TTI: 9-1002-12

MASH TL-3 TESTING AND EVALUATION OF A STEEL BRIDGE RAIL WITH PICKETS

Crash testing performed at: TTI Proving Ground 3100 SH 47, Building 7091 Bryan, TX 77807

Test Report 9-1002-12-2

Cooperative Research Program

TEXAS A&M TRANSPORTATION INSTITUTE
THE TEXAS A&M UNIVERSITY SYSTEM
COLLEGE STATION, TEXAS

TEXAS DEPARTMENT OF TRANSPORTATION

in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/documents/9-1002-12-2.pdf

Technical Report Documentation Page

1. Report No. FHWA/TX-12/9-1002-12-2	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle MASH TL-3 TESTING AND EVAI RAIL WITH PICKETS	5. Report Date July 2012 Published: October 2012			
	6. Performing Organization Code			
7. Author(s) William F. Williams, Roger P. Bligh, and Wanda L. Menges 8. Performing Organization Report No. Test Report No. 9-1002-12-2				
9. Performing Organization Name and Address Texas A&M Transportation Institute	10. Work Unit No. (TRAIS)			
The Texas A&M University System College Station, Texas 77843-3135	11. Contract or Grant No. Project 9-1002-12			
12. Sponsoring Agency Name and Address Texas Department of Transportation Research and Technology Implementation Office		13. Type of Report and Period Covered Test Report: September 2011–August 2012		
P.O. Box 5080 Austin, Texas 78763-5080		14. Sponsoring Agency Code		

15. Supplementary Notes

Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration.

Project Title: Roadside Safety Device Crash Test Program - FY12

URL: http://tti.tamu.edu/documents/9-1002-12-2.pdf

16. Abstract

TxDOT has a need for a steel bridge rail that anchors to a concrete curb with an aesthetic appearance using steel pickets. Bridge railings that use pickets (concrete and steel) have exhibited undesirable safety performance characteristics. The purpose of this portion of the project was to design and evaluate a steel bridge rail with pickets that would meet the strength and safety performance criteria for Test Level 3 (TL-3) of *MASH*. The bridge rail tested for this project was similar to the Wyoming 2-tube bridge rail that was successfully crash tested under *NCHRP Report 350* criteria (Texas Transportation Institute [TTI] Project No. 472610-4, dated May 1996). Details from the Wyoming 2-Tube design were incorporated and used in the design of the new TxDOT Picket Rail.

The TxDOT Picket Rail evaluated and presented herein met all the safety performance criteria for *MASH* TL-3 and is suitable for implementation on new bridge construction.

17. Key Words	18. Distribution Statement			
Bridge Rail, Aesthetic Rail, Crash T	No restrictions. This document is available to the			
Safety		public through NTIS:		
		National Technical Information Service		
		Springfield, Virg	inia 22312	
		http://www.ntis.g	<u>gov</u>	
19. Security Classif. (of this report)	20. Security Classif. (of t	his page)	21. No. of Pages	22. Price
Unclassified	Unclassified		118	

MASH TL-3 TESTING AND EVALUATION OF A STEEL BRIDGE RAIL WITH PICKETS

by

William F. Williams, P.E. Associate Research Engineer Texas Transportation Institute

Roger P. Bligh, P.E. Research Engineer Texas Transportation Institute

and

Wanda L. Menges Research Specialist Texas Transportation Institute

Test Report No. 9-1002-12-2
Project 9-1002-12
Project Title: Roadside Safety Device Crash Testing Program

Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

July 2012 Published: October 2012

TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843-3135

DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation, and its contents are not intended for construction, bidding, or permit purposes. In addition, the above listed agencies assume no liability for its contents or use thereof. The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. The engineer in charge of the project was Roger P. Bligh, P.E. (Texas, #78550).

TTI PROVING GROUND DISCLAIMER

The results of the crash testing reported herein apply only to the article being tested.

ACCREDITED ISO 17025 Laboratory 17025 La

Crash testing performed at: TTI Proving Ground 3100 SH 47, Building 7091 Bryan, TX 77807 Wanda L. Menges, Research Specialist
Deputy Quality Manager

Richard A. Zimmer, Senior Research Specialist Test Facility Manager

Quality Manager Technical Manager

ACKNOWLEDGMENTS

This research project was conducted under a cooperative program between the Texas A&M Transportation Institute, the Texas Department of Transportation, and the Federal Highway Administration. The TxDOT project director for this research was Rory Meza, P.E. John Holt, P.E., and Jon Reis with the Bridge Division served as project advisors and were actively involved in the design of the bridge rail system. The TxDOT Research Engineer was Wade Odell, P.E., with the Research and Technology Implementation Office. The authors acknowledge and appreciate their guidance and assistance.

TABLE OF CONTENTS

	Page
LIST OF FIGURES	ix
LIST OF TABLES	xi
CHAPTER 1. INTRODUCTION	1
1.1 INTRODUCTION	1
1.2 BACKGROUND	1
1.3 OBJECTIVES/SCOPE OF RESEARCH	1
CHAPTER 2. SYSTEM DETAILS	3
2.1 TEST ARTICLE DESIGN AND CONSTRUCTION	3
2.2 MATERIAL SPECIFICATIONS	7
CHAPTER 3. TEST REQUIREMENTS AND EVALUATION CRITERI	[A9
3.1 CRASH TEST MATRIX	9
3.2 EVALUATION CRITERIA	9
CHAPTER 4. CRASH TEST PROCEDURES	
4.1 TEST FACILITY	
4.2 VEHICLE TOW AND GUIDANCE PROCEDURES	11
4.3 DATA ACQUISITION SYSTEMS	11
4.3.1 Vehicle Instrumentation and Data Processing	11
4.3.2 Anthropomorphic Dummy Instrumentation	
4.3.3 Photographic Instrumentation and Data Processing	12
CHAPTER 5. MASH TEST 3-10 CRASH TEST RESULTS	
5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITION	
5.2 TEST VEHICLE	
5.3 WEATHER CONDITIONS	
5.4 TEST DESCRIPTION	
5.5 DAMAGE TO TEST INSTALLATION	
5.6 VEHICLE DAMAGE	
5.7 OCCUPANT RISK FACTORS	
5.8 ASSESSMENT OF TEST RESULTS	
5.8.1 Structural Adequacy	
5.8.2 Occupant Risk	
5.8.3 Vehicle Trajectory	
CHAPTER 6. MASH TEST 3-11 CRASH TEST RESULTS	
6.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITION	
6.2 TEST VEHICLE	
6.3 WEATHER CONDITIONS	
6.4 TEST DESCRIPTION	
6.5 DAMAGE TO TEST INSTALLATION	
6.6 VEHICLE DAMAGE	
6.7 OCCUPANT RISK FACTORS	28

TABLE OF CONTENTS (CONTINUED)

	Page
6.8 ASSESSMENT OF TEST RESULTS	34
6.8.1 Structural Adequacy	34
6.8.2 Occupant Risk	
6.8.3 Vehicle Trajectory	
CHAPTER 7. SUMMARY AND CONCLUSIONS	37
7.1 SUMMARY OF RESULTS	37
7.1.1 <i>MASH</i> Test 3-10 (Test No. 490022-2)	37
7.1.2 <i>MASH</i> Test 3-11 (Test No. 490022-3)	37
7.2 CONCLUSIONS	37
CHAPTER 8. IMPLEMENTATION STATEMENT	41
REFERENCES	43
APPENDIX A. DETAILS OF THE TXDOT PICKET RAIL BRIDGE RAIL	45
APPENDIX B. CERTIFICATION DOCUMENTATION	
APPENDIX C. RESULTS FOR MASH TEST 3-10 (TEST NO. 490022-2)	79
C1. TEST VEHICLE PROPERTIES AND INFORMATION	79
C2. SEQUENTIAL PHOTOGRAPHS	82
C3. VEHICLE ANGULAR DISPLACEMENTS	85
C4. VEHICLE ACCELERATIONS	86
APPENDIX D. RESULTS FOR MASH TEST 3-11 (TEST NO. 490022-3)	93
D1. TEST VEHICLE PROPERTIES AND INFORMATION	93
D2. SEQUENTIAL PHOTOGRAPHS	
D3. VEHICLE ANGULAR DISPLACEMENTS	100
D4. VEHICLE ACCELERATIONS	101

LIST OF FIGURES

Figure		Page
Figure 2.1.	Details of the TxDOT Picket Rail Installation.	4
Figure 2.2.	Cross Section of the TxDOT Picket Rail Installation.	5
Figure 2.3.	TxDOT Picket Rail before Testing.	6
Figure 5.1.	Vehicle/Installation Geometrics for Test No. 490022-2.	14
Figure 5.2.	Vehicle before Test No. 490022-2.	
Figure 5.3.	Vehicle/Installation after Impact for Test No. 490022-2.	17
Figure 5.4.	Installation after Test No. 490022-2.	18
Figure 5.5.	Vehicle after Test No. 490022-2.	
Figure 5.6.	Interior of Vehicle for Test No. 490022-2.	20
Figure 5.7.	Summary of Results for MASH Test 3-10 on the TxDOT Picket Rail	21
Figure 6.1.	Vehicle/Installation Geometrics for Test No. 490022-3.	26
Figure 6.2.	Vehicle before Test No. 490022-3.	27
Figure 6.3.	Installation/Vehicle after Impact for Test No. 490022-3	29
Figure 6.4.	Installation after Test No. 490022-3.	30
Figure 6.5.	Vehicle after Test No. 490022-3.	
Figure 6.6.	Interior of Vehicle for Test No. 490022-3.	
Figure 6.7.	Summary of Results for MASH Test 3-11 on the TxDOT Picket Rail	33
Figure C1.	Sequential Photographs for Test No. 490022-2 (Overhead and Rear Views)	82
Figure C2.	Sequential Photographs for Test No. 490022-2 (Rear of Bridge Rail View)	84
Figure C3.	Vehicle Angular Displacements for Test No. 490022-2	85
Figure C4.	Vehicle Longitudinal Accelerometer Trace for Test No. 490022-2	
	(Accelerometer Located at Center of Gravity).	86
Figure C5.	Vehicle Lateral Accelerometer Trace for Test No. 490022-2 (Accelerometer	
	Located at Center of Gravity).	87
Figure C6.	Vehicle Vertical Accelerometer Trace for Test No. 490022-2 (Accelerometer	
	Located at Center of Gravity).	88
Figure C7.	Vehicle Longitudinal Accelerometer Trace for Test No. 490022-2	
	(Accelerometer Located Rear of Center of Gravity).	89
Figure C8.	Vehicle Lateral Accelerometer Trace for Test No. 490022-2 (Accelerometer	
	Located Rear of Center of Gravity).	90
Figure C9.	Vehicle Vertical Accelerometer Trace for Test No. 490022-2 (Accelerometer	
	Located Rear of Center of Gravity).	
Figure D1.	Sequential Photographs for Test No. 490022-3 (Overhead and Frontal Views).	
Figure D2.	Sequential Photographs for Test No. 490022-3 (Rear of Bridge Rail View)	
Figure D3.	Vehicle Angular Displacements for Test No. 490022-3	100
Figure D4.	Vehicle Longitudinal Accelerometer Trace for Test No. 490022-3	
	(Accelerometer Located at Center of Gravity).	101
Figure D5.	Vehicle Lateral Accelerometer Trace for Test No. 490022-3 (Accelerometer	
	Located at Center of Gravity).	102
Figure D6.	Vehicle Vertical Accelerometer Trace for Test No. 490022-3 (Accelerometer	
	Located at Center of Gravity).	103

LIST OF FIGURES (CONTINUED)

Figure		Page
Figure D7.	Vehicle Longitudinal Accelerometer Trace for Test No. 490022-3	
	(Accelerometer Located Rear of Center of Gravity).	104
Figure D8.	Vehicle Lateral Accelerometer Trace for Test No. 490022-3 (Accelerometer	
	Located Rear of Center of Gravity).	105
Figure D9.	Vehicle Vertical Accelerometer Trace for Test No. 490022-3 (Accelerometer	
_	Located Rear of Center of Gravity).	106

LIST OF TABLES

Table		Page
Table 7.1.	Performance Evaluation Summary for <i>MASH</i> Test 3-10 on the TxDOT Picket Rail.	38
Table 7.2.	Performance Evaluation Summary for MASH Test 3-11 on the TxDOT	
	Picket Rail.	39
Table C1.	Vehicle Properties for Test No. 490022-2	79
Table C2.	Exterior Crush Measurements for Test No. 490022-2.	80
Table C3.	Occupant Compartment Measurements for Test No. 490022-2	81
Table D1.	Vehicle Properties for Test No. 490022-3	93
Table D2.	Vehicle Parameters for Test No. 490022-3.	94
Table D3.	Exterior Crush Measurements for Test No. 490022-3.	95
Table D4.	Occupant Compartment Measurements for Test No. 490022-3	96

CHAPTER 1. INTRODUCTION

1.1 INTRODUCTION

This project was set up to provide Texas Department of Transportation (TxDOT) with a mechanism to quickly and effectively evaluate high-priority issues related to roadside safety devices. Roadside safety devices shield motorists from roadside hazards such as non-traversable terrain and fixed objects. To maintain the desired level of safety for the motoring public, these safety devices must be designed to accommodate a variety of site conditions, placement locations, and a changing vehicle fleet. Periodically, there is a need to assess the compliance of existing safety devices with current vehicle testing criteria and develop new devices that address identified needs.

Under this project, roadside safety issues are identified and prioritized for investigation. Each roadside safety issue is addressed with a separate work plan, and the results are summarized in an individual test report.

1.2 BACKGROUND

The American Association of State Highway Transportation Officials (AASHTO) published the *Manual for Assessing Safety Hardware (MASH)* in October 2009 (1). *MASH* supersedes *National Cooperative Highway Research Program (NCHRP) Report 350* (2) as the recommended guidance for the safety performance evaluation of roadside safety features.

1.3 OBJECTIVES/SCOPE OF RESEARCH

TxDOT has a need for an aesthetic steel bridge rail that incorporates steel pickets and anchors to a concrete curb. The purpose of this portion of the project was to design and evaluate a steel bridge rail with pickets that would meet the strength and safety performance criteria for Test Level 3 (TL-3) of *MASH*. The bridge rail tested for this project was similar to the Wyoming 2-tube bridge rail that was successfully crash tested under *NCHRP Report 350* criteria (Texas Transportation Institute [TTI] Project No. 472610-4, dated May 1996) (3). Details from the Wyoming 2-tube design were incorporated and used in the design of the new TxDOT Picket Rail.

The testing reported here assesses the performance of the TxDOT Picket Rail according to the safety-performance evaluation guidelines included in *MASH* for TL-3. Two tests are required to evaluate the bridge rail: one test with a 2425 lb vehicle and a second test with a 5000 lb pickup truck, both impacting the critical impact point of the length of need of the bridge rail at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. The report includes details of the TxDOT Picket Rail, details of the crash tests performed, and evaluation of the tests according to *MASH*.

CHAPTER 2. SYSTEM DETAILS

2.1 TEST ARTICLE DESIGN AND CONSTRUCTION

The TxDOT Picket Rail consists of three tubular steel rail elements supported by fabricated steel plate posts. The overall length of the test installation was 92 ft and consisted of 12 posts spaced 8 ft on centers. The total height of the bridge rail is 36 inches above the pavement surface. The steel bridge rail was anchored to a 14-inch wide by 9-inch high cast-in-place concrete curb. The concrete curb was anchored to a cast-in-place 8-inch thick concrete deck cantilever. The width of the cantilever was 30 inches. Mr. John Holt with TxDOT provided detailed design information on the bridge rail.

The top rail element was an A500 Grade B 4-inch diameter pipe (0.174-inch wall thickness). The lower two rail elements were A500 Grade B HSS6×2×1/4 steel tubes. The heights from the pavement surface to the top of the rail elements were 18 inches, 28 inches, and 36 inches for the lower, middle, and top rail elements, respectively. Each rail element was attached to each post using a ½-inch diameter A36 bent U-Bolt. The steel posts consisted of two ³/₄-inch thick plates welded to a ³/₄-inch thick base plate. The steel plates used to fabricate the steel posts were 9 inches wide at the base, 3\% inches wide at the top, and 26 inches high (including the width of the ³/₄-inch thick baseplate). The post plates were notched 3¹/₄ inches for the lower two rail elements and $2\frac{1}{4}$ inches for the top rail element. The post base plates consisted of 12-inch × 14-inch × 3/4-inch thick A572 Grade 50 material. The posts were anchored to the concrete curb using four 1/8-inch diameter × 10½ inches long A325 bolts with a ½-inch thick anchor plate. These anchor bolts were cast in the curb, with the top of the concrete deck supporting the hex heads. Steel pickets were located on the field side face of the bridge rail. These pickets consisted of \(^5\)*eninch square \(^22^3\)\/eninch long A36 steel bars that were located on 6-inch centers and were bolted to the rail in panel sections measuring approximately 73 inches long.

For this project, a concrete bridge deck cantilever and curb was constructed immediately adjacent to an existing concrete runway located at the TTI Proving Ground test facility. The total length of the installation was 92 ft long. The bridge deck cantilever was 30 inches wide and 8 inches thick. Reinforcement in the deck consisted of two layers of reinforcing steel placed in the transverse and longitudinal directions. The top transverse reinforcement consisted of #5 bars located on 6-inch centers. Longitudinal reinforcement in the top layer consisted of three #4 bars on 9-inch centers. The bottom transverse reinforcement consisted of #5 bars located on 18-inch centers. Longitudinal reinforcement in the bottom layer consisted of four #5 bars, three of which were spaced on 12-inch centers, with the two bars closest to the field side edge of the deck spaced approximately $3\frac{1}{2}$ inches on centers. Vertical reinforcement in the curb consisted of #5 stirrups located on 6-inch centers. Two longitudinal #5 bars were located within the top corners of the curb stirrups. For additional information on the bridge railing test installation, please refer to Figures 2.1 and 2.2, and Appendix A. Figure 2.3 shows photographs of the installation before testing.

