing Required for Axial Tension

 $\Phi = 0.90$

Interior Girders:

$$\begin{split} N_{uc_Int} &= 0.2 V_{u_Int} & N_{uc_Int} &= 67.7 \ \text{kip} \\ A_n &= \frac{N_{uc_Int}}{\Phi f_y} & A_n &= 1.25 \ \text{in}^2 & \begin{array}{c} \textit{Required Reinforcing for Axial} \\ \textit{Tension} \\ a_{n_Int} &= \frac{A_n}{b_{m_Int}} & a_{n_Int} &= 0.16 \frac{\text{in}^2}{\text{ft}} & \begin{array}{c} \textit{Required Reinforcing for Axial} \\ \textit{Tension per foot length of cap} \\ \end{array} \end{split}$$

Exterior Girders:

$$\begin{split} N_{uc_Ext} &= 0.2V_{u_Int} & N_{uc_Ext} &= 67.7 \text{kip} \\ A_n &= \frac{N_{uc_Ext}}{\Phi f_y} & A_n &= 1.25 \text{ in}^2 & Required Reinforcing for Axial \\ a_{n_Ext} &= \frac{A_n}{b_{m_Ext}} & a_{n_Ext} &= 0.31 \frac{\text{in}^2}{\text{ft}} & Required Reinforcing for Axial \\ Tension per foot length of cap \end{split}$$

4.3.11.5 Minimum Reinforcing

$$a_{s_min} = 0.04 \frac{f_c}{f_y} d_e$$

4.3.11.6 Check Required Reinforcing

Actual Reinforcing:

$$a_{s} = \frac{A_{bar_{M}}}{s_{bar_{M}}}$$

$$a_{s} = 1.12 \frac{in^{2}}{ft}$$

$$Primary Ledge Reinform Provided$$

$$a_{h} = \frac{A_{bar_{N}}}{s_{bar_{N}}}$$

$$a_{h} = 1.12 \frac{in^{2}}{ft}$$

$$Auxiliary Ledge Reinform Provided$$

$$Provided$$

<u>Checks:</u> $A_s \ge A_{s_min}$

$$A_{s} \ge A_{f} + A_{n}$$
$$A_{s} \ge \frac{2A_{vf}}{3} + A_{n}$$

$$A_{\rm h} \ge 0.5(A_{\rm s} - A_{\rm n})$$

Check if:

Check Interior Girders:

Bar M:

 $a_{s} \ge a_{s_min}$ $a_{s} \ge a_{f_Int} + a_{n_Int}$ $a_{s} \ge \frac{2a_{vf_Int}}{3} + a_{n_Int}$

$$\begin{aligned} a_{s} &= 1.12 \frac{in^{2}}{ft} \\ a_{s_min} &= 1.02 \frac{in^{2}}{ft} < a_{s} \\ a_{f_Int} &+ a_{n_Int} = 0.57 \frac{in^{2}}{ft} < a_{s} \\ \frac{2a_{vf_Int}}{3} + a_{n_Int} = 0.68 \frac{in^{2}}{ft} < a_{s} \end{aligned}$$

BarMCheck = "OK!"

Bar N:

$$a_{h} \ge 0.5 \cdot (a_{s} - a_{n_Int})$$
$$a_{s} = The maximum of:$$
$$a_{f_Int} + a_{n_Int}$$
$$\frac{2a_{vf_Int}}{3} + a_{n_Int}$$

$$a_{\rm s} = 0.68 \frac{\rm in^2}{\rm ft}$$

Check if:

(AASHTO LRFD 5.8.4.2.1)
$$a_{s_min} = 1.02 \frac{in^2}{ft} \quad Minimum \ Required \ Reinforcing$$

..12
$$\frac{in^2}{ft}$$
 Primary Ledge Reinforcing
Provided
1.12 $\frac{in^2}{ft}$ Auxiliary Ledge Reinforcing
Provided
(AASHTO LRFD 5.8.4.2.1)
(AASHTO LRFD 5.8.4.2.2)
(AASHTO LRFD Eq. 5.8.4.2.2-5)
(AASHTO LRFD Eq. 5.8.4.2.2-6)

(AASHTO LRFD Eq. 5.8.4.2.2-6)

" a_s " in this equation is the steel required for Bar M, based on the requirements for Bar M in AASHTO LRFD 5.8.4.2.2. This is derived from the suggestion that Ah should not be less than $A_{f}/2$ nor less than $A_{vf}/3$ (Furlong & Mirza pg. 73 & 74)

$$0.5 \cdot (a_s - a_{n_Int}) = 0.26 \frac{in^2}{ft} < a_h$$

BarNCheck = "OK!"

Check Exterior Girders:

Bar M:

Check if:

$$a_{s} \ge a_{s_min}$$

$$a_{s} \ge a_{f_Ext} + a_{n_Ext}$$

$$a_{s} \ge \frac{2a_{vf_Ext}}{3} + a_{n_Ext}$$

$$a_{s} = 1.12\frac{in^{2}}{ft}$$

 $a_{s_min} = 1.02 \frac{in^2}{ft} < a_s$

 $a_{f_Ext} + a_{n_Ext} = 1.11 \frac{in^2}{ft} ~<~ a_s$

 $\frac{2a_{vf_Ext}}{3} + a_{n_Ext} = 1.06 \frac{in^2}{ft} < a_s$

BarMCheck = "OK!"

Bar N:

Check if:

$$a_{h} \ge 0.5 \cdot (a_{s} - a_{n_Ext})$$
 (AASHTO LRFD Eq. 5.8.4.2.2-6)
 $a_{s} =$ The maximum of:
 $a_{f_Ext} + a_{n_Ext}$
 $\frac{2a_{vf_Ext}}{3} + a_{n_Ext}$ (arrow and arrow arrow and arrow and arrow ar

Ledge Reinforcement Summary:

Use # 6 primary ledge reinforcing @ 4.70" maximum spacing & # 6 auxiliary ledge reinforcing @ 4.70" maximum spacing

4.3.12 Hanger Reinforcement (Bars S)

Try Double # 6 Stirrups at a 7.40" spacing.

$s_{\text{bar}_S} = 7.40$ in		the spacing needed for the hanger reinforcing.
$A_{hr} = 2stirrups \cdot A_{bar_s}$	$A_{hr} = 0.88 \text{ in}^2$	It is typical for Bars S to have an
$A_v = 2 legs \cdot A_{hr}$	$A_v = 1.76 \text{ in}^2$	integer multiple of the spacing of
		Bars M & N for practical reasons.

4.3.12.1 Check Minimum Transverse Reinforcement

$b_v = b_{stem}$	$b_v = 39$ in	
$A_{v_min} = 0.0316\lambda \sqrt{f_c} \frac{b_v \cdot s_{bar_S}}{f_y}$		(AASHTO LRFD Eq. 5.7.2.5-1)
		(AASHTO LRFD 5.4.2.8)

 $A_{v min} = 0.34 in^2$

MinimumSteelCheck = "OK!"

 $\lambda = 1.0$ for normal weight concrete

 $A_v > A_{v \min}$

4.3.12.2 Check Service Limit State

AASHTO LRFD 5.8.4.3.5 with notifications from BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

Interior Girders

$$V_{all} = minimum of:$$

$$\frac{A_{hr} \cdot \left(\frac{1}{3} f_y\right)}{s_{bar_s}} \cdot (W + 3a_v) = 228 \text{ kip}$$

TxDOT uses "2/3 f_y " from the original research (Furlong & Mirza Eq. 5.4) instead of "0.5 f_y " from AASHTO LRFD Eq. 5.8.4.3.5-1. (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria)

Use trial and error to determine

Bounded by: $(W + 3a_v) \le \min(S, 2c)$

$$\frac{A_{\rm hr} \cdot \left(\frac{z}{3} f_{\rm y}\right)}{s_{\rm bar_S}} \cdot S = 457 \, \rm kip$$

 $V_{all} = 228 \text{ kip}$ $V_{s_Int} = 225 \text{ kip} \ < \ V_{all}$

(2)

(BDM-LRFD Ch.4, Sect. 5, Design Criteria modified to limit the distribution width to the girder spacing. This will prevent distribution widths from overlapping)

ServiceCheck = "OK!"

Exterior Girders

 V_{all} = minimum of: V_{all} for the Interior Girder

$$\frac{A_{hr}\left(\frac{2}{3}f_{y}\right)}{s_{bar_{s}}}\cdot\left(\frac{W+3a_{v}}{2}+c\right)=228\ \text{kip}$$

Bounded by: $(W + 3a_v) \le \min(S, 2c)$

$$\frac{A_{hr} \cdot \left(\frac{2}{3} f_{y}\right)}{s_{bar_{s}}} \cdot \left(\frac{s}{2} + c\right) = 342 \text{ kip}$$

$$V_{all} = 228 \text{ kip}$$

 $V_{s_Ext} = 225 \text{ kip} < V_{all}$

4.3.12.3 Check Strength Limit State

 $\Phi = 0.90$

Interior Girders:

TxDOT uses "2/3 f_y " from the original research (Furlong & Mirza Eq. 5.4) instead of "0.5 f_y " from AASHTO LRFD Eq. 5.8.4.3.5-1. (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria)

(BDM-LRFD Ch.4, Sect. 5, Design Criteria Modified to limit the distribution width to half the girder spacing and the distance to the edge of the cap. This will prevent distribution widths from overlapping or extending over the edge of the cap.)

ServiceCheck = "OK!"

(AASHTO LRFD 5.8.4.3.5)

(AASHTO LRFD Eq. 5.8.4.3.5-2)

$$(0.063\sqrt{f_c} \cdot b_f \cdot d_f) + \frac{A_{hr} \cdot f_y}{S_{har} s} (W + 2d_f) = 798 \text{ kip} \quad (AASHTO LRFD Eq. 5.8.4.3.5-3)$$

$$V_n = 685 \text{ kip}$$

 $\Phi V_n = 617 \text{ kip}$
 $V_{u_{\text{Int}}} = 339 \text{ kip} < \Phi V_n$
UltimateCheck = "OK!"

Exterior Girders:

 $V_n = minimum of:$

 $V_n = minimum of:$

 $\frac{A_{hr} \cdot f_y}{s_{bar S}} \cdot S = 685 \text{ kip}$

 $V_{n} \text{ for the Interior Girder}$ $\frac{A_{hr} \cdot f_{y}}{s_{bar_{-}S}} \cdot \left(\frac{S}{2} + c\right) = 514 \text{ kip} \qquad (AASHTO LRFD Eq. 5.8.4.3.5-2)$ $(0.063\sqrt{f_{c}} \cdot b_{f} \cdot d_{f}) + \frac{A_{hr} \cdot f_{y}}{s_{bar_{-}S}} \left(\frac{W+2d_{f}}{2} + c\right) = 720 \text{ kip} \qquad (AASHTO LRFD Eq. 5.8.4.3.5-3)$ (These equations are modified to limit the distribution width to the edge of the cap) $V_{u,Ext} = 339 \text{ kip} < \Phi V_{n}$ UltimateCheck = "OK!"

4.3.12.4 Check Combined Shear and Torsion

The following calculations are for Station 36. All critical locations must be checked. See the Concrete Section Shear Capacity spreadsheet in the appendices for calculations at other locations. Shear and Moment were calculated using the CAP 18 program.

 $M_u = 394.2 \text{ kip} \cdot \text{ft}$ $V_u = 452.1 \text{ kip}$ $N_u = 0 \text{ kip}$ $T_u = 706 \text{ kip} \cdot \text{ft}$ Recall: $\beta_1 = 0.80$ $f_v = 60 \text{ ksi}$ $f_c = 5.0 \text{ ksi}$ $E_{s} = 29000 \text{ ksi}$ $h_{cap} = 85$ in $b_{stem} = 39$ in $b_f = 87$ in h = 29.50 in $b_{v} = 39$ in $b_v = b_{stem}$ Find d_v: (AASHTO LRFD 5.7.2.8) $A_s = 10.92 \text{ in}^2$ $A_s = A_{\text{bar }A} \cdot \text{BarANo}$ Shears are maximum near the column $c = \frac{A_s f_y}{0.85 f_c \beta_1 b_f}$ faces. In these regions the cap is in c = 2.21 in negative bending with tension in the top of the cap. Therefore, the $a = c \cdot \beta_1$ a = 1.77 in calculations are based on the steel in $d_s = d_{s neg}$ $d_s = 81.42$ in the top of the bent cap. $M_n = A_s f_v \left(d_s - \frac{a}{2} \right)$ $M_n = 4397.2 \text{ kip} \cdot \text{ft}$ $A_{ns} = 0 \text{ in}^2$ $d_e = \frac{A_{ps}f_{ps}d_p + A_sf_yd_s}{A_{ps}f_{ps} + A_sf_y}$ $d_e = 81.42$ in (AASHTO LRFD Eq. 5.7.2.8-2) $d_v = maximum of:$ $\frac{M_n}{A_s f_v + A_{ns} f_{ns}} = 80.53 \text{ in}$ $0.9d_e = 73.28$ in 0.72h = 21.24 in $d_v = 80.53$ in

The method for calculating θ and β used in this design example are from AASHTO LRFD Appendix B5. The method from AASHTO LRFD 5.7.3.4.2 may be used instead. The method from 5.7.3.4.2 is based on the method from Appendix B5; however, it is less accurate and more conservative (often excessively conservative). The method from Appendix B5 is preferred because it is more accurate, but it requires iterating to a solution.

Determine θ and β :

$$\Phi_{V} = 0.90$$

$$v_{u} = \frac{|V_{u} - (\Phi_{V} \cdot V_{p})|}{\Phi_{V} \cdot b_{v} \cdot d_{v}}$$

$$v_{u} = 0.16 \text{ ksi}$$

$$\frac{v_{u}}{f_{c}} = 0.03$$

Using Table B5.2-1 with $\frac{v_u}{f_c} = 0.03$ and $\varepsilon_x = 0.001$ $\theta = 36.4 \text{ deg}$ and $\beta = 2.23$

$$\begin{split} \epsilon_{x} &= \frac{\frac{|M_{u}|}{d_{v}} + 0.5 N_{u} + 0.5 |V_{u} - V_{p}| \cot \theta - A_{ps} f_{po}}{2(E_{s}A_{s} + E_{p}A_{ps})} \\ \text{where } |M_{u}| &= 394.2 \text{ kip} \cdot \text{ft must be} > |V_{u} - V_{p}| d_{v} = 3034 \text{ kip} \cdot \text{ft} \\ \epsilon_{x} &= 1.20 \times 10^{-3} > 1.00 \times 10^{-3} \end{split}$$

use
$$\varepsilon_{\rm x} = 1.00 \times 10^{-3}$$
.

(AASHTO LRFD Eq. 5.5.4.2)

Shear Stress on the Concrete (AASHTO LRFD Eq. 5.7.2.8-1)

Determining θ and β is an iterative process, therefore, assume initial shear strain value ε_x of 0.001 per LRFD B5.2 and then verify that the assumption was valid.

Strain halfway between the compressive and tensile resultants (AASHTO LRFD Eq. B5.2-3) If $\varepsilon_x < 0$, then use equation B5.2-5 and re-solve for ε_x .

For values of ε_x greater than 0.001, the tensile strain in the reinforcing, ε_t is greater than 0.002. ($\varepsilon_t = 2\varepsilon_x - \varepsilon_c$, where ε_c is < 0) Grade 60 steel yields at a strain of 60 ksi / 29,000 ksi = 0.002. By limiting the tensile strain in the steel to the yield strain and using the Modulus of Elasticity of the steel prior to yield, this limits the tensile stress of the steel to the yield stress. ε_x has not changed from the assumed value, therefore no iterations are required.

"V_p" is zero as there is no prestressing.

 $A_{c} = 1657.5 \text{ in}^{2}$ (AASHTO LRFD B5.2) "A_c" is the area of concrete on the flexural s = 7.40 in tension side of the cap, from the extreme tension fiber to one half the cap depth. "A_c" is needed if AASHTO LRFD

Eq. B5.2-3 is negative.

 $V_p = 0 \text{ kip}$

 $A_{c} = b_{stem} \cdot \frac{h_{cap}}{2}$ $s = s_{bar S}$

The transverse reinforcement, " A_v ", is double closed stirrups. The failure surface intersects four stirrup legs, therefore the area of the shear steel is four times the stirrup bar's area (0.44in2). See the sketch of the failure plane to the left.

Figure 4.49 Failure Surface of 30 Degrees Skewed ITBC for Combined Shear and Torsion

$$\begin{split} A_v &= 2 \text{legs} \cdot 2 \text{stirrups} \cdot A_{\text{bar}_S} & A_v &= 1.76 \text{ in}^2 \\ A_t &= 1 \text{leg} \cdot A_{\text{bar}_S} & A_t &= 0.44 \text{ in}^2 \\ A_{\text{oh}} &= (d_{\text{stem}}) \cdot (b_{\text{stem}} - 2 \text{cover}) + (d_{\text{ledge}} - 2 \text{cover}) \cdot (b_f - 2 \text{cover}) \\ & A_{\text{oh}} &= 3496 \text{ in}^2 \\ A_0 &= 0.85A_{\text{oh}} & A_0 &= 2971.6\text{in}^2 \\ p_h &= (b_{\text{stem}} - 2 \text{cover}) + 2(b_{\text{ledge}}) + (b_f - 2 \text{cover}) + 2(h_{\text{cap}} - 2 \text{cover}) \\ & p_h &= 324 \text{ in} \end{split}$$

Equivalent Shear Force

$$V_{u_{Eq}} = \sqrt{V_{u}^{2} + \left(\frac{0.9p_{h}T_{u}}{2A_{0}}\right)^{2}} \qquad V_{u_{Eq}} = 614.2 \text{ kip } (AASHTO LRFD Eq. B.5.2-1)$$

Shear Steel Required

 V_n = the lesser of:

$$V_c + V_s + V_p$$
(AASHTO LRFD Eq. 5.7.3.3-1) $0.25 \cdot f_c \cdot b_v \cdot d_v + V_p$ (AASHTO LRFD Eq. 5.7.3.3-2)

Check maximum ΦV_n for section:

 $\Phi V_{n_{max}} = \Phi \cdot \left(0.25 \cdot f_{c} \cdot b_{v} \cdot d_{v} + V_{p} \right)$

 $\Phi V_{n max} = 3533 \text{ kip}$

$$V_u = 452.1 \text{ kip } < \Phi V_{n_max}$$
 MaxShearCheck = "OK!"

Calculate required shear steel:

$$V_{u} < \Phi V_{n}$$

$$V_{c} = 0.0316 \cdot \beta \cdot \sqrt{f_{c}} \cdot b_{v} \cdot d_{v}$$

$$V_{u} < \Phi_{V} \cdot (V_{c} + V_{s} + V_{p})$$

$$V_{s} = \frac{A_{v} \cdot f_{y} \cdot d_{v} \cdot (\cot\theta + \cot\alpha) \cdot \sin\alpha}{s_{req}}$$

$$a_{v_{r}req} = \frac{\frac{V_{u}}{\Phi_{V}} - V_{c} - V_{p}}{f_{v} \cdot d_{v} \cdot (\cot\theta + \cot\alpha) \cdot \sin\alpha}$$

(AASHTO LRFD Eq. 1.3.2.1-1) V_c = 495 kip (AASHTO LRFD Eq. 5.7.3.3-3)

$$a_{v_req} = 0.011 \frac{in^2}{ft}$$

$$a_{t_req} = 0.23 \frac{in^2}{ft}$$

Total Required Transverse Steel

 $T_n = \frac{2A_oA_tf_y \cot\theta}{s_{bar_S}}$

 $a_{t_req} = \frac{T_u}{\Phi_T 2 A_o f_y cot \theta}$

Torsional Steel Required

 $\Phi_{\rm T} = 0.9$

 $T_u \leq \Phi_T T_n$

$$a_{req} = a_{v_req} + 2sides \cdot a_{t_req} \qquad a_{req} = 0.47 \frac{in^2}{ft} \qquad \frac{dest}{whe}$$

$$a_{prov} = \frac{A_v}{s_{bar_s}} \qquad a_{prov} = 2.85 \frac{in^2}{ft} \qquad \frac{are}{C5}$$

$$a_{prov} > a_{req} \qquad TransverseSteelCheck = "OK!"$$

The transverse reinforcement is designed for the side of the section where the effects of shear and torsion are additive. (AASHTO LRFD C5.7.3.6.1)

Longitudinal Reinforcement

$$\begin{split} A_{ps}f_{ps} + A_{s}f_{y} &\geq \frac{|M_{u}|}{\Phi d_{v}} + \frac{0.5N_{u}}{\Phi} + \cdots \\ & cot\Theta\sqrt{\left(\left|\frac{V_{u}}{\Phi} - V_{p}\right| - 0.5V_{s}\right)^{2} + \left(\frac{0.45p_{h}T_{u}}{2A_{0}\Phi}\right)^{2}} \\ V_{s} &= a_{t_req} \cdot f_{y} \cdot d_{v} \cdot (cot\Theta + cot\alpha) \cdot sin\alpha \end{split} \qquad (AASHTO LRFD Eq. 5.7.3.3-4)$$

Bounded By:
$$V_s < \frac{V_u}{\Phi_V}$$

 $V_{\rm s} = 502.3 \, {\rm kip}$ (AASHTO LRFD Eq. 5.7.3.5-1)

$$\frac{|M_u|}{\Phi_f d_v} + \frac{0.5N_u}{\Phi_c} + \cot\theta \sqrt{\left(\left|\frac{V_u}{\Phi_V} - V_p\right| - 0.5V_s\right)^2 + \left(\frac{0.45p_h T_u}{2A_0 \Phi_T}\right)^2} = 528 \text{ kip}$$

Provided Force:

$$A_s f_y = 655.2 \text{ kip} > 528 \text{ kip}$$
 LongitudinalReinfChk = "OK!"

4.3.12.5 Maximum Spacing of Transverse Reinforcement		(AASHTO LRFD 5.7.2.6)	
Shear Stress			
$v_u = \frac{ v_u - \Phi_V v_p }{\Phi_V b_v d_v}$	$v_u = 0.16$ ksi	(AASHTO LRFD Eq. 5.7.2.8-1)	
$0.125 \cdot f_c = 0.625 \text{ ksi}$			
If $v_u < 0.125 \cdot f_c$		(AASHTO LRFD Eq. 5.7.2.6-1)	
$s_{max} = min(0.8d_v, 24in)$			
If $v_u \ge 0.125 \cdot f_c$		(AASHTO LRFD Eq. 5.7.2.6-2)	
$s_{max} = min(0.4d_v, 12in)$			
Since $v_u < 0.125 \cdot f_c$	$s_{max} = 24.00 \text{ in}$		
TxDOT limits the maximum transverse reinforcement spacing to 12".		(BDM-LRFD, Ch. 4, Sect. 5,	
$s_{max} = 12.00$ in		Detailing)	
$s_{bar_S} = 7.40 \text{ in } < s_{max}$ SpacingCheck= "OK!"			

Hanger Reinforcement Summary:

Use double # 6 stirrups @ 7.40" maximum spacing
4.3.13 End Reinforcements (Bars U1, U2, U3, and G)

Extra vertical, horizontal, and diagonal reinforcing at the end surfaces is provided to reduce the maximum crack widths. According to the parametric analysis, it is recommended to place #6 U1 Bars, U2 Bars, and U3 Bars at the end faces and #7 G Bars at approximately 6in. spacing at the first 30" to 35" of the end of bent cap. U1 Bars are the vertical end reinforcements, U2 Bars and U3 Bars are the horizontal end reinforcements at the stem and the ledge, respectively. G Bars are the diagonal end reinforcement.

Figure 4.50 End Face Section View of 30 Degrees Skewed ITBC

Figure 4.51 End Face Elevation View of 30 Degrees Skewed ITBC

4.3.14 Skin Reinforcement (Bars T)

Try 7 ~ # 6 bars in Stem and 3 ~ # 6 bars in Ledge on each side

ITBC

(AASHTO LRFD 5.6.7)

4.3.14.1 Required Area of Skin Reinforcement

 $A_{sk_Req} = 0.012 \cdot (d - 30)$

 $A_{sk_Req} = 0.62 \frac{in^2}{ft}$ (AASHTO LRFD Eq. 5.6.7-3)

 A_{sk} need not be greater than one quarter of the main reinforcing $(A_s/4)$ per side face within d/2 of the main reinforcing. (AASHTO LRFD 5.6.7)

"d" is the distance from the extreme compression fiber to the centroid of the extreme tension steel element. In this example design, $d = d_{s_pos} = d_{s_neg} = 81.42$ in.

$$A_{sk_max} = max \left(\frac{\frac{A_{bar_A} \cdot Bar A No}{4}}{\frac{d_{s_neg}}{2}}, \frac{\frac{A_{bar_B} \cdot Bar B No}{4}}{\frac{d_{s_pos}}{2}}\right)$$
$$A_{sk_max} = 1.26 \frac{in^2}{ft}$$
$$A_{skReq} = min(A_{sk_Req}, A_{sk_max})$$
$$A_{sk_max} = 0.62 \frac{in^2}{ft}$$

 $A_{skReq} = 0.62 \frac{1}{ft}$

4.3.14.2 Required Spacing of Skin Reinforcement

(AASHTO LRFD 5.6.7)

 $s_{req} = minimum of:$

$$\frac{A_{bar_T}}{A_{skReq}} = 8.52 \text{ in}$$
$$\frac{d_{s_neg}}{6} = 13.57 \text{ in}$$

$$\frac{d_{s_pos}}{6} = 13.57$$
 in & 12 in

 $s_{req} = 8.52$ in

4.3.14.3 Actual Spacing of Skin Reinforcement

Check T Bars spacing in Stem:

$$\begin{split} h_{top} &= d_{stem} - \left(cover + \frac{d_{bar_S}}{2} + \frac{d_{bar_A}}{2} \right) + \left(cover + \frac{d_{bar_M}}{2} + \frac{d_{bar_T}}{2} \right) \\ h_{top} &= 56.67 \text{ in} \end{split}$$

 $s_{skStem} = \frac{h_{top}}{NoTBarsSte}$

 $s_{skStem} < s_{req}$

 $s_{skStem} = 7.08$ in

SkinSpacing = "OK!"

Check T Bars spacing in Ledge:

$$h_{bot} = d_{ledge} - \left(cover + \frac{d_{bar_M}}{2} + \frac{d_{bar_T}}{2}\right) - \left(cover + \frac{d_{bar_S}}{2} + \frac{d_{bar_B}}{2}\right)$$
$$h_{bot} = 21.17 \text{ in}$$

 $s_{skLedge} = \frac{n_{bot} - a}{NoTBarsLedge}$

SkinSpacing = "OK!"

 $s_{skLedge} = 7.59$ in

Check if "a" is less than s_{req}

$$a = 6 \text{ in } < s_{req}$$
 SkinSpacing = "OK!"

Skin Reinforcement Summary:

Use $7 \sim #6$ bars in Stem and $3 \sim #6$ bars in Ledge on each side

4.3.15 Design Details and Drawings

4.3.15.1 Bridge Layout

4.3.15.2 CAP 18 Input File

_____ CAP18 Version 6.00 ITBC Design Example 2, Skew = 30.00 SProblem Card -----1 E 0 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay) STABLE 1 - CONTROL DATA -----Enter 1 to keep: Number cards Options: ŝ Env Tab2 Tab3 Tab4 on Table 4 Envelope Print Skew Angle Ş Ŝ X X X X XX x xx xxxxxxxx 16 30.0 \$TABLE 2 - CONSTANTS ------Anly Opt (1=Working, |-Movable Load Data--| 2=Load Factor,3=Both) Num Increment |Num Start Stop Step|Anly| Load Factors: TABLE 2a ŝ Ś
 Inc
 Length
 |Inc
 Sta
 Size
 Opt
 Dead
 Live

 XX
 XXXXXXXXX
 XXX
 XXX
 XXX
 X
 XXXXXXXXXX

 92
 0.5
 20
 2
 70
 1
 3
 1.25
 1.75
 Ś Ŝ ŝ TABLE 2b Overlay Ś \$ Load Factor Lanes | 1 lane 2 lanes 3 lanes 4 lanes 5 lanes XXXXX X XXXX XXXX XXXX XXXX XXXX 1.50 3 1.2 1.0 0.85 0.65 0.65 \$ STABLE 3 - LIST OF STATIONS -----

 Number of input values for
 Str - Stringers, Sup - Supports

 Lane Str Sup MCP VCP
 MCP - Moment Control Points

 XX
 XX
 XX

 VCP - Shear Control Points
 Str - Stringers, Sup - Supports

 \$ Ś XX XX XX XX XX 3 6 4 11 8 Ŝ (Num Inputs) 8 Left Lane Boundary Stations S Ş Ś Ŝ (Stringers) 6 22 38 54 70 00 (Stringers) 6 22 38 54 70 00 Ś Station of Stringers (two rows max, may be at tenths of stations, XX.X) \$ Ŝ Station of Supports (two rows max) Ś (Supports) 10 34 58 82 Moment Control Point Stations (two rows max) Ś Ŝ 6 86 (Mom CP) 10 22 34 38 46 54 58 70 82 (Mom CP) ŝ Shear Control Point Stations (two rows max) (Shear CP) 8 12 32 36 56 60 80 84 Ś 36 56 60 80 84 \$TABLE 4 - STIFFNESS AND LOAD DATA -----Bending Sidewalk, Cap & Station 1 if Stiffness Slab Stringer Moving \$ Ś Overlav From To Cont'd of Cap SComments Loads Loads Loads Loads, DW \$XXXXXXXXXXXXXXX XXX XXX 2 8.09E+07 (CAP EI & DL) 90 -2.427 (DL Span1, Bm1) -50.17 -5.04 6 (DL Span1, Bm2) 22 22 -50.17 -5.04 (DL Span1, Bm3) 38 -50.17-5.04 38 (DL Span1, Bm4) 54 54 -50.17-5.04 (DL Span1, Bm5) 70 70 -50.17-5.04 (DL Span1, Bm6) 86 86 -50.17-5.04 (DL Span2, Bm1) 6 6 -104.1 -10.5 (DL Span2, Bm2) 22 22 -104.1-10.5 38 (DL Span2, Bm3) 38 -104.1 -10.5 (DL Span2, Bm4) 54 54 -104.1 -10.5 (DL Span2, Bm5) 70 70 -104.1 -10.5 (DL Span2, Bm6) 86 86 -104.1-10.5 (Dist. Lane Ld) 0 20 -4.92 (Conc. Lane Ld) -21.3 4 4 (Conc. Lane Ld) -21.3 16 16

4.3.15.3 CAP 18 Output File

AUG 07, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 1 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011) PSF HIGHWAY PD- CONTROL- CODED NO COUNTY NO IPE SECTION-JOB BY DATE 00001 __County___ Highwy Pro# 0000-00-000 BRG AUG 07, 2020 Comment CAP18 Version 6.00 ITBC Design Example 2, Skew = 30.00 PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'la ENGLISH SYSTEM UNITS TABLE 1. CONTROL DATA **OPTION TO PRINT TABLE SRS (1=YES)** 0 ENVELOPES TABLE NUMBER OF MAXIMUMS 2 3 4 KEEP FROM PRECEDING PROBLEM (1=YES) 0 0 0 0 CARDS INPUT THIS PROBLEM 16 OPTION TO CLEAR ENVELOPES BEFORE LANE LOADINGS (1=YES) 0 OPTION TO OMIT PRINT FOR TABLES (TABLE DESIGNATIONS IN PARENTHESES) -1(4A), -2(5) -3(4A,5), -4(4A,5,6), -5(4A,5,6,7): 0 SKEW ANGLE, DEGREES 30.000 TABLE 2. CONSTANTS NUMBER OF INCREMENTS FOR SLAB AND CAP 92 **INCREMENT LENGTH, FT** 0.500 NUMBER OF INCREMENTS FOR MOVABLE LOAD 20 START POSITION OF MOVABLE-LOAD STA ZERO 2 STOP POSITION OF MOVABLE-LOAD STA ZERO 70 NUMBER OF INCREMENTS BETWEEN EACH POSITION OF MOVABLE LOAD 1 ANALYSIS OPTION (1=WORKING STRESS, 2=LOAD FACTOR, 3=BOTH) 3 LOAD FACTOR FOR DEAD LOAD 1.25 LOAD FACTOR FOR OVERLAY LOAD 1.50 LOAD FACTOR FOR LIVE LOAD 1.75 MAXIMUM NUMBER OF LANES TO BE LOADED SIMULTANEOUSLY 3 LIST OF LOAD COEFFICIENTS CORRESPONDING TO NUMBER OF LANES LOADED 2 3 1.000 5 4 0.850 1.200

AUG 07, 2020TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT)PAGE 2CAP18BENT CAP ANALYSISVer. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'la (CONTINUED)

TABLE 3. LISTS OF STATIONS

 NUM OF LANES
 NUM OF STRINGERS
 NUM OF 6
 NUM OF 4
 NUM OF SUPPORTS
 NUM MOM CONTR PTS
 NUM SHEAR CONTR PTS

 LANE LEFT
 2
 32
 60
 90
 5
 5
 5
 5
 5
 6
 4
 11
 8
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7</t

TABLE 4. STIFFNESS AND LOAD DATA

FIXE	D-O	R-N	IOVABLE	FD	XED-POSIT	ION DAT	A	- MOVAE	BLE-
STA	ST	A C	ONTD CAP I	BENDING	SIDEWA	LK, STRI	NGER, C	VERLAY	POSITION
FRO	M	ТО	IF=1 STIFFN	IESS SL	AB LOADS	CAP LO	ADS LO	ADS SL	AB LOADS
		(1	(-FT*FT) (K) (K) (K)	(K)			
		· · · · · ·							
2	90	0	80900000.0	000 0.	000 -2.4	27 0.0	00 0.00	00	
6	6	0	0.000	0.000	-50.170	-5.040	0.000		
22	22	0	0.000	0.000	-50.170	-5.040	0.000		
38	38	0	0.000	0.000	-50.170	-5.040	0.000		
54	54	0	0.000	0.000	-50.170	-5.040	0.000		
70	70	0	0.000	0.000	-50.170	-5.040	0.000		
86	86	0	0.000	0.000	-50.170	-5.040	0.000		
6	6	0	0.000	0.000	-104.100	-10.500	0.000		
22	22	0	0.000	0.000	-104.100	-10.500	0.000		
38	38	0	0.000	0.000	-104.100	-10.500	0.000		
54	54	0	0.000	0.000	-104.100	-10.500	0.000		
70	70	0	0.000	0.000	-104.100	-10.500	0.000		
86	86	0	0.000	0.000	-104.100	-10.500	0.000		
0	20	0	0.000	0.000	0.000	0.000	-4.920		
4	4	0	0.000	0.000	0.000	0.000 -	21.300		
16	16	0	0.000	0.000	0.000	0.000	-21.300		

TABLE 4A. DEAD LOAD RESULTS (WORKING STRESS)

STA	DIST X (F	T) DEFLECTIO	N (FT) MO	MENT (K-FT)	SHEAR (K)
-1	-0.58	0.000000	0.0	0.0	
0	0.00	0.000000	0.0	0.0	
1	0.58	-0.000051	0.0	0.0	
2	1.15	-0.000045	0.0	-0.7	
3	1.73	-0.000039	-0.8	-2.8	
4	2.31	-0.000032	-3.2	-5.6	
5	2.89	-0.000026	-7.3	-8.4	
6	3.46	-0.000020	-12.9	-96.1	
7	4.04	-0.000014	-118.3	-183.8	
8	4.62	-0.000008	-225.2	-186.6	
9	5.20	-0.000003	-333.8	-189.4	
10	5.77	0.000000	-443.9	-34.4	
11	6.35	0.000002	-373.5	120.6	
12	6.93	0.000002	-304.7	117.8	
13	7.51	0.000000	-237.5	115.0	
14	8.08	-0.000002	-172.0	112.2	
15	8.66	-0.000005	-108.0	109.4	
16	9.24	-0.000008	-45.7	106.6	
17	9.81	-0.000012	15.0	103.8	
18	10.39	-0.000015	74.1	101.0	
19	10.97	-0.000018	131.6	98.2	
20	11.55	-0.000021	187.5	95.4	
21	12.12	-0.000023	241.7	92.6	
22	12.70	-0.000024	294.4	4.8	
23	13.28	-0.000024	247.3	-82.9	
24	13.86	-0.000022	198.7	-85.7	
25	14.43	-0.000020	148.4	-88.5	
26	15.01	-0.000017	96.5	-91.3	
27	15.59	-0.000014	43.0	-94.1	
28	16.17	-0.000011	-12.1	-96.9	
29	16.74	-0.000007	-68.8	-99.7	
30	17.32	-0.000004	-127.2	-102.5	
31	17.90	-0.000002	-187.2	-105.3	
32	18.48	0.000000	-248.8	-108.1	
33	19.05	0.000001	-312.0	-110.9	
34	19.63	0.000000	-3/6.8	44.9	
35	20.21	-0.000002	-200.2	200.6	
30	20.78	-0.000005	-145.1	197.8	
3/	21.30	-0.000009	-51.7	195.0	
20	21.94	-0.000013	00.1	107.5	
39	22.52	-0.000017	102.2	16.0	
40	23.09	-0.000020	1116	14.0	
41	23.07	-0.000023	112.0	14.0	
42	24.20	-0.000025	1246	0 /	
45	24.63	-0.000027	124.0	0.4	

TABLE 4A. DEAD LOAD RESULTS (WORKING STRESS)

STA	DIST X (FT)	DEFLECTION	(FT)	MON	IENT (K-FT)	SHEAR (K)
44	25.40	-0.000028	128	8.6	5.6	
45	25.98	-0.000029	131	1.0	2.8	
46	26.56	-0.000029	13	1.8	0.0	
47	27.14	-0.000029	13	1.0	-2.8	
48	27.71	-0.000028	128	8.6	-5.6	
49	28.29	-0.000027	124	4.6	-8.4	
50	28.87	-0.000025	118	8.9	-11.2	
51	29.44	-0.000023	111	1.6	-14.0	
52	30.02	-0.000020	102	2.7	-16.8	
53	30.60	-0.000017	92	.2	-19.6	
54	31.18	-0.000013	80	.1	-107.3	
55	31.75	-0.000009	-31	.7	-195.0	
56	32.33	-0.000005	-14	5.1	-197.8	
57	32.91	-0.000002	-26	0.2	-200.6	
58	33.49	0.000000	-376	5.8	-44.9	
59	34.06	0.000001	-312	2.0	110.9	
60	34.64	0.000000	-248	8.8	108.1	
61	35.22	-0.000002	-18	7.2	105.3	
62	35.80	-0.000004	-12	7.2	102.5	
63	36.37	-0.000007	-68	8.8	99.7	
64	36.95	-0.000011	-12	.1	96.9	
65	37.53	-0.000014	43	.0	94.1	
66	38.11	-0.000017	96	.5	91.3	
67	38.68	-0.000020	148	8.4	88.5	
68	39.26	-0.000022	198	8.7	85.7	
69	39.84	-0.000024	247	7.3	82.9	
70	40.41	-0.000024	294	4.4	-4.8	
71	40.99	-0.000023	24	1.7	-92.6	
72	41.57	-0.000021	187	7.5	-95.4	
73	42.15	-0.000018	131	1.6	-98.2	
74	42.72	-0.000015	74	.1	-101.0	
75	43.30	-0.000012	15	.0	-103.8	
76	43.88	-0.000008	-45	.7	-106.6	
77	44.46	-0.000005	-10	8.0	-109.4	
78	45.03	-0.000002	-17	2.0	-112.2	
79	45.61	0.000000	-23	7.5	-115.0	
80	46.19	0.000002	-304	4.7	-117.8	
81	46.77	0.000002	-373	3.5	-120.6	
82	47.34	0.000000	-443	3.9	34.4	
83	47.92	-0.000003	-33	3.8	189.4	
84	48.50	-0.000008	-22	5.2	186.6	
85	49.07	-0.000014	-118	8.3	183.8	
86	49.65	-0.000020	-12	.9	96.1	
87	50.23	-0.000026	-7.	3	8.4	
88	50.81	-0.000032	-3.	2	5.6	
89	51.38	-0.000039	-0.	8	2.8	
90	51.96	-0.000045	0.	0	0.7	

91	52.54	-0.000051	0.0	0.0
92	53.12	0.000000	0.0	0.0
93	53.69	0.000000	0.0	0.0

AUG 07, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 5 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'la (CONTINUED)

TABLE 5. MULTI-LANE LOADING SUMMARY (WORKING STRESS) (*--CRITICAL NUMBER OF LANE LOADS)

MOMENT (FT-K)

AT STA	DEAD LD EFFECT	LANE ORDER	POSITIV MAXIM	e load Um lan	AT NE ST	LAI A	NE NEG ORDER 	MAXIMU	OAD AT M LAN	E STA
6	-12.9 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 1 2 3 0*	0.0 0.0 0.0 0.0						
10	-443.9 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 1 2 3 0*	-203.5 -203.5 0.0 0.0	1 1	2				
22	294.4 0 1 2 3 0*	233.3 232.3 10.8 0.0	0 13 1 12 3 62 3 0*	0 -38. 1 -38. 2 0.0 0.0	.5 .5	2	36 36			
34	-376.8 0 1 2 3 0*	21.6 21.6 0.0 0.0	3 62 3 62 2 3 2*	0 -157. 1 -134. -97.8 0.0	.4 .6 23	0 1 32	18 12			
38	80.1 0 1 2 3 0*	96.5 96.5 3.7 0.0	2 32 2 32 3 62 3 3 0*	0 -67.9 1 -67.9 2 0.0 0.0	9 1 9 1		9			
46	131.8 0 1 2 3 0*	80.1 80.1 0.0 0.0	2 36 2 36 2 3 2*	0 -32.1 1 -32.1 -32.1 0.0	1 1 1 1 3 6	53	9			
54	80.1 0 1 2 3 0*	96.5 96.5 3.7 0.0	2 40 2 40 1 10 2 3 0*	0 -67.9 1 -67.9 2 0.0 0.0) 3) 3	6	3 3			
58	-376.8 0 1 2 3 0*	21.6 21.6 0.0 0.0	1 9 (1 9 1 2 3 2*	0 -157.4 I -134.6 -97.8 0.0	1 0 5 3 2 4	5 6 10	4 0			

AUG 07, 2020	TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT)	PAGE 6
CAP18	BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)	

MOMENT (FT-K)

AT) LANF	POSITIV	F LOAD	AT	IA	NF	NEGATI	/F LOA	DAT
STA	EFFECT	ORDE	R MAXIM	UM LAN	IE S	TA	OR	DER MAX	KIMUM	LANE STA
70	294.4									
	0	233.3	0 59	0 -38.	5	2	36			
	1	232.3	3 60	1 -38.	5	2	36			
	2	10.8	19.	2 0.0						
	3 0*	0.0	3 0*	0.0						
	0.		0							
82	-443.9									
	0	0.0	0	-203.5	3	70)			
	1	0.0	1	-203.5	3	70)			
	2	0.0	2	0.0						
	3	0.0	3	0.0						
	0*		0*							
0.0	12.0									
86	-12.9	0.0	0	0.0						
	1	0.0	0	0.0						
	2	0.0	2	0.0						
	2	0.0	2	0.0						
	0*	0.0	0*	0.0						

AUG 07, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 7
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

SHEAR (K)

AT STA	DEAD LD EFFECT	LANE ORDER	POSITIVE MAXIMUI	LOAD / M LAN	AT L	ANE OR	NEGA DER N	ATIVE MAXIMI	LOA[UM	D AT LANE S	ТA
8	-186.6 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 1 2 3 0*	-88.1 -88.1 0.0 0.0	1 2 1 2						
12	117.8 0 1 2 3 0*	44.8 44.8 1.6 3 0.0	1 6 0 1 6 1 3 62 2 3 0*	-5.6 -5.6 0.0 0.0	2 3	36 36					
32	-108.1 0 1 2 3 0*	1.6 3 1.6 3 0.0 0.0	8 62 0 8 62 1 2 3 0*	-54.6 -53.0 -11.2 0.0	0 1 2 32	15 12 2					
36	197.8 0 1 2 3 2*	87.6 84.1 30.7 0.0	0 28 0 2 32 1 1 12 2 3 0*	-7.8 -7.8 0.0 0.0	3 3	63 63					
56	-197.8 0 1 2 3 0*	7.8 1 7.8 1 0.0 0.0	9 0 9 1 2 3 2*	-87.6 -84.1 -30.7 0.0	0 4 2 4 3 60	14 40)					
60	108.1 0 1 2 3 0*	54.6 53.0 11.2 0.0	0 57 0 3 60 1 2 40 2 3 0*	-1.6 -1.6 0.0 0.0	1 1	9 9					
80	-117.8 0 1 2 3 0*	5.6 2 5.6 2 0.0 0.0	2 36 0 2 36 1 2 3 0*	-44.8 -44.8 -1.6 0.0	3 3 19	66 66					
84	186.6 0 1 2 3 0*	88.1 88.1 0.0 0.0	3 70 0 3 70 1 2 3 0*	0.0 0.0 0.0 0.0							

AUG 07, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 8
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

REACTION (K)

AT STA	DEAD LI EFFECT	D LANE ORDE	POSITIVE R MAXIMUN	LOAD A M LANE	T LANE STA OR	NEGATIVE LOA DER MAXIMUM	AD AT LANE STA			
10	315.6 0 1 2 3 0*	127.9 127.9 1.6 0.0	1 2 0 1 2 1 3 62 2 3 0*	-5.6 -5.6 0.0 0.0	2 36 2 36					
34	317.1 0 1 2 3 2*	117.1 95.3 83.6 0.0	0 22 0 2 32 1 1 12 2 3 0*	-9.3 -9.3 0.0 0.0	3 63 3 63					
58	317.1 0 1 2 3 2*	117.1 95.3 83.6 0.0	0 50 0 2 40 1 3 60 2 3 0*	-9.3 -9.3 0.0 0.0	19 19					
82	315.6 0 1 2 3 0*	127.9 127.9 1.6 0.0	3 70 0 3 70 1 1 9 2 3 0*	-5.6 -5.6 0.0 0.0	2 36 2 36					

TABLE 6. ENVELOPES OF MAXIMUM VALUES (WORKING STRESS)

	DICT	· • • • • • • • •				CUEAD	
SIA			FMOM N	IAX - MOM	I MAX +	SHEAR	MAX - SHEAR
		(FI-K)	((()	(
-1	-0.58	0.0	0.0	0.0	0.0		
0	0.00	0.0	0.0	0.0	0.0		
1	0.58	0.0	0.0	0.0	0.0		
2	1.15	0.0	0.0	-0.7	-0.7		
3	1.73	-0.8	-0.8	-2.8	-2.8		
4	2.31	-3.2	-3.2	-5.6	-5.6		
5	2.89	-7.3	-7.3	-8.4	-8.4		
6	3.46	-12.9	-12.9	-96.1	-149.0		
7	4.04	-118.3	-179.3	-183.8	-289.0	5	
8	4.62	-225.2	-347.3	-186.6	-292.4	4	
9	5.20	-333.8	-516.9	-189.4	-295.	2	
10	5.77	-443.9	-688.2	-17.5	-63.5		
11	6.35	-358.4	-590.2	174.4	113.	9	
12	6.93	-269.0	-493.8	171.6	111.	1	
13	7.51	-180.6	-399.1	168.8	108.	3	
14	8.08	-93.8	-306.0	166.0	105.5	5	
15	8.66	-8.3	-214.5	163.2	102.7		
16	9.24	77.1	-124.7	160.4	99.9		
17	9.81	162.1	-36.4	157.6	97.1		
18	10.39	246.6	43.3	154.7	94.3	5	
19	10.97	330.0	97.0	151.9	91.5		
20	11.55	412.6	149.0	149.1	88.	7	
21	12.12	493.9	199.4	146.3	85.	9	
22	12.70	574.3	248.1	20.8	-8.3		
23	13.28	489.9	196.8	-81.0	-148.	4	
24	13.86	404.1	143.7	-83.8	-151.	2	
25	14.43	317.1	88.7	-86.6	-154.0)	
26	15.01	228.7	31.9	-89.4	-156.8	3	
27	15.59	139.6	-26.9	-92.2	-159.6	5	
28	16.17	56.3	-87.4	-95.0	-162.4		
29	16.74	-27.0	-149.4	-97.8	-165.	2	
30	17.32	-105.6	-213.6	-100.6	5 -168	3.0	
31	17.90	-164.5	-308.5	-103.4	4 -170).8	
32	18.48	-225.0	-407.1	-106.2	2 -173	3.6	
33	19.05	-287.2	-507.4	-109.0	J -176	.4	
34	19.63	-350.9	-609.2	. 88.7	27.5	3	
35	20.21	-239.6	-426.3	315.4	1 191	.3	
36	20.78	-130.0	-265.4	312.6	188	.5	
37	21.36	26.8	-129.9	309.8	185.	/	
38	21.94	195.9	-1.5	165.8	98.0		
39	22.52	204.6	16.1	28.9	10.3		
40	23.09	212.0	31.9	26.1	7.5		
41	23.67	218.1	46.2	23.3	4.7		
42	24.25	223.0	54.6	20.5	1.9		

TABLE 6. ENVELOPES OF MAXIMUM VALUES (WORKING STRESS)

STA	DIST X	MAX + M	MOM MA	AX - MOM	MAX + SHEAR	MAX - SHEAR
5171	(FT) (FT-K) (FT-K)	(K) (F	()	NOV DITEXT
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11-K) (1 1-K)	(() ()	<)	
13	24.83	226.3	60.3	177	-0.9	
45	24.05	220.5	64.3	14.0	-0.9	
44	25.40	227.9	66.8	12.1	-5.7	
45	25.50	227.9	67.6	0.2	0.2	
40	20.50	227.9	67.0	9.5	-9.5	
47	27.14	227.9	64.2	0.5	-12.1	
48	27.71	227.9	64.3	3.7	-14.9	
49	28.29	226.3	60.3	0.9	-17.7	
50	28.87	223.0	54.6	-1.9	-20.5	
51	29.44	218.1	46.2	-4.7	-23.3	
52	30.02	212.0	31.9	-7.5	-26.1	
53	30.60	204.6	16.1	-10.3	-28.9	
54	31.18	195.9	-1.5	-98.0	-165.8	
55	31.75	26.8	-129.9	-185.7	-309.8	
56	32.33	-130.0	-265.4	-188.5	-312.6	
57	32.91	-239.6	-426.3	-191.3	-315.4	
58	33.49	-350.9	-609.2	-27.3	-88.7	
59	34.06	-287.2	-507.4	176.4	109.0	
60	34.64	-225.0	-407.1	173.6	106.2	
61	35.22	-164.5	-308.5	170.8	103.4	
62	35.80	-105.6	-213.6	168.0	100.6	
63	36.37	-27.0	-149.4	165.2	97.8	
64	36.95	56.3	-87.4	162.4	95.0	
65	37.53	139.6	-26.9	159.6	92.2	
66	38.11	228.7	31.9	156.8	89.4	
67	38.68	317.1	88.7	154.0	86.6	
68	39.26	404.1	143.7	151.2	83.8	
69	39.84	489.9	196.8	148.4	81.0	
70	40.41	574 3	248 1	83	-20.8	
71	40.99	493.9	199.4	-85.9	-146 3	
72	41 57	412.6	149.0	-88.7	-149 1	
73	42.15	330.0	97.0	-91 5	-151.9	
74	42.13	246.6	43.3	-94.3	-154.7	
75	43 30	162.1	-36.4	-97.1	-157.6	
76	13.88	77.1	-124.7	-99.9	-160.4	
77	45.00	-83	-714.7	-102.7	-163.2	
78	44.40	-0.5	-214.5	-102.7	-166.0	
70	45.61	180.6	-300.0	109.3	168.8	
20	45.01	-160.0	102.0	-108.5	171.6	
01	40.19	-209.0	-495.0	112.0	174.4	
01	40.77	-336.4	-390.Z	-115.9	-174.4	
02	47.34	222.0	-000.2	205.2	100 4	
04	47.92	-333.8	-510.9	295.2	109.4	
84	48.50	-225.2	-347.3	292.4	186.6	
85	49.07	-118.3	-1/9.3	289.6	183.8	
86	49.65	-12.9	-12.9	149.0	96.1	

AUG 07, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 11
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

TABLE 6. ENVELOPES OF MAXIMUM VALUES (WORKING STRESS)

STA	DIST X	MAX	+ MOM	MAX - MC	MAX + S	HEAR	MAX - SHEAR
	()	(- 1 - K)	(FI-K)	(<)	(K)		
87	50.23	-7.3	-7.3	8.4	8.4		
88	50.81	-3.2	-3.2	5.6	5.6		
89	51.38	-0.8	-0.8	2.8	2.8		
90	51.96	0.0	0.0	0.7	0.7		
91	52.54	0.0	0.0	0.0	0.0		
92	53.12	0.0	0.0	0.0	0.0		
93	53.69	0.0	0.0	0.0	0.0		

AUG 07, 2020	TEXAS DEPARTMENT OF TH	RANSPORTATION (TxDOT)	PAGE 12
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

TABLE 7. MAXIMUM SUPPORT REACTIONS (WORKING STRESS)

				-
STA	DIST X	MAX +	REACT	MAX - REACT
(FT)	(K)	(K)	
				-
10	5.77	469.1	308	.9
34	19.63	496.0	306	5.0
58	33.49	496.0	306	5.0
82	47.34	469.1	308	3.9

TABLE 5. MULTI-LANE LOADING SUMMARY (LOAD FACTOR) (*--CRITICAL NUMBER OF LANE LOADS)

MOMENT (FT-K)

AT STA	DEAD LD EFFECT	ORDE	POSITIVE LOAD AT LANE MAXIMUM LANE STA OF	NEGATIVE LOAD AT RDER MAXIMUM LANE STA
6	-16.2 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 0.0 1 0.0 2 0.0 3 0.0 0*	
10	-563.9 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 -356.2 1 2 1 -356.2 1 2 2 0.0 3 0.0 0*	
22	373.6 0 1 2 3 0*	408.2 406.5 18.9 0.0	0 13 0 -67.4 2 36 1 12 1 -67.4 2 36 3 62 2 0.0 3 0.0 0*	
34	-477.8 0 1 2 3 0*	37.8 37.8 0.0 0.0	3 62 0 -275.4 0 18 3 62 1 -235.5 1 12 2 -171.1 2 32 3 0.0 2*	
38	102.3 0 1 2 3 0*	168.9 168.9 6.5 0.0	2 32 0 -118.9 1 9 2 32 1 -118.9 1 9 3 62 2 0.0 3 0.0 0*	
46	167.0 0 1 2 3 0*	140.1 140.1 0.0 0.0	2 36 0 -56.2 1 9 2 36 1 -56.2 1 9 2 -56.2 3 63 3 0.0 2*	
54	102.3 0 1 2 3 0*	168.9 168.9 6.5 0.0	2 40 0 -118.9 3 63 2 40 1 -118.9 3 63 10 2 0.0 3 0.0 0*	
58	-477.8 0 1 2 3 0*	37.8 37.8 0.0 0.0	1 9 0 -275.4 0 54 1 9 1 -235.5 3 60 2 -171.1 2 40 3 0.0 2*	

AUG 07, 2020	TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT)	PAGE 14
CAP18	BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)	

MOMENT (FT-K)

AT	DEAD LD) LANE	POSITIV	E LOA	AD AT	LA	NE	NEGATIVE I	LOAD AT
STA	FEFECT	OPDER	MAXIN		ANES	ТΔ	OP	DER MAXIMI	IM LANESTA
217	LITECT	ONDER				17	UN		
70	373.6								
	0	108.2	0 59	0 -	67.4	2	36		
	1	400.2	2 60	4	C7.4	2	20		
	1	406.5	3 60	-	67.4	2	30		
	2	18.9	19	2 0	.0				
	3	0.0	3	0.0					
	0*		0*						
	0		0						
0.7	563.0								
82	-563.9								
	0	0.0	0	-356.	2 3	70			
	1	0.0	1	-356.	2 3	70			
	2	0.0	2	0.0	_				
	2	0.0	2	0.0					
	3	0.0	3	0.0					
	0*		0*						
86	-16.2								
00	10.2	0.0	0	0.0					
	0	0.0	0	0.0					
	1	0.0	1	0.0					
	2	0.0	2	0.0					
	3	0.0	3	0.0					
	0*	0.0	0*	0.0					
	0		0						

AUG 07, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 15
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

SHEAR (K)

AT STA	DEAD LD EFFECT	LANE POSITIVE LOAD AT LANE NEGATIVE LOAD AT ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE STA
8	-237.2 0 1 2 3 0*	0.0 0 -154.2 1 2 0.0 1 -154.2 1 2 0.0 2 0.0 0.0 3 0.0 0*
12	149.3 0 1 2 3 0*	78.4 1 6 0 -9.7 2 36 78.4 1 6 1 -9.7 2 36 2.7 3 62 2 0.0 0.0 3 0.0 0*
32	-136.9 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
36	251.2 0 1 2 3 2*	153.2 0 28 0 -13.6 3 63 147.2 2 32 1 -13.6 3 63 53.7 1 12 2 0.0 0.0 3 0.0 0*
56	-251.2 0 1 2 3 0*	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
60	136.9 0 1 2 3 0*	95.6 0 57 0 -2.7 1 9 92.7 3 60 1 -2.7 1 9 19.5 2 40 2 0.0 0.0 3 0.0 0*
80	-149.3 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
84	237.2 0 1 2 3 0*	154.2 3 70 0 0.0 154.2 3 70 1 0.0 0.0 2 0.0 0.0 3 0.0 0*

AUG 07, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 16 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'la (CONTINUED)

REACTION (K)

AT STA	DEAD LE EFFECT	O LANE ORDE	POSITIVE R MAXIMUI	LOAD A ⁻ M LANE	T LANE STA OF	NEGATIVE LOA DER MAXIMUM	D AT LANE STA
10	400.5 0 1 2 3 0*	223.8 223.8 2.7 0.0	1 2 0 1 2 1 3 62 2 3 0*	-9.7 -9.7 0.0 0.0	2 36 2 36		
34	402.1 0 1 2 3 2*	205.0 166.8 146.3 0.0	0 22 0 2 32 1 1 12 2 3 0*	-16.3 -16.3 0.0 0.0	3 63 3 63		
58	402.1 0 1 2 3 2*	205.0 166.8 146.3 0.0	0 50 0 2 40 1 3 60 2 3 0*	-16.3 -16.3 0.0 0.0	19 19		
82	400.5 0 1 2 3 0*	223.8 223.8 2.7 0.0	3 70 0 3 70 1 1 9 2 3 0*	-9.7 -9.7 0.0 0.0	2 36 2 36		

AUG 07, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 17
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

TABLE 6. ENVELOPES OF MAXIMUM VALUES (LOAD FACTOR)

STA	DIST)	K MAX -	MOM N	MAX - M	ОМ	MAX + SH	IEAR	MAX - SH	IEAR
	(FT)	(FT-K)	(FT-K)	(K)	(K)			
-1	-0.58	0.0	0.0	0.0	0.	.0			
0	0.00	0.0	0.0	0.0	0.	0			
1	0.58	0.0	0.0	0.0	0.	0			
2	1.15	0.0	0.0	-0.9	-0.	.9			
3	1.73	-1.0	-1.0	-3.5	-3	.5			
4	2.31	-4.0	-4.0	-7.0	-7	.0			
5	2.89	-9.1	-9.1	-10.5	-1	0.5			
6	3.46	-16.2	-16.2	-122.1		214.6			
7	4.04	-150.1	-256.9	-233	.7	-418.7			
8	4.62	-286.0	-499.7	-23/	.2	-422.2			
9	5.20	-423.9	-744.5	-240	./	-425.7			
10	5.77	-563.9	-991.3	-14	.3	-94.7			
11	6.35	-448.1	-853.8	24	/.0	141.1			
12	6.93	-325.0	-/18.4	24:	5.5	137.6			
13	7.51	-202.7	-585.0	240	J.U	134.1			
14	8.08	-82.3	-453.7	236	.4	130.6			
12	0.00	156 1	-524.5	232	.9	127.1			
10	9,24	100.1	-197.0	225	0	120.1			
10	10.20	205.2	-/1./	225	.9	116.6			
19	10.39	513.7	105.8	222	2 Q	113 1			
20	11 55	621 5	170.1	21	5.J	100.6			
20	12 12	747.8	232.4	21	19	105.0			
22	12.12	863.4	292.4	34	1.5	-16.8			
23	13.28	738.2	225 3	-10	21	-220.1			
24	13.86	611 3	155.8	-10	5.6	-223.6			
25	14.43	483.2	83.6	-109	9.1	-227.1			
26	15.01	353.5	9.0	-112	6	-230.6			
27	15.59	223.3	-68.2	-116	5.1	-234.1			
28	16.17	104.0	-147.4	-11	9.6	-237.6			
29	16.74	-14.4	-228.7	-123	3.1	-241.1			
30	17.32	-123.9	-312.9	-12	6.6	-244.6			
31	17.90	-198.0	-450.0	-13	0.1	-248.1			
32	18.48	-274.1	-592.8	-13	3.6	-251.6			
33	19.05	-352.3	-737.6	5 -13	7.1	-255.1			
34	19.63	-432.5	-884.4	13	3.8	26.4			
35	20.21	-293.8	-620.4	45	5.6	238.4			
36	20.78	-157.1	-394.2	. 45	2.1	234.9			
37	21.36	62.8	-211.4	448	3.6	231.4			
38	21.94	305.0	-40.3	238	3.4	119.8			
39	22.52	314.2	-15.8	40	.8	8.2			
40	23.09	321.9	6.8	37.3	3	4.7			
41	23.67	328.2	27.3	33.	.8	1.2			
42	24.25	333.1	38.4	30.	.3	-2.3			
43	24.83	335.9	45.5	26.	.8	-5.8			
44	25.40	336.8	50.6	23.	.3	-9.3			

45	25.98	335.6	53.6	19.8	-12.8	
46	26.56	335.2	54.6	16.3	-16.3	
47	27.14	335.6	53.6	12.8	-19.8	
48	27.71	336.8	50.6	9.3	-23.3	

AUG 07, 2020TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT)PAGE 18CAP18BENT CAP ANALYSISVer. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'la (CONTINUED)

TABLE 6. ENVELOPES OF MAXIMUM VALUES (LOAD FACTOR)

STA	DIST X	MAX + N	IOM MA	X - MOM	MAX + SHEAR	MAX - SHEAR
((FT) (FT-K) (F	-T-K) ((K) (H	<)	
49	28.29	335.9	45.5	5.8	-26.8	
50	28.87	333.1	38.4	2.3	-30.3	
51	29.44	328.2	27.3	-1.2	-33.8	
52	30.02	321.9	6.8	-4.7	-37.3	
53	30.60	314.2	-15.8	-8.2	-40.8	
54	31.18	305.0	-40.3	-119.8	-238.4	
55	31.75	62.8	-211.4	-231.4	-448.6	
56	32.33	-157.1	-394.2	-234.9	-452.1	
57	32.91	-293.8	-620.4	-238.4	-455.6	
58	33.49	-432.5	-884.4	-26.4	-133.8	
59	34.06	-352.3	-737.6	255.1	137.1	
60	34.64	-274.1	-592.8	251.6	133.6	
61	35.22	-198.0	-450.0	248.1	130.1	
62	35.80	-123.9	-312.9	244.6	126.6	
63	36.37	-14.4	-228.7	241.1	123.1	
64	36.95	104.0	-147.4	237.6	119.6	
65	37.53	223.3	-68.2	234.1	116.1	
66	38.11	353.5	9.0	230.6	112.6	
67	38.68	483.2	83.6	227.1	109.1	
68	39.26	611.3	155.8	223.6	105.6	
69	39.84	738.2	225.3	220.1	102.1	
70	40.41	863.4	292.7	16.8	-34.2	
71	40.99	747.8	232.4	-106.1	-211.9	
72	41.57	631.5	170.1	-109.6	-215.4	
73	42.15	513.7	105.8	-113.1	-218.9	
74	42.72	395.2	39.5	-116.6	-222.4	
75	43.30	275.7	-71.7	-120.1	-225.9	
76	43.88	156.1	-197.0	-123.6	-229.4	
77	44.46	36.6	-324.3	-127.1	-232.9	
78	45.03	-82.3	-453.7	-130.6	-236.4	
79	45.61	-202.7	-585.0	-134.1	-240.0	
80	46.19	-325.0	-718.4	-137.6	-243.5	
81	46.77	-448.1	-853.8	-141.1	-247.0	
82	47.34	-563.9	-991.3	94.7	14.3	
83	47.92	-423.9	-744.5	425.7	240.7	
84	48.50	-286.0	-499.7	422.2	237.2	
85	49.07	-150.1	-256.9	418.7	233.7	
86	49.65	-16.2	-16.2	214.6	122.1	
87	50.23	-9.1	-9.1	10.5	10.5	
88	50.81	-4.0	-4.0	7.0	7.0	
89	51.38	-1.0	-1.0	3.5	3.5	

90	51.96	0.0	0.0	0.9	0.9	
91	52.54	0.0	0.0	0.0	0.0	
92	53.12	0.0	0.0	0.0	0.0	

AUG 07, 2020TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT)PAGE 19CAP18BENT CAP ANALYSISVer. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'la (CONTINUED)

TABLE 6. ENVELOPES OF MAXIMUM VALUES (LOAD FACTOR)

STA DIST X MAX + MOM MAX - MOM MAX + SHE	AR MAX - SHEAR
(FT) (FT-K) (FT-K) (K) (K)	
93 53 69 0.0 0.0 0.0 0.0	

AUG 07, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 20
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

TABLE 7. MAXIMUM SUPPORT REACTIONS (LOAD FACTOR)

				-
STA	DIST X	MAX +	REACT	MAX - REACT
(FT)	(K)	(K)	
				-
10	5.77	669.0	388	.8
34	19.63	715.2	382	2.5
58	33.49	715.2	382	2.5
82	47.34	669.0	388	8.8

