TECHNICAL REPORT STANDARD TITLE PAGE

	Report N_{0}. 2. Government Accession N_{0}. TX-90/947-2	3. Reciprimit: Cotolog No.
4. Trite and Subritle HOW TO READ THE OUTPUT TABLES OF THE TEXAS LARGE NETVORK ASSIGNMENT MODELS		5. Report Date May 1990 6. Performing Oiganization Code
7 Authorts:Duk M. Chang, Jim Gattis, and George B. Dresser		8. Peritorming Orgenization Regort No. Research Report 947-2
Q. Performing Orgoniration Nome and Addess Texas Transportation Institute The Texas A\&M University System College Station, Texas 77843		10. Work Unit No. II. Contraet or Grant No. $2-10-88-947$
	Texas State Department of Highways and Public Transportation Transportation Planning Division P. 0. Box 5051, Austin, Texas 78763	Interim September 1988- December 1989 14. Spanzaring Agency Code
15 Supplementory Notes Research performed for the State of Texas. Research Study Title: Texas Travel Demand Package.		
	The Texas Travel Demand Package is a series of compu distribute, and assign roadway trips. The Texas Large Ne is a collection of computer programs designed to assig networks; it is one part of the Texas Travel Demand features are available in the Texas Large Network Assig to the usual programs regarding the assignment of traffic such as self-balancing assignment, capacity-restraint assignment, corridor intercepts, travel routes, selected lin and subarea focusing assignment techniques. Since the Texas Large Network Assignment Models can various jobs, the Models output a number of different tab these various tables and tells how to read them. This re discussion of the objectives of evaluating a traffic assignm of evaluation assignment output are discussed. The repor and names of the output tables. Finally, the report con of the various tables including the following sequence: comments, how to use, and sample output tables.	programs to generate, k Assignment Models ffic to transportation age. Several special nt Models in addition minimum time paths, gnment, incremental and subarea windowing used to accomplish This writeup describes begins with a general output. Various steps n lists the designators a detailed discussion urpose, how to read,

17. Key Words Travel Demand Package
Texas Trave
Texas Large Network Assignment Mode1s
Traffic Assignment
18. Diefribution Statemont

No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161
19. Security Classif. (of this report)

Unclassified
20. Security Clessif. (al thi s page)

Unclassified
21. No. of Poget
120
22. Pice 120
:

HOW TO READ THE OUTPUT TABLES OF THE TEXAS LARGE NETWORK ASSIGNMENT MODELS

by
Duk M. Chang Assistant Research Planner

Jim Gattis
Assistant Research Engineer
and
George B. Dresser
Study Supervisor

Texas Travel Demand Package

Research Report Number 947-2
Research Study Number 2-10-88-947

Sponsored by
Texas State Department of Highways and Public Transportation

Texas Transportation Institute
The Texas A\&M University System
College Station, Texas

METRIC (SI*) CONVERSION FACTORS

[^0]
Abstract

The Texas Travel Demand Package is a series of computer programs to generate, distribute, and assign roadway trips. The Texas Large Network Assignment Models is a collection of computer programs designed to assign traffic to transportation networks; it is one part of the Texas Travel Demand Package. Several special features are available in the Texas Large Network Assignment Models in addition to the usual programs regarding the assignment of traffic to minimum time paths, such as self-balancing assignment, capacity-restraint assignment, incremental assignment, corridor intercepts, travel routes, selected links, and subarea windowing and subarea focusing assignment techniques.

Since the Texas Large Network Assignment Models can be used to accomplish various jobs, the Models output a number of different tables. This writeup describes these various tables and tells how to read them.

This report begins with a general discussion of the objectives of evaluating a traffic assignment output. Various steps of evaluation assignment output are discussed. The report then lists the designators and names of the output tables. Finally, the report contains a detailed discussion of the various tables including the following sequence: purpose, how to read, comments, how to use, and sample output tables.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration or the State Department of Highways and Public Transportation. This report does not constitute a standard, specification, or regulation.

TABLE OF CONTENTS

PAGE
Introduction 1
Texas Large Network Assignment Models 1
Assignment Evaluation Objectives 2
Analysis Tools 3
Using Regressions 4
Assignment Evaluation Steps 7
Listing of Tables 9
Identification Record Sequence 13
T1(1): Tree Number Table 15
A1(1): Link Volume 17
X3(1): Jurisdictional/Functional Cross Classification of Assigned Volumes - VMI 19
X4(1): Jurisdictional/Functional Cross Classification of Assigned Volumes - VHR 21
X5(1): Jurisdictional/Functional Cross Classification of Counted Volumes 23
X6(1): Jurisdictional/Functional Cross Classification of Link Capacities 25
C1(1): Comparison of Assigned Volumes with Counted Volumes 27
C4(1): Comparison of Assigned Volumes and Ground Counts by Facility Group 31
C5(1): Comparison of Assigned Volumes and Ground Counts by Volume Range 33
X1(2): Cross Classification of V/C Frequencies From Last Two Assignments 35
X2(2): Cross Classification of Link Capacities by V/C Ratio From Last Two Assignments 37
X3(2): Jurisdictional/Functional Cross Classification of Assigned Volumes - VMI 39
X4(2): Jurisdictional/Functional Cross Classification of Assigned Volumes - VHR 41
X5(2): Jurisdictional/Functional Cross Classification of Counted Volumes 43
X6(2): Jurisdictional/Functional Cross Classification of Link Capacities 45
C1(2): Comparison of Assigned Volumes with Counted
Volumes 47
C3(2): Comparison of Assigned Volumes with Assigned Volumes 51
C4(2): Comparison of Assigned Volumes and Ground Counts by Facility Group 55
C5(2): Comparison of Assigned Volumes and Ground Counts by Volume Range 57
W2: Iteration Weights Applied 59
A1(W): Link Volumes 61

TABLE OF CONTENTS (Continued)

PAGE
X1(W): Cross Classification of V/C Frequencies From Last Two Assignments 63
X2 (W): Cross Classification of Link Capacities by V/C Ratio From Last Two Assignments 65
X3(W) : Jurisdictional/Functional Cross Classification of Assigned Volumes - VMI 67
$\mathrm{X} 4(\mathrm{~W})$: Jurisdictional/Functional Cross Classification of Assigned Volumes - VHR 69
X5(W): Jurisdictional/Functional Cross Classification of Counted Volumes 71
X6(W): Jurisdictional/Functional Cross Classification of Link Capacities 73
$C 1(W)$: Comparison of Assigned Volumes with Counted Volumes 75
C3(W): Comparison of Assigned Volumes with Assigned Volumes 79
C4(W) : Comparison of Assigned Volumes and Ground Counts by Facility Group 83
C5(W): Comparison of Assigned Volumes and Ground Counts by Volume Range 85
Il: Corridor Intercept 87
R1: Route Profile 89
L1: List of Volumes and Speeds for Updated Links 91
Selected Link - Cutoff Parameters 93
Selected LInk - Trip Interchanges Loaded on Links 95
Windowing - S1: Input External Station Links 97
Windowing - S2: Node Types Found From External Station Links 99
Windowing - S3: Renumbered Subarea Centroids and External Stations 101
Windowing - S4: Trips by Number of Cordon Crossings 103
Focusing - Subarea Sector Equals 105
Focusing - El: Centroid to Sector Equivalences for focusing 107
Fratar - \$Sum Trip Ends (for base year) 109
Fratar - Dl: Convergence Distribution at the End of Iteration 111
Fratar - \$Sum Trip Ends (for future year) 113

INTRODUCTION

Purpose The Texas Travel Demand Package is a series of computer programs to generate, distribute, and assign roadway trips. One part of the package, the Texas Large Network Assignment Models, outputs a number of different tables. This writeup describes these various tables and tells how to read them.
Organization This report begins with a general discussion of the objectives of evaluating a traffic assignment output. Various steps of evaluation assignment output are discussed. The report then lists the designators and names of the output tables. Finally, the report contains a detailed discussion of the various tables including the following sequence: purpose, how to read, comments, how to use, and sample output tables.

TEXAS LARGE NETWORK ASSIGNMENT MODELS

Introduction Traffic assignment is a technique which has been developed to aid future transportation planning in the evaluation of the transportation system and/or land-use alternatives. The Texas Large Network Assignment Models is a collection of computer programs in five load modules designed to assign traffic to transportation networks.

Features Several special features are available in the Texas Large Network Assignment Models in addition to the usual programs regarding the assignment of traffic to minimum time paths.

* Self-Balancing: to improve the agreement of assigned volumes with counted volumes.
* Capacity-Restraint: to produce multiple path assignments using one of two different impedance adjustments.
* Incremental: to produce multiple path assignments based on link impedances for four 25 percent increments from a table look-up.
* Corridor Intercepts: to obtain corridor analysis summaries.
* Travel Routes: to obtain volume profile comparisons and/or plots.
* Selected Links: to perform a special analysis of all traversing movements.
* Subarea Windowing or Focusing: to perform a subarea analysis.

Accomplishment The Texas Large Network Assignment Models can be used to accomplish the following:

* Prepare a printed description of an assignment network.
* Revise or update an assignment network.
* Prepare trip records for traffic assignment.
* Prepare a printed description of trip interchanges.
* Trace any or all possible minimum paths.
* Prepare a printed description of any or all minimum paths.
* Assign traffic to an assignment network.
* Prepare a printed description of assigned volumes including turning movements.
* Prepare mileage and vehicle-mile summaries by functional class and jurisdiction.
* Balance assigned volumes with counted volumes.
* Balance assigned volumes with capacities by one of two different impedance adjustment functions.
* Prepare corridor volume summaries.
* Prepare interchange reports for selected links by zone or sector.
* Summarize assigned volumes along travel routes.
* Print volume profiles along travel routes.
* Compare assigned volumes with previous assignments.
* Compare assigned volumes with traffic counts.
* Compare assigned volumes with link capacities.
*Expand interchanges using the "Fratar" technique.
* Sum trip generations for each zone.
* Add trip matrices together.
* Prepare a subarea network by windowing.
* Prepare a subarea trip matrix by windowing.
* Prepare a table of equals for collapsing a trip matrix for subarea focusing.
* Assign traffic using a subarea focusing trip matrix.

ASSIGNMENT EVALUATION OBJECTIVES

Traffic assignment is the modeling process by which the previously generated and distributed trips are placed on the roadway network. Evaluating an assignment should consist of steps designed to assess how good the modeled assignment is.

Abstract

Evaluation Comparison of the modeled assignment volumes with counted volumes is a basis for evaluating the validity of the assignment. Unfortunately, no such comparisons can be made for future year assignments, since future year volumes are not known. However, other types of comparisons can be made to determine if future year assignments are plausible.

Abstract

Sequence The present year assignment should be found acceptable before the evaluation of the future year assignment is made.

Check Inputs	The initial steps in assignment evaluation are those of checking the input data. Although this can be a tedious task, it is likely that errors have crept into various network attribute descriptions. Unless the input is checked and corrected, the "garbage in - garbage out" problems will remain.

Check Aggregates The modeled aggregated values, such as total miles of predicted travel against actual travel or predicted versus surveyed mean trip length, should be compared with the actual or surveyed values. If the values are similar, it does not necessarily follow that the assignment is valid. But if the comparisons are not acceptable, the assignments are suspect.

Check Parts
Make analyses of individual items for the first known current or past years, then for the projected year. These items include but are not limited to volumes across cutlines, or volume/capacity (v / c) relationships on various links.

ANALYSIS TOOLS

Certain statistical analyses can be used to compare and evaluate output assignments. These statistical tests furnish a greater degree of objectivity to the evaluation process. One such group of tests is regression analysis.

USING REGRESSIONS

Purpose

Objective

Example

Example Data

Calculations

Some of the trip assignment analysis tables present the results of linear regressions. These regressions are used to compare two sets of data or numerical values, and determine how well they agree.

The simple linear regression procedure attempts to fit a straight line to a set of data points. The line is fit to minimize the deviation in the vertical or the "Y" direction between the data points and the line.

One such comparison examines the agreement of the predicted assignments with the actual counted volumes. To see how this works, examine the following example network containing four links.

Link	1	2	3	4
Actual count	980	1450	3360	4420
Calculated Assignment	1400	1310	3000	4500

Let X -values be those of the actual count, and Y -values these of the calculated assignment.

Link	X	Y	x^{2}	Y^{2}	X*Y
1	980	1400	960,400	1,960,000	1,372,000
2	1450	1310	2,102,500	1,716,100	1,899,500
3	3360	3000	11,289,600	9,000,000	10,080,000
4	4420	4500	19,536,400	20,250,000	19,890,000
Sum	10210	10210	33,888,900	32,926,100	33,241,500
x	$=\Sigma x / n$	$=25$			
	$=\Sigma Y /$	$=25$. 5		
	$=\Sigma \mathrm{x}^{2}$	$\Sigma x)^{2}$	=33,888,	$-10,210^{2} /$	7,827,875
	$=\Sigma y^{2}$	Sy $)^{2}$	$=32,926$,	0-10,210 ${ }^{2}$	6,865,075
	$\begin{aligned} & =\Sigma(x, \\ & =33, \end{aligned}$	*y) - $241,50$	$\begin{aligned} & (\Sigma x) *(\Sigma y)) \\ & -\quad(10,210 \end{aligned}$	$10,210) / 4=$	$7,180,475$
	$S_{\text {xy }}$	${ }_{x}=$	80,475/7,	$7,875=0$.	
	Y -	$\beta_{1} * x$	2552.5 -	$917 * 2552.5$	211.9

$$
y=\beta_{0}+\beta_{1} \star x
$$

Therefore, the regression equation is

$$
\mathbf{Y}=211.9+0.917 \mathbf{X}
$$

Analysis The coefficient of correlation is R.

$$
\mathrm{R}=\mathrm{S}_{\mathrm{xy}} /\left(\mathrm{S}_{\mathrm{xx}} * \mathrm{~S}_{y y}\right)^{0.5}=0.9795
$$

The coefficient of determination is R^{2}, or 0.96 . An important property of the correlation coefficient is that is bounded in the range from -1 to 1. It follows that the coefficient of determination satisfies the inequalities, $0 \leq \mathrm{R}^{2} \leq 1$. The coefficients are very high, indicating good agreement between counted and assigned volumes.

A useful display for arranging and summarizing the results of an analysis of variance computation is the ANOVA table. Its entries are the sums of squares (SS), degrees of freedom (df), and mean squares (MS) required for the calculation of the F statistics of interest. The entries in the table are the following:

Source of Variation	Sum of Sq. (SS)	Degree of Free. (df)	Mean Square Error (MS)	F
Regression	$S S_{r}=S_{x y}{ }^{2} / S_{x x}$	x k-1	$M S_{r}=S_{r} / \mathrm{df}$	$\mathrm{MS}_{\mathrm{r}} / \mathrm{MS}_{\mathrm{e}}$
Residual	$S S_{e}=S_{y y}-S S_{r}$, $\mathrm{N}-\mathrm{k}$	$\mathrm{MS}_{\mathrm{e}}=\mathrm{SS}_{e} / \mathrm{df}$	
Regression	6,586,618	1	6,586,618	47.3
Residual	278,457	2	139,229	
Total	6,865,075	3		

The F-value can be evaluated to determine whether the data points do exhibit a relationship or if they have a random pattern. Using an F distribution table with the degrees of freedom $\mathrm{df}_{1}=1$ (degrees of freedom for the model) and $\mathrm{df}_{2}=2$ (error degrees of freedom), for $\alpha=.10$, the critical value is 8.5 . Since $47.3>8.5$, the relation is significant and not random.

PLOT REGRESSION FUNCTION IN COMPARISON WITH DATA

ASSIGNMENT EVALUATION STEPS

Overview These discussions are written to accompany the capacity-restraint assignment option. This method employs five iterations plus a final weighing iteration to assign traffic to the network. If the all-or-nothing method is being used, the references to iterative steps will not apply.
 The output for iterations one through five lets one see what is happening with the assignment process. The final weighted output is the "final" output assignment.

Most of the tables are denoted with a three character system: a letter, then a number, followed by a number in parentheses. The number in parentheses refers to the particular iteration reflected in the table. Table A1(1) displays link volumes from the first iteration; Table A1(5) displays the same type of data as A1(1), but from the fifth iteration.

Concept The procedures for evaluating assignment output are rather subjective and relative. There are no universally accepted criteria by which one can establish black-and-white rules to judge an assignment.

With capacity-restraint, one should look for:

* Stability - does the output vary little at the final iterations?
* Reasonability - does the model assignment approach what is actually occurring or could be expected to occur in the future?

Checking Input The following tables contain input which can be checked. Check the input to insure correctness:

* Identification Record Sequence
* T1: Tree Number
* W2: Iteration Weights Applied
* Selected Link Cutoff Parameters

Checking Totals

Various system aggregates or total measures should be checked. The " X " series of tables present aggregated data. At the final iteration, most of the readings in X1 and X2 should be plotted on the diagonal. This indicates that the traffic assignment is relatively stable.

* X1: Cross Classification of V/C Frequencies from Last Two Assignments
* X2: Cross Classification of Link Capacities by V/C Ratio from Last Two Assignments

Check the totals of tables $\mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5$, and X6 to see if they appear reasonable for the given system.

* X3: Jurisdictional/Functional Cross Classification of Assigned Volumes - VMI
* X4: Jurisdictional/Functional Cross Classification of Assigned Volumes - VHR
* X5: Jurisdictional/Functional Cross Classification of Counted Volumes
* X6: Jurisdictional/Functional Cross Classification of Link Capacities

Checking Parts

Special Options

Each part of the " C " series and other tables contain discrete data items.

