Signal Optimization and Analysis Using PASSER V-07 Training Workshop: Code IPR006

Nadeem Chaudhary (n-chaudhary@tamu.edu) Chi-Leung Chu (clchu@tamu.edu) Steve Venglar (s-venglar@tamu.edu)

> TxDOT Implementation Project 5-5424-01 Product 5-5424-01-P1

Session 0: Preliminaries

Self Introductions
Workshop Objectives
Workshop Outline

SO-Workshop Objectives

Learn Use of PASSER V for Analysis and Optimization of Traffic Signals: ✓ Isolated TWSC Intersections ✓ Isolated Signals Arterials and Sub-arterials ✓ Isolated Diamond Interchanges ✓ Diamonds + Adjacent Signals

SO-Workshop Outline

- S1: Introduction to PASSER V
 - ✓ Features
 - Basic Operations
- S2: Isolated TWSC Intersections
 - Review of Theory
 - ✓ Exercise
- S3: Isolated Signals
 ✓ Review of Theory
 - ✓ Exercise

SO-Workshop Outline (continued)

S4: Signal Systems Review of Theory • S5: Arterial Analysis Analyze Simple Arterials **V** Review Additional Features S6: Diamond Interchange Analysis ✓ Additional Discussion ✓ Exercise

SO-Workshop Outline (continued)

- S7: Diamond and Adjacent Signals
 Coordinating Diamond with Adjacent Signals
- S8: Workshop Conclusion
 ✓ Question/Answer Session
 ✓ Workshop Survey

Session 1: Introduction to PASSER V

- Background
- Features
- Input Data Requirements
- User Interface

S1–PASSER V Background

Funded by TxDOT and TTI • Applications ✓ Isolated Signals (Building Blocks) ✓ Isolated TWSC Intersections ✓ Signalized Arterials ✓ Isolated Diamond Interchanges ✓ Diamond + Adjacent Signals

S1–PASSER V Features

Graphic User Interface Multiple Document Architecture Mesoscopic Delay/Traffic Model Can Coordinate Signals to Provide Maximum Progression ✓ Minimum Delay Graphic Time-Space Diagram

S1–Using PASSER V

- Draw the Facility
- Select Intersection or Link
- Enter Corresponding Data
- View Signal MOEs
- Analyze/Optimize Signal Systems
 ✓ Select and Run Tool
 ✓ View/Print Results

S1-Tools in PASSER V

- PASSER II Optimizer
- PASSER III Optimizer
- GA-Based Optimizer
- Time-Space Diagram Generator
- Volume Analysis
- Delay Analysis

S1–PASSER V Limitations

- Coordination Requires Same Cycle Length at All Signals
 - No Double-Cycling or Conditional Service
- Cannot Handle Following Cases
 ✓ One-Step Network Optimization
 ✓ All-way Stop-controlled Intersections

Session 2: Isolated TWSC Intersections

- Input Data Needs
- Overview of Theory
- Isolated Intersection Exercise

S2–PASSER V Data Needs

- Turning Movement Counts (TMC)
 - Collect 15-Minute Data and Calculate PHF
 - ✓ AM, PM, and Off-Peak
 - ✓ Collect Vehicle Mix Information
- Intersection Configurations
 - Number of Lanes, Lane Use, Lane Widths, Turn Bays and Lengths, Median Type, etc.
- Can Apply Growth Rates to Older Counts as Long as Traffic Patterns Haven't Changed

🛃 Node Data	6						
Controller Id Intersections Controller Type Area Type Other Other							
Intersection Data Capacity Data Headway Data MOEs							
Artery	Artery 1						
Movement	EBL	EBT	EBR	WBL	WBT	WBR	
Lane Assignment	1	3>	< 1	1	3>	< 1	
Volume (vph)	149	676	147	44	635	21	
Sign	Free	Free	Free	Free	Free	Free	
Channelized Right Turn			Yes			Yes	

S2-Exercise (User Guide, p. 91)

 Movement Ranks
 Process

 Observe Headways
 Accept Gap

S2–Channelized Rights

Transportation Institute

S2–Flared Approaches

Specify How Many

S2–Model Parameters

Critical HeadwayFollow-up Time

Session 3: Isolated Signals

Overview of Theory
PASSER V Input Data Needs
Input Data Considerations
Signal Exercise

S3–PASSER V Data Needs

- Turning Movement Counts (TMC)
 - Collect 15-Minute Data and Calculate PHF
 - ✓ AM, PM, and Off-Peak
 - ✓ Collect Vehicle Mix Information
 - Can Apply Growth Rates to Older Counts as Long as Traffic Patterns Haven't Changed

S3-PASSER V Data Needs (continued)

- Number of Lanes
- Lane Use
- Lane Widths
- Turn Bays and Lengths

S3–Input Considerations

- Left-turn Treatment Number of Opposing Lanes Overlapping Turning Paths (may need) to split phase) ✓ Type of Signal Heads (3, 4, or 5) Section) Pretimed, Semi-actuated, or Fully Actuated
- Priority or Preemption

S3–Performance Data

 Delay, Stops, Queue Information for Existing Conditions

Collection Can Be Costly

S3–NEMA Phase Numbering

S3–Cycle Length vs. Delay and Capacity Capacity

Cycle Length

S3-Timing Isolated Signals

Select Best Timings **√ Cycle** Splits (or max, min, gap setting) ✓ Clearance Intervals To Provide **√Safe** ✓ Efficient Operation

S3–Safety Issues

- Space Conflicts inside Intersection
 ✓ Use of Split Phasing
- Minimum Greens
 - Based on Driver Expectancy
- Vehicle Clearance Intervals
- Pedestrian Requirements
- Yellow Trap