4.3.15.4 Live Load Distribution Factor Spreadsheet

4.3.15.4.1 Spans 1 & 3

TXDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/15/20	2017	LRFD Spe
DIVISION	C-S-J: Descrip:	ITBC Design Exar	ID #: mole 2. Span 1 &	3	Ck Dsn: File:	Ex2 So	Date: an1 distribution	ution factors x	Rev. 10/18 -	(No Interir 2 of 8
INTER	IOR BE	AM.			It lids	Leve ob			Ondota	2.010
Choorl	L Distrib	ution Par Lana /	Table 46 2 2 3	10.11						
Sneart	One Le	unon Per Lane (14010 4.0.2.2.3	<u>ba-1).</u>						
	One La	ne Loaded	(T-b)- 0.5 1	1.01						
		Lever Hule	(Table 3.6.1.	1.2)						
		mg = 0.6	25 " 1.2 =	0.750						
		Modify to	or Skew:							
			skew correct	101 =	1.076					
		Sec. 13.05	mg = 0.750 *	1.076 =	0.807					
		Equation	(s)							
		g = 0.36	$5 + \left(\frac{2}{25}\right)$							
		g = 0.36	+ (8 / 25) =	0.680						
		Modify fo	or Skew:							
			skew correct	ion =	1.076					
			g = 0.680 * 1	.076 =	0.732					
		Range of Appl	licability (ROA)	Checks						
		Check S	: 3.5' ≤ 8.0' ≤	16.0'	OK					
		Check ts	4.5" ≤ 8.0" ≤	12.0"	OK					
		Check L:	20' ≤ 50.4' ≤	240'	OK					
		Check N	b; 6≥4		OK					
		Use Equation	from Table 4.6	2.2.38-11	because all	criteria is	S OK.			
		gV _{int1} =	0.732							
	Two or	More Lanes Lo	aded							
		Lever Rule	(Table 3.6.1.	1.2)						
		mg = Ma	x(0.875 * 1.0, 0	0.875 * 0.8	35, 0.875 * 0	.65) =	0.875			
		Modify fo	or Skew:							
			skew correct	ion =	1.076					
			mg = 0.875 *	1.076 =	0.942					
		Equation		. 20						
		a - 0.2 -	$+(\underline{S})-(\underline{S})$)						
		9	(12) (35)						
		g = 0.2 +	(8 / 12) - (8 / 3	35)^2.0 =	0,814					
		Modify fo	or Skew:							
			skew correct	ion =	1,076					
			g = 0.814 * 1	.076 =	0.876					
		Range of Appl	licability (ROA)	Checks	(same as	for one I	ane loade	ed)		
		Use Equation	from Table 4.6	.2.2.3a-1	because all	criteria i	s OK.			
		$gV_{int2+} =$	0.876							
	TXDOT	Policy states gV	Interior must be a	≥ m·NL÷N						
		$m \cdot N_L \div N_b =$	0.85*3/6=		0.425					
	ls W≥:	20ft ? Yes								
	TXDOT	Policy states the	at II W < 20ft, g	Vinterior is t	he Maximun	not: gV	and m.	NL+Np.		
>>	TXDOT	Policy states that	at if W≥20ft, g	Vinterior is t	he Maximun	of: gV	III. gVint2+	m-NL÷Np.		
	QV _{int}	arior = 0.876	٦							
	p									

And Set [CS_2]: INXEXAXXXX (10)/m (2XX (2X)/m (2X)/m <th< th=""><th>FD Spec</th></th<>	FD Spec
INTERIOR BEAM: Moment LL Distribution Per Lane (Table 4.6.2.2.2b-1): One Lane Loaded Lever Rule (Table 3.6.1.1.2) mg = 0.625 * 1.2 = 0.750 Modify for Skew: skew correction = 0.938 mg = 0.750 * 0.938 = 0.704 Equation g = 0.06 + $\left(\frac{5}{14}\right)^{0.4} \left(\frac{5}{L}\right)^{0.3} \left(\frac{K_x}{12Lt_x^3}\right)^{0.1}$ g = 0.06 + $(0.4)^{0.0.4} * (0.50.4)^{0.3.3} * (1.271.611/(12*50.4*8^{-3}))^{0.1.1} = 0.590$ Modify for Skew: skew correction = 0.938 g = 0.590 * 0.938 = 0.553 Range of Applicability (ROA) Checks Check 15: 3.5' 5.8.0' 516.0' OK Check 15: 3.5' 5.8.0' 512.0'' OK Check 15: 3.5' 5.8.0' 512.0'' OK Check 15: 3.5' 5.8.0' 512.0'' OK Check 15: 20' 550.4' 5240' OK Check 16: 20' 550.4' 524.0' DK Check 16: 20' 550.4' 524.0' DK Check 10: 20' 550.4' 524.0' DK Check 10: 20' 550.4' 524.0' DK Check 10: 20' 550.4'' 520.1'' Decause all criteria is OK. gM _{tot} = 0.553 Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = Max(0.875 * 1.0.0.875 * 0.65) = 0.875 Modify for Skew: skew correction = 0.938 mg = 0.875 * 0.938 = 0.821 Equation g = 0.075 + $\left(\frac{5}{9.5}\right)^{0.6} \left(\frac{5}{12}\right)^{0.2} \left(\frac{K_x}{12Lt_x}\right)^{0.1}$ g = 0.075 + $\left(\frac{8}{9.5}\right)^{0.6} \cdot \left(\frac{8}{150.4}\right)^{0.2} + (1.271.611/(12*50.4*8*3))^{0.1} = 0.794$ Modify for Skew: skew correction = 0.938 g = 0.734 * 0.338 = 0.745 Range of Applicability (ROA) Checks (same as for one lane loaded) Use Equation from Table 4.6.2.2.2.2.1 because all criteria is OK. gM _{tot} , = 0.7245 TxDOT Policy states gM _{tot} core must be 2 m N ₄ + N ₆ m N ₄ + N ₆ = 0.85 * 3.76 = 0.425	3 of 8
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0010
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
Cite Life Looded $\begin{aligned} & \text{Lever Rule} (\text{Table 3.6.1.1.2}) \\ & \text{mg} = 0.625^{+}1.2 = 0.750 \\ & \text{Modify for Skew:} \\ & \text{skew correction} = 0.938 \\ & \text{mg} = 0.750^{+}0.938 = 0.704 \\ \hline \\ & \text{Equation} \\ & g = 0.06 + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{12}\right)^{0.3} \left(\frac{K_x}{12LL_x^{+3}}\right)^{0.11} \\ & g = 0.06 + (8/14)^{0.0.4^{+}} (8/50.4)^{0.0.3^{+}}(1.271.611/(12^{+}50.4^{+}8^{+}3))^{+}0.1 = 0.590 \\ & \text{Modify for Skew:} \\ & \text{skew correction} = 0.938 \\ & g = 0.590^{+}0.838 = 0.553 \\ \hline \\ & \text{Range of Applicability (ROA) Checks} \\ & \text{Check K}_3: 4.5^{+} \le 8.0^{+} \le 16.0^{+} \text{OK} \\ & \text{Check K}_4: 4.5^{+} \le 8.0^{+} \le 16.0^{+} \text{OK} \\ & \text{Check K}_4: 4.5^{+} \le 8.0^{+} \le 16.0^{+} \text{OK} \\ & \text{Check K}_5: 0.590^{+} \le 12.0^{+} \text{OK} \\ & \text{Check K}_5: 0.590^{+} \le 12.0^{+} \text{OK} \\ & \text{Check K}_5: 10.000 \le 1.271.611 \le 7.000,000 \text{OK} \\ & \text{Check K}_5: 10.000 \le 1.271.611 \le 7.000,000 \text{OK} \\ & \text{Check K}_5: 10.000 \le 1.271.611 \le 7.000,000 \text{OK} \\ & \text{Use Equation from Table 4.6.2.2.20^{+}1 because all criteria is OK. \\ & gM_{wa,1} = 0.553 \\ \hline \\ & \text{Two or More Lanes Loaded} \\ & \text{Lever Rule} (\text{Table 3.6.1.1.2}) \\ & \text{mg} = 0.875^{+}0.938 = 0.821 \\ \hline \\ & \text{Equation} \\ & g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6^{+}} \left(\frac{S}{2}\right)^{0.2} \left(\frac{K_x}{12LL_x^{+3}}\right)^{0.4} \\ & g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6^{+}} \left(\frac{S}{20.2^{+}1.2^{+}1.5^{+}1.0^{+}1.1^{+}1.1^{+}1.5^{+}1.0^{+}1.1^{+}1.5^{+}1.$	
$\begin{aligned} & \text{mg} = 0.625 \cdot 1.2 = 0.750 \\ & \text{Modify for Skew:} \\ & \text{skew correction} = 0.938 \\ & \text{mg} = 0.750 \cdot 0.938 = 0.704 \\ & \frac{\text{Equation}}{g = 0.06} + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{2}\right)^{0.3} \left(\frac{K_{x}}{12Lr_{x}^{-3}}\right)^{0.1} \\ & g = 0.06 + \left(\frac{S}{14}\right)^{0.4} \cdot \left(\frac{S}{25}\right)^{0.3} \left(\frac{K_{x}}{12Lr_{x}^{-3}}\right)^{0.1} \\ & g = 0.06 + \left(\frac{S}{14}\right)^{0.4} \cdot \left(\frac{S}{250.4}\right)^{0.23} \cdot \left(1,271.611/(12^{+}50.4^{+}8^{+}3)\right)^{+}0.1 = 0.590 \\ & \text{Modify for Skew:} \\ & \text{skew correction} = 0.938 \\ & g = 0.590 \cdot 0.938 = 0.553 \\ \hline \text{Rance of Applicability (ROA) Checks} \\ & \text{Check S: } 3.5' \leq 8.0' \leq 16.0' \\ & \text{Check S: } 3.5' \leq 8.0' \leq 12.0' \\ & \text{OK} \\ & \text{Check K: } 20' \leq 50.4' \leq 240' \\ & \text{OK} \\ & \text{Check K: } 20' \leq 50.4' \leq 240' \\ & \text{OK} \\ & \text{Check K: } 0.553 \\ \hline \text{Two or More Lanes Loaded} \\ \hline & \text{Lever Rule} \\ & \text{(Table 3.6.1.1.2)} \\ & \text{mg} = 0.875 \cdot 0.938 = 0.821 \\ \hline & \text{Equation from Table 4.6.2.2.2.b^{-1} because all criteria is OR. \\ & gM_{wat} = 0.553 \\ \hline & \text{Modify for Skew:} \\ & \text{skew correction} = 0.938 \\ & \text{mg} = 0.875 \cdot 0.938 = 0.821 \\ \hline & \text{Equation} \\ & g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{2}\right)^{0.2} \left(\frac{K_{x}}{12Lt_{x}^{-3}}\right)^{0.4} \\ & g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6} \cdot (8/50.4)^{0.2} \cdot (1,271.611/(12^{+}50.4^{+}8^{+}3))^{0.1} = 0.794 \\ & \text{Modify for Skew:} \\ & \text{skew correction} = 0.938 \\ & g = 0.794 \cdot 0.338 = 0.745 \\ \hline & \text{Rance of Applicability (ROA) Checks} \\ & \text{(same as for one lane loaded)} \\ & \text{Use Equation from Table 4.6.2.2.2.2.1 because all criteria is OK. \\ & gM_{wa2} = 0.794 \cdot 0.338 = 0.745 \\ \hline & \text{Rance of Applicability (ROA) Checks} \\ & \text{(same as for one lane loaded)} \\ & \text{Use Equation from Table 4.6.2.2.2.2.1 because all criteria is OK. \\ & gM_{wa2} = 0.745 \\ \hline & \text{Rance of Applicability (ROA) Checks} \\ & \text{(same as for one lane loaded)} \\ & \text{Use Equation from Table 4.6.2.2.2.2.1 because all criteria is OK. \\ & gM_{wa2} = 0.745 \\ \hline & \text{Rance of Applicability Row must be 2 m N_{w} + N_{w} \\ & \text{m} N_{w} + N_{b} = 0.85 \cdot 3/6 = 0.425 \\ \hline \end{cases}$	
$\label{eq:response} \begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{aligned} \sup_{x \in W} \operatorname{correction} &= 0.938 \\ \operatorname{mg} = 0.750^{\circ} 0.938 = 0.704 \\ \hline \\ &= \underbrace{ Equation \\ g = 0.06 + \left(\frac{S}{14} \right)^{0.4} \left(\frac{S}{L} \right)^{0.3} \left(\frac{K_x}{12L_x^{\circ,2}} \right)^{0.1} \\ g = 0.06 + (8/14)^{\circ} 0.4^{\circ} (8/50.4)^{\circ} 0.3^{\circ} (1,271.611/(12^{\circ}50.4^{\circ}8^{\circ}3))^{\circ} 0.1 = 0.590 \\ \operatorname{Modily for Skew:} \\ &= \underbrace{ skew correction = 0.938 \\ g = 0.590^{\circ} 0.938 = 0.553 \\ \hline \\ &= \underbrace{ Range of Applicability (\mathsf{ROA) Checks } \\ \operatorname{Check S: } 3.5' \leq 8.0^{\circ} 16.0^{\circ} \\ \operatorname{Check S: } 3.5' \leq 8.0^{\circ} 12.0^{\circ} \\ \operatorname{Check S: } 3.5' \leq 8.0^{\circ} 216.0^{\circ} \\ \operatorname{Check S: } 3.5' \leq 8.0^{\circ} 212.0^{\circ} \\ \operatorname{Check S: } 3.5' \leq 8.0^{\circ} 216.0^{\circ} \\ \operatorname{Check S: } 0.000 \leq 1.271,611 \leq 7,000,000 \\ \operatorname{Check S: } 0.000 \leq 1.271,611 \leq 7,000,000 \\ \operatorname{Check S: } 0.553 \\ \hline \\ \mathbf{Two or More Lanes Loaded} \\ \underbrace{ Lever Rule (Table 3.6.1.1.2) \\ \operatorname{mg = Max}(0.875^{\circ} 1.0, 0.875^{\circ} 0.85, 0.875^{\circ} 0.65) = 0.875 \\ \operatorname{Modily for Skew: } \\ \operatorname{skew correction = } 0.938 \\ \operatorname{mg = 0.875^{\circ} 0.938 = 0.022 \\ \hline \\ g = 0.075 + \left(\frac{S}{9.5} \right)^{0.6} \left(\frac{S}{9.0} \right)^{0.2} \left(\frac{K_x}{(12L_x)^3} \right)^{0.1} \\ g = 0.075 + \left(\frac{S}{9.5} \right)^{0.6} \left(\frac{S}{9.04} \right)^{0.2} (1.271,611/(12^{\circ}50.4^{\circ}8^{\circ}3))^{\circ} 0.1 = 0.794 \\ \operatorname{Modily for Skew: } \\ \operatorname{skew correction = } 0.938 \\ g = 0.794^{\circ} 0.338 = 0.745 \\ \hline \\ \operatorname{Range of Apollocibility} (\operatorname{ROA}) \operatorname{Checks} (same as for one lane loaded) \\ \operatorname{Lse Equation from Table 4.6.2.2.2b - 1 because all criteria is OK. \\ g M_{\operatorname{Mez}} = 0.745 \\ \operatorname{Made } 0.745 \\ \operatorname{Made } 0.745 \\ \operatorname{Made } 0.745 \\ \end{array}$	
$\begin{aligned} \begin{array}{llllllllllllllllllllllllllllllllllll$	
Equation $g = 0.06 + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{L}\right)^{0.5} \left(\frac{K_x}{12Lt_x^3}\right)^{0.1}$ $g = 0.06 + (8/14)^{0.04} \cdot (8/50.4)^{0.03} \cdot (1,271,611/(12^{+}50.4^{+}8^{+}3))^{+}0.1 = 0.590$ Modify for Skew: skew correction = 0.938 $g = 0.590^{+}0.938 = 0.553$ Rance of Applicability (ROA) Checks Check S: 3.5' ≤ 8.0' ≤ 16.0' OK Check L; 20' ≤ 50.4' ≤ 240' OK Check L; 20' ≤ 50.4' ≤ 2.2:2:b-1 because all criteria is OK. gM _{but1} = 0.553 Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = 0.875 * 1.0, 0.875 * 0.85, 0.875 * 0.65) = 0.875 Modify for Skew: skew correction = 0.938 mg = 0.875 * 0.938 = 0.821 Equation g = 0.075 + $\left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{12Lt_x^3}\right)^{0.1}$ g = 0.075 + (8/9.5)*0.6 * (8/50.4)*0.2 * (1.271,611/(12*50.4*8*3))*0.1 = 0.794 Modify for Skew: skew correction = 0.938 g = 0.794 * 0.938 = 0.245 Rance of Applicability (ROA) Checks (same as for one lane loaded) Use Equation from Table 4.6.2.2 · 2b-1 because all criteria is OK. gM _{mb2} = 0.245 TxDOT Policy states gM _{jettoro} must be $\ge m \cdot N_L \in N_0$ m·N _k $\approx N_b = 0.85 * 3/6 = 0.425$	
$\frac{1}{g} = 0.06 + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{L}\right)^{0.5} \left(\frac{K_x}{12LL_x^3}\right)^{0.5}$ $g = 0.06 + (8/14)^{0.4} \cdot (8/50.4)^{0.3} \cdot (1,271.611/(12^{+}50.4^{+}8^{+}3))^{0.1} = 0.590$ Modify for Skew: skew correction = 0.938 $g = 0.590^{+} 0.938 = 0.553$ Range of Applicability (ROA) Checks Check S: 3.5' $\leq 8.0' \leq 16.0'$ OK Check L: 4.5'' $\leq 8.0' \leq 16.0'$ OK Check L: 20' $\leq 50.4' \leq 240'$ OK Check L: 20' $\leq 50.4' \leq 240'$ OK Check N ₂ : $6 \geq 4$ OK Check N ₃ : $6 \geq 4$ OK Check N ₄ : $10,000 \leq 1,271.611 \leq 7,000,000$ OK Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. $gM_{wat} = 0.553$ Two or More Lanes Loaded Lever Rule (Table 3.6.1.2) mg = Max(0.875^{+}1.0, 0.875^{+}0.85, 0.875^{+}0.65) = 0.875 Modify for Skew: skew correction = 0.933 mg = 0.875^{+}0.938 = 0.821 Equation $g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{K_x}{L}\right)^{0.2} \left(\frac{K_x}{12LL_1^{+3}}\right)^{0.1}$ $g = 0.075 + (8/9.5)^{0.6} \cdot (8/50.4)^{0.2} \cdot (1,271.611/(12^{+}50.4^{+}8^{+}3))^{*}0.1 = 0.794$ Modify for Skew: skew correction = 0.938 $g = 0.794^{+}0.938 = 0.745$ Range of Applicability (ROA) Checks (same as for one lane loaded) Use Equation Table 4.6.2.2.2b-1 because all criteria is OK. $gM_{wde} = 0.7245$ TxDOT Policy states $gM_{intenor}$ must be $\geq m^{+}N_{L}$ +N ₆ $m \cdot N_{L}$ +N _b = 0.85^{+}3.76 = 0.425	
$ \begin{array}{rcl} g = 0.06 + (8/14)^{\circ}0.4 * (8/50.4)^{\circ}0.3 * (1,271.611/(12*50.4*8^{\circ}3))^{\circ}0.1 = & 0.590 \\ \mbox{Modify for Skew:} & & & & & & & & & & & & & & & & & & &$	
$\label{eq:second} \begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{rcl} skew correction = & 0.938\\ g = 0.590 * 0.938 = & 0.553\\ \hline \\ \hline Range of Applicability (ROA) Checks\\ \hline \\ Check S: & 3.5' \le 8.0' \le 16.0' & OK\\ \hline \\ Check S: & 3.5' \le 8.0'' \le 12.0'' & OK\\ \hline \\ Check L: & 20' \le 50.4' \le 240' & OK\\ \hline \\ Check N_{5}: & 6 \ge 4 & OK\\ \hline \\ Check N_{5}: & 6 \ge 4 & OK\\ \hline \\ Check N_{5}: & 10,000 \le 1,271,611 \le 7,000,000 & OK\\ \hline \\ Use Equation from Table 4.6.2.2.2.5-1 because all criteria is OK.\\ gM_{eff} = & 0.553\\ \hline \\ \hline \\ Two or More Lanes Loaded\\ \hline \\ \hline \\ Lever Rule & (Table 3.6.1.1.2) & mg = Max(0.875 * 1.0, 0.875 * 0.85, 0.875 * 0.65) = & 0.875\\ \hline \\ Modify for Skew: & skew correction = & 0.938\\ mg = 0.875 * 0.938 = & 0.821\\ \hline \\ Cruation & g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6'} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{(12LI_x)^3}\right)^{0.1}\\ g = 0.075 + (8/9.5)^{0.6''} (8/9.5)^{0.0''} (1.271,611/(12^*50.4^*8^*3))^{0.1} = & 0.794\\ \hline \\ Modify for Skew: & skew correction = & 0.938\\ g = 0.794 * 0.938 = & 0.745\\ \hline \\ \hline$	
$\begin{split} g = 0.590^{\circ} 0.938 = 0.553 \\ \hline Rance of Applicability (ROA) Checks \\ Check S: 3.5' \le 8.0' \le 16.0' OK \\ Check L: 4.5'' \le 8.0'' \le 12.0'' OK \\ Check L: 20' \le 50.4' \le 240' OK \\ Check N_0': 6 \ge 4 OK \\ Check N_0': 6 \ge 4 OK \\ Check N_0': 10,000 \le 1,271,611 \le 7,000,000 OK \\ Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK \\ gM_{ret1} = 0.553 \\ \hline Mod of More Lanes Loaded \\ Lever Rule (Table 3.6.1.1.2) \\ mg = Max(0.875^{\circ} 10.875^{\circ} 0.85, 0.875^{\circ} 0.65) = 0.875 \\ Modify for Skew: \\ skew correction = 0.938 \\ mg = 0.875^{\circ} 0.938 = 0.821 \\ \hline Equation \\ g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{12Lt_x^3}\right)^{0.1} \\ g = 0.075 + (8/3.5)/0.6 (8/50.4)/0.2 (1.271,611/(12^{\circ}50.4^{\circ}8^{\circ}3))/0.1 = 0.794 \\ Modify for Skew: \\ skew correction = 0.938 \\ g = 0.794^{\circ} 0.938 = 0.745 \\ \hline Range of Applicability (ROA) Checks (same as for one lane loaded) \\ Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK \\ gM_{ret2} = 0.724 \\ \hline TXDOT Policy states gM_{intensor}$ must be $\ge m \cdot N_L \in N_0$ $m \cdot N_L = 0.85^{\circ} 3 / 6 = 0.425 \\ \hline$	
Bange of Applicability (ROA) ChecksCheck S:3.5' ≤ 8.0' ≤ 16.0'OKCheck L:4.5" ≤ 8.0" ≤ 12.0"OKCheck L:20' ≤ 50.4' ≤ 240'OKCheck N ₅ :6 ≥ 4OKCheck K ₃ :10,000 ≤ 1,271,611 ≤ 7,000,000OKUse Equation from Table 4.6.2.2.2b-1 because all criteria is OK.gMmet =0.5530.553Two or More Lanes LoadedLever Rule(Table 3.6.1.1.2)mg = Max(0.875 * 1.0, 0.875 * 0.85, 0.875 * 0.65) =0.875Modify for Skew:skew correction =0.938mg = 0.075 + $\left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{12Lt_x^3}\right)^{0.1}$ g = 0.075 + (8/9.5) * 0.65.4(9.2) * 0.24*8*3))*0.1 =0.794Modify for Skew:skew correction =0.938g = 0.075 + (8/9.5) * 0.6 * (8/5.0.4)*0.2 * (1.271,611/(12*50.4*8*3))*0.1 =0.794Modify for Skew:skew correction =0.938g = 0.794 * 0.938 =0.7450.745Range of Applicability (ROA) Checks (same as for one lane loaded)Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK.gMmet_* =0.7450.745TxDOT Policy states gMmeteror must be ≥ m*N_c+N_cm·N_c+N_b =m.N_c+N_b =0.85 * 3/6 =0.425	
Check S: 3.5' ≤ 8.0' ≤ 16.0' OK Check I ₅ : 4.5" ≤ 8.0' ≤ 12.0" OK Check I ₅ : 20' ≤ 50.4' ≤ 240' OK Check N ₅ : 6 ≥ 4 OK Check N ₅ : 6 ≥ 4 OK Check N ₅ : 6 ≥ 4 OK Check N ₅ : 10,000 ≤ 1,271,611 ≤ 7,000,000 OK Use Equation from Table 4,6.2.2.2b-1 because all criteria is OR gM _{int} = 0.553 Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = Max(0.875 * 1.0, 0.875 * 0.85, 0.875 * 0.65) = 0.875 Modify for Skew: skew correction = 0.938 mg = 0.875 * 0.938 = 0.821 Equation g = 0.075 + $\left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{(12Lt_x^3)}\right)^{0.1}$ g = 0.075 + (8/9.5)^{0.6 * (8/50.4)^{0.2 * (1,271,611/(12*50.4*8^3))^{0.1} = 0.794 Modify for Skew: skew correction = 0.938 g = 0.794 * 0.938 = 0.745 Range of Applicability (ROA) Checks (same as for one lane loaded) Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. gM _{int2*} 0.745 TxDOT Policy states gM _{intenor} must be ≥ m·N _L =N _b m·N _L +N _b 0.85 * 3/6 = 0.425	
Check t,: 4.5" $\leq 8.0" \leq 12.0"$ OK Check L: 20' $\leq 50.4' \leq 240'$ OK Check N ₀ : $6 \geq 4$ OK Check N ₀ : $6 \geq 4$ OK Check K ₂ : 10,000 $\leq 1,271,611 \leq 7,000,000$ OK Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. gM _{int} = 0.553 Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = Max(0.875 * 1.0, 0.875 * 0.85, 0.875 * 0.65) = 0.875 Modify for Skew: skew correction = 0.938 mg = 0.875 * 0.938 = 0.821 Equation g = 0.075 + $\left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{12LL_x}\right)^{0.1}$ g = 0.075 + $(8/9.5)^{\circ}0.6$ * $(8/50.4)^{\circ}0.2$ * $(1,271,611/(12*50.4*8^{\circ}3))^{\circ}0.1 = 0.794$ Modify for Skew: skew correction = 0.938 g = 0.794 * 0.938 = 0.745 Range of Applicability (ROA) Checks (same as for one lane loaded) Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. gM _{int2*} = 0.745 TxDOT Policy states gM _{intence} must be $\geq m \cdot N_L + N_b$ $m \cdot N_L + N_b = 0.85 * 3/6 = 0.425$	
Check L: $20^{\circ} \le 50.4^{\circ} \le 240^{\circ}$ OK Check N ₀ : $6 \ge 4$ OK Check K ₀ : 10,000 \le 1,271,611 \le 7,000,000 OK Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. $gM_{net} = 0.553$ Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = Max(0.875 * 1.0, 0.875 * 0.85, 0.875 * 0.65) = 0.875 Modify for Skew: skew correction = 0.938 mg = 0.875 * 0.938 = 0.821 Equation $g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{12LL_x^3}\right)^{0.1}$ $g = 0.075 + (8/9.5)^{\circ}0.6 * (8/50.4)^{\circ}0.2 * (1,271,611/(12*50.4*8^3))^{\circ}0.1 = 0.794$ Modify for Skew: skew correction = 0.938 g = 0.794 * 0.938 = 0.745 Range of Applicability (ROA) Checks (same as for one lane loaded) Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. $gM_{int2*} = 0.745$ TxDOT Policy states $gM_{intenor}$ must be $\ge m \cdot N_L \div N_b$ $m \cdot N_L \div N_b = 0.85 * 3.76 = 0.425$	
Check N ₉ : 6 ≥ 4 OK Check K ₉ : 10,000 ≤ 1,271,611 ≤ 7,000,000 OK Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. gM _{net} = 0.553 Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = Max(0.875 * 1.0, 0.875 * 0.85, 0.875 * 0.65) = 0.875 Modify for Skew: skew correction = 0.938 mg = 0.875 * 0.938 = 0.821 Equation g = 0.075 + $\left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{12Lt_x^3}\right)^{0.4}$ g = 0.075 + (8/9.5)^{0.6} * (8/50.4)^{0.2} * (1,271,611/(12*50.4*8^3))^{0.1} = 0.794 Modify for Skew: skew correction = 0.938 g = 0.794 * 0.938 = 0.745 Range of Applicability (ROA) Checks (same as for one lane loaded) Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. gM _{int2*} = 0.745 TxDOT Policy states gM _{intenor} must be ≥ m·N _L ÷N _b m·N _L ÷N _b = 0.85 * 3 / 6 = 0.425	
Check K _g : 10,000 ≤ 1,271,611 ≤ 7,000,000 OK Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. gM _{int1} = 0.553 Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = Max(0.875 * 1.0, 0.875 * 0.85, 0.875 * 0.65) = 0.875 Modify for Skew: skew correction = 0.938 mg = 0.875 * 0.938 = 0.821 Equation g = 0.075 + $\left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{12LL_x}\right)^{0.1}$ g = 0.075 + (8/9.5)^{0.6 * (8/50.4)^{0.2 * (1,271,611/(12*50.4*8^3))^{0.1 = 0.794}} Modify for Skew: skew correction = 0.938 g = 0.794 * 0.938 = 0.745 Range of Applicability (ROA) Checks (same as for one lane loaded) Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. gM _{int2*} = 0.745 TxDOT Policy states gM _{intenor} must be ≥ m·N _L =N _b m·N _L +N _b = 0.85 * 3 / 6 = 0.425	
Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. $gM_{int1} = 0.553$ Two or More Lanes Loaded <u>Lever Rule</u> (Table 3.6.1.1.2) mg = Max(0.875 * 1.0, 0.875 * 0.85, 0.875 * 0.65) = 0.875 Modify for Skew: skew correction = 0.938 mg = 0.875 * 0.938 = 0.821 <u>Equation</u> $g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{12LI_x^3}\right)^{0.1}$ $g = 0.075 + (8/9.5)^{0.6} \cdot (8/50.4)^{0.2} \cdot (1.271,611/(12*50.4*8^{3}))^{0.1} = 0.794$ Modify for Skew: skew correction = 0.938 g = 0.794 * 0.938 = 0.745 <u>Range of Applicability (ROA) Checks</u> (same as for one lane loaded) Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. $gM_{int2*} = 0.745$ TxDOT Policy states $gM_{intenor}$ must be $\ge m\cdotN_L \le N_b$ $m\cdotN_L \le N_b = 0.85 * 3/6 = 0.425$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = Max(0.875 * 1.0, 0.875 * 0.85, 0.875 * 0.65) = 0.875 Modify for Skew: skew correction = 0.938 mg = 0.875 * 0.938 = 0.821 Equation $g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{12LL_x^3}\right)^{0.1}$ g = 0.075 + (8/9.5)^{0.6} * (8/50.4)^{0.2} * (1.271,611/(12*50.4*8^3))^{0.1} = 0.794 Modify for Skew: skew correction = 0.938 g = 0.794 * 0.938 = 0.745 Range of Applicability (ROA) Checks (same as for one lane loaded) Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. gM _{int2*} = 0.745 TxDOT Policy states gM _{intenor} must be ≥ m·N _L =N _b m·N _L +N _b = 0.85 * 3 / 6 = 0.425	
$\frac{\text{Lever Rule}}{\text{Lever Rule}} (Table 3.6.1.1.2)$ mg = Max(0.875 * 1.0, 0.875 * 0.85, 0.875 * 0.65) = 0.875 Modify for Skew: skew correction = 0.938 mg = 0.875 * 0.938 = 0.821 $\frac{\text{Equation}}{g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_s}{12Lt_s}\right)^{0.1}$ g = 0.075 + (8/9.5)^{0.6} * (8/50.4)^{0.2} * (1.271,611/(12*50.4*8^3))^{0.1} = 0.794 Modify for Skew: skew correction = 0.938 g = 0.794 * 0.938 = 0.745 Range of Applicability (ROA) Checks (same as for one lane loaded) Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. gM _{int2*} = 0.745 TxDOT Policy states gM _{intenor} must be ≥ m·N _L = N ₀ m·N _L + N _b = 0.85 * 3 / 6 = 0.425	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{aligned} & \text{Modify for Skew:} \\ & \text{Skew correction} = 0.938 \\ & \text{mg} = 0.875 * 0.938 = 0.821 \\ \hline \\ & \text{Equation} \\ & g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{12Lt_x^3}\right)^{0.1} \\ & g = 0.075 + (8/9.5)^{0.6} * (8/50.4)^{0.2} * (1.271,611/(12*50.4*8^{-3}))^{-0.1} = 0.794 \\ & \text{Modify for Skew:} \\ & \text{skew correction} = 0.938 \\ & g = 0.794 * 0.938 = 0.745 \\ \hline \\ & \text{Range of Applicability (ROA) Checks} \text{(same as for one lane loaded)} \\ & \text{Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK.} \\ & gM_{\text{int2*}} = 0.745 \\ \hline \\ & \text{TxDOT Policy states gM_{\text{interior}} must be ≥ m \cdot N_L = N_0 \\ & m \cdot N_L + N_b = 0.85 * 3 / 6 = 0.425 \\ \hline \end{aligned}$	
skew correction = 0.938 mg = 0.875 * 0.938 = 0.821 Equation $g = 0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{12Lt_s^3}\right)^{0.1}$ $g = 0.075 + (8/9.5)^{0.6} * (8/50.4)^{0.2} * (1.271,611/(12*50.4*8^3))^{0.1} = 0.794$ Modify for Skew: skew correction = 0.938 g = 0.794 * 0.938 = 0.745 Range of Applicability (ROA) Checks (same as for one lane loaded) Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. $gM_{int2*} = 0.745$ TxDOT Policy states $gM_{intenor}$ must be ≥ m·N _L =N _b m·N _L =N _b = 0.85 * 3 / 6 = 0.425	
$mg = 0.875 * 0.938 = 0.821$ $\frac{Equation}{g = 0.075 + (\frac{S}{9.5})^{0.6} (\frac{S}{L})^{0.2} (\frac{K_x}{12Lt_s^3})^{0.1}$ $g = 0.075 + (8/9.5)^{\circ}0.6 * (8/50.4)^{\circ}0.2 * (1.271,611/(12*50.4*8^{\circ}3))^{\circ}0.1 = 0.794$ Modify for Skew: $skew \text{ correction} = 0.938$ $g = 0.794 * 0.938 = 0.745$ Range of Applicability (ROA) Checks (same as for one lane loaded) Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. $gM_{int2*} = 0.745$ TxDOT Policy states $gM_{intenor}$ must be $\ge m \cdot N_L \div N_b$ $m \cdot N_L \div N_b = 0.85 * 3 / 6 = 0.425$	
$\begin{array}{l} \displaystyle \frac{\text{Equation}}{\text{g}=0.075+\left(\frac{S}{9.5}\right)^{0.6}\left(\frac{S}{L}\right)^{0.2}\left(\frac{K_g}{12L{I_s}^3}\right)^{0.1}} \\ \displaystyle \text{g}=0.075+(8/9.5)^{\circ}0.6^{\circ}(8/50.4)^{\circ}0.2^{\circ}(1.271,611/(12^{\circ}50.4^{\circ}8^{\circ}3))^{\circ}0.1=0.794 \\ \displaystyle \text{Modify for Skew:} \\ & \text{skew correction}=0.938 \\ \displaystyle \text{g}=0.794^{\circ}0.938=0.745 \\ \hline \text{Range of Applicability (ROA) Checks} (\text{same as for one lane loaded}) \\ \displaystyle \text{Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK.} \\ \displaystyle \text{gM}_{\text{int2*}}=0.745 \\ \hline \text{TxDOT Policy states gM}_{\text{interior}} \text{ must be} \geq \text{m}\cdot\text{N}_{\text{L}}\text{=}\text{N}_{\text{b}} \\ \hline \text{m}\cdot\text{N}_{\text{L}}\text{+}\text{N}_{\text{b}}=0.85^{\circ}3/6=0.425 \\ \end{array}$	
$g = 0.075 + \left(\frac{S}{9.5}\right)^{0.4} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_x}{12Lt_x}\right)^3$ $g = 0.075 + (8/9.5)^{0.6} * (8/50.4)^{0.2} * (1.271,611/(12*50.4*8^{-3}))^{0.1} = 0.794$ Modify for Skew: skew correction = 0.938 g = 0.794 * 0.938 = 0.745 Range of Applicability (ROA) Checks (same as for one lane loaded) Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. $gM_{int2*} = 0.745$ TxDOT Policy states $gM_{interior}$ must be $\ge m \cdot N_L \div N_b$ $m \cdot N_L \div N_b = 0.85 * 3 / 6 = 0.425$	
$\begin{array}{rcl} g = 0.075 + (8/9.5)^{h} 0.6 & (8/50.4)^{h} 0.2 & (1.271,611/(12*50.4*8^{h} 3))^{h} 0.1 = & 0.794 \\ & & \text{Modify for Skew:} & & & & & \\ & & & & \text{skew correction} = & & 0.938 \\ & & & & & & & & \\ g = 0.794 & 0.938 = & & & & & \\ & & & & & & & & \\ \hline & & & &$	
$\begin{array}{rcl} \mbox{Modify for Skew:} & & & & & & & & & & & & & & & & & & &$	
$skew \ correction = 0.938$ $g = 0.794 * 0.938 = 0.745$ $Range \ of \ Applicability \ (ROA) \ Checks \qquad (same \ as \ for \ one \ lane \ loaded)$ $Use \ Equation \ from \ Table \ 4.6.2.2.2b-1 \ because \ all \ criteria \ is \ OK.$ $gM_{int2+} = 0.745$ $TxDOT \ Policy \ states \ gM_{interior} \ must \ be \ \ge \ m\cdot N_L \div N_b$ $m\cdot N_L \div N_b = 0.85 * 3 / 6 = 0.425$	
$\begin{array}{rcl} g=0.794 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Use Equation from Table 4.6.2.2.2b-1 because all criteria is OK. $gM_{int2*} = 0.745$ TxDOT Policy states $gM_{interior}$ must be $\ge m \cdot N_L \div N_b$ $m \cdot N_L \div N_b = 0.85 * 3 / 6 = 0.425$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
TxDOT Policy states $gM_{interior}$ must be $\ge m \cdot N_L \div N_b$ $m \cdot N_L \div N_b = 0.85 * 3 / 6 = 0.425$	
$m \cdot N_{\rm L} \div N_{\rm b} = 0.85 * 3 / 6 = 0.425$	
Is W ≥ 20ft ? Yes	
TxDOT Policy states that if W < 20/t, gMindation is the Maximum of: gMint and m Ni +Ni.	
>> TxDOT Policy states that if W ≥ 20ft, gMinterior is the Maximum of gMinta, gMintz+, m·Ni+Ne	
$qM_{interior} = 0.745$	

BRIDGE [C.S1; XXXXXXXXX [L0 pr:] DXXX [Ck Derk:] Date:] Date:] Pev. 1018. (Note:] TREO Ceship Example 2, Span 1 8.3 Price:] Er2 Span 1 distribution [actors.d] Sheet [4 of 8 Sheet LL Distribution Per Lane (Table 4.6.2.2.3b-1); One Lane Loaded Lever Rule (Table 3.6.1.1.2) mg = 0.625 1, 0.625 Tx DOT uses a multiple presence factor of 1,0 for one Modify for Skew:] lane loaded on the exterior beam. skew correction = 1.076 mg = 0.625 1, 0.76 0, 0.673 Use Lever Rule, as per AASHTO LRED Table 4.6.2.2.3b-1. 9 Vext = 0.673 Use Lever Rule, as per AASHTO LRED Table 4.6.2.2.3b-1. 9 Vext = 0.673 Use Lever Rule, as per AASHTO LRED Table 4.6.2.2.3b-1. 9 Vext = 0.673 Use Lever Rule, as per AASHTO LRED Table 4.6.2.2.3b-1. 9 Vext = 0.673 Use Lever Rule, as per AASHTO LRED Table 4.6.2.2.3b-1. 9 Vext = 0.673 Use Lever Rule, as per AASHTO LRED Table 4.6.2.2.3b-1. 9 Vext = 0.673 Use Lever Rule, as per AASHTO LRED Table 4.6.2.2.3b-1. 9 Vext = 0.673 Use Lever Rule, as per AASHTO LRED Table 4.6.2.2.3b-1. 9 Vext = 0.673 Use 3.6.11.2 mg = Max(0.625 * 1.0, 0.625 * 0.85, 0.625 * 0.65) = 0.625 Modify for Skew: skew correction = 1.076 mg = 0.625 * Modify for Skew: skew correction = 1.076 g. mg = 0.625 * 1.076 0.573 Equation d_e = dist. biw CL web to curb d_e = 0.6 + $\left(\frac{d_e}{10}\right)$ $e = 0.6 + \left(\frac{d_e}{10}\right)$ $e = 0.6 + (2.010) = 0.800 g = e^*gV_{max}$ g = 0.800 * 0.876 = 0.701 Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check Ab; i -1.0*2.0*5.5 OK Check Ab; i -0.5.5 OK Check Ab; i -0.5.5 OK Check Ab; i -0.701 TxDOT Policy states gVexterner must be 2 gVexterner 9 Vexter = 0.701 TxDOT Policy states gVexterner must be 2 gVexterner 9 Vexter = 0.701 TxDOT Policy states gVexterner must be 2 gVexterner 9 Vexter = 0.8076 must be 2 mN+Ne.	TXDOT	County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Specs
EXTERIOR BEAM: Shear LL Distribution Per Lane (Table 4.6.2.2.3b-1): One Lane Loaded Lever Rule (Table 3.6.1.1.2) mg = 0.625 * 1.0 = 0.625 TxDOT uses a multiple presence factor of 1.0 for one Modify for Skew: skew corraction = 1.076 mg = 0.625 * 1.076 = 0.673 Use Lever Rule, as per AASHTO LRFD Table 4.6.2.2.3b-1. $gV_{ext1} = 0.673$ Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = 0.625 * 1.076 = 0.673 Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = 0.625 * 1.076 = 0.673 Equation $d_{e} = 0.612 * 1.076 = 0.673$ Equation $d_{e} = 0.625 * 1.076 = 0.673$ Equation $d_{e} = 0.625 * 1.076 = 0.673$ Equation $d_{e} = 0.61 + (\frac{1}{10})$ $e = 0.6 + (\frac{1}{2})$ $e = 0.6 + (\frac{1}{2})$ g = 0.800 is more than a start of the exterior beam. Check Interior Beam ROA: Check Age: -1.0' 2.0' 5.5 OK Check Ng: 6 ≠ 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{exc2} = 0.201$ TxDOT Policy states $gV_{Excaver}$ must be $\ge gV_{extaver}$ $gV_{exc2} = 0.825$	BRIDGE	C-S-J: Descrip:	ITBC Design Exa	ID #: mole 2. Soan 1	& 3	Ck Dsn:	Ex2 So	Date:	ition factors x	Rev. 10/18 -	(No Interim) 4 of 8
Shear (LL Distribution Per Lane (Table 4.6.2.2.3b-1): One Lane Loaded Lever Rule (Table 3.6.1.1.2) mg = 0.625 * 1.0 = 0.625 TxDOT uses a multiple presence factor of 1.0 for one Modify for Skew: lane loaded on the exterior beam. skew correction = 1.076 mg = 0.625 * 1.076 = 0.673 Use Lever Rule, as per AASHTO LRFD Table 4.6.2.2.3b-1. gV _{ext1} = 0.673 Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = Max(0.625 * 1.0, 0.625 * 0.65, 0.625 * 0.65) = 0.625 Modify for Skew: skew correction = 1.076 mg = 0.625 * 1.076 = 0.673 Equation d _a = dist. b/w CL web to curb d _a = OH - Rail Width d _a = 31t - 11t = 2.0 ft. e = 0.6 + $\left(\frac{d_x}{10}\right)$ e = 0.6 + $\left(\frac{d_x}{10}\right)$ e = 0.6 + $\left(\frac{d_x}{10}\right)$ find the for Beam ROA: Check Ag: -1.0' 5.5 OK Check Ag: -1.0' 5.5' OK Check N; 6 + 3 OK TxDOT Policy states gV _{Examp} must be ≥ gV _{examp} .	EXTER	BIOR BE	AM:			D. no.	Land_opt			Ondot.	1010
One Lane Loaded Lever Rule (Table 3.6.1.1.2) mg = 0.625 * 1.0 = 0.625 Modify for Skew: skew correction = 1.076 mg = 0.625 * 1.076 = 0.673 Use Lever Rule, as per AASHTO LRFD Table 4.6.2.2.3b-1. gVert = 0.673 Use Lever Rule (Table 3.6.1.1.2) mg = Max(0.625 * 1.0, 0.625 * 0.65, 0.625 * 0.65) = 0.625 Modify for Skew: skew correction = 1.076 mg = 0.625 * 1.076 = 0.673 Equation d _e = dist. b/w CL web to curb d _e = 0H - Rall Width d _e = 3H - 1H = 2.0 H e = 0.6 + $\left(\frac{d_x}{10}\right)$ e = 0.6 + (2.0/10) = 0.800 g = e [*] gV _{wa2-ka} g = 0.800 * 0.876 = 0.701 Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check N ₂ : 6 + 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. gV _{ext2} = 0.701 TxDOT Policy states gV _{Extates} must be ≥ gV _{attates} g V _{bettor} = 0.875 TxDOT Policy states gV _{Extates} must be ≥ gV _{attates}	Shear I	1 Distrib	ution Per Lane	(Table 4.6.2.)	2 3h-11						
Circle Line Verific III (Table 3.6.1.1.2) mg = 0.625 * 1.0 = 0.625 mg = 0.625 * 1.0 = 0.625 mg = 0.625 * 1.076 = 0.673 Use Lever Rule, as par AASHTO LRFD Table 4.6.2.2.3b-1. gV _{ext1} = 0.673 Two or More Lanes Loaded Lever Rule (Table 3.6.1.2) mg = Max(0.625 * 1.0, 0.625 * 0.65) = 0.625 Modify for Skew: skew correction = 1.076 mg = 0.625 * 1.076 = 0.673 Equation d _e = dist. b/w CL web to curb d _e = Off - Rall Width d _e = 3ft - 1ft = 2.0 ft e = 0.6 + $\left(\frac{d_x}{10}\right)$ e = 0.6 + $\left(\frac{d_x}{10}\right)$ g = o ² 9V _{m22Eq} g = 0.800 * 0.876 = 0.201 Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Check N ₂ : 6 ≠ 3 OK Use Equation from Table 4.6.2.2.3b - 1 because all criteria is OK. gV _{max2} = 0.201 TxDOT Policy states gV _{extency} must be ≥ gV _{mintery} g V _{max1} = 0.65 = 0.875	<u>oncur c</u>	Onela	ne Loaded	14010 110.6.1							
$\begin{split} \textbf{mg} &= 0.625^{+}1.0 = 0.625 & \text{TxDOT uses a multiple presence factor of 1.0 for one lane loaded on the exterior beam.} \\ & \text{skew correction} = 1.076 & 0.673 \\ & \text{mg} = 0.625^{+}1.076 = 0.673 \\ & \text{Use Lever Rule, as par AASHTO LRED Table 4.6.2.2.3b-1.} \\ & \textbf{gV}_{ext1} = 0.673 \\ \hline \textbf{Two or More Lanes Loaded} \\ & \underline{\textbf{Lever Rule}} & (Table 3.6.11.2) \\ & \textbf{mg} = Max(0.625^{+}1.0, 0.625^{+}0.85, 0.625^{+}0.65) = 0.625 \\ & \text{Modify for Skew:} \\ & \text{skew correction} = 1.076 \\ & \textbf{mg} = 0.625^{+}1.076 = 0.673 \\ \hline \textbf{Equation} \\ & \textbf{d}_{e} = \text{dist. b/w GL web to curb} \\ & \textbf{d}_{e} = \text{dist. b/w GL web to curb} \\ & \textbf{d}_{e} = 0.6 + \left(\frac{d_{e}}{10}\right) \\ & \textbf{e} = 0.6 + \left(\frac{d_{e}}{10}\right) \\ & \textbf{e} = 0.6 + (2.0/10) = 0.800 \\ & \textbf{g} = e^{+}\textbf{g} \textbf{V}_{mathed} \\ & \textbf{g} = 0.800^{+}.0.876 = 0.201 \\ & \text{Skew Correction is included in gV(interior).} \\ \hline \textbf{Range of Applicability (ROA) Checks} \qquad \text{Interior ROA is implicitly applied to the exterior beam.} \\ & \text{Check May: 6 # 3 } OK \\ & \text{Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK.} \\ & \textbf{gV}_{mathed} = 0.701 \\ \hline \textbf{TxDOT Policy states gV}_{exteure} \text{ must be } \geq \textbf{gV}_{wintere} \\ & \textbf{gV}_{exteure} = 0.876 \\ \hline \textbf{TxDOT Policy states gV}_{exteure} \text{ must be } \geq \textbf{mV}_{h} \text{-N}. \\ \hline \textbf{Kot Policy states gV}_{exteure} \text{ must be } \geq \textbf{mV}_{h} \text{-N}. \\ \hline \textbf{Kot Policy states gV}_{exteure} \text{ must be } \geq \textbf{mV}_{h} \text{-N}. \\ \hline \textbf{Kot Policy states gV}_{exteure} \text{ must be } \geq \textbf{mV}_{h} \text{-N}. \\ \hline \textbf{Kot Policy states gV}_{exteure} \text{ must be } \geq \textbf{mV}_{h} \text{-N}. \\ \hline \textbf{Kot Policy states gV}_{exteure} \text{ must be } \geq \textbf{mV}_{h} \text{-N}. \\ \hline \textbf{Kot Policy states gV}_{exteure} \text{ must be } \geq \textbf{mV}_{h} \text{-N}. \\ \hline \textbf{Kot Policy states gV}_{exteure} \text{ must be } \geq \textbf{mV}_{h} \text{-N}. \\ \hline \textbf{Kot Policy states gV}_{exteure} \text{ must be } \geq \textbf{mV}_{h} \text{-N}. \\ \hline \textbf{Kot Policy states gV}_{exteure must be } \geq \textbf{mV}_{h} \text{-N}. \\ \hline \textbf{Kot Policy states gV}_{exteure must be } \geq \textbf{mV}_{h} \text{-N}. \\ \hline \textbf{Kot Policy states gV}_{exteure must be } \geq \textbf{mV}_{h} \text{-N}. \\ \hline \textbf{Kot Policy states gV}_{exteure m$			Lever Bule	(Table 3.6	1.1.2)						
Modify for Skew: Inne loaded on the exterior beam. skew correction = 1.076 mg = 0.625 * 1.076 = 0.623 Use Lever Rule, as per ASHTO LRFD Table 4.6.2.2.3b-1. $gV_{ext} = 0.623$ Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = Max(0.625 * 1.0, 0.625 * 0.65) = 0.625 Modify for Skew: skew correction = 1.076 mg = 0.625 * 1.076 = 0.673 Equation $d_e = dist. b/w CL web to curb$ $d_e = 0H - Rall Width$ $d_e = 3tt - 1tt = 2.0 tt$ $e = 0.6 + (\frac{d}{10})$ $e = 0.6 + (\frac{d}{10})$ $e = 0.6 + (\frac{d}{10})$ $e = 0.6 + (\frac{d}{10})$ e = 0.68 + (2.0/10) = 0.800 $g = e^*gV_{m2.66}$ g = 0.800 * 0.876 = 0.701 Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check Ng: 6 ≠ 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext2} = 0.701$ TXDOT Policy states $gV_{Externor}$ must be $\ge gV_{interior}$			ma = 0.6	525 * 1.0 =	0.625	TXDOT US	es a mul	tiple pres	sence factor	of 1.0 for a	ne
skew correction = 1.076 mg = 0.625 * 1.076 = 0.673 Use Lever Rule; as per AASHTO LRFD Table 4.6.2.2.3b-1. $gV_{ext1} = 0.673$ Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = Max(0.625 * 1.0, 0.625 * 0.85, 0.625 * 0.65) = 0.625 Modify for Skew: skew correction = 1.076 mg = 0.625 * 1.076 = 0.673 Equation d _e = dit. b/w CL web to curb d _e = OH - Rall Width d _e = OH - Rall Width d _e = 3ft - 1ft = 2.0 ft e = 0.6 + $\left(\frac{d_e}{10}\right)$ e = 0.6 + (2.0/10) = 0.800 g = e*gV_{int2+Eq} g = 0.800 * 0.876 = 0.701 Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check d _g : -1.0* ≤ 2.0* ≤ 5.5' OK Check N _b : 6 ≠ 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ender} = 0.2701$ TxDOT Policy states $gV_{Externer}$ must be ≥ $gV_{interior}$ $gV_{interior} = 0.876$			Modify f	or Skew:	10000	lane loade	d on the	exterior	beam.	of the lot of	
mg = 0.625 * 1.076 = 0.673 Use Lever Rule, as per AASHTO LRFD Table 4.6.2.2.3b-1. $gV_{ext1} = 0.673$ Two or More Lanes Loaded $\frac{Lever Rule}{(Table 3.6.1.1.2)}$ $mg = Max(0.625 * 1.0, 0.625 * 0.65, 0.625 * 0.65) = 0.625$ Modify for Skew: skew correction = 1.076 $mg = 0.625 * 1.076 = 0.673$ Equation $d_{e} = 0.61 + Rail Width$ $d_{e} = 0.6 + (\frac{d_{e}}{10})$ $e = 0.6 + (2.0/10) = 0.800$ $g = e^{*}gV_{m22-Eq}$ $g = 0.800 * 0.876 = 0.701$ Skew Correction is included in gV(interior). Planae of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check $d_{e}^{*} = 1.0 \le 2.0 \le 5.5$ Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext2} = 0.201$ TxDOT Policy states $gV_{Externer}$ must $b \ge gV_{interior}$				skew corre	ection =	1.076					
Use Lever Rule, as per AASHTO LRFD Table 4.6.2.2.3b-1. $gV_{writ} = 0.673$ Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = Max(0.625 * 1.0, 0.625 * 0.85, 0.625 * 0.65) = 0.625 Modify for Skew: skew correction = 1.076 mg = 0.625 * 1.076 = 0.673 Equation $d_e = dist. b/w CL web to curb$ $d_e = 0H - Rail Width$ $d_g = 3ft - 1ft = 2.0 ft$ $e = 0.6 + (\frac{d_e}{10})$ e = 0.6 + (2.0/10) = 0.800 $g = e^*gV_{im2-463}$ g = 0.800 * 0.876 = 0.701 Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check No: 6 ≠ 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{write} = 0.201$ TXDOT Policy states $gV_{interior}$ $gV_{interior} = 0.876$ TXDOT Policy states $gV_{interior}$				mg = 0.62	5*1.076 =	0.673					
$\begin{array}{llllllllllllllllllllllllllllllllllll$			Use Lever Ru	le, as per AA	SHTO LRFD	Table 4.6.2	2.2.3b-1.				
Two or More Lanes Loaded Lever Rule (Table 3.6.1.1.2) mg = Max(0.625 * 1.0, 0.625 * 0.65) = 0.625 Modify for Skew: skew correction = 1.076 mg = 0.625 * 1.076 = 0.673 Equation $d_o = \text{dist. b/w CL web to curb}$ $d_o = \text{dist. b/w CL web to curb}$ $d_o = \text{dist. b/w CL web to curb}$ $d_o = 0.6 + \text{Rall Width}$ $d_o = 3 \text{ft} - 1 \text{ft} = 2.0 \text{ft}$ $e = 0.6 + \left(\frac{2}{10}\right)$ e = 0.6 + (2.0/10) = 0.800 $g = e^*gV_{int2+Eq}$ g = 0.800 * 0.876 = 0.701 Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check $d_s: -1.0' \le 2.0' \le 5.5'$ OK Check $N_b: 6 \ne 3$ OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext2,e} = 0.701$ TxDOT Policy states gV _{Exterior} must be \ge gV _{interior} $gV_{interior} = 0.876$			gV _{ext1} =	0.673							
Lever Rule (Table 3.6.1.1.2) mg = Max(0.625 * 1.0, 0.625 * 0.85, 0.625 * 0.65) = 0.625 Modify for Skew: skew correction = 1.076 mg = 0.625 * 1.076 = 0.673 Equation d _e = dist. b/w CL web to curb d _e = OH - Rall Width d _e = OH - Rall Width d _e = 0.6 + $\left(\frac{d_e}{10}\right)$ e = 0.6 + $\left(\frac{d_e}{10}\right)$ e = 0.6 + $\left(\frac{d_e}{10}\right)$ 0.800 g = e*gV _{im2×Eq} g = 0.800 * 0.876 = g = 0.800 * 0.876 = 0.701 Skew Correction is included in gV(interior). Parage of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check Interior Beam ROA: OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. gV _{ext2*} = Q.701 TxDOT Policy states gV _{Extence} Must be ≥ gV _{interior} gV _{interior} = gV _{interior} = Q.8276 TxDOT Policy states g		T.u.e. e.s.	Maralanaala	and and							
$\frac{1}{1} \frac{1}{1} \frac{1}$		I WO OF	Nore Lanes Lo	/Table 3.6	110						
Modify for Skew: skew correction = 1,076 mg = 0.625 * 1.076 = 0.673 Equation $d_e = \text{dist. b/w CL web to curb}$ $d_e = OH - Rail Width$ $d_e = OH - Rail Width$ $d_e = 3ft - 1ft = 2.0 ft$ $e = 0.6 + \left(\frac{d_e}{10}\right)$ e = 0.6 + (2.0/10) = 0.800 $g = e^*gV_{\text{int2}-Eq}$ g = 0.800 * 0.876 = 0.701 Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check d_e^: -1.0' ≤ 2.0' ≤ 5.5' OK Check d_e^: -1.0'			Lever Hule	(1able 3.0	0.625*0.6	25 0 625 * 0	65) -	0 695			
skew correction = 1,076 mg = 0.625 * 1.076 = 0.673 Equation $d_e = \text{dist. b/w CL web to curb}$ $d_e = OH - \text{Rail Width}$ $d_e = 3\text{ft} - 1\text{ft} = 2.0 \text{ ft}$ $e = 0.6 + \left(\frac{d_e}{10}\right)$ e = 0.6 + (2.0/10) = 0.800 $g = e^*gV_{\text{int2-Eq}}$ g = 0.800 * 0.876 = 0.701 Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check Interior Beam ROA: OK Check N _b : 6 ≠ 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{\text{interior}} = 0.701$ TxDOT Policy states gV _{Extercer} must be ≥ gV _{interior} $gV_{\text{interior}} = 0.876$ TxDOT Policy states gV _{Extercer} must be ≥ gV _{interior}			Modify f	or Skow	, 0.025 0.0	5, 0.025 0	.00) -	0.02.0			
$mg = 0.625 * 1.076 = 0.673$ Equation $d_{e} = dist. b/w CL web to curb$ $d_{e} = 0H - Rall Width$ $d_{e} = 3ft - 1ft = 2.0 ft$ $e = 0.6 + \left(\frac{d_{e}}{10}\right)$ $e = 0.6 + (2.0/10) = 0.800$ $g = e^{e}gV_{int2+Eq}$ $g = 0.800 * 0.876 = 0.701$ Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check d_{e^{i}} - 1.0' \le 2.0' \le 5.5' OK Check N_{b^{i}} 6 \neq 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext2*} = 0.701$ TxDOT Policy states gV _{Extercer} must be $\ge gV_{interior}$ TxDOT Policy states gV _{Extercer} must be $\ge m \cdot N_{1} \le N_{2}$			woony i	skew corre	ection -	1.076					
Equation $d_{e} = \text{dist. b/w CL web to curb}$ $d_{e} = \text{OH} \cdot \text{Rall Width}$ $d_{e} = 3\text{H} \cdot 1\text{H} = 2.0 \text{H}$ $e = 0.6 + \left(\frac{d_{e}}{10}\right)$ $e = 0.6 + (2.0/10) = 0.800$ $g = e^{*}gV_{\text{int2+Eq}}$ $g = 0.800 * 0.876 = 0.701$ Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check d_{e^{:}} -1.0' \le 2.0' \le 5.5' OK Check N_{b}: 6 \neq 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{\text{ext2+}} = 0.701$ TxDOT Policy states gV _{Extercer} must be $\ge \text{gV}_{\text{interior}}$ TxDOT Policy states gV _{Extercer} must be $\ge \text{gV}_{\text{interior}}$				mn = 0.62	5 1 076 -	0.673					
$d_{e} = \text{dist. b/w CL web to curb}$ $d_{e} = \text{dist. b/w CL web to curb}$ $d_{e} = \text{OH} \cdot \text{Rall Width}$ $d_{e} = 3\text{It} \cdot 1\text{It} = 2.0 \text{It}$ $e = 0.6 + \left(\frac{d_{e}}{10}\right)$ $e = 0.6 + (2.0/10) = 0.800$ $g = e^{*}gV_{\text{int2+Eq}}$ $g = 0.800 * 0.876 = 0.701$ Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check d_{e}: -1.0' \le 2.0' \le 5.5' OK Check N_{b}: 6 \neq 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{\text{ext2+}} = 0.701$ TxDOT Policy states gV _{Externor} must be \ge gV _{interior} $gV_{\text{interior}} = 0.876$ TxDOT Policy states gV _{Externor} must be \ge m·N ₁ ÷N ₂ .			Equation	ing - oron		01010					
$d_e = OH - Rail Width$ $d_e = 3ft - 1ft = 2.0 ft$ $e = 0.6 + \left(\frac{d_e}{10}\right)$ $e = 0.6 + (2.0/10) = 0.800$ $g = e^*gV_{int2+Eq}$ $g = 0.800 * 0.876 = 0.701$ Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check d_e: -1.0' ≤ 2.0' ≤ 5.5' OK Check N_b: 6 ≠ 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext2+} = 0.701$ TxDOT Policy states $gV_{Exterior}$ must be ≥ gV _{interior} $gV_{interior} = 0.876$ TxDOT Policy states $gV_{extarear}$ must be ≥ m·N ₁ ÷N ₂			d. = dist	b/w CL web	to curb						
$d_{e} = 3ft - 1ft = 2.0 ft$ $e = 0.6 + \left(\frac{d_{e}}{10}\right)$ $e = 0.6 + (2.0/10) = 0.800$ $g = e^*gV_{int2+Eq}$ $g = 0.800 * 0.876 = 0.701$ Skew Correction is included in gV(interior). <u>Range of Applicability (ROA) Checks</u> Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check d_{ei}: -1.0' \le 2.0' \le 5.5' OK Check N_{bi}: 6 \neq 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext24} = 0.701$ TxDOT Policy states $gV_{Exterior}$ must $b \ge gV_{interior}$ TxDOT Policy states $gV_{Exterior}$ must $b \ge gV_{interior}$			$d_a = OH$	- Rail Width							
$e = 0.6 + \left(\frac{d_e}{10}\right)$ $e = 0.6 + (2.0/10) = 0.800$ $g = e^*gV_{int2+Eq}$ $g = 0.800 * 0.876 = 0.701$ Skew Correction is included in gV(interior). <u>Range of Applicability (ROA) Checks</u> Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check d_e: -1.0' \le 2.0' \le 5.5' OK Check N_b: 6 \neq 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext2*} = 0.701$ TxDOT Policy states $gV_{Exterior}$ must $be \ge gV_{interior}$ $gV_{interior} = 0.876$ TxDOT Policy states $dV_{Exterior}$ must $be \ge m \cdot N_{c} \div N_{D}$			d _e =	3ft - 1ft =	2.01	ti.					
$e = 0.6 + \left(\frac{\pi}{10}\right)$ $e = 0.6 + (2.0/10) = 0.800$ $g = e^*gV_{int2+Eq}$ $g = 0.800 * 0.876 = 0.701$ Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check d _g : -1.0' ≤ 2.0' ≤ 5.5' OK Check N _b : 6 ≠ 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext2*} = 0.701$ TxDOT Policy states $gV_{Exterior}$ must $be \ge gV_{interior}$ $gV_{interior} = 0.876$ TxDOT Policy states $dV_{Exterior}$ must $be \ge m \cdot N_{1} \div N_{D}$				(d)							
$e = 0.6 + (2.0/10) = 0.800$ $g = e^*gV_{int2+Eq}$ $g = 0.800 * 0.876 = 0.701$ Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check Interior Beam ROA: OK Check Interior Beam ROA: OK Check dg: -1.0' ≤ 2.0' ≤ 5.5' OK Check Nb: 6 ≠ 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. gV _{ext2+} = 0.701 TxDOT Policy states gV _{Extercer} must be ≥ gV _{interior} gV _{interior} = 0.876 TxDOT Policy states gV _{Extercer} must be ≥ m·N ₁ ÷N _b			e = 0.6	$+\left[\frac{\pi}{10}\right]$							
$\begin{array}{l} g = e^*gV_{\text{interver}}\\ g = 0.800 * 0.876 = & \underline{0.701}\\ \text{Skew Correction is included in gV(interior).}\\ \hline \\ \hline Range of Applicability (ROA) Checks & Interior ROA is implicitly applied to the exterior beam.\\ \hline \\ Check Interior Beam ROA: & OK\\ \hline \\ Check d_{g^1} - 1.0' \leq 2.0' \leq 5.5' & OK\\ \hline \\ Check d_{g^1} - 1.0' \leq 2.0' \leq 5.5' & OK\\ \hline \\ Check N_b: 6 \neq 3 & OK\\ \hline \\ \text{Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK.}\\ gV_{\text{ext2*}} = & \underline{0.701}\\ \hline \\ \text{TxDOT Policy states gV}_{\text{Exterior}} \text{ must be } \geq gV_{\text{interior}}\\ gV_{\text{interior}} = & \underline{0.876}\\ \hline \\ \text{TxDOT Policy states oV}_{\text{Exterior}} \text{ must be } \geq m\cdotN_{1} \div N_{\text{P}}\\ \hline \end{array}$			e = 0.6	+(2.0/10) =	0.800						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			a o*a)	/							
$g = 0.800 0.876 = \underline{0.701}$ Skew Correction is included in gV(interior). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check d _e : -1.0' ≤ 2.0' ≤ 5.5' OK Check N _b : 6 ≠ 3 OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. gV _{ext2+} = <u>0.701</u> TxDOT Policy states gV _{Exterior} must be ≥ gV _{interior} gV _{interior} = <u>0.876</u> TxDOT Policy states dV _{Exterior} must be ≥ m·N ₁ ÷N _b			g = e gv	int2+Eq	0 701						
Skew Confection is included in g v (intend). Range of Applicability (ROA) Checks Interior ROA is implicitly applied to the exterior beam. Check Interior Beam ROA: OK Check dg: -1.0' $\leq 2.0' \leq 5.5'$ OK Check Nb: $6 \neq 3$ OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext2*} = 0.701$ TxDOT Policy states $gV_{Exterior}$ must $be \geq gV_{interior}$ $gV_{interior} = 0.876$ TxDOT Policy states $gV_{Exterior}$ must $be \geq m \cdot N_1 \div N_p$			g = 0.60	orraction is in	cluded in al	//interior\					
Interior ROA is implicitly applied to the extentor beam. Check Interior Beam ROA: OK Check $d_{e^i} - 1.0' \le 2.0' \le 5.5'$ OK Check Nb: $6 \ne 3$ OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext2*} = 0.701$ TxDOT Policy states $gV_{Exterior}$ must be $\ge gV_{interior}$ $gV_{interior} = 0.876$ TxDOT Policy states $dV_{Exterior}$ must be $\ge m \cdot N_1 \div N_p$			Dance of Apr	licebility (DO	A) Chacks	Interior).	DOA in i	molinithy	opplied to th	ha autorior h	0.000
Check $d_{e^i} -1.0^i \le 2.0^i \le 5.5^i$ OK Check $N_{b^i}: 6 \ne 3$ OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext2+} = 0.701$ TxDOT Policy states $gV_{Exterior}$ must $be \ge gV_{interior}$ $gV_{interior} = 0.876$ TxDOT Policy states $dV_{Exterior}$ must $be \ge m \cdot N_1 \div N_p$			Check l	nterior Beam	ROA.	OK	HUAISI	mplicitiy	applied to ti	ne exterior L	leant.
Check N _b : $6 \neq 3$ OK Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext2*} = 0.701$ TxDOT Policy states $gV_{Exterior}$ must be $\geq gV_{interior}$ $gV_{interior} = 0.876$ TxDOT Policy states $gV_{Exterior}$ must be $\geq m \cdot N_{1} \div N_{2}$			Check d	1.0'<20	1 < 5 5'	OK					
Use Equation from Table 4.6.2.2.3b-1 because all criteria is OK. $gV_{ext2*} = 0.701$ TxDOT Policy states $gV_{Exterior}$ must be $\geq gV_{interior}$ $gV_{interior} = 0.876$ TxDOT Policy states $gV_{Exterior}$ must be $\geq m \cdot N_1 \div N_D$			Check N	L: 6 ± 3	0.0	OK					
$gV_{ext2+} = 0.701$ TxDOT Policy states $gV_{Exterior}$ must be $\geq gV_{interior}$ $gV_{interior} = 0.876$ TxDOT Policy states $gV_{Exterior}$ must be $\geq m \cdot N_1 \div N_p$			Lise Equation	from Table 4	6223h-11	hacause all	oritoria is	OK			
TxDOT Policy states gV_{Exterior} must be $\geq gV_{\text{interior}}$ $gV_{\text{interior}} = 0.876$ TxDOT Policy states gV_{Exterior} must be $\geq m \cdot N_1 \div N_p$			aV-	0 701	F.U.E.E.UD-11	Decause an	uniona is	OR.			
$\mathbf{gV}_{\text{interior}} = \frac{0.876}{\text{TxDOT Policy states gV}_{\text{interior}}}$ TxDOT Policy states gV_{exterior} must be $\geq \text{m} \cdot \text{N}_{1} \div \text{N}_{2}$		TUDOT	9 · ext2+ -	V.L.V.L							
$gv_{intenior} = 0.876$ TxDOT Policy states $gv_{\text{Extension}}$ must be $\ge m \cdot N_i \div N_b$		IXDOI	Policy states gv	Edenar Must c	e < gv interior						
$1 \times D \cup 1 = 0 = 0 \times States \cup V = define H USI D = 2 = 11 + 0 \oplus 10 \times States = 0 \times $		TYDOT	gvinterior =	0.876	A. M.m.C.						
$mN + N = 0.95 \pm 2/6 = 0.425$		TADOT	m.N. +N. =	0.95 * 2 / 6	A THINK THE	0 425					
$10^{-14} = 0.03^{-3} = 0.423$		IS OH S	C/2 2 Voc	0.05 370) =	0.420					
Is W ≥ 20ft ? Yes		Is W≥2	20ft ? Yes								
>> TxDOT Policy states that if $OH \leq S/2$, $gV_{Extensor}$ is $gV_{intensor}$.	>>	TXDOT	Policy states th	at if OH ≤ S/2	2, gV _{Exterior} is	gVintenior.					
TxDOT Policy states that if OH > S/2 and W < 20It, gV _{Extensor} is the Maximum of; gV _{ext1} , gV _{interior} , and		TXDOT	Policy states th	at if OH > S/a	2 and W < 20	Dit, gV _{Exterior}	is the Ma	ximum c	f: gV _{ext1} , gV	interior, and	
$m \cdot N_L \div N_b$.			m·N _L ÷N _b .							all and the second	
TxDOT Policy states that if OH > S/2 ans W ≥ 20ft, gV _{Exterior} is the Maximum of: gV _{ext1} , gV _{ext2+} , gV _{interior}		TXDOT	Policy states th	at if OH > S/2	2 ans W ≥ 20	oft, gV _{Exterior} i	s the Ma	ximum o	f: gV _{ext1} , gV	exi2+, gVinterio	
and m·N _L ÷N _b .			and m NL+Nb						A Court of		
gV _{exterior} = 0.876		gV _{exte}	erior = 0.876								

```
TXDOT
BRIDGE
                      ANY
                                                                       Design:
Ck Dsn:
           County:
                                        Highway
                                                       Any
XXXX
                                                                                           Date
                                                                                                                        2017 LRFD Spel
                      XXX-XX-XXXX
                                                                                                                       10/18 - (No Inte
                                       ID #
                                                                                           Date
                                      mple 2. S.
                     ITBC Design Exa
DIVISION
                                                                                                                                5 of 8
 EXTERIOR BEAM:
Moment LL Distribution Per Lane (Table 4.6.2.2.2d-1):
          One Lane Loaded
                     Lever Rule
                           mg = 0.625 * 1.0 =
                                                      0.625
                                                                   TxDOT uses a multiple presence factor of 1,0 for one
                                                                   lane loaded on the exterior beam.
                            Modify for Skew:
                                       skew correction =
                                                                      0.938
                                       mg = 0.625 * 0.938 =
                                                                      0.586
                     Use Lever Rule as per AASHTO LRFD Table 4.6.2.2.2d-1.
                     gMext1 =
                                        0.586
          Two or More Lanes Loaded
                     Lever Rule
                                        (Table 3.6.1.1.2)
                           mg = Max(0.625 * 1.0, 0.625 * 0.85, 0.625 * 0.65) =
                                                                                           0.625
                           Modify for Skew:
                                       skew correction =
                                                                       0.938
                                       mg = 0.625 * 0.938 =
                                                                       0.586
                     Equation
                           \mathbf{e} = 0.77 + \left(\frac{d_e}{9.1}\right)
                           e = 0.77 + (2.0/9.1) =
                                                                   0.990
                           g = e^*gM_{int2+Eq}
                           g = 0.99 * 0.745 =
                                                       0.738
                            Skew Correction included in gM(interior).
                     Range of Applicability (ROA) Checks
                                                                       Interior ROA is implicitly applied to the exterior beam.
                           Check Interior Beam ROA:
                                                                   OK
                           Check d_e: -1.0' \leq 2.0' \leq 5.5'
                                                                  OK
                           Check N<sub>b</sub>: 6 ≠ 3
                                                                   OK
                     Use Equation from Table 4.6.2.2.2d-1 because all criteria is OK.
                     gM<sub>ext2+</sub> =
                                       0.738
          TxDOT Policy states gM<sub>Exterior</sub> must be ≥ gM<sub>interior</sub>
                     gMinterior =
                                      0.745
          TxDOT Policy states gM<sub>Exterior</sub> must be ≥ m·N<sub>L</sub>÷N<sub>b</sub>
                     m \cdot N_L \div N_b = 0.85 * 3 / 6 =
                                                                      0.425
          Is OH ≤ S/2 ? Yes
          Is W ≥ 20ft ? Yes
      >> TxDOT Policy states that if OH ≤ S/2, gM<sub>Exterior</sub> is gM<sub>interior</sub>.
          TxDOT Policy states that if OH > S/2 and W < 20ft, gM<sub>Exterior</sub> is the Maximum of: gM<sub>ext1</sub>, gM<sub>interior</sub>, and
                     m·NI ÷Nn
          TxDOT Policy states that if OH > S/2 ans W \ge 20ft, gM<sub>Extensi</sub> is the Maximum of: gM<sub>ext1</sub>, gM<sub>ext2+1</sub> gM<sub>mienor</sub>
                     and m·NL+NE
            gM<sub>exterior</sub> = 0.745
```


