1.	Report No.	2. Government Acces	ision No.	3. Recipient's C	Catalog No.
	FHWA-RD-79-				
4.	Title and Subtitle			5. Report Date	
	The Measurement and Analy	ysis of Resusp	ended	October,	1979
	Dust from Roadways in Tex	ças	· · · · · · · · · · · · · · · · · · ·	6. Performing O	rganization Code
		``````````````````````````````````````		8. Performing Or	rganization Report No.
7.	Author's) J. A. Bullin, R. D. Moe,	J. P. Miculka		528-1	
9.	Performing Organization Name and Addres	55		10. Work Unit No	o. (TRAIS)
	Texas A&M University			-	
	Chemical Engineering and	Texas Transpor	rtation Inst.	11. Contract or (	Grant No.
	College Station. Texas	77843	· · · · · · · · · · · · · · · · · · ·	1-8-77-52	28
		,		13. Type of Repo	ort and Period Covered
12.	Sponsoring Agency Name and Address	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-1	
	U. S. Department of Trans	sportation	· ·		
	Federal Highway Administ	ation		Final Rep	port
1	Washington, D. C. 20590			14. Sponsoring A	Agency Code
	0 7	*			
5.	Supplementary Notes				
	•				*
6.	Abstract Airborne particulate four sites in three citie of ten stacked filter uni and four Lundgren impacto and at assorted distances stacked filter units were	e concentration es. The instru- its, eight flow ors. Instrumen s up to 300 ft. e spread from 5	ns along Texas imentation use w controlled h nts were place (91.4 m) dow 5 to 90 ft. (2000)	s roadways we ed for this s high volume a ed 150 ft. (4 wnwind of eac 1.5 to 27.4 m	ere monitored at study consisted air samplers, 45.7 m) upwind ch roadway. The n) above ground
6.	Abstract Airborne particulate four sites in three citie of ten stacked filter uni and four Lundgren impacts and at assorted distances stacked filter units were level. All other instrum times varied from 2 to 12 of data were collected at and meteorology data were concurrently at the same weighing all hivol filter many of the stacked filter to quantitative elemental spectrometers. Many filt the particulate collection This report and the the Texas State Departmen They are also available a Engineering Department, T	e concentration es. The instru- ts, eight flow ors. Instruments oup to 300 ft. e spread from 5 mentation was a c hours per sam c each site in e taken by anot sites. Total es before and a c units were a c analysis usin ters were exampt on project are experimental d t of Highways t modest costs exas A&M Unive	ns along Texas imentation use w controlled H its were place (91.4 m) dow 5 to 90 ft. (1 set at a five- mple. A total Dallas, San A ther project n suspended para after they were also determined ined using bot presented here lata on magnet and Public Tra- from Dr. Jer ersity, College	s roadways we ed for this s high volume a ed 150 ft. (4 wnwind of eac 1.5 to 27.4 m foot elevati 1 of approxim Antonio and E monitoring ga rticulates we re used. The ed. All filt independent th systems. rein. ic tape are cansportation ry A. Bullin ge Station, T	ere monitored at study consisted air samplers, 45.7 m) upwind ch roadway. The a) above ground ion. Sampling mately 40 hours El Paso. Traffic aseous pollutants ere determined by a TSP loadings on cers were subjects energy dispersive The results of available from a and NTIS. chemical exas 77843,
16.	Abstract Airborne particulate four sites in three citie of ten stacked filter uni and four Lundgren impacto and at assorted distances stacked filter units were level. All other instrum times varied from 2 to 12 of data were collected at and meteorology data were concurrently at the same weighing all hivol filter many of the stacked filter to quantitative elemental spectrometers. Many filt the particulate collection This report and the the Texas State Departmen They are also available a Engineering Department, T phone 713-845-3361.	e concentration es. The instru- its, eight flow ors. Instrumer a up to 300 ft. e spread from 5 mentation was a c hours per sam c each site in e taken by anot sites. Total is before and a er units were a c analysis usin ers were exampt on project are experimental d t of Highways t modest costs exas A&M Unive	ns along Texas imentation use w controlled H hts were place (91.4 m) dow 5 to 90 ft. (1 set at a five- mple. A total Dallas, San A ther project n suspended para after they were also determine ing one of two uned using both presented here lata on magnet and Public Tra- from Dr. Jer ersity, College	s roadways we ed for this s high volume a ed 150 ft. (4 wnwind of eac 1.5 to 27.4 m foot elevati 1 of approxim Antonio and E monitoring ga rticulates we re used. The ed. All filt independent th systems. rein. tic tape are cansportation ry A. Bullin ge Station, T	ere monitored at study consisted air samplers, 45.7 m) upwind ch roadway. The a) above ground ion. Sampling mately 40 hours El Paso. Traffic aseous pollutants are determined by a TSP loadings on ters were subjects energy dispersive The results of available from a and NTIS. chemical exas 77843,
6.	Abstract Airborne particulate four sites in three citie of ten stacked filter uni and four Lundgren impacto and at assorted distances stacked filter units were level. All other instrum times varied from 2 to 12 of data were collected at and meteorology data were concurrently at the same weighing all hivol filter many of the stacked filter to quantitative elemental spectrometers. Many filt the particulate collection This report and the the Texas State Departmen They are also available a Engineering Department, T phone 713-845-3361.	e concentration es. The instru- tits, eight flow ors. Instrumer s up to 300 ft. e spread from 5 mentation was s hours per sam e taken by anot sites. Total is before and a er units were a analysis usin ers were exampt on project are experimental d t of Highways t modest costs exas A&M Unive	ns along Texas imentation use w controlled H hts were place (91.4 m) dow 5 to 90 ft. (1 set at a five- nple. A total Dallas, San A ther project r suspended para after they were also determine ing one of two lined using bot presented here and Public Tr from Dr. Jer ersity, College	s roadways we ed for this s high volume a ed 150 ft. (4 wnwind of eac 1.5 to 27.4 m foot elevati 1 of approxim Antonio and E monitoring ga rticulates we re used. The ed. All filt independent th systems. rein. tic tape are cansportation ry A. Bullin ge Station, T	ere monitored at study consisted air samplers, 45.7 m) upwind ch roadway. The a) above ground ion. Sampling mately 40 hours 21 Paso. Traffic aseous pollutants ere determined by a TSP loadings on cers were subjects energy dispersive The results of available from a and NTIS. a, Chemical exas 77843,
7.	Abstract Airborne particulate four sites in three citie of ten stacked filter uni and four Lundgren impacto and at assorted distances stacked filter units were level. All other instrum times varied from 2 to 12 of data were collected at and meteorology data were concurrently at the same weighing all hivol filter many of the stacked filter to quantitative elemental spectrometers. Many filt the particulate collection This report and the the Texas State Departmen They are also available a Engineering Department, T phone 713-845-3361. Key Words Particulate, Air Pollutio	e concentration es. The instru- its, eight flow ors. Instrumer s up to 300 ft. e spread from 5 mentation was a hours per san e ach site in e taken by anot sites. Total is before and a er units were a analysis usin ers were example on project are experimental d t of Highways t modest costs exas A&M Unive	ns along Texas imentation use w controlled H hts were place (91.4 m) dow 5 to 90 ft. (1 set at a five- mple. A total Dallas, San A ther project n suspended para after they were also determine ag one of two uned using bot presented here lata on magnet and Public Tr from Dr. Jer ersity, College 18. Distribution Stort Availabili	s roadways we ed for this s high volume a ed 150 ft. (4 wnwind of eac 1.5 to 27.4 m foot elevati 1 of approxim Antonio and E monitoring ga rticulates we re used. The ed. All filt independent th systems. rein. tic tape are cansportation ry A. Bullin ge Station, T	ere monitored at study consisted air samplers, 45.7 m) upwind ch roadway. The a) above ground ion. Sampling mately 40 hours Cl Paso. Traffic aseous pollutants are determined by a TSP loadings on cers were subject energy dispersive The results of available from a and NTIS. a, Chemical cexas 77843,
7.	Abstract Airborne particulate four sites in three citie of ten stacked filter uni and four Lundgren impacto and at assorted distances stacked filter units were level. All other instrum times varied from 2 to 12 of data were collected at and meteorology data were concurrently at the same weighing all hivol filter many of the stacked filter to quantitative elemental spectrometers. Many filt the particulate collection This report and the the Texas State Departmen They are also available a Engineering Department, T phone 713-845-3361. Key Words Particulate, Air Pollution Lead, Automobile Emission	e concentration es. The instru- its, eight flow ors. Instrumer s up to 300 ft. e spread from 5 mentation was a c hours per sam c each site in e taken by anot sites. Total is before and a er units were a c analysis usin ers were exampted on project are experimental d t of Highways t modest costs exas A&M Unive	ns along Texas imentation use w controlled H hts were place (91.4 m) dow 5 to 90 ft. (1 set at a five- nple. A total Dallas, San A ther project n suspended para after they were also determine ing one of two ined using bot presented here lata on magnet and Public Tra- from Dr. Jer ersity, College 18. Distribution Stor Availabili can obtain National T	s roadways we ed for this s high volume a ed 150 ft. (4 wnwind of eac 1.5 to 27.4 m foot elevati 1 of approxim Antonio and E monitoring ga rticulates we re used. The ed. All filt independent th systems. rein. tic tape are cansportation ry A. Bullin ge Station, T	ere monitored at study consisted air samplers, 45.7 m) upwind ch roadway. The a) above ground ion. Sampling mately 40 hours 21 Paso. Traffic aseous pollutants are determined by a TSP loadings on cers were subjects energy dispersive The results of available from a and NTIS. a, Chemical exas 77843, d. The public ent through the formation Service
7.	Abstract Airborne particulate four sites in three citic of ten stacked filter uni and four Lundgren impacto and at assorted distances stacked filter units were level. All other instrum times varied from 2 to 12 of data were collected at and meteorology data were concurrently at the same weighing all hivol filter many of the stacked filter to quantitative elemental spectrometers. Many filt the particulate collection This report and the the Texas State Departmen They are also available a Engineering Department, T phone 713-845-3361. Key Words Particulate, Air Pollution Lead, Automobile Emission	e concentration es. The instru- ts, eight flow ors. Instrumer s up to 300 ft. e spread from 5 mentation was s hours per san e ach site in e taken by anot sites. Total es before and a er units were a analysis usin ters were exami- on project are experimental d t of Highways t modest costs exas A&M Unive	ns along Texas imentation use v controlled H its were place (91.4 m) dow 5 to 90 ft. (1 set at a five- mple. A total Dallas, San A ther project r suspended para after they were also determine ing one of two ined using bot presented here and Public Tr from Dr. Jer ersity, College 18. Distribution Stat Availabilit can obtain National T Springfiel	s roadways we ed for this s high volume a ed 150 ft. (4 wnwind of eac 1.5 to 27.4 m foot elevati 1 of approxim Antonio and E monitoring ga rticulates we re used. The ed. All filt independent th systems. rein. tic tape are cansportation ry A. Bullin ge Station, T	ere monitored at study consisted air samplers, 45.7 m) upwind ch roadway. The a) above ground ion. Sampling mately 40 hours 21 Paso. Traffic aseous pollutants are determined by a TSP loadings on cers were subjects energy dispersive The results of available from a and NTIS. chemical exas 77843, 1. The public at through the formation Service, 22151
7.	Abstract Airborne particulate four sites in three citie of ten stacked filter uni and four Lundgren impacto and at assorted distances stacked filter units were level. All other instrum times varied from 2 to 12 of data were collected at and meteorology data were concurrently at the same weighing all hivol filter many of the stacked filter to quantitative elemental spectrometers. Many filt the particulate collection This report and the the Texas State Department, T phone 713-845-3361. Key Words Particulate, Air Pollution Lead, Automobile Emission	e concentration es. The instru- its, eight flow ors. Instrumer s up to 300 ft. e spread from 5 mentation was a hours per san e ach site in e taken by anot sites. Total is before and a er units were a analysis usin ers were exampt on project are experimental d t of Highways t modest costs exas A&M Unive	ns along Texas imentation use w controlled H hts were place (91.4 m) dow 5 to 90 ft. (1 set at a five- mple. A total Dallas, San A ther project n suspended para after they were also determine ing one of two uned using bot presented her lata on magnet and Public Tr from Dr. Jer ersity, College 18. Distribution Stot Availabili can obtain National T Springfiel	s roadways we ed for this s high volume a ed 150 ft. (4 wnwind of eac 1.5 to 27.4 m foot elevati 1 of approxim Antonio and E monitoring ga rticulates we re used. The ed. All filt independent th systems. rein. tic tape are cansportation try A. Bullin ge Station, T ement ity unlimited h this docume fechnical Inf Id, Virginia	ere monitored at study consisted air samplers, 45.7 m) upwind ch roadway. The a) above ground ion. Sampling mately 40 hours 21 Paso. Traffic aseous pollutants are determined by a TSP loadings on cers were subjects energy dispersive The results of available from a and NTIS. a, Chemical cexas 77843, 1. The public ant through the formation Service, 22151
7.	Abstract Airborne particulate four sites in three citie of ten stacked filter uni and four Lundgren impacto and at assorted distances stacked filter units were level. All other instrum times varied from 2 to 12 of data were collected at and meteorology data were concurrently at the same weighing all hivol filter many of the stacked filter to quantitative elemental spectrometers. Many filt the particulate collection This report and the the Texas State Department, T phone 713-845-3361. Key Words Particulate, Air Pollution Lead, Automobile Emission	e concentration es. The instru- its, eight flow ors. Instrumer s up to 300 ft. e spread from 5 mentation was a c hours per sam c each site in e taken by anot sites. Total is before and a er units were a c analysis usin ers were exampted on project are experimental d t of Highways t modest costs exas A&M Unive m, .s	ns along Texas mentation use w controlled H hts were place (91.4 m) dow 5 to 90 ft. (1 set at a five- nple. A total Dallas, San A ther project n suspended para after they were also determine ing one of two ined using bot presented here lata on magnet and Public Tra- from Dr. Jer ersity, College 18. Distribution Stor Availabili can obtain National T Springfiel	s roadways we ed for this s high volume a ed 150 ft. (4 wnwind of eac 1.5 to 27.4 m foot elevati 1 of approxim Antonio and E monitoring ga rticulates we re used. The ed. All filt independent th systems. rein. tic tape are cansportation rry A. Bullin ge Station, T ement ity unlimited h this docume fechnical Inf Id, Virginia	ere monitored at study consisted air samplers, 45.7 m) upwind ch roadway. The a) above ground ion. Sampling mately 40 hours 21 Paso. Traffic aseous pollutants are determined by a TSP loadings on ters were subjects energy dispersive The results of available from a and NTIS. chemical exas 77843, d. The public ent through the formation Service, 22151 Pages 22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

#### FOREWORD

This report presents the results of a project entitled "Measurement and Analysis of Resuspended Dust from Roadways in Texas." Airborne particulate concentrations were monitored in Dallas, San Antonio and El Paso. The particulate collection equipment consisted of ten stacked filter units, eight high volume air samplers and four Lundgren impactors. Meteorological and traffic information were collected as a part of a gaseous dispersion from roadways project.

The experimental equipment and procedures are described in this report. The experimental data, including total suspended particulates and elemental analysis of the particulate filters, are also presented in this report. Comparisons are being made to gaseous pollutant data taken simultaneously with the particulate samples and to various mathematical models.

This report is being distributed to the National Technical Information Service, The Federal Highway Administration, The Texas State Department of Highways and Public Transportation and the general public upon request.

#### NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of Texas A&M University, who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views for policy of the Department of Transportation.

This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trademarks or manufacturer's names appear herein only because they are considered essential to the object of this document.

### Acknowledgment

The authors would like to express their appreciation to the Texas State Department of Highways and Public Transportation for their assistance in site preparations for the project. Special thanks are extended to the Texas Air Control Board and Dr. Jim Payne who analyzed all of the particulate samples at no cost. We are particularly indebted to Dr. Tom Cahill at the University of California at Davis for his analytical help and technical advice.

### Table of Contents

	rage
Chapter I.	Introduction
Chapter II.	Site Descriptions 3
	Introduction 3
	Dallas Elevated Site
	San Antonio Site
	El Paso Site
Chapter III.	Experimental Methods
	Introduction
	Traffia Magaurament
	Material Magazinementa
	Solar Padiation
	Bortioulate Compline Equipment
	ratticulate sampling Equipment
Chapter IV.	Sample Analysis
	Introduction 30
	Analysis Systems 30
•	Filter Analyses 32
Chapter V.	Discussion of Results
	Introduction
	Error Analysis and Validity of Data
· .	Comparison of TACB and UCD Analyses
	Disucssion of Elemental Profiles and Comparison
	of TACB and UCD Analyses using these Profiles . 63
	Correlation Studies
	Comparison of Stacked Filter Units and High Volume
	Air Samplers
	Road Vacuuming Operations
· · · ·	General Discussion of Experimental Work and Results 115
	Comparison of Results with Model Predictions 117
	New York Particulate Data
LITERATURE CI	TED
Appendix	
Appendix A.	Filter Catalog
Appendiv R	Tevas Particulato Data
The second secon	10  abs  10  trutate bata  .  .  .  .  .  .  .  .  .
Appendix C.	Sample Calculations
Appendix D.	New York Total Suspended Particulate Data 347

## List of Figures

Figure	<u>Title</u>	Page
1	Overhead View-Dallas, IH45 at Forest Avenue	4
2	Instrument Locations-Dallas, IH45 at Forest Avenue (Project 218)	7
3	Instrument Location-Dallas, IH45 at Forest Avenue (Project 528)	8
4	Overhead View-Dallas, IH30 at Motley Drive	10
5	Instrument Locations-Dallas, IH30 at Motley Drive (Project 218)	11
6	Instrument Locations-Dallas, IH30 at Motley Drive (Project 528)	12
7	Overhead View-San Antonio, Loop 410 at Military Highway	13
8	Instrument Locations-San Antonio, Loop 410 at Military Highway (Project 218)	15
9	Instrument Locations-San Antonio, Loop 410 at Military Highway (Project 528)	16
10	Overhead View-El Paso, IH10 at Luna Street	17
11	Instrument Locations-El Paso, IH10 at Luna Street (Project 218)	18
12	Instrument Locations-El Paso, IH10 at Luna Street (Project 528)	19
13	Lundgren Impactor Stage Cutpoints	27
14	Comparison of UCD and TACB Analyses and Horizontal Lead Profiles for Stack Filter Units San Antonio October 20, 1977	64
15	Comparison of UCD and TACB Analyses and Horizontal Bromine Profiles for Stack Filter Units San Antonio October 20, 1977	65
16	Comparison of TACB and UCD Analyses and Horizontal Iron Profiles for Stack Filter Units San Antonio October 20, 1977	66
17	Horizontal TSP Profiles for Stack Filter Units San Antonio October 20, 1977	67

C

# List of Figures (Continued)

Figure	Title	Page
18	Comparison of TACB and UCD Analyses and Vertical Lead Profiles for Stack Filter Units San Antonio October 20, 1977	68
19	Comparison of TACB and UCD Analyses and Vertical Bromine Profiles for Stack Filter Units San Antonio October 20, 1977	69
20	Comparison of TACB and UCD Analyses and Vertical Iron Profiles for Stack Filter Units San Antonio October 20, 1977	70
21	Vertical TSP Profiles for Stack Filter Units San Antonio October 20, 1977	71
22	Comparison of TACB and UCD Analyses and Horizontal Lead Profiles for Stack Filter Units El Paso November 18, 1977	73
23	Comparison of TACB and UCD Analyses and Horizontal Bromine Profiles for Stack Filter Units El Paso November 18, 1977	74
24	Comparison of TACB and UCD Analyses and Horizontal Iron Profiles for Stack Filter Units El Paso November 18, 1977	75
25	Horizontal TSP Profile for Stack Filter Units El Paso November 18, 1977	76
26	Comparison of TACB and UCD Analyses and Vertical Lead Profiles for Stack Filter Units El Paso November 18, 1977	77
27	Comparison of TACB and UCD Analyses and Vertical Bromine Profiles for Stack Filter Units El Paso November 18, 1977	78
28	Comparison of TACB and UCD Analyses and Vertical Iron Profiles for Stack Filter Units El Paso November 18, 1977	79
29	Vertical TSP Profiles for Stack Filter Units El Paso November 18, 1977	80
30	Comparison of TACB and UCD Analyses and Horizontal Br/Pb Ratio Profiles for Stack Filter Units San Antonio October 20, 1977	82

# List of Figures (Contined)

Figure	Title	Page
31	Comparison of TACB and UCD Analyses and Vertical Br/Pb Ratio Profiles for Stack Filter Units El Paso November 18, 1977	83
32	Comparison of TACB and UCD Analyses and Vertical Br/Pb Ratio Profiles for Stack Filter Units San Antonio October 20, 1977	84
33	Comparison of TACB and UCD Analyses and Horizontal Br/Pb Ratio Profiles for Stack Filter Units El Paso November 18, 1977	85
34	Bromine vs. Lead Concentration for Hivol Filters	100
35	Bromine vs. Lead Concentration for Coarse (8.0 $\mu\text{m})$ SFU Filters	101
36	Bromine vs. Lead Concentration for Fine (0.4 $\mu\text{m})$ SFU Filters	102
37	Comparison of Adjusted Profile Shapes as Pre- dicted by Dispersion Models and Data Values for Fine Lead Concentration Dallas at Grade Site July 21, 1977	123
38	Comparison of Adjusted Profile Shapes as Pre- dicted by Dispersion Models and Data Values for Fine Lead Concentration Dallas at Grade Site August 11, 1977	124

vi

## List of Tables

Table	<u>Title</u>	Page
1	Project 218 Instrument List	5
2	Instrument Accuracy	45
3	Comparison of Radar to Loop Counts	49
4	Comparison of Manual and Radar Traffic Counts	50
5	Filters Analyzed by Both the University of California at Davis and the Texas Air Control Board	54
6	Comparison of Particulate Sample Analyses Performed by the Texas Air Control Board and the University of California at Davis	55
7	Comparison of TACB and UCD Analyses	56
8	Comparison of XRF and PIXE Minimum Sensitivities	60
9	Comparison of XRF and PIXE Minimum Sensitivities at Standard Operating Conditions	61
10	Correlation Coefficients for Hivol Filters	87
11.	Correlation Coefficients for Coarse (8.0 µm) SFU Filters (TACB Analyses)	87
12	Correlation Coefficients for Fine (0.4 µm) SFU Filters (TACB Analyses)	88
13	Correlation Coefficients for Coarse (8.0 µm) SFU Filters (UCD Analyses)	88
14	Correlation Coefficients for Fine (0.4 µm) SFU Filters (UCD Analyses)	89
15	Correlation Coefficients for the First Stage of the Lundgren Impactor (UCD Analyses)	¥ 89
16	Correlation Coefficients for the Second Stage of th Lundgren Impactor (UCD Analyses)	ie 90
17	Correlation Coefficients for the Third Stage of the Lundgren Impactor (UCD Analyses)	90
18	Correlation Coefficients for the Fourth Stage of th	ıe 91

# List of Tables (Continued)

Table	<u>Title</u>	Page
19	Correlation Coefficients for Lundgren After- filters (UCD Analyses)	91
20	Summary of Correlation Coefficients	92
21	Element Ratios from Hivol Data at Different Sites (TACB Analyses)	95
22	Element Ratios from Fine (0.4 µm) SFU Filters at Different Sites (TACB Analyses)	96
23	Element Ratios from Different Filters, Dallas Site, IH30 at Motley Drive (TACB Analyses)	97
24	Element Ratios from Different Filters, San Antonio Site, Loop 410 at Military Highway (TACB Analyses)	98
25	Data from Side-by-Side Operation of Four Stacked Filter Units on September 28, 1977 (TACB Analyses)	104
26	Data from Side-by-Side Operation of Four Stacked Filter Units on September 29, 1977 (TACB Analyses)	105
27	Data from Side-by-Side Operation of Two Hivol Air Samplers on September 29, 1977 (TACB Analyses)	107
28	Comparison of SFU and Hivol Loadings	108
29	Comparison of SFU and Hivol TSP Loadings	110
30	Element Ratios from Road Vacuuming Data	113
31	Roadway Pollution Dispersion Model Adjustment Factors	122
32	Data Directory	137
33	List of Symbols and Abbreviations Used in Traffic and Meteorological Data	247

### Chapter I

#### Introduction

In recent years, there has been increasing concern about the health effects of suspended particulate material in the air. The health effects are of course dependent upon the size classification of the particulates. Large particles (> 10  $\mu$ m in diameter) are essentially all removed in the nasal chamber. Respiratory clearance mechanisms may remove these particles within hours. Smaller particles are deposited at varying depths in the respiratory system and may require much longer periods for removal from the respiratory system.

Vehicular traffic along roadways are one source of suspended particulates. These particulates come primarily from fuel, tire, brake and roadway wear, and exhaust train erosion. The particulates directly emitted by the vehicles become airborne immediately and then undergo a settling and dispersion process. Some of these particulates will settle on the roadway surface along with most of the materials which blow from open trucks. This deposited material is resuspended by passing vehicles until it eventually is carried from the roadway.

The process by which particulates are dispersed in the air is more complex than the gaseous dispersion process. First, some slippage occurs between the particles and the air flow, slowing the speed with which the particles are dispersed. Furthermore, coarse particles deposit on the ground by gravitational settling at rates dependent upon the particle sizes. Also, some particulates, such as bromine and sulfur, disappear because of chemical reactions in the atmosphere. However, if the particles are nonreactive and are sufficiently fine, they behave essentially as gases.

The current project entitled "The Measurement and Analysis of Resuspended Dust from Roadways in Texas" was undertaken in order to collect data on aerosols generated by vehicular traffic which contributed to the total aerosol load near roadways. At the present time only a very limited amount of data on the dispersion of particulates from roadways is available. The results from the present program represent a major addition to the particulate dispersion data base. This project was undertaken in conjunction with Project 218, "Analytical and Experimental Assessment of Highway Impact on Air Quality," at four sites in Texas, including two in Dallas, and one each in San Antonio and El Paso. Particulate samples were collected and analyzed under Project 528, while meteorological and traffic data were collected under Project 218 along with carbon monoxide, nitrogen oxides and hydrocarbon concentration data.

#### Chapter II

### Site Descriptions

#### Introduction

Data collection for Project 528 was carried out at four sites in Texas. The experimental sites included one "at grade" site each in Dallas, San Antonio, and El Paso. In addition, there was an "elevated" site in Dallas. Sample collection for Project 528 was carried out in conjunction with Project 218 data collection. Each of these sites was chosen under considerations for equipment constraints and experimental procedure requirements, such as highway and wind orientations, right of way widths, and others. At least 150 feet of clear space on both sides of the roadway was required in order for the equipment to be located properly. At all sites, except the Dallas elevated site, the roadway ran roughly east-west in order to take advantage of the prevailing south wind. This maximized the amount of crosswind situations for which data were collected. The Dallas elevated site ran north-south and thus did not have the advantage of the prevailing south wind; however, this was the most suitable elevated site which could be found in terms of the other site selection criteria.

The remainder of this chapter consists of the site descriptions and instrumentation layouts for both projects. The following chapter will give a more detailed description of the instruments and their operation.

#### Dallas Elevated Site

The elevated site in Dallas was located just south of the downtown interchange on IH45, between Forest and Pennsylvania Avenues. Figure 1 gives an overhead view of this site. The symbols used in Figures 1 through 12 are defined in Table 1. The freeway runs northwest and southeast (compass heading



Overhead View

Dallas, IH45 at Forest Avenue

# Table 1

Name	Channel	Instrument	Sample Interval
RADO	1	Radar	.01 sec
RAD1	2	H	11
RAD2	3	11 (1997) - 11 (1997) - 11 (1997) - 11 (1997) - 11 (1997) - 11 (1997) - 11 (1997) - 11 (1997) - 11 (1997) - 11	11 <b>11</b> 11 12
RAD3	4	<b>11</b>	.11
RAD4	5	the second s	$\mathbf{H}_{\mathbf{M}} = \mathbf{H}_{\mathbf{M}}$
RAD5	6	п	HE ST
RADO	7	$\mathbf{H}_{1}$ , $\mathbf{H}_{2}$ , $\mathbf{H}_{2}$ , $\mathbf{H}_{3}$ , $H$	1775 <b>H</b>
RAD7	8	11	11
RAD10	9	an thus an an an an t <b>h</b> a an thus an	11
RAD11	10	U	11
VA1.5m	11	1.5 meter vertical anemometer	2 sec
VA10m	12	8 "	4 sec
VA20m	13	16 "	5 sec
VA40m	14	30 "	5 sec
HA1.5m	15	1.5 meter horizontal anemometer	15 sec
HA10m	16	8 "	п
HA20m	17	16 "	с. <b>н</b>
HALOm	18	30 "	<b>H</b>
WV1.5m	19	1.5 meter wind vane	5 sec
WV1.0m	20	8 "	11
WV20m	21	16 "	11
WV40m	22	30 "	Ħ
TM1.5m	23	1.5 meter thermometer	60 sec
TMP10m	24	9 "	FT.
TMP20m	25	13 "	, H , ,
TMP30m	26	25 "	<b>11</b>
RH1.5m	27	1.5 meter psychrometer	11
RH30m	28	25	11
PYRAN	29	Heliopyranometer	11 A.S.
CO1H	30	Ecolyzers	10 sec
COLL	31	'n	11
CO2H	32	11	H S
CO2L	33	11	
СОЗН	.34	H H	H
CO3L	35	11	н
CO4H	36	11	11
CO4L	37	11	· • •
CO 5H	38	N 11	<b>D</b> (
CO5L	39	$\mathbf{H}_{\mathbf{r}}$ , where $\mathbf{h}_{\mathbf{r}}$ is the second	IT
СО6Н	40	11	HT 1
CO6L	41	H	11
NOX1	43	NOX Monitor	TT -
NOX2	45	11	11
NOX3	47	<b>H</b> (1997) - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199	n
NOX5	49	11	14
NOX6	51		11

# Project 218 Instrument List

151°). There were three 12 foot wide lanes in each direction with an exit lane on the southbound side dividing from the freeway at the point where the monitoring insturments were located. There was a chain link fence at its center and a ten foot wide shoulder on each side. The entire freeway was elevated 20 feet above local ground level on an earth filled concrete wall which became a viaduct where Forest and Pennsylvania Avenues passed under the freeway. A two lane access road paralleled the freeway at ground level on each side, separated from the freeway wall by grassy boulevards with scattered eight foot oaks and crepe myrtle bushes. On the west side, the boulevard was 110 feet wide at its widest point. On the east side, the boulevard was only 40 feet wide and separated from a grass-covered island by a turn-around lane for IH45 that passed through the viaduct. Land use in the area consisted primarily of one and two story apartments and small businesses.

In addition to the equipment used for Project 218, shown in Figures 1 and 2, this was the first site at which Project 528 was set up. The particulate instrument locations are shown in Figure 3. Particulate equipment was set up in locations near the gas monitoring stations of Project 218, except for those stations nearest the roadway. One such station was set up at ground level beside the wall and beneath the sign bridge, another was set up at road level beneath the sign bridge, and one more at the top outer edge of the sign bridge.

There were two major problems with this site. The first occured because a heavily travelled roadway, Highway 75, was located less than half a mile east of the site. The gaseous polutants from this roadway occasionally affected the background monitors for Project 218 and the particulates from that roadway may also have affected the background stations for Project 528. A second major problem occured due to a lack of traffic monitors over the three northbound lanes. Since there was no sign bridge located over those





INSTRUMENT LOCATIONS: Project 218

Dallas: IH45 at Forest Avenue



lanes, the radars could not be installed over the lanes. A permanent counting station was established at the site before the projects were removed from this site. Historical data from this station can be used to estimate traffic flow on a daily basis.

#### Dallas At Grade Site

This site was actually east of Dallas in the suburb of Mesquite where Motley Drive passes over IH30. An overhead view of this site is shown in Figure 4. The freeway ran in a southwest and northeast direction (compass heading 56°), and consisted of two 12 foot wide lanes in each direction with a 38 foot wide grassy median separating the southwest and northeast bound lanes. Each outside lane had a ten foot shoulder. A two lane access road paralleled the freeway on each side, separated from it by grassy medians. On the eastbound side the median was 66 feet wide, while on the west bound side the median was 42 feet wide. Except for the Motley Drive overpass, two service stations, and a small creek the surrounding terrain was flat grassland. The instrument layout for Project 218 is shown in Figure 5 and the instrument locations for Project 528 are shown in Figure 6. All of the particulate sampling stations were located near Project 218 stations.

This site presented two problems. The first occurred because the access roads carried a significant fraction of the total traffic. The second occurred because the center median was wide enough to cause a separation of the mixing cells in each directional group.

#### San Antonio Site

This site was located at the Military Highway overpass on IH410, one mile west of the San Pedro Street overpass. An overhead view of this site is shown in Figure 7. The freeway consisted of three lanes in each direction,





INSTRUMENT LOCATIONS: Project 218

Dallas: IH30 at Motley Drive





OVERHEAD VIEW San Antonio, IH410 at Military Highway running southwest and northeast (compass heading 68°). The main roadway had a 20 foot wide median between the lane groupings with a chain link fence down the center. There also was a ten foot wide shoulder along the north edge of the freeway. A ten foot wide grassy median on the north side of the roadway separated it from a 20 foot wide access road. The terrain surrounding the site was characterized by single story dwellings and trees up to 40 feet tall, although the triangular area on which the equipment was located was flat and grassy. Project 218 equipment locations are shown in Figure 8, while Project 528 equipment locations are shown in Figure 9. Again the Project 528 sampling stations were located near the Project 218 stations.

#### El Paso Site

An overhead view of this site is shown in Figure 10. The freeway consisted of six 12 foot wide lanes in each direction, and ran in a roughly east-west direction (compass heading 79°). There was a 20 foot wide median with a chain link fence along its center between the lane groupings and a ten foot wide shoulder on each outside lane. An exit lane cut through the receptor area on the north side of the roadway, with one receptor station located between the freeway and the exit lane and another station located at the edge of the exit lane. A fifty foot wide sandy boulevard separated the freeway from a 30 foot wide access road on the north side of the freeway, and a 120 foot wide sandy boulevard separated the freeway from a similar access road on the south side of the freeway. The land use in the area consisted of single story dwellings and businesses. The equipment layout for Project 218 is shown in Figure 11, while the equipment layout for Project 528 is shown in Figure 12.

Since there were only ten signal wires available for radar units, the two outside lanes on each side were monitored by a single unit. Counts in these lanes are accordingly less accurate.



N

### FIGURE 8

ίÐ

INSTRUMENT LOCATIONS: Project 218

San Antonio: IH410 at Military Highway

				7:SFU		
16	2:SFU		SFU:4	6:SFU		
	1:HV,L,SFU		C,LSFU:3	5:HV,SFU	9:HV,SFU	10:L.SFU
	<ul> <li>✓ 30'&gt;→ </li> <li>~150'</li> </ul>	0'	30' 32' 12'	63'	<b>94'</b>	<b></b>
SYMBOL	INSTRUMENT				STATION	HEIGHT (FT)
C HV	Cascade Impactor Hivol	FIGURE	9		2 4	33 33
L	Lundgren Impactor	INSTRUMENT LOCATION	S: Project 528		6	30
SFU	Stacked Filter Unit	San Antonio: IH410 a	t Military Highway		7 8	60 * 90 *

* See data

8:SFU



Overhead View

El Paso IH10 at Luna Street



El Paso: IH10 at Luna Steeet

'nż

*

G.

	N					
· · · ·				-8:SFU		
	· · · · · · · · · · · · · · · · · · ·			7:SFU		
19	2:SFU		4:SFU	6:SFU		
	1:L, SFU		3:L. SFU	5:L, §F	J	9:SFU
•	~ 200 !	210'	64'			
			4'			
SYMBOL	INSTRUMENT			STATION	HEIGHT (FT)	
0				2	35 *	
C	Cascade Impactor	FIGURE 12	and and a second se Second second	4	35	
HV	HIVOI	INSTRUMENT LOCATIONS: P	roject 528	6	30	
ב זו <del>י</del> סיס	Stacked Filter Unit		na C+	7	60 *	ang sa Santa Ang sa Santa Ang sa Santa
ofU.	Stacked Filler onit	EL PASO: INIU AL LU	na st.	8	90 *	
				14 A.		e service de la company

* See data

## Chapter III

#### Experimental Methods

#### Introduction

An extensive program of particulate data collection was performed under Project 528. The traffic and meteorological data were collected under Project 218 along with carbon monoxide, nitrogen oxides, and hydrocarbon data. The suspended particulates were collected using several different devices and different filter media. The particulate filters were analyzed by the Texas Air Control Board in Austin and by the Air Quality Group of the University of California at Davis. The systems used to collect the samples and the data will be discussed in this chapter. Since Projects 218 and 528 are so closely interrelated, the traffic and meteorology monitoring equipment from Project 218 will be included in this section along with the particulate sampling equipment. The data handling techniques of Project 218 will be discussed in the next chapter.

#### Data Collection System

Data recording from the meteorology instruments, radar units, and from the carbon monoxide, nitrogen oxides, and hydrocarbon sensors was performed by a Data General Nova 1200 minicomputer. Readings were taken via a Radian analog to digital converter and a 64 channel multiplexor. Data were stored on cassette magnetic tapes. With this method, readings from all instruments were taken essentially simultaneously rather than sequentially. The computer read each instrument at a rate commensurate with that instrument's response time and the rate of data fluctuation. Table 1 gives each instrument's sampling rate, as well as the six-letter code used by the computer to identify it. The required software program was written by File D-19 of the State Department of Highways and Public Transportation in Austin, Texas. This software was modified in

minor ways by project personnel.

#### Traffic Measurement

In order to perform any highway air pollution model validation work it is necessary to know several parameters about the vehicles on the roadway. These include the vehicle count, the average vehicle speed, the heavy duty vehicle mix, and the vehicle age mix. The first three values were collected using Stevenson Mark 5 doppler-shift radar units obtained from the Texas Department of Public Safety. With these units and the minicomputer, the vehicle count, speed, and size mix were obtained on a lane by lane basis. The vehicle age mix may be approximated using figures available from local vehicle registration tables.

Since the radar units were originally designed for use inside of a vehicle, they had to be modified for use in this project. This was accomplished by mounting them on 10 inch "C" clamps and providing them with waterproof housing. A further modification involved replacing the 3/4 turn potentiometers used to adjust the range of the units with ten turn potentiometers. These provided much finer range control and worked very well.

To obtain traffic flow information, each radar unit was placed over a single traffic lane looking down at the roadway at an angle of 45°. The size of the field of view was then varied both in length and diameter by adjusting the range control on each unit. The radar units had both an indicator needle and a 0-10 v recorder output. The range control was turned down until the indicator needle barely indicated the detection of compact cars. The field of view was then restricted to an elliptical area approximately 15 ft long and 10 ft wide at the pavement. Since a car moving at 60 miles per hour spent only 1/2 of a second in the unit's field of view, the indicator needle did not have time to respond before the car was out of the field. However, due to its speed, the computer obtained full response from the unit via the recorder output.

The radar unit sent a voltage pulse to the computer for each vehicle passage. The height of the pulse was proportional to the vehicle's speed and the number of pulses was equal to the number of vehicles, resulting in an accurate vehicle count. The area under the pulse was also proportional to the length of the vehicle. This allowed the cars to be separated from trucks, giving an accurate breakdown of the heavy duty vehicle fraction. To obtain the area under the pulse the computer was required to do a numerical integration. Since most pulses coming from the radars were less than 1/2 second long, the radars were monitored at a very high rate of speed. A sampling rate of 100 samples per second was selected as the highest practical rate. At this rate, the NOVA computer was idle only 5% of the time while it spent 94% of the time processing the radar units. The remaining 1% of the time was sufficient to handle all other samples, compute averages, and to run the cassette units and the teletype. The numerical integration method used was the fastest in terms of computer time available. The readings were simply summed for the duration of the pulse and then divided by a calibration factor after the pulse was over. The result was then compared to five length categories selected by the programmer and the appropriate counter was incremented by one. The speed was also summed with the appropriate vehicle speed accumulator. At the end of each one minute interval the vehicle speed count and length information were averaged and written to the cassette tape. The five vehicle categories were chosen as category 1-cars, category 2-cars and pick-ups, category 3-light trucks, category 4-heavy trucks, and category 5-calibration and tailgates.

For a discussion of traffic measurement in highway air pollution research see Polasek and Bullin (1978).

#### Meteorological Measurements

Windspeed and Direction:

Horizontal windspeed and direction were measured with six-cup anemometers and windvanes manufactured by Texas Electronics. The starting threshold for the anemometers was 0.75 mph with an accuracy of  $\pm$  1% of full scale. The windvanes had a starting threshold of 1.0 mph and an accuracy of  $\pm$  0.5%. The anemometers used the light chopper technique while the wind direction vanes used potentiometers in a one volt circuit.

Gill propeller anemometers (Model No. 27100) were used to determine the vertical wind speeds. This instrument had a starting threshold of less than 0.5 mph and an accuracy of  $\pm 1.0\%$  of full scale.

In order to obtain a good description of the wind profile, stations containing the horizontal windspeed and direction and vertical windspeed sensors were located at heights of 5, 26, 52, and 102 ft. This equipment was largely trouble free.

#### Atmospheric Temperature and Humidity:

To obtain information on atmospheric stability, temperature measurements were made with Texas Electronics Model No. 2015 thermistors at several heights. These units had an accuracy of  $\pm$  0.5% of full scale and were located at heights of 5, 29, 42, and 82 ft.

The relative humidity was measured at heights of 5 and 82 ft with Texas Electronics Model No. 2013 relative humidity systems. The psychrometers determined the relative humidity by utilizing the fact that a fiber, such as a hair, changes length in proportion to the amount of water vapor present in the air. An inductance changewas induced in a coil by this change in length. The accuracy of this instrument was better than  $\pm 3\%$  relative humidity.

#### Solar Radiation

The incoming solar radiation was measured with an Eppley Model No. 8-48 pyranometer. Due to the low voltage output of this instrument, an amplifier was constructed that fed an amplified signal to the analog to digital interface. This instrument was very trouble free.

#### Particulate Sampling Equipment

High Volume Air Samplers:

Up to eight Sierra Instruments Model 305 high volume air samplers (hivols) were used in Project 528. Each had a Sierra Instruments Model 310R high volume constant flow controller maintaining a constant flow rate of 40 SCFM. The controller compensated for changes in ambient air temperature, air pressure, line voltage (as long as the voltage remained above 105 v), and for increased filter loading during the sampling period. If the flow controller did not compensate for these factors, large errors could be made when calculating the average particulate concentration. The controller measured the flow rate through the use of a hot wire anemometer. The flow rate was checked periodically with a rotameter attached to the pump outlet.

Hivols use particle impactation on porous filter media to effect particulate capture. Although most particles are captured by impactation, especially large particles may be captured by interception and some of the fine particles may be captured by diffusion. In this study, Whatman 41 cellulose base filter papers were used as the filter media. This media lends itself well to gravimetric analysis to determine the total suspended particulates (TSP) using the special procedure stated in the next chapter.

#### High Volume Cascade Impactors:

The high volume, parallel slot cascade impactors used the basic hivol and flow controller, along with the Sierra Instruments Model 235 five-stage cascade

impactor and the Model 230CP cyclone preseparator. Two of the eight hivols were used as cascade impactors.

According to the manufacturers specifications, the cyclone preseparator placed above the impactor had a 50% cutpoint for particles having an aerodynamic diameter greater than approximately 12 µm. Particles of this size might bounce or roll through the impactor stages causing error in the particle size distribution. Since the cyclone was free to turn into the wind, the cascade impactor more closely approximated an isokinetic sampler than either the hivol or the Lundgren impactor. The cyclone preseparator was isokinetic at a windspeed of 10 mph for a flow rate of 40 CFM.

The cascade impactor had six plates with parallel slots. The top plate of this system had nine slots in order to minimize end effects, while the rest of the plates had ten slots each. Particles passing through the slotted jets impacted on five slotted filters. These particles were captured by the filters or passed through depending upon their aerodynamic diameters and the air velocity through the slots. The slotted filters were made of Whatman 41 paper. A standard Whatman 41 filter paper was placed beneath the last stage of the impactor in order to capture some of the particles that passed through the five stage impactor.

Lundgren Impactors:

The third particulate collection system used in Project 528 consisted of Environmental Research Model 4220 five stage Lundgren impactors. Particles suspended in the airstream passing through a Lundgren impactor are captured by inertial impactation on the surfaces of four cascaded rotating drums. The airstream goes through a converging nozzle before passing over each drum. The nozzle slots are successively narrower and accelerate the air to successively higher velocities before striking the drums. The particles strike the drum or continue in the airstream depending upon their inertia (i.e., aerodynamic

size). The impactor parameters are given in Figure 13.

To improve collection efficiency and to allow relatively simple analysis of the particles, the drums were cleaned, wrapped in mylar strips and coated with Apiezon Type L grease. The procedure was developed by Cahill (1976). Each drum was first cleaned in toluene and then wrapped with mylar type S strips from DuPont, Inc. These strips had also been cleaned in toluene prior to being placed on the drums. After wrapping, the drums were cleaned in toluene once more to make sure no fugitive grease or dirt remained on the outer surface of the mylar strips. After drying, the drums were dipped into a saturated (5%) solution of Apiezon Type L grease for about two seconds and allowed to dry for 24 hours before use. The Apiezon Type L grease has high chemical purity and provides a very efficient collection surface closely comparable to Millipore AA filters (Cahill, 1976).

An Environmental Research Model 710 filter holder was placed after each impactor to capture those particles not captured on the last stage of the impactor. The last stage had a 50% cutpoint of about 0.4  $\mu$ m. At different times both Whatman 41 and 0.4  $\mu$ m Nucleopore filters, 90 mm in diameter, were used as afterfilters. The filter type used is clearly noted in the experimental data.

The impactor was calibrated using quarter-inch ports located before and after the second stage drum. A spirometer-calibrated magnehelic gauge was connected across the ports and the pump was adjusted to obtain a reading of 0.8 inches of water. This reading corresponded to a flow rate of 4.0 cfm. The magnehelic reading was linear with respect to the flow rate between two and five cfm (0.4 to 1.0 inches of water). There were difficulties in maintaining this flow rate primarily because of excessive pressure drop across the 0.4  $\mu$ m Nuclepore filters that were usually used as the afterfilters.


FIGURE 13 27 The flow rate was maintained at a relatively constant level during each run by frequent calibration (about once every two hours). At no time did the flow rate drop below 2.2 cfm.

Stacked Filter Units:

Up to ten University of California at Davis stacked filter units (SFU) were used. This equipment is described in papers by Cahill, et al. (1977) and John, et al. (1978). Each unit consists of a PVC cap over a 60 mesh stainless steel screen and a PVC manifold. The screen provides for 50% capture of particles with an aerodynamic diameter of 20  $\mu$ m. The length of the manifold is designed to provide uniform particle deposition on the upper filter. The intake was normally located 1.6 m above ground.

The manifold was inserted into a commercially available filter holder made by Nuclepore Corporation. The holder contained two Nuclepore filters 47 mm in diameter. The top filter had pores 8.0  $\mu$ m in diameter, while the lower filter had pores 0.4  $\mu$ m in diameter. The top filter collected the coarse size fraction corresponding to that caught by the upper respiratory tract, while the second filter caught the fine fraction corresponding to that caught by the lower respiratory tract (Cahill, et al., 1977).

The flow rate was controlled by a needle valve attached to the pump inlet. In addition to controlling the flow rate, the needle valve also acted as a high impedence to flow, thus ballasting the pump against flow rate changes due to filter loading. The flow rate was calibrated using a spirometer calibrated orifice and a magnehelic gauge. Calibration was performed periodically throughout each run in order to maintain a near constant flow rate. All pumps were operated at ground level and the SFU's were connected to the pumps via the necessary length of reinforced nylon tubing. Ground level SFU's allowed the calibration to be performed on the inlet side of the filter holders. The elevated SFU's were calibrated using a T-connector and orifice

on the outlet side of the pump to check the pump's total flow rate. The new orifice was cross-calibrated with the original calibrated orifice. When care was taken to eliminate air leaks in the system, the T-connector and orifice worked quite well in checking the total air flow through the pump and therefore through the SFU's.

At the two sites in Dallas the flow rate was kept to 5 1/min. The SFU's were run for two hour periods during the morning rush period (7-9 a.m.) and the evening rush period (4-6 p.m.). The SFU's were run at the same flow rate at the second site in Dallas, but for periods of 2-11 hours. These flow conditions did not produce adequate filter loading for TACB XRF analysis, even at the 11 hour run times. The flow rate was then increased to 22.5 1/min at the San Antonio and El Paso sites with run times of 2-11 hours. The increased flow rate produced adequate filter loading. A recent report to the California Air Resources Board by Cahill (1978) has shown that there is an insignificant change in both capture efficiency and coarse/fine separation with an increase in flow rate from 5 to 22.5 1/min.

## Chapter IV

Sample Analysis

## Introduction

The particulate filters were analyzed using two different quantitative elemental analysis systems. All SFU filters, Lundgren afterfilters, cascade afterfilters, and hivol filters were first analyzed by the Texas Air Control Board (TACB) in Austin using an x-ray fluoresence (XRF) system. The TACB also determined the total suspended particulate (TSP) weight on all hivol filters, slotted cascade filters and cascade afterfilters. They also determined the TSP weight on many of the SFU filters. The Air Quality Group at the University of California at Davis (UCD/AQG) also analyzed many of the filters. They used a particle induced x-ray emission (PIXE) system located at Crocker Nuclear Laboratory. They reanalyzed a large portion of the SFU filters, all Lundgren afterfilters, and several of the hivol filters and cascade afterfilters. In addition, they analyzed the mylar strips from the Lundgren impactors and a selection of the slotted cascade filters. Filters were reanalyzed because the TACB had been unable to obtain satisfactory analyses from certain lightly loaded filters. Also, some filters could not easily be analyzed using the XRF system because of filter shape or loading pattern. The dual analyses provided a direct comparison between the two A complete list of all filters analyzed by both groups is provided systems. in Appendix A.

#### Analysis Systems

## X-Ray Fluoresence System:

The Texas Air Control Board (TACB) uses an x-ray fluoresence system to analyze the particulate filters they collect at various sites in the State of

They analyzed most of the particulate filters for Project 528 with Texas. this system. This energy dispersive spectrometer used four different radioactive isotopes (iron 55, plutonium 238, cadmium 109, and gallium 153) to act as x-ray sources to check for the presence of four different bands of elements. These x-rays caused x-ray line spectra characteristic of the elements present to be emitted. The detected count rate of the characteristic x-rays was proportional to the weight fraction of the element. A lithiumdrifted silicon (Si(Li)) cell was used as the solid state detector. This system was able to simultaneously analyze for elements ranging in atomic weights from magnesium to lead, with an accuracy in the 1-10 ppm range, depending upon the element, the total sample weight, and the amount of the major constituent present. A minicomputer was used to smooth the data from the detector, and unfold the spectral lines. Due to the nature of the source, the sample had to be at least 37 mm in diameter. The program assumed a relatively even particulate distribution across the sample. For more information on x-ray spectrometry, see J. R. Rhodes (1972), J. R. Rhodes, et al., (1972), or Birks and Gilfrich (1976).

Particle Induced X-Ray Emission System:

The Air Quality Group located at the University of California at Davis (UCD/AQG) also analyzed many of the particulate filters from Project 528 using the isochronous cyclotron located at Crocker Nuclear Laboratory. The particle induced x-ray emission (PIXE) system they employed used an alpha particle beam to detect all elements heavier than neon with detection limits in the one ppm range. The alpha particle beam caused the emission of a characteristic x-ray line spectra. A Si(Li) cell was used as the solid state detector. Because of simpler and more accurate data analysis techniques useable with PIXE systems, the UCD/AQG analyses were not influenced by the total loading of the

filters or the amount of the major constituent present. The alpha particle beam was 2.5 cm long by 0.75 cm wide. Because of the small size of this beam, filters having a small particulate collection area, such as the slotted cascade filters, could be effectively analyzed on the PIXE system. The mylar strips from the Lundgren impactors could also be analyzed on the PIXE system by selecting a small area on each filter strip sequence (four strips) that had a fairly uniform particulate deposit. For a more complete description of the UCD/AQG PIXE system and the way it was operated as of January 1, 1975, see Cahill (1975).

#### Filter Analyses

#### Hivol Filters:

The hivol filters consisted of 8" x 10" Whatman 41 cellulose base filter papers. Cellulose filters were used because they are essentially free of contamination by the elements zinc, iron, zirconium, potassium, and calcium which contaminate standard glass fiber filters. In order to calculate the TSP weight on the filters, a special weighing procedure had to be followed, since cellulose filters are hygroscopic. The TACB first numbered the filters sequentially and then placed them in a constant humidity chamber. They were allowed to equilibrate for 24 hours in this chamber and then weighed to the nearest mg. The filter weight and number were recorded, along with the humidity in the chamber.

After a filter had been run in a hivol or as a cascade afterfilter, it was returned to the TACB. All handling was performed with forceps, at no time was the filter touched with the hands. The filter was folded lengthwise with the particulates on the inside of the fold. The filters were placed in a folder which was then sealed in an envelope. The folder and envelope were both marked with the site, date, and run time and with the station number

at which the hivol was run. Since the hivols used flow controllers, no further identification was necessary.

After a week's run, the filters were returned to the TACB in Austin via project personnel or a courier. The TACB replaced the filters in the constant humidity room for another 24 hours, after which time they were reweighed to the nearest mg. Since the initial and final filter weights were known, along with the humidity in the chamber at both weighings, the TSP weight on each filter could be calculated. A circular section was then stamped from near the center of each filter for XRF analysis. The minicomputer analyzed the data from the Si(Li) detector to arrive at units of  $\mu$ g/sample. This number was then extrapolated to obtain the amount of each element present on the filter in units of  $\mu$ g/filter. The minicomputer also calculated a standard deviation ( $\sigma$ ) for each element, where this number represented the uncertainity in the measurement and the data smoothing operation. At the recommendation of the TACB, all reported values in the Project 528 data set are larger than  $3\sigma$ .

Several of the hivol filters and cascade afterfilters were reanalyzed by the UCD/AQG for comparison purposes. The results of these analyses will be discussed in Chapter V.

SFU Filters:

The stacked filter units used two Nuclepore filters with pore diameters of 8.0 and 0.4  $\mu$ m. The filters were handled with forceps at all times. They were placed in the filter holders with their shiny sides up so that the filters might later be visually examined, if desired. After a week's run they were taken to the TACB along with the other filters.

The TSP weight on the SFU filters was not determined prior to August 10, 1977. Starting at that time, however, the TACB weighed all SFU filters to the nearest 10 µg before and after use. It was not necessary to equilibrate

them in the constant humidity chamber before weighing because Nuclepore filters are nonhygroscopic. Each filter was stored in a numbered petri dish. After the filters were run, great care was taken to return each filter to its proper dish and clearly identify where it was used.

At the first site in Dallas, the SFU samplers were run for two hours each at a flow rate of 5 1/min. The TACB found that these filters were not heavily enough loaded for them to perform dependable XRF analyses on the filters. Only calcium or silicon was found on some filters, while nothing at all was found on others.

In an attempt to increase the filter loadings sufficiently for XRF analysis, the run time was increased to 10 or 11 hours. The flow rate remained at 5 1/min. When these filters were analyzed, it was found that the increased run times still did not solve the loading problem. A new orifice was then calibrated for a flow rate of 22.5 1/min. The new flow rate was used at the San Antonio and El Paso sites, along with the extended run times. The increased flow rate and the longer run times proved effective in increasing the particulate loadings sufficiently for TACB analysis.

Those SFU filters which were too lightly loaded for TACB/XRF analysis were later sent to the UCD/AQG for PIXE analysis. Because of the greater sensitivity of the PIXE system, it was hoped that that system would be able to more properly analyze those filters. A number of heavily loaded SFU filters were also sent to the UCD/AQG for direct comparison purposes. All SFU filters were sent to the UCD/AQG via United Parcel Service. The SFU filters were placed in 35mm slide holders and analyzed in the standard UCD/AQG manner for Nucleopore filters.

#### Slotted Cascade Filters:

The cascade filters were made of slotted 4" X 5" Whatman 41 filter papers.

The TACB numbered and weighed each filter before use and then reweighed the filters after use. Before each weighing, the filters were allowed to equilibrate for 24 hours in the constant humidity room. The filters were handled with forceps at all times. Upon being removed from the cascade filter holder, each filter was folded in half, with the fold being made parallel to the slots and the particulates on the inside of the fold. The slotted filters were then separately stored in clearly identified folders and sealed envelopes.

The TACB determined the total particulate retained on each filter to the nearest mg. Most of the filters retained less than 1 mg of particulate. For this reason the TACB was unable to analyze the filters. In addition, the particulates had been deposited in narrow bands between the slots and these bands were too narrow for XRF analysis.

Because the TACB could not analyze the cascade filters, all of these filters were sent to UCD/AQG for PIXE analysis. However, only a small fraction of these filters were actually analyzed due to light particulate loading. Before the filters were analyzed, each was examined visually for signs of particulate loading. If at least two of the filters from a set of five had visible loading then the entire set was subjected to PIXE analysis. Lundgren Impactors (Drum Strips):

The Apiezon-coated mylar strips from the Lundgren impactors were carefully removed from the drums after use and taped or tacked to flat boards which were then placed in clean metal or cardboard boxes for storage. Labeling on the carrier boards was sufficient to fully identify each strip.

The TACB was unable to analyze the Lundgren strips because the particulates were not evenly deposited on the strips. If the TACB/XRF system had been used to analyze the filters, a great deal of accuracy would have been lost due to

uncertainity in the statistical analysis of the data from the detector.

The Lundgren strips were therefore sent to UCD/AQG for PIXE analysis. To analyze the strips, a section about one-half inch wide was cut from near the center of each strip and mounted in a 35mm slide. Cahill (1978) suggested that the exact location would not matter too greatly since the Lundgren is more useful in providing qualitive information on particle sizing than in providing quantitative information. He also suggested that the particle size ratio's would not change greatly from run to run over the short time period in which samples were collected at each site. The same relative position on each of the four strips from one impactor was subjected to analysis. Lundgren Impactor Afterfilters:

The Lundgren afterfilters consisted of either Whatman 41 or 0.4 µm Nuclepore filters. The Nuclepore filters captured a greater percentage of the fine particulates than the Whatman 41 filters, but the pressure drop across the Nuclepore filters was too great for the pump to maintain a uniform 4.0 cfm flow rate.

The Lundgren afterfilters were analyzed by both the TACB and UCD/AQG. The filters were first analyzed by the TACB, but it was then decided that the UCD/AQG should also analyze the filters since they had already analyzed the Lundgren strips and needed the results from the afterfilters to provide complete elemental ratios from the impactors. In addition, some of the filters had been too lightly loaded for proper TACB analysis.

## Chapter V

## Discussion of Results

## Introduction

The discussion of results from Project 528 has been divided into several sections. These sections include (a) a discussion and evaluation of experimental data, (b) a comparison of TACB and UCD analyses, (c) a discussion of elemental profiles and a comparison of TACB and UCD analyses using these profiles, (d) the results of some correlation analyses, (e) a comparison of stacked filter unit and high volume air sampler data, and (f) a discussion of road vacuuming data. In addition, the actual fine lead concentrations have been compared to the predicted concentration profiles obtained from carbon monoxide dispersion models.

## Experimental Particulate Data

The particulate data from Project 528, "Measurement and Analysis of Resuspended Roadway Dust in Texas," is contained in Appendix B of this report. Appendix B also contains the traffic and meteorology data taken by Project 218 in conjunction with Project 528. The traffic and meteorology data are presented in tabular form as one hour averages during each run. All data is available on IBM compatible nine track magnetic tape from the Texas State Department of Highways and Public Transportation and NTIS. The data and the report are also available at modest costs from Dr. Jerry A. Bullin, Chemical Engineering Department, Texas A&M University, College Station, Texas 77843, phone 713-845-3361.

## Error Analysis and Validity of Data

#### Introduction:

Three different types of errors are associated with the calculation of airborne particulate concentrations. The sampler itself introduces error because of anomalies in the collection characteristics and the sampling techniques used. The latter includes uncertainty in the actual flow rate of the sampler during the period of operation. Another group of errors are introduced by the sample analysis system and the analysis technique used. The errors associated with each sampling system will be discussed in this section of the report. The errors associated with the meteorological and traffic measurement systems from Project 218 will also be discussed here.

### High Volume Air Samplers:

There are several errors associated with the use of hivols to collect airborne particulates. Among these are wind directional, variable capture efficiency and wind velocity large particle capture anomalies. Both are

due to the nonsymetrical nature of the hivol and the high air flow rate through the filter. The amount of error due to these effects cannot be estimated. However, in an effort to make the errors uniform throughout the hivol sampling network, all hivols were set up with the wide side of the sampler parallel to the roadway. Except for the elevated hivols, all were located at least ten feet from the nearest large obstruction to the air flow.

Another error can occur because of nonuniform filter loading during a run due to a changing flow rate. However, the flow controllers used on the hivols in this project maintained a constant flow rate of 40 SCFM. The flow rate could be read directly from an analog meter on the controller. The flow rate was also checked periodically with a rotameter connected to the pressure tap on the motor blower. Although the rotameter is not a highly accurate or a repeatable flow rate measuring device, it cross checked with the analog meter on the hivol and could be used to check for significant changes in flow rate. In cases where the flow controller did not function because of low line voltage, the particulate filters for those runs were not submitted to the TACB for XRF analysis.

Skogerboe, et al., (1977) state that the filter efficiency for a particular element will depend on its size distribution in the particulate size spectrum for any particular type of filter or set of collection conditions. Elements having enriched concentrations in the lower size ranges will be preferentially passed through the filters. Cahill (1978) has found that there is approximately a 25% penetration of fine lead through Whatman 41 filter papers. Together these observations imply that the hivol filter analyses are probably biased towards the larger sized particles.

Cascade Impactors:

Some of the errors associated with high volume cascade impactors are similar to those associated with the basic hivol. However, cascade impactors do not have the same wind directional variable capture efficiencies, since the cyclone preseparators used on these samplers are free to turn in the wind. The cyclones also limit the large particle wind velocity anomalies.

Cascade impactors do, however, have several major errors associated with their use. These errors are related to their collection efficiency, which is determined by their impaction and adhesion efficiencies. These efficiencies are, in turn, determined by particle bounce, reentrainment, and deagglomeration or breakup. This means that oversized particles will reach every stage beyond the first stage, including the afterfilter. The presence of oversized particles tends to bias the particle sizing towards higher than actual concentrations of fine particles and reduced concentrations of large particles. In order to limit these effects and increase the efficiency of the cascade impactors, an adhesive coating, such as an oil, may be applied to the upper surfaces of the slotted plates. Such methods are very rarely used because the coating severely limits the ability to perform elemental analyses on the collected particulates and are very difficult to use in the field. Fibrous filters, such as Whatman filter papers and Gelman glass fiber filters have been widely used as collection surfaces because they facilitate sample handling and appear to reduce particle bounce. Even so, in the majority of cases, the stage collection efficiencies usually fall between 80 and 95% (Cushing, et al., 1979).

Whatman 41 filter papers were used as the cascade impactor collection substrates in Project 528. Glass fiber filters would have been used, but these filters are usually contaminated with elements such as zinc, barium,

ී

and chlorine. Even small quantities of these elements present on the filters will affect the XRF analyses of the samples, although such contamination can be partly corrected by using an appropriate blank filter correction in the XRF analyses. The Whatman 41 filters contribute to the errors associated with the cascade impactors used in this project. Rao and Whitby (1977) have recently found that Whatman 41 filter papers do not significantly reduce particle bounce. This, in turn, may mean that the impactor collector stages were no more than 50% efficient (Cushing, et al., 1979). Also, the last stage of the impactor is designed to capture particles smaller than 0.5  $\mu$ m, but the Whatman 41 filter papers used as the afterfilters in this project allowed fine particles to pass through them (Skogerboe, et al., 1977). In addition, because of the small size of the particles, the fines penetration through these filters may have been more than the 25% fines penetration suggested by Cahill (1978) for standard hivol filters.

Not only is there fines penetration of the Whatman 41 papers, it also appears that these filters have low filter efficiencies for total suspended particulates at low loading conditions. Skogerboe, et al. (1977) state "smaller particle sizes are collected quite inefficiently under conditions of low filter loading (clogging) and this may present a serious problem for sampling atmospheres with low total particulate concentrations and/or sampling at low rates." Although that study was performed using Millipore Type HA filters, they thought that similar results would have been found had they used Gelman glass fiber, Whatman 41 or other similar filter papers.

In conclusion, any size classification scheme using the cascade impactor data from Project 528 is likely to be greatly in error due to particle bounce biasing of fine particle concentrations, fine particle penetration through

the afterfilters, and low filter efficiencies under conditions of low filter loadings.

Stacked Filter Units:

The stacked filter unit, because of its symetrical design, does not have any wind directional capture effects, but it does have variable wind speed capture anomalies. In an Environmental Protection Agency study by McFarland (1979), the aerodynamic particle diameter cutpoints for SFU of the design used in this study were found to be 17.0  $\mu$ m at a windspeed of 2 km/hr and 8.1  $\mu$ m at a windspeed of 8.0 km/hr.

Another large error may come from uncertainty of the flow rate during an extended run. The pressure drop across the particulate filter will increase with time during a run, because increased particulate loading reduces the number of pores through which air can flow. The flow rate decreases nonlinearly with time because of nonuniformity of loading caused by changes in windspeed and direction and traffic flow. Simply averaging the startup and shutdown flow rates will probably produce an average flow rate different from the true average. To minimize this problem, the SFU were calibrated at startup and shutdown for the two hour runs and about every two hours for the longer runs. The flow rate did not change greatly during any one two hour period primarily because of the ballasting provided by the needle valves. Special calibrations were performed after the morning rush period (~ 9 A.M.) and before the afternoon rush period (~ 4 P.M.). The frequent calibrations maintained the average flow rate near the desired flow rate of either 5 1/min or 22.5 1/min. From the calibration curves for the two orifices used during the project and from the calibration record, it has been estimated that the error in the flow rate of 5 1/min was no more than 0.5 1/min. For the

22.5 1/min flow the estimated error was no larger than 2 1/min. This represents a 10% error.

A large error may be introduced into the analyses by the nature of the Nuclepore filters used in the SFU's. The surfaces of the filters are smooth and nonsticky, allowing large particles to fall off the filters during shipment and handling. In order to minimize these effects, the filters were always handled with the particulate covered surfaces up prior to their analysis by the TACB. However, it is not possible to testify to their handling by the United Parcel Service on the way to Davis, California for analysis there. Special 8.0 µm filters are now available from the Nuclepore Corporation that have an Apiezon L coating on their surfaces to minimize both particle bounce and falloff. These filters, however, were not available when this project was performed. The subject of particle falloff during shipment and handling will be discussed more fully in the next section.

## Lundgren Impactors:

One error associated with the Lundgren impactor occurs because this impactor is very sensitive to changes in wind direction. It was attempted to reduce this error by frequently turning the impactor to face directly into the wind. However, this was not a very feasible approach to the problem since the wind direction was highly variable during some runs. In such cases it was possible to see banding on the Lundgren impactor drums because of wind direction shifts.

Another error occurred because of the uncertainty in determining the true flow rate during a run. A decreasing flow rate during a run, apparently due to particulate loading on the 0.4  $\mu$ m Nuclepore afterfilter, caused the particulate fraction caught on each stage to be shifted to larger sizes. This

also caused inaccuracies in determining the total flow through the afterfilters. In order to minimize these effects, the flow rate was checked periodically during each run to maintain a nearly constant flow rate. When Whatman 41 filters were used in the afterfilter, the flow rate was easily maintained at the desired 4.0 cfm, which implies that difficulties in flow control arose from excessive pressure drop across the 0.4 µm Nuclepore filters. Fines penetration through the Whatman 41 filters precluded their common use as the Lundgren afterfilters. The 0.4 µm Nuclepore filters were changed whenever the flow rate dropped more than about 30% below its starting value; the flow rate usually returned to its starting value at that time.

At a flow rate of 4.0 cfm, the first four stages of the Lundgren impactor have 50% cutpoints of approximately 15  $\mu$ m, 5  $\mu$ m, 2  $\mu$ m, and 0.5  $\mu$ m (Cahill, 1979; Environmental Research Corporation, Report 138M, April 1971). If the flow rate is allowed to drop 30% to 2.8 cfm, then the particle sizing classification increases to approximately 20  $\mu$ m, 10  $\mu$ m, 5  $\mu$ m, and 1.0  $\mu$ m. The flow rate decrease was not usually this drastic, although the Lundgren's were operated around 3.0 to 3.5 cfm.

For the above reasons then, the data from the Lundgren impactor strips have been reported in units of  $\mu$ g/cm² and should only be used to indicate general trends at each site and differences between sites. Even the latter use of the data may be somewhat misleading because of the time spread over which the samples were taken.

#### A/D Error:

The data collection system for this project employed a 12 bit analog to digital converter (A/D). The accuracy of this instrument is shown in Table 2, along with the accuracy of the traffic and meterological instru-

	IADIE 4							
Instrument Accuracy								
I.	Instrument A/D	error 0.6% spæn drift, 0.25% zero drift						
II.	Radar							
	a. overall count	2%						
	b. heavy duty vehicle fraction	10%						
	c. speed	3 mph + 10% of reading						
III.	Vertical Anemometer	5% of span drift (max) *						
IV.	Horizontal Anemometer	1% of zero drift (max) *, **						
۷.	Wind Vanes	10° in Houston, 5° all other sites **						
VI.	Thermometers	1.5°F						
/11.	Psychrometer	3% relative humidity *						
[]].	Pyranometer	15 watts/square cm						

* Manufacturers Ratings, not checked by project personnel

** See text for more detailed error description

ments. There are two possible errors in the A/D unit. First, the span or gain could drift, causing any input to be interpreted as some factor greater or less than its actual value. This error is expressed as a fixed fraction of any particular reading. It reaches its maximum magnitude at the maximum data value and vanishes completely at a data reading of zero. The second type of error, the zero or offset drift is one by which a zero input produces an apparent voltage. This error is constant over the entire range of input values and is usually expressed as a fraction of the full scale reading.