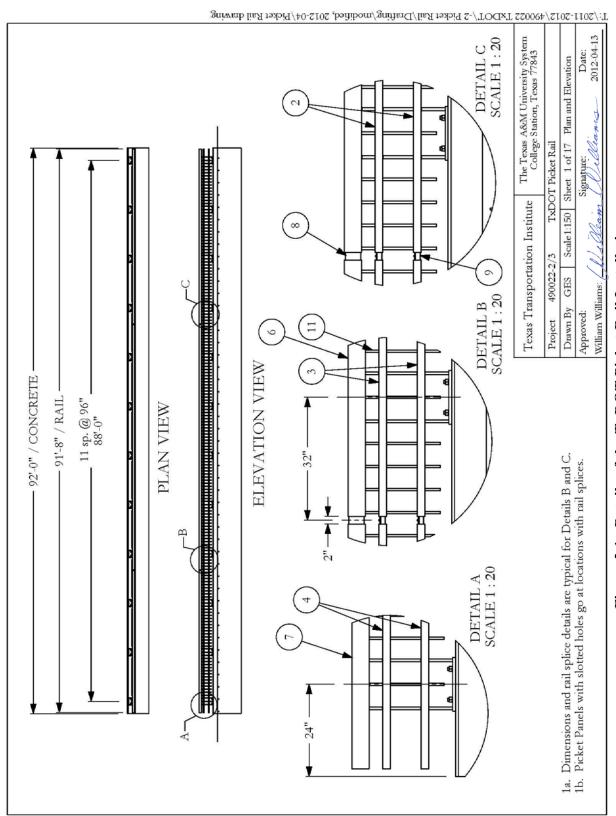
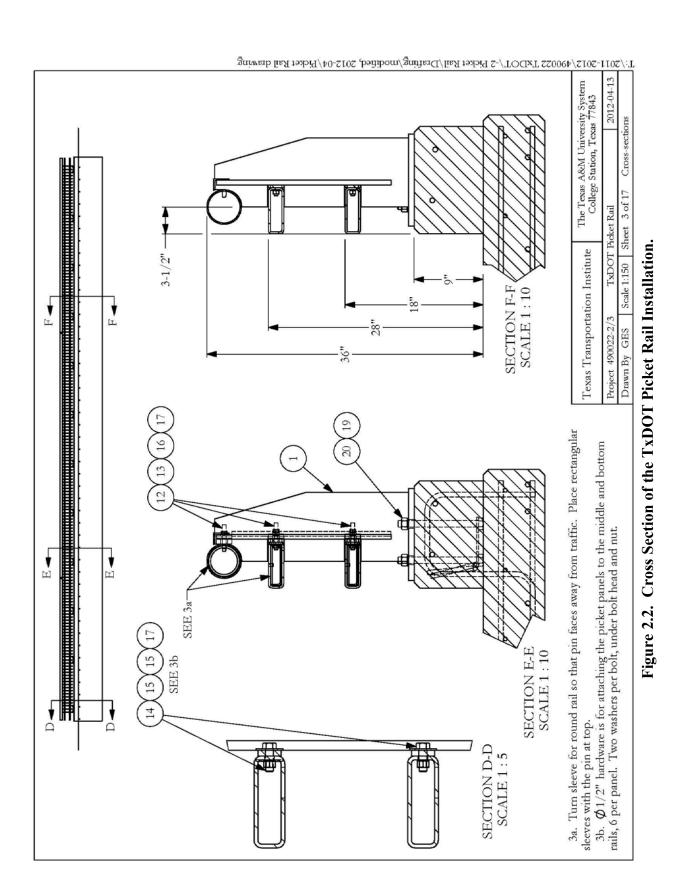



Figure 2.1. Details of the TxDOT Picket Rail Installation.

TR No. 9-1002-12-2 5 2012-10-25

Figure 2.3. TxDOT Picket Rail before Testing.

2.2 MATERIAL SPECIFICATIONS

All reinforcement used in the concrete deck had a specified yield strength of 60 ksi. The concrete deck and curb has a specified concrete strength of 4000 psi. Concrete compressive strength tests were performed on the day of the first crash test. The tests performed at 19 days of age on the concrete deck, resulted in an average compressive strength of 5506 psi. The tests performed at 11 days of age on the concrete curb resulted in an average compressive strength of 3837 psi.

CHAPTER 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 CRASH TEST MATRIX

According to *MASH*, two tests are recommended for evaluation of longitudinal barriers to test level three (TL-3).

- MASH Test 3-10: A 2425 lb vehicle impacting the critical impact point (CIP) of the length of need (LON) of the barrier at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. This test investigates a barrier's ability to successfully contain and redirect a small passenger vehicle.
- *MASH* Test 3-11: A 5000 lb pickup truck impacting the CIP of the LON of the barrier at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. This test investigates a barrier's ability to successfully contain and redirect light trucks and sport utility vehicles.

Both of these tests were performed on the Picket Rail. The critical impact points for each test were determined using *MASH* guidelines. Target impact point for *MASH* test 3-10 was 3.6 ft upstream of post 9; for *MASH* Test 3-11, it was 4.3 ft upstream of post 4.

The crash test and data analysis procedures followed the guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2 EVALUATION CRITERIA

The crash test was evaluated in accordance with the criteria presented in *MASH*. The performance of the TxDOT Picket Rail is judged on the basis of three factors: structural adequacy, occupant risk, and post impact vehicle trajectory. Structural adequacy is judged on the ability of the TxDOT Picket Rail to contain and redirect the vehicle. Occupant risk criteria evaluate the potential risk of hazard to occupants in the impacting vehicle and, to some extent, other traffic, pedestrians, or workers in construction zones, if applicable. Post-impact vehicle trajectory is assessed to determine potential for secondary impact with other vehicles or fixed objects, creating further risk of injury to occupants of the impacting vehicle and/or risk of injury to occupants in other vehicles. The appropriate safety evaluation criteria from Table 5-1 of *MASH* were used to evaluate the crash tests reported here, and are listed in further detail under the assessment of each crash test.

CHAPTER 4. CRASH TEST PROCEDURES

4.1 TEST FACILITY

The full-scale crash test reported here was performed at Texas A&M Transportation Institute (TTI) Proving Ground, an International Standards Organization (ISO) 17025 accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash test was performed according to TTI Proving Ground quality procedures and according to the *MASH* guidelines and standards.

The TTI Proving Ground is a 2000-acre complex of research and training facilities located 10 miles northwest of the main campus of Texas A&M University. The site, formerly an Air Force base, has large expanses of concrete runways and parking aprons well-suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and safety evaluation of roadside safety hardware. The site selected for construction and testing of the TxDOT Picket Rail evaluated under this project was along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5 ft by 15 ft blocks nominally 6 inches deep. The apron is over 50 years old, and the joints have some displacement, but are otherwise flat and level.

4.2 VEHICLE TOW AND GUIDANCE PROCEDURES

The test vehicles were towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicles was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A two-to-one speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released to be free-wheeling and unrestrained. The vehicle remained free-wheeling, i.e., no steering or braking inputs, until the vehicle cleared the immediate area of the test site, at which time brakes on the vehicle were activated to bring it to a safe and controlled stop.

4.3 DATA ACQUISITION SYSTEMS

4.3.1 Vehicle Instrumentation and Data Processing

The test vehicles were instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro that Diversified Technical Systems, Inc. produced. The accelerometers, measuring the x, y, and z axis of vehicle acceleration, are a strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra small, solid state units designs for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16

channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once the data are recorded, internal batteries will back these up inside the unit should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark as well as initiating the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results. Each of the TDAS Pro units is returned to the factory annually for complete recalibration. Accelerometers and rate transducers are also calibrated annually with traceability to the National Institute for Standards and Technology.

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact.

4.3.2 Anthropomorphic Dummy Instrumentation

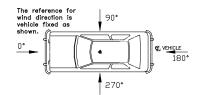
An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the driver's position of the 1100C vehicle. The dummy was uninstrumented. Use of a dummy in the 2270P vehicle is optional according to *MASH*, and there was no dummy used in the test with the 2270P vehicle.

4.3.3 Photographic Instrumentation and Data Processing

Photographic coverage of each test included three high-speed cameras: one overhead with a field of view perpendicular to the ground and directly over the impact point; one placed behind the installation at an angle; and a third placed to have a field of view parallel to and aligned with the installation at the downstream end. A flashbulb activated by pressure-sensitive tape switches was positioned on the impacting vehicle to indicate the instant of contact with the installation and was visible from each camera. The films from these high-speed cameras were analyzed on a computer-linked motion analyzer to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A mini-DV camera and still cameras recorded and documented conditions of the test vehicle and installation before and after each test.

CHAPTER 5. MASH TEST 3-10 CRASH TEST RESULTS

5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS


MASH Test 3-10 involves an 1100C vehicle weighing 2425 lb ± 55 lb impacting the bridge rail at an impact speed of 62.2 mi/h ± 2.5 mi/h and an angle of 25 degrees ± 1.5 degrees. The target impact point was 3.6 ft upstream of post 9. The 2005 Kia Rio used in the test had a test inertial mass of 2431 lb and gross static mass of 2597 lb. The actual impact speed and angle were 62.0 mi/h and 24.9 degrees, respectively. The actual impact point was 3.7 ft upstream of post 9. Target impact severity (IS) was 56.0 kip-ft, and actual IS was 59.2 kip-ft, which was 5.7 percent greater than the target IS.

5.2 **TEST VEHICLE**

A 2005 Kia Rio, shown in Figures 5.1 and 5.2, was used for the crash test. Test inertia weight of the vehicle was 2431 lb, and its gross static weight was 2597 lb. The height to the lower edge of the vehicle bumper was 8.50 inches, and it was 22.75 inches to the upper edge of the bumper. Table C1 in Appendix C gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be free-wheeling and unrestrained just prior to impact.

5.3 WEATHER CONDITIONS

The test was performed on the morning of April 9, 2012. Weather conditions at the time of testing were as follows: wind speed: 2 mi/h; wind direction: 82 degrees with respect to the vehicle (vehicle was traveling in a southwesterly direction); temperature: 74°F, relative humidity: 72 percent.

5.4 TEST DESCRIPTION

The 2005 Kia Rio, traveling at an impact speed of 62.0 mi/h, impacted the TxDOT Picket Rail 3.7 ft upstream of post 9 at an impact angle of 24.9 degrees. At approximately 0.019 s, the vehicle began to redirect, and at 0.029 s, the right front tire blew out. Maximum deflection of 0.9 inch on the top rail occurred at 0.051 s. At 0.067 s, the front passenger window shattered, and at 0.167 s, the vehicle was traveling parallel with the bridge rail at a speed of 52.2 mi/h. The rear of the vehicle contacted the bridge rail at 0.168 s. At 0.256 s, the vehicle lost contact with the bridge rail and was traveling at an exit speed and angle of 51.1 mi/h and 6.5 degrees, respectively. Brakes on the vehicle were applied 1.16 s after impact, and the vehicle subsequently came to rest 195 ft downstream of impact and 21 ft toward traffic lanes. Figures C1 and C2 in Appendix C show sequential photographs of the test period.

Figure 5.1. Vehicle/Installation Geometrics for Test No. 490022-2.

Figure 5.2. Vehicle before Test No. 490022-2.

5.5 DAMAGE TO TEST INSTALLATION

Figures 5.3 and 5.4 show damage to the TxDOT Picket Rail. Cracks in the curb radiated from the front and rear anchor bolts toward the field side at post 9, and from the rear anchor bolt on the upstream side of post 10. Tire marks were evident on the traffic face of all the horizontal metal rail elements from 3.7 ft upstream of post 9 for a length of 10.0 ft. There was no evidence of contact on the vertical pickets. Working width was 10.7 inches, and maximum dynamic deflection of the horizontal metal rail element was 0.9 inch. Residual permanent deformation was minimal and not measureable.

5.6 VEHICLE DAMAGE

Figure 5.5 shows damage to the vehicle. The right front strut and strut tower were deformed. The front bumper, hood, right front tire and wheel rim, right front fender, right front door and door glass, right rear door, right rear wheel rim, right rear quarter panel, and rear bumper were also damaged. Maximum exterior crush to the vehicle was 11.0 inches in the side plane at the right front corner at bumper height. The right side floor pan was also deformed, with a maximum occupant compartment deformation of 3.0 inches. Figure 5.6 shows the interior of the vehicle. Exterior vehicle crush and occupant compartment measurements are shown in Appendix C, Tables C2 and C3.

5.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was 22.0 ft/s at 0.074 s, the highest 0.010-s occupant ridedown acceleration was 5.7 Gs from 0.178 to 0.188 s, and the maximum 0.050-s average acceleration was -12.8 Gs between 0.023 and 0.073 s. In the lateral direction, the occupant impact velocity was 33.5 ft/s at 0.074 s, the highest 0.010-s occupant ridedown acceleration was 12.2 Gs from 0.181 to 0.191 s, and the maximum 0.050-s average was -19.4 Gs between 0.017 and 0.067 s. Theoretical Head Impact Velocity (THIV) was 43.7 km/h or 12.1 m/s at 0.073 s; Post-Impact Head Decelerations (PHD) was 13.2 Gs between 0.181 and 0.191 s; and Acceleration Severity Index (ASI) was 2.39 between 0.017 and 0.067 s. Figure 5.7 summarizes these data and other pertinent information from the test. In Appendix C, Figures C3 through C9 present Vehicle angular displacements and accelerations versus time traces

Figure 5.3. Vehicle/Installation after Impact for Test No. 490022-2.

Figure 5.4. Installation after Test No. 490022-2.

Figure 5.5. Vehicle after Test No. 490022-2.

Before Test

After Test

Figure 5.6. Interior of Vehicle for Test No. 490022-2.

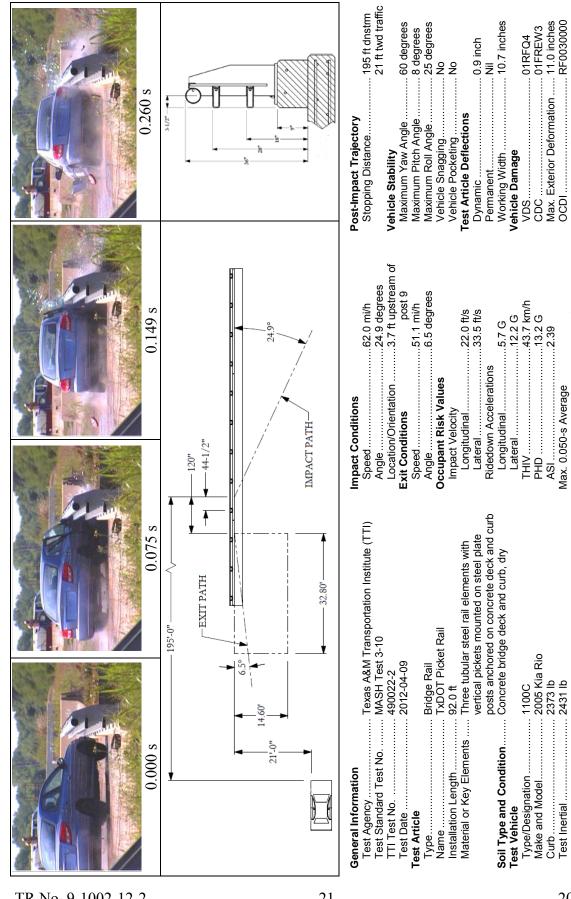


Figure 5.7. Summary of Results for MASH Test 3-10 on the TxDOT Picket Rail.

Longitudinal-12.8 G Lateral-19.4 G

166 lb

Dummy......Gross Static.....

Vertical-2.5 G

Deformation.....3.0 inches

Max. Occupant Compartment

5.8 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable *MASH* safety evaluation criteria is provided below.

5.8.1 Structural Adequacy

A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.

Results: The TxDOT Picket Rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation.

Maximum dynamic deflection of the horizontal metal rail elements was 0.9 inch. (PASS)

5.8.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield = ≤ 3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches).

Results: No detached elements, fragments, or other debris was present to penetrate or show potential for penetrating the occupant compartment, or present undue hazard to others. (PASS)

Maximum occupant compartment deformation was 3.0 inches in the right floor pan area. (PASS)

F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.

Results: The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 25 degrees and 8 degrees, respectively. (PASS)

H. Occupant impact velocities should satisfy the following:

<u>Longitudinal and Lateral Occupant Impact Velocity</u>

<u>Preferred Maximum</u>

Preferred Maximum 30 ft/s 40 ft/s

Results: Longitudinal occupant impact velocity was 22.0 ft/s, and lateral occupant impact velocity was 33.5 ft/s. (PASS)

I. Occupant ridedown accelerations should satisfy the following:

Longitudinal and Lateral Occupant Ridedown Accelerations

<u>Preferred</u> <u>Maximum</u> 15.0 Gs 20.49 Gs

Results: Maximum longitudinal ridedown acceleration was 5.7 Gs, and maximum

lateral ridedown acceleration was 12.2 Gs. (PASS)

5.8.3 Vehicle Trajectory

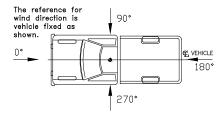
For redirective devices, the vehicle shall exit the barrier within the exit box (not less than 32.8 ft).

Result: The 1100C vehicle crossed the exit box 60 ft downstream of loss of

contact with the bridge rail. (PASS)

CHAPTER 6. MASH TEST 3-11 CRASH TEST RESULTS

6.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS


MASH Test 3-11 involves a 2270P vehicle weighing 5000 lb ±110 lb impacting the test article at an impact speed of 62.2 mi/h ± 2.5 mi/h and an angle of 25 degrees ± 1.5 degrees. The target impact point was 4.3 ft upstream of post 4. The 2006 Dodge Ram 1500 pickup truck used in the test weighed 5018 lb and the actual impact speed and angle were 61.6 mi/h and 24.2 degrees, respectively. The actual impact point was 5.0 ft upstream of post 4. Target impact severity (IS) was 115.6 kip-ft, and actual IS was 107.0 kip-ft, which was 7.4 percent less than the target IS.

6.2 **TEST VEHICLE**

A 2006 Dodge Ram 1500 pickup truck, shown in Figures 6.1 and 6.2, was used for the crash test. Test inertia weight of the vehicle was 5018 lb, and its gross static weight was 2018 lb. The height to the lower edge of the vehicle bumper was 13.75 inches, and it was 25.38 inches to the upper edge of the bumper. The height to the center of gravity was 28.25 inches. Tables D1 and D2 in Appendix D give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be free-wheeling and unrestrained just prior to impact.

6.3 WEATHER CONDITIONS

The test was performed on the morning of April 10, 2012. Weather conditions at the time of testing were as follows: wind speed: 6 mi/h; wind direction: 195 degrees with respect to the vehicle (vehicle was traveling in a southwesterly direction); temperature: 77°F, relative humidity: 62 percent.

6.4 TEST DESCRIPTION

The test vehicle, traveling at an impact speed of 61.6 mi/h, impacted the Picket Rail 5.0 ft upstream of post 4 at an impact angle of 24.2 degrees. At approximately 0.024 s after impact, the right front tire blew out, and at 0.039 s, the vehicle began to redirect. The top of the front passenger door and rear passenger door separated from the frame of the cab at 0.046 s and 0.061 s, respectively. Stress cracks in the windshield appeared at 0.074 s, and the rear of the vehicle impacted the bridge rail at 0.155 s. The vehicle began traveling parallel with the bridge rail at 0.166 s. At 0.295 s, the vehicle lost contact with the bridge rail while traveling at an exit speed and angle of 57.6 mi/h and 19.6 degrees. Brakes on the vehicle were applied at 1.308 s, and the vehicle subsequently came to rest 240 ft downstream of impact and 35 ft toward traffic lanes. Figures D1 and D2 in Appendix D show sequential photographs of the test period.

Figure 6.1. Vehicle/Installation Geometrics for Test No. 490022-3.

Figure 6.2. Vehicle before Test No. 490022-3.

6.5 DAMAGE TO TEST INSTALLATION

Figures 6.3 and 6.4 show damage to the TxDOT picket rail. A crack in the concrete curb radiated toward the field side from the rear anchor bolt on the impact side of post 3. Cracks in the concrete curb radiated toward the field side from the front and rear anchor bolts on both sides of post 4, and extended into the concrete deck where each radiated downward and outward on each side of the post. Working width was 10.4 inches. Maximum dynamic deflection of the top rail was 2.8 inches. Maximum permanent deformation of the rail elements was 0.8 inch on the top rail, 0.7 inch on the middle rail, and 0.9 inch on the bottom rail.