BIDGE County:	ANY XXX-XX-XXXX	Highway:	Any	Design:	BRG	Date:	8/15/20	2017 I	RFD Spe
IVISION Descrip:	ITBC Design Exar	nple 2, Span 1 &	3	File:	Ex2 Spant	distribu	tion_factors.xl	Sheet:	7 01 8
LEVER RULE	S	= 8.0 ft							
INTERIOR (con't)									
For 18 ≤ S < 22: One Lane =	$\frac{16}{32}\left(1+\frac{S-6}{S}\right)$					-	= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{s-4}{s} + \frac{s-10}{s}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{s}$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{s-4}{s} + \frac{s-10}{s}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{S} + \frac{S-16}{S}$		Ľ.	= 0.625		
For $22 \le S \le 24$; One Lane =	$\frac{16}{32}\left(1+\frac{S-6}{S}\right)$					i.	= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	(= 0.750		
Three Lanes =	$\frac{16}{32}\left(1 + \frac{S-6}{S} + \frac{1}{S}\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\left(\frac{-18}{s}\right)$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{S-18}{S} + \frac{S-16}{S}$	$+\frac{S-22}{S}$		= -1.500		
				Hinge			Rail Width	S = OH = = RW =	8.0 ft 3.0 ft 1.0 ft
For X < 6:	16(X)	- S					A = 0+UH+	1vv-∠i[=	0.U N
One Lane =	$\overline{32}(\overline{s})$						= 0.500		
For 6 ≤ X < 12; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$)					= 0.625		
For 12 ≤ X < 18; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$)					= 0.625		
	12/12 12 1	8 123							

RIDGE County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017 LRF	D Spece
IVISION Descrip:	ITBC Design Exa	mple 2, Span 1	& 3	File:	Ex2 Span	1 distrib	ution factors.xl	Sheet: 8	of 8
LEVER RULE									
EXTERIOR (con't) S:	= 8.0 ft		OH =	3.0 ft				
	RW =	= 1.0 ft	X = S+0	OH-RW-2ft =	8.0 ft				
For 18 ≤ X < 24:	ICT V V	63							
One Lane =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-s}{s}\right)$	<u>-</u>)					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{5} + \frac{X - 12}{S} + \frac{X}{S}$	$\left(\frac{1}{S}\right)$				= -0.250		
For $24 \le X < 30$:	167 × ×	(1							
One Lane =	$\frac{16}{32}\left(\frac{x}{s} + \frac{x-1}{s}\right)$	<u> </u>					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\left(\frac{-18}{s}\right)$				= -0.250		
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-1}{S}\right)$	$\frac{6}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{x-18}{S} + \frac{x-2}{S}$	<u>84</u>)			= -1.250		
For 30 ≤ X < 36:	16 (X X -)	5)							
One Lane =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x}{s}\right)$	<u> </u>					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X-12}{S} + \frac{X}{S}$	$\left(\frac{-18}{s}\right)$				= -0.250		
Three Lanes =	$-\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{4}{s} + \frac{X-30}{s}$			= -2.625		
For 36 ≤ X < 42: One Lane =	$\frac{16}{22}\left(\frac{X}{2} + \frac{X-1}{2}\right)$	<u>e</u>]					= 0.625		
	32(5 5 16(V V	× 10 ×	-103						
Two Lanes =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-s}{s}\right)$	$\frac{x+x-1}{s}$ + $\frac{x}{s}$	s)				= -0.250		
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{x-18}{S} + \frac{x-2}{S}$	$\frac{4}{3} + \frac{X - 30}{S}$			= -2.625		
Four Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{5} + \frac{X-12}{S} + \frac{X}{S}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{x^4}{s} + \frac{x - 30}{s} + x - 3$	$\left(\frac{X-36}{S}\right)$		= -4.375		
For 42 ≤ X ≤ 48: One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	<u>6</u>)					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{5} + \frac{X - 12}{5} + \frac{X}{5}$	$\left(\frac{-18}{s}\right)$				= -0.250		
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{5} + \frac{X - 12}{5} + \frac{X}{5}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\left(\frac{4}{s}+\frac{X-30}{s}\right)$			= -2.625		
Four Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{6}{5} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{94}{5} + \frac{x-30}{5} + \frac{1}{5}$	$\frac{X-36}{S} + \frac{X}{S}$	$\left(\frac{-42}{s}\right)$	= -6.500		
INTERIOR	_			EXTER	IOR				
One Lane Loaded	1	= 0.625		One La	ne Loade	d		0.625	
Two Lanes Loade	d	= 0.875		Two La	nes Load	ed	=	0.625	
Three Lanes Load	ded	= 0.875		Three L	anes Loa	ded	-	0.625	
Four Lanes Load	ad	- 0.875						0.005	

4.3.15.4.2 Span 2

	County:	ANT ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LHFD Spe
VISION	C-S-J:	ITBC Design Exa	ID #: mole 2. Span 2	XXXX	Ck Dsn:	Ex2 Sn	Date:	tion factors x	Rev. 10/18 -	(No Interi
INTER	IOR BE		inple at opart a		11107	Tene op			Onder	2010
Choorl	L Dietrib	ution Parl and /	Table 1622	20.11						
Shear L	C DISUID	ulion Fer Lane (Table 4.0.2.2.	.od-1/.						
	One La	he Loaded	Table 0.5 1	1.01						
		Lever Hule	(Table 3.6.)	0.750						
		mg = 0.6	25 " 1.2 =	0.750						
		Modify to	or Skew:		1.005					
			skew correc		1.095					
			mg = 0.750	1.095 =	0.821					
		Equation	(5)							
		g = 0.30	$p^{+}(\frac{1}{25})$							
		a = 0.36	+ (8 / 25) =	0.680						
		Modify fo	or Skew:							
			skew correc	ction =	1.095					
			q = 0.680 *	1.095 =	0.745					
		Range of App	licability (ROA	A) Checks	-					
		Check S	3.5'≤8.0'≤	≤ 16.0'	OK					
		Check t.	: 4.5"≤8.0"	≤ 12.0"	OK					
		Check L	20' ≤ 106.8	' ≤ 240'	OK					
		Check N	624		OK					
		Lico Equation	from Table 4	62220.18	acouso all c	initoria id	OK			
		nV	0.745	Vicielod I v	Accause and	sitteria i	s one			
		9 * int1 =	0.740							
	Two or	More Lanes Lo	aded							
		Lever Hule	(Table 3.6.1	1.1.2)			0.005			
		mg = Ma	x(0.875 - 1.0,	0.875 - 0.8	5, 0.875 - 0.	.65) =	0.875			
		Modify fo	or Skew:		1 205					
			skew correc	ction =	1.095					
		Carlos and a	mg = 0.875	* 1.095 =	0.958					
		Equation	(s) (s	2.0						
		g = 0.2	$+\left(\frac{1}{12}\right) - \left(\frac{1}{3}\right)$	5						
		q = 0.2 +	(8/12) - (8/	35)^2.0 =	0.814					
		Modify fo	or Skew:							
			skew correc	ction =	1.095					
			g = 0.814 *	1.095 =	0.891					
		Bange of App	licability (BOA	Checks	(same as f	or one l	ane loade	(be		
		Lisa Equation	from Table 4	62232-11	le equene	vitoria i	- OK			
		aV.m	0.801	0.6.6.00-1.0	ecause and	aniterita is	5 O.A.			
		9 * int2+ -	0.001	Can be						
	TXDOT	Policy states gv	Interior must be	≥ m·NL÷Nb	-					
		$m \cdot N_L \div N_b =$	0.85*3/6	=	0.425					
	ls W≥2	20ft? Yes								
	TXDOT	Policy states the	at if $W < 20$ ft,	gVintenar is th	ne Maximum	of: gV	iti and m-	NL+Nb		
>>	TXDOT	Policy states the	at if $W \ge 20$ ft,	gV _{Inletior} is th	ne Maximum	of: gVi	111. gVint2+	m·NL÷No.		

INTERI Moment	C-S-J: Descrip: OR BEA	ITBC Design Exa	ID #: mple 2, Span 2	XXXX	Ck Dsn:		Date:	12	Rev. 10/18 -	(No Interin
INTERI Moment	OR BEA	M.	the at spect a		LEIIA:	Ex2 So	an2 distribu	ution factors.x	Sheet:	3 0 8
<u>Moment</u>	LL Dietri				T. HOL				i onoral	
	LL DISIII	bution Per Lane	e (Table 4.6.2.)	2.2b-1):						
	One Lar	e Loaded								
		Lever Rule	(Table 3.6.1.	1.2)						
		ma = 0.6	25 * 1.2 =	0.750						
		Modify fo	or Skew:							
			skew correct	tion =	0.964					
			mg = 0.750 *	0.964 =	0.723					
		Equation	6 - 504 6 -	×0.37 m	1.07					
		g = 0.00	$6 + \left(\frac{S}{14}\right) \left(\frac{S}{14}\right)$	$\left(\frac{\mathbf{A}_{s}}{12Lt}\right)$	3					
		g = 0.06	+ (8/14)^0.4 *	(8/106.8)^0.3	3 * (1,271,	611/(12	106.8*8	3))^0.1 =	0.453	
		Modify fo	or Skew:							
			skew correct	tion =	0.964					
			g = 0.453 * 0	.964 =	0.437					
		Range of App	licability (ROA)	Checks						
		Check S	: 3.5' ≤ 8.0' ≤	16.0'		OK				
		Check ts	: 4.5" ≤ 8.0" ≤	\$ 12.0"		OK				
		Check L	: 20' ≤ 106.8'	≤ 240'		OK				
		Check N	b: 6≥4			OK				
		Check K	g: 10,000 ≤ 1,3	271,611≤7,0	000,000	OK				
		Use Equation	from Table 4.6	i.2.2.2b-1 be	cause all o	criteria i	s OK.			
		gM _{int1} =	0.437							
	Two or	More Lanes Lo	aded							
		Lever Rule	(Table 3.6.1.	1.2)						
		mg = Ma	ax(0.875 * 1.0,	0.875 * 0.85	0.875 * 0	.65) =	0.875			
		Modify fo	or Skew:							
			skew correct	tion =	0.964					
			mg = 0.875	0.964 =	0.844					
		Equation a 0.07	$75 + (S)^{0.6}$	$S^{0.2}$ K	g)0.1					
		g = 0.01	(9.5)	L) (121	$\left(t_{3}^{3}\right)$					
		g = 0.075 Modify fo	5 + (8/9.5)^0.6 or Skew:	* (8/106.8)^(0.2 * (1,27	1,611/(1	2*106.8*	8^3))^0.1 =	0.649	
		widding it	skew correct	tion =	0.964					
			a = 0.649 * 0	964 =	0.626					
		Bange of App	licability (BOA)	Checks	(same as f	for one l	ane loade	(be		
		Lise Equation	from Table 4.6	2.2.2h-1 he		oritoria i	e OK			
		aMara =	0.626		cause and	cinterna i	a one			
	TUDOT	Dellawatetee -	A mount he	S - N - M						
	1x0011	m.N. : N	Anterior must be	< III.INF + INP	0.405					
	10 11/20		0.05 3/6=		0.420					
	TXDOT I	Policy states the	at if W = 200 o	Muser is the	Maximun	n of aM	and m	NI =N		
-	TXDOT	Policy states the	at if W ≥ 20H o	Murana is the	Maximun	n ol: aM	aM.	m.NN.		
F	aM.	- 0 coc		minitation is the	- manningh	an givi	ARI + REARING	41 to tal and		
XDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/15/20	2017	LRFD Spee
---------	-----------	------------------------------------	-------------------------------------	------------------------------	------------------------------	-------------	------------	--	---------------------	-----------
VISION	C-S-J:	ITBC Design Ex	ID #:	XXXX	Ck Dsn:	Ex2 Soa	Date:	ition factors x	Rev. 10/18	4 of 8
XTER	BIOR BE	AM.	Inple L, Opur L		It no.	Los ope			Under.	4010
hoorl	I Dietrib	ution Par Lana	Table 16.2	2 2h 11						
snear L	C DISTID	ution Per Lane	(Table 4.6.2.)	2.30-11:						
	One La	ne Loaded	Table 0.0	1.1.01						
		Lever Rule	(1 able 3.6	.1.1.2)	TROT			and the last		
		mg = U.	625 ° 1.0 ≃	0.625	IxDOT us	es a mul	tiple pres	sence factor	of 1,0 for a	ine
		NOOITY I	or Skew:	ation	1 005	a on me	GATOHOL	beam		
			SKew Corre	E * 1 00E	0.090					
		The Louise De	my = 0.02	0 1.090 =	0.004	o ob d				
		Use Lever Hi	ne. as per AA	SHIULAFI	J 18018 4.6	2.2.30-1.				
		gv _{ext1} =	0.684							
	Two or	More Lanes L	oaded							
		Lever Rule	(Table 3.6	.1.1.2)						
		mg = M	ax(0.625 * 1.0	0, 0.625 * 0.8	85, 0.625 * 0	.65) =	0.625			
		Modify I	or Skew:							
			skew corre	ection =	1.095					
			mg = 0.62	5 * 1.095 =	0.684					
		Equation								
		d _e = dis	t. b/w CL web	to curb						
		$d_e = OH$	- Rail Width							
		d _e =	3ft - 1ft =	2.01	t.					
		a = 0.6	$+\left(\frac{d_{e}}{d_{e}}\right)$							
		6 = 0.0	(10)							
		e = 0.6	+ (2.0/10) =	0.800						
		g = e*g	Vint2+Eq							
		g = 0.80	0 * 0.891 =	0.713						
		Skew C	orrection is in	cluded in gV	(interior).					
		Range of App	blicability (RC	A) Checks	Interior	ROA is i	mplicitly	applied to th	ne exterior b	beam.
		Check I	nterior Beam	ROA:	OK					
		Check of	d _e : -1.0' ≤ 2.0	'≤5.5'	OK					
		Check I	N _b : 6≠3		OK					
		Use Equation	from Table 4	.6.2.2.3b-11	because all o	criteria is	OK.			
		$gV_{ext2+} =$	0.713							
	TYDOT	Policy states o	V- musth	vo s av						
	TADOI	aV=	0 891	- g v interior						
	TYDOT	Policy states of	Vmust h	-NN.						
	in son	m·N ₁ ÷N ₂ =	0.85*3/6	S =	0 425					
	Is OH <	SI2 2 Ves	0.00 011	-	Vitteo					
	Is W ≥2	20ft? Yes								
>>	TXDOT	Policy states th	at if OH ≤ S/2	2, gV _{Exterior} is	gVintenior.					
	TXDOT	Policy states th	at if OH > S/a	2 and W < 20	It, gV _{Exterior}	s the Ma	ximum o	f: gV _{ext1} , gV	interior, and	
		m·NL÷Nn.			w waterie			and an	and the strength	
	TXDOT	Policy states th	at if OH > S/2	2 ans W ≥ 20	ft, gV _{Exterior} i	s the Ma	ximum o	ft gV _{ext1} , gV.	exi2+, gVinteria	or i
		and m·Ni +Ni			Sec. Participa			C. Built Q. I	and the or infigure	
		wine = 0.891								

```
TXDOT
BRIDGE
                     ANY
           County:
                                       Highway
                                                     Any
XXXX
                                                                     Design:
                                                                                         Date
                                                                                                                     2017 LRFD Spel
                     XXX-XX-XXXX
                                                                                                                    10/18 - (No Inte
                                                                     Ck Dsn:
                                      ID #
                                                                                         Date
                    ITBC Design Exa
DIVISION
                                                                                                                             5 of 8
 EXTERIOR BEAM:
Moment LL Distribution Per Lane (Table 4.6.2.2.2d-1):
          One Lane Loaded
                     Lever Rule
                           mg = 0.625 * 1.0 =
                                                    0.625
                                                                  TxDOT uses a multiple presence factor of 1,0 for one
                                                                  lane loaded on the exterior beam.
                           Modify for Skew:
                                      skew correction =
                                                                    0.964
                                      mg = 0.625 * 0.964 =
                                                                    0.603
                     Use Lever Rule as per AASHTO LRFD Table 4.6.2.2.2d-1.
                     gMext1 =
                                       0.603
          Two or More Lanes Loaded
                    Lever Rule
                                       (Table 3.6.1.1.2)
                           mg = Max(0.625 * 1.0, 0.625 * 0.85, 0.625 * 0.65) =
                                                                                         0.625
                           Modify for Skew:
                                      skew correction =
                                                                    0.964
                                      mg = 0.625 * 0.964 =
                                                                     0.603
                     Equation
                          \mathbf{e} = 0.77 + \left(\frac{d_e}{9.1}\right)
                          e = 0.77 + (2.0/9.1) =
                                                                  0.990
                          g = e^*gM_{int2+Eq}
                           g = 0.99 * 0.626 =
                                                     0.620
                           Skew Correction included in gM(interior).
                     Range of Applicability (ROA) Checks
                                                                     Interior ROA is implicitly applied to the exterior beam.
                          Check Interior Beam ROA:
                                                                  OK
                           Check d_e: -1.0' \leq 2.0' \leq 5.5'
                                                                OK
                           Check N<sub>b</sub>: 6 ≠ 3
                                                                  OK
                     Use Equation from Table 4.6.2.2.2d-1 because all criteria is OK.
                     gM_{ext2+} =
                                      0.620
          TxDOT Policy states gM<sub>Exterior</sub> must be ≥ gM<sub>interior</sub>
                     gMinterior =
                                     0.626
          TxDOT Policy states gM<sub>Exterior</sub> must be ≥ m·N<sub>L</sub>÷N<sub>b</sub>
                     m \cdot N_L \div N_b = 0.85 * 3 / 6 =
                                                                    0.425
          Is OH ≤ S/2 ? Yes
          Is W ≥ 20ft ? Yes
      >> TxDOT Policy states that if OH ≤ S/2, gMExterior is gMinterior.
          TxDOT Policy states that if OH > S/2 and W < 20ft, gM<sub>Exterior</sub> is the Maximum of: gM<sub>ext1</sub>, gM<sub>interior</sub>, and
                     m·NI ÷Nn
          TxDOT Policy states that if OH > S/2 ans W \ge 20ft, gM<sub>Extensi</sub> is the Maximum of: gM<sub>ext1</sub>, gM<sub>ext2+1</sub> gM<sub>mienor</sub>
                     and m·NL+NE
           gM<sub>exterior</sub> = 0.626
```


TXDOT County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
DIVISION Descrip:	ITBC Design Exar	nple 2, Span 2	10000	File:	Ex2 Span	2_distribu	ution factors.xl	Sheet:	7 of 8
LEVER RULE	S	= 8.0 ft							
INTERIOR (con't)									
For 18 ≤ S < 22: One Lane =	$\frac{16}{32} \left(1 + \frac{S-6}{S} \right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right.$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{s-4}{s} + \frac{s-10}{s}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{.s}$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{s-12}{s}+\frac{s}{s}$	$\frac{-18}{S} + \frac{S-16}{S}$			= 0.625		
For 22 ≤ S ≤ 24; One Lane =	$\frac{16}{32} \left(1 + \frac{S-6}{S} \right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\left(\frac{-18}{s}\right)$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{s-12}{s}+\frac{s}{s}$	$\frac{-18}{S} + \frac{S-16}{S}$	$+\frac{S-22}{S}$		= -1.500		
				+ 4 II - 4 II - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			Rail Width X = S+OH-F	S = OH = = RW = RW-2ft =	8.0 ft 3.0 ft 1.0 ft 8.0 ft
For X < 6: One Lane =	$\frac{16}{32}\left(\frac{X}{5}\right)$	- s	ł				= 0.500		
For 6 ≤ X < 12; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-C}{S}\right)$)					= 0.625		
For 12 ≤ X < 18; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$)					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$+\frac{X-12}{S}$					= 0.375		

TXDOT County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
IVISION Descrip:	ITBC Design Exan	nple 2, Span 2	17777	File:	Ex2 Span	2_distrib	ution_factors.	Sheet:	8 of 8
Contra Anna									
LEVER RULE									
EXTERIOR (con't	S =	8.0 ft		OH =	3.0 ft				
	RW =	1.0 ft	X = S+C	H-RW-2ft =	8.0 ft				
For 18 ≤ X < 24:	1000 00 00 00								
One Lane =	$\frac{16}{32}\left(\frac{x}{s} + \frac{x-6}{s}\right)$)					= 0.625		
÷	16 (X , X -6	X -12 X	-18)				0.050		
Two Lanes =	32 8 5	S	S)				= -0.250		
For 24 ≤ X < 30:	16 (X X-6	1					0.005		
One Lane =	32 5 5)					= 0.625		
Two Lanes =	$\frac{16}{22}\left(\frac{X}{5}+\frac{X-6}{5}\right)$	$+\frac{X-12}{c}+\frac{X}{c}$	-18				= -0.250		
	32(5 5 16/V V-6	a V = 12 V	-18 V-7	an.					
Three Lanes =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-0}{s}\right)$	$+\frac{x-12}{S}+\frac{x}{S}$	$\frac{-13}{S} + \frac{x-z}{S}$	<u>-</u>)			= -1.250		
For 30 ≤ X < 36:	15/ X X - 6	1							
One Lane =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-0}{s}\right)$)					= 0.625		
Two Lanes -	$\frac{16}{X} + \frac{X-6}{X}$	$+\frac{X-12}{+}$	-18				- 0 250		
Two canes =	32 \ S S	S	s)	1.10			- 0.200		
Three Lanes =	$\frac{16}{32}\left(\frac{x}{s} + \frac{x-6}{s}\right)$	$+\frac{X-12}{S}+\frac{X}{S}$	$\frac{-18}{S} + \frac{X-2}{S}$	$\frac{4}{s} + \frac{X - 30}{S}$			= -2.625		
For $36 \le X < 42$:	12/2 2 2	x							
One Lane =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-0}{s}\right)$)					= 0.625		
Two Lange -	$\frac{16}{X} + \frac{X}{X} = 6$	$+ \frac{X-12}{4} + \frac{X}{4}$	-18				- 0.250		
Two Lanes =	32 8 8	\$	S)				= -0.250		
Three Lanes =	$\frac{16}{32}\left(\frac{X}{5} + \frac{X-6}{5}\right)$	$+\frac{X-12}{S}+\frac{X}{S}$	$\frac{-18}{s} + \frac{x-2}{s}$	$\frac{4}{4} + \frac{X-30}{S}$			= -2.625		
	16(X X-6	X-12 X	-18 X-2	4 X - 30	8 - 36)				
Four Lanes =	$\frac{1}{32}\left(\frac{1}{s} + \frac{1}{s}\right)$	+ - + - +	s + <u>s</u>	++	s)		= -4.375		
For $42 \le X \le 48$:	16/X X-6	1							
One Lane =	$\frac{11}{32}\left(\frac{1}{s} + \frac{1}{s}\right)$	J					= 0.625		
Two Lanes =	$\frac{16}{16}\left(\frac{X}{x}+\frac{X-6}{6}\right)$	$+ \frac{X - 12}{+} \frac{X}{+}$	-18				= -0.250		
A TOP (Heavily State)	32 8 8	S IN IN	S J						
Three Lanes =	$\frac{10}{32}\left(\frac{x}{s}+\frac{x-6}{s}\right)$	$+\frac{X-12}{S}+\frac{X}{S}$	$\frac{-18}{S} + \frac{X-2}{S}$	$+\frac{x-30}{s}$			= -2.625		
Four Lange -	$\frac{16}{X + X - 6}$	$+\frac{X-12}{X}$	-18 + x - 2	$4 + \frac{x - 30}{x - 30} + \frac{x - 30}{x - 30}$	x - 36 + x	-42)	6 500		
rour canes =	32 5 5	S	5 5	S	S	<i>s</i>)	- 0.000		_
INTERIOR	_			EXTER	IOR				
One Lane Loaded		0.625		One La	ne Loaded	ł	1.1	0.625	
Two Lanes Loade	d =	0.875		Two La	nes Loade	d		0.625	
Three Lanes Load	led =	0.875		Three L	anes Load	ded	1.5	0.625	
Four Lanes Loade	d	0.875		Fourts	nes Load	he		0.625	

	C-S-J:	xxxxxx			Design:	BRG C	k Dsn:	BRG	
Department of Transportation	Bridge I	Division	R	ev: 09/26/08			Date:	Aug-20	
ONCRETE SECTION SHE	AR CAPA	CITY BY A	ASHTO L	RFD BRID	GE DESIG	N SPECIFIC	ATIONS, FO	URTH EDIT	ON, 200
esistance Factors:		i	Units:	US	1		1.0	-	1.00
/ =	0.9								
-	0.9								
4 =	0.75								
oncrete:	-	1	Mild Steel:		1	Prestressed	Steel:		
fc =[5	ksi	fy =	60	ksi	fpu =	270 k	si	
Ec =	4070	ksi	Es =	29000	ksi	Ep =	28500 k	si	
		L		3	SECTIONS				
	Units	8	12	32	36	56	60	80	84
nput Data									
Bending moment, Mu	kip-ft	499.7	718.4	592.8	394.2	394,2	592.8	718.4	50
Shear force, Vu	kip	237.2	243.5	133.6	452.1	234.9	251.6	137.6	422.
Axial force, Nu (+ if tensile)	kip	0	0	0	0	0	0	0	
Web width, bv	in	39.00	39.00	39.00	39.00	39.00	39.00	39.00	39.0
Shear depth, dv	in	80.53	80.53	80,53	80.53	80.53	80.53	80.53	80.5
Mild steel reinf. area, As	in^2	10.92	10.92	10.92	10.92	10.92	10.92	10.92	10.9
onc area on tension side, Ac	in^2	1657.5	1657.5	1657.5	1657.5	1657.5	1657.5	1657.5	1657.
Area of stirrups, Av	in^2	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.7
Stirrup spacing, s	in	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7,
Prestressed steel area. Aps	in^2	0	0	0	0	0	0	0	1
Prestress shear, Vp	kip	0	0	0	0	0	0	0	
Average prestress, fps	ksi	0	0	0	0	0	0	0	
Torsional moment, Tu	kip-ft	706	353	353	706	706	353	353	70
Shear flow area, Ao	in^2	2971.6	2971.6	2971.6	2971.6	2971.6	2971.6	2971.6	2971.
Area of one leg of stimup, At	in^2	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.4
Perimeter of stirrup, Ph	in	324	324	324	324	324	324	324	32
alculated Values	-								_
Vc	kip	543.7	541.5	605.8	494.9	543.7	537.0	601.4	494.
Vs	kip	1669.4	1719.4	2009.4	1431.2	1669.4	1699.1	2000.9	1431.
φVn	kip	1992	2035	2354	1733	1992	2013	2342	173
E _x	1221	6.67E-04	6.83E-04	4.01E-04	1.00E-03	6.61E-04	7.02E-04	4.12E-04	1.00E-0
θ	deg	32.60	32.80	29.00	36.40	32.60	33.10	29.10	36.4
β	12.1	2.450	2.440	2.730	2.230	2.450	2.420	2.710	2.23
Req'd Shear reinf. Av/S	in^2/in	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.00
Req'd Torsion reint. At/S aximum stirrup spacing. Smax	in^2/in in	0.017	0.009	0.007	0.019	0.017	0.009	0.007	0.01
onclusion		2.00	2.10	2,10				- 110	a fait
Shear Re	inforcing	OK	OK	OK	OK	OK	OK	OK	OK
		OK	OK	OK	OK	OK	OK	OK	OK

4.3.15.5 Concrete Section Shear Capacity Spreadsheet

4.3.15.6 Bent Cap Details

4.4 INVERTED-T BENT CAP DESIGN EXAMPLE 3 (45° SKEW ANGLE)

Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 8th Ed. (2017) as prescribed by TxDOT Bridge Manual - LRFD (January 2020).

4.4.1 Design Parameters

Figure 4.53 Spans of the Bridge with 45 Degrees Skewed ITBC

Span 1

54' Type TX54 Girders (0.851 k/ft)

6 Girders Spaced @ 11.31' along the axis of bent with 3' overhangs

2" Haunch

<u>Span 2</u>

112' Type TX54 Girders (0.851 k/ft)

6 Girders Spaced @ 11.31' along the axis of bent with 3' overhangs

3.75" Haunch

<u>Span 3</u>

54' Type TX54 Girders (0.851 k/ft)

6 Girders Spaced @ 11.31' along the axis of bent with 3' overhangs

2" Haunch

All Spans

Deck is 46 ft wide

Type T551 Rail (0.382 k/ft)

8" Thick Slab (0.100 ksf)

Assume 2" Overlay @ 140 pcf (0.023 ksf)

Use Class "C" Concrete

 $f'_c = 5 \text{ ksi}$

 $w_c = 150 \text{ pcf (for weight)}$

"AASHTO LRFD" refers to the ASSHTO LRFD Bridge Design Specification, 8th Ed. (2017)..

"BDM-LRFD" refers to the TxDOT Bridge Design Manual -LRFD (January 2020).

"TxSP" refers to TxDOT guidance, recommendations, and standard practice.

"Furlong & Mirza" refers to "Strength and Serviceability of Inverted T-Beam Bent Caps Subject to Combined Flexure, Shear, and Torsion", Center for Highway Research Research Report No. 153-1F, The University of Texas at Austin, August 1974.

The basic bridge geometry can be found on the Bridge Layout located in the Appendices.

(TxSP)

(BDM-LRFD, Ch. 4, Sect. 5, Materials)

 $w_c = 145 \text{ pcf}$ (for Modulus of Elasticity calculation)

Grade 60 Reinforcing

 $f_v = 60 \text{ ksi}$

Bents

Use 36" Diameter Columns (Typical for Type TX54 Girders)

Define Variables

<u>Back Span</u>	<u>Forward Span</u>		
Span1 = 54ft	Span2 = 112ft		Span Length
GdrSpa1 = 8ft	GdrSpa2 = 8ft		Girder Spacing (Normalized values)
GdrNo1 = 6	GdrNo2 = 6		Number of Girders in Span
GdrWt1 = 0.851klf	GdrWt2 = 0.851k	klf	Weight of Girder
Haunch1 = 2in	Haunch $2 = 3.75$ in	n	Size of Haunch
<u>Bridge</u>			
Skew = 45deg			Skew of Bents
BridgeW = 46ft			Width of Bridge Deck
RdwyW = 44ft			Width of Roadway
GirderD = 54in			Depth of Type TX54 Girder
BrgSeat = 1.5in			Bearing Seat Buildup
BrgPad = 2.75in			Bearing Pad Thickness
SlabThk = $8in$			Thickness of Bridge Slab
OverlayThk = 2in			Thickness of Overlay
RailWt = 0.372 klf			Weight of Rail
$w_{a} = 0.150 \text{kcf}$			Unit Weight of Concrete for Loads
$w_{Olay} = 0.140$ kcf			Unit Weigh of Overlay
Bents			
f _c = 5ksi			Concrete Strength
$w_{cE} = 0.145 kcf$			Unit Weight of Concrete for E_c
$E_{c} = 33000 \cdot w_{cE}^{1.5} \cdot \sqrt{f}$	E E C	$_{\rm c} = 4074 \; {\rm ksi}$	Modulus of Elasticity of Concrete (AASHTO LRFD Eq. C5.4.2.4-2)
$f_y = 60$ ksi			Yield Strength of Reinforcement
$E_s = 29000$ ksi			Modulus of Elasticity of Steel
D _{column} = 36in			Diameter of Columns

(BDM-LRFD, Ch. 4, Sect. 5, Materials)

Other Variables

Dynamic Load Allowance (AASHTO LRFD Table 3.6.2.1-1)

Figure 4.54Top View of the 45 Degrees Skewed ITBC with Spans and Girders

4.4.2 Determine Cap Dimensions

Figure 4.55 Section View of 45 Degrees Skewed ITBC

 $b_{stem} = 42$ in

4.4.2.1 Stem Width

```
b_{stem} = at least D_{column} + 3in
```

Use:

4.4.2.2 Stem Height

Distance from Top of Slab to Top of Ledge:

 $D_{Slab to Ledge} = SlabThk + Haunch2 + GirderD + BrgPa$

 $D_{Slab to Ledge} = 70.00 in$

StemHaunch = 3.75 in

The top of the stem must be 2.5" below the bottom of the slab. (BDM-LRFD, Ch. 4, Sect. 5, Geometric Constraints)

(TxSP)

The stem is typically at least 3"

wider than the Diameter of the

Column (36") to allow for the extension of the column

reinforcement into the Cap.

Haunch2 is the larger of the two

Accounting for the 1/2" of bituminous fiber, the top of the stem must have at least 2" of haunch on it, but the haunch should not be less than either of the haunches of the adjacent spans. $d_{stem} = D_{Slab_to_Ledge} - SlabThk - StemHaunch - 0.5in$

$$d_{stem} = 57.75$$
 in

Use: $d_{stem} = 57$ in

4.4.2.3 Ledge Width

The stem must accommodate \frac{1}{2}" of bituminous fiber.

Round the Stem Height down to the nearest 1". (TxSP)

The Ledge Width must be adequate for Bar M to develop fully.

"L_{dh,prov}" must be greater than or equal to "L_{dh,req}" for Bar M.

"cover" is measured from the center of the transverse bars.

"L" is the length of the Bearing Pad along the girder. A typical type TX54 bearing pad is $9" \times$ 21" for 45° skewed beents, as shown in the IGEB standard.

(AASHTO LRFD Eq.

(AASHTO LRFD 5.10.8.2.4b)

5.10.8.2.4a-2)

cover = 2.5 in

L = 9 in

Determine the Required Development Length of Bar M:

Try # 7 Bar for Bar M.

$$d_{bar_M} = 0.875 \text{ in}$$

 $A_{bar M} = 0.60 \text{ in}^2$

Basic Development Length

$$L_{dh} = \frac{38.0 \cdot d_{bar_M}}{60} \cdot \left(\frac{f_y}{\sqrt{f_c}}\right)$$

Modification Factors for L_{dh}:

Is Top Cover greater than or equal to 2.5", and Side Cover greater than or equal to 2"?

 $L_{dh} = 14.87$ in

SideCover = cover
$$-\frac{d_{bar,M}}{2} = 2.06$$
 in
TopCover = cover $-\frac{d_{bar,M}}{2} = 2.06$ in"Side Cover" and "Top Cover"
are the clear cover on the side
and top of the hook respectively.
The dimension "cover" is
measured from the center of Bar
M.No. Reinforcement Confinement Factor, $\lambda_{rc} = 1.0$
Coating Factor, $\lambda_{cw} = 1.0$ "Side Cover" and "Top Cover"
are the clear cover on the side
and top of the hook respectively.
The dimension "cover" is
measured from the center of Bar
M.Coating Factor, $\lambda_{cw} = 1.0$
Concrete Density Modification Factor, $\lambda = 1.0$ (AASHTO LRFD 5.4.2.8)The Required Development Length:
 $L_{dh,req} = \max(L_{dh} \cdot \left(\frac{\lambda_{rc} \lambda_{cw} \cdot \lambda_{er}}{\lambda}\right), 8 \cdot d_{bar,M}, 6in.)$ (AASHTO LRFD 5.10.8.2.4a)Ldh_req = 14.87 in
bledge_min = L_{dh,req} + cover + 12in $-\frac{L}{2}$
 $b_{ledge_min} = 24.87$ in
 $b_{ledge} = 25$ inThe distance from the face of
the stem to the center of
bearing is 12" for TxGirders
(IGEB).Width of Bottom Flange:
 $b_f = 2 \cdot b_{ledge} + b_{stem}$ $b_f = 92$ in4.4.2.4Ledge DepthAs a general rule of thumb,
Ledge Depth is greater than or

equal to 2'-3". This is the depth at which a bent from a typical

bridge will pass the punching

shear check.

Use a Ledge Depth of 28".

 $d_{ledge} = 28 \text{ in}$

Total Depth of Cap:

 $h_{cap} = d_{stem} + d_{ledge}$ $h_{cap} = 85$ in

4.4.2.5 <u>Summary of Cross Sectional Dimensions</u>

$$b_{stem} = 42$$
 in
 $d_{stem} = 57$ in
 $b_{ledge} = 25$ in
 $d_{ledge} = 28$ in
 $h_{cap} = 85$ in

4.4.2.6 Length of Cap

First define Girder Spacing and End Distance:

Figure 4.57 Elevation View of 45 Degrees Skewed ITBC

$$\begin{split} S &= 8 \ \text{ft} & Girder \ Spacing \\ c &= 2 \ \text{ft} & ``c`` is \ the \ distance \ from \ the \ Center \\ Line \ of \ the \ Exterior \ Girder \ to \ the \\ Edge \ of \ the \ Cap \ measured \ along \\ the \ Cap. \\ \\ L_{Cap} &= S \cdot (\text{GdrNo1} - 1) + 2c & L_{Cap} &= 44 \ \text{ft} & Length \ of \ Cap \end{split}$$

TxDOT policy is as follows, "The edge distance between the exterior bearing pad and the end of the inverted T-beam shall not be less than 12in." (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria) replacing the statement in AASHTO LRFD 5.13.2.5.5 stating it shall not be less than d_f . Preferably, the stem should extend at least 3" beyond the edge of the bearing seat.

Bearing Pad Dimensions:	(IGEB standard)
L = 9 in	Length of Bearing Pad
W = 21 in	Width of Bearing Pad

4.4.3 Cross Sectional Properties of Cap

$$\begin{split} A_{g} &= d_{ledge} \cdot b_{f} + d_{stem} \cdot b_{stem} & A_{g} &= 4970 \text{ in}^{2} \\ ybar &= \frac{d_{ledge} \cdot b_{f} \left(\frac{1}{2}d_{ledge}\right) + d_{stem} \cdot b_{stem} \cdot \left(d_{ledge} + \frac{1}{2}d_{stem}\right)}{A_{g}} & ybar &= 34.5 \text{ in} \quad \begin{array}{l} Distance \ from \ bottom \ of \ the \ cap \ to \ the \ center \ of \ gravity \ of \ the \ cap \ I_{g} &= \frac{b_{f} \cdot d_{ledge}^{3}}{12} + b_{f} \cdot d_{ledge} \cdot \left(ybar - \frac{1}{2}d_{ledge}\right)^{2} + \frac{b_{stem} \cdot d_{stem}}{12} + \cdots \\ b_{stem} \cdot d_{stem} \cdot \left[ybar - \left(d_{ledge} + \frac{1}{2}d_{stem}\right)\right]^{2} & I_{g} &= 3.06 \times 10^{6} \text{ in}^{4} \end{split}$$

4.4.4 Cap Analysis

4.4.4.1 Cap Model

Assume:

4 Columns Spaced @ 12'-0"

The cap will be modeled as a continuous beam with simple supports using TxDOT's CAP18 program.

Figure 4.58 Continuous Beam Model for 45 Degrees Skewed ITBC

TxDOT does not consider frame action for typical multi-column bents (BDM-LRFD, Ch. 4, Sect. 5, Structural Analysis).

Figure 4.59 Cap 18 Model of 45 Degrees Skewed ITBC

The circled numbers in Figure 4.59 are the stations that will be used in the CAP 18 input file. One station is 0.5 ft in the direction perpendicular to the pgl, not parallel to the bent.

station = 0.5 ft

Station increment for CAP 18

Recall:

$$\begin{split} E_c &= 4074 \, \text{ksi} & I_g = 3.06 \times 10^6 \, \text{in}^4 \\ E_c I_g &= 1.25 \times 10^{10} \, \text{kip} \cdot \text{in}^2 / \, \left(12 \frac{\text{in}}{\text{ft}} \right)^2 \, E_c I_g = 8.66 \times 10^7 \text{kip} \cdot \text{ft}^2 \end{split}$$

SPAN 1

 $Rail1 = \frac{2 \cdot RailWt \cdot \frac{Span1}{2}}{\min(GdrNo1,6)}$

$$Slab1 = w_c \cdot GdrSpa1 \cdot SlabThk \cdot \frac{Span1}{2} \cdot 1.10$$

 $Girder1 = GdrWt1 \cdot \frac{Span1}{2}$

$$DLRxn1 = (Rail1 + Slab1 + Girder1)$$

$$Overlay1 = w_{Olay} \cdot GdrSpa1 \cdot OverlayThk \cdot \frac{Span1}{2}$$

SPAN 2

 $Rail2 = \frac{2 \cdot RailWt \cdot \frac{Span2}{2}}{\min(GdrNo2,6)}$

Slab2 =
$$w_c \cdot GdrSpa2 \cdot SlabThk \cdot \frac{Span2}{2} \cdot 1.10$$

Girder2 = GdrWt1
$$\cdot \frac{\text{Span2}}{2}$$
 Girder2 = 47.66 $\frac{\text{kip}}{\text{girder}}$

$$DLRxn2 = (Rail2 + Slab2 + Girder2)$$
 $DLRxn2 = 104.07 \frac{kip}{girder}$

Values used in the following equations can be found on "4.4.1 Design Parameters"

Rail Weight is distributed

thickened slab ends.

Slab1 = $23.76 \frac{\text{kip}}{\text{girder}}$ Increase slab DL by 10% to account for haunch and

evenly among stringers, up to 3 stringers per rail (TxSP).

Overlay is calculated

separetely, because it has different load factor than the rest of the dead loads.

Design for future overlay.

 $Rail1 = 3.44 \frac{kip}{girder}$

Girder1 = $22.98 \frac{\text{kip}}{\text{girder}}$

 $DLRxn1 = 50.17 \frac{kip}{girder}$

 $Overlay1 = 5.04 \frac{kip}{girder}$

Rail2 = $7.13 \frac{\text{kip}}{\text{girder}}$

Slab2 = $49.28 \frac{\text{kip}}{\text{girder}}$

$$Overlay2 = w_{Olay} \cdot GdrSpa2 \cdot OverlayThk \cdot \frac{Span2}{2} \qquad Overlay2 = 10.45 \frac{kip}{girder}$$

CAP

$$Cap = w_{c} \cdot A_{g} = 5.177 \frac{kip}{ft} \cdot \frac{0.5ft}{station} \qquad Cap = 2.589 \frac{kip}{station}$$

AASHTO LRFD 3.6.1.2.2 and 3.6.1.2.4)

LongSpan = max(Span1, Span2)
ShortSpan = min(Span1, Span2)

$$IM = 0.33$$

Long = 0 (Ablf (LongSpan+ShortSpan)

...

. .

2

Lane = 0.64klf $\cdot \left(\frac{\text{LongSpan+ShortSpan}}{2}\right)$

Lane =
$$53.12 \frac{\text{kip}}{\text{lane}}$$

$$Truck = 32kip + 32kip \cdot \left(\frac{LongSpan - 14ft}{LongSpan}\right) + 8kip \cdot \left(\frac{LongSpan - 28ft}{LongSpan}\right)$$

$$Truck = 66.00 \frac{ki}{lane}$$

LLRxn = Lane + Truck
$$\cdot$$
 (1 + IM)
LLRxn = 140.90 $\frac{\text{kip}}{\text{lane}}$

LongSpan = 112 ft

ShortSpan = 54 ft

Use HL-93 Live Load. For maximum reaction at interior bents, "Design Truck" will always govern over "Design Tandem". For the maximum reaction when the long span is more than twice as long as the short span, place the rear (32 kip) axle over the support and the middle (32 kip) and front (8 kip) axles on the long span. For the maximum reaction when the long span is less than twice as long as the short span, place the middle (32 kip) axle over the support, the front (8 kip) axle on the short span and the rear (32 kip) axle on the long span.

Combine "Design Truck" and "Design Lane" loadings (AASHTO LRFD 3.6.1.3). Dynamic load allowance, IM, does not apply to "Design Lane." (AASHTO LRFD 3.6.1.2.4)

2 fi 6 20)

Figure 4.61 Live Load Model of 45 **Degrees Skewed ITBC for CAP18**

(AASHTO LRFD Table 3.6.1.1.2-1)

The Live Load is applied to the slab by two 16 kip wheel loads increased by the dynamic load allowance with the reminder of the live load distributed over a 10 ft (AASHTO LRFD 3.6.1.2.1) design lane width. (TxSP)

The Live Load applied to the slab is distributed to the beams assuming the slab is hinged at each beam except the outside beam. (BDM-LRFD, Ch. 4, Sect. 5, Structural Analysis)

Input "Multiple Presence Factors" into CAP18 as "Load Reduction Factors".

> The cap design need only consider Strength I, Service I,

No. of Lanes	Factor "m"
1	1.20
2	1.00
3	0.85
>3	0.65

Limit States (AASHTO LRFD 3.4.1)

4.4.4.1.3 Cap 18 Data Input

Multiple Presence Factors, m

Strength I

	Live Load and Dynamic Load Allowance	LL+IM = 1.75	and Service I with DL (TxSP).
	Dead Load Components	DC = 1.25	TrDOT allows the Quarlay
	Dead Load Wearing Surface (Overlay)	DW = 1.50	Factor to be reduced to 1.25
<u>Service</u>]	<u>e I</u>		(TxSP), since overlay is typically used in design only to
	Live Load and Dynamic Load Allowance	LL+IM = 1.00	increase the safety factor, but
	Dead Load and Wearing Surface	DC & DW = 1.00	in this example we will use $DW=1.50$.

Dead Load

TxDOT considers Service level Dead Load only with a limit reinforcement stress of 22 ksi to minimize cracking. (BDM-LRFD, Chapter 4, Section 5, Design Criteria)

4.4.4.1.4 Cap 18 Output

	<u>Max +M</u>	<u>Max -M</u>
Dead Load:	$M_{posDL} = 379.0 \text{ kip} \cdot \text{ft}$	$M_{negDL} = -563.1 \text{ kip} \cdot \text{ft}$
Service Load:	$M_{posServ} = 721.8 \text{ kip} \cdot \text{ft}$	$M_{negServ} = -862.2 \text{ kip} \cdot \text{ft}$
Factored Load:	$M_{posUlt} = 1080.5 \text{ kip} \cdot \text{ft}$	$M_{negUlt} = -1238.4 \text{ kip} \cdot \text{ft}$

4.4.4.2 Girder Reactions on Ledge

 $DLSpan1 = 50.17 \frac{kip}{girder}$

 $DLSpan2 = 104.07 \frac{kip}{girder}$

Dead Load

DLSpan1 = Rail1 + Slab1 + Girder1 $Overlay1 = 5.04 \frac{kip}{girder}$

DLSpan2 = Rail2 + Slab2 + Girder2

 $0verlay2 = 10.45 \ \frac{kip}{girder}$

Live Load

Loads per Lane:

Use HL-93 Live Load. For maximum reaction at interior bents, "Design Truck" will always govern over "Design Tandem" for Spans greater than 26ft. For the maximum reaction, place the back (32 kips) axle over the support.

Figure 4.63 Live Load Model of 45 Degrees Skewed ITBC

for Girder Reactions on Ledge

LaneSpan1 = 0.64klf
$$\cdot \left(\frac{\text{Span1}}{2}\right)$$
LaneSpan1 = 17.28 $\frac{\text{kip}}{\text{lane}}$ LaneSpan2 = 0.64klf $\cdot \left(\frac{\text{Span2}}{2}\right)$ LaneSpan2 = 35.84 $\frac{\text{kip}}{\text{lane}}$

$$TruckSpan1 = 32kip + 32kip \cdot \left(\frac{Span1 - 14ft}{Span1}\right) + 8kip \cdot \left(\frac{Span1 - 28ft}{Span1}\right)$$
$$TruckSpan1 = 59.56 \frac{kip}{lane}$$
$$TruckSpan2 = 32kip + 32kip \cdot \left(\frac{Span2 - 14ft}{Span2}\right) + 8kip \cdot \left(\frac{Span2 - 28ft}{Span2}\right)$$
$$TruckSpan2 = 66.00 \frac{kip}{lane}$$

IM = 0.33 $LLRxnSpan1 = LaneSpan1 + TruckSpan1 \cdot (1 + IM)$ $LLRxnSpan1 = 96.49 \frac{kip}{lane}$ $LLRxnSpan2 = LaneSpan2 + TruckSpan2 \cdot (1 + IM)$ $LLRxnSpan2 = LaneSpan2 + TruckSpan2 \cdot (1 + IM)$

LLRxnSpan2 = $123.62 \frac{\text{kip}}{\text{girder}}$

 $gV_{Span1_Int} = 0.921$ $gV_{Span1_Ext} = 0.921$ $gV_{Span2_Int} = 0.947$ $gV_{Span2_Ext} = 0.947$

Combine "Design Truck" and "Design Lane" loadings (AASHTO LRFD 3.6.1.3).

Dynamic load allowance, IM, does not apply to "Design Lane." (AASHTO LRFD 3.6.1.2.4).

The Live Load Reactions are assumed to be the Shear Live Load Distribution Factor multiplied by the Live Load Reaction per Lane. The Shear Live Load Distribution Factor is calculated using the "LRFD Live Load Distribution Factors" Spreadsheet found in the Appendices.

The Exterior Girders must have a Live Load Distribution Factor equal to or greater than the Interior Girders. This is to accommodate a possible future bridge widening. Widening the bridge would cause the exterior girders to become interior girders

$LLSpan1Int = gV_{Span1_Int} \cdot LLRxnSpan1$	LLSpan1Int = $88.87 \frac{\text{kip}}{\text{girder}}$
$LLSpan1Ext = gV_{Span1_Ext} \cdot LLRxnSpan1$	LLSpan1Ext = $88.87 \frac{\text{kip}}{\text{girder}}$
$LLSpan2Int = gV_{Span2_Int} \cdot LLRxnSpan2$	LLSpan2Int = $117.07 \frac{\text{kip}}{\text{girder}}$
$LLSpan2Ext = gV_{Span2_Ext} \cdot LLRxnSpan2$	LLSpan2Ext = $117.07 \frac{\text{kip}}{\text{girder}}$
Snan 1	

Interior Girder

Service Load (Service I Limit State, AASHTO LRFD 3.4.1) $V_{s_Span1Int} = DLSpan1 + Overlay1 + LLSpan1Int$ $V_{s_Span1Int} = 144 \text{ kip}$ Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1) $V_{u_Span1Int} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1 + 1.75 \cdot LLSpan1Int$ $V_{u_Span1Int} = 226 \text{ kip}$ Exterior Girder Service Load (Service I Limit State, AASHTO LRFD 3.4.1) $V_{s_Span1Ext} = DLSpan1 + Overlay1 + LLSpan1Ext$ $V_{s_Span1Ext} = 144 \text{ kip}$ Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1) $V_{u_Span1Ext} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1 + 1.75 \cdot LLSpan1Ext$ $V_{u_Span1Ext} = 226 \text{ kip}$

Span 2

Interior Girder

Service Load (Service I Limit State, AASHTO LRFD 3.4.1) $V_{s_Span2Int} = DLSpan2 + Overlay2 + LLSpan2Int$ $V_{s_Span2Int} = 232 \text{ kip}$ Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1) $V_{u_Span2Int} = 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot LLSpan2Int$ $V_{u_Span2Int} = 351 \text{ kip}$ Exterior Girder Service Load (Service I Limit State, AASHTO LRFD 3.4.1) $V_{s_Span2Ext} = DLSpan2 + Overlay2 + LLSpan2Ext$ $V_{s_Span2Ext} = 232 \text{ kip}$

Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1)

 $V_{u_Span2Ext} = 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot LLSpan2Ext$

 $V_{u_{\text{Span2Ext}}} = 351 \text{ kip}$

4.4.4.3 Torsional Loads

To maximize the torsion, the live load only acts on the longer span.

Figure 4.64 Live Load Model of 45 Degrees Skewed ITBC for Torsional Loads

 $a_v = 12$ in

" a_v " is the value for the distance from the face of the stem to the center of bearing for the girders. 12" is the typical values for TxGirders on ITBC (IGEB). The lever arm is the distance from the center line of bearing to the centerline of the cap.

 $b_{stem} = 42$ in

LeverArm = $a_v + \frac{1}{2}b_{stem}$

Interior Girders

Girder Reactions

$$R_{u_{Span1}} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1$$

 $R_{u \text{ Span1}} = 70 \text{ kip}$

LeverArm = 33 in

$$\begin{split} R_{u_Span2} &= 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot gV_{Span2_Int} \\ &\cdot [LaneSpan2 + TruckSapn2 \cdot (1 + IM)] \end{split}$$

 $R_{u_Span2} = 351 \, \text{kip}$

Torsional Load

$$T_{u_Int} = |R_{u_Span1} - R_{u_Span2}| \cdot \text{LeverArm}$$
$$T_{u_Int} = 773 \text{ kip} \cdot \text{ft}$$

Exterior Girders

Girder Reactions

$$R_{u_{Span1}} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1$$

 $R_{u_{Span1}} = 70 \text{ kip}$

$$R_{u_{Span2}} = 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot gV_{Span2_{Ext}}$$
$$\cdot [LaneSpan2 + TruckSapn2 \cdot (1 + IM)]$$

 $R_{u_Span2} = 351 \, kip$

Torsional Load

$$\Gamma_{u_Ext} = |R_{u_Span1} - R_{u_Span2}| \cdot LeverArm$$

$$T_{u Ext} = 773 \text{ kip} \cdot \text{ft}$$

Torsion on Cap

Figure 4.66 Elevation View of 45 Degrees Skewed ITBC with Torsion Loads

Figure 4.67 Torsion Diagram of 45 Degrees Skewed ITBC

Analyzed assuming Bents are torsionally rigid at Effective Face of Columns.

$T_u = 773 \ \text{kip} \cdot \text{ft}$

Maximum Torsion on Cap

4.4.4.4 Load Summary

Ledge Loads

Interior Girder	
Service Load	
$V_{s_{Int}} = max(V_{s_{Span1Int}}, V_{s_{Span2Int}})$	$V_{s_Int} = 231.60 \text{ kip}$
Factored Load	
$V_{u_{Int}} = max(V_{u_{Span1Int}}, V_{u_{Span2Int}})$	$V_{u_Int} = 350.64 \text{ kip}$
Exterior Girder	
Service Load	
$V_{s_Ext} = max(V_{s_Span1Ext}, V_{s_Span2Ext})$	$V_{s_Ext} = 231.60 \text{ kip}$
Factored Load	
$V_{u_Ext} = max(V_{u_Span1Ext}, V_{u_Span2Ext})$	$V_{u_Ext} = 350.64 \text{ kip}$

Cap Loads

Positive Moment (From CAP18)

Dead Load:	$M_{posDL} = 379.0 \text{ kip} \cdot \text{ft}$
Service Load:	$M_{posServ} = 721.8 \text{ kip} \cdot \text{ft}$
Factored Load:	$M_{posUlt} = 1080.5 \text{ kip} \cdot \text{ft}$

Negative Moment (From CAP18)

Dead Load:	$M_{negDL} = -563.1 \text{ kip} \cdot \text{ft}$
Service Load:	$M_{negServ} = -862.2 \text{ kip} \cdot \text{ft}$
Factored Load:	$M_{negUlt} = -1238.4 \text{ kip} \cdot \text{ft}$

Maximum Torsion and Concurrent Shear and Moment (Strength I)

and Forbion and Concartence Shear and Fremene (Strength I)	
$T_u = 773 \text{ kip} \cdot \text{ft}$	Located two stations away from centerline of column
$V_u = 462.8 \text{ kip}$	V. and M. values are from
$M_u = 504.8 \text{ kip} \cdot \text{ft}$	CAP18

4.4.5 Locate and Describe Reinforcing

Figure 4.68 Section View of 45 Degrees Skewed ITBC

Recall:

$$b_{stem} = 42 \text{ in}$$

$$d_{stem} = 57 \text{ in}$$

$$b_{ledge} = 25 \text{ in}$$

$$d_{ledge} = 28 \text{ in}$$

$$b_{f} = 92 \text{ in}$$

$$h_{cap} = 85 \text{ in}$$

$$cover = 2.5 \text{ in}$$

4.4.5.1 Describe Reinforcing Bars

Use # 11 bars for Bar A		
$A_{bar_A} = 1.56 \text{ in}^2$	$d_{bar_A} = 1.410$ in	
Use # 11 bars for Bar B		
$A_{bar_B} = 1.56 \text{ in}^2$	$d_{bar_B} = 1.410$ in	
Use # 7 bars for Bar M		In the calculation of b_{ledge} , # 7
$A_{bar_M} = 0.60 \text{ in}^2$	$d_{bar_M} = 0.875 in$	Bar M was considered. Bar M
Use # 7 bars for Bar N		must be # 7 or smaller to allow it fullv develop.
$A_{bar_N} = 0.60 \text{ in}^2$	$d_{bar_N} = 0.875$ in	To prevent confusion, use the
Use # 6 bars for Bar S		same bar size for Bar N as Bar
$A_{bar_S} = 0.44 \text{ in}^2$	$d_{bar_S} = 0.75$ in	М.
Use # 6 bars for Bar T		
$A_{bar_T} = 0.44 \text{ in}^2$	$d_{bar_T} = 0.75$ in	

4.4.5.2 <u>Calculate Dimensions</u>

$d_{s_neg} = h_{cap} - cover - \frac{1}{2}d_{bar_S} - \frac{1}{2}d_{bar_A}$	$d_{s_neg} = 81.42$ in
$d_{s_pos} = h_{cap} - cover - \frac{1}{2}max(d_{bar_s}, d_{bar_M}) - \frac{1}{2}d_{bar_B}$	$d_{s_pos} = 81.36$ in
$a_v = 12$ in	
$a_f = a_v + cover$	$a_{\rm f}=14.50$ in
$d_e = d_{ledge} - cover$	$d_e = 25.50$ in
$d_{f} = d_{ledge} - cover - \frac{1}{2}d_{bar_{-}M} - \frac{1}{2}d_{bar_{-}B}$	$d_f=24.36 \text{ in}$
$h = d_{ledge} + BrgSeat$	h = 29.50 in

Figure 4.69 Plan View of 45 Degrees Skewed ITBC

$$\alpha = 45 \deg$$

Recall:

L = 9 in

W = 21 in

4.4.6 **Check Bearing**

The load on the bearing pad propagates along a truncated pyramid whose top has the area A₁ and whose base has the area A_2 . A_1 is the loaded area (the bearing pad area: $L \times W$). A₂ is the area of the lowest rectangle contained wholly within the support (the Inverted Tee Cap). A₂ must not overlap the truncated pyramid of another load in either direction, nor can it extend beyond the edges of the cap in any direction.

horizontal)

Angle of Bars S (Angle from the

Dimension of Bearing Pad

Figure 4.70 Bearing Check for 45 Degrees Skew Angle

Resistance Factor (
$$\phi$$
) = 0.7

 $A_1 = L \cdot W$

Interior Girders

B = 8.5 in.

$$B = \min\left[\left(b_{\text{ledge}} - a_v\right) - \frac{1}{2}L, \left(a_v + \frac{1}{2}b_{\text{stem}}\right) - \frac{1}{2}L, 2d_{\text{ledge}}, \frac{1}{2}S - \frac{1}{2}W\right]$$

$$L_2 = L + 2 \cdot B$$
 $L_2 = 26.0$
 $W_2 = W + 2 \cdot B$
 $W_2 = 38.0$
 $A_2 = L_2 \cdot W_2$
 $A_2 = 988$

"B" is the distance from perimeter of A_1 to the perimeter of A_2 as seen *in the above figure*

(AASHTO LRFD 5.5.4.2)

Area under Bearing Pad

$$L_2 = 26.00 \text{ in}$$

 $W_2 = 38.00 \text{ in}$
 $A_2 = 988 \text{ in}^2$

 $A_1 = 189 \text{ in}^2$

263

Modification factor

$$m = \min(\sqrt{\frac{A_2}{A_1}}, 2) = 2.29 \text{ and } 2$$
 $m = 2$
 AASHTO LRFD Eq. 5.6.5-3

 $\phi V_n = \phi$
 $0.85 f_c$
 A_1
 m
 $\phi V_n = 350.64 < \phi V_n$
 $\phi V_n = 1124.55 \text{ kips}$
 AASHTO LRFD Eqs. 5.6.5-1

 $V_{u_int} = 350.64 < \phi V_n$
 BearingChk = "OK!"
 $V_{u_int} from "4.4.4.4 \text{ Load Summary ".$

Exterior Girders

$$B = \min\left[\left(b_{\text{ledge}} - a_v\right) - \frac{1}{2}L, \left(a_v + \frac{1}{2}b_{\text{stem}}\right) - \frac{1}{2}L, 2d_{\text{ledge}}, \frac{1}{2}S - \frac{1}{2}W, c - \frac{1}{2}W\right]$$

	$B=8.5 \text{ in.} \begin{array}{l} "B" \text{ is the distance from} \\ perimeter of A_1 \text{ to the} \\ perimeter of A_2 \text{ as seen} \\ \text{in the above figure} \end{array}$
$L_2 = L + 2 B$	$L_2 = 26.00 \text{ in}$
$W_2 = W + 2 B$	$W_2 = 38.00$ in
$A_2 = L_2 W_2$	$A_2 = 988 \text{ in}^2$

Modification factor

$$m = min\left(\sqrt{\frac{A_2}{A_1}}, 2\right) = 2.29 \text{ and } 2 \quad m = 2$$
 AASHTO LRFD Eq. 5.6.5-3

$\phi V_n = \phi 0.85 f_c A_1 m$	$\phi V_n = 1124.55 \text{ kips}$	AASHTO LRFD Eqs. 5.6.5-1 and 5.6.5-2:
$V_{u_ext} = 350.64 \text{ kips} < \Phi V_n$	BearingChk= "OK!"	V _{u_ext} from " <i>4.4.4.4</i> Load Summary ".