In this project, the gain was checked in ten channels every time the project was moved. If there was any significant span drift in those channels, the entire A/D was checked and calibrated. However, span drift never exceeded eight counts out of an input value of 1331, or 0.6%. It was felt this low error would not warrant the effort required to correct it. The zero drift was checked daily in twelve channels. It never exceeded ten counts or 0.25%. This was judged to be negligible in light of the errors found in the instruments themselves.

## Traffic Parameter Errors:

The errors associated with the radar units were due primarily to the fact that this project required more than a simple global traffic count. The radar unit signals carried the traffic count, traffic speed, and heavy duty vehicle fraction on a lane by lane basis. It was decided that since this information was potentially quite valuable to a highway air pollution study, every effort should be made to record it.

There were three factors that influenced the quality of the radar data. First, the speed calibration remained quite stable and gave few problems. If the span reading was within 2 miles per hour (3%) of the desired 65-mile per hour reading, the unit was left alone. This parameter was checked weekly.

The second, and slightly more troublesome source of error was the range control which regulated the size of the unit's field of view. If the field of view was too large, the radar detected vehicles in adjacent lanes as well as misfiling the vehicles as to length. If the field of view was too small, the radar would misfile vehicles as to length and could easily miss the smaller vehicles. A rigorous check of the range required the use of an analog integrator and about fifteen minutes per radar. This type of check was accordingly made only when the project was moved to a new site or when a radar had to be replaced. A partial check could be made by observing the behavior of the indicator needle on the radar unit itself. This check was sufficient to assure the overall accuracy of the count, but not precise enough to assure 100% accurate vehicle length classification. The indicator needle check was typically made once per week. The third source of error resulted from the misalignment of the radar heads. The heads were supposed to be aligned at an angle of 45° with respect to the horizontal. Since the radar can only detect that component of the velocity which is directly toward or away from the radar head and since a change in the angle causes a change in the size of the field of view, an error of 5° in the angle results in an 8% error in the apparent speed and a 14% error in the apparent vehicle length. The heads were aligned to within 2° of the desired 45° angle at each site. However, at those sites where sign bridges were employed to support the radar units, vibrations misaligned the heads by as much as 10°. This was not corrected for unless the error became great enough to cause the unit to pick up vehicles in adjacent lanes or miss vehicles passing through the unit's field of view. Replacement units were aligned correctly.

Two methods were used to assess the accuracy of the radar units. The sampling towers at a site in Houston were placed in line with the already existing loop counters of a permanent counting station on IH610. A

listing of the data from several typical one-hour counting periods during May 1976 is given in Table 3. Because the two counting systems did not agree, project personnel then used any available time to make manual counts lane by lane for five-minute periods to compare with the radar counts during the same time periods. The results of these counts were used to establish the overall accuracy of the radar units to within 2%. A typical comparison between manual and radar counts is shown in Table 4. The length categories were not as accurate since no true breakdown could be established between autos and pick-ups and vans (vehicle categories 1 and 2) or between short and long trucks (vehicle categories 3 and 4). However, the break between autos and trucks was fairly clear (within 10%). Manual counts were performed at all sites in order to maintain the high confidence levels in the radar counts.

#### Vertical Anemometers:

These instruments were not checked by project personnel. The values quoted here are those in the operator's manual. The primary source of error in these instruments is due to the fact that the propellers employed did not quite follow the cosine law with respect to wind angle. When the wind was within 2° of the horizontal (the vertical windspeed component was less than 3% of the horizontal component) the propeller stalled and did not turn at all. When the wind angle was at 45° with respect to the horizontal (the vertical component was as large as the horizontal component) the instrument read 5% low. In view of the instability in the vertical windspeed, these errors were regarded as negligible. The starting threshold for these instruments was quite low, 0.5 mile per hour (0.26 meter/sec.).

#### Horizontal Anemometers:

There were three sources of error in these instruments, only one of which was considered in the operator's manual. The starting threshold for these in-

Table 3. Comparison of Radar to Loop Counts

Date	Time	Radar <u>Count</u>	Loop <u>Counters</u>	Ratio
May 15, 1976	1100	2284*	3580	1.57
	1400	2077*	3390	1.63
May 19	1800	4448	5120	1.15
May 20	0800	3924	4940	1.26
	0900	3487	4300	1.23
	1000	3000*	3620	1.21
	1100	2971	3480	1.17
	1200	3032	3490	1.15
	1300	2816*	3630	1.29
May 25	1500	3441	3830	1.11
	1600	4230	4700	1.11
	1700	4772	5180	1.09
	1800	4868	5340	1.10
May 26	0800	3311	3550	1.07

IH610 - Westbound

	Mean:	1.28
	Std. dev.:	0.21
One radar inactive	Mean:	1.15**
	Std. dev.:	.06**

*

** Excludes times when one radar was inactive

Range of vehicles per 5 min. period	No. of 5 min. counts	Average % error	Std. dev. of % error
1-20	49	-5.4	16.9
21-40	33	-1.0	7.1
41-60	7	2.8	5.7
61-80	6	2.3	5.3
81-100	7	2.2	2.2
101-120	1	3.6	
121-up	4	2.2	1.9

Comparison of Manual and Radar Traffic Counts

Table 4

struments was quoted as 0.75 mile per hour. This meant that in low windspeed conditions, typically found on late summer and fall mornings, the recorded windspeed was less than the actual windspeed. A second source of error was due to the mass of the anemometer cups. When a wind gust struck an instrument, it would spin at greater than the actual windspeed for some time thereafter. This meant that in gusty conditions, the recorded windspeed was higher than the actual windspeed. A third source of error had to do with the sensing of the windspeed. The instruments used a photo chopper and frequency to voltage converter to generate the requisite signal to the A/D. At windspeeds below 2 miles per hour, the output of the frequency to voltage converter began to break up into a series of spikes instead of a smooth voltage output. Since the A/D logged point values only, the wind appeared to be much more turbulent than was actually the case. Considerable care should be taken in low windspeed cases for this reason.

## Wind Vanes:

The primary error in the wind vanes is due not to any error in the instrument, but instead to the alignment procedures used by project personnel. At all of the sites the vanes were pointed at landmarks and the bearings of these landmarks were used to compute correction factors. This procedure was accurate to within 5°. As the standard deviation of the wind direction was seldom below 15°, this error was considered negligible.

#### Thermometers:

The operator's manual stated that these instruments were accurate to within 0.5°F (0.3°C). However, when a test was made in Dallas which placed 2 instruments on the east face of the 100 ft tower and 2 instruments on the

west face, all at the 35-foot level, it was observed that those on the east face read 0.75°F (0.4°C) higher than those on the west face in the mornings and the thermometers on the west face read 1.1°F (0.6°C) higher than those on the east face in the afternoons. From this it was infered that sunlight was causing a temperature rise in the instruments. The total error in the instruments was taken as the square root of the sum of the squares or 1.5°F(0.83°C).

#### Psychrometers:

The project personnel did not check the accuracy of the psychrometers. The operator's manual stated that the instruments were accurate to within 3% relative humidity.

## Pyranometer:

The error in this data comes not from the instrument, but rather from an an amplifier used to magnify the signal to a level acceptable to the A/D. The voltage had to be boosted 41 times to be intelligible to the A/D. The amplifier used for this task had a maximum error of 1%. Since the maximum pyranometer reading expected in these latitudes is 1500 watts/sq cm, all pyranometer readings should be regarded as within 15 watts/sq cm of the correct value.

## Comparison of TACB and UCD Analyses

As discussed in Chapter 4, some particulate samples were analyzed by both the Texas Air Control Board and the Air Quality Group at the University of California at Davis. Light particulate loading caused difficulties in analyzing some of the filters with the XRF system. The shape and loading characteristics of some of the filters and the size of the analysis beam caused some additional problems with the analyses by XRF. These filters

52 °

were sent to the Air Quality Group for analysis on their PIXE system because of the greater sensitivity of that system (Ahlberg and Adams, 1978; Cahill, 1978) and the smaller size of the analysis beam. In addition, several samples covering all ranges of loadings were sent to UCD for reanalysis in order to achieve a direct comparison of the results from the two systems. The number of filters of all types that were analyzed by both groups are listed in Table 5 on a site by site basis.

There seem to be several major discrepencies between the analyses by the TACB and UCD. A comparison of the analyses from selected samples is shown in Table 6. As can be seen from this table, the concentration for one element might be higher for the UCD analysis of a sample than for the earlier TACB analysis of that same sample, while the reverse situation is true for other elements on that sample. Table 7 presents the results of a statistical analysis on selected samples listed in Table 5, subdivided according to filter type. Because many of the SFU filters from the two Dallas sites were too lightly loaded for adequate analysis on the TACB system these filters were not included in these statistical analyses. Thus, only the SFU filters from San Antonio (October 20, 1977) and El Paso (November 17, 1977) were included in the comparison (see Appendix A). The seven hivol filters analyzed came from the site located at IH30 and Motley Drive in Dallas; all of the Lundgren afterfilters were included in the statistical analyses, although some of them were also too lightly loaded for adequate TACB analysis. Table 7 gives the means and standard deviations of the UCD concentration/TACB concentration ratios for the selected samples. If an element was found by one group but not by the other, that null ratio was not included in these analyses. The data were widely scattered for most of the elements as indicated by the relative sizes of the means and the

Table 5. Filters Analyzed by Both the University of California at Davis and the Texas Air Control Board

		ent [*]		
** Site	SFU	HV	CAF	LA
Dallas I	84	<del></del>		8
Dallas II	76	7	2	36
San Antonio	20			34
El Paso	18			-
Road Vacuuming	· · · · ·			· · ·

* SFU: Stacked Filter Unit

HV: High Volume Air Sampler

CAF: High Volume Cascade Impactors (afterfilters)

LA: Lundgren Impactors (afterfilters)

** Site Location

Dallas I:	Dallas, IH45 at Forest Avenue
Dallas II:	Dallas, IH30 at Motley Drive
San Antonio:	Loop 410 at Military Highway
El Paso:	IH10 at Luna Street

TABLE 6. COMPARISON OF PARTICULATE SAMPLE ANALYSES PERFORMED BY THE TEXAS AIR CONTROL BOARD AND THE UNIVERSITY OF CALIFORNIA AT DAVIS

Sample	Ratio of UCD/TACB-Sample Date 10/20/77							
Number	1	2	3	4	5			
Fe	0.55	1.22	0.78	0.96	0.45			
РЪ	0.97	1.40	0.86	1.29	1.22			
Si	· · · · ·	0.64	0.10	0.23	0.05	• .		
K	0.70		<u></u>	анана 1997 - Сарана 1997 - Сарана Сарана (с. 1997)	0.48			
Br	0.81	1.21	0.72	1.04	0.94			

Stacked Filter Unit - 0.4 µm Nucleopore Filter

Stacked Filter Unit - 8.0 µm Nucleopore Filter

Sample	Ratio of UCD/TACB-Sample Date 11/18/77						
Number	_1				5	-	
Fe	0.11	0.50	0.85	0.47	0.29		
РЬ	0.64	1.15	С. мана анал	1.06	0.51		
Si	0.11		1.02	جمع فنتن	. <del></del>		
K	0.08	0.34	0.22	0.27	0.20		
Br	0.89	0.89		<del>~~</del>			

## Lundgren Afterfilter

Sample	Ratio of UCD/TACB-Sample Date 6/1-3/77,10/5/						10/5/77
Number				4	5		
Fe	0.65	1.19	4.95	1.06	3.70	•	
РЪ	1.71		1.49	1.42	1.75		
Si	0.02	0.17		0.24	0.07		
K	0.64	0.98	<u> </u>	1.42	2.62		· ·
Br	0.92		0.82	1.18	1.34		

	Hivol Sampler							
Sample Number	Ratio	of UCD/	TACB-Samp	le Date 8/11/	<u>77</u>			
Fe	0.47	0	0.14					
Pb	2.39	2.46	2.79					
Si	0.05	0.04	0					
K	1.92	1.99	2.16					
Br	1.57	1.94	2.45					

				Ratio	(UCD/TACB)
Instrument	Filter	Element	Number of Observations	Mean	Standard Deviations
Stacked Filter Unit (SFU)	8.0 µm Nuclepore	A1 Ca Fe K Si Br C1 Pb S	2 18 17 16 14 7 13 10 5	0.22 0.59 1.07 1.04 0.75 0.38 0.86 0.89 0.21	0.04 0.80 1.99 1.78 1.32 0.20 1.16 0.83 0.35
SFU	0.4 μm Nuclepore	Zn Ca Fe K Si Br Cl Pb S Zn	9 19 19 13 17 10 7 9 17 18	0.64 0.96 0.64 0.31 0.23 1.66 1.60 1.85 0.18 0.81	0.34 2.45 0.47 0.25 0.35 2.01 3.27 1.62 0.10 0.26
Hivol	Whatman 41	Ca Fe K Si Br Cl Pb	6 2 3 2 4 5 5 5	0.92 0.33 2.17 0.03 2.05 0.50 2.33	0.66 0.24 0.29 0.00 0.82 0.20 0.46
Lundgren	Whatman 41 After- filter	Ca Fe K Si Br Cl Pb Zn	8 5 3 4 3 4 8	1.62 1.11 1.45 0.07 0.88 0.15 1.13 0.96	1.76 0.43 0.67 0.08 0.09 0.08 0.15 0.23

# Table 7. Comparison of TACB and UCD Analyses

Table 7 (Cont.)

				Ratio	(UCD/TACB)
Instrument	Filter	Element	Number of Observations	Mean	Standard Deviations
-		<u></u>			
Lundgren	0.4 µm	Ca	41	1.44	2.12
	Nuclepore	Fe	8	1.41	1.19
	After-	K	9	1.34	1.79
	filters	Si	28	0.54	0.55
		Br	23	4.86	5.00
		C1	10	0.65	0.43
		Pb	24	3.96	3.37
		s	37	0.77	0.57
		Zn	52	2.50	4.09

standard deviations. This scatter would lead one to believe the data is very inconsistent, but the same general trends can be seen in the two analysis systems when their profiles are plotted. The comparison of these general trends and profiles are presented in the next section of this chapter.

One possible reason for the differences between the results of the two groups is that some particulates may simply have fallen off the filters between examinations. Since the surface of the Nuclepore filters is smooth and nonsticky, particulates are especially prone to falling off these filters. This is especially true of the particulates on the coarse filters and of the more elastic particles such as calcuim and silicon. There are three elements, lead, bromine, and, to a lesser extent, zinc, that do not appear to fall off the filters as easily (Cahill, 1979). Fine lead, in fact, seems to become physically bound to the filter surface and very little will be removed even by tearing the filters (Cahill, 1979). Particulates are not as prone to falling off the Whatman 41 filters because the particulates become enmeshed in the fibers.

Another discrepency between the results of the two systems may occur under low loading conditions. In such cases an element may have been present in smaller quantities than the XRF system could detect, but in quantities large enough for the more sensitive PIXE system to detect. Ahlberg and Adams (1978) have stated that the PIXE system is approximately three times as sensitive as the XRF system. The minimum sensitivities are largely determined by counting statistics, which are determined, in turn, primarily by filter material, filter thickness, and analysis beam characteristics. Whatman 41 filter paper is normally the thickest substrate used (~10 mg/cm²) because of the exponentially increasing absorption losses in thicker substrates. Nuclepore membranes are much thinner than this, weighing 1.0 mg/cm² and

 $0.9 \text{ mg/cm}^2$  for the 8.0 µm and 0.4 µm filters, respectively. The minimum sensitivities of the two systems are given in Tables 8 and 9. The minimum sensitivities for the XRF system were obtained from Rhodes (1975) and are given only for Whatman 41 substrates. The values for Nuclepore filters will be no larger than these values, and probably much smaller. The values for the minimum sensitivities in terms of  $\mu g/m^3$  given in Table 9, were calculated from the values in terms of  $\mu g/cm^2$  by making use of the filter collection area, the flow rate, and the length of the run. The minimum sensitivities for the UCD analyses represent the maximum value supplied with the data for a particular filter type. These values were supplied with the data on a filter by filter basis and represented the minimum sensitivity for a missing element. These sensitivities change from filter to filter depending primarily upon the filter thickness, average particle size, and the amount and number of other elements present on the filter. One more discrepency between the two systems can arise because of differences in the calibration of the two systems. These blank and matrix correction factors are determined by the characteristics of the filter and the nature of the particulate loading on the two filters. The effects due to particulate loading are particularly sensitive to the relative sizes of the particulates on the working and calibration filters. These particle size effects are caused by significant absorption or enhancement of the fluorescent radiation within single grains. The problem is most serious for particles larger than 5 µm and for the light elements (i.e., iron, silicon, calcium). If the matrix correction factor for an element has a value near one, it is not necessary that the two calibration standards be composed of the same size particles, or that the field collected samples have the same size particles as the calibration

Analysis System Filter Type		Detection Limit (µg/cm ² of filter)						
		XRF						
		Whatman 41	Whatman 41	Nuclepore (8.0 µm)	Nuclepore (0.4 μm)			
Element	Atomic Number							
Al Si P S Cl K Ca Ti V Cr Mn Fe Co Ní Cu	13 14 15 16 17 19 20 22 23 24 25 26 27 28 29	$ \begin{array}{c} 1.0\\ 1.0\\ 0.5\\ 0.3\\ 0.15\\ 0.05\\ 0.03\\ 0.015\\ 0.010\\ 0.030\\ 0.15\\ 0.09\\ 0.065\\ 0.060\\ 0.040\\ \end{array} $	0.60 0.55 0.45 0.45 0.45 0.40 0.23 0.23 0.20 0.20 0.20 0.20 0.17 0.13	0.29 0.20 0.10 0.10 0.08 0.07 0.04 0.035 0.035 0.035 0.030 0.090 0.025 0.020	$\begin{array}{c} 0.13\\ 0.10\\ 0.10\\ 0.10\\ 0.05\\ 0.033\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.10\\ 0.022\\ 0.020\\ \end{array}$			
Zn As Br Zr Ba Pb	30 33 35 40 56 82	0.040 0.025 0.023 0.090 0.35 0.05	0.13 0.28 0.90 0.80 0.60	0.020 0.10 0.12 0.12 0.12 0.12	0.08 0.08 0.12 0.10 0.10			

# Table 8. Comparison of XRF and PIXE Minimum Sensitivities

# Table 9. Comparison of XRF and PIXE Minimum Sensitivities

# -at Standard Operating Conditions

		Detection Limits (µg/m ³ )							
Analysis System		XRF	PIXE						
Filter Types		Whatman 41	Whatman 41	natman 41 Nuclepore 8.0 μm			Nuclepore 0.4 µm		
Flow Rates (m ³ /min)		1.331	1.331	0.005	0.0225	0.005	0.0225		
Run Time (hrs)		2	2	2	11	2	11		
Element	Atomic Number								
Al Si S Cl K Ca Ti V Cr Mn Fe Ni Cu Zn Br Zr Ba Pb	13 14 16 17 19 20 22 23 24 25 26 28 29 30 35 40 56 82	$\begin{array}{c} 2.4\\ 2.4\\ 0.8\\ 0.36\\ 0.12\\ 0.07\\ 0.036\\ 0.024\\ 0.072\\ 0.36\\ 0.22\\ 0.14\\ 0.10\\ 0.10\\ 0.10\\ 0.155\\ 0.14\\ 0.84\\ 0.12\\ \end{array}$	$1.54 \\ 1.41 \\ 1.16 \\ 1.16 \\ 1.03 \\ 0.59 \\ 0.59 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.44 \\ 0.33 \\ 0.33 \\ 0.72 \\ 2.31 \\ 2.05 \\ 1.54 $	6.8 4.7 2.3 2.3 1.9 1.6 0.93 0.82 0.82 0.70 2.1 0.58 0.47 0.47 2.3 2.8 2.8 2.8 2.8	0.27 0.19 0.094 0.075 0.066 0.038 0.038 0.038 0.038 0.028 0.028 0.024 0.019 0.019 0.019 0.019 0.094 0.11 0.11	$\begin{array}{c} 3.0\\ 2.3\\ 2.3\\ 2.3\\ 1.2\\ 0.77\\ 0.70\\ 0.70\\ 0.70\\ 0.70\\ 2.3\\ 0.51\\ 0.47\\ 1.9\\ 1.9\\ 2.8\\ 2.3\\ 2.3\\ 2.3\end{array}$	0.12 0.094 0.094 0.094 0.047 0.031 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.021 0.019 0.075 0.075 0.11 0.094 0.094		

standards. However, as these factors become increasingly different from one, the fact that different calibration standards were used to calculate the matrix correction factors becomes increasingly important. For the elements lead, bromine, and zinc these matrix factors are usually close to one (e.g., <1.05), but for those elements lighter than calcium (i.e., chlorine, silicon, aluminum) these factors are generally greater than 1.3. These matrix correction factors become especially unreliable for those elements lighter than calcium when they are on a Whatman 41 substrate because absorption and geometric loss corrections become very important (Cahill, 1979; O'Conner, et al., 1975).

In addition to these general explanations for the discrepencies between the filters, a specific mechanism may occur for bromine loss on the filters. The bromine in automotive exhaust comes primarily from antiknock compounds containing ethylene dibromide and ethylene dichloride (Robbins and Snitz. These compounds react in the engine with the alkyl lead compounds 1972). present in leaded gasoline to form unstable lead halides. These compounds may be emitted directly into the air through the exhaust or they may collect in the exhaust train. Most of the bromine loss will occur from these halides within the first hour of their production (Ter Haar and Bayard, 1971; Robbins and Snitz, 1972). The most rapid loss comes from the lead halide, PbBr, with slower loss coming from PbClBr (Martens, et al., 1973). The former compound comes primarily from fresh automotive exhaust, while the latter compound comes primarily from particulate buildup in the exhaust train of the automobile. Habibi (1970) has shown that as little as 15% of the lead burned in an engine under simulated driving conditions is actually emitted from the The lead halides that collect in the exhaust train of the automobile exhaust. then flake out of the exhaust during acceleration and irregularly at other times. In addition to these bromine losses before and after collection, bromine is also
lost when the sample is exposed to X-radiation during multi-element analyses (O'Connor, et al., 1977).

# Discussion of Elemental Profiles and Comparison of TACB and UCD Analyses Using These Profiles

Data were selected from two representative days to draw horizontal and vertical profiles for lead, bromine, iron, and total suspended particulates (TSP) using data from the SFU filters. In addition, for comparitive analysis, all the filters from the ten operating SFU units for both days were analyzed by the Texas Air Control Board (TACB) and the Air Quality Group at the University of California at Davis (UCD).

The first day selected was October 20, 1977 in San Antonio. The run duration was 10.75 hours (0700-1745), during which time the wind direction did not vary significantly for more than one hour of the run duration. Figures 14 - 17 show the horizontal profiles for lead, bromine, iron, and TSP. Figures 14 and 15 show lead and bromine concentrations decreasing with increasing distance from the roadway for both the TACB and UCD analyses. The horizontal iron profile, Figure 16, does not show the same pattern of decreasing concentration with increasing distance. However, both the TACB and the UCD analyses show the same pattern. The iron concentrations found from the fine (0.4  $\mu$ m) filters do not vary with horizontal distance. The horizontal TSP profile, Figure 17, shows the fine particulate concentrations decreasing with increased distance from the roadway. The TSP profile for the coarse particulates does not show this same pattern.

Figures 18 - 21 show the vertical profiles for lead, bromine, iron and TSP from October 20, 1977 data from San Antonio. The fine lead and bromine particulate concentrations, captured by the 0.4 µm pore filter, show decreasing















D.



concentrations with increased height. The TACB and UCD analyses for the fine lead and bromine particulates agree closely. The coarse lead and bromine particulate concentrations vary only  $0.2 \ \mu g/m^3$ , for both analysis systems, over the 85 foot altitude difference, suggesting coarse lead particulates had a fairly constant concentration with height at a distance of 75 feet from the road edge where the sampling tower was located. The vertical iron profile shows no definite concentration variation with height as shown in Figure 20. The TACB and UCD iron profiles do not show the same trends, probably due to the different detection limits for the two different analysis systems, since the concentrations were less than an order of magnitude above these detection limits. Figure 21 shows the TSP concentrations decreasing with increased altitude.

Figures 22 - 29 are the horizontal and vertical profiles for lead, bromine, iron and TSP from the El Paso data on November 18, 1977. The run duration was 4.25 hours (0645 - 1100). During this time the wind was varying from parallel to the roadway to perpendicular. Fifteen minute averages indicate the wind direction frequently varied by 90 degrees or more over a 30 foot altitude difference.

Figures 22 and 23 show no particular patterns in the lead and bromine horizontal profiles, although the TACB and UCD analyses show the same trends. The TACB and UCD analyses of the fine bromine particulates, captured by the 0.4  $\mu$ m Nuclepore filter, show practically identical results. The horizontal iron profile from the El Paso data is shown in Figure 24. The TACB analyses show larger iron concentrations, on both the fine (0.4  $\mu$ m) and the coarse (8.0  $\mu$ m) filters, than the UCD analyses did. This difference may have been due to particulate losses during shipment before the UCD analyzed the filters. The fine

















and coarse iron particulate concentrations show a significant decrease from four to 68 feet from the road edge for the TACB analyses, but not for the UCD analyses. There was not enough data to draw the horizontal profile for the TSP captured by the 8.0  $\mu$ m filters and the TSP data from the 0.4  $\mu$ m filters show no distinct relationship between concentration and horizontal distance, as shown in Figure 25. This may have been due to a source other than the roadway, e.g. loose sand in the vicinity.

The vertical profiles, Figures 26 - 29, from the El Paso data show no definite trends in concentration variation with increased height except on the tower four feet from the road edge. These cases show that the lead, bromine, and TSP concentrations are less 30 feet above the roadway than five feet above the roadway. The concentration variations with height may have been due to changing wind directions and different wind directions at different altitudes. It should be noted that in the three elemental profiles the TACB and UCD analyses show the same trends in changing concentration with altitude.

The bromine to lead ratios were calculated for the data from the two selected days of October 20, 1977 in San Antonio and November 18, 1977 in El Paso. The horizontal and vertical Br/Pb ratio profiles are shown in Figures 30 - 33. Figures 30 and 31 show ratio variations of 0.15 or less with the exception of the UCD analyses for the San Antonio data. The TACB and UCD analyses show the same trends from the San Antonio 0.4 µm filter data. The differences between the analyses for the coarse particles may again have been particle loss from the filter between examinations.

The vertical profile for the October 20, 1977 San Antonio data, Figure 32, shows a slight decrease in the Br/Pb ratio with increased height for the





# FIGURE 31





**W** 





fine filters and an increase in the ratio for the coarse filters, for both the TACB and UCD analyses. The horizontal profile of Br/Pb ratios for the El Paso data, Figure 33, shows no particular pattern between increased distance from the roadway and the Br/Pb ratio, possibly due to the variation in wind directions. The TACB and UCD analyses do not show the same trends for this case.

As can be seen from Figures 14 - 33, there are occasionally large differences between the TACB and UCD analyses. However, in general, the agreement is within about 20 percent. In addition, the trends of the concentration profiles, both horizontal and vertical, are quite consistent for both the TACB and UCD analyses.

#### Correlation Studies

This section of the report presents the results of correlation studies between some of the elements reported in the data for the hivol filters, SFU filters, and the Lundgren impactor strips and afterfilters. The correlation coefficients between several elements were calculated for all four sites combined, and are listed in Tables 10 - 19. A summary of these results are shown in Table 20. Some sites carried more weight in these calculations simply because of the greater number of filters of a particular type run at that site. These coefficients will, however, give a general idea of the relationship between the elements. The correlation coefficients were calculated only for those cases where both elements were present in measurable quantities on a filter. This may have given undue weighting to some particular site. However, since the minimum sensitivity changed from element to element and filter to filter, there is no adequate method to modify the calculations to take the minimum sensitivity of an element into account. This problem is

Table 10. Correlation Coefficients for Hivol Filters

							<u>a na an an</u>			·····	
		A1 Û									
	Ca	0.76	Са								
1	Fe	0.67	0.55	Fe		- 					
Ĥ	ζ	0.77	0.59	0.85	K						
£	Si	0.77	0.15	0.56	0.65	Si					
]	Ci.	1.00	0.18	0.79	0.66	0.60	Ti				
I	Br	0.99	0.44	0.49	0.32	0.04	0.35	Br			
C	C1	0.72	0.51	0.53	0.39	0.12	0.37	0.75	C1		
· · ]	РЪ	1.00	0.56	0.57	0.44	0.12	0.40	0.96	0.75	РЪ	
S	S	0.73	0.10	0.38	0.45	0.79	0.00	0.02	0.09	0.06	S
<u>;</u> ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Zn		0.15	0.22	0.31	0.36	0.26	0.45	0.33	0.52	0.26 Zn
										1	and the second second

"Only 5 occurances of Al on hivol filters.

Table 11. Correlation Coefficients for Coarse (8 µm) SFU Filters (TACB Analyses)

A1 0.97 Ca Ca 0.97 0.97 Fe Fe 0.98 K 0.97 0.99 K 0.96* 0.97 0.97 0.98 Si Si 0.98* 0.96* 0.99 0.99 0.99 Ťi Τi 0.89* 0.75* 0.89* 0.85 0.27 Br 0.12 Br-0.04* 0.71* 0.14* 0.25 0.10 0.97 C1 0.24 C1 0.89* 0.96* 0.92* 0.23 0.91 РЪ ΡЬ 0.51 0.56 0.91 0.84* 0.85 0.15 0.91 0.86 0.68 0.71 0.87 0.84 S S 0.87* 0.65* 0.80 0.98 0.75 0.82 0.86 Zn 0.62 0.84 0.75 Zn

"Less than 20 cases observed out of a total of 130 filters.

						·			• •		
	A1*			· · ·		· ·					
Ca	0.01	Ca			· · ·						
Fe	0.74	0.93	Fe		. • • •	ана А					
K	0.99	0.86	0.94	K							
Si	0.79	0.97	0.95	0.96	Si			· · ·			
Tí	1.00	0.93	0.95	0.98	0.97	Ti					
Br	0.11	0.60	0.73	0.86	0.69	0.68*	Br				
C1	0.83	0.25	0.39	0.55	0.34	0.54*	0.86	<b>C1</b>		1.1.4	
РЪ	-0.18	0.56	0.68	0.80	0.63	0.52*	0.94	0.76	РЪ	•	
S	0.80	0.57	0.64	0.34	0.62	0.73	0.61	0.55	0.54	S	
Zn	1.00	0.19	0.93	0.60	0.93	0.95	0.25	0.87	0.17	0.34	Zn

Table 12. Correlation Coefficients for Fine (0.4 µm) SFU Filters (TACB Analyses)

*Less than 20 cases observed out of a total of 131 filters.

#### Table 13. Correlation Coefficients for Coarse (8.0 µm) SFU Filters (UCD Analyses)

	AL					•	•				
Ca	0.53	Ca									
Fe	0.68	0.72	Fe						<u>I</u>		
К	0.59	0.34	0.59	K					÷	· · ·	
Si	0.73	0.68	0.67	0.47	Si						
Ti	<b>~~</b>	0.47	0.26	0.85	0.76	Τí			:		
Br	0.41	0.86	0.87	0.88	0.81		Br				
C1	0.40	0.07	0.29	0.69	0.26	0.54	0.62	C1			
РЬ	0.38	0.70	0.75	0.72	0.64	0.65	0.99	0.51	РЪ		
S	0.40*	-0.09	0.22	0.67	-0.19	0.44	0.51*	0.47	-0.18	S	
Zn	0.53	0.69	0.78	0.74	0.67	-1.0*	0.80	0.43	0.82	0.11*	Zn

Less than 10 cases observed out of a total of 100 filters.

									1. I.		
	A1*									3	
Ca	0.62	Ca					· ·				en an Second
Fe	1.0	0.60	Fe		· · ·		•		· · · · ·		
K	0.93	0.54	0.67	K		· ·					
Si	0.95	0.72	0.79	0.75	Si		•			•	
Τi	·	0.43	0.69	0.80	0.37	Ti					
Br	0.76	0.79	0.75	0.27	0.24	-1.0*	Br				
C1	0.77	0.31	0.27	0.74	0.33	0.70*	0.50	C1			1 ·
РЬ	0.73	0.43	0.50	0.43	0.26	0.73	0.97	0.43	РЪ		
S	0.02	0.31	0.72	0.66	0.68	0.66	-0.04	0.26	0.37	S	
Zn		0.11	0.13	0.54	0.49	0.00*	0.44	0.68	0.25	0.62	Zn

្លា

Table 14. Correlation Coefficient for Fine (0.4 µm) SFU Filters (UCD Analyses)

*Less than 10 cases observed out of a total of 100 filters.

Table 15. Correlation Coefficients for the First Stage of the Lundgren Impactor (UCD Analyses)

	A1 [*]	• .			• .					÷	•
Ca	0.85	Ca				÷					
Fe	0.95	0.80	Fe								
К	0.97	0.61	0.91	К	•	. 1	-	:	•		
Si	0.95	0.71	0.95	0.97	Si						
Ti		-0.28	0.17	0.47	0.34	Ti	·				
Br		0.32	0.05	-0.07	-0.01	-0.65*	Br	ta a la			-
C1		0.32*	0.19*	0.28	0.11	_0.27*		C1			
РЪ	0.90	0.54	0.62	0.34	0.46	-0.36	0.62		Pb		
S										S	
Zn	0,90	0.37	0.49	0.21	0.26	-0.16	0.23*		0.84		Zn

*Less than 10 cases observed out of a total of 28 filters.

	A1.*								
Ca	0.91	Ca		•					
Fe	0.91	0.74	Fe			•		•	
K	-0.17	0.48	0.84	K					
Si	0.50	0.68	0.96	0.88	Si				
Ti	0.89	0.08	0.15	0.18	0.09	Ti			
Br	-0.95	0.53	0.09	-0.31	0.04	-0.06	Br		
C1	0.0	0.65	0.20	-0.63	-0.04	0.34	0.85	C1	
Pb	-0.56	0.65	0.45	0.08	0.33	-0.08	0.75	0.36	РЪ
S				: <del></del> .	· · · · <u>- ·</u> ·				
Zn	0.0	0.15	0.04	-0.34	0.08	0.19*	0.35	0.0*	0.37 Zn

Table 16. Correlation Coefficients for the Second Stage of the Lundgren Impactor (UCD Analyses)

*Less than 10 cases observed out of a total of 28 cases.

Q

#### Table 17. Correlation Coefficients for the Third Stage of the Lundgren Impactor (UCD Analyses)

	A1										
Ca		Ca	•			•				•	
Fe		0.72	Fe					. *			
K		-0.45	-0.13	K		•					•
Si		0.78	0.43	-0.63	Si						
Ti		-0.31	-0.36*	0.87*	-0.87*	Ti				1. 18	
Br		0.56	0.53	-0.39	0.14	-1.0*	Br				
C1	, <b></b>	0.06*	0.63*	0.56*	-0.58*	0.0*	0.11*	C1.			·
РЪ		0.71	0.60	-0.42*	0.37	-0.27*	0.90	0.17*	РЪ		
S		-1.0*	$1.0^{*}$	0.0*			0.0*		-1.0*	S	
Zn		0.81	0.32*	-0.96*	0.96*	0.0*	-0.33*		0.63*	<u>مد</u> محد	Zr

*Less than 10 cases observed out of a total of 28 cases.

## Table 18. Correlation Coefficients for the Fourth Stage of the Lundgren Impactor (UCD Analyses)

iz;

	A1*		•							
Ca	-0.67	Ca			•					
Fe	0.41	0.49	Fe							
K	0.0	-0.04	0.52	K		· · · · · · · ·				
Si		0.84	0.34	-0.31	Si					
Ti	-1.0	-0.20	-0.41	-0.25*	0.00	Ti	10 T.			
Br	0.0	0.55	0.50	0.11	0.25	-0.41	Br			
C1		-0.60*	-0.53	0.25*	0.00	<b>0.</b> 00*	-0.33*	C1		
Pb	-1.0	0.33	0.51	0.38	0.03	0.17	0.82	0.08	РЪ	
S	0.41	-0.00	0.44	0.64	-0.01	0.33	0.53	0.76	0.63	S
Zn	-	0.85	0.39	-0.33	0.94	-0.34*	0.43		-0.00	-0.20 Zn

^{*}Less than 10 cases observed out of a total of 28 cases.

### Table 19. Correlation Coefficients for Lundgren Afterfilters (UCD Analyses)

-											
	Al						•				
Ca	0.0	Ca				••••					4
Fe		0.89	Fe						<u>-</u>	- 	
K		0,79	0.86	K			2 	•			•
Si		0.74	0.57	0.57	Si			. •	a Alfan		
Ti		-0.89	-0.41	-0.29	-0.64	Ti		,			
Br		0.66	0.82	0.36	0.45	-0.99*	Br			н 	
C1		0.20	-0.29	0.06	0.84		0.44	<b>C1</b>			•
РЪ	<b></b> `	0.48	0.72	0.41	0.38	0.46*	0.99	0.40	Pb		
S	<b></b> -	0.24		-0.10	0.24		0.05	-0.26	0.11	S	
Zn		0.93	0.82	0.51	0.82	-0.68*	0.70	0.44	0.56	0.23	Zn

^{*}Less than 5 cases were observed out of a total of 65 cases.

		Lund	lgren Impa	ictor	· ·		Stacked	Filter	
	· ·						Uni	<u>. CS</u>	HIVOL
	Stopp 1	Store 2	Stage 3	Stage 4	Aftei	filter	8 0 um	0 4 11m	
	SLage I	Stage 2	Stage J	Deage 4	· · ·	UCD***	0.0 μ	Ο.+ μ	
						Analyses			
Fe/Ca	0.80	0.74	0.72	0.49	0.91	0.89	0.97	0.93	0.55
Fe/K	0.91	0.84	-0.13	0.52	0.94	0.86	0.99	0.94	0.85
Fe/Si	0.95	0.96	0.43	0.34	0.88	0.57	0.98	0.95	0.56
K/Si	0.97	0.88	-0.63	-0.31	0.92	0.57	0.97	0.96	0.65
Ca/Si	0.71	0.68	0.78	0.84	0.98	0.74	0.97	0.97	0.15
Zn/Pb	0.84	0.37	0.63*	0.0	0.64	0.56	0.86	0.17	0.52
Zn/Si	0.26	0.08	0.96*	0.94	0.92	0.82	0.75	0.93	0.36
Zn/Fe	0.49	0.04	0.32*	0.39	0.94	0.82	0.84	0.93	0.22
Pb/Br	0.62	0.75	0.90	0.82	0.96	0.99	0.96*	0.94	0.96

Table 20. Summary of Correlation Coefficients

**

* Less than 5 cases observed in Data

** Correlation coefficients determined only when both elements of a pair were detected.

*** All other analyses done by TACB.

. 92

illustrated by the bromine to lead relationship. On the average, approximately three times more lead will be found on a filter than bromine, but the ratio depends on the filter type, the location in relation to the roadway, and the wind direction. Although there is more lead than bromine on the filters, the XRF system is approximately twice as sensitive to bromine as it is to lead, while the PIXE system is almost 9 times more sensitive to bromine than to lead. The complex interplay between these relationships is very difficult to take into consideration in calculating the correlation coefficients where both elements were not found in detectable amounts on a filter.

Table 20 shows the correlation coefficients are larger for both the coarse and fine Nuclepore filters than for the hivol Whatman 41 filters. Part of this difference is attributed to the fact that the hivol filters capture larger particles than the stacked filter units and that there is fines penetration through the Whatman filters. The Lundgren impactor stage 4 and the afterfilter capture particles in the same size range as the 0.4  $\mu$ m SFU filters do. All of the element pairs from the Lundgren afterfilters and fine SFU filters listed in Table 20 show high correlation coefficients with the exception of the zinc and lead pair. The correlation coefficients found for the Lundgren impactor show that the probability of a direct correlation between any two elements changes as the particle sizes change. An example of this can be seen with the lead-bromine pair. As the particles captured by the Lundgren Impactors get smaller the correlation coefficients get larger. From this trend, one would expect to find a larger correlation coefficient for the fine 0.4 µm filter than for the coarse SFU filter. This was not found, but the hivol lead to bromine correlation coefficient is also close to one. This indicates that bromine and lead were correlated in all the particulate sampling. This was expected since bromine and lead particulates

#### come from automotive exhaust.

Good correlations were also anticipated between several of the primarily soil derived elements (i.e., Al, Si, K, Ca, Ti, Fe) which generally dominate the larger particle size ranges (Cahill, et al., 1979; Baum and Pitter, 1976). Several elements (i.e., Fe, Al, S, K, Zn) may be contributed by either soil or automotive sources. From the tables of correlation coefficients it can be seen that the soil related elements captured by the coarse (8.0 µm) SFU filters are highly correlated. The correlation coefficients between these soil related elements on the fine (0.4  $\mu$ m) SFU filters indicate they are still probably related in the smaller particle sizes but not as closely related as among the larger sizes. Only two soil related element pairs, iron-potassium and irontitanium, show correlation coefficients above 0.75 for the hivol filter data. One possible explanation for the improved correlations when the particulates are sized, is that particulates of one size could originate from the same This causes the composition of one particle size to remain essentially source. constant with the same elemental relationships. This reasoning would apply to both the SFU filters and the Lundgren Impactors which show better elemental correlations than the hivol which captures a large range of particle sizes.

The ratios between some of the elements that indicated correlations were calculated and are compared on a site by site basis for the hivol and the fine SFU filters, Tables 21 and 22. In Tables 23 and 24 these elemental ratios are presented for comparison between the hivol and the SFU filters from one of the Dallas sites and the San Antonio site. The bromine to lead ratios are approximately constant from site to site and have small standard deviations. Although the correlation coefficients for many of the element pairs analyzed from the fine SFU filters and the iron-titanium and iron-potassium pairs from the hivol filters indicated strong correlations, the means of the ratios vary

			1		De	1100		Can Anton	
Site		Dal					T		ILO
Ratios	1H45 N*	Mean	Standard Deviation	1H. * N	Mean	Standard Deviation	<u>100р 4</u> N	Mean	Standard Deviation
Ti/Fe	36	0.10	0.03	7	0.15	0.04	18	0.13	0.03
Ti/Si	30	0.05	0.02	7	0.03	0.01	16	0.08	0.03
Ca/Si	39	2.31	1.32	30	0.89	0.21	18	8.49	2.23
Fe/Si	35	0.51	0.25	28	0.19	0.08	18	0.59	0.14
K/Si	35	0.20	0.09	27	0.11	0.06	18	0.36	0.10
K/Fe	45	0.46	0.17	27	0.62	0.24	23	0.63	0.15
Pb/Si	29	0.72	0.53	18	0.34	0.40	18	1.29	0.51
Br/Pb	42	0.44	0.10	12	0.49	0.08	22	0.45	0.05
Fe/Pb	34	0.96	0.55	18	0.97	0.60	23	0.46	0.16
K/Pb	33	0.41	0.31	19	0.48	0.27	23	0.29	0.13
C1/Pb	40	0.64	0.28	18	0.94	0.72	23	0.49	0.17
S/Pb	33	1.35	1.40	20	2.86	1.49	17	0.68	0.56
Br/Cl	39	0.86	0.51	10	1.12	0.79	22	1.12	0.72
Br/Fe	33	0.59	0.35	11	1.60	1.99	22	1.49	2.36
C1/S	42	0.75	0.62	27	0.48	0.44	17	1.00	0.56

## Table 21. Element Ratios from Hivol Data

at Different Sites (TACB Analyses)

6

*N: Number of filters where both elements were detected

## Table 22. Element Ratios From Fine (0.4 $\mu m)$

S	FU	Filters	at Di	fferent	Sites	(TACB	Analyses)	)
		The second s	WELLIGHT AND ADDRESS AND ADDRESS ADDRES		and a state of the	and independent in proceedings of the second s	and the second	

Cito.	Dallas			San Antonio				El Paso			
SILE	IH30 at Motley Drive			Loop 410 at Military Highway				IH10 at Luna Street			
Ratios	N*	Mean	Standard Deviation	N*	Mean	Standard Deviation	N*	Mean	Standard Deviation		
Ti/Fe	2	0.30	0.40				12	0.16	0.04		
Ti/Si	2	0.04	0.01		1. <u></u>		10	0.01	0.005		
Ca/Si	11	0.56	0.16	22	1.18	2.67	19	0.84	0.19		
Fe/Si	10	0.13	0.04	8	0.27	0.31	19	0.10	0.03		
K/Si	8	0.09	0.02	4	0.38	0.42	18	0.19	0.13		
K/Fe	8	0.70	0.21	4	0.81	0.38	23	1.62	1.16		
Pb/Si	3	0.11	0.02	23	1.70	1.08	13	0.30	0.18		
Br/Pb	1	0.56		59	0.43	0.09	19	0.50	0.13		
Fe/Pb	3	1.25	0.34	15	0.11	0.06	19	0.49	0.29		
K/Pb	3	0.84	0.10	7	0.18	0.13	18	0.67	0.05		
C1/Pb	3	2.26	0.78	27	0.42	0.39	13	1.06	0.44		
S/Pb	4	7.34	2.59	51	3.07	1.44	19	4.16	1.47		
Br/Cl	1	0.17		27	1.92	1.39	15	0.72	0.66		
Br/Fe				15	5.11	2.92	21	1.23	0.70		
C1/S	16	0.52	0.52	27	0.16	0.11	17	0.29	0.21		

*N:

Number of filters where both elements were detected.

		Hivol	Filter	Coarse (8.0 $\mu$ m) SFU Filter			Fine (0.4 µm) SFU Filter					
Elements	N*	Mean	Standard Deviation	N*	Mean	Standard Deviation	N*	Mean	Standard Deviation			
Ti/Fe	7	0.15	0.04	-			2	0.30	0.04			
Ti/Si	7	0.03	0.01	-			2	0.04	0.01			
Ca/Si	30	0.89	0.21	2	0.55	0.01	11	0.56	0.16			
Fe/Si	28	0.19	0.08	2	0.16	0.04	10	0.13	0.04			
K/Si	27	0.11	0.06	1	0.10		8	0.09	0.02			
K/Fe	27	0.62	0.24	1	0.83		8	0.70	0.21			
Pb/Si	18	0.34	0.40				3	0.11	0.02			
Br/Pb	12	0.49	0.08	-			1	0.56				
Fe/Pb	18	0.97	0.60	-		. <u></u>	3	1.25	0.34			
К/РЪ	19	0.48	0.27	-			3	0.84	0.10			
C1/Pb	18	0.94	0.72	<del>.</del> .			3	2.26	0.78			
S/Pb	20	2.86	1.49	-			4	7.34	2.59			
Br/Cl	10	1.12	0.79	-			1	0.17				
Br/Fe	11	1.60	1.99	-								
c1/s	27	0.48	0.44	. –			16	0.52	0.52			

#### Table 23. Element Ratios From Different Filters,

Dallas Site: IH30 at Motley Drive (TACB Analyses)

*N: Number of filters where both elements were detected.

#### Table 24. Element Ratios from Different Filters, San Antonio

					· · · · · · · · · · · · · · · · · · ·	<u> </u>				
	Hivol Filter			Coarse (8.0 µm) SFU Filter			Fine (0.4 m) SFU Filter			
Ratios	N [*]	Mean	Standard Deviation	* N	Mean	Standard Deviation	* N	Mean	Standard Deviation	
Ti/Fe	18	0.13	0.03						<b></b>	
Ti/Si	16	0.08	0.03		·					
Ca/Si	- 18	8.49	2.23	58	1.62	0.53	22	1.18	2.67	
Fe/Si	18	0.59	0.14	,58	0.13	0.03	. 8 %	0.27	0.31	
K/Si	18	0.36	0.10	32	0.07	0.02	4	0.38	0.42	
K/Fe	23	0.63	0.15	32	0.59	0.16	4	0.81	0.38	
Pb/Si	18	1.29	0.51	23	0.15	0.09	23	1.70	1.08	
Br/Pb	22	0.45	0.05	11	0.41	0.11	59	0.43	0.09	
Fe/Pb	23	0.46	0.16	23	1.05	0.48	15	0.11	0.06	
К/РЪ	23	0.29	0.13	18	0.68	0.35	7	0.18	0.13	
С1/РЪ	23	0.49	0.17	23	1.87	1.22	27	0.42	0.39	
S/Pb	17	0.68	0.56	17	1.28	0.59	51	3.07	1.44	
Br/Cl	22	1.12	0.72	12	0.30	0.17	27	1.92	1.39	
Br/Fe	22	1.49	2.36	12	0.41	0.17	15	5.11	2.92	
c1/s	17	1.00	0.56	38	1.38	0.62	-27	0.16	0.11	

Site: Loop 410 at Military Highway (TACB Analyses)

* N: Number of filters where both elements were detected.
from site to site and have large standard deviations.

Comparing the element ratios found on the different filter types, Tables 23 and 24, it is noted that the bromine to lead ratios vary only 15 percent between the different particle sizes. However, a comparison of the other element ratios found on the different filter types indicate the element ratios are different for different sized particles.

Combining the lead to bromine ratios for one filter type from all the sites yields a mean ratio of  $0.45 \pm 0.14$  for 73 observations on the hivol filters,  $0.39 \pm 0.16$  for 16 observations on the coarse SFU filters, and  $0.45 \pm 0.14$  for 91 observations on the fine SFU filters. The bromine concentrations were plotted versus the lead concentrations for the three filter types and a least squares line was fitted to the points. These plots are shown in Figures 34 - 36. These results differ somewhat from the usually accepted bromine to lead ratio of 0.37 for fresh automotive exhaust emitted by vehicles burning leaded gasoline and 0.17 for aged aerosols (Cahill, et. al. 1979; Baum and Pitter, 1976).







#### Comparison of Stacked Filter Units and High Volume Samplers

This section discusses the reproducibility of the SFU and hivol data by comparing data from side-by-side operation of the units. Four stacked filter units were run side-by-side on two different days, September 28, 1977 and September 29, 1977, both in San Antonio. The four SFU's were set up next to the sampling tower at station 3, 32 feet from and in a line parallel to the access road. They were placed 14.5 feet, 18 feet, 22 feet, and 35 feet west of the sampling tower and identified as stations 3a - 3d, respectively.

Tables 25 and 26 show the data collected from the two days of side-byside operation of the SFU's as analyzed by the TACB. The difference in the data from the four filter units is small and in the expected range of dissimilarities caused by particle capture anomalies, particle losses in handling, and possible differences in the XRF analyses. The largest differences between the collateral unit analyses are seen among the coarse filter data. On September 28, 1977 the coarse filter of SFU 3b showed a higher TSP concentration than did its neighbors. The calcium and silicon concentrations found by the coarse filter on unit 3b also show higher concentrations indicating more dust, high in calcium and silicon, was captured by SFU 3b than the other neighboring units. However, the calcium to silicon ratio remains constant for all four of the units. On September 29, 1977 the TSP, calcium, and silicon concentrations collected on the coarse filter of SFU 3a are higher when compared to the other filters, but again the calcium to silicon ratios remain the same for the four units run side-by-side on that day.

The total suspended particulate concentrations show the largest variations among the coarse particles captured by the 8.0  $\mu$ m filter. For the September 28, 1977 data, the standard deviation is 18.3 percent of the mean TSP concentration among the coarse particulates and 27.5 percent of the mean TSP con-

### Table 25. Data from Side-by-Side Operation of Four Stacked Filter Units on September 28, 1977 (TACB Analyses) San Antonio, Loop 410 at Military Highway

	Concentration $(\mu g/m^3)$						
Station	3a	3Ъ	3с	3d			
Element							
Ca	6.5	10.8	6.2	8.2			
K	0.2	0.5	0.2	0.3			
C1	0.9	1.6	1.0	0.9			
S	0.7	0.8	0.8	0.8			
Si	3.9	6.7	3.4	4.6			
Fe	0.5	0.8	0.5	0.6			
Pb	0.3	0.3	0.0	0.0			
Br	0.0	0.1	0.0	0.0			
A1	1.5	2.2	0.0	0.0			
Zn	0.0	0.0	0.0	0.0			
TSP*	44.6	70.6	48.4	53.3			

8.0 µm Pore Size Nuclepore Filter

0.4 µm Pore Size Nuclepore Filter

	C	Concentration $(\mu g/m^3)$						
Station	3a	3a 3b 3c		3d				
Element								
Ca	1.1	1.5	1.1	1.0				
K	0.0	0.0	0.1	0.0				
C1	1.1	1.0	1.3	1.0				
S	3.8	3.8	3.8	3.6				
Si	1.1	1.3	1.0	0.9				
Fe	0.0	0.0	0.4	0.0				
Pb	1.9	1.7	1.8	1.6				
Br	1.1	0.9	1.0	0.9				
A1	3.1	3.0	2.4	2.8				
As	0.0	0.0	0.2	0.0				
TSP*	23.2	20.7	20.3	22.7				

*TSP: To

Total Suspended Particulates

	C	Concentration $(\mu g/m^3)$					
Station	3a	3Ъ	3c	3d			
Element							
Са	7.5	7.1	6.0	5.4			
K	0.3	0.3	0.0	0.0			
<b>C1</b>	1.1	1.2	0.8	1.0			
S	0.9	0.7	0.8	0.7			
Si	3.6	3.3	2.6	2.4			
Fe	0.5	0.5	0.4	0.3			
TSP [*]	61.5	42.6	35.3	30.9			

## 8.0 µm Pore Size Nuclepore Filter

#### 0.4 µm Pore Size Nuclepore Filter

	Concentration $(\mu g/m^3)$					
Station	3a	ЗЪ	3c	3d		
Element	•			· · · · · · · · · · · · · · · · · · ·		
Ca	1.5	1.0	0.9	1.1		
C1	1.3	1.3	1.1	1.1		
S	4.4	4.2	3.9	4.4		
Si	1.5	0.0	0.8	1.0		
РЬ	1.7	1.7	1.6	1.7		
Br	1.0	0.9	0.9	1.0		
A1	4.7	3.5	0.0	3.5		
TSP*	23.7	26.2	29.1	27.5		

* TSP:

Total Suspended Particulates

centration on September 29, 1977. Among the fine particulates, the standard deviations are 5.5 percent of the mean TSP concentration on September 28, and 7.5 percent of the mean TSP concentration on September 29, 1977. When the TSP loadings are totaled from both the coarse and fine filters the standard deviations are 12 and 14 percent of the mean total TSP concentrations on September 28 and September 29, respectively.

Other deviations seen among the data collected from the collateral units are (a) aluminum loadings found on some filters but not on the same filter stage of neighboring units and (b) no detection of silicon on the fine filter of SFU 3c on September 29, 1977. These differences may be due to either analysis or particle collection discrepancies.

Three high volume air samplers were run side-by-side on September 29, 1977 at station 10 set in a line parallel to the road, 202 feet from the road edge. They were set up on the east side of tower 10 at distances, 0, 9, and 17 feet from the tower and indentified as stations 10a - 10c, respectively. The hivol at station 10b was placed with its face perpendicular to the road, while the hivols at stations 10a and 10c were faced parallel to the roadway (i.e. the hivols parallel to the road had the 10" sides of their filters paralleling the road). The hivol at station 10a was shutdown because of flow fluctuations; but the other two hivol units ran for 6.5 hours. The data from these two units is presented in Table 27. The data show close agreement among all the elemental concentrations and the difference in TSP concentrations found by the two units is ten percent. This agreement was not expected, since hivol results are dependent upon orientation with respect to wind directions.

A comparison was made between the SFU and hivol results for the times when the two type samplers were located close to each other. Table 28 presents the means and standard deviations of the SFU and hivol filter loading ratios

Concentrati	Concentration $(\mu g/m^3)$				
10ь	10c				
0.1	0.1				
9.8	11.5				
0.4	0.5				
0.9	0.9				
1.8	1.4				
0.1	0.1				
0.1	0.2				
0.8	0.8				
1.2	1.4				
0.6	0.6				
81.5	90.5				
	Concentrati 10b 0.1 9.8 0.4 0.9 1.8 0.1 0.1 0.1 0.8 1.2 0.6 81.5				

# Table 27. Data from Side-by-Side Operation of Two Hivol Air Samplers on September 29, 1977 (TACB Analyses) San Antonio, Loop 410 at Military Highway

*TSP:

Total Suspended Particulates

Element	* N	Mean	Standard Deviation
Ca	20	0.71	0.53
Fe	17	0.84	0.61
K	12	1.21	0.93
Si	14	3.86	2.72
Br	15	1.15	0.31
C1	19	2.52	3.42
Рb	17	1.33	0.53
S	17	6.24	2.51
Zn	3	1.67	1.15

# Ratio: (Total SFU Loading, $\mu g/m^3$ )/(Hivol Loading, $\mu g/m^3$ )

*N: Number of Comparisons

along with the number of comparisons. All of the SFU - hivol comparisons were made at the second site in Dallas (IH30 at Motley Drive) and the San Antonio site (Loop 410 at Military Highway). The ratios in Table 28 represent the total SFU loadings divided by the hivol loadings. These ratios were calculated when the same element was collected by both of the sampling devices.

Calcium and iron are the only elements showing more loading on the hivol filters than the SFU filters. This is an indication that the particles containing iron and calcium are generally larger than the particles captured by the SFU filters. At a windspeed of 2 km/hr the SFU has a cutpoint of 16.1 µm and a 7.1 µm cutpoint at 8 km/hr (McFarland, 1979). Suspended particulates larger than the cutpoint for the SFU are captured by the hivols; since the hivols have no distinct cutpoint and may capture sand grains up to 1000 µm and even larger objects, such as grasshoppers. The elements other than calcium and iron show ratios greater than one. This indicates particles composed of these elements are small enough to penetrate the Whatman 41 filter paper used in the hivol samplers.

According to Cahill (1978), the Whatman 41 filter paper has a 25 percent fine lead penetration relative to 0.4  $\mu$ m pore size Nuclepore filter paper. To correct the data for this fine lead penetration, 25 percent of the lead loading found by the 0.4  $\mu$ m Nuclepore filter was added to the lead loading from the hivol filter. A new ratio was then calculated by dividing the total SFU lead loading by the hivol lead loading corrected by the above mentioned process. This ratio was found to be 0.98 ± 0.35 which strongly confirms the 25 percent fine lead penetration.

The ratios of the SFU to hivol total suspended particulate loadings (TSP) are shown in Table 29 along with the dates and stations that identify the neighboring samplers. The mean value of the ratios is 0.622 ± 0.103, excluding

		TSP C	TSP Concentration $(\mu g/m^3)$						
		Hivol	Stacke	ed Filter	r Unit			3	
Date	Station Number		8.0 µm Filter	0.4 μm Filter	Total	(Total TSP (Hivol TSP	Concentration, Concentration,	μg/m ³ )/ μg/m ³ )	
8-3-77 8-4-77 8-10-77 8-10-77 9-28-77 9-29-77 10-5-77 10-6-77 10-6-77 10-7-77 10-7-77 10-7-77 10-18-77 10-18-77 10-19-77 10-19-77	7 5 2 5 10 3 3 5 1 5 9 1 5 9 1 5 9 1 5 9 1 9	68.4 165.5 21.4 51.5 25.2 135.8 95.1 93.9 55.8 69.8 67.2 120.5 104.3 85.6 76.6 90.9 86.9 82.7 86.2	NW* NW 8.2 17.0 17.9 44.6 42.6 34.5 20.2 25.5 95.2 34.6 37.2 33.4 35.8 36.7 31.9 20.3 30.7	* NW 18.8 19.4 21.1 23.2 26.6 23.6 21.1 23.2 25.7 32.5 33.8 44.0 23.8 18.9 NW * 30.4 17.6	$\begin{array}{c} \\ 27.0 \\ 36.4 \\ 39.0 \\ 67.8 \\ 69.2 \\ 58.1 \\ 41.3 \\ 48.7 \\ 120.9 \\ 67.1 \\ 71.0 \\ 77.4 \\ 59.6 \\ 55.6 \\ \\ 50.7 \\ 48.3 \end{array}$		 1.26 0.707 1.55*** 0.499 0.728 0.619 0.740 0.698 1.80**** 0.557 0.681 0.904 0.778 0.612  0.613 0.560		
10-20-77	1	85.5	29.1	20.1	49.2		0.575		
					Mean: Standa	ard Deviation	0.622 : 0.103		

#### Table 29. Comparison of SFU and Hivol TSP Loadings

*NW: Filter was not weighed

** SFU unit was attached to elevated Hivol causing air flows on both units to be questionable. Not used in calculation of mean and standard deviation.

*** Not used in calculation of mean and standard deviation.

**** An equipment truck drove within a few feet of the sampling devices stirring up dust. Not used in calculation of mean and standard deviation. the three data sets identified in the table. The standard deviation of 17 percent of the mean value indicates there may be a relationship between the TSP loadings of the two samplers; even though the hivols capture larger sized particles than the SFU's and the SFU's capture fine particles that pass through the hivol filters.

#### Road Vacuuming Operations

0

The particulates on a road surface come from rubber tires, tailpipe emissions, atmospheric fallout, spills from loads and undercarriages, antiskid materials, and roadway erosion. Resuspended material is thought to build up to a constant level within five days after a rainfall after which there is a balance between the sources of particulates and the amount being removed. The removal processes include weathering of the particulate into the roadway surface, resuspension processes as a result of moving vehicles, and washing by rainfall.

As a part of Project 528 a small section of the roadway surface at each site was vacuumed in order to find out what elements were on the roadway. A standard high volume sampler with a cyclone preseparator to remove gravel and other large particles was used. A suitable length of clear plastic tubing was attached to the inlet of the cyclone preseparator. The intake fitting from a small vacuum cleaner was attached to the other end of the tubing. In order to define the area to be vacuumed on the roadway, two plywood cutouts were prepared with square cutouts of four and nine square feet respectively. A strip of one-inch wide weather stripping consisting of soft polyurethane foam was glued to the bottom surface of the cutout, so that the hivol would not pull in particles from outside the defined area.

A road maintenance crew from the Texas State Department of Highways and Public Transportation blocked off one lane of traffic for each road vacuuming

operation. An outer lane was blocked off at one Dallas site, while an inner lane was blocked off at the other Dallas and the San Antonio site. In each case there were difficulties involved in shutting down the other lanes and in obtaining electrical power at those lanes. A sample was collected at the El Paso site, however, it was lost in transit to the TACB laboratory. The main difficulty in scheduling the roadway vacuuming operation was coordinating the roadway maintenance crew to stop traffic during a weekday at least five days after a rainfall. This problem forced some of the road vacuuming operations to be performed after the two projects had already stopped taking data at a site.

The data collected from the road vacuuming is presented in a table in Appendix B. From this data, ratios between selected elements were calculated and are presented in Table 30. It is interesting to note that the titanium to iron, bromine to lead, iron to copper, and silicon to copper ratios are approximately constant from site to site. The Ti/Fe ratio calculated from the hivol filter data, Table 21, is also essentially constant for the three different sites and in the same range as the ratios found from the vacuuming data. This suggests that the particles containing iron and titanium caught by the hivol filters come from the resuspension of roadway silt. The lead to bromine ratio found from the road vacuuming is quite different from the ratio (~0.45) found on all the filters at all of the sites. The Br/Pb road vacuuming ratios fall close to 0.17 which is the accepted value of this ratio for aged aeresols (Cahill et al., 1976, Baum and Pitter, 1976).

The calcium to silicon, calcium to iron, and calcium to copper ratios are much larger from the San Antonio site than the ratios from either of the Dallas sites. This is evidence of a cement plant in San Antonio, which was located upwind of the sampling site. The larger Ca/Si ratio for San Antonio is also

	Site	San Ant Eastbo Loop 410 at Mil	tonio, ound Litary Highway	Dall South IH45 at Foi	Dallas, Southbound IH45 at Forest Avenue		Dallas, Westbound IH30 at Motley Drive	
L	ocation	Inside Shoulder	Inside Lane	Inside Shoulder	Inside Lane	Outside Shoulder	Outside Lane	
E	lement Ratio							
	Ti/Fe	0.0712	0.0742	0.0636	0.0994	0.0781	0.0972	
·	Ti/Si	0.0519	0.0472	0.0636	0.114	0.0654	0.0942	
	Ti/Pb	0.0859	0.100	0.202		0.278	0.491	
. •	Fe/Si	0.729	0.636	1.00	1.15	0.837	0.969	
	Fe/Cu	107	85.8	99.3		115	<u> </u>	
	Fe/Pb	1.20	1.35	3.18	<b></b>	3.57	5.06	
	Ca/Si	12.7	13.2	4.90	5.37	4.68	5.27	
	Ca/Cu	1860	1780	486		642		
•	Ca/Fe	17.4	20.78	4.89	4.68	-5.59	5.43	
	K/Si	0.194	0.164	0.207	0.467	0.233	0.343	
	K/Fe	0.265	0.258	0.207	0.407	0.279	0.354	
	Si/Cu	147	135	99.2		137		
	Br/Pb	0.135	0.149	0.133		0.163	0.201	
÷	K/Pb	0.319	0.347	0.659		0.994	1.79	
•	Pb/Si	0.606	0.472	0.314		0.235	0.192	
	Br/Fe	0.113	0.111	0.0418		0.0458	0.0400	

Table 30. Element Ratios from Road Vacuuming Data

## seen in the hivol filter data.

The iron to lead ratios show the same trend as the titanium to lead ratios; they are large at the Dallas sites in comparison to the ratios at the San Antonio site. It was not surprising to find these ratios following the same trend since the Ti/Fe ratio was constant for all the sites. The higher iron and titanium content of the roadbed silt at the Dallas sites is probably due to a different topsoil and roadbed fill composition at the different sites. Dallas is located in the soil transition zone and its soil is likely to have a higher iron oxide content than the San Antonio soil. This trend of large Fe/Pb ratios at the Dallas sites can also be seen from the hivol filter data. In addition, the Ti/Si and the Fe/Si ratios from the vacuuming data indicate the highway silt at Dallas has a high iron and titanium content when compared to the San Antonio road silt.

#### General Discussion of Experimental Work and Results

One of the major difficulties in the experimental work was getting sufficient power to the various instrument locations. The hivol samplers were the major power drain. Thus, in future experimental particulate studies involving a large number of samplers, special attention should be given to planning the power distribution system.

There were several sample collection problems encountered during the study. It was initially desired to sample with the SFU's for a two hour period in the morning and a two hour period in the afternoon using a 5 1/min flow rate. The filter loadings were insufficient for XRF analysis. A sampling period of 10 to 11 hours and a flow rate of 22 1/min were necessary to obtain good filter loadings for analysis. This long sampling period hindered the analysis and interpretation of the data since in essentially all cases the wind direction would swing across the roadway from the predominant direction for a period of two or more hours. If the sampling time was reduced to no more than four hours, the wind direction swing across the roadway could be reduced to a manageable level.

One sampling problem arose in El Paso which was peculiar to that site. At this particular site there was little vegetation and grass along the roadway. Thus, when clean filters were placed on the hivols in preparation for a run, the wind would blow sand on the filters even though the units were not operating. The filters would become visibly dirty within a day.

There were several anomalies in the experimental data. In particular, for several cases the far upwind and downwind elemental and TSP concentrations were above all of the other concentrations closer to the roadway. These findings were verified by both TACB and UCD in the cases where dual analyses occurred. No special circumstances were noted during these runs to warrant

the higher far upwind and downwind concentrations.

In general, the contribution of the roadway to the ambient air total suspended particle loading was less than about 10 to 20  $\mu$ g/m³ based on the far upwind and far downwind sampling stations. These stations were usually about 200 ft from their respective road edge. There were several cases in the data where the TSP concentration exceeded the Environmental Protection Agency's maximum 24 hour allowable of 260  $\mu$ g/m³. Most of these cases were from the sampling stations located next to the roadway. Only in one or two cases was the 24 hour maximum concentration exceeded at the far upwind and downwind stations. These cases occurred in El Paso and blowing sand was usually responsible.

## Comparison of Results With Model Predictions

#### Introduction:

The comparison of data with the results of numerical predictive dispersion models is limited in scope due to two major difficulties: 1) the lack of any models for particulate dispersion and 2) the lack of information on particulate emissions. An alternative to the use of a particulate dispersion model, however, is the application of models for dispersion of gaseous compounds to fine particulates by making the assumption that the fine particulates behave essentially as a gas. Four of these models were used for comparison here.

#### Discussion of Models:

#### CALINE-2

This model is a revision of CALAIR, the original California line source dispersion model. It is based on the work of Turner (1970) and Ranzieri, et al. (1975). CALINE-2 employs a fixed box model together with a Gaussian dispersion model. The box model is used to simulate the initial dispersion of pollutants caused by the mechanical turbulence resulting from the moving vehicles. The box model assumes the emissions are uniformly distributed over the roadway and up to a fixed height, termed a "mixing lid." In an experimental program known as "Project Smoke" performed by the California Division of Highways (1972), this lid was determined to be about 12 feet above the roadway. The width of the box was determined to be equal to the width of all the traffic lanes plus the median plus a distance of about ten feet on both sides of the roadway. Three equations are used to predict the carbon monoxide concentrations for parallel, oblique and cross winds. The equations for the parallel and cross wind cases are based on the use of the continuous line source equation. The

oblique case is treated as a trigonometric relationship of the other two. A calibration factor is not required for each site; however, the the model was validated with experimental data from California only.

#### HIWAY

The HIWAY model was developed for the Environmental Protection Agency by Zimmerman and Thompson (1974), based on Turner's (1970) work. The calculational procedure is centered around numerical integration of the Gaussian plume point source equation for a finite length. For certain unstable and neutral conditions, an equation of the form suggested by Bierly and Hewson (1962) is used. From a computational viewpoint, this model involves a fairly time-consuming numerical integration procedure. No site calibration is required.

#### AIRPOL-4

This model, developed by Carpenter and Clemena (1975), also uses the Gaussian type of formulation. However, AIRPOL-4 is unique in that it uses two Euclidean coordinate systems, mapping the roadway coordinate system onto the receptor coordinate system. This transformation allows the Gaussian equation to be integrated over all roadway points contributing to the pollution at a particular location. The values of the dispersion coefficients are obtained from the Pasquill-Gifford curves, but they are modified to account for sampling time as a function of stability. Carpenter and Clemena (1975) give two equations that greatly reduce the required computation time for cases of nearly perpendicular or nearly parallel winds. No site calibration is necessary; however, the model was validated from Virginia data only.