6.6 VEHICLE DAMAGE

Figure 6.5 shows damage to the 2270P vehicle. The right front frame rail and right front upper and lower A-arms were deformed. Also damaged were the front bumper, hood, right front tire and wheel rim, right front fender, right front and rear doors, right exterior bed, right rear tire and wheel rim and the rear bumper. The windshield sustained stress cracks in each lower corner near the hood. Maximum exterior crush to the vehicle was 11.0 inches in both the front and side planes at the right front corner at bumper height. Maximum occupant compartment deformation was 2.75 inches in the lateral area across the cab at the passenger side kickpanel. Figure 6.6 shows the interior of the vehicle, while Tables D3 and D4 in Appendix D show the exterior vehicle crush and occupant compartment measurements.

6.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was 10.8 ft/s at 0.091 s, the highest 0.010-s occupant ridedown acceleration was 4.6 Gs from 0.182 to 0.192 s, and the maximum 0.050-s average acceleration was -6.5 Gs between 0.028 and 0.078 s. In the lateral direction, the occupant impact velocity was 28.5 ft/s at 0.091 s, the highest 0.010-s occupant ridedown acceleration was 15.2 Gs from 0.201 to 0.211 s, and the maximum 0.050-s average was -15.7 Gs between 0.035 and 0.085 s. Theoretical Head Impact Velocity (THIV) was 34.1 km/h or 9.5 m/s at 0.090 s; Post-Impact Head Decelerations (PHD) was 15.5 Gs between 0.201 and 0.211 s; and Acceleration Severity Index (ASI) was 1.83 between 0.029 and 0.079 s. Figure 5.7 summarizes these data and other pertinent information from the test. In Appendix D, Figures D3 through D9 present the Vehicle angular displacements and accelerations versus time traces.

Figure 6.3. Installation/Vehicle after Impact for Test No. 490022-3.

Figure 6.4. Installation after Test No. 490022-3.

Figure 6.5. Vehicle after Test No. 490022-3.

Before Test

After Test

Figure 6.6. Interior of Vehicle for Test No. 490022-3.

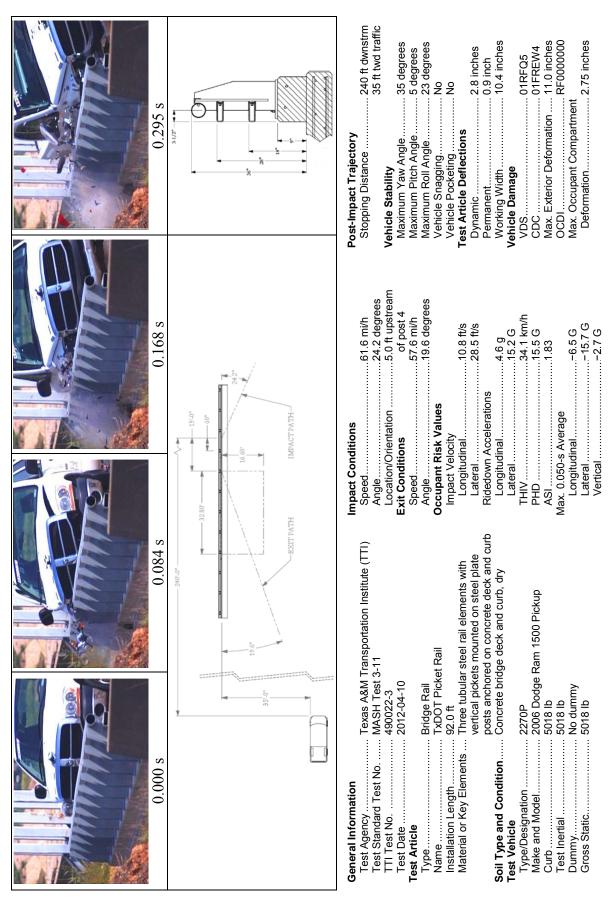


Figure 6.7. Summary of Results for MASH Test 3-11 on the TxDOT Picket Rail.

6.8 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable *MASH* safety evaluation criteria is provided below.

6.8.1 Structural Adequacy

A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.

Results: The TxDOT Picket Rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation.

Maximum dynamic deflection during the test was 2.8 inches. (PASS)

6.8.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield = ≤ 3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches).

Results: No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or present undue hazard to others. (PASS)

Maximum occupant compartment deformation was 2.75 inches in the lateral area across the cab at the front passenger kick panel. (PASS)

F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.

Results: The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 23 degrees and 5 degrees, respectively. (PASS)

I. Occupant impact velocities should satisfy the following:
Longitudinal and Lateral Occupant Impact Velocity

 Preferred
 Maximum

 9.0 m/s (30 ft/s)
 12.2 m/s (40 ft/s)

Results: Longitudinal occupant impact velocity was 10.8 ft/s, and lateral occupant impact velocity was 28.5 ft/s. (PASS)

I. Occupant ridedown accelerations should satisfy the following:

Longitudinal and Lateral Occupant Ridedown Accelerations

<u>Preferred</u> <u>Maximum</u> 15.0 Gs 20.49 Gs

Results: Maximum longitudinal ridedown acceleration was 4.6 G, and maximum

lateral ridedown acceleration was 15.2 G. (PASS)

6.8.3 Vehicle Trajectory

For redirective devices, the vehicle shall exit the barrier within the exit box (not less than 32.8 ft).

Result: The 2270P vehicle crossed the exit box 105 ft downstream of loss of

contact with the bridge rail. (PASS)

CHAPTER 7. SUMMARY AND CONCLUSIONS

7.1 SUMMARY OF RESULTS

7.1.1 *MASH* Test 3-10 (Test No. 490022-2)

The TxDOT Picket Rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the horizontal metal rail elements was 0.9 inch. No detached elements, fragments, or other debris was present to penetrate or show potential for penetrating the occupant compartment, or present undue hazard to others. Maximum occupant compartment deformation was 3.0 inches in the right floor pan area. The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 25 degrees and 8 degrees, respectively. Occupant compartment risk factors were within the limits specified in *MASH*. The 1100C vehicle crossed the exit box 60 ft downstream of loss of contact with the bridge rail.

7.1.2 *MASH* Test 3-11 (Test No. 490022-3)

The TxDOT Picket Rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 2.8 inches. No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or present undue hazard to others. Maximum occupant compartment deformation was 2.75 inches in the lateral area across the cab at the front passenger kick panel. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 23 degrees and 5 degrees, respectively. Occupant compartment risk factors were within the limits specified in *MASH*. The 2270P vehicle crossed the exit box 105 ft downstream of loss of contact with the bridge rail.

7.2 CONCLUSIONS

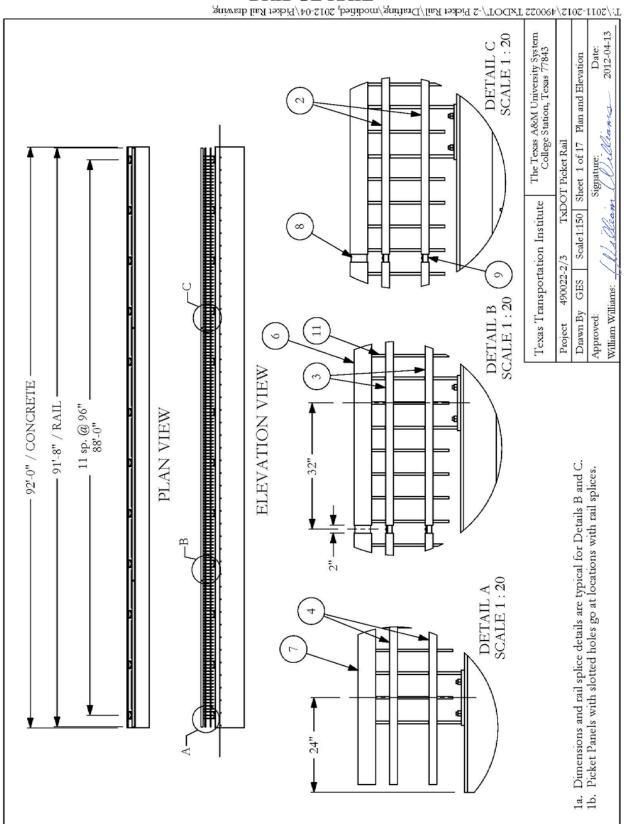
The TxDOT Picket Rail performed acceptably for MASH TL-3 (see Tables 7.1 and 7.2).

Table 7.1. Performance Evaluation Summary for MASH Test 3-10 on the TxDOT Picket Rail.

	Test 1	Test Agency: Texas A&M Transportation Institute	Test No.: 490022-2	Test Date: 2012-04-09
		MASH Test 3-10 Evaluation Criteria	Test Results	Assessment
	Struc	Structural Adequacy		
٦	A.	Test article should contain and redirect the vehicle or	The TxDOT Picket Rail contained and redirected	
	-	bring the vehicle to a controlled stop; the vehicle should	the 1100C vehicle. The vehicle did not penetrate,	ŕ
	, ,	not penetrate, underride, or override the installation	underride, or override the installation. Maximum	Pass
		annough controllea ialeral aeftection of the lest article is acceptable.	aynanne acheeton of the norrental metal fair elements was 0.9 inch.	
<u> </u>	Ccul	Occupant Risk		
	D.	Detached elements, fragments, or other debris from the	No detached elements, fragments, or other debris	
	-	test article should not penetrate or show potential for	was present to penetrate or show potential for	
	7	penetrating the occupant compartment, or present an	penetrating the occupant compartment, or present	Pass
		undue hazard to other traffic, pedestrians, or personnel	undue hazard to others.	
	-	in a work zone.		
	, ,	Deformations of, or intrusions into, the occupant	Maximum occupant compartment deformation was	
	-	compartment should not exceed limits set forth in Section	3.0 inches in the right floor pan area.	Pass
	•	5.3 and Appendix E of MASH.		
	F.	The vehicle should remain upright during and after	The 1100C vehicle remained upright during and	
	_	collision. The maximum roll and pitch angles are not to	after the collision event. Maximum roll and pitch	Pass
	-	exceed 75 degrees.	angles were 25 degrees and 8 degrees, respectively.	
_	Н.	Longitudinal and lateral occupant impact velocities	The 1100C vehicle remained upright during and	
	4	should fall below the preferred value of 9.1 m/s $(30 ft/s)$,	after the collision event. Maximum roll and pitch	Dagg
	-	or at least below the maximum allowable value of 12.2 m/s	angles were 25 degrees and 8 degrees, respectively.	1 433
	-	(40 ft/s).		
		Longitudinal and lateral occupant ridedown	Maximum longitudinal ridedown acceleration was	
	-	accelerations should fall below the preferred value of	5.7 Gs, and maximum lateral ridedown acceleration	Dace
		15.0 Gs, or at least below the maximum allowable value	was 12.2 Gs.	1 433
	_	of 20.49 Gs.		
٢	Vehic	Vehicle Trajectory		
	,	For redirective devices, the vehicle shall exit the barrier	The 1100C vehicle crossed the exit box 60 ft	Pass
		within the exit box (not less than 32.8 ft).	downstream of loss of contact with the bridge rail.	

Table 7.2. Performance Evaluation Summary for MASH Test 3-11 on the TxDOT Picket Rail.

$\mathrm{T}\epsilon$	Test Agency: Texas A&M Transportation Institute	Test No.: 490022-3	Test Date: 2012-04-10
	MASH Test 3-11 Evaluation Criteria	Test Results	Assessment
St	Structural Adequacy		
A.	Test article should contain and redirect the vehicle or	The TxDOT Picket Rail contained and redirected	
	bring the vehicle to a controlled stop; the vehicle should	the 2270P vehicle. The vehicle did not penetrate,	
	not penetrate, underride, or override the installation	underride, or override the installation. Maximum	Pass
	although controlled lateral deflection of the test article is	dynamic deflection during the test was 2.8 inches.	
	acceptable.		
Ŏ	Occupant Risk		
D.	Detached elements, fragments, or other debris from the	No detached elements, fragments, or other debris	
	test article should not penetrate or show potential for	were present to penetrate or show potential for	
	penetrating the occupant compartment, or present an	penetrating the occupant compartment, or present	Pass
	undue hazard to other traffic, pedestrians, or personnel	undue hazard to others.	
	in a work zone.		
	Deformations of, or intrusions into, the occupant	Maximum occupant compartment deformation was	
	compartment should not exceed limits set forth in Section	2.75 inches in the lateral area across the cab at the	Pass
	5.3 and Appendix E of MASH.	front passenger kick panel.	
F	The vehicle should remain upright during and after	The 2270P vehicle remained upright during and	
	collision. The maximum roll and pitch angles are not to	after the collision event. Maximum roll and pitch	Pass
	exceed 75 degrees.	angles were 23 degrees and 5 degrees, respectively.	
H	Longitudinal and lateral occupant impact velocities	Longitudinal occupant impact velocity was	
	should fall below the preferred value of 9.1 m/s (30ft/s) ,	10.8 ft/s, and lateral occupant impact velocity was	Dace
	or at least below the maximum allowable value of 12.2 m/s	28.5 ft/s.	1 455
	(40 ft/s).		
I.	Longitudinal and lateral occupant ridedown	Maximum longitudinal ridedown acceleration was	
	accelerations should fall below the preferred value of	4.6 G, and maximum lateral ridedown acceleration	Dace
	15.0 Gs, or at least below the maximum allowable value	was 15.2 G.	1 455
	of 20.49 Gs.		
Ve	Vehicle Trajectory		
	For redirective devices, the vehicle shall exit the barrier within the exit hox (not less than 32.8 ft)	The 2270P vehicle crossed the exit box 105 ft downstream of loss of contact with the bridge rail	Pass

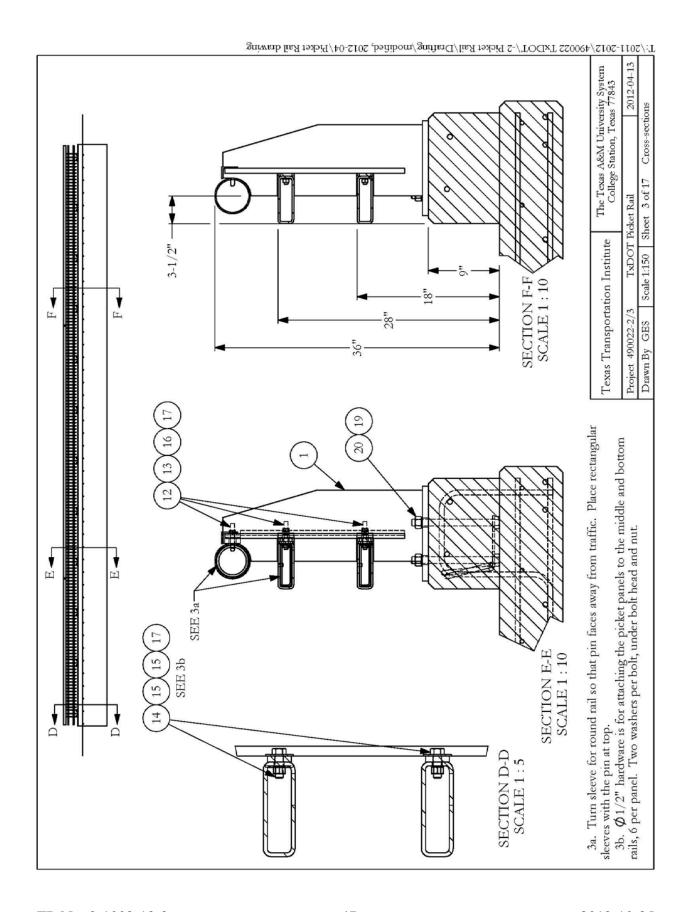

CHAPTER 8. IMPLEMENTATION STATEMENT

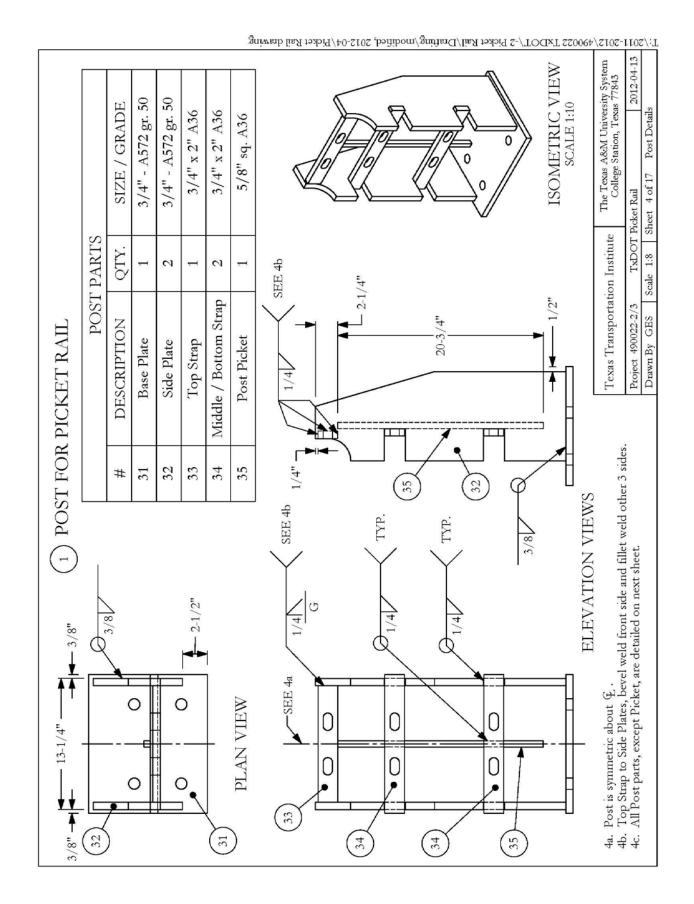
The purpose of this project was to develop and evaluate a new aesthetic bridge rail with steel pickets that meets the current *MASH* safety performance criteria for TL-3. The TxDOT Picket Rail tested under this project met all the safety performance criteria for *MASH* TL-3 and is suitable for implementation on new bridge construction.