4.4.7 Check Punching Shear

AASHTO LRFD **5.8.4.3.4**, the truncated pyramids assumed as failure surfaces for punching shear shall not overlap.

AASHTO LRFD 5.5.4.2.

Figure 4.71 Punching Shear Check for 45 Degrees Skew Angle

Resistance Factor (ϕ) = 0.90

Determine if the Shear Cones Intersect

Is
$$\frac{1}{2}S - \frac{1}{2}W \ge d_f$$
?Yes. Therefore, shear cones do not intersect in the
longitudinal direction of the cap. $\frac{1}{2}S - \frac{1}{2}W = 37.5$ in $TxDOT$ uses "df" instead of "de" for Punching
Shear (BDM-LRFD, Ch. 4, Sect. 5, Design
Criteria). This is because "df" has traditionally
been used for inverted tee bents and was sed in
the Inverted Tee Research (Furiong % Mirza pg.
58).

Is
$$\frac{1}{2}b_{stem} + a_v - \frac{1}{2}L \ge d_f$$
?
Yes. Therefore, shear cones do not intersect in the transverse direction of the cap.

 $\frac{1}{2}b_{stem} + a_v - \frac{1}{2}L = 28.5$ in d_f = 24.36 in

Interior Girders

$V_n = 0.125 \boxtimes \lambda \sqrt{f_c'} \ b_o \ d_f$	$V_{\rm n} = 597.27 {\rm kips}$	AASHTO LRFD 5.8.4.3.4-3
$b_o = W + 2L + 2d_f$	$b_0 = 87.72$ in	AASHTO LRFD 5.8.4.3.4-4
$\phi V_n = 537.54 \text{ kips}$		
$V_{u_Int} = 350.64 \text{ kips} < \varphi V_n$	PunchingShearChk= "OK!"	V_{u_int} from "4.4.4.4 Load Summary".

Exterior Girders			
$V_{n} = \min[(0.125 \cdot \sqrt{f_{c}} \cdot \left(\frac{1}{2}W + L + d_{f} + c\right) * d_{f}, 0.125 \cdot \sqrt{f_{c}} \cdot (W + 2L + 2d_{f}) * d_{f})]$	$V_n = 462.04 \text{ kips}$	AASHTO LRFD 5.8.4.3.4-3 and 5.8.4.3.4-5	
$\phi V_n = 415.84 \text{ kips}$			

$V_{u_ext} = 350.64 \text{ kips} < \varphi V_n$	PunchingShearChk= "OK!"	V _{u_ext} from "4.4.4.4
		Load Summary".

4.4.8 Check Shear Friction

Resistance Factor (ϕ) =0.90	AASHTO LRFD 5.5.4.2
------------------------------------	---------------------

Determine the Distribution Width

Interior Girders $b_{s_{s}Int} = min(W + 4a_v, S)$ "S" is the girder spacing.= min (69 in, 96 in) $b_{s_{s}Int} = 69 in$ $A_{cv} = b_{s_{s}Int} \cdot d_{e}$ $A_{cv} = 1759.5 in2$ Exterior Girders $b_{s_{s}Ext} = min(W + 4a_v, S, 2c)$ "S" is the girder spacing.= min [69, 96, 48]

$$A_{cv} = b_{s_ext} \cdot d_e \qquad \qquad A_{cv} = 1224 \text{ in } 2$$

Interior Girders

= 48 in

 $V_{n} = \min(0.2 \cdot f_{c} \cdot A_{cv}, 0.8 \cdot A_{cv}) \quad V_{n} = 1408 \text{ kips}$ $= \min(1759.5, 1408)$ $\phi V_{n} = 1267 \text{ kips}$ $V_{u_{int}} = 350.64 \text{ kips} < \phi V_{n}$ ShearFrictionChk="OK!" $V_{u_{int}} from "4.4.4.4 \text{ Load}$ Summary".

Exterior Girders

4.4.9 Flexural Reinforcement for Negative Bending (Bars A)

$M_{dl} = M_{negDL} $	$M_{dl} = 563.1 \text{ kip} \cdot \text{ft}$
$M_s = M_{negServ} $	$M_s = 862.2 \text{ kip} \cdot \text{ft}$
$M_u = M_{negUlt} $	$M_u = 1238.4 \text{ kip} \cdot \text{ft}$

4.4.9.1 Minimum Flexural Reinforcement

Factored Flexural Resistance, M_r , must be greater than or equal to the lesser of $1.2M_{cr}$ (Cracking Moment) or $1.33M_u$ (Ultimate Moment).

$I_g = 3.06 \times 10^6 \text{ in}^4$		Gross Moment of Inertia
$h_{cap} = 85$ in		Depth of Cap
ybar = 34.5 in		Distance to the Center of Gravity of the Cap from the bottom of the Cap
$f_r = 0.24\sqrt{f_c}$	$f_r = 0.537$ ksi	Modulus of Rupture (BDM- LRFD, Ch. 4, Sect. 5, Design Criteria)
$y_t = n_{cap} - y_{bar}$	$y_t = 50.50 \text{ in}$	Distance from Center of Gravity to extreme tension fiber
$S = \frac{I_g}{y_t}$	$S = 6.06 \times 10^4 \text{ in}^3$	Section Modulus for the extreme tension fiber
$M_{cr} = S \cdot f_r \cdot \frac{1ft}{12in}$	$M_{cr} = 2711.8 \text{ kip} \cdot \text{ft}$	Cracking Moment (AASHTO LRFD Eq. 5.6.3.3-1)
M _f = minimum of:		Design the lesser of $1.2M_{\odot}$ or
$1.2M_{cr} = 3254.2 \text{ kip} \cdot \text{ft}$		$1.33M_u$ when determining
$1.33M_u = 1647.1 \text{ kip} \cdot \text{ft}$		mininum area of steel required.

Thus, M_r must be greater than $M_f = 1647.1 \ \text{kip} \cdot \text{ft}$

4.4.9.2 Moment Capacity Design

Try, 7 ~ #11's Top Number of bars in tension BarANo = 7Diameter of main reinforcing $d_{bar A} = 1.410$ in bars $A_{\text{bar A}} = 1.56 \text{ in}^2$ Area of main reinforcing bars $A_{s} = 10.92 \text{ in}^{2}$ Area of steel in tension $A_s = BarANo \cdot A_{bar A}$ Diameter of shear reinforcing $d_{stirrup} = 0.75$ in $d_{stirrup} = d_{bar S}$ bars $d = d_{s neg}$ d = 81.42 in $b = b_f$ b = 92 in Compressive Strength of Concrete $f_c = 5.0 \text{ ksi}$ Yield Strength of Rebar $f_v = 60 \text{ ksi}$ (AASHTO LRFD 5.6.2.2) $\beta_1 = 0.85 - 0.05(f_c - 4ksi)$ Bounded by: $0.65 \le \beta_1 \le 0.85$ $\beta_1 = 0.80$ Depth of Cross Section under $c=\frac{A_sf_y}{0.85f_c\beta_1b}$ c = 2.09 in Compression under Ultimate Load This "c" is the distance from the extreme compression fiber to the

neutral axis, not the distance from the center of bearing of the last girder to the end of the cap.

$$a = c \cdot \beta_1$$
 $a = 1.67$ in

Note: "a" is less than "d_{ledge}". Therefore the equivalent stress block acts over a rectangular area. If "a" was greater than "dledge", it would act over a Tee shaped area.

$$\begin{split} M_n &= A_s f_y \left(d - \frac{a}{2} \right) \cdot \frac{1 f t}{12 i n} & M_n &= 4400 \text{ kip} \cdot f t \\ \epsilon_s &= 0.003 \cdot \frac{d - c}{c} & \epsilon_s &= 0.114 \end{split}$$

 $\epsilon_{s} > 0.005$

FlexureBehavior = "Tension Controlled"

$$\begin{split} \Phi_{M} &= 0.90 \\ M_{r} &= \Phi_{M}M_{n} \\ M_{f} &= 1647.1 \text{ kip} \cdot \text{ft} < M_{r} \\ M_{u} &= 1238.4 \text{ kip} \cdot \text{ft} < M_{r} \\ \end{split}$$

(AASHTO LRFD Eq. 5.6.3.1.2-4)

Depth of Equivalent Stress Block (AASHTO LRFD 5.6.2.2)

Nominal Flexural Resistance (AASHTO LRFD Eq. 5.6.3.2.2-1)

Strain in Reinforcing at Ultimate

(AASHTO LRFD 5.6.2.1)

(AASHTO LRFD 5.5.4.2)

Factored Flexural Resistance (AASHTO LRFD Eq. 5.6.3.2.1-1)

4.4.9.3 Check Serviceability

To find s_{max}:

Modular Ratio:

$$n = \frac{E_s}{E_c} \qquad \qquad n = 7.12$$

Tension Reinforcement Ratio:

$$\begin{split} \rho &= \frac{A_s}{b \cdot d} & \rho = 0.00146 \\ k &= \sqrt{(2\rho n) + (\rho n)^2} - (\rho n) & k = 0.134 \\ d \cdot k &= 10.91 \text{ in } < d_{\text{ledge}} = 28 \text{ in} \end{split}$$

Therefore, the compression force acts over a rectangular

$$j = 1 - \frac{k}{3}$$
 $j = 0.955$

$$\begin{split} f_{ss} &= \frac{M_s}{A_s \cdot j \cdot d} \cdot \frac{12 \text{in}}{1 \text{ft}} & f_{ss} &= 12.2 \text{ ksi} \\ f_a &= 0.6 f_y & f_a &= 36.00 \text{ ksi} \\ f_{ss} &< f_a & \text{ServiceStress} = ``OK!`` \\ d_c &= \text{cover} + \frac{1}{2} d_{\text{stirrup}} + \frac{1}{2} d_{\text{bar}_A} & d_c &= 3.58 \text{ in} \end{split}$$

Exposure Condition Factor:

$$\begin{split} \gamma_e &= 1.00 \\ \beta_s &= 1 + \frac{d_c}{0.7(h_{cap} - d_c)} & \beta_s &= 1.06 \\ s_{max} &= \min\left(\frac{700\gamma_e}{\beta_s f_{ss}} - 2d_c, 12in.\right) & s_{max} &= 12 \text{ in} \\ s_{Actual} &= \frac{b_{stem} - 2d_c}{BarANo - 1} & s_{Actual} &= 5.81 \text{ in} \end{split}$$

Check allowable M_{dl} : $f_{dl} = 22 \text{ ksi}$

$$M_{a} = A_{s} \cdot d \cdot j \cdot f_{dl} \cdot \frac{1 f t}{12 i n} \qquad M_{a} = 1556.7 \text{ kip} \cdot f t$$
$$M_{dl} = 563.1 \text{ kip} \cdot f t < M_{a} \qquad \text{DeadLoadMom} = \text{``OK!''}$$

For service loads, the stress on the cross-section is located as shown in Figure 4.72.

Figure 4.72 Stresses on the Cross Section for Service Loads of 45 Degrees Skewed ITBC

If the compression force does not act over rectangular area, j will be different.

Service Load Bending Stress in outer layer of the reinforcing.

Allowable Bending Stress (BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

For Class 1 Exposure Conditions. For areas where deicing chenicals are frequently used, design for Class 2 Exposure ($\gamma_e = 0.75$). (BDM-LRFD Ch. 4, Sect. 5, Design Criteria) (AASHTO LRFD Eq. 5.6.7-1)

A good practice is to place a bar every 12 in along each surface of the bent. (TxSP)

TxDOT limits dead load stress to 22 ksi, which is set to limit observed cracking under dead load.

Allowable Dead Load Moment

ServiceabilityCheck = "OK

4.4.10 Flexural Reinforcement for Positive Bending (Bars B)

$$\begin{split} M_{dl} &= M_{posDL} & M_{dl} &= 379.0 \text{ kip} \cdot \text{ft} \\ M_s &= M_{posServ} & M_s &= 721.8 \text{ kip} \cdot \text{ft} \\ M_u &= M_{posUlt} & M_u &= 1080.5 \text{ kip} \cdot \text{ft} \end{split}$$

4.4.10.1 Minimum Flexural Reinforcement

Factored Flexural Resistance, M_r , must be greater than or equal to the lesser of $1.2M_{cr}$ (Cracking Moment) or $1.33M_u$ (Ultimate Moment).

$I_g = 3.06 \times 10^6 \text{ in}^4$		Gross Moment of Inertia
$y_t = ybar$	y _t = 34.5 in	Distance to the Center of Gravity of the Cap from the top of the Cap
$f_r = 0.24\sqrt{f_c}$	$f_r = 0.537$ ksi	Modulus of Rupture (BDM- LRFD, Ch. 4, Sect. 5, Design
$S = \frac{I_g}{y_t}$	$S = 8.87 \times 10^4 \text{ in}^3$	<i>Criteria)</i> Section Modulus for the extreme tension fiber
$M_{cr} = S \cdot f_r \cdot \frac{1ft}{12in}$	$M_{cr} = 3969.3 \text{ kip} \cdot \text{ft}$	Cracking Moment (AASHTO LRFD Eq. 5.6.3.3-1)
$M_f = minimum of:$		Design the lesser of $1.2M_{cr}$ or
$1.2M_{cr} = 4763.2 \text{ kip} \cdot \text{ft}$		$1.33M_u$ when determining mininum area of steel required.
$1.33M_u = 1437.1 \text{ kip} \cdot \text{ft}$		

Thus, M_r must be greater than $M_f = 1437.1 \; \text{kip} \cdot \text{ft}$
4.4.10.2 Moment Capacity Design

а

Try, $11 \sim #11$'s Bottom Number of bars in tension BarBNo = 11Diameter of main reinforcing $d_{\text{bar B}} = 1.41$ in bars $A_{\text{bar B}} = 1.56 \text{ in}^2$ Area of main reinforcing bars Area of steel in tension $A_s = BarBNo \cdot A_{bar B}$ $A_s = 17.16 \text{ in}^2$ d = 81.36 in $d = d_{s pos}$ $b = b_{stem}$ b = 42 inCompressive Strength of Concrete $f_{c} = 5.0 \text{ ksi}$ Yield Strength of Rebar $f_v = 60 \text{ ksi}$ (AASHTO LRFD 5.6.2.2) $\beta_1 = 0.85 - 0.05(f_c - 4ksi)$ Bounded by: $0.65 \le \beta_1 \le 0.85$ $\beta_1 = 0.80$ Depth of Cross Section under $c=\frac{A_sf_y}{0.85f_c\beta_1b}$ c = 7.21 in

This "c" is the distance from the extreme compression fiber to the neutral axis, not the distance from the center of bearing of the last girder to the end of the cap.

$$= \mathbf{c} \cdot \boldsymbol{\beta}_1$$
 $\mathbf{a} = 5.77$ in

4 CL

Note: "a" is less than "dstem". Therefore the equivalent stress block acts over a rectangular area. If "a" was greater than "dstem", it would act over a Tee shaped area.

$$\begin{split} M_n &= A_s f_y \left(d - \frac{a}{2} \right) \cdot \frac{111}{12 \text{ in}} & M_n &= 6733.2 \text{ kip} \cdot \text{ft} & \text{Nominal Flexural (AASHTO LRFD in the second secon$$

$$M_r = \Phi_M \cdot M_n$$
 $M_r = 6059.9 \text{ kip} \cdot ft$

 $M_{f} = 1437.1 \text{ kip} \cdot \text{ft} < M_{r}$ MinReinfChk = "OK!" $M_u = 1080.5 \text{ kip} \cdot \text{ft} < M_r$ UltimateMom = "OK!" Compression under Ultimate Load (AASHTO LRFD Eq. 5.6.3.1.2-4)

Depth of Equivalent Stress Block (AASHTO LRFD 5.6.2.2)

h T · 1 [] l Resistance Eq. 5.6.3.2.2-1) ing at Ultimate

5.6.2.1)

5.5.4.2)

Factored Flexural Resistance (AASHTO LRFD Eq. 5.6.3.2.1-1) 4.4.10.3 Check Serviceability

To find s_{max}:

Modular Ratio:

$$n = \frac{E_s}{E_c} \qquad \qquad n = 7.12$$

Tension Reinforcement Ratio:

$$\rho = \frac{A_s}{b \cdot d} \qquad \rho = 0.005$$

$$\sqrt{(2\rho n) + (\rho n)^2} - (\rho n) \qquad k = 0.234$$

$$k = \sqrt{(2\rho n) + (\rho n)^2} - (\rho n)$$
 $k = 0.2$

 $d \cdot k = 19.04$ in $< d_{stem} = 57.00$ in

Therefore, the compression force acts over a rectangular

$$j = 1 - \frac{k}{3}$$
 $j = 0.922$

$$f_{ss} = \frac{M_s}{A_s \cdot j \cdot d} \cdot \frac{12in}{1ft}$$

$$f_{ss} = 6.73 \text{ ksi}$$

$$f_a = 0.6f_y$$

$$f_a = 36.00 \text{ ksi}$$

$$f_{ss} < f_a$$

$$g_c = cover + \frac{1}{2}d_{stirrup} + \frac{1}{2}d_{har B}$$

$$d_c = 3.64 \text{ in}$$

$$d_c = cover + \frac{1}{2}d_{stirrup} + \frac{1}{2}d_{bar_B} \qquad d_c =$$

Exposure Condition Factor:

$$\begin{split} \gamma_e &= 1.00 \\ \beta_s &= 1 + \frac{d_c}{_{0.7(h_{cap} - d_c)}} \qquad \qquad \beta_s = 1.06 \end{split}$$

$$s_{max} = min\left(\frac{700\gamma_e}{\beta_s f_{ss}} - 2d_c, 12in.\right)$$
 $s_{max} = 12 in$

Bars Inside Stirrup Bar S

Try: BarBInsideSNo = 5

$$s_{Actual} = \frac{b_{stem} - 2\left(cover \ \frac{1}{2}d_{bar_s} + \frac{1}{2}d_{bar_B}\right)}{BarBInsideSNo -}$$

.

 $s_{actual} < s_{max}$

For service loads, the stress on the cross-section is located as shown in Figure 4.73.

Figure 4.73 Stresses on the Cross Section for Bars B for Service Loads of 45 Degrees Skewed ITBC

> If the compression force does not act over rectangular area, j will be different.

Service Load Bending Stress in outer layer of the reinforcing.

Allowable Bending Stress (BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

For Class 1 Exposure Conditions. For areas where deicing chenicals are frequently used, design for Class 2 Exposure ($\gamma_e = 0.75$). (BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

(AASHTO LRFD Eq. 5.6.7-1)

A good practice is to place a bar every 12 in along each surface of the bent. (TxSP)

Number of Bars B that are inside Stirrup Bar S.

 $s_{Actual} = 8.71$ in

ServiceabilityCheck = "OK!"

Bars Outside Stirrup Bar S

BarBOutsideSNo = 11 - BarBInsideSNoNumber of Bars B that are inside
Stirrup Bar S.BarBOutsideSNo = 6 $s_{Actual} = \frac{2b_{ledge} + 2(cover \frac{1}{2}d_{bar_S} + \frac{1}{2}d_{bar_B} - cover \frac{1}{2}d_{bar_M} - \frac{1}{2}d_{bar_B})}{BarBOutsideSNo}$ $s_{actual} = 8.31 \text{ in } < s_{max}$ ServiceabilityCheck = "OK!"

4.4.10.4 Check Dead Load

Check allowable M_{dl} : $f_{dl} = 22 \text{ ksi}$

TxDOT limits dead load stress to 22 ksi. This is due to observed cracking under dead load.

 $M_{a} = A_{s} \cdot d \cdot j \cdot f_{dl} \cdot \frac{1 \text{ft}}{12 \text{in}} \qquad M_{a} = 2360 \text{ kip} \cdot \text{ft}$ $M_{dl} = 379.0 \text{ kip} \cdot \text{ft} < M_{a} \qquad \text{DeadLoadMom} = \text{``OK!''}$

Allowable Dead Load Moment

Flexural Steel Summary:

Use 7 ~ # 11 Bars on Top & 11 ~ # 11 Bars on Bottom

4.4.11 Ledge Reinforcement (Bars M & N)

Try Bars M and Bars N at a 6.20" spacing.

$$s_{bar_M} = 6.20 \text{ in}$$

 $s_{bar_N} = 6.20 \text{ in}$

Use trial and error to determine the spacing needed for the ledge reinforcing.

It is typical for Bars M & N to be paired together

4.4.11.1 Determine Distribution Widths

These distribution widths will be used on the following pages to determine the required ledge reinforcement per foot of cap.

Distribution Width for Shear (AASHTO LRFD 5.8.4.3.2)Note: These are the same
distribution widths used for the
Shear Friction check. $b_{s_Int} = min(W + 4a_v, S)$ "S" is the girder spacing. $b_{s_Int} = 69.00$ in"S" is the distance from the center
of bearing of the outside beam to
the end of the ledge.Distribution Width for Bending and Axial Loads (AASHTO LRFD 5.8.4.3.3)Distribution S.8.4.3.3

Interior Girders

 $b_{m_{Int}} = min(W + 5a_f, S)$ $b_{m_{Int}} = 93.50 in$

Exterior Girders

 $b_{m_{Ext}} = \min(W + 5a_f, 2c, S)$ $b_{m_{Ex}} = 48.00 \text{ in}$

4.4.11.2 Reinforcing Required for Shear Friction

d_e = 25.50 in

 $a_{vf_min} = \frac{0.05 k si \cdot d_e}{f_v}$

$\Phi = 0.90$		
$\mu = 1.4$	$c_1 = 0$ ksi	$P_c = 0 \ \mathrm{kip}$

Recall:

Minimum Reinforcing (AASHTO LRFD Eq. 5.7.4.2-1)

 $\begin{aligned} A_{vf_min} &= \frac{0.05 \text{ ksi} \cdot A_{cv}}{f_y} \\ A_{cv} &= d_e \cdot b_s \quad \text{and} \qquad a_{vf} = \frac{A_{vf}}{b_s} \end{aligned}$

(AASHTO LRFD 5.5.4)

"µ" is 1.4 for monolithically placed concrete. (AASHTO LRFD 5.7.4.4)

For clarity, the cohesion factor is labeled " c_1 ". This is to prevent confusion with "c", the distance from the last girder to the edge of the cap. c_1 is 0ksi for corbels and ledges. (AASHTO LRFD 5.7.4.4)

" P_c " is zero as there is no axial compression.

 $a_{vf_min} = 0.26 \frac{in^2}{ft}$ Minimum Reinforcing required for Shear Friction

- Interior Girders
 - $A_{cv} = 1759 \text{ in}^2$ $A_{cv} = d_e \cdot b_{s \text{ Int}}$ $V_{u \text{ Int}} = 350.6 \text{ kip}$ From "4.4.4.4 Load Summarv". $V_n = c_1 A_{cv} + \mu (A_{vf} f_v + P_c)$ (AASHTO LRFD Eq. 5.7.4.3-3) (AASHTO LRFD Eq. 5.7.4.3-1 & $\Phi V_n \ge V_n$ AASHTO LRFD Eq. 5.7.4.3-2) $\Phi \cdot \left[c_1 A_{cv} + \mu (A_{vf} f_v + P_c) \right] \ge V_{u}$ $A_{vf} = \frac{\frac{V_{u_{\perp}Int}}{\Phi} - c_1 A_{cv}}{\mu} - P_c}{f}$ $A_{vf} = 4.64 \text{ in}^2$ Required Reinforcing for Shear Friction $a_{vf_{Int}} = 0.81 \frac{in^2}{ft}$ Required Reinforcing for Shear $a_{vf_{Int}} = \frac{A_{vf}}{b_{s_{Int}}}$ Friction per foot length of cap

AASHTO LRFD 5.7.4.1

 $a_{vf_Ext} = \frac{A_{vf}}{b_{s Ext}}$

 $A_{cv} = d_e \cdot b_s E_{xt}$

Exterior Girders

 $V_{n} = c_{1}A_{cv} + \mu(A_{vf}f_{y} + P_{c})$ $\Phi V_{n} \ge V_{u}$

$$\Phi \cdot [c, A + \mu(A, f + P)] > V$$

$$\Phi \cdot [c_1 A_{cv} + \mu (A_{vf} I_y + P_c)] \ge V_u$$

$$A_{\rm vf} = \frac{\frac{\frac{\Psi_{\rm u} Ext}{\Phi} - c_1 A_{\rm cv}}{\Phi} - P_{\rm c}}{\frac{\mu}{f_{\rm y}}}$$

Recall: h = 29.50 in $d_e = 25.50$ in $a_v = 12$ in

 $A_{cv} = 1224 \text{ in}^2$

From "4.4.4.4 Load Summary". (AASHTO LRFD Eq. 5.7.4.3-3) (AASHTO LRFD Eq. 5.7.4.3-1 & AASHTO LRFD Eq. 5.7.4.3-2)

 $A_{vf} = 4.64 \text{ in}^2$ Required Reinforcing for Shear Friction

 $a_{vf_Ext} = 1.16 \frac{in^2}{ft}$ Required Reinforcing for Shear Friction per foot length of cap

4.4.11.3 Reinforcing Required for Flexure AASHTO LRFD 5.8.4.2.1

From "4.4.5.2 Calculate Dimensions"

Interior Girders

$V_{u_Int} = 350.6 \text{ kip}$	From "4.4.4.4 Load Summary".	
$N_{uc_{Int}} = 0.2 \cdot V_{u_{Int}}$	$N_{uc_Int} = 70.1 \ kip$	(AASHTO LRFD 5.8.4.2.1)
$M_{u_{Int}} = V_{u_{Int}} \cdot a_v + N_{uc_{Int}}(h - d_e)$	$M_{u_Int} = 374 \text{ kip} \cdot \text{ft}$	(AASHTO LRFD Eq. 5.8.4.2.1-1)

Use the following equations to solve for A_f:

	$\Phi M_n \ge M_{u_Int}$		(AASHTO LRFD Eq. 1.3.2.1-1)
	$M_{n} = A_{f}f_{y}\left(d_{e} - \frac{a}{2}\right)$		(AASHTO LRFD Eq.5.6.3.2.2-1)
	$c = \frac{A_f f_y}{\alpha_1 f_c \beta_1 b_{m_Int}}$		(AASHTO LRFD Eq. 5.6.3.1.2-4)
	$\alpha_1 = 0.85$		
	$\beta_1 = 0.80$		(AASHTO LRFD 5.6.2.2)
	$a = c\beta_1$		
	$0.75 \le \Phi = 0.65 + 0.15 \left(\frac{d_e}{c} - \right.$	$1 \le 0.90$	AASHTO LRFD 5.5.4.2
Solve for	or A _f :	$A_{\rm f}=3.29\text{in}^2$	Required Reinforcing for Flexure
a _{f_Int} =	$= \frac{A_f}{b_{m_Int}}$	$a_{f_Int}=0.42\frac{\mathrm{in^2}}{\mathrm{ft}}$	Required Reinforcing for Flexure per foot length of cap

Exterior Girders

$V_{u_Ext} = 350.6 \text{ kip}$			From "4.4.4.4 Load Summary".
$N_{uc_Ext} = 0.2 \cdot V_{u_Ext}$	$N_{uc_Ext} = 70.1 \ \text{kip}$		(AASHTO LRFD 5.8.4.2.1)
$M_{u_Ext} = V_{u_Ext} \cdot a_v + N_{uc_Ext}(h - d_e)$	$M_{u_{\text{Ext}}} = 374 \text{ kip} \cdot$	ft	(AASHTO LRFD Eq. 5.8.4.2.1-1)
Use the following equations to solve for	A _f :		
$\Phi M_n \ge M_{u_Ext}$		(AAS	HTO LRFD Eq. 1.3.2.1-1)
$M_{n} = A_{f}f_{y}\left(d_{e} - \frac{a}{2}\right)$		(AAS	HTO LRFD Eq.5.6.3.2.2-1)
$c = \frac{A_f f_y}{\alpha_1 f_c \beta_1 b_{m_Ext}}$		(AAS	HTO LRFD Eq. 5.6.3.1.2-4)
$\alpha_1 = 0.85$ $\beta_1 = 0.80$		(AAS	HTO LRFD 5.6.2.2)
$a = c\beta_1$ $0.75 \le \Phi = 0.65 + 0.15 \left(\frac{d_e}{c} - \frac{d_e}{c}\right)$	$1) \le 0.90$	AASE	ITO LRFD 5.5.4.2
Solve for A _f :	$A_{\rm f} = 3.32 \text{ in}^2$	Requ	ired Reinforcing for Flexure
$a_{f_{-}Ext} = \frac{A_f}{b_{m_{-}Ext}}$	$a_{f_Ext} = 0.83 \frac{\mathrm{in^2}}{\mathrm{ft}}$	Requi per fo	ired Reinforcing for Flexure pot length of cap

4.4.11.4 Reinforcing Required for Axial Tension

 $\Phi = 0.90$

Interior Girders:

$$\begin{split} N_{uc_Int} &= 0.2 V_{u_Int} & N_{uc_Int} & \\ A_n &= \frac{N_{uc_Int}}{\Phi f_y} & A_n &= 1.3 \\ a_{n_Int} &= \frac{A_n}{b_{m_Int}} & a_{n_Int} & \\ \end{split}$$

Exterior Girders:

$$\begin{split} N_{uc_Ext} &= 0.2 V_{u_Int} \\ A_n &= \frac{N_{uc_Ext}}{\Phi f_y} \\ a_{n_Ext} &= \frac{A_n}{b_{m_Ext}} \end{split}$$

(AASHTO LRFD 5.8.4.2.2)

AASHTO LRFD 5.5.4.2

 $N_{uc Int} = 70.1 \text{ kip}$

$A_n = 1.30 \text{ in}^2$	Required Reinforcing for Axial Tension
$a_{n_Int} = 0.17 \frac{in^2}{ft}$	Required Reinforcing for Axial Tension per foot length of cap

 $N_{uc_Ext} = 70.1 \ \text{kip}$

$A_n = 1.29 \text{ in}^2$	Required Reinforcing for Axial Tension
$a_{n Ext} = 0.32 \frac{in^2}{c}$	Required Reinforcing for Axial

4.4.11.5 Minimum Reinforcing

$$a_{s_min} = 0.04 \frac{f_c}{f_y} d_e$$

4.4.11.6 Check Required Reinforcing

Actual Reinforcing:

$$a_{s} = \frac{A_{bar_{M}}}{s_{bar_{M}}}$$

$$a_{s} = 1.16 \frac{in^{2}}{ft}$$

$$Primary Ledge Reinforcing Provided$$

$$a_{h} = \frac{A_{bar_{N}}}{s_{bar_{N}}}$$

$$a_{h} = 1.16 \frac{in^{2}}{ft}$$

$$Auxiliary Ledge Reinforcing Provided$$

<u>Checks:</u> $A_s \ge A_{s_min}$

$$A_{s} \ge A_{f} + A_{n}$$
$$A_{s} \ge \frac{2A_{vf}}{3} + A_{n}$$

$$A_{\rm h} \ge 0.5(A_{\rm s} - A_{\rm n})$$

Check Interior Girders:

Bar M:

Check if:

 $a_s = 1.16 \frac{in^2}{ft}$

 $a_{s} \ge a_{f_Int} + a_{n_Int}$ $a_{s} \ge \frac{2a_{vf_Int}}{3} + a_{n_Int}$

 $a_s \ge a_{s \min}$

$$a_{f_Int} + a_{n_Int} = 0.59 \frac{in^2}{ft} < a_s$$
$$\frac{2a_{vf_Int}}{3} + a_{n_Int} = 0.71 \frac{in^2}{ft} < a_s$$

 $a_{s_min} = 1.02 \frac{in^2}{ft} < a_s$

BarMCheck = "OK!"

Bar N:

$$a_{h} \ge 0.5 \cdot (a_{s} - a_{n_Int})$$
$$a_{s} = The maximum of:$$
$$a_{f_Int} + a_{n_Int}$$
$$^{2a_{vf}Int} + a_{r}$$

$$\frac{2a_{vf_Int}}{3} + a_{n_Int}$$

 $a_s = 0.71 \frac{in^2}{ft}$

Check if:

(AASHTO LRFD Eq. 5.8.4.2.2-6)

" a_s " in this equation is the steel required for Bar M, based on the requirements for Bar M in AASHTO LRFD 5.8.4.2.2. This is derived from the suggestion that Ah should not be less than $A_{f}/2$ nor less than $A_{vf}/3$ (Furlong & Mirza pg. 73 & 74)

(AASHTO LRFD 5.8.4.2.1) $a_{s_min} = 1.02 \frac{in^2}{ft} \quad Minimum \ Required \ Reinforcing$

(AASHTO LRFD 5.8.4.2.1)

(AASHTO LRFD 5.8.4.2.2)

(AASHTO LRFD 5.8.4.2.1)

(AASHTO LRFD Eq. 5.8.4.2.2-5)

(AASHTO LRFD Eq. 5.8.4.2.2-6)

$$0.5 \cdot (a_s - a_{n_Int}) = 0.28 \frac{in^2}{ft} < a_h$$

BarNCheck = "OK!"

Check Exterior Girders:

Bar M:

Check if:

$$a_{s} \ge a_{s_min}$$

$$a_{s} \ge a_{f_Ext} + a_{n_Ext}$$

$$a_{s} \ge \frac{2a_{vf_Ext}}{3} + a_{n_Ext}$$

$$a_{s} = 1.16\frac{in^{2}}{ft}$$

 $a_{s_min} = 1.02 \frac{in^2}{ft} < a_s$

 $a_{f_Ext} + a_{n_Ext} = 1.15 \frac{in^2}{ft} ~<~ a_s$

 $\frac{2a_{vf_{.}Ext}}{3} + a_{n_{.}Ext} = 1.09 \frac{in^2}{ft} < a_s$

BarMCheck = "OK!"

Bar N:

Check if:

$$a_{h} \ge 0.5 \cdot (a_{s} - a_{n_Ext})$$
 (AASHTO LRFD Eq. 5.8.4.2.2-6)
 $a_{s} =$ The maximum of:
 $a_{f_Ext} + a_{n_Ex}$
 $\frac{2a_{vf_Ext}}{3} + a_{n_Ext}$ (arrow and bound on the suggestion that Ah
 $a_{s} = 1.15 \frac{in^{2}}{ft}$ (Furlong & Mirza pg. 73 & 74)
 $0.5 \cdot (a_{s} - a_{n_Ext}) = 0.42 \frac{in^{2}}{ft} < a_{h}$
BarNCheck = "OK!"

Ledge Reinforcement Summary:

Use # 7 primary ledge reinforcing @ 6.20" maximum spacing & # 7 auxiliary ledge reinforcing @ 6.20" maximum spacing

4.4.12 Hanger Reinforcement (Bars S)

Try Double # 6 Stirrups at a 7.20" spacing.

 $s_{bar S} = 7.20$ in

Use trial and error to determine the spacing needed for the hanger reinforcing.

$A_{hr} = 2 stirrups \cdot A_{bar_S}$	$A_{\rm hr}=0.88{\rm in^2}$
$A_v = 2 legs \cdot A_{hr}$	$A_v = 1.76 \text{ in}^2$

4.4.12.1 Check Minimum Transverse Reinforcement

$b_v = b_{stem}$	$b_v = 42$ in	
$A_{v_min} = 0.0316\lambda \sqrt{f_c} \frac{b_v \cdot s_{bar_S}}{f_y}$		(AASHTO LRFD Eq. 5.7.2.5-1)
		(AASHTO LRFD 5.4.2.8)

 $\lambda = 1.0$ for normal weight concrete

 $A_{v min} = 0.36 in^2$

MinimumSteelCheck = "OK!"

4.4.12.2 Check Service Limit State

AASHTO LRFD 5.8.4.3.5 with notifications from BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

Interior Girders

 $A_v > A_{v \min}$

$$V_{all} = minimum of:$$

Abr: $(\frac{2}{f_{tr}})$

$$\frac{A_{hr} \cdot \left(\frac{z}{3}f_{y}\right)}{s_{bar} \cdot s} \cdot (W + 3a_{v}) = 235 \text{ kip}$$

TxDOT uses "2/3 f_y " from the original research (Furlong & Mirza Eq. 5.4) instead of "0.5 f_y " from AASHTO LRFD Eq. 5.8.4.3.5-1. (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria)

Bounded by: $(W + 3a_v) \le \min(S, 2c)$

$$\frac{A_{hr} \cdot \left(\frac{2}{3} f_{y}\right)}{s_{bar_S}} \cdot S = 469 \text{ kip}$$

 $V_{all} = 235 \text{ kip}$ $V_{s \text{ Int}} = 231.6 \text{ kip} < V_{all}$

(2)

(BDM-LRFD, Cn. 4, Sect. 5, Design Criteria) S, 2c) (BDM-LRFD Ch.4, Sect. 5, Design Criteria

(BDM-LKFD Ch.4, Seci. 5, Design Criteria modified to limit the distribution width to the girder spacing. This will prevent distribution widths from overlapping)

ServiceCheck = "OK!"

Exterior Girders

 $V_{all} = minimum of:$

V_{all} for the Interior Girder

$$\frac{A_{hr}\left(\frac{2}{3}f_{y}\right)}{s_{bar_{s}}} \cdot \left(\frac{W+3a_{v}}{2}+c\right) = 235 \text{ kip}$$

Bounded by: $(W + 3a_v) \le \min(S, 2c)$

$$\frac{A_{hr} \cdot \left(\frac{2}{3} f_{y}\right)}{s_{bar_{s}} \cdot \left(\frac{s}{2} + c\right)} = 352 \text{ kip}$$

$$V_{all} = 235 \text{ kip}$$

 $V_{s_Ext} = 231.6 \text{ kip} < V_{all}$

 $\Phi = 0.90$

Interior Girders:

TxDOT uses "2/3 f_y " from the original research (Furlong & Mirza Eq. 5.4) instead of "0.5 f_y " from AASHTO LRFD Eq. 5.8.4.3.5-1. (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria)

(BDM-LRFD Ch.4, Sect. 5, Design Criteria Modified to limit the distribution width to half the girder spacing and the distance to the edge of the cap. This will prevent distribution widths from overlapping or extending over the edge of the cap.)

ServiceCheck = "OK!"

(AASHTO LRFD 5.8.4.3.5)

 $\frac{A_{hr} \cdot f_y}{s_{bar_s}} \cdot S = 704 \text{ kip} \qquad (AASHTO LRFD Eq. 5.8.4.3.5-2)$ $(0.063\sqrt{f_c} \cdot b_f \cdot d_f) + \frac{A_{hr} \cdot f_y}{s_{bar_s}} (W + 2d_f) = 827 \text{ kip} \qquad (AASHTO LRFD Eq. 5.8.4.3.5-3)$ $V_n = 704 \text{ kip}$

 $\Phi V_n = 634 \text{ kip}$ $V_{u \text{ Int}} = 350.6 \text{ kip} < \Phi V_n$ UltimateCheck = "OK!"

Exterior Girders:

 $V_n = minimum of:$

 $V_n = minimum of:$

 $V_{n} \text{ for the Interior Girder}$ $\frac{A_{hr} \cdot f_{y}}{s_{bar_{-}S}} \cdot \left(\frac{S}{2} + c\right) = 528 \text{ kip}$ (AASHTO LRFD Eq. 5.8.4.3.5-2) $(0.063\sqrt{f_{c}} \cdot b_{f} \cdot d_{f}) + \frac{A_{hr} \cdot f_{y}}{s_{bar_{-}S}} \left(\frac{W+2d_{f}}{2} + c\right) = 747 \text{ kip}$ (AASHTO LRFD Eq. 5.8.4.3.5-3) (These equations are modified to limit the distribution width to the edge of the cap) $V_{n} = 475 \text{ kip}$ $V_{n} \text{ Ext} = 350.6 \text{ kip} < \Phi V_{n}$ UltimateCheck = "OK!"

4.4.12.4 Check Combined Shear and Torsion

 $d_v = 80.59$ in

The following calculations are for Station 36. All critical locations must be checked. See the Concrete Section Shear Capacity spreadsheet in the appendices for calculations at other locations. Shear and Moment were calculated using the CAP 18 program.

 $M_u = 504.8 \text{ kip} \cdot \text{ft}$ $V_u = 462.8 \text{ kip}$ $N_u = 0 \text{ kip}$ $T_u = 773 \text{ kip} \cdot \text{ft}$ Recall: $\beta_1 = 0.80$ $f_v = 60 \text{ ksi}$ $f_c = 5.0 \text{ ksi}$ $E_{s} = 29000 \text{ ksi}$ $h_{cap} = 85$ in $b_{stem} = 42$ in $b_f = 92$ in h = 29.50 in $b_{v} = 42$ in $b_v = b_{stem}$ Find d_v: (AASHTO LRFD 5.7.2.8) $A_s = 10.92 \text{ in}^2$ $A_s = A_{\text{bar }A} \cdot \text{BarANo}$ Shears are maximum near the $c = \frac{A_s f_y}{0.85 f_c \beta_1 b_f}$ column faces. In these regions the c = 2.10 in cap is in negative bending with tension in the top of the cap. $a = c \cdot \beta_1$ a = 1.68 in Therefore, the calculations are $d_s = d_{s neg}$ $d_s = 81.42$ in based on the steel in the top of the bent cap. $M_n = A_s f_v \left(d_s - \frac{a}{2} \right)$ $M_n = 4400 \text{ kip} \cdot f$ $A_{ns} = 0 \text{ in}^2$ $d_e = \frac{A_{ps}f_{ps}d_p + A_sf_yd_s}{A_{ps}f_{ps} + A_sf_y}$ $d_e = 81.42$ in (AASHTO LRFD Eq. 5.7.2.8-2) $d_v = maximum of:$ $\frac{M_n}{A_s f_v + A_{ns} f_{ns}} = 80.59 \text{ in}$ $0.9d_e = 73.28$ in 0.72h = 21.24 in

The method for calculating θ and β used in this design example are from AASHTO LRFD Appendix B5. The method from AASHTO LRFD 5.7.3.4.2 may be used instead. The method from 5.7.3.4.2 is based on the method from Appendix B5; however, it is less accurate and more conservative (often excessively conservative). The method from Appendix B5 is preferred because it is more accurate, but it requires iterating to a solution.

Determine θ and β :

$$\Phi_{V} = 0.90$$

$$v_{u} = \frac{|V_{u} - (\Phi_{V} \cdot V_{p})|}{\Phi_{V} \cdot b_{v} \cdot d_{v}}$$

$$v_{u} = 0.15 \text{ ksi}$$

$$\frac{v_{u}}{f_{c}} = 0.03$$

Using Table B5.2-1 with $\frac{v_u}{f_c} = 0.03$ and $\varepsilon_x = 0.001$ $\theta = 36.4 \text{ deg}$ and $\beta = 2.23$

$$\epsilon_{x} = \frac{\frac{|M_{u}|}{d_{v}} + 0.5N_{u} + 0.5|V_{u} - V_{p}|cot\theta - A_{ps}f_{po}}{2(E_{s}A_{s} + E_{p}A_{ps})}$$

where $|M_u| = 504.8 \text{ kip} \cdot \text{ft}$ must be $> |V_u - V_p| d_v = 3108 \text{ kip} \cdot \text{ft}$

$$\varepsilon_{\rm x} = 1.23 \times 10^{-3} > 1.00 \times 10^{-3}$$

use $\varepsilon_{\rm x} = 1.00 \times 10^{-3}$.

 $V_p = 0 \text{ kip}$

 $A_{c} = b_{stem} \cdot \frac{h_{cap}}{2}$ $s = s_{bar S}$

(AASHTO LRFD Eq. 5.5.4.2)

Shear Stress on the Concrete (AASHTO LRFD Eq. 5.7.2.8-1)

Determining θ and β is an iterative process, therefore, assume initial shear strain value ε_x of 0.001 per LRFD B5.2 and then verify that the assumption was valid.

Strain halfway between the compressive and tensile resultants (AASHTO LRFD Eq. B5.2-3) If $\varepsilon_x < 0$, then use equation B5.2-5 and re-solve for ε_x .

For values of ε_x greater than 0.001, the tensile strain in the reinforcing, ε_t is greater than 0.002. ($\varepsilon_t = 2\varepsilon_x - \varepsilon_c$, where ε_c is < 0) Grade 60 steel yields at a strain of 60 ksi / 29,000 ksi = 0.002. By limiting the tensile strain in the steel to the yield strain and using the Modulus of Elasticity of the steel prior to yield, this limits the tensile stress of the steel to the yield stress. ε_x has not changed from the assumed value, therefore no iterations are required.

"V_p" is zero as there is no prestressing.

 $A_{c} = 1785 \text{ in}^{2}$ $A_{c} = 1785 \text{ in}^{2}$

Eq. B5.2-3 is negative.

The transverse reinforcement, " A_v ", is double closed stirrups. The failure surface intersects four stirrup legs, therefore the area of the shear steel is four times the stirrup bar's area (0.44in2). See the sketch of the failure plane to the left.

Figure 4.74 Failure Surface of 45 Degrees Skewed ITBC for Combined Shear and Torsion

$$\begin{split} A_v &= 2 \text{legs} \cdot 2 \text{stirrups} \cdot A_{\text{bar}_S} & A_v &= 1.76 \text{ in}^2 \\ A_t &= 1 \text{leg} \cdot A_{\text{bar}_S} & A_t &= 0.44 \text{ in}^2 \\ A_{\text{oh}} &= (d_{\text{stem}}) \cdot (b_{\text{stem}} - 2 \text{cover}) + (d_{\text{ledge}} - 2 \text{cover}) \cdot (b_f - 2 \text{cover}) \\ & A_{\text{oh}} &= 4110 \text{ in}^2 \\ A_0 &= 0.85A_{\text{oh}} & A_0 &= 3493.5\text{in}^2 \\ p_h &= (b_{\text{stem}} - 2 \text{cover}) + 2(b_{\text{ledge}}) + (b_f - 2 \text{cover}) + 2(h_{\text{cap}} - 2 \text{cover}) \\ & p_h &= 334 \text{ in} \end{split}$$

Equivalent Shear Force

$$V_{u_{Eq}} = \sqrt{V_{u}^{2} + \left(\frac{0.9p_{h}T_{u}}{2A_{0}}\right)^{2}} \qquad V_{u_{Eq}} = 611.1 \text{ kip } (AASHTO LRFD Eq. B.5.2-1)$$

Shear Steel Required

 V_n = the lesser of:

$$V_c + V_s + V_p$$
(AASHTO LRFD Eq. 5.7.3.3-1) $0.25 \cdot f_c \cdot b_v \cdot d_v + V_p$ (AASHTO LRFD Eq. 5.7.3.3-2)

Check maximum ΦV_n for section:

 $\Phi V_{n_max} = \Phi \cdot \left(0.25 \cdot f_{c} \cdot b_{v} \cdot d_{v} + V_{p} \right)$

$$\Phi V_{n_{max}} = 3808 \text{ kip}$$

$$V_u = 462.8 \text{ kip } < \Phi V_{n_max}$$
 MaxShearCheck = "OK!"

Calculate required shear steel:

$$V_{u} < \Phi V_{n}$$

$$V_{c} = 0.0316 \cdot \beta \cdot \sqrt{f_{c}} \cdot b_{v} \cdot d_{v}$$

$$V_{u} < \Phi_{V} \cdot (V_{c} + V_{s} + V_{p})$$

$$V_{s} = \frac{A_{v} \cdot f_{y} \cdot d_{v} \cdot (\cot\theta + \cot\alpha) \cdot \sin\alpha}{s_{req}}$$

$$a_{v_{r}req} = \frac{\frac{V_{u}}{\Phi_{V}} - V_{c} - V_{p}}{f_{v} \cdot d_{v} \cdot (\cot\theta + \cot\alpha) \cdot \sin\alpha}$$

(AASHTO LRFD Eq. 1.3.2.1-1) V_c = 533 kip (AASHTO LRFD Eq. 5.7.3.3-3)

$$a_{v_req} = 0.00 \frac{in^2}{ft}$$

(AASHTO LRFD 5.5.4.2) (AASHTO LRFD Eq. 1.3.2.1-1) (AASHTO LRFD Eq. 5.7.3.6.2-1)

The transverse reinforcement is

$$a_{t_req} = 0.22 \frac{in^2}{ft}$$

Total Required Transverse Steel

 $T_n = \frac{2A_oA_tf_y cot\theta}{s_{bar_S}}$

 $a_{t_req} = \frac{T_u}{\Phi_T 2 A_o f_y cot \theta}$

Torsional Steel Required

 $\Phi_{\rm T} = 0.9$

 $T_u \leq \Phi_T T_n$

$$a_{req} = a_{v_req} + 2sides \cdot a_{t_req} \qquad a_{req} = 0.44 \frac{in^2}{ft} \qquad designed for the side of the section a_{prov} = \frac{A_v}{s_{bar_s}} \qquad a_{prov} = 2.93 \frac{in^2}{ft} \qquad are additive. (AASHTO LRFD C5.7.3.6.1) a_{prov} > a_{req} \qquad TransverseSteelCheck = "OK!"$$

Longitudinal Reinforcement

$$\begin{split} A_{ps}f_{ps} + A_{s}f_{y} &\geq \frac{|M_{u}|}{\Phi d_{v}} + \frac{0.5N_{u}}{\Phi} + \cdots \\ & cot\Theta\sqrt{\left(\left|\frac{V_{u}}{\Phi} - V_{p}\right| - 0.5V_{s}\right)^{2} + \left(\frac{0.45p_{h}T_{u}}{2A_{0}\Phi}\right)^{2}} \\ V_{s} &= a_{t_req} \cdot f_{y} \cdot d_{v} \cdot (cot\Theta + cot\alpha) \cdot sin\alpha \end{split} \qquad (AASHTO LRFD Eq. 5.7.3.3-4)$$

Bounded By:
$$V_s < \frac{V_u}{\Phi_V}$$
 $V_s = 514.2 \text{ kip}$ (AASHTO LRFD Eq. 5.7.3.5-1)

$$\frac{|\mathsf{M}_{u}|}{\Phi_{f}d_{v}} + \frac{0.5\mathsf{N}_{u}}{\Phi_{c}} + \cot\theta \sqrt{\left(\left|\frac{\mathsf{V}_{u}}{\Phi_{V}} - \mathsf{V}_{p}\right| - 0.5\mathsf{V}_{s}\right)^{2} + \left(\frac{0.45p_{h}\mathsf{T}_{u}}{2\mathsf{A}_{0}\Phi_{T}}\right)^{2}} = 544 \text{ kip}$$

Provided Force:

$$A_s f_y = 655.2 \text{ kip} > 544 \text{ kip}$$
 LongitudinalReinfChk = "OK!"

4.4.12.5 Maximum Spacing of Transverse Reinford	(AASHTO LRFD 5.7.2.6)	
Shear Stress		
$v_u = \frac{ v_u - \Phi_V v_p }{\Phi_V b_v d_v}$	$v_{\rm u}=0.15~{ m ksi}$	(AASHTO LRFD Eq. 5.7.2.8-1)
$0.125 \cdot f_c = 0.625 \text{ ksi}$		
If $v_u < 0.125 \cdot f_c$		(AASHTO LRFD Eq. 5.7.2.6-1)
$s_{max} = min(0.8d_v, 24in)$		
If $v_u \ge 0.125 \cdot f_c$		(AASHTO LRFD Eq. 5.7.2.6-2)
$s_{max} = min(0.4d_v, 12in)$		
Since $v_u < 0.125 \cdot f_c$	$s_{max} = 24.00$ in	
TxDOT limits the maximum transverse reinforcement sp	(BDM-LRFD, Ch. 4, Sect. 5,	
$s_{max} = 12.00$ in		Detailing)
$s_{\text{bar}_S} = 7.20 \text{ in } < s_{\text{max}}$	SpacingCheck= "C	<mark>K!"</mark>

Hanger Reinforcement Summary:

Use double # 6 stirrups @ 7.20" maximum spacing

4.4.13 End Reinforcements (Bars U1, U2, U3, and G)

Extra vertical, horizontal, and diagonal reinforcing at the end surfaces is provided to reduce the maximum crack widths. According to the parametric analysis, it is recommended to place #6 U1 Bars, U2 Bars, and U3 Bars at the end faces and #7 G Bars at approximately 6in. spacing at the first 30" to 35" of the end of bent cap. U1 Bars are the vertical end reinforcements, U2 Bars and U3 Bars are the horizontal end reinforcements at the stem and the ledge, respectively. G Bars are the diagonal end reinforcement.

Figure 4.75 End Face Section View of 45 Degrees Skewed ITBC

Figure 4.76 End Face Elevation View of 45 Degrees Skewed ITBC

4.4.14 Skin Reinforcement (Bars T)

Try 7 ~ # 6 bars in Stem and 3 ~ # 6 bars in Ledge on each side

 A_{sk} need not be greater than one quarter of the main reinforcing ($A_s/4$)per side face within d/2 of the main reinforcing. (AASHTO LRFD 5.6.7)

"d" is the distance from the extreme compression fiber to the centroid of the extreme tension steel element. In this example design, $d = d_{s_pos} = 81.36$ in.

$$A_{sk_max} = max \left(\frac{\frac{A_{bar_A} \cdot BarANo}{4}}{\frac{d_{s_neg}}{2}}, \frac{\frac{A_{bar_B} \cdot BarBNo}{4}}{\frac{d_{s_pos}}{2}}\right)$$
$$A_{sk_max} = 1.27 \frac{in^2}{ft}$$
$$A_{skReq} = min(A_{sk_Req}, A_{sk_max})$$
$$A_{skReq} = 0.62 \frac{in^2}{ft}$$

4.4.14.2 Required Spacing of Skin Reinforcement

(AASHTO LRFD 5.6.7)

 $s_{req} = minimum of:$

$$\frac{A_{bar_T}}{A_{skReq}} = 8.52 \text{ in}$$
$$\frac{d_{s_neg}}{6} = 13.57 \text{ in}$$
$$\frac{d_{s_pos}}{6} = 13.56 \text{ in}$$

& 12 in

 $s_{req} = 8.52$ in

4.4.14.3 Actual Spacing of Skin Reinforcement

Check T Bars spacing in Stem:

$$\begin{split} h_{top} &= d_{stem} - \left(cover + \frac{d_{bar_S}}{2} + \frac{d_{bar_A}}{2} \right) + \left(cover + \frac{d_{bar_M}}{2} + \frac{d_{bar_T}}{2} \right) \\ h_{top} &= 56.73 \text{ in} \end{split}$$

 $s_{skStem} = \frac{h_{top}}{NoTBarsStem+1}$

 $s_{skStem} = 7.09$ in

 $s_{skStem} < s_{req}$

SkinSpacing = "OK!"

Check T Bars spacing in Ledge:

$$h_{bot} = d_{ledge} - \left(cover + \frac{d_{bar_M}}{2} + \frac{d_{bar_T}}{2}\right) - \left(cover + \frac{d_{bar_S}}{2} + \frac{d_{bar_B}}{2}\right)$$
$$h_{bot} = 21.11 \text{ in}$$

 $S_{skLedge} = \frac{h_{bot} - a}{NoTBarsLedge}$

$s_{skLedge} = 7.56$ in
SkinSpacing = "OK!

Check if "a" is less than s_{req}

 $s_{skLedge} < s_{req}$

$$a = 6 \text{ in } < s_{req}$$

SkinSpacing = "OK!"