#### The TRAPS Models

The original TRAPS model was developed by Maldonado and Bullin (1977). This model uses a combination of empirical fits and gradient type diffusion

formulas. It was verified using experimental data from Virginia, North Carolina, Tennessee and California. Data collected in Texas under Project 218 were not used in verifying either the original model or the TRAPS II and 52 models. The TRAPS II model (Polasek and Bullin, 1978) was developed from the original TRAPS model by making two simplifications that greatly increased the computational speed. The resulting model is approximately 50% faster than the original model, and ten times faster than any other highway pollution dispersion model. The original model was improved by substituting a polynomial equation for an iterative step in the program. In addition, the virtual origin, which will be discussed below, is now calculated by direct iteration rather than the secant method used in the original TRAPS model.

The total source of a highway is not concentrated in a single, thin line, but rather is diffused from a large area, with the original dispersion taking place due to the mechanical turbulance of the vehicles. The virtual origin is the location of a hypothetical line source that will produce a plume having the dispersion of the actual area source. In the TRAPS models, an empirical equation derived from dimensional and statistical analyses is used to calculate the roadedge concentration at a five foot height. The result is then matched to the Gaussian plume by direct iteration. Maldonado (1976) originally used the secant method to determine the virtual origin distance.

The equation describing the downwind, off the road concentrations employs the power law wind profile. However, the log-law profile more accurately describes the velocity profile near the earth, since it accounts for the site dependent friction velocity and surface roughness factors that the other does not. Therefore, the log-law profiles was determined for the site under the given conditions, and the power law profile fitted to

the results through the use of a fourth degree polynomial equation. In the original model, the power law profile was fitted to the log-law profile through the use of an iterative procedure.

#### Application of Models:

All of the above models were applied to two cases in order to compare the shapes of the predicted concentration profiles for fine lead at the 5 ft. level to the actual data. The two cases used are July 21 and August 11, 1977 at the Dallas at-grade site.

The data values for fine lead concentrations are average values for the duration of the sampling period, therefore the meteorological inputs for the models were derived from the hourly averages for the particular day. The run of July 21 was from 7:00 a.m. - 9:00 a.m. The meteorological data are missing for the hour 8:00 a.m. - 9:00 a.m. on that date, therefore the 8:00 a.m. hourly average values were used. The run of August 11 lasted all day. During the last two hours the wind came from the north. However, this is one of the cases that the wind came from the north for the shortest period of time and is therefore used here. Average values for the meteorological data include the period 7:00 a.m. - 4:00 p.m.

The site and receptor parameters are consistent with the site description already given.

#### Inputs Peculiar to Models

In addition to the data above, each model, except CALINE-2, requires some other inputs peculiar to the model. These inputs are:

AIRPOL-4A - prediction interval (corresponds to run duration)

- source height (0 feet)

- source length upwind and downwind (1 mile each direction)

HIWAY - mixing layer height (5000 meters)

- emission rate for each lane (total rate divided by number

of lanes)

TRAPS II - reference height (26 feet)

- roughness height (0.4 feet)

# Emission Factor and Manipulation of Model Outputs

Since no current emission factor for fine lead was available, a total emission factor of 100 gm/veh.mi. was used for all models. The predicted fine lead concentrations were in  $\mu$ gm/m³ for the CALINE-2 and HIWAY models. The AIRPOL-4A and TRAPS II models output concentration as ppm CO. These values are converted to  $\mu$ gm/m³ by multiplying ppm CO by 1250  $\mu$ gm/m³ppm CO.

The values of fine lead concentration resulting from the models were adjusted by a multiplying constant, c, in order to get them into the range of the data and compare the profiles to the data. A separate value of c was calculated for each model for each case. c is determined by a least squares routine as follows:

$$Er^{2} = \sum_{i=1}^{4} ([Pb]_{mi} - c[Pb]_{pi})^{2}$$

$$\frac{dEr^{2}}{dc} = \sum_{i=1}^{4} - 2[Pb]_{pi} ([Pb]_{mi} - c[Pb]_{pi}) = 0$$

$$c = \sum_{i=1}^{4} [Pb]_{mi} / \sum_{i=1}^{4} [Pb]_{pi}$$

where [Pb]_{mi} is the measured concentration at receptor i, and [Pb]_{pi} is the model prediction for receptor i. The values determined for c are given in Table 3.

#### TABLE 31

#### ROADWAY POLLUTANT DISPERSION

#### MODEL ADJUSTMENT FACTORS

Date	AIRPOL-4A	CALINE-2	HIWAY	TRAPS II
July 21	$2.0724 \times 10^{-3}$	$2.6267 \times 10^{-3}$	$5.6347 \times 10^{-4}$	$1.3171 \times 10^{-3}$
August 11	$1.5997 \times 10^{-3}$	$2.0441 \times 10^{-3}$	$6.2417 \times 10^{-4}$	7.0325x10 ⁻⁴

#### Discussion of Results:

Figures 37 and 38 display the adjusted 5 ft. fine lead concentration profile and the data values. It is easily observed that the shapes of the curves are fairly consistent and match the data suprisingly well. However upon inspection of Table ³, one sees that there is a wide variation in the adjustment factor between models for a given day. Since c is essentially an adjustment on the input emission factor for the model, it may be said that widely differing emission factors must be used in the different models in order to obtain approximately the same concentrations, or that there is little agreement in predicted concentration between models for the same emission factor.





## New York Particulate Data

As part of Project 528, the total suspended particulate data taken in New York under contract DOT-FH-11-9245 was manipulated into a more usable form. This involved calculating the average flow rates of the high volume air samplers used during each run and then reducing the total particulate weights on the filters to units of  $\mu g/m^3$ . The New York TSP data is presented in Appendix D.

#### LITERATURE CITED

- Ahlberg, M. S. and F. C. Adams, "Experimental Comparison of Photon-Particulate-Induced X-Ray Emission Analysis of Air Particulate Matter," X-Ray Spectrometry, 7, No. 2 (1978).
- 2. Barr, Anthony and James Goodnight, "SAS (Statistical Analysis System) Computer Library Subroutines," Department of Statistics, North Carolina State University, Student Supply Stores, NCSU, Raleigh, N.C. (1972).
- 3. Baum, E. J. and R. L. Pitter, "The Impact of Emissions from Transportation Sources on Air Quality: Atmospheric Aerosols," State of Oregon, Highway Division, Final Report, Air Quality 5149-621-10 (1976).
- ⁴ Beaton, John L., Andrew J. Ranzieri, and John B. Skog, "Air Quality Manual: Vol. I Meteorology and its Highway Line Sources." California Division of Highways Report No. CA-HWY-MR6570825(1)-72-11, Sacramento, California (1972).
- 5. Beaton, James L., Andrew J. Ranzieri and John B. Skog, "Air Quality Manual: Vol. I Mathematical Approach to Estimating Highway Impact on Air Quality." California Division of Highways Report No. CA-HWY-MR6570825(4)-72-08, Sacramento, California (1972).
- 6. Bullin, J. A. and J. C. Polasek, "Analytical and Experimental Assessment of Highway Impact on Air Quality," Texas Transportation Institute, Report 218-1, Chemical Engineering Department, Texas A&M University, College Station, Texas (1976).
- 7. Bullin, J. A. and J. C. Polasek, "Traffic Measurement for Roadway Pollution Studies by Radar Methods," APCA Jour., <u>28</u>, 2, (1978).
- Bullin, J. A. and J. C. Polasek, "Evaluation of Bag Sequential Sampling Technique for Ambient Air Analysis," Envir. Sci. and Tech., 12, 6, (1978).
- 9. Bullin, J. A. and C. Maldonado, "Modeling Carbon Monoxide Dispersion from Roadways," Envir. Sci. and Tech., <u>11</u>, 12, (1977).
- Bullin, J. A. and J. C. Polasek, "TRAPS II User's Guide: Analytical and Experimental Assessment of Highway Impact on Air Quality," Texas Transportation Institute, Research Report 218-2, Chemical Engineering Department, Texas A&M University, College Station, Texas (1978).
- 11. Bullin, J. A. and J. C. Polasek, "TRAPS 52 User's Guide: Analytical and Experimental Assessment of Highway Impact on Air Quality," Texas Transportation Institute Research Report 218-3, Chemical Engineering Department, Texas A&M University, College Station, Texas (1978).
- 12. Cahill, T. A., et al., "Analysis of Respirable Fractions in Atmospheric Particulates via Sequential Filtration," APCA Jour., 27, 7, (1977).

- 13. Cahill, T. A., "Comments on Surface Coatings for Lundgren-type Impactors," Ann Arbor Press, (to be published).
- 14. Cahill, T. A., <u>New Uses of Ion Accelerators</u>, J. F. Ziegler, editor, Plenum Press, New York and London, (1975).
- 15. Cahill, T. A. et. al., <u>The Character and Origins of Smog Aerosols</u>: <u>A Digest of the Results from the California Aerosol Characterization</u> Experiment, G. Hidy and P. Mueller, editors, Wiley, New York (1979).
- 16. Cahill, T. A., personal communication (1978).
- 17. Calder, K. L., "Eddy Diffusion and Evaporation in Flow over Aerodynamically Smooth and Rough Surfaces: A Treatment Based on Laboratory Laws of Turbulent Flow with Special Reference to Conditions in the Lower Atmosphere," Quart. Journal Mech. and Applied Math., II, 153 (1949).
- Calder, Kenneth L., "On Estimating Air Pollution Concentration From a Highway in an Oblique Wind," <u>Atmospheric Environment</u>, 7, 863 (1973).
- California Division of Highways, Material and Research Department, "Project Smoke" an unpublished study on atmospheric diffusion, Sacramento, California (1972).
- Carpenter, William A., and Gerardo G. Clemena, "The Theory and Mathematical Development of Airpol-4," Virginia Highway and Transportation Research Council, Report No. VHTRC75-R49, Charlottesville, Virginia (1975).
- 21. Carpenter, William A., Gerardo G. Clemena, and W. Richard Lunglhofer, "Supportive Data and Methods for the Evaluation of Airpol-4," Virginia Highway and Transportation Research Council, Report No. UHTRC75-R57, Charlottesville, Virginia (1975).
- 22. Cushing, K. M., J. D. McCain and W. B. Smith, "Experimental Determination of Sizing Parameters and Wall Losses of Five Source-Test Cascade Impactors," Eng. Sci. and Technol. <u>13</u> No. 6 (1979).
- 23. Ferek, R. J., et al., Ambient Air Comparison Tests of Stacked Filter Units with Virtual, Multiday, and Battelle Impactors," APCA Jour. (to be published).
- 24. Gilfrich, J. V. and L. S. Birks, "X-Ray Spectrometry," Am. Chem. Soc. Jour., Fundamental Reviews Section, pg. 279w, (1976).
- 25. Habegger, L. J., et al., "Dispersion Simulation Techniques for Assessing the Air Pollution Impacts of Ground Transportation Systems," Report for Argonne National Laboratory, Argonne, Illinois (1974).
- 26. Habibi, K. "Characterization of Particulate Lead in Vehicle Exhaust --Experimental Techniques, Envir. Sci. Technol. <u>4</u>, 239 (1970).

- 27. Hatch, T. F. and P. Gross, <u>Pulmonary Deposition and Retention of</u> <u>Inhaled Aerosols</u>, Academic Press, New York, (1964).
- 28. John, W., et al., "Anomalous Filtration of Solid Particles by Nuclepore Filters," Atm. Envir., (to be published).
- 29. Maldonado, C., MS Thesis, Chemical Engineering Department, Texas A&M University, College Station, Texas (1976).
- Martens, C. S., J. J. Wesolowski, R. Kaifer and W. John, "Lead and Bromine Particle Size Distributions in the San Francisco Bay Area," Atmospheric Environment, <u>7</u>, 905 (1973).
- 31. McFarland, Andrew R., "Evaluation of Inlet Systems for the Stacked Filter Units," EPA Contract No. 68-02-2720, Texas A&M University (1979).
- 32. Noll, K. E., "Air Quality Report: Interstate 40 Modification Between Stratford Road and Peter's Creek Parkway in Forsyth County, North Carolina," Report for Harland Bartholomew and Associates, Raleigh, N.C. (1973).
- 33. Noll, K. E., T. L. Miller, R. H. Raniney, and R. C. May, "Final Report on the Air Monitoring Program to Determine the Impact of Highways on Ambient Air Quality, Department of Civil Engineering, University of Tennessee, Knoxville, Tennessee (1975).
- 34. O'Connor B. H., G. C. Kerrigan, and P. Hinchliffe, "The Loss of Br from Thin-film Samples during X-Ray Fluorescence Analysis," X-Ray Spectrometry, 6, No. 2 (1977).
- 35. Parker, R. D., et al., "A Two Stage Respirable Aerosol Sampler Using Nucleopore Filters in Series," Atm. Envir., 11, pp. 617-621, (1977).
- 36. Pasquil, R., Atmosperic Diffusion, D. Van Nostrand Company, Ltd., London (1962).
- 37. Pasquil, F., Atmosperic Diffusion, 2nd Edition, Ellis Horwood Ltd., Sussex (1974).
- 38. Ranzieri, Andrew J., et al., "Advanced Air Quality Analysis," California Division of Transportation Training Manual, Sacramento, California (1975).
- 39. Ranzieri, Andrew J., Gerald R. Bemis and Earl C. Shirley, "Air Pollution and Roadway Location, Design, and Operation," California Division of Transportation Report No. A-DOT-TL-7080-75-15, Sacramento, California (1975).
- Rao, A. K., K. T. Whitby, "Nonideal Collection Characteristics of Single Stage and Cascade Impactors," Am. Ind. Hwy. Assoc. J., <u>38</u>, 174 (1977).

- Rhodes, J. R., "X-Ray Emission Spectrometry," American Laboratory, 7, 1972.
- 42. Rhodes, J. R., A. H. Pradzynski and R. D. Sieburg, "Energy Dispersive X-Ray Enission Spectrometry for Multielement Analysis of Air Particulates," paper given at Instrument Society of America Symposium, San Francisco, California, May 1972.
- 43. Robbins, J. A. and F. L. Snitz, "Bromine and Chlorine Loss from Lead Halide Automobile Exhaust Particulates," Envir. Sci. Technol. <u>6</u>, 164 (1972).
- 44. Skogerboe, R. K., D. L. Dick, and P. J. Lamothe "Evaluation of Filter Inefficiency for Particulate Loading Under Low Loading Conditions," Atmospheric Environment, <u>11</u>, 243 (1977).
- 45. Terr Haar, G. L. and M. A. Bayard, "Composition of Airborne Lead Particles," Nature 232, 553 (1971).
- 46. Turner, D. Bruce, "Workbook of Atmospheric Dispersion Estimates,"
   U. S. Department of Health, Education and Welfare, Washington, D.C. (1970).
- 47. U. S. Environmental Protection Agency, AP-42, "Compilation of Air Pollutant Emission Factors, Supplement No. 5," Office of Air Programs, Research Triangle Park, North Carolina (1975).
- 48. Zimmerman, John L., and Roger S. Thompson, "Hiway: A Highway Air Pollution Model," National Environmental Research Center, Research Triangle Park, North Carolina (1974).

# APPENDIX A

# APPENDIX A

## Filter Catalog

Ō

A total of 980 different samples were collected as a result of Project 528. This appendix subdivides that number into the number of filters of each type collected at each location. Quantitative elemental analyses were performed on the filters by the Texas Air Control Board in Austin and by the University of California at Davis/Air Quality Croup. The number of filters analyzed by each group is tabulated as to filter type and sampling location.

. 1

# Appendix A

# Filter Catalog

		]	Instrume	nt ⁽¹⁾			
Site ⁽²⁾	sfu ⁽³⁾	_{HV} (3)	С	CAF ⁽³⁾	LA ⁽³⁾	L	Total
Dallas I	126	41	110	22	32	32	339
Dallas II	76	23	60	12	36	32	239
San Antonio	98	21	3	1	34	28	185
El Paso	70					24	94
Road Vacuuming		11	10	2		<b></b>	23
Total	370	96	183	37	78	116	980

Total Filter Count

(1) SFU: Stacked filter Unit

HV: High Volume Air Sampler

C: High Volume Cascade Impactor (Slotted Filters)

CAF: High Volume Cascade Impactors (Afterfilters)

L: Lundgren Impactors (Mylar Strips)

LA: Lundgren Impactors (Afterfilters)

(2) Site Location

Dallas I:	Dallas, IH 45 at Forest Avenue
Dallas II:	Dallas; IH 30 at Motley Drive
San Antonio:	Loop 410 at Military Highway
El Paso:	IH 10 at Luna Street

(3) All SFU, HV, CAF and LA filters were analyzed by the Texas Air Control

я,

Board.

Filters Analyzed by the University of California at Davis/Air Resources Board

Site	SFU*	HV*	С	CAF*	LA*	L	Total
D11 T							
Dallas 1	84				°ð .	ð	
Dallas II	.76	7	60	2	36	8	
San Antonio	20		3		34	7	
El Paso	18					6	
Road Vacuuming				2			

Instrument

* Reanalyzed using the UCD/ARB system.
APPENDIX B

## Appendix B

## Texas Particulate Data

This appendix presents all the data collected under Project 528, "Measurement and Analysis of Resuspended Dust from Texas Roadways." In addition, meteorological and traffic data for the particulate sampling days are presented. The meteorological and traffic data were collected under Project 218, "Analytical and Experimental Assessment of Highway Impact on Air Quality." All experimental data is available on magnetic tape from the Texas State Department of Highways and Public Transportation and NTIS. The report and data are also available at modest costs from Dr. Jerry A. Bullin, Chemical Engineering Department, Texas A&M University, College Station, Texas 77843, phone 713-845-3361.

The particulate data is arranged according to sampler type. Data from the different samplers are subdivided according to the sampling site, see the data directory. When both the Texas Air Control Board (TACB) and the Air Quality Group at the University of California at Davis (UCD) analyzed the same filter, the TACB analysis is followed by the UCD analysis.

The cascade afterfilter data is included in the hivol filter data, since both used the same size Whatman 41 filters. The cascade afterfilter data is marked and noted as cascade afterfilter data on the pages it appears. The cascade impactors were run at stations 1 and 3 at the Dallas "at grade" site (IH30 at Motley Drive), stations 2 and 7 at the Dallas elevated site (IH45 and Forest Avenue), and station 3 at the San Antonio Site on October 19, 1977.

The analyses from each of the four Lundgren impactor stages (when all had sufficient loading for analysis) plus the afterfilter data are grouped together from one run. The Lundgren impactors were run during the daylight

hours of a sampling week, that is from 2 to 4 days. The afterfilters were changed more frequently than the Lundgren strips. Therefore, the dates on the Lundgren strip data represent the day the sampling week began. However, the dates on the Lundgren afterfilters represent the actual day the afterfilters were used. The Lundgren impactor data was not corrected for flow rate. In calculating the particulate concentrations captured by the afterfilters a flow rate of 4 cfm was assumed. In actuality, the flow varied from 2.8 to 4 cfm.

Following the Lundgren data is the cascade impactor data. The cascade impactor strips run at the Dallas elevated site were too lightly loaded for UCD analyses. The data are given in filter loadings in  $\mu g/cm^2$ , since the active filter area of the slotted cascade strips was not known.

Following the cascade impactor data is the road vacuuming data. This data is presented for the two Dallas sites and the San Antonio site. The samples from the El Paso site were lost.

Meteorological and traffic data is presented at the end of this appendix. The data is grouped according to the site. Hourly averages of the meteorological conditions and hourly traffic counts are presented for all of the particulate sampling days, with the exception of December 1-3, 1977. Data from these three days were excluded because the Lundgren impactor data is incomplete, that is the afterfilters were lost as were the other samples taken on those days. The traffic data from the Dallas elevated site includes only the traffic count for the three south bound lanes of traffic. The three northbound lanes of traffic could not be counted by radar, as is discussed previously in this report.

## Table 32. Data Directory

	<u>i age</u>
High Volume Air Sampler Data	
Dallas Elevated Site	138
Dallas at Grade Site	146
San Antonio Site	154
Stacked Filter Unit Data	
Dallas Elevated Site	163
Dallas at Grade Site	180
San Antonio Site	192
El Paso Site	204
Lundgren Impactor Strip Data	
Dallas Elevated Site	212
Dallas at Grade Site	214
San Antonio Site	218
El Paso Site	224
Lundgren Impactor Afterfilter Data	
Dallas Elevated Site	228
Dallas at Grade Site	230
San Antonio Site	235
Cascade Filter Strip Data	
Dallas at Grade Site	239
San Antonio Site	245
Road Vacuuming Data	246
Meteorological and Traffic Data	
Dallas Elevated Site	248
Dallas at Grade Site	266
San Antonio Site	299
El Paso Site	325

DALLAS	IH 45 4	AT FORES	T AV.	4		* 		
HIGH VOL	UME AIR	SAMPLER	K	X. AIR	CONTROL	BOARD	ANALYSI	S
NOMINA	L FLOW F	RATE= 1	.1330 1	1**3/MIN	1			
DATE=	6 1	77						
START	TIME= 7	7 A.M.						
STOF T	IME= 9	A.M.						· .
NUMBER	OF OBSE	ERVATION	STATIC	INS=	8			
UNCORR	ECTED FO	DR 25% F	ENETRA	ION OF	FINES			•
			WEI	GHT (UG/	'M**3)	 		
STATIO	NS 1	2	3	4	5	6	7*	8
ELEMEN	T			1000 A.		1 1.1		
TI	0.1	0.0	0.1	0.i	0.0	0.i	0.0	0.1
CA	5.4	0.8	5.5	3.4	3.7	4.9	1.3	5.4
κ	0.0	0.0	0.5	0.2	0.4	0.3	0.0	0.5
CL	1.2	0.0	0.9	Θ.Θ	0.8	0.7	0.4	0.5
S	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.6
SI	2.3	0.0	1.7	0.0	0.0	2.1	0.0	0.0
ZN	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.1
CU	0.0	0.0	0.2	0.2	0.3	0.2	0.0	0.2
FE	1.1	0.0	1.2	0.8	1.0	1.1	0.0	1.2
PB	1.2	1.0	1.7	1.2	1.1	1.2	0.0	1.4
BR	0.5	0.4	0.8	0.3	0.4	0.4	0.0	0.5
TSP	36.8	14.7	36.8	0.0	29.4	22.1	14.7	22.1
(TOTA	L WT.)	•		· .				
RUN	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
(HRS)			e di Alianti di Alianti					

DALLAS:	IH 45 A	AT FORE	ST AV.				
HIGH VOLU	ME AIR	SAMPLE	R	FX. AIR	CONTROL	BOARD	ANALYSIS
NOMINAL	FLOW F	RATE=	1.1330 1	1**3/MI	N		
DATE=	6 1	77		•			
START T	IME=	1 P.M.	e e e e e e e e e e e e e e e e e e e				
STOP TI	ME= 6	P.M.					and the second second
NUMBER	OF OBSE	RVATIO	N STATIC	)NS=	7		
UNCORRE	CTED FO	DR 25%	PENETRA	TION OF	FINES		
			WEI	GHT (UG	/M**3.)	_	
STATION	S 1	2	4	5	6	7*	8
ELEMENT						·	
TI	0.1	0.0	0.1	0.0	0.1	0.0	0.1
CA	5.6	2.5	3.6	2.0	4.8	1.6	4.4
κ	0.6	0.0	0.4	0.0	0.5	0.0	0.3
CL	0.8	0.0	0.6	0.0	0.6	0.0	0.0
S	1.2	1.4	1.5	0.9	2.0	1.4	1.6
SI	1.8	0.0	0.0	0.0	0.0	0.0	0.0
ZN	0.2	0.0	0.0	0.0	0.0	0.0	0.0
CU	0.4	0.0	0.0	0.0	0.2	0.0	0.0
FE	1.5	0.0	0.6	0.0	0.9	0.0	0.7
PB	1.8	1.5	0.0	0.0	0.0	0.0	0.0
BR	0.5	0.9	0.0	0.0	0.0	0.0	0.0
TSP	98.1	44.1	147.1	44.1	139.7	14.7	103.0
(TOTAL	WT.)						
RUN	1.50	2.00	2.00	2.00	2.00	2.00	2.00
(HRS)			•				

.

* Cascade Impactor Afterfilter

DALLA	S: IH 45	AT FORE	ST AV.				
HIGH V	VOLUME AIR	SAMPLE	R	TX. AIR	CONTROL	BOARD	ANALYSIS
NOM	INAL FLOW	RATE=	1.1330	M**3/MII	N.		and the second
DATI	E= 62	77					· · · .
STAI	RT TIME=	7 A.M.	· · · · · ·				
STO	P TIME= 9	A.M.					
NUM	BER OF OBS	ERVATIO	N STATI	ONS=	5	1.00	
UNC	ORRECTED F	OR 25%	PENETRA	TION OF	FINES		·
	*		WE	IGHT (UG.	/M**3)		
STA	TIONS 2	4	5	6	7*		
ELE	MENT		-			1997 - 1997 1997 - 1997 - 1997	
TI	0.0	0.2	0.2	0.1	0.0		1
CA	1.3	11.7	11.6	8.0	1.0	•	• .
ĸ	0.0	0.5	0.8	0.6	0.0		
CL	0.8	2.8	2.7	2.4	0.0		
S	0.0	1.4	1.1	1.0	0.0	2	
SI	0.0	2.8	2.5	1.9	0.0		
ZN	0.0	0.0	0.2	0.0	0.0	· .	
CU	0.0	0.3	0.2	0.3	0.0		
FE	0.0	2.1	2.3	1.1	0.0		
PB	3.3	3.8	4.1	3.9	0.8		
BR	1.6	1.9	2.1	1.7	0.0	•	
TSP	80.9	191.2	213.3	183.9	80.9		the second s
(1)	DTAL WT.)						
RUN	2.00	2.00	2.00	2.00	2.00		
(HR.	S).						

I F	ALLAS:	IH 45 A	AT FORE	ST AV.	TX. AIR	CONTROL	BOARD	ANALYSTS
	NOMIN		ATE=	4 4 <b>3 3</b> 3 (3)	MAAZ/MT	N		
	DATE=	а. А. Э.	77	1110000		,,		
	START	TIME= 4	F.M.					
	STOP	TIME= 6	P.M.		•		· · ·	
	NUMBEI	R OF OBSE	RVATIO	N STATI	ONS=	5		
	UNCORI	RECTED FC	R 25%	PENETRA	TION OF	FINES		
			÷	WE	IGHT(UG	/M**3)		
	STATI	ONS 1	2	4	. 6	7*		
	ELEMEN	T				. *		
	TI	0.1	0.0	0.1	0.2	0.0		
	CA	11.1	1.8	7.5	9.3	1.1		
	К	0.4	0.0	0.4	0.5	0.0	· .	
	CL	1.5	0.8	0.8	0.0	0.0		
	S	2.0	1.7	1.7	2.8	1.1		
	SI	2.7	0.0	2.2	2.9	0.0	-	
	CU	0.0	0.0	0.0	0.2	0.0		
	FE	1.3	0.0	1.2	1.6	0.0		
	FB	2.1	0.9	0.7	0.0	0.0		
	BR	0.7	0.4	0.0	0.0	0.0		
	ISP	228.0	95.6	154.5	196.1	51.5		
	(TOTA	AL WT.)					•	1
	RUN	2.00	2.00	2.00	1.50	2.00		
	(HRS)							

×

* Cascade Impactor Afterfilter

ALLAS	IH 45 4	T FORE	ST AV.		CONTROL	DUVD	ANALYS	r k
HIGH VOL	UME AIR	SAMPLE	R	IX. HIN	LUNIKUL N	DUMED	PHIAPH I M	1. 47
NOMINA	L FLOW F	ATE=	1,1330	<u>n**3/n1</u>	N		1 - 1 - K	•
DATE=	6 3	77					ta de la set de la	
START	TIME= 7	7 A.M.					المشتيف فالمعاصف	- · · ·
STOP T	IME= 9	A.M.	•					
NUMBER	OF OBSE	ERVATIO	N STATI	ONS=	7			
UNCORR	ECTED FO	DR 25%	PENETRA	TION OF	FINES	an an g		
			WE	IGHT (UG	/M**3)			
STATIO	NS 1	2	3	4	5	7*	8	
FLEMEN	Т							
TT	0.2	0.0	0.1	0.2	0.1	0.0	0.1	
ΓΔ	9.3	1.1	11.3	8.0	8.2	0.7	8.8	
ĸ	0.6	0.0	0.5	0.4	0.7	0.0	0.7	
ni -	3.3	0.7	2.8	1.9	2.4	0.5	1.4	
с. С	1.9	1.1	2.5	2.0	1.3	0.0	2.1	
5 <b>1</b>	0.0	0.0	2.2	2.3	2.2	0.0	3.8	
7N	0.0	0.0	0.0	0.0	0.1	0.0	0.0	
C11	õ õ	0.0	0.2	0.2	0.3	0.0	0.0	
EE	3.73	0.0	2.0	1.3	1.9	0.0	1.6	
00	τ. 	2.5	3.2	2.6	3.2	1.0	2.1	
1" 40 T(E)	4 0	4 77	4 5	1.1	1.7	0.4	0.7	
DR	4 4 77 4		477 4	. 4 4 7 7	149.2	44 1	88.3	
121	147747 1997 - 1997 - 1	771	ገብጠላማ		1 W 7 A An			
- CIUIA	L W1.7	-	- <u>~</u> ~ ~		2 00	2 00	2 00	
RUN	1.00	~~00	x . 00	×. 00	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	AG & Ø Ø	A A VV	
(HRS)			•					

-----

IH 45 AT FOREST AV. DALLAS: TX. AIR CONTROL BOARD ANALYSIS HIGH VOLUME AIR SAMPLER NOMINAL FLOW RATE= 1.1330 M**3/MIN 7 77 DATE= 6 START TIME= 4 P.M. STOP TIME= 6 P.M. NUMBER OF OBSERVATION STATIONS= 4 UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT(UG/M**3) 4 7 4  $2^{\circ}$ 3 STATIONS ELEMENT 0.1 0.0 0.1 0.0 ΤI 0.8 4.9 5.6 2.0 CA 0.3 0.7 0.6 0.3 ĸ 0.0 0.5 0.6 0.3 CL 0.9 0.5 0.8 S 0.6 2.8 0.0 2.0 0.0 SI 0.0 0.1 0.3 0.0 CU 0.0 1.1 1.3 0.4 FE 0.0 1.4 0.5 0.6 PB 0.0 0.0 0.3 0.5 BR 66.2 110.3 132.4 80.9 TSP (TOTAL WT.) 2.00 2.00 2.00 2.00 RUN (HRS)

* Cascade Impactor Afterfilter

DALLAS:	IH 45 (	AT FORE	ST AV	TV ATD	CONTROL	BOARD	ANALYSIS
HIGH VOLU	ME AIR	SAMPLE	ኛ • • • • • • • • • •	[A. MIIN 499777871	- CONTINUE M		
NOMINAL	FLOW	RATE	1.1000 1	4**0/111			<u></u>
DATE=	6 8	77					
START T	IME=	7 A.M.	· · ·				•
STOP TI	ME= 9	A.M.		· · · · · · · · · · · · · · · · · · ·			
NUMBER (	DF OBSI	ERVATIO	NISTALL	UNS=	0 		
UNCORRE	CTED F	DR 25%	PENETRA	LLUN UF	FINES .		
		*	WE	IGHI (UG	/アュ**፡ɔ/ *	<i>m</i>	
STATION	S 1	. 2	4	. 5	{	8	
ELEMENT							· · · · ·
TI	0.2	0.0	0.2	0.2	0.0	V.A.	
CA	9.2	2.3	8.6	7.8	8.0	6.7	
к	0.8	0.3	0.9	0.6	0.0	0.8	
CL	1.0	0.5	1.2	1.0	0.0	8.0	
S	0.0	0.0	0.7	0.7	0.0	1.1	
SI	3.2	0.0	4.1	2.1	0.0	2.2	
ZN	0.2	0.0	Ø.1	0.1	0.0	0.1	
CU	0.2	0.0	0.2	0.0	0.0	0.3	1
FE	2.4	0.0	2.8	2.3	0.2	2.1	
PB	2.2	2.2	2.4	2.3	0.7	1.2	
BR	0.9	1.3	1.1	1.0	0.2	0.5	1
78	0.2	0.2	0.0	0.0	0.0	0.0	• •
TSP	235.4	125.0	191.2	147.1	125.0	88.3	
(TOTAL	WT.)			0 00	2 00	7 00	
RUN	2.00	2.00		at a 00	x: x 00	A	
(HRS)							

IH 45 AT FOREST AV. DALLAS: TX. AIR CONTROL BOARD ANALYSIS HIGH VOLUME AIR SAMPLER 1.1330 M**3/MIN NOMINAL FLOW RATE= 8 77 DATE= 6 4 P.M. START TIME= STOP TIME= 6 P.M. NUMBER OF OBSERVATION STATIONS= 6 UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT(UG/M**3) 2* 8 5 4 STATIONS 1 ELEMENT 0.1 0.0 0.0 0.1 0.1 0.1 TI 5.0 5.4 4.1 1.4 4.3 4.6 CA 0.5 0.3 0.5 0.2 0.5 0.5 ĸ 0.5 0.7 0.0 0.5 0.8 0.5 CL. 0.7 0.7 0.7 0.0 0.0 0.9 S 1.4 0.0 1.8 2.4 0.0 SI 1.5 0.0 0.0 0.0 0.0 0.0 0.1 CU 0.9 0.3 0.9 1.3 0.5 1.0 FE 0.0 0.0 0.0 0.9 0.0 0.0 PB 0.0 0.0 0.2 0.5 0.0 0.0 BR 0.2 0.0 0.0 0.0 0.0 0.0 ZR 117.7 51.5 66.2 161.8 110.3 139.7 TSP (TOTAL WT.) 2.00 2.00 2.00 2.00 2.00 2.00 RUN

(HRS)

* Cascade Impactor Afterfilter

D	ALLAS: I	H 45	AT FORE	ST AV.	. •			and the state
H.	IGH VOLUM	E AIR	SAMPLE	R	TX. AIR	CONTROL	BOARD	ANALYSIS
	NOMINAL	FLOW	RATE=	1.1330	M**3/MII	<b>4</b>		
	DATE=	6 9	77					
	START TI	ME=	7 A.M.					
	STOP TIM	E= 9	A.M.			•		
	NUMBER O	F OBS	ERVATIO	N STATI	ONS=	6		•
	UNCORREC	TED F	DR 25%	PENETRA	TION OF	FINES		
		*		WE	IGHT (UG)	/M**3 <u>)</u>		
	STATIONS	2	- 3	4	5	7*	8	
	ELEMENT							
1.0	TI	0.0	0.2	0.2	0.2	0.0	0.2	
	CA	2.1	10.0	10.7	12.4	1.6	9.4	
	ĸ	0.0	1.0	1.1	1.1	0.4	1.1	
	CL	0.9	1.3	1.4	1.3	0.5	0.9	
•	S	2.4	3.5	4.3	3.9	1.0	3.7	an a
	SI	2.0	11.5	13.0	15.3	0.0	11.1	
	CU	0.0	0.3	0.2	0.0	0.0	0.2	
	FE	0.0	2.2	2.6	2.9	0.4	2.1	
	PB	2.4	3.2	2.1	3.0	1.0	1.4	
	BR	1.4	1.1	1.0	1.4	0.3	0.4	
	AS	0.0	0.0	0.6	0.0	0.0	0.0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	ZN	0.0	0.0	0.0	0.2	0.0	0.0	
	SR	0.0	0.0	0.0	0.0	0.2	0.0	
	TSP 1	39.7	264.8	235.4	228.0	154.5	198.6	
	(TOTAL )	WT.)					· · ·	
	RUN	2.00	2.00	2.00	2.00	2.00	2.00	$= 2 \pi r_{\rm eff} + 2 \pi r_{\rm e$
	(HRS)					· · · · · · · · · · · · · · · · · · ·		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

		· · · ·				· · · ·	
DALLAS	IH 45 A	T FORES	ST AV.				
HIGH VOL	UME AIR	SAMPLER	₹ .	TX. AIR	CONTROL	BOARD	ANALYSIS
NOMINA	L FLOW R	ATE=	1.1330	4**3/MI	N		
DATE=	6 9	77					
START	TIME= 4	P.M.					
STOP T	IME= 6	P.M.					$(-1, \beta) = (-1, \beta)$
NUMBER	OF OBSE	RVATIO	STATI	DNS=	5		
UNCORR	ECTED FC	R 25% F	PENETRA	TION OF	FINES		
			WE	IGHT (UG	/M**3)		
STATIO	INS 2	4	5	7*	8		
ELEMEN	TT -		-				
CA	2.7	6.3	5.4	2.6	6.1		
ĸ	0.0	0.5	0.6	0.5	0.7		
- EI	0.7	0.9	0.7	0.5	0.6		
S	2.8	3.2	3.7	1.9	3.5		
ST.	2.7	6.0	7.1	2.5	6.4		
	0.0	1 0	- 1.0	0.0	1.1		
22	້	0.0	0.0	0.0	0.0	·	
	4 4	0.0	0.0	0.0	0.0		
<u></u>	0.0	0.0	0.0	0.0	7.9		
77.92D	0.0	4545	141 8	95 4	1.47 1		
135		1	10120				•
DUM	7 00	2 66	2 00	2 00	2 00		
ZUDEN	2. A VV	** * VV			An A 17 17		
(11(2)							
			5				
			•	·**			
DALLAS -	TH 45 4		T AU.	· ·		· · · · ·	
HIGH VOL	UME AIR	SAMPLER	,	X. AIR	CONTROL	BOARD	ANALYSIS
NOMINA		ATE= 1	.1330 M	1**3/MI	<b>V</b>		• *
DATE	A 10	77				•	
START	TTME= 7	A.M.					
STOP T	TME= 9	A. M.	•	· · ·	•		
NUMBER	DE OBSE	RVATION	STATIC	INS=	5		
UNCORR	FOTED FO	R 25% F	ENETRAT	ION OF	FINES		
ORCONIN	h	rt auter t	LIF 1	GHT CHG.	/M**3)		
CTATIO	N.C. 4	*	а А		8		
2141TO	1412 1	. <b></b>	- <b>T</b>		1.2		
	ີ ເ ເ	0 0	00	6 6	0 7		
	V	· · · · · · · · · · · · · · · · · · ·		Q 4	7 4		•
UA	112.1	<u> </u>		0.0	тат Д. Д		
Ň	1	0.0	₩ 4 13 4 13	4 7	57 A C		
UL.	197 102 102 102 102 102 102 102 102 102 102	V./	1 x x 1	شد ا	A 4		
2	5.2	5. 5. 7. 7.	D.4 / m	40.7	***** CD ***		
21	9.7	dia di t	0.7	10.0	0.0	•	the second s

0.4

2.2

1.4

0.5

0.0

5.9

235.4

2.00

(TOTAL WT.)

Cυ

FE

PB

BR

AS

AL

TSP

RUN (HRS) 0.0

0.0

2.0

1.1

0.0

0.0

117.7

2.00

145

0.3

1.4

1.1

0.5

0.0

0.0

66.2

2.00

0.0

1.8

0.9

0.6

0.7

0.0

205.9

2.00

0.2

1.5

0.0

0.0

0.0

0.0

198.6

2.00

```
DALLAS: IH30 AT MOTLEY DR.
HIGH VOLUME AIR SAMPLER
 TX. AIR CONTROL BOARD ANALYSIS
 NOMINAL FLOW RATE= 1.1330 M**3/MIN
 7 20 77
 DATE=
 START TIME= 4 P.M.
 STOP TIME= 6 P.M.
 NUMBER OF DESERVATION STATIONS=
 2
 UNCORRECTED FOR 25% PENETRATION OF FINES
 WEIGHT (UG/M**3)
 3*
 STATIONS
 2
 ELEMENT
 CA.
 1.1
 1.7
 Κ.
 0.0
 0.4
 CL
 0.5
 1.4
 5 .
 0.0
 0.7
 SI
 0.0
 1.9
 PR
 0.0
 0.6
 TSP
 14.7
 29.4
 (TOTAL WT.)
 RUN
 2.00
 2.00
 (HRS)
```

DALLAS: 1H30 AT MOTLEY DR. TX. AIR CONTROL BOARD ANALYSIS HIGH VOLUME AIR SAMPLER NOMINAL FLOW RATE= 1.1330 M**3/MIN 7 21 77 DATE= START TIME= 7 A.M. STOP TIME= 9 A.M. NUMBER OF OBSERVATION STATIONS= 3 UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT (UG/M**3) STATIONS 2 ELEMENT CA 2.3 0.4 ĸ 2.0 CL 4.0 SI 0.7 FE 67.2 TSP (TOTAL WT.) 1.75 RUN (HRS)

1H30 AT MOTLEY DR. DALLAS: TX. AIR CONTROL BOARD ANALYSIS HIGH VOLUME AIR SAMPLER NOMINAL FLOW RATE= 1.1330 M**3/MIN 7 22 77 DATE= START TIME= 7 A.M. STOP TIME= 9 A.M. NUMBER OF DESERVATION STATIONS= 5 UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT(UG/M**3) ***** 2 STATIONS ELEMENT 3.5 1.5 5.7 4.5 CA 0.3 0.0 0.0 0.4 0.3 ĸ 0.0 0.9 1.0 1.3 1.2 CL. 0.6 0.9 1.3 2.3 1.5 S 1.0 0.0 .4.4 2.3 3.0 6.1 SI 0.0 0.4 0.0 0.0 0.0 ZN 0.0 0.3 0.2 0.0 Cυ 0.0 0.9 0.8 FE 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.6 PH 33.6 100.9 139.7 36.8 TSP. 36.8 (TOTAL WT.) 1.75 1.75 2.00 2.00 RUN 2.00

* Cascade Impactor Afterfilter

DALLAS: IH30 AT MOTLEY DR. HIGH VOLUME AIR SAMPLER TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE= 1.1330 M**3/MIN 8 3 77 DATE START TIME= 7 A.M. STOP TIME= 6 P.M. NUMBER OF OBSERVATION STATIONS= 5 UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT(UG/M**3) * * 3 7 10 .4 STATIONS 1 ELEMENT 0.1 0.0 0.0 0.1 ŤI. 0.0 2.1 2.9 CA 0.2 0.4 2.7 0.1 0.3 0.3 0.3 0.1 ĸ 0.2 0.1 0.0 CL. 0.0 0.0 2.6 1.3 1.8 2.4 : 2.5 S 0.0 2.8 2.5 ŠI. 0.0 3.1 0.0 0.0 0.0 ZN 0.0 0.1 0.1 0.1 0.2 0.0 0.0 CU 0.6 FE 0.0 0.1 0.6 0.7 0.5 0.4 PB 0.0 0.9 0.5 0.2 0.3 0.0 BR 0.0 0.4 47.9 68.4 72.9 TSP 33.4 41.5 (TOTAL WT.) 11.00 10.75 10.75 10.50 11.00 RUN (HRS)

Cascade Impactor Afterfilter

DALLAS	: IH30 A	TMOTLE	Y DR.			
HIGH V	DLUME AIR	SAMPLE	R	TX. AIR	CONTROL	BOARD ANALYSIS
NOMI	NAL FLOW	RATE=	1.1330	M**3/MI	N	
DATE	= 84	77	1			
STAR	T TIME=	7 A.M.	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -			
STOP	TIME= 6	P.M.	a station of the			I.
NUMB	ER OF OBS	ERVATIO	N STATI	ONS=	4	
UNCO	RRECTED F	OR 25%	PENETRA	TION OF	FINES	
	*	*	ΨE	IGHT (UG	/#**3)	
STAT	IONS 1	3	5	10		
ELEM	ENT		a tang			
TI	0.0	0.0	0.1	0.1		
CA	0.2	0.6	6.5	3.2	:	
ĸ	0.1	0.1	0.5	0.4		
CL	0.0	0.2	0.7	0.3		
S	1.5	2.5	3.7	3.0		
SI	0.4	0.5	5.7	4.4	· .	
CU	0.0	0.0	· 0.1	0.1		: <u>.</u>
FE	0.1	0.1	1.5	0.8		
FB	0.0	0.8	1.6	0.6		
BR	0.0	0.5	0.7	0.3	· ·	
AS	0.0	0.1	0.0	0.0		· · ·
ZN	0.0	0.0	0.1	0.0		
AL	0.0	0.0	0.0	1.5		
TSP	37.4	44.1	165.5	78.9		
(TO	TAL WT.)			· .		
RUN	11.00	11.00	4.00	11.00		
(HRS	>		•			

DALLAS:	1H30 A	T MOTLE	Y DR.				
HIGH VO	LUME AIR	SAMPLE	R	TX. AIR	CONTROL	. BOARD AN	ALYSIS
NOMIN	AL FLOW	RATE=	1.1330	M**3/MI	N		
DATE=	- 8 5	77					
START	TIME=	7 A.M.					•
STOP	TIME= 9	A.M.	:				
NUMBE	R OF DBS	ERVATIO	N STATI	ONS=	5		
UNCOR	RECTED F	OR 25%	PENETRA	TION OF	FINES		
			WE	IGHT (UG	/M**3)		
STATE	1 2KG	*	*5		10		
E) EME	NT	- <b>bus</b> *		•			
Г <u>с</u>	·/*/		۵۵				
1	0 A	. <u>0</u> 0	~~~~ ~ ^	0 7	~		÷
- 55	\$7.4 A #	· • • •	· · · · · · · · · · · · · · · · · · ·	57.0 A **	· · · · · ·	•	
5 5	0.0	· · · · · · · · · · · · · · · · · · ·	0.8	<b>V</b> .7	. ¥.⊃		
2	చింది.	1.0	4.4	4.0	3.3		
<u></u>	D . 4)	0.0	. d. D	D. /	3.1		
69	0.5	0.0	0.2	0.0	0.2		
FE	0.4	0.0	0.8	0.5	0.5		
PB	0.0	Ø. 2	1.3	0.0	0.0		
BR	0.0	0.5	0.7	0.0	0.0		
AS	0.4	0.0	0.0	0.0	0.0		
TSP	257.4	191.2	411.9	235.4	242.7	. •	
TOT	AL WT.)		· · · ·				
RUN	2.00	2.00	2.00	2.00	2.00		•
(HRS)							

C

DALLAS AT GR	RADE SIT	re: 1H30	D AT MOT	FLEY DR	IVE		
HIGH VOLUN	AL AIR	SAMPLER		TX.	AIR CON	TROL BOA	RD ANALYSIS
NOMINAL FL	OW RATE	E= 1.	133				
DATE= 8	10 77						
START TIM	= 7 A	м.		4			
STOP TIME	- 6 P I	N N N N N N N N N N N N N N N N N N N					
		·····					
		•	WEICH		*3)		
	.*	2	7*	F 11007	ר <i>ו</i> כ	10	
STATION	· 1	· 2				10	
ELEMENI				4 5		1 0	
CA	0.4	2.0	1.3	4.2	2.5	1.9	
FÉ	0.2	0.4	0.2	0.7	0.4	0.5	
K	•	0.2	0.2	0.5	0.2	0.2	
SI	0.4	2.3	1.4	4.3	2.3	2.2	
CL	•	0.2	0.3	1.6	0.5	0.5	
PB	•	•	0.9	1.4	0.2	0.3	
S	0.2	0.4	0.8	1.3	0.6	0.6	•
TSP	2.67	21.40	16.05	51.49	22.63	25.22	
RUN TIME (HRS)	11.00	11.00	11.00	2.00	9.75	10.50	
		· .		3		• 1	

IH30 AT MOTLEY DR. DALLAS HIGH VOLUME AIR SAMPLER TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE= 1.1330 M**3/MIN 8 11 77 DATE= START TIME= 7 A.M. STOP TIME= 6 P.M. NUMBER OF DESERVATION STATIONS= 7 UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT (UG/M**3) 9 10 4 7 2 3 1 STATIONS ELEMENT 0.1 0.1 0.0 0.1 0.0 0.0 0.0 TI 2.8 2.7 3.0 2.5 0.8 3.3 CA. 0.4 0.2 0.2 0.3 0.2 0.1 0.1 0.2 ĸ 0.3 0.3 0.4 0.2 0.5 0.3 0.0 CL 112 1.4 1.4 1.4 1.2 1.1 0.6 5 3.2 2.8 3.0 2.7 0.8 3.1 SI 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ZN 0.3 0.3 0.0 0.1 0.1 0.3 0.0 CU 0.5 0.5 0.5 0.1 0.6 0.1 0.4 FE 0.5 0.3 0.4 0.9 0.5 0.0 PR 0.0 0.1 0.5 0.0 0.2 0.0 0.3 0.0 BR 0.0 1.4 0.0 0.0 1.4 0.0 0.0 AL 43.4 37.8 50.2 37.8 16.8 2.7. 33.4 TSP (TOTAL WT.) 11.00 11.00 10.50 10.50 10.50 10.25 10.30 RUN (HRS)

* Cascade Impactor Afterfilter

DALLAS AT GE HIGH VOLUM NOMINAL FL DATE = 8	RADE SI 1E AIR .OW RAT 11 77	TE: 1H3 SAMPLER E= 1.	0 AT MO 133 M*	UCD/ UCD/ *3/MIN	IVE AIR QUA	LITY GR	oup anai	LYSIS
WHATMAN 41	FILTE	R				· .		
			WEIGH	T (UG/M*	*3)			
STATION	1	2	3*	. 4	7	9	10	
ELEMENT							•	
CA	0.9	1.5	0.7	•	2.0	1.7	1.4	· ·
FE	•	•	•	0.3	•	• **	0.1	
K	•	•	•	0.5	•	0.4	0.6	
SI	• .	•	•.	0.1	•	0.1	•	2
T.I	•	•	0.6	0.5	0.9	•		
CO	•	2.2	•	, <b>.</b>	•	•	•	
BR	•	0.1	0.7	0.4	0.3	0.5	0.3	
CL	•	0.1	•	0.2	0.2	0.3	0.1	
MN	•	•	•	•	0.5	•	•	e de
NL	•		•	•	0.1	•	•	
PB	•	0.5	1.7	1.3	0.8	1.3	0.9	
V		•	•	0.5	•	•	•	
ZN	0.1	•	0.1	0.1	0.2	•	•	х
RUN TIME(HRS)	11.00	11.00	10.50	10.50	10.50	10.50	10.50	•

SAN ANTON HIGH VOLU NOMINAL DATE= START T STOP TI NUMBER UNCORRE	ID:LDC ME AIF FLOW 9 28 IME= ME= 0F DES CTED F	0P 410 / SAMPLI RATE= 3 77 8 A.M. 8 A.M. 5 P.M. 5 P.M.	AT MILI ER 1.1330 DN STAT PENETR	TARY I TX. ( M**3) IONS= ATION	HWY AIR C /MIN 1 OF F (UG/M	INES	BOARD	ANALYSIS
STATION	E 2						1 N 1	
EI EMENT	~ ~				. • •			
ha ha ha ba	- A 4		· · ·					
7.1 T.A	47.9	1				· · · ·		
5071 12	0.7	· · ·			-			
n m	57 A 5 A 7					÷		
1. L.	7.0 7.0		1 · · · ·				÷.,	
الد خم								
ZN	9.2		· · ·			• •		
CU	0.2	- :						
FE	1.3		• .					
PB	3.4	· .						
BR	1.7				2		•	· ·
TSP	135.8			-				
(TOTAL	WT.)		•		· · .	$\mathcal{P}_{(n-1)}$		

a

RUN

(HRS)

9.75

SAN ANTONID:LODP 410 AT MILITARY HWY TX. AIR CONTROL BOARD ANALYSIS HIGH VOLUME AIR SAMPLER NOMINAL FLOW RATE 1.1330 M**3/MIN DATE= 9 29 77 START TIME= 8 A.M. STOP TIME= 3 P.M. NUMBER OF OBSERVATION STATIONS= 3 UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT(UG/M**3) 10 3 10 STATIONS ELEMENT 0.1 0.1 TI 0.1 9.8 11.5 15.3 A3 0.5 0.4 0.4 ĸ 0.9 0.9 1.5 CL 1.4 1.8 1.9 SI 0.1 0.1 ZN 0.1 0.2 cu 0.2 0.1 0.8 1.2 0.8 FE 1.2 1.4 PB 3.6 0.0 0.6 1.8 BR 81.5 95.1 90.5 TSP (TOTAL WT.) 6.50 6.50 5.50 RUN

(HRS)

SAN ANTONID: LODP 410 AT MILITARY HWY HIGH VOLUME AIR SAMPLER TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE= 1.1330 M**3/MIN 10 5 77 DATE= START TIME= 7 A.M. STOP TIME= 6 P.M. NUMBER OF OBSERVATION STATIONS= 2 UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT (UG/M**3) STATIONS 3  $\mathbb{S}$ ELEMENT 0.0 0.1 TI 10.2 14.7 CA 0.4 0.5 ĸ 0.8 1.0 Cl. 0.9 0.9 2 0.1 0.1 ZN 0.2 0.2 CU 0.0 0.9 FE 1.8 2.0 PB 0.9 0.9 BR 0.0 0.2 BA 93.9 120.5 TSP (TOTAL WT.) 10.50 10.50 RUN

(HRS)

SAN ANTONID:LOOP 410 AT MILITARY HWY HIGH VOLUME AIR SAMPLER TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE= 1.1330 M**3/MIN DATE= 10 5 77 START TIME= 7 A.M. STOP TIME= 6 P.M. NUMBER OF OBSERVATION STATIONS= 2 UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT(UG/M**3) STATIONS 3 3 ELEMENT TI 0.0 0.1 CA 18.8 9.7 ĸ 0.7 0.3 CL 0.5 1.1 Ŝ 1.2 0.5 SI 1.0 0.0 ZN 0.2 0.1 CU 0.3 0.1 FE 1.1 0.5 PH 2.4 1.4 0.5 BR 1.1 BA 0.3 0.0 TSP 138.9 93.5 (TOTAL WT.) RUN 6.25 4.25

(HRS)

Sequential Operation

SAN ANTONID: LOOP 410 AT MILITARY HWY TX. AIR CONTROL BOARD ANALYSIS HIGH VOLUME AIR SAMPLER NOMINAL FLOW RATE= 1.1330 M**3/MIN DATE= 10 6 77 START TIME= 8 A.M. STOP TIME= 7 P.M. NUMBER OF OBSERVATION STATIONS= 3 UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT (UG/M**3) Q, STATIONS 5 1 ELEMENT 0.0 0.1 TI 0.1 7.2 8.4 -CA 6.7 0.3 0.3 0.4 ĸ 0.5 0.4 CL 0.4 1.4 1.1 2 1.5 0.9 51 0.7 0.0 0.0 0.1 0.1 ZN 0.2 0.2 0.2 CU. 0.5 0.6 FE 0.5 0.5 1.4 0.9 PR 0.3 0.6 0.4 BR 67.2 TSP 67.8 55.8 (TOTAL WT.) 11.17-RUN 11.33 11.17

(HRS)

SAN ANTONIO:LOOP 410 AT MILITARY HWY HIGH VOLUME AIR SAMPLER TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE= 1.1330 N**3/MIN DATE= 10 7 77 START TIME= 7 A.M. STOP TIME= 1 P.M. NUMBER OF OBSERVATION STATIONS= 4 UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT (UG/M**3) 5 STATIONS 9 3 1 ELEMENT 0.1 TI 0.1 0.1 0.1 13.7 CA 14.2 13.8 12.1 ĸ 0.5 0.5 0.4 0.5 CL 1.6 1.6 1.4 1.3 S 1.2 1.1 1.4 1.5 SI 1.2 1.3 1.3 0.0 0.2 0.1 ZN 0.1 0.1 cυ 0.4 0.2 0.3 0.3 0.9 0.9 0.9 0.7 FE 2.9 2.4 1.9 1.8 PH 1.4 0.9 0.8 BR 0.0 TSP 120.5 112.3 104.3 85.6 (TOTAL WT.) 5.50 5.50 5.50 RUN 5.25 (HRS)

SAN AN	ITONIO:LOO	P 410 P	T MILIT	ARY HWY		•	•
HIGH V	POLUME AIR	SAMPLE	R	TX. AIR	CONTROL	BOARD	ANALYSIS
NOMI	NAL FLOW	RATE=	1.1330	M**3/MI	N		
DATE	. 10 18	77	· · · ·				
STAR	T TIME=	7 A.M.					
STOP	TIME= 6	P.M.					
NUME	ER OF OBS	ERVATIC	N STATI	ONS=	4		
UNCO	RRECTED F	OR 25%	PENETRA	TION OF	FINES		· . •.
			WE	IGHT (UG	/#**3)		
STAT	IONS 1	3	5	9			
ELEM	ENT						
TI	0.1	0.0	0.1	0.1			· · ·
CA	8.4	7.0	12.5	9.4			
ĸ	0.6	0.2	0.7	0.5			
CL.	0.7	0.4	0.9	0.8		* .	
S	0.5	0.0	0.4	0.4			a tan
SI	1.2	1.0	1.8	1.5		· · ·	
ZN	0.1	0.1	0.2	0.1			
CU	0.4	• • • • •	0.3	0.2			
FE	0.7	0.4	0.9	0.7	· · · · · · · · · · · · · · · · · · ·		
PB	1.1	0.8	2.0	1.4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
BR	0.5	0.3	1.0	0.5			
RE	0.0	0.1	0.0	0.0			
TSP	76.6	54.0	90.9	86.9			
(10	TAL WT.)						· · · ·
RUN	11.33	11.17	11.17	11.17			. <b>.</b>

SAN ANTONIO:LOOP 410 AT MILITARY HWY HIGH VOLUME AIR SAMPLER TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE= 1.1330 M**3/MIN DATE= 10 19 77 START TIME= 7 A.M. STOP TIME= 6 P.M. NUMBER OF DESERVATION STATIONS= З UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT(UG/M**3) 3* 9 STATIONS 1 ELEMENT 0.1 0.0 0.1 TI 10.0 1.4 11.4 CA ĸ 0.5 0.1 0.5 0.3 0.5 0.5 CL 0.0 0.7 5 0.7 SI 1.4 0.0 1.4 0.0 ZN 0.1 0.1 0.4 0.0 0.3 CU FE 0.7 0.1 0.8 2.4 1.8 PH 1.5 BR 0.7 1.2 0.8 MN 0.0 0.0 0.1 0.0 v 0.0 0.0 TSP 82.7 33.1 86.2 (TOTAL WT.) RUN 10.50 10.67 10.75 (HRS)

Cascade Impactor Afterfilter

SAN ANTONID: LOOP 410 AT MILITARY HWY HIGH VOLUME AIR SAMPLER TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE= 1.1330 M**3/MIN DATE= 10 20 77 START TIME= 7 A.M. STOP TIME= 6 P.M. NUMBER OF OBSERVATION STATIONS= 1 : UNCORRECTED FOR 25% PENETRATION OF FINES WEIGHT (UG/M**3) STATIONS 1 ELEMENT TI 0.1 CA 10.4 ĸ 0.4 0.2 CL 5 0.3 SI 1.0 ZN 0.1 0.3 CU FE 0.3 1.2 PB ER 0.4 TSP 85.5 (TOTAL WT.) RUN 10.50 (HRS)

£

DALLAS	: IH 45 4	AT FORES	T AV.				
STACKE	D FILTER L	JNIT	1	FX. AIR	CONTROL	a deservativa 🗛	NALYSIS
NOMI	NAL FLOW P	RATE= (	.0050 )	1**3/MI	<b>V</b>		
DATE	- 6 1	77					
STAR	T TIME=	7 A.M.					
STOP	TIME= 9	A.M.					
NUME	ER OF OBSI	ERVATIO	STATI	)ns=	5		
PORE	SIZE= 8.	O UM					
	•		WE	IGHT (UG.	/M**3)		
STAT	IONS 1	2	3	4	6	7	
ELEM	ENT						
CA	3.0	5.9	0.0	2.0	0.0	4.7	
ZR	1.2	1.7	1.4	1.3	0.0	1.5	
RUN	2.00	5.00	2.00	2.00	2.00	2.00	
	•						

PORE SIZE= 0.4 UM

		WEIGHT(UG/M**3)								
STATIO	NS 1	2	3	4	6	7				
ELEMEN	T and a star									
TI	0.8	0.4	1.1	0.0	0.0	1.8				
CA	35.4	16.3	33.1	4.1	3.7	62.4				
ĸ	6.1	2.1	7.6	0.0	0.0	14.1				
S	8.0	13.3	13.2	9.9	7.0	16.8				
SI	84.1	21.2	75.2	0.0	0.0	157.2				
FE	7.1	3.4	16.5	0.0	0.0	23.9				
ZR	1.2	1.2	2.1	0.0	1.6	1.3				
SR	0.0	2.1	0.0	0.0	0.0	1.7				
PH	0.0	4.7	0.0	0.0	0.0	0.0				
AL	0.0	0.0	77.4	0.0	0.0	131.3				
CL	0.0	0.0	0.0	0.0	0.0	4.7				
ZN	0.0	0.0	0.0	0.0	0.0	1.5				
CU	0.0	0.0	0.0	0.0	0.0	1.5				
RUN	2.00	2.00	2.00	2.00	2.00	2.00				
(HRS)	•									

DALLAS ELEVA	ATED SI	TE: IH4	5 AT FO	REST AVE	ENUE			
STACKED_F	ILTER U				AIR QUA	LITY GRO	UP_ANA	LYSIS
NOMINAL FL	.OW RAT	E = 0.0	005 M*	*3/MIN				
DATE = 6	1 77		• •		· · ·.	a ga di		
START TIME	= 7 A	•'M•						
STOP TIME:	= 9 A.	M.						
NUCLEPORE	FILTER	, PORE	SIZE=	8.0 UM	•			· · ·
· · · · · · · · · · · · · · · · · · ·	5.		WEIGH	T(UG/M**	(3)			
STATION	1	2	3	4	6	7	с ¹	
ELEMENT				1				
CA	3.0	3.5	2.3	5.0	2.3	2.4		
FE	3.8	1.4	•	1.5	1.1	0.6		
K	1.5	0.4		•	2.6	1.3	· · · .	
SI	3.6	•	6.3	13.6	•	• 19		
TI	0.8	0.5	•.	1.6	•	•	· · · .	
P	3.2	1.1	1.8	•	2.4	0.6		
CO	•	•	•	•	3.5	•		
CL	2.8	3.3	•	6.4	6.3	3.7		
MN	0.8	•	•	•		•	• •	
PB	2.3	•	•		•	•		4
S	• .	0.8	5.7	•	2.4	0.9		
V	• •	•	1.5	•	•	•		
RUN	2.00	2.00	2.00	2.00	2.00	2.00		
TIME(HRS)			• . • • • • • • • • • •					

DALLAS ELEVATED SITE: 1H45 AT FOREST AVENUE STACKED FILTER UNIT UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE= 0.005 M**3/MIN DATE = 6 1 77 START TIME= 7 A.M. STOP TIME= 9 A.M. NUCLEPORE FILTER, PORE SIZE= 0.4 UM WEIGHT(UG/M**3) STATION 2 1 3 4 6 7 ELEMENT AL 2.9 . CA 1.2 1.2 5.8 1.9 1.2 . FΕ 1.0 1.0 1.0 1.3 0.9 K 1.4 . 1.1 2.7 . ٠ SI 2.5 3.4 1.1 . ΤI 1.4 . Ρ . 4.2 4.1 CO 6.1 CL 1.1 1.7 3.0 2.0 2.2 MN 0.6 0.8 • ٠ . PB 4.5 4.1 3.9 6.8 3.0 1.8 S 7.2 4.2 5.4 4.1 1.8 4.6 ۷ 0.6 0.7 1.1 1.3 ZN 0.4 RUN 2.00 2.00 2.00 2.00 2.00 2.00

TIME(HRS)

TALLAN.			11A 27				
DALLAN	1913 - 400 F	H FUKEA	· 1 AV	Y	CONTROL	UNAON	AND YSTS
STACKED I		19413	1 00500 N	· · · · · · · · · · · · · · · · · · ·	CONTROL	. EGHAD	P111111 1 45 3 45
NUMINA	L FLUW P		1.0000 r	12#3/1110	2		
DATE	<u>ა</u> კ	11. 					
START	TIME 4	F Pana					
STOP T	IME= 6	P.M.					
NUMBER	OF OBSE	RVATION	I STATIC	3N2=	6		
PORE S	IZE= 8.	O UM					
	· · · ·		WE	(GHT (UG/	(14**3)	4	
STATIO	NS 1	2	3	4	6	7	11 A.
ELEMEN	T					2 - A T	
CA -	0.0	4.9	11.3	2.2	4.1	0.0	
CL	0.0	0.0	0.0	4.0	0.0	0.0	
SI	0.0	0.0	26.3	0.0	0.0	0.0	
ZR	0.0	1.5	0.0	1.3	0.0	1.3	
SR	1.8	0.0	0.0	0.0	0.0	0.0	
RUN	2.00	2.00	2.00	2.00	5.00	2.00	
(HRS)					•		
PORE S	IZE= Ø	.4 UM	· ·				
			WE	IGHT (UG.	/14**3)	te esta de la	
STATIO	INS 1	2	3	4	6	7	
ELEMEN	T			•			
ĸ	2.1	0.0	0.0	0.0	0.0	0.0	
ZR	1.4	1.5	0.0	1.2	0.0	1.5	
SR	1.8	0.0	1.9	0.0	0.0	0.0	
PB	4.6	0.0	5.2	0.0	0.0	0.0	
BR	1.7	0.0	0.0	2.8	0.0	0.0	
S	0.0	0.0	0.0	7.8	0.0	0.0	
RUN	2.00	2.00	2.00	2.00	2.00	2.00	
111110 1			*				

DALLAS ELEVA	TED SIT	E: 1H45	AT FOR	REST AVE	NUE		• .	
STACKED FI	LTER UN	41T		-UCD//	VIR-QUAL	TY GR	DUP A	NALYSIS
NOMINAL FL	OW RATE	= 0.0.0	)05 M**	3/MIN				
DATE = 6	1 77		· · · ·					
START TIME	= 4 P.	М.						1 . A . A
STOP TIME=	6 P.M	1.						· · · .