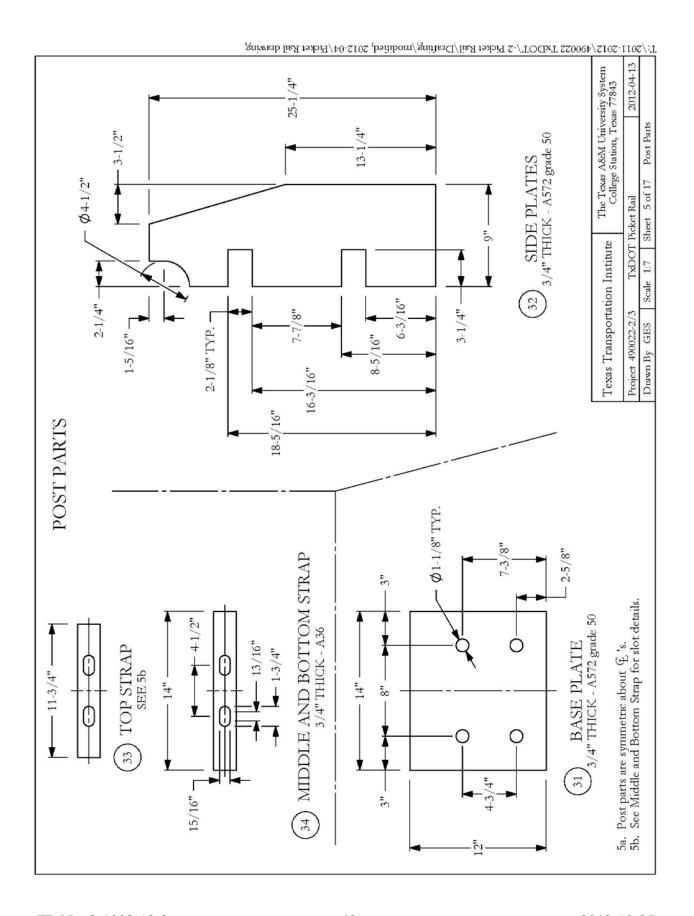
REFERENCES

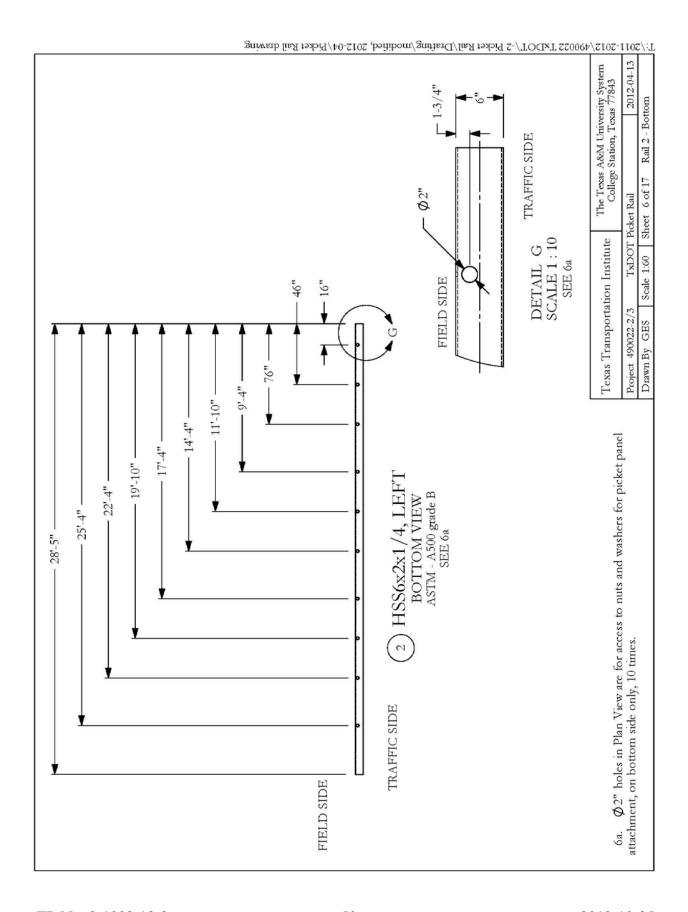
- 1. AASHTO, *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials, Washington, D.C., 2009.
- 2. H. E. Ross, Jr., D. L. Sicking, R. A. Zimmer, and J. D. Michie. *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, National Cooperative Highway Research Program Report 350, Transportation Research Board, National Research Council, Washington, D.C., 1993.
- 3. K. K. Mak, D. L. Bullard, Jr., and W. L. Menges. Testing and Evaluation of the Wyoming 740WYBRAIL Bridge Railing System, TTI Project No. 472610-4, Texas Transportation Institute, The Texas A&M University System, May 1996.

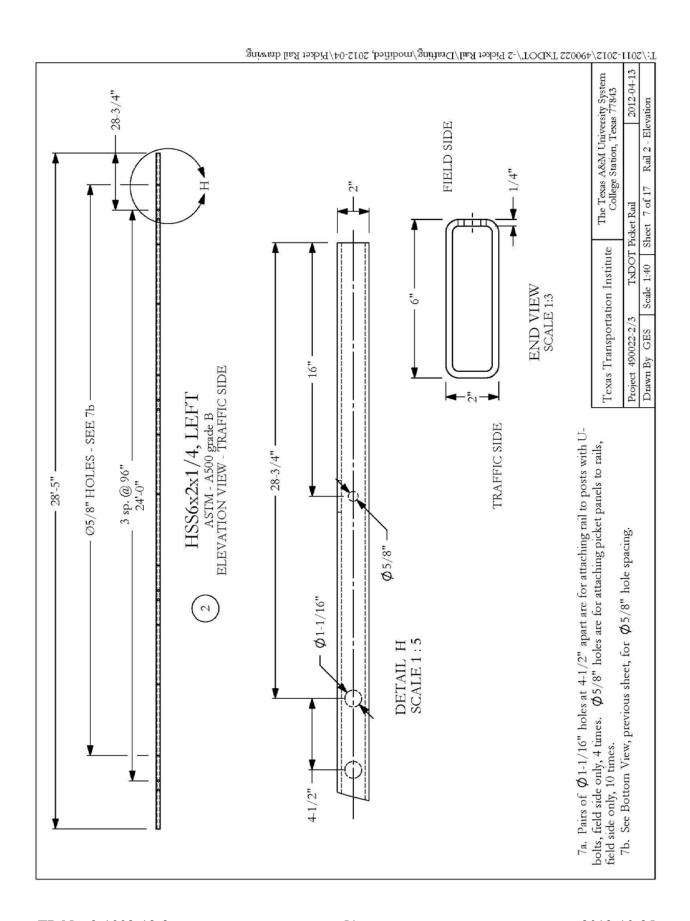
APPENDIX A. DETAILS OF THE TXDOT PICKET RAIL BRIDGE RAIL

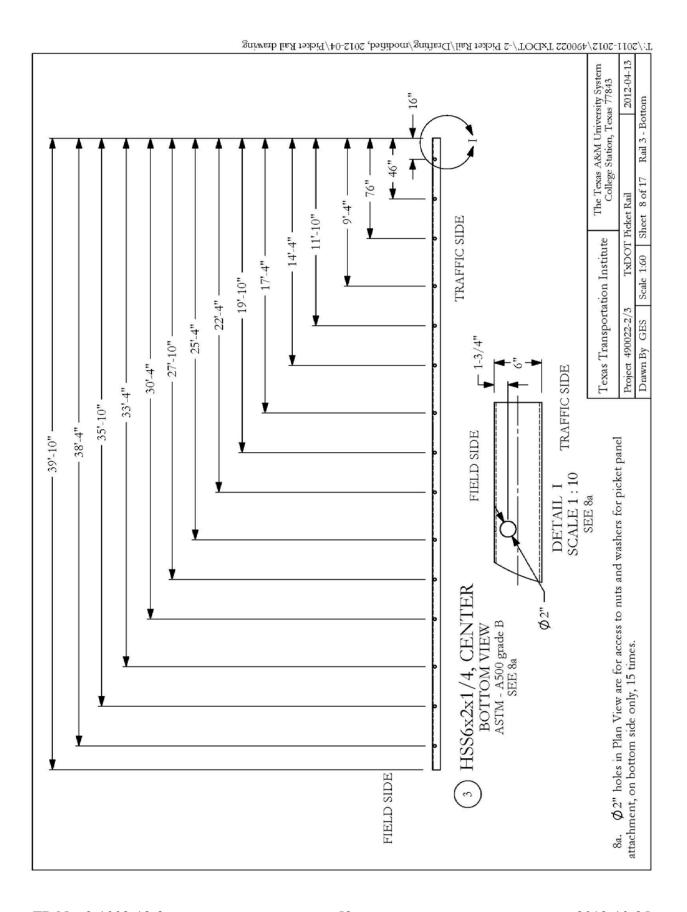

	RAIL PARTS				RAIL PARTS		
#	PART NAME	QTY.	SHT/GRD	#	PART NAME	QTY.	SHT/GRD
	Post for Picket Rail	12	sheet 4 - 5	14	Bolt, $1/2 \times 1-1/2 \text{ hex}$	99	A325
2	HSS6x2x1/4 Left	2	sheet 6 - 7	15	Washer, 1" flat hardened	132	
3	HSS6x2x1/4 Center	2	sheet 8 - 9	16	Washer, 1/2 lock	72	
4	HSS6x2x1/4 Right	2	sheet 10	17	Nut, 1/2 hex	138	A563
5	HSS Round 4-1/2 x 3/16 Left	I	sheet 11	18	Bolt, 7/8 x 10-1/2 hex	48	see 2b
9	HSS Round 4-1/2 x 3/16 Center	7	sheet 11	19	Washer, 7/8 hardened	48	
	HSS Round 4-1/2 x 3/16 Right	Н	sheet 12	20	Nut, 7/8 hex	48	Heavy Hex
∞	Splice Sleeve for HSS Round Rail	2	sheet 12	21	Anchor Plate for Picket Rail	12	sheet 14
6	Splice Sleeve for HSS Rect. Rail	4	sheet 14	22	Rebar, Z	24	sheet 17
10	Picket Panel	6	sheet 13	23	Rebar, transverse bottom	62	sheet 17
11	Picket Panel at Rail Splice	2	sheet 13	24	Rebar, transverse top	184	sheet 17
12	U-bolt for Picket Rail	36	sheet 14	25	Rebar, wall tie	46	sheet 17
13	Plate Washer for Picket Rail	72	sheet 14	26	Rebar, curb stirrup	184	sheet 17

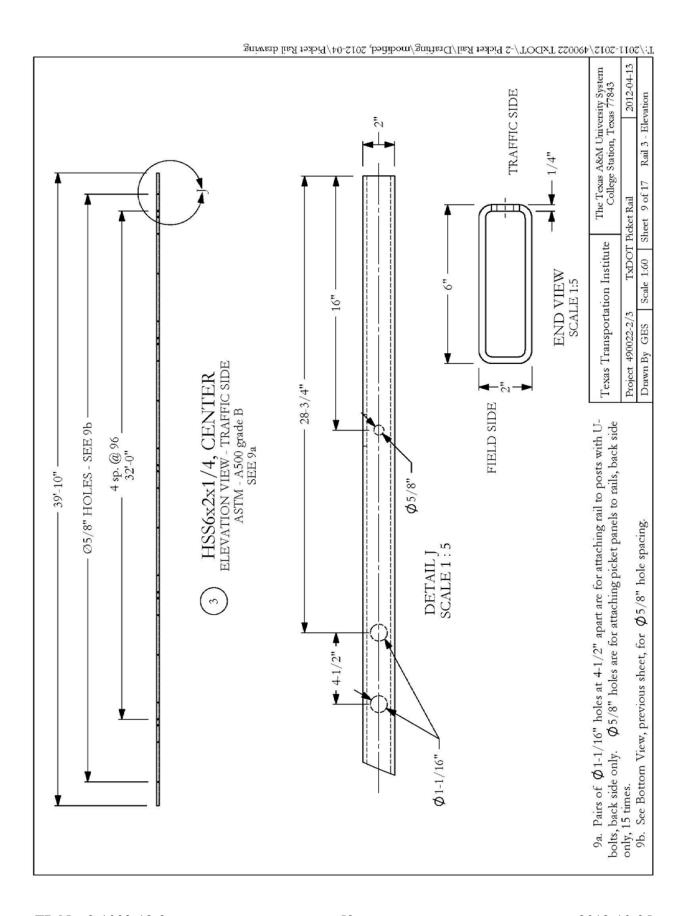

2b. 07/8 bolts are A325. 07/8 Threaded Rod (ASTM A193 or B7) 11" long may be substituted, with additional 7/8 Heavy Hex nut tack-welded flush at bottom.

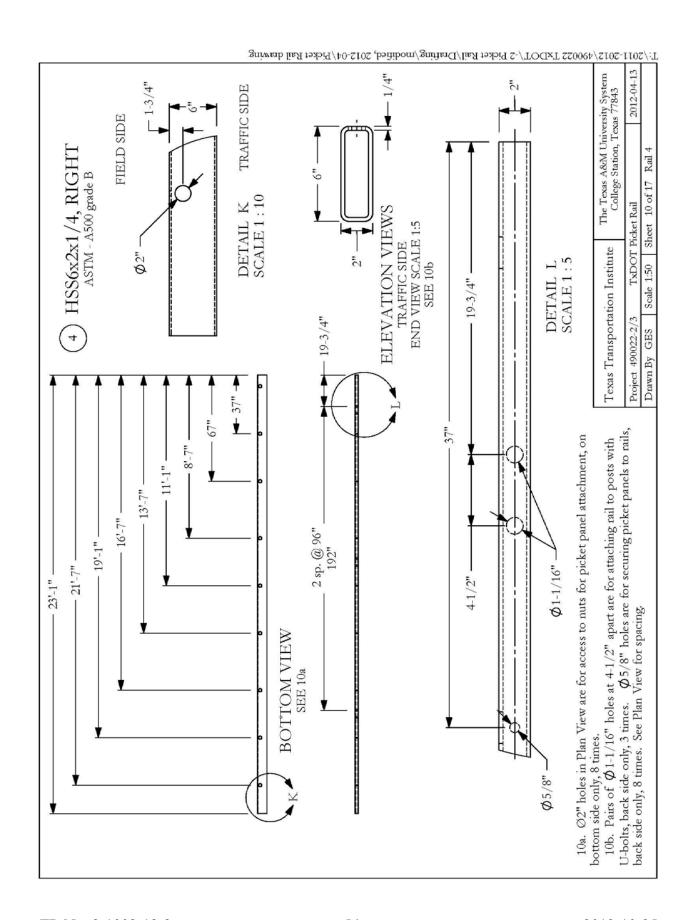

2c. A449 or A325T hardware is acceptable alternative to A325.

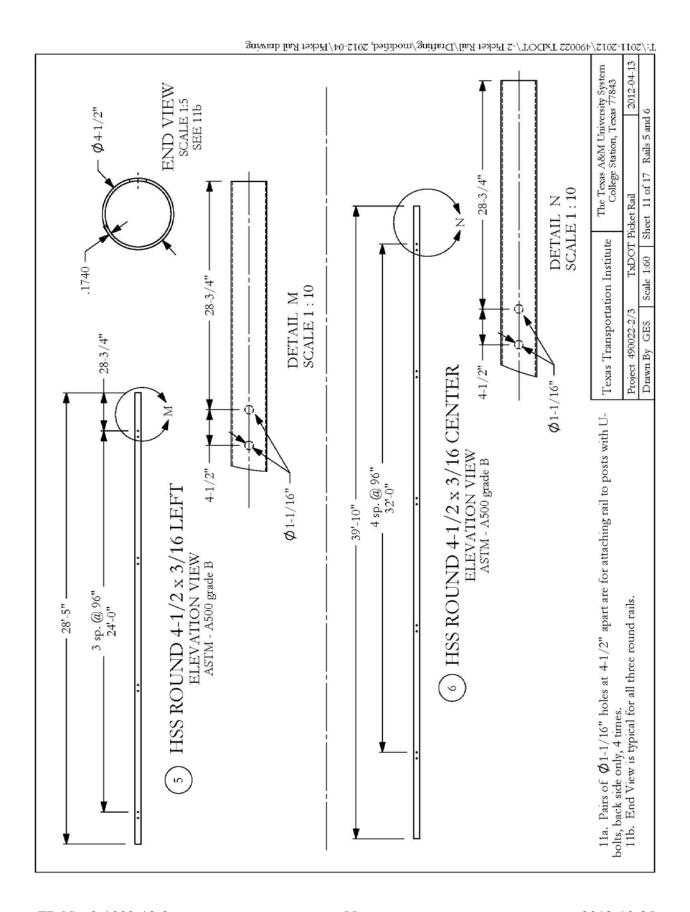

2d. Tolerances on steel parts is ±1/8" unless otherwise indicated.

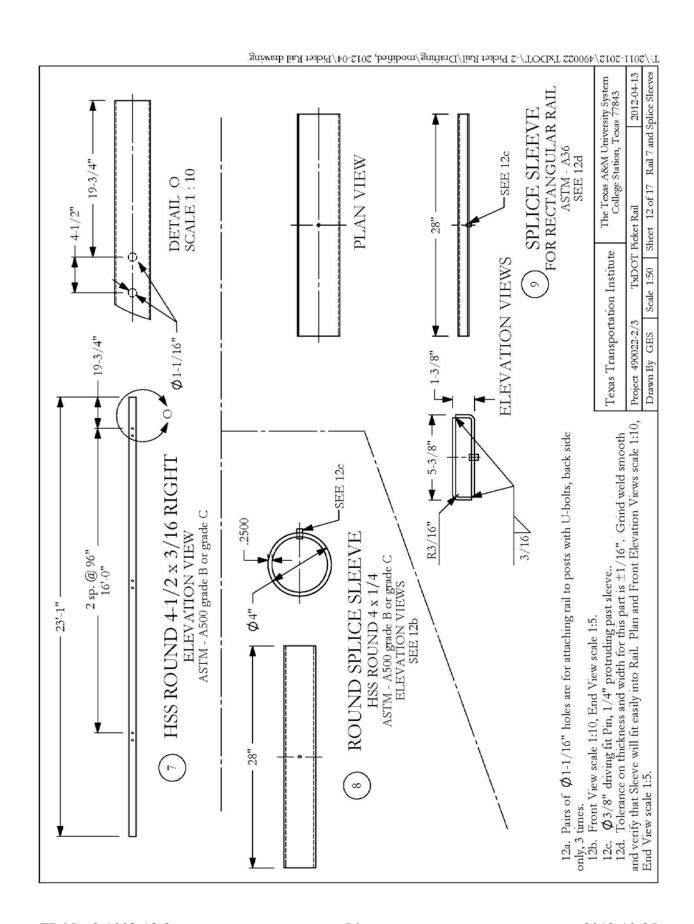

The Texas A&M University System College Station, Texas 77843	2012-04-13	
: Texas A&M University Syste College Station, Texas 77843		BOM
The Texas College	cket Rail	leet 2 of 17
tion Institute	TxDOT Picket Rail	Scale 1:150 SF
Texas Transportation Institut	Project 490022-2/3	Drawn By GES Scale 1:150 Sheet 2 of 17 BOM
þe		