Skin Reinforcement Summary:

Use $7 \sim #6$ bars in Stem and $3 \sim #6$ bars in Ledge on each side

4.4.15 Design Details and Drawings

4.4.15.1 Bridge layout

4.4.15.2 CAP 18 Input File

User Date (Today CSJ Init if Blank) Comment SFile Proj \$Header Card 2 -----CAP18 Version 6.00 ITBC Design Example 3, Skew = 45.00 SProblem Card -----1 E 0 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay) \$TABLE 1 - CONTROL DATA ------Enter 1 to keep: Ŝ Number cards Options: \$ Env Tab2 Tab3 Tab4 on Table 4 Envelope Print Skew Angle XX X XX 16 х х х х XXXXXXXXXXX Ś 45.0 \$TABLE 2 - CONSTANTS ------Anly Opt (1=Working, ŝ TABLE 2a |-Movable Load Data--| 2=Load Factor,3=Both) Num Increment |Num Start Stop Step|Anly| Load Factors: Ś Ś |Inc Sta Sta Size| Opt| Dead Live XXX XXX XXX X X X XXXXXXXX XXXXXXXX 20 2 70 1 3 1.25 1.75 Ś Inc Length Ŝ XX XXXXXXXXX 0.5 92 Ś TABLE 2b Max # |-----Live Load Reduction Factors-----------Ŝ Overlav Load Factor Lanes | 1 lane 2 lanes 3 lanes 4 lanes 5 lanes Ś XXXXX X XXXX XXXX XXXX XXXX XXXX 1.50 3 1.2 1.0 0.85 0.65 0.65 \$ STABLE 3 - LIST OF STATIONS ------Number of input values for Lane Str Sup MCP VCP XX XX XX XX XX XX VCP - Shear Control Points Ś Ś XX XX XX XX XX 3 6 4 11 8 \$ VCP - Shear Control Points (Num Inputs) Left Lane Boundary Stations Ś \$ Right Lane Boundary Stations Ś \$ (Lane Right) 32 60 90 Ś Station of Stringers (two rows max, may be at tenths of stations, XX.X) \$ (Stringers) 6 22 38 54 70 86 Station of Supports (two rows max) Ś Ś Moment Control Point Stations (two rows max) Ś Ŝ (Mom CP) (Mom CP) 86 Ś Shear Control Point Stations (two rows max) Ś (Shear CP) \$TABLE 4 - STIFFNESS AND LOAD DATA -----Bending Sidewalk, Cap & Station 1 if Stiffness Slab Stringer Moving From To Cont'd of Cap Loads Loads Loads S Ś Overlay From To Cont'd of Cap Loads SComments Loads, DW \$XXXXXXXXXXXXXXX XXX 2 8.66E+07 (CAP EI & DL) 90 -2.589(DL Span1, Bm1) 6 6 -50.17-5.04 -50.17 (DL Span1, Bm2) 22 -5.04 22 (DL Span1, Bm3) 38 38 -50.17 -5.04 (DL Span1, Bm4) (DL Span1, Bm5) 54 54 -50.17-5.04 70 70 -50.17-5.04 (DL Span1, Bm6) (DL Span2, Bm1) 86 86 -50.17-5.04 6 6 -104.1 -10.5 (DL Span2, Bm2) 22 22 -104.1 -10.5 (DL Span2, Bm3) (DL Span2, Bm4) 38 38 -104.1-10.5 54 54 -104.1 -10.5 (DL Span2, Bm5) 70 -104.1 -10.5 70 (DL Span2, Bm6) 86 86 -104.1 -10.5 (Dist. Lane Ld) -4.92 0 20 (Conc. Lane Ld) 4 4 -21.3 (Conc. Lane Ld) 16 16 -21.3

4.4.15.3 CAP 18 Output File

AUG 11, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 1 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011) HIGHWAY PD- CONTROL- CODED PSF COUNTY NO IPE SECTION-JOB BY DATE NO 00001 ___County____ Highwy Pro# 0000-00-000 BRG AUG 11, 2020 Comment CAP18 Version 6.00 ITBC Design Example 3, Skew = 45.00 PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay ENGLISH SYSTEM UNITS TABLE 1. CONTROL DATA OPTION TO PRINT TABLE SRS (1=YES) 0 ENVELOPES TABLE NUMBER OF MAXIMUMS 2 3 4 KEEP FROM PRECEDING PROBLEM (1=YES) 0 0 0 0 CARDS INPUT THIS PROBLEM 16 OPTION TO CLEAR ENVELOPES BEFORE LANE LOADINGS (1=YES) 0 OPTION TO OMIT PRINT FOR TABLES (TABLE DESIGNATIONS IN PARENTHESES) -1(4A), -2(5) -3(4A,5), -4(4A,5,6), -5(4A,5,6,7): 0 SKEW ANGLE, DEGREES 45.000 TABLE 2. CONSTANTS NUMBER OF INCREMENTS FOR SLAB AND CAP 92 INCREMENT LENGTH, FT 0.500 NUMBER OF INCREMENTS FOR MOVABLE LOAD 20 START POSITION OF MOVABLE-LOAD STA ZERO 2 STOP POSITION OF MOVABLE-LOAD STA ZERO 70 NUMBER OF INCREMENTS BETWEEN EACH POSITION OF MOVABLE LOAD 1 ANALYSIS OPTION (1=WORKING STRESS, 2=LOAD FACTOR, 3=BOTH) 3 LOAD FACTOR FOR DEAD LOAD 1.25 LOAD FACTOR FOR OVERLAY LOAD 1.50 LOAD FACTOR FOR LIVE LOAD 1.75 MAXIMUM NUMBER OF LANES TO BE LOADED SIMULTANEOUSLY 3 LIST OF LOAD COEFFICIENTS CORRESPONDING TO NUMBER OF LANES LOADED 4 5 1 2 3 1.000 0.850 1.200

AUG 11, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 2 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay (CONTINUED)

TABLE 3. LISTS OF STATIONS

NUM OF
LANESNUM OF
STRINGERSNUM OF
SUPPORTSNUM MOM
CONTR PTSNUM SHEAR
CONTR PTSLANE LEFT23260-LANE RIGHT326090-STRINGERS6.022.038.054.070.0STRINGERS6.022.038.054.070.0SUPPORTS10345882MOM CONTR610223438SHEAR CONTR81232365660

TABLE 4. STIFFNESS AND LOAD DATA

FIXED-OR-MOVABLE FIXED-POSITION DATA MOVABLE-
STA STA CONTD CAP BENDING SIDEWALK, STRINGER, OVERLAY POSITION
FROM TO IF=1 STIFFNESS SLAB LOADS CAP LOADS LOADS SLAB LOADS
(K-FT*FT) (K) (K) (K)
2 90 0 86600000.000 0.000 -2.589 0.000 0.000
6 6 0 0.000 0.000 -50.170 -5.040 0.000
22 22 0 0.000 0.000 -50.170 -5.040 0.000
38 38 0 0.000 0.000 -50.170 -5.040 0.000
54 54 0 0.000 0.000 -50.170 -5.040 0.000
70 70 0 0.000 0.000 -50.170 -5.040 0.000
86 86 0 0.000 0.000 -50.170 -5.040 0.000
6 6 0 0.000 0.000 -104.100 -10.500 0.000
22 22 0 0.000 0.000 -104.100 -10.500 0.000
38 38 0 0.000 0.000 -104.100 -10.500 0.000
54 54 0 0.000 0.000 -104.100 -10.500 0.000
70 70 0 0.000 0.000 -104.100 -10.500 0.000
86 86 0 0.000 0.000 -104.100 -10.500 0.000
0 20 0 0.000 0.000 0.000 0.000 -4.920
4 4 0 0.000 0.000 0.000 0.000 -21.300
16 16 0 0.000 0.000 0.000 0.000 -21.300

TABLE 4A. DEAD LOAD RESULTS (WORKING STRESS)

STA	DIST X (FT)	DEFLECTIO	N (FT)	MOMENT (K-FT)	SHEAR (K)
-1	-0.71	0.000000	0.0	0.0	
0	0.00	0.000000	0.0	0.0	
1	0.71	-0.000087	0.0	0.0	
2	1.41	-0.000076	0.0	-0.9	
3	2.12	-0.000065	-1.3	-3.7	
4	2.83	-0.000055	-5.2	-7.3	
5	3.54	-0.000044	-11./	-11.0	
6	4.24	-0.000033	-20.7	-99.6	
6	4.95	-0.000023	-152.4	+ -188.1	
0	5.00	-0.000015	-200.	7 - 191.0	
10	7.07	0.000003	-425.	1 22.0	
11	7.07	0.000000	-303.	1 -55.0	
12	8/9	0.000002	-380	2 125.5	
13	919	-0.000002	-292	7 122.0	
14	9.90	-0.000005	-207	7 118.4	
15	10.61	-0.000011	-125	3 114.7	
16	11.31	-0.000017	-45	5 111.0	
17	12.02	-0.000024	31.	8 107.4	
18	12.73	-0.000030	106	.4 103.7	
19	13.44	-0.000036	178	.4 100.0	
20	14.14	-0.000041	247	.9 96.4	
21	14.85	-0.000044	314	.7 92.7	
22	15.56	-0.000046	379	.0 4.2	
23	16.26	-0.000045	320	.6 -84.4	
24	16.97	-0.000042	259	.6 -88.1	
25	17.68	-0.000038	196	.1 -91.7	
26	18.38	-0.000033	129	.9 -95.4	
27	19.09	-0.000027	61.	2 -99.1	
28	19.80	-0.000021	-10.	2 -102.7	
29	20.51	-0.000015	-84.	1 -106.4	
30	21.21	-0.000009	-160	1.6 -110.0	
31	21.92	-0.000004	-235	4 1174	
22	22.05	-0.000001	-521	.4 -117.4	
34	23.33	0.000001	-403	5 115	
35	24.04	-0.0000004	-342	7 210.1	
36	25.46	-0.000009	-195	4 206.4	
37	26.16	-0.000016	-50	8 202.8	
38	26.87	-0.000023	91.	3 114.2	
39	27.58	-0.000029	110	.7 25.6	
40	28.28	-0.000035	127	.6 22.0	
41	28.99	-0.000040	141	.8 18.3	
42	29.70	-0.000045	153	.4 14.6	
43	30.41	-0.000048	162	.5 11.0	

TABLE 4A. DEAD LOAD RESULTS (WORKING STRESS)

STA	DIST X (FT)	DEFLECTIO	N (FT) M	OMENT (K-FT)	SHEAR (K)
44	31.11	-0.000051	169.0	7.3	
45	31.82	-0.000052	172.9	3.7	
46	32.53	-0.000053	174.2	0.0	
47	33.23	-0.000052	172.9	-3.7	
48	33.94	-0.000051	169.0	-7.3	
49	34.65	-0.000048	162.5	-11.0	
50	35.36	-0.000045	153.4	-14.6	
51	36.06	-0.000040	141.8	-18.3	
52	36.77	-0.000035	127.6	-22.0	
53	37.48	-0.000029	110.7	-25.6	
54	38.18	-0.000023	91.3	-114.2	
55	38.89	-0.000016	-50.8	-202.8	
56	39.60	-0.000009	-195.4	-206.4	
57	40.31	-0.000004	-342.7	-210.1	
58	41.01	0.000000	-492.5	-44.5	
59	41.72	0.000001	-405.7	121.0	
60	42.43	-0.000001	-321.4	117.4	
61	43.13	-0.000004	-239.7	113.7	
62	43.84	-0.000009	-160.6	110.0	
63	44.55	-0.000015	-84.1	106.4	
64	45.25	-0.000021	-10.2	102.7	
65	45.96	-0.000027	61.2	99.1	
66	46.67	-0.000033	129.9	95.4	
67	47.38	-0.000038	196.1	91.7	
68	48.08	-0.000042	259.6	88.1	
69	48.79	-0.000045	320.6	84.4	
70	49.50	-0.000046	379.0	-4.2	
71	50.20	-0.000044	314.7	-92.7	
72	50.91	-0.000041	247.9	-96.4	
73	51.62	-0.000036	178.4	-100.0	
74	52.33	-0.000030	106.4	-103.7	
75	53.03	-0.000024	31.8	-107.4	
76	53.74	-0.000017	-45.5	-111.0	
77	54.45	-0.000011	-125.3	-114.7	
78	55.15	-0.000005	-207.7	-118.4	
79	55.86	-0.000001	-292.7	-122.0	
80	56.57	0.000002	-380.2	-125.7	
81	57.28	0.000002	-470.4	-129.3	
82	57.98	0.000000	-563.1	33.0	
83	58.69	-0.000005	-423.7	195.4	
84	59.40	-0.000013	-286.7	191.8	
85	60.10	-0.000023	-152.4	188.1	
86	60.81	-0.000033	-20.7	99.6	
87	61.52	-0.000044	-11.7	11.0	
88	62.23	-0.000055	-5.2	7.3	
89	62.93	-0.000065	-1.3	3.7	
90	63.64	-0.000076	0.0	0.9	

91	64.35	-0.000087	0.0	0.0
92	65.05	0.000000	0.0	0.0
93	65.76	0.000000	0.0	0.0

AUG 11, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 5 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay (CONTINUED)

TABLE 5. MULTI-LANE LOADING SUMMARY (WORKING STRESS) (*--CRITICAL NUMBER OF LANE LOADS)

MOMENT (FT-K)

AT STA	DEAD LD EFFECT	LANE ORDER	POSITIV	E LC	DAD A	T : ST	LA	NE OR	NEC DER	MAX	e lo Imun	AD A 1 L	AT ANE :	STA
6	-20.7 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 1 2 3 0*	0. 0. 0. 0.	0 0 0 0									
10	-563.1 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 1 2 3 0*	-249 -249 0. 0.	9.3 9.3 0 0	1 1	2 2							
22	379.0 0 1 2 3 0*	285.7 284.5 13.2 0.0	0 13 1 12 3 62 3 0*	0 1 2 0.	-47.2 -47.2 0.0 0		2 2	36 36						
34	-492.5 0 1 2 3 0*	26.4 26.4 0.0 0.0	3 62 3 62 2 3 2*	0 - 1 - -119 0.	192.8 164.8 9.8 0	2	0 1 32	18 12						
38	91.3 0 1 2 3 0*	118.2 118.2 4.5 0.0	2 32 2 32 3 62 3 0*	0 1 2 0.	-83.2 -83.2 0.0 0		1 1	9 9						
46	174.2 0 1 2 3 0*	98.1 98.1 0.0 0.0	2 36 2 36 2 3 2*	0 1 -39 0.0	-39.3 -39.3 0.3 0	3	1 1 63	9 9						
54	91.3 0 1 2 3 0*	118.2 118.2 4.5 0.0	2 40 2 40 1 10 3 0*	0 1 2 0.0	-83.2 -83.2 0.0 0		3 3	63 63						
58	-492.5 0 1 2 3 0*	26.4 26.4 0.0 0.0	1 9 1 9 2 3 2*	0 -1 1 -1 -119 0.0	92.8 64.8 9.8 0	2	0 9 3 (40	54 50						

AUG 11, 2020	TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT)	PAGE 6
CAP18	BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)	

MOMENT (FT-K)

AT STA	DEAD LD EFFECT	ORDER	POSITI MAXIN	VE LO MUM	DAD A LANI	T E S	LA TA	NE OR	NEGATIV DER MAX	E LOA IMUM	D AT LANE STA
70	379.0 0	285.7	0 59	0	-47.2	,	2	36			
	1	284.5	3 60	1	-47.2	2	2	36			
	2	13.2	19	2	0.0						
	3 0*	0.0	3 0*	, ,	.0						
82	-563.1										
	0	0.0	0	-24	9.3	3	70)			
	1	0.0	1	-24	9.3	3	70)			
	2	0.0	2	0	.0						
	3	0.0	3	0	.0						
	0*		0*								
86	-20.7										
	0	0.0	0	0	.0						
	1	0.0	1	0	.0						
	2	0.0	2	0	.0						
	3	0.0	3	0	.0						
	0*		0*	r							

AUG 11, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 7
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

SHEAR (K)

AT STA	DEAD LD EFFECT	LANE POSITIVE LOAD AT LANE NEGATIVE LOAD ORDER MAXIMUM LANE STA ORDER MAXIMUM) AT LANE STA
8	-191.8 0 1 2 3 0*	0.0 0 -88.1 1 2 0.0 1 -88.1 1 2 0.0 2 0.0 0.0 3 0.0 0*	
12	125.7 0 1 2 3 0*	44.8 1 6 0 -5.6 2 36 44.8 1 6 1 -5.6 2 36 1.6 3 62 2 0.0 0.0 3 0.0 0*	
32	-117.4 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
36	206.4 0 1 2 3 2*	87.6 0 28 0 -7.8 3 63 84.1 2 32 1 -7.8 3 63 30.7 1 12 2 0.0 0.0 3 0.0 0*	
56	-206.4 0 1 2 3 0*	7.8 1 9 0 -87.6 0 44 7.8 1 9 1 -84.1 2 40 0.0 2 -30.7 3 60 0.0 3 0.0 2*	
60	117.4 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
80	-125.7 0 1 2 3 0*	5.6 2 36 0 -44.8 3 66 5.6 2 36 1 -44.8 3 66 0.0 2 -1.6 1 9 0.0 3 0.0 0*	
84	191.8 0 1 2 3 0*	88.1 3 70 0 0.0 88.1 3 70 1 0.0 0.0 2 0.0 0.0 3 0.0 0.*	

AUG 11, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 8
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

REACTION (K)

AT	DEAD L	D LANE	POSITIVE	LOAD A	T LANE NE	EGATIVE LOA	D AT
STA	EFFECT	ORDE	R MAXIMU	M LANE	STA ORDE	r maximum	LANE STA
10	222.1						
10	352.1	177 0	1 2 0	-5.6	2 36		
	1	127.9	1 2 1	-5.6	2 36		
	2	1.6	3 62 2	0.0	2 50		
	3	0.0	3	0.0			
	0*		0*				
34	338.4				2 62		
	0	117.1	0 22 0	-9.3	3 63		
	2	95.3	2 32 I 1 12 2	-9.3	3 63		
	2	0.0	3	0.0			
	2*	0.0	0*	0.0			
58	338.4						
	0	117.1	0 50 0	-9.3	19		
	1	95.3	2 40 1	-9.3	19		
	2	83.6	3 60 2	0.0			
	3 2*	0.0	3	0.0			
	2		0				
82	332.1						
	0	127.9	3 70 0	-5.6	2 36		
	1	127.9	3 70 1	-5.6	2 36		
	2	1.6	192	0.0			
	3	0.0	3	0.0			
	0*		0*				

AUG 11, 2020	TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT)	PAGE 9
CAP18	BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)	

TABLE 6. ENVELOPES OF MAXIMUM VALUES (WORKING STRESS)

STA	DIST X	MAX +	мом м	AX - MOM	MAX + SHEAF	MAX - SHEAR
	(FT)	(FT-K)	(FT-K)	(K) (К)	
-1	-0.71	0.0	0.0	0.0	0.0	
0	0.00	0.0	0.0	0.0	0.0	
1	0.71	0.0	0.0	0.0	0.0	
2	1.41	0.0	0.0	-0.9	-0.9	
3	2.12	-1.3	-1.3	-3.7	-3.7	
4	2.83	-5.2	-5.2	-7.3	-7.3	
5	3.54	-11.7	-11.7	-11.0	-11.0	
6	4.24	-20.7	-20.7	-99.6	-152.4	
7	4.95	-152.4	-227.2	-188.1	-293.9	
8	5.66	-286.7	-436.3	-191.8	-297.5	
9	6.36	-423.7	-648.0	-195.4	-301.2	
10	7.07	-563.1	-862.2	-16.1	-62.1	
11	7.78	-451.8	-735.8	183.1	122.7	
12	8.49	-336.6	-611.9	179.5	119.0	
13	9.19	-223.0	-490.6	175.8	115.3	
14	9.90	-112.0	-371.9	172.1	111.7	
15	10.61	-3.1	-255.7	168.5	108.0	
16	11.31	104.9	-142.2	164.8	104.4	
1/	12.02	211.8	-31.3	161.2	100.7	
18	12.73	317.6	68.6	157.5	97.0	
19	13.44	421.4	136.0	153.8	93.4	
20	14.14	523.6	200.7	150.2	89.7	
21	14.85	623.6	262.8	146.5	86.1	
22	16.26	/21.8	322.4	20.1	-9.0	
23	16.20	511.7	200.0	-02.5	-150.0	
24	17.69	402.7	192.4	-00.2	-155.0	
25	19 29	201.9	50.8	-09.9	-157.5	
20	10.00	179.5	-24.5	-95.5	-164.6	
27	19.09	73.6	-102.4	-100.8	-168 3	
29	20.51	-32.8	-182.4	-104.5	-171 9	
30	21 21	-134.2	-266.5	-108.2	-175.6	
31	21.21	-212.0	-388.3	-111.8	-179.3	
32	22.63	-292.3	-515.3	-115.5	-182.9	
33	23.33	-375.3	-645.0	-119.2	-186.6	
34	24.04	-460.8	-777.2	88.3	27.0	
35	24.75	-317.6	-546.1	324.9	200.8	
36	25.46	-176.9	-342.7	321.2	197.1	
37	26.16	20.9	-171.0	317.6	193.5	
38	26.87	233.2	-8.5	172.6	104.9	
39	27.58	248.4	17.5	34.9	16.3	
40	28.28	261.4	40.9	31.3	12.7	
41	28.99	272.3	61.7	27.6	9.0	
42	29.70	281.0	74.8	23.9	5.3	

TABLE 6. ENVELOPES OF MAXIMUM VALUES (WORKING STRESS)

STA	DIST X	MAX + N	лом мл	AX - MOM	MAX + SHEAR	MAX - SHEAR
	(FT)	(FT-K) (FT-K)	(K) (I	<)	
43	30.41	287.1	83.8	20.3	1.7	
44	31.11	290.6	90.3	16.6	-2.0	
45	31.82	291.5	94.2	13.0	-5.6	
46	32.53	291.9	95.5	9.3	-9.3	
47	33.23	291.5	94.2	5.6	-13.0	
48	33.94	290.6	90.3	2.0	-16.6	
49	34.65	287.1	83.8	-1.7	-20.3	
50	35.36	281.0	74.8	-5.3	-23.9	
51	36.06	272.3	61.7	-9.0	-27.6	
52	36.77	261.4	40.9	-12.7	-31.3	
53	37.48	248.4	17.5	-16.3	-34.9	
54	38.18	233.2	-8.5	-104.9	-172.6	
55	38.89	20.9	-171.0	-193.5	-317.6	
56	39.60	-176.9	-342.7	-197.1	-321.2	
57	40.31	-317.6	-546.1	-200.8	-324.9	
58	41.01	-460.8	-777.2	-27.0	-88.3	
59	41.72	-375.3	-645.0	186.6	119.2	
60	42.43	-292.3	-515.3	182.9	115.5	
61	43.13	-212.0	-388.3	179.3	111.8	
62	43.84	-134.2	-266.5	175.6	108.2	
63	44.55	-32.8	-182.8	171.9	104.5	
64	45.25	73.6	-102.4	168.3	100.8	
65	45.96	179.5	-24.5	164.6	97.2	
66	46.67	291.8	50.8	160.9	93.5	
67	47.38	402.7	123.0	157.3	89.9	
68	48.08	511.2	192.4	153.6	86.2	
69	48.79	617.7	258.8	150.0	82.5	
70	49.50	721.8	322.4	9.0	-20.1	
71	50.20	623.6	262.8	-86.1	-146.5	
72	50.91	523.6	200.7	-89.7	-150.2	
73	51.62	421.4	136.0	-93.4	-153.8	
74	52.33	317.6	68.6	-97.0	-157.5	
75	53.03	211.8	-31.3	-100.7	-161.2	
76	53.74	104.9	-142.2	-104.4	-164.8	
77	54.45	-3.1	-255.7	-108.0	-168.5	
78	55.15	-112.0	-371.9	-111.7	-172.1	
79	55.86	-223.0	-490.6	-115.3	-175.8	
80	56.57	-336.6	-611.9	-119.0	-179.5	
81	57.28	-451.8	-735.8	-122.7	-183.1	
82	57.98	-563.1	-862.2	62.1	16.1	
83	58.69	-423.7	-648.0	301.2	195.4	
84	59.40	-286.7	-436.3	297.5	191.8	
85	60.10	-152.4	-227.2	293.9	188.1	
86	60.81	-20.7	-20.7	152.4	99.6	

AUG 11, 2020	TEXAS DEPARTMENT OF TH	RANSPORTATION (TxDOT)	PAGE 11
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

TABLE 6. ENVELOPES OF MAXIMUM VALUES (WORKING STRESS)

стл		MAY					
SIP						HEAR	WAA - SHEAR
	(FI)	(FI-K)	(FI-K)	(K)	(K)		
87	61.52	-11.7	-11.7	11.0	11.0		
88	62.23	-5.2	-5.2	7.3	7.3		
89	62.93	-1.3	-1.3	3.7	3.7		
90	63.64	0.0	0.0	0.9	0.9		
91	64.35	0.0	0.0	0.0	0.0		
92	65.05	0.0	0.0	0.0	0.0		
93	65.76	0.0	0.0	0.0	0.0		

TABLE 7. MAXIMUM SUPPORT REACTIONS (WORKING STRESS)

				-
STA	DIST X	MAX +	REACT	MAX - REACT
(FT)	(K)	(K)	
10	7.07	485.6	325.	.4
34	24.04	517.3	327	.3
58	41.01	517.3	327	.3
82	57.98	485.6	325	.4

TABLE 5. MULTI-LANE LOADING SUMMARY (LOAD FACTOR) (*--CRITICAL NUMBER OF LANE LOADS)

MOMENT (FT-K)

AT STA	DEAD LD EFFECT	LANE ORDER	POSITIV MAXIM	e load Um la	D AT	LA TA	NE ORI	NEG. DER	ATIVE MAXI	E LOA MUM	D AT LAN	E STA
6	-25.9 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 1 2 3 0*	0.0 0.0 0.0 0.0								
10	-714.9 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 1 2 3 0*	-436.2 -436.2 0.0 0.0	1 1	2 2						
22	480.6 0 1 2 3 0*	499.9 497.9 23.1 0.0	0 13 1 12 3 62 3 0*	0 -82 1 -82 2 0. 0.0	2.6 2.6 0	2 2	36 36					
34	-623.9 0 1 2 3 0*	46.2 46.2 0.0 0.0	3 62 3 62 2 3 2*	0 -33 1 -28 -209.6 0.0	7.3 8.5 2	0 1 32	18 12					
38	116.9 0 1 2 3 0*	206.9 206.9 8.0 0.0	2 32 2 32 3 62 2 3 0*	0 -14 1 -14 2 0.0 0.0	5.6 5.6)	1 1	9 9					
46	220.4 0 1 2 3 0*	171.6 171.6 0.0 0.0	2 36 2 36 2 3 2*	0 -68 1 -68 -68.9 0.0	8.9 8.9 3	1 1 63	9 9					
54	116.9 0 1 2 3 0*	206.9 206.9 8.0 0.0	2 40 2 40 1 10 3 0*	0 -14 1 -14 2 0.0 0.0	45.6 45.6 0	3	63 63					
58	-623.9 0 1 2 3 0*	46.2 46.2 0.0 0.0	19 19 2 3 2*	0 -337 1 -288 -209.6 0.0	7.3 3.5 5 2	0 3 4(54 60)					

AUG 11, 2020	TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT)	PAGE 14
CAP18	BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)	

MOMENT (FT-K)

AT	DEAD LD	LANE	POSIT	IVE	LOAD	AT	LA	NE	NEG	GATI	VE L	OA	D AT	
STA	EFFECT	ORDER	MAXI	MUN	1 LAI	NE S	ΤA	OR	DER	MA	XIMU	JM	LAN	STA
70	480.6													
	0	499.9	0 59	0	-82	.6	2	36						
	1	497.9	3 60	1	-82	.6	2	36						
	2	23.1	1 9	2	0.0									
	3	0.0	3	3	0.0									
	0*		0	*										
82	-714.9													
	0	0.0	() -	436.2	3	70)						
	1	0.0			436.2	3	70)						
	2	0.0		2	0.0									
	3	0.0	-	3	0.0									
	0*		0	*										
86	-25.9	0.0			~ ~									
	0	0.0	()	0.0									
	1	0.0			0.0									
	2	0.0	-	<u></u>	0.0									
	3	0.0		*	0.0									
	0.		0											

AUG 11, 2020	TEXAS DEPARTMENT OF TRANSPORT	TATION (TXDOT)	PAGE 15
CAP18	BENT CAP ANALYSIS Ver. 6.2	(Jul, 2011)	

SHEAR (K)

AT STA	DEAD LD EFFECT	LANE POSITIVE LOAD AT LANE NEGATIVE LOAD AT ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE STA	
8	-243.6 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
12	159.2 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
32	-148.5 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
36	261.9 0 1 2 3 2*	153.2 0 28 0 -13.6 3 63 147.2 2 32 1 -13.6 3 63 53.7 1 12 2 0.0 0.0 3 0.0 0*	
56	-261.9 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
60	148.5 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
80	-159.2 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
84	243.6 0 1 2 3 0*	154.2 3 70 0 0.0 154.2 3 70 1 0.0 0.0 2 0.0 0.0 3 0.0 0*	
AUG 11, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 16
--------------	-----------------------	-----------------------	---------
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay (CONTINUED)

REACTION (K)

AT STA	DEAD LE EFFECT	D LANE	POSITIV R MAXIM	/E LOA IUM L/	D AT L ANE STA	ANE OR	NEGATIVE LC	OAD AT 1 LANE STA
10	421.1							
	0 1 2 3 0*	223.8 223.8 2.7 0.0	1 2 1 2 3 62 3 0*	0 -9 1 -9 2 0. 0.0	0.7 2 0.7 2 0	36 36		
34	428.7 0 1 2 3 2*	205.0 166.8 146.3 0.0	0 22 2 32 1 12 3 0*	0 -1 1 -1 2 (0.0	6.3 3 6.3 3 0.0	63 63		
58	428.7 0 1 2 3 2*	205.0 166.8 146.3 0.0	0 50 2 40 3 60 3 0*	0 -1 1 -1 2 (0.0	6.3 1 6.3 1 0.0	9 9		
82	421.1 0 1 2 3 0*	223.8 223.8 2.7 0.0	3 70 3 70 1 9 2 3 0*	0 -9 1 -9 2 0.0 0.0	9.7 2 9.7 2)	36 36		

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay (CONTINUED)

TABLE 6. ENVELOPES OF MAXIMUM VALUES (LOAD FACTOR)

STA	DIST	K MAX +	MOM N	MAX - MO	MC	MAX + SH	EAR	MAX - S	HEAR
	(FT)	(FT-K)	(FT-K)	(K)	(K))			
				,					
-1	-0.71	0.0	0.0	0.0	0.	0			
0	0.00	0.0	0.0	0.0	0.0	5			
1	0.71	0.0	0.0	0.0	0.0	5			
2	1.41	0.0	0.0	-1.1	-1.	1			
3	2.12	-1.6	-1.6	-4.6	-4	6			
4	2.83	-6.5	-6.5	-9.2	-9	2			
5	3.54	-14.6	-14.6	-13.7	_	13.7			
6	4.24	-25.9	-25.9	-126.4	- 1	218.9			
7	4.95	-193.3	-324.2	-239	.0	-424.1			
8	5.66	-363.9	-625.6	-243	.6	-428.7			
9	6.36	-537.8	-930.4	-248	.2	-433.2			
10	7.07	-714.9	-1238.4	1 -12	2.6	-93.0			
11	7 78	-565.0	-1061 9	25	79	152.1			
12	8.49	-406.9	-888.7	253	3.3	147.5			
13	9.19	-250.4	-718.7	248	3.8	142.9			
14	9.90	-97.2	-552.0	244	2	138.4			
15	10.61	53.6	-388.5	239	.6	133.8			
16	11.31	204.3	-228.2	23	5.0	129.2			
17	12.02	354.3	-71.1	230	.5	124.6			
18	12.73	503.5	67.8	225	.9	120.1			
19	13.44	650.7	151.1	22	1.3	115.5			
20	14.14	796.2	231.2	210	5.7	110.9			
21	14.85	939.3	308.0	212	2.1	106.3			
22	15.56	1080.5	381.5	5 33	3.3	-17.6			
23	16.26	926.2	298.1	-10-	4.0	-222.0			
24	16.97	769.1	211.2	-10	8.6	-226.6			
25	17.68	609.7	120.3	-11	3.2	-231.2			
26	18.38	447.6	25.7	-117	.7	-235.7			
27	19.09	284.0	-72.9	-122	2.3	-240.3			
28	19.80	133.3	-174.7	-12	6.9	-244.9			
29	20.51	-17.3	-279.8	-131	.5	-249.5			
30	21.21	-157.7	-389.2	-13	6.1	-254.0			
31	21.92	-255.5	-564.2	-14	0.6	-258.6			
32	22.63	-356.6	-746.9	-14	5.2	-263.2			
33	23.33	-460.9	-932.8	-14	9.8	-267.8			
34	24.04	-568.4	-1122.	0 13	33.4	26.0			
35	24.75	-389.9	-789.9	46	7.4	250.2			
36	25.46	-214.5	-504.8	3 46	2.8	245.6			
37	26.16	62.0	-273.8	458	.2	241.1			
38	26.87	365.1	-57.8	247	.0	128.4			
39	27.58	382.0	-22.0	48.	3	15.8			
40	28.28	396.5	10.5	43.	7	11.2			
41	28.99	408.3	39.8	39.	2	6.6			
42	29.70	417.7	56.8	34.	6	2.0			
43	30.41	423.9	68.2	30.	0	-2.5			
44	31.11	426.8	76.3	25.	4	-7.1			

45	31.82	426.5	81.1	20.9	-11.7	
46	32.53	426.4	82.7	16.3	-16.3	
47	33.23	426.5	81.1	11.7	-20.9	
48	33.94	426.8	76.3	7.1	-25.4	
AUG 11	, 2020	TEXAS DEP	ARTMENT	OF TRAN	ISPORTATION (TxDC	T) PAGE 18

AUG 11, 2020 TEXAS DEPARTMENT OF TRANSFORMENTON CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay (CONTINUED)

TABLE 6. ENVELOPES OF MAXIMUM VALUES (LOAD FACTOR)

STA	DIST X	MAX + N	IOM MA	X - MOM	MAX + SHEAR	MAX - SHEAR
(FT) (FT-K) (F	-Т-К) (K) (I	<)	
49	34.65	423.9	68.2	2.5	-30.0	
50	35.36	417.7	56.8	-2.0	-34.6	
51	36.06	408.3	39.8	-6.6	-39.2	
52	36.77	396.5	10.5	-11.2	-43.7	
53	37.48	382.0	-22.0	-15.8	-48.3	
54	38.18	365.1	-57.8	-128.4	-247.0	
55	38.89	62.0	-273.8	-241.1	-458.2	
56	39.60	-214.5	-504.8	-245.6	-462.8	
57	40.31	-389.9	-789.9	-250.2	-467.4	
58	41.01	-568.4	-1122.0	-26.0	-133.4	
59	41.72	-460.9	-932.8	267.8	149.8	
60	42.43	-356.6	-746.9	263.2	145.2	
61	43.13	-255.5	-564.2	258.6	140.6	
62	43.84	-157.7	-389.2	254.0	136.1	
63	44.55	-17.3	-279.8	249.5	131.5	
64	45.25	133.3	-174.7	244.9	126.9	
65	45.96	284.0	-72.9	240.3	122.3	
66	46.67	447.6	25.7	235.7	117.7	
67	47.38	609.7	120.3	231.2	113.2	
68	48.08	769.1	211.2	226.6	108.6	
69	48.79	926.2	298.1	222.0	104.0	
70	49.50	1080.5	381.5	17.6	-33.3	
71	50.20	939.3	308.0	-106.3	-212.1	
72	50.91	796.2	231.2	-110.9	-216.7	
73	51.62	650.7	151.1	-115.5	-221.3	
74	52.33	503.5	57.8	-120.1	-225.9	
75	53.03	354.3	-/1.1	-124.6	-230.5	
70	55.74	204.5	-220.2 200 E	122.2	-235.0	
79	55 15	97.2	-500.5	-133.0	-239.0	
70	55.86	-97.2	-552.0	-130.4	-244.2	
80	56.57	-406.9	-888.7	-147 5	-253.3	
81	57.28	-565.0	-1061.9	-152.1	-257.9	
82	57.98	-714.9	-1238.4	93.0	12.6	
83	58.69	-537.8	-930.4	433.2	248.2	
84	59.40	-363.9	-625.6	428.7	243.6	
85	60.10	-193.3	-324.2	424.1	239.0	
86	60.81	-25.9	-25.9	218.9	126.4	
87	61.52	-14.6	-14.6	13.7	13.7	
88	62.23	-6.5	-6.5	9.2	9.2	
89	62.93	-1.6	-1.6	4.6	4.6	

90	63.64	0.0	0.0	1.1	1.1	
91	64.35	0.0	0.0	0.0	0.0	
92	65.05	0.0	0.0	0.0	0.0	

AUG 11, 2020TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT)PAGE 19CAP18BENT CAP ANALYSISVer. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay (CONTINUED)

TABLE 6. ENVELOPES OF MAXIMUM VALUES (LOAD FACTOR)

STA (DIST X FT) (MAX + FT-K)	MOM (FT-K)	MAX - MO (K)	 М МАХ + SHI (К)	EAR MAX - SHEAR
93	65.76	0.0	0.0	0.0	0.0	

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay (CONTINUED)

TABLE 7. MAXIMUM SUPPORT REACTIONS (LOAD FACTOR)

			-
STA DIST X	MAX +	REACT	MAX - REACT
(FT)	(K)	(K)	
			-
10 7.07	689.7	409	.4
34 24.04	741.8	409	9.2
58 41.01	741.8	409	9.2
82 57.98	689.7	409	9.4

4.4.15.4 Live Load Distribution Factor Spreadsheet

4.4.15.4.1 Spans 1 & 3

NDGE	County:	ANY XXX.XX XXXX	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spe
ISION	Descrip:	ITBC Design Exa	mple 3, Span 1 &	3	File:	Ex3 Sp	an1_distrib	ution_factors.x	Sheet:	2 of 8
ITER	IOR BE	AM:								
near L	L Distrib	ution Per Lane (Table 4.6.2.2.	3a-1):						
	One La	ne Loaded								
		Lever Rule	(Table 3.6.1	.1.2)						
		mg = 0.6	25 * 1.2 =	0.750						
		Modify fo	or Skew:							
			skew correc	tion =	1.131					
			mg = 0.750	* 1.131 =	0.848					
		Equation	1 X							
		g = 0.36	$5 \pm \left(\frac{S}{25}\right)$							
		g = 0.36	+ (8 / 25) =	0.680						
		Modify fo	or Skew:							
			skew correc	tion =	1.131					
			g = 0.680 *	1.131 =	0.769					
		Range of App	licability (ROA) Checks						
		Check S	: 3.5'≤8.0'≤	16.0'	OK					
		Check ts	: 4.5" ≤ 8.0" :	≤ 12.0"	OK					
		Check L	20' ≤ 50.3' ≤	s 240'	OK					
		Check N	b; 6≥4		OK					
		Use Equation	from Table 4.6	5.2.2.3a-1 b	ecause all	criteria is	SOK.			
		gV _{int1} =	0.769							
	Two or	More Lanes Lo	aded							
		Lever Rule	(Table 3.6.1	.1.2)						
		mg = Ma	x(0.875 * 1.0.	0.875 * 0.8	5. 0.875 * 0	.65) =	0.875			
		Modify fo	or Skew:							
			skew correc	tion =	1.131					
			mg = 0.875	* 1.131 =	0.990					
		Equation		> 2.0						
		a = 0.2	$+\left(\frac{s}{s}\right) - \left(\frac{s}{s}\right)$	_)						
		5	(12) (35	5)						
		g = 0.2 +	- (8 / 12) - (8 / 3	35)^2.0 =	0,814					
		Modify to	or Skew:							
			skew correc	tion =	1,131					
		Section and	g = 0.814 "	1.131 =	0.921					
		Range of App	licability (ROA) Checks	(same as I	or one la	ane load	ed)		
		Use Equation	from Table 4.6	5.2.2.3a-1 b	ecause all	criteria is	SOK.			
		$gV_{int2+} =$	0.921							
	TXDOT	Policy states gV	Interior must be	$\ge m \cdot N_L \div N_b$						
		$m \cdot N_L \div N_b =$	0.85 * 3 / 6 =	-	0.425					
	ls W ≥ 2	20ft ? Yes								
	TXDOT	Policy states the	at if W < 20ft, g	Vinteniar is th	ie Maximun	n of: gV _m	iti and m	NL+Nb.		
	TXDOT	Policy states that	at if W ≥ 20ft, c	Vinletior is th	e Maximun	of: gV	11. gVint2.	m-NL÷Nn.		
>>	-						the second			

DDIDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/15/20	2017	LRFD Spe
IVISION	C-S-J: Descrip:	ITBC Design Exa	mple 3. Span 1 8	3	Elle:	Ex3 So	Date:	ution factors.	Sheet	3 of 8
INTER	IOR BE	AM:			To not				d. Grieval	
Momen	t LL Distr	ribution Per Lan	e (Table 4.6.2	2.2b-1):						
internet.	One La	ne Loaded	o Tradio Hole	and the						
		Lever Bule	(Table 3.6.)	1.1.2)						
		ma = 0.0	525 * 1.2 =	0.750						
		Modify f	or Skew:							
			skew corre	ction =	0.858					
			mg = 0.750	* 0.858 =	0.644					
		Equation			× 0.1					
		g = 0.0	$6 + \left(\frac{S}{14}\right)^{0.4}$	$\left(\frac{S}{L}\right)^{0.3} \left(\frac{K_s}{12Lt}\right)^{0.3}$	<u>.</u>					
		g = 0.06	+ (8/14)^0.4	(8/50.3)^0.3	1 (1,271,6	11/(12*5	50.3*8^3))^0.1 =	0.591	
		Modify f	or Skew:							
			skew corre	ction =	0.858					
			g = 0.591 *	0.858 =	0.507					
		Range of App	licability (ROA	A) Checks						
		Check S	3: 3.5' ≤ 8.0' :	≤ 16.0'		OK				
		Check t	: 4.5" ≤ 8.0"	≲ 12.0″		OK				
		Check L	.: 20' ≤ 50.3'	≤ 240'		OK				
		Check N	l _b : 6≥4			OK				
		Check H	Kg: 10,000 ≤ 1	,271,611≤7	,000,000	OK				
		Use Equation	from Table 4	6.2.2.2b-1 b	ecause all	criteria is	s OK.			
		gM _{int1} =	0.507							
	Two or	More Lanes Lo	baded							
		Lever Rule	(Table 3.6.)	1.1.2)						
		mg = Ma	ax(0.875 * 1.0	0.875 * 0.85	5, 0.875 * 0	.65) =	0.875			
		Modify f	or Skew:							
			skew corre	ction =	0.858					
			mg = 0.875	* 0.858 =	0.751					
		Equation	(c)00	(c)02()	20.1					
		g = 0.0	$75 + \left(\frac{3}{9.5}\right)$	$\left(\frac{3}{L}\right) \left(\frac{1}{12}\right)$	$\left(\frac{Lt_{g}^{3}}{Lt_{g}^{3}}\right)$					
		g = 0.07 Modify f	5 + (8/9.5)^0.0 or Skew:	3 * (8/50.3)^0).2 * (1,271	,611/(12	2*50.3*8^:	3))^0.1 =	0.795	
			skew corre	ction =	0.858					
			g = 0.795 *	0.858 =	0.682					
		Range of App	licability (ROA	A) Checks	(same as l	for one I	ane loade	ed)		
		Use Equation	from Table 4.	6.2.2.2b-1 be	ecause all	criteria i	s OK.			
		gM _{int2+} =	0.682							
	TXDOT	Policy states of	Mutanor must be	$a \ge m N_1 \pm N_2$						
		$m \cdot N_1 \div N_h =$	0.85 * 3/6	=	0.425					
	ls W≥3	20ft ? Yes	5.00 570		and the second					
	TXDOT	Policy states th	at if W < 20ft.	gMinterne is th	e Maximur	n of: gM	int and m	NI +NI-		
>>	TXDOT	Policy states th	at if W ≥ 20ft.	gMinterior is th	e Maximun	n ol: gM	gMinio	m-NL=Nn		
-	aM	anor = 0.682		an (Constitution of the		CUDE	and a second lies			

TXDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/15/20	2017	LRFD Specs
BRIDGE	C-S-J:	ITBC Design Ex	ID #:	XXXX & 3	Ck Dsn:	Ex3 So	Date:	ution factors x	Rev. 10/18	(No Interim)
EXTER	RIOR BE	AM:			It ind.	Line op			Under.	4010
Shear L	L Distrib	ution Per Lane	(Table 4.6.2.2	2.3b-1):						
	One La	ne Loaded								
		Lever Rule	(Table 3.6	1.1.2)						10 C
		mg = 0.	625 * 1.0 =	0.625	TxDOT us	es a mu	Itiple pres	sence factor	of 1,0 for a	ne
		Modify f	or Skew:		lane loade	d on the	e exterior	beam.		
			skew corre	ection =	1.131					
			mg = 0.62	5 * 1.131 =	0.707					
		Use Lever Ru	Ile, as per AA	SHTO LRFL	Table 4.6.2	2.2.3b-1	22 C			
		gV _{ext1} =	0.707							
	Two or	More Lanes L	oaded							
		Lever Rule	(Table 3.6	.1.1.2)						
		mg = M	ax(0.625 * 1.0	0, 0.625 * 0.8	85, 0.625 * 0	.65) =	0.625			
		Modify f	or Skew:							
			skew corre	ection =	1.131					
			mg = 0.623	5 * 1.131 =	0.707					
		Equation		10.00						
			t. b/w GL web	to curb						
		d _e = OH	- Hall Width	2.04	i.					
		u _e =	311 - 111 =	2.01	1					
		e = 0.6	$+\left(\frac{a_{e}}{10}\right)$							
		0-06	(10)	0.000						
		6 = 0.0	+ (2.0/10) =	0.000						
		g = e ⁻ g	Vint2+Eq	0.707						
		g = 0.80	0 0.921 =	oluded in al	lintorior					
		Banga of Apr	disability (PO	A) Chocks	Interior).	POA in	implicitly	applied to th		oom.
		Check I	nterior Beam	ROA.	OK	NUMIS	implicitiy	applied to ti	ne exterior i	Jean.
		Check c	d.: -1.0'≤2.0	'≤5.5'	OK					
		Check M	N _h : 6≠3	- 0.0	OK					
		Use Equation	from Table 4	.6.2.2.3b-1	because all o	criteria i	s OK.			
		gV _{ext2+} =	0.737							
	TXDOT	Policy states of	Ver. must b	e ≥ aV						
	1.45.51	qVistoriar =	0.921	a - 3 · menor						
	TXDOT	Policy states g	VExterior must b	$e \ge m \cdot N_1 \div N_1$	h					
		$m \cdot N_L \div N_b =$	0.85*3/6	6 =	0.425					
	ls OH ≤	S/2 ? Yes								
	ls W ≥ 2	20ft? Yes								
>>	TXDOT	Policy states th	at if OH ≤ S/2	2, gV _{Exterior} is	gV _{intenior} .					
	TXDOT	Policy states th	at if OH > S/a	2 and W < 20	off, gV _{Exterior}	is the Ma	aximum o	of: gV _{ext1} , gV	interior, and	
		m·N _L ÷N _b .		(mailes	á in -			NAME OF		
	TXDOT	Policy states th	at if OH > S/2	$2 \text{ ans } W \ge 20$	off, gV _{Exterior} i	s the Ma	aximum c	ft gV _{ext1} , gV	ext2+, gVinteric	ci.
		and m N _L +N _b	-							
	gV _{exte}	erior = 0.921								

TXDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
IVISION	C-S-J: Descrip	ITBC Design Exa	ID #: mole 3. Span 1 &	3	Ck Dsn: File:	Ex3 Sor	Date:	ution factors x	Rev. 10/18	(No Interin 5 of 8
EXTER	NOR BE	AM:			T. ildi	Jana ope			Ondota	0 01 0
Momen	t I I Dist	ribution Per Lan	e (Table 4.6.2	2 2d-1)						
Monteri	Onela	ne Loaded	o Tradic T.o.e							
	one Lu	Lever Bule								
		ma = 0.0	525 * 1.0 =	0.625	TXDOT US	es a mul	tiole ore:	sence factor	of 1.0 for a	ñe.
		Modify f	or Skew:		lane loade	d on the	exterior	beam.	er na isra	(IFC
			skew correc	ction =	0.858					
			mg = 0.625	* 0.858 =	0.536					
		Use Lever Ru	le as per AAS	HTO LRFD) Table 4.6.2	2.2d-1.				
		gM _{ext1} =	0.536							
	Two or	More Lanes Lo	baded							
	C. C. T. C.	Lever Rule	(Table 3.6.1	.1.2)						
		mg = Ma	ax(0.625 * 1.0,	0.625 * 0.1	85, 0.625 * 0	.65) =	0.625			
		Modify f	or Skew:							
			skew correc	ction =	0.858					
			mg = 0.625	* 0.858 =	0.536					
		Equation								
		a = 0.7	$7 + \left(\frac{d_e}{d_e}\right)$							
		0 = 0.7	(9.1)							
		e = 0.77	+ (2.0/9.1) =		0.990					
		g = e*gN	Mint2+Eq							
		g = 0.99	* 0.682 =	0.675						
		Skew G	orrection inclu	ded in gM(i	interior).					
		Range of App	licability (ROA) Checks	Interior	ROA is i	mplicitly	applied to the	he exterior b	beam.
		Check I	nterior Beam F	ROA:	OK					
		Check d	l _e : -1.0' ≤ 2.0'	≤ 5.5'	OK					
		Check N	N _b : 6≠3		OK		-			
		Use Equation	from Table 4.	6.2.2.2d-1	because all o	criteria is	OK			
		gM _{ext2+} =	0.675							
	TXDOT	Policy states gl	M _{Exterior} must be	e ≥ gM _{interio}	r					
	1.2.2.2	gM _{interior} =	0.682							
	TXDOT	Policy states gf	M _{Exterior} must be	e ≥ m·N _L ÷N	b					
		$\mathbf{m} \cdot \mathbf{N}_{\mathbf{L}} \div \mathbf{N}_{\mathbf{b}} =$	0.85 * 3 / 6	-	0.425					
	Is OH ≤	S/2 ? Yes								
~	TXDOT	Policy states th	at if OH \$ S/2	aMenan is	Mulan					
	TXDOT	Policy states th	at if $OH > S/2$	and $W < 2$	Oft. aMexterior	is the Ma	aximum	of: aMaur. aM	Antonior, and	
		m·Ni ÷Nn			erre Brucertenn)			an american a	- Unterior +	
	TXDOT	Policy states th	at if OH > S/2	ans W ≥ 20	Oft, gMexterior	s the Ma	aximum o	of: gM _{ext1} , gN	Aest2++ gMmte	norr-
		and m·NL+Nb			and a second					
	gMext	erior = 0.682								
	<u> </u>									

TXDOT County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
DIVISION Descrip:	ITBC Design Exa	nple 3, Span 1 &	3	File:	Ex3 Span	1_distribu	ution factors.xl	Sheet:	7 of 8
LEVER RULE	S	= 8.0 ft							
INTERIOR (con't)									
For 18 ≤ S < 22: One Lane =	$\frac{16}{32} \left(1 + \frac{S-6}{S} \right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{S}$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{S} + \frac{S-16}{S}$			= 0.625		
For 22 ≤ S ≤ 24; One Lane =	$\frac{16}{32} \left(1 + \frac{S-6}{S} \right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\left(\frac{-18}{s}\right)$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{5-18}{S} + \frac{S-16}{S}$	$+\frac{S-22}{S}$		= -1.500		
				ed hinge			Raji Width	S = OH = = BW -	8.0 ft 3.0 ft
Ļ	он — — —	- s	4				X = S+OH-I	RW-2ft =	8.0 R
For X < 6: One Lane =	$\frac{16}{32}\left(\frac{X}{S}\right)$						= 0.500		
For 6 ≤ X < 12: One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-C}{S}\right)$	·)					= 0.625		
For 12 ≤ X < 18; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	²)					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$+\frac{X-12}{S}$					= 0.375		

RIDGE County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017 LRFD Spe
IVISION Descrip:	ITBC Design Exa	mple 3, Span 1	& 3	File:	Ex3 Span	1_distrib	ution_factors.x	Sheet: 8 of 8
10.120 Z.110								
LEVER RULE								
EXTERIOR (con't) S -	= 8.0 ft	Ê	OH =	3.0 ft			
	RW =	= 1.0 f	X = S + C	OH-RW-2ft =	8.0 ft			
For 18 ≤ X < 24:	16/V V-	63						
One Lane =	$\frac{10}{32}\left(\frac{x}{s}\pm\frac{x-s}{s}\right)$	<u>-</u>)					= 0.625	
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{5} + \frac{X-12}{5} + \frac{X}{5}$	$\left(\frac{18}{S}\right)$				= -0.250	
For 24 ≤ X < 30:	167 V V-	5)						
One Lane =	$\frac{16}{32}\left(\frac{x}{s} + \frac{x-c}{s}\right)$	<u> </u>					= 0.625	
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X-12}{S} + \frac{X}{S}$	$\left(\frac{t-18}{s}\right)$				= -0.250	
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-1}{S}\right)$	$\frac{6}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{x-18}{S} + \frac{x-2}{S}$	<u>*</u>)			= -1.250	
For 30 ≤ X < 36:	16 (X X -)	5)						
One Lane =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x}{s}\right)$	j					= 0.625	
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X-12}{S} + \frac{X}{S}$	$\left(\frac{-18}{s}\right)$				= -0.250	
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X-12}{S} + \frac{X}{S}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\left(\frac{4}{s}+\frac{X-30}{s}\right)$			= -2.625	
For 36 ≤ X < 42: One Lane =	$\frac{16}{22}\left(\frac{X}{2} + \frac{X-1}{2}\right)$	<u>e</u>]					= 0.625	
	32(3 S	× 10 x	-10					
Two Lanes =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-c}{s}\right)$	$\frac{1}{s} + \frac{x - 12}{s} + \frac{x}{s}$	$\left(\frac{1}{S}\right)$				= -0.250	
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{4}{9} + \frac{X-30}{S}$			= -2.625	
Four Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{6}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{4}{S} + \frac{X-30}{S} + \frac{1}{S}$	$\left(\frac{x-36}{s}\right)$		= -4.375	
For 42 ≤ X ≤ 48: One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	<u>6</u>)					= 0.625	
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X-12}{S} + \frac{X}{S}$	$\left(\frac{18}{s}\right)$				= -0.250	
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{s} + \frac{X-12}{s} + \frac{X}{s}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{4}{s} + \frac{X-30}{S}$			= -2.625	
Four Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-C}{S}\right)$	$\frac{6}{S} + \frac{X-12}{S} + \frac{X}{S}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{4}{5} + \frac{X - 30}{S} + $	$\frac{x-36}{s} + \frac{x}{s}$	$\left(\frac{-42}{s}\right)$	= -6.500	
INTERIOR	_			EXTER	IOR			
One Lane Loaded		= 0.625		One La	ne Loaded	d	i e	0.625
Two Lanes Loade	d	= 0.875		Two La	nes Loade	ed	-	0.625
Three Lanes Load	led	- 0.875		Three L	anes Loa	ded	-	0.625
Four Lange Lande	and a	0.975		-		80° -		The state

4.4.15.4.2 Span 2

XDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/15/20	2017	LRFD Spe
VISION	C-S-J:	ITBC Design Exa	ID #: mole 3. Span 2	XXXX	Ck Dsn:	Ex3 So	Date:	tion factors x	Rev. 10/18 -	(No Interi
NTER	IOR BE	AM.	inple of open a		Trinds	Line op			Onder	2010
Choorl	L Dietrik	ution Dar Lano	Table 1622	20.11						
Snear	Orala	and reded	Table 4.0.2.2	. <u>Jd-1).</u>						
	One La	he Loaded	(Table 0.C.	1 1 01						
		Lever Hule	(Table 3.6.	0.750						
		mg = 0.6	25 1.2 =	0.750						
		Modify to	or Skew:							
			skew correc		1,164					
			mg = 0.750	1.104 =	0.073					
		Equation	(5)							
		g = 0.30	$2^{+}(\overline{25})$							
		q = 0.36	+ (8 / 25) =	0.680						
		Modify for	or Skew:							
			skew correc	ction =	1.164					
			g = 0.680 *	1.164 =	0.792					
		Range of App	licability (ROA	A) Checks	-					
		Check S	: 3.5' ≤ 8.0' :	≤ 16.0'	OK					
		Check t	: 4.5" ≤ 8.0"	≤ 12.0"	OK					
		Check L	20'≤ 106.5	5' ≤ 240'	OK					
		Check N	l _b ; 6≥4		OK					
		Use Equation	from Table 4	62238-11	ecause all o	viteria is	SOK			
		aVieta =	0.792	COLUMN AND A	and and an other	- () - () - ()				
	T.u	Maralanaala	a dad							
	Two or	More Lanes Lo	/Table 2.6	1.1.01						
		Lever Hule	(1 able 3.0.	0.975 * 0.9	5 0 975 * 0	CEV -	0.975			
		Modify f	n Skow	, 0.075 0.0	5, 0.875 0.	.00) =	0.075			
		NOUTY I	skow.corror	ction -	1 164					
			ma - 0.875	* 1 164 -	1.019					
		Fairefier	my = 0.075	1.104 =	1.015					
		Equation	(S) (S	$(5)^{2.0}$						
		g = 0.2	$+(12)^{-}(3)$	5)						
		g = 0.2 +	+ (8 / 12) - (8 /	35)^2.0 =	0,814					
		Modify for	or Skew:							
			skew correct	ction =	1,164					
			g = 0.814 *	1.164 =	0.947					
		Range of App	licability (ROA	A) Checks	(same as f	or one l	ane loade	ed)		
		Use Equation	from Table 4.	6.2.2.3a-11	ecause all o	criteria is	s OK.			
		$gV_{int2+} =$	0.947							
	TYDOT	Policy states al	must he	> m.NN.						
	TADOT	m·N· ÷N· =	0.85 * 3 / 6	- un talfanap	0.425					
	In MAN	20ft 2 Voc	0.00 0/0	-	V.423					
	TXDOT	Policy states Ih	at if W < 20th	oVie ti	ne Maximum	Vo to	and m.	NN.		
	TYDOT	Policy states the	at if $W > 200$	aV. interior is th	ne Maximum	of aV	in and m	m-NN.		
22	C aV	- 0.047		a . Interior ia it	in maannuun	91.9×K	1111 A + 1015+1	the nali an alle		
	9 v inte	arior = 0.947								

TXDOT	County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spe
IVISION	C-S-J: Descrip	ITBC Design Ex	ID #: ample 3. Span 2	XXXX	Ck Dsn:	Ex3 So	Date:	ution factors	Rev. 10/18 Sheet	3 of 8
INTER	IOR BE	AM:			D. HOL	Land Op			ender.	0010
Momer	t I I Dist	ribution Per Lan	e (Table 4.6	2 2 2h-1):						
Montal	Onela	ne Loaded	o (ruoic +.o							
	One Lu	Lever Bule	(Table 3 F	5112)						
		ma = 0	625 * 1.2 =	0.750						
		Modify f	or Skew:	0.000						
		incomy i	skew corr	ection =	0.919					
			ma = 0.75	0 * 0.919 =	0.689					
		Equation			2.0.1					
		g = 0.0	$6 + \left(\frac{S}{14}\right)^{0.4}$	$\left(\frac{S}{L}\right)^{0.5} \left(\frac{K_s}{12L}\right)^{0.5}$						
		g = 0.06	6 + (8/14)^0.4	* (8/106.5)^0	3* (1,271,	611/(12	*106.5*8	^3))^0.1 =	0.453	
		Modify f	or Skew:	0.0	2. A.S					
		1.1774	skew corr	ection =	0.919					
			g = 0.453	* 0.919 =	0.416					
		Range of App	licability (RC	DA) Checks						
		Check S	3: 3.5'≤8.0	'≤ 16.0'		OK				
		Check t	; 4.5" ≤ 8.0)" ≤ 12.0"		OK				
		Check L	.: 20'≤ 106	.5' ≤ 240'		OK				
		Check M	N _b : 6≥4			OK				
		Check H	Kg: 10,000 ≤	1,271,611 ≤ 7	,000,000	OK				
		Use Equation	from Table	4.6.2.2.2b-1 b	ecause all	criteria i	s OK			
		gM _{int1} =	0.416							
	Two or	More Lanes L	oaded							
		Lever Rule	(Table 3.6	5.1.1.2)						
		mg = M	ax(0.875 * 1.	0, 0.875 * 0.8	5, 0.875 * 0	.65) =	0.875			
		Modify f	or Skew:							
			skew corr	ection =	0.919					
			mg = 0.87	/5 * 0.919 =	0.804					
		Equation	(-)	0.6 (=> 0.2 (10.1					
		g = 0.0	$75 + \left(\frac{s}{9.5}\right)$	$\left(\frac{S}{L}\right)\left(\frac{1}{12}\right)$	$\left(\frac{\Delta_g}{Lt_s^3}\right)$					
		g = 0.07 Modify f	75 + (8/9.5)^(for Skew:).6 * (8/106.5) [,]	0.2 * (1,27	1,611/(1	12*106.5*	8^3))^0.1 =	0.649	
			skew corr	ection =	0.919					
			g = 0.649	* 0.919 =	0.596					
		Range of App	blicability (RC	DA) Checks	(same as I	for one l	ane load	ed)		
		Use Equation	from Table	4.6.2.2.2b-1 b	ecause all	criteria i	s OK.			
		gM _{int2+} =	0.596							
	TXDOT	Policy states of	Mustanor must	be≥m·N,÷N,						
		$m \cdot N_1 \div N_h =$	0.85 * 3 /	6 =	0.425					
	ls W≥	20ft ? Yes			Salaria a					
	TXDOT	Policy states th	at if W < 201	t. gMintern is th	e Maximur	n of: aM	and m	NI +NI		
>>	TXDOT	Policy states th	at if W ≥ 20F	L gMinterior is U	e Maximun	Mpilan	Ima gMint	m·Ni=Na		
	aM.	= 0.596		and the second second second		C. M. S.	TO PERFORMENTING			
	givinte	nor - 0.590	_							

XDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/15/20	2017	LRFD Spe
VISION	C-S-J: Descrip	ITBC Design Ex	ID #: ample 3. Span 2	XXXX	Ck Dsn: File:	Ex3 Soa	Date:	ution factors x	Rev. 10/18 -	(No Interi 4 of 8
TEE	NOR BE	AM.			It no.	Line opt			Onder	4010
Choorl	I Dietrik	ution Parl and	Table 16 2	0.06 11.						
SnearL	C DISTING	ution Per Lane	(12018 4.0.2.)	2.30-1]:						
	One La	ne Loaded		1.1.00						
		Lever Hule	(Table 3,6	.1.1.2)	-					
		mg = 0.	625 * 1.0 =	0.625	TxDOT us	es a mul	tiple pres	sence factor	of 1,0 for a	ne
		Modify	for Skew:	~	lane loade	a on me	exterior	Deam.		
			skew corre	ection =	1,164					
			mg = 0.62	5 * 1.164 =	0.728					
		Use Lever Ri	ule. as per AA	ASHTO LRFL	D Table 4.6.2	2.2.3b-1.				
		gV _{ext1} =	0.728							
	Two or	More Lanes L	oaded							
		Lever Rule	(Table 3.6	.1.1.2)						
		mg = M	ax(0.625 * 1.0	0, 0.625 * 0.8	35, 0.625 * 0	.65) =	0.625			
		Modify	for Skew:							
			skew corre	ection =	1.164					
			ma = 0.62	5 * 1.164 =	0.728					
		Equation			1.111					
		d. = dis	t. b/w CL web	to curb						
		$d_a = OH$	- Rail Width							
		d. =	3ft - 1ft =	20	ti.					
		08	(1)							
		e = 0.6	$i + \left \frac{a_x}{10} \right $							
		- 00	(10)	0.000						
		e = 0.6	+(2.0/10) =	0.800						
		$g = e^*g$	Vint2+Eq							
		g = 0.80	00 * 0.947 =	0.758						
		Skew C	orrection is in	icluded in gV	/(interior).					
		Range of Ap	olicability (RC	A) Checks	Interior	ROA is i	implicitly	applied to the	he exterior b	eam.
		Check I	nterior Beam	ROA:	OK					
		Check of	d _e : -1.0' ≤ 2.0)' ≤ 5.5'	OK					
		Check I	N _b : 6≠3		OK					
		Use Equation	from Table 4	4.6.2.2.3b-1	because all o	criteria is	OK.			
		gV _{ext2+} =	0.758							
	TYDOT	Policy states o	V- must h	ne > dV						
	Two C .	aVistadas =	0.947	- 3 · menor						
	TXDOT	Policy states d	Vran must t	ne > m·NN						
	THE OT	m·N, ÷N, =	0.85*3/6	8 -	0 425					
	IS OH S	6/2.2 Voc	0.00 071	5 -	0.460					
	Is W >	20ft 2 Ves								
>>	TXDOT	Policy states th	at if OH ≤ S/2	2. aVestation is	aVinterior					
	TXDOT	Policy states th	at if OH > S/	2 and W < 20	off. aVenuera	is the Ma	aximum c	of aV aV	and	
	1,001	m·N·-N			Strain B + Exterior 1	(e)C	entrent e	a stexin 94	midfiorr curice	
	TYDOT	Policy states th	at if OH > SI	2 ans W > 20	off aV-	s the Ma	vimum o	f aV aV	aV.	
	14001	and m.N. +N	at in girt - off	Lung 11 - 20	9 Y Exterior	0 110 1410	annun u	A A extl. A A	ext2+> 9 * interior	0
		and third #14								
	gv _{ext}	erior = 0.947								

```
TXDOT
BRIDGE
                     ANY
           County:
                                       Highway
                                                      Any
XXXX
                                                                      Design:
                                                                                          Date
                                                                                                                       2017 LRFD Spel
                     XXX-XX-XXXX
                                                                                                                      10/18 - (No Inte
                                                                      Ck Dsn:
                                       ID #
                                                                                          Date
                     ITBC Design Exa
DIVISION
                                                                                                                               5 of 8
 EXTERIOR BEAM:
Moment LL Distribution Per Lane (Table 4.6.2.2.2d-1):
          One Lane Loaded
                     Lever Rule
                           mg = 0.625 * 1.0 =
                                                     0.625
                                                                  TxDOT uses a multiple presence factor of 1,0 for one
                                                                  lane loaded on the exterior beam.
                           Modify for Skew:
                                       skew correction =
                                                                     0.919
                                       mg = 0.625 * 0.919 =
                                                                      0.574
                     Use Lever Rule as per AASHTO LRFD Table 4.6.2.2.2d-1.
                     gMext1 =
                                       0.574
          Two or More Lanes Loaded
                     Lever Rule
                                       (Table 3.6.1.1.2)
                           mg = Max(0.625 * 1.0, 0.625 * 0.85, 0.625 * 0.65) =
                                                                                          0.625
                           Modify for Skew:
                                       skew correction =
                                                                     0.919
                                       mg = 0.625 * 0.919 =
                                                                      0.574
                     Equation
                           e = 0.77 + \left(\frac{d_e}{9.1}\right)
                           e = 0.77 + (2.0/9.1) =
                                                                  0.990
                           g = e^{*}gM_{int2+Eq}
                           g = 0.99 * 0.596 =
                                                      0.590
                           Skew Correction included in gM(interior).
                     Range of Applicability (ROA) Checks
                                                                      Interior ROA is implicitly applied to the exterior beam.
                           Check Interior Beam ROA:
                                                                  OK
                           Check d_e: -1.0' \leq 2.0' \leq 5.5'
                                                                 OK
                           Check N<sub>b</sub>: 6 ≠ 3
                                                                  OK
                     Use Equation from Table 4.6.2.2.2d-1 because all criteria is OK.
                     gM<sub>ext2+</sub> =
                                       0.590
          TxDOT Policy states gM<sub>Exterior</sub> must be ≥ gM<sub>interior</sub>
                     gMinterior =
                                     0.596
          TxDOT Policy states gM<sub>Exterior</sub> must be ≥ m·N<sub>L</sub>÷N<sub>b</sub>
                     m \cdot N_L \div N_b = 0.85 * 3 / 6 =
                                                                     0.425
          Is OH ≤ S/2 ? Yes
          Is W ≥ 20ft ? Yes
      >> TxDOT Policy states that if OH ≤ S/2, gM<sub>Exterior</sub> is gM<sub>interior</sub>.
          TxDOT Policy states that if OH > S/2 and W < 20ft, gM<sub>Exterior</sub> is the Maximum of: gM<sub>ext1</sub>, gM<sub>interior</sub>, and
                     m·NI ÷Nn
          TxDOT Policy states that if OH > S/2 ans W \ge 20ft, gM_{\text{Extension}} is the Maximum of: gM_{\text{ext1}}, gM_{\text{ext2+r}} gM_{\text{milenorm}}
                     and m·NL+NE
            gM<sub>exterior</sub> = 0.596
```


TXDOT County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
DIVISION Descrip:	ITBC Design Exa	mple 3, Span 2	10000	File:	Ex3_Span	2_distribu	ution factors.xl	Sheet:	7 of 8
LEVER RULE	S	= 8.0 ft							
INTERIOR (con't)									
For 18 ≤ S < 22: One Lane =	$\frac{16}{32} \left(1 + \frac{S-6}{S} \right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{s}$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{S} + \frac{S-16}{S}$			= 0.625		
For 22 ≤ S ≤ 24; One Lane =	$\frac{16}{32}\left(1+\frac{S-6}{S}\right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\left(\frac{-18}{s}\right)$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{S} + \frac{S-16}{S}$	$+\frac{S-22}{S}$		= -1.500		
								S =	8.0 ft
L.	он — — — — — — — — — — — — — — — — — — —	— s ——	i Cassume	ed hinge			Rail Width X = S+OH-I	= RW = RW-2ft =	1.0 ft 8.0 ft
For X < 6: One Lane =	$\frac{16}{32}\left(\frac{X}{S}\right)$						= 0.500		
:For 6 ≤ X < 12; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	5)					= 0.625		
For 12 ≤ X < 18; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	<u>s</u>)					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\left(\frac{X-12}{S}\right)$					= 0.375		

TXDOT County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
IVISION Descrip:	ITBC Design Exar	nple 3, Span 2	17777	File:	Ex3 Span	2 distrib	ution_factors.	Sheet:	8 of 8
16.121 Z.112									
LEVER RULE									
EXTERIOR (con't) S =	8.0 ft	É.	OH =	3.0 ft				
	RW =	1.0 ft	X = S+C	H-RW-2ft =	8.0 ft				
For 18 ≤ X < 24:									
One Lane =	$\frac{16}{32}\left(\frac{x}{s} + \frac{x-6}{s}\right)$)					= 0.625		
÷	16 (X . X -6	X -12 X	(-18)						
Two Lanes =	32 8 8	S	S)				= -0.250		
For 24 ≤ X < 30:	16 (X X - 6	1							
One Lane =	$32 \left(\frac{s}{s} \right)^+ \frac{s}{s}$)					= 0.625		
Two Lanes =	$\frac{16}{22}\left(\frac{X}{2}+\frac{X-6}{2}\right)$	$+\frac{X-12}{2}+\frac{X}{2}$	-18				= -0.250		
	32(5 5	5	5 /						
Three Lanes =	$\frac{16}{32}\left(\frac{x}{S} + \frac{x-6}{S}\right)$	$+\frac{X-12}{S}+\frac{X}{S}$	$\frac{x-18}{S} + \frac{x-2}{S}$	")			= -1.250		
For 30 ≤ X < 36:	10/10 10 1								
One Lane =	$\frac{10}{32}\left(\frac{x}{S} + \frac{x-0}{S}\right)$						= 0.625		
Two Longs	16(X + X - 6)	X -12X	-18)				0.050		
Two Lanes =	32 (s' s)	S	\$)				= -0.200		
Three Lanes =	$-\frac{16}{32}\left(\frac{X}{S}+\frac{X-6}{S}\right)$	$+\frac{X-12}{S}+\frac{X}{S}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{4}{5} + \frac{X - 30}{S}$			= -2.625		
For $36 \le X \le 42^{\circ}$			2 8						
One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$)					= 0.625		
4	16(X, X - 6)	X -12 X	-18)						
Two Lanes =	32 8 8	s	S)				= -0.250		
Three Lanes =	$\frac{16}{22}\left(\frac{X}{c} + \frac{X-6}{c}\right)$	$+\frac{X-12}{c}+\frac{X}{c}$	$\frac{x-18}{c} + \frac{x-2}{c}$	$\frac{4}{4} + \frac{X-30}{c}$			= -2.625		
	32(5 5 16(V V-6	S V 12 V	5 5 -18 V-7	5 /	Y - 36)				
Four Lanes =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-0}{s}\right)$	$+\frac{x-12}{S}+\frac{x}{S}$	$\frac{1}{S} + \frac{x-2}{S}$	$+\frac{x-30}{s}+$	$\left(\frac{x-30}{s}\right)$		= -4.375		
For $42 \le X \le 48$:	ICAN N. C								
One Lane =	$\frac{16}{32}\left(\frac{x}{s} + \frac{x-6}{s}\right)$)					= 0.625		
Two Longs	16(X - 6)	X -12 X	(-18)				0.250		
Two Lanes =	32 8 5	S	S)				= -0.200		
Three Lanes =	$\frac{16}{32}\left(\frac{X}{5} + \frac{X-6}{5}\right)$	$+\frac{X-12}{8}+\frac{X}{8}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{4}{5} + \frac{X-30}{5}$			= -2.625		
	16(X - X = 6	X -12 X	-18 X-2	4 X = 30	x - 36 x	-42)			
Four Lanes =	$\frac{1}{32}\left(\frac{1}{s} + \frac{1}{s}\right)$	+	s + <u>s</u>	-+ <u>-</u> +	5 + 1	S)	= -6.500		
INTERIOR	_			EXTER	IOB				
One Lane Loaded		= 0.625		One La	ne Loaded	1		0.625	
Two Lanes Loade	d	0.875		Two La	nes Loade	d	-	0.625	
Three Lanes Load	led -	0.875		Three L	anes Load	ded		0.625	
Four Lanes Loade	rd .	0.875		Faurta	24.1 4 1.2.4	S		0.005	

	Highway:	ANY			1				
Tavas	C-S-J:	XXXXXXX			Design:	BRG C	k Dsn:	BRG	
Department of Transportation	Bridge I	Division	R	ev: 09/26/08			Date:	Aug-20	
CONCRETE SECTION SHEA	AR CAPA	CITY BY A	ASHTO L	RFD BRID	GE DESIG	N SPECIFIC	ATIONS, FO	URTH EDIT	ON, 2007
Resistance Factors:		7	Units:	US		_	-		
¢v =	0.9								
φ _M =	0.9								
φ _N =	0.75								
Concrete:	-	-	Mild Steel:			Prestressed	Steel:		
fc =[5	ksi	fy =	60	ksi	fpu =	270 k	si	
Ec =	4070	ksi	Es =	29000	ksi	Ep =	28500 k	si	
		-			SECTIONS				
	Units	8	12	32	36	56	60	80	84
Input Data									
Bending moment, Mu	kip-ft	625.6	888.7	746.9	504.8	504.8	746.9	888.7	62
Shear force, Vu	kip	243.6	253.3	145.2	462.8	245.6	263.2	147.5	428.
Axial force, Nu (+ if tensile)	kip	0	0	0	0	0	0	0	
Web width, bv	in	42.00	42.00	42.00	42.00	42.00	42.00	42.00	42.0
Shear depth, dv	in	80.59	80.59	80.59	80.59	80.59	80.59	80.59	80.5
Mild steel reinf. area, As	in^2	10.92	10.92	10.92	10.92	10.92	10.92	10.92	10.9
Conc area on tension side, Ac	in^2	1785	1785	1785	1785	1785	1785	1785	178
Area of stirrups, Av	in^2	1.76	1.76	1,76	1.76	1.76	1.76	1.76	1.7
Stirrup spacing, s	in	7,2	7.2	7.2	7.2	7.2	7.2	7.2	7,
Prestressed steel area, Aps	in^2	0	0	0	0	0	0	0	
Prestress shear, Vp	kip	0	0	0	0	0	0	0	-
Average prestress, tps	ksi	0	0	0	0	0	0	0	
Torsional moment, Tu	kip-ft	773	387	387	773	773	387	387	77.
Shear flow area, Ao	in^2	3493.5	3493.5	3493.5	3493.5	3493.5	3493.5	3493.5	3493.
Area of one leg of stirrup. At	in^2	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.4
Perimeter of stirrup, Ph	in	334	334	334	334	334	334	334	33
Calculated Values									
Vc	kip	583.6	578.8	641.0	533.3	581.2	574.0	641.0	533.
Vs	kip	1715.2	1753.6	2037.8	1484.3	1708.2	1731.8	2029.6	1484.
φVn	kip	2069	2099	2411	1816	2060	2075	2404	181
E _X	1.22	6.83E-04	7.07E-04	4.33E-04	1.00E-03	6.88E-04	7.31E-04	4.39E-04	1.00E-0
θ	deg	32.80	33.10	29.40	36.40	32.90	33.42	29.50	36.4
Peo'd Shear reinf Au/S	1040.60	2.990	2.920	2.680	2.230	2.930	2.900	2.680	2.23
Reg'd Torsion reinf At/S	in/2/m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Maximum stirrup spacing, Smax	in	74 0	24.0	24.0	24.0	24.0	24.0	24.0	24
Construction of the state		21.0	2	2 1.0	210	21.0	21.0	2.110	£.1.
Conclusion		011	OK	OK	OK	OK	OK	OK	OK
Conclusion Shear Be	inforcing	OK I	Un I						

4.4.15.5 Concrete Section Shear Capacity Spreadsheet

If torsion is not being considered, leave last five rows of input data blank.