* C1: Comparison of Assigned Volumes with Counted Volumes
* C3: Comparison of Assigned Volumes with Assigned Volumes
* C4: Comparison of Assigned Volumes and Ground Counts by Facility Group
* C5: Comparison of Assigned Volumes and Ground Counts by Volume Range
* A1: Link Volume
* I1: Corridor Intercept
* R1: Route Profile
* L1: List of Volumes and Speeds for Updated Links

Certain special option tables can be checked if the appropriate option is called for.

* S1, S2, S3, S4 series for windowing
* E1: Centroid to Sector Equivalences for focusing
* Fratar output tables

LISTING OF TABLES

Scope The following tables are discussed.

* Identification Record Sequence
* T1(1): Tree Number
* A1(1): Link Volume
First IterationSecond Iteration * X1(2): Cross Classification of V/C Frequencies from Last TwoAssignments* X2(2): Cross Classification of Link Capacities by V/C Ratio fromLast Two Assignments* X3(2): Jurisdictional/Functional Cross Classification of AssignedVolumes - VMI* X4(2): Jurisdictional/Functional Cross Classification of AssignedVolumes - VHR
* X5(2): Jurisdictional/Functional Cross Classification of CountedVolumes* X6(2): Jurisdictional/Functional Cross Classification of LinkCapacities
* C1(2): Comparison of Assigned Volumes with Counted Volumes
* C3(2): Comparison of Assigned Volumes with Assigned Volumes* C4(2): Comparison of Assigned Volumes and Ground Counts byFacility Group
* C5(2): Comparison of Assigned Volumes and Ground Counts byVolume Range
Fourth Iteration * X1(4): Cross Classification of V/C Frequencies from Last Two Assignments
* X2(4): Cross Classification of Link Capacities by V/C Ratio from Last Two Assignments
* X3(4): Jurisdictional/Functional Cross Classification of Assigned Volumes - VMI
* X4(4): Jurisdictional/Functional Cross Classification of Assigned Volumes - VHR
* X5(4): Jurisdictional/Functional Cross Classification of Counted Volumes
* X6(4): Jurisdictional/Functional Cross Classification of Link Capacities
* C1(4): Comparison of Assigned Volumes with Counted Volumes
* C3(4): Comparison of Assigned Volumes with Assigned Volumes
* C4(4): Comparison of Assigned Volumes and Ground Counts by Facility Group
* C5(4): Comparison of Assigned Volumes and Ground Counts by Volume Range

Fifth Iteration	* X1(5): Cross Classification of V/C Frequencies from Last Two Assignments * X2(5): Cross Classification of Link Capacities by V/C Ratio from Last Two Assignments * X3(5): Jurisdictional/Functional Cross Classification of Assigned Volumes - VMI * X4(5): Jurisdictional/Functional Cross Classification of Assigned Volumes - VHR * X5(5): Jurisdictional/Functional Cross Classification of Counted Volumes * X6(5): Jurisdictional/Functional Cross Classification of Link Capacities * C1(5): Comparison of Assigned Volumes with Counted Volumes * C3(5): Comparison of Assigned Volumes with Assigned Volumes * C4(5): Comparison of Assigned Volumes and Ground Counts by Facility Group * C5(5): Comparison of Assigned Volumes and Ground Counts by Volume Range
Iteration Weights	* W2: Iteration Weights Applied * A1(W):Link Volumes * X1(W):Cross Classification of V/C Frequencies from Last Two Assignments * X2(W):Cross Classification of Link Capacities by V/C Ratio from Last Two Assignments * X3(W):Jurisdictional/Functional Cross Classification of Assigned Volumes - VMI * X4(W):Jurisdictional/Functional Cross Classification of Assigned Volumes - VHR * X5(W):Jurisdictional/Functional Cross Classification of Counted Volumes * X6(W):Jurisdictional/Functional Cross Classification of Link Capacities * C1(W):Comparison of Assigned Volumes with Counted Volumes * C3(W):Comparison of Assigned Volumes with Assigned Volumes * C4(W):Comparison of Assigned Volumes and Ground Counts by Facility Group * C5(W):Comparison of Assigned Volumes and Ground Counts by Volume Range * I1: Corridor Intercept * R1: Route Profile * L1: List of Volumes and Speeds for Updated Links

Selected Link
(optional)
Windowing

Focusing

Fratar

Definitions

Turn Penalties The user must input any desired turn penalties before the program is run. There are two coding methods to input these penalties. The penalty codes may be printed out on a page with the heading, "The Tree Cards Have Established the Following Parameters."

IDENTIFICATION RECORD SEQUENCE

Abstract

Purpose These tables allow the analyst to review link descriptors, such as the length of the link and the assigned speed. Data are listed in a link-by-link format.

How to Read	BACK NODE is one end of the link. FRONT NODE is the other end of the link. On any given row, more than one front node may be paired with the back node listed in the far left column of the page. SA or DR is the turn penalty code. SA(shaft-and-arrow) is the normal output. J denotes the jurisdiction or area. In practice, the jurisdiction is a group of zones, although it could include all of the zones in a particular city.

DIST is the input length of the particular link.
SPEED is the input speed for travel along that link.
TIME is the required time to travel the particular link.

Comments NO CONNECTING NODE will be listed in a row for a back node which was not used.
ONE-WAY will be printed for a node pair which is one-way in the opposite direction from the listed node combination.

How to Use
A review of this table will help to uncover data coding errors. The analyst should scan the data to verify the input.

T1(1): TREE NUMBER TABLE

Purpose | This table prints the tree descriptions for review. It may be easier to |
| :--- |
| review the trees by plotting them as opposed to printing this list. Trees |
| should be checked to insure that the correct routings from one zone |
| to the next are being followed and that coding errors have not been |
| introduced. |

How to Read TREE NO. is the same as the number of the origin zone. DESTN NODE lists the centroid and node of the destination.
ADJ NODE is the node encountered immediately before reaching the destination zone or node.
TIME (MIN) is the input time to travel the link between the adjacent node and the destination zone.

How to Use Locate the subject TREE NO., and a destination node. If coded correctly, the next to the last node encountered before reaching the destination will be listed as ADJ NODE. By repeating this process for all of the destination nodes, the complete tree will be reviewed.

	TYLER 85-85-1									DEC 16, 1988					
	table	T1(1)	TRE	1											
	$\begin{aligned} & \text { DESTN } \\ & \text { NODE } \end{aligned}$	$\begin{aligned} & \text { ADJ } \\ & \text { NOOE } \end{aligned}$	$\begin{aligned} & \text { TIME } \\ & \text { (MIN) } \end{aligned}$	$\begin{aligned} & \text { DESTN } \\ & \text { NOOE } \end{aligned}$	$\begin{aligned} & \text { ADJ J } \\ & \text { NOOE } \end{aligned}$	$\begin{aligned} & \text { TIME } \\ & \text { (MIN) } \end{aligned}$	$\begin{aligned} & \text { DESTN } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { ADJ } \\ & \text { NODE } \end{aligned}$	$\begin{aligned} & \text { TIME } \\ & \text { (MIN) } \end{aligned}$	$\begin{aligned} & \text { DESTN } \\ & \text { NOOE } \end{aligned}$	$\begin{aligned} & \text { ADJ } \\ & \text { NODE } \end{aligned}$	$\begin{aligned} & \text { TIME } \\ & \text { (MIN) } \end{aligned}$	$\begin{aligned} & \text { DESTM } \\ & \text { NODE } \end{aligned}$	$\begin{aligned} & \text { ADJ } \\ & \text { NODE } \end{aligned}$	$\begin{aligned} & \text { TIME } \\ & \text { (MIN) } \end{aligned}$
	201	368	9.98	202	550	15.01	203	545	10.98	204	370	8.24	205	518	5.32
	206	514	4.81	207	519	6.56	208	531	4.16	209	613	4.58	210	535	5.44
	211	527	4.87	212	525	6.22	213	581	6.79	214	554	7.75	215	562	8.81
	216	556	9.82	217	553	10.65	218	550	12.77	219	570	8.50	220	752	8.74
	221	297	13.94	222	297	13.93	223	402	11.16	224	403	11.86	225	404	11.22
	226	405	12.47	227	406	13.58	228	401	14.76	229	504	13.83	230	506	15.77
	231	508	14.91	232	509	14.13	233	559	14.56	234	875	15.20	235	902	16.66
	236	897	19.62	237	996	15.92	238	904	17.27	239	903	17.35	240	905	16.92
	241	957	16.11	242	986	17.42	243	988	15.03	244	985	16.78	245	990	13.89
	246	991	11.20	247	992	11.02	248	424	11.65	249	424	11.60	250	423	11.71
	251	409	13.17	252	300	13.61	253	NOT RE	CHED	254	NOT RE	CHED	255	NOT RE	CHED
	256	NOT RE	CHED	257	NOT RE	ACHED	258	NOT RE	CHED	259	NOT RE	CHED	260	NOT RE	CHED
	261	NOT RE	CHED	262	NOT RE	ACHED	263	NOT RE	CHED	264	NOT RE	CHED	265	Not RE	CHED
	266	NOT REA	CHEO	267	NOT RE	ACHED	268	NOT RE	CHED	269	NOT RE	CHED	270	NOI R	CHED
	271	NOT REA	CHED	272	NOT RE	ACHED	273	NOT RE	CHEO	274	NOT REA	CHED	275	NOT RE	CHED
	276	NOT REA	CHED	277	not RE	ACHED	278	NOT RE	CHED	279	NOT RE	CHED	280	MOT RE	CHED
	281	NOT REA	CHED	282	NOT RE	ACHED	283	NOT RE	CHED	284	NOT RE	CHED	285	NOT RE	CHED
	286	NOT RE	CHED	287	NOT RE	ACHED	288	NOT RE	CHED	289	NOT RE	HED	290	Not RE	CHED
	291	WOT REA	CHED	292	NOT RE	ACHED	293	NOT RE	CHED	294	NOT RE	CHED	295	NOT RE	CHED
	296	NOT RE	CHED	297	304	13.89	298	297	14.61	299	300	13.93	300	308	13.57
	301	307	12.98	302	NOT RE	CHED	303	NOT RE	CHED	304	402	11.36	305	306	10.69
	306	316	8.82	307	306	9.86	308	309	12.39	309	310	10.66	310	415	9.68
0	311	310	11.59	312	313	9.45	313	314	7.62	314	322	7.35	315	314	7.83
\bigcirc	316	315	8.29	317	315	8.41	318	321	10.63	319	317	9.36	320	416	8.25
	321	306	9.47	322	411	6.01	323	322	6.64	324	Not RE	CHED	325	326	10.65
	326	328	9.60	327	331	10.17	328	329	8.35	329	394	7.40	330	323	8.06
	331	332	9.20	332	333	8.64	333	389	7.77	334	335	8.01	335	390	7.38
	336	335	9.07	337	336	10.07	338	339	10.38	339	340	9.40	340	360	8.14
	341	335	7.76	342	340	8.38	343	357	8.26	344	343	8.89	345	344	11.11
	346	347	12.82	347	353	12.42	348	347	12.75	349	408	12.37	350	349	12.68
	351	354	11.25	352	351	11.38	353	352	12.02	354	355	11.09	355	356	9.12
	356	357	8.63	357	358	7.57	358	359	7.31	359	361	6.89	360	359	7.51
	361	363	6.67	362	364	7.00	363	378	6.07	364	365	6.41	365	378	6.05
	366	364	6.67	367	366	7.66	368	369	8.51	369	370	8.20	370	371	7.74
	371	373	6.47	372	364	6.79	373	374	5.69	374	518	4.95	375	374	5.16
	376	375	5.45	377	383	5.35	378	376	5.78	379	380	6.15	380	382	5.72
	381	380	6.07	382	383	5.07	383	384	4.89	384	493	4.69	385	384	5.31
	386	385	5.94	387	386	6.11	388	387	6.19	389	388	6.90	390	391	7.01
	391	380	6.29	392	NOT RE	ACHED	393	395	5.00	394	393	5.45	395	396	4.49
	396	397	4.32	397	398	3.57	398	457	3.29	399	398	3.88	400	not RE	CHED

A1(1): LINK VOLUME TABLE

Abstract

Purpose

How to Read

Comments

How to Use
The analyst should review the link volumes. An unusual volume could indicate a problem with a coding or with the preceding traffic assignment.

X3(1): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES - VMI

Abstract

Purpose

How to Read

How to Use
If " 2 " in a column or row heading refers to Yourtown and " 8 " refers to freeways, then there are 10.8 miles of freeway in Yourtown and 37,999 vehicle-miles of travel on freeways in Yourtown according to this assignment. Also, there are a total of 35.7 miles and 103,577 vehiclemiles in Yourtown, a total of 28.5 miles and 98,778 vehicle-miles on freeways, and a total of 3790.1 miles and $18,974,034$ vehicle-miles in the whole study area.

JUR	FUNCTIONAL CLASSIFICATION		
	UNIT	. 8	... TOTAL
:	:	:	:
2	MILES	10.8	35.7
	VEH-MILES	37999	103577
:	:	:	:
TOTAL	MILES	28.5	3790.1
	VEH-MILES	98778	18974034

Checking the miles of freeway in each jurisdiction can uncover coding mistakes. When testing alternative facility options, the vehicle-miles should be minimized.

TYLER 85-85-1 CAPACITY RESTRAINT
ITER. 1 DEC 8, 1988

X4(1): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES - VHR

Abstract

Purpose This table or matrix shows the breakdown of vehicle-hours of travel which result from this assignment iteration and the breakdown of the average speed according to the various input categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.

How to Read

How to Use

FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E .
JUR is the jurisdictional area, in practice usually a group of zones.
VEH-HOURS is the amount of vehicle-hours of travel which the first assignment says will be made on or in the particular category described by the row and the column description.
MILES/HOUR is the average velocity of the links that fall into the particular category described by the row and the column headings.

If " 2 " in a column or row heading refers to Yourtown and " 8 " refers to freeways, then there are 3,300 vehicle-hours of travel on freeways in Yourtown according to this assignment with an average speed of 49.0 miles per hour. Also, there are a total of 11,450 vehicle-hours and an average of 32.7 miles per hour in Yourtown, a total of 45,928 vehiclehours and an average of 56.5 miles per hour on freeways, and a total of $45,234,576$ vehicle-hours and an average of 35.2 miles per hour in the whole study area. When comparing future alternative networks, one goal might be to minimize vehicle-hours of travel.

TYLER 85-85-1 CAPACITY RESIRAINT
ITER. 1 DEC 8, 1988
TABLE X4(1)
Jurisdictional / functional cross classification of assigned volumes

X5(1): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF COUNTED VOLUMES

Abstract

Purpose \quad This table or matrix shows the actual counted volumes on links that did have counts made on them and the miles of link which were counted. The listing is presented according to the various input categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.

How to Use
If " 2 " in a column or row heading refers to Yourtown and " 8 " refers to freeways, then the total mileage of the freeway links on which counts were made in Yourtown was 1.8, and there were 3,855 vehicle-miles of travel on these links. Also, there are a total of 3.7 miles and 10,357 vehicle-miles in Yourtown, a total of 2.5 miles and 9,878 vehicle-miles on freeways, and a total of 9.1 miles and 74,034 vehicle-miles in the whole study area.

JUR	UNIT	FUNCTIONAL CLASSIFICATION	
		8	... TOTAL
:	:	:	:
2	MILES	1.8	3.7
	VEH-MILES	3855	10357
:	:	-	:
TOTAL	MILES	2.5	9.1
	VEH-MILES	9878	74034

X6(1): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF LINK CAPACITIES

Purpose
This table or matrix shows the miles of the links according to the various input categories of roadway class (freeway, arterial) or a defined jurisdictional area and the twenty-four hour capacity in terms of vehicle-miles on each. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.

If " 2 " in a column or row heading refers to Yourtown and " 8 " refers to freeways, then there are 7.8 miles of freeway in Yourtown and 63,790 vehicle-miles of capacity on the freeways in Yourtown. Also, there are a total of 18.5 miles and 138,577 vehicle-miles on freeways and a total of 790.1 miles and $8,974,034$ vehicle-miles in the entire study area. This information can be used to compare the impacts of various proposed alternative networks.

JUR	UNIT	FUNCTIONAL CLASSIFICATION	
		8	... TOTAL
:	:	:	:
2	MILES	7.8	31.7
	VEH-MILES	63790	193577
:	:	:	:
:	:	:	:
TOTAL	MILES	18.5	790.1
	VEH-MILES	138577	8974034

TYLER 85-85-1 CAPACITY RESTRAINT
ITER. 1 DEC 8, 1988

C1(1): COMPARISON OF ASSIGNED VOLUMES WITH COUNTED VOLUMES

Purpose

This table analyzes the degree of agreement between predicted and actual volumes on selected routes. A series of links, which is often traveled in sequence from one link to another, forms a route.

A regression equation is used to evaluate the degree of agreement. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.