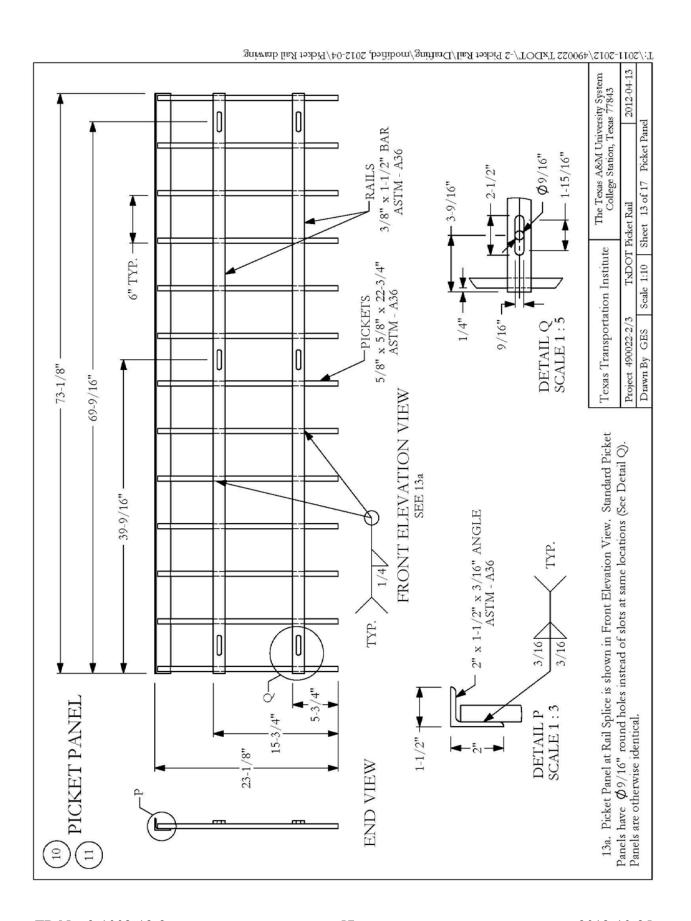


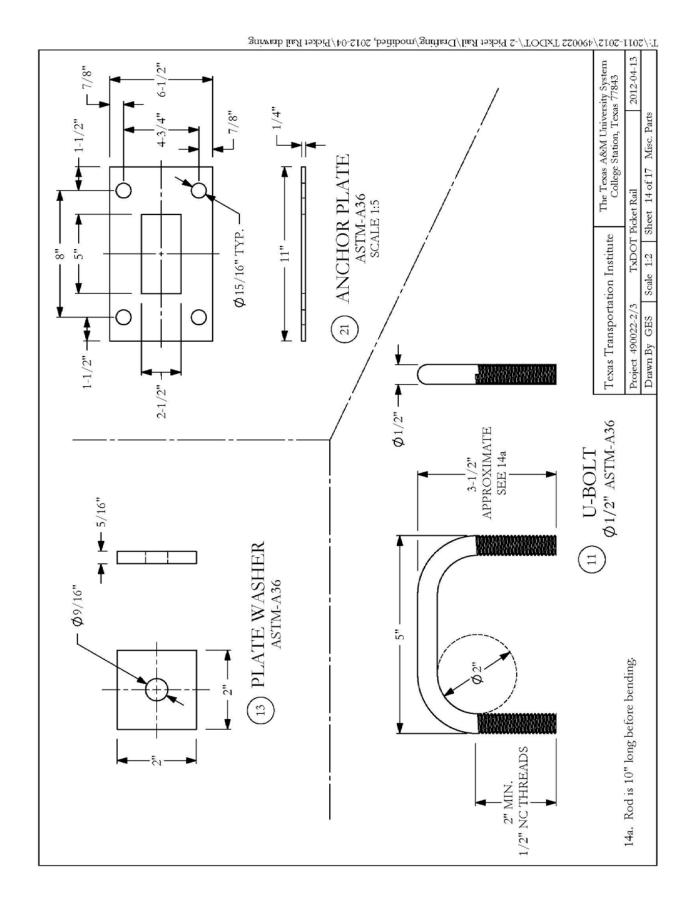


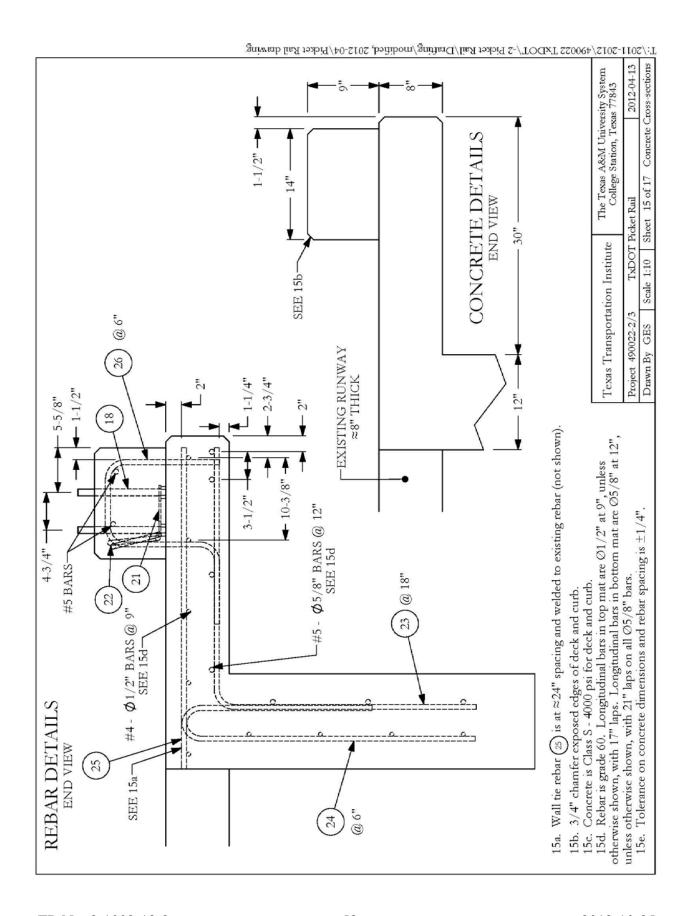


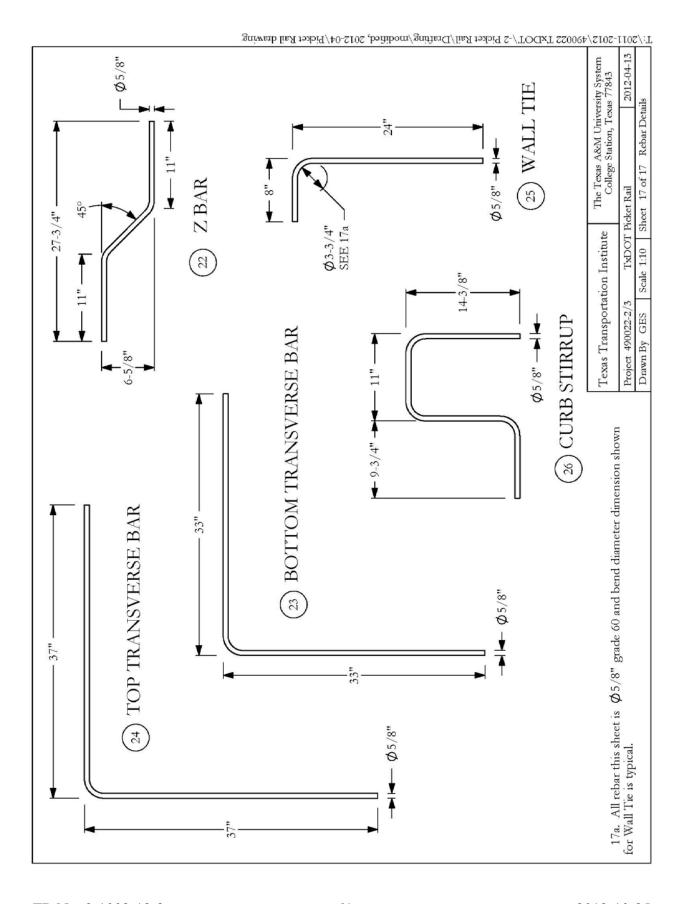












APPENDIX B. CERTIFICATION DOCUMENTATION

MATERIAL USED

TEST NUMBER 490022-2/3

TEST NAME TxDOT Picket Rail

DATE 2012-04-09/10

DATE RECEIVED	ITEM NUMBER	DESCRIPTION	SUPPLIER	HEAT #
2012-03-19	Parts-18	Picket Rail Parts	Brazos Industries	see file
2012-02-23	Rebar 04-26	1/2" x 20' gr 60	CMC-Sheplers	3029770
2012-02-23	Rebar 05-15	5/8" x 20' ard 60	CMC-Sheplers	3028494

09/28/2011 10:56

3148519338

TUBULAR STEEL INC

PAGE 01

Independence Tube

6226 W. 74th St Chicago, IL 60638 708-496-0380 Fax: 708-563-1950

independencetube.com Itctube.com

Certificate Number: CHI 816292

Sold By:

INDEPENDENCE TUBE CORPORATION

6226 W. 74th St. Chicago, IL 60638 Tel: 708-496-0380 Fax: 708-563-1950

Sold To:

2025 - TUBULAR STEEL 1031 EXECUTIVE PKWY DRIVE ST. LOUIS, MO 63141-6351

Purchase Order No: po-023591 Sales Order No: CHI 191963 - 1 Bill of Lading No: CHI 112447 - 1 Invoice No:

Shipped: 9/22/2011 Invoiced:

Ship To:

84 - TUBULAR STEEL 1700 TUBULAR STEEL ROAD STAUNTON, IL 62088

CERTIFICATE of ANALYSIS and TESTS

Customer Part No:

ROUND A500 GRADE B(C) 4.000"OD X .250"

Certificate No: CHI 816292

Test Date: 9/15/2011

Total Pieces

Total Weight 7,215

Heat Number: C56944

Bundle Tag	Yield, Tensile Strength, Elongation, Measurements	Y/T Ratio	Pieces	Weight
557474	YLD=64158/TEN=79907/ELG=27.46	0.8029	10	2,405
557475	YLD=64158/TEN=79907/ELG=27.46	0.8029	10	2,405
557476	YLD=64158/TEN=79907/ELG=27.46	0.8029	10	2,405

C56944

*** Chemical Analysis ***

C=0.2000 Mn=0.7000 P=0.0070 S=0.0040 Si=0.0300 Al=0.0310 Cu=0.0800

Carbon Eq.=0.3167 Carbon Eq. = C + (Mn/6)

MEETS ASTM A500/A500M-10a GRADE B AND GRADE C MELTED & MANUFACTURED IN THE USA

I certify that the above results are a true and correct copy of records prepared and maintained by Independence Tube Corporation. Sworn this day, 9/15/2011

Annette Gorz, Test Report Clerk

WE PROUDLY MANUFACTURE ALL OF OUR HSS IN THE USA. INDEPENDENCE TUBE PRODUCT IS MANUFACTURED, TESTED. AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS.

CURRENT STANDARDS:

.....A500/A500M-10aA262-98 (2002)

CN FASTENER MANUFACTURING, CO.

QUALITY CERTIFICATE

Date: Dec. 03, 2010 Product: B7 STUDDING

Size:

7/8 x 12'

(48 Pcs. 7/8-9 x 10-1/2)

Production No: 00241364

Lof#: 315010042 Surface Coaling: PLN QTY: 12015 pcs.

CHEMICAL COMPOSITION

	C	Si	Mn	P	\$	Cu	Ni	a.	Mo	В	
MILL HEAT #:	0.40	0.27	0.83	0.015	0.007	0.04	0.02	0.97	0.18		
0103002											

MECHANICAL PROPERTIES

×	e Brett Town Street Control of the C	
	LTR	Tempering Temperature
CHARACTERISTICS	REQUIRED	<< OBSERVATIONS >>
HARDNESS [HR]	HRC Max 35 C	HRC 30.0 ~ 33.0
Tensile Strength [N/mm²]	860 min	966 ~ 967 N/mm²
Yield Strength [N/mm²]	725 min	889 - 890 N/mm²
Bongation [%]	6 min	21.4-21.5
Reduction pf Area [%]	\$0 min	60.3-60.4
Thickness [UM]		
Surface Coating: PLN		
Dimmnl. Inspn: SATISFACTORY	· .	

The information on chemical composition is based on the test certificated received from the steel mill or material supplier described in this document has been inspected under the parameters setforth and found to be in conformance with the physical requirement we certify the above product meets specified requirement of:

65

Quality Control Manager: G.P.

03/12/2012 01:22 1

#1822 P, 001/001

MILL TEST REPORT

BRIGHTON-BEST INTERNATIONAL INC.

www.BrightonBest.com

This MTR contains 1 pages (Page: 1)

Lot#: LM11032804

Part#: 314250

CERTIFIED MATERIAL TEST REPORT FOR ASTM A194/A194M-10a GRADE 2H HVY HEX NUTS

FACTORY:

APPEARANCE

WIDTH A/C

DECARBURIZATION

MACROETCH

WIDTH A/F

THREAD

HEIGHT

MARK

NINGBO HAIXIN HARDWARE CO.,LTD.

DATE: OCT.12.2011

ADDRESS:

XIJINGTANG, LUOTUO NINGBO ZHEJIANG 315205

0.04

CUSTOMER: BRIGHTON-BEST INTERNATIONAL (TAIWAN) INC

MFG LOT NUMBER: LM11032804 PO NUMBER: U04299

QNTY SHIPPED:

64.800MPCS

5%

MAX

0.05

PART NO: 314250

SAMPLE SIZE: ACC. TO ASME B18.18.1-02 SIZE & DESCRIPTION: 7/8-9(BLK)

STEEL PROPERTIES:

SWRCH45K STEEL GRADE:

SIZE: 34mm

0.21

HEAT NO:

331105356

0

0

0

0

0

0

0

CHEMISTRY COMPOSITION: CHEMIST C% Mn % P% SPE: MIN MAX MAX

0.40

Si % MAX 0.40

Ni % Cu % Mo % OTHERS

TEST: 0.45 0.76 0.011 0.003 DIMENSIONAL INSPECTIONS CHARACTERISTICS **TEST METHOD**

1.00

SPECIFIED

SPECIFICATION: ASME/ANSI B18.2.2-87(R1999) ACTUAL RESULT

ACC. REJ PASSED 100 0 1.409"-1.424" 32 0

1.608"-1.638" PASSED 8 0.843"-0.860" 37 PASSED 100

SPECIFICATION: ASTM A194-10a

MECHANICAL PROPERTIES: TO 1-1/2" in CHARACTERISTICS **TEST METHOD** HARDNESS PROOF LOAD

TEMPERING TEMPERATURE Min455°C

ASTM E18-05 **ASTM F606-07** SAE JI21 HARDNESS AFTER 24H AT 540°C ASTM A194 MIN 89 HRB

ASTM F812-02

1.394"-1.438"

1.589"-1.660"

0.833"-0.885"

2H LM

ASME B1.1-02

24-35HRC 80850lbf

\$1/R1/C1~\$4/R4/C4

THAT THIS DAIA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL

ACTUAL RESULT HRC29-30 80850lbf

PASSED HRB 92-94

PASSED(520°C) S2/R2/C2

PARTS ARE MANUFACTURED AND TESTED IN ACCORDANCE WITH ASTM A194/A194M-10a ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIBED SPECIFICATION. WE CERTIFY

SUPPLIER AND OUR TESTING LABORATORY. All parts meet the requirements of FQA and records of compliance are on file. Maker's ISO#00109Q10593R0M/3302

ASTM E381

(SIGNATURE OF Q.A., LAB MOR.) (NAME OF MANUFACTURER

3/9/2012

STAMPING THE FUTURE

WROUGHT WASHER MFG., INC.

January 16, 2009

Certification of Compliance

012476 ALBRITTON & GROVES - HOUSTON 3605 WILLOWBEND BLVD. #550 HOUSTON, TX 77054

Wrought Washer Ordr/Lot Number 230425 HT 228734

Heat Number 284276 Chemical Analysis
C Mn P S Si
0.350 0.640 0.008 0.001 0.21

Purchase Order Number HARDENED

Part Description 7/8 S MARK HT Date Shipped 01/15/2009

Quantity Shipped 30,000

We hereby certify that the subject parts conform to the requirements of the applicable specification indicated for the subject parts and are in complete conformance to F436-04. We hereby certify that the subject parts were hardened to RC 38-45.

We hereby certify that all statutory requirements as to American Production and Labor Standards and all conditions of purchase applicable to the transaction have been complied with and that the subject parts were maded and manufactured in the U.S.A.

Iroly yours.

Wrought Washer Mfg., Inc.

Danif Calanatan

Paul Schnefer Q.C. Manager Sucan M. Daoust

Sworn and subscribed before me on January 16, 2009 My commission expires June 21, 2009

(0.09) SMARK, ITL 1-436 WW INTIGNAL USE : 53628-901/016/917308/-8521

1901 CHICORY RD. • MOUNT PLEASANT, WI 53403 • PHONE (262) 554-9550 • FAX (262) 554-9584
VISIT OUR WEBSITE: www.wroughtwasher.com

CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510

CERTIFIED MILL TEST REPORT

For additional copies call

830-372-8771

are accurate and conform to the reported grade specification We hereby certify that the test results presented here Daniel Address

Quality Assurance Manager

Delivery#: 80199515 BOL#: 70063367 CUST PO#: PE33988 CUST P/N: DLVRY LBS / HEAT: 4562.000 LB	Characteristic Value	
S Madden Bolt Corp H 13420 Hempstead Rd P Houston TX US 77040-5813 T 7139399999	Characteristic Value	
Madden Bolt Corp 13420 Hempstead Rd Houston TX US 77040-5813 713939999		8 % % % % % % % % % % % % % % % % % % %
HEAT NO.:3011321 SECTION: ROUND 1/2 × 20'0" 0 A36/52950 CRADE: ASTM A36-08/A529-05 Gr 50 DROLL DATE: 08/14/2009 TMELT DATE: 08/14/2009	Characteristic Value	C 0.13% Mn 0.81% P 0.008% Si 0.19% Si 0.19% Cu 0.15% Cu 0.15% Ni 0.09% No 0.033% V 0.003% V 0.008% Sn 0.007% Al 0.002% Carbon Eq A529 0.36% Yield Strength test 1 51.6ksi Elongation test 1 29% Elongation Gage Lgth test 1 8IN

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS.
REMARKS:

10/02/2009 20:07:59 Page 1 OF 1

BFB466		į	L0 9 99	674880 He≅t - JW111086 674880	order-Line	7020fff - beol		1-21-2011 Hescos ludu Hescos ludu
The same of the sa	POLAGE	xe ¹	Б	DVCE 4100	MA 68:88:8 I	TO\13\50T	or 5teel	ony
SOLD NAMASCO CORP TO: 500 COLCUIAL CE	SHIP NAMASCO TO: BUDA, TX 78610	Melens Safety Dat	HEAT NUM.	PO# ⇒	JUN 11 10866601			to their the state of their test of their te
ENTER PKMY		Malaniel Safaty Data Sheets are available et www.rucorbar.com or by contacting your heide sales raprasemalive.	DESCRIPTION	6381281 Nucor Sheel - Texas 34x10' Figt 20' A529 G155 ASTM A529/A529M-05 GR 55 CONTLIES WITH DIN 50049 FAZE	naosasod 34x10* Fisel - Texas 34x10* Fisel 20* AS28 G165 ASTM A628/A628/A-O5 GR 65 COMPLIES WITH DIEK 60049 PARA			stacky counting that the safetarsk described movem has been south input lastices as a recolder to Kairs there are that it sakisful was not that it sakisful the sakisful movement as not the participated to the movement. Souther was the sakisful movement as the counting of the sakisful movement as the counting of the sakisful movement as the sakisful movement of the sakisful movement as the sakisful movement of the saki
NUCOR CORPORATION	NGCOR STEEL TEXAS	by convecting your heide	YELD TENSILE P.S.r. P.S.L.	58.900 76.500 21.0 406MPa 527MPa 58.200 76.000 19.0 401MPa 524MPa 8.3.1E & BN 10204-3.1.	58.900 76.500 21.0 406MPa 527MPa 58,200 76,000 19.0 401MPa 524MPa 8 3.1E 8 80 10264-3.1			Williams an best papilisation in structure with movement and that it solution in so requirements. Special in the solution in t
!>	_	side seres representative. PHYSICAL TESTS	ELONG % IN 8" BEND	21.0% 19.0%	21,0% 19,0% 4-3,3			1 to
CERTIFIE	Ship from: Nucor Steel - Texas 8612 Hwy 79 W JEWETT, TX 75846 800-527-6445	AARAAAAA AAAAAAAA OO OO OO OO OO OO OO OO O	WT% DEF					GUNITA SECENT
) MILL TE	Техаз W 75846	AND REPORTED AND VALUE OF THE PARTY OF THE P	\$.11 11 12 CBV C 0.040 D				Rathan Stewart
CERTIFIED MILL TEST REPORT		CHE	°€ 0 0	1.06 .018 .17 .034	1.06 .018 .17 .034 CEA529 MN/C 0.40 09.64			trewert.
	Date: B.L. Number: Load Number:	CHENICAL TESTS	5 >	800. 800.	800 800 800			S. S
Page: 2		VENC	3\ \8	.032	.20			1/2
	14-0cl-2011 585706 196747	NBMG-)9 faseon & Zet1	S. C.E.	8	88			D