4.4.15.6 Bent Cap Details

4.5 INVERTED-T BENT CAP DESIGN EXAMPLE 4 (60° SKEW ANGLE)

Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 8th Ed. (2017) as prescribed by TxDOT Bridge Manual - LRFD (January 2020).

4.5.1 Design Parameters

Figure 4.78 Spans of the Bridge with 60 Degrees Skewed ITBC

<u>Span 1</u>

54' Type TX54 Girders (0.851 k/ft)

6 Girders Spaced @ 16' along the axis of bent with 3' overhangs

2" Haunch

Span 2

112' Type TX54 Girders (0.851 k/ft)

6 Girders Spaced @ 16' along the axis of bent with 3' overhangs

3.75" Haunch

<u>Span 3</u>

54' Type TX54 Girders (0.851 k/ft)

6 Girders Spaced @ 16' along the axis of bent with 3' overhangs

2" Haunch

<u>All Spans</u>

Deck is 46 ft wide

Type T551 Rail (0.382 k/ft)

8" Thick Slab (0.100 ksf)

Assume 2" Overlay @ 140 pcf (0.023 ksf)

Use Class "C" Concrete

$$\begin{split} f_c^{'} &= 5 \text{ ksi} \\ w_c &= 150 \text{ pcf (for weight)} \\ w_c &= 145 \text{ pcf (for Modulus of Elasticity calculation)} \end{split}$$

"AASHTO LRFD" refers to the ASSHTO LRFD Bridge Design Specification, 8th Ed. (2017)..

"BDM-LRFD" refers to the TxDOT Bridge Design Manual -LRFD (January 2020).

"TxSP" refers to TxDOT guidance, recommendations, and standard practice.

"Furlong & Mirza" refers to "Strength and Serviceability of Inverted T-Beam Bent Caps Subject to Combined Flexure, Shear, and Torsion", Center for Highway Research Research Report No. 153-1F, The University of Texas at Austin, August 1974.

The basic bridge geometry can be found on the Bridge Layout located in the Appendices.

(TxSP)

(BDM-LRFD, Ch. 4, Sect. 5, Materials)

Grade 60 Reinforcing

 $f_y = 60 \text{ ksi}$

Bents

Use 36" Diameter Columns (Typical for Type TX54 Girders)

Define Variables

<u>Back Span</u>	<u>Forward Span</u>	
Span1 = 54ft	Span2 = 112ft	Span Length
GdrSpa1 = 8ft	GdrSpa2 = 8ft	Girder Spacing (Normalized values)
GdrNo1 = 6	GdrNo2 = 6	Number of Girders in Span
GdrWt1 = 0.851klf	GdrWt2 = 0.851klf	Weight of Girder
Haunch1 = 2in	Haunch $2 = 3.75$ in	Size of Haunch
Bridge		
Skew $= 60$ deg		Skew of Bents
BridgeW = 46ft		Width of Bridge Deck
RdwyW = 44ft		Width of Roadway
GirderD = 54in		Depth of Type TX54 Girder
BrgSeat = 1.5in		Bearing Seat Buildup
BrgPad = 2.75in		Bearing Pad Thickness
SlabThk = 8in		Thickness of Bridge Slab
OverlayThk = 2in		Thickness of Overlay
RailWt = 0.372klf		Weight of Rail
$w_{c} = 0.150 kcf$		Unit Weight of Concrete for Loads
$w_{Olav} = 0.140$ kcf		Unit Weigh of Overlay
Bents		
$f_c = 5$ ksi		Concrete Strength
$w_{eF} = 0.145 \text{kcf}$		Unit Weight of Concrete for E_c
$E_c = 33000 \cdot w_{cE}^{1.5} \cdot $	$\overline{f_c}$ $E_c = 4074$ ksi	Modulus of Elasticity of Concrete (AASHTO LRFD Eq. C5.4.2.4-2)
$f_y = 60$ ksi		Yield Strength of Reinforcement
$E_s = 29000 ksi$		Modulus of Elasticity of Steel

 $D_{column} = 36in$

Diameter of Columns

Other Variables

IM = 33%

Figure 4.79 Top View of the 60 Degrees Skewed ITBC with Spans and Girders

4.5.2 Determine Cap Dimensions

Figure 4.80 Section View of 60 Degrees Skewed ITBC

 $b_{stem} = 42$ in

4.5.2.1 Stem Width

```
b_{stem} = at least D_{column} + 3in
```

Use:

4.5.2.2 Stem Height

Distance from Top of Slab to Top of Ledge:

 $D_{Slab_{to_{Ledge}}} = SlabThk + Haunch2 + GirderD + BrgPa$

 $D_{Slab to Ledge} = 70.00 in$

StemHaunch = 3.75 in

wider than the Diameter of the Column (36") to allow for the extension of the column reinforcement into the Cap. (TxSP) Haunch2 is the larger of the two haunches.

The stem is typically at least 3"

The top of the stem must be 2.5" below the bottom of the slab. (BDM-LRFD, Ch. 4, Sect. 5, Geometric Constraints)

Accounting for the 1/2" of bituminous fiber, the top of the stem must have at least 2" of haunch on it, but the haunch should not be less than either of the haunches of the adjacent spans. $d_{stem} = D_{Slab_to_Ledge} - SlabThk - StemHaunch - 0.5in$

$$d_{stem} = 57.75$$
 in

Use: $d_{stem} = 57$ in

4.5.2.3 Ledge Width

The stem must accommodate ¹/₂" of bituminous fiber.

Round the Stem Height down to the nearest 1". (TxSP)

The Ledge Width must be adequate for Bar M to develop fully.

 $L_{dh,prov}$ " must be greater than or equal to $L_{dh,req}$ " for Bar M.

"cover" is measured from the center of the transverse bars.

"L" is the length of the Bearing Pad along the girder. A typical type TX54 bearing pad is circular 15" Dia. for 60° skewed beents, as shown in the IGEB standard.

(AASHTO LRFD Eq.

(AASHTO LRFD 5.10.8.2.4b)

5.10.8.2.4a-2)

cover = 2.5 in

L = 15 in

Determine the Required Development Length of Bar M:

Try # 7 Bar for Bar M.

$$d_{bar_M} = 0.875$$
 in
 $A_{bar_M} = 0.60$ in²

Basic Development Length

$$L_{dh} = \frac{38.0 \cdot d_{bar_M}}{60} \cdot \left(\frac{f_y}{\sqrt{f_c}}\right)$$

Modification Factors for L_{dh} :

Is Top Cover greater than or equal to 2.5", and Side Cover greater than or equal to 2"?

 $L_{dh} = 14.87$ in

SideCover = cover
$$-\frac{d_{bar,M}}{2} = 2.06$$
 in
TopCover = cover $-\frac{d_{bar,M}}{2} = 2.06$ in
TopCover = cover $-\frac{d_{bar,M}}{2} = 2.06$ in
No. Reinforcement Confinement Factor, $\lambda_{rc} = 1.0$
Coating Factor, $\lambda_{cw} = 1.0$
Excess Reinforcement Factor, $\lambda_{er} = 1.0$
Concrete Density Modification Factor, $\lambda = 1.0$
Concrete Density Modification Factor, $\lambda = 1.0$
 $L_{dh,req} = max(L_{dh} \cdot (\frac{\lambda rc \lambda_{cw} \lambda er}{\lambda}), 8 \cdot d_{bar,M}, 6in.)$ "Side Cover" and "Top Cover"
are the clear cover on the side
and top of the hook respectively.
The dimension "cover" is
measured from the center of Bar
M.Development Length:
 $L_{dh,req} = max(L_{dh} \cdot (\frac{\lambda rc \lambda_{cw} \lambda er}{\lambda}), 8 \cdot d_{bar,M}, 6in.)$ (AASHTO LRFD 5.10.8.2.4a)
the stem to the center of
bearing is 12" for TxGirders
(IGEB).Development Length:
 $L_{db_req} = 25$ in $D_{ledge,min} = 21.87$ in
 $D_{ledge} = 25$ inThe distance from the face of
the stem to the center of
bearing is 12" for TxGirders
(IGEB).Width of Bottom Flange:
 $b_f = 2 \cdot b_{ledge} + b_{stem}$ $b_f = 92$ inAs a general rule of thumb,
Ledge Depth is greater than or

equal to 2'-3". This is the depth at which a bent from a typical

bridge will pass the punching

shear check.

Use a Ledge Depth of 28".

 $d_{ledge} = 28 \text{ in}$

Total Depth of Cap:

 $h_{cap} = d_{stem} + d_{ledge} \qquad \qquad h_{cap} = 85 \text{ in}$

4.5.2.5 <u>Summary of Cross Sectional Dimensions</u>

$$b_{stem} = 42$$
 in
 $d_{stem} = 57$ in
 $b_{ledge} = 25$ in
 $d_{ledge} = 28$ in
 $h_{cap} = 85$ in

4.5.2.6 Length of Cap

First define Girder Spacing and End Distance:

Figure 4.82 Elevation View of 60 Degrees Skewed ITBC

$$\begin{split} S &= 8 \ \text{ft} & Girder \ Spacing \\ c &= 2 \ \text{ft} & ``c`` is \ the \ distance \ from \ the \ Center \\ Line \ of \ the \ Exterior \ Girder \ to \ the \\ Edge \ of \ the \ Cap \ measured \ along \\ the \ Cap. \\ L_{Cap} &= S \cdot (\text{GdrNo1} - 1) + 2c & L_{Cap} &= 44 \ \text{ft} & Length \ of \ Cap \end{split}$$

TxDOT policy is as follows, "The edge distance between the exterior bearing pad and the end of the inverted T-beam shall not be less than 12in." (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria) replacing the statement in AASHTO LRFD 5.13.2.5.5 stating it shall not be less than d_f . Preferably, the stem should extend at least 3" beyond the edge of the bearing seat.

Bearing Pad Dimensions:

Bearing Pad Dimensions:(IGEB standard)L = 15 inLength of Bearing PadW = 15 inWidth of Bearing Pad

4.5.3 Cross Sectional Properties of Cap

$$\begin{split} A_{g} &= d_{ledge} \cdot b_{f} + d_{stem} \cdot b_{stem} & A_{g} &= 4970 \text{ in}^{2} \\ ybar &= \frac{d_{ledge} \cdot b_{f} \cdot \left(\frac{1}{2}d_{ledge}\right) + d_{stem} \cdot b_{stem} \cdot \left(d_{ledge} + \frac{1}{2}d_{stem}\right)}{A_{g}} & ybar &= 34.5 \text{ in} \quad \begin{array}{l} Distance \text{ from bottom of the cap to} \\ the center of \text{ gravity of the cap} \end{array} \\ I_{g} &= \frac{b_{f} \cdot d_{ledge}^{3}}{12} + b_{f} \cdot d_{ledge} \cdot \left(ybar - \frac{1}{2}d_{ledge}\right)^{2} + \frac{b_{stem} \cdot d_{stem}}{12} + \cdots \\ b_{stem} \cdot d_{stem} \cdot \left[ybar - \left(d_{ledge} + \frac{1}{2}d_{stem}\right)\right]^{2} & I_{g} &= 3.06 \times 10^{6} \text{ in}^{4} \end{split}$$

4.5.4 Cap Analysis

4.5.4.1 Cap Model

Assume:

4 Columns Spaced @ 12'-0"

The cap will be modeled as a continuous beam with simple supports using TxDOT's CAP18 program.

Figure 4.83 Continuous Beam Model for 60 Degrees Skewed ITBC

TxDOT does not consider frame action for typical multi-column bents (BDM-LRFD, Ch. 4, Sect. 5, Structural Analysis).

Figure 4.84 Cap 18 Model of 60 Degrees Skewed ITBC

The circled numbers in Figure 4.84 are the stations that will be used in the CAP 18 input file. One station is 0.5 ft in the direction perpendicular to the pgl, not parallel to the bent.

station = 0.5 ft

Station increment for CAP 18

Recall:

$$\begin{split} E_c &= 4074 \text{ ksi} & I_g = 3.06 \times 10^6 \text{ in}^4 \\ E_c I_g &= 1.25 \times 10^{10} \text{ kip} \cdot \text{in}^2 / \left(12 \frac{\text{in}}{\text{ft}} \right)^2 \text{ } E_c I_g = 8.66 \times 10^7 \text{kip} \cdot \text{ft}^2 \end{split}$$

SPAN 1

 $Rail1 = \frac{2 \cdot RailWt \cdot \frac{Span1}{2}}{\min(GdrNo1,6)}$

$$Slab1 = w_c \cdot GdrSpa1 \cdot SlabThk \cdot \frac{Span1}{2} \cdot 1.10$$

 $Girder1 = GdrWt1 \cdot \frac{Span1}{2}$

$$DLRxn1 = (Rail1 + Slab1 + Girder1)$$

$$Overlay1 = w_{Olay} \cdot GdrSpa1 \cdot OverlayThk \cdot \frac{Span1}{2}$$

SPAN 2

 $Rail2 = \frac{2 \cdot RailWt \cdot \frac{Span2}{2}}{\min(GdrNo2,6)}$

Slab2 =
$$w_c \cdot GdrSpa2 \cdot SlabThk \cdot \frac{Span2}{2} \cdot 1.10$$

Girder2 = GdrWt1
$$\cdot \frac{\text{Span2}}{2}$$
 Girder2 = 47.66 $\frac{\text{kip}}{\text{girder}}$

$$DLRxn2 = (Rail2 + Slab2 + Girder2)$$
 $DLRxn2 = 104.07 \frac{kip}{girder}$

Values used in the following equations can be found on "4.5.1 Design Parameters"

Rail Weight is distributed

thickened slab ends.

Slab1 = $23.76 \frac{\text{kip}}{\text{girder}}$ Increase slab DL by 10% to account for haunch and

evenly among stringers, up to 3 stringers per rail (TxSP).

Overlay is calculated

separetely, because it has different load factor than the rest of the dead loads.

Design for future overlay.

 $Rail1 = 3.44 \frac{kip}{girder}$

Girder1 = $22.98 \frac{\text{kip}}{\text{girder}}$

 $DLRxn1 = 50.17 \frac{kip}{girder}$

 $Overlay1 = 5.04 \frac{kip}{girder}$

Rail2 = $7.13 \frac{\text{kip}}{\text{girder}}$

 $Slab2 = 49.28 \frac{kip}{girder}$

$$Overlay2 = w_{Olay} \cdot GdrSpa2 \cdot OverlayThk \cdot \frac{Span2}{2} \qquad Overlay2 = 10.45 \frac{kip}{girder}$$

CAP

$$Cap = w_c \cdot A_g = 5.177 \frac{kip}{ft} \cdot \frac{0.5ft}{station} \qquad Cap = 2.589 \frac{kip}{station}$$

AASHTO LRFD 3.6.1.2.2 and 3.6.1.2.4)

ShortSpan = min(Span1, Span2)
IM = 0.33
Lane =
$$0.64$$
klf $\cdot \left(\frac{\text{LongSpan+ShortSpan}}{2}\right)$
Lane = $53.12 \frac{\text{kip}}{\text{lane}}$

LongSpan = max(Span1, Span2)

 $Truck = 32kip + 32kip \cdot \left(\frac{LongSpan - 14ft}{LongSpan}\right) + 8kip \cdot \left(\frac{LongSpan - 28ft}{LongSpan}\right)$

$$Truck = 66.00 \frac{kip}{lane}$$

LLRxn = Lane + Truck
$$\cdot$$
 (1 + IM)
LLRxn = 140.90 $\frac{\text{kip}}{\text{lane}}$

ShortSpan = 54 ft Use HL-93 Live Load. For maximum reaction at interior bents, "Design

LongSpan = 112 ft

reaction at interior bents, "Design Truck" will always govern over "Design Tandem". For the maximum reaction when the long span is more than twice as long as the short span, place the rear (32 kip) axle over the support and the middle (32 kip) and front (8 kip) axles on the long span. For the maximum reaction when the long span is less than twice as long as the short span, place the middle (32 kip) axle over the support, the front (8 kip) axle on the short span and the rear (32 kip) axle on the long span.

Combine "Design Truck" and "Design Lane" loadings (AASHTO LRFD 3.6.1.3). Dynamic load allowance, IM, does not apply to "Design Lane." (AASHTO LRFD 3.6.1.2.4)

Figure 4.86 Live Load Model of 60 Degrees Skewed ITBC for CAP18

(AASHTO LRFD Table 3.6.1.1.2-1)

2 fi

20)

The Live Load is applied to the slab by two 16 kip wheel loads increased by the dynamic load allowance with the reminder of the live load distributed over a 10 ft (AASHTO LRFD 3.6.1.2.1) design lane width. (TxSP)

The Live Load applied to the slab is distributed to the beams assuming the slab is hinged at each beam except the outside beam. (BDM-LRFD, Ch. 4, Sect. 5, Structural Analysis)

Input "Multiple Presence Factors" into CAP18 as "Load Reduction Factors".

The cap design need only consider Strength I, Service I,

No. of I	Lanes Factor "m'
1	1.20
2	1.00
3	0.85

>3 0.65 Limit States (AASHTO LRFD 3.4.1)

4.5.4.1.3 Cap 18 Data Input

Multiple Presence Factors, m

Strength I

	Live Load and Dynamic Load Allowance	LL+IM = 1.75	and Service I with DL (TxSP).
	Dead Load Components	DC = 1.25	TrDOT allows the Overlay
	Dead Load Wearing Surface (Overlay)	DW = 1.50	Factor to be reduced to 1.25
Service	<u>e I</u>		(TxSP), since overlay is typically used in design only to
	Live Load and Dynamic Load Allowance	LL+IM = 1.00	increase the safety factor, but
	Dead Load and Wearing Surface	DC & DW = 1.00	in this example we will use <i>DW</i> =1.50.

Dead Load

TxDOT considers Service level Dead Load only with a limit reinforcement stress of 22 ksi to minimize cracking. (BDM-LRFD, Chapter 4, Section 5, Design Criteria)

4.5.4.1.4 Cap 18 Output

	Max +M	<u>Max -M</u>
Dead Load:	$M_{posDL} = 582.2 \text{ kip} \cdot \text{ft}$	$M_{negDL} = -844.9 \text{ kip} \cdot \text{ft}$
Service Load:	$M_{posServ} = 1067.0 \text{ kip} \cdot \text{ft}$	$M_{negServ} = -1267.9 \text{ kip} \cdot \text{ft}$
Factored Load:	$M_{posUlt} = 1585.8 \text{ kip} \cdot \text{ft}$	$M_{negUlt} = -1812.0 \text{ kip} \cdot \text{ft}$

4.5.4.2 Girder Reactions on Ledge

 $DLSpan1 = 50.17 \frac{kip}{girder}$

 $DLSpan2 = 104.07 \frac{kip}{girder}$

Dead Load

DLSpan1 = Rail1 + Slab1 + Girder1 Overlay1 = $5.04 \frac{\text{kip}}{\text{girder}}$

DLSpan2 = Rail2 + Slab2 + Girder2

 $0verlay2 = 10.45 \ \frac{kip}{girder}$

Live Load

Loads per Lane:

Use HL-93 Live Load. For maximum reaction at interior bents, "Design Truck" will always govern over "Design Tandem" for Spans greater than 26ft. For the maximum reaction, place the back (32 kips) axle over the support.

Figure 4.88 Live Load Model of 60 Degrees Skewed ITBC

for Girder Reactions on Ledge

LaneSpan1 = 0.64klf
$$\cdot \left(\frac{\text{Span1}}{2}\right)$$
LaneSpan1 = 17.28 $\frac{\text{kip}}{\text{lane}}$ LaneSpan2 = 0.64klf $\cdot \left(\frac{\text{Span2}}{2}\right)$ LaneSpan2 = 35.84 $\frac{\text{kip}}{\text{lane}}$
$$TruckSpan1 = 32kip + 32kip \cdot \left(\frac{Span1 - 14ft}{Span1}\right) + 8kip \cdot \left(\frac{Span1 - 28ft}{Span1}\right)$$
$$TruckSpan1 = 59.56 \frac{kip}{lane}$$
$$TruckSpan2 = 32kip + 32kip \cdot \left(\frac{Span2 - 14ft}{Span2}\right) + 8kip \cdot \left(\frac{Span2 - 28ft}{Span2}\right)$$
$$TruckSpan2 = 66.00 \frac{kip}{lane}$$

IM = 0.33

LLRxnSpan1 = LaneSpan1 + TruckSpan1
$$\cdot$$
 (1 + IM)
LLRxnSpan1 = 96.49 $\frac{\text{kip}}{\text{lane}}$

LLRxnSpan2 = LaneSpan2 + TruckSpan2 \cdot (1 + IM) LLRxnSpan2 = 123.62 $\frac{\text{kip}}{\text{girder}}$

 $gV_{Span1_Int} = 0.999$ $gV_{Span1_Ext} = 0.999$ $gV_{Span2_Int} = 1.045$ $gV_{Span2_Ext} = 1.045$

Combine "Design Truck" and "Design Lane" loadings (AASHTO LRFD 3.6.1.3).

Dynamic load allowance, IM, does not apply to "Design Lane." (AASHTO LRFD 3.6.1.2.4).

The Live Load Reactions are assumed to be the Shear Live Load Distribution Factor multiplied by the Live Load Reaction per Lane. The Shear Live Load Distribution Factor is calculated using the "LRFD Live Load Distribution Factors" Spreadsheet found in the Appendices.

The Exterior Girders must have a Live Load Distribution Factor equal to or greater than the Interior Girders. This is to accommodate a possible future bridge widening. Widening the bridge would cause the exterior girders to become interior girders

$LLSpan1Int = gV_{Span1_Int} \cdot LLRxnSpan1$	LLSpan1Int = $96.40 \frac{\text{kip}}{\text{girder}}$
$LLSpan1Ext = gV_{Span1_Ext} \cdot LLRxnSpan1$	LLSpan1Ext = $96.40 \frac{\text{kip}}{\text{girder}}$
$LLSpan2Int = gV_{Span2_Int} \cdot LLRxnSpan2$	LLSpan2Int = $129.18 \frac{\text{kip}}{\text{girder}}$
$LLSpan2Ext = gV_{Span2_Ext} \cdot LLRxnSpan2$	LLSpan2Ext = $129.18 \frac{\text{kip}}{\text{girder}}$
<u>Span 1</u>	

Interior Girder

Service Load (Service I Limit State, AASHTO LRFD 3.4.1) $V_{s_Span1Int} = DLSpan1 + Overlay1 + LLSpan1Int$ $V_{s_Span1Int} = 152 \text{ kip}$ Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1) $V_{u_Span1Int} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1 + 1.75 \cdot LLSpan1Int$ $V_{u_Span1Int} = 239 \text{ kip}$ Exterior Girder Service Load (Service I Limit State, AASHTO LRFD 3.4.1) $V_{s_Span1Ext} = DLSpan1 + Overlay1 + LLSpan1Ext$ $V_{s_Span1Ext} = 152 \text{ kip}$ Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1) $V_{u_Span1Ext} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1 + 1.75 \cdot LLSpan1Ext$ $V_{u_Span1Ext} = 239 \text{ kip}$

<u>Span 2</u>

Interior Girder

Service Load (Service I Limit State, AASHTO LRFD 3.4.1) $V_{s_Span2Int} = DLSpan2 + Overlay2 + LLSpan2Int$ $V_{s_Span2Int} = 244 \text{ kip}$ Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1) $V_{u_Span2Int} = 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot LLSpan2Int$ $V_{u_Span2Int} = 372 \text{ kip}$ Exterior Girder Service Load (Service I Limit State, AASHTO LRFD 3.4.1) $V_{s_Span2Ext} = DLSpan2 + Overlay2 + LLSpan2Ext$

 $V_{s \text{ Span}2\text{Ext}} = 244 \text{ kip}$

Factored Load (Strength I Limit State, AASHTO LRFD 3.4.1)

 $V_{u \text{ Span2Ext}} = 1.25 \cdot \text{DLSpan2} + 1.5 \cdot \text{Overlay2} + 1.75 \cdot \text{LLSpan2Ext}$

 $V_{u_{Span2Ext}} = 372 \text{ kip}$

4.5.4.3 Torsional Loads

To maximize the torsion, the live load only acts on the longer span.

Figure 4.89 Live Load Model of 60 Degrees Skewed ITBC for Torsional Loads

Figure 4.90 Loads on the Ledge of 60 Degrees Skewed ITBC for Torsion

 $a_v = 12$ in

" a_v " is the value for the distance from the face of the stem to the center of bearing for the girders. 12" is the typical values for TxGirders on ITBC (IGEB). The lever arm is the distance from the center line of bearing to the centerline of the cap.

 $b_{stem} = 42$ in

LeverArm = $a_v + \frac{1}{2}b_{stem}$

LeverArm = 33 in

Interior Girders

Girder Reactions

 $R_{u_Span1} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1$

 $R_{u \text{ Span1}} = 70 \text{ kip}$

$$\begin{split} R_{u_Span2} &= 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot gV_{Span2_Int} \\ &\cdot [LaneSpan2 + TruckSapn2 \cdot (1 + IM)] \end{split}$$

 $R_{u_{Span2}} = 372 \text{ kip}$

Torsional Load

$$T_{u_{Int}} = |R_{u_{Span1}} - R_{u_{Span2}}| \cdot \text{LeverArm}$$

 $T_{u_Int} = 830 \; kip \cdot ft$

Exterior Girders

Girder Reactions

$$R_{u \text{ Span1}} = 1.25 \cdot DLSpan1 + 1.5 \cdot Overlay1$$

$$\begin{split} R_{u_Span2} &= 1.25 \cdot DLSpan2 + 1.5 \cdot Overlay2 + 1.75 \cdot gV_{Span2_Ext} \\ &\cdot [LaneSpan2 + TruckSapn2 \cdot (1 + IM)] \end{split}$$

$$R_{u_{Span2}} = 372 \text{ kip}$$

Torsional Load

$$T_{u_Ext} = |R_{u_Span1} - R_{u_Span2}| \cdot LeverArm$$

$$T_{u Ext} = 830 \text{ kip} \cdot \text{ft}$$

Torsion on Cap

Figure 4.91 Elevation View of 60 Degrees Skewed ITBC with Torsion Loads

Figure 4.92 Torsion Diagram of 60 Degrees Skewed ITBC

Analyzed assuming Bents are torsionally rigid at Effective Face of Columns.

 $T_u = 830 \; kip \cdot ft$

Maximum Torsion on Cap

4.5.4.4 Load Summary

Ledge Loads

Interior Girder

Service Load

$$V_{s_{Int}} = max(V_{s_{Span1Int}}, V_{s_{Span2Int}})$$
 $V_{s_{Int}} = 243.7 \text{ kip}$

Factored Load

$$V_{u_{Int}} = max(V_{u_{Span1Int}}, V_{u_{Span2Int}}) \qquad V_{u_{Int}} = 371.8 \text{ kip}$$

Exterior Girder

Service Load

$$V_{s_Ext} = max(V_{s_Span1Ext}, V_{s_Span2Ext}) \qquad V_{s_Ext} = 243.7 \text{ kip}$$

Factored Load
$$V_{u_Ext} = max(V_{u_Span1Ext}, V_{u_Span2Ext}) \qquad V_{u_Ext} = 371.8 \text{ kip}$$

Cap Loads

Positive Moment (From CAP18)

Dead Load:	$M_{posDL} = 582.2 \text{ kip} \cdot \text{ft}$
Service Load:	$M_{posServ} = 1067.0 \; kip \cdot ft$
Factored Load:	$M_{posUlt} = 1585.8 \text{ kip} \cdot \text{ft}$

Negative Moment (From CAP18)

Dead Load:	$M_{negDL} = -844.9 \text{ kip} \cdot \text{ft}$
Service Load:	$M_{negServ} = -1267.9 \text{ kip} \cdot \text{ft}$
Factored Load:	$M_{negUlt} = -1812.0 \text{ kip} \cdot \text{ft}$

Maximum Torsion and Concurrent Shear and Moment (Strength I)

	(0)	
$T_u = 830 \text{ kip} \cdot \text{ft}$			Located two stations away from centerline of column
$V_u = 481.8 ext{ kip}$			V. and M. values are from
$M_u = 769.1 \text{ kip} \cdot \text{ft}$			CAP18

4.5.5 Locate and Describe Reinforcing

Figure 4.93 Section View of 60 Degrees Skewed ITBC

Recall:

$$b_{stem} = 42 \text{ in}$$

$$d_{stem} = 57 \text{ in}$$

$$b_{ledge} = 25 \text{ in}$$

$$d_{ledge} = 28 \text{ in}$$

$$b_{f} = 92 \text{ in}$$

$$h_{cap} = 85 \text{ in}$$

cover = 2.5 in

4.5.5.1 Describe Reinforcing Bars

Use # 11 bars for Bar A		
$A_{bar_A} = 1.56 \text{ in}^2$	$d_{bar_A} = 1.410$ in	
Use # 11 bars for Bar B		
$A_{bar_B} = 1.56 \text{ in}^2$	$d_{bar_B} = 1.410$ in	
Use # 7 bars for Bar M		In the calculation of b _{ledge} , #7
$A_{bar_M} = 0.60 \text{ in}^2$	$d_{bar_M} = 0.875 in$	Bar M was considered. Bar M
Use # 7 bars for Bar N		must be # 7 or smaller to allow it fullv develon.
$A_{bar_N} = 0.60 \text{ in}^2$	$d_{bar_N}=0.875~in$	To prevent confusion, use the
Use # 6 bars for Bar S		same bar size for Bar N as Bar
$A_{bar_S} = 0.44 \text{ in}^2$	$d_{bar_S} = 0.75$ in	М.
Use # 6 bars for Bar T		
$A_{bar_T} = 0.44 \text{ in}^2$	$d_{bar_T} = 0.75$ in	

4.5.5.2 <u>Calculate Dimensions</u>

$d_{s_neg} = h_{cap} - cover - \frac{1}{2}d_{bar_s} - \frac{1}{2}d_{bar_A}$	$d_{s_neg} = 81.42$ in
$d_{s_pos} = h_{cap} - cover - \frac{1}{2}max(d_{ba_s}, d_{bar_M}) - \frac{1}{2}d_{bar_B}$	$d_{s_pos} = 81.36$ in
$a_v = 12$ in	
$a_f = a_v + cover$	$a_{\rm f}=14.50$ in
$d_e = d_{ledge} - cover$	$d_{e} = 25.50 \text{ in}$
$d_{f} = d_{ledge} - cover - \frac{1}{2}d_{bar_{-}M} - \frac{1}{2}d_{bar_{-}B}$	$d_{\mathrm{f}}=24.36$ in
$h = d_{ledge} + BrgSeat$	h = 29.50 in

Figure 4.94 Plan View of 60 Degrees Skewed ITBC

$$\alpha = 30 \text{ deg}$$

Recall:

L = 15 in

W = 15 in

4.5.6 Check Bearing

The load on the bearing pad propagates along a truncated pyramid whose top has the area A_1 and whose base has the area A_2 . A_1 is the loaded area (the bearing pad area: LxW). A_2 is the area of the lowest rectangle contained wholly within the support (the Inverted Tee Cap). A_2 must not overlap the truncated pyramid of another load in either direction, nor can it extend beyond the edges of the cap in any direction.

horizontal)

Angle of Bars S (Angle from the

Dimension of Bearing Pad (15"

Dia. Circular Bearing Pad)

Plan View

"B" is the distance from perimeter of A_1 to the perimeter of A_2 as seen

Figure 4.95 Bearing Check for 60 Degrees Skew Angle

in the above figure

Elevation View

Resistance Factor (
$$\phi$$
) = 0.7(AASHTO LRFD 5.5.4.2) $A_1 = \frac{\pi}{4} d_1^2$ $d_1 = 15in, A_1 = 176.71 in^2$ Area under Bearing Pade

Interior Girders

$$B = \min\left[\left(b_{\text{ledge}} - a_{\text{v}}\right) - \frac{1}{2}L, \left(a_{\text{v}} + \frac{1}{2}b_{\text{stem}}\right) - \frac{1}{2}L, 2d_{\text{ledge}}, \frac{1}{2}S - \frac{1}{2}W\right]$$

B = 5.5 in.

Diameter of truncated area, $d_2 = d_1 + 2 \cdot B$ Base of the truncated pyramid, $A_2 = \frac{\pi}{4} d_2^2$ $A_2 = 530.93 in^2$

Modification factor

$$m = min\left(\sqrt{\frac{A_2}{A_1}}, 2\right) = 1.73 \text{ and } 2 \quad m = 1.73$$

$$\phi V_n = \phi \quad 0.85 \quad f_c \quad A_1 \quad m \qquad \phi V_n = 909.48 \text{ kips} \qquad AASHTO \ LRFD \ Eqs. 5.6.5-1 \\ and 5.6.5-2. \\ V_{u_Int} = 371.8 < \phi V_n \qquad BearingChk = "OK!" \qquad V_{u_int} \ from "4.5.4.4 \ Load \\ Summary".$$

Exterior Girders

$$B = \min\left[\left(b_{\text{ledge}} - a_{v}\right) - \frac{1}{2}L, \left(a_{v} + \frac{1}{2}b_{\text{stem}}\right) - \frac{1}{2}L, 2d_{\text{ledge}}, \frac{1}{2}S - \frac{1}{2}W, c - \frac{1}{2}W\right]$$

 $B=5.5 \text{ in.} \qquad \begin{array}{l} "B" \text{ is the distance from} \\ perimeter of A_1 \text{ to the} \\ perimeter of A_2 \text{ as seen} \\ \text{ in the above figure} \end{array}$

 $d_2 = 26$ in $A_2 = 530.93 in^2$

Diameter of truncated area, $d_2 = d_1 + 2 \cdot B$ Base of the truncated pyramid, $A_2 = \frac{\pi}{4} d_2^2$

Modification factor

$$m = min\left(\sqrt{\frac{A_2}{A_1}}, 2\right) = 1.73 \text{ and } 2 \quad m = 1.73$$
 AASHTO LRFD Eq. 5.6.5-3

$\varphi V_n = \varphi \ 0.85 \ f_c \ A_1 \ m$	$\phi V_n = 909.48 \text{ kips}$	AASHTO LRFD Eqs. 5.6.5-1 and 5.6.5-2:
$V_{u_ext} = 371.8 \text{ kips} < \Phi V_n$	BearingChk= "OK!"	V _{u_ext} from "4.5.4.4 Load Summary".

4.5.7 Check Punching Shear

AASHTO LRFD **5.8.4.3.4**, the truncated pyramids assumed as failure surfaces for punching shear shall not overlap.

Figure 4.96 Punching Shear Check for 60 Degrees Skew Angle

Resistance Factor (ϕ) = 0.90

Determine if the Shear Cones Intersect

Is
$$\frac{1}{2}S - \frac{1}{2}W \ge d_f$$
?
 $\frac{1}{2}S - \frac{1}{2}W = 40.5$ in
 $d_f = 24.36$ in

$$\operatorname{Is} \frac{1}{2} \mathbf{b}_{\text{stem}} + \mathbf{a}_{\text{v}} - \frac{1}{2} \mathbf{L} \ge \mathbf{d}_{\text{f}}?$$

$$\frac{1}{2}b_{stem} + a_v - \frac{1}{2}L = 25.5$$
 in
d_f = 24.36 in

Interior Girders

$V_n = 0.125 \boxtimes \lambda \sqrt{f_c'} \ b_o \ d_f$	$V_n = 581.39 \text{ kips}$	AASHTO LRFD 5.8.4.3.4-3
$b_o = \frac{\pi}{2} * \left(D + d_f \right) + D$	$b_o = 76.82 in$	AASHTO LRFD 5.8.4.3.4-4
$\phi V_n = 523.25 \text{ kips}$		
$V_{u_Int} = 371.25 \text{ kips} < \varphi V_n$	PunchingShearChk= "OK!"	V _{u_int} from "4.5.4.4 Load Summary".

Yes. Therefore, shear cones do not intersect in the longitudinal direction of the cap.

AASHTO LRFD 5.5.4.2.

TxDOT uses "df" instead of "de" for Punching Shear (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria). This is because "df" has traditionally been used for inverted tee bents and was sed in the Inverted Tee Research (Furiong % Mirza pg. 58).

Yes. Therefore, shear cones do not intersect in the transverse direction of the cap.

Exterior Girders

$$\begin{split} V_{n} &= \min[0.125 \cdot \sqrt{f_{c}} & V_{n} &= 424.96 \text{ kips} & AASHTO LRFD \\ & \cdot \left(\frac{\pi}{4} \cdot (D+d_{f}) + \frac{D}{2} + c\right) & 5.8.4.3.4-3 \text{ and} \\ & \cdot \left(\frac{\pi}{4} \cdot (D+d_{f}) + \frac{D}{2} + c\right) & 5.8.4.3.4-5 \\ & \cdot d_{f}, 0.125 \cdot \sqrt{f_{c}} \cdot \frac{\pi}{2} \cdot (D+d_{f}) \\ & + D \end{bmatrix} \\ \varphi V_{n} &= 382.46 \text{ kips} \\ V_{u_ext} &= 371.8 \text{ kips} < \varphi V_{n} & PunchingShearChk="OK!" V_{u_ext} from "4.5.4.4 \\ Load Summary". \end{split}$$

4.5.8 Check Shear Friction

Resistance Factor (
$$\phi$$
) =0.90 AASHTO LRFD 5.5.4.2

Determine the Distribution Width

$\frac{\text{Interior Girders}}{b_{s_{\text{Int}}} = \min(W + 4a_{v}, S)}$	"S" is the girder spacing.
= min (63 in, 96 in)	
$b_{s_{Int}} = 63 \text{ in}$	
$A_{cv} = b_{s_{Int}} \cdot d_{e}$	$A_{cv} = 1606.5 in^2$
$\frac{\text{Exterior Girders}}{b_{s_{\text{Ext}}}} = \min(W + 4a_v, S, 2c)$	"S" is the girder spacing.
= min [69, 96, 48]	
= 48 in	
$A_{cv} = b_{s_ext} \cdot d_e$	$A_{cv} = 1224 \text{ in } 2$

Interior Girders

$V_n = \min(0.2 \cdot f_c \cdot A_{cv}, 0.8 \cdot A_{cv})$	$V_n = 1285.2 \text{ kips}$	AASHTO LRFD 5.8.4.2.2-1 and
= min (1606.5, 1285.2)		5.8.4.2.2-2
$\phi V_n = 1156.68 \text{ kips}$		
$V_{u_Int} = 371.68 \text{ kips} < \varphi V_n$	ShearFrictionChk= "OK!"	V _{u_int} from "4.5.4.4 Load Summary"

•

Exterior Girders

 $V_{n} = \min(0.2 \cdot f_{c} \cdot A_{cv}, 0.8 \cdot A_{cv}) \qquad V_{n} = 979.2 \text{ kips} \qquad AASHTO LRFD 5.8.4.2.2-1 and 5.8.4.2.2-2 \\ \varphi V_{n} = 881 \text{ kips} \qquad V_{u_{ext}} = 371.81 \text{ kips} < \varphi V_{n} \qquad ShearFrictionChk="OK!" \qquad V_{u_{ext}} from "4.5.4.4 Load Summary".$

4.5.9 Flexural Reinforcement for Negative Bending (Bars A)

$M_{dl} = M_{negDL} $	$M_{dl} = 844.9 \text{ kip} \cdot \text{ft}$
$M_s = M_{negServ} $	$M_s = 1267.9 \text{ kip} \cdot \text{ft}$
$M_{u} = M_{negUlt} $	$M_u = 1812.0 \; \text{kip} \cdot \text{ft}$

4.5.9.1 Minimum Flexural Reinforcement

Factored Flexural Resistance, M_r , must be greater than or equal to the lesser of $1.2M_{cr}$ (Cracking Moment) or $1.33M_u$ (Ultimate Moment).

	Gross Moment of Inertia
	Depth of Cap
	Distance to the Center of Gravity of the Cap from the bottom of the Cap
$f_{\rm r} = 0.537 \rm ksi$	Modulus of Rupture (BDM- LRFD, Ch. 4, Sect. 5, Design Criteria)
$y_t = 50.50 \text{ in}$	<i>Distance from Center of Gravity</i> <i>to extreme tension fiber</i>
$S = 6.06 \times 10^4 \text{ in}^3$	Section Modulus for the extreme tension fiber
$M_{cr} = 2711.8 \text{ kip} \cdot \text{ft}$	Cracking Moment (AASHTO LRFD Eq. 5.6.3.3-1)
	Design the lesser of $1.2M_{cr}$ or
	$1.33M_u$ when determining
	mininum area of steel required.
	$f_r = 0.537 \text{ ksi}$ $y_t = 50.50 \text{ in}$ $S = 6.06 \times 10^4 \text{ in}^3$ $M_{cr} = 2711.8 \text{ kip} \cdot \text{ft}$

Thus, M_r must be greater than $M_f = 2410 \ \text{kip} \cdot \text{ft}$

4.5.9.2 Moment Capacity Design

Try, 7 ~ #11's Top Number of bars in tension BarANo = 7Diameter of main reinforcing $d_{bar A} = 1.410$ in bars $A_{\text{bar A}} = 1.56 \text{ in}^2$ Area of main reinforcing bars $A_s = 10.92 \text{ in}^2$ Area of steel in tension $A_s = BarANo \cdot A_{bar A}$ Diameter of shear reinforcing $d_{stirrup} = 0.75$ in $d_{stirrup} = d_{bar S}$ bars $d = d_{s neg}$ d = 81.42 in $b = b_f$ b = 92 in Compressive Strength of Concrete $f_c = 5.0 \text{ ksi}$ Yield Strength of Rebar $f_v = 60 \text{ ksi}$ (AASHTO LRFD 5.6.2.2) $\beta_1 = 0.85 - 0.05(f_c - 4ksi)$ Bounded by: $0.65 \le \beta_1 \le 0.85$ $\beta_1 = 0.80$ Depth of Cross Section under $c = \frac{A_s f_y}{0.85 \ _c \beta_1 b}$ c = 2.09 in Compression under Ultimate Load This "c" is the distance from the extreme compression fiber to the (AASHTO LRFD Eq. 5.6.3.1.2-4)

neutral axis, not the distance from the center of bearing of the last girder to the end of the cap.

$$a = c \cdot \beta_1$$
 $a = 1.67$ in

Note: "a" is less than "d_{ledge}". Therefore the equivalent stress block acts over a rectangular area. If "a" was greater than "dledge", it would act over a Tee shaped area.

$$\begin{split} M_n &= A_s f_y \left(d - \frac{a}{2} \right) \cdot \frac{1 f t}{12 i n} & M_n &= 4400 \text{ kip} \cdot f t \\ \epsilon_s &= 0.003 \cdot \frac{d - c}{c} & \epsilon_s &= 0.114 \end{split}$$

 $\epsilon_{s} > 0.005$

ሐ

FlexureBehavior = "Tension Controlled"

$$\begin{split} \Phi_{M} &= 0.90 \\ M_{r} &= \Phi_{M}M_{n} \\ M_{f} &= 2410 \text{ kip} \cdot \text{ft} < M_{r} \\ M_{u} &= 1812 \text{ kip} \cdot \text{ft} < M_{r} \\ \end{split} \qquad \begin{aligned} \text{MinReinfChk} &= \text{``OK!''} \\ \text{UltimateMom} &= \text{``OK!''} \end{aligned}$$

Depth of Equivalent Stress Block (AASHTO LRFD 5.6.2.2)

Nominal Flexural Resistance (AASHTO LRFD Eq. 5.6.3.2.2-1)

Strain in Reinforcing at Ultimate

(AASHTO LRFD 5.6.2.1)

(AASHTO LRFD 5.5.4.2)

Factored Flexural Resistance (AASHTO LRFD Eq. 5.6.3.2.1-1)

4.5.9.3 Check Serviceability

To find s_{max}:

Modular Ratio:

$$n = \frac{E_s}{E_c} \qquad \qquad n = 7.12$$

Tension Reinforcement Ratio:

$$\begin{split} \rho &= \frac{A_{s}}{b \cdot d} & \rho = 0.0014 \\ k &= \sqrt{(2\rho n) + (\rho n)^{2}} - (\rho n) & k = 0.134 \\ d \cdot k &= 10.91 \text{ in } < d_{ledge} = 28 \text{ in} \end{split}$$

Therefore, the compression force acts over a rectangular

$$j = 1 - \frac{k}{3}$$
 $j = 0.955$

$$\begin{split} f_{ss} &= \frac{M_s}{A_s \cdot j \cdot d} \cdot \frac{12 \text{in}}{1 \text{ ft}} & f_{ss} &= 17.92 \text{ ksi} \\ f_a &= 0.6 f_y & f_a &= 36.00 \text{ ksi} \\ f_{ss} &< f_a & \text{ServiceStress} = ``OK!`` \\ d_c &= \text{cover} + \frac{1}{2} d_{\text{stirrup}} + \frac{1}{2} d_{\text{bar}_A} & d_c &= 3.58 \text{ in} \end{split}$$

Exposure Condition Factor:

$$\begin{split} \gamma_{e} &= 1.00 \\ \beta_{s} &= 1 + \frac{d_{c}}{0.7(h_{cap} - d_{c})} \\ s_{max} &= \min\left(\frac{700\gamma_{e}}{\beta_{s}f_{ss}} - 2d_{c}, 12in.\right) \\ s_{Actual} &= \frac{b_{stem} - 2d_{c}}{BarANo-} \\ s_{actual} &< s_{max} \\ \end{split}$$

4.5.9.4 Check Dead Load

Check allowable M_{dl} : $f_{dl} = 22 \text{ ksi}$

$$M_{a} = A_{s} \cdot d \cdot j \cdot f_{dl} \cdot \frac{1 \text{ft}}{12 \text{in}} \qquad M_{a} = 1556.7 \text{ kip} \cdot \text{ft}$$
$$M_{dl} = 844.9 \text{ kip} \cdot \text{ft} < M_{a} \qquad \text{DeadLoadMom} = \text{``OK!''}$$

For service loads, the stress on the cross-section is located as shown in Figure 4.97.

Figure 4.97 Stresses on the Cross Section for Service Loads of 60 Degrees Skewed ITBC

> If the compression force does not act over rectangular area, j will be different.

Service Load Bending Stress in outer layer of the reinforcing.

Allowable Bending Stress (BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

For Class 1 Exposure Conditions. For areas where deicing chenicals are frequently used, design for Class 2 Exposure ($\gamma_e = 0.75$). (BDM-LRFD Ch. 4, Sect. 5, Design Criteria) (AASHTO LRFD Eq. 5.6.7-1)

A good practice is to place a bar every 12 in along each surface of the bent. (TxSP)

ck = "OK

TxDOT limits dead load stress to 22 ksi, which is set to limit observed cracking under dead load.

Allowable Dead Load Moment

4.5.10 Flexural Reinforcement for Positive Bending (Bars B)

$M_{dl} = M_{posDL}$	$M_{dl} = 582.2 \text{ kip} \cdot \text{ft}$
$M_s = M_{posServ}$	$M_s = 1067.0 \text{ kip} \cdot \text{ft}$
$M_u = M_{posUlt}$	$M_u = 1585.8 \: \text{kip} \cdot \text{ft}$

4.5.10.1 Minimum Flexural Reinforcement

Factored Flexural Resistance, M_r , must be greater than or equal to the lesser of $1.2M_{cr}$ (Cracking Moment) or $1.33M_u$ (Ultimate Moment).

$I_g = 3.06 \times 10^6 \text{ in}^4$		Gross Moment of Inertia
$y_t = ybar$	y _t = 34.5 in	Distance to the Center of Gravity of the Cap from the top of the Cap
$f_r = 0.24 \sqrt{f_c}$	$f_r = 0.537$ ksi	Modulus of Rupture (BDM- LRFD, Ch. 4, Sect. 5, Design Criteria)
$S = \frac{I_g}{y_t}$	$S = 8.87 \times 10^4 \text{ in}^3$	Section Modulus for the extreme tension fiber
$M_{cr} = S \cdot f_r \cdot \frac{1ft}{12in}$	$M_{cr} = 3969.3 \text{ kip} \cdot \text{ft}$	Cracking Moment (AASHTO LRFD Eq. 5.6.3.3-1)
M _f = minimum of:		Design the lesser of $1.2M_{cr}$ or
$1.2M_{cr} = 4763.2 \text{ kip} \cdot \text{ft}$		$1.33M_u$ when determining
$1.33M_u = 2109.1 \text{ kip} \cdot \text{ft}$		mininum area of steel required.

Thus, M_r must be greater than $M_f = 2109.1 \ \text{kip} \cdot \text{ft}$

4.5.10.2 Moment Capacity Design

а

Try, $11 \sim #11$'s Bottom Number of bars in tension BarBNo = 11Diameter of main reinforcing $d_{\text{bar B}} = 1.41$ in bars $A_{\text{bar B}} = 1.56 \text{ in}^2$ Area of main reinforcing bars Area of steel in tension $A_s = BarBNo \cdot A_{bar B}$ $A_s = 17.16 \text{ in}^2$ d = 81.36 in $d = d_{s pos}$ $b = b_{stem}$ b = 42 inCompressive Strength of Concrete $f_{c} = 5.0 \text{ ksi}$ Yield Strength of Rebar $f_v = 60 \text{ ksi}$ (AASHTO LRFD 5.6.2.2) $\beta_1 = 0.85 - 0.05(f_c - 4ksi)$ Bounded by: $0.65 \le \beta_1 \le 0.85$ $\beta_1 = 0.80$ Depth of Cross Section under $c = \frac{A_s f_y}{0.85\ _c\beta_1 b}$ c = 7.21 in Compression under Ultimate Load

This "c" is the distance from the extreme compression fiber to the neutral axis, not the distance from the center of bearing of the last girder to the end of the cap.

$$= \mathbf{c} \cdot \boldsymbol{\beta}_1$$
 $\mathbf{a} = 5.77$ in

Note: "a" is less than "dstem". Therefore the equivalent stress block acts over a rectangular area. If "a" was greater than "dstem", it would act over a Tee shaped area. 4 6

$$\begin{split} M_n &= A_s f_y \left(d - \frac{a}{2} \right) \cdot \frac{1 \pi t}{12 \text{ in}} & M_n &= 6733.2 \text{ kip} \cdot \text{ft} & \text{Nominal Flexure} \\ \epsilon_s &= 0.003 \cdot \frac{d - c}{c} & \epsilon_s &= 0.031 & \text{Strain in Reinfor} \\ \epsilon_s &> 0.005 & \text{FlexureBehavior} = "Tension Controlled"} & (AASHTO LRFL) \\ \Phi_M &= 0.90 & (AASHTO LRFL) \\ \end{split}$$

$$M_r = \Phi_M \cdot M_n \qquad \qquad M_r = 6059.9 \text{ kip} \cdot \text{ft}$$

 $M_{f} = 2109.1 \text{ kip} \cdot \text{ft} < M_{r}$ MinReinfChk = "OK!" $M_u = 1585.8 \text{ kip} \cdot \text{ft} < M_r$ UltimateMom = "OK!" 1 [1] al Resistance D Eq. 5.6.3.2.2-1)

(AASHTO LRFD Eq. 5.6.3.1.2-4)

Depth of Equivalent Stress Block

(AASHTO LRFD 5.6.2.2)

rcing at Ultimate

D 5.6.2.1)

D 5.5.4.2)

Factored Flexural Resistance (AASHTO LRFD Eq. 5.6.3.2.1-1) 4.5.10.3 Check Serviceability

To find s_{max}:

Modular Ratio:

$$n = \frac{E_s}{E_c} \qquad \qquad n = 7.12$$

Tension Reinforcement Ratio:

$$\rho = \frac{A_s}{b \cdot d} \qquad \rho = 0.005$$

$$\sqrt{(2on) + (on)^2} = (on) \qquad k = 0.234$$

$$k = \sqrt{(2\rho n) + (\rho n)^2 - (\rho n)}$$
 $k = 0.23$

 $d \cdot k = 19.04$ in $< d_{stem} = 57.00$ in Therefore, the compression force acts over a rectangular area.

$$j = 1 - \frac{k}{3}$$
 $j = 0.922$

$$f_{ss} = \frac{M_s}{A_s \cdot j \cdot d} \cdot \frac{12in}{1ft}$$

$$f_{ss} = 9.95 \text{ ksi}$$

$$f_a = 0.6f_y$$

$$f_a = 36.00 \text{ ksi}$$

$$f_{ss} < f_a$$

$$grviceStress = "OK!"$$

$$d_c = cover + \frac{1}{2}d_{stirrup} + \frac{1}{2}d_{har B}$$

$$d_c = 3.64 \text{ in}$$

$$\begin{split} \gamma_e &= 1.00 \\ \beta_s &= 1 + \frac{d_c}{0.7(h_{cap} - d_c)} \end{split} \qquad \qquad \beta_s = 1.06 \end{split}$$

$$s_{max} = \min\left(\frac{_{700\gamma_e}}{_{\beta_s f_{ss}}} - 2d_c, 12in.\right) \qquad s_{max} = 12 \text{ in}$$

Bars Inside Stirrup Bar S

Try: BarBInsideSNo = 5 $\frac{2(2)}{2} \left(\frac{1}{2} + \frac{1}{2$

$$s_{Actual} = \frac{b_{stem} - 2\left(cover + \frac{1}{2}d_{bar_S} + \frac{1}{2}d_{bar_B}\right)}{BarBInsideSNo-}$$

 $s_{actual} < s_{max}$

For service loads, the stress on the cross-section is located as shown in Figure 4.98.

Figure 4.98 Stresses on the Cross Section for Bars B for Service Loads of 60 Degrees Skewed ITBC

If the compression force does not act over rectangular area, j will be different.

Service Load Bending Stress in outer layer of the reinforcing.

Allowable Bending Stress (BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

For Class 1 Exposure Conditions. For areas where deicing chenicals are frequently used, design for Class 2 Exposure ($\gamma_e = 0.75$). (BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

(AASHTO LRFD Eq. 5.6.7-1)

A good practice is to place a bar every 12 in along each surface of the bent. (TxSP)

Number of Bars B that are inside Stirrup Bar S.

 $s_{Actual} = 8.71$ in

ServiceabilityCheck = "OK

Bars Outside Stirrup Bar S

BarBOutsideSNo = 11 - BarBInsideSNoNumber of Bars B that are inside
Stirrup Bar S.BarBOutsideSNo = 6 $s_{Actual} = \frac{2b_{ledge} + 2(cover \frac{1}{2}d_{bar_S} + \frac{1}{2}d_{bar_B} - cove \frac{1}{2}d_{bar_M} - \frac{1}{2}d_{bar_B})}{BarBOutsideSNo}$ $s_{Actual} = \frac{2b_{ledge} + 2(cover \frac{1}{2}d_{bar_S} + \frac{1}{2}d_{bar_B} - cove \frac{1}{2}d_{bar_M} - \frac{1}{2}d_{bar_B})}{BarBOutsideSNo}$ $s_{actual} = 8.31 \text{ in } < s_{max}$ ServiceabilityCheck = "OK

4.5.10.4 Check Dead Load

Check allowable M_{dl} : $f_{dl} = 22 \text{ ksi}$

TxDOT limits dead load stress to 22 ksi. This is due to observed cracking under dead load.

$$\begin{split} M_{a} &= A_{s} \cdot d \cdot j \cdot f_{dl} \cdot \frac{1 f t}{12 i n} & M_{a} &= 2360 \text{ kip} \cdot f t \\ M_{dl} &= 582.2 \text{ kip} \cdot f t < M_{a} & \text{DeadLoadMom} = "OK!" \end{split}$$

Allowable Dead Load Moment

Flexural Steel Summary:

Use 7 ~ # 11 Bars on Top & 11 ~ # 11 Bars on Bottom

4.5.11 Ledge Reinforcement (Bars M & N)

Try Bars M and Bars N at a 5.80" spacing.

 $s_{bar_M} = 5.80$ in $s_{bar_N} = 5.80$ in Use trial and error to determine the spacing needed for the ledge reinforcing.

It is typical for Bars M & N to be paired together

4.5.11.1 Determine Distribution Widths

These distribution widths will be used on the following pages to determine the required ledge reinforcement per foot of cap.

Distribution Width for Shear (AASHTO LRFD 5.8.4.3.2)Note: These are the same
distribution widths used for the
Shear Friction check. $b_{s_Int} = min(W + 4a_v, S)$
 $b_{s_Int} = 63.00 in$ "S" is the girder spacing.Exterior Girders
 $b_{s_Ext} = min(W + 4a_v, 2c, S)$
 $b_{s_Ext} = 48.00 in$ "c" is the distance from the center
of bearing of the outside beam to
the end of the ledge.Distribution Width for Bending and Axial Loads (AASHTO LRFD 5.8.4.3.3)Distribution S.8.4.3.3)

Interior Girders

 $b_{m_{Int}} = min(W + 5a_f, S)$ $b_{m Int} = 87.50 in$

Exterior Girders

 $b_{m_Ext} = min(W + 5a_f, 2c, S)$ $b_{m_Ext} = 48.00 in$

4.5.11.2 Reinforcing Required for Shear Friction

$\Phi = 0.90$	
---------------	--

$\mu = 1.4$	$c_1 = 0$ ksi	$P_{c}=0\;\mathrm{kip}$
Recall:	$d_{e} = 25.50 \text{ in}$	

Minimum Reinforcing (AASHTO LRFD Eq. 5.7.4.2-1)

$$\begin{split} A_{vf_min} &= \frac{0.05 \text{ ksi} \cdot A_{cv}}{f_y} \\ A_{cv} &= d_e \cdot b_s \quad \text{and} \qquad a_{vf} = \frac{A_{vf}}{b_s} \end{split}$$

 $a_{vf_min} = \frac{0.05 k s i \cdot d_e}{f_v}$

AASHTO LRFD 5.7.4.1

"µ" is 1.4 for monolithically placed concrete. (AASHTO LRFD 5.7.4.4)

For clarity, the cohesion factor is labeled " c_1 ". This is to prevent confusion with "c", the distance from the last girder to the edge of the cap. c_1 is 0ksi for corbels and ledges. (AASHTO LRFD 5.7.4.4)

" P_c " is zero as there is no axial compression.