NUCLEPORE	FILTER,	PORE S	SIZE= 8	3.0 UM				• · · · · · · · ·
			WE IGHT	"(UG/M**	3)	a de la compañía de l	1.1	-
STATION	1	2	3	4	6	7		
ELEMENT				· ·				•
CA	3.4	5.8	2.7	2.8	3.6	3.2		
FE	1.5	1.5	1.7	1.7	1.9	2.2		. *
K		1.2	2.2	1.8	•	•		
SI	•	•	•	9.7		3.1		
TI	•	0.7	•	•	0.8	1.2		
Р	0.8	•	•	2.0	•	2.7		
C0	6.3	•	•	6.6	•	•		
CL	•	3.8	3.5	•	•	•		
MN	•	•	0.9	•	0.8	•		
NI		0.4	0.7	0.3	•	•		
PB ·	•	1.6	•	•	•	1.3	•	
S	•	3.8	5.1	3.2	5.9	•		
RUN TIME(HRS)	2.00	2.00	2.00	2.00	2.00	2.00		
		· · · · · · · · · · · · · · · · · · ·					···· · · · · · ·	· · · · ·

DALLAS ELEVATED SITE: 1H45 AT FOREST AVENUE UCD/AIR QUALITY GROUP ANALYSIS STACKED FILTER UNIT 0.005 M**3/MIN NOMINAL FLOW RATE= 6 1 77 DATE = START TIME= 4 P.M. STOP TIME= 6 P.M. NUCLEPORE FILTER, PORE SIZE= 0.4 UM WEIGHT(UG/M**3) 4 6 7 2 3 STATION 1 ELEMENT 6.1 2.4 4.3 1.6 4.6 CA • 2.7 1.2 1.3 2.2 1.1 2.4 FE 1.7 1.8 1.2 1.1 К . . 3.6 11.4 9.2 4.8 S1 ÷ 2.3 0.8 ΤI • • 6.6 Ρ ٠ . 2.4 CO 2.8 3.4 2.1 2.5 1.3 CL 1.0 MN . . ٠ . 0.5 0.5 NI 2.0 2.2 5.0 3.8 3.5 4.4 PB 8.2 6.6 5.0 4.2 8.8 S 3.9 ۷ 1.0 0.9 1.3 ٠ . 0.3 ΖN . . 2.00 2.00 2.00 2.00 2.00 2.00 RUN TIME(HRS)

DALLAS: IH 45 AT FOREST AV. STACKED FILTER UNIT TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE= 0.0050 M**3/MIN DATE= 6 2 77 START TIME= 7 A.M. STOP TIME = 9 A.M. NUMBER OF OBSERVATION STATIONS= 6 PORE SIZE= 8.0 UM WEIGHT(UG/M**3) 2 STATIONS 1 3 4 6 ELEMENT PORE SIZE= 0.4 UM WEIGHT(UG/M**3) . . STATIONS 1 2 3 4 7 6 ELEMENT

DALLAS: IH 45 AT FOREST AV. STACKED FILTER UNIT TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE= 0.0050 M**3/MIN DATE= 6 2 77 START TIME= 4 P.M. STOP TIME= 6 P.M. NUMBER OF OBSERVATION STATIONS= 5 PORE SIZE= 3.0 UM WEIGHT(UG/M**3) STATIONS 1 2 4 6 7 ELEMENT PORE SIZE= 0.4 UM WEIGHT(UG/M**3) 2 STATIONS 1 4 6 7 ELEMENT

 $\sim$ 

DALLAS: IH 45 AT FOREST AV. STACKED FILTER UNIT TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE= 0.0050 M**3/MIN DATE= 6 3 77 START TIME= 7 A.M. STOP TIME= 9 A.M. NUMBER OF OBSERVATION STATIONS= 5 PORE SIZE= 8.0 UM WEIGHT(UG/M**3) 3 4 STATIONS 1 2 6 ELEMENT PORE SIZE= 0.4 UM WEIGHT(UG/M**3)

STATIONS 1 2 3 4 6 ELEMENT
STOP TIME=       6 P.N.         NUMBER OF DESERVATION STATIONS=       6         PORE SIZE= $3.0$ UM       WEIGHT (UG/M**3)         STATIONS       1       2       3       4       6       7         ELEMENT       CA $3.7$ $13.4$ $6.3$ $1.7$ $2.4$ $4.2$ ZR $1.3$ $2.2$ $0.0$ $2.4$ $0.0$ $0.0$ BR $2.5$ $0.0$ $0.0$ $2.4$ $0.0$ $0.0$ $1.7$ ZN $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ SI $0.0$ $0.0$ $13.5$ $0.0$ $0.0$ $0.0$ $0.0$ FE $0.0$ $0.0$ $3.0$ $0.0$ $0.0$ $0.0$ $0.0$ MD $0.0$ $0.0$ $2.00$ $2.00$ $2.00$ $2.00$ $2.00$ $2.00$	DALLAS: STACKED F NOMINAL DATE= START	IH 45 A ILTER U FLOW R 6 7 IME= 4	T FORÈS NIT ATE= 0 77 P.M.	T AV. T .0050 M	X. AIR **3/MIN	CONTROL	BOARD	ANALYSIS		
NUMBER OF DESERVATION STATIONS $UEIGHT(UG/M**3)$ PORE SIZE $3.0$ UM $WEIGHT(UG/M**3)$ STATIONS 1 $2$ $3$ $4$ $6$ $7$ ELEMENT $CA$ $3.7$ $13.4$ $6.8$ $1.7$ $2.4$ $4.2$ ZR $1.3$ $2.2$ $9.0$ $2.4$ $9.0$ $9.0$ BR $2.5$ $0.0$ $9.0$ $9.0$ $9.0$ $9.0$ $9.0$ SI $0.0$ $0.8$ $9.0$ $9.0$ $9.0$ $9.0$ $9.0$ FE $0.0$ $9.0$ $3.0$ $9.0$ $9.0$ $9.0$ $9.0$ $9.0$ BUN $7.00$ $2.00$ $2.00$ $2.00$ $2.00$ $2.00$ $2.00$ $2.00$	STOP T	IME O	17 1 j] 1 1911 A T T C N		al 5 m	A				
WEIGHT (UG/M**3)         WEIGHT (UG/M**3)         STATIONS 1       2       3       4       6         STATIONS 1       2       3       4       6       7         ELEMENT         CA       3.7       13.4       6.3       1.7       2.4       4.2         ZR       1.3       2.2       0.0       2.4       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <th 0.0<="" colspan="2" td="" th<=""><td>NUMBER</td><td>UP UPSE</td><td>KANITON</td><td>1 2194110</td><td>5 Y 43</td><td><b>u</b></td><td></td><td></td></th>	<td>NUMBER</td> <td>UP UPSE</td> <td>KANITON</td> <td>1 2194110</td> <td>5 Y 43</td> <td><b>u</b></td> <td></td> <td></td>		NUMBER	UP UPSE	KANITON	1 2194110	5 Y 43	<b>u</b>		
STATIONS 1       2       3       4       6       7         ELEMENT       CA       3.7       13.4       6.3       1.7       2.4       4.2         ZR       1.3       2.2       0.0       2.4       0.0       0.0         BR       2.5       0.0       0.0       0.0       0.0       1.7         ZN       0.0       0.8       0.0       0.0       0.0       1.7         ZN       0.0       0.8       0.0       0.0       0.0       0.0         SI       0.0       0.0       13.5       0.0       0.0       0.0         FE       0.0       0.0       3.0       0.0       0.0       0.0         MD       0.0       0.0       2.00       2.00       2.00       2.00	PURE 5.	12E = 3.	o un	WET	GHT (UG/	(***3)				
ELEMENT         CA       3.7       13.4       6.8       1.7       2.4       4.2         ZR       1.3       2.2       0.0       2.4       0.0       0.0         BR       2.5       0.0       0.0       0.0       0.0       1.7         ZN       0.0       0.8       0.0       0.0       0.0       0.0         SI       0.0       0.0       13.5       0.0       0.0       0.0         FE       0.0       0.0       3.0       0.0       0.0       0.0         MD       0.0       0.0       0.0       0.0       1.1       0.0         FUN       7.00       2.00       2.00       2.00       2.00       2.00       2.00	STATIO	NS 1	2	3	4	6	7			
CA       3.7       13.4       5.8       1.7       2.4       4.2         ZR       1.3       2.2       0.0       2.4       0.0       0.0         BR       2.5       0.0       0.0       0.0       0.0       1.7         ZN       0.0       0.8       0.0       0.0       0.0       1.7         ZN       0.0       0.8       0.0       0.0       0.0       0.0         SI       0.0       0.0       13.5       0.0       0.0       0.0         FE       0.0       0.0       3.0       0.0       0.0       0.0         MD       0.0       0.0       2.00       2.00       2.00       2.00	ELEMEN	T	·			·	A			
ZR       1.3       2.2       0.0       2.4       0.0       0.0         BR       2.5       0.0       0.0       0.0       0.0       1.7         ZN       0.0       0.8       0.0       0.0       0.0       0.0         SI       0.0       0.0       13.5       0.0       0.0       0.0         FE       0.0       0.0       3.0       0.0       0.0       0.0         MD       0.0       0.0       2.00       2.00       2.00       2.00	CA	3.7	13.4	6.8	3.1	2.4	4.2			
BR       2.5       0.0       0.0       0.0       0.0       1.7         ZN       0.0       0.8       0.0       0.0       0.0       0.0       0.0         SI       0.0       0.0       13.5       0.0       0.0       0.0       0.0         FE       0.0       0.0       3.0       0.0       0.0       0.0       0.0         MD       0.0       0.0       0.0       0.0       1.1       0.0         FUN       2.00       2.00       2.00       2.00       2.00       2.00	ZR	1.3	2.2	0.0	2.4	0.0	0.0	and the second second		
ZN       0.0       0.8       0.0       0.0       0.0       0.0         SI       0.0       0.0       13.5       0.0       0.0       0.0       0.0         FE       0.0       0.0       3.0       0.0       0.0       0.0       0.0       0.0         MD       0.0       0.0       0.0       0.0       0.0       1.1       0.0         FUN       7.00       7.00       2.00       2.00       2.00       2.00       2.00	BR	2.5	0.0	0.0	0.0	0.0	3.9	1		
SI         0.0         0.0         13.5         0.0         0.0         0.0           FE         0.0         0.0         3.0         0.0         0.0         0.0         0.0           MD         0.0         0.0         0.0         0.0         1.1         0.0         0.0         0.0         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00	78	0.0	0.8	0.0	0.0	0.0	0.0			
FE         0.0         0.0         3.0         0.0         0.0         0.0           MD         0.0         0.0         0.0         0.0         0.0         1.1         0.0           FUN         7.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00	12	0.0	0.0	13.5	0.0	0.0	0.0			
MB 0.0 0.0 0.0 0.0 1.1 0.0 FUN 7.00 2.00 2.00 2.00 2.00 2.00	FF	0.0	0.0	3.0	0.0	0.0	0.0			
RIN 2,00 2,00 2,00 2,00 2,00 2,00	MF3	0.0	0.0	0.0	0.0	5.1	0.0			
(HRS)	RUN (HRS)	2.00	2.00	2.00	2.00	2.00	2.00			

PORE SIZE= 0.4 UM

	· · · · · · · · · · · · · · · · · · ·		WEI	GHT (UG/	M**3)	
STATION	5 1	2	3	4	6	7
ELEMENT			and the second sec			· .
CA	1.9	13.4	7.4	0.0	1.3	2.5
S	7.0	0.0	0.0	0.0	0.0	0.0
сu	1.0	0.0	0.0	0.0	0.0	0.0
MO	1.5	1.5	1.7	0.0	0.0	0.0
78	1.7	0.0	1.5	0.0	1.4	1.5
88	2.3	0.0	0.0	2.1	0.0	0.0
PR	6.0	6.0	5.0	4.7	0.0	0.0
HR	2.9	2.3	2.1	1.7	0.0	0.0
Mh	0.0	1.9	0.0	0.0	2.0	0.0
SR	0.0	1.5	0.0	0.0	0.0	0.0
57	0.0	0.0	13.0	0.0	0.0	0.0
FF	0.0	0.0	3.1	0.0	0.0	0.0
RUN	2.00	2.00	2.00	2.00	2.00	2.00

Dł	ALLAS ELEVA	TED SIT	E: 1H45	AT FOR	REST AVE			
	STACKED FI	LIEK UP	*/ I				LIIIGRU	UP ANAL 1515
	NOMINAL FL	UW RAIL	= 0.0	05 M**	57MIIN			
					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19			
	START TIME	= 4 P.	, M ▲					·
	STOP TIME=							
	NUCLEPORE	FILIER,	PURE S			47 \		
				WEIGHI		(2)	_	
	STATION	1	2	3	4	б	7	
	ELEMENT							
	CA	4.4	11.8	2.0	2.9	3.2	• •	
	FE	1.7	2.2	0.3	0.9	1.8	0.9	1
	К	0.9	•	2.5	1.3	1.4	•	
•	SI	5.3	8.4	•	•	•	•	
	TI	• :	•	1.1	•	· · ·	•	
	CO	•	2.5	•	4.8	•	2.0	
	CU	1.1	•	•	1.0	• .	•	
	CL	•	2.4	6.3	8.7	•	2.2	
	NI	•	•	•	•		0.3	
	PB	2.1		•	•	•	1.3	
	S	•	•	2.8	•	6.5	0.9	
	$\mathbf{V}_{i}$ , $\mathbf{v}_{i}$	0.7	0.8	•	•	0.8	•	
		2.00	2.00	2.00	2.00	2.00	2.00	• • • •
								~

DALLAS ELEVATED SITE: 1H45 AT FOREST AVENUE UCD/AIR QUALITY GROUP ANALYSIS STACKED FILTER UNIT NOMINAL FLOW RATE = 0.005 M**3/MIN DATE = 6 7 77 START TIME= 4 P.M. STOP TIME= 6 P.M. NUCLEPORE FILTER, PORE SIZE= 0.4 UM WEIGHT(UG/M**3) STATION 2 3 б 4 7 1 ELEMENT CA 2.5 7.5 3.7 1.5 0.9 ٠, 1.2 1.5 FE 1.2 1.3 ٠ . Κ 1.7 2.0 1.2 . . . SI 11.5 1.6 . • • • . TI 0.8 0.8 0.7 . Ρ 6.3 3.3 3.3 • • 3.5 CO 3.5 3.2 3.2 4.7 2.8 CL MN 0.6 • . . 0.2 NI 0.7 • 5.6 2.4 3.2 PB 7.1 1.3 S 1.7 2.1 6.1 3.4 6.3 3.3 ۷ 1.3 0.7 • . . RUN 2.00 2.00 2.00 2.00 2.00 2.00 TIME(HRS)

1	DALLAS	IH 45 /	T FORES	ST AV.				
	STACKED	FILTER L	INIT	· 7	X. AIR	CONTROL	FOARD	ANALYSIS
	NOMINA	L FLOW F	ATE= 0	.0050 /	1**3/MIT	4		
	DATE=	6 8	77					
	START	TIME=	7 A.M.					
	STOP T	IME= 9	A.M.				•	
	NUMBER	DF OBSE	ERVATION	STATIC	)NS=	6		
	PORE S	IZE= 8.	O UM					
				WEI	(GHT (UG)	/M**3)		
	STATIO	NS 1	2	3	4	6	. 7	~
	ELEMEN	Т						
	CA .	6.3	10.1	5.9	7.2	5.2	9.2	
	ZR	0.0	0.0	0.0	0.0	1.5	0.0	
	IZ	0.0	16.1	0.0	0.0	0.0	13.9	
	FE	2.9	2.3	3.2	0.0	0.0	3.9	
•	CL	7.0	0.0	0.0	0.0	6.4	0.0	1
	TI	0.0	0.0	0.0	0.0	0.0	0.3	e je - i
	RUN	2.00	2.00	2.00	2.00	2.00	2.00	
	(HRS)					· · · ·		

PORE SIZE= 0.4 UM

			WE	IGHT (UG.	/14**3>	
STATIC	INS 1	2	3	4	6	7
ELEMEN	IT.					
TI	0.0	0.2	0.4	0.0	0.0	0.0
CA	11.0	13.9	15.5	4.0	5.5	5.2
S	5.6	8.0	0.0	0.0	0.0	0.0
MD	9.0	0.0	0.0	1.2	0.0	0.0
ZR	1.6	0.0	0.0	0.0	1.9	1.7
PB	4.2	7.4	4.4	5.8	5.2	0.0
ER	1.8	4.2	2.7	1.8	1.9	2.3
SI	23.7	-27.1	26.3	12.1	0.0	0.0
FE	3.3	4.3	4.5	0.0	2.3	0.0
CL.	4.5	7.4	7.4	4.7	4.2	4.0
RUN	2.00	2.00	2.00	2.00	2.00	2.00
(HRS)						

DATIAL FLOW FATE         0.005         M#*3/MIN           DATE=         6         8         77           START TIME=         7 A.M.         WEIGHT (UG/M#*3)           STATION         1         2         3         4         6         7           STATION         1         2         3         4         6         7           CA         3.5         4.1         2.0         3.1         3.7         3.2           FE         1.4         1.3         1.4         1.3         1.7         K         .         1.2         .           SI         1.1         2.0         .         10.0         .         .         .           CL         4.5         2.4         2.1         7.5         2.9         .         .           MN         .         .         .         0.5         .         .         .           STATION         1.7         .         0.6         0.8         .         .         .           CL         4.5         2.4         2.1         .         .         .         .         .         .         .         .         .         .         .         .	DALLAS ELEV/	TED SIT	E: 1H45 IT	AT FOR	ESTAVE UCD/A	NUE IR QUAL	ITY GROU	JP ANALYSIS
STOP TIME 9 A.M.         NUCLEFORE FILTER, PORE SIZE= 8.0 UM         WEIGHT (UG/MM*3)         STATION 1 2 3 4 6 7         ELEMENT         CA 3.5 4.1 2.0 3.1 3.7 3.2         FE 1.4 1.3 1.4 1.3 1.3 1.7         STOP TIME 9 2.5 10.0 .         SI 11.9 2.5 10.0 .         SI 11.9 2.5 10.0 .         SI 11.9 2.5 10.0 .         CO . 3.1 7.6 .         CO 0.5 .         NMN 0.6 0.8 .         PB 0.2         RUN 2.00 2.00 2.00 2.00 2.00 2.00 1.2         ZN	NOMINAL FI DATE = 6 START TIM	OW RATE 8 77 = 7 A	= 0.0 M.	05 M**	3/MIN		•	
NUCLEPORE FILTER, PORE SIZE= 8.0 UM         WEIGHT (UG/M**3)           STATION         1         2         5         4         6         7           ELEMENT         .         1.2         3         1.3         1.7         X           CA         3.5         4.1         2.0         3.1         3.7         3.2           FE         1.4         1.3         1.4         1.3         1.7         X           K         .         1.2         .         10.0         .           T1         .         .         1.2         .         .           CL         .4.5         2.4         2.1         7.5         2.9           MN         .         .         .         0.5         .           NI         0.7         .         0.6         0.8         .           PB         .         .         .         0.2         .         .           ZN         .         .         0.2         .         .         .         .           STATION         2.00         2.00         2.00         2.00         2.00         2.00         2.00           TIME (HRS)         .         <	STOP TIME	= 9 A M						
WE IGHT (UG/M#*3) STATION 1 2 3 4 6 7 ELEMENT CA 3.5 4.1 2.0 3.1 3.7 3.2 FE 1.4 1.3 1.4 1.3 1.3 1.7 K 1.2 1.6 1.0 . SI 11.9 2.5 10.0 . TI 1.2 . 1.6 1.0 . SI 11.9 2.5 10.0 . TI 1.2 P 1.1 5.0 CO . 3.1 7.6 . CL . 4.5 2.4 2.1 7.5 2.9 MN 0.6 0.8 . PB 0.6 0.8 . PB 0.6 0.8 . PB 0.6 0.8 . PB 0.2 RUN 2.00 2.00 2.00 2.00 2.00 2.00 1.2 ZN 0.2 RUN 2.00 2.00 2.00 2.00 2.00 2.00 TIME (HRS) DALLAS ELEVATED SITE: IH45 AT FOREST AVENUE STACKED FILTER UNIT UCD/AIR QUALITY GROUP ANALYS IS NOLLEPORE FILTER UNIT UCD/AIR QUALITY GROUP ANALYS IS NOLLEPORE FILTER UNIT UCD/AIR QUALITY GROUP ANALYS IS NOLLEPORE FILTER UNIT UCD/AIR QUALITY GROUP ANALYS IS NUCLEPORE FILTER UNIT UCD/AIR QUALITY GROUP ANALYS IS STATT TIME= 7 A.M. STOP TIME= 9 A.M. NUCLEPORE FILTER PORE SIZE= 0.4 UM WE IGHT (UG/M**3) STATION 1 2 3 4 6 7 ELEMENT CA 3.3 2.2 2.6 2.5 2.2 0.9 FE . 1.6 1.2 1.0 1.4 1.2 K 2.8 . 1.3 . 1.6 . TI . 2.3 CL 9,3 3.3 . 3.0 . 5.3 MN 0.6 . 1.1 . NI 0.6 . 1.1 NI 0.6 . 1.1 NI RUN 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	NUCLEPORE	FILTER,	PORE S	IZE= 8	.0 UM			
STATION       1       2       3       4       6       7         ELEMENT       CA       3.5       4.1       2.0       3.1       3.7       3.2         FE       1.4       1.3       1.4       1.3       1.3       1.7       5         K       1.2       1.6       1.0       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .				WE IGHT	(UG/M**	3)	_	
CA       3.5       4.1       2.0       3.1       3.7       3.2         FE       1.4       1.3       1.4       1.3       1.3       1.7         K       1.2       1.6       1.0       .         SI       11.9       2.5       .       10.0       .         F       1.1       5.0       .       .       .         F       1.1       .       .       .       .       .         CO       3.1       .       .       .       .       .         CL       .       .       .       .       .       .       .         CO       .       .       .       .       .       .       .       .         CL       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . <td>STATION ELEMENT</td> <td>1 .</td> <td>2</td> <td>3</td> <td>4</td> <td>6</td> <td>1</td> <td></td>	STATION ELEMENT	1 .	2	3	4	6	1	
FE       1.4       1.3       1.4       1.3       1.7         K       .       1.2       1.6       1.0       .         SI       11.9       2.5       .       10.0       .         TI       .       .       1.2       .       .         P       .       1.1       .       5.0       .         CO       .       3.1       .       7.6       .         CL       .       4.5       2.4       2.1       7.5       2.9         MN       .       .       .       0.5       .       .         NI       0.7       .       0.6       0.8       .       .         S       .       3.2       4.0       1.2       2.6       .         V       .       .       0.8       0.9       1.0       1.2         ZN       .       .       0.2       .       .       .         Stacked Filter UNIT       .       .       0.2       .       .         DATE       6       77       .       .       .       .       .         Stacked Filter UNIT       .       .       .	CA	3.5	4.1	2.0	3.1	3.7	3.2	
K       .       1.2       1.6       1.0       .         SI       11.9       2.5       .       10.0       .         TI       .       .       1.2       .       .         P       .       1.1       5.0       .       .         CO       .       3.1       .       .       7.6       .         CL       .       4.5       2.4       2.1       7.5       2.9         MN       .       .       .       0.6       0.8       .         PB       .       .       1.4       .       .         S       .       3.2       4.0       1.2       2.6         V       .       0.6       0.8       .       .         ZN       .       .       0.2       .       .         RUN       2.00       2.00       2.00       2.00       2.00       2.00         DALLAS ELEVATED SITE:       IH45 AT FOREST AVENUE       .       .       .       .         STACKED FILTER UNIT	FE	1.4	1.3	1.4	1.3	1.3	1.7	
SI 11.9 2.5 10.0 . TI	К	•	1.2	•	1.6	1.0	•	
TI 1.2	SI SI	11.9	2.5	•		10.0	•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	: <b>T</b> I	•	•	•	1.2	• •	•	
CO . $3.1$ . $7.5$ . $2.9$ MN	P	. •	1.1	•	5.0	7 6	•	
CL . 4.3 2.4 2.1 7.5 2.7 MN 0.5 . NI 0.7 0.6 0.8 . PB 1.4 S . 3.2 4.0 1.2 . 2.6 V 0.8 0.9 1.0 1.2 ZN 0.2 . RUN 2.00 2.00 2.00 2.00 2.00 2.00 TIME(HRS) DALLAS ELEVATED SITE: IH45 AT FOREST AVENUE STACKED FILTER UNIT UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE = 0.005 M**3/MIN DATE = 6 8 77 START TIME 7 A.M. STOP TIME 9 A.M. NUCLEPORE FILTER, PORE SIZE = 0.4 UM WEIGHT (UG/M**3) STATION 1 2 3 4 6 7 ELEMENT CA 3.3 2.2 2.6 2.5 2.2 0.9 FE 1.6 1.2 1.0 1.4 1.2 K 2.8 . 1.3 . 1.6 . CL 9.3 3.3 . 3.0 . 5.3 MN 0.6 . 1.1 . PB 4.6 10.7 6.7 6.9 5.6 3.5 S 6.3 4.2 7.5 5.5 4.6 3.2 V 1.1 ZN 0.3 0.3 0.6 RUN 2.00 2.00 2.00 2.00 2.00 2.00 2.00	00	•		2.1	21	7.0	2 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CL	•	4.0	2.4	2.1	0.5	2.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MN	°.7	•	•	0.6	0.2	•	
$rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{2}{rbothinspace{$		0.7	•	•	1 4	0.0	• .	
3       . $0.8$ $0.9$ $1.0$ $1.2$ $2N$ . $0.2$ . $0.2$ .         RUN $2.00$ $2.00$ $2.00$ $2.00$ $2.00$ DALLAS       ELE VATED SITE:       IH45 AT FOREST AVENUE         STACKED FILTER UNIT       UCD/AIR QUALITY GROUP ANALYSIS         NOMINAL FLOW RATE= $0.005$ M**3/MIN         DATE= $6$ $77$ START TIME= $7$ $A.M.$ STOP TIME= $9$ $A.M.$ NUCLEPORE FILTER, PORE SIZE= $0.4$ UM         WEIGHTUG/M**3) $WEIGHTUG/M**3)$ STATION $1$ $2$ $3$ $4$ $6$ CA $3.3$ $2.2$ $2.6$ $2.5$ $2.2$ $0.9$ FE $1.6$ $1.2$ $1.0$ $1.4$ $1.2$ K $2.8$ $1.3$ $1.6$ $1.1$ P $.$ $1.6$ $1.1$ $.$ P $.$ $1.0$ $.$ $.$ NN $.$ $0.6$	FD S	•	32	4.0	1.2	•	2.6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V se	•	2.2	0.8	0.9	1.0	1.2	
RUN       2.00       2.00       2.00       2.00       2.00       2.00         DALLAS ELEVATED SITE:       IH45 AT FOREST AVENUE         STACKED FILTER UNIT       UCD/AIR QUALITY GROUP ANALYSIS         NOMINAL FLOW RATE=       0.005       M**3/MIN         DATE=       6       77         START TIME=       7 A.M.         STOP TIME=       9 A.M.         NUCLEPORE FILTER, PORE SIZE=       0.4         WE IGHT (UG/M**3)         STATION       1       2       3       4       6       7         ELEMENT       CA       3.3       2.2       2.6       2.5       2.2       0.9         FE       .1.6       1.2       1.0       1.4       1.2         K       2.8       .1.3       1.6       .         P       .       .1.0       .       .         P       .       .1.0       .       .         RUN       .0.6       .1.1       .       .         P       .       .1.1       .       .         RUN       .0.3       .       .0.3       .       .         Image: CL       .0.3       .       .0.3       . <t< td=""><td>7N</td><td>•</td><td></td><td></td><td>0.2</td><td>•</td><td>•</td><td></td></t<>	7N	•			0.2	•	•	
DALLAS ELEVATED SITE: IH45 AT FOREST AVENUE         STACKED FILTER UNIT       UCD/AIR QUALITY GROUP ANALYSIS         NOMINAL FLOW RATE=       0.005 M**3/MIN         DATE=       6 8 77         START TIME=       7 A.M.         STOP TIME=       9 A.M.         NUCLEPORE FILTER, PORE SIZE=       0.4 UM         WE IGHT (UG/M**3)         STATTION       1         CA       3.3       2.2       2.6       2.5       2.2       0.9         FE       .       1.6       1.2       1.0       1.4       1.2         K       2.8       .       1.3       1.6       .         TI       .       2.3       .       .       .         P       .       1.0       .       .       .         P       .       .       .       1.1       .         NN       .       0.6       .       1.1       .         PB       4.6       10.7       6.7       6.9       5.6       3.5         S       6.3       4.2       7.5       5.5       4.6       3.2         V       .       .       .       .       1.1         RUN	RUN TIME(HRS)	2.00	2.00	2.00	2.00	2.00	2.00	
DATE= 6 8 77 START TIME= 7 A.M. STOP TIME= 9 A.M. NUCLEPORE FILTER, PORE SIZE= 0.4 UM WEIGHT(UG/M**3) STATION 1 2 3 4 6 7 ELEMENT CA 3.3 2.2 2.6 2.5 2.2 0.9 FE . 1.6 1.2 1.0 1.4 1.2 K 2.8 . 1.3 . 1.6 . TI 2.3 P 1.0 CL 9.3 3.3 . 3.0 . 5.3 MN 0.6 . 1.1 . NI 1.1 . PB 4.6 10.7 6.7 6.9 5.6 3.5 S 6.3 4.2 7.5 5.5 4.6 3.2 V 1.1 ZN 0.3 0.3 0.6 RUN 2.00 2.00 2.00 2.00 2.00 2.00 2.00	DALLAS ELEV STACKED F NOMINAL F	ATED SIT ILTER UN LOW RATE	E: 1H45 IT = 0.0	AIFON 05 M**	UCD// UCD// 13/MIN	IR QUAL	ITY GROU	UP ANALYSIS
NUCLEPORE FILTER, PORE SIZE= 0.4 UM WE IGHT (UG/M**3)         STATION 1 2 3 4 6 7         CA 3.3 2.2 2.6 2.5 2.2 0.9         FE . 1.6 1.2 1.0 1.4 1.2         CA 3.3 2.2 2.6 2.5 2.2 0.9         FE . 1.6 1.2 1.0 1.4 1.2         K         K         P         CL 9.3 3.3 . 3.0 . 5.3         MN . 0.6 . 1.1 .         NI	DATE = 6 START TIM STOP TIME	877 E= 7A. = 9A.N	M.	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NUCLEPORE	FILTER,	PORE S	SIZE= (	.4 UM			
STATION       1       2       3       4       6       7         ELEMENT       CA       3.3       2.2       2.6       2.5       2.2       0.9         FE       .       1.6       1.2       1.0       1.4       1.2         K       2.8       .       1.3       .       1.6       .         TI       .       2.3       .       .       .       .         P       .       .       1.0       .       .       .         P       .       .       .       .       .       .       .         OL       9.3       3.3       .       3.0       .       5.3         MN       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . <td></td> <td></td> <td>•</td> <td>WE IGH1</td> <td>「(UG/M*)</td> <td>3)</td> <td>· · _</td> <td></td>			•	WE IGH1	「(UG/M*)	3)	· · _	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	STATION	. 1	2	3	4	6		
FE       1.6       1.2       1.0       1.4       1.2         K       2.8       1.3       1.6       .         TI       2.3       .       .       .         P       .       1.0       .       .         P       .       1.0       .       .         P       .       1.0       .       .         QL       9.3       3.3       .       3.0       .       5.3         MN       .       0.6       1.1       .       .       .         NI       .       .       1.1       .       .       .         PB       4.6       10.7       6.7       6.9       5.6       3.5       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .	CA	3.3	2.2	2.6	2.5	2.2	0.9	
K $2.8$ $1.3$ $1.6$ $1.6$ TI $2.3$ $1.0$ $1.6$ $1.6$ P $1.0$ $1.0$ $1.6$ $1.6$ CL $9.3$ $3.3$ $3.0$ $5.3$ MN $0.6$ $1.1$ $1.1$ NI $1.1$ $1.1$ $1.1$ PB $4.6$ $10.7$ $6.7$ $6.9$ $5.6$ $3.5$ S $6.3$ $4.2$ $7.5$ $5.5$ $4.6$ $3.2$ V $$ $$ $1.1$ $$ $1.1$ ZN $0.3$ $$ $0.3$ $0.3$ $0.3$ $0.3$ $0.3$ $0.3$ $0.3$ $0.6$ RUN $2.00$ $2.00$ $2.00$ $2.00$ $2.00$ $2.00$ $2.00$ $2.00$	FE	•	1.6	1.2	1.0	1.4	1.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K	2.8	•	1.3	. •	1.6	•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TI	•	2.3	•	•	•	•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Р	•		1.0		•	<b>5</b> 7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CL	9.3	3.3		3.0	• •	2.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MN	•	•	0.6	٠	1.1	•	
PB       4.0 $10.7$ $0.7$ $0.5$ $5.0$ $5.5$ S $6.3$ $4.2$ $7.5$ $5.5$ $4.6$ $3.2$ V       .       .       . $1.1$ ZN $0.3$ .       . $0.3$ $0.3$ .         RUN $2.00$ $2.00$ $2.00$ $2.00$ $2.00$ $2.00$ $2.00$ TIME (HRS) $10.7$ $0.2$ $0.3$ $0.3$ $0.6$	NI .	16	10.7	67	م	5.6	3.5	
V 1.1 ZN 0.3 0.3 0.6 RUN 2.00 2.00 2.00 2.00 2.00 2.00 TIME (HRS)	rb c	6 3	4 2	7.5	5.5	4.6	3.2	
ZN 0.3 0.3 0.6 RUN 2.00 2.00 2.00 2.00 2.00 2.00 TIME (HRS)	S V	0.0	7.0 2	,,,,			1.1	
RUN 2.00 2.00 2.00 2.00 2.00 2.00 TIME(HRS)	ZN	0.3	•	•	•	0.3	0.6	
	RUN TIME (HRS)	2.00	2.00	2.00	2.00	2.00	2.00	

ń.

Q

D	ALLAS	(H 45 4	AT FORES	ST AV.				
\$	TACKED FI	ELTER L	JNIT		TX. AIR	CONTROL	BOARD	ANALYSIS
	NOMINAL	FLOW P	ATE= (	9.0050	M**3/MI	N		
	DATE=	5 8	77	•		•		
	START TI	ME=	P.M.					
	STOP TIM	1E= 6	P.N.		$(1,1) \in \mathbb{R}^{n} \to \mathbb{R}^{n}$			
	NUMBER (	F OBSE	ERVATION	V STATI	ENS=	6		
	PORE SIZ	(E= 8.	O UM					
				WE	EIGHT (UG	/持**3)		
	STATIONS	5 4	2	3	4	6	7	· ·
	ELEMENT						•	
	CA	5.7	9.9	15.0	4.9	3.3	4.5	
	к	0.0	0.0	0.0	0.0	2.1	0.0	
	ZR	0.0	2.2	1.4	0.0	0.0	0.0	
	BR	0.0	0.0	1.7	0.0	0.0	0.0	
	SI	0.0	14.7	0.0	0.0	0.0	0.0	
	FE	2.7	3.2	2.7	0.0	0.0	2.1	
	MO	0.0	1.2	0.0	0.0	0.0	0.0	
	CL	0.0	3.8	0.0	0.0	0.0	0.0	
	TI	0.0	0.3	0.0	0.0	0.0	0.0	
	RUN	2.00	2.00	2.00	2.00	2.00	2.00	
	(HRS)	•	·					

DALLAS ELEN	ATED SI	E: 1H4	5 AT FO	REST AV	FNHF		
STACKED F	ILTER U	NIT		UCD/	AIR QUA	LITY GROUP	ANALYSIS
NOM INAL F	LOW RATE	E= 0.0	005 M*	*3/MIN	<b>, , , , , , , , , ,</b>		
DATE= 6	5 8 77						
START TIN	1E= 4 P.	M.					
STOP TIME	E= 6 P.N	1.				· · · ·	
NUCLEPORE	E FILTER,	PORE	SIZE=	8.0 UM			
	·		WE IGH	T (UG/M*	¥3)		-
STATION	1	2	3	4	6	7 1	
ELEMENT	•						· · · ·
CA	•	4.5	7.5	4.0	1.7	4.0	
FE		1.3	1.5	1.3	•	1.5	
K	2.0	1.2	1.2	2.7	2.0	1.7	
SI	4.1	•	8.2	•	•	•	
	•	٠	•	1.9	٠	•	
P	•	٠		10.7		•	
	•	7 4	/.5	•	4.5	- <b>·</b> -	
MN	•	5.4	2.2	•	6.8	3.1	
Pila C	•	0.9	•		•••	•	
S V	•	2./ 1.7	•	4.2	2.2	5.8	÷
¥	•	(•)	•	1.0	•	•	
RUN	2.25	2.00	2.00	2 00	2 00	2 00	•
TIME (HRS)	6 7 <i>6</i>	2.00	2.00	2.00	2.00	2.00	- - 
	· · ·	· · · · · · ·					

U	ALLAS ELEVA	VIED ST	IE: 1H4	5 AT FO	RESTAVI	ENUE		
	STACKED F	ILTER U	NIT		UCD/	AIR QUA	LITY GROU	P ANALYSIS
	NOMINAL FL	OW RATI	E= 0.0	005 M*	*3/MIN		and the second	
	DATE = 6	8 77				• .		
	START TIME	= 4 P	.М.					
	STOP TIME=	= 6 P.I	۷.			1 <b>.</b>		
	NUCLEPORE	FILTER,	PORE	SIZE=	0.4 UM			. * ×
				WE IGH	T (UG/M*	¥3)		
	STATION	1	2	3	4	6	7	
	ELEMENT							
	CA	3.3	2.0	4.3	1.9	2.1	_	
	FE	1.5	0.9	1.5	0.8	1.3	1.2	
	К	2.8	1.3			1.4		· · ·
	SI	4.9		•	•	3 3	•	
	TI		1.0	•	•		•	
	Р	2.6	1.0			16	•	
	CO			35	•		•	
	CL	10.3		4.9	र र	1 6	•	
	MN .		•			0.5	0 5	
	PB	•	2.8	16	٠	0.5	0.5	
	S	4.3	3.2	35	15	55	5 1	
	7N		2.2	2.2			0.7	
	211	•	•	•	•	•	0.0	
	RUN	2.25	2.00	2.00	2.00	2.00	2.00	
	TIME(HRS)							

DALLAS ELEVATED SITE: 1H45 AT FOREST AVENUE STACKED FILTER UNIT UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE = 0.005 M**3/MIN DATE= 6 9 77 START TIME= 7 A.M. STOP TIME= 9 A.M. NUCLEPORE FILTER, PORE SIZE= 8.0 UM WEIGHT(UG/M**3) 3 6 7 2 1 STATION ELEMENT 8.8 5.3 5.9 4.0 2.3 1.8 1.9 1.5 5.9 4.0 -4.8 CA 2.1 FE 0.9 2.5 . ΚĽ • ٠ 2.4 6.7 10.0 . SI 1.7 ТΙ . **é** 1.1 • • •• 1.6 P • 5.1 4.7 . • CO • 4.8 5.2 . 2.5 3.4 CL 0.9 0.7 0.7 MN • . . . • • 0.4 • NI . . • 1.2 • 2.8 PB 1.7 7.6 • 2.8 S 1.2 ٧ • 2.0 1.1 · • • 0.3 • ZN . 2.00 2.00 2.00 2.00 2.00 RUN

DALLAS ELEVATED SITE: 1H45 AT FOREST AVENUE STACKED FILTER UNIT UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE= 0.005 M**3/MIN DATE = 6 9 77 START TIME= 7 A.M. STOP TIME= 9 A.M. NUCLEPORE FILTER, PORE SIZE= 0.4 UM WEIGHT(UG/M**3) 1 2 3 4 6 7 STATION ELEMENT • 1.2 2.4 18.6 1.5 CA 0.9 1.2 1.7 1.0 FE 2.4 0.5 • • К • 2.3 9.5 3.1 • • . SI 1.6 • . • • TL . • • 2.0 Ρ • 2.3 1.0 . BR • ... ٠ 4.8 4.1 6.0 • CL 
 7.5
 8.8

 4.0
 3.2
 6.4 2.9 10.5 8.1 PB 2.0 4.7 4.8 • S 0.4 0.5 V . . 2.00 2.00 2.00 2.00 2.00 2.00 RUN TIME (HRS)

176

TIME(HRS)

DATE= 6 9 77 START TIME= 4 P.M. STOP TIME= 6 P.M. NUMBER OF OBSERVATION STATIONS= 6 PORE SIZE= 8.0 UM METRIT (110 /MARY)

			WELDFFEQU/19883/					
STATION	S 1	2	3	4	6	7		
ELEMENT								
CA	ΘίΘ	5.4	2.4	0.0	2.6	0.0		
RUN (HRS)	2.00	2.00	2.00	2.00	2.00	2.00		

PORE S	IZE= 0	.4 UM				
			WE	IGHT (UG.	///**3)	
STATIC ELEMEN	INS 1	2	3	4	6	7
FE	4.4	0.0	0.0	0.0	0.0	0.0
CA	0.0	3.4	0.0	10.3	0.0	10.4
S	0.0	20.1	9.6	9.6	7.5	12.0
51	0.0	0.0	0.0	22.6	0.0	27.4
AL	0.0	0.0	0.0	126.4	0.0	0.0
CL	4.9	6.7	0.0	0.0	0.0	0.0
PR	0.0	4.7	0.0	0.0	0.0	0.0
RUN	2.00	2.00	2.00	2.00	2.00	2.00

17

DALLAS ELEVA	IED SII	E: 1845	AIFUR			ITY COO		VCIC
	NW DATE	· · · · ·	05 M**	3 /MIN	IN YUAL			.1313
DATE = 6	9 77	U.(	<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>				
START TIME	= 4 P.	М.	t					
STOP TIME=	6 P.N	1.						
NUCLEPORE	FILTER.	PORE S	SIZE= 8	.0 UM		1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19		
	·. ·.	e e ^{tr} es	WEIGHT	(UG/M**	3)			•
STATION	-1	2	. 3	4	6	7		. •
ELEMENT				121	${\cal A}_{1}=-{\cal A}_{1}$			
CA	7.9	5.8	3.9	2.8	5.2	5.1		
FE	1.5	2.4	1.1	1.9	1.8	1.6		
K	1.3	1.5	•••	•	3.3	1.9		
SI	4.4	•	10.2	•	9.6		· •	
	•	0.6	17 J.	1.8	77	1.4		
	6.2	6.2	<b>z</b> 1	1 8	15.0	7 1		
	0.2	0.2	1.1	4.0	1.2.0	/•4		
S S	<b>x</b> 3	32	•	2.8	•	47		
V	1.5	2.02	•	2.0	•	· · ·		
7N			0.2					
4411		•		•		• .		
RUN	2.00	2.00	2.00	2.00	2.00	2.00		
TIME(HRS)				· .	· •			

DALLAS E STACKE NOMINA DATE= START	LEVATED ST D FILTER UI L FLOW RATE 6 9 77 TIME= 4 P	IE: 1H4 NIT E= 0.0	5 AT FOR	UCD/ UCD/ *3/MIN	INUE AIR QUA	LITY GROU	P ANALYSIS
	1ME- 0 F.F						
NUCLEM	URE FILIER,	, PURE	WEIGH	J.4 UM T(UG/M**	*3)		
STATIO	N 1	2	3	4	6	7	
AL	•	•	•	•	•	1.6	
CA	•	1.3	•	•	• 47	•	
SI	3.1	2.3	•	÷	•	•	
CO	•	•	1.2	•	•	•	•
PB		2.8	•		•	•	
S	3.4	2.8	2.0	3.0	1.9	2.0	•
RUN T IME (HI	2.00 RS)	2.00	2.00	2.00	2.00	2.00	

Ð	ALLAS:	IH 45 Å	AT FORES	T AV.				+
5	TACKED F	ILTER 1	JNIT		TX. AIR	CONTROL	FOARD	ANALYSIS
	NOMINAL	FLOW J	RATE= (	.0050	M**3/MI	N		
	DATE=	6 10	77					
	START T	IME=	7 A.M.					
	STOP TI	ME= 9	A.M.					
	NUMBER	DF OBSI ZE= 3.	ERVATION .0 UM	ITATI	=240	5		
				WE	IGHT (UG	/%**3>		
	STATION	5 1	2	- 4	6	7		
	ELEMENT		· .		•			
	CA	4.3	9.4	6.3	4.5	6.4		
	RUN	2.00	2.00	2.00	2.00	2.00		·
	(HRS)							· · · · ·
			· ·	1.00				
	•			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				
	PORE SI	ZE= 0.	.4 UM				14.4	
	•			₩E	IGHT (UG.	/M**3>		
	STATION	5 1	2	4	6	7		· · · ·
	ELEMENT			•				
	S	15.5	0.0	20.2	2.9	22.0	1	
	CL	0.0	0.0	7.0	0.0	0.0		
	K	0.0	0.0	0.0	20.5	0.0		
	RUN	2.00	2.00	2.00	2.00	2.00		
	(HRS)	•		1	•			
		· · · · · ·						

DALLAS:	EH30 AT	MOTLEY	DR.	1			
STACKED F	ILTER 1	INIT		TX. AIR	CONTROL	BOARD	ANALYSIS
NOMINAL	FLOW P	RATE= 0	.0050	M**3/MIT	4		
DATE=	7 20	77					
START T	IME=	P.M.		· · ·			
STOP TI	1E= 6	P.M.			·	•	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
NUMBER (	OF OBSE	RVATION	STATI	ONS=	6		
PORE SI	ZE= 8.	O UM			· .		
			WE	IGHT'(UG,	(M**3)	* .	•
STATION	5 1	5	. 7	8	9	10	
ELEMENT	•			•			
CL	8.8	15.8	9.2	11.5	12.0	14.6	· .
ZN	0.0	5.4	0.0	5.5	0.0	0.0	
CU	0.0	0.0	0.0	0.7	0.0	0.0	
RUN	2.00	2.00	2.00	2.00	2.00	2.00	
(HRS)							

PORE SIZE= 0.4 UM

	i e e e e e		WE	IGHT (UG.	/***3>		
STATIO	NS 1	3	5	7	8	9	10
ELEMEN	T .						
CA	11.4	3.1	5.1	8.7	0.0	14.6	5.4
ĸ	0.0	0.0	0.0	3.1	0.0	0.0	0.0
CL	10.0	6.1	4.9	17.2	12.1	11.2	9.1
S	8.3	7.8	9.2	12.5	0.0	12.4	7.9
SI	25.7	0.0	17.6	24.0	0.0	0.0	0.0
ZN	0.0	0.0	0.0	0.0	4.2	0.0	0.0
FE	6.4	0.0	4.9	5.6	0.0	4.8	3.5
AL	0.0	0.0	0.0	0.0	0.0	94.6	98.4
RUN (HRS)	2.00	2.00	2.00	2.00	2.00	2.00	2.00

Di	ALLAS AT GF	RADE SI	TE: 1H3	O AT MO	FLEY DR	I VE			. 1
	STACKED F	ILTER U	NIT	· · ·	UCD//	AIR QUA	LITY GR	OUP ANA	LYSIS
	NOMINAL FI	OW RATE	E= 0.	005 M*	3/MIN				
÷,	DATE = 7	20 77							· · · ·
	START TIME	E= 7 A.	М.				· ·		
	STOP TIME	= 9 A.M	4.						
	NUCLEPORE	FILTER.	PORE	SIZE= 8	3.0 UM		· ·		•
		•	. :	WE IGHT	(UG/M**	13)			
	STATION	1	3	5	7	8	. 9	10	
	ELEMENT						-		
	AL	•	3.2	÷.	•				
	CA		1.9	3.8	1.4	1.2	1.5	2.1	
	FE	•		1.2	••••			0.3	
	K	0.9	_	1.8	1.6	1.3	0.9	1.5	
	SI		6.7	2.2				21	
	CO	•			•	1.0	0.7	0 5	
	CL	7.7	5.8	14.1	70	7 6	7 5	10.2	
	PR		240	28	1.5	1.0	1.5	10.2	
	10	•	. •	2.0	•	•	•	•	
	RUN	1 0/	1 0/	1 0/	1 0/	1 04	1 04	1 04	
	TIME(HDS)	1 • 27	1	1	1 + 24	1.574	• 1 • 94	1.94	
	FINE (BIND)						11.		

DALLAS AT GRADE SITE: 1H30 AT MOTLEY DRIVE UCD/AIR QUALITY GROUP ANALYSIS STACKED FILTER UNIT 0.005 M**3/MIN NOMINAL FLOW RATE= 7 20 77 DATE = START TIME= 7 A.M. STOP TIME= 9 A.M. NUCLEPORE FILTER, PORE SIZE= 0.4 UM WEIGHT (UG/M**3) 9 10 3 5 7 8 STATION 1 ELEMENT 1.0 0.8 1.7 1.5 1.1 ĊA 1.1 0.8 0.3 FΕ • : . . . . 0.8 1.3 0.7 Κ é . 1.7 2.1 SI 1.0 0.7 P • ٠ 0.7 CO ٠ ٠ 0.2 0.2 CU . . . 1.3 BR ٠ CL 0.9 4.7 2.0 1.1 ٠ . 2.1 2.1 PB 3.4 ٠ ٠ 0.8 1.1 S 2.0 1.4 0.2 0.5 ۷ ٠ . 1.94 1.94 1.94 1.94 1.94 1.94 1.94 RUN TIME(HRS)

DALLAS: IH30 AT MOTLEY DR.

STACKED FILTER UNIT TX. AIR CONTROL BOARD ANALYSIS

NUMINAL FLOW RATE= 0.0050 M**3/MIN

DATE= 7 21 77

START TIME= 7 A.M.

STOP TIME= 9 A.M.

NUMBER OF OBSERVATION STATIONS= 5 PORE SIZE= 8.0 UM

WEIGHT (UG/M**3)

Ð

STATIO	NS 2	3	5	. 9	10
ELEMEN	T				
RUN	2.00	2.00	2.00	2.00	2.00
(HRS)		· · · ·			

PORE SIZE= 0.4 UM

1			WE.	IGHT (UG.	/M**3)
STATIONS	2	3	5	9	10
CA	0.0	4.9	0.0	0.0	4.8
CL	0.0	13.8	7.9	0.0	6.4
2	0.0	7.0	6.7	8.0	5.7
ZN	0.0	1.2	0.0	0.0	0.0
AL	90.6	0.0	0.0	0.0	98.7
RUN (HRS)	2.00	2.00	2.00	2.00	2.00

DALLAS AT GRADE SITE: 1H30 AT MOTLEY DRIVE STACKED FILTER UNIT UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE = 0.005 M**3/MIN 7 21 77 DATE= START TIME= 7 A.M. STOP TIME= 9 A.M. NUCLEPORE FILTER, PORE SIZE= 8.0 UM WEIGHT(UG/M**3) 2 3 - 5 9 10 STATION ELEMENT 2.2 0.3 1.4 2.1 3.1 CA 0.7 1.1 1.4 FE • . . 1.2 0.8 Κ 1.9 • 3.8 SI 3.0 • • 0.8 Ρ • · . • • 0.7 0.5 CO . . 4.2 5.4 0.9 5.6 7.8 CL 3.1 PB . ٠ • • 0.8 S • . . 0.1 ٧ 0.6 • 0.4 ZN • . 1.94 1.94 1.94 1.94 1.94 RUN TIME(HRS)

DALLAS AT GRADE SITE: 1H30 AT MOTLEY DRIVE STACKED FILTER UNIT UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE = 0.005 M**3/MIN DATE= 7 21 77 START TIME= 7 A.M. STOP TIME= 9 A.M. NUCLEPORE FILTER, PORE SIZE= 0.4 UM WEIGHT (UG/M**3) 3 STATION 2 5 9 10 ELEMENT AL 1.8 CA 1.5 0.7 1.3 2.0 2.4 • FE 0.7 • • • ĸ 0.5 1.9 3.7 ٠ SI 2.3 6.3 7.7 10.7 . • BR 1.7 1.4 1.3 1.6 CL 0.8 1.6 5.3 2.8 1.2 PB 5.1 3.7 3.4 3.5 ٠ S 1.4 1.0 3.5 4.6 ۷ 0.5 0.7 • RUN 1.94 1.94 1.94 1.94 1.94 TIME(HRS)

DALLAS: IH30 AT MOTLEY DR. STACKED FILTER UNIT TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE= 0.0050 M**3/MIN DATE= 7 22 77 START TIME= 7 A.M. STOP TIME 9 A.M. NUMBER OF OBSERVATION STATIONS= 6 PORE SIZE= 8.0 UM WEIGHT(UG/M**3) STATIONS 1 3 7 4 8 10 ELEMENT RUN 2.00 2.00 2.00 2.00 2.00 2.00

(HRS)

PORE SIZE= 0.4 UM

			WE	IGHT (UG,	/14**3>	
STATIONS	5 1	3	4	7	8	10
ELEMENT		1				
CA	5.3	2.5	0.0	0.0	0.0	0.0
ĸ	0.0	7.7	0.0	0.0	0.0	0.0
CL	0.0	20.2	0.0	6.5	0.0	0.0
S	8.3	9.2	5.8	7.4	7.8	8.9
SI	17.7	0.0	0.0	0.0	0.0	0.0
ZN	0.0	5.6	1.3	0.0	0.0	0.0
TI	0.0	0.0	0.0	1.7	0.0	0.0
RUN	2.00	2.00	2.00	2.00	2.00	2.00
(HRS)						

DALLAS AT G	RADE SI	TE: IH3	O AT MO	TLEY DR	IVE			
STACKED F	ILTER U	NIT		UCD/	AIR OUAL	ITY GRO	UP ANAI	YSIS
NOMINAL FL	OW RAT	E= 0.	005 M*	*3/MIN				
DATE= 7	22 77		· · · ·	- 1				
START TIME	E= 7 A	м.						
STOP TIME=	= 9 A.I	И.						
NUCLEPORE	FILTER,	PORE	SIZE=	8.0 UM				
			WE IGH	T (UG/M*	*3)			
STATION	1	2	3	4	7	8	9	10
ELEMENT								
CA	4.9	4.9	1.0	0.8	1.7	1.7	1.1	
FE	3.3	1.6	•	0.6	0.9	0.6	0.7	
К	3.3	3.6	0.8	•	•	•	•	
SI	•	3.3	•	•	•	•	3.2	
TI	•	•	•	•	0.5	•		
CL	7.1	5.4	5.0	·	1.7	2.9	4.0	
NI	21.6	• ·	0.5	•	•	•	•	•
S	6.5	10.6		1.8	•	1.5	•	•
1 <b>V</b>	2.2	•	•	•	•	•	•	•
RUN TIME(HRS)	1.80	1.80	1.75	1.75	2.00	2.00	2.00	2.00

ر	ALLAS AT G	RADE ST	IE: IH3	O AT MO	ILEY DR	IVE			· · ·
	STACKED F	ILIER U			UCD/	ATR QUAI	LITY GR	OUP ANA	LYSTS
	NOMINAL FL	OW RAIL	= 0.	005 M*	*3/MIN	•	· · · ·		
	DATE = 7	22 77	-						
	START TIME	E= 7 A	• M •						
	STOP TIME:	= 9 A.I	М.		•	•	¹		
	NUCLEPORE	FILTER	, PORE	SIZE=	0.4 UM				
				WEIGH	T(UG/M*	*3)			
	STATION	1	2	- 3	4	-7	8	9	10
	ELEMENT				. •				
	AL	•	1.6	•		•	4.5	6.9	
	CA	· · ·	•	2.1	•	•	0.7	· · · ·	1.0
	FE S	•	•	0.6	•	<b>.</b>	•	•	0.6
	K	•		2.5	•	•		•	
	SI		•	•	•	17.7			
	P	•	•	•	•	2.7		1.3	
	CL	•	•	9.2	0.8	•	2.0		0.4
	NI		0.3	0.3	•	•	•.		
	PB	2.9	2.8		1.7	3.1	•		
	S	1.1	•	•	•	6.5	1.5	1.4	•
	ZN	•		3.5	•				
						•	- -	•	•
	RUN	1.80	1.80	1.75	1.75	2.00	2.00	2.00	2.00
	TIME(HRS)							2100	2.00

DALLAS: 1H30 4	T MOTLEY	DR.				
STACKED FILTER	UNIT		TX. AIR	CONTROL	BOARD	ANALYSIS
NOMINAL FLOW	RATE= 0	.0050	M**3/MI	N		
DATE= 8 3	5 77				1	
START TIME=	7 A.M.					
STOP TIME= &	5 P.M.	· · · ·				
NUMBER OF ORS	SERVATION	V STATI	ONS=	. 6		
PORE SIZE= 8	3.0 UM					
		WE	IGHT (UG	/N**3)	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	
STATIONS 1	2	5	7	8	9	
ELEMENT						
RUN 11.00	10.50	9.75	10.75	19.50	10.50	· · ·

c

RUN 11.00 10.50 9.75 10.75 10.50 (HRS)

PORE SIZE= 0.4 UM

				WE	IGHT (UG	///**3>	
. * .	STATION: ELEMENT	\$ 1	2	5	7	8	9
	CA	5.3	3.8	7.8	5.7	2.0	7.2
	K	0.5	0.6	1.0	0.8	0.0	0.7
	CL	2.0	1.7	1.5	1.6	2.2	1.4
	S	6.8	8.0	9.5	9.4	5.5	4.9
	SI	9.2	5.6	12.0	12.4	0.0	10.9
	ZN	0.0	0.4	0.5	0.0	0.0	0.2
	FE	1.1	0.5	1.2	1.8	0.6	1.3
•	PB	0.0	0.0	0.0	1.1	0.0	0.0
	AL	0.0	0.0	18.5	0.0	17.6	0.0
	RUN (HRS)	1.00	10.50	9.75	10.75	10.50	10-50

DALLAS AT GRADE SITE: 1H30 AT MOTLEY DRIVE STACKED FILTER UNIT UCD/AIR QUALITY GROUP ANALYSIS 0.005 M**3/MIN NOMINAL FLOW RATE = DATE = 8 3 77 START TIME= 7 A.M. STOP TIME= 6 P.M. NUCLEPORE FILTER, PORE SIZE= 8.0 UM WEIGHT(UG/M**3) 2 5 7 STATION 1 3 8 9 ELEMENT CA 0.7 1.4 0.7 1.3 0.9 0.4 0.6 FE 0.2 0.5 0.2 0.3 0.2 K 0.3 0.4 0.3 0.2 0.3 0.3 ۰. SI 3.4 0.6 1.2 • ٠ 0.2 TL 0.3 • 0.5 è • P · 0.2 . 0.2 CO • 0.1 CU . . 0.1 . . BR 0.2 • • 0.5 CL 0.4 0.3 PB 0.6 0.6 0.5 . . ٠ S 1.0 . ٧ 0.1 ZN 0.5 RUN 10.40 10.40 10.40 10.40 10.40 10.40 10.40 TIME (HRS) DALLAS AT GRADE SITE: 1H30 AT MOTLEY DRIVE STACKED FILTER UNIT UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE = 0.005 M**3/MIN DATE = 8 3 77 START TIME= 7 A.M. STOP TIME= 6 P.M. NUCLEPORE FILTER, PORE SIZE= 0.4 UM WEIGHT(UG/M**3) STATION 1 2 3 5 · 7 8 9 ELEMENT AL 0.4 0.3 CA 0.4 0.4 0.5 0.5 0.5 0.5 FE 0.2 • ..... 0.2 0.1 0.2 ĸ • 0.2 0.1 0.2 0.2 0.3 SI-0.9 0.2 1.3 • 0.8 1.5 TI • 0.1 • ٠ P 1.4 0.5 • • CO 1.0 0.1 • . . . ĊU 0.1 • ٠ BR 0.4 0.3 • • CL 0.7 . PB 0.5 0.7 0.8 2.1 1.7 1.1 • S 2.5 1.3 1.8 3.1 2.2 2.0 1.5 ΖN 0.1 . . RUN 10.40 10.40 10.40 10.40 10.40 10.40 10.40 TIME(HRS)

DALLAS: IH30 AT MOTLEY	DR.				
STACKED FILTER UNIT		TX. AIR	CONTROL	BDARD	ANALYSIS
NOMINAL FLOW RATE= 0	.0050	M**3/MI	N	•	
DATE= 8 4 77			•		•
START TIME= 7 A.M.	•				
STOP TIME= 6 P.M.				1.	
NUMBER OF OBSERVATION	STATI	ons=	5		
PORE SIZE= 8.0 UM		•			
	WE	IGHT (UG.	/***3>		
STATIONS 1 2	5	8	9		
ELEMENT					
RUN 11.00 11.00	11.00	11.00	11.00		

Δ

(HRS)

188

PORE SIZE= 0.4 UM

			WE	IGHT (UG	///**3>
STATION	15 1	3	5	8	9
ELEMENT	•				
CA	3.1	4.4	4.7	3.1	3.6
ĸ	0.0	0.6	0.9	0.0	0.8
CL	1.2	1.0	3.0	1.3	2.1
S	8.2	1.5	9.6	8.1	6.8
SI	5.7	5.0	9.6	8.1	6.8
ZN	0.0	0.0	0.3	0.0	0.2
CU	0.0	1.9	0.0	0.0	0.0
FE	0.9	1. 1. 1.	1.1	0.9	0.9
PB	0.0	0.0	1.0	0.0	0.9
TI	0.0	0.0	9.3	0.0	0.3
NI	0.0	0.0	2.3	0.0	0.0
RUN (HRS)	11.00	11.00	11.00	11.00	11.00

D/	ALLAS AT GR	ADE SI	TE: 1H3(	D AT MO	FLEY DR	I VE		
	STACKED FI	LTER U	NIT		UCD/	AIR QUAL	ITY GROUP	PANALYSIS
	NOMINAL FL	OW RATI	E= 0.0	005 M**	3/MIN			
	DATE = 8	4 77						
	START TIME	= 7 A	. M.		•		-	
	STOP TIME=	= 6 P.I	Μ.					
	NUCLEPORE	FILTER	PORE	SIZE= 8	3.0 UM		÷	
d i			,	WEIGH	r(UG/M*	*3)		
	STATION	1	2	5	8	9	·	
	FLEMENT	•						
	Al			1.2	2.5			
	CA	0.9	0.4	1.2	2.0	0.9		
	FF	0.2		0.2	0.5	0.2		
	ĸ		0.2	•	0.2	0.1		
	S1	0.4	0.4	1.5	3.0	•	•	
	P	•	0.4	•	0.2	•		
	CO		•	•	•	0.1		
	BR		•	0.2	•	•		
	CL	0.2	0.7	0.3	0.7	•		
		-						
	RUN	10.60	10.60	10.60	10.60	10.60		
	TIME(HRS)	•						
					· · · · · · · · · · · · · · · · · · ·			

DALLAS AT G	RADESI	TE: IH3	50 AT MC	TLEY DF	RIVE			
STACKED F	ILTER L	JNIT		UCD	AIR QUA	ITY	GROUP	ANALYS IS
NOMINAL F	LOW RAT	E= 0.	005 M¥	*3/MIN				
DATE = 8	4 77			27.111				
START TIM	E = 7 A	. M.						
STOP TIME	= 6 P.	Μ.						
NUCLEPORE	FUTER	PORF	\$17F=	0.4 11	A			
		,	WEIGH		' {*3)		-	
STATION	1	2	5	ארנטטאוו א	o			· · ·
FLEMENT		2	,		9			
Al	-		0.2	0.3				
CA	1.0	•	0.4	0.5	· • • 4			
FF	0.3	•	0.4	0.2	0.7			
ĸ	0.2	0.2	0.1	0.2	0.3			
SI	0.4	•••	0.3	0.4	1.3			
TI	0.1	•		0.2				
CO			0.1		•			
CU	•	0.1			•			
BR			0.5	0.2	0.4			
CL	0.2	0.4		0.2	•••			
PB	0.5		2.2	0.5	2.2			
S	2.1	•	2.1	1.4	2.8		1	
V	•	•	•		0.1			
ZN	0.1	•	•	•	•			
RUN	10,60	10.60	10.60	10.60	10.60			
TIME (HRS)								

TX. AIR CONTROL BOARD ANALYSIS STACKED FILTER UNIT NOMINAL FLOW RATE= 0.0050 M**3/MIN DATE= 8 10 77 START TIME= 7 A.M. STOP TIME= 6 P.M. NUMBER OF OBSERVATION STATIONS= 6 PORE SIZE= 8.0 UM WEIGHT(UG/M**3) 3 <u>5</u> 9 STATIONS 1 2 
 7
 10

 1.5
 0.9
 2.6
 0.9
 0.4
 1.1

 0.0
 0.5
 0.0
 0.5
 0.6
 0.5
 0.6

 0.0
 0.0
 0.8
 0.0
 0.0
 0.0
 0.0
 0.0

 2.7
 0.0
 4.8
 0.0
 0.5
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 < 10 ELEMENT CA K . CL. SI 4.8 0.0 0.0 0.2 0.0 0.0 
 0.0
 0.2
 0.0

 0.0
 0.2
 0.0

 0.0
 0.2
 0.0

 0.0
 0.6
 0.0
 ZN 0.0 0.0 CU 0.0 0.0 0.0 0.0 0.0 FE 0.5 0.0 8.2 29.1 17.0 TSP 0.0 14.2 17.9 (TOTAL WT.) RUN 11.00 11.00 11.00 11.00 11.00 10.25 (HRS) PORE SIZE= 0.4 UM WEIGHT(UG/M**3) 3 5 9 STATIONS 1 2 10 ELEMENT 
 0.5
 0.0
 0.0

 0.0
 1.8
 1.1

 3.3
 0.0
 0.0

 0.9
 0.0
 0.0
 CA 1.0 0.5 0.0 1.2 CL. 0.9 1.1 S 1.1 1.4 1.9 0.0 PB 0.0 0.0 0.0 0.5 BR 0.0 0.3 0.0 0.0 TSP 18.8 25.8 19.4 13.6 22.4 21.1 (TOTAL WT.) RUN 11.00 11.00 11.00 11.00 11.00 10.25

190

(HRS)

D/	ALLAS AT GR	ADE SI	TE: 1H30	O AT MO	ILEY DR	IVE AIR OUA	LITY GROUP	PANALYSIS
· · ·	NOMINAL EL	AW DATE		005 M*	*3/MIN			7.1.0.12.10.10
		10 77			271111			
	CTART TIME	= 7 A	. M.					
	STOP TIME	- 6 P.I	• • • • •					
		FUTER	PORF	SIZE=	8.0 UM			
	NOOLEI ONE		,	WEIGH	T (UG/M*	*3)		
	STATION	1 1	2	3	5	9	10	
	ELEMENT							
	AL	•	•	0.4	•		•	
	CA	0.6	0.5	0.9	0.5	0.4	0.7	
	FE		•	0.2	0.1	•	0.2	
	K	0.3	0.2	•	•	-	0.2	
	SI .	•	•	1.3	•	•	•	
	TI	•	•	•	•	0.1	•	
	Р	٠	0.3	•	•	0.3	•	
	CO	•	•	•	0.2	•	•	
	BR	•	•	0.2	• •	•	•	
	CL	0.6	1.1	1.0	0.9	0.9	0.8	
	PB	٠	٠	1.0	0.5	0.4	• -	
	S S	•	•	•	•	•	0.3	
	V. S	0.2	•	٠	0.1	٠	•	
	RIIN	10.60	10,60	10,60	10,60	10,60	10.60	•
	TIME (HRS)							
								1

ŧ

DALLAS AT GRADE SITE: 1H30 AT MOTLEY DRIVE UCD/AIR QUALITY GROUP ANALYSIS STACKED FILTER UNIT 0.005 M**3/MIN NOMINAL FLOW RATE= DATE = 8 10 77 START TIME= 7 A.M. STOP TIME= 6 P.M. NUCLEPORE FILTER, PORE SIZE= 0.4 UM WE IGHT (UG/M**3) 2 3 5 9 10 STATION 1 ELEMENT AL 1.1 0.3 0.4 0.5 0.3 0.3 0.3 CA FE 0.1 . . ٠ ٠ 0.3 0.4 0.1 Κ 0.3 0.3 1.0 0.2 BR . 0.2 0.2 0.5 CL . 2.5 0.9 0.7 0.9 PB. S 0.9 . 10.60 10.60 10.60 10.60 10.60 10.60 RUN TIME(HRS)

S S	AN ANTONI TACKED FI	O:LO LTER	DP 410 AT UNIT	MILI	TARY HWY TX. AIF	r R CONTROL	BOARD	ANALYSIS
	N A 27 m	r	NHIE- V	• () •	117676-52-11.1	. 17		
	DAIL	Y 6	8 // D A H					tin and a second se
	START II.	171 E	o A'u		•			
	STOP ITU		o rana		P 415 5 6 4 41			
	NUMBER D	E OB	SERVATION	STAT.	IONS=	4		· · · · · · · · · · · · · · · · · · ·
	PURE SIZ		B.O UM					•
. '		·	i i set	WE	EIGHT(UG	6/M**3)		
	STATIONS	3	3	3				an gan di sa
	ELEMENT					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
	CA	6.5	10.8	6.2	8.2			
	K i	0.2	0.5	0.2	0.3			
	CL	0.9	1.6	1.0	0.9			
	S	0.7	0.8	0.8	0.8	· · · · · · ·	the second	
	SI	3.9	6.7	3.4	4.6		- 1	
	FE	0.5	0.8	0.5	0.6			•
	PB	0.3	0.3	0.0	0.0			•
	RR	0.0	0.1	0.0	0.0			
	AL	1.5	້ຂົ້ອ	0.0	0.0			
	7N	0.0	0.0	0.0	0.0		• • •	
	TSP	<b>a a a</b>	70 4	49 A	5.70 5.72 72			
	(TOTAL )	aT )	1080	······································				
	RUN (		0 75	0 75	0 75			
	(HRS)	7 8 87	2 × 8 m2	1.48.0	7 . 1?	·		
							•	
		· •	-					

PORE SIZE= 0.4 UM

		· · · ·	WEI	(GHT (UG)	(M**3)
STATION	53	3	3	3	
ELEMENT			· .	· .	
CA	1.1	1.5	1.1	1.0	•
ĸ	0.0	0.0	0.1	0.0	
CL	1.1	1.0	1.3	1.0	
S	3.8	3.8	3.8	3.6	
SI	1.1	1.3	1.0	0.9	
FE	0.0	0.0	0.4	0.0	
PB	1.9	1.7	1.8	1.6	
BR	1.1	0.9	1.0	0.9	
AL.	3.1	3.0	2.4	2.8	
AS	0.0	0.0	0.2	0.0	
TSP	23.2	20.7	20.3	22.7	
TOTAL	WT .)	· · ·			
RUN	9.75	9,75	9.75	9.75	
(HRS)					

Note: Side-by-Side Operation

5	AN ANTON	10:100	JP 410 A	T MILI	TARY HW	Y	
2	TACKED F	TLTER	UNIT		TX. AI	R CONTROL	BOARD ANALYSIS
	NOMTNAL	FINU	RATE	0.0225	M**3/M	TN	
	DATE	. , <u>Lo</u> ur 0, 70	> 777				
	STADT T	TME::::				· .	
	9708 TT		2 (2) M				
	STURES	.നട്നാം	COUATTO	N STAT	CIN C	Λ	
	BOBE CT	∵ur upa ∵zr⊸ c		1 <b>4 13 1 19</b> 11.	r (117 3	~~	
	PONE SI		0.0 01	1.02		2 / MAN 14-2 N	
	97 AT 1 0 4	(C' ''Y				0/148807	
		12 - C	5	ມ 			
			····	2.0	E. A		
	6A 5	· /	1 x 1 A 37	0.0	D 4		
		0.0	0.3	0.0	0.0		
		1.1		0.8	1.0		
	2	0.9	. 0.7	8.9	9.7		
	SI	3.6	3.3	2.6	2.4		
	FE	0.5	0.5	0.4	0.3		
	TSP	61.5	42.6	35.3	30.9		
. •	(TOTAL	WT.)					
	RUN	6.50	6.50	6.50	6.50		
	(HRS)					· ·	
	PORE SI	ZE= 0	.4 UM				
				WE	IGHT(UC	9/M**3)	e de la construcción de la constru
	STATION	S 3	3	. 3	i 3		
	ELEMENT						
	CA	1.5	1.0	0.9	1.1		
	CL	1.3	1.3	1.1	1.1		
	S	4.4	4.2	3.9	4.4	•	
	S-1	1.5	0.0	0.8	1.0		
	PB	1.7	1.7	1.6	1.7		
	BR	1.0	0.9	0.9	1.0	4.	
	AL	4.7	3.5	0.0	3.5		
	TSP	23.7	26.2	29.1	27.5		
	(TOTAL	WT.)			•		
•	RUN	6.50	6.50	6.50	6.50		

RUN (HRS)

Side-by-Side Operation Note:

56	IN ANTON	10:L00F	410 A	F MILIT	ARY HWY	1		
51	ACKED F	ILTER L	INIT		TX. AIR	CONTROL	BOARD	ANALYSIS
	NOMTNAL	FLOW R	ATE= (	9.0225 I	M**3/MI1	1		
	DATE=	10 5	77					
	START T	IME= 7	A.M.	-				
	STOP TI	ME= 6	P.M.	an a				
	NUMBER	OF OBSE	RVATIO	ITATS V	DNS	6	· · · · · ·	
	PORE SI	ZE= 8.	O UM					
		· · · · · ·		WE	I GHT (UG)	/M**3)		
	STATION	5 1	3	5	6	9	10	
	ELEMENT							
	CA	3.8	5.6	5.6	2.9	5.7	5.2	
	ĸ	0.3	0.0	0.0	0.0	0.0	0.0	· · · · · ·
	EL.	0.9	1.5	1.0	0.7	1.3	0.9	
	2	0.5	0.0	0.4	0.5	0.0	0.0	
	TZ	2.9	2.8	2.9	1.1	4.1	3.2	
	FF	0.3	0.5	0.4	0.2	0.5	0.4	
	TSP	23.0	34.9	34.5	18.0	53.8	34.5	1
	CTOTAL	WT.)						
	RUN	10.50	10.50	10.50	10.50	10.50	10.50	
	(HRS)		· . ·		. · .			