Page 7 of 10 C-563056 TYE ABOYE HEMTHES ARE CHITHED CHEMKIAL AND PHYSICAL TEST RECURDS AS CONTAINED IN THE PERMANENT RECORDS OF COMPANY. CUST P.O. NUMBER 8414227-06 Sollor warrans that almated datal carepy with apostituders subject to standard published manufacturing valuations. NO OTHER WARRANTIES, EXPRESSED OR MIPLIED, ARE MADE BY THE EASTERN AND STRESSED FOR ANTICLAR PURPLYS.
In no overs that half before, consequented or purities demands aviving out of related to the material product by soller the refer to allow the consequence of the purples aviving out of related to the material production of the purples aviving out of related to the material production of the purples aviving to the purples and the material production of the purples and purples and the purples aviving to the purples and purples and the purples are purples and the purples are purples and the purples Metaflucikal Sorvices Manager SALES ORDER 2700135-08 CHARLOTTE STEEL MEL CUST. ACCOUNT NO SHIP DATE 331 19363 01/12/12 Chemical and Physical Test Report MADE IN UNITED STATES The state of the s %El: 23.805n, 23.8230MM Red II 64 in
 P
 S
 S3
 C3
 NA
 C3
 RA
 TR
 NA
 NA</t 500 COLOMINL CENTER PKWY S-500 ROSWELL, GA 30076 NAMASCO CORP ""ACCTS PAYABLE" ASTM ASB-08 AASME SASB-08A & ASTM A709-07 INVOICE TO Mechanical Test. Yield Sig777°53, 346,056 MPA Teisile: 72500 PSt, 4893 MPA Curticine Populationens CASTING: STRAND CAST CARSTITEM MARGER, MISSISCORASS NO WIELD REPARKENT PERFORMED. STEEL NOT EXPOSED TO MERCHAY. Phys meterial, industry the hallets, was method and mandaton, and in the United States of America SPECIFICATION Uhashar Yalemanchili **Cuelty Director** PRODUCED IN: CHARLOTTE 88 CHARLOTTE NC 28269 USA CHAPALOTTE STEEL MILL 6601 LAKEVIEW ROAD SOUTH LOOP 4, EXIT 217 36 CE GEROAU NAMA SCO CORP BLIDA, TX 78610 Customer Notes (704) 596-4361 512-472-5533 STATE A SIZE 0017163 ttiosogan thousand SOLET WAT CHOSISTING Order-Line - 7140964 | 5 Cust. PO -Heat - C017163 Brazos Industries Inc BLR466 BL - 3681309 Load - 1168331 02-14-2012 12:03 02-14-2012 12:03

Load - 1168331

BL - 3681309

BLR466

Brazos Industries Inc

Heat - A60808

Cust. PO -

Order-Line - 7140964 / 3

JAN-18-2012(WED) 16:39 ATLAS TUBE

P. 004/005

Atlas Tube Ing. 5039N County Road 1015 Blythavilla, Arkansas, USA 72310 Tel: 870-838-2000 Fax: 870-752-6630

□□□ JMC STEEL GROUP

MATERIAL TEST REPORT

Sold to

NAMASCO CORPORATION Steel Warehousing Corporati 500 COLONIAL CENTER PR ROSWELL GA 30076 USA

Shipped to

NAMASCO SOUTH WEST SOUTH LOOP 4, P.O. BOX BUDA TX 78715-0387

Material: 5.0x3.0x250x40'0'0(4x3). Material No: 500302504000 Made in: USA Matted in: USA Sales order: 675809 Purchase Order: 6392958 Cust Material #: T5314RECTA5000480 Al Cu Cb Ni Cr V Ti 31 0.210 0.790 0.009 0.009 0.009 0.009 0.041 0.030 0.000 0.000 0.010 0.040 0.000 0.001 0.000 0.000 PCs Yield Ein.Zin . Tensila Certification CE: 0.35 M400040721 12 061160 Psi 071150 Psi 31 % ASTM ASOC-10A GRADE B&C Material: 6,0x2.0x250x40'0"0(3x4). Material No: 600202504000 Made in: USA Molted in: USA Sales order: 076809 Purchase Order: 6392958 Guat Material #: T6214RECTA6000490 71 Heat No. C Al Çu Cb NI Cr. Ma Si Mo 0.220 0.810 0.012 0.003 0.030 0.023 0.100 0.000 0.020 0.050 0.060 0.001 0.001 0.000 0.000 Tensile Eln.2ln Certification CE: 0.39 ASTM ASCO-10A GRADE B&C Material Note: Sales Or Note: Material: 6.0x2.0x260x40*0*0(3x4). Material No: 800202804000 Made in: USA Molted In: USA Salas order: 676809 Purchase Order: 6392958 Cust Material #: T6214RECTA5000480 Al Çu Cb Cr 0.030 0.023 0.100 0.000 0.020 0.050 0.060 0.001 0.001 0.000 0.000 0.810 0.012 0.003 Bundle No PCs Yield Termue Etn,2ln M400040786 12 066300 Psi 078930 Psi 29 % Certification ASTM ASOD-104 GRADE B&C

Authorized by Quality Assurance:
The results reported on this report represent the estual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.

The results reported on this report represent the estual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.

History Contract Institutes

Page : 2 Of 3

Metals Service Center Institute

Meterial Note: Salas Or.Nate:

02-14-2012 12:03

Load - 1168331

BL - 3681309

BLR466

Brazos Industries Inc

Cust. PO -

Heat - 515678 Order-Line - 7140964 / 2

3525 Richard Arrington, Jr., Blvd. N. Birmingham, AL 35234 Phone (205) 251-1884 Lab Fax (205) 421-4561 Lab@SouthlandTube.com

TEST REPORT

Customer Name: NAMASCO CORPORATION LTD

Customer PO No: 6426668

Heat No.: Description:

Size/Length:

Carbon (C):

Sulphur (S):

Silicon (Si):

Copper (Cu):

515678

CARBON STEEL TUBING

2" X 6" 1/4" Wall 40'

Spec/Grade:

A500-10/B/C

Print Date: Wall Thickness: 2/9/2012

0.2500

Vanadium (V):

0.0010

Manganese (Mn): Phosphorus (P):

0.4300 0.0100

0.0110 0.0120

0.2000

Molybdenum (Mo): Aluminum (Al): 0.0386Nitrogen (N):

Tin (Sn):

Nickel (Ni):

Chromium (Cr):

0.0150 0.0430 0.00600.0360

0.0037

0.0020

Columbium (Cb): Titanium (Ti):

0.00000.00100.0001

Boron (B): Calcium (Ca):

0.0000 Carbon Equiv. (CE): 0.2852

Sample	Sample	Tensile	Yield	Elengation
Number	Date	(psi)	(psi)	(%)
SL31866	2/6/2012	68,400	56,200	26,00

We hereby certify that the above figures are correct as contained in the records of this company. Tensile testing (if applicable) is performed according to ASTM A370 and ASTM E8 (Yield Strength determined using 0.2% offset method).

Computer Generated Document

Quality Assurance

Melted & Manufactured in the U.S.A.

STI Pickup No: 021/3081

STI Order No: 264127

STI Item No: 2.0X6,025040

2-15-2012 06 Irazos Industr		Load - 1	169200	BL -	3681367 Heat	7 - JW12100	561	BLR46
ust. PO -	as illo			Order-Lin				
	Steel		2/3/2012	8:25:18 AM	PACE	3/003	Fax Server	
Page: 3	Date: 3-Feb-2012 B.L. Number: 598310 Load Number: 208091	CHEMICAL TESTS ABOVE SANGEL SELECTION NEW SANGEL SELECTION AND	30 32 30 30 32 30 37 30 37 30 30 30 30 30 30 30 30 30 30 30 30 30					Sharks.
CERTIFIED MILL TEST REPORT	Nucor Steel - Texas 6812 Hwy 79 W JEWETT, TX 75846 800-527-6445	Sentative. S BEND WPW C WA C S S S S S S S S S S S S	. 11					CHALITY ASSURANCE:
NUCOR CORPORATION NUCOR STEEL TEXAS		Material Safety Data Sheets are evailable at warm nucobar com or by contacting your inside sales representative. LOT * DESCRIPTION TELD TENSILE SELONG BEND TENSILE SELONG BEND	42,700 64,100 25,0% 294MPa 442MPa 42,800 64,100 25,0% 295MPa 442MPa					77. 77.
NAMASCO CORP 500 COLONIAL CENTER PKWY NE STE 500 ROSWELL, GA 30076-	NAMMASCO SOUTH LOOP 4 BUDA, TX 78610-	sta Shests are eval able at www nucobar.co DESCR:PTION	692459 Nuori Sheel - Terase 3/4/2? Hat 20 A36 ASTM ABENASHAOB, A7709/A7194-11	GP36, ASME SA 36-07 Ed 11 Ad			* 14 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1	For exposure that the recovered begin has been developed of a specific to a specific t
SOLD NAMAS FO: STE 500 FO: STE 500	SHIP NAMAS TO: BUDA,	Material Safety De LOT # HEAT #	PO# -> JW1216036161 JW12360361					Marine and Aller

2-15-2012 08:07 razos Industries Inc	Load - 1169200	BL - 3681367 Heat - JW11	1110387	BLR46
ust. PO -		Order-Line - 7276003 / 1	OIL MICELLAND MICELLAND STORE ST	manus Microsoft and annual conference of the contract of the c
	.35 G.E.	8 5	ar virtigetti 1966 e v S i tildrimar diraktiri tiladi savindrida di savyi trass si savindrida di	
1 7-Feb-2012 596570 206093	32 .32 .33	8 8	.012	$ \mathcal{I} $
47.14	\s \ \alpha \ \ \alpha \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	200 21 203 203	84	76
Page: Date: B.L. Number: Load Number:	CHEMICAL TESTS 10 S V S 17030	.030 .030 .030	.035 9.98 0.001	1
PORT	Mo S S	.036 .036 .008	.007 .044 CEA529 0.36	
EST RE	88	59 44 63	.86 .13 CE4020 0.32	Wathen Stewart
D MILL 7 Texas W 75846	Z 25 E	55 E 86	.11 .17 AL 0.000	
CERTIFIED MILL TEST REPORT Ship from: Nucor Steel - Texas 8612 Hwy 79 W JEWETT, TX 75848 800-527-6445	S H30			SELITY ASSUEARCE:
5 5 ₹ 8 4 8	1 [
	sule sales represented to the sales represente	26.0% 27.0% 25.0% 25.0%	24.0%	
TEXAS TEXAS	PHYSISTE PASTILE PASTI	457MPa 457MPa 457MPa 457MPa 457MPa 457MPa	472MP a 71,300 492MP a 493MP a 495MP a	Actory with
NUCOR CORPORATION NUCOR STEEL TEXAS	23 1 1 1		34544F2 369MPa 369MPa 3777MPa 3777MPa	oxed 22 person
Z WAGO WAGO	7. COCH OF 12.			Sociations of the second
PKWY	Material Safety Data Sheets are evaluable at www.nucorbar.com LOT # DESCRIPTION! HEAT # PO# => 6425459 Texas JW111103870 Nucor Stock Texas JW11110387 3/8x1-1/2" Flat 20' A36 PO# Power	CR26, ASIME SA38-07 Ed 11 Ad CR26, ASIME SA38-07 Ed 11 Ad CR25459 Nuocr Steel - Texas 1/4x2-1/2" Flar 20 A36 ASTM A38/A36M-08, A708/A709M-11 GR35, ASIME SA36-07 Ed 11 Ad 4425459 Nuocr Steel - Texas 1/4x1" Flat 20 A36	ASI M ASBASBAR-UB, AMBANUSM-11 GR35, ASIME SA38-07 Ed 11 Ad 6426469 Nucor Steel - Texas 1-1/27-1-1/223/16 Angle 20° A36/A529 GA5 ASTM A36-08, AES9-05, A708-09a G ASTM A36-08, AES9-05, A708-09a G ASTM A36-08, AES9-05, A708-09a G	Tabledy orderly that the manner described from Fron Bron Burghamish is about while the president order of the control of the president of the control of the
NAMASCO CORP 500 COLONIAL CENTER PKWY STE 500 ROSWELL, GA 30076- NAMASCO SOLTH LOOP 4 BUDA, TX 78610-	Sheets are available at DESCR 6425459 Nucor Stock - Texas 3/8xf-1/2" Flat 20' A36	GR35, ASIME SA 6425459 1425459 14x2-112" Flat 20' A36 GR35, ASIME SA 6425459 Nucor Steel - Texas 14x1" Flat 20' A36	ASI IM A36A338MOB, A GR35, ASIME SA38-0 64Z6463 Nuor Stoel - Texas 1-1/2X1-1/2X3/16 Angle 27 A36/A529 G-60 ASTM A36-06, AE29-06 R 36, ASME SA36-0;	At a section that the section of the
NAMASCO CORP 500 COLONIAL CI STE 500 FOSWELL, GA 30 NAMASCO SOLTH LOOP 4 BUDA, TX 78619-	Material Safety Data LOT # HEAT # PO# => LW1111038761	PO# ⇒ W1210041501 W12100415 PO# ⇒ W1210060501	PO#=> JW12:0075601 JW12:00756	Activity that the control of the con
SOLD 501.0	Material Sa LOT # HEAT # PO# • DW!!!!!	PO JW121 JW1	PO JW121	Tandopper Transfer of the Appendix of the Appe

Atlas Tube Canada ULC 200 Clark St. Harrow, Ontario, Canada NOR 130 Tel: 519-738-3541 Fax: 519-738-3537

MATERIAL TEST REPORT

Sold	<u>to</u>									Sh	ipped to	Ł		
USA			:KWAY						• • 8	 US	ia Ujgo	سفسطافرأ يهج	nad	J
Material: 4.50	0x188x4	2'0"0(19x1)(CSA	M	aterial No	: R0450	01884200	-CSA	· · · · · · · · · · · · · · · · · · ·		Made in	Canad	a	
Sales order:	829471			D	ırchase C	inter D	O.022403				Melted i	n: Cana	da .	
Heat No	C	Mn	P S	Si	Al	Cu	Cb	Мо	Ni .	Cr	ν.	п	В	N
758508	0.190	0.790	0.017 0.008		0.000	0.044	0.005		0.016	0.055	0.002	0.000		0.000
Bundle No	PCs	Yield	Tensile	Eln.2in		0.077		ertificatio				CE: 0.34		0.000
M100997855	19	058520 Psi	066240 Psi	* ******			-		1-04 50W	CLASS (-	DE: 0.04		
Material Note: Sales Or.Note		ASTM A500-0	7 Grade B&C					,			٠.	,		
Material: 4.50	0x188x4	2'0"0(19x1)(CSA	M	aterial No	: R0460	01884200	-CSA				: Canad	-	
Sales order:	829471			P	urchase C	order: P	0-022403							
Heat No	C	Mn	P S	Si	A	Cu	CP	Mo	NI	· · Cr	٧	n	В	N
758508 -	0,190	0.790	0.017 0.008	0.010	0.000	0.044	0.005	0.005	0.016	0.055	0.002	0.000	0.000	0.000
Bundle No	PCs	Yield	Tensile	Eln.2in				ertification	on -		<u></u>	CE: 0.34		
M100997853	19	058520 Psi	066240 Pa	30.0 9	6 .	*	C	BA G40.2	1-04 50W	CLASS	C		~	
Material Note Sales Or.Note	:Meets	ASTM A500-(7 Grade B&C	· ·,										
Material: 10.0		48'0"0(2x1).			aterial No							: Canad n: Cana		
Sales order:	630305				urchase (. 1				•		
Heat No	C	Mn	P 8	Si	- Al	Cu	Cb	Мо	Ni	Cr	Ÿ.	ΥI	В	N
759207	0.180	0.770	0.009 0.008	0.015	0.038	0.047	0.006	0.004	0.013	0.046	0.002	0.000	0.000	0.000
Bundle No	PCs	Yield	Tensile	Ein.2in			-	ertification				CE: 0.33	3	
M200738165	2	050900 Psi	071220 Ps	35.0	%		A	STM A50	0-07 GRAI	DE B&C				
Material Note Sales Or.Note			×											
					•					,	v			

Authorized by Quality Assurance:
The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.

Steel Tube: D1.1 method.