 $a_{vf_min} = 0.26 \frac{in^2}{ft}$ Minimum Reinforcing required for Shear Friction

- Interior Girders
 - $A_{cv} = 1606.5 \text{ in}^2$ $A_{cv} = d_e \cdot b_{s \text{ Int}}$ $V_{u \text{ Int}} = 371.8 \text{ kip}$ From "4.5.4.4 Load Summarv". $V_n = c_1 A_{cv} + \mu (A_{vf} f_v + P_c)$ (AASHTO LRFD Eq. 5.7.4.3-3) (AASHTO LRFD Eq. 5.7.4.3-1 & $\Phi V_n \ge V_n$ AASHTO LRFD Eq. 5.7.4.3-2) $\Phi \cdot \left[c_1 A_{cv} + \mu (A_{vf} f_v + P_c) \right] \ge V_{u}$ $A_{vf} = \frac{\frac{V_{u_Int}}{\Phi} - c_1 A_{cv}}{\frac{\mu}{f}} - P_c}{f}$ $A_{vf} = 4.92 \text{ in}^2$ Required Reinforcing for Shear Friction $a_{vf_{Int}} = 0.94 \frac{in^2}{ft}$ Required Reinforcing for Shear $a_{vf_{Int}} = \frac{A_{vf}}{b_{s_{Int}}}$ Friction per foot length of cap

Exterior Girders

$$\begin{aligned} A_{cv} = d_{e} \cdot b_{s,Ext} & A_{cv} = 1224 \text{ in}^{2} \\ V_{u,Ext} = 371.8 \text{ kip} & From ``4.5.4.4 \text{ Load Summary}''. \\ V_{n} = c_{1}A_{cv} + \mu(A_{vf}f_{y} + P_{c}) & (AASHTO LRFD Eq. 5.7.4.3-3) \\ \Phi V_{n} \geq V_{u} & (AASHTO LRFD Eq. 5.7.4.3-1) \& \\ A_{vf} \geq \frac{V_{u} \text{ Ext}}{\Phi} \cdot [c_{1}A_{cv} + \mu(A_{vf}f_{y} + P_{c})] \geq V_{u} & AASHTO LRFD Eq. 5.7.4.3-2) \\ A_{vf} = \frac{\frac{V_{u} \text{ Ext}}{\Phi} \cdot c_{1}A_{cv}}{\frac{\mu}{f_{y}}} & A_{vf} = 4.92 \text{ in}^{2} & Required Reinforcing for Shear} \\ Friction & a_{vf,Ext} = \frac{A_{vf}}{b_{s,Ext}} & a_{vf,Ext} = 1.23 \frac{\text{in}^{2}}{\text{ft}} & Required Reinforcing for Shear} \\ Friction per foot length of cap \\ \hline 4.5.11.3 & Reinforcing Required for Flexure & AASHTO LRFD 5.8.4.2.1 \\ \text{Recall: } h = 29.50 \text{ in} \quad d_{e} = 25.50 \text{ in} \quad a_{v} = 12 \text{ in} \\ Interior Girders & V_{u,Int} = 371.8 \text{ kip} & From ``4.5.4.4 \text{ Load Summary'}. \\ N_{uc,Int} = 0.2 \cdot V_{u,Int} & N_{uc,Int} = 74.4 \text{ kip} & (AASHTO LRFD 5.8.4.2.1) \\ M_{u,Int} = V_{u,Int} \cdot a_{v} + N_{uc,Int}(h - d_{e}) & M_{u,Int} = 397 \text{ kip} \cdot \text{ft} & (AASHTO LRFD Eq. 5.8.4.2.1-1) \\ Use the following equations to solve for A_{f}: \\ \Phi M_{n} \geq M_{u,Int} & (AASHTO LRFD Eq. 5.6.3.2.2-1) \\ c = \frac{A_{vfy}}{\alpha_{v}(\theta_{0}} \frac{a^{2}}{2}) & (AASHTO LRFD Eq. 5.6.3.1.2-4) \\ a_{t} = 0.85 \\ \hline \end{cases}$$

 $0.75 \le \Phi = 0.65 + 0.15 \left(\frac{d_e}{c} - 1\right) \le 0.90$ AASHTO LRFD 5.5.4.2

Solve for A_f : $A_f = 3.50 \text{ in}^2$ Required Reinforcing for Flexure $a_{f_Int} = \frac{A_f}{b_{m_Int}}$ $a_{f_Int} = 0.48 \frac{\text{in}^2}{\text{ft}}$ Required Reinforcing for Flexure
per foot length of cap

 $\beta_1 = 0.80$

 $a=c\beta_1$

Exterior Girders

Vu	_{L_Ext} = 371.8 kip			From "4.5.4.4 Load Summary".
N	$uc_{Ext} = 0.2 \cdot V_{u_{Ext}}$	$N_{uc_Ext} = 74.4 \text{ ki}$	р	(AASHTO LRFD 5.8.4.2.1)
Μ	$u_{\text{Ext}} = V_{u_{\text{Ext}}} \cdot a_v + N_{uc_{\text{Ext}}}(h - d_e)$) $M_{u_{Ext}} = 397 \text{ kip}$	• ft	(AASHTO LRFD Eq. 5.8.4.2.1-1)
U	se the following equations to solve for	or A _f :		
	$\Phi M_n \ge M_{u_Ext}$		(AA)	SHTO LRFD Eq. 1.3.2.1-1)
	$M_n = A_f f_y \left(d_e - \frac{a}{2} \right)$		(AA)	SHTO LRFD Eq.5.6.3.2.2-1)
	$c = \frac{A_f f_y}{\alpha_1 f_c \beta_1 b_{m_Ext}}$		(AA)	SHTO LRFD Eq. 5.6.3.1.2-4)
	$\alpha_1 = 0.85$ $\beta_1 = 0.80$		(AA)	SHTO LRFD 5.6.2.2)
	$a = c\beta_1$			
	$0.75 \le \Phi = 0.65 + 0.15 \left(\frac{d_e}{c}\right)$	$(-1) \le 0.90$	AAS	"HTO LRFD 5.5.4.2
So	olve for A _f :	$A_{\rm f}=3.53~{\rm in^2}$	Req	uired Reinforcing for Flexure
a _f	$_{\text{Ext}} = \frac{A_{\text{f}}}{b_{\text{m}}_{\text{Ext}}}$	$a_{f_Ext} = 0.88 \frac{\text{in}^2}{\text{ft}}$	Requ per j	uired Reinforcing for Flexure foot length of cap

4.5.11.4 Reinforcing Required for Axial Tension

 $\Phi = 0.90$

Interior Girders:

$$\begin{split} N_{uc_Int} &= 0.2V_{u_Int} & N_{uc_Int} & = 74.4 \text{ kip} \\ A_n &= \frac{N_{uc_Int}}{\Phi f_y} & A_n &= 1.38 \text{ in}^2 \\ a_{n_Int} &= \frac{A_n}{b_{m_Int}} & a_{n_Int} &= 0.19 \frac{\text{in}^2}{\text{ft}} \end{split}$$

Exterior Girders:

$$\begin{split} N_{uc_Ext} &= 0.2 V_{u_Int} \\ A_n &= \frac{N_{uc_Ext}}{\Phi f_y} \\ a_{n_Ext} &= \frac{A_n}{b_{m_Ext}} \end{split}$$

(AASHTO LRFD 5.8.4.2.2)

AASHTO LRFD 5.5.4.2

$A_n = 1.38 \text{ in}^2$	Required Reinforcing for Axial Tension
$a_{n_Int} = 0.19 \frac{in^2}{ft}$	Required Reinforcing for Axial Tension per foot length of cap

 $N_{uc_Ext} = 74.4 \text{ kip}$

$A_n = 1.38 \text{ in}^2$	Required Reinforcing for Axial Tension
$a_{n_Ext}=0.35\frac{\mathrm{i}n^2}{\mathrm{ft}}$	Required Reinforcing for Axial Tension per foot length of cap

4.5.11.5 Minimum Reinforcing

$$a_{s_min} = 0.04 \frac{f_c}{f_y} d_e$$

4.5.11.6 Check Required Reinforcing

Actual Reinforcing:

$$a_{s} = \frac{A_{bar}M}{s_{bar}M}$$

$$a_{s} = 1.24 \frac{in^{2}}{ft}$$

$$Primary Ledge Reinford Provided$$

$$a_{h} = \frac{A_{bar}N}{s_{bar}N}$$

$$a_{h} = 1.24 \frac{in^{2}}{ft}$$

$$Auxiliary Ledge Reinford Provided$$

<u>Checks:</u> $A_s \ge A_{s_min}$

$$A_{s} \ge A_{f} + A_{n}$$
$$A_{s} \ge \frac{2A_{vf}}{3} + A_{n}$$

$$A_h \ge 0.5(A_s - A_n)$$

Check if:

Check Interior Girders:

Bar M:

 $a_{s} \ge a_{s_min}$ $a_{s} \ge a_{f_Int} + a_{n_Int}$ $a_{s} \ge \frac{2a_{vf_Int}}{3} + a_{n_Int}$

$$a_{s} = 1.24 \frac{in^{2}}{ft}$$

$$a_{s_min} = 1.02 \frac{in^{2}}{ft} < a_{s}$$

$$a_{f_Int} + a_{n_Int} = 0.67 \frac{in^{2}}{ft} < a_{s}$$

$$\frac{2a_{vf_Int}}{3} + a_{n_Int} = 0.82 \frac{in^{2}}{ft} < a_{s}$$

BarMCheck = "OK!"

Bar N:

$$a_{h} \ge 0.5 \cdot (a_{s} - a_{n_Int})$$
$$a_{s} = The \text{ maximum of:}$$
$$a_{f_Int} + a_{n_Int}$$
$$\frac{2a_{vf_Int}}{3} + a_{n_Int}$$

$$a_{\rm s} = 0.82 \frac{\rm in^2}{\rm ft}$$

Check if:

(AASHTO LRFD 5.8.4.2.1)
$$a_{s_min} = 1.02 \frac{in^2}{ft} \quad Minimum \ Required \ Reinforcing$$

$1.24 \frac{\text{in}^2}{\text{ft}}$	Primary Ledge Reinforcing Provided
$1.24 \frac{\text{in}^2}{\text{ft}}$	Auxiliary Ledge Reinforcing Provided (AASHTO LRFD 5.8.4.2.1)
	(AASHTO LRFD 5.8.4.2.2)
	(AASHTO LRFD Eq. 5.8.4.2.2-5)
	(AASHTO LRFD Eq. 5.8.4.2.2-6)

(AASHTO LRFD 5.8.4.2.1)
(AASHTO LRFD 5.8.4.2.2)
(AASHTO LRFD Eq. 5.8.4.2.2-5)

(AASHTO LRFD Eq. 5.8.4.2.2-6)

" a_s " in this equation is the steel required for Bar M, based on the requirements for Bar M in AASHTO LRFD 5.8.4.2.2. This is derived from the suggestion that Ah should not be less than $A_{f}/2$ nor less than $A_{vf}/3$ (Furlong & Mirza pg. 73 & 74)

$$0.5 \cdot (a_s - a_{n_Int}) = 0.32 \frac{in^2}{ft} < a_h$$

BarNCheck = "OK!"

Check Exterior Girders:

Bar M:

Check if:

$$a_{s} \ge a_{s_min}$$

$$a_{s} \ge a_{f_Ext} + a_{n_Ext}$$

$$a_{s} \ge \frac{2a_{vf_Ext}}{3} + a_{n_Ext}$$

$$a_{s} = 1.24 \frac{in^{2}}{ft}$$

 $a_{s_min} = 1.02 \frac{in^2}{ft} < a_s$

 $a_{f_Ext} + a_{n_Ext} = 1.23 \frac{in^2}{ft} ~<~ a_s$

 $\frac{2a_{vf_{.}Ext}}{3} + a_{n_{.}Ext} = 1.17 \frac{in^2}{ft} < a_s$

BarMCheck = "OK!"

Bar N:

Check if:

$$a_{h} \ge 0.5 \cdot (a_{s} - a_{n_Ext})$$
 (AASHTO LRFD Eq. 5.8.4.2.2-6)
 $a_{s} =$ The maximum of:
 $a_{f_Ext} + a_{n_Ex}$
 $\frac{2a_{vf_Ext}}{3} + a_{n_Ext}$ (arrow and bound on the suggestion that Ah
 $a_{s} = 1.15 \frac{in^{2}}{ft}$ (Furlong & Mirza pg. 73 & 74)
 $0.5 \cdot (a_{s} - a_{n_Ext}) = 0.42 \frac{in^{2}}{ft} < a_{h}$
BarNCheck = "OK!"

Ledge Reinforcement Summary:

Use # 7 primary ledge reinforcing @ 5.80" maximum spacing & # 7 auxiliary ledge reinforcing @ 5.80" maximum spacing

4.5.12 Hanger Reinforcement (Bars S)

Try Double # 6 Stirrups at a 6.80" spacing.

 $s_{bar S} = 6.80 in$

Use trial and error to determine the spacing needed for the hanger reinforcing.

$A_{hr} = 2stirrups \cdot A_{bar_S}$	$A_{hr} = 0.88 \text{ in}^2$
$A_v = 2 legs \cdot A_{hr}$	$A_v = 1.76 \text{ in}^2$

4.5.12.1 Check Minimum Transverse Reinforcement

$b_v = b_{stem}$	$b_v = 42$ in	
$A_{v_{min}} = 0.0316\lambda \sqrt{f_c} \frac{b_v \cdot s_{bar_s}}{f_v}$		(AASHTO LRFD Eq. 5.7.2.5-1)

 $\lambda = 1.0$ for normal weight concrete

(AASHTO LRFD 5.4.2.8)

 $A_{v_min} = 0.34 \text{ in}^2$

MinimumSteelCheck = "OK!"

4.5.12.2 Check Service Limit State

AASHTO LRFD 5.8.4.3.5 with notifications from BDM-LRFD Ch. 4, Sect. 5, Design Criteria)

Interior Girders

 $A_v > A_{v \min}$

$$V_{all} = \text{minimum of:}$$
$$\frac{A_{hr} \cdot \left(\frac{2}{3} f_y\right)}{s_{bar,S}} \cdot (W + 3a_v) = 249 \text{ kip}$$

TxDOT uses "2/3 f_y " from the original research (Furlong & Mirza Eq. 5.4) instead of "0.5 f_y " from AASHTO LRFD Eq. 5.8.4.3.5-1. (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria)

Bounded by: $(W + 3a_v) \le \min(S, 2c)$

$$\frac{A_{hr} \cdot \left(\frac{2}{3}f_{y}\right)}{s_{bar_{s}}} \cdot S = 497 \text{ kip}$$

$$V_{all} = 249 \text{ kip}$$

 $V_{s \text{ Int}} = 243.7 \text{ kip} < V_{all}$

*(***0**))

(BDM-LRFD, Ch. 4, Sect. 5, Design Criteria, (S, 2c)

(BDM-LRFD Ch.4, Sect. 5, Design Criteria modified to limit the distribution width to the girder spacing. This will prevent distribution widths from overlapping)

ServiceCheck = "OK!"

Exterior Girders

 $V_{all} = minimum of:$

V_{all} for the Interior Girder

$$\frac{A_{hr}\left(\frac{2}{3}f_{y}\right)}{s_{bar_{s}}} \cdot \left(\frac{W+3a_{v}}{2}+c\right) = 249 \text{ kip}$$

Bounded by: $(W + 3a_v) \le \min(S, 2c)$

$$\frac{A_{hr} \cdot \left(\frac{2}{3} f_{y}\right)}{s_{bar_{-}S}} \cdot \left(\frac{S}{2} + c\right) = 373 \text{ kip}$$

$$V_{all} = 249 \text{ kip}$$

 $V_{s \text{ Ext}} = 243.7 \text{ kip} < V_{all}$

 $\Phi = 0.90$

Interior Girders:

TxDOT uses "2/3 f_y " from the original research (Furlong & Mirza Eq. 5.4) instead of "0.5 f_y " from AASHTO LRFD Eq. 5.8.4.3.5-1. (BDM-LRFD, Ch. 4, Sect. 5, Design Criteria)

 $(W + 3a_v) \leq \min(3, 2c)$ (BDM-LRFD Ch

(BDM-LRFD Ch.4, Sect. 5, Design Criteria Modified to limit the distribution width to half the girder spacing and the distance to the edge of the cap. This will prevent distribution widths from overlapping or extending over the edge of the cap.)

ServiceCheck = "OK!"

(AASHTO LRFD 5.8.4.3.5)

 $\frac{A_{hr} \cdot f_y}{s_{bar_s}} \cdot S = 745 \text{ kip} \qquad (AASHTO LRFD Eq. 5.8.4.3.5-2)$ $(0.063\sqrt{f_c} \cdot b_f \cdot d_f) + \frac{A_{hr} \cdot f_y}{s_{bar_s}} (W + 2d_f) = 810 \text{ kip} \qquad (AASHTO LRFD Eq. 5.8.4.3.5-3)$ $V_n = 745 \text{ kip}$

T T1. *

 $V_{u_{Int}} = 371.8 \text{ kip } < \Phi V_n$ UltimateCheck = "OK!"

Exterior Girders:

 $V_n = minimum of:$

 $\Phi V_n = 670 \text{ kip}$

 $V_n = minimum of:$

 $V_{n} \text{ for the Interior Girder}$ $\frac{A_{hr} \cdot f_{y}}{s_{bar_{-}S}} \cdot \left(\frac{S}{2} + c\right) = 560 \text{ kip}$ (AASHTO LRFD Eq. 5.8.4.3.5-2) $(0.063\sqrt{f_{c}} \cdot b_{f} \cdot d_{f}) + \frac{A_{hr} \cdot f_{y}}{s_{bar_{-}S}} \left(\frac{W+2d_{f}}{2} + c\right) = 808 \text{ kip}$ (AASHTO LRFD Eq. 5.8.4.3.5-3) (These equations are modified to limit the distribution width to the edge of the cap) $V_{n} = 504 \text{ kip}$ $V_{n} \text{ Ext} = 371.8 \text{ kip} < \Phi V_{n}$ UltimateCheck = "OK!"

4.5.12.4 Check Combined Shear and Torsion

The following calculations are for Station 36. All critical locations must be checked. See the Concrete Section Shear Capacity spreadsheet in the appendices for calculations at other locations. Shear and Moment were calculated using the CAP 18 program.

 $M_u = 769.1 \text{ kip} \cdot \text{ft}$ $V_u = 481.8 \text{ kip}$ $N_u = 0 \text{ kip}$ $T_u = 830 \text{ kip} \cdot \text{ft}$ Recall: $\beta_1 = 0.80$ $f_v = 60 \text{ ksi}$ $f_c = 5.0 \text{ ksi}$ $E_{s} = 29000 \text{ ksi}$ $h_{cap} = 85$ in $b_{ste} = 42 in$ $b_f = 92$ in h = 29.50 in $b_{v} = 42$ in $b_v = b_{stem}$ Find d_v: (AASHTO LRFD 5.7.2.8) $A_s = 10.92 \text{ in}^2$ $A_s = A_{\text{bar }A} \cdot \text{BarANo}$ Shears are maximum near the $c = \frac{A_s f_y}{0.85 \ c \beta_1 b_f}$ column faces. In these regions the c = 2.10 in cap is in negative bending with tension in the top of the cap. $a = c \cdot \beta_1$ a = 1.68 in Therefore, the calculations are based $d_s = d_{s neg}$ $d_s = 81.42$ in on the steel in the top of the bent cap. $M_n = A_s f_v \left(d_s - \frac{a}{2} \right)$ $M_n = 4400 \text{ kip} \cdot \text{ft}$ $A_{ns} = 0$ in² $d_e = \frac{A_{ps}f_{ps}d_p + A_sf_yd_s}{A_{ps}f_{ps} + A_sf_y}$ $d_e = 81.42$ in (AASHTO LRFD Eq. 5.7.2.8-2) $d_v = maximum of:$ $\frac{M_n}{A_s f_v + A_{ns} f_{ns}} = 80.59 \text{ in}$ $0.9d_e = 73.28$ in 0.72h = 21.24 in $d_v = 80.59$ in

The method for calculating θ and β used in this design example are from AASHTO LRFD Appendix B5. The method from AASHTO LRFD 5.7.3.4.2 may be used instead. The method from 5.7.3.4.2 is based on the method from Appendix B5; however, it is less accurate and more conservative (often excessively conservative). The method from Appendix B5 is preferred because it is more accurate, but it requires iterating to a solution.

Determine θ and β :

$$\Phi_{V} = 0.90$$

$$v_{u} = \frac{|v_{u} - (\Phi_{V} \cdot v_{p})|}{\Phi_{V} \cdot b_{v} \cdot d_{v}}$$

$$v_{u} = 0.16 \text{ ksi}$$

$$\frac{v_{u}}{f_{c}} = 0.03$$

Using Table B5.2-1 with $\frac{v_u}{f_c} = 0.03$ and $\varepsilon_x = 0.001$ $\theta = 36.4 \text{ deg}$ and $\beta = 2.23$

$$\begin{split} \epsilon_{x} &= \frac{\frac{|M_{u}|}{d_{v}} + 0.5 N_{u} + 0.5 |V_{u} - V_{p}| \cot \theta - A_{ps} f_{po}}{2(E_{s}A_{s} + E_{p}A_{ps})} \\ \text{where } |M_{u}| &= 769.1 \text{ kip} \cdot \text{ft must be} > |V_{u} - V_{p}| d_{v} = 3236 \text{ kip} \cdot \text{ft} \\ \epsilon_{x} &= 1.23 \times 10^{-3} > 1.00 \times 10^{-3} \\ \text{use } \epsilon_{x} &= 1.00 \times 10^{-3}. \end{split}$$

 $V_p = 0 \text{ kip}$

$$A_c = b_{stem} \cdot \frac{h_{cap}}{2}$$

 $s = s_{bar_s}$

(AASHTO LRFD Eq. 5.5.4.2)

Shear Stress on the Concrete (AASHTO LRFD Eq. 5.7.2.8-1)

Determining θ and β is an iterative process, therefore, assume initial shear strain value ε_x of 0.001 per LRFD B5.2 and then verify that the assumption was valid.

Strain halfway between the compressive and tensile resultants (AASHTO LRFD Eq. B5.2-3) If $\varepsilon_x < 0$, then use equation B5.2-5 and re-solve for ε_x .

For values of ε_x greater than 0.001, the tensile strain in the reinforcing, ε_t is greater than 0.002. ($\varepsilon_t = 2\varepsilon_x - \varepsilon_c$, where ε_c is < 0) Grade 60 steel yields at a strain of 60 ksi / 29,000 ksi = 0.002. By limiting the tensile strain in the steel to the yield strain and using the Modulus of Elasticity of the steel prior to yield, this limits the tensile stress of the steel to the yield stress. ε_x has not changed from the assumed

"V_p" is zero as there is no prestressing.

 $A_{c} = 1785 \text{ in}^{2}$ $(AASHTO LRFD B5.2) "A_{c}" \text{ is the}$ area of concrete on the flexural s = 6.80 in tension side of the cap, from the extreme tension fiber to one half the cap depth. "A " is needed if AASHTO LRED

"A_c" is needed if AASHTO LRFD Eq. B5.2-3 is negative.

The transverse reinforcement, " A_v ", is double closed stirrups. The failure surface intersects four stirrup legs, therefore the area of the shear steel is four times the stirrup bar's area (0.44in2). See the sketch of the failure plane to the left.

Figure 4.99 Failure Surface of 60 Degrees Skewed ITBC for Combined Shear and Torsion

$$\begin{split} A_v &= 2 \text{legs} \cdot 2 \text{stirrups} \cdot A_{\text{bar}_S} & A_v &= 1.76 \text{ in}^2 \\ A_t &= 1 \text{leg} \cdot A_{\text{bar}_S} & A_t &= 0.44 \text{ in}^2 \\ A_{\text{oh}} &= (d_{\text{stem}}) \cdot (b_{\text{stem}} - 2 \text{cover}) + (d_{\text{ledge}} - 2 \text{cover}) \cdot (b_f - 2 \text{cover}) \\ & A_{\text{oh}} &= 4110 \text{ in}^2 \\ A_0 &= 0.85A_{\text{oh}} & A_0 &= 3493.5 \text{in}^2 \\ p_h &= (b_{\text{stem}} - 2 \text{cover}) + 2(b_{\text{ledge}}) + (b_f - 2 \text{cover}) + 2(h_{\text{cap}} - 2 \text{cover}) \\ & p_h &= 334 \text{ in} \end{split}$$

Equivalent Shear Force

$$V_{u_{Eq}} = \sqrt{V_{u}^{2} + \left(\frac{0.9p_{h}T_{u}}{2A_{0}}\right)^{2}} \qquad V_{u_{Eq}} = 624.3 \text{ kip } (AASHTO LRFD Eq. B.5.2-1)$$

Shear Steel Required

 V_n = the lesser of:

$$V_c + V_s + V_p$$
(AASHTO LRFD Eq. 5.7.3.3-1) $0.25 \cdot f_c \cdot b_v \cdot d_v + V_p$ (AASHTO LRFD Eq. 5.7.3.3-2)

Check maximum ΦV_n for section:

 $\Phi V_{n_{max}} = \Phi \cdot \left(0.25 \cdot f_{c} \cdot b_{v} \cdot d_{v} + V_{p} \right)$

$$\Phi V_{n_{max}} = 3808 \text{ kip}$$

$$V_u = 481.8 \text{ kip } < \Phi V_{n_max}$$
 MaxShearCheck = "OK!"

Calculate required shear steel:

$$\begin{split} V_{u} &< \Phi V_{n} \\ V_{c} &= 0.0316 \cdot \beta \cdot \sqrt{f_{c}} \cdot b_{v} \cdot d_{v} \\ V_{u} &< \Phi_{V} \cdot \left(V_{c} + V_{s} + V_{p}\right) \\ V_{s} &= \frac{A_{v} \cdot f_{y} \cdot d_{v} \cdot (\cot\theta + \cot\alpha) \cdot \sin\alpha}{s_{req}} \\ a_{v_req} &= \frac{\frac{V_{u}}{\Phi_{V}} - V_{c} - V_{p}}{f_{v} \cdot d_{v} \cdot (\cot\theta + \cot\alpha) \cdot \sin\alpha} \end{split}$$

(AASHTO LRFD Eq. 1.3.2.1-1) V_c = 533 kip (AASHTO LRFD Eq. 5.7.3.3-3)

$$a_{v_req} = 0.004 \frac{\mathrm{in^2}}{\mathrm{ft}}$$

The transverse reinforcement is

$$a_{t_req} = 0.23 \frac{in^2}{ft}$$

Total Required Transverse Steel

 $T_n = \frac{2A_oA_tf_y \cot\theta}{s_{bar_S}}$

 $a_{t_req} = \frac{T_u}{\Phi_T 2 A_o f_y cot \theta}$

Torsional Steel Required

 $\Phi_{\rm T} = 0.9$

 $T_u \leq \Phi_T T_n$

$$\begin{array}{ll} a_{req} = a_{v_req} + 2sides \cdot a_{t_req} & a_{req} = 0.46 \ \frac{in^2}{ft} & designed for the side of the section \\ a_{prov} = \frac{A_v}{s_{bar_S}} & a_{prov} = 3.10 \ \frac{in^2}{ft} & c5.7.3.6.1 \end{array}$$

Longitudinal Reinforcement

$$\begin{split} A_{ps}f_{ps} + A_{s}f_{y} &\geq \frac{|M_{u}|}{\Phi d_{v}} + \frac{0.5N_{u}}{\Phi} + \cdots \\ & cot\Theta \sqrt{\left(\left|\frac{V_{u}}{\Phi} - V_{p}\right| - 0.5V_{s}\right)^{2} + \left(\frac{0.45p_{h}T_{u}}{2A_{0}\Phi}\right)^{2}} \\ V_{s} &= a_{t_{r}req} \cdot f_{y} \cdot d_{v} \cdot (cot\Theta + cot\alpha) \cdot sin\alpha \end{split}$$
(AASHTO LRFD Eq. 5.7.3.3-4)

Bounded By:
$$V_s < \frac{V_u}{\Phi_V}$$
 $V_s = 535.3 \text{ kip}$ (

$$\frac{|M_u|}{\Phi_f d_v} + \frac{0.5N_u}{\Phi_c} + \cot\theta \sqrt{\left(\left|\frac{V_u}{\Phi_V} - V_p\right| - 0.5V_s\right)^2 + \left(\frac{0.45 \text{ }_h T_u}{2A_0 \Phi_T}\right)^2} = 614 \text{ kip}$$

Provided Force:

$$A_s f_y = 655.2 \text{ kip} > 614 \text{ kip}$$
 LongitudinalReinfChk = "OK!"

4.5.12.5 Maximum Spacing of Transverse Reinforcement		(AASHTO LRFD 5.7.2.6)
Shear Stress		
$v_u = \frac{ v_u - \Phi_V v_p }{\Phi_V b_v d_v}$	$v_u = 0.16$ ksi	(AASHTO LRFD Eq. 5.7.2.8-1)
$0.125 \cdot f_c = 0.625 \text{ ksi}$		
If $v_u < 0.125 \cdot f_c$		(AASHTO LRFD Eq. 5.7.2.6-1)
$s_{max} = min(0.8d_v, 24in)$		
If $v_u \ge 0.125 \cdot f_c$		(AASHTO LRFD Eq. 5.7.2.6-2)
$s_{max} = min(0.4d_v, 12in)$		
Since $v_u < 0.125 \cdot f_c$	$s_{max} = 24.00 \text{ in}$	
TxDOT limits the maximum transverse reinforcement spacing to 12".		(BDM-LRFD, Ch. 4, Sect. 5,
$s_{max} = 12.00$ in		Detailing)
$s_{\text{bar}_S} = 6.80 \text{ in } < s_{\text{max}}$	SpacingCheck= "C	<mark>)K!"</mark>

Hanger Reinforcement Summary:

Use double # 6 stirrups @ 6.80" maximum spacing

4.5.13 End Reinforcements (Bars U1, U2, U3, and G)

Extra vertical, horizontal, and diagonal reinforcing at the end surfaces is provided to reduce the maximum crack widths. According to the parametric analysis, it is recommended to place #6 U1 Bars, U2 Bars, and U3 Bars at the end faces and #7 G Bars at approximately 6in. spacing at the first 30" to 35" of the end of bent cap. U1 Bars are the vertical end reinforcements, U2 Bars and U3 Bars are the horizontal end reinforcements at the stem and the ledge, respectively. G Bars are the diagonal end reinforcement.

Figure 4.100 End Face Section View of 60 Degrees ITBC

Figure 4.101 End Face Elevation View of 60 Degrees ITBC

4.5.14 Skin Reinforcement (Bars T)

Try 7 ~ # 6 bars in Stem and 3 ~ # 6 bars in Ledge on each side

 A_{sk} need not be greater than one quarter of the main reinforcing ($A_s/4$)per side face within d/2 of the main reinforcing. (AASHTO LRFD 5.6.7)

"d" is the distance from the extreme compression fiber to the centroid of the extreme tension steel element. In this example design, $d = d_{s_pos} = 81.36$ in.

$$\begin{split} A_{sk_max} &= max \left(\frac{\frac{A_{bar_A} \cdot BarANo}{4}}{\frac{d_{s_neg}}{2}}, \frac{\frac{A_{bar_B} \cdot BarBNo}{4}}{\frac{d_{s_pos}}{2}} \right) \\ A_{sk_max} &= 1.27 \frac{in^2}{ft} \\ A_{skReq} &= min(A_{sk_Req}, A_{sk_max}) \\ A_{skReq} &= 0.62 \frac{in^2}{ft} \end{split}$$

(AASHTO LRFD 5.6.7)

 $s_{req} = minimum of:$

$$\frac{A_{\text{bar}_T}}{A_{\text{skReq}}} = 8.52 \text{ in}$$
$$\frac{d_{s.neg}}{6} = 13.57 \text{ in}$$

$$\frac{d_{s_pos}}{6} = 13.56$$
 in & 12 in

 $s_{req} = 8.52$ in

4.5.14.3 Actual Spacing of Skin Reinforcement

Check T Bars spacing in Stem:

$$h_{top} = d_{stem} - \left(cover + \frac{d_{bar_S}}{2} + \frac{d_{bar_A}}{2}\right) + \left(cover + \frac{d_{bar_M}}{2} + \frac{d_{bar_T}}{2}\right)$$
$$h_{top} = 56.73 \text{ in}$$

 $s_{skStem} = \frac{h_{top}}{NoTBarsStem +}$

 $s_{skStem} < s_{req}$

 $s_{skStem} = 7.09$ in

SkinSpacing = "OK!"

Check T Bars spacing in Ledge:

$$h_{bot} = d_{ledge} - \left(cover + \frac{d_{bar_M}}{2} + \frac{d_{bar_T}}{2}\right) - \left(cover + \frac{d_{bar_S}}{2} + \frac{d_{bar_B}}{2}\right)$$
$$h_{bot} = 21.11 \text{ in}$$

 $S_{skLedge} = \frac{n_{bot} - a}{NoTBarsLedge}$

$$s_{skLedge} = 7.56$$
 in

$$S_{skLedge} < S_{req}$$
 SkinSpacing = "OK!"

Check if "a" is less than s_{req}

$$a = 6 \text{ in } < s_{req}$$
 SkinSpacing = "OK!

Skin Reinforcement Summary:

Use $7 \sim \# 6$ bars in Stem and $3 \sim \# 6$ bars in Ledge on each side

4.5.15 Design Details and Drawings

4.5.15.1 Bridge Layout

4.5.15.2 AP 18 Input File

CAP18 Version 6.00 ITBC Design Example 4, Skew = 60.00 \$Problem Card -----1 E 0 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay) \$TABLE 1 - CONTROL DATA -----_____ Enter 1 to keep: Ŝ Number cards Options: Ś Env Tab2 Tab3 Tab4 on Table 4 Envelope Print Skew Angle XX X XX XXXXXXXXX 16 60.0 Ŝ х х х х XXXXXXXXXXX STABLE 2 - CONSTANTS ------Anly Opt (1=Working, \$ TABLE 2a |-Movable Load Data--| 2=Load Factor,3=Both) Num Increment |Num Start Stop Step|Anly| Load Factors: Ś Ŝ |Inc Sta Sta Size| Opt| Dead Live xxx xxx xxx x x x xxxxxxx xxx xxx 20 2 70 1 3 1.25 1.75 Inc Length Ś Ś XX XXXXXXXXX 0.5 92 Ś TABLE 2b Max # |-----Live Load Reduction Factors-----------Overlay Ŝ
 Load Factor
 Lanes
 1 lane
 2 lanes
 3 lanes
 4 lanes
 5 lanes

 XXXXX
 X
 XXXX
 XXXX
 XXXX
 XXXX
 XXXX

 1.50
 3
 1.2
 1.0
 0.85
 0.65
 0.65
 S \$ STABLE 3 - LIST OF STATIONS -----Number of input values for Lane Str Sup MCP VCP XX XX XX XX XX XX VCP - Shear Control Points Ś Ś XX XX XX XX XX (Num Inputs) 3 6 4 11 8 VCP - Shear Control Points \$ Left Lane Boundary Stations Ś \$ Ŝ \$ Ś Station of Stringers (two rows max, may be at tenths of stations, XX.X) \$ (Stringers) 6 22 38 54 70 86 Ś Station of Supports (two rows max) (Supports) 10 34 58 82 Ś Ś Moment Control Point Stations (two rows max) \$ (Mom CP) (Mom CP) 86 Ś Shear Control Point Stations (two rows max) Ś (Shear CP) STABLE 4 - STIFFNESS AND LOAD DATA -----_____ Bending Sidewalk, Cap & Station 1 if Stiffness Slab Stringer Moving From To Cont'd of Cap Loads Loads Loads Ś Ś Overlay From To Cont'd of Cap Loads \$Comments Loads, DW (CAP EI & DL) 2 90 8.66E+07 -2.589-5.04 (DL Span1, Bml) 6 6 -50.17(DL Span1, Bm2) 22 22 -50.17-5.04 (DL Span1, Bm3) -50.17 -5.04 38 38 (DL Span1, Bm4) (DL Span1, Bm5) 54 -50.17 -5.04 54 70 70 -50.17-5.04 (DL Span1, Bm6) (DL Span2, Bm1) 86 86 -50.17-5.04 -104.1 -10.5 6 6 (DL Span2, Bm2) 22 22 -104.1 -10.5 (DL Span2, Bm3) (DL Span2, Bm4) 38 -104.138 -10.5 54 54 -104.1-10.5 (DL Span2, Bm5) (DL Span2, Bm6) 70 70 -104.1 -10.5 86 86 -104.1 -10.50 -4.92 (Dist. Lane Ld) 20 (Conc. Lane Ld) 4 4 -21.3(Conc. Lane Ld) 16 16 -21.3

4.5.15.3 CAP 18 Output File

TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) AUG 12, 2020 PAGE 1 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011) PSF HIGHWAY PD- CONTROL- CODED COUNTY NO IPE SECTION-JOB BY DATE NO 00001 ___County____ Highwy Pro# 0000-00-000 BRG AUG 12, 2020 Comment CAP18 Version 6.00 ITBC Design Example 4, Skew = 60.00 PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay ENGLISH SYSTEM UNITS TABLE 1. CONTROL DATA OPTION TO PRINT TABLE SRS (1=YES) 0 ENVELOPES TABLE NUMBER OF MAXIMUMS 2 3 4 KEEP FROM PRECEDING PROBLEM (1=YES) 0 0 0 0 CARDS INPUT THIS PROBLEM 16 OPTION TO CLEAR ENVELOPES BEFORE LANE LOADINGS (1=YES) 0 OPTION TO OMIT PRINT FOR TABLES (TABLE DESIGNATIONS IN PARENTHESES) -1(4A), -2(5) -3(4A,5), -4(4A,5,6), -5(4A,5,6,7): 0 SKEW ANGLE, DEGREES 60.000 TABLE 2. CONSTANTS NUMBER OF INCREMENTS FOR SLAB AND CAP 92 INCREMENT LENGTH, FT 0.500 NUMBER OF INCREMENTS FOR MOVABLE LOAD 20 START POSITION OF MOVABLE-LOAD STA ZERO 2 STOP POSITION OF MOVABLE-LOAD STA ZERO 70 NUMBER OF INCREMENTS BETWEEN EACH POSITION OF MOVABLE LOAD 1 ANALYSIS OPTION (1=WORKING STRESS, 2=LOAD FACTOR, 3=BOTH) 3 LOAD FACTOR FOR DEAD LOAD 1.25 LOAD FACTOR FOR OVERLAY LOAD 1.50 LOAD FACTOR FOR LIVE LOAD 1.75 MAXIMUM NUMBER OF LANES TO BE LOADED SIMULTANEOUSLY 3 LIST OF LOAD COEFFICIENTS CORRESPONDING TO NUMBER OF LANES LOADED 1 4 5

1 2 3 4 1.200 1.000 0.850 AUG 12, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 2 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay (CONTINUED)

TABLE 3. LISTS OF STATIONS

 NUM OF LANES
 NUM OF STRINGERS
 NUM OF SUPPORTS
 NUM MOM CONTR PTS
 NUM SHEAR CONTR PTS

 LANE LEFT
 2
 32
 60
 11
 8
 8

 LANE RIGHT
 32
 60
 90
 5
 5
 5
 6
 4
 11
 8
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

TABLE 4. STIFFNESS AND LOAD DATA

							-			
FIXE STA	D-O ST	R-N A C	ONTD CAP	BENDING	SIDEWA	ION DAT	A	MO	VABLE-	ON
FRUI	VI	10	IF-I SHFF	NE22 21	AD LUADS	CAPIL	ADS LU	AUS	SLAD LUA	US
		(k	(-FT*FT) (K) (K) (K)	(K)				
2	90	0	86600000.	000 0.	000 -2.5	89 0.0	0.0 0.0	00		
6	6	0	0.000	0.000	-50.170	-5.040	0.000			
22	22	0	0.000	0.000	-50.170	-5.040	0.000			
38	38	0	0.000	0.000	-50.170	-5.040	0.000			
54	54	0	0.000	0.000	-50.170	-5.040	0.000			
70	70	0	0.000	0.000	-50.170	-5.040	0.000			
86	86	0	0.000	0.000	-50.170	-5.040	0.000			
6	6	0	0.000	0.000	-104.100	-10.500	0.000			
22	22	0	0.000	0.000	-104.100	-10.50	0.000)		
38	38	0	0.000	0.000	-104.100	-10.50	0.000)		
54	54	0	0.000	0.000	-104.100	-10.50	0.000)		
70	70	0	0.000	0.000	-104.100	-10.50	0 0.000)		
86	86	0	0.000	0.000	-104.100	-10.50	0.000)		
0	20	0	0.000	0.000	0.000	0.000	-4.920			
4	4	0	0.000	0.000	0.000	0.000 -	21.300			
16	16	0	0.000	0.000	0.000	0.000	-21.300			

TABLE 4A. DEAD LOAD RESULTS (WORKING STRESS)

STA	DIST X (FT)	DEFLECTIO	N (FT)	MOMENT (K-FT)	SHEAR (K)
-1	-1.00	0.000000	0.0	0.0	
0	0.00	0.000000	0.0	0.0	
1	1.00	-0.000237	0.0	0.0	
2	2.00	-0.000208	0.0	-1.3	
3	3.00	-0.000178	-2.6	-5.2	
4	4.00	-0.000148	-10.4	-10.4	
5	5.00	-0.000119	-23.3	-15.5	
6	6.00	-0.000090	-41.4	-105.6	
6	7.00	-0.000061	-234.	5 -195.7	
0	8.00	-0.000035	-452.	o -200.9	
9	9.00	-0.000014	-030.	5 -200.1	
11	11.00	0.000000	-044	1/1/9 -50.0	
12	12.00	0.000004	-097	3 139.6	
12	13.00	-0.000000	-355	23 134.5	
14	14.00	-0.000011	-286	5.4 129.3	
15	15.00	-0.000045	-150	7 124.1	
16	16.00	-0.000065	-38	2 118.9	
17	17.00	-0.000086	78	.2 113.7	
18	18.00	-0.000106	189	0.3 108.6	
19	19.00	-0.000124	295	.3 103.4	
20	20.00	-0.000138	396	5.1 98.2	
21	21.00	-0.000148	491	.7 93.0	
22	22.00	-0.000152	582	2.2 3.0	
23	23.00	-0.000150	497	7.6 -87.1	
24	24.00	-0.000141	407	⁷ .9 -92.3	
25	25.00	-0.000128	313	3.0 -97.5	
26	26.00	-0.000112	213	3.0 -102.7	
27	27.00	-0.000093	107	7.7 -107.8	
28	28.00	-0.000072	-2.	7 -113.0	
29	29.00	-0.000052	-118	3.3 -118.2	
30	30.00	-0.000033	-239	9.1 -123.4	
31	31.00	-0.000017	-365	5.1 -128.6	
32	32.00	-0.000005	-496	5.2 -133.7	
33	33.00	0.000001	-632	2.6 -138.9	
34	34.00	0.000000	-//4	43.9	
35	35.00	-0.000010	-544	4./ ZZ6.8	
30	36.00	-0.000026	-520	221.0	
3/	37.00	-0.000046	-101	1.5 210.4	
20	30.00	-0.000008	1 5 1	1 26.2	
<u> 10</u>	40.00	-0.000087	19/	1 20.2	
40	41.00	-0.000100	213	23 250	
42	42.00	-0.000122	213	6 20.7	
43	43.00	-0.000146	254	.7 15.5	

TABLE 4A. DEAD LOAD RESULTS (WORKING STRESS)

STA	DIST X (FT)	DEFLECTION	l (FT)	MOMENT (K-FT)	SHEAR (K)
44	44.00	-0.000154	267	.6 10.4	
45	45.00	-0.000159	275	.4 5.2	
46	46.00	-0.000160	278	.0 0.0	
47	47.00	-0.000159	275	.4 -5.2	
48	48.00	-0.000154	267	.6 -10.4	
49	49.00	-0.000146	254	.7 -15.5	
50	50.00	-0.000135	236	.6 -20.7	
51	51.00	-0.000122	213	.3 -25.9	
52	52.00	-0.000106	184	.8 -31.1	
53	53.00	-0.000087	151	.1 -36.2	
54	54.00	-0.000068	112	.3 -126.3	
55	55.00	-0.000046	-101	.5 -216.4	
56	56.00	-0.000026	-320	.5 -221.6	
57	57.00	-0.000010	-544	.7 -226.8	
58	58.00	0.000000	-774	.1 -43.9	
59	59.00	0.000001	-632	.6 138.9	
60	60.00	-0.000005	-496	.2 133.7	
61	61.00	-0.000017	-365	.1 128.6	
62	62.00	-0.000033	-239	.1 123.4	
63	63.00	-0.000052	-118	.3 118.2	
64	64.00	-0.000072	-2.7	7 113.0	
65	65.00	-0.000093	107	.7 107.8	
66	66.00	-0.000112	213	.0 102.7	
67	67.00	-0.000128	313	.0 97.5	
68	68.00	-0.000141	407	.9 92.3	
69	69.00	-0.000150	497	.6 87.1	
70	70.00	-0.000152	582	.2 -3.0	
71	71.00	-0.000148	491	.7 -93.0	
72	72.00	-0.000138	396	.1 -98.2	
73	73.00	-0.000124	295	.3 -103.4	
74	74.00	-0.000106	189	.3 -108.6	
75	75.00	-0.000086	78.	2 -113.7	
76	76.00	-0.000065	-38.	2 -118.9	
77	77.00	-0.000045	-159	.7 -124.1	
78	78.00	-0.000026	-286	.4 -129.3	
79	79.00	-0.000011	-418	.3 -134.5	
80	80.00	0.000000	-555	.3 -139.6	
81	81.00	0.000004	-697	.5 -144.8	
82	82.00	0.000000	-844	.9 30.6	
83	83.00	-0.000014	-636	.3 206.1	
84	84.00	-0.000035	-432	.8 200.9	
85	85.00	-0.000061	-234	.5 195.7	
86	86.00	-0.000090	-41.	4 105.6	
87	87.00	-0.000119	-23.	3 15.5	
88	88.00	-0.000148	-10.	4 10.4	
89	89.00	-0.000178	-2.6	5 5.2	
90	90.00	-0.000208	0.0) 1.3	

91	91.00	-0.000237	0.0	0.0
92	92.00	0.000000	0.0	0.0
93	93.00	0.000000	0.0	0.0

AUG 12, 2020 TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT) PAGE 5 CAP18 BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay (CONTINUED)

TABLE 5. MULTI-LANE LOADING SUMMARY (WORKING STRESS) (*--CRITICAL NUMBER OF LANE LOADS)

MOMENT (FT-K)

AT STA	DEAD LD EFFECT	LANE POSITIVE LOAD AT L ORDER MAXIMUM LANE STA	ANE NEGATIVE LOAD AT A ORDER MAXIMUM LANE STA
6	-41.4 0 1 2 3 0*	0.0 0 0.0 0.0 1 0.0 0.0 2 0.0 0.0 3 0.0 0*	
10	-844.9 0 1 2 3 0*	0.0 0 -352.5 1 0.0 1 -352.5 1 0.0 2 0.0 0.0 3 0.0 0*	2 2
22	582.2 0 1 2 3 0*	404.0 0 13 0 -66.7 2 402.4 1 12 1 -66.7 2 18.7 3 62 2 0.0 0.0 3 0.0 0*	2 36 2 36
34	-774.1 0 1 2 3 0*	37.4 3 62 0 -272.6 0 37.4 3 62 1 -233.1 1 0.0 2 -169.4 2 3 0.0 3 0.0 2*) 18 12 32
38	112.3 0 1 2 3 0*	67.2 2 32 0 -117.6 67.2 2 32 1 -117.6 6.4 3 62 2 0.0 0.0 3 0.0 0*	1 9 1 9
46	278.0 0 1 2 3 0*	138.7 2 36 0 -55.6 1 138.7 2 36 1 -55.6 1 0.0 2 -55.6 3 6 0.0 3 0.0 2*	9 9 3
54	112.3 0 1 2 3 0*	67.2 2 40 0 -117.6 3 67.2 2 40 1 -117.6 3 6.4 1 10 2 0.0 0.0 3 0.0 0*	3 63 3 63
58	-774.1 0 1 2 3 0*	37.4 1 9 0 -272.6 0 37.4 1 9 1 -233.1 3 0.0 2 -169.4 2 4 0.0 3 0.0 2*	54 60 0

AUG 12, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 6
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

MOMENT (FT-K)

AT	DEAD LD) LANE	POSITI	VE L	OAD A	T	LA	NE	NEGATIVE L	OAD	AT	
SIA	EFFECT	ORDER	MAXIN	/IUM	LAN	ES	IA	OR	DER MAXIMU	IVI	LANES	AIG
70	502.2											
/0	582.2											
	0	404.0	0 59	0	-66.7	/	2	36				
	1	402.4	3 60	1	-66.7	7	2	36				
	2	18.7	1 9	2	0.0							
	3	0.0	3	C	.0							
	0*		0*									
	0		0									
82	-844.9											
	0	0.0	0	-34	52.5	3	70)				
	1	0.0	1	-30	2.5	3	70	Ś				
	2	0.0	2	-5.	2.5	5	10	,				
	2	0.0	2	0	.0							
	3	0.0	3	U	.0							
	0*		0*									
86	-41.4											
	0	0.0	0	C	.0							
	1	0.0	1	C	0.0							
	2	0.0	2	C	0							
	2	0.0	2	0	0							
	0 +	0.0	0+		.0							
	0^		0^									

AUG 12, 2020	TEXAS DEPARTMENT OF TR	RANSPORTATION (TxDOT)	PAGE 7
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

SHEAR (K)

AT STA	DEAD LD EFFECT	LANE POSITIVE LOAD AT LANE NEGATIVE LOAD AT ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE ST	A
8	-200.9 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
12	139.6 0 1 2 3 0*	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
32	-133.7 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
36	221.6 0 1 2 3 2*	87.6 0 28 0 -7.8 3 63 84.1 2 32 1 -7.8 3 63 30.7 1 12 2 0.0 0.0 3 0.0 0*	
56	-221.6 0 1 2 3 0*	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
60	133.7 0 1 2 3 0*	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
80	-139.6 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
84	200.9 0 1 2 3 0*	88.1 3 70 0 0.0 88.1 3 70 1 0.0 0.0 2 0.0 0.0 3 0.0 0*	

AUG 12, 2020	TEXAS DEPARTMENT OF TH	RANSPORTATION (TxDOT)	PAGE 8
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

REACTION (K)

AT STA	DEAD LD EFFECT	LANE ORDEF	POSITIVE MAXIMUN	LOAD AT /I LANE S	LANE TA OR	NEGATIVE LOA DER MAXIMUM	D AT LANE STA
10	361.2 0 1 2 3 0*	127.9 127.9 1.6 0.0	1 2 0 1 2 1 3 62 2 3 0*	-5.6 -5.6 0.0 0.0	2 36 2 36		
34	376.0 0 1 2 3 2*	117.1 95.3 83.6 0.0	0 22 0 2 32 1 1 12 2 3 0*	-9.3 -9.3 0.0 0.0	3 63 3 63		
58	376.0 0 1 2 3 2*	117.1 95.3 83.6 0.0	0 50 0 2 40 1 3 60 2 3 0*	-9.3 -9.3 0.0 0.0	19 19		
82	361.2 0 1 2 3 0*	127.9 127.9 1.6 0.0	3 70 0 3 70 1 1 9 2 3 0*	-5.6 -5.6 0.0 0.0	2 36 2 36		

TABLE 6. ENVELOPES OF MAXIMUM VALUES (WORKING STRESS)

STA	DIST)	K MAX + I	MOM M	AX - MOM	MAX + SH	EAR	MAX - SHEAR
((FT)	(FT-K) (FT-K)	(K)	(K)		
-1	-1.00	0.0	0.0	0.0	0.0		
0	0.00	0.0	0.0	0.0	0.0		
1	1.00	0.0	0.0	0.0	0.0		
2	2.00	0.0	0.0	-1.3	-1.3		
3	3.00	-2.6	-2.6	-5.2	-5.2		
4	4.00	-10.4	-10.4	-10.4	-10.4		
5	5.00	-23.3	-23.3	-15.5	-15.5		
6	6.00	-41.4	-41.4	-105.6	-158.5		
7	7.00	-234.5	-340.3	-195.7	-301.4		
8	8.00	-432.8	-644.3	-200.9	-306.6		
9	9.00	-636.3	-953.5	-206.1	-311.8		
10	10.00	-844.9	-1267.9	-13.1	7 -59.6		
11	11.00	-671.3	-1072.8	198.	6 138.1		
12	12.00	-493.5	-882.9	193.4	133.0		
13	13.00	-319.7	-698.2	188.3	3 127.8		
14	14.00	-151.1	-518.6	183.1	122.6		
15	15.00	13.0	-344.2	177.9	117.4		
16	16.00	174.5	-175.0	172.7	112.3		
17	17.00	332.8	-10.9	167.5	107.1		
18	18.00	488.0	135.9	162.4	101.9		
19	19.00	638.9	235.3	157.2	96.7		
20	20.00	786.0	329.4	152.0	91.5		
21	21.00	928.5	418.3	146.8	86.4		
22	22.00	1067.0	502.1	18.9	-10.2		
23	23.00	917.7	410.2	-85.3	-152.7		
24	24.00	763.7	312.8	-90.4	-157.9		
25	25.00	605.2	209.7	-95.6	-163.0		
26	26.00	441.9	101.0	-100.8	-168.2		
27	27.00	275.0	-13.5	-106.0	-173.4		
28	28.00	115.8	-133.1	-111.2	-178.6		
29	29.00	-45.8	-257.9	-116.3	-183.8		
30	30.00	-201.8	-388.8	-121.5	-188.9		
31	31.00	-325.9	-575.3	-126.7	7 -194.1		
32	32.00	-455.1	-770.5	-131.9	-199.3		
33	33.00	-589.6	-970.9	-137.0	-204.5		
34	34.00	-729.2	-1176.6	87.7	26.4		
35	35.00	-509.1	-832.4	341.6	5 217.5		
36	36.00	-294.2	-528.8	336.4	212.3		
37	37.00	-0.1	-271.5	331.2	207.1		
38	38.00	312.9	-28.9	184.8	117.0		
39	39.00	345.8	19.3	45.5	26.9		
40	40.00	374.1	62.2	40.4	21.8		
41	41.00	397.8	100.0	35.2	16.6		
42	42.00	416.9	125.3	30.0	11.4		

TABLE 6. ENVELOPES OF MAXIMUM VALUES (WORKING STRESS)

STA	DIST X	MAX + N	IOM MA	X - MOM	MAX + SHEAR	MAX - SHEAR
	(FT) (FT-K) (FT-K) (K) (F	()	
43	43.00	430.9	143.4	24.8	6.2	
44	44.00	439.6	156.4	19.7	1.1	
45	45.00	443.3	164.1	14.5	-4.1	
46	46.00	444.5	166.7	9.3	-9.3	
47	47.00	443.3	164.1	4.1	-14.5	
48	48.00	439.6	156.4	-1.1	-19.7	
49	49.00	430.9	143.4	-6.2	-24.8	
50	50.00	416.9	125.3	-11.4	-30.0	
51	51.00	397.8	100.0	-16.6	-35.2	
52	52.00	374.1	62.2	-21.8	-40.4	
53	53.00	345.8	19.3	-26.9	-45.5	
54	54.00	312.9	-28.9	-117.0	-184.8	
55	55.00	-0.1	-271.5	-207.1	-331.2	
56	56.00	-294.2	-528.8	-212.3	-336.4	
57	57.00	-509.1	-832.4	-217.5	-341.6	
58	58.00	-729.2	-1176.6	-26.4	-87.7	
59	59.00	-589.6	-970.9	204.5	137.0	
60	60.00	-455.1	-770.5	199.3	131.9	
61	61.00	-325.9	-575.3	194.1	126.7	
62	62.00	-201.8	-388.8	188.9	121.5	
63	63.00	-45.8	-257.9	183.8	116.3	
64	64.00	115.8	-133.1	178.6	111.2	
65	65.00	275.0	-13.5	173.4	106.0	
66	66.00	441.9	101.0	168.2	100.8	
67	67.00	605.2	209.7	163.0	95.6	
68	68.00	763.7	312.8	157.9	90.4	
69	69.00	917.7	410.2	152.7	85.3	
70	70.00	1067.0	502.1	10.2	-18.9	
71	71.00	928.5	418.3	-86.4	-146.8	
72	72.00	786.0	329.4	-91.5	-152.0	
73	73.00	638.9	235.3	-96.7	-157.2	
74	74.00	488.0	135.9	-101.9	-162.4	
75	75.00	332.8	-10.9	-107.1	-167.5	
76	76.00	174.5	-175.0	-112.3	-172.7	
77	77.00	13.0	-344.2	-117.4	-177.9	
78	78.00	-151.1	-518.6	-122.6	-183.1	
79	79.00	-319.7	-698.2	-127.8	-188.3	
80	80.00	-493.5	-882.9	-133.0	-193.4	
81	81.00	-671.3	-1072.8	-138.1	-198.6	
82	82.00	-844.9	-1267.9	59.6	13.7	
83	83.00	-636.3	-953.5	311.8	206.1	
84	84.00	-432.8	-644.3	306.6	200.9	
85	85.00	-234.5	-340.3	301.4	195.7	
86	86.00	-41.4	-41.4	158.5	105.6	

AUG 12, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 11
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

TABLE 6. ENVELOPES OF MAXIMUM VALUES (WORKING STRESS)

STA	DIST X (FT)	MAX + (FT-K) (MOM N FT-K)	/IAX - MON (K)	 1 MAX + SF (K) 	IEAR MAX - SHEAR
87	87.00	-23.3	-23.3	15.5	15.5	
88	88.00	-10.4	-10.4	10.4	10.4	
89	89.00	-2.6	-2.6	5.2	5.2	
90	90.00	0.0	0.0	1.3	1.3	
91	91.00	0.0	0.0	0.0	0.0	
92	92.00	0.0	0.0	0.0	0.0	
93	93.00	0.0	0.0	0.0	0.0	

AUG 12, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 12
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

TABLE 7. MAXIMUM SUPPORT REACTIONS (WORKING STRESS)

STA	DIST X	MAX +	REACT	MAX - REACT
(FT)	(K)	(K)	
				-
10	10.00	514.7	354	.6
34	34.00	554.9	364	.9
58	58.00	554.9	364	.9
82	82.00	514.7	354	.6

TABLE 5. MULTI-LANE LOADING SUMMARY (LOAD FACTOR) (*--CRITICAL NUMBER OF LANE LOADS)

MOMENT (FT-K)

AT STA	DEAD LD EFFECT	ORDE	POSITIVE LOAD AT LANE NEGATIVE LOAD A R MAXIMUM LANE STA ORDER MAXIMUM LA	T NE STA
6	-51.8 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 0.0 1 0.0 2 0.0 3 0.0 0*	
10	-1071.7 0 1 2 3 0*	0.0 0.0 0.0 0.0	0 -616.9 1 2 1 -616.9 1 2 2 0.0 3 0.0 0*	
22	737.4 0 1 2 3 0*	707.0 704.1 32.7 0.0	0 13 0 -116.8 2 36 1 12 1 -116.8 2 36 3 62 2 0.0 3 0.0 0*	
34	-979.2 0 1 2 3 0*	65.4 65.4 0.0 0.0	3 62 0 -477.1 0 18 3 62 1 -408.0 1 12 2 -296.4 2 32 3 0.0 2*	
38	144.3 0 1 2 3 0*	292.6 292.6 11.2 0.0	2 32 0 -205.9 1 9 2 32 1 -205.9 1 9 3 62 2 0.0 3 0.0 0*	
46	351.4 0 1 2 3 0*	242.7 242.7 0.0 0.0	2 36 0 -97.4 1 9 2 36 1 -97.4 1 9 2 -97.4 3 63 3 0.0 2*	
54	144.3 0 1 2 3 0*	292.6 292.6 11.2 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
58	-979.2 0 1 2 3 0*	65.4 65.4 0.0 0.0	1 9 0 -477.1 0 54 1 9 1 -408.0 3 60 2 -296.4 2 40 3 0.0 2*	

AUG 12, 2020	TEXAS DEPARTMENT OF TRANSPORTATION (TXDOT)	PAGE 14
CAP18	BENT CAP ANALYSIS Ver. 6.2 (Jul, 2011)	

MOMENT (FT-K)

AT	DEAD LD	LANE	POSITI	VE LO	DAD A	AT .	LA	NE	NEG	ATIVE	LOA	DAT	
SIA	FFFFCI	ORDER	MAXIN	/UM	LAN	ΕS	IA	OR	DER	MAXI	MUM	LANE	SIA
70	737 4												
/0	0	707.0	0 59	0	-116	8	2	36					
	1	704.1	3 60	1	-116	8	2	36					
	2	32.7	1 9	2	0.0	0	2	50					
	2	0.0	2	<u>د</u>	0.0								
	0*	0.0	0*	0	.0								
	0		0										
82	-1071.7												
	0	0.0	0	-61	6.9	3	70						
	1	0.0	1	-61	6.9	3	70						
	2	0.0	2	0	.0	-							
	3	0.0	3	0	0								
	0*	0.0	0*		.0								
	0		0										
86	-51.8												
	0	0.0	0	0	0								
	1	0.0	1	0	0								
	2	0.0	2	0	0								
	3	0.0	3	0	0								
	0*	0.0	0*		.0								
			5										

AUG 12, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 15
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

.....