How to Read
ROUTE is the number assigned to the route being investigated. The printout field for route is not separated from the adjacent field to the right, so the route number can appear to be a part of the number in the adjacent column.
INTCPT is the β_{0} value of the y-axis intercept of the regression equation. In many cases the ideal intercept is 0.0 .
SLOPE is the β_{1} value or the slope of the regression equation. When comparing two sets of supposedly identical data on $x-y$ axes with the same scale, the ideal slope equals 1.0 .
UPPER and LOWER are the values of the confidence limits of the slope. It is highly probable that the true slope falls somewhere between these two values.
SAMPLE is the number of links that comprise the particular route.
TOTAL is the sum of the volumes on the various links of the route.
CORR (R) is the coefficient of correlation. This indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship. A value of -1.0 indicates a perfect inverse relationship.
DETERM (R^{2}) is the coefficient of determination. This value is the proportion of total variability that is explained by the model with 1.0 being a perfect model.
SOS is the sum of squares used to calculate other terms in regression analysis.
RMS is the root mean square error used to estimate the standard deviation of the dependent variable.
PCT ERR is the root mean square error expressed as a percent of average volume of the routes' links.

F is the heading over the F-ratio value for the F-test of significance of the regression equation. For any particular row, the F entry must be evaluated by the number of "degrees of freedom" (df). The degree of freedom for the regression $\left(\mathrm{df}_{1}\right)$ is always one. For the error, the degrees of freedom is the number of samples minus two $\left(\mathrm{df}_{2}=\mathrm{s}-2\right)$. Enter an F distribution table for $\mathrm{df}_{1}=1$ and $\mathrm{df}_{2}=\mathrm{s}-2$ to find the critical F-value at certain α-value, which, if smaller than the calculated F -value, means that the regression is significant. Therefore, the test hypothesis will be rejected and concluded that there is significant difference between the assigned volumes and the counted volumes.

How to Use
The table will flag problems with assignments to the listed routes. A value in the F column that is too low or a low coefficient of determination indicates a low level of agreement between the modeled assignment and the counted volumes.

table c1(1)

COMPARISON of assigned volumes hith counted volumes
COMPARISON OF ASSIGNED VOLUMES FROM : TYLER 85-85-1 CAPACITY RESTRAINT
WITH COUNTED VOLUMES FRON I TYLER 85-85-1 CAPACITY RESTRAINT

ROUTE INTCPT	SLOPE	UPPER	LONER	SAMPLE	TOTAL	CORR.	DETERM.	SOS	RMS	PCT ERR	${ }^{F}$
14511.094	0.6556	0.8182	0.4929	17.	409435.0	0.89787	0.80617	0.3290E +09	4399.316	18.266	62.39
29697.230	0.6172	0.8620	0.3725	13.	322465.0	0.83039	0.68955	$0.7947 E+08$	2472.462	9.968	24.43
3********	0.1909	0.6367	-0.2550	17.	779767.0	0.21175	0.04484	0.9762E+09	7577.942	16.521	0.70
42297.974	0.8463	1.1626	0.5300	13.	168182.0	0.84514	0.71427	$0.2860 \mathrm{E}+08$	1483.259	11.465	27.50
ALL1095.564	0.8541	0.8710	0.8372	843.	7459616.0	0.95973	0.92107	$0.6962 \mathrm{E}+10$	2873.724	32.476	9814.67

C4(1): COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY FACILITY GROUP

Purpose This table analyzes the degree of agreement between predicted (assigned) and actual counted volumes by facility type, either

FREEWAY, ARTERIAL, or OTHERS.

In addition, comparisons are made for geographical areas, called "sectors," which are groupings of zones. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.

How to Read

How to Use

AVERAGE GROUND COUNT PER LINK is the average counted volume of those links which fall into the category listed in a particular row.
AVERAGE ASSIGNED VOLUME PER LINK is the average predicted volume of those links which fall into the category listed in a particular row.
NUMBER OF OBSERVATIONS is the number of links which fall into the category listed in a particular row.
INTERCEPT is the β_{0} value or the value of the y-axis intercept of the regression equation.
SLOPE is the β_{1} value or the slope of the regression equation.
COEFFICIENT OF CORRELATION (R) indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship.
COEFFICIENT OF DETERMINATION (R^{2}) indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model.
ROOT MEAN SQUARE is the root mean square error used to estimate the standard deviation of the dependent variable.
PERCENT ROOT MEAN SQUARE is the root mean square error expressed as a percent of average ground count per link.

[^1]

C5(1): COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY VOLUME RANGE

Abstract

Purpose This table analyzes the degree of agreement between predicted and actual link volumes by volume groupings or ranges. The ALL row presents this analysis for the entire network of links.

Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.

How to Read VOLUME RANGE lists the minimum and maximum volumes in that particular grouping.
AVERAGE GROUND COUNT PER LINK is the average counted volume of those links which fall into the category listed in a particular row.
AVERAGE ASSIGNED VOLUME PER LINK is the average predicted volume of those links which fall into the category listed in a particular row.
NUMBER OF OBSERVATIONS lists the number of links in the particular volume range.
INTERCEPT is the β_{0} value or the value of the y-axis intercept of the regression equation.
SLOPE is the β_{1} value or the slope of the regression equation.
COEFFICIENT OF CORRELATION (R) indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship.
COEFFICIENT OF DETERMINATION $\left(R^{2}\right)$ indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model.
ROOT MEAN SQUARE is the root mean square error used to estimate the standard deviation of the dependent variable.
PERCENT ROOT MEAN SQUARE ERROR is the root mean square error expressed as a percent of average ground count per link.

How to Use A low coefficient of determination indicates that the assigned volumes on that particular volume range of links do not match well with the counted volumes. This information will indicate whether traffic on certain groups of roads is being systematically over- or underassigned.

TABLE C5(1)			COMPARISON O	Of ASSIGNED	VOLlmes and gro	OUND COUNTS BY	VOLLME RANGE		
VOLUME RANGE	average GROUND COUNT PER LINK	AVERAGE ASSIGNED VOLUME PER LINK	NUMBER OF OBSERVATIONS	IHTERCEPT	SLOPE	COEFFICIENT OF CORRELATION	COEFFICIENT OF DETERMI. nation	ROOT MEAN SQUARE	$\begin{aligned} & \text { PERCENT } \\ & \text { ROOT MEAN } \\ & \text { SQUARE } \end{aligned}$
$\begin{gathered} 010 \\ 999 \\ 100010 \end{gathered}$	$4.859375 \mathrm{E}+02$	$3.921172 E+02$	128.	9.104016 E	6.195797E-01	4.831001E-01	2.333857E-01	3.205430E+02	6.596382E+01
$\begin{aligned} & 4999 \\ & 5000 \text { to } \end{aligned}$	$2.518587 \mathrm{E}+03$	$2.459249 E+03$	269.	-3.130540E+0	$21.100737 \mathrm{E}+00$	5.675609E-01	3.221253E-01	$1.782003 E+03$	$7.075407 \mathrm{E}+01$
	$7.193078 \mathrm{E}+03$	7.109809E+03	159.	6.669951E+02	$28.956962 \mathrm{E}-01$	4.625103E-01	2.139158E-01	$2.541334 \mathrm{E}+0$	$3.533026 E+01$
14999	1.268130E+04	$1.215995 E+04$	107.	$2.989173 \mathrm{E}+03$	7.231728E-01	3.548246E-01	1.259004E-01	$2.799041 \mathrm{E}+03$	$2.207217 \mathrm{E}+01$
15000 24999	$1.919136 E+04$	2.043511E+04	139. -	$-9.036711 \mathrm{E}+0$	$31.535681 \mathrm{E}+00$	7.316474E-01	5.353079E-01	$4.330984 \mathrm{E}+0$	2.256735E+01
$\begin{gathered} 25000 \\ 49999 \end{gathered}$	3.381951E+04	$3.599590 \mathrm{E}+04$		$-1.214968 \mathrm{E}+04$	1.423603E+00	8.418798E-01	7.087616E-0	.289543E+03	.859737E+01
ALL iteration time	$\begin{aligned} & 8.653023 \varepsilon+03 \\ & =0.0727 \mathrm{M} \end{aligned}$	$\begin{aligned} & 8.848891 E+03 \\ & \text { MINUTES } \end{aligned}$	843.	-4.831326E+02	$21.078469 \mathrm{E}+00$	$9.597265 E-01$	9.210748E-01	$2.873724 E+03$	$3.321062 \mathrm{E}+01$

X1(2) CROSS CLASSIFICATION OF V/C FREQUENCIES FROM LAST TWO ASSIGNMENTS

Purpose This plot indicates the level of change between two successive assignment iterations. The number of links in each V/C ratio group are indicated.
If the data points are well scattered, then the current assignment iteration was much different than the previous iteration. If the data points tend toward a straight line with origin at $(0,0)$ in the upper left corner, then little change took place between iterations.

How to Read This table is really a graph with the (0,0) point in the upper left corner.
V / C is the volume to capacity ratio. The horizontal or X-axis is the present iteration V/C ratio. The vertical or Y -axis is the V / C ratio of the previous iteration. Instead of plotting points in the form of dots, they are represented as numbers, each number being the number of links which have the V / C attributes of the particular row and column.
TOT is the total of a row or a column. There are two rows of totals at the bottom of the plot. The top row is the column total. The bottom row is the row total column transposed.

How to Use The analyst can determine whether the particular iteration is approaching stability by the degree of scatter. When the plot forms a diagonal passing through the coordinates of $(0,0)$ toward $(3,3)$, then it is stable. If stability is not reached, then the output is not reliable.

Scanning the output will indicate the extent of overcapacity links. One can determine whether capacity limitations will be severe.

TYLER 85-85-1 CAPACITY RESTRAINT
TABLE XI(2)
CROSS CLASSIFICATION OF V/C FREQUENCIES FROM LAST TWO ASSIGNMENTS

TOTAL LINKS IN V/C SUmmary $=1159$

X2(2): CROSS CLASSIFICATION OF LINK CAPACITIES BY V/C RATIO FROM LAST TWO ASSIGNMENTS

Purpose This plot indicates the level of change between two successive assignment iterations. The sum of the volumes per link which fall into each V/C ratio group are indicated.
If the data points are well scattered, then the current assignment iteration was much different than the previous iteration. If the data points tend toward a straight line with origin at $(0,0)$ in the upper left corner, then little change took place between iterations.

How to Read This table is really a graph with the (0,0) point in the upper left corner.
V / C is the volume to capacity ratio. The horizontal or X -axis is the present iteration V / C ratio. The vertical or Y -axis is the V / C ratio of the previous iteration. Instead of plotting points in the form of dots, they are represented as numbers, each number being the number of trips (times the "SCALE FACTOR" listed below the graph) which have the V/C attributes of the particular row and column.
TOT is the total of a row or a column. There are two rows of totals at the bottom of the plot. The top row is the column total. The bottom row is the row total transposed.
PCT CAP is written "staggered" on two rows. This printed output is the cumulative percent of capacity held by each column from left to right.
SCALE FACTOR ONE UNIT is the largest trip divided by 999.
TOTAL SCALED TRIP IN SUMMARY is the sum of TOT.
TOTAL LINK CAPACITIES is the sum of the capacities on all links.

How to Use
The analyst can determine whether the particular iteration is approaching stability by the degree of scatter. When the plot forms a diagonal passing through the coordinates of $(0,0)$ toward $(3,3)$, then it is stable. If stability is not reached, then the output is not reliable.

scale factor one unit $=1020$ trips
total scaled trips in sumary $=14971$
total link capacities $=\quad 15422200$.

X3(2): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES - VMI

Abstract

Purpose This table or matrix shows the breakdown of volumes assigned during the second iteration according to the various categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.

FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E .
JUR is the jurisdictional area, in practice usually a group of zones, ranging from 0 to 9 and A to E .
MILES is the number of miles falling into the particular category described by the row and the column heading.
VEH-MILES is the number of vehicle-miles of travel in the particular category described by the row and the column heading.

How to Use
If " 2 " in a column or row heading refers to Yourtown and " 8 " refers to freeways, then there are 10.8 miles of freeway in Yourtown and 37,999 vehicle-miles of travel on freeways in Yourtown according to this assignment. Also, there are a total of 35.7 miles and 103,577 vehiclemiles in Yourtown, a total of 28.5 miles and 98,778 vehicle-miles on freeways, and a total of 3790.1 miles and $18,974,034$ vehicle-miles in the whole study area.

JUR	UNIT	FUNCTIONAL CLASSIFICATION	
		8	. TOTAL
:	.	:	:
2	MILES	10.8	35.7
	VEH-MILES	37999	103577
:	:	:	:
TOTAL	MILES	28.5	3790.1
	VEH-MILES	98778	18974034

Checking the miles of freeway in each jurisdiction can uncover coding mistakes. When testing alternative facility options, the vehicle-miles should be minimized.

TYLER 85-85-1 CAPACITY RESTRAINT
ITER. 2 DEC 8, 1988
TABLE $\times 3$ (2)
JURISOICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES

		FUNCTIOMAL CLASSIfICATION						
JUR	UNIT	A	B	C	D	E	F	TOTAL.
0	$\begin{gathered} \text { MILES } \\ \text { VEH-MILES } \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 269.6 \\ 282954 \end{array}$					
1	$\begin{gathered} \text { MILES } \\ \text { VEH-MILES } \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.0 0	$\begin{array}{r} 4.8 \\ 41025 \end{array}$
2	$\begin{gathered} \text { MILES } \\ \text { VEM-MILES } \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 5.6 \\ 106611 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 3.0 \\ 3762 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 42.5 \\ 409883 \end{array}$
3	MILES VEH-MILES	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 5.8 \\ 170654 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 5.4 \\ 27590 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 55.1 \\ 730112 \end{array}$
4	$\begin{gathered} \text { MILES } \\ \text { VEH-MILES } \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 3.5 \\ 41831 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 52.3 \\ 171463 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 63.8 \\ 332328 \end{array}$
5	MILES VEH-MILES	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 2.9 \\ 38985 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 57.4 \\ 84400 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 69.7 \\ 270807 \end{array}$
6	MILES VEH-MILES	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 13.2 \\ 234739 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 31.2 \\ 45892 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 58.8 \\ 512531 \end{array}$
7	Miles VEH-MILES	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 36.5 \\ 99648 \end{array}$	0.0	$\begin{array}{r} 36.5 \\ 99648 \end{array}$			
8	MILES VEH-MILES	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 1.8 \\ 25363 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 39.1 \\ 118499 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 58.8 \\ 320906 \end{array}$
9	$\begin{gathered} \text { MILES } \\ \text { VEH-MILES } \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.0 0	0.0 0			
A	$\begin{gathered} \text { MILES } \\ \text { VEH-MILES } \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.0 0	0.0 0
8	$\begin{gathered} \text { MILES } \\ \text { VEH-MILES } \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.0 0	0.0 0			
c	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.0 0	0.0 0
0	$\begin{gathered} \text { MILES } \\ \text { VEH-MILES } \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
E	MILES VEH-MILES	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
F	MILES VEH-MILES	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	0.0 0	0.0 0	0.0	0.0 0
	AL MILES VEH-MILES	0.0	0.0	$\begin{array}{r} 32.8 \\ 618181 \end{array}$	0.0	$\begin{array}{r} 224.9 \\ 551256 \end{array}$	0.0	$\begin{array}{r} 659.6 \\ 3000193 \end{array}$

X4(2): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES - VHR

Abstract

Purpose This table or matrix shows the breakdown of vehicle-hours of travel which result from the second iteration and the breakdown of the average speed according to the various input categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.

How to Read

How to Use

FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E .
JUR is the jurisdictional area, in practice usually a group of zones.
VEH-HOURS is the amount of vehicle-hours of travel which the first assignment says will be made on or in the particular category described by the row and the column description.
MILES/HOUR is the average velocity of the links that fall into the particular category described by the row and the column headings.

If " 2 " in a column or row heading refers to Yourtown and " 8 " refers to freeways, then there are 3,300 vehicle-hours of travel on freeways in Yourtown according to this assignment with an average speed of 49.0 miles per hour. Also, there are a total of 11,450 vehicle-hours and an average of 32.7 miles per hour in Yourtown, a total of 45,928 vehiclehours and an average of 56.5 miles per hour on freeways, and a total of $45,234,576$ vehicle-hours and an average of 35.2 miles per hour in the whole study area. When comparing future alternative networks, one goal might be to minimize vehicle-hours of travel.

JUR	UNIT	FUNCTIONAL CLASSIFICATION	
		8	... TOTAL
:	:	:	:
2	VEH-HOURS	3300	11450
	MILES/HOUR	49.0	32.7
:	:	:	:
TOTAL	VEH-HRS	45928	45234576
	MILES/HOUR	56.5	35.2

TYLER 85-85-1 CAPACITY RESTRAINT
ITER. 2 DEC 8, 1988
TABLE X4(2)
jurisdictional / functional cross classification of assigned volumes

	functional classification							
	JUR UNIT	A	8	c	-	E	F	Otal
	0 VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{aligned} & 10240 \\ & 27.63 \end{aligned}$					
	1 VEH-HOURS	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 1519 \\ 27.00 \end{array}$					
	2 VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 2226 \\ 47.90 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 94 \\ 39.84 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{aligned} & 10029 \\ & 40.87 \end{aligned}$
	3 VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 4379 \\ 38.97 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 752 \\ 36.71 \end{array}$	0.00	$\begin{aligned} & 20455 \\ & 35.69 \end{aligned}$
	$4 \text { VEH-HOURS }$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 701 \\ 59.64 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 3609 \\ 47.51 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 6937 \\ 47.91 \end{array}$
	5 VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 657 \\ 59.38 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 1725 \\ 48.93 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 4972 \\ 54.46 \end{array}$
	6 VEH-HOURS MILES/HOUR	0.00	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 4190 \\ 56.02 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 896 \\ 51.23 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 9028 \\ 56.77 \end{array}$
N	7 VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 2297 \\ 43.39 \end{array}$	0.00	$\begin{array}{r} 2297 \\ 43.39 \end{array}$			
	8 VEH-HOURS miles/hour	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 428 \\ 59,32 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 2690 \\ 44.05 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 6664 \\ 48.15 \end{array}$
	9 VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0.00	0.0	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0.00
	A VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0.00					
	B VEH-HOURS MILES/hOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00					
	C VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00					
	D VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0.00	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00			
	E VEh-MOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0.00	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0.00			
	F VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0.00					
	TOTAL VEH-HRS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{aligned} & 12581 \\ & 49.14 \end{aligned}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{aligned} & 12062 \\ & 45.70 \end{aligned}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{aligned} & 72142 \\ & 41.59 \end{aligned}$

X5(2): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF COUNTED VOLUMES

Abstract

Purpose This table or matrix shows the actual counted volumes on links that did have counts made on them and the miles of link which were counted. The listing is presented according to the various input categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.

FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and \mathbf{A} to E .
JUR is the jurisdictional area, in practice usually a group of zones, ranging from 0 to 9 and A to E.
MILES is the number of miles of link on which counts were made that fall into the particular category described by the row and the column heading.
VEH-MILES is the number of vehicle-miles of travel which were counted that fall into the particular category described by the row and the column heading.

How to Use If " 2 " in a column or row heading refers to Yourtown and " 8 " refers to freeways, then the total mileage of the freeway links on which counts were made in Yourtown was 1.8 , and there were 3,855 vehicle-miles of travel on these links. Also, there are a total of 3.7 miles and 10,357 vehicle-miles in Yourtown, a total of 2.5 miles and 9,878 vehicle-miles on freeways, and a total of 9.1 miles and 74,034 vehicle-miles in the whole study area.

JUR	UNIT	FUNCTIONAL CLASSIFICATION	
		8	... TOTAL
:	,	:	:
2	MILES	1.8	3.7
	VEH-MILES	3855	10357
,	:	:	:
TOTAL	MILES	2.5	9.1
	VEH-MILES	9878	74034

TYLER 85-85-1 CAPACITY RESTRAINT
ITER. 2 DEC 8, 1988
TABLE XS(2) JURISOICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF COUNTED VOLUMES

X6(2): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF LINK CAPACITIES

Abstract

Purpose This table or matrix shows the miles of the links according to the various input categories of roadway class (freeway, arterial) or a defined jurisdictional area and the twenty-four hour capacity in terms of vehicle-miles on each. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.

How to Read

How to Use

If " 2 " in a column or row heading refers to Yourtown and " 8 " refers to freeways, then there are 7.8 miles of freeway in Yourtown and 63,790 vehicle-miles of capacity on the freeways in Yourtown. Also, there are a total of 18.5 miles and 138,577 vehicle-miles on freeways and a total of 790.1 miles and $8,974,034$ vehicle-miles in the entire study area. This information can be used to compare the impacts of various proposed alternative networks.

JUR	UNIT	FUNCTIONAL CLASSIFICATION	
		- 8	.. TOTAL
:	:	:	:
2	MILES	7.8	31.7
	VEH-MILES	63790	193577
:	:	:	:
:	:	:	:
TOTAL	MILES	18.5	790.1
	VEH-MILES	138577	8974034

C1(2): COMPARISON OF ASSIGNED VOLUMES WITH COUNTED VOLUMES

Purpose
This table analyzes the degree of agreement between predicted and actual volumes on selected routes. A series of links, which is often traveled in sequence from one link to another, forms a route.
A regression equation is used to evaluate the degree of agreement. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.

How to Read
ROUTE is the number assigned to the route being investigated. The printout field for route is not separated from the adjacent field to the right, so the route number can appear to be a part of the number in the adjacent column.
INTCPT is the β_{0} value of the y-axis intercept of the regression equation. In many cases the ideal intercept is 0.0 .
SLOPE is the β_{1} value or the slope of the regression equation. When comparing two sets of supposedly identical data on $x-y$ axes with the same scale, the ideal slope equals 1.0 .
UPPER and LOWER are the values of the confidence limits of the slope. It is highly probable that the true slope falls somewhere between these two values.
SAMPLE is the number of links that comprise the particular route.
TOTAL is the sum of the volumes on the various links of the route.
CORR (R) is the coefficient of correlation. This indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship. A value of -1.0 indicates a perfect inverse relationship.
DETERM (R^{2}) is the coefficient of determination. This value is the proportion of total variability that is explained by the model with 1.0 being a perfect model.
SOS is the sum of squares used to calculate other terms in regression analysis.
RMS is the root mean square error used to estimate the standard deviation of the dependent variable.
PCT ERR is the root mean square error expressed as a percent of average volume of the routes' links.
F is the heading over the F-ratio value for the F-test of significance of the regression equation. For any particular row, the F entry must be evaluated by the number of "degrees of freedom" (df). The degree of freedom for the regression $\left(\mathrm{df}_{1}\right)$ is always one. For the error, the degrees of freedom is the number of samples minus two $\left(\mathrm{df}_{2}=\mathrm{s}-2\right.$). Enter an F distribution table for $\mathrm{df}_{1}=1$ and $\mathrm{df}_{2}=\mathrm{s}-2$ to find the critical F-value at certain α-value, which, if smaller than the calculated F -value, means that the regression is significant. Therefore, the test hypothesis will be rejected and concluded that there is significant difference between the assigned volumes and the counted volumes.

How to Use
The table will flag problems with assignments to the listed routes. A value in the F column that is too low or a low coefficient of determination indicates a low level of agreement between the modeled assignment and the counted volumes.

table c1(2)

COMPARISON of assigned volumes with counted vollmes

COMPARISON OF WITH	ASSIGNED COUNTEO	VOLUMES VOLUMES	$\begin{aligned} & \text { FROM } \\ & \text { FROM } \end{aligned}$	YLER 85 YLER 85	$\begin{aligned} & -85-1 \text { CAPAC } \\ & -85-1 \text { CAPAC } \end{aligned}$	ITY REST ITY REST					$\begin{aligned} & \text { ITER. } 2 \text { DEC } 14,1988^{\prime} \\ & \text { DEC } 14, \\ & 1988^{\prime} \end{aligned}$
ROUTE INTCPT	SLOPE	UPPER	LOWER	SAMPLE	TOTAL	CORR.	DETERM.	SOS	RMS	PCT ERR	F
1********	0.3081	0.4540	0.1623	17.	507188.0	0.73032	0.53336	$0.2194 \mathrm{E}+10$	11359.676	38.076	17.14
28794.348	0.7132	0.8765	0.5500	13.	295519.0	0.93248	0.86953	$0.1045 \mathrm{E}+09$	2834.918	12.471	73.31
3********	-0.1711	0.0929	-0.4351	17.	595165.0	-0.31170	0.09716	$0.1050 \mathrm{E}+10$	7858.601	22.447	1.61
4210.800	0.8377	1.5178	0.1576	13.	202281.0	0.58853	0.34636	$0.1286 \mathrm{E}+09$	3144.839	20.211	5.83
ALLI 1246.268	0.8341	0.8697	0.7984	843.	7486131.0	0.84519	0.71434	$0.2060 E+11$	4943.421	55.667	2103.06

C3(2): COMPARISON OF ASSIGNED VOLUMES WITH ASSIGNED VOLUMES

Purpose
This table presents a comparison of the assignments from the present iteration with the assignments of the previous iteration. This comparison is in the form of a regression equation.

How to Read
ROUTE is the number assigned to the route being investigated. The printout field for route is not separated from the adjacent field to the right, so the route number can appear to be a part of the number in the adjacent column.
INTCPT is the value of the y-axis intercept of the regression equation.
SLOPE is the β_{1} value or the slope of the regression equation.
UPPER and LOWER are the values of the confidence limits of the equation. It is highly probable that the true mean falls somewhere between these two values.
SAMPLE is the number of assigned volumes that are compared on the particular route.
TOTAL is the total sums of squares used to calculate other terms in regression analysis.
CORR (R) is the coefficient of correlation. This indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship.
DETERM is the coefficient of determination $\left(\mathrm{R}^{2}\right)$. This value indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model.

SOS is the sum of squares used to calculate other terms in regression analysis.
RMS is the root mean square error used to estimate the standard deviation of the dependent variable.
PCT ERR is the root mean square error expressed as a percent.
F is the heading over the F-ratio value for the F-test of significance of the regression equation. For any particular row, the F entry must be evaluated by the number of "degrees of freedom" (df). The degree of freedom for the regression $\left(\mathrm{df}_{1}\right)$ is always one. For the error, the degrees of freedom is the number of samples minus two $\left(\mathrm{df}_{2}=\mathrm{s}-2\right.$). Enter an F distribution table for $\mathrm{df}_{1}=1$ and $\mathrm{df}_{2}=\mathrm{s}-2$ to find the critical F-value at certain α-value, which, if smaller than the calculated F -value, means that the regression is significant. Therefore, the test hypothesis will be rejected and concluded that there is significant difference between the assigned volumes and the previous assigned volumes.

How to Use
The table will flag assignments that are varying greatly from one assignment to the next. A value in the F column that is too low or a low coefficient of determination indicates problems with the assignment.

COMPARISON OF ASSIGNED VOLUMES WIth ASSIGNED VOLUMES
COMPARISON OF ASSIGNED VOLUMES FROM : TYLER 85-85-1 CAPACITY RESTRAINT WITH ASSIGNED VOLUMES FROM * TYLER 85-85-1 CAPACITY RESTRAINT

ROUTE INTCPT	SLOPE	UPPER	LOWER	SAMPLE	TOTAL	CORR	DEIERM.	SOS	RMS	PCT ERR	F
18807.301	0.5121	0.6476	0.3765	17.	507188.0	0.88608	0.78514	$0.9197 \mathrm{E}+09$	7355.147	24.653	54.81
22386.714	0.9862	1.1598	0.8126	13.	295519.0	0.95838	0.91850	$0.7613 \mathrm{E}+08$	2419.882	10.645	123.97
3*******	-0.1123	0.1906	-0.4152	17.	595165.0	-0.18437	0.03399	$0.2722 E+10$	12654.813	36.147	0.53
4********	1.1052	1.6336	0.5769	13.	202281.0	0.77748	0.60447	$0.1248 \mathrm{E}+09$	3098.611	19.914	16.81
ALL1024. 118	0.8811	0.9266	0.8356	843.	7486131.0	0.79458	0.63135	$0.3143 E+11$	6106.394	68.763	1440.31

C4(2): COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY FACILITY GROUP

Purpose	This table analyzes the degree of agreement between predicted (assigned) and actual counted volumes by facility type, either

FREEWAY, ARTERIAL, or OTHERS.

In addition, comparisons are made for geographical areas, called "sectors," which are groupings of zones. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.

How to read AVERAGE GROUND COUNT PER LINK is the average counted volume of those links which fall into the category listed in a particular row.
AVERAGE ASSIGNED VOLUME PER LINK is the average predicted volume of those links which fall into the category listed in a particular row.
NUMBER OF OBSERVATIONS is the number of links which fall into the category listed in a particular row.
INTERCEPT is the β_{0} value or the value of the y-axis intercept of the regression equation.
SLOPE is the β_{1} value or the slope of the regression equation.
COEFFICIENT OF CORRELATION (R) indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship.
COEFFICIENT OF DETERMINATION (R^{2}) indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model.
ROOT MEAN SQUARE is the root mean square error used to estimate the standard deviation of the dependent variable.
PERCENT ROOT MEAN SQUARE is the root mean square error expressed as a percent of average ground count per link.

How to Use A low coefficient of determination indicates that the assigned volumes on that particular group of links do not match well with the counted volumes. The counted volumes and the final-output assigned volumes for each facility group should agree within $\pm 10 \%$.

TABLE C4(2)	COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY FACILITY GROUP								
FACILITY GROUP	average GROUND COUNT PER LINK	AVERAGE ASSIGNED VOLUME PER LINK	number of OBSERVATIONS	INTERCEPT	SLOPE	$\begin{aligned} & \text { COEFFICIENT } \\ & \text { OF } \\ & \text { CORRELATION } \end{aligned}$	COEFFICIENT of DETERMINATION	ROOT MEAN SQUARE	PERCENT ROOT MEAN SQUARE
fREEWAYS ARTERIALS OTHERS	$\begin{aligned} & 1.617307 E+04 \\ & 8.589414 E+03 \\ & 2.381877 E+03 \end{aligned}$	$\begin{aligned} & 1.541960 E+04 \\ & 9.636738 E+03 \\ & 2.707340 E+03 \end{aligned}$	$\begin{aligned} & 260 . \\ & 274 . \\ & 309 . \end{aligned}$	$\begin{aligned} & 4.153656 E+03 \\ & 1.657809 E+03 \\ & 1.193771 E+03 \end{aligned}$	$\begin{aligned} & 6.965863 E-01 \\ & 9.289259 E-01 \\ & 6.354518 E-01 \end{aligned}$	$\begin{aligned} & 6.527437 E-01 \\ & 8.690326 E-01 \\ & 5.806669 E-01 \end{aligned}$	$\begin{aligned} & 4.260743 E-01 \\ & 7.552176 E-01 \\ & 3.371740 E-01 \end{aligned}$	$\begin{aligned} & 6.969801 E+03 \\ & 4.643785 E+03 \\ & 2.583036 E+03 \end{aligned}$	$\begin{aligned} & 4.309508 \mathrm{E}+01 \\ & 5.406404 \mathrm{E}+01 \\ & 1.084454 \mathrm{E}+02 \end{aligned}$
SECTOR ClASSIFICATION									
1	$9.870270 E+03$	$8.720000 E+03$	37.	$1.251952 E+03$	7.566204E-01	6.763536E-01	4.574542E-01	5.806223E+03	$5.882536 E+01$
2	$9.378105 \mathrm{E}+03$	$9.744914 E+03$	169.	$9.568105 \mathrm{E}+02$	9.370875E-01	8.847823E-01	7.828397E-01	$3.417619 \mathrm{E}+03$	$3.644252 \mathrm{E}+01$
3	$1.335555 \mathrm{E}+04$	$1.359178 E+04$	234.	$2.926233 E+03$	7.985848E-01	7.860014E-01	6.177981E-01	$7.231445 E+03$	$5.414558 E+01$
4	$6.839559 \mathrm{E}+03$	$6.886395 E+03$	91.	$1.909857 E+03$	7.276109E-01	8.219082E-01	6.755330E-01	$5.118770 \mathrm{E}+03$	$7.484064 E+01$
5	$4.202039 E+03$	$4.490945 E+03$	98.	$2.516849 \mathrm{E}+02$	$1.008858 \mathrm{E}+00$	9.908592E-01	9.818018E-01	$8.360029 E+02$	$1.989516 \mathrm{E}+01$
6	$7.234664 \mathrm{E}+03$	$7.331090 E+03$	75.	$-8.164589 E+01$	$1.024613 E+00$	9.908851E-01	9.818532E-01	$1.092839 E+03$	$1.510559 E+01$
7	$2.811628 E+03$	$3.236953 E+03$	43.	$1.875572 \mathrm{E}+03$	4.841969E-01	4.164045E-01	1.733927E-01	3.474851E+03	$1.235886 E+02$
8	$5.432289 \mathrm{E}+03$	$6.045082 \mathrm{E}+03$	96.	$2.011344 E+03$	7.425483E-01	6.469327E-01	$4.185219 \mathrm{E}-01$	$4.655914 \mathrm{E}+03$	$8.570813 \mathrm{E}+01$

C5(2): COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY VOLUME RANGE

Abstract

Purpose This table analyzes the degree of agreement between predicted and actual link volumes by volume groupings or ranges. The ALL row presents this analysis for the entire network of links.

Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.

[^2]How to Use A low coefficient of determination indicates that the assigned volumes on that particular volume range of links do not match well with the counted volumes. This information will indicate whether traffic on certain groups of roads is being systematically over- or underassigned.

COmparison of assigned volumes and ground counts by volume range

VOLUME RANGE	AVERAGE GROUMD COUNT PER LIMK	average ASSIGNED VOLLME PER LINK	MUMBER OF OBSERVATIONS	INTERCEPT	SLOPE	COEFFICIENT OFF CORELATION	COEFFICIENT OF DETERMI * NATION	ROOT MEAN sOUARE	PERCEMT ROOT MEAN souare
$\begin{gathered} 0.10 \\ 9999^{9} 10 \end{gathered}$	4.859375E+02	$1.057406 E+03$	128.	-1.064683E+02	$2.395111 \mathrm{E}+00$	4.153873E-01	1.725466E-01	$1.515004 E+03$	$3.117690 \mathrm{E}+02$
$\begin{aligned} & 4999 \\ & 5000 \text { TO } \end{aligned}$	$2.518587 E+03$	$3.600219 E+03$	269.	7.971389E+02	$1.112957 E+00$	4.138088E-01	1.712377E-01	$2.935016 \mathrm{E}+03$	$1.165342 \mathrm{E}+02$
9999 10000 to	$7.193078 \mathrm{E}+03$	$8.208418 \mathrm{E}+03$	159.	$6.039316 E+03$	3.015538E-01	1.014699E-01	1.029613E-02	.599148E+03	6.393852E+01
10000 14990	1.268130E+04	$1.275345 \mathrm{E}+04$	107.	-9.702531E+03	1.770793E+00	5.202089E-01	2.706172E-01	.296145E+03	.387778E+01
$\begin{aligned} & 15000710 \\ & 24999 \end{aligned}$	$1.919136 \mathrm{E}+04$	$1.810939 \mathrm{E}+04$	139.	$7.564691 \mathrm{E}+03$	5.494498E-01	1.837068E-01	3.374819E-02	.148586E+03	.245964E+01
$25000 \text { то }$				-6.373621E+03					
ALL iteration time	$\begin{gathered} 8.653023 E+03 \\ =0.0658 \end{gathered}$	8.880344E+03 Minutes	843.	$1.469383 E+03$	8.564591E-01	8.451863E-01	7.143399E-01	$4.943418 E+03$	5.712936E+01

W2: ITERATION WEIGHTS APPLIED

Purpose \quad This small table lists the weights or percentages of the assignment from each iteration that comprise the final weighted output.