Page: 1 Of 2

Metals Service Center institute

SECUIN TX 78155-7510 1 STEEL MILL DRIVE CMC STEEL TEXAS

CERTIFIED MILL TEST REPORT

For additional copies call 830-372-8771

are accurate and conform to the reported grade specification We hereby certify that the test results presented here Donies & Advance

CmC Second 1X 78 188-75 10	8		830-3/2-8//		Daniel J. Schacht Quality Assurance Manager	
HEAT NO.:3028494	S	S CMC Construction Svcs College Stati		S CMC Construction Svcs College Stati	Delivery#: 80669347	
SECTION: REBAR 16MM (#5) 20'0"	0	-	r		BOL#: 70236513	
420/60		L 10650 State Hwy 30	_	10650 State Hwy 30	CUST PO#: 5434V	~~~
GRADE: ASTM A615-09b Gr 420/60		D College Station TX	۵.	P College Station TX	CUST P/N:	-
ROLL DATE: 11/18/2011		US 77845-7950		US 77845-7950	DLVRY LBS / HEAT: 45990.000 LB	
MELT DATE: 11/14/2011	_	T 979 774 5900	-	979 774 5900	DLVRY PCS / HEAT: 2205 EA	
	0		0			
						-
Characteristic Value	/alue		Characteristic	stic Value	Characteristic Value	
						-

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. REMARKS: 2.188IN Passed Elongation Gage Lgth test 1 Bend Test Diameter Bend Test 1

01/17/2012 21:56:23 Page 1 OF 1

0.015%

1.00%

%86.0

0.030%

0.22%

0.33% 0.21% 0.19% 0.001%

0.013%

0.003%

0.088%

4 S C C S S S A S S C C S S S A

0.002%

108.1ksi

15%

68.3ksi

Yield Strength test 1

Tensile Strength test 1 Elongation test 1

1 STEEL MILL DRIVE SEGUIN TX 78155-7510 CMC STEEL TEXAS

CERTIFIED MILL TEST REPORT

For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification Daniel J. Schacht

Quality Assurance Manager

									_											
Delivery#: 80681077 BOL#: 70240462 CUST PO#: 53534v CUST PO/#: 53534v CUST P/N: DLVRY LBS / HEAT: 43820.000 LB DLVRY PCS / HEAT: 3280 EA	Value																			
077 2 14v 14v 1T: 438 4T: 328	Ì																			
80681 240463 7: 5353 8: / HE/	Characteristic																			
Delivery#: 80681077 BOL#: 70240462 CUST PO#: 53534v CUST P/N: DLVRY LBS / HEAT: 43820.00	Cha																			
883344																				
Stati																				
College				-					y			_								
) Svcs (
ate Hwy tation 1 5-7950 5900	9																			
CMC Construction Svcs College Stati 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	Value																			
0 H - T - O	teristic																			
_	Characteristic																			
ige Stat																				
CMC Construction Svcs College Stati 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900																				
Letion Sv Hwy 30 Ion TX 1950																				
CMC Construction 10650 State Hwy 3 College Station TX US 77845-7950 979 774 5900																				
CMC Constru 10650 State College Stati US 77845-7 979 774 591				9	9					9	9	9	9	9		.si			z	
0 - 0 - 0	Value	0.45%	0.83%	%600.0	0.034%	0.18%	0.41%	0.15%	0.22%	0.070%	0.002%	0.002%	0.014%	0.002%	65.7ksi	102.8ksi	12%	8IN	1.750IN	Passed
20.0.		ပ	Ma	۵	s	S.	o no	ప	ž	Mo	>	c _p	Sn	₹		_	_			
M (#4):	Characteristic		_												igth tes	gth tes	Elongation test	gth tes	t Diame	Bend Test 1
HEAT NO.:3029770 SECTION: REBAR 13MM (#4) 20'0" 420/60 GRADE: ASTM AG15-09b Gr 420/60 ROLL DATE: 01/22/2012 MELT DATE: 01/15/2012	Cha														Yield Strength test 1	Tensile Strength test	Elonga	Elongation Gage Lgth test 1	Bend Test Diameter	Ď
HEAT NO.:3029770 SECTION: REBAR 13 420/60 GRADE: ASTM AG1E ROLL DATE: 01/22/7 MELT DATE: 01/15//															Yie	Tensi		gation	Be	
HEAT NO SECTION 420/60 GRADE: I ROLL DA MELT DA																		Elor		

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. REMARKS:

APPENDIX C. RESULTS FOR MASH TEST 3-10 (TEST NO. 490022-2).

C1. TEST VEHICLE PROPERTIES AND INFORMATION

Table C1. Vehicle Properties for Test No. 490022-2.

Date:	2012-04	09	_ Test No.:	490022-2		VIN No.:	KNADC1	25856364	918
Year:	2005		Make:	Kia		Model:	Rio		
Tire Inf	lation Pres	ssure: 3	30 psi	Odomete	r: <u>133137</u>		Tire Size:	175/65R	14
Describ	oe any dan	nage to th	ne vehicle prio	r to test:					
● Deno	otes accele	erometer	location					ACCELEROMETERS note:	
NOTES		Siometer	iocation.	A WHEEL M TRACK			© VEHIC	CLE	WHEEL N T
Engine Engine		4 cylind	er	. •			1// (
Transm X X	nission Typ Auto	or RWD	Manual 4WD		RE DIA Q		TEST	INERTIAL C.M.	
	Position:	166 lb Front pa	centile male		F	W H	E X	M _{reary} [
Geome A	etry: inc 62.50	hes F	32.00	K	12.00	Р	3.25	U	15.50
^ <u>—</u> В	56.12	_ ' G	32.00	. <u> `</u> L	24.25	, Q	22.50	_	21.50
C	164.25	- H	35.38	 M	56.50	R -	15.50	_ v -	35.00
D	37.00	- ···	8.50	<u> </u>	57.00	S	8.62	_ X	104.50
E	95.25	_ J	22.75	0	28.00	Т	63.00		
Wheel	Center Ht	Front	10.75	Wheel Ce	nter Ht Rea	r <u>1</u>	1.125	_	
GVWI	R Ratings	:	Mass: Ib	<u>Cu</u>	<u>rb</u>	<u>Test</u>	Inertial	Gro	ss Static
Front		1691	M_{front}		1521		1528		1610
Back		1559	M_{rear}		852		903		987
Total		3250	M_{Total}		2373		2431		2597
	Distributio			n -			:55 lb Allowab		
lb		LF	:790	RF:	738	LR:	458	RR:	445

Table C2. Exterior Crush Measurements for Test No. 490022-2.

Date:	2012-04-09	Test No.:	490022-2	VIN No.:	KNADC125856364918
Year:	2005	Mako:	Kia	Model:	Rio
real.	2003	Make:	Nia	Model.	NIU

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable					
End Damage	Side Damage					
Undeformed end width	Bowing: B1 X1					
Corner shift: A1	B2 X2					
A2						
End shift at frame (CDC)	Bowing constant					
(check one)	X1 + X2 _					
< 4 inches						
≥ 4 inches						

Note: Measure C₁ to C₆ from Driver to Passenger side in Front or Rear Impacts – Rear to Front in Side Impacts.

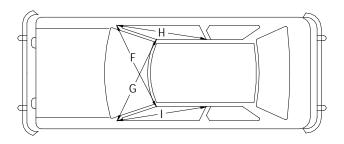
a :a		Direct I			_						
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C ₂	C ₃	C ₄	C ₅	C ₆	±D
1	Front plane at bumper ht	19.0	10.0	24	0	4.0	5.5	6.5	7.5	10.0	-14
2	Side plane at bumper ht	19.0	11.0	36	0	1.25	4.0	6.0	8.0	11.0	
	Measurements recorded										
	in inches										

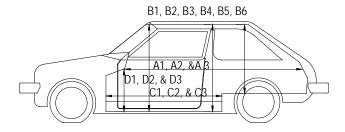
¹Table taken from National Accident Sampling System (NASS).

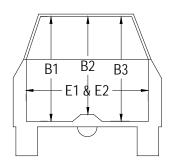
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


^{***}Measure and document on the vehicle diagram the location of the maximum crush.


Table C3. Occupant Compartment Measurements for Test No. 490022-2.

Date: 2012-04-09 Test No.: 490022-2 VIN No.: KNADC125856364918

Year: 2005 Make: Kia Model: Rio

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

Before	,	After
` '	(inches)
67.25		67.25
65.00		65.00
37.25		66.75
39.25		39.25
35.50		35.50
39.25		40.25
34.75		34.75
35.00		35.00
34.75		34.75
26.75		26.75
26.50		23.50
10.75		10.75
8.75		8.25
49.00		49.25
50.50		53.50
49.25		49.50
49.25		47.75
36.50		36.50
36.50		36.50
50.25	_	49.00
	(inches) 67.25 65.00 37.25 39.25 39.25 34.75 35.00 34.75 26.75 26.50 10.75 8.75 49.00 50.50 49.25 49.25 36.50 36.50	(inches) (67.25 65.00 37.25 39.25 39.25 35.50 39.25 34.75 35.00 34.75 26.75 26.50 10.75 8.75 49.00 50.50 49.25 49.25 36.50 36.50


^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

Figure C1. Sequential Photographs for Test No. 490022-2 (Overhead and Rear Views).

Figure C1. Sequential Photographs for Test No. 490022-2 (Overhead and Rear Views) (continued).

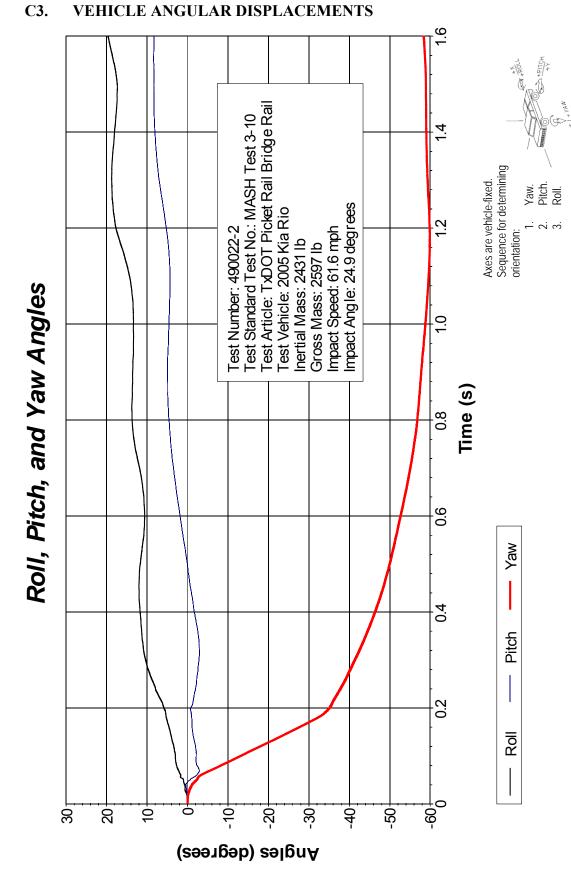


Figure C3. Vehicle Angular Displacements for Test No. 490022-2.

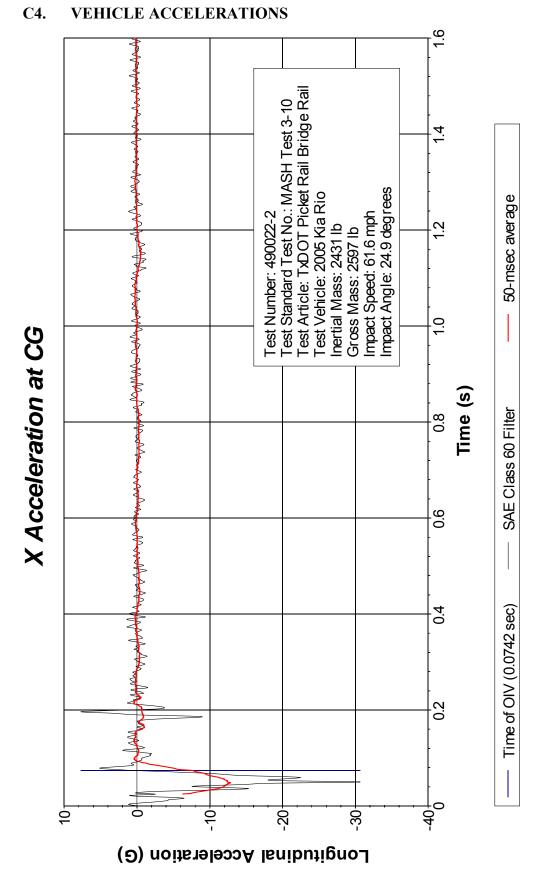


Figure C4. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-2 (Accelerometer Located at Center of Gravity).

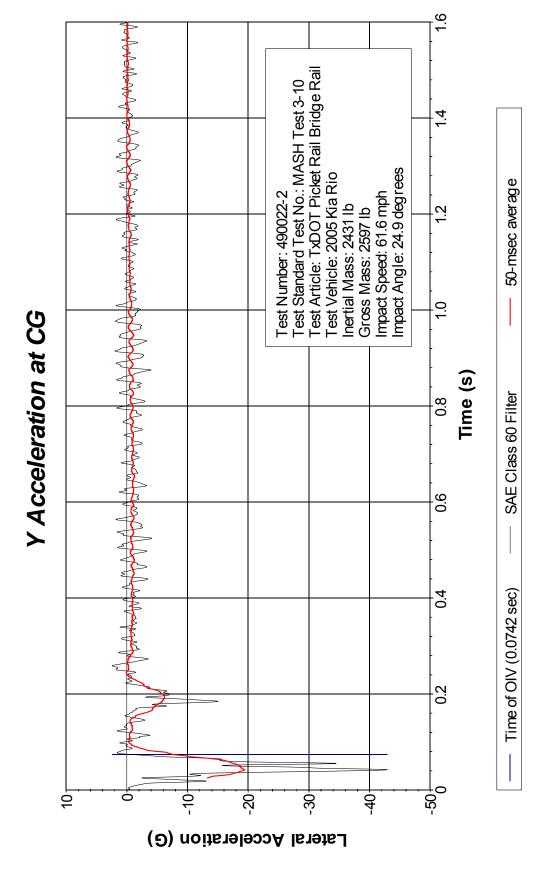


Figure C5. Vehicle Lateral Accelerometer Trace for Test No. 490022-2 (Accelerometer Located at Center of Gravity).

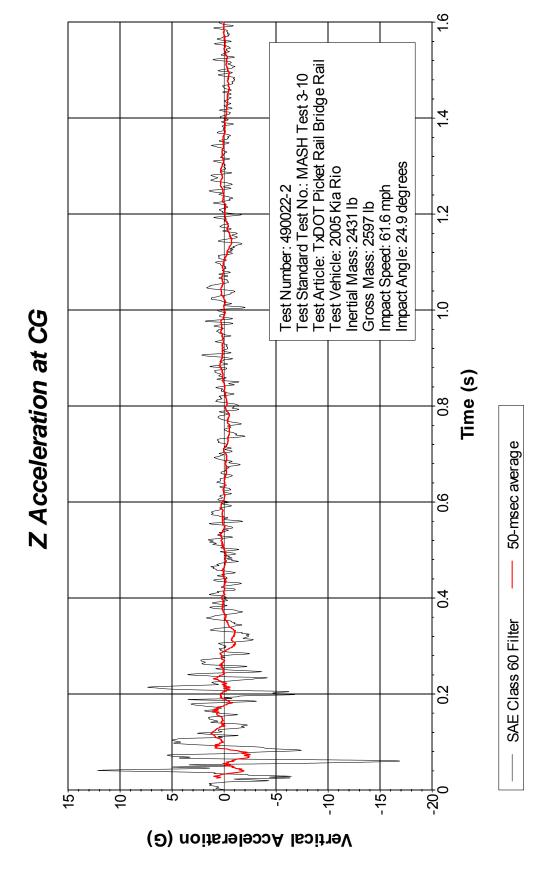


Figure C6. Vehicle Vertical Accelerometer Trace for Test No. 490022-2 (Accelerometer Located at Center of Gravity).

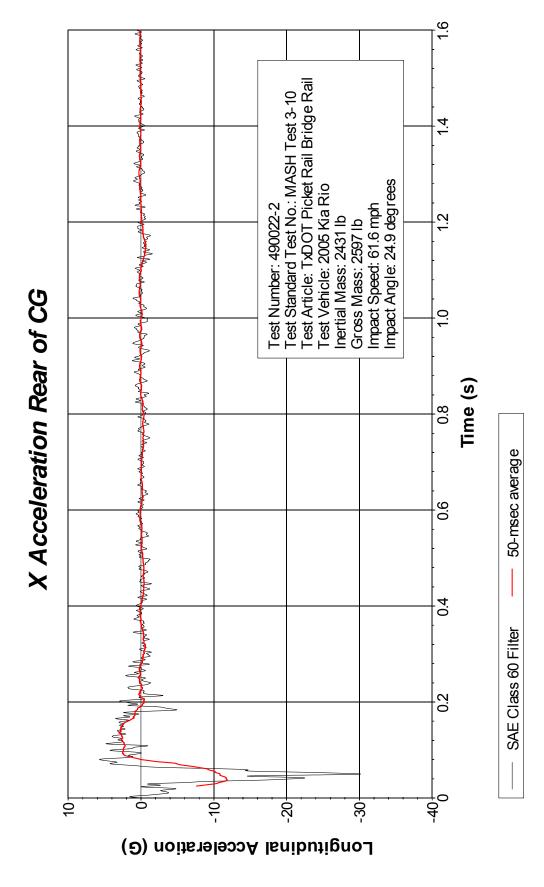


Figure C7. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-2 (Accelerometer Located Rear of Center of Gravity).

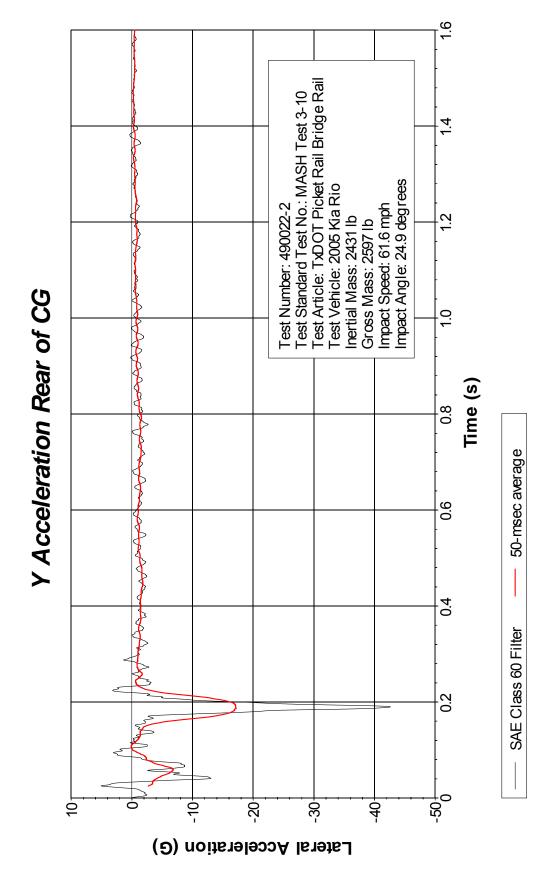


Figure C8. Vehicle Lateral Accelerometer Trace for Test No. 490022-2 (Accelerometer Located Rear of Center of Gravity).

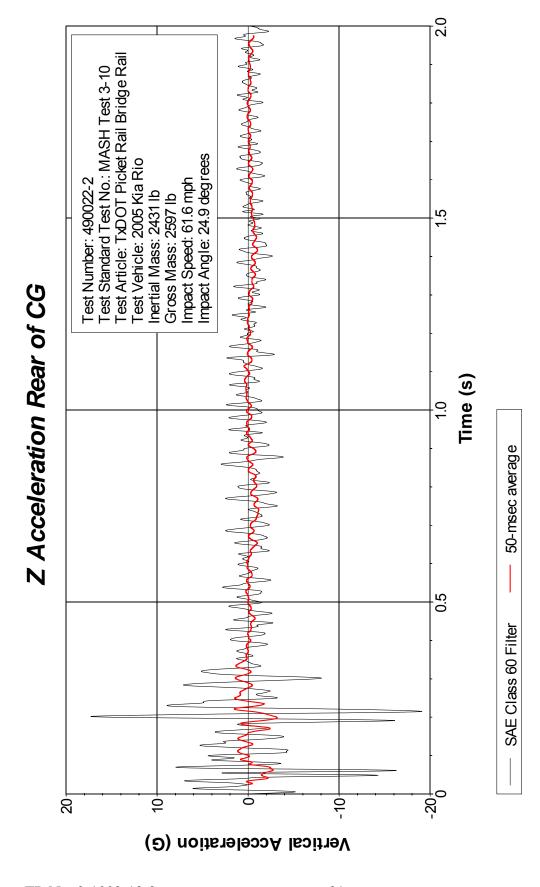


Figure C9. Vehicle Vertical Accelerometer Trace for Test No. 490022-2 (Accelerometer Located Rear of Center of Gravity).

APPENDIX D. RESULTS FOR MASH TEST 3-11 (TEST NO. 490022-3).

D1. TEST VEHICLE PROPERTIES AND INFORMATION

Table D1. Vehicle Properties for Test No. 490022-3.