SHEAR (K)

AT STA	DEAD LD EFFECT	LANE POSITIVE LOAD AT LANE NEGATIVE LOAD AT ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE STA
8	-255.0 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
12	176.7 0 1 2 3 0*	78.4 1 6 0 -9.7 2 36 78.4 1 6 1 -9.7 2 36 2.7 3 62 2 0.0 0.0 3 0.0 0*
32	-168.9 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
36	280.9 0 1 2 3 2*	153.2 0 28 0 -13.6 3 63 147.2 2 32 1 -13.6 3 63 53.7 1 12 2 0.0 0.0 3 0.0 0*
56	-280.9 0 1 2 3 0*	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
60	168.9 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
80	-176.7 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
84	255.0 0 1 2 3 0*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

AUG 12, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 16
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

REACTION (K)

AT STA	DEAD LE	O LANE	R MAXIMU	LOAD A	T LANE STA OR	NEGATIVE LOA	D AT LANE STA
10	457.5 0 1 2 3 0*	223.8 223.8 2.7 0.0	1 2 0 1 2 1 3 62 2 3 0*	-9.7 -9.7 0.0 0.0	2 36 2 36		
34	475.7 0 1 2 3 2*	205.0 166.8 146.3 0.0	0 22 2 32 1 12 3 0*	0 -16.3 1 -16.3 2 0.0 0.0	3 63 3 63		
58	475.7 0 1 2 3 2*	205.0 166.8 146.3 0.0	0 50 2 40 3 60 3 0*	0 -16.3 1 -16.3 2 0.0 0.0	19 19		
82	457.5 0 1 2 3 0*	223.8 223.8 2.7 0.0	3 70 3 70 1 9 2 3 0*	0 -9.7 1 -9.7 0.0 0.0	2 36 2 36		

AUG 12, 2020	TEXAS DEPARTMENT OF T	RANSPORTATION (TxDOT)	PAGE 17
CAP18	BENT CAP ANALYSIS	Ver. 6.2 (Jul, 2011)	

TABLE 6. ENVELOPES OF MAXIMUM VALUES (LOAD FACTOR)

STA	DIST >	(MAX +	MOM N	IAX - MON	MAX + SHEA	R MAX - SHEAR
	(FT)	(FT-K) (FT-K)	(K) ((K)	
-1	-1.00	0.0	0.0	0.0	0.0	
0	0.00	0.0	0.0	0.0	0.0	
1	1.00	0.0	0.0	0.0	0.0	
2	2.00	0.0	0.0	-1.6	-1.6	
3	3.00	-3.2	-3.2	-6.5	-6.5	
4	4.00	-12.9	-12.9	-12.9	-12.9	
5	5.00	-29.1	-29.1	-19.4	-19.4	
07	7.00	-51.8	-51.8	-134.0 249 E	-220.5	
6	2.00	-297.1	-462.1	-246.5	-435.0	
0	0.00	-546.6	1262.2	-255.0	-440.0	
10	10.00	-007.0	-1912	-201.5	-440.5	
11	11.00	-839.4	-15/2.1	277	3 171 /	
12	12.00	-597.4	-1278.9	277.	8 165.0	
13	12.00	-359.6	-1270.0	264	3 158 5	
14	14.00	-128.3	-771 5	257.8	152.0	
15	15.00	97.6	-527.5	251.0	145.6	
16	16.00	321.6	-290.0	244 9	139.1	
17	17.00	542.6	-59.0	238.4	132.6	
18	18.00	760.7	144.5	232.0	126.1	
19	19.00	973.9	267.4	225.5	119.7	
20	20.00	1183.0	383.9	219.0) 113.2	
21	21.00	1386.6	493.8	212.5	5 106.7	
22	22.00	1585.8	597.3	31.8	-19.1	
23	23.00	1365.1	476.9	-107.4	4 -225.4	
24	24.00	1138.6	349.5	-113.9	9 -231.9	
25	25.00	907.0	214.8	-120.4	-238.4	
26	26.00	669.5	72.9	-126.8	-244.8	
27	27.00	428.2	-76.6	-133.3	-251.3	
28	28.00	203.0	-232.5	-139.8	-257.8	
29	29.00	-23.8	-394.9	-146.3	-264.2	
30	30.00	-238.0	-565.4	-152.7	-270.7	
31	31.00	-394.0	-830.5	-159.2	-277.2	
32	32.00	-556.5	-1108.4	-165.	7 -283.7	
33	33.00	-725.4	-1392.8	-172.	1 -290.1	
34	34.00	-900.8	-1683.6	132.	6 25.2	
35	35.00	-626.4	-1192.1	488.	2 271.1	
36	36.00	-358.5	-769.1	481.8	264.6	
37	37.00	50.5	-424.3	475.3	258.1	
38	38.00	495.4	-102.8	262.1	143.6	
39	39.00	533.5	-38.0	61.6	29.0	
40	40.00	566.2	20.4	55.1	22.6	
41	41.00	593.4	/2.3	48.6	16.1	
42	42.00	615.2	104.9	42.2	9.6	
43	43.00	630.6	127.5	35.7	3.1	
44	44.00	639.4	143.7	29.2	-3.3	

45	45.00	641.9	153.4	22.7	-9.8
46	46.00	642.7	156.6	16.3	-16.3
47	47.00	641.9	153.4	9.8	-22.7
48	48.00	639.4	143.7	3.3	-29.2

AUG 12, 2020TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT)PAGE 18CAP18BENT CAP ANALYSISVer. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay (CONTINUED)

TABLE 6. ENVELOPES OF MAXIMUM VALUES (LOAD FACTOR)

STA	DIST X	MAX + N	10M MA	X - MOM	MAX + SHEAR	MAX - SHEAR
((FT) (FT-K) (F	-T-K) (K) (K	()	
49	49.00	630.6	127.5	-3.1	-35.7	
50	50.00	615.2	104.9	-9.6	-42.2	
51	51.00	593.4	72.3	-16.1	-48.6	
52	52.00	566.2	20.4	-22.6	-55.1	
53	53.00	533.5	-38.0	-29.0	-61.6	
54	54.00	495.4	-102.8	-143.6	-262.1	
55	55.00	50.5	-424.3	-258.1	-475.3	
56	56.00	-358.5	-769.1	-264.6	-481.8	
57	57.00	-626.4	-1192.1	-271.1	-488.2	
58	58.00	-900.8	-1683.6	-25.2	-132.6	
59	59.00	-725.4	-1392.8	290.1	172.1	
60	60.00	-556.5	-1108.4	283.7	165.7	
61	61.00	-394.0	-830.5	277.2	159.2	
62	62.00	-238.0	-565.4	270.7	152.7	
63	63.00	-23.8	-394.9	264.2	146.3	
64	64.00	203.0	-232.5	257.8	139.8	
65	65.00	428.2	-76.6	251.3	133.3	
66	66.00	669.5	72.9	244.8	126.8	
67	67.00	907.0	214.8	238.4	120.4	
68	68.00	1138.6	349.5	231.9	113.9	
69	69.00	1365.1	476.9	225.4	107.4	
70	70.00	1585.8	597.3	19.1	-31.8	
71	71.00	1386.6	493.8	-106.7	-212.5	
72	72.00	1183.0	383.9	-113.2	-219.0	
73	73.00	973.9	267.4	-119.7	-225.5	
74	74.00	760.7	144.5	-126.1	-232.0	
75	75.00	542.6	-59.0	-132.6	-238.4	
76	76.00	321.6	-290.0	-139.1	-244.9	
77	77.00	97.6	-527.5	-145.6	-251.4	
78	78.00	-128.3	-771.5	-152.0	-257.8	
79	79.00	-359.6	-1021.9	-158.5	-264.3	
80	80.00	-597.4	-1278.8	-165.0	-270.8	
81	81.00	-839.4	-1542.1	-171.4	-277.3	
82	82.00	-1071.7	-1812.0	90.0	9.6	
83	83.00	-807.0	-1362.2	446.5	261.5	
84	84.00	-548.8	-918.9	440.0	255.0	
85	85.00	-297.1	-482.1	433.6	248.5	
86	86.00	-51.8	-51.8	226.5	134.0	
87	87.00	-29.1	-29.1	19.4	19.4	
88	88.00	-12.9	-12.9	12.9	12.9	
89	89.00	-3.2	-3.2	6.5	6.5	

90	90.00	0.0	0.0	1.6	1.6	
91	91.00	0.0	0.0	0.0	0.0	
92	92.00	0.0	0.0	0.0	0.0	

AUG 12, 2020TEXAS DEPARTMENT OF TRANSPORTATION (TxDOT)PAGE 19CAP18BENT CAP ANALYSISVer. 6.2 (Jul, 2011)

PROB 1 (Spans L=54'-112'-54', Type TX54 Girder @ 8.0', 8" Slab, 2" O'lay (CONTINUED)

TABLE 6. ENVELOPES OF MAXIMUM VALUES (LOAD FACTOR)

STA (DIST X FT)	(MAX (FT-K)	+ MOM (FT-K)	MAX - MC (K)	OM MAX (K)	+ SHEAR	MAX - SHEAR
93	93.00	0.0	0.0	0.0	0.0		

TABLE 7. MAXIMUM SUPPORT REACTIONS (LOAD FACTOR)

STA	DIST X	MAX +	REACT	MAX - REACT
(FT)	(K)	(K)	
				-
10	10.00	726.1	445	5.8
34	34.00	788.8	456	5.2
58	58.00	788.8	456	5.2
82	82.00	726.1	445	5.8

4.5.15.4 Live Load Distribution Factor Spreadsheet

4.5.15.4.1 Spans 1 & 3

DDIDOF	County:	AIVI	Highway:	Any	Design:	BRG	Date:	0/10/20	2017	LHFU Spe
IVISION	C-S-J: Descrip:	ITBC Design Exar	nole 4. Span 1 &	3	Eile:	Ex4 Sp	Date: an1 distribution	ution factors.xl	Rev. 10/18 -	(No Interin 2 of 8
INTER	IOR BE	AM:			1 mar				Griddell	
Shear I	L Distrib	ution Per Lane (Table 4.6.2.2	3a-1):						
<u>onear</u>	Onela	ne Loaded		<u></u>						
	one Eu	Lever Bule	(Table 3.6.1	12)						
		ma - 0.6	25 * 1 2 -	0.750						
		Modify fo	r Skew	0.750						
		inicenty to	skew correc	tion =	1.227					
			ma = 0.750	* 1.227 =	0.920					
		Equation	ing unou							
		g = 0.36	$i + \left(\frac{S}{25}\right)$							
		q = 0.36	+ (8 / 25) =	0.680						
		Modify to	r Skew:							
			skew correc	tion =	1.227					
			g = 0.680 *	1.227 =	0.834					
		Range of Appl	icability (ROA) Checks	THE P					
		Check S:	3.5' ≤ 8.0' ≤	16.0'	OK					
		Check te:	4.5" ≤ 8.0"	≤ 12.0"	OK					
		Check L:	20' ≤ 50.3' :	\$ 240'	OK					
		Check N	. 6≥4		OK					
		Use Equation	from Table 4.6	52238-11	ecause all	oriteria is	SOK			
		gV _{int1} =	0.834			- 1 const. (de) (
	Two or	More Lanes Lo	aded							
		Lever Rule	(Table 3.6.1	.1.2)						
		mg = Ma: Modify fo	x(0.875 * 1.0, or Skew:	0.875 * 0.8	5, 0.875 * 0	.65) =	0.875			
			skew correc	tion =	1.227					
			mg = 0.875	* 1.227 =	1.074					
		Equation	1 - 2 - 1 -	> 2.0						
		q = 0.2 -	$+\left(\frac{s}{s}\right)-\left(\frac{s}{s}\right)$							
			(12) (35	5)						
		g = 0.2 +	(8 / 12) - (8 /	35)^2.0 =	0,814					
		Modify to	r Skew:		1 007					
			skew correc		1.22/					
			g = 0.814 "	1.227 =	0.999					
		Range of Appl	icability (ROA) Checks	(same as t	or one l	ane loade	ed)		
		Use Equation	from Table 4.6	5.2.2.3a-1 b	ecause all	criteria is	S OK.			
		$gV_{int2+} =$	0.999							
	TXDOT	Policy states gV	Interior must be	≥ m·N _L ÷N _b						
		$m \cdot N_L \div N_b =$	0.85*3/6		0.425					
	ls W≥2	20ft ? Yes								
	TXDOT	Policy states that	t if $W < 20$ ft, g	Vinterior is th	e Maximun	n of: gV _e	iii and m	NL+Nb.		
>>	TXDOT	Policy states that	t if W≥20ft, g	Vinletior is th	e Maximun	n of: gV _{in}	n11, gVint2+	m·NL÷No.		
	1									

TXDOT	County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
DIVISION	C-S-J: Descrip	ITBC Design Exa	ID #:	8 3	Ck Dsn:	Ex4 So	Date:	ution factors.	Rev. 10/18	3 of 8
INTER	IOR BE	ΔM·			D. HOL				ondot.	0010
Momen	t I I Distr	ibution Per Lan	e (Table 4.6	2.2.2h-1)-						
Momen	Onela	ne Loaded	6 (Tubic 4.0.	L.L.LU ().						
	One Eu	Lever Bule	(Table 3.6	112)						
		ma = 0 f	125 * 1 2 -	0.750						
		Modify f	or Skew:	0.700						
		(noon) i	skew corr	ection =	0.676					
			ma = 0.75	0 * 0.676 =	0.507					
		Equation			~ 0.1					
		g = 0.0	$6 + \left(\frac{S}{14}\right)^{6\pi}$	$\left(\frac{S}{L}\right)^{0.3} \left(\frac{K_s}{12L}\right)^{0.3}$	r (1)					
		g = 0.06	+ (8/14)^0.4	* (8/50.3)^0.3	3* (1,271,6	11/(12*	50.3*8^3))^0.1 =	0.591	
		Modify f	or Skew:							
			skew corre	ection =	0.676					
			g = 0.591	* 0.676 =	0.400					
		Range of App	licability (RC	A) Checks						
		Check S	3: 3.5' ≤ 8.0	'≤ 16.0'		OK				
		Gheck t	: 4.5" ≤ 8.0	" ≤ 12.0"		OK				
		Check L	: 20'≤50.3	l' ≤ 240'		OK				
		Check N	l _b : 6≥4			OK				
		Check K	kg: 10,000 ≤	1,271,611 ≤ 7	,000,000	OK				
		Use Equation	from Table :	4.6.2.2.2b-1 b	ecause all	criteria i	s OK			
		gM _{int1} =	0.400							
	Two or	More Lanes Lo	baded							
		Lever Rule	(Table 3.6	.1.1.2)						
		mg = Ma	ax(0.875 * 1.0	0, 0.875 * 0.8	5, 0.875 * 0	.65) =	0.875			
		Modify f	or Skew:							
			skew corre	ection =	0.676					
			mg = 0.87	5 * 0.676 =	0.592					
		Equation	(5)0	6 (c) 0.2 (K)0.1					
		g = 0.0	$75 + \left(\frac{3}{9.5}\right)$	$\left(\frac{3}{L}\right)\left(\frac{1}{12}\right)$	$\left(\frac{Lt_{g}^{3}}{Lt_{g}^{3}}\right)$					
		g = 0.07 Modify f	5 + (8/9.5)^0 or Skew:	.6 * (8/50.3)^().2 * (1,271	,611/(12	2*50.3*8^	3))^0.1 =	0.795	
			skew corre	ection =	0.676					
			g = 0.795	* 0.676 =	0.537					
		Range of App	licability (RC	A) Checks	(same as	for one I	ane load	ed)		
		Use Equation	from Table 4	4.6.2.2.2b-1 b	ecause all	oriteria i	s OK.			
		gM _{int2+} =	0.537							
	TXDOT	Policy states gl	Anterior must b	be≥m·NL÷Nb						
		$m \cdot N_L \div N_b =$	0.85 * 3 / 6	6 =	0.425					
	ls W≥2	20ft ? Yes								
	TXDOT	Policy states th	at if W < 2011	, gM _{Internar} is th	ne Maximur	n of: gM	int and m	NL+NL+ND-		
>>	TXDOT	Policy states th	at if W ≥ 20ft	gMinitation is U	e Maximun	n ol: gM	gMmie	m·NL÷No	x	
	gMinte	erior = 0.537								

TXDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/15/20	2017 LRFD Spec
IVISION	C-S-J:	ITBC Design Exa	ID #:	xxxx & 3	Ck Dsn:	Ex4 So:	Date:	ition factors x	Rev. 10/18 - (No Interit Sheet! 4 of 8
EXTER	NOR BE	EAM.			Ti na.	Last opt			Shoel 4010
Shoarl	I Dietrib	ution Per Lane	Table 4.6.2 S	2 3h-11.					
onear L	Onela	ne Loaded	114016 4.0.2.4						
	One La	Lever Bule	(Table 3.6	112)					
		ma - 01	625 * 1 0 -	0.625	TYDOTUS		Vela area	ance Factor	of 1 D for age
		Modify f	or Skow	0.02.0	lane loade	d on the	exterior	beam.	or no for one
		Nicolity I	skew corre	ection -	1 227				
			ma = 0.62	5*1 227 =	0.767				
		Lise Lover B	ile as por AA	SHTO I BEI	Table 4 6 S	2.2h.1			
		aV =	0 767	on o chi i	1 auto 4.0/2				
	S	9 • exti	0.701						
	Two or	More Lanes L	oaded						
		Lever Rule	(Table 3.6	.1.1.2)					
		mg = Ma	ax(0.625 * 1.0	0, 0.625 * 0.8	35, 0.625 * 0.	.65) =	0.625		
		Modify t	or Skew:						
			skew corre	ection =	1,227				
		6.110	mg = 0.623	5 * 1.227 =	0.767				
		Equation		Sec. Sec.					
			t. b/w GL web	to curb					
		d _e = OH	- Hall Width						
		0 ₈ =	311 - 111 =	2.01	n.				
		e = 0.6	$+\left(\frac{d_{e}}{d_{e}}\right)$						
			(10)	0.000					
		e = 0.6	+ (2.0/10) =	0.800					
		g = e*g\	Vint2+Eq						
		g = 0.80	= 999.0 * 0	0.799					
		Skew C	orrection is in	cluded in gV	(interior).				
		Range of App	blicability (RO	A) Checks	Interior	ROA is	implicitly	applied to the	he exterior beam.
		Check I	nterior Beam	ROA:	OK				
		Check c	d _e : -1.0' ≤ 2.0	' ≤ 5.5'	OK				
		Check N	N _b : 6 ≠ 3		OK				
		Use Equation	from Table 4	.6.2.2.3b-1	because all o	criteria is	OK.		
		$gV_{ext2+} =$	0.799						
	TXDOT	Policy states g	VExtenar must b	e ≥ gV _{interior}					
		gV _{interior} =	0.999						
	TXDOT	Policy states g	VExterior must b	$e \ge m \cdot N_L \div N_L$	b				
		$m \cdot N_L \div N_b =$	0.85*3/6	3 =	0.425				
	ls OH ≤	S/2 ? Yes							
	ls W ≥ 2	20ft? Yes							
>>	TXDOT	Policy states th	at if OH ≤ S/2	2, gV _{Exterior} is	gV _{intenor} .				
	TXDOT	Policy states th	at if OH > S/a	2 and W < 20	off, gV _{Exterior} i	s the Ma	aximum o	f; gV _{ext1} , gV	interior, and
		$m \cdot N_L \div N_b.$							
	TXDOT	Policy states th	at if OH > S/2	2 ans W ≥ 20	oft, gV _{Exterior} i	s the Ma	iximum o	ft gV _{ext1} , gV	ext2+, gVinterior
		and m·NL+Nb	-						
	gV _{exte}	erior = 0.999	10						

```
TXDOT
BRIDGE
                     ANY
           County:
                                      Highway
                                                     Any
XXXX
                                                                     Design:
                                                                                        Date
                                                                                                                     2017 LRFD Spel
                     XXX-XX-XXXX
                                                                                                                    10/18 - (No Inte
                                                                     Ck Dsn:
                                      ID #
                                                                                        Date
                                     mple 4, Span 1 &
                    ITBC Design Exa
DIVISION
                                                                                                                            5 of 8
 EXTERIOR BEAM:
Moment LL Distribution Per Lane (Table 4.6.2.2.2d-1):
          One Lane Loaded
                     Lever Rule
                           mg = 0.625 * 1.0 =
                                                    0.625
                                                                 TxDOT uses a multiple presence factor of 1,0 for one
                                                                 lane loaded on the exterior beam.
                           Modify for Skew:
                                      skew correction =
                                                                    0.676
                                      mg = 0.625 * 0.676 =
                                                                    0.423
                     Use Lever Rule as per AASHTO LRFD Table 4.6.2.2.2d-1.
                     gMext1 =
                                      0.423
          Two or More Lanes Loaded
                    Lever Rule
                                      (Table 3.6.1.1.2)
                           mg = Max(0.625 * 1.0, 0.625 * 0.85, 0.625 * 0.65) =
                                                                                        0.625
                           Modify for Skew:
                                      skew correction =
                                                                    0.676
                                      mg = 0.625 * 0.676 =
                                                                     0.423
                     Equation
                          e = 0.77 + \left(\frac{d_e}{9.1}\right)
                          e = 0.77 + (2.0/9.1) =
                                                                 0.990
                          g = e^*gM_{int2+Eq}
                           g = 0.99 * 0.537 =
                                                     0.532
                           Skew Correction included in gM(interior).
                     Range of Applicability (ROA) Checks
                                                                     Interior ROA is implicitly applied to the exterior beam.
                          Check Interior Beam ROA:
                                                                 OK
                           Check d_e: -1.0' \leq 2.0' \leq 5.5'
                                                                OK
                           Check N<sub>b</sub>: 6 ≠ 3
                                                                 OK
                     Use Equation from Table 4.6.2.2.2d-1 because all criteria is OK.
                     gM_{ext2+} =
                                      0.532
          TxDOT Policy states gM<sub>Exterior</sub> must be ≥ gM<sub>interior</sub>
                     gMinterior =
                                     0.537
          TxDOT Policy states gM_{Exterior} must be \ge m \cdot N_L \div N_b
                     m \cdot N_L \div N_b = 0.85 * 3 / 6 =
                                                                    0.425
          Is OH ≤ S/2 ? Yes
          Is W ≥ 20ft ? Yes
      >> TxDOT Policy states that if OH ≤ S/2, gM<sub>Exterior</sub> is gM<sub>interior</sub>.
          TxDOT Policy states that if OH > S/2 and W < 20ft, gM<sub>Exterior</sub> is the Maximum of: gM<sub>ext1</sub>, gM<sub>interior</sub>, and
                     m·NI ÷Nn
          TxDOT Policy states that if OH > S/2 ans W \ge 20ft, gM<sub>Extensi</sub> is the Maximum of: gM<sub>ext1</sub>, gM<sub>ext2+</sub>, gM<sub>mienor</sub>
                     and m·NL+NE
           gM<sub>exterior</sub> = 0.537
```


TXDOT County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
DIVISION Descrip:	ITBC Design Exa	nple 4, Span 1 &	3	File:	Ex4 Span	1_distribu	ution factors.xl	Sheet:	7 01 8
LEVER RULE	S	= 8.0 ft							
INTERIOR (con't)									
For 18 ≤ S < 22: One Lane =	$\frac{16}{32}\left(1+\frac{S-6}{S}\right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{S}$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{s-4}{s} + \frac{s-10}{s}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{S} + \frac{S-16}{S}$			= 0.625		
For 22 ≤ S ≤ 24: One Lane =	$\frac{16}{32}\left(1+\frac{S-6}{S}\right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\left(\frac{-18}{s}\right)$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{S} + \frac{S-16}{S}$	$+\frac{S-22}{S}$		= -1.500		
				P T T T T T T T T T T T T T T T T T T T			Bail Width	S = OH = - BW -	8.0 ft 3.0 ft
Ļ	он — — — —	- s					X = S+OH-F	= HW = RW-2ft =	8.0 R
For X < 6: One Lane =	$\frac{16}{32} \left(\frac{X}{S} \right)$						= 0.500		
For 6 ≤ X < 12: One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-C}{S}\right)$	•)					= 0.625		
For 12 ≤ X < 18; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$)					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$+\frac{X-12}{S}$					= 0.375		

RIDGE County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017 LRFD Spe
IVISION Descrip:	ITBC Design Exa	mple 4, Span 1	& 3	File:	Ex4 Span	Date:	ution_factors.x	Sheet: 8 of 8
10.120 Z.110								
LEVER RULE								
EXTERIOR (con't) S:	= 8.0 f	Ê	OH =	3.0 ft	0		
	RW	= 1.0 f	X = S + C	OH-RW-2ft =	8.0 ft			
For 18 ≤ X < 24:	16/V V-	63						
One Lane =	$\frac{10}{32}\left(\frac{x}{s} \pm \frac{x-s}{s}\right)$	<u> </u>					= 0.625	
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\left(\frac{18}{S}\right)$				= =0.250	
For 24 ≤ X < 30:	167 Y Y -	5)						
One Lane =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-s}{s}\right)$	<u> </u>					= 0.625	
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X-12}{S} + \frac{X}{S}$	$\left(\frac{t-18}{s}\right)$				= -0.250	
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-1}{S}\right)$	$\frac{6}{S} + \frac{X - 12}{S} + \frac{3}{S}$	$\frac{x-18}{s} + \frac{x-2}{s}$	<u>14</u>)			= -1.250	
For 30 ≤ X < 36:	16 (X X -)	6)						
One Lane =	$\frac{13}{32}\left(\frac{\pi}{s} + \frac{\pi}{s}\right)$	5					= 0.625	
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{s} + \frac{x-12}{s} + \frac{x}{s}$	$\left(\frac{-18}{s}\right)$				= -0.250	
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-1}{S}\right)$	$\frac{6}{S} + \frac{X - 12}{S} + \frac{S}{S}$	$\frac{C-18}{S} + \frac{X-2}{S}$	$\frac{4}{s} + \frac{X-30}{S}$			= -2.625	
For 36 ≤ X < 42: One Lane =	$\frac{16}{22}\left(\frac{X}{c}+\frac{X-c}{c}\right)$	<u>e</u>)					= 0.625	
	16/X X = 0	5 X - 12 X	(-18)					
Two Lanes =	$\frac{1}{32}\left(\frac{1}{s} + \frac{1}{s}\right)$	\$	S)				= -0.250	
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-S}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{C-18}{S} + \frac{X-2}{S}$	$\frac{4}{4} + \frac{X-30}{S} \bigg)$			= -2.625	
Four Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{6}{5} + \frac{X-12}{S} + \frac{3}{5}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{4}{S} + \frac{X-30}{S} + \frac{1}{S}$	$\left(\frac{x-36}{s}\right)$		= -4.375	
For 42 ≤ X ≤ 48: One Lane =	$\frac{16}{32}\left(\frac{x}{s} + \frac{x}{s}\right)$	<u>6</u>)					= 0.625	
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\left(\frac{18}{5}\right)$				= -0.250	
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{4}{s} + \frac{\dot{X} - 30}{s} \bigg)$			= -2.625	
Four Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-S}{S}\right)$	$\frac{6}{5} + \frac{X-12}{S} + \frac{2}{S}$	$\frac{x-18}{s} + \frac{x-2}{s}$	$\frac{4}{S} + \frac{X - 30}{S} + \frac{1}{S}$	$\frac{X-36}{S} + \frac{X}{S}$	$\left(\frac{-42}{s}\right)$	= -6.500	
INTERIOR		-		EXTER	IOR			
One Lane Loaded		= 0.625		One La	ne Loade	d	i e	0.625
Two Lanes Loade	d	= 0.875		Two La	nes Load	ed		0.625
Three Lanes Load	led	- 0.875		Three L	anes Loa	ded		0.625
Four Lanes Loads	h	- 0.875		Fourts	nee Load	bol	1.12	A COE

4.5.15.4.2 Span 2

DIDOC	County.	ANY OU DOUD	Highway:	Алу	Design:	BRG	Date:	0/10/20	2017	LHFD Spe
IVISION	C-S-J: Descrip:	ITBC Design Exa	ID #: mple 4. Span 2	XXXX	Ck Dsn: File:	Ex4 Sp	Date: an2 distribution	ution factors.xl	Rev. 10/18 -	2 of 8
INTER	IOR BE	AM:			L. Her				Grident	
Shear I	L Distrib	ution Per Lane (Table 4622	3a-1):						
<u>onour</u>	Onela	ne Loaded	10010 110.0.0.	<u>ou 17.</u>						
	one Eu	Lever Bule	(Table 3.6.1	12)						
		ma = 0.6	25 * 1.2 =	0.750						
		Modify fo	r Skew:							
			skew correc	tion =	1.284					
			ma = 0.750	* 1.284 =	0.963					
		Equation								
		g = 0.36	$5 + \left(\frac{S}{25}\right)$							
		g = 0.36	+ (8 / 25) =	0.680						
		Modify fo	or Skew:							
			skew correc	tion =	1.284					
			g = 0.680 *	1.284 =	0.873					
		Range of App	licability (ROA) Checks						
		Check S	3.5' ≤ 8.0' ≤	16.0'	OK					
		Check ts	4.5" ≤ 8.0"	≤ 12.0"	OK					
		Check L	20' ≤ 106.5	' ≤ 240'	OK					
		Check N	5 6≥4		OK					
		Use Equation	from Table 4.	6.2.2.3a-1 k	ecause all	criteria is	S OK			
		gV _{int1} =	0.873							
	Two or	More Lanes Lo	aded							
		Lever Rule	(Table 3.6.1	.1.2)						
		mg = Ma Modify fo	x(0.875 * 1.0, or Skew:	0.875 * 0.8	5, 0.875 * 0	.65) =	0.875			
			skew correc	tion =	1,284					
			mg = 0.875	* 1.284 =	1.124					
		Equation	102 10	> 2.0						
		q = 0.2	$+\left(\frac{s}{12}\right) - \left(\frac{s}{21}\right)$	-						
		- 00	(12) (35		0.014					
		g = 0.2 +	(8/12) - (8/	35)~2.0 =	0,814					
		would be	skew.correc	tion -	1 284					
			a = 0.814 *	1 284 -	1.045					
		Bange of App	licability (BOA	Chocks	/samo as 1	or one l	ane load	(be		
		Hange or App	from Toble //	2 0 0 0 0 1	(Same as i	or one i		suj		
		gV _{int2+} =	1.045	0.2.2.98-11	euduse all	unteria i:	S UN.			
	TXDOT	Policy states gV	Interior must be	≥ m·NL÷Nb						
		$m \cdot N_L \div N_b =$	0.85*3/6	-	0.425					
	ls W≥2	20ft ? Yes								
	TXDOT	Policy states the	at if $W < 20$ ft, g	gV _{interior} is th	ne Maximun	n of: gV _e	in and m	NL+Nb.		
>>	TXDOT	Policy states that	at if $W \ge 20$ ft, g	gV _{Interior} is th	ne Maximun	n of: gV _{in}	n11, gVint2+	m-NL÷No.		
	-1/	1 0 4 5								

TXDOT	County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
DIVISION	C-S-J: Descrip	ITBC Design Exa	ID #: mole 4. Span 2	XXXX	Ck Dsn:	Ex4 So	Date:	ution factors	Rev. 10/18	- (No Interin 3 of 8
INTER	IOR BE	AM·			D. HOL				in ondou	0010
Momen	t I I Dist	ribution Per Lan	e (Table 4.6	2.2.2h-1):						
Momen	Onela	ne Loaded	C [140/C 4.0.	2.2.20 1).						
	One Eu	Lever Bule	(Table 3 F	112)						
		ma = 0 f	125 * 1 2 -	0.750						
		Modify f	or Skew:	0.750						
		thoury i	skew corr	ection =	0.815					
			ma = 0.75	0 * 0.815 =	0.611					
		Equation			~ 0.1					
		g = 0.0	$6 + \left(\frac{S}{14}\right)^{0.4}$	$\left(\frac{S}{L}\right)^{0.5} \left(\frac{K_s}{12L_s}\right)^{0.5}$	<u>r</u>					
		g = 0.06	+ (8/14)^0.4	* (8/106.5)^0	.3 * (1,271,	611/(12	106.5*8	^3))^0.1 =	0.453	
		Modify f	or Skew:							
			skew corr	ection =	0.815					
			g = 0.453	* 0.815 =	0.369					
		Range of App	licability (RC	A) Checks						
		Check S	3: 3.5' ≤ 8.0	'≤ 16.0'		OK				
		Gheck t	: 4.5" ≤ 8.0)" ≤ 12.0"		OK				
		Check L	: 20'≤106	.5' ≤ 240'		OK				
		Check N	l _b : 6≥4			OK				
		Check K	_g : 10,000 ≤	1,271,611 ≤ 7	,000,000	OK				
		Use Equation	from Table	4.6.2.2.2b-1 b	ecause all	criteria i	s OK			
		gM _{int1} =	0.369							
	Two or	More Lanes Lo	baded							
		Lever Rule	(Table 3.6	5.1.1.2)						
		mg = Ma	ax(0.875 * 1.	0, 0.875 * 0.8	5, 0.875 * 0	.65) =	0.875			
		Modify f	or Skew:							
			skew corr	ection =	0.815					
			mg = 0.87	5 * 0.815 =	0.713					
		Equation	(5)	1.6 (s) 0.2 (K)0.1					
		g = 0.0	$75 + \left(\frac{5}{9.5}\right)$	$\left(\frac{3}{L}\right)\left(\frac{1}{12}\right)$	$\left(\frac{l_{g}}{Lt_{s}^{3}}\right)$					
		g = 0.07 Modify f	5 + (8/9.5)^0 or Skew:	0.6 * (8/106.5)	0.2 * (1,27	1,611/(1	2*106.5*	8^3))^0.1 =	0.649	
			skew corr	ection =	0.815					
			g = 0.649	* 0.815 =	0.529					
		Range of App	licability (RC	DA) Checks	(same as	for one I	ane load	ed)		
		Use Equation	from Table	4.6.2.2.2b-1 b	ecause all	criteria i	s OK.			
		gM _{int2+} =	0.529							
	TXDOT	Policy states gl	Ainterior must I	be≥m·NL÷Nb						
		$m \cdot N_L \div N_b =$	0.85 * 3 /	6 =	0.425					
	ls W ≥ 2	20ft ? Yes								
	TXDOT	Policy states th	at if W < 201	t, gM _{interior} is th	ne Maximur	n of: gM	Inti and m	NL+NL+Nb-		
>>	TXDOT	Policy states th	at if W ≥ 20F	l, gM _{interior} is ll	e Maximun	n oli gM	man gMinte	++ m·NL÷Nb		
	gMinte	arior = 0.529								

XDOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
IVISION	C-S-J: Descrip	ITBC Design Fig	ID #: ample 4, Span 2	XXXX	Ck Dsn:	Ex4 So	Date:	ution factors vi	Rev. 10/18 -	4 of 8
EXTER	IOR BE	AM.			Trings	Last opt			Ondot.	4010
Shear I	Distrib	ution Per Lane	(Table 4.6.2.5	3h-11						
oncar c	Onela	ne Loaded	11000 4.0.2.2							
	One Eu	Lever Bule	(Table 3.6	1.1.2)						
		ma = 0.0	625 * 1.0 =	0.625	TYDOTUS	es a mul	tinle pres	ence factor	of 1 0 for a	de.
		Modify f	or Skew:	0.040	lane loade	d on the	exterior	beam.	ur na iar a	(IP)
			skew corre	ection =	1.284					
			ma = 0.625	5*1.284 =	0.803					
		Use Lever Bi	ile as per AA	SHTOLBED	Table 4.6.2	2.3b-1				
		aVert =	0.803	2002 2000						
		Maria Lamas L.	and a d							
	I WO OF	More Lanes Lo	VTeble 2.C	1101						
		Lever Hule	(Table 3.6.	1.1.2)	E 0 005 * 0	CEL	O PDE			
		Modify f	ax (0.025 1.0	, 0.025 0.0	5, 0.025 0.	.03) =	0.020			
		NOUTY 1	skow corre	ection -	1 284					
			mn - 0.62	5 1 284 -	0.803					
		Equation	mg = 0.02.	1.204-	0.000					
		d - dist	h/w CI web	to curb						
		$d_e = OH$	- Bail Width	to ourb						
		d. =	3ft - 1ft =	201	i.					
		-6	(d)							
		e = 0.6	$+\left[\frac{\alpha_{e}}{10}\right]$							
		e-06.	+ (2 0/10) -	0.800						
		0 = 0.0	/	0.000						
		g = e gv	int2+Eq	0.000						
		g = 0.80	0 1.045 =	0.836	linteries)					
		Skew C	orrection is in		(intenor).	DOAL			and the second	
		Range of App	ntorior Poom	A) Checks	Interior	HUAIS	implicitiy	applied to th	te exterior t	beam.
		Check		1 < 5 5'	OK					
		Check N	$h_{e^{-1.0} \le 2.0}$	2 0.0	OK					
		Lise Equation	from Table /	6223h11	acquea all r	vritorio is	OK			
		aV	0.836	.0.2.2.00-11	lecause and	anena is	OR.			
	T-DOT	g • ext2+ -	0.000							
	IXDOT	Policy states g	VEdenar must b	e 2 gV interior						
	TUDOT	gvinterior =	1.045	A. M. M.						
	TXDOT	m N :N -	COF to / C	e ≤ m·w[÷w[0.405					
	-		0.85 376) =	0.420					
	Is W > 1	20ft ? Yes								
>>	TXDOT	Policy states th	at if OH ≤ S/2	QVENTATION IS	gV _{interior}					
	TXDOT	Policy states th	at if OH > S/2	and W < 20	It, gV Existing I	s the Ma	aximum o	f: gVavia aV	interior, and	
	Conce do	m·Ni÷Nn.			Chighter -			- W WIT DI	Contract Local	
	TXDOT	Policy states th	at if OH > S/2	ans W≥20	ft, qV _{Externe}	s the Ma	ximum o	ft gVexti, gV	exiza, qVinterio	
	and the second second	and m N +N		100.000 0.00	Ser Paterini,	E NOT OUT		9 . BALL 3 .	enter er - milling	
		SHU HINN TINE								

ADOT	County:	ANY	Highway:	Алу	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
IVISION	C-S-J: Descrip	ITBC Design Exa	ID #: mole 4. Span 2	XXXX	Ck Dsn:	Ex4 So	Date:	ition factors x	Rev. 10/18 -	(No Interin 5 of 8
EXTER	NOR BE	AM:	aniple if opentia		D. no.				Ondota	0 01 0
Momen	t I I Dist	ribution Per Lan	e (Table 4.6.2	2 2d-1):						
moment	Onela	ne Loaded	0 11000 4.0.	inches ().						
	Unit Lu	Lever Bule								
		mg = 0.0	525 * 1.0 =	0.625	TXDOT US	es a mul	tiple pres	sence factor	of 1.0 for a	ñe.
		Modify f	or Skew:		lane loade	d on the	exterior	beam.	er ne ler e	(IEC
			skew corre	ction =	0.815					
			mg = 0.625	5 * 0.815 =	0.509					
		Use Lever Ru	le as per AAS	SHTO LRFD	Table 4.6.2	2.2d-1.				
		gM _{ext1} =	0.509							
	Two or	More Lanes L	naded							
		Lever Rule	(Table 3.6.	1.1.2)						
		mg = Ma	ax(0.625 * 1.0	. 0.625 * 0.8	35, 0.625 * 0	.65) =	0.625			
		Modify f	or Skew:			and the				
			skew corre	ction =	0.815					
			mg = 0.625	5 * 0.815 =	0.509					
		Equation								
		0.7	$\frac{d}{d_e}$							
		e = 0.7	(+(9.1)							
		e = 0.77	+ (2.0/9.1) =		0.990					
		g = e*gN	Aint2+Eq							
		g = 0.99	* 0.529 =	0.524						
		Skew G	orrection inclu	ided in gM(i	nterior).					
		Range of App	licability (RO	A) Checks	Interior	ROA is	implicitly	applied to th	ne exterior b	beam.
		Check I	nterior Beam	ROA:	OK					
		Check d	l _e : -1.0' ≤ 2.0'	'≤ 5.5'	OK					
		Check N	l _b : 6 ≠ 3		OK					
		Use Equation	from Table 4	6.2.2.2d-1	because all o	criteria is	OK			
		gM _{ext2+} =	0.524							
	TxDOT	Policy states gl	M _{Exterior} must b	$e \ge gM_{interior}$						
		gM _{interior} =	0.529							
	TXDOT	Policy states gf	M _{Exterior} must b	e≥m·N _L ÷N	ь					
		$m \cdot N_L \div N_b =$	0.85 * 3 / 6	=	0.425					
	ls OH ≤	S/2 ? Yes								
	ls W ≥ 2	20ft? Yes								
>>	TXDOT	Policy states th	at if $OH \leq S/2$, givi _{Exterior} is	gMinterior:	the M	automore a	ti al la al	A and	
	TXDOT	m M . M	at 11 OFI > 5/2		Jit, giviExterior	is the Ma	aximumic	or: giviexit, gi	Minterior, and	
	TYDOT	Policy states th	at if OH > SP	anc W > 20	H all	r the M	avimum c	t all al	4	
	TAUGT	and m.N. ±N.	unii 011- 012		And And Extension		annunn u	Simexiii Si	rext2++ 9141mle	norr
	oM.	0.520								
	giviext	erior = 0.529								

TXDOT County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017	LRFD Spec
DIVISION Descrip:	ITBC Design Exar	nple 4, Span 2	10000	File:	Ex4_Span	2_distribu	ution factors.xl	Sheet:	7 of 8
LEVER RULE	S	= 8.0 ft							
INTERIOR (con't)									
For 18 ≤ S < 22: One Lane =	$\frac{16}{32} \left(1 + \frac{S-6}{S} \right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right.$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{s-4}{s} + \frac{s-10}{s}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\left(\frac{-18}{s}\right)$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{s} + \frac{s-16}{s}$			= 0.625		
For 22 ≤ S ≤ 24; One Lane =	$\frac{16}{32} \left(1 + \frac{S-6}{S} \right)$						= 0.625		
Two Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$)				= 0.750		
Three Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\left(\frac{-18}{s}\right)$			= -0.125		
Four Lanes =	$\frac{16}{32}\left(1+\frac{S-6}{S}+\right)$	$\frac{S-4}{S} + \frac{S-10}{S}$	$+\frac{S-12}{S}+\frac{S}{S}$	$\frac{-18}{S} + \frac{S - 16}{S}$	$+\frac{S-22}{S}$		= -1.500		
								S = OH =	8.0 ft 3.0 ft
L	он — — — — —	s		. milja			Rail Width X = S+OH-F	= RW = RW-2ft =	1.0 ft 8.0 ft
For X < 6: One Lane =	$\frac{16}{32}\left(\frac{X}{S}\right)$						= 0.500		
For 6 ≤ X < 12; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-\ell}{S}\right)$	·)					≈ 0.625		
For 12 ≤ X < 18; One Lane =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$)					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$+\frac{X-12}{S}$					= 0.375		
County:	ANY	Highway:	Any	Design:	BRG	Date:	8/15/20	2017 LRFD S	Spece
--------------------------------	---	--	---------------------------------	--	--------------------------------	------------------------------	------------------	-------------	-------
IVISION Descrip:	ITBC Design Exa	mple 4, Span 2	14444	File:	Ex4 Spana	2_distrib	ution_factors.xl	Sheet: 8 of	8
10.120 Z.110									
LEVER RULE									
EXTERIOR (con't) S =	= 8.0 ft		OH =	3.0 ft				
	RW =	= 1.0 ft	X = S + C	H-RW-2ft =	8.0 ft				
For 18 ≤ X < 24:	K/V V	63							
One Lane =	$\frac{10}{32}\left(\frac{x}{s} \pm \frac{x-s}{s}\right)$	<u>*)</u>					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{5} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{-18}{S}$				= -0.250		
For 24 ≤ X < 30:	167 X X-1	5)							
One Lane =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-s}{s}\right)$	2)					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{-18}{S}$				= -0.250		
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-1}{S}\right)$	$\frac{6}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{-18}{S} + \frac{X-2}{S}$	$\frac{4}{2}$			= -1.250		
For 30 ≤ X < 36:	16 (X X -)	5)							
One Lane =	$\frac{13}{32}\left(\frac{\pi}{s} + \frac{\pi}{s}\right)$	-)					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X-12}{S} + \frac{X}{S}$	$\frac{-18}{s}$				= -0.250		
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{-18}{S} + \frac{X-2}{S}$	$\frac{4}{s} + \frac{X-30}{S}$			= -2.625		
For 36 ≤ X < 42: One Lane =	$\frac{16}{22}\left(\frac{X}{c} + \frac{X-c}{c}\right)$	2)					= 0.625		
	$\frac{16}{x} = \frac{16}{x}$	x =12 x	-18)						
Two Lanes =	$\frac{10}{32}\left(\frac{x}{s} + \frac{x-s}{s}\right)$	$\frac{1}{s} + \frac{x - 12}{s} + \frac{x}{s}$	s)				= -0.250		
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{-18}{S} + \frac{X-2}{S}$	$\frac{4}{9} \div \frac{X-30}{S}$			= -2.625		
Four Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{-18}{S} + \frac{X-2}{S}$	$\frac{4}{S} + \frac{X-30}{S} + \frac{1}{S}$	$\left(\frac{X-36}{S}\right)$		= -4.375		
For 42 ≤ X ≤ 48: One Lane =	$\frac{16}{32}\left(\frac{x}{s} + \frac{x-s}{s}\right)$	<u>6</u>)					= 0.625		
Two Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{-18}{S}$				= -0.250		
Three Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{5}{S} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{-18}{S} + \frac{X-2}{S}$	$\frac{4}{s} + \frac{\dot{X} - 30}{s}$			= -2.625		
Four Lanes =	$\frac{16}{32}\left(\frac{X}{S} + \frac{X-6}{S}\right)$	$\frac{6}{5} + \frac{X - 12}{S} + \frac{X}{S}$	$\frac{-18}{s} + \frac{x-2}{s}$	$\frac{4}{S} + \frac{X - 30}{S} + \frac{1}{S}$	$\frac{X-36}{S} + \frac{X}{S}$	$\left(\frac{-42}{s}\right)$	= -6.500		
INTERIOR		-		EXTER	IOR				
One Lane Loaded		= 0.625		One La	ne Loaded	ł		0.625	
Two Lanes Loade	d	= 0.875		Two La	nes Loade	d	=	0.625	
Three Lanes Load	led	- 0.875		Three L	anes Load	ded		0.625	
Four Lanes Loade	d	= 0.875		Fourla	nes Loade	be		0.625	

<u> </u>	Highway:	ANY			Dealart	ppc lo	h Deer	PDC	
Texas	C-S-J:	******			Design:	BRG	k Dsn:	BHG	
of Transportation	Bridge	Division	B	ev: 09/26/08	B Date: Aug-20			Aug-20	
CONCRETE SECTION SHEA	AR CAP	ACITY BY A	ASHTO L	RFD BRID	GE DESIG	N SPECIFIC	ATIONS, FO	URTH EDIT	ION, 200
Resistance Factors:			Units:	US					
4v =	0.9								
φ _M =	0.9	0							
φ _N =	0.75								
Concrete:	_		Mild Steel:			Prestressed	Steel:	-	
fc=	5	ksi	fy =	60	ksi	fpu =	270 k	si	
Ec =	4070	ksi	Es =	29000	ksi	Ep =	28500 k	si	
	_				SECTIONS				
	Units	8	12	32	36	56	60	80	84
Input Data	_			_			_		
Bending moment, Mu	kip-ft	918.9	1278.8	1108.4	769.1	769.1	1108.4	1278.8	91
Shear force, Vu	kip	255	270.8	165.7	481.8	264.6	283.7	165	44
Axial force, Nu (+ if tensile)	kip	0	0	0	0	0	0	0	
Web width, bv	in	42.00	42.00	42.00	42.00	42.00	42.00	42.00	42.0
Shear depth, dv	in	80.59	80.59	80.59	80.59	80.59	80.59	80.59	80.5
Mild steel reinf. area, As	in^2	10.92	10.92	10.92	10.92	10.92	10.92	10.92	10.9
Conc area on tension side, Ac	in^2	1785	1785	1785	1785	1785	1785	1785	178
Area of stirrups, Av	in^2	1.76	1,76	1.76	1.76	1.76	1,76	1.76	1.7
Stirrup spacing, s	in	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.
Prestressed steel area, Aps	in^2	0	0	.0	0	0	0	0	
Prestress shear, Vp	kip	0	0	0	0	0	0	0	
Average prestress, fps	ksi	0	0	0	0	0	0	0	
Torsional moment, Tu	kip-ft	830	415	415	830	830	415	415	83
Shear flow area, Ao	in^2	3493.5	3493.5	3493.5	3493.5	3493.5	3493.5	3493.5	3493.
Area of one leg of stirrup, At	in^2	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.4
Perimeter of stirrup, Ph	în	334	334	334	334	334	334	334	33
Calculated Values	_								
Vc	kip	576.4	569.2	624.2	533.3	571.6	564.4	614.7	533.
Vs	kip	1784.9	1812.7	2077.9	1569.9	1763.2	1791.6	2039,4	1569.
¢Vn € _v	kip	2125 7.10E-04	2144 7.48E-04	2432 4.86E-04	1893 1.00E-03	2101 7.33E-04	2120 7.80E-04	2389 5.20E-04	189 1.00E-0
0	den	33.20	33.70	30.30	36.40	33.50	34.00	30.75	36.4
8	oog	2,410	2,380	2,610	2,230	2,390	2,360	2.570	2.23
Reg'd Shear reinf. Av/S	in^2/in	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Req'd Torsion reinf. At/S	in^2/in	0.017	0.009	0.008	0.019	0.017	0.009	0.008	0.01
Maximum stirrup spacing, Smax	in	24.0	24.0	24.0	22.5	24.0	24.0	24.0	22.
Conclusion							-	_	
Shear Re	inforcing	OK	OK						
Longitudinal Reinforcing		OK	OK	OK	OK	OK	OK	OF	OK

4.5.15.5 Concrete Section Shear Capacity Spreadsheet

4.5.15.6 Bent Cap Details

CHAPTER 5: SUMMARY AND CONCLUSIONS

5.1 SUMMARY OF THE RESEARCH WORK

The summary of the test and analytical results on inverted-T bent cap specimens under the scope of this project work is presented below.

- Bent 2, Bent 6, and Bent 7 of a seven-span bridge, which are under construction on Donigan Road over IH 10 near Brookshire in Waller County, are selected. These bent caps have skew angles of 43°, 33°, and 33°, respectively.
- 2. The preliminary finite element (FE) analysis of the selected skew ITBCs is performed using ABAQUS to better understand the overall structural behavior of skew reinforcement in actual ITBCs and to determine critical loading patterns during the load tests and crucial strain gauge locations.
- 3. Stresses in skew transverse reinforcement at the service load and at the ultimate state are obtained according to the finite element results. The displacement and principal tensile strains of the bent caps are studied to understand the structural behavior of actual ITBCs designed with skew transverse reinforcement.
- 4. To investigate the structural performance of skew ITBCs with traditional transverse reinforcement and with skew transverse reinforcement, a total of ninety-six large-scale specimens are modeled in ABAQUS.
- 5. Design parameters are the skew angle (43° or 33°), detailing of transverse reinforcements (skew transverse reinforcement or traditional transverse reinforcement), end bars (with or without U1 Bars, U2 Bars, U3 Bars, and G Bars), size of S Bars (minimum, current design, 20% more or 40% more than current design), size of G Bars (No. 3 to No. 7 bars), and concrete strength (5 or 7 ksi). Based on these parameters, the displacement and the stiffness at the service load, the principal tensile strain of concrete and crack widths at the service load, and the ultimate capacities of the bent caps are investigated.
- 6. Cost-benefit analyses of ninety-six specimens are conducted considering the design and construction costs of ITBCs.
- 7. According to the parametric analysis results, a set of design recommendations for skew ITBCs is presented.
- Following AASHTO LRFD Bridge Design Specifications, 8th Ed. (2017) and TxDOT Bridge Manual - LRFD (January 2020), four ITBC design examples with different skew angles (0°, 30°, 45°, and 60°) are presented with the step by step procedures.

5.2 CONCLUSIONS

After performing the FE analysis on the actual ITBC structures, the conclusions are presented below.

1. For the selected skew ITBCs in this research, it is observed that the critical locations to paste the strain gauges and attach LVDTs are the cantilever end faces of the bent caps.

- 2. It is also observed that all the bent caps with skew transverse reinforcing are safe under service and ultimate state loading.
- 3. According to the cost-benefit analysis results, the skew transverse reinforcement (Case 1) provides better structural performance, reduced number of cracks and reduced crack width compared to the traditional transverse reinforcement (Case 2 and Case 3) with notably reduced construction cost. Therefore, the skew transverse reinforcement can well be used for the design of skewed ITBCs.
- 4. The increase of the S Bar area notably enhances the stiffness and ultimate strength. In addition, the increase of the S Bar area also reduces the crack width. The increase of the S Bar area will contribute notably to the construction cost. Based on the parametric simulation results, the current design of the S bar area is adequate for structural safety and crack resistance.
- 5. Having end bars (U1 Bars, U2 Bars, U3 Bars, and G Bars) significantly decreases the crack width on skew ITBCs.
- 6. The increase of the G Bar area notably reduces the maximum crack width with a negligible influence on the stiffness, ultimate strength, and construction cost. The current design of the G Bar (No. 7 Bars) is adequate for crack control.
- 7. When the concrete strength increases from 5 ksi to 7 ksi, the ultimate strength and the stiffness of ITBCs increase with reduced crack width. In addition, the influence of concrete strength on the construction cost is negligible.
- 8. Based on the research results, the RT completed four design examples of skewed ITBCs with various skew angles $(0^{\circ}, 30^{\circ}, 45^{\circ}, \text{ and } 60^{\circ})$.

REFERENCES

- AASHTO. (2010). LRFD Bridge Design Specifications. Customary U.S. Units, 5th Edition, American Association of Highway and Transportation Officials (AASHTO), Washington, DC.
- AASHTO. (2014). LRFD Bridge Design Specifications. Customary U.S. Units, 7th Edition, with 2015 Interim Revisions, American Association of Highway and Transportation Officials (AASHTO), Washington, DC.
- AASHTO. (2017). LRFD Bridge Design Specifications. Customary U.S. Units, 8th Edition, American Association of Highway and Transportation Officials (AASHTO), Washington, DC.
- AASHTO (American Association of State Highway and Transportation Officials). 2002. AASHTO Standard Specifications for Highway Bridges, 17th edition, Washington, D.C.
- ABAQUS. (2020). ABAQUS/CAE User's Guide, Dassault Systèmes Simulia Corp, Providence, RI.
- ACI 224. (2001). Control of Cracking of Concrete Structures (ACI 224R-01). Farmington Hills, MI.
- ACI 318. (2011). Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary. Farmington Hills, MI.
- ASCE. (1982). State of the Art Report on Finite Element Analysis of Reinforced Concrete. ASCE Task Committee on Concrete and Masonry Structure.
- Ambare, S., & Peterman, R. J. (2006). Evaluation of the Inverted Tee Shallow Bridge System for use in Kansas. Kansas. Department of Transportation Report No. K-TRAN: KSU-00-1, Kansas State University, Manhattan, Kansas.
- Belarbi, A., & Hsu, T. T. (1994). Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by Concrete. ACI Structural Journal, 91(4).
- Bhargava, A. (2009). A Probabilistic Evaluation of Highway Project Costs. PhD dissertation, Purdue University, West Lafayette, Indiana.
- Coletti, D., Chavel, B., & Gatti, W. J. (2011). Challenges of skew in bridges with steel girders. Transportation research record, 2251(1), 47-56.
- Furlong, R. W., Ferguson, P. M., & Ma, J. S. (1971). Shear and Anchorage Study of Reinforcement in Inverted T-beam Bent Cap Girders. Texas Highway Department Report No. 113. University of Texas at Austin, Austin, Texas.
- Hsu, T. T. C., & Mo, Y. L. (2010). Unified Theory of Concrete Structures: John Wiley & Sons.
- Lee, J.; Fenves, G. L. (1998). Plastic-Damage Model for Cyclic Loading of Concrete Structures. ASCE Journal of Engineering Mechanics, 124(8), 892-900.
- Lubliner, J., Oliver, J., Oller, S., & Onate, E. (1989). A Plastic-Damage Model for Concrete. International Journal of solids and structures, 25(3), 299-326.
- Mirza, S. A., & Furlong, R. W. (1985). Design of Reinforced and Prestressed Concrete Inverted T Beams for Bridge Structures. PCI Journal, 30(4), 112-137.

- Mirza, S. A., & Furlong, R. W. (1983a). Serviceablity Behavior and Failure Mechanisms of Concrete Inverted T-Beam Bridge Bentcaps. ACI Journal Proceedings, 80(4): 294-304.
- Mirza, S. A., & Furlong, R. W. (1983b). Strength Criteria for Concrete Inverted T-Girders. Journal of Structural Engineering, 109(8), 1836-1853.
- Roy, S. S., Sawab, J., Zhou, T., Mo, Y. L., & Hsu, T. T. (2018). Performance of Skew Reinforcing in Inverted-T Bridge Caps. Transportation Research Record, 2672(41), 65-74.
- Snyder, R., Vander Werff, J., Thiemann, Z., Sritharan, S., & Holombo, J. (2011). Seismic Performance of an I-girder to Inverted-T Bent Cap Connection. California Department of Transportation Caltrans Project Report No. 05-0160, Iowa State University, Ames, IA.
- TxDOT. (2010). Bridge Design Manual-LRFD. (2010). Texas Department of Transportation (TxDOT), Austin, TX.
- TxDOT. (2015). Bridge Design Manual-LRFD. (2015). Texas Department of Transportation (TxDOT), Austin, TX.
- TxDOT. (2020). Bridge Design Manual-LRFD. (2020). Texas Department of Transportation (TxDOT), Austin, TX.
- Website. (2020). https://www.bls.gov/oes/current/oes tx.htm#47-0000. Retrieved on 04/18/2020.
- Yazdani, N., & Ruiz, F. D. (2017). Comparative Analysis of Cast-in-place Post-tensioned and Steel– Concrete Composite Bridge Bent Caps. Journal of Modern Transportation, 25(3), 194-204.
- Zhou, T. M., Roy S., Wang, J. J., Nie, X., Chen, H. B., & Mo, Y. L. (2020). Parametric study on the structural behavior and failure mechanism of skewed inverted-T bent caps. ASCE Journal of Bridge Engineering, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001629
- Zhu, R. H., & Hsu, T. T. C. (2003). Crack Width Prediction for Exterior Portion of Inverted T Bent Caps. Texas Department of Transportation Research Report No. 0-1854-4. University of Houston, Houston, TX.

APPENDIX 1

Updates from AASHTO LRFD 2010 to AASHTO LRFD 2017

This document shows the revisions from AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010) to AASHTO LRFD Bridge Design Specifications, 8th Ed. (2017) for the sections, equations, and tables that are used in the design of the inverted Tee bent cap. "NR" denotes no revision.

	AASHTO LRFD 2010	AASHTO LRFD 2017			
Section Number	Title or Content	Section Number	Title or Content		
Eq. 1.3.2.1-1	$\sum \eta_i \gamma_i Q_i \le \Phi R_n = R_r$	NR	NR		
3.4.1	Load Factors and Combinations	NR	NR		
3.6.1.1.2	Multiple Presence of Live Load	NR			
Table 3.6.1.1.2-1	Multiple Presence Factors, m	NR	NR		
3.6.1.2.1	Design Vehicular Live Load - General	NR	NR		
3.6.1.2.2	Design Vehicular Live Load - Design Truck	NR	NR		
3.6.1.2.4	Design Vehicular Live Load - Design Lane Load	NR	NR		
3.6.1.3	Design Vehicular Live Load - Application of Design Vehicular Live Loads	NR	NR		
Table 3.6.2.1-1	Dynamic Load Allowance, IM	NR	NR		
Table 4.6.2.2.1-1	Common Deck Superstructures	NR	NR		
Eq. 4.6.2.2.1-1	$K_g = n\big(I + Ae_g^2\big)$	NR	NR		
<u>Table</u> <u>4.6.2.2.2e-</u> <u>1</u>	Reduction of Load Distribution Factors for Moment in Longitudinal Beams on Skewed Supports	NR	NR		
Table 4.6.2.2.3a- 1	Distribution of Live Load for Shear in Interior Beams	NR	NR		
Table 4.6.2.2.3b- 1	Distribution of Live Load for Shear in Exterior Beams	NR	NR		
$\frac{\underline{\text{Table}}}{\underline{4.6.2.2.3c-}}$	Correction Factors for Load Distribution Factors for Support Shear of the Obtuse Corner	NR	NR		
Eq. 5.4.2.4-1	$E_c = 33000 K_1 w_c^{1.5} \sqrt{f_c}$	NR	$E_c = 120000 K_1 w_c^{2.0} f_c^{0.33}$		

Table A1.1 Comparison between AASHTO (2010) and AASHTO (2017)

	AASHTO LRFD 2010	AASHTO LRFD 2017			
Section Number	Title or Content	Section Number	Title or Content		
5.5.4.2.1	Resistance Factors	5.5.4.2	Some revisons for lightweight concrete		
5.7.2.1	Assumptions for Strength and Extreme Event Limit States - General	5.6.2.1	NR		
5.7.2.2	Assumptions for Strength and Extreme Event Limit States – Rectangular Stress Distribution	5.6.2.2	α_1 to the description of the compression zone		
Eq. 5.7.3.1.2-3	$c = \frac{A_{ps}f_{ps} + A_sf_s - A'_sf'_s - 0.85f_c(b - b_w)h_f}{0.85f_c\beta_1 b_w}$	Eq. 5.6.3.1.2-3	$C = \frac{A_{ps}f_{ps} + A_sf_s - A_sf_s - \alpha_1f_c(b - b_w)h_f}{\alpha_1f_c\beta_1b_w}$		
Eq. 5.7.3.1.2-4	$c = \frac{A_{ps}f_{ps} + A_{s}f_{s} - A'_{s}f'_{s}}{0.85f_{c}\beta_{1}b}$	Eq. 5.6.3.1.2-4	$C = \frac{A_{ps}f_{ps} + A_{s}f_{s} - A'_{s}f'_{s}}{\alpha_{1}f_{c}\beta_{1}b}$		
Eq. 5.7.3.2.1-1	$M_r = \Phi M_n$	Eq. 5.6.3.2.1-1	NR		
Eq. 5.7.3.2.2-1	$M_{n} = A_{ps}f_{ps}\left(d_{p} - \frac{a}{2}\right) + A_{s}f_{s}\left(d_{s} - \frac{a}{2}\right) - A'_{s}f'_{s}\left(d'_{s} - \frac{a}{2}\right) + 0.85f_{c}(b - b_{w})h_{f}\left(\frac{a}{2} - \frac{h_{f}}{2}\right)$	Eq. 5.6.3.2.2-1	$M_n = A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right) + A_s f_s \left(d_s - \frac{a}{2} \right) - A'_s f'_s \left(d'_s - \frac{a}{2} \right) + \alpha_1 f_c (b - b_w) h_f \left(\frac{a}{2} - \frac{h_f}{2} \right)$		
Eq. 5.7.3.3.2-1	$M_{cr} = \gamma_3 \left[\left(\gamma_1 f_r + \gamma_2 f_{cpe} \right) S_c - M_{dnc} \left(\frac{S_c}{S_{nc}} - 1 \right) \right]$	Eq. 5.6.3.3- 1	NR		
5.7.3.4	Control of Cracking by Distribution of Reinforcement	5.6.7	NR		
Eq. 5.7.3.4-1	$s \le \frac{700\gamma_e}{\beta_{s}f_{ss}} - 2d_c$	Eq. 5.6.7-1	NR		
Eq. 5.7.3.4-2	$A_{sk} \ge 0.012(d_l - 30) \le \frac{A_s + A_{ps}}{4}$	Eq. 5.6.7-3	NR		
5.7.5	Bearing	5.6.5	NR		
Eq. 5.7.5-1	$P_r = \Phi P_n$	Eq. 5.6.5-1	NR		
Eq. 5.7.5-2	$P_n = 0.85 f_c A_1 m$	Eq. 5.6.5-2	NR		
Eq. 5.7.5-3	$m = \sqrt{\frac{A_2}{A_1}} \le 2.0$	Eq. 5.6.5-3	NR		
5.8.2.1	Shear and Torsion – General Requirements – General	5.7.2.1	NR		
Eq. 5.8.2.1-6	$V_{u_{eq}} = \sqrt{V_{u}^{2} + \left(\frac{0.9p_{h}T_{u}}{2A_{o}}\right)^{2}}$	Eq. B5.2-1	"Equivalent factored shear force" is placed into Appendix B5 as "effective shear force" with no revision in the equations		
5.8.2.5	Shear and Torsion – Minimum Transverse Reinforcement	5.7.2.5	NR		

	AASHTO LRFD 2010	AASHTO LRFD 2017		
Section Number	Title or Content	Section Number	Title or Content	
Eq. 5.8.2.5-1	$A_v \ge 0.0316\sqrt{f_c} \frac{b_v s}{f_y}$	Eq. 5.7.2.5- 1	$A_v \ge 0.0316\lambda\sqrt{f_c}\frac{b_v s}{f_y}$	
5.8.2.7	Shear and Torsion – Minimum Spacing of Transverse Reinforcement	5.7.2.6	NR	
Eq. 5.8.2.7-1	$s_{max} = 0.8d_{\nu} \le 24.0in$	Eq. 5.7.2.6- 1	NR	
Eq. 5.8.2.7-2	$s_{max} = 0.4d_{\nu} \le 12.0in$	Eq. 5.7.2.6- 2	NR	
5.8.2.9	Shear and Torsion – Shear Stress on Concrete	5.7.2.8	NR	
Eq. 5.8.2.9-2	$d_e = \frac{A_{ps}f_{ps}d_p + A_sf_y d_s}{A_{ps}f_{ps} + A_sf_y}$	Eq. 5.7.2.8- 2	NR	
Eq. 5.8.3.3-1	$V_n = V_c + V_s + V_p$	Eq. 5.7.3.3- 1	NR	
Eq. 5.8.3.3-2	$V_n = 0.25 f_c b_v d_v + V_p$	Eq. 5.7.3.3- 2	NR	
Eq. 5.8.3.3-3	$V_c = 0.0316\beta \sqrt{f_c} b_v d_v$	Eq. 5.7.3.3- 3	$V_c = 0.0316\beta\lambda\sqrt{f_c}b_v d_v$	
Eq. 5.8.3.3-4	$V_{s} = \frac{A_{v}f_{y}d_{v}(\cot\theta + \cot\alpha)sin\alpha}{s}$	Eq. 5.7.3.3- 4	NR	
5.8.3.4.2	Shear and Torsion – Procedures for Determining Shear Resistance – General Procedure	5.7.3.4.2	Procedures for Determining Shear Resistance Parameter β and Θ - General Procedure	
Eq. 5.8.3.4.2-1	$\beta = \frac{4.8}{(1+750\varepsilon_s)}$	Eq. 5.7.3.4.2-1	NR	
Eq. 5.8.3.4.2-3	$\theta = 29 + 3500\varepsilon_s$	Eq. 5.7.3.4.2-3	NR	
Eq. 5.8.3.4.2-4	$\varepsilon_s = \frac{\frac{ M_u }{d_v} + 0.5N_u + V_u - V_p - A_{ps}f_{po}}{E_s A_s + E_p A_{ps}}$	Eq. 5.7.3.4.2-4	NR	
Eq. 5.8.3.6.2-1	$T_n = \frac{2A_0 A_t f_y \cot\theta}{s}$	Eq. 5.7.3.6.2-1	NR	
5.8.4.1	Interface Shear Transfer – Shear Friction - General	5.7.4.1	NR	
Eq. 5.8.4.1-1	$V_{ri} = \Phi V_{ni}$	Eq. 5.7.4.3- 1	NR	
Eq. 5.8.4.1-2	$V_{ri} \ge \Phi V_{ul}$	Eq. 5.7.4.3- 2	NR	
Eq. 5.8.4.1-3	$V_{ni} = cA_v + \mu (A_{vf}f_y + P_c)$	Eq. 5.7.4.3- 3	NR	
5.8.4.3	Cohesion and Friction Factors	5.7.4.4	NR	

	AASHTO LRFD 2010	AASHTO LRFD 2017		
Section Number	Title or Content	Section Number	Title or Content	
Eq. 5.8.4.4-1	$A_{vf} \ge \frac{0.05A_{cv}}{f_y}$	Eq. 5.7.4.2- 1	NR	
5.11.2.4.2	Standard Hooks in Tension – Modification Factors	5.10.8.2.4b	NR	
Eq. 5.11.2.4.1	$l_{hb} = \frac{38.0d_b}{\sqrt{f_c}}$	Eq. 5.10.8.2.4a- 2	$l_{hb} = \frac{38.0d_b}{60.0} \left(\frac{f_y}{\sqrt{f_c}}\right)$	
5.11.2.4.2	Standard Hooks in Tension – Modification Factors	5.10.8.2.4b	NR	
5.13.2.4	Brackets and Corbels	5.8.4.2	NR	
5.13.2.4.1	Brackets and Corbels – General	5.8.4.2.1	NR	
Eq. 5.13.2.4.1- 1	$M_u = V_u a_v + N_{uc}(h-d)$	Eq. 5.8.4.2.1-1	NR	
5.13.2.4.2	Brackets and Corbels – Alternative to Strut- and-Tie Model	5.8.4.2.2	NR	
Eq. 5.13.2.4.2- 1	$V_n = 0.2 f_c b_w d_e$	Eq. 5.8.4.2.2-1	NR	
Eq. 5.13.2.4.2- 2	$V_n = 0.8b_w d_e$	Eq. 5.8.4.2.2-2	NR	
Eq. 5.13.2.4.2- 5	$A_s \ge \frac{2A_{vf}}{3} + A_n$	Eq. 5.8.4.2.2-5	NR	
Eq. 5.13.2.4.2- 6	$A_h \ge 0.5(A_s - A_n)$	Eq. 5.8.4.2.2-6	NR	
5.13.2.5.2	Beam Ledges – Design for Shear	5.8.4.3.2	NR	
5.13.2.5.3	Beam Ledges – Design for Flexure and Horizontal Force	5.8.4.3.3	NR	

	AASHTO LRFD 2010	AASHTO LRFD 2017			
Section Number	Title or Content	Section Number	Title or Content		
5.13.2.5.4	Beam Ledges – Design for Punching Shear $\Phi V_n = \Phi 0.125 \sqrt{f_c} (W + 2L + 2d_f) * d_f$	5.8.4.3.4			
	$\Phi V_n = \Phi \min(0.125\sqrt{f_c}\left(\frac{1}{2}W + L + d_f + c\right)d_f, 0.125\sqrt{f_c}\left(W + 2L + 2d_f\right) \cdot d_f)$		$\Phi V_n = \Phi \cdot \lambda \cdot 0.125 \cdot \sqrt{f_c} \cdot (W + 2L + 2d_f) \cdot d_f$		
			$\Phi V_n = \Phi \cdot \lambda \cdot \min(0.125 \cdot \sqrt{f_c}) \\ \cdot \left(\frac{1}{2}W + L\right)$		
			$+ d_f + c$		
			$ \begin{array}{c} \cdot d_f, 0.125 \cdot \sqrt{f_c} \\ \cdot (W + 2L \\ + 2d_f) \cdot d_f) \end{array} $		
5.13.2.5.5	Beam Ledges – Design of Hanger Reinforcement	5.8.4.3.5	NR		
Eq. 5.13.2.5.5- 1	$V_n = \frac{A_{hr}(0.5f_y)}{s}(W + 3a_v)$	Eq. 5.8.4.3.5-1	The equation has not changed. However, there is a limitation which		
			$(W+3a_v) < \min(S, 2c)$		
Eq. 5.13.2.5.5- 2	$V_n = \frac{A_{hr} f_y}{s} S$	Eq. 5.8.4.3.5-2	The equation has not changed. However, there is a limitation which		
			S < 2c		
Eq. 5.13.2.5.5- 3	$V_n = \left(0.063\sqrt{f_c}b_f d_f\right) + \frac{A_{hrfy}}{s}\left(W + 2d_f\right)$	Eq. 5.8.4.3.5-3	$\frac{V_n = (0.063\lambda\sqrt{f_c}b_f d_f) + \frac{A_{hrfy}}{s}(W + 2d_f)$		
Appendix B5	General Procedure for Shear Design with Tables	NR	NR		
Eq. B5.2-1	$\varepsilon_{\chi} = \frac{\frac{ M_{u} }{d_{v}} + 0.5N_{u} + 0.5 V_{u} - V_{p} cot\theta - A_{ps}f_{po}}{2(E_{s}A_{s} + E_{p}A_{ps})}$	Eq. B5.2-3	NR		
Eq. B5.2-3	$\varepsilon_{\chi} = \frac{\frac{ M_{u} }{d_{v}} + 0.5N_{u} + 0.5 V_{u} - V_{p} cot\theta - A_{ps}f_{po}}{2(E_{c}A_{c} + E_{s}A_{s} + E_{p}A_{ps})}$	Eq. B5.2-5	NR		
Table B5.2-1	Values of Θ and β for Sections with Transverse Reinforcement	NR	NR		
-	This section is not included in AASHTO LRFD 2010	5.4.2.8	Concrete Density Modification Factor		
-	The equation for the elastic modulus of concrete in AASHTO LRFD 2010 is placed into commentary	Eq. C5.4.2.4-2	$E_c = 33000K_1 w_c^{1.5} \sqrt{f_c}$		

	AASHTO LRFD 2010	AASHTO LRFD 2017		
Section Number	Title or Content	Section Number	Title or Content	
-	The equation for the elastic modulus of concrete in AASHTO LRFD 2010 is placed into commentary	Eq. C5.4.2.4-3	$E_c = 1820\sqrt{f_c}$	