				-				
	PORE SI	ZE= 0	A UM					
			•	WE	IGHT (UG	/M**3)		
	<b>AOTTATZ</b>	IS 1	3	5	6	9	10	
	ELEMENT				•		4. (1997) 1997 - 1997 1997 - 1997	
	CA	0.3	0.6	0.5	0.4	0.6	0.2	
	SI	0.0	0.0	0.0	0.0	0.0	1.2	
	S	5.4	7.6	7.1	5.8	6.6	6.5	
	FE	0.0	0.0	0.2	0.0	0.0	0.0	
	PB	0.9	2.6	2.6	1.3	2.0	1.2	
	BR	0.3	1.2	1.0	0.5	0.7	0.4	19 (A)
	TSP	18.6	34.1	23.6	21.0	29.6	29.8	
	(TOTAL	. WT.)		· · ·		·		
	RUN	10.50	10.50	10.50	10.50	10.50	10.50	
	(HRS)	·			•		4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	

Ċ\$

~	N ANTONIT	0.100	D ASA AT	MTITTA	RY HWY				
1:1 'Y	IN HIAIDHT	TEP	UNIT	71	X. AIR	CONTROL	BOARD	ANALYSI	S
1	NUMENTIA	E1 011	RATE= 0	.0225 N	1**3/MI	1		· · · · · · · · · · · · · · · · · · ·	•
	NATE-	40 5	77		• ••••				
	DHIE-	NC-	7 6 8						· . · · ·
	SIAKI II	. 116. ····	E M						
	210F LTL	15 - U	COUNTION	STATI	าพระ	8			ť.
	NUMBER C	75 UDA 15 UDA		12 I FI I 3. V					
	FUKE SIZ		10 ON	UF 1	GHT CHG.	/M**3)			
		4	• <b>*</b> 2		сони, кос. щ	- 9	9	10	10
	STATIONS	\$ 0	ů.	<b>.</b>	<del>.</del>				
	ELEMENI	<b>F</b> (3	¥7 7)	NT NT	5.7	5.0	7.9	6.0	3.0
	CA	2.0		4 6	Α, Φ	1.1	1.8	0.8	0.9
	LL.	1.0		0 5	0.0	0.0	0.0	0.0	0.0
	2	0.0	V . V	2.2	Δ.Φ	2.4	8.1	2.8	4.3
	21	2 A A		Δ Δ	- 0 A	0 4	0.8	0.5	0.4
	h L	V . 4	200	70 7	44.3	42.0	87.3	37.0	26.1
	157	00.0 UT 1	and a r		······································	7			
	(IUIAL	W1./	A 55 (A	"" " <b>" " "</b>	2 25	7 75	2.75	7.75	2.75
•	KUN	0.00	-1 - 20	1 A 1	Au A 1			• • • •	
	(HK2)			•	-				
							•		
	**** /*** #*** <b>***</b> *** ***	71	A 11M			· · · ·		·	
	FUKE STA	46- 0	· · · · · · · · · · · · · · · · · · ·	LIF"	IGHT (UG	/M**3)			
		en 'nz	- "X		5	9	9	10	10
	- 2 1 M L L UIV	3 0			•••				
	CA	00	1.0	0.5	0.8	0.4	1.1	0.3	0.0
	er	0 0	0.0	0.0	0.0	0.0	0.0	0.0	4.4
	13-11 ET ET	0 0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
	rc. DD	23	3.2	2.3	3.6	1.6	3.4	1.1	1.4
	"D DD	6 0	4 4	0.8	1.5	0.5	1.4	0.3	0.7
	ыл т Ср	7.7.7	34.5	24.9	14.5	25.4	41.2	25.3	42.6
	ገልሮ (ፕሮፕሌኒ	LIT Y	2 m 7 m 4 m 4	and the first of					
	CILLIPTE.	A 00	4.50	7.75	2.75	7.75	2.75	7.75	2.75
	AUR AURA	WIVV	1 A 10 W	7 8 7 107				1. T	

S S

57	AN ANTONI	): É00	P 410 A	T MILIT	ARY HWY	· · · ·		
Ś	TACKED FIL	TER	UNIT		TX. AIR	CONTROL	BOARD	ANALYSIS
	NOMINAL P	ះ ការ	RATE=	0.0225	M**3/MI	N		
	DATE	10 A	777					
	START TH	ήΕ=	7 A.M.	· · ·				
	STOP TIME		P.M.		1		· · · ·	
	NUMBER OF	- OBS	ERVATIO	N STATI	ONS=	5	1. J.	
	PORE SIZE	E= 8	.0 UM					
				WE	IGHT (UG.	/M**3)		
	STATIONS	1	3	5	9	10		· · ·
	FIEMENT							
	C.Δ	2.9	6.2	3.6	14.2	4.0		· · · ·
	ίκ	0.0	0.3	0.0	0.4	0.0		
	r)	0.4	1.0	0.9	0.0	0.6		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 0	0.5	0.4	0.0	0.4		•
	ет С	4 5	та та с	2.1	10.7	3.1		
	A1	0 0	7 4	0.0	0.0	0.0		
	771 77.M	0 0	A. A 7	0.0	0.0	0.0		a to a shirt of
	C11	0 0	(Å 1	0.0	0.0	0.0		
	CC CC	6 X	0.7	0.3	0.9	0.3		
	00	0 5	0.4	0.4	0.0	0.0		
	F 33 17 10	0 0	0.2	0 0	0.0	0.0		
	10 K T	0 0	0 0	0.0	0.0	0 4		
	l	v.v 20 7	A 72 77	0 K K	05 7	A7 4		
	121" ×		** - C - A - A - C	a	I at a su	~7 AL A 1.2		
		41.J : 055	44 00	44 00	44 00	11 00		
	KUN 11		11.00	11.00	11.00	11.00		
	CHRS7							· · · · ·
	•							
		- ^	A 1154					
	FORE SITE	:= V	-4 UFI	1.487	TOUTING	7 84 St. M. "X N		
			•••	W	TOULCOD.	40		
	STALLUNS	3	ు	5	7	10		
	ELEMENI	~ ~ ~		A A.	A - 5	A A		
	K .	0.0	0.0	0.0	9 	0.0		
	CA	0.2	0.3	0.0	2.0	0.2	•	
	EL.	0.0	0.0	(): 	0.0	() . () () . ()		
	2	6.6	. <u>7.</u> D	. 1.1	0.2	0.0		
	SI	0.0	0.0	0.0	0.2	0.0		•
	ZN	0.0	0.0	0.0	0.0	0.0		
	FE	0.0	0.0	0.0 	19 a al. A - A	U.U.		
	PB	0.9	2.0	3.0	1.0	0 0		
	BR	0.3	0 × 7	070	0.0	0 0		
	ISP 2	27.7	చె.చ	at a sai	20 A 1	V . V		
	CLUTAL V	41.) : mm		44 00	44 00	44 00		
	KUN 31		11.00	11.00	11.00	11.00		
	(HKS)							

٥,

C

51	AN ANTONIO:	LOOP 410	AT MILI	TARY HWY	1		
5	TACKED FILT	ER UNIT		TX. AIF	CONTROL	BOARD	ANALYSIS
	NOMINAL FLO	DW RATE=	0.0225	M**3/MI	N ST		
	DATE= 10	7 77					
	START TIME:	= 7 A.M.			•		. , .
	STOP TIME=	9 A.M.					
	NUMBER OF	DBSERVATI	ON STAT	IONS=	6		
	PORE SIZE=	8.0 UM					
	• • • • • • • • • • • • • • • • • • • •		WI	EIGHT (UE	J/M**3)		-
	STATIONS	1 3	5	6	9	10	
	ELEMENT	-	•				
	CA 7.	.7 6.7	6.4	5.5	6.7	5.9	
	κ Θ.	.0 0.4	0.0	0.0	0.0	0.0	
	CL 2	.7 1.5	2.0	2.1	2.1	1.5	
	5 0	.0 0.0	0.0	1.0	0.9	0.0	
	ST 4	.5 3.3	2.0	4.1	2.4	2.4	
	FE Ø	.5 0.5	0.5	0.4	0.4	0.2	
	PR 1	.0 1.0	0.7	0.0	0.0	0.0	-
	HR O	.4 0.0	0.0	0.0	0.0	0.0	
	TSP 34	6 39.6	37.2	40.0	33.4	36.0	
	(TOTAL WT.	.)					
	RUN 5.2	25 5.50	5.50	5.00	5.50	5,50	
	(HRS)						
·							
	PORE SIZE=	0.4 UM			•		
			WE	EIGHT(UG	///**3)	-	
	STATIONS 1	3	5	6	9	10	
	ELEMENT						
	к 0.	0 0.0	0.4	0.6	0.0	0.0	•
	CL. 0.	0 0.7	1.5	2.6	0.8	0.7	
	s 7.	3 8.0	6.6	7.8	6.8	6.7	
	PB 3.	2 2.9	2.6	1.3	2.2	1.5	
	BR 1.	6 1.2	0.9	0.5	1.0	0.5	
	TSP 32.	5 36.2	33.8	33.0	44.0	0.0	
	(TOTAL WT.	)					
	RUN 5.2	25 5.50	5.50	5.00	5.50	5.50	
	(HRS)						

DATE= 10	18 77					
START TIME	. 7 A.M.	· · ·	•	· · · · ·		
STOP TIME=	6 P.M.					
NUMBER OF	OBSERVATI	ON STAT:	EONS=	7		
PORE SIZE=	MU 0.8		•		ta de la composition de la composition Composition de la composition de la comp	
		WE	EIGHT (UG	G/M**3)		\$ · · ·
STATIONS	1 2	3	5	6	9	10
ELEMENT						
CA 6	4.7	7.8	6.6	5.0	5.5	4.7
К 0	.4 0.3	0.4	0.3	0.3	0.3	0.4
CL. 1	.0 0.6	1.3	0.9	0.7	0.6	1.4
5 0	.0 0.6	0.8	0.7	0.0	0.5	0.5
SI 5	.7 4.0	5.5	4.1	4.8	4.1	3.7
AL 0	0.0 0.0	0.0	2.6	0.0	0.0	0.0
ZN Ø	.0 0.0	0.1	0.0	0.1	0.0	0.1
FE Ø	.5 0.4	0.6	0.5	0.5	0.5	0.4
PB 0	.5 0.0	0.6	0.4	0.6	0.0	0.3
BR Ø	.0 0.2	0.3	0.2	0.0	0.0	0.0
MN Ø	.0 0.1	0.0	0.0	0.0	0.0	0.0
ZR Ø	.1 0.0	0.0	0.0	0.1	0.0	0.0
TSP 35	.8 26.6	52.2	36.7	27.6	31.9	26.5
(TOTAL WT	• >					
RUN 10.	00 10.00	10.40	10.75	10.75	11.00	11.00
(HRS)			1.			
			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19			
			•		• . •	
PORE SIZE=	0.4 UM					
		WE	IGHT (UG	/14**3)		
STATIONS	1 2	3	5	6	9	10
ELEMENT			÷			
к 0	.0 0.3	0.0	0.0	0.0	0.0	Θ.Θ
CA Ø	.3 0.3	0.7	0.6	0.6	0.5	0.4
CL Ø	.3 0.3	0.3	0.0	0.3	0.0	0.0
S 3	.7 3.6	4.2	3.9	3.9	3.5	3.1
SI 1	.8 1.1	0.0	0.0	1.9	0.0	0.0
FE Ø	.0 0.0	0.0	0.0	0.2	0.0	0.0
ZR 0	.0 0.0	0.0	0.0	0.1	0.0	0.0
PB 1	.6 1.5	3.2	2.6	2.1	1.3	1.2
BR Ø	.8 0.7	1.7	1.2	0.9	0.6	0.4
SN Ø.	.0 0.0	0.0	0.0	0.0	0.0	0.4
TSP 23.	.8 20.1	24.4	18.9	23.2	0.0	18.0
(TOTAL WT.	.)					
RUN 10.(	90 10.00	10.40	10.75	10.75	11.00	11.00
(HRS)					÷ .	

SAN ANT STACKEI	ONIO:LOO ) FILTER	P 410 A UNIT	T MILIT	ARY HWY TX. AIR	CONTRO	L BOARD	ANALYSI	2	· .
NOMIN	AL FLOW	RATE=	0.0225	M**3/M1	N				
UHIE-	- 10 17 TTME-	77 7 A M				1			· · · ·
51MA1 5700	TIME A	I MARIA		•					
NUMBE		FRUATTO	N STATT	ONS=	9				
PORF	STZE= 8	с. 0 НМ		w		• .			
1 10 1 1 100	Bor and data from the		WE	IGHT (UG	/M**3)				
STATI	IONS 1	2	3	5	6	7	8	- 9	10
ELEME	ENT				n de la composition d La composition de la c	•			· · ·
CA	4.4	4.3	6.3	6.0	4.3	3.3	3.2	5.2	5.2
ĸ	0.2	0.2	0.3	0.3	0.0	0.2	0.0	0.3	0.3
CL	0.4	0.3	0.6	0.6	0.6	0.4	0.2	0.3	0.4
S	0.4	0.6	0.7	0.5	0.5	0.6	0.0	0.4	0.4
SI	3.1	3.9	3.0	3.3	2.4	4.8	2.7	3.5	5.9
ZN	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.1
FE	0.4	0.4	0.4	0.5	0.3	0.3	0.3	0.5	0.5
PB	0.0	0.0	0.5	0.8	0.4	0.0	0.0	0.3	0.4
BR	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.1	0.0
TSP	20.3	21.6	34.7	33.8	23.0	19.4	20.2	30.7	30.4
CTOI	AL WT.)							d.	
RUN	10.50	10.50	10.75	10.75	11.00	11.00	11.00	10.75	10.75
(HRS)							5. State 199		

PORE S	IZE = 0	.4 UM			1				
			WE	IGHT(UG	/M**3)				
STATIO	NS 1	2	3	5	6	7	8	9	10
ELEMEN	T				1. A.				
CA	0.3	0.2	0.4	0.5	0.8	0.2	0.3	0.7	0.3
CI	0.0	0.3	0.5	0.0	0.3	10.0	0.0	0.0	0.0
5	4.7	4.7	5.0	4.6	5.1	3.5	4.1	4.9	4.0
57	2.7	0.0	0.0	0.0	0.0	0.0	1.5	0.0	1.1
7N	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0
EE	0.0	e e	0.0	0.0	0.3	0.0	0.0	0.2	0.0
0 0 0	3 8	4 5	3 3	3.0	2.1	1.0	0.8	2.2	1.6
r D DD	4 (3	0.5	1 6	4.74	0.8	0.4	0.2	1.0	0.6
DR CD		0.0	0.0	0.0	0.0	0.0	Θ.Θ	0.0	0.1
212		40.0	07 L	77 4	75 6	15 5	27.6	17.6	20.7
138		10.0	2010	an an a b				•••	
CIUIA					44 00	44 00	44 00	10 75	10.75
RUN	10.50	10.50	10.75	19.70	11.00	11.00	11200	1.20.2.1.00	
(HRS)						1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			

SAN ANTON STACKED F NOMINAL	ID:LOOF ILTER L FLOW F	° 410 A ⁻ JNIT RATE= (	T MILITA ר 1 0225 ס.פ	ARY HWY IX. AIR 1**3/MIN	CONTROL	BOARD	ANALYSI	[S		
DATE=	10 20	77								
START T	IME=	7 A.M.								· ·
STOP TI	ME= 6	P.M.			-					
NUMBER	OF OBSE	ERVATIO	N STATI	S=1	Ø					
PORE SI	ZE= 8.	.0 UM								
	•		WE:	IGHT (UG)	(M**3)		***	· · ·	<b>0</b>	10
STATION	IS 1	2	3	4	5	ά.	1 A.	0		1.0
ELEMENT	-								h L	2 3
CA	6.3	5.2	7.9	5.7	8.6	5.4	4.8	3.0		0.2
ĸ	0.4	0.3	0.4	0.2	0.3	0.2	0.2	0.0	0.2	
CL	0.3	0.4	1.1	0.3	0.5	0.3	0.0	0.0	0.8	0.4
S	0.5	0.6	0.7	0.4	0.6	0.5	0.4	0.0	0.3	
ST	6.5	3.8	7.0	4.8	6.2	3.3	3.5	3.2	3.0	0.0
AL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6	0.0
7N	0.1	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.3	0.0
CH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FF	0.7	0.5	0.8	0.5	0.8	0.4	0.4	0.4	0.4	0.5
PR	0.0	0.0	0.8	0.6	0.8	0.3	0.0	0.0	0.5	0.0
80	0.0	0.0	0.3	0.0	0.3	0.2	0.0	0.0	0.2	0.0
MC	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
70	0.0	0.0	0.0	0.0	0.0	0.0	Θ.Θ	0.0	0.1	0.0
3N TCD	70 4	24 4	33.7	27.2	40.2	25.9	24.8	18.1	27.1	0.0
ገልም ረግርስፕሌ!	1.7.1 1.17 \	<i>2</i>								
RUN	10.50	10.50	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00

PORE S	1ZE= 0	.4 UM									
			WE	IGHT (UG.	/M**3)						
STATIO	NS 1	2	3	4	5	6	7	8	. 9	10	
ELEMEN	Т			an a					A 9	A A	
к	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	<u>ن</u> . ن	0.0	
CA	0.4	0.5	0.8	0.5	0.9	0.4	0.4	0.0	1.5	0.4	
CI	0.3	0.0	0.6	0.3	0.3	0.0	0.0	0.0	0.6	0.4	
с. С	4.4	4.4	6.0	4.2	5.7	4.9	4.1	3.1	5.0	4.6	
ст СТ	1.3	0.0	1.1	1.0	1.1	1.4	0.0	0.0	1.5	1.0	
7N	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.3	0.0	
2_17 C11	0.0	6 0	0 0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	
		67	6.2	01	0.2	0.1	0.2	0.2	0.2	0.0	
	0.0		0 0		A. 1	0.1	0.1	0.0	0.0	0.0	
ZK	0.0	0.0	Ø. Ø	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 4	- 7 A	1.9	0.9	2.2	1.4	
FB	1.4	1.7	4.3	~~~		4 4	AЯ	0.3	1.0	0.6	
BR	0.5	0.0	1.7	V . 7	1.0		0.0	6 6	A 1	0.0	
SR	0.0	0.0	Θ.Θ	0.0	0.0	0.0	20.0	40.0	26 5	445 5	
TSP	20.1	15.7	27.1	0.0	24.3	s 44	20.0	10.0		سد سد و	
(TOTA	AL WT.>				·				44 00	44.00	
RUN	10.50	10.50	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11700	
(HRS)									· · · · · ·		

S	AN ANTONIO	SITE:	1H410 A	T MILIT	ARY HIG	GHWAY					
	STACKED F	ILTER U	INIT		UCD	AIR QUA	LITY GF	ROUP ANA	LYSIS		
	NOMINAL F	LOW RAT	Έ= Ο.	022 M*	*3/MIN				÷		
	DATE = 10	20 77		· -							
	START TIM	E= 7 A	• M.		· ·						
	STOP TIME	= 6 P.	М.						-	-	
	NUCLEPORE	FILTER	, PORE	SIZE=	8.0 UM	1					
			•	WEIGH	T (UG/M*	*3)					
	STATION	1	2	- 3	4	5	6	7	8	9	10
	ELEMENT										
	AL	0.2	•	2.0	0.4	•	•	•	•	0.2	
	CA	3.0	2.9	3.5	3.3	3.9	2.4	2.6	1.4	2.7	3.1
	FE	0.3	0.3	0.4	0.3	0.4	0.2	0.3	0.1	0.2	0.3
	K	0.2	0.1	0.2	0.2	0.2	0.1	0.3	0.1	0.2	0.2
	SI a a	1.9	1.3	1.4	1.9	1.5	0.9	1.1	0.4	1.3	2.6
	BR	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.2
	CL	0.3	0.2	0.6	0.3	0.2	0.2	0.1	0.1	0.5	0.2
	PB	0.3	0.3	0.8	0.5	0.6	0.4	0.4	0.2	0.4	0.4
	ZN	0.1	٠	0.1	0.1	0.1	•••	0.1	•	•	
	RUN	10.50	10.50	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00
	TIME(HRS)										

SAN ANTONIO SITE: 1H410 AT MILITARY HIGHWAY STACKED FILTER UNIT UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE= 0.022 M**3/MIN DATE = 10 20 77 START TIME= 7 A.M. STOP TIME= 6 P.M. NUCLEPORE FILTER, PORE SIZE= 0.4 UM WEIGHT (UG/M**3) STATION 1 2 3 4 5 6 7 8 9 10 ELEMENT CA 0.2 0.3 0.5 0.2 0.5 0.3 0.4 0.2 0.3 . FE 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Κ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 SI 0.2 0,2 0.4 0.1 0.2 0.3 0.2 0.2 0.2 . BR 0.4 0.3 1.9 0.6 1.4 0.7 0.2 0.6 0.8 0.5 PB 1.2 1.1 5.0 1.7 3.8 2.3 2.0 0.8 2.2 1.6 S 1.1 1.1 0.6 0.8 1.2 1.1 1.1 0.7 1.1 • ۷ 0.1 • . . RUN 10.50 10.50 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00

TIME (HRS)

EL PASD: IH10 AT LUNA ST. STACKED FILTER UNIT TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE= 0.0225 M**3/MIN DATE= 11 17 77 START TIME= 7 A.M. STOP TIME= 6 P.M. NUMBER OF OBSERVATION STATIONS= 8 PORE SIZE= 8.0 UM

			WE.	IGHT (UG	/M**3)			
STATI	DNS 1	3	4	5	6	7	8	9
ELEME	NT							
TI	0.4	0.3	0.1	0.2	0.2	0.1	<b>⊙</b> _1	0.2
CA	23.4	15.6	6.8	16.1	9.0	7.6	7.6	18.3
К	2.8	2.3	1.1	1.8	1.1	0.8	0.8	1.8
CL.	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0
S	1.2	2.4	3.2	2.7	1.2	1.4	1.4	2.2
SI	24.9	14.3	2.2	9.1	0.0	0.0	13.2	11.5
AL	10.4	3.2	2.5	6.3	3.8	0.0	0.0	4.6
ZN	0.2	0.2	0.1	0.2	0.1	0.1	0.1	0.3
CU.	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.1
FE	3.4	2.4	1.0	1.9	1.3	1.1	0.9	2.1
PR	0.4	0.5	0.4	1.1	0.4	0.4	0.0	0.8
BR	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.2
TSP	108.8	93.9	45.2	79.7	44.1	0.0	39.2	73.8
(ThT	AL WT.)							
RIIN	10.15	10.00	10.00	10.00	10,00	10,00	10.00	10.00
(HRS)	r ar a f ur	. w a w w						

PORE SIZE= 0.4 UM

			WE	IGHT(UC	6/M**3)			
STATION	s 1	3	4	5	6	7	8	9
ELEMENT				•				
V	0.0	0.0	0.0	Θ.Θ	0.0	0.0	0.0	0.0
TI	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.1
CA	6.4	6.1	5.2	3.2	2.5	2.0	2.5	3.9
ĸ	0.6	0.6	0.7	0.4	0.3	0.3	0.3	0.4
CL.	0.7	0.3	0.3	0.0	0.0	0.0	0.3	0.0
S	6.0	6.9	3.0	3.8	3.0	3.6	3.4	4.3
SI	8.5	4.5	4.4	0.0	0.0	0.0	3.9	0.0
ZN	0.1	0.2	0.1	0.1	0.1	0.1	0.0	0.1
FE	0.7	0.8	0.7	0.4	0.4	0.3	0.3	0.5
PB	0.8	2.0	0.5	1.2	0.7	0.8	0.0	1.0
BR	0.5	0.9	0.2	0.5	0.2	0.2	0.2	0.3
TSP	41.0	59.3	20.4	25.1	17.6	29.7	20.4	25.9
(TOTAL	WT.)	·				· ·		
RUN	10.15	10.00	10.00	10.00	10.00	10.00	10.00	10.00
(HRS)								

EI	PASO:	IH10	AT LUNA	ST.			· · ·	·	
5	TACKED P	FILTER	UNIT		TX. AIR	CONTROL	BOARD	ANALYSIS	
	NOMINAL	FLOW	RATE=	0.0225	M**3/MI	N			
	DATE=	11 17	77	· · · ·					
	START	TIME=	7 A.M.					a de la composición d	
	STOP T	IME= 6	P.M.						
	NUMBER	OF OBS	ERVATIO	N STATI	ONS=	7			
	PORE ST	IZE = 8	.O UM						
			· ·	WE	IGHT (UG	/M**3)			
	STATIO	1 21	1	1	3	3	4	4	
	ELEMENT	r i i		;		·			
	TI	0.2	0.5	0.9	0.3	0.2	0.0	0.3	
	CA	18.2	17.5	44.1	16.2	14.6	3.1	13.5	
	ĸ	2.0	2.6	5.0	2.7	1.6	0.7	1.7	
	S	1.6	1.7	0.0	2.3	2.4	3.9	2.0	
	51	20.6	33.2	23.1	23.9	0.0	3.5	0.0	
	AL	6.6	9.8	19.7	5.3	0.0	0.0	7.2	
	ZN	0.1	0.2	0.3	0.2	0.3	0.0	0.3	
	CU	0.0	0.0	0.2	0.0	0.0	0.0	0.0	
	FE	2.0	3.2	6.7	2.5	2.2	0.3	2.3	
	PB	0.0	0.0	1.7	0.0	1.2	0.6	0.0	
	<u>C1</u>	0.0	1.2	0.0	0.9	0.0	0.4	0.0	
	TSP	103.4	119.9	110.9	107.5	73.5	54.1	28.6	
	TOTAL	WT.)		-					
	RIIN	4.50	3.25	2.25	6.00	4,00	6.50	3,50	
	(HRS)								
	•			•					
	PORE SI	ZE= 0	.4 UM			• •			
				WE	IGHT (UG.	/1++3)			
	STATION	1 24	1	1	3	3	4	.4	
	ELEMENT	r					1.00	· · · · ·	
·	TI	0.1	0.1	0.0	0.1	0.0	0.1	0.0	
	CA	6.5	6.7	6.1	5.8	6.6	5.9	4.0	
	ĸ	0.7	1.0	0.0	0.6	0.6	1.1	0.0	
	S	4.9	7.8	6.2	5.2	9.5	0.9	6.9	
	SI	8.3	9.6	7.7	7.4	0.0	6.8	0.0	
	ZN	0.1	0.2	0.0	0.1	0.3	0.1	0.3	
	FE	0.7	0.8	0.7	0.7	1.0	0.7	0.8	
	PB	1.8	0.0	0.0	0.9	3.6	0.0	1.4	
	BR	1.2	0.0	0.0	0.5	1.7	0.0	0.5	
	CL	1.6	0.0	0.0	0.5	0.0	0.5	0.0	
	TSP	49.4	41.9	25.7	37.0	92.6	12.0	36.0	
	(TOTAL	. WT.)		·······					
	RUN	4.50	3.25	2.25	6.00	4.00	6.50	3.50	
	(HRS)								
EL	PASO: I	HIO A	T LUNA	ST.	· • .				. •
-----	--------------	---------------	---------	--------------	----------	---------	-----------	-------------------------	--------------------------------------------------------------------------------------------------------------------------------
ST	ACKED FIL	TER L	INIT		TX. AIR	CONTROL	BOARD	ANALYSI	S
	NOMINAL F	LOW F	ATE= 0	0225	M**3/MI	N	•		
	DATE= 1	1 18	77					- 	
	START TIM	E= 7	7 A.M.		· · · ·			· · · ·	
	STOP TIME	= 6	P.M.		•		* *		•
	NUMBER OF	OBSE	RVATION	STAT:	LONS=	8			
	PORE STZE	= 8.	O UM						
				WE	EIGHT(UG	/M**3)	•		
	STATIONS	1	3	4	5 .	6	7	. 8	9
	FIFMENT			e galet				, ·	
	U	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
	• • •	0.4	1.5	0.2	0.3	0.2	0.2	0.2	0.4
	ວ) ລ)	7.2	18.7	6.9	0.0	0.0	0.0	0.0	9.6
· •	ra 2	6.9	82.5	14.2	16.4	12.4	19.4	14.0	26.8
	671 A	τ Δ	9.9	2.9	1.7	1.5	2.7	1.9	3.5
	C1	4.2	0.9	1.1	0.0	0.7	1.7	0.0	0.9
	6			ייי גיירי	1.7	2.2	3.1	0.9	3.4
	ಎ ೧೯೯೮ 72		67 4	45	0.0	16.1	25.8	0.0	36.6
	13 J	07 x J 0 0	0	6.7	in A X	0.1	0.3	0.3	0.0
	ZN	0 . A	0.7	0 0	0.0	0.0	Ð. 1	0.0	0.0
	<u></u>	0.0	4 4 4	4.0	2 2	4 7	2.7	2.3	0.0
	F L.	4.0	1.4.0	1.0			0 0	0 0	0.0
	PB	0.0	3.4	0.0	Ø . Ø .	0.0	0.0	0 0	0 0
	BR	0.0	1.3	0.0	0.0		4 /3 4 A	76 0	0 0
	TSP 14	13.9	390.2	14.2	Ø. V	1 T	191.4	1017	V . V
	(TOTAL W	JT.	-			A	A (1) 121	A '98'	A (355
	RUN 4	1.50	4.25	4.25	9.20	4.20	94 A AD	49 x x2 22	** x x22
	(HRS)								
	•							-	
	PORE SIZE	Ξ≕ Θ.	.4 UM					·	1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
				W	EIGHTCUG	i/M**3)	••••	<b>*</b> >	<b>n</b>
	STATIONS	1	3	4	5	6	. (	ង	7
	ELEMENT						~ ~	~ ~	
	TI	0.1	0.0	0.0	0.1	0.0	0.0.0	0.0	0.1
	CA	6.3	8.6	3.4	5.1	3.0	5.0	3.3	2.1
	K	1.0	3.6	1.7	1.0	0.7	1	Ø.>	7
	CL	0.9	6.8	2.1	1.3	1.4	1.3	0.6	× 4
	S	5.5	11.6	4.7	6.2	4.4	6.4	4.8	6.9
	SI	8.7	8.8	4.3	8.4	3.1	7.1	5.3	7.0
	ZN	0.1	0.1	0.1	0.2	0.1	0.2	0.0	0.1
	FE	0.8	1.2	0.3	0.6	0.4	0.8	0.3	0.6
	PB	0.0	4.8	1.2	1.1	1.2	1.1	$\Theta \bullet \Theta$	2.0
	BR	0.4	2.7	0.6	0.7	0.7	0.8	0.0	1.1
	TSP :	50.4	109.6	34.2	32.4	34.9	49.8	30.8	48.6
	(TOTAL V	JT.)							•
	RUN 4	1.50	4.25	4.25	4.25	4.25	4.25	4.25	4.25
	(HRS)								

IH10 AT LUNA ST. EL PASO: TX. AIR CONTROL BOARD ANALYSIS STACKED FILTER UNIT NOMINAL FLOW RATE= 0.0225 M**3/MIN 11 18 77 DATE START TIME= 7 A.M. STOP TIME= 6 P.M. 2 NUMBER OF OBSERVATION STATIONS= PORE SIZE= 8.0 UM WEIGHT(UG/M**3) STATIONS 3 З ELEMENT V 0.1 0.0 52.9 0.0 AL. TI 3.1. 0.5 37.8 164.4 CA ĸ 20.7 4.0 0.0 1.4 CL 8.5 5.1 S 0.0 SI 176.0 0.5 0.1 N 2 CU 0.7 0.0 30.2 5.2 FE 2.8 PB 4.6 1.2 BR 1.4 TSP 176.8 506.7 (TOTAL WT.) 1.50 2.75 RUN (HRS) PORE SIZE= 0.4 UM

STATIONS	5 3	3
ELEMENT		
CA	9.9	7.9
ĸ	4.2	3.4
CL	10.6	4.8
S	14.4	10.0
SI	10.6	7.9
ZN	0.0	0.2
FE	1.3	1.1
PB	6.7	3.8
BR	3.7	2.2
(TOTAL	ΨΤ.)	
RUN	1.50	2.75

WEIGHT(UG/M**3)

EL PASO: IH	10 AT L	UNA STR	EET			· · · ·			$r \sim 10^{-1}$
STACKED F	ILTER U	NIT		UCD/	AIR QUA	LITY GR	OUP ANA	LYSIS	
NOMINAL F	LOW RAT	E= 0.	022 M*	*3/MIN	•				
DATE = 11	18 77		· · · ·				• 1.5		
START TIM	E= 7 A	. M.			· · · ·				
STOP TIME	= 9 A.	M.		· ·			· ·		
NUCLEPORE	FILTER	, PORE	SIZE=	8.0 UM					
			WE IGH	T(UG/M*	*3)			·	
STATION	1	3	3	4	5	6	7	8	9
ELEMENT			· ·		1				, * . , * .
AL	4.6	. •	0.9	•.	0.2	0.1	1.8	•	1.8
CA	8.1	•	4.2	2.1	1.5	2.6	6.2	2.7	5.9
FE	2.3	•	1.0	0.5	0.3	0.7	1.4	0.6	1.4
K	1.0	•	0.5	0.2	0.1	0.4	0.7	0.3	0.7
SI	12.9		4.9	5.3	1.5	1.0	8.1	3.8	8.3
BR	0.3	•	0.9	0.3	0.3	0.3	0.3	0.1	0.4
CL	0.4	•	0.3	0.1	0.2	0.1	0.1	0.2	0.4
PB	0.9	•	2.6	1.1	0.8	0.7	1.1	0.4	1.4
S	0.3	•	0.1	•	•	•	0.3		0.2
ZN	0.3	•	0.1	0.1	0.1	0.1	0.3	0.1	0.2
RUN TIME (HRS)	4.50	4.50	4.25	4.25	4.25	4.28	4.25	4.25	4.25

EL PASO: IH10 AT LUNA STREET STACKED FILTER UNIT UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE = 0.022 M**3/MIN DATE = 11 18 77 START TIME= 7 A.M. STOP TIME= 9 A.M. NUCLEPORE FILTER, PORE SIZE= 0.4 UM WEIGHT (UG/M**3) STATION 3 3 7 1 4 5 . 6 8 9. ELEMENT CA 2.6 1.2 1.2 1.2 2.1 1.6 1.1 1.1 1.5 FE 0.2 0.2 0.3 0.3 0.5 0.6 0.3 0.5 0.2 K 0.4 0.6 0.3 0.2 0.2 0.3 0.5 0.3 0.3 SI 0.8 1.2 1.0 0.5 1.5 1.0 0.1 0.8 0.7 Τŀ 0.1 . ٠ ٠ • 2.7 BR 0.3 1.0 0.9 0.8 0.9 0.9 0.4 1.1 CL 1.8 0.4 0.7 0.8 0.7 ٠ PB 1.0 5.8 1.9 1.9 1.8 1.8 2.4 1.1 2.6 S 0.7 0.4 0.5 0.7 1.3 0.5 • 1.3 0.4 ΖN 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 RUN 4.50 4.50 4.25 4.25 4.25 4.28 4.25 4.25 4.25 TIME(HRS)

EL PASO: IH10 AT LUNA STREET STACKED FILTER UNIT NOMINAL FLOW RATE = 0.022 M**3/MIN DATE = 11 18 77 START TIME = 7 A.M. STOP TIME = 9 A.M. NUCLEPORE FILTER, PORE SIZE = 8.0 UM WEIGHT (UG/M**3)

STATION	)	)	
ELEMENT			
AL	3.6	2.3	
CA	12.4	16.9	
FE	2.7	4.0	
к	1.3	2.1	
SI	15.7	18.5	
BR	1.0	1.6	
CL	1.2	1.0	
PB	2.5	4.8	
S		0.5	
ZN	•	0.7	
RUN	1.50	2.75	
TIME(HRS)		·	

EI	PASO: 141 STACKED FI NOMINAL FL	0 AT LL LTER UN OW RATE	INA STR	EET 022	M**3,	UCD/AIR /MIN	QUALITY	GROUP	ANALYSIS
	START TIME	10 // = 7 A.	Μ.						· · · · ·
	STOP TIME	= 9 A.N	1.						· .
	NUCLEPORE	FILTER,	PORE	SIZE	= 0.	4 UM			
				WE	EIGHT (I	JG/M**3)			•
	STATION	3	3						
	ELEMENT								
	CA	2.8	4.4						
	FE	0.7	1.1						
	K	0.6	0.9						
	SI	1.3	2.0						
	BR	4.0	3.6						
	CL	2.3	2.7						
	PB	8.1	8.3						
	ZN	0.1	0.3						
	RUN TIME (HRS)	1.50	2.75						

EL	PASO:	TH10	AT LUNA	ST.				
STI	ACKED FI	TER	UNIT		TX. AIR	CONTROL	BOARD ANA	LYSIS
1	NOMINAL I	FLOW I	RATE=	0.0225	M**3/MII	4		
· ]	DATE= (	11 29	77				1	
	START TI	1E≕ '	7 A.M.					- 1
1	STOP TIME	E= 6	P.M.	· .		· · · ·		
1	NUMBER OF	- OBSI	ERVATIO	N STATI	ONS=	4		
F	PORÉ SIZE	E= 8.	.0 UM					-
				WE	IGHT (UG/	/M**3)		
	STATIONS	- 1 .	3	4	5			
E	ELEMENT	•	· · · ·	•				
	TI	0.3	0.2	0.3	0.3		11	
E	CA 1	7.8	11.8	12.2	15.0			
ł		2.0	1.5	1.6	2.1			
6	2	1.0	1.1	1.0	0.6		at.	
	I Z	8.9	0.0	0.0	8.4			
6	AL.	0.5	4.7	0.0	4.7			
	ZN	0.2	0.2	0.2	0.1			.*
F	=E	0.0	2.0	2.1	2.4			
ľ	28	0.0	0.9	0.0	0.6		· ·	
Ĭ	RR	0.0	0.3	0.0	0.0			
Ē		0.0	0.0	0.0	0.1		and the second second	
ŗ	1	0.0	0.0	0.5	0.0			
	TOTAL L	JT.)						
F	RUN 7	7.00	7.00	7.00	7.00			
	(HRS)				• •			
			· •				1	
							• • •	
F	PORE STZE	•	4 UM		4.	1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
•				WE	IGHT (UG/	'M**3)		
5	STATIONS	1	.3	.4	5	6		
F	LEMENT							
ï	ΓT	0.1	0.1	0.1	0.1	0.1		
r.	<b>.</b>	5.2	3.1	4.3	3.4	3.8		
h	(	0.7	0.4	0.3	0.8	0.6		•
Ś		2.0	3.6	1.5	3.3	2.8		
7	N :	0.1	0.1	0.0	0.1	0.1		
Ē	- F	0.8	0.6	0.5	0.9	0.7		
, F	×R	0.4	2.1	0.6	1.7	1.1		
ŗ		0.0	1.2	0.4	0.8	0.6	•	
۰. ۵	51 51	0.0	4.3	0.0	0.0	0.0		
1.	(TATAL - 6	17.)	r & 1?	w a w		w w W		
p	21IN 7	00	7.00	7.00	7.00	7.00		
10	1967) 1967)	A W W		1477	LANN			

-	L PASO:	IH10	AT LUNA	ST					
2	TACKED F	ILTER I	UNIT	·	TX. AIR	CONTROL	BOARD	ANALYS	IS
	NOMINAL	FLOW I	RATE= (	9.0225	M**3/MI	N			
	DATE=	11 30	77			. <b>P</b>			
	START T	IME= ···	7 A.M.						
	STOP TI	ME= 6	P.M.						
	NUMBER	OF OBSI	ERVATIO	V STATI	ONS=	8		· .	
	PORE SI	ZE= 8.	.0 UM						
				WE	IGHT (UG.	/M**3)			
	STATION	S 2	3	4	5	6	7	8	9
	ELEMENT								
	TI	0.2	1.9	0.1	0.1	0.1	0.2	0.2	0.1
	CA	10.0	85.3	6.5	9.5	7.9	10.0	11.1	8.0
	к	1.3	10.4	0.8	1.2	0.9	1.0	1.4	0.9
	CL.	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0
	2	0.7	4.7	0.6	1.0	0.9	0.6	1.1	0.6
	SI	0.0	76.1	0.0	0.0	0.0	0.0	2.9	0.0
	Al.	4.1	24.0	0.0	0.0	0.0	0.0	0.0	0.0
	ZN	0.1	0.8	0.1	0.1	0.1	0.2	0.1	0.1
	CU	0.0	0.5	0.0	0.0	0.0	0.1	0.1	0.0
•	FE	1.4	15.4	1.1	1.4	1.2	1.5	1.5	1.2
	PB	0.5	3.2	0.0	0.6	0.6	0.4	0.5	0.5
	(TOTAL	ΨΤ.)							
	RUN	8.50	2.00	8.50	8.50	8.50	8.50	8.50	8.50
	ていわやう								

PORE SIZE= 0.4 UM

			WE	IGHT(UG	/M**3)			
STATION	S 2	3	4	5	6	7	8	9
ELEMENT								
TI	0.2	0.1	0.0	0.0	0.0	0.1	0.1	0.1
CA	5.2	4.2	1.4	2.5	1.4	3.6	3.9	4.7
ĸ	1.0	0.5	0.0	0.3	0.0	0.5	0.3	0.7
CL	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0
S	1.8	2.6	1.1	2.5	2.4	2.1	0.9	2.2
AL	3.3	0.0	0.0	0.0	0.0	0.0	0.0	3.5
ZN	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1
CU	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
FE	1.4	0.7	0.2	0.4	0.2	0.7	0.7	0.8
PB	0.7	2.2	0.5	1.5	0.9	0.7	0.5	1.0
BR	0.2	1.0	0.0	0.7	0.4	0.2	0.0	0.2
(TOTAL	WT.)							
RUN	8.50	8.50	8,50	8.50	8.50	8.50	8.50	8.50
(HRS)						ar a lif ti	w a w w	the a set of

DALLAS ELEV	ATED SITE	E: 1H45	AT FORE	EST AVE	NUE			
LUNDGREN	IMPACTOR	and the set		UCD/A	IR QUA	LITY G	ROUP AI	VALYSIS
NOMINAL FI	OW RATE	= 0.1	30 M**3	5/MIN				
RUN DUR INC	G WEEK O	- 6	1 77					
APIEZON-I	COATED	STRIPS.	DRUM:	4	•			
	0011120		WEIGHT	(UG/CM	**2)			ile di
STATION	2	4	6	7				
ELEMENT				· · ·				
AL	•		0.1	•				
CA	2.6	1.5	1.5	2.4				
FE	0.3	0.1	0.1	0.2	1999 - Series Series - Series			
ĸ	0.1	•	0.1	0.1				an a
SI	0.9	•	•	3.4	· ·			
TI		0.1	0.2	0.1		-		
BR	0.2	0.2	0.1	0.2			•	
MN	0.1	0.1						
PR	1 1	0.6	0.6	0.6				
C C	0 7	n q	0.8	0.5				· · · ·
S V	0.1	0.9	0.0	v., /			1	
7.1	0.7	0.1	0 1	0.7				
ZIN	· · · /		·· U.I ··	· · · /	· · ·			

	SELEV/ DGREN	ATED SIT	TE: 1H45	AT FOR	EST AVENU UCD/AIF	JE R QUALITY	GROUP	ANALYSIS
NOM	INAL F	LOW RATE	= 0.1	30 M**	3/MIN			
RUN	DUR IN	G WEEK (	)F 6	7 77				
APII	EZON-L	COATED	STRIPS,	DRUM:	1	1.1	•	
	- 			WE IGHT	(UG/CM*)	*2)		
STA	TION	2	4	6	7			
ELEI	MENT						1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
AL		•		0.1	•			
CA	•	15.6	11.1	5.4	3.2		•	1
FE	. 1	2.7	2.1	0.9	0.2		- 	,
К		0.8	0.8	0.6	•		· ·	
SI		15.9	11.8	2.6	•			
ΤĽ		- 0.2	0.3	•	•	-		
CO		•	•	1.9	•			
CU		•	•	0.1	•		•	
BR		0.2	0.2	•	•	· · · · ·		
CL		•	•	•	0.1			-
MN		0.1	•	•	•		•	
NE		•	•	•	0.1			
PB		1.5	0.9	0.3	• 1	+		
۷		•	•	0.2	•	÷		
71		03	0 1	0 1	0.1			

DALLAS ELEV	ATED SITE	E: 1H45	AT FOR	REST AVENUE		
LUNDGREN	IMPACTOR			UCD/AIR QU	JALIIT GRO	JUP ANAL 1515
NOMINAL F	LÔW RATE:	= 0.1	30 M**	3/MIN	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
RUN DUR IN	G WEEK OF	- 6	7 77			
APIEZON-L	COATED	STRIPS,	DRUM:	2		
	* .		WE IGHT	(UG/CM**2)		
STATION	2	- 4	6	7.		
ELEMENT						
AL	•	• • • •	•	0.1		
CA	9.1	6.0	3.7	1.9		
FE	1.6	1.3	0.7	0.2		
К	0.5	0.6	0.4	•		

K	0.5	0.6	0.4	
SI	7.0	5.4	2.0	•
TI ,	0.2	0.1	•	0.1
CO	•	•	1.1	0.5
CU	•	•	1. <b>.</b>	0.1
BR	0.3	0.2	0.1	•
CL	•	•	•	0.1
MN	0.1	•	0.1	•
PB	1.2	0.7	0.3	•
۷.	•	0.2	•	•
ZN	0.4	•	0.2	0.1

DALLAS ELEV	ATED SIT	E: 1H45	5 AT FORE	ST AVENUE			
LUNDGREN	IMPACTOR	· ·		UCD/AIR (	UALITY	GROUP	ANALYSIS
NOMINAL F	LOW RATE	= 0,1	30 M**3	5/MIN			•
RUN DUR IN	IG WEEK O	- 6	7 77				
APIEZON-L	COATED	STR IPS,	DRUM:	3			
			WEIGHT	(UG/CM**2)		•	
STATION	2	4	6	7			
ELEMENT						·	- *
CA	4.0	2.4	2.4	1.3			
FE	0.9	0.6	0.2	0.1			
К	0.1	•	0.1	•			
SI	2.0	0.4	2.4	•			
TI	• *	0.1	•	. •			
CO	0.1	. •	•	0.1			
BR	0.4	0.2	0.1	•			
PB	1.1	0.6	0.3	•			
ZN	0.6	•	0.7	•			

DALLAS ELEVA	TED SITE	E: 1H45	ALFOR		AL ITY CD	OUP ANALYS IS
LUNDGREN I	MPACTOR					
NOMINAL FL	OW RATE	= 0.1	30 M**	3/MIN		
RUN DUR ING	WEEK OF	- 6	7 77			
APIEZON-L	COATED	STRIPS,	DRUM:	4		
. · · · ·			WE IGHT	(UG/CM**2)	·	
STATION	2	4	б	7		
ELEMENT						
AL		0.2	•	•		
CA	2.1	1.4	3.2	1.8		
FE	0.3	0.2	0.3	0.1		
K	0.2	0.1	0.2	•	*	
SI	2.0		9.2	1.0		4
TI			•	0.1	•	
CU		0.1	•	0.1		
BR	0.5	0.1	0.2	•		
PB	1.3	0.4	0.5	0.1		
S	3.2	1.8	0.9	0.7		
v		•	•	0.1		
7.1	1.0		2.3	0.3		

DALLAS	SAT CR/	ADE SIT	E: 1H30	ΑΤ ΜΟΤΙ	EY DRIN	/E IR QUAI	LITY	GROUP	ANALYSIS
LUNL	JGREN I		_ 0.1	ZO M¥¥	Z /MIN				
NOM	INAL FLO	JW RATE	= 0.1			•			
RUN	DUR ING	WEEK 0	F 8	5 11	•				and the second second
APIE	EZON-L (	COATED	STRIPS,	DRUM:	1	er Aller aller			·
				WE IGHT	(UG/CM	**2)			
STA	TION	1	3	6	10	•			
FIF	VENT			· .				•	
		0.1			•				
		201	• · ·	ূর্ স	4 2				
CA		2.9	1.6	0.8	0 5				
FE	÷ .	0.5	1.0	0.0	0.5		- '		•
K		•	0.7	0.5				4.1	
SI	· 1.	• .	- 7.2	2.6				•	
ΤI			0.2	•	0.4				
00				1.0					
BR			0.2	0.1	•	•			
LDIN MANI		•	0 1	0.2	0.2				
IVII N		•	0.1	0.1	•••				
IN I	•	•	•••	0.1	0 3		-		
PB		•	0.8	0.4					
ZN		•	0.2	0.1	0.1	. • •			

D/	ALLAS AT GF	RADE SIT	E: 1H30	AT MOTI	EY DRIVE			
	LUNDGREN	IMPACTOR			UCD/AIR	QUALITY	GROUP	ANALYSIS
	NOMINAL FL	OW RATE	= 0.1	30 M**3	3/MIN			
	RUN DUR INC	G WEEK C	F 8	3 77		• *		
	APIEZON-L	COATED	STRIPS,	DRUM:	2			
				WE IGHT	(UG/CM**2	2)		
	STATION	1	3	6	10			
	ELEMENT							
	CA	2.4	5.1	3.5	2.5			
	FE	0.4	1.0	0.5	0.3			
	K	0.4	0.5	0.4	•			
	SI	0.6	2.4	·2.1	0.6			
	TI	0.1	0.2	•	0.3			
	CO	1.2	•	•	•			
	BR	•	0.2	0.1	0.1			2
	CL	0.1	•	•	0.1			
	MN	•	0.1	0.1	0.1	•		
·	PB	0.2	0.7	0.3	0.4			
	V	• .	•	•	0.1		•	
	ZN	0.1	0.1	0.4	•			

DALLAS AT C	RADE SII	E: 11.00	AT MOT	LETURIV	E	
LUNDGREN	IMPACTOR			UCD/AI	R QUALITY G	ROUP ANALYS IS
NOMINAL F	LOW RATE	= 0.1	30 M**:	3/MIN		
RUN DUR IN	IG WEEK C	F 8	3 77			
APIEZON-L	COATED	STRIPS,	DRUM:	3		
		•	WE IGHT	(UG/CM*	*2)	
STATION	1	3	6	10		•
ELEMENT						
CA	1.5	1.9	2.2	1.6		
FE	0.1	0.2	0.3	0.3		
К	•	0.1	•	•		
SI	•	•	0.9	0.2		
TI	0.1	•	•	•		
CO	•	•	0.2	•	the states of the	
CU	0.1	•	•	•		
BR	•	0.1	•	•		
PB	•	0.3	0.2	0.2		
V	•	•	0.1	•	*	
ZN	•	•	0.3	0.1		

DALLAS AT GR/	ADE SITE: 1H30	AI MOIL	LEY URIVE			
LUNDGREN IN	<b>MPACTOR</b>	•	UCD/AIR	QUALIT	Y GROUP	ANALYSIS
NOMINAL FLO	OW RATE = 0.1	30 M**3	3/MIN			
RUN DURING	WEEK OF 8	3 77				
APIEZON-L (	COATED STRIPS,	DRUM:	4			
		WEIGHT	(UG/CM**	2)		
STATION	1 3	6	10	· .		
ELEMENT		an a				
AL	0.2 .	•	٠			
CA	1.4 1.6	2.7	3.7	• * · · · ·		
FE	0.1 0.4	0.2	0,3			
K	0.1 1.6	0.1	0.1		• •	
SI	•	4.7	5.8			
T1	0.1	•	•			
BR	. 0.2	• •	• * * .		-	
PB	. 1.0	0.3	0.2			
S	0.3 3.2	0.8	0.1	•		
V	. 0.1		0.1	•	, ·	
ZN	. 0.1	1.7	1.5		•	•

ALLAS AT G	RADE STIE	: IH30	AL MOT	LET DRIVE		- 84 - 14 <u>- 1</u> 4	
LUNDGREN	IMPACTOR			UCD/AIR	QUALITY	GROUP	ANALYSIS
NOMINAL F	LOW RATE =	0.1	30 M**	3/MIN			
RUN DUR IN	G WEEK OF	81	0 77	· · ·	1 - y		
APIEZON-L	COATED S	TRIPS,	DRUM:	1			
·····			WEIGHT	(UG/CM**	£2)		
STATION	1	3	6	10	· · · · · · · · · · · · · · · · · · ·		· .
ELEMENT		•,`	•				
ĊĂ	2.9	8.2	5.3	4.2			
FE	0.3	1.6	8.0	0.5			
ĸ	•	0.5	0.5	0.6			
SI	2.4	3.6	3.6	2.8			
TI		0.2	•	0.4			
CO	0.7	•	0.8	1.9			
BR	•		0.1	•			
CL		0.1	0.1	0.2		•	
MN		0.1	0.2	0.2			
NI	-		0.1	•	•		
PR	. •	0.4	0.4	0.3			

r

DA	LLAS AT GF	RADE SITE	: IH30	AT MOT	LEYDRI	VE				
	LUNDGREN	IMPACTOR			UCD/A	IR QU	ALITY G	ROUP A	NALYSI	S
	NOMINAL FI	LOW RATE =	= 0.1	30 M**	3/MIN				en e	
	RUN DUR IN	G WÉEK OF	8 1	0 77				· .		
	APIEZON-L	COATED S	TRIPS,	DRUM:	2		an an taon an t			
			•	WE IGHT	(UG/CM	** <u>2</u> )			 	
	STATION	1	3	6	10	:				
	ELEMENT		•							
	CA	3.1	1.8	2.4	2.0	÷				
	FE	0.3	0.5	0.4	0.4			-		
	К	0.4	0.4	0.4	0.4					
	SI	0.9	0.8	0.6	1.0					
	TI	0.2		0.2	0.1				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
	CO	•	•		1.2					
	BR	•	0.1	0.1	•					
	CL	0.1	0.1	0.1	0.2				-	
	MN	0.1	•	0.1	0.1					
	PB	0.1	0.6	0.4	0.2	· -				
	٧	0.2	0.3	•	•					
	ZN	0.1	•		•					

DALLAS AT (	GRADE SIT	E: 1H30	AT MOT	LEY DRIVE	<b>.</b>		•
LUNDGREN	IMPACTOR	<b>}</b>		UCD/AIF	RQUALITY	GROUP	ANALYSIS
NOM INAL I	LOW RATE	= 0.1	30 <u>M</u> **	3/MIN			
RUN DUR II	NG WEEK C	)F 81	0 77				
APIEZON-L	COATED	STRIPS,	DRUM:	3			
			WE IGHT	UG/CM*	*2)	-	
STATION	1	3	6	10			
ELEMENT		•					
CA	0.8	1.8	0.9	0.7			
FE	0.2	0.2	0.2	0.2			
K	0.2	•	0.2	•			
SI		•	0.1	•			
TI	•	•	•	0.1			•
CO	0.3	. •	0.2	•			
CU	•	0.1	•	•			
BR	•	0.2	0.2	•			
CL	÷	٠	0.1	•	*.		
MN	0.1	•	•	•			
PB	•	0.5	0.5	0.2			
V	0.1	0.1	•	0.1		÷	

DALLAS AT	GRADE SITE	E: 1H30	ΑΤ ΜΟΤΙ	EY DRIN	/E IR OUAL	ITY G	ROUP /	ANALYSIS
	IMPACION	- 01	30 M**	3/MIN				
	NO WEEK OF	- 0.1 - 81	0 77					
	CONTED 9		DRIM:	4	·		1999 - 1999 1999 - 1999	
APTEZON	L CORTED .	511111.59	WFIGHT	(UG/CM)	**2)			
STATION	1	3	6	10				
FIFMENT			· · ·	· ·			÷	
Al	0.1	0.2		•				
CA	1.5	1.5	0.6	0.6			· .	
FE	0.1	0.1	0.1	0.1				1997 - Alexandrian († 1997) 1997 - Alexandrian († 1997) 1997 - Alexandrian († 1997)
ĸ	0.1	•	•	0.1	15			
TI	•	0.1	•	•				
CO	•	•	•	0.8			•	· ·
BR	. •	0.1	0.1	•				
CL	• .	•	• •	0.1				•
N L	0.1	•	0.1	•				
PB	•	0.4	0.2	0.1				
S ·	0.3	•	0.3	0.3			•	
V	•	0.1	0.1					÷

SAN ANTONIO SITE: IH410 AT MILITAR LUNDGREN IMPACTOR	Y HIGHWAY UCD/AIR QUALITY	GROUP ANALYS IS
NOMINAL FLOW RATE = 0.130 M**3 RUN DURING WEEK OF 9 28 77 APIEZON-L COATED STRIPS, DRUM: WEIGHT	3/MIN 1 (UG/CM**2)	

STATION	3
ELEMENT	
CA	8.3
FE	2.3
К	1.1
SI	14.0
TI	0.2
BR	0.3
MN	0.1
PB	1.4
ZN	0.2

SAN ANTONIO SITE: 1H410 AT MILITARY HIGHWAY UCD/AIR QUALITY GROUP ANALYSIS LUNDGREN IMPACTOR 0.130 M**3/MIN NOMINAL FLOW RATE = RUN DURING WEEK OF 9 28 77 APIEZON-L COATED STRIPS, DRUM: 2 WEIGHT (UG/CM**2) 3 STATION ELEMENT 7.1 CA FΕ 0.6 Κ 0.3 SI 1.6 Τŀ 0.3 BR 0.3 CL 1.0

PΒ

۷

0.7

0.2

SAN ANTONIO SITE: 1H410 AT MILITARY HIGHWAY UCD/AIR QUALITY GROUP ANALYSIS LUNDGREN IMPACTOR 0.130 M**3/MIN NOMINAL FLOW RATE= 9 28 77 RUN DURING WEEK OF APIEZON-L COATED STRIPS, DRUM: 3 WEIGHT (UG/CM**2) STATION 3 ELEMENT CA 1.4 FE 0.3 BR 0.2 0.4 CL PB 0.5

SAN ANTONIO SITE: 1H410 AT MILITARY HIGHWAY LUNDGREN IMPACTOR UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE= 0.130 M**3/MIN RUN DURING WEEK OF 9 28 77 APIEZON-L COATED STRIPS, DRUM: 4 WEIGHT (UG/CM**2) STATION 3 ELEMENT CA 0.7 FE 0.2 SI 0.2 ΤI 0.1 BR 0.1 PB 0.3 S 0.2

ΖN

0.1

SAN ANTON	IO SITE: I N IMPACTOR	H410 AT	MILITA	RY HIGHWAY UCD/AIR Q	UALITY	GROUP ANALYSIS
NOMINAL	FLOW RATE	= 0.1	30 M**	3/MIN		the second second
RUN DUR	ING WEEK C	F 10	5 77			
APIEZON	-L COATED	STRIPS,	DRUM:	1		
			WEIGHT	(UG/CM**2)		
STATION	1	3	10	•		
ELEMENT		•	e et la		.'	
CA	12.8	22.7	7.3			
FE	1.1	2.2	1.3			
K	0.6	0.8	0.5	· · ·		
SI	5.3	10.2	1.8			
TI	0.2	0.1	•			
CU	•	0.3	•			
BR	•	0.2	•			
CL	0.5	0.3	0.4			
MN	0.2		•			
NI	0.1					
PB	0.4	0.8	0.3			
V	•	•	0.2			
ZN	•	0.1	0.1			

SAN	ANTONIO	SITE: IF	1410 AL	MILIIA	RY HIGH	NAY				
LI	UNDGREN	IMPACTOR			UCD/A	IR QU	AL ITY	GROUP	ANALYS	IS
N	OMINAL F	LOW RATE=	= 0.1	30 M**3	3/MIN	,		• • • •		
R	UN DUR IN	G WEEK OF	10	5 77			,			
A	PIEZON-L	COATED S	STRIPS,	DRUM:	2					
		-		WEIGHT	(UG/CM	**2)				
S	TATION	1	3	10			•			
Ē	LEMENT	•				•				
C	A	•	6.2	5.1	ана 1973 г. — Аларана Аларана				çalı.	
FI	É	•	0.5	0.6					· · ·	
ĸ		•	0.3	0.3						
S	1 .	•	0.9	0.6						
C	0		•	Ó.7						
B	R	•	0.2	•					н. н. н. с.	
Ċ	Ĺ	•	0.7	0.6					. •	
Μ	N	•	. •	0.1						
P	В	•	0.5	0.3					:	
- V		•	0.2	•			•			
7	N	•	•	0.1						

SAN ANTONIO	SITE: 1	1410 A	I MILIIA	ARY HIGHWAY				
LUNDGREN	IMPACTOR			UCD/AIR	QUAL IT	Y GROU	P ANALY	SIS
NOMINAL F	LOW RATE	= 0.1	130 M*)	43/MIN		et a se		
RUN DUR IN	G WEEK O	- 10	5 77					
APIEZON-L	COATED	STRIPS	DRUM:	3				
			WE IGHT	(UG/CM**2)			•	
STATION	1	3	10					
ELEMENT								
CA	•	1.0	0.8				,	
FE	• .	0.3	0.2					
К	•	0.4	0.2			7		
SI	•	0.1	•					
TI	•	•	0.2					
BR	•	0.1	•					
CL	•	0.2	0.1				•	
PB	•	0.3	0.2					
V. State	•	•	0.1					
ZN	•	•	0.1					

SAN ANTONIO	SITE: II	H410 AT	MILITA	RY HIGHWAY			
LUNDGREN	IMPACTOR			UCD/AIR QU	JALITY	GROUP AN	VAL YS IS
NOMINAL FL	OW RATE	= 0.1	30 M**	3/MIN			1
RUN DUR INC	G WEEK O	= 10	5 77 👘			-	
APIEZON-L	COATED	STRIPS,	DRUM:	4			
			WE IGHT	(UG/CM**2)			
STATION	1	3	10				
ELEMENT						* • ·	
CA	0.6.	0.7	0.7			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
FE	0.2	0.1	0.1				
K	•	•	0.2				
SI.	•	•	0.3			·	
TI		0.2	•				
BR	0.1	0.1	0.1				
MN	0.1	•	•				
PB	0.2	0.5	0.2	-		<i>e</i>	4
S	1.5	2.7	1.0				
ZN	•	0.1	0.1				•

SAN ANTONI	O SITE: I	H410 A1	E MILITAF	RY HIGHWAY			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
LUNDGREN	I IMPACTOR	1.1		UCD/AIR (	QUALITY	GROUP	ANALYSIS
NOMINAL	FLOW RATE	= 0.1	30 M**3	3/MIN			
RUN DUR I	NG WEEK O	F 10 1	8 77	•		· ·	
APIEZON-	L COATED	STR IPS,	DRUM:	1	÷	·	
	· · ·		WE IGHT	(UG/CM**2	)		
STATION	1	3	10				
ELEMENT							
CA	7.7	18.6	6.2				
FE	0.7	1.4	0.6		•		
K	0.7	0.9	0.7				
SI	4.0	8.0	2.7				
ΤI	0.4	0.2	•				
CO	•	•	1.6				
BR	•	0.3	•				
MN	0.2	•	•				
PB	0.4	0.9	0.4				
7N		A 2					

LUNDGREN	IMPACTOR	1410 AT			UALITY GROUP ANALYSIS
NOMINAL FL	OW RATE:	= 0.1	30 M**1 0 77	S/MIN	
APIEZON-L	COATED	STRIPS,	DRUM:	2	
		7	WEIGHT	(UG/CM**Z)	
STATION	1	• <b>ر</b>			
CA	8.0	6.2	4.0		
FE	0.6	0.7	0.5		
К	0.4	0.6	0.5	. ·	
SI	1.6	1.7	1.1		
TI	0.1	0.1	0.2		
CO	•	0.3	•		
CU	•	•	0.1		
BR	0.2	0.2	0.1		
CL	0.3	0.1	0.1		
MN	0.1	0.1	•		
PB	0.8	0.7	0.4		· · · ·
V.		0.1	0.1		

SI	AN ANTONIO	SITE:	H410 AT	MILITA	RY HIGHWAY			
	LUNDGREN	IMPACTOR	<b>}</b> ∙		UCD/AIR	QUALITY	GROUP AN	ALYSIS
	NOMINAL F	LOW RATE	= 0.1	30 M**	3/MIN		· · · · · ·	
	RUN DUR IN	G WEEK C	)F 10 1	8 77	•			
	APIEZON-L	COATED	STRIPS.	DRUM:	3			
		• • • • • • · · ·		WE IGHT	(UG/CM**2	)		
•	STATION	. 1	3	10				
	ELEMENT							
	CÁ	1.3	1.4	0.6			· · ·	
	FE	0.2	0.2	0.2	•			.*
	K	0.4	0.3	0.2				
•	SI	0.2	0.2	•				· .
	TI	0.3	÷	•				
	CO	•	0.5	•				
	BR	Ö.1	0.2	0.1				
	CL	0.1	0.1					
	MN	•	0.1	•				
	NI	•	0.1					
	PB	0.3	0.3	0.2				
÷	S	-	-	0.3				

S/	AN ANIONIO	SILE: II	1410 AT	MILIIAF	CT HIGHWAT		
	LUNDGREN	IMPACTOR	÷		UCD/AIR QUALITY	GROUP	ANALYSIS
	NOMINAL F	LOW RATE:	= 0.1	30 M**3	5/MIN		
	RUN DUR IN	G WEEK OF	10 1	8 77			
	APIEZON-L	COATED S	STRIPS,	DRUM:	4		
				WEIGHT	(UG/CM**2)		
	STATION	. 1	3	10		-	
	ELEMENT				· •		
	CA	0.6	0.6	0.9			
	FE	0.1	0.1	0.2			•
	ĸ	0.2	0.1	0.2			
	SI	•	•	0.2			
	TI	•	•	0.1			
	CU	0.1	0.1				•
	BR	0.1	0.1	0.1			
	CL	0.3	•	0.1			· ·
	MN	•	0.1	0.1			
	PB	0.3	0.4	0.2			
	S	0.4	0.4	0.1	· ·		
	V		0.2	0.1			1

EL PASO	: IH1	0 AT LL	INA STRE	ET	•			· · ·
LUNDG	REN I	MPACTOR	2		UCD/AIR	QUALITY	GROUP	ANALYSIS
NOMIN	IAL FL	OW RATE	= 0.	130 M**3	3/MIN			
RUN D	UR ING	WEEK C	)F 12	1 77				
APIEZ	ON-L	COATED	STRIPS	DRUM:	1			
				WEIGHT	(UG/CM**2	2)		į
STATI	ON	1	- 3	5	· · ·			÷
ELEME	NT		1	•				:
ÁL		•	3.5	6.1				
CA		18.8	19.1	15.9				
FE		4.6	3.6	4.0				
K		3.0	2.0	2.4				1
SI		42.5	26.3	30.0				
ΤI		0.4	0.3	0.5				
BR		•	0.2	0.1				1
MN		0.2	0.1	0.2				
PB		0.6	0.8	0.8				:
ZN		0.1	0.2	0.2				

El	_ PASO: IH	ITO AT LUI	NA SIRE	EI				
	LUNDGREN	IMPACTOR		· .	UCD/AIR	QUAL ITY	GROUP ANAL	YS IS
	NOMINAL F	LOW RATE:	= 0.1	30 M**	3/MIN			
	RUN DUR IN	G WEEK O	= 12	1 77				
	APIEZON-L	COATED	STRIPS.	DRUM:	2			
				WEIGHT	(UG/CM**2	2)		
	STATION	1	3	5				
	ELEMENT							
	AL	1.3	1.5	1.3				
	CA	7.2	9.5	6.3				
	FE	1.6	1.6	1.5				
	K	1.0	1.0	0.9				
	SI	8.4	7.5	6.8				
	TI	0.2	0.2	0.2				
	BR	0.1	0.1	0.1				
	MN	0.1	0.1	0.1				
	NI	•	0.1	•		•		
	PB	0.4	0.5	0.3				
	ZN	. •	0.1	0.1				

.

ΕI	PASO: 1H1	O AT LU	NA STRE	ET		
	LUNDGREN	MPACTOR			UCD/AIR QUALITY	GROUP ANALYSIS
	NOMINAL FL	OW RATE	= 0.1	30 M**3	5/MIN	
	RUN DUR INC	S WEEK O	F 12	1 77		
	APIEZON-L	COATED	STRIPS.	DRUM:	3	
			•	WE IGHT	(UG/CM**2)	
	STATION	1	3	5		
	ELEMENT					
	AL	0.1	•	•	,	
	CA	2.5	2.5	1.4		
	FE	0.6	0.6	0.4		· · · · ·
	К	0.3	0.2	0.2		
	SI	1.9	1.2	•		
	TI	•	•	0.1		•
	<b>CO</b>	0.4	•	•		
	BR	0.1	0.1	•		
	MN	0.1	•	0.1		· · · ·
	PB	0.4	0.4	0.3	*	
	V.		0 1			

E١	PASO: IH	10 AT LU	NA STRE	ET	1		- Li isti	
•	LUNDGREN	IMPACTOR			UCD/AIR	QUALITY	GROUP	ANALYSIS
	NOMINAL F	LOW RATE	= 0.1	30 M**3	5/MIN	2 1		
	RUN DUR IN	G WEEK O	F 12	1 77		•		
	APIEZON-L	COATED	STR IPS,	DRUM:	4			
				WE IGHT	(UG/CM**2	2.)		
	STATION	1	- 3	5			· .	
	ELEMENT							
	CA	1.0	0.9	1.3				
	FE	0.2	0.3	0.3				
	К	0.2	0.2	0.2				
	SI	0.4	0.3	0.7				
	TI	0.1	0.1	•		-		5 T
	CO	•	•	0.4	•			1
	BR	0.1	0.2	0.1				
	CL	0.1	0.1	•				
	MN	0.1	•	0.1				
	PB	0.3	0.5	0.3				
	• V • •	•	0.1	•				
	ZN	•	•	0.1			· .	

EL	PASO: IH LUNDGREN NOMINAL F	10 AT LUI IMPACTOR LOW RATE	NA STRE	ET	UCD/AIR 3/MIN	QUALITY	GROUP AN	ALYSIS
1	RUN DUR IN	G WEEK OF	- 12	2 77		· · ·		
	APIEZON-L	COATED	STR IPS ,	, DRUM:	1	<b>.</b> .		
				WEIGHT	(UG/CM**)	2)		
	STATION	1	. 3	5				
	ELEMENT		· · ·		•		. •	· · ·
	CA	1.6	12.7	1.8	· .			
	FE	0.3	3.5	0.3				
	ĸ		1.7	•				
	SI	0.2	18.9					•
	TI		0.3			-		÷ 1
	CO			3.4				
	BR		0.2					
·	CI	0.3		0.3				1. A. A.
	MN		0.1					
	PB	•	1.4	0.2				
	S	0.1						
	v		0.1					· .