Date:	2012-04	4-10	Test No.:	490022-3		VIN No.:	1D7HA18X65	708197	
Year:	2006		Make:	Dodge		Model:	Ram 1500		
Tire Siz	e: <u>2</u>	65/70R17			Tire I	nflation Pre	ssure: 35 psi		
Tread T	ype: H	lighway				Odor	neter: 129282		
Note an	y damag	e to the ve	hicle prior to t	test:					
• Dono	too ooool	erometer l	ocation		-	_ W	- X —		_
		erometer	ocalion.	1					
NOTES	:			-					
				- WHEEL TRACK		└ <u> </u>		•	WHEEL N
Engine Engine				- A					T
	ission Ty	pe:						TEST_INERT	IAL C.M.
	Auto FWD	or RWD	_ Manual 4WD		- Q -				
				P	 R +	-			
Optiona	l Equipm	ent:		+					
				-		<u></u>			H B
Dummy Type:	Data:	No dumn	nν	<u> </u>		1 \ \		$(\bigcirc)_{\mathcal{F}}$	
Mass:		140 dullill	ПУ	- + + +			+ 5		1 1 1
Seat P	osition:			-	Mfr	— H –		M _{rea}	r D
Geome	try: ind	ches			-		- С —		-
Α	78.25	_ F	36.00	K	20.50	P _	2.88	U	28.50
В	75.00	_ G	28.25	_ L	29.12	Q _	31.25	V	29.50
C	223.75	_ н	61.51	M	68.50	R _	18.38	W	60.50
D	47.25	_ ! .	13.75	_ N	68.00	_ S _	12.00	Χ	78.00
	140.50	_ J	25.38	0	44.50	_ T _	77.00		
	eel Center eight Front		14.75 Cle	Wheel Wel arance (Front)	5.00	Bottom Frame Height - Front		17.12
	eel Center		14.75 Cle	Wheel Wel earance (Rear		10.25	Bottom Frame Height - Rear		24.75
	oigint recai			saranco (rtoar	/		rioignic riodi _		
GVWR	Ratings	: :	Mass: Ib	<u>C</u>	<u>urb</u>	Test	Inertial	Gross	Static
Front		3700	M_{front}		2852		2821		
Back		3900	M_{rear}		2166		2197		
Total		6700	M_{Total}		5018	his Day	5018	00 11- : 440	U- Y
Mass D	istributio	on:			(Allowa	ible Range for	TIM and GSM = 500	110± מו טע	ID)
lb		LF:	1430	RF:	1391	LR:	1058 RF	R: <u>113</u>	39

Table D2. Vehicle Parameters for Test No. 490022-3.

Date: 2012-04	<u>-10</u> re	st No.: 4	90022-3	\	/IN: <u>1D/</u>	HA1	8X65/0815)/		
Year: 2006		Make: D	odge	Model: Ram 1500						
Body Style: Q	uad-Cab			N	/lileage: _	1292	82			
Engine:				Transr	nission: _/	Auto	matic			
Fuel Level: Er	mpty	Balla	st:100	lb at front	of bed			(440 lb	max)	
Tire Pressure: I	Front: 3	85 psi	Rear	35	psi Siz	ze: _	265/70R17			
Measured Vel	hicle Wei	ghts: (l	b)							
LF:	1430		RF:	1391		F	ront Axle:	2821		
LR:	1058		RR:	1139		F	Rear Axle:	2197		
Left:	2488		Right:	2530			Total:	5018		
							5000 ±11	0 lb allow ed		
Wh	eel Base:	140.5	inches	Track: F:	68.5	inch	es R:	68	inches	
	148 ±12 inch	es allow ed			Track = (F+F	R)/2 =	67 ±1.5 inches	allow ed		
Center of Gra	vity, SAE	J874 Sus	spension N	/lethod						
X:	61.51	in	Pear of F	ront Axle	(62 ±4 incho	no allo	w o.d.)			
χ.	01.01		rcai oi i	TOTIL AXIC	(05 ±4 IIICHE	s allo	w eu)			
Y:	0.29	in	Left -	Right +	of Vehicle	e Ce	nterline			
Z:	28.25	in	Above Gr	ound	(minumum 28	8.0 inc	thes allow ed)			
11	4.	44.50	:	Formt D		: I- 4.	0/	F 0.75 - to .		
Hood Heigh		thes allowed	inches	Front B	umper He	ignt:		<u>3.375</u> INC	cnes	
Front Overhang	g:	36.00	inches	Rear B	umper Hei	ight:	29	9.125 inc	ches	
	39 ±3 inc	ches allowed								
Overall Length	n:	223.78	inches							
	237 ±13	inches allowe	d							

Table D3. Exterior Crush Measurements for Test No. 490022-3.

Date:	2012-04-10	Test No.:	490022-3	VIN No.:	1D7HA18X65708197
Year:	2006	Make:	Dodge	Model:	Ram 1500

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable					
End Damage	Side Damage				
Undeformed end width	Bowing: B1 X1				
Corner shift: A1	B2 X2				
A2					
End shift at frame (CDC)	Bowing constant				
(check one)	X1+X2				
< 4 inches					
≥ 4 inches					

Note: Measure C₁ to C₆ from Driver to Passenger side in Front or Rear Impacts – Rear to Front in Side Impacts.

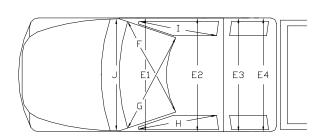
g : r		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C_2	C ₃	C ₄	C ₅	C ₆	±D
1	Front plane at bumper ht	17.0	11.0	30	0	1	2.5	11	9	11	+15
2	Side plane at bumper ht	17.0	11.0	10	1					11	+68
	Measurements recorded										
	in inches										

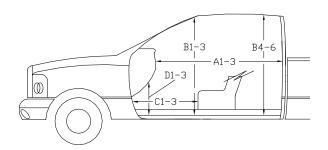
¹Table taken from National Accident Sampling System (NASS).

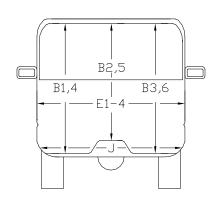
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


^{***}Measure and document on the vehicle diagram the location of the maximum crush.


Table D4. Occupant Compartment Measurements for Test No. 490022-3.

Date: 2012-04-10 Test No.: 490022-3 VIN No.: 1D7HA18X65708197

Year: 2006 Make: Dodge Model: Ram 1500

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before (inches)	After (inches)
A1	64.50	64.50
A2	64.50	64.50
A3	65.00	65.00
B1	45.25	45.25
B2	39.25	39.25
B3	45.25	45.25
B4	42.00	42.00
B5	4.25	4.25
B6	42.00	42.00
C1	27.25	27.25
C2		
C3	29.25	29.25
D1	12.75	12.75
D2		
D3	11.25	11.25
E1	63.00	62.50
E2	64.50	64.75
E3	64.00	63.50
E4	64.50	93.75
F	60.00	60.00
G	60.00	60.00
Н	39.00	39.00
1	39.00	39.00
J*	63.25	60.50

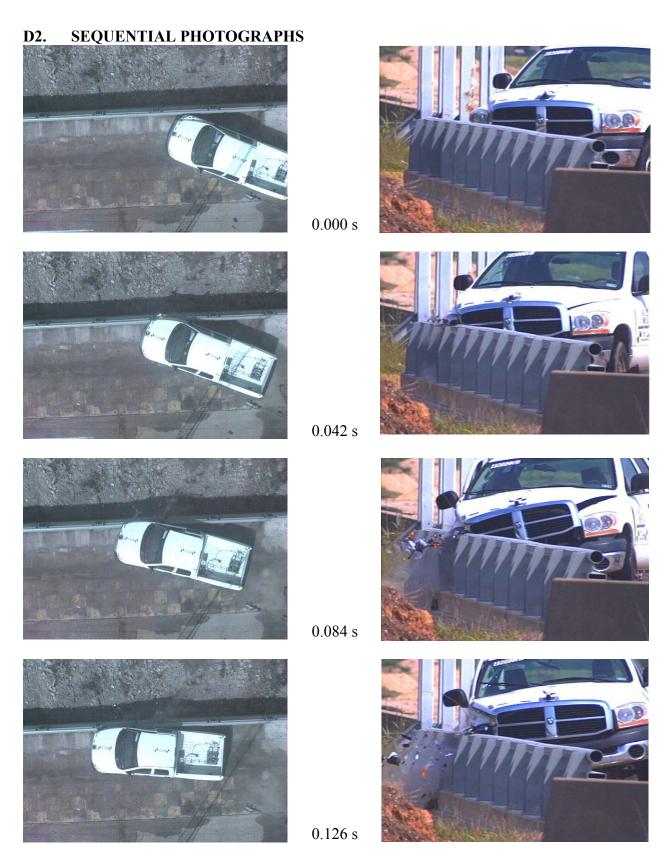


Figure D1. Sequential Photographs for Test No. 490022-3 (Overhead and Frontal Views).

Figure D1. Sequential Photographs for Test No. 490022-3 (Overhead and Frontal Views) (continued).

Figure D2. Sequential Photographs for Test No. 490022-3 (Rear of Bridge Rail View).

Figure D3. Vehicle Angular Displacements for Test No. 490022-3.

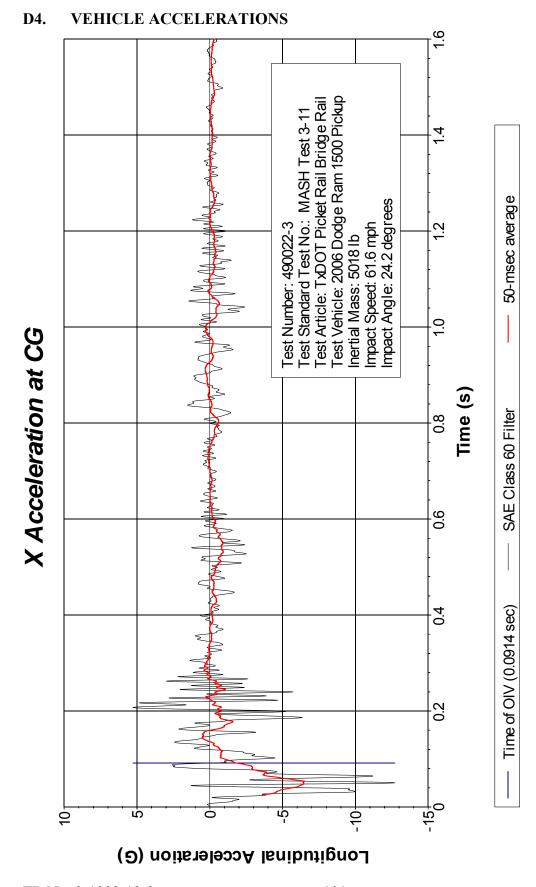


Figure D4. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-3 (Accelerometer Located at Center of Gravity).

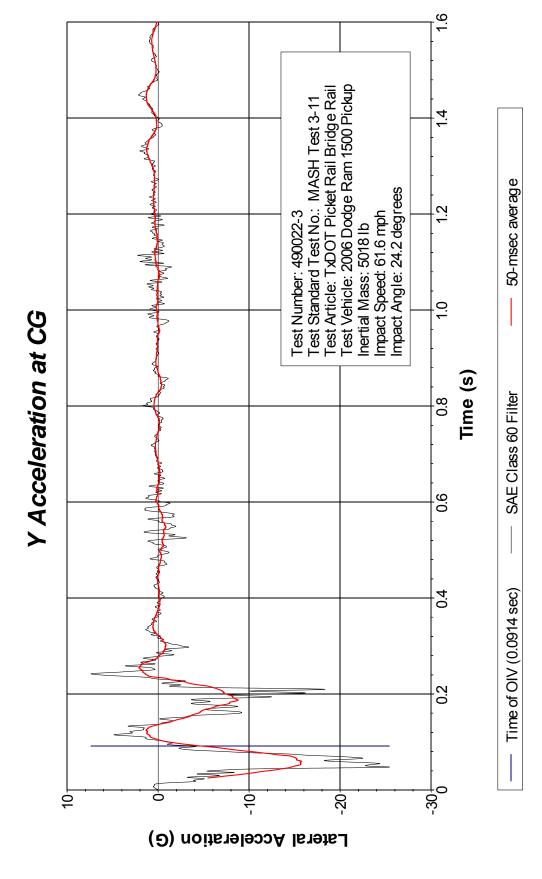


Figure D5. Vehicle Lateral Accelerometer Trace for Test No. 490022-3 (Accelerometer Located at Center of Gravity).

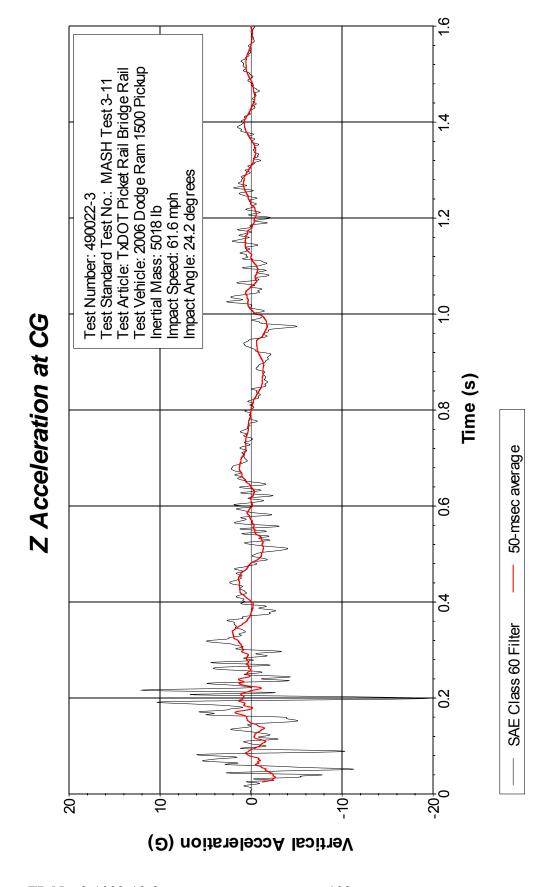


Figure D6. Vehicle Vertical Accelerometer Trace for Test No. 490022-3 (Accelerometer Located at Center of Gravity).

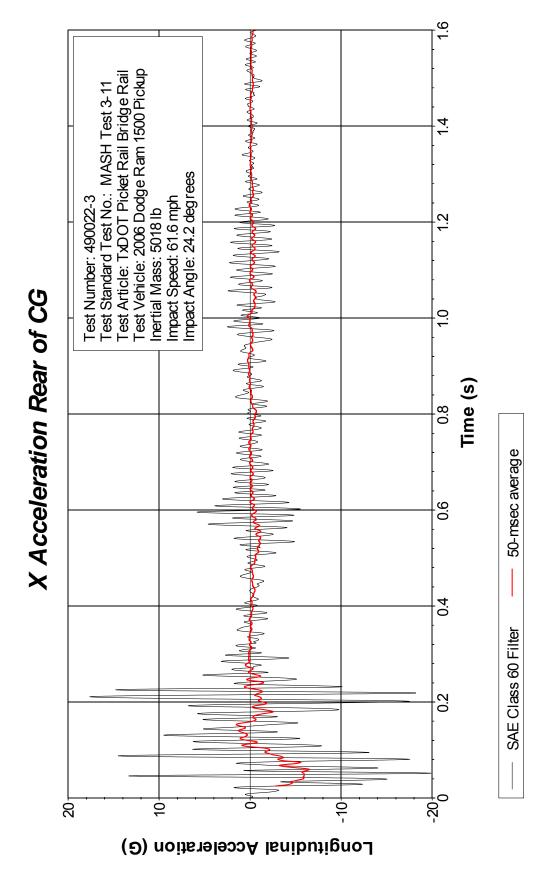


Figure D7. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-3 (Accelerometer Located Rear of Center of Gravity).

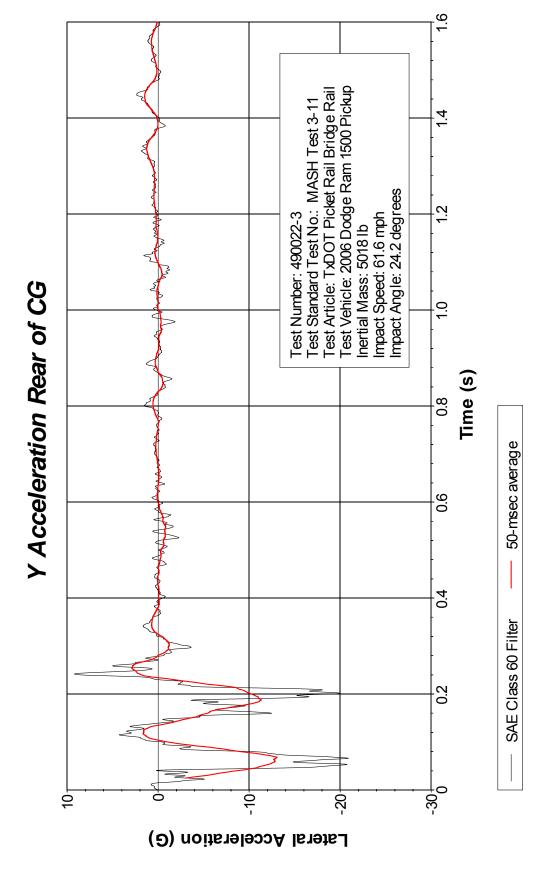


Figure D8. Vehicle Lateral Accelerometer Trace for Test No. 490022-3 (Accelerometer Located Rear of Center of Gravity).

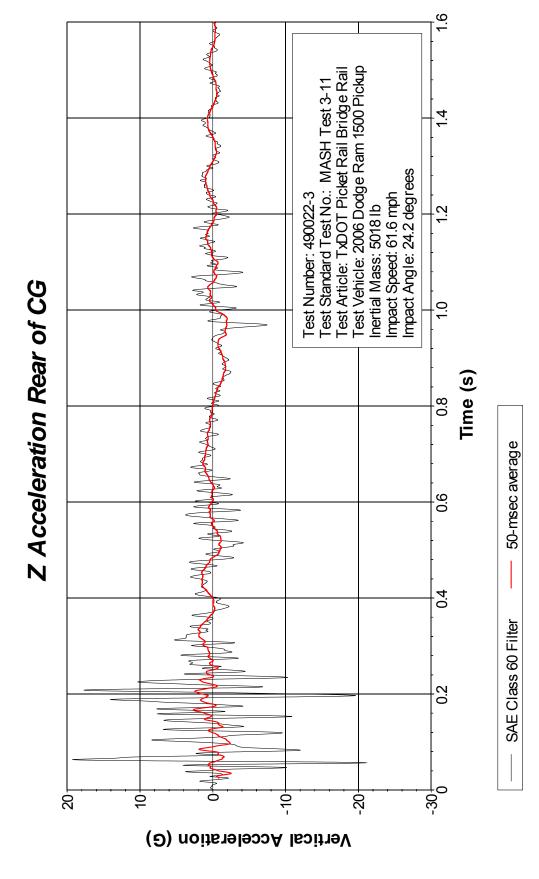


Figure D9. Vehicle Vertical Accelerometer Trace for Test No. 490022-3 (Accelerometer Located Rear of Center of Gravity).