How to Read
ITERATION indicates the first through the fifth iterations of the capacity restraint assignment.
PER CENT lists the percent of the output from a particular iteration that is combined with portions of the other iterations to form the weighted output.

How to Use
This table reports what iteration percents were preprogrammed. The evaluation of the table is not required.

TYLER 85-85-1 CAPACITY RESTRAINT
ITERATION HEIGHTS APPLIED

ITERATION	PER CENT
1	15
2	15
3	20
4	20
5	30

A1(W): LINK VOLUME TABLE

Abstract

Purpose

How to Use
The final volume assignments are in this table. The analyst should review the link volumes. An unusual volume could indicate a problem with a coding or with the preceding traffic assignment.

TABLE	A1 (1)	LINK VOLUMES				
ANODE		BNODE		VOLUM		
305	DIR	30		3284	:	one-way vol. from node 305 to 30 is 3284.
305	NDIR	30		6580	:	two-way vol. between nodes 305-30 is 6580 .
	TURNS	$30-$	31)	44	:	vol. is 44 from node 30 thru 305 toward 31.
	TURNS	31-	306)	741	:	vol. is 741 from node 31 thru 305 to 306.
	TURNS	(306-	488)	5546	:	vol. is 5546 from node 306 thru 305 to 488.

X1(W): CROSS CLASSIFICATION OF V/C FREQUENCIES FROM LAST TWO ASSIGNMENTS

Purpose This plot compares the volume/capacity ratio of links from the weighted assignment with those of the fifth iterations. The number of links in each V/C ratio group are indicated.
If the data points are well scattered, then the weighted assignment was much different than the fifth iteration. If the data points tend toward a straight line with origin at $(0,0)$ in the upper left corner, then the fifth iteration and the weighted assignment are similar.

How to Read

How to Use

This table is really a graph with the $(0,0)$ point in the upper left corner.
V / C is the volume to capacity ratio. The horizontal or X -axis is the present iteration V/C ratio. The vertical or Y-axis is the V/C ratio of the previous iteration. Instead of plotting points in the form of dots, they are represented as numbers, each number being the number of links which have the V / C attributes of the particular row and column.
TOT is the total of a row or a column. There are two rows of totals at the bottom of the plot. The top row is the column total. The bottom row is the row total column transposed.

The analyst can determine whether the particular iteration is approaching stability by the degree of scatter. When the plot forms a diagonal passing through the coordinates of $(0,0)$ toward $(3,3)$, then it is stable. If stability is not reached, then the output is not reliable.

Scanning the output will indicate the extent of overcapacity links. One can determine whether capacity limitations will be severe.

CROSS CLASSIFICATION OF V/C FREQUENCIES FROM LAST THO ASSIGNMENTS
V/C 0.00 .10 .20 .30 .40 .50 .60 .70 .80 .91 .01 .11 .21 .31 .41 .51 .61 .71 .81 .92 .02 .112 .22 .32 .42 .52 .62 .72 .82 .93 .0 101

TOTAL LINKS IN V/C SUMMARY $=1159$

X2(W): CROSS CLASSIFICATION OF LINK CAPACITIES BY V/C RATIO FROM LAST TWO ASSIGNMENTS

Abstract

Purpose This plot compares link capacities by volume/capacity ratio from the weighted assignment with that of the fifth iterations. The sum of the volumes per link which fall into each V/C ratio group are indicated.

If the data points are well scattered, then the weighted assignment differed greatly from the fifth iteration. If the data points tend toward a straight line with origin at (0,0) in the upper left corner, then little change took place between iterations.

How to Read

How to Use

This table is really a graph with the $(0,0)$ point in the upper left corner.
V / C is the volume to capacity ratio. The horizontal or X -axis is the present iteration V/C ratio. The vertical or Y-axis is the V/C ratio of the previous iteration. Instead of plotting points in the form of dots, they are represented as numbers, each number being the number of trips (times the "SCALE FACTOR" listed below the graph) which have the V/C attributes of the particular row and column.
TOT is the total of a row or a column. There are two rows of totals at the bottom of the plot. The top row is the column total. The bottom row is the row total transposed.
PCT CAP is written "staggered" on two rows. This printed output is the cumulative percent of capacity held by each column from left to right.
SCALE FACTOR ONE UNIT is the largest trip divided by 999.
TOTAL SCALED TRIP IN SUMMARY is the sum of TOT.
TOTAL LINK CAPACITIES is the sum of the capacities on all links.

The analyst can determine whether the particular iteration is approaching stability by the degree of scatter. When the plot forms a diagonal passing through the coordinates of $(0,0)$ toward $(3,3)$, then it is stable. If stability is not reached, then the output is not reliable.

SCALE FACTOR ONE UNIT $=1714$ TRIPS
TOTAL SCALED TRIPS IN SUMMARY $=\quad 8922$
TOTAL LINK CAPACITIES $=\quad 15422200$.

X3(W): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES - VMI

Abstract

Purpose

How to Read

How to Use
If " 2 " in a column or row heading refers to Yourtown and " 8 " refers to freeways, then there are 10.8 miles of freeway in Yourtown and 37,999 vehicle-miles of travel on freeways in Yourtown according to this assignment. Also, there are a total of 35.7 miles and 103,577 vehiclemiles in Yourtown, a total of 28.5 miles and 98,778 vehicle-miles on freeways, and a total of 3790.1 miles and $18,974,034$ vehicle-miles in the whole study area.

Checking the miles of freeway in each jurisdiction can uncover coding mistakes. When testing alternative facility options, the vehicle-miles. should be minimized.

	table X3() $^{\text {c }}$			Jurisdictional / functional cross classification of assigned					
	JUR	UnIt	A	8	c	D	E	F	total.
	0	MILES VEH-MILES	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.0 0	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	$\begin{array}{r} 269.6 \\ 278786 \end{array}$
	1	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	0.0 0	0.0 0	0.0 0	0.0	$\begin{array}{r} 4.8 \\ 45918 \end{array}$
	2	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{gathered} 0.0 \\ 0 \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 5.6 \\ 93744 \end{array}$	0.0 0	$\begin{array}{r} 3.0 \\ 3966 \end{array}$	0.0 0	$\begin{array}{r} 42.5 \\ 398038 \end{array}$
	3	$\begin{gathered} \text { MILES } \\ \text { VEH-MILES } \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	$\begin{array}{r} 5.8 \\ 181734 \end{array}$	0.0	$\begin{array}{r} 5.4 \\ 29370 \end{array}$	0.0 0	$\begin{array}{r} 55.1 \\ 744104 \end{array}$
	4	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	$\begin{array}{r} 3.5 \\ 40435 \end{array}$	0.0 0	$\begin{array}{r} 52.3 \\ 162139 \end{array}$	0.0 0	$\begin{array}{r} 63.8 \\ 317589 \end{array}$
	5	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	$\begin{array}{r} 2.9 \\ 39912 \end{array}$	0.0 0	$\begin{array}{r} 57.4 \\ 79991 \end{array}$	0.0 0	$\begin{array}{r} 69.7 \\ 259824 \end{array}$
	6	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	$\begin{array}{r} 13.2 \\ 234075 \end{array}$	0.0 0	$\begin{array}{r} 31.2 \\ 48357 \end{array}$	0.0	$\begin{array}{r} 58.8 \\ 514019 \end{array}$
∞	7	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.0	$\begin{array}{r} 36.5 \\ 99249 \end{array}$	0.0 0	$\begin{array}{r} 36.5 \\ 99249 \end{array}$
	8	MILES VEH-MILES	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	$\begin{array}{r} 1.8 \\ 25370 \end{array}$	0.0 0	$\begin{array}{r} 39.1 \\ 95862 \end{array}$	0.0 0	$\begin{array}{r} 58.8 \\ 305250 \end{array}$
	9	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	0.0	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
	A	$\begin{gathered} \text { MILES } \\ \text { VEH-MILES } \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0.0 \\ 0 \end{gathered}$	0.0 0	0.0 0	0.0 0	0.0 0	0.0
	B	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	0.0	0.0 0	0.0 0	0.0 0	0.0	0.0 0	0.0 0
	c	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	0.0	0.0 0	0.0	0.0 0	0.0 0
	D	MILES VEh-Miles	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
	E	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	0.0	0.0	0.0 0	0.0 0	0.0 0	0.0	0.0
	F	$\begin{gathered} \text { MILES } \\ \text { VEH-MILES } \end{gathered}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0 0
		al miles VEh-MILES	0.0	0.0	$\begin{array}{r} 32.8 \\ 615270 \end{array}$	0.0	$\begin{array}{r} 224.9 \\ 518934 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 659.8 \\ 2962776 \end{array}$

X4(W): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES - VHR

Purpose | This table or matrix shows the breakdown of vehicle-hours of travel in |
| :--- |
| the weighted assignment and the breakdown of the average speed |
| according to the various input categories of roadway class (freeway, |
| arterial) or defined jurisdictional area. The analyst must refer to the |
| input coding to determine the identity of the category in a particular |
| column or row. |

FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E .
JUR is the jurisdictional area, in practice usually a group of zones.
VEH-HOURS is the amount of vehicle-hours of travel which the weighted assignment says will be made on or in the particular category described by the row and the column description.
MILES/HOUR is the average velocity of the links that fall into the particular category described by the row and the column headings.

How to Use
If " 2 " in a column or row heading refers to Yourtown and " 8 " refers to freeways, then there are 3,300 vehicle-hours of travel on freeways in Yourtown according to this assignment with an average speed of 49.0 miles per hour. Also, there are a total of 11,450 vehicle-hours and an average of 32.7 miles per hour in Yourtown, a total of 45,928 vehiclehours and an average of 56.5 miles per hour on freeways, and a total of $45,234,576$ vehicle-hours and an average of 35.2 miles per hour in the whole study area. When comparing future alternative networks, one goal might be to minimize vehicle-hours of travel.

JUR	UNIT	FUNCTIONAL CLASSIFICATION	
		8	. TOTAL
:	:	:	:
2	VEH-HOURS	3300	11450
	MILES/HOUR	49.0	32.7
:	:	:	:
TOTAL	VEH-HRS	45928	45234576
	MILES/HOUR	56.5	35.2

TYLER 85-85-1 CAPACITY RESTRAINT

	FUNCTIONAL CLASSIFICATION						
JUR UNIT	A	B	C	0	E	F	OTAL
$\begin{aligned} & 0 \text { VEH-HOURS } \\ & \text { MILES/HOUR } \end{aligned}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 10822 \\ 25.76 \end{array}$					
1 VEH-HOURS	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00	0 0.00	0 0.00	$\begin{array}{r} 1657 \\ 27.71 \end{array}$
$\begin{aligned} & 2 \text { VEH-HOURS } \\ & \text { MILES/HOUR } \end{aligned}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 1972 \\ 47.54 \end{array}$	0 0.00	$\begin{array}{r} 102 \\ 38.76 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 9839 \\ 40.45 \end{array}$
$\begin{aligned} & 3 \text { VEH-HOURS } \\ & \text { MILES/HOUR } \end{aligned}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00	$\begin{array}{r} 4435 \\ 40.98 \end{array}$	0 0.00	$\begin{array}{r} 784 \\ 37.45 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{aligned} & 20548 \\ & 36.21 \end{aligned}$
4 VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00	$\begin{array}{r} 688 \\ 58.80 \end{array}$	0 0.00	$\begin{array}{r} 3373 \\ 48.08 \end{array}$	0 0.00	$\begin{array}{r} 6654 \\ 47.73 \end{array}$
5 VEH-HOURS	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 677 \\ 58.98 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 1637 \\ 48.88 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 4793 \\ 54.21 \end{array}$
6 VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00	$\begin{array}{r} 4189 \\ 55.88 \end{array}$	0 0.00	$\begin{array}{r} 949 \\ 50.93 \end{array}$	0 0.00	$\begin{array}{r} 9123 \\ 56.34 \end{array}$
$\begin{aligned} & 7 \text { VEH-HOURS } \\ & \text { MILES/HOUR } \end{aligned}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0,00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 2209 \\ 44.92 \end{array}$	0 0.00	$\begin{array}{r} 2209 \\ 44.92 \end{array}$
8 VEH-HOURS MILES/HCUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 433 \\ 58.65 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 2113 \\ 45.37 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 6301 \\ 48.44 \end{array}$
9 VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00^{0} \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00			
A VEH-HOURS MILES/HOUR	0.00	0 0.00	0 0.00	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00
8 VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00					
C VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00					
D VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$						
E VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00					
VEH-HOURS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00 \end{array}$	0 0.00					
TOTAL VEH-HRS MILES/HOUR	$\begin{array}{r} 0 \\ 0.00^{0} \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{aligned} & 12392 \\ & 49.65 \end{aligned}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{aligned} & 11167 \\ & 46.47 \end{aligned}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{aligned} & 71946 \\ & 41.18 \end{aligned}$

X5(W): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF COUNTED VOLUMES

Abstract

Purpose This table or matrix shows the actual counted volumes on links that did have counts made on them and the miles of link which were counted. The listing is presented according to the various input categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row. Since this table makes use of actual count data, this table is not applicable when conducting a future year assignment.

FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E.
JUR is the jurisdictional area, in practice usually a group of zones, ranging from 0 to 9 and A to E.
MILES is the number of miles of link on which counts were made that fall into the particular category described by the row and the column heading.
VEH-MILES is the number of vehicle-miles of travel which were counted that fall into the particular category described by the row and the column heading.

How to Use
If " 2 " in a column or row heading refers to Yourtown and " 8 " refers to freeways, then the total mileage of the freeway links on which counts were made in Yourtown was 1.8 , and there were 3,855 vehicle-miles of travel on these links. Also, there are a total of 3.7 miles and 10,357 vehicle-miles in Yourtown, a total of 2.5 miles and 9,878 vehicle-miles on freeways, and a total of 9.1 miles and 74,034 vehicle-miles in the whole study area.

JUR	UNIT	FUNCTIONAL CLASSIFICATION	
		- 8	... TOTAL
:	:	:	:
2	MILES	1.8	3.7
	VEH-MILES	3855	10357
:	:	:	:
TOTAL	MILES	2.5	9.1
	VEH-MILES	9878	74034

	table $\mathrm{X} 5(\mathrm{~W})$			JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF COUNTED functional classification					
	JUR	UNIT	A	B	c	D	E	F	TOTAL
	0	MILES Veh-miles	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0			
	1	MILES VEH-MILES	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	0.0 0	$\begin{array}{r} 4.8 \\ 45394 \end{array}$			
	2	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 5.6 \\ 83497 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	3.0 4498	$\begin{array}{r} 0.0 \\ 0 \end{array}$	397430
	3	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	0.0	$\begin{gathered} 0.0 \\ 0 \end{gathered}$	$\begin{array}{r} 5.8 \\ 179206 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 5.4 \\ 30303 \end{array}$	$\begin{gathered} 0.0 \\ 0 \end{gathered}$	$\begin{array}{r} 55.1 \\ 723997 \end{array}$
	4	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	0.0	0.0	$\begin{array}{r} 3.5 \\ 40438 \end{array}$	0.0	$\begin{array}{r} 52.3 \\ 157506 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 63.8 \\ 319901 \end{array}$
	5	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	$\begin{array}{r} 2.9 \\ 40024 \end{array}$	0.0 0	$\begin{array}{r} 57.4 \\ 69499 \end{array}$	0.0 0	$\begin{array}{r} 69.7 \\ 253840 \end{array}$
	6	MILES VEH-MILES	0.0	0.0	$\begin{array}{r} 13.2 \\ 225744 \end{array}$	$\begin{gathered} 0.0 \\ 0 \end{gathered}$	$\begin{array}{r} 31.2 \\ 50218 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 58.8 \\ 517421 \end{array}$
N	7	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	0.0	0.0 0	$\begin{array}{r} 36.5 \\ 98603 \end{array}$	0.0	$\begin{array}{r} 36.5 \\ 98663 \end{array}$
	8	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	0.0	$\begin{aligned} & 0.0 \\ & 0 \end{aligned}$	$\begin{array}{r} 1.8 \\ 25081 \end{array}$	0.0 0	$\begin{array}{r} 39.1 \\ 90293 \end{array}$	0.0 0	$\begin{array}{r} 58.8 \\ 305564 \end{array}$
	9	MILES VEH-MILES	0.0	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{gathered} 0.0 \\ 0 \end{gathered}$	0.0	0.0	0.0 0	0.0
	A	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	0.0	0.0	0.0	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0
	8	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.0 0	0.0 0	0.0	0.0
	c	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	0.0	0.0 0	0.0	0.0 0	0.0	0.0 0	0.0
	D	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	0.0	0.0 0	0.0	0.0	0.0	0.0	0.0
	E	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0	0.0 0	0.0	0.0	0.0 0
	F	$\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	0.0 0	0.0 0	0.0	0.0	0.0
		at miles VEH-MILES	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 0.0 \\ 0 \end{array}$	$\begin{array}{r} 32.8 \\ 593990 \end{array}$	0.0 0	$\begin{array}{r} 224.9 \\ 500980 \end{array}$	0.0 0	$\begin{array}{r} 390.0 \\ 2662210 \end{array}$

X6(W): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF LINK CAPACITIES

Abstract

Purpose This table or matrix shows the miles of the links according to the various input categories of roadway class (freeway, arterial) or a defined jurisdictional area and the twenty-four hour capacity in terms of vehicle-miles on each. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.

FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E .
JUR is the jurisdictional area, in practice usually a group of zones, ranging from 0 to 9 and A to E .
MILES is the number of miles that fall into the particular category described by the row and the column heading.
VEH-MILES is the number of vehicle-miles of capacity that fall into the particular category described by the row and the column heading.

How to Use
If " 2 " in a column or row heading refers to Yourtown and " 8 " refers to freeways, then there are 7.8 miles of freeway in Yourtown and 63,790 vehicle-miles of capacity on the freeways in Yourtown. Also, there are a total of 18.5 miles and 138,577 vehicle-miles on freeways and a total of 790.1 miles and $8,974,034$ vehicle-miles in the entire study area. This information can be used to compare the impacts of various proposed alternative networks.

JUR	UNIT	FUNCTIONAL CLASSIFICATION	
		8	... TOTAL
:	:	:	:
2	MILES	7.8	31.7
	VEH-MILES	63790	193577
:	:	:	:
:	:	:	:
TOTAL	MILES	18.5	790.1
	VEH-MILES	138577	8974034

TABLE X6(W)

 Jurisdictional / functional cross classificailion of link capacities| | | | functional classification | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | JUR | UnIt | A | B | c | D | E | | TOTAL |
| | 0 | $\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.0 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 80.3 \\ 150664 \end{array}$ |
| | 1 | $\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.0 | 0.0 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 4.8 \\ 100350 \end{array}$ |
| | 2 | miles VEh-MILES | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 5.6 \\ 188940 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 3.0 \\ 21371 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 42.5 \\ 903977 \end{array}$ |
| | 3 | $\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$ | 0.0 | 0.0 | $\begin{array}{r} 5.8 \\ 194970 \end{array}$ | 0.0 0 | $\begin{array}{r} 5.4 \\ 48790 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 55.1 \\ 1123329 \end{array}$ |
| | 4 | $\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$ | 0.0 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 3.5 \\ 97244 \end{array}$ | 0.0 | $\begin{array}{r} 52.3 \\ 371412 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 63.8 \\ 639634 \end{array}$ |
| | 5 | $\begin{gathered} \text { MILES } \\ \text { VEH-MILES } \end{gathered}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 2.9 \\ 78963 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 57.4 \\ 387778 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 813120 |
| | 6 | $\begin{aligned} & \text { MLLES } \\ & \text { VEH-MILES } \end{aligned}$ | 0.0 | 0.0 | $\begin{array}{r} 13.2 \\ 378832 \end{array}$ | 0.0 | $\begin{array}{r} 31.2 \\ 208275 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 58.8 \\ 1271072 \end{array}$ |
| \pm | 7 | $\begin{aligned} & \text { MILES } \\ & \text { VEH-HILES } \end{aligned}$ | 0.0 | 0.0 | 0.0 0 | 0.0 | $\begin{array}{r} 36.5 \\ 273280 \end{array}$ | 0.0 0 | $\begin{array}{r} 36.5 \\ 273280 \end{array}$ |
| | 8 | $\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.0 | $\begin{array}{r} 1.8 \\ 57628 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 39.1 \\ 291046 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 58.8 \\ 793134 \end{array}$ |
| | 9 | $\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$ | 0.0 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.0 | 0.0 | 0.0 | 0.0 0 |
| | A | $\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$ | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 |
| | B | $\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$ | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 |
| | c | MILES VEH-MILES | 0.0 0 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.0 0 | 0.0 0 | 0.0 0 | 0.0 0 | 0.0 0 |
| | D | $\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$ | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.0 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.0 0 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.0 0 | 0.0 0 |
| | E | $\begin{gathered} \text { MILES } \\ \text { VEH-MILES } \end{gathered}$ | 0.0 0 | 0.0 | 0.0 0 | 0.0 0 | $\begin{array}{r} 0.0 \\ 0 \end{array}$ | 0.0 0 | 0.0 |
| | F | $\begin{aligned} & \text { MILES } \\ & \text { VEH-MILES } \end{aligned}$ | 0.0 0 | 0.0 0 | 0.0 | 0.0 0 | 0.0 0 | 0.0 0 | 0.0 |
| | | AL MILES VEH-miles | 0.0 0 | 0.0 | $\begin{array}{r} 32.8 \\ 996577 \end{array}$ | 0.0 | $\begin{array}{r} 224.9 \\ 1601952 \end{array}$ | 0.0 | $\begin{array}{r} 470.3 \\ 6068560 \end{array}$ |

C1(W): COMPARISON OF ASSIGNED VOLUMES WITH COUNTED VOLUMES

Purpose

This table analyzes the degree of agreement between predicted and actual volumes on selected routes. A series of links, which is often traveled in sequence from one link to another, forms a route.

A regression equation is used to evaluate the degree of agreement. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.

How to Read
ROUTE is the number assigned to the route being investigated. The printout field for route is not separated from the adjacent field to the right, so the route number can appear to be a part of the number in the adjacent column.
INTCPT is the β_{0} value of the y-axis intercept of the regression equation. In many cases the ideal intercept is 0.0 .
SLOPE is the β_{1} value or the slope of the regression equation. When comparing two sets of supposedly identical data on $x-y$ axes with the same scale, the ideal slope equals 1.0 .
UPPER and LOWER are the values of the confidence limits of the slope. It is highly probable that the true slope falls somewhere between these two values.
SAMPLE is the number of links that comprise the particular route.
TOTAL is the sum of the volumes on the various links of the route.
CORR (R) is the coefficient of correlation. This indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship. A value of -1.0 indicates a perfect inverse relationship.
DETERM (R^{2}) is the coefficient of determination. This value is the proportion of total variability that is explained by the model with 1.0 being a perfect model.
SOS is the sum of squares used to calculate other terms in regression analysis.
RMS is the root mean square error used to estimate the standard deviation of the dependent variable.
PCT ERR is the root mean square error expressed as a percent of average volume of the routes' links.
F is the heading over the F-ratio value for the F-test of significance of the regression equation. For any particular row, the F entry must be evaluated by the number of "degrees of freedom" (df). The degree of freedom for the regression $\left(\mathrm{df}_{\mathrm{i}}\right)$ is always one. For the error, the degrees of freedom is the number of samples minus two $\left(\mathrm{df}_{2}=\mathrm{s}-2\right)$. Enter an F distribution table for $\mathrm{df}_{1}=1$ and $\mathrm{df}_{2}=\mathrm{s}-2$ to find the critical F -value at certain α-value, which, if smaller than the calculated F-value, means that the regression is significant. Therefore, the test hypothesis will be rejected and concluded that there is significant difference between the assigned volumes and the counted volumes.

How to Use

The table will flag problems with assignments to the listed routes. A value in the F column that is too low or a low coefficient of determination indicates a low level of agreement between the modeled assignment and the counted volumes.

COMPARISON OF ASSIGNED VOLUMES WITH COUNTED VOLUMES
COMPARISON OF ASSIGNED VOLUMES FROM: TYLER 85-85-1 CAPACITY RESTRAINT
HITH COUNTED VOLUMES FROM TYLER 85-85-1 CAPACITY RESTRAINT

ROUTE INTCPT	SLOPE	UPPER	LOMER	SAMPLE	total	CORR.	DETERM.	SOS	RMS	PCT ERR	F
16435.770	0.5645	0.7548	0.3743	17.	417510.0	0.83234	0.69279	$0.4562 \mathrm{E}+09$	5180.560	21.094	33.83
27082.004	0.7267	0.9231	0.5304	13.	320658.0	0.90947	0.82713	$0.4126 E+08$	1781.526	7.223	52.63
3********	0.5975	1.0838	0.1112	17.	693716.0	0.52802	0.27880	$0.1545 E+09$	3014.296	7.387	5.80
4511.498	0.9136	1.3221	0.5051	13.	181204.0	0.79745	0.63593	$0.3894 \mathrm{E}+08$	1730.762	12.417	19.21
ALL 135.620	0.9630	0.9781	0.9480	843.	7455934.0	0.97431	0.94927	$0.3444 \mathrm{E}+10$	2021.373	22.855	15737.27

C3(W): COMPARISON OF ASSIGNED VOLUMES WITH ASSIGNED VOLUMES

Abstract

Purpose This table presents a comparison of the assignments from the weighted assignment with the assignments of the fifth iteration. This comparison is in the form of a regression equation.

How to Read
ROUTE is the number assigned to the route being investigated. The printout field for route is not separated from the adjacent field to the right, so the route number can appear to be a part of the number in the adjacent column.
INTCPT is the value of the y-axis intercept of the regression equation.
SLOPE is the β_{1} value or the slope of the regression equation.
UPPER and LOWER are the values of the confidence limits of the equation. It is highly probable that the true mean falls somewhere between these two values.
SAMPLE is the number of assigned volumes that are compared on the particular route.
TOTAL is the total sums of squares used to calculate other terms in regression analysis.
CORR (R) is the coefficient of correlation. This indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship.
DETERM is the coefficient of determination $\left(\mathrm{R}^{2}\right)$. This value indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model.

SOS is the sum of squares used to calculate other terms in regression analysis.
RMS is the root mean square error used to estimate the standard deviation of the dependent variable.
PCT ERR is the root mean square error expressed as a percent.
F is the heading over the F-ratio value for the F-test of significance of the regression equation. For any particular row, the F entry must be evaluated by the number of "degrees of freedom" (df). The degree of freedom for the regression $\left(\mathrm{df}_{1}\right)$ is always one. For the error, the degrees of freedom is the number of samples minus two $\left(\mathrm{df}_{2}=\mathrm{s}-2\right)$. Enter an F distribution table for $\mathrm{df}_{1}=1$ and $\mathrm{df}_{2}=\mathrm{s}-2$ to find the critical F -value at certain α-value, which, if smaller than the calculated F-value, means that the regression is significant. Therefore, the test hypothesis will be rejected and concluded that there is significant difference between the assigned volumes and the previous assigned volumes.

The table will flag weighted route assignments that greatly differed from those of the fifth iteration. A value in the F column that is too low or a low coefficient of determination indicates problems with the assignment on that particular route.

COMPARISON OF ASSIGNED VOLUMES WITH ASSIGNED VOLUMES
CONPARISON OF ASSIGNED VOLUMES FROM : TYLER 85-85-1 CAPACITY RESTRAINT HITH ASSIGHED VOLUNES FROM ' TYLER 85-85-1 CAPACITY RESTRAINT

ROUTE INTCPT	SLOPE	UPPER	LONER	SAMPLE	TOTAL	CORR.	DETERM.	S0S	RMS	PCT ERR	F
11529.329	0.9140	0.9783	0.8498	17.	417510.0	0.99049	0.98106	$0.1626 E+08$	977.956	3.982	777.06
2709.126	0.9831	1.0391	0.9271	13.	320658.0	0.99538	0.99079	$0.3104 \mathrm{E}+07$	488.662	1.981	1183.07
3********	1.7163	2.2976	1.1350	17.	693716.0	0.83105	0.69064	$0.2011 \mathrm{E}+09$	3439.498	8.429	33.49
4-245.616	1.0110	1.0340	0.9880	13.	181204.0	0.99926	0.99852	$0.2202 \mathrm{E}+06$	130.144	0.934	7418.06
ALL - 16.146	0.9985	1.0076	0.9894	843.	7455934.0	0.99105	0.98219	$0.1213 E+10$	1199.380	13.561	46377.16

C4(W): COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY FACILITY GROUP

Abstract

Purpose This table analyzes the degree of agreement between predicted (assigned) and actual counted volumes by facility type, either

FREEWAY,
ARTERIAL, or OTHERS.

In addition, comparisons are made for geographical areas, called "sectors," which are groupings of zones. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.

AVERAGE GROUND COUNT PER LINK is the average counted volume of those links which fall into the category listed in a particular row.
AVERAGE ASSIGNED VOLUME PER LINK is the average predicted volume of those links which fall into the category listed in a particular row.
NUMBER OF OBSERVATIONS is the number of links which fall into the category listed in a particular row.
INTERCEPT is the β_{0} value or the value of the y-axis intercept of the regression equation.
SLOPE is the β_{1} value or the slope of the regression equation.
COEFFICIENT OF CORRELATION (R) indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship.
COEFFICIENT OF DETERMINATION (R^{2}) indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model.
ROOT MEAN SQUARE is the root mean square error used to estimate the standard deviation of the dependent variable.
PERCENT ROOT MEAN SQUARE is the root mean square error expressed as a percent of average ground count per link.

How to Use A low coefficient of determination indicates that the assigned volumes on that particular group of links do not match well with the counted volumes. The counted volumes and the final-output assigned volumes for each facility group should agree within $\pm 10 \%$.
TABLE C4(W) COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY fACILITY GROUP

FACILITY GROUP	AVERAGE GROUND COUNT PER LINK	AVERAGE volume PER LIMK	$\begin{aligned} & \text { NUMBER OF } \\ & \text { OBSERVAIIONS } \end{aligned}$	INTERCEPT	SLOPE	COEFFICIENT OFF CORELATION	COEFFICIENT OF DETERMI NATION	ROOT MEAN SOUARE	PERCENT ROOT MEAN SQUARE
FREEMAYS ARTERIALS OTHERS	$\begin{aligned} & 1.617307 E+04 \\ & 8.589414 E+03 \\ & 2.381877 E+03 \end{aligned}$	$\begin{aligned} & 1.599855 \mathrm{E}+04 \\ & 9.201859 \mathrm{E}+03 \\ & 2.508094 \mathrm{E}+03 \end{aligned}$	$\begin{aligned} & 260 . \\ & 274 . \\ & 309 . \end{aligned}$	$6.364037 E+00$ $6.442170 E+02$ $2.110079 \mathrm{E}+02$	$\begin{aligned} & 9.888152 \mathrm{E}-01 \\ & 9.963010 \mathrm{E}-01 \\ & 9.644015 \mathrm{E}-01 \end{aligned}$	$\begin{aligned} & 9.458174 \mathrm{E}-01 \\ & 9.697778 \mathrm{E}-01 \\ & 9.635154 \mathrm{E}-01 \end{aligned}$	8.945705E-01 $9.404690 \mathrm{E}-01$ $9.283619 \mathrm{E}-01$	$\begin{aligned} & 2.730906 E+03 \\ & 2.211931 \mathrm{E}+03 \\ & 7.303696 \mathrm{E}+02 \end{aligned}$	$\begin{aligned} & 1.688550 \mathrm{E}+01 \\ & 2.575182 \mathrm{E}+01 \\ & 3.066360 \mathrm{E}+01 \end{aligned}$
$\begin{aligned} & \text { SECTOR } \\ & \text { CLASSIFICATION } \end{aligned}$									
	$9.870270 \mathrm{E}+03$	$1.006295 \mathrm{E}+04$		-4.033459E+02	$1.060385 \mathrm{E}+00$	9.730747E-01	9.468743E-01	$1.721954 \mathrm{E}+03$	1.744585E+01
2	$9.378105 \mathrm{E}+03$	$9.485805 E+03$	169.	$3.216123 \mathrm{E}+02$	$9.771900 \mathrm{E}-01$	9.604505E-01	9.224651E-01	$1.944004 \mathrm{E}+03$	$2.072917 \mathrm{E}+01$
3	$1.335555 \mathrm{E}+04$	$1.384251 \mathrm{E}+04$	234.	6.666729E+02	9.865437E-01	$9.654341 \mathrm{E}-01$	9.320629E-01	$2.962408 \mathrm{E}+03$	$2.218109 \mathrm{E}+01$
4	$6.839559 \mathrm{E}+03$	$6.713219 E+03$	91.	$6.824517 \mathrm{E}+02$	8.817479E-01	$9.784965 \mathrm{E}-01$	$9.574533 E-01$	$1.971489 E+03$	$2.882478 \mathrm{E}+01$
5	$4.202039 E+03$	$4.304090 \mathrm{E}+03$	98.	$2.031514 \mathrm{E}+02$	9.759401E-01	9.957401E-01	$9.914982 \mathrm{E}-01$	5.427192E+02	$1.291562 \mathrm{E}+01$
6	$7.234664 E+03$	$7.402812 \mathrm{E}+03$	75.	$-1.922090 \mathrm{E}+01$	$1.025898 \mathrm{E}+00$	$9.907042 \mathrm{E}-01$	$9.814948 \mathrm{E}-01$	$1.114981 \mathrm{E}+03$	$1.541165 \mathrm{E}+01$
7	$2.811628 \mathrm{E}+03$	$2.956186 \mathrm{E}+03$	43.	$2.240487 \mathrm{E}+02$	9.717279E-01	9.7672688 -01	9.539952E-01	6.474268E+02	$2.302675 \mathrm{E}+01$
8	$5.432289 \mathrm{E}+03$	$5.482551 E+03$	96.	$2.906919 \mathrm{E}+02$	9.557403E-01	$9.694571 \mathrm{E}-01$	$9.398470 \mathrm{E}-01$	$1.244542 \mathrm{E}+03$	2.291006E+01

C5(W): COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY VOLUME RANGE

Abstract

Purpose This table analyzes the degree of agreement between predicted and actual link volumes by volume groupings or ranges. The ALL row presents this analysis for the entire network of links.

Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.

How to Read

How to Use

VOLUME RANGE lists the minimum and maximum volumes in that particular grouping.
AVERAGE GROUND COUNT PER LINK is the average counted volume of those links which fall into the category listed in a particular row.
AVERAGE ASSIGNED VOLUME PER LINK is the average predicted volume of those links which fall into the category listed in a particular row.
NUMBER OF OBSERVATIONS lists the number of links in the particular volume range.
INTERCEPT is the β_{0} value or the value of the y-axis intercept of the regression equation.
SLOPE is the β_{1} value or the slope of the regression equation.
COEFFICIENT OF CORRELATION (R) indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship.
COEFFICIENT OF DETERMINATION (R^{2}) indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model.
ROOT MEAN SQUARE is the root mean square error used to estimate the standard deviation of the dependent variable.
PERCENT ROOT MEAN SQUARE ERROR is the root mean square error expressed as a percent of average ground count per link.

A low coefficient of determination indicates that the assigned volumes on that particular volume range of links do not match well with the counted volumes. This information will indicate whether traffic on certain groups of roads is being systematically over- or underassigned.

TABLE C5 (W)			Comparison	of assigned vo	OLUMES AND GRO	nd COUNTS By	volume range		
VOLUME RANGE	average GROUND COUNT PER LINK	AVERAGE ASSIGNED VOLUME PER LINK	number of OBSERVATIONS	INTERCEPT	SLOPE	COEFFICIENT of correlation	COEFFICIENT OF DETERMInation	ROOT MEAN souare	PERCENT root mean square
$\begin{gathered} 0 \text { TO } \\ 9999^{\text {ro }} \end{gathered}$	4.859375E +02	6.119922E+02	128.	8.951299E+01	$1.075198 \mathrm{E}+00$	5.616012E-01	3.153958E-01	$4.289243 \mathrm{E}+02$	8.826736E+01
4999 $500 \text { ro }$	2.518587t +03	$2.870163 E+03$	269.	$-1.837461 \mathrm{E}+02$	$1.212548 \mathrm{E}+00$	6.849614E-01	.691721E-01	.496954E+03	5.943625E+01
9999	$7.193078 \mathrm{E}+03$	$7.568004 \mathrm{E}+03$	159.	$2.775512 \mathrm{E}+03$	6.662644E-01	.674503E-01	2.185098E-01	.960825E+03	$2.725987 E+01$
10000 TO 14999	1.268130E+04	$1.254854 \mathrm{E}+04$	107.	-7.628887E+02	1.049688E+00	6.206396E-01	$3.851934 \mathrm{E}-01$	$1.900009 \mathrm{E}+03$.498275E+01
15000 24999	1.919136E+04	$1.946037 \mathrm{E}+04$	139.	-1.647127E+03	1.099843E+00	7.069159E-01	4.997301E-01	$3.012418 E+03$	$1.569673 E+01$
${ }_{49999}^{25000}$	$3.381951 \mathrm{E}+04$	3.303722E+04	41.	-7.156437E+03	1.188475E+00	8.969744E-01	8.045631E-01	3.692880E+03	1.091938E+01
ALL	8.653023E +03	$8.844523 E+03$	843.	$3.149900 \mathrm{E}+02$	9.857286E-01	$9.743053 \mathrm{E}-01$	$9.492708 E-01$	$2.021373 E+03$	$2.336031 \mathrm{E}+01$

I1: CORRIDOR INTERCEPT

Purpose | The person running the assignment can request that a number of |
| :--- |
| cutlines be constructed and the link volumes across the cutlines be |
| reported. The output for each requested cutline is reported on a |
| separate sheet of paper. |
| How to Read |
| ANODE is one end of a link. |
| BNODE is the other end of a link. |
| RT is the assigned route number this link is on. |
| F is the functional class. Refer to the input coding to determine what |
| codes denote what class. |
| SPEED is the originally assigned link speed. |
| COUNT is the actual counted volume on a link; if a count was not |
| made on the link, then 0 appears. |
| CAP is the input link capacity. |
| VOL 1 is the assigned volume from the first iteration. |
| VOL 2 is the assigned volume from the second iteration. |
| VOL 3 is the assigned volume from the third iteration. |
| VOL 4 is the assigned volume from the fourth iteration. |
| VOL 5 is the assigned volume from the fifth iteration. |
| VOL 6 is the assigned volume from the weighted assignment. |
| PCT COUNT is the percentage of VOL $6 /$ COUNT. |
| PCT CAP is the percentage of VOL $6 /$ CAP. | ll

How to Use
The inability to perfectly model traffic behavior leads to differences between predicted and counted volumes in the best of assignments. However, the sums of predicted and counted volumes on a group of competing links (i.e., a corridor) should come close to agreeing.

The level of agreement can be checked by reviewing these tables. The base year counted and assigned volumes should agree within $\pm 10 \%$.

R1: ROUTE PROFILE

Purpose

This table lists the volumes on the sequential links of a route so they can be analyzed. The output for each requested route is reported on a separate page. Each link of the route is listed on a row.

How to Read

How to Use

ANODE is the end of a link with the smaller number.
BNODE is the end of a link with the larger number. The practice of listing the smaller number link in the left column may obscure the sequential numbering of links. Just mentally reverse the order of the listed nodes to help make the sequential listing apparent from one row to the next.
F is the functional class. Refer to the input coding to determine what codes denote what class.
DIST is the length of the link.
SPEED is the originally assigned link speed.
COUNT is the actual counted volume on a link; if a count was not made on the link, then 0 appears.
CAP is the input link capacity.
VOL 1 is the assigned volume from the first iteration.
VOL 2 is the assigned volume from the second iteration.
VOL 3 is the assigned volume from the third iteration.
VOL 4 is the assigned volume from the fourth iteration.
VOL 5 is the assigned volume from the fifth iteration.
VOL 6 is the assigned volume from the weighted assignment.

These tables can be used to assess the validity of assignments on sequential links of a specified route.

TABLE	R1					ROUTE	1 PR				
ANODE	BMODE	F DIST	SPEED	COUNT	CAP	VOL 1	VOL 2	VOL 3	VOL 4	VOL 5	VOL. 6
364	372	c 0.25	40	14500	33500	16495	18708	14186	16862	16110	16278
371	372	C 0.38	45	15000	33500	17975	19457	14922	17611	16859	17179
371	521	c 0.22	45	15500	33500	17284	19761	15423	18238	17470	17530
520	521	c 0.21	45	16800	33500	17284	19761	15423	18238	17470	17530
520	522	C 0.38	45	18100	33500	22126	26581	19435	23614	22507	22668
522		C 0.38	45	18500	33500	22142	26597	19451	23630	22523	22684
523	524	c 0.33	45	19000	33500	22595	27047	19882	24086	22978	23133
524	541	30.15	45	21000	33500	24542	29318	21882	26120	25030	25184
540		30.12	45	23800	33500	24542	29318	21862	26120	25030	25184
540		30.16	45	21000	33500	24873	28325	21428	26156	25159	25044
565		30.12	45	20700	33500	25897	28958	22226	27000	26023	25880
566	567	30.07	45	21600	33500	29599	40548	27045	32102	31254	31728
567		30.26	45	22300	33500	28575	45364	26032	30224	29239	31114
568	569	30.13	45	23000	33500	29028	45839	25762	30661	29734	31435
569	570	30.30	45	22900	33500	30393	37440	28293	31165	30647	31261

L1: LIST OF VOLUMES AND SPEEDS FOR UPDATED LINKS

Purpose
This table presents the assignments from each of the iterations. The reviewer can analyze the stability of the assignment.

How to Use
These tables can be used to check length and capacity coding for each link and evaluate the stability of each link assignment. If the volume and/or speed on a link are fluctuating greatly from iteration to iteration, the particular assignment is very sensitive to small changes.

TAbLE L1						LIST Of	VOLUME	S AND S	SPEEDS F	OR UPDATED LINKS	
ANCOE	BNOOE	DIST	FC	CAPACITY	VOL 1 SPD 1	VOL 2 SPD 2	VOL 3 SPD	VOL 4	VOL 5 SPD 5	VOL 6 SPD 6	
301	307	2.08	E	7200	$\begin{array}{r} 549 \\ 40.0 \end{array}$	$\begin{array}{r} 536 \\ 43.5 \end{array}$	$\begin{array}{r} 545 \\ 43.5 \end{array}$	$\begin{array}{r} 544 \\ 43.5 \end{array}$	$\begin{array}{r} 545 \\ 43.5 \end{array}$	$\begin{array}{r} 544 \\ 42.9 \end{array}$	$\cdots \cdots$
304	402	0.22	1	49000	$\begin{array}{r} 21447 \\ 55.0 \end{array}$	$\begin{array}{r} 20164 \\ 60.0 \end{array}$	$\begin{array}{r} 20176 \\ 60.0 \end{array}$	$\begin{array}{r} 19958 \\ 60.0 \end{array}$	$\begin{array}{r} 20129 \\ 60.0 \end{array}$	$\begin{array}{r} 20307 \\ 60.0 \end{array}$	$\begin{array}{llllllll}0.4 & 0.4 & 0.4 & 0.4 & 0.4 & 0.4\end{array}$
305	402	0.39	C	26900	$\begin{array}{r} 17415 \\ 54.4 \end{array}$	$\begin{array}{r} 16092 \\ 57.1 \end{array}$	$\begin{array}{r} 16053 \\ 57.1 \end{array}$	$\begin{array}{r} 15833 \\ 58.5 \end{array}$	$\begin{array}{r} 16002 \\ 58.5 \end{array}$	$\begin{array}{r} 16204 \\ 57.1 \end{array}$	0.60 .600 .60 .60 .600 .6
305	306	1.71	c	26900	$\begin{array}{r} 17425 \\ 54.9 \end{array}$	$\begin{array}{r} 17174 \\ 58.0 \end{array}$	$\begin{array}{r} 16065 \\ 58.0 \end{array}$	$\begin{array}{r} 16969 \\ 58.3 \end{array}$	$\begin{array}{r} 16011 \\ 58.3 \end{array}$	$\begin{array}{r} 16600 \\ 57.6 \end{array}$	0.60 .60 .60 .60 .60 .6
306	316	0.49	C	29500	$\begin{array}{r} 19173 \\ 55.5 \end{array}$	$\begin{array}{r} 17686 \\ 58.8 \end{array}$	$\begin{array}{r} 17818 \\ 58.8 \end{array}$	$\begin{array}{r} 17501 \\ 58.8 \end{array}$	$\begin{array}{r} 17693 \\ 58.8 \end{array}$	$\begin{array}{r} 17901 \\ 58.8 \end{array}$	0.60 .60 .60 .60 .60 .60 .6
306	307	0.69	E	7200	$\begin{array}{r} 929 \\ 39.8 \end{array}$	$\begin{array}{r} 916 \\ 43.1 \end{array}$	$\begin{array}{r} 925 \\ 43.1 \end{array}$	$\begin{array}{r} 924 \\ 43.1 \end{array}$	$\begin{array}{r} 925 \\ 43.1 \end{array}$	$\begin{array}{r} 924 \\ 42.7 \end{array}$	0.10 .10 .110 .10 .10 .1
306	321	0.38	E	4000	$\begin{aligned} & 2543 \\ & 35.1 \end{aligned}$	$\begin{aligned} & 1320 \\ & 37.4 \end{aligned}$	$\begin{aligned} & 2552 \\ & 38.0 \end{aligned}$	$\begin{aligned} & 1332 \\ & 37.4 \end{aligned}$	$\begin{aligned} & 2481 \\ & 38.0 \end{aligned}$	$\begin{aligned} & 2101 \\ & 37.4 \end{aligned}$	0.60 .30 .60 .300 .60 .5
308	309	1.44	E	7200	$\begin{aligned} & 2268 \\ & 49.9 \end{aligned}$	$\begin{aligned} & 3587 \\ & 54.3 \end{aligned}$	$\begin{aligned} & 3563 \\ & 54.0 \end{aligned}$	$\begin{aligned} & 3784 \\ & 54.0 \end{aligned}$	$\begin{aligned} & 3613 \\ & 54.0 \end{aligned}$	$\begin{aligned} & 3432 \\ & 53.3 \end{aligned}$	0.30 .50 .50 .50 .50 .50 .5
309	310	0.82	E	7200	$\begin{aligned} & 2201 \\ & 50.2 \end{aligned}$	$\begin{aligned} & 3520 \\ & 54.7 \end{aligned}$	$\begin{aligned} & 3496 \\ & 54.1 \end{aligned}$	$\begin{aligned} & 3717 \\ & 54.1 \end{aligned}$	$\begin{aligned} & 3546 \\ & 54.1 \end{aligned}$	$\begin{aligned} & 3365 \\ & 53.5 \end{aligned}$	0.30 .50 .50 .50 .50 .5
310	311	1.27	E	7200	$\begin{array}{r} 404 \\ 39.9 \end{array}$	$\begin{array}{r} 412 \\ 43.3 \end{array}$	$\begin{array}{r} 245 \\ 43.3 \end{array}$	$\begin{array}{r} 269 \\ 43.3 \end{array}$	$\begin{array}{r} 256 \\ 43.3 \end{array}$	$\begin{array}{r} 302 \\ 42.8 \end{array}$	0.10 .10 .00 .00 .00 .0
310	415	2.09	E	7200	$\begin{aligned} & 2654 \\ & 44.9 \end{aligned}$	$\begin{aligned} & 4233 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 4068 \\ & 48.4 \end{aligned}$	4297	$\begin{aligned} & 4130 \\ & 48.2 \end{aligned}$	$\begin{aligned} & 3945 \\ & 47.9 \end{aligned}$	$0.40 .60 .6 \quad 0.60 .60 .5$
310	312	0.98	E	7200	$\begin{array}{r} 217 \\ 40.0 \end{array}$	$\begin{array}{r} 503 \\ 43.6 \end{array}$	$\begin{array}{r} 495 \\ 43.6 \end{array}$	$\begin{array}{r} 513 \\ 43.6 \end{array}$	$\begin{array}{r} 500 \\ 43.6 \end{array}$	$\begin{array}{r} 460 \\ 42.9 \end{array}$	0.00 .10 .10 .100 .10 .1
311	417	0.50	E	7200	$\begin{array}{r} 253 \\ 40.0 \end{array}$	$\begin{array}{r} 241 \\ 43.5 \end{array}$	$\begin{array}{r} 94 \\ 43.5 \end{array}$	$\begin{array}{r} 103 \\ 43.5 \end{array}$	$\begin{array}{r} 105 \\ 43.5 \end{array}$	$\begin{array}{r} 145 \\ 42.9 \end{array}$	$0.00 .0 \quad 0.0 \quad 0.0 \quad 0.00 .0$
312	313	1.22	E	7200	$\begin{array}{r} 92 \\ 40.0 \end{array}$	$\begin{aligned} & 1388 \\ & 43.6 \end{aligned}$	$\begin{aligned} & 1396 \\ & 43.6 \end{aligned}$	$\begin{aligned} & 1378 \\ & 43.6 \end{aligned}$	$\begin{aligned} & 1391 \\ & 43.6 \end{aligned}$	$\begin{aligned} & 1194 \\ & 43.1 \end{aligned}$	0.00 .20 .20 .20 .20 .2
313	314	0.18	E	8200	$\begin{array}{r} 330 \\ 40.0 \end{array}$	$\begin{aligned} & 1852 \\ & 43.2 \end{aligned}$	$\begin{aligned} & 1634 \\ & 43.2 \end{aligned}$	$\begin{aligned} & 1616 \\ & 43.2 \end{aligned}$	$\begin{aligned} & 1629 \\ & 43.2 \end{aligned}$	$\begin{aligned} & 1466 \\ & 43.2 \end{aligned}$	0.00 .20 .20 .20 .20 .2
313	320	0.90	E	5600	$\begin{array}{r} 314 \\ 40.0 \end{array}$	$\begin{array}{r} 540 \\ 43.5 \end{array}$	$\begin{array}{r} 314 \\ 43.5 \end{array}$	$\begin{array}{r} 314 \\ 43.5 \end{array}$	$\begin{array}{r} 314 \\ 43.5 \end{array}$	$\begin{array}{r} 348 \\ 42.9 \end{array}$	0.10 .10 .10 .10 .10 .1

SELECTED LINKS

CUTOFF PARAMETERS

Purpose This table appears when using an "all-or-nothing" assignment and will not appear with the usual capacity-restraint output. This is a printout of input values.

The intent of the input is to reduce the amount of printed output zonal interchange volumes. For a given node, the most restrictive of the three controls will apply. Either no more than a certain percent of the zonal interchanges on a given link will be printed, interchanges with a volume less than the cutoff will not be printed, or no more than a certain number of zonal interchanges will be printed.