	ZN	•	0.3	0.1				

21	PASO: IH	IU AI LUN	IA STRE	<b>51</b>		· · ·	
	LUNDGREN	IMPACTOR	*		UCD/AIR	QUALITY	GROUP ANALYS IS
	NOMINAL FI	OW RATE	= 0.1	30 M**:	3/MIN	the second	
	RUN DUR ING	G WEEK OF	12	2 77			
	APIEZON-L	COATED S	TRIPS.	DRUM:	2		
			2	WE IGHT	(UG/CM**2	2)	
	STATION	1	3	5			
	FIEMENT		-				
	Al		•	0.8			
	CA	3.7	6.2	6.9			
	FF	1.0	1.6	1.5			
	κ.	0.7	0.8	1.0			
	N ()	A 1	53	67			· · · ·
	31 T1	4.1	0.2	0.7			
		0.5	0.2	0.2			
	BR	· 1	0.1	0.2	•		
	CL	0.1		<u> </u>			
	MN	0.1	0.1	0.1			
	PB	0.2	0.8	0.0			
	V	0.2				1.11	
	ZN	•	(), 1	0.1			

EL PASO: IH	10 AT LUI	NA STRE	ET				
LUNDGREN	IMPACTOR			UCD/AIR	QUALITY	GROUP	ANALYSIS
NOMINAL FI	LOW RATE	= 0.1	30 M**	3/MIN	1		
RUN DUR INC	G WEEK O	F 12	2 77				
APIEZON-L	COATED	STRIPS,	DRUM:	3			
			WEIGHT	(UG/CM**2	2)		
STATION	1	3	5				
ELEMENT			•			• •	
CA	1.4	2.0	0.8				
FE	0.4	0.6	0.1				
K	0.2	0.2	0.2	,			
SI	0.6	0.7	•				
TI	0.1	•					
CO .	•	•	0.6				
BR	•	0.2	0.1				
MN	0.1	•	0.1				
PB	0.2	0.6	0.3				
S	•	•	0.1				
7N	0.1	•					

LUNDGREN AFTERFILTER TX. AIR CONTROL BUARD ANHLISIS NOMINAL FLOW RATE= 0.1133 M**3/MIN DATE= 6 1 77 START TIME= 0 P.M. STOP TIME= 0 P.M. NUMBER OF DESERVATION STATIONS= 4 WEIGHT (UG/N**3) 7 STATIONS 2 4 6 ELEMENT 0.1 0.0 0.0 0.1 TI 4.1 0.2 0.7 2.7 CA 0.4 0.2 0.4 0.1 ĸ 0.7 0.9 0.6 1.8 CL 2.2 2.0 2.3 0.0 S 3.8 10.4 7.4 0.0 SI 0.4 0.3 2.0 5.1 ZN 0.0 0.0 0.0 0.1 CU . 0.0 0.1 0.7 1.0 FE 0.1 0.0 0.0 0.0 ZR 0.1 0.0 0.0 0.1 SR 1.2 2.4 2.4 1.8 2.9 PH 0.5 1.7 BR 2.8 0.0 0.0 0.0 AL 10.00 10.00 10.00 10.00 RUN (HRS)

DALLAS ELEVATED SITE: 1H45 AT FOREST AVENUE LUNDGREN AFTERFILTER UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE= DATE= 6 1 77 WHATMAN 41 FILTER WEIGHT(UG/M**3) 2 4 STATION 6 7 ELEMENT 4.3 1.4 1.6 CA 2.8 FE 1.3 0.5 0.9 C0 ( • 4.5 • • 0.2 CL 0.2 0.2 ٠ NI 0.1 0.1 0.1 • ΖN 5.5 0.6 0.5 2.5 RUN 10.00 10.00 10.00 10.00 TIME (HRS)

IH 45 AT FOREST AV. DALLAS LUNDGREN AFTERFILTER TX. AIR CONTROL BOARD ANALYSIS NOMINAL FLOW RATE 0.1133 M**3/MIN 6 7 77 DATE= START TIME= 0 P.M. STREE FRAME O P.M. NUMBER OF DESERVATION STATIONS= 4 WEIGHT(UG/M**3) 7 STATIONS 2 4 6 ELEMENT 1.9 2.1 CA . 11.6 0.3 0.3 0.3 0.3 0.2 к 0.8 0.5 0.4 0.5 CL 2.8 2.4 3.7 3.2 S 8.0 5.8 37.8 1.6 SI 2.5 3.0 0.2 ZN 18.2 0.0 0.0 0.1 0.1 CU 0.2 0.4 2.0 0.0 FE 1.7 1.6 3.4 2.2 PH 1.0 0.7 1.7 1.4 BR 0.0 0.1 0.0 0.0 NI 10.00 10.00 10.00 10.00 RUN (HRS)

DALLAS ELE	VATED SI	TE: 1H4	15 AT FC	REST AVE	NUE	· .	
LUNDGREN	AFTERF I	LTER		UCD/A	IR QUAL	ITY GROUP	P ANALYS IS
NOMINAL	FLOW RAT	E=					
DATE =	6 7 77						•
WHATMAN	41 FILTE	R					
			WEIGH	IT (UG/M**	3)		
STATION	2	4	6	7			
ELEMENT		•					
CA	7.5	0.8	2.9	2.5		•	•
FE	1.9	0.5	0.6	0.7			
K	0.9	•	0.6	0.8			
SI	9.4	•	0.2	0.3			
TI	1.0	•	•	1.3			
BR	2.7	1.5	1.3	0.9			
MN	•	•	0.3	•			
NI	0.1	0.2	•	0.1			
PB	6.3	3.7	3.0	2.1	•		
ZN	18.0	0.3	3.7	3.3			
RUN TIME (HRS	12.00	12.00	12.00	12.00			

DA	LLAS AT GR LUNDGREN A NOMINAL FL	ADE SIT FTERFIL OW RATE	E: IH30 TER =	AT MOT	UCD/	IVE AIR QUA	LITY	GROUP	ANAL YS IS
	DATE = 7	22 77			· · ·				
	NUCLEPORE	FILTER,	PORE S	SIZE= (	).4 UM	and a second			
			•	WEIGHT	Г (UG/M*	*3)			
	STATION	1	3	6	10	· ·			· ·
			0 1		· .			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	AL	•	0.1						
	CA	0.4	0.4	0.5	1.0				
	FE	0.1	0.1	0.1	0.1				
	K	0.1		•	0.5				
	SI	1.2	2.4	1.5	8.1				
	BR	0.2	0.8	0.3	0.2				
	CI	0.1	0.3	0.2	0.7				
	NI ·	•••			0.1				
	PR	0.4	1.6	0.7	0.3				
	S S	0 1							
	ZN	1.0	0.6	0.5	3.4			-	· ·
	RUN TIME(HRS)	2.00	2.00	2.00	2.00				

ĩ	)ALLAS:	- 1H30 A	T MOTLE	Y DR.				
Ł	UNDGREN	AFTERE	ILTER		TX. AIR	CONTROL	BOARD	ANALYSIS
	NOMINA	L FLOW	RATE=	0.1133	M**3/MI	N		
	DATE=	7 22	77					
	START	TIME=	7 A.M.					
	STOP T	IME= 6	F.M.					
	NUMBER	OF OBSI	ERVATIO	N STATI	ons=	4		
	•			WE	IGHT (UG	i/M**3) 🍈		
	STATIO	NS 1	3	5	10			
	ELEMEN	7						
	CA	2.4	1.7	0.5	3.1			
	ĸ	0.0	0.2	0.0	0.4		•	
	CL	0.0	0.9	0.0	0.0			
	S	0.5	2.2	0.9	0.6			
	SI	15.2	11.8	5.2	19.1			
	ZN	3.0	1.5	1.0	3.9			
	FE	0.2	0.2	0.0	0.3			
	PB	0.0	0.6	0.0	0.0			
	BR	0. O.	0.4	0.2	0.0			
		· . · ·						
	RUN	2.00	2.00	2.00	2.00	-	1997 - 1979 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
	(HRS)	•						

DALLAS: LUNDGREN NOMINAL DATE= START 1 STOP 13 NUMBER	IH30 A AFTERF FLOW I 8 3 IME= IME= 7 OF DES	T MOTLEY ILTER RATE= 0 77 7 A.M. A.M. ERVATION	( DR. 9.1133 ) • Stati(	TX. AIR 1**3/MIN DNS=	CONTROL	BDARD	ANALYSI	2				
			WE.	ight (UG)	/M**3)							
STATION	15 1	3	3	3	3	3	6	5	6	10	10	10
ELEMENT	F											
CA	0.0	0.0	0.2	0.7	0.0	0.0	0.3	0.0	0.0	0.2	0.4	(A) (A)
к	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S	0.4	0.9	2.2	0.9	0.9	1.4	0.3	1.0	1.2	1.2	1.2	1.0
ZN	0.0	0.0	0.4	1.1	0.0	9.1	0.5	0.1	0.1	0.2	0.4	0.1
PB	0.0	0.0	0.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BR	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	©_, <b>⊙</b>	0.0	0.0	0.0
RUN (HRS)	7.00	3.50	2.00	3.50	3.50	2.00	3.00	3.50	3.50	3.00	3.50	3.50

DALLAS AT GRADE SITE: 1H30 AT MOTIFY DRIVE

RADE ST	IE: 1H30	AT MO	TLEY DR	IVE			· · · · ·				
AFTERF II	LTER		UCD//	AIR QUA	LITY GR	OUP ANA	LYS IS				
OW RATE	Ξ= -										
3 77	• .						•				
FILTER.	PORE S	17F= (	0.4 UM								· · ·
		WEIGH	L (UG /M*)	¥3)							
1	1	3	3	- 3	3 ·	6	6	6	10	10	10
	·	-		-	-		U I	Ŭ	10	10	10
•		0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.4	0 1
•		0.1				0.1			0.1	0.7	0.1
0.1		0.1	•		0.1			•	•	•	•
0.1		3.1	0.5	0.1	0 1	0.3	0.2	0 1	0.3	1 6	0.1
	0.1				0.1	0.5	0.2	0.4	0.5	1.0	0.1
· •		0.5	0.3	0.3	0.2	0 1	0 1	0.2	<b>•</b> ••	0 1	0 1
•	•	0.7		0.5	0.2	0.1	0.1	0.2	0.1	0.1	0.1
0.1	0.1	1 0	0.8	0.8	0.5	0.7	• •		•••	<b>^</b> •	0.1
0.8	0.1	0.2	0.0	0.0	0.7	0.5	0.4	0.4	0.4	0.2	0.5
0.1	•	1 0		0.5	0.5	0.1	0.8	0.7	0.4	0.5	0.4
0.1	•	1.0	.0.1	0.1	0.1	0.5	0.1	0.1	0.2	0.5	. 0.1
7:00	3 50	2 00	3 50	3 50	2 00	3 00	7 50	7 50	7 00	7 50	7 50
	2.00	2.00	0.00	<u>ں د</u>	2.00	00.ر	5.90	5.00	5.00	. 2. 50	5.50
	ADE ST AFTERF II OW RATH 3 77 FILTER 1 0.1 0.1 0.1 0.1 0.1 0.8 0.1 7.00	RADE STTE: TH30         AFTERFILTER         OW RATE=         3 77         FILTER, PORE S         1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         7.00         3.50	ADE       STTE:       TH30       AT MO         AFTERFILTER       OW RATE=       3       77         FILTER, PORE       SIZE=       OUT       WEIGH         1       1       3       3         •       •       0.5       0.1         0.1       •       0.1       0.1         0.1       •       0.1       0.1         •       •       0.1       0.1         •       •       0.1       0.1         •       •       •       0.5         •       •       •       •         •       •       •       •         •       •       •       •         •       •       •       •         •       •       •       •         •       •       •       •         •       •       •       •         •       •       •       •         •       •       •       •         •       •       •       •         •       •       •       •         •       •       •       •         •       •	RADE STTE:       TH30 AT MOTLEY DR         AFTERFILTER       UCD/I         .0W RATE=       3 77         FILTER, PORE SIZE=       0.4 UM         WEIGHT (UG/M**)         1       1         0.5       0.1         0.1       0.1         0.1       0.1         0.1       0.5         0.1       0.1         0.1       0.5         0.1       0.5         0.1       0.5         0.1       0.5         0.1       0.5         0.1       0.5         0.1       0.5         0.1       0.5         0.1       0.1         0.2       0.5         0.1       1.0         0.3       0.2         0.4       0.1         0.7       0.1	RADE SITE: TH30 AT MOTLEY DRIVE AFTERFILTERAFTERFILTERUCD/AIR QUAOW RATE= 3 773 77FILTER, PORE SIZE=0.4 UM WEIGHT (UG/M**3)11331133.0.50.10.1.0.1.0.1.0.50.10.1.0.50.10.1.0.50.10.1.0.50.11.0.0.50.11.0.0.20.50.50.11.0.0.1.0.1.0.3.0.2.0.50.11.0.0.1.0.3.0.2.0.5.1.0.0.1.0.1.0.3.0.5.1.0.0.1.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.0.5.	RADE STTE:       1H30 AT MOTLEY DRIVE         AFTERFILTER       UCD/AIR QUALITY GRI         OW RATE=       377         FILTER, PORE SIZE=       0.4 UM         WEIGHT (UG/M**3)       1         1       1       3       3 $0.5$ 0.1       0.1       0.1 $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.5$ $0.3$ $0.3$ $0.2$ $0.1$ $0.5$ $0.3$ $0.3$ $0.2$ $0.1$ $0.1$ $0.6$ $0.8$ $0.5$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.5$ $0.3$ $0.3$ $0.2$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$ $0.1$	RADE SITE: 1H30 AT MOTLEY DRIVE AFTERF ILTERUCD/AIR QUALITY GROUP ANALOW RATE= 3 77FILTER, PORE SIZE= 0.4 UM WEIGHT (UG/M**3)1133360.50.10.10.10.1013336OUD AIR QUALITY GROUP ANALWEIGHT (UG/M**3)113336OUD AIR QUALITY GROUP ANALWEIGHT (UG/M**3)110.10.10.10.10.50.10.10.10.10.10.10.10.10.10.10.10.10.10.50.30.20.10.10.10.11.00.80.80.50.30.10.10.10.10.10.10.30.10.10.10.10.10.30.11.00.10.10.10.30.11.00.33.502.003.00	RADE SITE: IH30 AT MOTLEY DRIVEAFTERF ILTERUCD/AIR QUALITY GROUP ANALYSISOW RATE= 3 77FILTER, PORE SIZE= 0.4 UM WEIGHT (UG/M**3)11333660.50.10.10.10.10.1010.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.50.10.10.10.20.10.50.30.30.20.10.10.10.10.50.30.30.20.10.10.11.00.80.80.50.30.40.80.20.50.50.30.10.80.11.00.10.10.10.30.17.003.502.003.503.502.003.50	CADE SITE: TH30 AT MOTLEY DRIVE AFTERF ILTERUCD/AIR QUALITY GROUP ANALYSISOW RATE= $3 77$ FILTER, PORE SIZE= 0.4 UM WEIGHT (UG/M**3)1133366.0.50.10.10.10.10.1.0.1.0.10.10.10.10.1.0.1.0.1.0.10.1.0.1.0.10.1.0.1.0.10.20.50.30.30.20.10.10.20.10.11.00.80.80.50.30.40.40.80.20.50.50.30.10.10.17.003.502.003.503.502.003.003.503.50	CADE SITE: 1H30 AT MOTLEY DRIVE AFTERFILTERUCD/AIR QUALITY GROUP ANALYSISOW RATE= 3 77FILTER, PORE SIZE= 0.4 UM WEIGHT (UG/M**3)113336610• 0.50.10.10.10.10.10.10.1•0.1•0.10.10.10.10.1•0.1•0.1•0.1••0.10.1•0.1•0.1•••0.1•0.1•0.1•••0.1•0.1•0.1•••0.1••••••0.1••••••0.1••••••0.1••••••0.1•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••	CADE SITE: IH30 AT MOTLEY DRIVE AFTERFILTERUCD/AIR QUALITY GROUP ANALYSISOW RATE= 3 77FILTER, PORE SIZE= 0.4 UM WEIGHT (UG/M**3)11333661010.0.50.10.10.10.10.10.10.4.0.1.0.10.10.10.10.4.0.1.0.1.110.10.4.0.1.0.10.1.0.1.0.10.1.0.10.50.30.30.20.40.31.60.10.50.30.20.10.10.2<

IH30 AT MOTLEY DR. DALLAS: TX. AIR CONTROL BOARD ANALYSIS LUNDGREN AFTERFILTER NOMINAL FLOW RATE= 0.1133 M**3/MIN DATE= 8 4 77 START TIME= 7 A.M. STOP TIME= & P.M. NUMBER OF OBSERVATION STATIONS= -4 WEIGHT(UG/M**3) 3 3 STATIONS 3 3 ELEMENT 0.2 0.8 0.4 1.3 CA. 2.5 1.0 2.7 1.3 S 7.8 0.0 2.6 8.9 SI 0.0 2.5 0.1 017 ZN 0.0 0.0 0.5 0.2 PH 0.0 0.0 0.3 0.1 BR 1.00 3.75 2.50 2.50 RUN (HRS)

DALLAS AT GR LUNDGREN A NOMINAL FL	RADE SIT AFTERFIL .OW RATE	E: 1H3( TER =	ΤΟΜ ΤΑ Ο	LEY DRIN UCD/A	VE IR (	UALITY	GROUP	ANALYSIS
DATE = 8	4 77							
NUCLEPORE	FILTER,	PORE	SIZE = 0	).4 UM				
		· · ·	WE IGHT	(UG/M**3	3)			
STATION	- 3	3	3	3				
ELEMENT								
AL	•	0.1	•	•				
CA	0.2	0.3	0.7	0.1				
FE	•	•	0.1	• .			÷ '	
К	•	0.1	0.1	0.1				
SI	1.0	1.5	4.7	•				
CO	•	•	•	0.1		-		
BR	0.6	0.2	0.4	0.3				
PB	1.3	0.6	1.1	0.7		· .		
S	0.3	0.3	1.1	0.4				
ZN	0.3	0.6	1.9	0.1				
RUN	2.50	2.50	3.75	1.00		· ·		

DALLAS: LUNDGREN NOMINA DATE= START STOP T NUMBER	IH30 A AFTERF L FLOW I 8 10 TIME= IME= 6 OF DESI	T MOTLE ILTER RATE= 77 7 A.M. P.M. ERVATIO	Y DR. 9.1133 N Stati	TX. AIR N**3/MI DNS=	CONTROL N	rdard	ANALYSIS	<b>2</b> - 1
			WE	IGHT (UG	/***3)			
STATIO	NS 1 T	<b>3</b> 10 - 10	3	3	6	6	10	10
CA	0.4	0.1	0.2	0.0	0.1	0.1	0.1	0.0
CL	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
S	0.0	0.2	0.7	0.5	0.4	0.3	0.1	0.3
SI	1.1	0.8	1.3	0.0	1.5	0.4	1.1	0.0
ZN	0.4	0.1	0.2	0.0	0.2	0.1	0.2	0.0
FE	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
PB	0.0	0.0	0.3	0.3	0.1	0.0	0.0	0.0
BR	0.0	0.0	0.2	0.1	0.1	0.0	0.0	0.0
RUN (HRS)	5.00	5.50	4.50	5.50	5.00	5.50	6.00	5.50

DALLAS AT G	RADE ST	TE: IH3	O AT MO	TLEY DR	IVE			
LUNDGREN	AFTERF I	LTER		UCD/	AIR QUA	LITY GR	OUP ANA	LYSIS
NOMINAL F	LOW RAT	E=						
DATE = 8	10 77							
NUCLEPORE	FILTER	PORE	SIZE=	0.4 IM				
	1. 1.		WEIGH	T (UG/M*	¥3)		*	
STATION	. 1	1	3	3	6	6	10	10
ELEMENT			- T	-			10	10
CA	0.4	0.2	0.1	0.1	0.1	0.1	0.2	0 1
к	•					0.5	0.2	0.1
SI -	1.6	1.3	0.7	0.3	0.5	0.1	0.5	0.1
CO			•	0.1	0.1	0.1	0.5	0.1
BR	•	•	0.6	0.7	0.2	0.3	0 1	0.2
CL	•	•	0.1	0.3	0.1	0.1	0.1	0.2
PB	0.1	0.1	1.2	1.5	0.5	0.7	• •	0.1
S	0.1	0.2			0.1	0.7	0.4	0.4
ZN	0.6	0.3	0.2	0.1	0 1	0 1	^ <b>`</b> 3	0.1
	••••		012		0.1	0.1	0.0	0.1
RUN	5.00	5.50	4.50	5 50	5 00	5 50	6 00	5 50
TIME (HRS)				2.20	2.00	0.00	0.00	5.50
ZN RUN TIME (HRS)	0.6 5.00	0.3 5.50	0.2 4.50	0.1 5.50	0.1 5.00	0.1 5.50	0.3 6.00	0.1

DALLAS: LUNDGREN NOMINA DATE= START STOP T	IH30 A AFTERF L FLOW I 8 11 TIME= IME= 6 OF DEST	T MOTLE) ILTER RATE= ( 77 7 A.M. P.M. FRUATION	( DR.	TX. AIR M**3/MI		. BOARD	ANAL YS	I <b>S</b>
11 10-2 140-240 13	101 10 X 10 X			C3472	8 ( ) , , , , , , , , , , , , , , , , , ,			•
			WIT:	1041 (06.	( <b>M</b> **3)			
STATIO	NS 1	1	3	3	6	6	10	10
ELEMEN.	T						•	
CA	0.0	0.2	0.0	0.0	0.0	0.1	0.0	D D
5	0.5	0.4	0.7	0.8	0.5	0.3	0.5	0 T
SI	0.0	0.7	0.0	0.0	0.0	0.7	0.0	- A A
ZN	0.0	Đ. 1	0.0	0.0	0.0	0.2	0.0	0.0
PR	0.0	0.0	0.3	0.2	0.0	0.0	6 6	0.0 0 0
BR	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0
RUN (HRS)	5.50	5.50	4.50	6.00	4.25	4.50	4.50	5.75

DALLAS AT GR	ADE SIT	TE: 1H30	) AT MOI	ILEY DR	I VE			
LUNDGREN A	FTERFIL	TER	- 1	UCD//	AIR QUAL	ITY GRO	OUP ANAI	_YS IS
NOMINAL FL	OW RATE	=		•				
DATE = 8	1.1 77		4					
NUCLEPORE	FILTER,	PORE S	SIZE= (	).4 UM			1 A	
			WEIGHT	r(UG/M**	*3)			
STATION	1	1	3	3	б	б	10	10
ELEMENT						•		
CA	0.1	0.2	•	0.1	•	0.1	0.1	0.1
K	0.1	0.1	•	•	•	•	•	•
SI	0.3	0.6	0.1	0.3	•	0.3	0.2	0.2
BR	0.1	•	0.9	0.5	0.3	0.1	0.2	0.1
CL	0.1	•	•	•	0.2	0.1		•
PB	0.3	0.2	1.8	1.5	0.7	0.3	0.6	0.4
S	0.7	0.5	0.4	0.5	•	0.2	0.3	0.5
ZN	0.1	0.2	0.1	0.1	•	0.1	0.1	0.1
RUN TIME(HRS)	5.50	5.50	4.50	6.50	4.25	5.50	4.50	5.75

SAN ANTON LUNDGREN NOMINAL DATE= START T STOP T NUMBER	ID:LOOP AFTERFIN FLOW R 10 5 IME= 7 ME= 6 OF OBSE	410 AT _TER ATE= 0 77 A.M. P.M. RVATION	MILITA T 1133 P STATI( WF	NRY HWY (X. AIR ( 4**3/MIN ONS= 10HT(UG/	CONTROL B M**3>	BOARD	ANALYSIS	
STATIO	15 1	3	1	3	3	10	10	10
ELEMEN CA K CL S SI ZN FE PB BR	41.9 2.2 0.0 7.0 130.0 19.2 3.6 2.1 1.5	2.2 0.3 0.0 3.2 7.1 1.3 0.0 0.0 0.0	0.7 0.0 0.0 2.9 3.9 0.3 0.0 0.0 0.0	55.0 3.2 1.0 5.2 181.1 56.1 3.9 0.0 0.0	2.9 0.9 1.9 4.8 1.7 0.3 1.9 1.3	5.5 0.5 0.0 1.0 22.5 5.4 0.0 0.0 0.0	0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.0 0.5 3.4 0.0 0.0 0.0 0.0 0.0
RUN (HRS)	2.90	4.50	4.00	2.00	4.00	3.00	3.70	4.00

SA	N ANTONIO	SITE: 1	4410 AT	MILITA	RY HIGH		ITY COC		2124
	LUNDGREN A	FTERFIL	IER .	· · · ·	UCD/P	IR QUAL	ITT GRO		1313
	NOMINAL FL	OW RATE							
	DATE = 10	577							
	NUCLEPORE	FILTER,	PORE S	SIZE = 0	.4 UM				
				WE IGHT	(UG/M**	- (5)			10
	STATION	1	1	5 <b>1</b> - 5	3	3	10	10	10
	ELEMENT			•				·	
	CA	3.2	1.5	1.1	8.8	1.9	2.3	1.8	1.2
	FF	0.6	0.5	•	1.2	0.7	0.6	÷	0.6
	ĸ	0.4	•	0.6	0.8	0.7	•	•	0.4
	SI	1.0	•	•	7.8	•	•	•	•
	TI		•		0.4	1.3		•	•
	CO		4.3	•	•	•	•	•	5.5
	BR	0.3		•	•	0.5	•	0.3	0.4
				•		0.2	0.1	0.2	0.2
		0.2	•		0.2	0.2	•	0.1	0.2
		<u>0.2</u>	0.4		0.9	1.5	•	0.7	0.9
		0.9	0.4		0.5		•	1.5	•
	7.	2 1	0.7	0.3	14.1	0.9	2.0	•	•
	ZIN	2.1	0.7	0.5				•	
	DUN	2 00	4 50	4 00	2.00	4.00	4,50	3.00	3.75
		2.00	+• J0	4.00	2.00	TOV	1.20		

SAN ANTO LUNDGREN	NID:LOD	P 410 A ILTER	T MILIT	ARY HWY TX. AIR	CONTROL	BOARD	ANALYSTS
NOMINA	L FLOW I	RATE=	0.1133	M**3/MI	N		
DATE=	10 5	77			•		
START	TIME=	7 A.M.					
STOP T	IME= 6	P.M.					
NUMBER	OF OESI	RVATIO	N STATI	ons=	7		
			4E	IGHT (UG.	/***3>		
STATIO	NS 1	1	3	3	3	10	10
ELEMEN	T					1 - F	
CA	0.0	0.0	1.1	0.3	0.0	3.5	0.4
ĸ	0.0	0.0	0.0	0.3	0.0	0.2	0.0
CL.	0.0	0.0	1.6	0.7	0.0	0.0	0.0
S	3.2	2.4	5.8	1.9	0.0	0.8	2.0
SI	2.9	0.9	5.6	1.2	0.0	19.3	0.0
ZN	0.2	0.1	0.7	0.2	0.2	3.2	0.7
FE	0.0	0.0	0.0	0.0	0.0	0.5	0.0
PB	1.0	0.0	5.1	1.5	1.1	0.0	0.0
ER	0.7	0.0	2.5	0.8	0.9	0.0	0.0
RUN (HRS)	3.00	8.50	2.50	6.00	2.75	8.00	3.00

SAN ANTONIO LUNDGREN A	SITE: NFTERF II	TER	T MILITA	ARY HIG UCD/	HWAY AIR QUA	LITY GR	OUP ANAL	YS IS
NOMINAL FL	OW RATE	=						
DATE = 10	6 77							
NUCLEPORE	FILTER,	, PORE :	SIZE=	0.4 UM				
			WE IGH	T(UG/M*	*3)	, ·		
STATION	1	1	3.	3	3	10	10	
ELEMENT		1997 - 1997 1997 - 1997				· · · ·		
CA	0.6	· •			•	2.8	•	
K	•	0.9	•	1.1	•	•	0.9	
SI		•	•	•	•	2.1	•	
CO	· · ·	•	•	4.6	4.7	•	5.8	· · .
BR	0.2	0.3	0.8	0.7	0.4	0.4	0.2	
CL	•		0.2	0.2		•	0.2	
NI .	•	0.3	•	•	•	0.3	•	
PB	0.8	0.5	1.7	1.4	0.9	0.7	•	
S	•	0.3	•	•	•		•	
V .	1.5	•	•	•	•	•	•	
ZN	0.2	•	0.3	0.2	0.2	2.8	0.2	
RUN TIME(HRS)	3.00	8.50	2.50	6.00	2.75	8.00	3.00	

SAN ANTON	10:LOOP	410 AT	MILITA	RY HWY X. AIR	CONTROL	BOARD	ANALYSIS
NUMINAL	FLOW R	ATE= 0	.1133 M	**3/MIN			
DATE=	10 18	77					
START T	IME= 7	A.M.					·
STOP TI	ME= 6	P.M.	-	<b>11</b> °	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2
NUMBER	OF OBSE	RVATION	ULIAILU UET	выт (1)67	/ M**3)		
	ing a second sec	4		3	3	10	10
STATION			••••			1. 1.	
ELEMENI	~ ~ ~	3.4	2.2	0.7	0.8	0.0	0.2
UH V	0 0	0.5	0.0	0.0	0.0	0.0	0.0
N DI	4 4	0.0	0.0	0.4	0.0	0.0	0.0
LL .	5 - 17 A 15	A.0	1.5	4.1	6.8	0.0	3.2
3 · · ·	24 4	16.7	10.7	3.9	3.3	2.8	1.4
2-3- 	Δ.4	3.2	1.5	0.7	0.3	0.3	0.1
. 2.59		0.3	0.0	0.0	0.0	0.0	0.0
·	Υ.D. 7 Δ	0.0	0.0	2.6	3.1	0.0	0.7
- F B 1954	4 7	0.0	0.0	1.5	1.7	0.0	0.5
CU CU	0.0	0.0	0.0	0.1	0.0	0.0	0.0
60							
121 IN	5.50	4.50	2.00	5.00	3.50	4.00	7.00
(HRS)							
1.0 22 5 80 2							

SAN ANTONIO	SITE: 1	H410 A	T MILIT	ARY HIGH	IWAY			
LUNDGREN /	AFTERFIL	TER		UCD//	AIR QUA	LITY GR	OUP ANAL	YSIS
NOMINAL FL	.OW RATE	=			•			
DATE = 10	18 77	•	÷ .			· · ·	•	
NUCLEPORE	FILTER,	PORE	SIZE= (	0.4 UM				
	•		WEIGH	T (UG/M*)	(3)			
STATION	1	1	3	3	3	10	10	
ELEMENT	,							
CA	0.8	0.7	0.4	0.2	0.1	0.3	0.2	
FE	0.1	0.1	0.1	•		0.1		
К	0.1	0.1	0.1	•	0.1	0.1	0.1	
3	2.3	2.9	0.9	1.1	0.1	0.2	0.2	
BR	0.9	0.1	0.1	0.9	0.7	•		
CL	0.4	•	•	0.4	•	•		
PB	1.9	0.2	0.3	2.0	1.6	•	1.0	
S	•	0.6		0.2	0.3		0.6	
ZN	1.9	1.2	0.5	0.4	0.1	0.2	0.4	
RUN TIME (HRS)	5.50	4.50	2.00	5.00	3.50	4.00	7.00	

AN ANTONI	0:100	P 410 AT	MILITA	RY HWY		1	a a shara t	
UNDGREN A	FTERF	ILTER	7	X. AIR	CONTROL	BOARD	ANALYSI	S
NOMINAL	FLOW	RATE= 0	1133 M	I**3/MIN	<b>}</b> , •			
DATE=	10 19	77						
START TI	ME=	7 A.M.						
STOP TIM	E= 台	P.M.	e getere				14 g	•
NUMBER O	F OBS	ERVATION	STATIC	INS=	7			
	1. J.		WEI	GHT (UG/	/M**3)		·	
STATIONS	1	1	3	3	3	10	10	
ELEMENT								
CA	3.6	0.0	2.8	3.5	4.6	0.6	0.3	
ĸ	0.4	0.0	0.0	0.6	0.5	0.0	0.2	
CL	0.8	0.0	0.0	0.8	0.0	0.0	0.0	
S	3.9	3.8	2.4	4.4	4.8	2.0	0.0	
SI	6.9	0.0	7.8	6.5	7.4	2.9	0.0	
ZN	1.5	0.2	0.0	0.1	0.3	0.4	0.0	
CU	0.0	0.0	0.0	0.0	0.1	0.0	0.0	
FE	0.4	0.0	0.4	0.3	0.6	0.0	0.0	
PB	3.1	0.0	0.0	2.8	3.1	0.8	0.0	
BR	1.8	0.0	0.0	0.1	0.1	0.0	0.0	
AS	0.5	0.0	0.0	0.0	0.0	0.0	0.0	
TI	0.1	0.0	0.0	0.1	0.1	0.0	0.0	
RUN	6.00	4.50	2.25	4.00	4.50	3.50	7.25	
(HRS)		• •			•			

Ś

SAN ANTONIC	) SITE: I	H410 AT	MILIIA	RY HIGH	IWAY			
LUNDGREN	AFTERF IL	TER		UCD//	AIR QUAL	ITY GRO	OP ANAL	1212
NOMINAL F	LOW RATE	=			·			-
DATE = 10	19 77							
NUCLEPORE	E FILTER,	, PORE S	SIZE= (	).4 UM				
			WE IGHT	「(UG/M*)	(3)			
STATION	· 1	1	3	3	3	10	10.	.1
ELEMENT							· .	
AL	•	•	•	•	•	0.1	•	
CA	0.3	0.1	0.1	0.2	0.2	0.3	0.2	•
FE	•	•	•		•	0.1	•	
ĸ	0.1	0.1	0.1	0.1	0.1	011	0.1	
SI	1.1	0.1	•	0.1	0.3	0.7	0.1	
00		0.1		•	•	•	• •	
BR	1.2	0.1	0.2	0.9	0.9	0.3	0.4	
CL	•	· ·	0.2	0.3	1 <b>.</b>	•	•	
PR	2.7	0.2	0.4	1.9	2.1	0.8	1.0	
S ·	0.8	0.4	0.1	0.1	0.5	0.2	0.4	
7N	0.4	0.1			0.1	0.1	0.1	
<u> </u>	5.4		•	. •	- • •			
RUN	6,00	4.50	2.00	4.00	4.50	3.50	7.00	
	1							

D/	ALLAS AT G	RADE SITE	E: 1H30	D AT MOT	FLEY DR	IVE	1		
	HIGH VOLU	ME CASCAL	DE IMPA	CTOR	UCD//	AIR QUAL	ITY GROU	JP ANALYSI	S
	NOMINAL FI	LOW RATE:	= 1.1	133 M*†	3/MIN	1997 - A.			
	DATE = 7	20 77		an An taon an	1. A.				
	START TIM	E= 7 A.M	4.						
	STOP TIME	= 9 A.M.	•						•
	WHATMAN 4	1 FILTERS	S, STAT	TION:	3				
		•		WE IGH	r (UG/CN	4**2)			
	STAGE	. 1	2	3	4	5			
	ELEMENT								
	SI	•	•	0.4	•	•			
	CL	•	: • ·	0.5	• •	•			
	-		<b>A AA</b>		0.00				
	RUN	2.00	2.00	2.00	2.00	2.00			
	I I ME (HRS)								

DALLAS AT GRADE SITE: 1H30 AT MOTLEY DRIVE HIGH VOLUME CASCADE IMPACTOR UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE = 1.133 M**3/MIN DATE = 7 22 77 START TIME= 7 A.M. STOP TIME= 9 A.M. WHATMAN 41 FILTERS, STATION: 1 WEIGHT (UG/CM**2) STAGE 2 3 4 5 1 ELEMENT 0.2 0.3 0.3 CA SI 0.5 0.4 0.2 Ρ 0.3 • BR 0.1 . . 0.4 CL . 0.4 PB 0.5 S RUN 2.00 2.00 2.00 2.00 2.00 TIME(HRS)

DALLAS AT GR HIGH VOLUM NOMINAL FL DATE= 7 START TIME STOP TIME= WHATMAN 41	ADE SIT IE CASCA OW RATE 22 77 = 7 A. 9 A.M FILTER	E: 1H30 DE IMPA = 1.1 M. 1. S. STAT	AT MOT CTOR 33 M**	LEY DRI UCD/A 3/MIN 3	VE AIR QUAL	ITY G	ROUP AN	ALYSIS
			WE IGHT	UG/CM	(**2)			
STAGE FI FMENT	1	2	3	4	5			
CA	0.2	0.3	0.2	0.3	•			
FE	0.2	0.1	•	0.2	0.4			-
P	•	0.4	0.2	0.1				
BR	•	0.2	0.2	0.6	0.4		•	
PB	•	0.5	0.5	1.5	1.1			
S	•	• 1	•	•	0.7			· ·
RUN TIMF(HRS)	1.75	1.75	1.75	1.75	1.75			

DALLAS AT GRADE SITE: IH30 AT MOTLEY DRIVE HIGH VOLUME CASCADE IMPACTOR UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE= 1.133 M**3/MIN DATE = 8 3 77 START TIME= 7 A.M. STOP TIME= 6 P.M. WHATMAN 41 FILTERS, STATION: 1 WEIGHT (UG/CM**2) 4 5 3 STAGE 1~ 2 ELEMENT 0.2 AL 1.2 0.5 0.3 0.7 CA 0.3 0.3 0.4 0.3 0.4 FE • 1.0 0.4 SI 0.6 1.3 1.0 0.2 0.2 BR 0.2 . . PB 0.3 0.3 0.3 0.6 0.2 1.2 6.4 S • 0.1 ΖN . 11.00 11.00 11.00 11.00 11.00 RUN

TIME (HRS)

ZŚ.

ALLAS AT GF	RADE SI	TE: 1H3	O AT MO	TLEY DR	IVE			
HIGH VOLUN	AE CASC	ADE IMP	ACTOR	UCD/	AIR QUA	LITY GRO	JP ANAL	YSIS
NOMINAL FL	OW RATI	E= 1.	133 M*	*3/MIN	• • •			
DATE = 8	3 77				e 11 te			
START TIME	E= 7 A	. M.						
STOP TIME	= 6 P.I	4.				i de la		
WHATMAN 41	FILTE	RS. STA	TION:	3		•		
		•	WE IGH	T (UG/C	M**2)			
STAGE	1	2	3	4	5	6		
ELEMENT							11	
CA	1.0	1.2	0.6	0.2	0.4			
FE	0.3	0.4	0.2	0.1	0.3			
SI	0.8	1.2	0.8	0.3	0.5	•		
BR	•	0.3	0.3	•	0.4	•		
CL	•	0.4	•		•	•		
PB	0.4	0.7	0.5	•	1.2	•		
S	•	•	•	•	3.7	0.9		
RUN	11.00	11.00	11.00	11.00	11.00	11.00		
TIME (HRS)								
	ALLAS AT G HIGH VOLUN NOMINAL FI DATE = 8 START TIME STOP TIME WHATMAN 41 STAGE ELEMENT CA FE SI BR CL PB S RUN TIME (HRS)	ALLAS AT GRADE SI HIGH VOLUME CASCA NOMINAL FLOW RATH DATE= 8 3 77 START TIME= 7 A STOP TIME= 6 P.N WHATMAN 41 FILTEN STAGE 1 ELEMENT CA 1.0 FE 0.3 SI 0.8 BR CL . PB 0.4 S RUN 11.00 TIME (HRS)	ALLAS AT GRADE SITE: IH3 HIGH VOLUME CASCADE IMP, NOMINAL FLOW RATE= 1. DATE= 8 3 77 START TIME= 7 A.M. STOP TIME= 6 P.M. WHATMAN 41 FILTERS, STA STAGE 1 2 ELEMENT CA 1.0 1.2 FE 0.3 0.4 SI 0.8 1.2 BR 0.3 CL 0.4 PB 0.4 0.7 S . RUN 11.00 11.00 TIME (HRS)	ALLAS AT GRADE SITE: 1H30 AT MO HIGH VOLUME CASCADE IMPACTOR NOMINAL FLOW RATE= 1.133 M* DATE= 8 3 77 START TIME= 7 A.M. STOP TIME= 6 P.M. WHATMAN 41 FILTERS, STATION: WEIGH STAGE 1 2 3 ELEMENT CA 1.0 1.2 0.6 FE 0.3 0.4 0.2 SI 0.8 1.2 0.8 BR 0.3 0.3 CL 0.4 . PB 0.4 0.7 0.5 S RUN 11.00 11.00 11.00 TIME (HRS)	ALLAS AT GRADE SITE:       IH30 AT MOTLEY DR         HIGH VOLUME CASCADE       IMPACTOR       UCD/         NOMINAL FLOW RATE=       1.133       M**3/MIN         DATE=       8       3       77         START TIME=       7       A.M.       STOP TIME=       6       P.M.         WHATMAN       41       FILTERS, STATION:       3       WEIGHT (UG/C         STAGE       1       2       3       4         ELEMENT       CA       1.0       1.2       0.6       0.2         FE       0.3       0.4       0.2       0.1         SI       0.8       1.2       0.8       0.3         BR       0.3       0.3       .       .         PB       0.4       0.7       0.5       .         RUN       11.00       11.00       11.00       11.00	ALLAS AT GRADE SITE:       IH30 AT MOTLEY DRIVE         HIGH VOLUME CASCADE       IMPACTOR       UCD/AIR QUA         NOMINAL FLOW RATE=       1.133       M**3/MIN         DATE=       8       3       77         START TIME=       7       A.M.         STOP TIME=       6       P.M.         WHATMAN       41       FILTERS, STATION:       3         WEIGHT       (UG/CM**2)         STAGE       1       2       3       4       5         ELEMENT       CA       1.0       1.2       0.6       0.2       0.4         FE       0.3       0.4       0.2       0.1       0.3       SI         BR       0.3       0.4       0.2       0.1       0.3         SI       0.8       1.2       0.8       0.3       0.5         BR       0.3       0.3       0.4       0.4       0.4         CL       0.4       0.7       0.5       1.2       3.7         RUN       11.00       11.00       11.00       11.00       11.00	ALLAS AT GRADE SITE: IH30 AT MOTLEY DRIVE HIGH VOLUME CASCADE IMPACTOR UCD/AIR QUALITY GROUND NOMINAL FLOW RATE = 1.133 M**3/MIN DATE = 8 3 77 START TIME = 7 A.M. STOP TIME = 6 P.M. WHATMAN 41 FILTERS, STATION: 3 WEIGHT (UG/CM**2) STAGE 1 2 3 4 5 6 ELEMENT CA 1.0 1.2 0.6 0.2 0.4 . FE 0.3 0.4 0.2 0.1 0.3 . SI 0.8 1.2 0.8 0.3 0.5 . BR 0.4 0.7 0.5 . 1.2 . S	ALLAS AT GRADE SITE: IH30 AT MOTLEY DRIVE HIGH VOLUME CASCADE IMPACTOR UCD/AIR QUALITY GROUP ANAL NOMINAL FLOW RATE= 1.133 M**3/MIN DATE= 8 3 77 START TIME= 7 A.M. STOP TIME= 6 P.M. WHATMAN 41 FILTERS, STATION: 3 WEIGHT (UG/CM**2) STAGE 1 2 3 4 5 6 ELEMENT CA 1.0 1.2 0.6 0.2 0.4 . FE 0.3 0.4 0.2 0.1 0.3 . SI 0.8 1.2 0.8 0.3 0.5 . BR 0.3 0.3 0.4 . CL 0.4 . PB 0.4 0.7 0.5 1.2 . S . S . RUN 11.00 11.00 11.00 11.00 11.00 11.00 11.00 TIME(HRS)

DALLAS AT GRADE SITE: 1H30 AT MOTLEY DRIVE HIGH VOLUME CASCADE IMPACTOR UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE = 1.133 M**3/MIN DATE= 8 4 77 START TIME= 7 A.M. STOP TIME= 6 P.M. WHATMAN 41 FILTERS, STATION: 1 WEIGHT (UG/CM**2) STAGE 2 1 3 4 5 ELEMENT 0.8 0.2 0.3 CA 1.0 FE 0.2 0.2 0.4 0.2 . SI 1.0 1.6 0.5 0.8 0.4 S 1.0 3.4 • • . RUN 11.00 11.00 11.00 11.00 11.00 TIME (HRS)
DALLAS AT G	RADE SITE	E: 1H30	AT MOT			
HIGH VOLU	IME CASCAI	JE IMPA			AIR QUALT	IT GROUP ANALISIS
NOMINAL F	LOW RATE	=. 1.1	33 M**	3/MIN		
DATE = 8	4 77		÷	•		
START TIM	IE= 7 A.I	М.				
STOP TIME	= 6 P.M	•				
WHATMAN 4	1 FILTER	S, STAT	ION:	3		
			WE IGHT	(UG/CN	/**2)	
STAGE	1.	2	- 3	4	5	
ELEMENT		· · ·	· · ·			
AL	0.1	0.1	0.1	•	• •	· · · · · · · · · · · · · · · · · · ·
CĀ	1.4	1.7	0.6	0.6	0.2	
FE	0.4	0.6	0.3	0.4	. •	
SI	1.1.	1.7	0.6	0.9	0.5	
BR	0.2	0.3	0.2	0.4	0.2	· · · · ·
CL		0.5	•	•	•	
PB	•	0.5	0.5	0.8	0.6	
S	•	. •	•	1.4	1.8	1. A.
			· · ·			
RUN	11.00	11.00	11.00	11.00	11.00	
TIME (HRS)	)		· · · · ·			

DALLAS AT GRADE SITE: 1H30 AT MOTLEY DRIVE HIGH VOLUME CASCADE IMPACTOR UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE = 1.133 M**3/MIN DATE = 8 5 77 START TIME= 7 A.M. STOP TIME= 6 P.M. WHATMAN 41 FILTERS, STATION: 3 • WEIGHT (UG/CM**2) 2 3 4 5 STAGE 1 ELEMENT ÅL 0.1 ٠ SI 0.4 . 0.3 Р 0.3 ٠ 0.2 0.1 BR • 0.3 PB 0.4 1.2 S 0.9 2.00 2.00 2.00 2.00 2.00 RUN TIME(HRS)

)/	ALLAS AT GR HIGH VOLUM	ADE SIT E CASCA	E: IH30 DE IMPA	AT MOT	ILEY DR	IVE NIR QUAL	ITY GROUP ANALYSIS
	NOMINAL FL	OW RATE	= 1.1	33 M**	3/MIN		
	DATE = 8	10 77		· · · ·		÷	
	START TIME	= 7 A.	м.				
	STOP .T IME=	6 P.M	1.		•	• · · · ·	
	WHATMAN 41	FILTER	RS; STAT	ION:	1		
				WE IGHT	r (UG/CN	(**2)	
	STAGE	1	2	- 3	4	5	
	ELEMENT						
	CA	0.3	0.4	0.5	0.4	0.2	
	FE	•	• .	. •	•	0.1	
	K	•	•	•	•	0.2	
	SI	0.3	0.3	0.3	0.4	•	
	S -	•	•	•	0.3	•	
	RUN	2.00	2.00	2.00	2.00	2.00	
	TIME (HRS)						•

D	ALLAS AT GR HIGH VOLUM NOMINAL FL	ADE STI E CASCA OW RATE	E: 1H30 DE IMPA = 1.1	) AT MOT ACTOR 33 M**	LEY DR UCD// 3/MIN	AIR QUALIT	Y GROUF	PANALYSIS
	DATE= 8	10 77						
	START TIME	= 7 A.	М.					•
	STOP TIME=	6 P.N	1					
	WHATMAN 41	FILTER	RS, STAT	ION:	3	· .		
			•	WE IGHT	(UG/C	(**2)		
	STAGE	1	2	3	4	5		
	ELEMENT							
	AL	• *	•	0.1	•	•		
	CA	0.5	1.9	0.9	0.7	0.9		
	FE	0.1	0.5	0.2	0.2	0.4		
	S1	0.5	1.2	0.7	0.4	0.6		
	BR	•	0.2	0.2	0.2	0.6		
	CL	•	0.7	0.4	•	•		
	PB	•	0,6	0.5	0.5	1.7		
	S	•	•	•	•	0.6	•	
	ZN	•	0.1	•	•.	•		
	RUN TIME(HRS)	2.00	2.00	2.00	2.00	2.00		

DALLAS AT	GRADE SIT	E: 1H30	AT MOT	LEYDRI	VE		
HIGH VOL	UME CASCA	DE IMPA	CTOR	UCD/A	AIR QUAI	LIIY GRO	UP ANALYSIS
NOMINAL	FLOW RATE	= 1.1	33 M**	3/MIN			
DATE =	8 11 77						
START TI	ME= 7 A.	Μ.					
STOP TIM	1E= 6 P.M	<b>1.</b>		1. J. J.			
WHATMAN	41 FILTER	S, STAT	ION:	1			÷
			WEIGHT	(UG/CM	(**2)		
STAGE	1	2	3	4	5		
FLEMENT							
CA	C.4	0.7	1.0	0.5	0.2		
FE	0.1	0.2	•	0.2	٠		
SI	0.6	0.8	0.7	0.5	•		
ĊL	0.3	0.3	•		•		and the second
S			•	0.3	1.2		
•	. •						
OUN.	11 00	11 00	11 00	11.00	11 00		

RUN TIME(HRS)

DA	LLAS AT GF	RADE SIT	E: 1H30	AT MOT	LEY DR	I VE		
	HIGH VOLUN	AE CASCA	DE IMPA	CTOR	UCD/	AIR QUAL	LITY GROUP	ANALYSIS
	NOMINAL FL	OW RATE	= 1.1	33 M**	3/MIN			
	DATE= 8	11 77						
	START TIME	= 7 A.	Μ.					
	STOP TIME:	= 6 P.M						
			TAT2 2	ION:	3			
			<b></b> ,	WEIGHT		M**2)		
	CTACE	1	2	3	· A	5.	· .	
	CLEMENT	I	4	<b>,</b>	7			
	ELEMENT	0.1	•					
	AL	0.1	• -			0.6	4.1.4 (Const. 1997)	
	CA	1.1	0.6	1.2	1.0	0.0		
	FE	0.2	0,2	0.5	0.5	0.4		
	SI	0.7	0.3	0.8	0.8	0.4	•	
	BR	0.1	•	0.4	0.4	0.4		
	CL	•	•	0.5	•	•		
	PB	•	•	0.9	1.2	1.5		
	S		•	•	0.4	2.1		
	•	•	-					
	RUN	11.00	11.00	11.00	11.00	11.00		

SAN ANTONIO SITE: 1H410 AT MILITARY HIGHWAY HIGH VOLUME CASCADE IMPACTOR UCD/AIR QUALITY GROUP ANALYSIS NOMINAL FLOW RATE = 1.133 M**3/MIN DATE= 10 19 77 START TIME= 7 A.M. STOP TIME= 6 P.M. WHATMAN 41 FILTERS, STATION: 3 WEIGHT (UG/CM**2) 3 5 6 1 STAGE ELEMENT 0.5 2.2 1.1 4.0 ĊA 0.3 0.3 0.3 FE ٠ 0.3 1.2 1.0 • SI 1.5 0.3 0.6 0.2 BR 0.4 0.5 CL . . . 4.0 2.1 0.6 0.9 PB 2.9 •. S 10.75 10.75 10.75 10.75 RUN

TIME (HRS)

#### Road Vacuuming Data

0

		Surface Pa	articulate Lo	pading (µg/m	² )		
Site	San An Loop 410 at M	ntonio ilitary Highway	Da IH45 at For	llas rest Avenue	Dallas IH30 at Motley Drive		
Road Location	Inside Eastbound Shoulder	Inside Eastbound Lane	Inside Southbound Shoulder	Inside Southbound Lane	Outside Westbound Shoulder	Outside Westbound Lane	
Date	10-20-77	10-20-77	10-3-77	9-20-77	10-3-77	10-3-77	
Element							
Ti	277	215	405	9.3	192	51.5	
Ca	67700	60300	31200	438	13700	28800	
K	1030	747	1320	38.1	686	188	
Si	5340	4560		81.6	2940	547	
Zn	296	210	6370	15.6	107	42.3	
Cu	36.4	33.8	64.2	<b></b> _ ·	21.4	530	
Fe	3890	2900	6370	93.6	2460	105	
РЪ	3240	2150	2000		690	21.1	
Br	438	321	267		113		
Sr	371	412	96.7		<b></b>	<b></b>	
<b>V</b>			10.5			·	
Ni			13.6				
Mn	58.2		120		41.0		
Area Vacuumed (m ² )	0.74	0.74	2.51	3.34	1.67	2.51	
TSPL [*] (g/m ² )	0.250	.091	0.172	0.0044	0.081	0.025	

* TSPL: Total Surface Particulate Loading, excluding cyclone preseparator capture.

į

#### Table 33. List of Symbols and Abbreviations Used in Traffic and Meteorological Data

\$

Symbol or Abbreviation	Meaning and Units
TIME	Time of day of hourly average
TRFVOL	Total hourly traffic volume
RH5	Percent relative humidity reading from psychrometer at 5 feet
RH82	Percent relative humidity reading from psychrometer at 82 feet
SIG	Standard deviation of preceding reading
PYRAN	Radiation reading from heliopyranometer, $w/m^2$
WV5	Wind direction at 5 feet, degrees
WV26	Wind direction at 26 feet, degrees
WV52	Wind direction at 52 feet, degrees
WV102	Wind direction at 102 feet, degrees
TMP 5	Temperature at 5 feet, °F
TMP29	Temperature at 29 feet, °F
TMP42	Temperature at 42 feet, °F
TMP82	Temperature at 82 feet, °F
VA5	Vertical wind speed at 5 feet, 0.1 mph
VA26	Vertical wind speed at 26 feet, 0.1 mph
VA52	Vertical wind speed at 52 feet, 0.1 mph
VA102	Vertical wind speed at 102 feet, 0.1 mph
HA5	Horizontal wind speed at 5 feet, mph
HA26	Horizontal wind speed at 26 feet, mph
HA52	Horizontal wind speed at 52 feet, mph
HA102	Horizontal wind speed at 102 feet, mph

	TIME	TRF VOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
	8: 0 9: 0 10: 0 11: 0 12: 0	91 5 735 737 728 746	50.3 51.2 51.2 51.7	75.4 70.0 62.2 51.9	1.44 2.28 2.96 2.23	•	•	106. 317. 606. 844.	38.8 99.6 79.8 65.6
•	13: 0	731	50.8	46.3	1.34	•	•	966.	157.6
	14: 0 15: 0	/8/ 983	50.2 49.9	42.7 40.0	2.23 0.84	•	•	1034. 987.	284.4 265.1
•	17: 0	1415	49.0 49.5	38.6 40.8	1.33	•	•	991. 515.	55.0 290.1
		2045	49.4	41.2	0.69	•	•	471.	186.8

# DALLAS ELEVATED JUN01,1977

### DALLAS ELEVATED JUN01,1977

TIME	HA 5	SIG	HA26	SIG	HA 52	SIG	HA102	SIG
8: 0	2.5	0.92	3.7	1.17	4.2	1.51	4.5	1.34
9: 0	2.8	0.87	4.0	1.08	4.7	1.26	5.1	1.08
10: 0	3.1	0.98	6.0	2.12	8.0	2.61	7.8	2.01
11: 0	2.8	1.09	5.8	2.06	7.8	2.58	8.0	1.99
12: 0	3.4	1.30	6.0	2.22	7.3	2.43	7.4	2.15
13: 0	3.6	1.61	5.3	2.57	6.1	2.65	6.4	2.48
14: 0	2.6	0.89	3.7	1.65	4.1	1.89	4.2	1.81
15: 0	3.1	1.16	3.8	1.54	4.3	1.79	4.4	1.67
16: 0	2.7	0.91	4.1	1.86	5.1	2.14	5.3	2.25
17: 0	2.7	1.18	4.2	1.91	4.9	2.36	4.8	2.07
18: 0	2.3	0.77	3.7	1.45	4.5	1.73	4.4	1.63

#### DALLAS ELEVATED JUN01,1977

							,	
TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
			ar Anna anna anna anna anna anna anna anna					
8: 0	-0.7	2.12	-2.5	4.56	1.8	4.90	•	•
9.0	-0.9	2.30	-2.8	4.56	1.6	4.74	•	•
10.0	-1.0	5.06	-5.3	6.44	0.1	6.01	•	•
11.0	-0.7	6.01	-3.1	7.33	-0.4	8.00	•	•
12.0	-0.2	4.87	-0.9	7.60	-2.7	7.24	•	•
13. 0	0.1	3.68	1.0	8.40	-2.0	9.41	•	•
14.0	-0.2	3.71	0.5	6.66	-0.4	8.42	ана (ф. 1997) 1977 — Ф. 1977 — П. 1	•
15.0	0.6	3.06	1.4	6.92	0.9	8.61	•	•
16: 0	-0.3	3.84	0.4	6.89	-1.1	7.74	•	•
17.0	-0.5	3.40	-0.8	6.28	-0.5	7.07	•	•
18: 0	-0.5	3.42	-1.2	5.07	-0.7	5.84	•	•

249

\$

#### DALLAS ELEVATED JUN01,1977

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
	19. s			•				
8: 0	316.3	25.84	3.0	27.27	6.7	20.40	344.8	15.99
9: 0	319.8	24.91	8.0	21.99	10.5	17.12	347.0	14.18
10: 0	283.3	45.14	45.0	24.90	43.3	20.44	21.7	24.86
11:0	248.8	47.13	67.1	24.12	66.8	20.21	52.7	31.37
12: 0	191.2	41.25	104.5	30.10	99.1	26.61	98.5	30.09
13: 0	193.6	41.40	135.7	41.13	133.1	47.84	137.4	45.26
14: 0	197.7	47.65	125.4	48.86	116.9	50.58	112.9	50.47
15: 0	198.7	47.47	122.7	55.10	101.0	56.33	87.7	56.99
16: 0	196.3	45.43	105.6	38.92	98.0	38.64	92.7	39.93
17: 0	249.6	50.26	66.1	48.01	68.7	48.81	63.0	51.74
18: 0	243.2	48.28	65.6	37.35	74.9	35.97	66.8	41.15

DALLAS ELEVATED JUN01,1977

					and the second second second			
ME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
0	60 F	0 46	70 7	0 51	60.9	0 70	68 0	0 27
0	71.8	1.11	71.9	0.88	71.4	0.38	70.2	0.27
Õ	76.1	1.68	75.0	1.04	73.9	0.86	73.7	1.19
0	81.1	1.46	79.1	1.23	77.4	1.15	78.0	1.35
0	83.8	0.67	81.5	0.73	79.6	0.80	81.2	0.73
0	84.6	1.01	83.4	0.99	82.1	1.29	81.9	0.85
0	87.5	1.92	85.6	1.34	83.9	1.48	85.0	1.75
Ó	88.6	1.21	87.7	0.82	86.1	0.85	86.1	1.29
0	91.1	1.41	89.1	1.00	86.7	1.19	88.5	1.06
0	88.9	1.74	87.5	1.37	85.9	1.61	87.1	1.40
0	90.1	1.27	88.0	0.83	86.2	1.08	88.2	1.29
	ME 0 0 0 0 0 0 0 0 0 0 0	ME TMP5 0 69.5 0 71.8 0 76.1 0 81.1 0 83.8 0 84.6 0 87.5 0 88.6 0 91.1 0 88.9 0 90.1	ME         TMP5         SIG           0         69.5         0.46           0         71.8         1.11           0         76.1         1.68           0         81.1         1.46           0         83.8         0.67           0         84.6         1.01           0         87.5         1.92           0         88.6         1.21           0         91.1         1.41           0         88.9         1.74           0         90.1         1.27	ME         TMP5         S1G         TMP29           0         69.5         0.46         70.3           0         71.8         1.11         71.9           0         76.1         1.68         75.0           0         81.1         1.46         79.1           0         83.8         0.67         81.5           0         84.6         1.01         83.4           0         87.5         1.92         85.6           0         88.6         1.21         87.7           0         91.1         1.41         89.1           0         88.9         1.74         87.5           0         90.1         1.27         88.0	METMP5SIGTMP29SIG0 $69.5$ $0.46$ $70.3$ $0.51$ 0 $71.8$ $1.11$ $71.9$ $0.88$ 0 $76.1$ $1.68$ $75.0$ $1.04$ 0 $81.1$ $1.46$ $79.1$ $1.23$ 0 $83.8$ $0.67$ $81.5$ $0.73$ 0 $84.6$ $1.01$ $83.4$ $0.99$ 0 $87.5$ $1.92$ $85.6$ $1.34$ 0 $88.6$ $1.21$ $87.7$ $0.82$ 0 $91.1$ $1.41$ $89.1$ $1.00$ 0 $88.9$ $1.74$ $87.5$ $1.37$ 0 $90.1$ $1.27$ $88.0$ $0.83$	METMP5S1GTMP29S1GTMP420 $69.5$ $0.46$ $70.3$ $0.51$ $69.8$ 0 $71.8$ $1.11$ $71.9$ $0.88$ $71.4$ 0 $76.1$ $1.68$ $75.0$ $1.04$ $73.9$ 0 $81.1$ $1.46$ $79.1$ $1.23$ $77.4$ 0 $83.8$ $0.67$ $81.5$ $0.73$ $79.6$ 0 $84.6$ $1.01$ $83.4$ $0.99$ $82.1$ 0 $87.5$ $1.92$ $85.6$ $1.34$ $83.9$ 0 $88.6$ $1.21$ $87.7$ $0.82$ $86.1$ 0 $91.1$ $1.41$ $89.1$ $1.00$ $86.7$ 0 $88.9$ $1.74$ $87.5$ $1.37$ $85.9$ 0 $90.1$ $1.27$ $88.0$ $0.83$ $86.2$	METMP5S1GTMP29S1GTMP42S1G0 $69.5$ $0.46$ $70.3$ $0.51$ $69.8$ $0.38$ 0 $71.8$ $1.11$ $71.9$ $0.88$ $71.4$ $0.87$ 0 $76.1$ $1.68$ $75.0$ $1.04$ $73.9$ $0.86$ 0 $81.1$ $1.46$ $79.1$ $1.23$ $77.4$ $1.15$ 0 $83.8$ $0.67$ $81.5$ $0.73$ $79.6$ $0.80$ 0 $84.6$ $1.01$ $83.4$ $0.99$ $82.1$ $1.29$ 0 $87.5$ $1.92$ $85.6$ $1.34$ $83.9$ $1.48$ 0 $88.6$ $1.21$ $87.7$ $0.82$ $86.1$ $0.85$ 0 $91.1$ $1.41$ $89.1$ $1.00$ $86.7$ $1.19$ 0 $88.9$ $1.74$ $87.5$ $1.37$ $85.9$ $1.61$ 0 $90.1$ $1.27$ $88.0$ $0.83$ $86.2$ $1.08$	ME         TMP5         S1G         TMP29         S1G         TMP42         S1G         TMP82           0         69.5         0.46         70.3         0.51         69.8         0.38         68.9           0         71.8         1.11         71.9         0.88         71.4         0.87         70.2           0         76.1         1.68         75.0         1.04         73.9         0.86         73.7           0         81.1         1.46         79.1         1.23         77.4         1.15         78.0           0         83.8         0.67         81.5         0.73         79.6         0.80         81.2           0         84.6         1.01         83.4         0.99         82.1         1.29         81.9           0         87.5         1.92         85.6         1.34         83.9         1.48         85.0           0         88.6         1.21         87.7         0.82         86.1         0.85         86.1           0         91.1         1.41         89.1         1.00         86.7         1.19         88.5           0         88.9         1.74         87.5         1.37

TIME	TRF VOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
8: 0	974	50.7	76.0	2.65	•	•	134.	76.7
9: 0	731	51.8	59.3	5.85	•	•	402.	73 6
10: 0	668	51.6	51.5	1.76	•	• .	042.	/J.0 56 2
11: 0	717	52.1	45.3	0.94	•	•	840.	2400
12: 0	790	51.9	42.9	1.65	•	•	919.	24/./
13: 0	577	50.9	•	•	•	. •	•	171 0
14: 0	877	50.0	36.5	0,87	•	•	1074.	1/1.0
15: 0	971	50.0	33.8	0.93	•	•	1066.	42.0
16: 0	1364	48.8	32.9	0.47	•	•	955.	57.9
17: 0	2098	48.5	•	. •	•	•	//].	28.4
18: 0	1798	48.9	•	•	•	•	552.	80.9

### DALLAS ELEVATED JUN02,1977

#### TIME HA 26 SIG HA 52 SIG HA102 SIG HA 5 SIG 1.6 2.9 8.3 7.6 5.3 1.21 1.54 2.3 2.5 8: 0 0.8 0.70 2.3 0.82 0.94 0.91 0.94 9: 0 1.4 2.4 1.40 2.48 2.30 2.56 1.95 2.27 2.38 3.4 3.3 2.9 10: 0 1.20 5.3 6.2 1.89 1.36 5.6 4.4 2.30 2.07 6.0 4.5 11:0 12: 0 13: 0 1.91 2.10 2.14 2.04 1.64 2.05 2.06 1.92 1.98 1.38 1.09 1.10 1.08 0.93 0.77 1.86 3.1 2.9 3.1 2.7 2.2 5.2 5.6 7.0 6.1 5.6 14: 0 15: 0 4.4 4.8 4.9 4.4 1.99 16: 0 17: 0 18: 0 2.11 1.75 1.41 7.0 5.9 5.4 5.4 4.5

#### DALLAS ELEVATED JUN02,1977

#### DALLAS ELEVATED JUN02,1977

4.1

TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
<b>8.</b> 0	-0.4	2 14	-0.6	3 33	-0.3	3.29		•
0: 0	-0.4	2.14	1.7	4,90	1.0	5.22	•	•
10.0	-0.1	4 01	2.3	8.70	-0.2	8.85	•	•
11.0	0.7	4.47	2.7	8.41	0.7	9.46	•	•
12: 0	0.4	3.87	2.1	7.90	1.1	9.25	•	•
13: 0				** •	•	• -	•	•
14:0	0.4	3.49	2.3	7.31	-0.9	9.00	•	•
15: 0	0.3	3.37	2.7	7.53	1.2	9.49	•	•
16: 0	-0.7	4.95	-1.5	7.07	-1.9	7.46	•	•
17:0	-0.1	3,81	-1.1	6.76	0.4	8.45	•	•
10. 0	-0.6	A 12	-1 1	5 93	-1.5	5.97	•	•

#### DALLAS ELEVATED JUN02,1977

TIME	WV.5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
8: 0	200.3	52.19	86.2	24.97	82.2	38.10	83.2	55.39
9: 0	218.7	45.21	184.3	54.52	260.2	55.86	274.0	54.13
10: 0	191.3	39.82	205.1	31.62	241.2	24.79	226.4	16.36
11: 0	208.1	51.31	229.3	29.77	256.3	28.22	237.1	20.82
12: 0	217.0	53,59	243.7	47.09	268.4	46.20	249.2	40.60
13: 0		•	•	•	•	•	•	•
14: 0	187.7	43.13	181.2	39.27	209.1	45.90	194.6	37.52
15: 0	194.0	44.88	174.5	51.30	199.3	54.81	189.1	50.87
16: 0	227.3	49.42	81.6	33.26	81.8	30.21	78.9	38.63
17: 0	228.0	47.68	83.6	36.03	79.4	34.17	68.4	41.30
18: 0	207.3	47.12	86.3	22.61	90.0	22.04	90.4	27.35

DALLAS ELEVATED JUN02,1977

TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
8: 0 9: 0 10: 0 11: 0	72.2 78.9 82.6 86.5	1.34 2.03 1.05 1.15	74.2 80.8 83.0 86.0	2.02 1.71 1.45 0.84	73.6 80.5 82.4 85.3	1.66 2.25 0.89 1.01	72.7 77.5 79.6 82.9	1.45 0.88 1.11 0.83
12: 0	88.6	1.04	87.7	1.15	87.1	1.00	85.4	1.16
13: 0 14: 0 15: 0 16: 0	92.1 94.4 95.7	1.20 1.05 0.78	91.0 93.2 93.1	0.94 0.98 0.88	89.7 91.7 90.4	1.04 1.08 0.81	89.1 91.2 92.8	1.24 0.95 0.76
17: 0	•	•	•	•	•	•	•	•
18: 0	•		•		•	•	•	•

253

## DALLAS ELEVATED JUN03,1977

TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
			· · ·					
8: 0 9: 0 10: 0 11: 0	74.4 80.3 85.7	0.97 2.11 1.38	77.2 83.4 86.6	2.13 1.13 0.93	76.4 82.8 85.3	2.18 0.80 0.94	74.8 78.5 82.4	1.28 0.94 1.43
11. V .	• • • • • • • •	•	•	•	<u>_</u>			

DALLAS ELEVATED JUN03, 1977

TIME	TRF VOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
8: 0 9: 0 10: 0	898 752 767 579	50.4 51.0 50.3	70.6 55.0 47.8	2.86 4.42 1.45	• •	• •	130. 413. 645.	75.0 67.1 65.6
	212	20.1	●-	•	•	•	•	•

DALLAS	ELEVATED	JUN03,19	<del>9</del> 77
--------	----------	----------	-----------------

TIME	HA 5	SIG	HA26	SIG	HA 52	SIG	HA102	SIG
8: 0 9: 0 10: 0	0.9 1.2 2.0	0.54 0.55 0.84	1.6 1.9 2.6	0.90 0.89 1.23	1.7 1.8 2.9	0.81 0.83 1.42	1.5 2.0 3.1	0.97 0.84 1.39
11: 0	•	•	•	•	•	•	•	•
•			DALLAS	ELEVATED	JUN03,1977	e Record Constant Record Constant Record Constant		
TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
8: 0 9: 0 10: 0 11: 0	-0.3 0.0 0.1	1.49 1.32 2.16	-0.3 0.6 1.6	3.10 4.15 5.16	-0.5 -1.1 -1.0	3.15 4.62 6.17	•	•
	•	•	•	-			1. A.	

#### DALLAS ELEVATED JUN03,1977

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
8: 0	232.7	52.14	93.3	38.86	87.4	50.32	122.9	53.96
9: 0	191.8	45.32	211.2	27.54	238.4	35.78	238.4	28.77
10: 0	175.5	38.84	176.7	33.31	187.7	44.28	188.2	32.70
11: 0	•	•	•	•	•	•	•	•

### DALLAS ELEVATED JUN07,1977

TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
		•						
15: 0 16: 0 17: 0	87.2 86.9	1.27 0.98	84.1 84.9	• 0.71 0.77	81.9 83.0	• • • • • • • • • • • • • • • • • • • •	83.1 84.2	0.78
18: 0	•	•	•	•	•	•	•	•

DALLAS ELEVATED JUN07,1977

TIME	TRF VOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
15: 0	690	50.8	•		• •			
16: 0 17: 0 18: 0	1385 2041 1958	49.9 49.4 50.0	32.2 31.8	0.32 0.23	•	•	1008. 842.	39.4 58.7

TIME	HA 5	SIG	HA 26	SIG	HA 52	SIG	HA102	SIG
15: 0 16: 0 17: 0 18: 0	4.5 4.8	2.12 2.15	8.2 7.1	3.18 3.07	10.5 8.9	3.28 3.61	10.3 8.6	2.88 3.10
	•	•	•	•	•	•	•	•
н 1. – С. – С. 2. – С. – С.			DALLAS	ELEVATED	JUN07,1977			
TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
15: C 16: O 17: O 18: O	-1.3 -1.5 -1.7	6.34 5.55 5.46	-5.5 -6.2 -5.2	• 8•78 8•63 8•12	-0.2 0.1 0.8	8.73 8.32 8.32	•	• • •

#### DALLAS ELEVATED JUN07, 1977

DALLAS ELEVATED JUN07,1977

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
15: 0 16: 0 17: 0 18: 0	261.5 290.8 289.1	47.68 38.21 37.17	52.4 35.4 36.6	32.63 32.35 28.31	50.8 36.5 39.0	29.78 30.20 26.85	35.7 12.3 19.2	37.25 30.80 30.53

257

.

TIME	TRF VOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
8: 0 9: 0 10: 0 11: C 12: 0 13: 0 14: 0	846 686 27 16 792 747 803 982	50.6 51.0 51.7 50.4 50.3 50.0 50.2 49 1	62.3 49.2	1.79 4.43 0.51 0.47 0.55 0.38	• • • • •	•	117. 426. 1045. 1135. 1163. 1130.	94.2 60.0 37.2 15.8 5.4 21.6
16: 0 16: 0 17: 0 18: 0	1254 2065 2048	49.1 48.7 48.3 48.4	27.0 26.5 26.7	0.23 0.14 0.23	•	•	1028. 864. 649.	38.0 55.5 69.0

### DALLAS ELEVATED JUNO8, 1977

TIME	HA 5	SIG	HA26	SIG	HA 52	SIG	HA102	SIG
8: 0 9: 0	1.9	0.94	3.4 5.6	1.11	3.7 7.1	1.11	3.9 7.7	1.25
10: 0	•	•	•	•	•	•	. •.	•
11: 0 12: 0	4.7	1.45	7.0	1.94	8.5	1.99	8.8	1.89
13: 0	4.5	1.54	6.5 5.6	2.17	7.8 6.8	2.65 2.61	8.4 7.4	2.68 2.71
15: 0	3.8	1.42	5.0	2.00	5.8	2.39	6.2	2.29
16: 0 17: 0	4.1 3.9	1.37 1.53	5.5 5.6	1.92	6.6 6.8	2.29 2.39	7.1	2.30
18: 0	3.8	1.40	6.1	1.92	7.8	2.23	8.2	2.23

DALLAS ELEVATED JUN08,1977

DALLAS ELEVATED JUN08,1977

SIG	VA102	SIG	VA52	SIG	VA26	SIG	VA 5	TIME
		• *		i	· · ·			
•	•	4.87	-1.2	3.97	1.3	1.94	0.3	8: 0
•	•	7.27	-3.9	5.44	2.3	2,95	0.9	9:0
	•	•	•	•	•	•	•	10:0
•			•		•		•	11: 0
•	•	8.67	-5.2	6.93	2.2	4.09	0.9	12: 0
•	•	10.41	-2.0	7.65	4.0	3.68	1.2	13: 0
•	●.	9.97	-3.2	7.72	1.9	4.23	0.6	14: 0
•	•	10.30	-2.7	8.15	2.3	3.67	0.3	15: 0
•	•	9.25	-1.6	6.73	3.0	3.63	0.4	16: 0
•	•	8.66	-3.7	7.54	1.7	3.83	0.6	17: 0
•	•	7.18	-4.6	6.64	0.8	3.77	0.0	18: 0

### DALLAS ELEVATED JUN08,1977

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
8: 0	173.4	18.04	145.1	23.05	154.7	32.30	156.6	18.59
9:0	164.8	13.85	145.5	13.99	147.3	25.30	151.3	13.57
10: 0	•	•	•	•	•	•	•	•
11: 0	•	•	•	•	•.	•	•	•
12: 0	165.5	16.50	138.9	18.85	142.1	27.08	146.8	19.04
13: 0	173.1	24.62	159.3	23.34	171.4	36.93	167.0	22.62
14: 0	175.1	33.46	157.3	29.71	166.0	41.07	160.2	31.10
15: 0	176.7	36.09	163.8	35.30	180.9	44.53	171.9	34.82
16: 0	169.2	24.67	149.7	25.49	154.3	36.67	155.9	24.69
17: 0	176.7	33.46	152.5	32.00	164.9	43.23	161.7	32.34
18: 0	167.2	23.09	126.1	22.50	126.8	24.29	133.4	22.57

DALLAS ELEVATED JUN08, 1977

				1				· · ·
TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
						· .		
8: 0	65.1	0.89	67.3	1.12	67.1	1.55	64.9	0.78
9: O	69.1	1.73	69.5	1.07	69.3	1.08	67.5	1.12
10: 0	•	•	•	•	•	•	•	•
11: 0	•	•	•	•	•	•	•	•
12: 0	82.5	0.74	80.5	0.72	79.5	0.86	79.4	0.77
13: 0	85.3	1.13	83.4	0.74	82.3	0.80	81.2	0.92
14: 0	87.5	0.92	85.3	1.09	83.8	1.15	83.7	1.09
15: 0	89.2	1.03	88.1	1.09	86.4	1.38	86.0	1.35
16: 0	90.9	0.64	89.7	0.61	87.9	0.83	87.6	0.66
17:0	92.0	0.78	90.5	0.67	88.8	0.94	88.6	1.03
18: 0	92.3	0.64	90.2	0.55	88.4	0.68	89.8	0.71

TIME	TRF VOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
8: 0	823	50.1	66.8	0.44	· · ·		117.	70.0
9:0	736	50.6	67.3	1.50	•		377.	63.8
10: 0	762	50.4	60.7	4.71	•		584.	118.5
11: 0	585	50.1	51.0	0.86	•		802.	107.3
12: 0	706	50.4	48.4	0.88	•	•	986.	47.3
13: 0	777	49.8	44.0	1.11	•		1027.	231.5
14: 0	793	49.0	41.4	1.55	•	•	929.	362.7
15: 0	963	49.3	39.3	0.99	•	•	886.	370.4
16: 0	1395	48.2	35.9	0.35	•	•	911.	242.8
17: 0	1964	48.2	34.0	0.59	•		770.	182.5
18: 0	1927	48.1	•	•	•		579.	138.6
19:0	1082	49.4	•	•. ¹	•	•	•	•

# DALLAS ELEVATED JUN09,1977

DALLAS	ELEVATED	JUN09,	,1977
--------	----------	--------	-------

TIME	HA 5	SIG	HA 26	SIG	HA 52	SIG	HA102	SIG
8: 0	1.1	0.47	2.9	0.73	3.0	0.57	2.8	0.75
<b>9:</b> 0	2.5	1.16	3.8	1.44	4.5	1.77	4.8	1.82
10: 0	4.1	1.15	6.3	1.69	7.8	1.88	8.1	2.01
11:0	5.0	1.45	7.5	2.10	9.1	2.46	10.1	2.45
12:0	5.2	1.55	7.8	2.35	9.0	2.33	9.9	2.42
13: 0	5.2	1.77	8.1	2.49	9.6	2.71	10.4	2.92
14: 0	5.3	1.75	7.4	2.40	9.4	2.85	9.8	2.89
15:0	5.2	1.68	7.6	2.74	9.6	2.84	10.1	2.91
16: 0	5.4	1.60	7.7	2.38	10.2	2.93	10.8	2.85
17:0	5.6	1.56	8.0	2.03	10.7	2.57	11.4	2.72
18:0	5.7	1.59	8.5	2.23	11.6	2.74	12.8	2.80
19: 0	•	•	•	•	●	•	•	•

### DALLAS ELEVATED JUN09,1977

+								
TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
•			· .					
8: 0	-0.5	2.26	-1.0	3.11	-1.8	2.52		
9: O	0.4	2.33	1.1	4.26	-2.9	6.05	•	•
10: 0	0.9	3.49	1.5	5.64	-4.9	7.88	•	•
11: 0	1.2	4.11	3.8	7.03	-4.4	9.89	•	•
12: 0	1.0	4.33	4.3	9.45	-1.9	11.79	•	•
13: 0	1.0	4.55	4.7	8.91	-2.8	11.70	•	
14: 0	0.8	4.20	3.6	6.89	-4.4	9.57	•	•
15: 0	0.9	4.23	4.0	7.44	-4.0	9.88		•
16: 0	0.9	4.10	3.4	7.31	-5.1	9.67		
17: 0	1.2	4.45	4.4	7.71	-4.6	10.82	· · · · · ·	•
18: 0	1.2	4.45	4.6	7.42	-5.6	10.24	•	•
19, 0							-	•

#### DALLAS ELEVATED JUN09,1977

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
	· · ·		* a.					1.00
8: 0	178.0	30.73	103.5	10.49	104.9	14.44	111.3	16.68
9: 0	166.1	17.13	135.1	22.99	145.7	32.68	158.6	25.00
10: 0	165.8	15.08	144.7	15.30	148.2	28.14	154.0	17.51
11: 0	168.3	19.32	•	•	•	•	•	•
12: 0	178.4	22.51	175.0	19.40	205.9	27.23	190.9	15.06
13: 0	179.7	28.19	174.7	24.63	200.6	32.76	186.7	18.90
14: 0	170.8	23.61	151.9	21.79	160.0	35.57	161.0	20.46
15: 0	169.0	18.90	148.6	19.88	157.5	34.19	159.8	20.40
16: 0	169.0	17.58	148.0	15.81	155.1	31.71	157.0	16.41
17: 0	170.3	18.11	150.3	17.89	155.8	33.43	159.2	16.44
18: 0	169.8	16.17	148.1	14.77	152.1	31.39	155.6	13.55
19: 0	•	•	•	•	•	•	•	•

#### DALLAS ELEVATED JUN09,1977

TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
0-0	60 F	0.00	70.5	1 24	69 5	1.28	68-8	1.32
8: 0	09.0	0.99	76.4	1.48	75.7	1.69	74.2	1.49
9:0	80 0	1 67	80.0	1.48	79.3	1.63	78.3	1.19
11.0	85.6	1.83	84.4	1.93	83.6	1.88	82.0	1.52
12: 0	89.1	0.84	87.9	0.83	87.0	0.72	85.1	0.75
13: 0	91.3	1.02	89.9	0.83	88.8	0.73	87.3	0.82
14: 0	92.7	1.33	90.9	1.00	89.7	0.99	89.2	1.03
15: 0	93.9	1.18	92.2	0.90	90.7	0.85	90.5	0.91
16: 0	95.2	0.77	93.5	0.61	92.0	0.59	91.6	0.67
17: 0	95.6	0.67	93.9	0.59	92.6	0.54	91.9	0.69
18: 0	•	•	•	•	•	•	•	•
19: 0	•	•	•	•	•	•	•	•

r.

### DALLAS ELEVATED JUN10,1977

TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
. · ·				· · · · · · · · · · · · ·				
2:0	73.5	0.22	73.8	0.28	72.8	0.54	72.4	0.21
9: 0	76.3	1.47	76.4	1.08	75.4	1.25	74.8	1.02
10:0	80.9	1.67	80.0	1.48	79.3	1.63	78.3	1.19
11:0	•	•	•	•	•	•	•	•

DALLAS ELEVATED JUN10, 1977

			1					
TIME	TRF VOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
8 <b>:</b> 0	856	49.9	76.5	0.93	•		120.	60.0
9: O	763	50.9	70.3	3.00		•	379.	69.1
10: 0	762	50.4	60.7	4.71		•	584	118.5
11:0	411	50.1	•	•				
					-	-	•	•

### DALLAS ELEVATED JUN10,1977

TIME	HA 5	SIG	HA26	SIG	HA 52	SIG	HA102	SIG
8: 0 9: 0 10: 0	2.3 2.9 4.1	0.64 0.81 1.15	4.5 4.5 6.3	1.12 1.10 1.69	5.3 5.6 7.8	0.97 1.16 1.88	5.4 5.7 8.1	1.04 1.10 2.01
11: 0	•	•	•	•	• <b>●</b> •	•	•	•

### DALLAS ELEVATED JUN10, 1977

TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
8: 0 9: 0 10: 0 11: 0	0.1 0.4 0.9	2.42 2.64 3.49	0.4 0.7 1.5	3.96 4.69 5.64	-3.1 -3.7 -4.9	4.48 5.78 7.88	•	•
	•	<ul> <li>•</li> </ul>	•	•	•			

### DALLAS ELEVATED JUN10, 1977

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
8: 0	172.1	14.96	129.3	16.02	128.8	21.06	137.2	15.45
9: O	166.4	13.98	135.6	14.81	136.3	19.58	142.3	13.19
10: 0	165.8	15.08	144.7	15.30	148.2	28.14	154.0	17.51
11: 0	•	•	•	•	•	• • •		

TIME	TREVOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
								· .
8: 0	4239	51.6	74.8	1.63	83.6	0.82	125.	44.6
9:0	2775	51.9	71.8	1.23	82.7	1.49	297.	51.5
10:0	44	55.3	64.6	2.88	74.4	3.48	A	***
11:0	1582	51.4	a		A	A	716.	35.1
12: 0	2309	51.7	л		4	4	785.	186.3
13:0	317	50.4	3		<b>4</b> .	A .	<b>.</b>	***
14: 0	1011	52.6	42.6	1.06	44,4	1.34		***
15: 0	2608	52.0				*	877.	258.7
16: 0	2729	52.5	A	4				***
17: 0	3976	53.9	37.3	0.63	36.9	0.57	688.	176.2

· č

Ľ,

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
8: 0 7: 0	159.7	20.47	207.6	15.12	171.8	12.87	172.5	11.16
10:0 11:0 12:0 13:0	182.4 178.3	19.58 21.65	221.2 216.3	17.01 18.70	185.4 189.8	16.93 18.65	184.4 179.3	15.19
14: 0 15: 0 16: 0 17: 0	164.4 169.7 147.6	27.34 25.39 24.39	202.0 204.5 182.2	24.54 22.87 19.21	165.3 166.4 140.3	- 28.60 28.88 29.96	165.6 166.2 146.8	21.65 20.13 15.66

Ċ

JUL.20,1977 DALLEV

, <u>, , , , , , , , , , , , , , , , , , </u>	· · · · · · · · · · · · · · · · · · ·	ên ² al. 311 ²	1111-42	11.4	TMP82	SIG
8:0 76.7 0	.81 76.1	0.56	76.4	0.63	75.3	0.48
9:0 78.8 0	.90 77.4	- 0.71	78.0	0.68	76.5	0.77
10:0 82.6 1	.34 80.1	1.10	80.4	1.16	79.3	1.08
11:0	4	a	۰ د	A	4	
12:0.	А	4	*	*	a	
13:0	4	a	-4	<b>a</b> .	4 <b>A</b>	•
14:0 92.7 0	.81 91.8	0.82	91.6	0.70	90.4	0.96
15:0.		4		4	*	<b>4</b>
16: 0	· <b>4</b>	4	4	*	, <b>.</b>	<b>.</b>
17:0 95.7 0	.96 95.6	1.00	94.9	1.06	94.7	0.87

Ĉ

JUL.20,1977 DALLEV

TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG	
								<i>i</i>	
8: 0	-0.7	2.54	3.1	4.28	3.9	4.93	1.5	5.51	
9:0	0.8	3.31		4		4	•	4	1.1
10:0	٨	•	<b>.</b>	٩	*	<b>A</b> .		a	
11:0	4		8.4	6.11	3.8	8.45	1.8	8.85	14
12:0	-0.1	3.50	7.3	6.69	3.7	8.13	1.4	10.42	
13:0	A	4	۵	*		4	4		
14: 0	A	د	A	A	*		· .	*	
15:0	-1.0	3.53	7.5	7.19	6.2	8.77	2.9	11.73	
16: 0	-0.4	3.98	8.3	7.57	5.9	9.07	•		
17: 0	-1.9	3.47	6.1	7.18	5.6	8.29	-1.2	11.60	•

269

#### ¢.

TIME	HAS	SIG	HA26	SIG	HA52	SIG	HA102	SIG
8:0 9:0	3.6	1.31	6.4 9.8	2.65	5.4 7.2	2.10	6.7 9.3	1.99 1.75
11:0 12:0	6.1 5.9	1.79 1.97	10.7	2.41 3.27	9.3 8.5	3.00 2.93	10.5 9.7	1.94 2.59
13:0 14:0 15:0	^ 6_0	2.22	, 9,5	3.53	• • • •		9.6	• 2.82
16: 0 17: 0	6.6	2.07	9.3	2.77	10.8	3.20	10.5	2.76

JUL. 20, 1977 DALLEV

TIME	TREVOL	SPEED	RH5	SIG	RH82	S16	PYRAN	SIG	
8: 0	4099	52.5	81.7	3.05	92.6	2.19	192.	61.7	
9: O	2649	53.5	*	*				****	
10:0	2382	54.6	67.2	1,96	77.8	2.54	512	54 8	
11:0	1484	55.6			· · · · ·	Aug. 14. 14. 1	and t due A	*******	
12:0	65	51.4	-	-	*	*	2	*********	
13: 0	2213	55.4	46.8	1.72	50.7	2.48	944	737 Q	
14:0	2467	56.0	43.4	1.35	45.3	5 44	947	777 2	
15: 0	2734	54.9	46.3	7.43	A7 4	9 9 4	450	775 0	
16: 0	3262	53.2	93.4	7 84	GE 4	7 77	**	373.8	
17: 0	3974	55.8			1.3	ತೆದೆ ಎಕ್ ಬಿ '	370.	373.0	

ú

JUL.21,1977 DALLEV

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
· · ·	м. С				•			
8: 0	161.5	16.53	207.2	10.80	171.7	9.20	172.5	7.41
9:0	A		.4	a .	4	4	4	4
10:0	184.9	15.55	223.0	11.74	186.3	11.53	185.8	9.76
11:0		*	4	A		4	4	
12:0	Å	<b>.</b> .	۵	ند	a	<b>4</b>	<b>.</b>	<b>.</b>
13:0	166.6	31.71	204.6	25.64	167.5	28.41	168.7	21.50
14:0	177.6	29.93	215.5	26.54	179.2	33.70	177.8	28.88
15: O	114.2	56.09	153.8	54.21	95.2	56.71	117.8	52.81
16: 0	58.9	28.73	98.6	19,30	32.6	19.27	55.8	19.95
17: 0	91.6	17.48	127.0	13.29	60.3	13.31	86.4	12.90

TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
8: 0	75.6	1.02	74.8	0.84	75.1	0.85	74.2	0.64
9:0 10:0	4	4.04	79.8	1.00	80.2		78.7	Å.87
11:0		4		2 a 10 10 a	a	a were	л тай ал тай Ал	4
12:0	91.3	0.86	90.5	1.61	90.5	1.40	89.6	1.46
14:0 15:0	93.0 90.1	1.20 5.09	92.0 89.8	1.14	92.1 89.5	1.12 5.58	90.8 88.9	1.01 5.26
16: 0 17: 0	77.5	1.80	77.4	1.65	77.0	1.61	77.1	1.58

TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
		$\sim 10^{-1}$						
8:0	-0.5	2.88	5.4	4.81	4.8	5.03	2.3	5.55
9:0	4	a.	8.2	5.96		•	<b>A</b>	
10:0	0.9	4.04	10.4	6.58	4.8	8.33	2.3	8.48
ii: 0	4		•		<b>.</b>	•	<b>4</b> 10 10 10	4
12: 0	د	4	1. A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	<b>A</b>	· <b>.</b>		4	
13: 0	-0.6	3.35	5.3	6.69	3.3	9.12	1.2	11.88
14: 0	-0.3	3,10	6.7	6.73	5.2	8.97	3.9	11.38
45:0		3.91	1.1	11.39	0.1	13.08	-0.5	12.95
14:0	-1.6	3.80	-1.2	9.10	-3.8	9.38	-9.1	9.76
17:0	-2.2	3.25	0.2	5.51	-0.3	6.91	-5.0	6.68

· · ·								
TIME	HAS	SIG	HA26	SIG	HA52	SIG	HA192	SIG
8:0	4.1	1.29	7.8	2.38	6.6	1.86	8.0	1.69
9:0 10:0	7.2	1.91	13.2	2.81	°9.7	2.68	12.1	2.04
11: O		4	•	л	*	•	*	*
12:0	<b>A</b>		د	4	4	3	4	
1.5:0	4.9	1.76	7:6	2.82	7.2	2.57	7.6	2.40
4 4 4 4	<u>a</u> 4	4 94	7.4	2.94	6.5	2.43	7.3	2.52
177 V		7 59	4.9.7	6.82	11.3	8.34	12.0	9.10
3000		4 07	7 5	5 94	47 9	4.52	16.6	4.83
17:0	6.5	1.74	8.9	2.94	10.3	2.80	12.1	3.36

A

TIME	TREVOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
	•							
7:55 8:55	4439 3466	52.0 53.1	86.6 67.3	5.42	91.0 70.6	2.54 3.44	93. 300.	53.8 49.4
9:55	2467	52.8	•	•	•	A		***
							ana an	
			JUL 122,	1977 DALLE	EV		•	
								· · ·
TIME	TMP5	SIG	THP29	SIG	TMP42	SIG	TMP82	SIG
7:55 8:55	74.9 79.9	1.88 0.69	75.2 79.0	0.78	76.0 79.2	0.67	75.4 78.5	0.60 0.64
9:55	A	<b>.</b>	<b>A</b>	3	۰. ۲	*	<b>A</b>	<b>▲</b>
			381.227	1977 DALLE	90 s		· .	
			•			· · · ·		
TIME	WV5	SIG	WV26	SIG	WV52	S16	WV102	SIG
7:55	255.6	15.63	312.9	40,94	270.7	23.93	270.0	31.24
8:55	291.5	16.27	346.7	24.50	301.8	13.68	298.0	17.61
7:55	*		4	4		<b>A</b>		

TIME	HAS	SIG	HA26	SIG	HA52	SIG	HA102	SIG
7:55	2.5	1.03	4.6	1,44	4.5	1.57	4.3	1.81
8:55	4.0	1.25	5.3	1.54	4.8	1.42	5.1	1.46
9:55	4	4		*	*	4	<b>∯</b> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ана стана 1970 <b>а</b> на стана 1970 - Алан Салан Сал

JUL.22,1977 DALLEV

JUL.22,1977 DALLEV

TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
		· ·		- · ·	۰.			
7:55	-0.9	1.12	0.5	1.63	-0.0	1.56	1.9	2.56
8:55	-0.6	1.33	-1.8	2.99	0.8	3.91	2.3	5.12
9:55	•	A .	•	*	<b>a</b>	<b></b>	4	<b>A</b>
		• •				•		•
-------	--------	-------	---------	----------	------	----------------------------------------------	--------------	------
TIME	TREVOL	SPEED	RHS	SIG	RH82	SIG	PYRAN	SIG
				• • • •				
8 0	4042	52.6	73.7	2.48	79.2	1.52	112.	55.6
9:0	2654	54.0	65.6	2.45	71.4	3.08	356.	91.4
10: 0	3053	54.3	53.5	3.33	59.6	2.29	589.	85.6
11: 0	3068	54.3	48.6	2.82	55.3	1.20	757.	63.8
12:0	2538	55.6	4	A		<b>ئ</b>	853.	34.8
13:0	1960	54.9	۰. ۲	4	4	ан са се	. <b>.</b> .	****
14: 0	2736	55.1	39.0	0.67	38.0	0.84	950.	9.4
15: 0	2814	56.0	35.3	1.67	33.4	1.64	917.	16.6
16: 0	3140	58.1	35.4	0.89	32.4	0.79	821.	37.4
17: 0	4216	69.0	4	а		*	663.	55.7
18:0	3078	60.0	•	<b>.</b>	А	A	•	***
19:0	0	0.0	4	4	4	<u>ـ</u>	4	****

AUG.	5,	19	17	DALL	_EV

Q

				• .					۰ ۲۰۰۰ ۲۰۰۰
			·			· · ·			
				AUG. 5	,1977 DALLE	EV			
• • •	TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	<b>SIG</b>
279	8: 0 9: 0 10: 0 11: 0 12: 0 13: 0 13: 0 13: 0 15: 0 15: 0 15: 0 15: 0 15: 0 15: 0 15: 0 17: 0	112.9 135.0 165.9 189.8 220.1 123.3 76.9 82.6 68.5 79.8	15.24 26.36 40.85 42.08 41.29 50.10 41.53 41.42 48.25 29.04	123.7 135.0 173.9 206.2 214.9 109.2 79.1 86.0 65.6 78.1	10.62 17.09 37.68 33.28 38.75 45.47 36.52 34.67 40.60 22.53	107.9 118.4 165.2 197.0 224.3 81.5 55.0 60.2 40.4 54.8	26.52 27.24 36.66 24.67 37.65 46.14 40.57 40.67 42.90 21.70	129.7 126.0 148.9 173.6 220.5 99.5 83.5 87.9 69.7 83.6	9.04 28.89 22.16 23.24 35.20 44.53 37.33 36.28 43.96 20.85
· ·									
						to a	•		

· \$

TIME	TMP5	SIG	TMP29	SIG	THP42	SIG	TMP82	SIG
	н 1							
8: 0	75.2	1.15	74.3	1.01	74.9	1.05	74.1	0.81
9:0	79.0	1.20	78.8	1.39	79.2	1.36	78.0	1.45
10:0	82.8	1.22	83.0	1.38	83.8	1.23	80.9	1.48
11:0	86.2	0.96	85.0	108	85.7	1.11	83.3	0.82
12: 0				•	a		4	A
13:0		4	A	•	с	۵		4
14:0	72.2	0.66	92.0	0.96	91.5	1.09	91.2	0.99
15:0	93.2	0.80	93.6	1.69	93.0	1.58	92.9	1.63
16: 0	94.1	0.88	94.5	1.08	93.7	1.27	93.5	1.24
17:0	. ' 4	.1	. <b>.</b>	a	4		a	•
18: 0	а		A	•	4	à	<b>a</b>	
19:0		.4	<b>a</b>	<b>A</b>	a	4		A

AUG.	3,	19	77	DAL	LEV
------	----	----	----	-----	-----

TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
8: 0	-1.0	1.48	1.6	3.10	2.1	3.48	-0.7	<b>~</b> A.
9:0	-0.4	1.84	1.8	4.08	-0.0	5.38	-1.2	4.66
10: O	0.1	2.94	3.0	7.24	0.9	7.59	-0.6	4.74
11:0	0.4	3.28	4.4	7.42	2.1	8.52	9.8	6 44
12:0	-0.0	1.12	3.1	5.98	1.6	7.44	1.7	9.45
13:0	-0.8	2.76	3.0	6.74	2.4	9.46		* A 1 w
14:0	-1.3	2.72	-0.0	7.31	-1.9	9.01	-4.9	10 44
15:0	-1 .4	2.42	1.3	7.54	-0.2	10.24	-3.3	17.49
16: 0	-1.1	2.20	0.8	6.70	-0.2	8.72	-3.4	10.44
17:0	-2.0	2.64	1.1	6.55	-0.3	8.78	-4.5	11.17
18:0	4	۰.	A	4	3			
19:0	A	·						**

TIME	HA5	SIG	HA26	SIG	HA52	SIG	HA102	SIG
	an an An Anna Anna Anna Anna Anna Anna A							
8:0	3.2	0.74	4.1	1.10	5.0	1.12	15; 15;	0 95
9:0	3.1	0.83	4.1	1.02	4,1	0.99	4.3	1.05
10:0	3.1	1.23	4.7	2.05	5.1	2.12	6.2	3.11
11: O	3.5	1.19	6.2	2.11	5.9	2.15	7.1	2.16
12:0	3.3	1.25	5.3	1.81	4.8	1,85	4.9	4 57
13:0	3.7	1.73	4.8	2.75	5.7	3.65	6.2	3.94
14:0	4.6	2.18	6.2	2.83	6.8	2.90	7.1	3.05
15:0	4.6	1.99	5.5	2.50	6.3	2.84	6.6	2.44
16: 0	4.3	2.19	5.4	2.66	6.0	2,99	6.0	3.95
17:0	6.1	2.15	7.4	2.63	8.7	2.58	9.5	2.84
18: 0			•	· · · · · · · · · · · · · · · · · · ·				Aur it les les
19:0	•	4		•				•

TIME	TREVOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
•			· .					
8:0	4320	53.4	72.6	0.62	76.4	0.62	38.	37.4
9:0	3267	53.5	66.5	2.05	72.2	1.69	255.	60.7
10:0	2553	54.6	61.5	1.78	67.8	1.80	497.	62.1
11:0	2502	55.4	54.9	1.63	60.3	2.15	690.	55.1
42:0	2462	55.4	47.7	2.30	50.0	3.16	768.	73.9
13:0	2610	55.0	42.8	0.97	44.1	1.08	912.	13.5
14:0	2445	54.3	40.1	1.29	40.5	1.65	951.	37.9
45:0	2892	55.2	37.8	0.39	37.1	0.37	769.	293.8
44 · A	7479	57.7	36.6	0.39	35.6	0.37	700.	259.5
17:0	4248		37.9	0.63	36.3	0.59	532.	165.3
18:0	4720	59.9	36.3	0.89	34.5	1.04	460.	60.4
19:0	1998	51.8	4	•	<b>A</b>	a	A	******

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
				·	· · · ·			
8 8	119.4	15.27	131.2	9.52	132.7	22.74	143.4	5.81
9 A	133.4	17.58	137.8	11.58	141.0	22.57	147.6	9.71
10 0	142.4	20.29	158.8	16.22	163.5	17.90	164.2	12.38
44 - 23	174.1	19.25	171.1	15.42	177.2	15.42	177.0	12.63
17 3	149.9	17.24	144.8	15.18	169.7	16.03	169.9	12.46
17. N 17. D	477.9	28.13	170.5	17.71	176.2	18.52	174.0	15.30
10. V 10. A	458 9	26.95	147.2	23.58	147.0	33.98	153.1	21.51
177 V 15 ()	10010	75.44	139 3	22.20	135.5	34.70	144.4	20.31
4 L - 4	479 7	20 45	434.8	14.53	122.5	31.85	134.6	14.77
47.0	10012	44 94	10710	13.08	114.4	32.27	132.7	11.75
40.0	102.1	4 4 5 4	477 9	17.44	127.0	31.82	137.0	11.67
18: 0	5 - 3 7 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	10.21	ستد به البه اليوع	1 4 4 4.5 7	5 A. 5 A W			4
3.2. 33	د	*	. 4	. <b>A</b>	*	•		

TIME	TMP5	SIG	TMP29	SIG	THP42	SIG	TMP82	SIG
				•				
8:0	71.3	0.67	70.9	0.54	71.3	0.54	71.0	0.50
9:0	75.8	1.56	75.2	1.76	75.6	1.72	74.7	1.59
10:0	89.8	1.41	80.4	1.32	80.8	1.40	79.5	1.12
11:0	85.0	1,94	83.6	1.53	84.2	1.35	82.7	1.53
12:0	88.2	1.02	87.4	1.12	87.4	0.91	86.7	1.21
13:0	91.0	0.92	89.6	1.07	89.8	0.99	88.9	1.17
14:0	92.8	0.61	92.1	0.70	92.0	0.62	91.5	0.85
15: 0	93.5	1.01	93.2	0.97	92.8	0.86	92.7	0.96
16: 0	94.3	1.03	94.3	1.03	93.6	0.96	93.7	0.96
17:0	93.5	0.79	93.3	0.74	92.7	0.71	92.9	0.72
18:0	93.6	0.55	93.7	0.54	93.2	0.55	93.3	0.54
19:0			4	a .	<b>.</b>	a	A	A

AUG.	3,	1977	( DÁL	LEV.
------	----	------	-------	------

					· · · · ·			
TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
				•	· .		 	
8:0	-1.0	1.70	2.4	2.94	2.8	2.94	0.3	2.64
⁵ 9∶ 0	-1,0	2.38	3.8	4.34	3.8	4.83	0.5	5.37
10:0	0.0	2.86	5.7	4.96	4.3	6.38	1.7	6.78
11: 0	0.6	3.31	8.5	6.16	4.5	7.40	1.9	8.76
12:0	0.4	3.83	8.9	7.08	5.8	8.68	1.9	9.16
13:0	1.1	4.03	9.3	7.11	5.6	8.83	3.7	11.13
14:0	-0.7	3.65	6.4	7.24	5.0	9.07	0.7	11.18
15:0	-1.1	3.61	6.3	7.31	4.6	8.86	-0.8	10.94
16: 0	-1.7	3.63	6.3	7.36	5.9	8.07	-0.4	9.89
17:0	-2.4	3.77	6.0	7.10	5.3	8.23	-2.1	9.55
18:0	-2.0	4,13	7.5	7.34	6.6	8.51	-1.5	9.91
19:0		· · · · · · · · · · · · · · · · · · ·		A	*	۵	4	a

TIME	HA5	SIG	HA26	SIG	HA52	SIG	HA102	SIG
		•						
8:0	3.3	0.63	4.4	0.80	5.4	0.91	6.6	0.85
9:0	4.0	0.83	5.5	1.09	6.2	0.95	6.5	1.03
10:0	4,4	1.17	7.3	1.81	6.8	1.48	7.1	1.27
11: O	5.3	1.59	9.8	2.38	8.4	2.32	7.4	1.84
12:0	6.6	1.70	11.4	2.50	10.3	2.53	11.3	2.22
13:0	6.2	1.75	10.7	3.25	8.5	2.71	10.6	2.49
14:0	6.3	2.30	9.5	3.26	9.6	3.49	9.9	2.83
15: 0	6.3	2.35	9.0	3.13	10.0	3.35	9.9	2.81
16: 0	7.1	2.16	10.1	2.89	12.0	3.12	11.3	2.82
17:0	8.4	2.25	11.8	3.19	14.1	3.40	13.5	2.95
18: 0	8.3	1.95	12.0	2.97	14.3	2.90	13.9	2.69
19:0	A	۵	j.		*		4	

#### AUG. 5,1977 DALLEY

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
		•						
8: 0	142.4	15.47	144.7	10.06	150.1	15.35	153.2	8.63
		· · · ·	•					

### AUG. 5,1977 DALLEV

TIME	TREVOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
8: 0	4317	52.8	83.2	1.29	92.0	0.81	79.	49.9

AUG. 5,1977 DALLEV

					the second s	1		1
TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
8: 0	74.6	0.75	74.0	0.69	74.6	0.66	73.9	0.61
						and the second second		

TIME	HA5	SIG	HA26	516	HA52	SIG	HA102	SIG
8:0	4.9	1.07	8.2	1.69	9.0	161	9.2	1.67
		. (						
		• • •	AUG. 5,	1977 DALLE	EV			
TIME	VAS	SIG	VA26	SIG	VA52	SIG	VA102	SIG
8: 0	-1.2	2.93	4.9	5.69	4.8	6.61	0.9	7.26

6.61

0.9

7.26

ì

AUG. 5,1977 DALLEY

				and the second				(A) provide the second seco
TIME	TREVOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
<b>D D</b>	····· , , , ,			6 m h	<i></i>	A 1991 A	100	/ X27 / Y2
8: 0	5668	23.8	14.5	3.74	87.4	3,.53	3.20.	80.7
9:0	3046	52.7	67.8	2.33	75.8	1.92	.338.	60.7
10:0	2443	53.1	58.1	3.11	65.3	3.75	544.	52.5
11: O	2306	53.3	51.1	1.61	56.6	2.55	696.	45.9
12: 0	2395	53.6	45.9	1.55	48.6	2.05	791.	105.2
13: 0	2629	53.6	41.5	1.15	43.0	1.65	933.	16.6
14:0	2706	52.8	39.3	0.61	39.4	0.73	951.	-2.1
15:0	2868	53.9	38.0	0.43	37.5	0.45	895.	180.3
16: 0	3319	55.1	37.7	0.51	36.9	0.34	607.	309.6
17: 0	4196	58.5	37.3	0.68	36.3	0.54	558.	266.9
18: 0	4410	59.6	36.8	0.96	35.4	1.00	411.	167.7
19:0	3536	58.1	35.3	0.34	33.3	0.43	277.	64.2

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
en e								алан айтай а Айтай алан айтай
8: 0	151.9	18.24	155.8	12.18	162.6	11.68	163.5	9.60
9:0	173.0	23.33	169.2	19.14	174.0	18.66	173.8	16.28
10: 0	193.5	19.14	188.3	15.28	195.1	15.13	193.3	12.15
11:0	195.6	26.21	189.0	20.29	196.2	20.76	193.7	17.57
12:0	178.0	33.76	169.9	27.28	176.5	28.97	177.5	20.45
13:0	159.4	40.21	154.1	35.08	156.6	42.69	161.2	32.96
14: 0	155.6	37.59	150.7	31.99	150.8	41.56	157.5	31.11
15:0	127.6	32.53	122.0	29.44	110.1	39.71	130.9	27.74
16: 0	132.1	26.79	128.8	22.72	121.8	35.83	136.9	19.52
17:0	152.4	26.79	144.0	22.57	143.5	33.06	149.3	20.23
18:0	143.7	19.43	134.2	14.27	127.9	31.64	138.7	11.63
19:0	135.7	14.94	128.2	10.50	116.5	29.86	133.9	8.68

TIME	TMP5	SIG	TMP29	S16	TMP42	SIG	THP82	SIG
			•					
8 0 9 0 10 0 11 0	78.5 81.2 85.2 88.1 70.4	0.84 1.20 1.40 1.23 1.23	77.8 80.2 82.7 85.4 87.3	0.88 0.68 0.90 1.64 1.63	78.5 80.6 83.2 85.9 87.7	0.86 0.73 0.86 1.60 1.53	77.4 79.4 81.8 84.6 88.4	0.73 0.57 0.96 1.39 1.78
13:0 14:0 15:0 16:0 17:0 18:0	93.2 94.5 95.4 95.5 96.2 95.8 95.4	0.70 0.90 0.86 1.13 1.43 1.99 0.59	92.2 94.1 95.8 95.7 96.1 96.1	1.35 0.83 0.77 1.15 1.40 1.22 0.46	92.1 93.8 95.3 94.9 95.6 95.6 95.5	1.23 0.86 0.85 1.18 1.42 1.19 0.53	91.7 93.5 95.2 95.1 95.5 95.7 95.6	1.55 0.75 0.80 0.73 1.26 1.12 0.53

		-					· · · ·	
TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
				• · · · ·				
8: 0	-1.0	2.52	4.3	4.30	3.9	5.11	1.5	5.75
9:0	-0.2	3.28	6.9	5.39	4.6	7.42	1.8	7.53
10:0	0.6	3.09	7.5	5.63	3.2	8.05	3.2	9.46
11:0	0.2	2.97	6.8	5.93	1.9	7.53	1.7	9.40
12:0	0.0	3.03	5.1	6.00	2.5	7.63	0.8	9.79
13:0	-1.0	2.75	5.0	6.92	3.8	8.70	1.4	10.94
14:0	-1.2	2.92	4.6	7.40	2.7	9.51	-1.4	11.77
15:0	-1.5	2.94	4.5	6.80	3.5	8.27	-0.1	11.69
14:0	-1.8	2.75	3.9	5.80	3.0	7.84	-2.9	9.39
17:0	-1.4	3.13	6.2	6.78	4.6	7.94	-1.3	10.26
18:0	-2.0	3.22	6.6	6.64	5.9	7.48	-1.1	9.50
19:0	-2.4	3.05	6.3	6.18	5.7	6.86	-1.4	8.68

				a de la companya de l		•		
TIME	HAS	SIG	HA26	SIG	HA52	SIG	HA102	SIG
8:0	3.5	1.11	6.5	1.85	6.4	1.55	6.9	1.39
9:0	4.9	1.34	9.0	2.06	8.2	2.30	8.9	1.62
10:0	4.4	1.32	8.3	1.87	7.0	2.48	8.2	1.45
11:0	4.2	1.43	7.7	2.11	6.7	2.58	7.5	1,90
12:0	3.6	1.44	6.1	2.56	5.2	2.32	5.9	2.22
13:0	4.3	1.67	6.2	2.45	6.4	2.36	6.3	2.94
14:0	4.7	2.19	6.6	2.90	7.3	3.19	7.3	2.49
15:0	5.6	2.32	7.0	2.89	8.0	3.49	7.6	3.00
16: 0		A	۲		A	<b>A</b>	8.3	2.52
17:0	5.9	2.12	9.0	2.86	9.9	3.18	9.8	2.53
18:0	6.7	1.82	9.7	2.53	11.4	2.69	10.9	2.39
19:0	7.5	1.61	10.1	2.04	12.2	2.35	11.3	1.96

E.

								· · · · · · · · · · · · · · · · · · ·
TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
		. · · · ·						
8: 0	-0.8	1.85	2.5	3.34	2.1	3.40	0.3	3.60
9:0	-1.0	2.08	4.1	4.25	3.7	5.09	1.6	6.14
10:0	-0.0	2.12	3.8	4.89	1.5	5.62	0.7	7.29
11: 0	-0.2	2.05	3.1	5.89	1.9	7.34	2.6	10.74
12:0	-0.4	2.58	4.0	6.93	2.0	8.48	-1.4	9.82
13:0	-0.8	2.70	3.8	7.47	1.4	9.79	-0.8	11.90
14: 0	-0.5	2.89	4.6	6.73	2.0	8.95	-0.3	12.29
15:0	-1.2	2.77	4.5	7.77	3.1	10.26	1.0	14.11
16: 0	-0.9	2.36	3.2	6.61	1.8	8.72	-1.1	11.01
17: 0	-1.3	2.44	0.9	6.23	-1.0	7.80	-4.6	10.42
								1

295

¢

TIME	HA5	SIG	HA26	SIG	HA52	SIG	HA102	SIG
8: 0	2.9	0.86	4.0	1.52	4.3	1.45	4.8	1.34
9:0	3.5	0.97	5.4	1.53	5.4	1.30	5.3	1.19
10:0	2.6	0.92	4.7	1.56	3.6	1.38	4.4	1.21
11:0	2.3	1.03	3.8	1.77	3.3	1.53	3.6	1.50
12: 0	3.8	1,55	6.2	2.43	5.6	2.19	5.7	2.31
13: 0	3.7	1.80	5.6	2.80	5.3	2.88	5.2	2.43
14: O	3.8	1.83	5.8	2.73	5.7	2.81	5.7	2.54
15: 0	4.4	2.10	5.7	2.82	6.3	2.97	6.3	2.63
16: 0	3.8	1.75	4.7	2.53	5.1	2.92	4.9	2.71
17:0	4.8	2.76	6.3	3.60	6.5	3.22	6.6	3.48

TIME	TMP5	SIG	TMP29	516	THP42	SIG	THP82	SIG
•								
8: 0	76.9	0.91	76.3	0.86	77.0	0.90	76.0	0.74
9:0	79.9	1.43	79.4	1.40	80.0	1.53	78.6	1.13
10:0	84.6	1.58	82.9	1.29	83.9	1.27	81.7	1.32
11: 0	88.8	1.06	87.1	1.55	88.0	1.72	85.8	1.31
12:0	90.2	0.83	89.6	1.11	89.9	1.10	87.0	0.92
13: 0	92.2	0.84	91.4	1.28	91.3	1.33	<b>70.9</b>	1.31
14: 0	93.9	1.23	93.0	1.52	93.0	1.59	92.5	1.43
15:0	95.5	0.89	95.8	1.07	95.3	0.97	94.8	1.07
16: 0	96.6	1.56	97.7	1.60	97.0	1.76	96.7	1.55
17: 0	95.1	1.70	95.7	2.03	95.1	2.18	95.1	2.01

 $\hat{a}$ 

É

AUG.11,1977 DALLEV

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
8: 0 9: 0 10: 0 11: 0 12: 0 13: 0 14: 0 15: 0 16: 0 17: 0	129.4 145.5 184.2 194.4 174.2 184.5 169.1 134.0 144.7 83.7	19.99 20.74 29.47 42.35 40.45 47.86 45.82 47.16 51.77 45.59	141.4 147.7 180.3 186.9 166.0 179.2 156.8 124.7 138.6 82.2	12.30 15.11 20.60 37.31 37.98 44.56 41.61 40.79 49.72 41.27	150.1 153.1 188.6 194.4 174.6 188.3 162.6 122.7 133.2 56.3	13.61 18.25 20.07 37.21 39.02 45.31 47.99 48.57 52.66 45.21	154.3 157.5 187.6 194.8 174.6 181.8 166.6 139.1 152.1 87.3	8.26 12.41 16.77 27.12 32.40 40.45 40.45 40.74 38.66 48.02 38.18

Ô

TIME	TMP5	216	TMP 29	SIG	TMP42	516	TMP82	218
		•	•					
9:3E	74.5		74.3		74.3	.3	73.3	
10:15	75.4	4	75.3		75.1		74.2	
\$ \$ : \$ 5	80.0	.t	79.3	.4	79.0	4	78.1	
12:15	84.1	a.	83.3	.3	82.4		81.4	
13:15	87.6		96.A		85.4	4	34.3	
14:15	20.3	د	89.3	.1	88.6	· .	88.9	
15:15	92.5	.1	91.2		90.5		98.3	
16:15	93.3	4	92.0		91.3		91.0	
\$7:55	93.6		92.0	. 4	91.3		91.3	4

SPT. 28, 1977 SAN ANTONIO

SPT. 28, 1977 SAN ANTONIO

TIME	TREVOL	SPEED	<b>8H5</b>	SIG	8882	SIG	PYRAN	516	
875 A 144									
9:35	5464	e - 1 e <b>4</b>	82.8	.:					
10:15	4466		77.4			•	_		
\$ \$ : \$ 5	4733	<b>.</b>	62.1	.1				A	
12:15	5349	.1	52.5	.:	4		•		· ·
13:15	5289		44.8		.5	4		•	
14:15	3985	-1	39.3	.1	4			•	
15:15	6466	.1	35.8	4	.1				
16:15	7515	.1	33.0	.1				•	
17:15	9467		33.1	4		· •			

SPT. 28, 1977 SAN ANTONIO

P

TIME	HAS	SIG	HA26	SIG	HA52	SIG	HA102	216
9:15	3.9	1	5.7	•3	4. B		6.8	.4
10:15	5.4	.1	7.2	.1	9.2	4	8.9	
\$ \$ : \$ 5	6.0		8.5	.1	9.3	,t	10.3	<b>a</b> 1977 - 40
12:15	5.4	<b>.</b>	7.27		8.0		8.6	4
13:15	5.0	4	6.8		7.5	-4	8.4	
14:15	4.9		6.6	4	7 . 4	4	8.2	4
45:45	4.7		7.3	<u>.</u>	8.3	.1	9.3	4
4.4.4.5	5.9		3.9		10.7		\$2.8	4
\$7:55	6.4	 	9.5	A	\$2.0	•	\$3.3	4
						•		

SPT. 28, 1977 SAN ANTONIO

TIME	WV5	516	WV26	SIG	WV52	\$10	WV102	218
9:15	190.3		191.0		196.6	4	199.0	
10:15	202.0		207.5		209.3	.1	199.8	.1
11:15	178.3	•	191.9	3	\$ 77 . 3	1. 1 <b>8</b>	173.1	4
12:15	188.8		192.0	4	192.8		193.3	a a
13:15	181.0	·	183.0	.1	182.8	•3	175.8	a
14:15	159.1	4	153.8		163.8	4	452,0	
15:15	152.1		149.1		150.0	4	\$47.5	
16:15	148.0		148.5		147.8	-1	\$45.3	а
17:15	130.4	. <b>.</b> .	131.5		132.3	.1	131.3	

300

	the I then been de	88.2	210	KH87	SIG	PTRAN	SIG
7534	51.8	85.3	1.76	Å	<b>.</b>		***
5040	52.3	73.5	4.32	Å	a	<b>A</b>	*****
5287	52.6	64.2	4.30	÷	A	<b>A</b> ,	*****
5649	52.4	53.3	2.46	<b>.</b>	4		*****
6120	51.8	45.0	2.07				****
6004	51.8	40.2	1.09	A	a	4	****
	7534 5040 5287 5649 6120 6004	7534 51.8   5040 52.3   5287 52.6   5649 52.4   6120 51.8   6004 51.8	753451.885.3504052.373.5528752.664.2564952.453.3612051.845.0600451.840.2	753451.885.31.76504052.373.54.32528752.664.24.30564952.453.32.46612051.845.02.07600451.840.21.09	753451.885.31.76.504052.373.54.32.528752.664.24.30.564952.453.32.46.612051.845.02.07.600451.840.21.09.	7534 51.8 85.3 1.76 . .   5040 52.3 73.5 4.32 . .   5287 52.6 64.2 4.30 . .   5649 52.4 53.3 2.46 . .   6120 51.8 45.0 2.07 . .   6004 51.8 40.2 1.09 . .	7534 51.8 85.3 1.76 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <

### SEP.29,1977 SA LEVEL

*....* 

TIME	WV5	SIG	W26	SIG	WV52	SIG	WV102	SIG
					· .			
8:55	181.1	17.99	185.4	15.28	183.7	14.51	176.9	11.52
9:55	188.3	18.66	193.5	16.78	191.8	17.29	184.7	14,12
10:55	191.1	15.57	194.3	13.86	193.5	14,50	185.8	11.08
11:55	187.9	18.81	190.8	17.23	188.3	18.14	180.8	14.87
12:55	186.7	19.73	188.1	20.76	187.3	20.74	180.0	17.71
13:55	194.3	21.21	196.3	20.12	195.4	22.39	186.2	19.24

SEP.29,1977 SA LEVEL

SEP. 29, 1977 SA LEVEL

TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
8:55	73.4	0.63	73.1	0.60	73.4	0.52	72.6	0.46
9:55	76.8	1.34	76.3	1.23	76.2	1.16	75.2	1.14
19:55	79.5	1.50	78.8	1.43	78.6	1.30	77.6	1.25
11:55	83.2	1.20	82.4	1.16	82.0	1.07	80.9	1.03
12:55	86.4	1.35	85.4	1.35	84.9	1.19	83.9	1.18
13:55	88.9	0.97	87.7	1.02	87.2	1.05	86.2	1.02

## SEP.29,1977 SA LEVEL

TIME	HA5	SIG	HA26	SIG	HA52	SIG	HA102	SIG
8:55	5.0	1.55	7.5	2.07	8.4	2.06	9.9	2.26
9:55 10:55 11:55 12:55 13:55	7.2 7.4 7.4 7.9	1.78 2.26 2.33 2.26	- 9.8 9.8 10.4	2.22 2.63 2.94 2.87	10.9 10.8 11.2 11.8	2.36 2.81 3.13 3.93	12.1 12.3 12.4 12.7	2.28 2.99 3.03 2.93

SEP.29,1977 SA LEVEL

TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
8:55 9:55 10:55 11:55 12:55 13:55	0.4 0.3 0.6 0.6 0.6 0.5	3.09 2.94 3.69 3.71 3.83 3.88	-2.4 -2.1 -3.0 -2.8 -2.3 -2.6	6.84 6.44 8.04 8.01 8.66 8.35	-0.5 0.8 -0.3 -0.4 0.1 -0.1	8.25 8.07 7.26 7.40 10.07 10.07	0.7 2.8 1.5 1.4 1.7 0.8	8.56 8.93 9.83 11.12 10.79 11.09

. 303

# OCT. 5,1977 SA LEVEL

TIME	TREVOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
					n an			
8:15	9135	50.9	91.3	2.81	•	<b>A</b>	-74.	481.6
9:15	6145	53.2	80.3	3.29		*	238.	65.3
10:15	4929	54.7	67.8	406	A	4	455.	60.5
11:15	2861	56.6	A -	<b>.</b>	<b>.</b> .	4	•	******
		•						
			8CT. 5	1977 SA LE	IVEL			
		- -			•		•	•
TIME	THP5	STG	THP29	STG	THPAT	536	тжрар	SIG
		ter ops tog		der de lui	r i r r r du		i i i i uran	
					- -		en e	
8:15	59.1	0.98	59.6	0.58	59.8	3.79	59.9	0.45
9:15	62.7	1.32	62.3	1.37	59.3	14.81	62.2	1.21
10:15	67.8	1.78	67.2	1.75	67.5	1.63	66.9	1.60
11:15	<b>A</b>	*	•	<b>.</b> .	a.	·	•	•
			•					
			0CT. 5	,1977 SA LI	EVEL			
	di di seconda di second							
TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
8:15	44.3	24.04	49.4	11.69	47.7	23.44	54.8	8.31
9:15	72.1	18.85	65.4	12.84	65.1	16.78	65.3	12.15
10:15	85.2	21.96	81.4	18.03	83.8	17.84	84.2	15.66
11:15	a	<b>A</b>	<b>.</b>	<b>.</b>	•	•	•	•

1900 1910 A. J. Brid			•			•		
11795	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
8:15 9:15 10:15 11:15	1.0 -0.1 -0.4	2.17 2.59 2.37	0.7 0.3 1.2	2.97 5.13 5.32	0.4 -0.2 0.1	3.22 5.81 6.09	0.1 1.0 1.8	3.30 6.94 8.05

OCT. 5,1977 SA LEVEL

OCT. 5,1977 SA LEVEL

						1		• · · · · · · · ·	
TIME	HAS	SIG	HA26	SIG	HA52	SIG	HA102	SIG	
8:15 9:15 10:15 11:15	1.7 4.3 4.4	0.78 1.14 1.31	3.6 5.5 5.7	0.87 1.26 1.41	3.8 5.6 5.9	0.87 1.35 1.41	5.3 5.8 5.8	0.78 1.33 1.23	•
					· · · · · · · · · · · · · · · · · · ·		4	4	

TIME	TREVOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
							ана. 1911 - Полона Салана, 1914 - Полона Салана, 1914 - Полона Салана, 1914 - Салана, 1914 - Салана, 1914 - Салана,	
m . 4 E	9074	<b>NT 4</b> T	88.7	0.48		A	17.	17.9
0.12	4959 J	52.6	83.3	3.72		4	165.	94.8
7.3.3		52.00 57	71.0	2,40	•		385.	91.4
10.10			45. A	3.33		۰ ۵	548.	140.5
13:10	2444		59 8	2.19	-	4	728.	136.1
	20113	22332 111 A L	50.0 50 A	1.89		4	698.	259.7
33:30	0000	244 a 43 87 77 77	AT 9	3 53			780.	196.1
14:12	0207	23.1	~7 W A W	0.07	•	· ·	630.	244.6
15:15	6423	24.2	AC 7	0.70	<b>4</b>	. •	473.	225.7
16:15	/546	D3.D	40.1	0.07	4	а	329	165.6
17:15	7862	52.5	43.7	0.00	4	*	499	53.0
18:15	8377	53.0	41.5	0.37	<b>4</b> .	•	5 L3 12 a	and the second second
19:15	3859	53.4	4	*	. <b>.</b> .	*	4	

OCT. 6,1977 SA LEVEL

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
8:15 7:15 10:15 11:15 12:15 13:15 14:15 15:15 16:15 17:15	64.0 74.8 83.7 82.1 95.2 104.1 101.4 99.6 100.1 92.8	19.79 19.94 20.31 22.81 25.35 29.34 26.69 28.08 24.59 21.13	61.2 69.6 79.3 79.3 91.7 102.7 98.3 94.1 96.8 88.1	12.91 13.73 17.85 19.05 21.57 24.82 23.98 24.78 24.78 23.21 17.65	62.3 71.3 81.9 80.8 95.8 103.4 97.7 96.1 97.9 90.4	17.89 15.32 17.96 18.61 19.76 21.11 23.88 22.43 21.39 14.07	62.7 72.7 82.6 81.2 97.5 102.1 98.6 96.7 97.2	SIG 10.55 11.90 14.71 16.78 17.87 17.23 20.89 19.62 19.11
18:15 19:15	102.0	18.09	99.6	17.57	101.4	15.89	101.1	14.96

OCT. 6,1977 SA LEVEL

TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	516
8:15	65.6	0.35	65.8	0.35	66.4	0.39	65.9	0.36
9:15	67.3	1.17	67.2	1.01	67.7	0.92	67.2	0,94
10:15	71.1	0.90	70.5	0.84	71.0	1.03	70.3	0.94
11:15	73.8	1.47	73.0	1.30	73.3	1.18	72.6	1,14
12:15	77.6	1.23	76.4	1.06	76.5	1.04	75.9	1.00
13:15	79.8	0.91	78.9	0.95	78.7	0.76	78.1	0.76
14:15	82.2	1.18	80.4	1.19	80.4	0.99	80.0	1.04
15:15	82.8	1.13	81.3	0.87	81.2	0.78	80.9	0.83
16:15	83.1	1.43	81.9	1.96	81.8	0,94	81.5	0.99
17:15	82.4	1.13	81.5	0.74	81.5	0.79	81.1	0.79
18:15	82.3	0.79	81.4	0.50	81.5	0.50	81.3	0.50
19:15	4		•					~ ~ [.] W

OCT. 6,1977 SA LEVEL

TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	516
						•		
8:15	0.3	3.39	0.4	5.48	0.5	6.44	0.9	7.43
9:15	<b>A</b> (1997)		<b>A</b>		-0.2	5.52	1.1	6.64
10:15	-0.2	2.68	1.3	5.38	-0.2	5.91	1.0	7.65
11:15	-0.4	3.20	2.3	5.99	0.7	7.33	2.5	9.33
12:15	-0.3	2.78	2.8	6.36	0.8	7.83	2.9	10.20
13:15	-0.4	2.80	2.1	6.80	-0.5	7.78	1.7	9.49
14:15	-0.6	3.67	2.2	6.73	0.2	7.85	2.0	9.35
15:15	-0.7	3.32	2.0	7.22	-0.7	8.35	1 4	55 57
16:15	-0.9	3.03	2.5	7.10	0.4	8.21	3.0	10.07
17:15	-0.4	3.83	3.5	6.72			7 A	9 9 9
18:15	-0.6	2.37	3.5	6.05	0.2	A.77		7 7 8
19:15	. 4	•			w 4 4a		فسيم فندو	3 4 5 49

BCT. 6,1977 SA LEVEL

TIME	HAS	SIG	HA26	SIG	HA52	SIG	HA102	SIG
	* • •						•	
8:15	4.3	1.35	5.8	1.50	6.1	1.57	6.7	1.45
9:35	4.3	1.22	5.7	1.40	5.9	1.43	5.8	1.26
10:15	4.8	1.23	6.1	1.33	6.2	1.40	6.3	1.53
11:15	5.7	1.80	7.1	1.89	7.4	1,90	7.3	1.52
12:15	5.2	1.74	6.6	1.89	7.2	2.17	7.3	2.21
13:15	5.4	2.06	7.0	2.68	8.0	2.88	8.3	2.88
14:15	6.5	2.11	8.7	2.31	10.0	2.55	10.3	2.62
15:15	7.1	2.28	9.4	2.61	10.5	2.98	10.8	3,18
16:15	6.6	1.93	8.8	2.17	10.0	2.83	10.4	2.51
17:15	7.2	2.17	9.3	2.39	10,4	2.59	19.7	2.76
18:15	6.5	1.64	8.7	1.56	10.2	1,98	10.8	2.07
19:15	а '		a	4	A	A .		

OCT. 6,1977 SA LEVEL

TIME	TMP5	SIG	тир29	SIG	TMP42	SIG	TMP82	S16
8: 0	60.0	0.45	61.1	0.76	62.7	0.82	63.4	0.62
9:0	63.7	1.42	64.2	1.37	65.1	1.18	65.5	9.77
10:0	68.6	2.61	70.2	3.56	70.7	3.49	70.0	3.20
· 11: 0	74.7	1.69	74.4	1.58	73.6	2.52	72.7	1.34
12: 0	78.7	0.91	77.9	0.91	77.4	0.89	76.4	0.93

OCT. 7,1977 SA LEVEL

4.6

OCT. 7,1977 SA LEVEL

•	IME	TREVOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
					*,				
8	3: 0	8688	50.6	93.5	0.92			12.	17.1
ç	7: ⊘	7193	50.7	86.1	2.49			74	10 3
	): ••⊙	5422	51.9	75.8	6.68	A		265.	150.5
1	: 0	5661	52.5	67.9	3.36	•		497.	100.0
12	!: [™] ⊖	6317	52.2	54.4	3.51	ۍ.	4	693.	118.5

C.

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
8: 0	278.1	18.58	332.0	38.37	329.8	42.67	78.2	54.20
9: 0	278.0	19.50	292.6	26.09	296.3	17.35	271.4	40.75
10: 0	287.8	44.28	297.7	46.04	298.9	40.40	314.7	45.42
11: 0	177.7	29.50	177.3	23.63	178.6	22.22	171.0	19.78
12: 0	192.4	20.83	191.7	18.01	190.6	18.33	182.6	14.67

8CT. 7,1977 SA LEVEL

r

OCT. 7,1977 SA LEVEL

TIME	VAS	SIG	VA26	SIG	VA52	SIG	VA102	SIG
							an a	
8: 0	-0.1	0.53	0.1	0.92	0.3	1.53	-0.4	1.40
9:0	-0.2	0.61	0.3	1.20	-0.3	0.81	-0.4	6.99
10:0	-0.2	1.25	-0.0	3.15	0.0	3.35	-0.2	4.29
11: O	0.0	2.19	-0.3	5.59	0.6	6.50	1.7	7.74
12:0	0.4	2.93	-2.0	6.58	-0.4	7.39	0.8	8.54

TIME	HAS	SIG	HA26	SIG	HA52	SIG	HA102	SIG
•					•			
8: 0	0.6	0.51	1.8	1.35	2.4	1.56	1.6	0.90
9:0	0.9	0.53	1.7	0.58	1.8	0.64	1.5	0.61
10:0	1.0	0.71	1.7	0.72	1.6	0.74	1.8	0.84
11: O	2.6	1.15	4.0	1.66	4.3	1.70	4.9	1.79
12:0	5.2	1.58	7.3	1.95	8.3	2.11	9.1	2.28

OCT. 7,1977 SA LEVEL

OCT.18,1977 SA LEVEL

TIME	HA5	SIG	HA26	SIG	HA52	SIG	HA102	SIG
	·.							
8:20	0.6	0.36	1.6	0.39	2.6	0.73	2.0	0.45
9:20	1.1	0.53	2.0	0.58	2.2	0.63	2.6	9.47
10:20	1.7	0.79	2.5	0.77	2.3	0.84	2.4	A 97
11:20	3.2	1.51	4.3	2.11	4.8	2.34	5.7	0 45
12:20	4.2	1.39	6.2	2.03	6.7	2.23	7.4	2 20
13:20	4.2	1.40	5.9	1.87	6.4	1.99	4.9	2 4 G
14:20	4.1	1.54	5.4	1.93	5.9	2.24	4.3	2.17
15:20	3.9	1.44	4.7	1.55	5.3	1.83		4 07
16:20	4.4	1.80	5.9	2.25	6.6	2.57	7.9	7 76
17:20	3.9	1.51	4.8	1.91	5.5	2.28	4.2	2 44
18:20	3.3	0.93	4.2	1.09	4,9	1.40	5 9	4 80
19:20	4	*				4		1.70
						· · · · · · · · · · · · · · · · · · ·		
-------	--------	-------	----------	---------	------------	---------------------------------------	-------	-------
TIME	TREVOL	SPEED	RH5	S16	KH85	216	PTRAN	216
	•			· · · ·				
8:20	9398	50.9	98.8	0.49		а. А.	23.	21.7
9.20	6356	54.1	91.7	4.19		<b></b>	•	****
10:20	5166	55.7	74.6	6.69	4	۰. ۲	318.	103.5
11:20	5410	58.5	61.8	1.27	<b>A</b> 1	a	479	144.2
12:20	6014	55.9	57.2	3.01		4	546.	243.7
13:20	6197	56.7	48.3	2.87	2	*	730.	233.2
14:20	6378	56.1	40.5	1.19		•	759.	238.5
15:20	6437	56.3	38.1	1.68			709.	210.8
16:20	7414	56.1	35.2	0.75	4	4	486.	201.4
17:20	9312	54.7	36.3	0.90	•		244.	149.5
18:20	7618	53.9	36.7	0.90	•	4	151.	84.6
19:20	4725	54.3	<b>A</b>		4	<b>.</b>	4	*****

TIME	THP5	S16	TMP29	SIG	TMP42	SIG	TMP82	SIG
8:20	55.4	0.83	56.6	0.83	58.3	0.83	61.0	0.83
9:20	60.6	1.99	62.3	2.12	63.2	2.04	63.5	1.39
10:20	68.2	2.13	69.9	1.67	70.3	1.30	69.2	1.21
11:20	73.4	0.80	73.2	0.84	72.7	0.73	71.4	0.49
12:20	75.9	1.50	74.9	1.29	74.5	1,17	73.5	4.44
13:20	79.7	1.44	78.3	1.21	77.7	1.21	76.7	4.25
14:20	82.8	1.18	81.3	1.23	80.8	1.12	80.0	1.07
15:20	84.1	1.61	82.7	1.38	82.5	1.53	82.0	4 30
16:20	84.2	1.35	82.7	0.92	82.6	0.90	82.2	0.97
17:20	83.1	1.81	82.4	1.40	82.2	4.34	81 8	4 72 47
18:20	82.4	1.41	81.7	0.96	81.7	0.97	95 A	6 QE
19:20	• .	ä				n a c du	a - 7	

TIME	VA5	SIG	VA26	SIG	•	VA52	SIG	VA102	SIG
8:20	-0.0	0.17	0.1	0.29		1.0	1.22	-0.6	0.50
9:20	0.0	0.85	<b>9.1</b>	1.12		0.1	1.67	-0.5	1.53
10:20	-0.2	1.52	0.5	3.83		0.2	4.59	-9.4	4.99
11:20	0.1	2.32	-1.2	6.39		-0.1	7.15	0.8	8.00
12:20	0.1	2.87	-1.1	6.69		-1.0	7.69	9.4	8.82
13:20	0.1	2.68	-1.3	6.32		-0.8	7.34	0.6	8.55
14:20	-0.2	2.88	1.0	7.10	·	0.2	7.90	2.0	10.11
15:20	-0.3	2.36	1.3	5.80	1.1	-0.7	6.85	0.2	9.08
16:20	0.1	3.04	9.8	6.06		-1.2	7.36	0.0	10.15
17:20	-0.3	2.15	1.6	4.92		-0.1	5.47	1.6	7.34
18:20	-0.3	1.56	1.6	3.98		-0.5	4.01	0.6	4.56
19:20	4		A	a		4	<b>A</b>		4

OCT.18,	1	97	7	SA	LE	<b>JEL</b>
---------	---	----	---	----	----	------------

	TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
317	8:20 9:20 10:20 11:20 12:20 13:20 14:20 15:20 15:20 16:20 18:20 18:20 19:20	259.1 309.4 271.9 194.8 175.6 178.6 145.1 105.2 112.1 114.7 115.7	22.17 21.15 45.89 26.74 27.81 30.64 40.06 30.87 38.76 22.82 17.99	304.3 346.6 273.0 189.2 177.2 177.1 145.4 104.2 113.3 117.6 117.2	25.48 25.74 51.28 22.26 23.03 27.47 36.89 23.47 34.32 22.65 17.40	318.9 325.1 274.8 192.4 176.1 178.0 147.2 108.1 117.2 121.0 117.3	6.70 10.99 50.11 22.35 22.20 26.25 35.17 21.36 31.73 20.18 14.97	336.8 354.9 307.8 180.3 169.3 169.1 144.5 107.2 117.4 119.0 114.0	9.20 8.22 55.45 21.67 18.58 22.62 31.21 18.03 28.51 17.55 14.03
						, <b>A</b>	4	4	

TIME	TREVOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
				•				
8: 5	9205	54.1	99.0	0.38	<b>.</b>	٨	9.	13.7
9:5	7290	54.7	92.7	6.46	<b>.</b>	4	134.	54.0
10:5	5426	55.7	72.8	3.10		a .	273.	72.5
11: 5	5226	56.3	66.4	4.73	. 4	۰ 	495.	121.0
12:5	5899	56.9	57.2	0.81		ана страна Ана страна стран	578.	104.4
13: 5	6186	56.5	49.5	1.95	•	•	717.	84.7
14: 5	6286	56.1	41.3	2.61	<b>A</b>	*	752.	240.9
15: 5	6527	56.2	36.0	0.58	. 4	*	725.	370.8
16: 5	7135	56.3	34.7	1.10		4 .	652.	49.9
17:5	9048	56.0	33.2	0.62	4	Δ.	388.	145.0
18: 5	10163	53.9	35.6	0.69	А	4	185.	72.9
19: 5	7286	53.9	٩	<b>.</b>	 	*	*	***

0	C	T	л	ş	9	;	4	9	7	7	SA	٤	E	V	E	L	
---	---	---	---	---	---	---	---	---	---	---	----	---	---	---	---	---	--

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
8: 5	268.2	12.12	322.4	24.08	310.5	7.45	294.0	14.69
9:5	302.9	26.92	325.1	25.48	312.7	9.91	323.0	10.95
10: 5	278.0	41.37	290.3	50.39	287.1	40.06	288.1	44.72
11: 5	201.3	25.83	199.5	21.01	202.5	21.81	195.4	17.97
12:5	187.4	22.37	188.5	17.43	188.0	18.16	181.2	13.52
13: 5	181.0	25.30	182.1	21.22	182.9	20.74	177.4	16.85
14: 5	158.1	41.26	159.0	35.43	162.9	33.29	157.7	27.73
15: 5	198.2	42.63	195.5	39.54	198.8	38.78	188.7	37.36
16: 5	202.7	29.31	201.8	26.11	205.5	26.84	195.7	27.29
17: 5	155.9	33.60	155.3	30.92	156.6	29.44	150.6	26.06
18: 5	118.4	14.85	120.5	14.96	122.6	13.02	119.7	10.81
19: 5	A	4	A	*		A	•	a

TIME	TMP5	SIG	THP29	SIG	TMP42	SIG	TMP82	SIG
				÷				
8: 5	57.9	0,92	59.6	0.67	62.0	0.52	64.0	0.35
9:5	62.9	2.14	65.8	3.26	67.2	2.97	66.8	2.06
10: 5	70.0	1.45	73.6	0.98	74.3	1.22	72.6	1.14
11: 5	74.1	1.76	74.1	1.25	73.7	1.13	72.3	1.07
12: 5	76.7	0.78	75.9	0.84	75.5	0.79	74.3	0.75
13: 5	80.0	0.96	78.8	0.83	78.1	0.80	77.0	0.76
14: 5	83.5	1.74	82.4	1.84	81.6	2.96	80.5	1.59
15: 5	85.1	0.79	84.3	1.02	83.7	1.11	82.7	1.06
16: 5	86.1	1.10	85.0	1.19	84.3	1.36	83.3	1.31
17: 5	86.2	1.12	84.6	0.86	83.9	0.87	83.4	0.92
18: 5	84.0	0.71	83.1	0.67	82.8	0.67	82.7	0.76
19: 5	4			•	a	٩	4	4

TI	ME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
	×					•			
8:	5	-0.0	0.13	0.1	0.24	1.9	1.12	-0.5	0.54
9:	5	-0.0	0.85	0.6	1.45	1.3	2.34	-0.1	1.92
10:	5	0.0	1.21	0.5	3.52	0.6	4.43	0.5	5.28
11:	5	0.0	2.25	-1.3	5.59	-0.2	6.48	0.0	6.77
12:	5	0.3	2.94	-2.0	5.77	-0.8	7.19	1.0	8.10
13:	5	0.3	3.00	-1.4	6.64	-0.6	7.38	0.4	8.60
14:	5	0.1	2.67	-0.4	6.30	-0.8	7,95	0.3	10.31
15:	5	-0.3	3.03	0.1	6.76	-0.7	8.40	-1.8	9.70
16:	5	-0.3	2.69	-0.5	6.86	0.6	8.10	1.8	8.75
17:	5	-0.1	2.49	-0.0	5.12	-0.6	5.70	-0.4	6.50
18:	5	-0.4	1.59	1.0	3.86	-1.0	3.49	-0.2	3.91
19:	5	4	4	*	<b>.</b>	۵.	د	a	

TIME	HAS	SIG	HA26	SIG	HA52	SIG	HA102	SIG
A: 5	0.1	0.15	1.4	0.65	3.5	0.64	3.9	0.42
9:5	1.2	0.82	2.2	0.65	2.5	0.54	4.9	1.27
10: 5	1.1	0.62	2.0	0.70	1.8	0.70	1.9	0.67
44:5		1.57	4.7	2.09	5.1	2.30	5.5	2.30
49:5	4 4	1.18	6.6	1.59	7.1	1.50	7.8	1.50
13: 5	4,5	1.42	6.6	1.92	7.2	1.82	8.0	1.82
4.a : 5	3.6	1.28	5.0	1,94	5.3	2.04	5.8	2.31
4 K	7 A	1.47	5.0	2.32	5.3	2.38	5.5	2.34
4 A - K	4.3	4 53	5.8	1.90	6.4	1.95	6.7	2.06
47 5	3.4	4.39	5.4	1.80	5.8	2.19	6.3	2.14
19	3.5	0.70	4.2	0.95	4,9	1.25	5.4	1.33
4 C3 · K	· · · · · ·	walw					A	

OCT. 20, 1977 SAN ANTONIO

7.1. <del>3</del> 45	3345°E	SIG	TMP29	\$16	TMP42	SIG	TMP82	SIG
				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				· .