How to Read
ANODE is one end of a link.
BNODE is the other end of the link.
PER CENT (.GT.) is the value of the cutoff parameter.
VOLUME (.LT.) is the value of the cutoff parameter.
ZONE PAIRS (.GT.) is the value of the cutoff parameter.

How to Use This output is simply a reference to document certain inputs.

SELECT	d Link	cut off parameters		
ANOOE	BNOOE	PER CENT (.GT.)	VOLUME (.LT.)	ZONE PAIRS (.GT.)
789	822	25		32767
850	851	100	32767	32767
534	610	100	0	15

SELECTED LINKS
 TRIP INTERCHANGES LOADED ON LINK

Purpose \quad This table lists the zones whose trips traverse certain links.

How to Read TRIP INTERCHANGES LOADED ON LINK is the link under consideration.
AZONE is one zone of a pair with trips on the link.
BZONE is the other zone of a pair with trips on the link.
TOTAL is the total number of two-way trips between the two zones on the link under consideration.
AZONE-BZONE is the number of assigned trips from zone A to zone B on the link under consideration.
BZONE-AZONE is the number of assigned trips from zone B to zone A on the link under consideration.

How to Use This output can be checked to determine whether the placement of zonal interchanges on certain links seems reasonable.

TYLER 85-85-1

DEC 16, 1988
TRIP INTERCHANGES LOADED ON LINK 789822,822789

AZONE	BZONE	ZONE TO ZONE TRIPS		
		total	AZONE-BZONE	bzone-azone
94	79	1151	576	575
92	38	826	413	413
94	38	765	382	383
35	79	743	372	371
97	38	642	321	321
94	91	624	312	312
92	53	586	293	293
240	229	520	260	260
94	53	452	227	225
94	229	439	220	219
35	91	420	210	210
35	53	418	209	209
92	70	413	207	206
94	237	403	201	202
247	234	400	200	200
92	48	350	175	175
92	52	348	174	174
97	53	340	170	170
30	79	329	165	164
36	79	328	164	164
94	70	322	161	161
97	70	322	161	161
92	37	315	158	157
247	237	310	155	155
92	45	307	154	153
35	237	295	148	147
92	73	285	142	143

WINDOWING

S1: INPUT EXTERNAL STATION LINKS

Purpose This table is part of the "Windowing" output. It lists the links intersected by the cordon line used to define the windowed area.

How to Read Each row of the output lists the link node endpoints.

How to Use
The analyst can check the listed links to insure that the cordon line was drawn as intended. The external station links must be selected so that a centroid does not become an external station. To insure that a centroid does not become an external station, the cordon line must intersect a centroid connector such that the centroid is inside the cordoned subarea.

The last single number (one node or centroid number) in a row tells the computer which side of the cordoned area to use (i.e., inside or outside).

Input external station links

472	1
465	1
464	475
476	2
477	478
485	3
484	483
486	497
496	4
510	4
500	499
609	608
531	5
532	501
613	12
628	12
627	615
625	626
624	502
624	11
623	622
658	10
659	661
670	9
668	9
666	665
667	8
471	473
6	

WINDOWING

S2: NODE TYPES FOUND FROM EXTERNAL STATION LINKS

Purpose | This table describes the relationship of the nodes to the windowed |
| :--- |
| area. |

How to Read
This table is a matrix-chart. There are fifty entries per row. The top or horizontal axis scale is numbered in increments of five to assist in determining the number of the node in each of the fifty columns. By using the codes printed immediately above the horizontal scale, one can determine the relationship of any node to the windowed portion of the network.
E: denotes an external station node.
I: denotes a node inside the subarea.
N: denotes a node not connected to the network.
O: denotes a node outside the subarea.

How to Use \quad| The table can be reviewed to make sure the windowed area was coded |
| :--- |
| as intended. | as intended.

TABLE S2 NODE TYPES FOUND FROM EXTERNAL STATION LINKS

$\begin{array}{lll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 51 & 0\end{array}$

 151

70 NOOES/ZONES NOT CONNECTED IN NETWORK
4 NODES/ZONES IN SUBAREA
57 NCOES/ZONES OUTSIDE OF SUBAREA
HODES/ZONES UNDETERMINED

WINDOWING

S3: RENUMBERED SUBAREA CENTROIDS AND EXTERNAL STATIONS

Purpose

How to Read

How to Use

This table lists the renumbering which occurred as a result of the windowing.

NEW ZONE is the zone number of the "windowed" network. OLD ZONE is the zone number of the "regular" network.

This table is used to relate the windowed output to the regular network numbering scheme.

NEW	OLD	NEW	OLD	NEU	OLD	NEU	OLD	NEW	OLO	NEW	OLD	NEW	OLD	NEW	OLD
ZONE	ZONE	ZONE	ZONE	20NE	ZONE										
1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8
9	9	10	10	11	11	12	12	$13 E$	464	14 E	465	15E	471	16E	472
$17 E$	476	18 E	477	19 E	484	20 E	485	21E	486	22 E	496	$23 E$	500	$24 E$	510
$25 E$	531	26E	532	27 E	609	28 E	613	29 E	623	30 E	624	$31 E$	625	32E	627
33 E	628	34 E	658	35 E	659	$36 E$	666	$37 E$	667	38 E	668	39 E	670		

WINDOWING

S4: TRIPS BY NUMBER OF CORDON CROSSINGS

Purpose \quad This output tells how many trips crossed the windowing cordon line and tells the trip origin with respect to the cordon line.

How to Read

NUMBER OF CORDON CROSSINGS indicates how many times the trips on that row crossed the cordon line.
TRIPS FOR ORIGIN INSIDE is the number of trips with their origin inside of the cordon line.
TRIPS FOR ORIGIN OUTSIDE is the number of trips with an origin outside of the cordon line.

How to Use This output tells the travel activity with respect to the cordon.

TABLE S4	TRIPS BY NUMBER OF CORDON CROSSINGS		
	NUMBER OF CORDON CROSSINGS	TRIPS FOR ORIGIM IMSIDE	TRIPS FOR ORIGIN OUTSIDE
	0 1 2	$\begin{array}{r} 6724 . \\ 41335 . \\ 273 . \end{array}$	$\begin{array}{r} 465076 . \\ 41224 . \\ 7317 . \end{array}$

cumulative time $=0.0357$ minutes time since last query $=0.0273$ minutes
sstop
message summary: message number - count
$201 \quad 1$

FOCUSING

SUBAREA SECTOR EQUALS

Purpose This table lists the sector centroids and also the centroids which are equated to the sector centroids.

How to Read The numbers to the right of the EQUAL on this table may specify ranges of centroids by placing the beginning of the range on the card in one field and immediately following this field by a field with the last centroid of the range with a minus sign in front of the centroid number.

How to Use
Trees will not be built for centroids equated to sector centroids. The exception to this is that trees will be built for all zones equated to the same zone (sector centroids). An entry is generated for each sector centroid, and if it is additionally equated to itself, a warning message will be printed.

TYLER 85-85-1

subarea sector equals

```
\begin{tabular}{lrrrrrrr}
58 EQUAL & 59 & -61 & 64 & 65 & 215 & 216 & \\
71 EQUAL & 57 & 62 & 63 & 66 & -70 & 72 & 219 \\
73 EQUAL. & 74 & 78 & -80 & 91 & & & \\
75 EQUAL & 75 & & & & & & \\
81 EQUAL. & 76 & 77 & 82 & & & & \\
86 EQUAL & 83 & 84 & 87 & & & & \\
97 EQUAL & 88 & -90 & 92 & -96 & 98 & & \\
100 EQUAL & 85 & 99 & 101 & -103 & 105 & 109 & \\
107 EQUAL & 104 & 106 & 108 & 111 & -113 & & \\
114 EQUAL & 110 & 115 & 116 & & & & \\
119 EQUAL & 117 & 118 & 120 & 122 & 131 & 220 & \\
128 EQUAL & 121 & 123 & 127 & 129 & 130 & 140 & 141 \\
136 & EQUAL & 133 & -135 & 137 & & & \\
139 EQUAL & 132 & 138 & 152 & & & \\
151 EQUAL & 148 & -150 & 154 & 158 & 159 & 161 & \\
155 EQUAL & 153 & 156 & 157 & & & & \\
162 EQUAL & 160 & 163 & 170 & & & & \\
173 EQUAL & 171 & 172 & 174 & & & 189 & \\
187 EQUAL & 185 & 186 & 188 & 189 & 197 & 198 & \\
193 & EQUAL & 190 & -192 & 194 & -196 & & \\
201 EQUAL & 200 & 203 & 204 & 214 & & & \\
218 EQUAL & 202 & 217 & & & & &
\end{tabular}
%
sstop
message summary: message number - count
    201 252
```


FOCUSING

E1: CENTROID TO SECTOR EQUIVALENCES

Purpose This table lists the internal and external zone numbers. The sector centroids and also the centroids which are equated to the sector centroids are listed in this table.

How to Read

How to Use

The numbers to the left of the TO on this table indicate all zone numbers of centroids. The numbers to the right of the TO on this table specify either the zone centroids or the sector centroids. If the zone centroids are within the defined subarea or in the transition ring area, the numbers remain the same as the zone numbers. If the zone centroids are located in the outside of the transition ring area, the zone numbers to the left of the TO are aggregated to the sector centroids indicated to the right of the TO on this table.

Trees will not be built for centroids equated to sector centroids. The exception to this is that trees will be built for all zones equated to the same zone (sector centroids). An entry is generated for each sector centroid, and if it is additionally equated to itself, a warning message will be printed.

FRATAR

\$SUM TRIP ENDS (for base year)

Purpose This table lists the existing trips by zone. If the Fratar model is used only for external trips, then the listing will be for the external thru trips. This table facilitates checking the input.

How to Read

How to Use

ZONE NO. is the centroid node number of the zone.
NO. TRIPS ENTERING is the input number of trips from this zone entering the study area.
NO. TRIPS EXITING is the input number of trips leaving the study area to this zone.
NO. INTRAZONAL is the number of trips within a zone.
NO. TRIP ENDS is the sum of trips entering and trips exiting.
NO. ZONES ENTERING is the number of zones with nonzero interchanges.
NO. ZONES EXITING is the number of zones with nonzero interchanges.

The analyst should check this output to verify the input data. If the Fratar model is being used only for external trip analysis, then the entries for all zones other than the external should be zero.

	fratar tyler 85-85-1 external thru					DEC 16, 1988	
	$\begin{gathered} \text { ZONE } \\ \text { NO. } \end{gathered}$	NO.TRIPS ENTERING	NO.TRIPS exiting	NO. INTRAZONAL	NO. TRIP ENDS	NO.ZONES ENTERING	NO. ZONES EXITING
	208	0	0	0	0	- 0	0
	209	0	0	0	0	0	0
	210	0	0	0	0	0	0
	211	0	0	0	0	0	0
	212	0	0	0	0	0	0
	213	0	0	0	0	0	0
	214	0	0	0	0	0	0
	215	0	0	0	0	0	0
	216	0	0	0	0	0	0
	217	0	0	0	0	0	
	218	0	0	0	0	0	0
	219	0	0	0	0	0	0
	220	0	0	0	0	0	0
	221	760	760	0	1520	20	18
	222	1	1	0	2	1	1
	223	181	181	0	362	22	23
	224	7	7	0	14	7	7
	225	21	21	0	42	13	12
	226	7	7	0	14	6	6
	227	77	78	0	155	11	13
	228	674	674	0	1348	18	19
	229	121	121	0	242	23	22
	230	1	1 9	0	2818	1 9	1 9
↔	231	51	51	0	18 102	9	9
	233	21	21	0	42	9	10
	234	87	87	0	174	21	22
	235	7	7	0	14	6	5
	236	14	14	0	28	8	7
	237	69	69	0	138	13	15
	238	107	107	0	214	11	11
	239	13	13	0	26	9	9
	240	195	194	0	389	20	21
	241	18	18	0	36	11	10
	242	2	2		4	2	2
	243	75	75	0	150	18	20
	244	3	2	0	5	3	2
	245	38	38	0	76	8	7
	246	0	0	0	0	0	0
	247	132	132	0	264	19	19
	248	9	9	0	18	5	6
	249	73	74	0	147	18	17
	250	12	12	0	24	7	$?$
	251 252	10	1	0	$2{ }^{2}$	1	1
	TOTALS	2796	2796	0	5592		

FRATAR

D1: CONVERGENCE DISTRIBUTION AT THE END OF ITERATION

Abstract

Purpose The Fratar model employs growth factors to multiply present trips in order to estimate future trips. The nature of the Fratar model is such that the predicted trips from A to B may not equal the number of trips from B to A. Successive iterations are used to make the model converge toward agreement. This output indicates the level of agreement.

How to Read FACTOR is the ratio of estimated to actual trips.
NUMBER is the number of zones with a given factor.

How to Use Most of the zones should have a factor of near 1.0 after the final iteration. If there are very many zones with low or high factors, the model is not properly converging. The input trip interchange table and growth factors should then be reviewed.

TABLE 01(9)

		FACTOR	NLMBER
	less than	0.90	4
		0.90	1
		0.91	1
		0.92	2
		0.93	0
		0.94	2
		0.95	0
		0.96	0
		0.97	0
		0.98	0
		0.99	0
		1.00	231
N		1.01	5
		1.02	2
		1.03	1
		1.04	0
		1.05	0
		1.06	1
		1.07	0
		1.08	0
		1.08	0
		1.10	0
	greater than	1.10	2

FRATAR
 \$SUM TRIP ENDS (for future year)

Purpose This table lists the projected trips by zone. If the Fratar model is used only for external trips, then the listing will be for the external thru trips. This table facilitates checking the input.

How to Read

How to Use

ZONE NO. is the centroid node number of the zone.
NO. TRIPS ENTERING is the projected number of trips from this zone entering the study area.
NO. TRIPS EXITING is the projected number of trips leaving the study area to this zone.
NO. INTRAZONAL is the number of trips within a zone.
NO. TRIP ENDS is the sum of trips entering and trips exiting.
NO. ZONES ENTERING is the number of zones with nonzero interchanges.
NO. ZONES EXITING is the number of zones with nonzero interchanges.

This table gives the projected number of trips to and from the external zones. The values should be input to the appropriate zones for running the assignment models.
114

$\begin{aligned} & \text { ZONE } \\ & \text { NO. } \end{aligned}$	NO.TRIPS ENTERING	NO.TRIPS EXITING	NO. INTRAZONAL	${ }_{\text {TRIP }}^{\text {NONDS }}$
208	0	0	0	O
209	0	0	0	0
210	0	0	0	0
211	0	0	0	0
212	0	0	0	0
213	0	0	0	0
214	0	0	0	0
215	0	0	0	0
216	0	0	0	0
217	0	0	0	0
218	0	0	0	0
219	0	0	0	0
220	0	0	0	0
221	1122	1122	0	2244
222	1	1	0	${ }^{2}$
223	276	276	0	552
224	7	8	0	15
225	39	38	0	77
226	11	11	0	22
227	117	119	0	236
228	965	965	0	1930
229	179	177	0	356
230	1	1	0	2
231	11	10	0	21
232	77	76	0	153
233	28	29	0	57
234	122	121	0	243
235	13	10	0	23
236	27	27	0	54
237	88	89	0	177
238	135	136	0	271
239	18	20	0	38
240	248	250	0	498
241	29	28	0	57
242	2	2	0	4
243	120	120	0	240
244	5	4	0	9
245	56	55	0	111
246	0	0	0	0
247	171	170	0	341
248	113	15	0	28
249	113	114	0	227
250	19	19	0	38
251 252	12	12	0	2
252	12	12	0	24.
totals	4026	4026	0	8052

DEC 16, 1988

NO. ZONES Entering	$\begin{aligned} & \text { NO. ZONES } \\ & \text { EXITING } \end{aligned}$
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
20	${ }_{18}^{0}$
12	1
7	7
13	12
11	13
18	12
23	22
9	9
9	10
21	22
${ }_{8}^{6}$	$\stackrel{5}{7}$
13	15
11	${ }^{11}$
20	21
11	${ }_{2}^{10}$
18	20
3	2
${ }_{0}^{8}$?
19	19
18	17
7	?
7	6

[^0]: - Si is the symbol for the Internalional System of Measurements

[^1]: A low coefficient of determination indicates that the assigned volumes on that particular group of links do not match well with the counted volumes. The counted volumes and the final-output assigned volumes for each facility group should agree within $\pm 10 \%$.

[^2]: VOLUME RANGE lists the minimum and maximum volumes in that particular grouping.
 AVERAGE GROUND COUNT PER LINK is the average counted volume of those links which fall into the category listed in a particular row.
 AVERAGE ASSIGNED VOLUME PER LINK is the average predicted volume of those links which fall into the category listed in a particular row.
 NUMBER OF OBSERVATIONS lists the number of links in the particular volume range.
 INTERCEPT is the β_{0} value or the value of the y-axis intercept of the regression equation.
 SLOPE is the β_{1} value or the slope of the regression equation.
 COEFFICIENT OF CORRELATION (R) indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship.
 COEFFICIENT OF DETERMINATION (R^{2}) indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model.
 ROOT MEAN SQUARE is the root mean square error used to estimate the standard deviation of the dependent variable.
 PERCENT ROOT MEAN SQUARE ERROR is the root mean square error expressed as a percent of average ground count per link.