8: 0	64.7	.1	66.0		62.0		66.A	
9:0	66.0	а	66.8	a	67.4		67.0	
10: 0	69.6	a	69.3	.1	69.4	4	69.0	
11: 0	74.3	A	74,4	<b>.</b>	74.0	4	72.5	
\$ 24 ÷ \$	78.2	.1	78.7		78.1		76.6	
13: O	83.2	a	80.3		79.4	a	78.6	
14: Q	83.2	. <b>.</b> .	81.4	<b></b>	38.7		80.1	
15: O	83.3	a	81.7	.4	81.3	а	81.9	
16:0	84.3		82.5	4	82.1	4	8.48	-
17: O-	87.3	4	93.3		82.9		82.7	
18: 0	83.6	.4	82.2		82.9		94.9	
19:0	80.6	4	80.0	<b>4</b>	80.3	•• ••	80.1	a

**x** -

OCT. 20, 1977 SAN ANTONIO

TIME	TREVOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
8: 0	898A		97 L					
9:0	7593	-1	88.9	at A		A		"t
10:0	5646		80.5	4			187.	.3
11: O	4714		66.8	A			481.	
12:0	6066	1	54.5	4	•3		624.	
(3: 0	6370	4	47.0	4		-1	743.	-
14: O	6343	.t	42.1	-1	а	· . 4	675.	
15:0	6648	a	40.4	4	· 4	<b>.</b>	532.	
36: 0	7444	-1	37.5	- 41	4	.3	457.	4
37:0	9892	.1	35.7			۲۰	463.	4
38: 9	10175		37.3		.1	.1	237.	.1
3919	7911	.4	37.8	a	à	4	<u>60.</u>	4

b.

\$

BCT. 20, 1977 SAN ANTONIO

Z

	and the second				· · · · · · · · · · · · · · · · · · ·			
TIME	HAT	216	HA26	SIG	HA52	\$16	HA102	SIG
	· .	• .		· · ·			•	
8: 0	\$.7		\$ . 4	<b>.</b>	$\odot$ , $\Im$	-3	\$ 9	4
9:0	1.3	*	2.4	4	2.6		3.0	.a
10:0	117 117 da a da	.1	2.8	t.	3 7	4	2.7	
11:0	2.4	.4	3,3	.1	3.3	.1	3.5	4
12:0	3.0	4	3.8	4	3.9		£1 £1.	a a
13:0	3.5	.1	5.0		5.4	a	5.8	a
44:0	4.5		6.2		7.3	-4	7.8	
15:0	5.0	.1	7.0	1	8.3	4	9.3	-1
46:0	5.7	.1	7.9	.*	9.5	. A	10.5	.1
17:0	5.5		7.4	ан 1911 <b>А</b>	9.4	.4	10.3	
18: 0	5.6		7.6	A	9,4	-1	10.8	
19:0	5.5		7.3	-	9.4	А	10.9	
		e de la companya de l					· · · · ·	

324

OCT. 20, 1977 SAN ANTONIO

							the second se	
TIME	4445	SIG	WV26	S X G	WV52	216	WV102	218
								۰.
8: 0	285.3				215.0		144.6	4
9:0	118.8	.1	69.5	 	82.0		81.6	.4
10:0	106.5	4	106.1	<b></b>	111.3	••	112.3	
11:0	187.1	.1	175.4	*	192.6		174.3	
12:0	189.0		170.8		188.8		147.8	
13: 0	157.5		151.6		154.0		149.1	4
14: O	135.3	.1	136.6		138.0		136.6	.1
15:0	124.8	3	\$25.5		126.8		126.0	.3
16:0	124.8		\$23.5	.4	124.0		\$22.5	л
17:0	121.8	. Is	\$ 2 \$ . 5	4	122.8		121.5	
18: 0	117.3	đ	\$18.8		118.6	.4	116.5	4
19:0	118.0		115.6		116.3		314.6	.:
· · · · · · · · · · · · · · · · · · ·					and the second			1.4

TIME	TREVOL	SPEED	RH5	SIG	RH82	516	PYRAN	SIG
8:0 9:0 10:0	7076 5590 4597	53.9 54.6 54.6	48.5 42.0 36.4	1.73 1.96 1.21	<b>A</b>	۵ ۵	150. 327. 380.	55.1 87.2 173.7
11 V	4367	55.7	•	<b>,</b> ▲ 	<b>A N</b>	4	*	•
13:0 14:0 15:0	3167 475 4178	54.1 54.5 54.4					, , , , ,	· · 52.3
16:0 17:0 18:0	6551 7605 7646	54.6 53.9 51.9	24.9	0.13 0.13	4. 4.	4 4 4	270. 77. 3.	57.7 47.4 2.1

ւ

NOV. 17,1977 ELP LEVEL

÷

TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
8:0 7:0 10:0	42.3 47.2 55.3	1.68 1.94 1.10	41.4 48.7 54.9	1.38 2.33 1.18	42.7 50.0 55.7	1.27 2.39 1.29	41.1 48.2 53.7	1.23 2.44 1.07
,,, Q	•	•	•		<b>4</b> .	•	•	A
13: 0	<b>A</b>	*	<b>A</b>	• <b>•</b>	<b>A</b>	• • • • • • • • • • • • • • • • • • • •	•	<b>A</b>
14: 0 15: 0	74.0	0.70	71.5	0.69	71.7	0.59	71.3	0.59
16: 0 17: 0	73.6 71.7	0.62	71.6	0.72 0.80	71.9	0.66	71.2 70.4	0.52 0.75
18: 0	*	• • • • • • • •	а. <b>А</b>	<b>A</b>	A	•	<b>A</b>	<b>A</b>

Ğ.

Ċ

TIME	WV5	SIG	WV26	SIG	WV52	SIG	WV102	SIG
								· · ·
8: 0	35.9	21.64	111.7	14.99	306.2	17.42	334.2	25.15
9:0	37.5	28.96	117.5	24.44	312.4	36.05	339.7	40.18
10:0	7.3	39.55	97.6	25.10	292.7	26.87	322.9	29.24
11:0	35.8	33.39	115.2	32.05	297.8	35.15	320.5	36.16
					· · ·			
4 "Z . Z					•			
13: 0	*	▲ 11	1 <b>A</b>	*		4	×	<b>A</b>
14:0			*	4	. <b>▲</b>	• • •		 
15:0	100.0	36.65	291.9	31.24	168.2	24.27	197.9	20.92
16: 0	134.3	31.52	281.9	20.39	155.4	16.31	185.3	14.17
17:0	96.1	37.42	262.2	17.65	135.2	15.56	165.8	13.39
18:0	66.5	39.78	265.4	20.57	143.3	11.56	175.4	7.52
			and the second					

and the second				4. 1				
TIME	VA5	516	VA26	SIG	VA52	SIG	VA102	216
0:0 9:0 10:0 11:0	-0.4 -0.3 -0.5 -0.5	1.00 1.46 1.55 1.38	-4.0 -3.2 -4.4 -3.6	3.24 3.67 4.63 5.06	-2.0 -0.6 -1.6 -2.0	3.41 4.37 5.46 6.92	▲ ▲ ↓ ↓ ↓	
13: 0 14: 0 15: 0 15: 0 16: 0 17: 0 18: 0	0.2 0.5 0.2 -0.4	3.73 3.72 3.36 2.34	-3.3 -4.3 -4.4 -1.1	• 5.93 4.33 3.05	3.7 3.8 2.0 1.4	6.91 6.11 4.54 2.53	* * *	* * *

Ć.

TIME	HA5	SIG	HA26	SIG	HA52	SIG	HA102	<b>S16</b>
- -		•		•			·	
8: 0	2.6	0.76	2.9	0.90	3.0	0.80	3.2	0.80
9:0	2.8	0.78	3.0	1.37	2.9	1.10	2.5	0.82
10:0	2.9	1.03	3.5	1.38	3.6	1.34	3.5	1.32
11:0	*		4		4	A	4	
•						÷ 1		
13: 0	*		ан ал	. •	<b>A</b>	<b>A</b>	4	<b>A</b>
14: 0	۵	•	<b>A</b>	<b>A</b> .	*	*		A _
15: 0	3.9	1.65	7.1	3,13	6.7	2.86	7.9	2.61
16: 0	4.2	1.52	7.9	2.62	7.6	2.91	8.4	2.51
17:0	3.3	0.82	5.8	1.51	5.2	1.61	5.8	1.33
18: 0	2.4	0.74	4.3	1.44	4.0	1.83	5.2	1.58

Ċ,

Ç

TIME	TREVOL	SPEED	RH5	216	RH82	SIG	PYRAN	SIG
<b>a</b> . a	7447	53.4	54.9	3.13	<b>A</b>	۰ ۱۹۹۹ ۲۹۹۹ ۲۹۹۹	134.	56.2
9:0 9:0	6301	53.4	46.0	1.90	*		296.	79.7
10:0	4715	54.0	37.5	1.82	л л	*	587.	152.3
12:0	5888	55.1	107 F & 107 A	а	• • •	<b>.</b>	648.	100.6

TIME	HA5	SIG	HA26	SIG	HA52	SIG	HA102	SIG	
8: Ø	3.4	1.15	2.5	1.08	1.8	0.87	1.7	0.86	
9:0	4.2	1.15	3.4	0.78	3.0	0.76	2.8	0.90	
10:0	4.1	1.57	4.3	2.53	3.9	2.29	4.3	2.97	
11:0	8.9	3.80	14.6	5.63	14.0	5.55	16.1	5.75	
12: 0			<b>A</b>	*	<b>A</b> .	*	*	. 🔺	
,			•						ł
								÷	

### NOV. 18,1977 ELP LEVEL

								and the second
TIME	VAS	SIG	VA26	SIG	VA52	SIG	VA102	SIG
· ·								
						· .		
8: O	-0.4	2.40	-2.8	4.64	-0.6	3.27		<b>.</b>
9:0	-0.3	2.43	-2.3	4.33	-0.0	3.68	▲ 1	<b>A</b>
10:0	-0.4	2.71	-3.1	5.04	0.1	6.22	\$	•
11:0	0.9	5.14	-4.5	8.62	8.5	10.27	*	*
12: 0	<b>A</b> .	*	•	۰.	•	*	· A	4

TIME	405	535	33137.4	535	14115 2	836	1414 97	57 C
		1	¥¥ ¥ 4 1	5 A 6	₩ ∀/	13 J. W	₩V.1 V/2	510
	· · ·							
8:0	· 72.9	28.62	187.7	22.72	72.3	27.30	85.7	17.07
~ 9: O	82.7	21.78	194.7	15.98	72.5	15.35	96.7	14.46
10:0	45.6	51.81	207.3	37.33	85.4	36.99	114.6	35.34
11:0	204.4	23.15	297.3	14.35	169.5	11.40	198.5	9.62
12:0	213.6	14.41	289.5	13.30	162.5	12.30	190.7	10.41

NOV. 18,1977 ELP LEVEL

Ċ.

NOV. 18,1977 ELP LEVEL

			1. A.					•
TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
	• .							
8: 0	45.3	1.90	44.5	1.76	46.5	1.70	44.4	1.59
9:0	51.4	1.88	51.0	2.20	52.7	2.17	50.5	2.07
10: 0	59.8	2.74	60.1	2.43	61.7	2.52	59.4	2.57
11:0	66.3	1.30	64.7	1.41	65.7	1.25	64.7	1.34
12:0	<b>.</b>	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	<b>A</b> .	*	<b>.</b>	• • • • • • • • • • • • • • • • • • •		4

TIME	TREVOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SIG
8: 0	3841	53.8	. <b>.</b>		.4	A		<b>.</b>
9:0	4825	47.6	50.9	1.69	4		304.	56.0
10:0	2952	51.6	46.1	1.38		<b>.</b>	353.	164.4
11: O	4290	52.6	41.7	1.19	<b>.</b>		559.	115.0
12:0	4900	51.0	38.8	0.73			639.	4.8
13:0	5268	52.6	36.5	0.57	A	ана (1997) Алана (1997) <b>А</b>	618.	16.4
14:0	4889	52.8	35.1	0.38			536.	32.0
15:0	4824	52.6	34.0	0.11	.4	.1	401.	60.6
16: 0	6325	52.1	34.2	0.02	ан 19 <b>ж</b>	4	222.	58.7
17:0	7616	52.6	34.6	0.23			61.	36.1
18: 0	7255	50.4	35.6	0.42		-4	3.	1.8

TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
		•	· · ·			· · · ·		
8: 0						.4		•
9:0	47.0	0.57	46.3	0.52	47.5	0.37	46.3	0.37
10:0	48.7	0.79	47.8	0.68	48.8	0.89	47.1	0.66
11: O	51.7	0.93	50.6	0.82	51.8	0.91	49.9	0.95
12:0	54.4	0.86	53.0	0.88	54.0	0.97	52.6	1.00
13:0	56.6	1.19	55.4	1.28	56.7	1.58	55.4	1.76
14:0	58.2	1.01	56.8	0.91	58.1	1.28	57.5	1.46
15:0	58.4	0.65	57.4	0.79	58.4	1.17	57.9	1.34
16: 0	58.5	0.70	57.3	1.01	57.9	0.65	57.2	1.23
17: 0	56.5	1.03	55.6	0.82	56.7	0.77	55.2	0.80
18:0	53.4	0.60	54.1	0.41	54.5	0.43	53.4	0.29

Ċ,

NOV.	29,	1977	ELP	LEVEL

	TIME	WV5	216	WV26	SIG	WV52	SIG	WV102	SIG
	•		•						
	8: 0	a		" ••		А	ан. Ан	a	<b>4</b>
	9:0	29.8	27.62	33.3	13.62	4.5	12.71	3.1	17.21
1.5	10:0	57.9	22.70	61.0	14.91	38.6	29.60	51.0	26.72
33	11:0	58.1	24.44	64.8	17.81	48.3	34.29	56.3	29.09
01	12: 0	54.8	27.48	62.5	22.56	49.4	37.47	52.2	34.41
	13:0	58.1	42.28	68.8	38.65	57.4	48.19	66.6	46.37
	14:0	68.3	49.52	80.7	48.97	74.8	54.07	84.9	50.51
	15: 0	69.4	32.29	78.9	25.24	70.6	39.11	74.4	37.80
	16: 0	157.7	42.11	176.5	31.07	189.9	30.19	189.7	27.94
	17:0	173.0	45.21	194.2	29.69	204.0	25.48	202.8	23.73
	18: 0	228.1	36.15	221.2	20.31	229.7	13.65	232.8	11.77

•

TIME	HAS	SIG	HA26	SIG	HA52	SIG	HA102	SIG
							1	
8:0	•		4		a			
9:0	5.6	1.66	8.1	2.11	8.6	1.99	9.1	1.85
10:0	5.8	1.48	7.8	1.96	7.7	1.59	8.1	1.47
11:0	5.5	1.65	7.1	2.28	7.1	2.09	7.4	2.11
12:0	5.6	1.85	6.9	2.60	7.3	2.50	7.4	2.53
13:0	4.4	1.97	4.7	2.65	4.6	2.66	5.4	2.59
14:0	4,3	1,99	4,4	2.58	4.8	2.66	5.0	2.74
15:0	4.4	1.55	4.8	2.22	4.9	2.02	4.8	1.91
16: 0	3.8	1.33	5.2	1.96	4.8	2.18	4.6	1.85
17:0	3.4	1.00	4.8	2.13	3.6	1.53	3.9	1.63
18: 0	2.5	0.84	5.1	1.57	4.9	1.70	5.1	1.28

ç.

 $\zeta_{n}^{(i)}$ 

5

-

Hart .

TIME	VA5	SIG	VA26	S16	VA52	SIG	VA102	SIG
							· ·	
8:0	4		a ¹	a 1	a	۰. ۲۰	•1 ,	
9:0			-2.3	7.20	-1.5	8.11		
10:0			0.7	6.26	-5.0	6.23	•	
11:0			-0.1	6.14	-3.5	6.76	<b>.</b>	
12:0			-0.8	6.39	-3.6	7.17	а. А.	
13: 0			-2.0	6.30	-2.3	7,62	.4	
14: 0			-4.7	6.79	-2.8	9.24	4	
15:0			-2.0	5.82	-2.0	7.11	.1	•
14: 0		•	-4.9	4.84	-0.1	6.13		аны <b>.</b>
17:0		•	-4.8	4.48	1.2	4.57	: <b>.</b>	
18:0	•	•	-0.4	4.48	3.7	4.47		-4

 $\mathcal{O}_{1}$ 

NOV. 29,1977 ELP LEVEL

TIME	TREVOL	SPEED	RH5	SIG	RH82	SIG	PYRAN	SI6
				• • • • • • • •		· · ·		
7: 0	1852	52.7	. <b>a</b> .	.4				
8:0	6950	55.5					115.	63.3
9:0	6802	60.8	46.5	1.69			317.	53.0
10:0	5105	59.6	41.3	0.62			333.	184.6
11: O	5028	59.4	39.1	0.68	. 4		564.	119.9
12:0	5804	58.6	36.8	0.56			645.	11.1
13: 0	5906	58.8	34.3	0.98		<b>.</b>	628.	12.0
14:0	5935	59.2	31.3	0.62	4	<b>.</b>	550.	32.8
15:0	2273	58.2		4		а	•	- <b>-</b>
16: 0	3353	57.0		a				
17:0	8248	51.8	28.5	0.08	.1		53.	43.1
18:0	7658	50.5	28.8	0.18	4		3.	2.7
							1	

### NOV. 30,1977 ELF LEVEL

£.

TIME	TMP5	SIG	TMP29	SIG	TMP42	SIG	TMP82	SIG
•							• • •	•
7:0	- -		<b></b> (		a	<b>.</b>	*	.4
8:0 9:0 10:0 11:0 12:0 13:0	46.1 50.6 52.9 55.4 59.4	2.36 0.81 0.76 0.84 1.70	45.4 49.3 51.1 52.8 57.3	2.28 0.88 0.67 0.72 2.04	46.9 50.1 51.8 53.9 58.1	2.16 1.00 0.77 0.72 1.84 0.81	45.9 49.3 50.9 52.9 57.4 62.0	2.26 0.96 0.75 0.68 1.82 0.90
14:0 15:0 16:0 17:0 18:0	63.7 62.1 56.4	0.75 1.88 0.96	61.9 58.4	0.73 1.37 0.78	62.5 58.8	1.15	62.0 58.5	1.23 0.71

339

 $\leq 1.$ 

TIME	WV5	516	WV26	SIG	WV52	SIG	WV102	SIG
			in an An Anna Anna An Anna Anna Anna Anna					
7:0 9:0 9:0 10:0 11:0 12:0 13:0 14:0	158.2 193.3 226.7 235.5 230.8 239.0 294.7	25.64 36.96 17.77 14.86 16.76 43.34 46.38	166.9 200.1 223.0 231.6 227.2 249.4 330.4	17.92 35.12 14.45 15.22 12.75 44.18 38.74	174.9 213.6 232.4 239.2 234.6 254.3 303.0	17.93 28.60 12.63 10.78 10.39 32.64 25.25	182.7 223.2 238.0 241.9 236.4 255.7 301.5	20.48 26.77 11.68 9.27 8.73 26.99 22.20
15:0 16:0 17:0 18:0	348.0 347.3	37.68	4.3	16.72 10.56	332.4 333.4	17.32 7.87	331.9 333.0	15.91 6.46

0

: À

6

्र

TIME	HA5	SIG	HA26	SIG	HA52	SIG	HA102	SIG
7: 0								
8: 0		. <b>4</b>	<b>A</b>	.4				•
9:0	5.6	1.88	10.5	3.94	9.9	3.69	9.7	3.20
10:0	7.4	1.89	13.8	2.94	13.5	3.34	13.5	2.33
11: O	8.8	2.77	14.3	3.66	13.3	3.07	15.3	3.66
12:0	6.7	1.77	11.5	2.48	11.0	3,08	11.2	2.22
13: 0	4.5	1.98	7.1	3.29	7.3	3.49	8.0	3.58
14:0	4.8	2.21	8.0	4.00	10.7	5.02	10.4	4,94
15:0		*					.4	
16: 0	.4	4	4			44 - 14 <b>4</b> - 14		-
17:0	3.4	1.14	6.9	2.16	8.1	2.18	8.4	2.24
18: 0	2.2	0.79	5.8	1.37	7.5	1.35	8.6	1.20

C

NOV. 30,1977 ELP LEVEL

TIME	VA5	SIG	VA26	SIG	VA52	SIG	VA102	SIG
•		and a second s						
7:0	*				ан алан алан алан алан алан алан алан а			•
8: 0	1.4	4.75	-4.6	6.37	0.3	7.84		.4
9:0	1.5	5.35	-4.0	6.21	3.4	7.42	a	
10: O	0.9	4.99	-3.9	7.09	6.8	8.17	<u>م</u>	
11:0		4.65	-4.0	7.62	8.1	8.36	a	
12:0	-0.2	3.97	-4.4	6.79	5.3	7.68		and the second second
13: 0	-0.6	3.63	-3.7	7.27	2.8	10.75		4
14:0	-2.2	4.81	-3.0	9.71	1.3	10.60		1
15:0	4		-1	-4			<b>.</b> .	4
16: 0	a			•1	and a second second			
17:0	-1.5	2.96	-5.0	5.63	-0.9	6.00		.1
18: 0	-1.3	1.74	-1.3	3.11	-1.2	3.67	4	•

 $\hat{\}$ 

. È

ŧ

¥

ŀ

Ô

APPENDIX C

 $\mathcal{Q}$ 

#### Appendix C

#### Sample Calculations

The particulate data are presented in Appendix B, in terms of average concentration over the sampling period. To arrive at the particulate concentrations, it is necessary to know the flow rate of air passing through the filter, the run duration, the active filter area, and the initial and final filter weights. To determine the total suspended particulate (TSP) concentrations, the initial filter weight is subtracted from the final filter weight to obtain the TSP loading per filter. The TACB elemental analyses reported the data in loading per filter. However, the UCD elemental analyses were expressed in loading per area which were first converted to loading per filter.

 $D_{i}$ 

Æ

An example case is solved here to show the procedure used to convert filter loadings to concentrations. For this example, data was chosen from October 20, 1977 in San Antonio at Loop 410 at Military Highway. Data from the SFU unit at Station 1, located approximately 150 feet south of the roadway are used for this example. The following data were obtained:

				Calcium Loading			
Pore Size	Filter Number	Initial Weight (µg)	Final Weight (µg)	TACB Analysis (µg/filter)	UCD Analysis (ng/cm ² )		
8.0 µm	194	15307	15719	89.57	2970		
0.4 µm	165	15935	16220	6.38	237		

The SFU unit at station 1 was run at a flow rate of 22.5 1/min for 10.5 hours. The total particulate loadings necessary to determine the TSP concentrations are found by the following equation Total loading = Final filter weight - Initial filter weight.

Use of this equation yields a 412  $\mu$ g/filter loading for the 8.0  $\mu$ m filter and a 285  $\mu$ g/filter loading for the 0.4  $\mu$ m filter. Filter loadings expressed in mass per area may be converted to loadings in mass per filter by the following:

#### Filter loading = Mass loading x Active filter area.

Applying the above equation along with a conversion factor, the calcium loading from the UCD analysis for the 8.0 µm filter is

Ca loading =  $\frac{2970 \text{ ng}}{\text{cm}^2}$   $\frac{14.4 \text{ cm}^2}{\text{filter}}$   $\frac{1 \mu \text{g}}{1000 \text{ ng}}$ 

উ

23

Ċ,

where the active area of the SFU filter is 14.4 cm². The Ca loading for the 0.4  $\mu$ m filter is calculated to be 3.41  $\mu$ g/filter using the above equation.

From the filter loadings expressed in mass per filter, the average sampling concentration is calculated from the following:

Average Concentration = (filter loading ÷ flow rate) ÷ run duration.

The TSP concentration from the 8.0  $\mu$ m filter is found below using the above equation and conversion factors to make the units consistent. The TSP concentration from the 8.0  $\mu$ m filter is therefore

> TSP concentration =  $\frac{412 \ \mu g}{\text{filter}} \frac{\text{min}}{22.51} \frac{10001}{1 \ \text{m}^3} \frac{\text{filter}}{10.5 \ \text{hrs}} \frac{\text{hr}}{60 \ \text{min}}$ = 29.1  $\frac{\mu g}{m^3}$

Application of the equation for average concentration yields

	Filter Loadi	ng (µg/filt	Average Concentration $(\mu g/m^3)$			
Pore Size	Total Particulate	Ca (TACB)	Ca (UCD)	TSP	Ca (TACB)	Ca (UCD)
8.0	412	89.57	42.8	29.1	6.3	3.0
0.4	285	6.38	3.41	20.1	0.4	0.2

This same procedure was followed to convert the filter loadings to average particulate concentrations for the hivol and Lundgren afterfilters, using the applicable flow rate, run duration, and active filter area.

Ð

 $\dot{\hat{o}}$ 

C.

 $\sum_{i=1}^{n}$ 

11. M

### APPENDIX D

3

23

C

ĊĴ.

#### APPENDIX D

New York Total Suspended Particulate Data

This appendix presents the data taken by the New York Division of Air Resources under contract DOT-FH-11-9245. The total particulate weights on the hivol filters used in that project were reduced to units of  $\mu g/m^3$ . Since the hivols were not under flow control, the flow rates used in making these calculations were calculated from the visi-float readings taken at the beginning and end of each run. Each visi-float-hivol combination had been calibrated twice while the data was being taken. Each visi-float reading was converted into a flow rate in cfm using the averaged calibration curve of the particular visi-float--hivol combination given for that filter. Filter loading was assumed to have taken place linearly, as was the decrease in flow rate during the run. The average flow rate was then calculated by simply averaging the start and shutdown flow rates. Where no visi-float reading had been given for a particular hivol, an average flow rate of 65.0 cfm (1.8 m/min) was assumed. Where the length of the run had not been given, the average run length during that sampling period was given. If no start time was given the start time is reported as 0.

D

B

The particulate data, presented in this appendix, along with the meteorological and traffic data from the New York site are available on magnetic tape from NTIS. The New York site description and other additional information are available from the New York Division of Air Resources.
ù

P

C

17

DATE		24 77				
STATION	1	2	3	4	5	4
START TIME	10.0	10.0	10.0	10.0	10.0	10.0
HRS. RUN	24.1	24.1	24.3	7.2	7.7	7.4
FLOW RATE (M**3/MIN)	1.9	1.9	1.9	2.0	2.1	2.1
TSP(UG/M**3)	25.9	37.0	57.8	133.6	81.1	55.7
						N
DATE=	2	27 77				
STATION	1	2	3	4	5	6
START TIME	15.0	15.0	15.0	15.0	15.0	15.0
HRS. RUN	2472	24.0	24,3	24.1	24.8	24.2
FLOW RATE(M**3/MIN)	2.0	1.8	1.8	1.8	2.0	2.0
TSP(UG/M**3)	23.1	32.6	56.8	64.9	33.9	26.2
	· .					
DATE=	2	28 77				
STATION	3	2	3	4	5	6
START TIME	16.0	16.0	16.0	16.0	16.0	16.0
HRS. RUN	24.1	24.3	24.1	24.0	24.0	24.0
FLOW RAIE(M**3/MIN)	7.4	3.8	3.8	3.7	2.0	2.0
TSP(UG/M**3)	49.5	77.3	110.8	109.4	68.9	58.7
<b>NATE</b>		4 777				
57575 575770N		· • • • •		٨	5	L .
START TIME	14.0	14.0	14.0	14.0	14.13	14.0
HRS. RUN	24.0	24.0	24.9	24.0	24.1	24.1
FLOW RATE (M**3/MIN)	1.9	1.8	1.8	1.9	2.1	1.8
TSP(UG/M**3)	28.3	36.7	59.3	232.1	54.9	49.1
				-		
DATE =	3	2 77				
STATION	1	2	3	4	5	6
START TIME	16.0	16.0	16.0	14.0	16.0	16.0
HRS. RUN	24.3	24.1	24.8	24.2	24.1	15.7
FLOW RATE(M**3/MIN)	1.8	1.7	· 17.	1.8	2.0	1.5
TSP(UG/M**3)	85.7	108.5	191.6	119.4	85.3	157.2
	i u tra de la composición de la composi La composición de la c					
DATE	. 3	3 77	****	<b>.</b>		
STATION	3	e. 	3		2	۵
SIARI IIME	37.0	77.0	3 1 4 13	30.0	31.0	11.0
MAL RUN TO DI DATE (MARTINE	33.37	33.37		7.9	7.4	7.0
TEBU KAIE(D**0/D10) TEB/()C/MEETS	3, 27,	1.00 m	3.7	3.7	2 x 4 mm m	3.5
135 (00) ((**3)	09.0	100.2	141.13	101-0	72.0	33222
DATE=	3	7 77		•		
STATION	1	2	73	4	. <b>15</b>	A
START TIME	17.0	17.0	17.0	17.0	17.0	17.0
HRS. RUN	18.8	18.8	18.3	18.4	18.4	18.0
FLOW RATE(M**3/MIN)	1.9	1.8	1.9	2.1	2.1	1.7
TSP(UG/M**3)	25.1	29.2	40.3	88.7	47.5	78.7
		•			• • • • •	· · · · ·
DATE=		8 77	•			
STATION	1	2	3	-4	5	6
STATION START TIME	11.0	2	3 11.0	4 11.0	5 11.0	6 11.0
STATION START TIME HRS. RUN	1 11.0 23.0	2 11.0 23.0	3 11.0 23.0	4 11.0 23.5	5 11.0 23.5	6 11.0 23.5
STATION START TIME HRS. RUN FLOW RATE(M**3/MIN)	1 11.0 23.0 1.8	2 11.0 23.0 1.8	3 11.0 23.0 1.9	4 11.0 23.5 2.1	5 11.0 23.5 2.1	6 11.0 23.5 1.8

- Voine

	.3	9 77					
STATION	1	2	3	4	5	6	
START TIME	11.0	11.0	11.0	11.0	11.0	11.0	
HRS. RUN	23.5	23.5	23.5	23.5	23.5	22.7	
FLOW RATE (M**3/MIN)	1.7	1.7	1.9	2.0	2.1	2.0	•
TSP(1)6/M**3)	70.4	92.6	146.6	56.0	50.5	53.1	
	• ,• • •						;
DATE	3	10 77.	· · · · ·	· · ·			
NOITATZ	1	2	3	.4	5	6	
START TIME	11.0	11.0	11.0	11.0	11.0	11.0	
HRS. RUN	13.0	13.6	13.6	24.4	24.4	24.4	
FINW RATE (MEE3/MIN)	1.7	1.7	1.8	2.0	2.1	1.9	
TSP(HG/M*#3)	80.0	100.4	145.7	-84.7	66.0	78.7	•
DATE=	3	13 77					
STATION	1	2	3	4	5	6	
START TIME	11.0	11.0	11.0	11.0	11.0	11.0	
HRS. RUN	24.6	24.3	23.9	24.1	24.0	24.1	
FLOW RATE(M**3/MIN)	1.9	1.8	1.9	2.0	2.1	1.9	
TSP(UG/M**3)	21.6	25.9	40.9	42.7	27.3	32.1	
							. •
DATE	3	14 77			-	·	
STATION	1	2	3	. 4	5	<b>5</b>	
START TIME	0.0	0.0	17.0	0.0	0.0	0.9	
HRS. RUN	23.6	23.6	26.9	23.6	23.5	23.3	
FLOW RATE (M**3/MIN)	1 ዓ. ዎ	1.9	2.1	1.9	2.2	2.0	
TSP(UG/M**3)	16.7	17.8	18.5	70.6	31.4	29.2	
• • • • • • • •							
DATE=	3	15 77					
STATION	1	2	3	-4	5	6	
START TIME	17.0	17.0	17.0	17.0	17.0	17.0	
HRS. RUN	1.2	1.2	1.2	23.6	23.7	23.8	
FLOW RATE (M**3/MIN)	1.9	1.9	2.0	2.1	2.2	2.0	
TSP(UG/M**3)	458.2	670 A	A 125 A 111 J	<u><u> </u></u>	""ZA /\	ልግ ላ	
		02014	3019-0	النبو به الناوي.	34.0	-7 da A 1	
	· · · · ·	1021107 - M	1010.0		34.0	-7 din A	
DATE=	3	16 77	1010.0	<del>ن</del> ي م 199	34.0	72	2
DATE= STATION	3	16 77	323828	4		5	4
DATE= STATION START TIME	3 17.0	16 77 2 17.0	3	4	5 17.0	5 17.0	-
DATE= STATION START TIME HRS. RUN	3 17.0 17.7	16 77 2 17.0 17.7	3 17.0 17.7	4 17.0 24.2	5 17.0 24.2	6 17.0 24.2	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN)	3 17.0 17.7 2.0	16 77 2 17.0 17.7 1.9	3 17.0 17.7 2.0	4 17.0 24.2 2.1	5 17.0 24.2 2.2	6 17.0 24.2 2.0	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3)	3 17.0 17.7 2.0 15.5	16 77 2 17.0 17.7 1.9 21.5	3 17.0 17.7 2.0 25.8	4 17.0 24.2 2.1 60.9	5 17.0 24.2 2.2 34.4	5 17.0 24.2 2.0 31.4	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3)	3 17.0 17.7 2.0 15.5	16 77 2 17.0 17.7 1.9 21.5	3 17.0 17.7 2.0 25.8	4 17.0 24.2 2.1 60.9	5 17.0 24.2 2.2 34.4	6 17.0 24.2 2.0 31.4	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE=	3 17.0 17.7 2.0 15.5 3	16 77 2 17.0 17.7 1.9 21.5	3 17.0 17.7 2.0 25.8	4 17.0 24.2 2.1 50.9	5 17.0 24.2 2.2 34.4	5 17.0 24.2 2.0 31.4	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION	3 17.0 17.7 2.0 15.5 3	16 77 2 17.0 17.7 1.9 21.5 17 77 2	3 17.0 17.7 2.9 25.8	4 17.0 24.2 2.1 50.7	5 17.0 24.2 2.2 34.4	6 17.0 24.2 2.0 31.4 6	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION START TIME	3 17.0 17.7 2.0 15.5 3 15.5	16 77 2 17.0 17.7 1.9 21.5 17 77 2 17.0	3 17.0 17.7 2.0 25.8 3 17.0	4 17.0 24.2 2.1 60.9 4 17.0	5 17.0 24.2 2.2 34.4 5 17.0	6 17.0 24.2 2.0 31.4 6 17.0	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION START TIME HRS. RUN	3 17.0 17.7 2.0 15.5 3 15.5 3 15.5	16 77 2 17.0 17.7 1.9 21.5 17 77 2 17.0 16.5	3 17.0 17.7 2.0 25.8 3 17.0 16.5	4 17:0 24.2 2.1 60.7 4 17.0 16.6	5 17.0 24.2 2.2 34.4 5 17.0 16.6	5 17.0 24.2 2.0 31.4 5 17.0 15.6	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN)	3 17.0 17.7 2.0 15.5 3 15.5 3 17.0 16.6 1.7	16 77 2 17.0 17.7 1.9 21.5 17 77 2 17.0 16.5 1.8	3 17.0 17.7 2.0 25.8 3 17.0 16.5 1.9	4 17:0 24.2 2.1 60.9 4 17.0 16.6 2.0	5 17.0 24.2 2.2 34.4 5 17.0 16.6 2.2	5 17.0 24.2 2.0 31.4 5 17.0 15.6 2.1	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3)	3 17.0 17.7 2.0 15.5 3 15.5 3 1 17.0 16.6 1.7 28.5	16 77 2 17.0 17.7 1.9 21.5 17 77 2 17.0 16.5 1.8 36.2	3 17.0 17.7 2.0 25.8 3 17.0 16.5 1.9 47.9	4 17.0 24.2 2.1 50.7 4 17.0 15.5 2.0 54.3	5 17.0 24.2 2.2 34.4 5 17.0 16.6 2.2 33.6	6 17.0 24.2 2.0 31.4 6 17.0 16.6 2.1 30.8	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3)	3 17.0 17.7 2.0 15.5 3 15.5 3 17.0 16.6 1.7 28.5	16 77 2 17.0 17.7 1.9 21.5 17 77 2 17.0 16.5 1.8 36.2	3 17.0 17.7 2.0 25.8 3 17.0 16.6 1.9 47.9	4 17.0 24.2 2.1 60.7 4 17.0 16.6 2.0 64.3	5 17.0 24.2 2.2 34.4 5 17.0 16.6 2.2 33.6	6 17.0 24.2 2.0 31.4 6 17.0 16.6 2.1 30.8	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION	3 17.0 17.7 2.0 15.5 3 17.0 16.6 1.7 28.5 3	16 77 2 17.0 17.7 1.9 21.5 17 77 2 17.0 16.5 1.8 36.2 20 77	3 17.0 17.7 2.0 25.8 3 17.0 16.6 1.9 47.9	4 17.0 24.2 2.1 50.7 4 17.0 16.5 2.0 54.3	5 17.0 24.2 2.2 34.4 5 17.0 16.6 2.2 33.6	6 17.0 24.2 2.0 31.4 6 17.0 16.6 2.1 30.8	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION START TIME	3 17.0 17.7 2.0 15.5 3 15.5 3 15.6 1.7 28.5 3 ,1	16 77 2 17.0 17.7 1.9 21.5 17 77 2 17.0 16.5 1.8 36.2 20 77 2	3 17.0 17.7 2.0 25.8 3 17.0 16.5 1.9 47.9	4 17:0 24.2 2.1 60.7 4 17.0 16.6 2.0 64.3	5 17.0 24.2 2.2 34.4 5 17.0 16.6 2.2 33.6	5 17.0 24.2 2.0 31.4 5 17.0 15.5 2.1 30.8	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION START TIME HRS. RUN	3 17.0 17.7 2.0 15.5 3 15.5 3 15.5 3 15.5 3 15.5 3 15.5 3 11.0 23.3	$ \begin{array}{c}         16 & 77 \\         2 \\         17.0 \\         17.7 \\         1.9 \\         21.5 \\         17 & 77 \\         21.5 \\         17.0 \\         16.5 \\         1.8 \\         36.2 \\         20 & 77 \\         2 \\         11.0 \\         25.5 \\     \end{array} $	3 17.0 17.7 2.0 25.8 3 17.0 16.5 1.9 47.9 3 11.0 24.0	4 17:0 24.2 2.1 60.7 4 17.0 16.6 2.0 64.3 4 11.0 24.7	54.0 5 17.0 24.2 2.2 34.4 5 17.0 16.6 2.2 33.6 5 11.0 24.0	5 17.0 24.2 2.0 31.4 5 17.0 15.6 2.1 30.8 6 11.0 24.0	
DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN) TSP(UG/M**3) DATE= STATION START TIME HRS. RUN FLOW RATE(M**3/MIN)	3 17.0 17.7 2.0 15.5 3 15.5 3 15.6 1.7 28.5 3 11.0 23.3 1.9	16 77 2 17.0 17.7 1.9 21.5 17 77 2 17.0 16.5 1.8 36.2 20 77 2 11.0 25.5 2.0	3 17.0 17.7 2.0 25.8 3 17.0 16.5 1.9 47.9 3 11.0 24.0 1.9	4 17.0 24.2 2.1 50.7 4 17.0 16.6 2.0 64.8 4 11.0 24.2 2.0	5 17.0 24.2 2.2 34.4 5 17.0 16.6 2.2 33.6 5 11.0 24.0 2.1	5 17.0 24.2 2.0 31.4 5 17.0 15.6 2.1 30.8 6 11.0 24.0 2.1	

D.

6

Ç

ڤ

3

Û

DATE	7	21 77				
STATION	. 1	2	3	4	<b>×</b>	
START TIME	15.0	15.0	15.0	15.0	15.0	45 0
HRS. RUN	4.2	4.2	4.2	23.4	23.1	77.4
FLOW RATE(M**3/MIN)	1.7	1.9	2.0	20	1 5	
TSP(UG/M**3)	70.0	67.3	120.0	47.9	710 A	72 77 72
			· · · · · · · · · · · · · · · · · · ·	··· 7 63 A 100	37.7	ធាតែលើ
DATE=		27 77				
STATION			~~		15	
START TIME	9 A.	ີ່ຈົດ				
HRS. RUN	94.0	7.4.57	7.497	7 - 52	7,432	7.0
FI BU PATE (MEET /MTN)			20-0 10-0	20.3	20.4	25.5
TCP/IIC/MAAXA	. 7 4 F	2.V	7.7	2.0	2.1	2.0
151 (00/11660)	<b>**</b> ******	-3-9 a s	49-19-1-3	10.1	40.0	35.8
DATE		<u>м</u> , д у у			· · · · · ·	
<u>улус</u> Гтаттом	£., A				· · · · ·	
STADT TTME	<b>— — —</b>		ن. س	-4	5	6
	7.0	7.0	7.0	9.0	9.0	9.0
FIGH BATE (NEET (MTN)	39.8	34.8	14.8	24.4	24.4	24.4
7 CD ( ) C / Max 27 \	1.433	2 A 3	3.7	3.7	2.1	2.1
101 100/11==0/		alal a 🗘	28.0	160.9	36.3	31.1
DATE		,		•		
STATION		£\$ \$\$				
	3	<i>c.</i>	5	4	5	6
	0.0	0.0	0.0	11.0	11.0	11.0
	33.0	11.0	11.0	11.3	12.1	11.8
FLUW RAIE(N**3/MIN)	1.8	1.8	1.8	2.0	2.1	2.1
13P(U6/M**3)	39.5	47.7	44.5	26.7	27.3	32.1
<b>NATE-</b>	· .	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
57775 5777705	ය 	27 11			and the second	
CTADT TIME	7	<u>.</u>		4	5	6
		5.0	7.0	7.0	7.0	7.0
	35-2	30.0	15.9	12.9	23.1	23.2
TCD# NHIEINTTO/NIN/		2	2.0	5.0	2.0	2.0
[3  (UU)]]###37	1923	11.0	134.5	90.3	65.2	68.2
5ATE-		1111 ()		· · · · ·		
STATION		30 77		•	· ·	
START TIME	477		3	4	5	6
	3 at a 19	72.0	72.0	8.0	8.0	8.0
FIBL PATE/MEET/MEN	1 A CO		1.4	20.5	20.5	20.6
TCB/HG/MARTY	7.4.13		2.V	S . S	2 . J	2.0
121 100/114 40/	87.43	17.3	10278	49.9	43.3	44.9
DATE		~ ~~~				
2773 3 L	ۍ ۲	49 <i>3</i> 3		· · · · ·		
6.77 A 17 17 17 17 17 17 17 17 17 17 17 17 17	3		3	-4	5	4
A FRA I SAFIE.	8.0	8.0	8.0	8.0	8.0	8.0
FIGH BATE (Mayor (Mas))	24.3	24.9	23.9	22.4	22.3	22.1
TEDW SHIELDSSJJJN)	3	2.0	3.9	2.0	2.1	2.0
F&F (UU/PRR02	53.0	33.9	47.5	61.0	42.9	69.0
DATE-						
<i>ып)</i> Е Статтом	4	1 77				
STORT TIME	) m n	4	3	4	5	5
877937777777777777777777777777777777777	0.0 "Dor D	8.0 3	8.0	8.0	8.0	8.0
FINIST PASTER MARKET PATER	43.7	24.0	23.9	23.2	23.7	23.7
・ ニーンマーンマーン EL S F F で で ロア F3 3 F F	10	ali a 3	1.8	2.2	2.1	2.2
፣ እና ነውው? ነም ላይ?	リアルビ	7 5 4 3	3.1	37.3	32.3	24.6

DATE =	4	4 77	•				5
STATION	1	2	3	.4	5	6	Y
START TIME	41.0	11.0	11.0	11.0	11.0	11.0	1
	24.0	24.1	24.2	25.9	26.6	25.5	
	3. 7	2.0	1.8	1.9	2.1	2.0	a
- J* LL 1944 - FS F4 F LL S F1 F F F F F F F F F F F F F F F F F	3°a.r 4,6⊒ °20	49.4	34.9	30.8	18.4	12.4	· · · <b>\</b>
127 (00/11##3/	5 J J 4	*) 12 4 1	<b>G 7</b> 3 7		a ter et ter		
5A75-	Δ	5 77		. • •		· .	
DHIL- Station	4			4	5	6	
STADT TIME	0.0	0.0	0.0	0.0	0.0	0.0	
130 C 101391	23.0	23.0	23.1	23.3	23.3	23.3	
TI THE PATE (MEEX/MIN)	4 7	1.9	1.8	2.0	2.1	2.1	
TCDW (1102/14/2/2/2)	29.0	0.0	67.1	43.9	27.7	23.6	
1253002116802	<i></i>	10° A 10°					
DATE	4	6 77					
STATION	4	2	3	4	5	5	
STADT TIME	0.0	0.0	0.0	0.0	0.0	0.0	
	23.7	23.8	23.8	23.8	7.3	23.8	
1915 A 91011 11 11 12 A 12 C 74 A 4 A 7 A 7 A 7 A 7	4 59	4.9	1.9	2.0	7.0	2.0	
デLLUM - 55MFFにも13%を応えりませる。 アロロノロロノAAAAAマン	70 5	0.0	49 7	23.3	112.9	10.8	
137 (00/3883)	કાર્ય્ય કે સંકેટરાજ	~.~		Ann 111" at 180"	· · · · · · ·		
DATE-	4	7 77					
1/H / C 197 ATTON	4			4	15	4	L)
25 3 FT 3 25 C314		5 6	2.5	2 0	້າ້າ	້າ້ວ	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	49 7	24 4	49.4	
HRS. KUN	1 (7 a +1) A (3)	 		, e., i 	2.0	4.9	
テレジャーメリーにくりゃかのとりよりとしていた。	177 A	45.7	0.0	51.7	34.9	37.4	B
ISF (UD/HEES)	F 164 F 14 "7	3			. terter a r		
DATE=	.4	10 77	'	* • •			•
STATION	1	2	3	4	5	5	
START TIME	9.0	9.0	9.0	9.0	9.0	9.0	
	74.1	25.8	24.1	17.6	23.2	19.3	
ELOB ESTERMERT/MTN)	2.0	2.0	1.9	2.1	1.9	1.5	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	34 3	39.5	68.1	73.4	52.3	70.2	
137 (00/1)880/	, 10°7 a 10°	44° 6° 64 446°	111° 222° 24				·.
DATE=	.4	11 77					
STATION	1	2	3	4	5	6	
CTADT TIME	10.0	10.0	10.0	10.0	10.0	10.0	
a): 5 75575 5 5 3.1.334 5 3 174 6% 1725 5 3.3	2.4.5	24 7	24.5	15.7	24.5	15.4	•
		4 43	4 0	2.0	2 3	3.9	
	1.13 400 77	7 4 7 "7 6: 63	F 7 A A "Z "7	77 0	6 4 A	47 4	
TSP(UG/m**3)	0.4 . 3	10.7	ያ የ ጨካላ የ 	S di a SI	0110	SPACE S	
und a star per	^	x					
		5 at. 5 5		Λ.	**	4	
5141107	40.0	40.0	40 0	40 0	10 0	40.0	
START TIME	10.0	30.0 77 F	10.0	10.0	1010 1111		
HKS. KUN	చిత్త 🖓 శిత్	4 D 4 D	1010 10	12 J A	2010 7 4	2012 A 20	
FLUW RAIE(N**O/DIN/)	4 50 5	00 7	1.0 178 8	ALL 7	4 4 CD 45	447 8	
13231332755532	الان ² به البيد الي 3	71243	لسد استاد ک	የውወኔ የ	3 8 7 a w	102.0	· · ·
n A TE-	Λ	4 "% Å					p
ショイン CTATION	4	າພູ ບ ຫ	7	Δ	ж;	٨	λ.,
2-1991.5.53N 577.557	400	4 10 10	്ടുക്ക	10 0	10 0	10 0	
as a page of the state of the s	1 V 4 V	7 V 4 V 12 A 14	ን ማል ማ	ν.ν. "Δ"	70.V 70.7	ንወፈህ ግል ግ	
ያንያና ውጤት የአለያያዋ የግብ ከነበሩ የህል ጥድግሪ እና አለምም ሪ እና ግን እን	4 7	4. 17 a	4 0	ata 17 a til A, 117 :	201-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	2071) 13 (13	i -
FLUM RAIESDERDERDERDE	1 x f 000 00	5.0 07 F	1.0	ት እና ይ እ. ማርጉ - አ	8.5V 07 A	2 2 2 V 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
主义医专行的复数形式	1342 a al	7.3.2	フェウェン	1.4.1.4.4	07.V	383333	

3

3

Ċ

Ö

NATE-			1		1	
1775 4 Salimi (Shiri Ang at (Shi)	•	14 11	•••9			
23 1 193 1 1 1 3 19 20 m A minu - m m A Am	1	<u>.</u>	3	4		
	10.0	10.0	10.0	10.0	10.0	30.0
HRS. RUN	24.6	24.6	24.5	24.4	24.5	24.5
FLOW RATE(M**3/MIN)	1.7	1.8	1.9	1.7	2.0	2.1
TSP(UG/M**3)	32.1	33.9	48.6	90.5	51.1	17.8
					- T	
DATE=	.4	15 77	•	• •		
STATION	1	2	3	4	5	6
START TIME	2.0	2.0	2.0	2.0	2.0	2.0
HRS. RUN	23.9	23.6	24.1	23.7	24.4	24.8
FLOW RATE (M**3/MIN)	1.8	1.9	1.9	1.9	2.0	2.0
TSP(UG/M**3)	47.1	59.4	82.5	87.7	61.7	53.8
DATE=	Δ	17 77				
STATION	4			٨	***	
5777110H 57707 TIME				44 0		
25 5 8 8 5 7 5 7 5 7 5 7 5 1 5 7 5 1 1 5 7 5 1 1 1 1	11.0	73.42	33.42	37.0	33.0	37.0
	21.5 a 1	al Sa I	25.5	24.2	24.2	24.2
FLUW RAIE(N**3/MIN)	1.8	1.7	1.8	1.7	2.1	1.8
TSP(UG/M**3)	63.9	76.8	104.3	87.1	50.1	73.2
DATE=	4	18 77	· · · · ·		· · · ·	
STATION	1 <b>3</b> 1	2	3	- 4	5	6
START TIME	10.0	10.0	10.0	10.0	10.0	10.0
HRS. RUN	23.4	23.4	23.4	24.2	24.2	24.2
FLOW RATE(M**3/MIN)	1.7	1.7	2.0	1.8	2.1	2.1
TSP(UG/M**3)	73.2	84.8	78.4	119.1	87.0	83.3
DATE=	4	19 77				
STATION	1 A A	2	3	4	5	A
START TIME	11.0	11.0	11.0	11.0	11.0	55 0
HRS. RUN	23.7	23.7	23.8	23.7	23.8	27 9
FLOW RATE (M**3/MIN)	1.9	1.8	2.0	3.8	4 9	2010
TSP(HG/M**3)	50.4	44 2	77 5	94 9	2 × 2	
		1 "T vi viv	3 An A	13-7 4 7	02.0	
DATE=	Δ	76 77	. •.			
STATION	4		. "2	Δ.		
STADT TTME	44 6	44 0		4		
1.1 C (* C) 13.1 1.1 C (* C) 13.1	→ / → \/ ")"" ()	- 55357 	11.V 77 0	37.0	33.0	77.8
THE ALL BATE ( MENT / MININ	A 15	,	2.J.7 			23.9
TCD/HC/MA271	5 4 7 18 18 15	1.1	2.V	3.7	2 . Q	2.0
125340711**37	22.0	00.0	17	18.2	52.9	63.4
DATE		··· , ··· ··· ···	•			
<i>いわりに</i> でてんててのN				. <b>.</b>		
STATIST TAX	3	с. 		-4	5	E.
	3.3.42	33.0	11.0	33.0	11.0	11.0
「1753」 - 75137 121 のは、12人でビイン4年6月 754 T >> >	20.0	20.0	25.0	23.8	25.0	25.0
」と <b>にいい</b> (11月1日(11月77日)31月9日) 	3.7	n i n	3.7	3.3	3.9	1.8
ናልሮ ጓዜህፖ በምጽፊን	300.4	763.0	107.9	92.9	68.9	74.2
<u> </u>		<b>~~~</b> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	:			
1/77 / 55 ·····	· · · · · · · · · · · · · · · · · · ·	didi 11				
	3		3	4)	5	6
	11.0	11.0	11.0	11.0	11.0	11.0
MKS. KUN	23.1	23.2	22.1	22.3	24.1	22.8
FLUW RATE(M**3/MIN)	2.0	1.7	5.1	2.0	2.0	2.0
1327(106/19883)	19.9	15.9	11.7	9 A	35 O	×0 0

75.4

NOT IN FILE

DATE=	4	24 0				
977 / J.L	1	2	3	- 4	5	6
STADT TTME	11.0	11.0	11.0	11.0	11.0	11.0
33 ART 3.135	· · · · · · · · · · · · · · · · · · ·	23.8	23.9	23.5	23.6	23.6
HRS. RUN	2011	4 9	2.3	2.1	2.3	2.1
FLOW RAIE (M##5/MIN)	1 V	80 8	812 MI 141	50 5	A4 A	39.1
TSP(UG/M**3)	41.52	07.0	· · · · · · · · · · · · · · · · · · ·		7147	
		1				
DATE =		2011		Δ	5	6
STATION	1	ж. А.А. Л.		44 6	44. 0	44.0
START TIME	33.22	37.39	31.0	552V - 172 K	74 5	74.5
HRS. RUN	26.3	20.3	20.0	4.00 g		2 4
FLOW RATE (M**3/MIN)	1.9	3.8	A A A	5 a 7 1990 - 19	лала "2") Ж	40.7
TSP(UG/M**3)	58.4	66.8	87.0	2617		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
· · · · · · · · · · · · · · · · · · ·	4	""C" """	·			÷
DATE=		.ፈርቅ ነያ። ማ	-72	Δ	5	4
STATION	7		0 A	5 0		່ອ້ວ
START TIME	9.0	¥.V	7.V	7.57		
HRS. RUN	20.8	24.1	25.6	8.9	.24.3	10 - A
FLOW RATE (M**3/MIN)	1.8	1.8	119	2.0	2.2	
TSP(UG/M**3)	47.7	46.0	48.4	133.0	44.5	74.6
	· ·					
DATE=	5	1 77				
STATION	1	2	3	.4	2	<u>ت</u>
START TIME	9.0	9.0	9.0	9.0	9.0	9.0
HRS. RUN	27.5	24.1	22.7	24.0	23.8	24.1
FI DW RATE (M**3/MIN)	1.8	1.9	2.3	2.0	2.1	2.2
TSP(UG/M**3)	44.5	52.9	55.0	35.3	39.3	28.7
		· · ·		•	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
DATE=	5	5 77				
STATION	1	2	. 3	4		5
START TIME	3.0	3.0	3.0	0.0	3.0	0.0
HRS. RUN	18.4	21.5	24.8	21.0	21.9	21.0
FI DW RATE (M**3/MIN)	1.9	1.8	5.3	2.3	1.8	3.8
TSP(UG/M**3)	62.5	69.8	55.2	83.0	0.0	0.0
	÷					
DATE=	5	8 77		· .	<b>11</b>	· · · ·
STATION	<u> </u>	2	చ	-4		
START TIME	9.0	9.0	8.0	9.0	9.0	7.0
HRS. RUN	24.0	21.9	24.0	24.0	24.0	24.3
FINW RATE (M**3/MIN)	1.8	1.9	1.9	5.7	1.7	3.13
TSP(UG/M**3)	41.4	47.0	57.4	50.5	49.3	40.8
DATE=	5	977			KIT	Ĺ
STATION	3	2	3	аранан аралан	2	
START TIME	10.0	10.0	10.0	10.0	10.0	30.0
HRS. RUN	24.2	24.2	24.3	3.2	24.3	24.5
FLOW RATE (M**3/MIN)	1.9	1.8	1.9	1.7	1.9	2.2
TSP (UG/M**3)	14.7	11.0	16.4	157.5	30.5	21.5
				•		
DATE=	5	10 77		*	<b>822</b>	L
STATION	5	2	3	4	2	<b>1</b> 0
START TIME	10.0	10.0	10.0	10.0	19.0	70.0
HRS. RUN	27.6	25.4	22.1	25.5	0.4	20.4
FLOW RATE ( M**3/MIN)	1.8	1.8	2.2	1.9.	1.7	2.1
TSP(UG/M**3)	20.7	22.9	21.5	57.9	1126.3	32.2

 $D_{i}$ 

0

B

(G

 $\mathfrak{G}$ 

DATE=	5	11 .77				
STATION	1	7		4	1 1 1 <b>1 1 1</b>	4
START TIME	10 0	10 0	10 0	10.0	10 0	40 0
HRS. RUN	24.0	23.9	171 G	27 9	07 0	12.0
FLOW RATE (MAAS/MIN)	4 50	4 9			A 0	
Ť\$₽/3302M##%\	A4 (7)	A 45 45	A 77 K	G. 1 	1 A Z A (5) A	
	7144		-7 f a!	00.0	·** 7 * \$	and a second
DATE	*5	10 77				
STATTON		, <u>,</u> , , , , , , , , , , , , , , , , ,		۸	*::	2
START TIME	10.0	10 0	40.0	10.0	40.0	- 40 0
3-420-57 5723 334	· · · · · · · · · · · · · · · · · · ·	777 4	772 6	352.452 /11/12:17	3 V 4 V 777 L	157 + 67 
FIND RATE(NEET/NEET/NE	2 8	4 7			23.0 7 0	2020 5 1
TTTP/110/MAATS	47.4	······································	00 8		2V 20	
1997 1999 1999 1997	10 10 a 10	· · · · · · · · · · · · · · · · · · ·	00.0	This a	00.0	10.8
DATE -	103	A #2 "7"7				. States
STATINA CTATINA	لى. م	1	•• <b>y</b>	·.		
ልጅ ያ ያነኝ ያ መስከት የምሳሌ የሆነ የካካም ለኢትዮጵያ መስከት የሆነ እንዲያም				4	2	 
	7.0	7.V	7.V.	7.0	9.0	9.0
		23.0	25.7	25.0	24.3	26.5
Thur Kricinstovning		3.8		3.9	3.9	2.1
137300/11##32	30.3	40.2	23.2	87.3	53.9	45.8
NA.TE		<u>, , , , , , , , , , , , , , , , , , , </u>				
<i>አግኝ ነ ጨም</i> ሮፕ ሌፕ ፕ ጠኑነ	ن ، بر م	10 77	••••			_ · · .
AS I PH F A LUFF COT A FOR THE ARE	3			4		6
	30.0	30.0	342.49	10.0	10.0	10.0
- FRADA - FAUFY 	ಷ ವಿಸ್ಪರಿಗಳು ಕರ್ಮ	21 Ja 7	24.0	x 4 x 7	24.3	24.3
	3.8		2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	3.7	7.9	2.9
1353007718837	71.1	7.3.8	178.7	328222	84.2	97.9
DATE	12	<u>بر من </u>				
577 AT T CIM		11 11				
ы 1713 дыят Сталят тыке	40 0 "		40.0	-49		6
12 FPFN F FILFFEL 12 DC D11N1	30.0	70.0	10.0	70.0	10.0	10.0
- 57553-3 - 55699 121 - 123 - 126 - 127 - 234 - 234 - 234 - 234 - 234 - 234 - 234 - 234 - 234 - 234 - 234 - 234 - 234 - 234 - 234	A. 47 A. F	2.47 a 63		al 4 a 3	24.5	24.3
	3-435 4-0188 - 12		3.7	3.8	1.9	1.9
1317300735507	120.3	300.0	344.8	11118	133.7	172.3
<u> </u>	rr	1 (h)				
5/7/1 C		18 77			·	
		400			, <b>D</b>	4
- 25 F FHPS F - 5 25 F SEC. - 1.177 (** - 1271-152)	10.0	742.42	30.0	30.0	10.0	10.0
	2014 a CD - A CD		24.3 4 0	24.7	24.7	24.7
- FLOW - KHILANKKAZA TSBING/MEEXA	5.0 07 7	1.0	7.57 ***	2.0	3.9	2.1
121 (00/11##0)	13 కి న ని	10310	334.0	328.3	103.2	104.5
DATE		4:P3 19-19	-			
577 FL	, ,	17 11			· .	
STADT TTME	100				5	6
	10.0	10.0	70.0	30.0	10.0	10.0
FIND PATERNESS AND	atiatia 43 A €3	4 0	22.3	42.6	22.6	18.9
	1 a 2 2 m² / 5	1 A 7 10 10 10	۲	2 a 22	2.0	2.1
ደሕም ና መመሪ የምምመሪ	40.9	00.0	63.3	77.1	48.4	52.4
DATE ==	<b>6</b>	<b>1.13 1.13</b>				
2777) 単一 学工人工工のN	Э ,	stati i i				
85 7 95 7 8 3555 1976 A 20 70 - 70 72 54 99	) 		3	- 4	5	6
1997 F BLARD	7.0	У. Q ·	9.0	9.0	9.0	9.0
TRAL BUREZHUUTZHESS	24,4	23.5	23.8	22.7	24.2	24.0
「ニロ母」(5月11115月7年3月日3月)    てきじくいたノバシュマト	3.9	3.9	2.1	1.9	3.9	2.0
チッドキロロノバキャンテ	37.1	D9.6	78.5	55.8	50.0	41.8

S

DATE	5	23 77		100 E. S.			
STATION	<b>1</b>	2	3	4	5	6	
START TIME	1.0	1.0	1.0	1.0	1.0	1.0	· · ·
HRS. RUN	19.0	22.3	26.6	65.8	23.0	19.8	
FLOW RATE(M**3/MIN)	1.8	1.7	2.1	2.0	2.0	2.2	ТŶ.
TSP(UG/M**3)	128.1	87.1	81.2	23.3	66.8	127.6	
		-					
DATE=	5	24 77	•				1.11
STATION	1	2	3	4	5	6	
START TIME	1.0	1.0	1.0	1.0	1.0	1.0	
HRS. RUN	47.6	43.8	39.9	42.9	43.2	43.4	
FINH RATE (M**3/MIN)	1.8	1.8	2.1	1.8	1.9	2.2	
TSP(UG/M**3)	125.5	100.4	186.5	105.5	96.3	110.1	
			,			•	
DATE =	5	25 77				· .	
NOITATZ	- 3	2	3	.4	5	6	
START TIME	2.0	2.0	2.0	2.0	2.0	2.0	
HRS. RUN	20.7	24.5	28.3	32.3	24.5	24.5	
FLOW RATE(M**3/MIN)	1.9	1.8	2.3	1.6	1.8	1.9	
TSP(UB/M**3)	86.5	337.5	116.0	123.8	98.3	87.3	n en
DATE	3	26 77					\$70
STATION	1	2	3	4	5	6	Ľ,
START TIME	10.0	10.0	10.0	10.0	10.0	10.0	
HRS. RUN	24.5	24.5	23.7	25.7	24.5	24.5	•
FLOW RATE(M**3/MIN)	1.9	1.7	1.9	1.8	2.0	2.1	Ć.
TSP(UG/M**3)	93.7	452.7	226.7	164.5	110.4	105.2	•
						e ⁱ	
DATE=	5	27 77	***				•
STATION	3	2	<u>ئ</u>	4	2	<u>ن</u>	22
START TIME	11.0	11.0	11.0	11.0	11.0	<b>)</b> ].0	
HRS. RUN	25.1	25.1	25.1	25.2	25.5	25.2	•
FLOW RATE (M**3/MIN)	1.9	1.5	1.8	3.7	1.3	2.9	· · · · ·
TSP(UG/M**3)	154.3	135.2	122.0	325.0	YD.3	77.3	
15 A 19 10	¥3;	29.77					
(2月11) 后  今下人下下(72)	بر. ۸ -			Δ	<b>4</b> ;		
A PART A PART	44 53	44 63	44 0	33 8	11.0	11.0	· ·
353 FARCE FLEARE	114V 54		73 9	77.5	22.3	22.4	
27753 2 251257 		4 G	2 6	19	2.0	7.7	
) 1.1.1304 - 35月13 E.3 53 本本語とおよりとう 	40 0			A9 A	A7 5	37.9	
13F (00/ B**3/	<b>40</b> .0	\$7.50	and she is also	₩ 2 A  7			
DATE	5	31 77			· · · ·		
STATION		2	3	4	5	6	
START TIME	11.0	11.0	11.0	11.0	11.0	11.0	
	15.3	26.6	23.2	24.4	24.4	24.1	11 an 11
TI THE DATE ( MARY / MTH)	5 Q	5 8		4 53	2.1	2.2	
- 2 - Marting - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	45.9	7.4.9	4 <b>4 A</b>	44 4	45 Q	47 5	
1411 1442 110 10 10 2	1.5	2 ° 2 A W2	5777 A "F	1w* 7 A 7	ward a	•••* • •4 •••*	
DATE-	6	1 77					. frig
STATION	1	2	3	.4	5	6	11
START TIME	11.0	11.0	11.0	11.0	11.0	11.0	
HRS. RUN	20.4	117.7	18.9	19.2	74.3	66.1	
FLOW RATE (M**3/MIN)	1.7	1.7	1.9	1.7	1.9	2.2	् ए
TSP(UG/M**3)	81.3	14.5	70.0	102.3	19.4	17.3	

DATE=		5 2 77				
STATION	1	2	3	А	ж.;	ł.
START TIME	10.0	10.0	10.0	10.0	40 0	40 0
HRS. RUN	24.4	27.1	13.8	23.4	77.4	1949 777 4
FLOW RATE(M**3/MIN)	1.8	1.6	2.2	1.9	4 9	
TSP(UG/M**3)	26.2	134.3	166.3	119.8	78.4	72.0
DATE=	. 6	3 77		· · ·		· · ·
STATION	3				*:::	
START TIME	11.0	11.0	11.0	11 0		6
HRS. RUN	24.5	24.5	774 S	3149 74 A	77.0	11.0
FLOW RATE (M**3/MIN)	2.0	1.9	2.0	4 0	24.0 7 0	24.6
TSP(UG/M**3)	59.4	192.4	158.6	105.8	78.6	118.6
DATE=	4	A 77	•			
STATION	1	2		Å	¥11*	
START TIME	11.0	11.0	11.0	11 0	14 A	13) A A - A
HRS. RUN	23.8	23.8	23.9	74 6	77.47 1777 Co	. 3.3.2
FLOW RATE (M**3/MIN)	1.9	1.8	2.0	4.9	2.0	23.1 7 0
TSP(UG/M**3)	54.4	198.9	100.2	101.2	69.6	69.3
DATE=	4	5 77	, <b></b> ,	· · · · · ·		
STATION	4					
START TIME	11 0	44 00 -		4)		6
HRS. RUN	27 5	1140 1174	11.50	77.9	11.0	11.0
FLOW RATE (M**3/MTN)	1 9	40,0	2033 / 13 /	1.3	23.9	19.0
TSP(UG/M**3)	34.7	5 A 2 1215 A		3.7	2.2	2.2
	100 100 20 2	کا بند همده همه	4.3. 82	330.2	28.9	46.9

NB B

> 8 2 2