S3-Clearance Intervals

Proper Settings Avoid a "Dilemma Zone"

Speed mph	Yellow Change sec (level grade)	Red Clearance sec (60' wide crossing)
25	2.84	2.18
35	3.57	1.55
45	4.31	1.21
55	5.04	0.99
65	5.78	0.84

S3–Pedestrians

 $G_p = (4 \text{ to } 7 \text{ seconds}) +$

S3-Best Isolated Operation

- What is Good Operation?
 - ✓ Minimum Delay
 - ✓ Shortest Queues per Cycle
 - Minimum Stops
 - Compromised Combination
 - User Decides Based on Situation
 - ✓ Approach Speeds
 - ✓ Traffic Counts
 - ✓ Driver Perception

S3–Isolated Signal Exercise

- Draw an Isolated Signal
- Enter Data
- Analyze

S. Presa

Transportation Operations Group

38

S3–Data Entry

- Draw Links
- Define Lanes
- Enter PM-peak Volumes
 ✓ i.e., 149, 676, and 147 for EB
- Select Movement Type
 ✓ EB and WB Prot (why?)
 ✓ NB and SB Prot/Perm

S3-Data Entry (continued)

- Adjust Right-turn Volumes for RTOR
- Overlap (Yes for Lefts)
- Min Splits
 - ✓ Peds if No Buttons (Assumed)

» NB: 7+ (12+11+12+13+12+11+14)/4 = 28.25 ≈ 29 sec.

✓ EB, WB, NB, SB: 23, 23, 29, 29
 ✓ Clearance Times

S3-Data Entry (continued)

- Adjustments to Flows
- Trucks
- Ideal Saturation Flow
- Click Update Button

S3-Analysis/Results

- Delay vs. Cycle Analysis
- Controller: Ring-Barrier Display

MOEs

Session 4: Signal Systems

Overview:
 ✓ Engineering Theory
 ✓ Analysis Tools

S4–Flow Stability between Adjacent Systems

Cycle Length

S4–Signal Offset and Flow between Adjacent Signals

Offset

S4–Effects of Changes in Offset

S4-Cannot Get Two-way Bands? Change Phasing!

S4–Changing Phasing Can Improve 2-way Progression

S4-Timing Adjacent Signals Objectives of Coordination ✓ Provide/Maintain Safety ✓ Maintain Stable Flow Minimize Systemwide Delay ✓ Minimize Queues and Spillback <</p> Maximize System Throughput Minimize Number of Stops Maximize Arterial Progression

S4-Types of Models Traffic Simulation Model ✓ Evaluates a Specified Scenario ✓ Generates Performance Measures Optimization Model Systematically Generates Scenarios ✓ Evaluates Using Simulation ✓ Selects the Best Scenario Usually Applicable to Traffic Signals

S4–Simulation Models

- Microscopic
 - Keeps Track of Each Vehicle
 - Time Consuming
- Mesoscopic
 - Analyzes Flow Profiles
 - ✓ Faster Calculations
- Macroscopic
 - ✓ Analyzes Platoons
 - ✓ Fastest Calculations

S4-Simulation Models (continued)

- Microscopic
 - Keeps Track of Each Vehicle
 - Time Consuming
- Mesoscopic
 - Analyzes Flow Profiles
 - ✓ Faster Calculations
- Macroscopic
 - ✓ Analyzes Platoons
 - ✓ Fastest Calculations

• Deterministic

S4–Simulation Accuracy

Realistic Queues ✓ Microscopic: CORSIM, **Vissim, SimTraffic** ✓ Mesoscopic: new T7F, **PASSER V, Synchro** • Upward Queue Stack ✓ Mesoscopic: old T7F, S5 and P3 ✓ Macroscopic: P2, P4

S4–Spillback & Starvation

S4–Blocking and Starvation

S4–Blocking and Starvation (continued)

S4–Starvation May Not Be Bad (Unused Capacity)

S4–Optimization Criteria

- Maximize Arterial Progression
- Minimize Systemwide Delay
- Minimize Stops
- Minimize Queues
- Maximize Throughput
- Minimize Blocking and Spillback

S4–Magnitude of Problem

Fixed Cycle=100 Sec

1. 100 Plans

2. Depends

• 200, or

3: 2a with Phase Optimization 10,000 Plans
 3. 200 X 64 = 12,800 Plans

S4–Optimization Methods

Exhaustive Search Smart Search Techniques ✓ Hill-climbing ✓ Heuristic Mathematical Programming ✓ Genetic Algorithms Most Signal-Timing Programs Use a Combination

S4–Optimization Tool Types

Delay-Based Minimizes Delay (+Qs and Stops) ✓ Evaluates/Simulates Each Plan ✓ Examples: » TRANSYT 7F: Exhaustive, Hill-climbing, GA » Synchro: Exhaustive + Heuristic Search » PASSER III: Exhaustive Search » PASSER V: Exhaustive, GA

S4–Optimization Tool Types (continued)

Bandwidth-Based Maximizes Arterial Progression » Simple Objective Function Simulates Traffic after Optimization ✓ Examples: » PASSER II: Exhaustive and Heuristic » PASSER IV: Mathematical Programming » PASSER V: Exhaustive, Heuristic, GA

S4–PASSER V Data Needs

Signal Spacing
Link Speeds
Types of Link

S4–Input Performance Data

- Speed, Travel Time, or Delay Information for Existing Conditions
- May Need to Measure Speed for Use in PASSER V
- Can Be Used to Calibrate or Validate Your Base Model
- Collection Can Be Costly

Session 5: Arterial Analysis

Arterial Exercise 1 Load and Review Data Apply Various Tools Review/Interpret Output Arterial Exercises 2 and 3 ✓ TWSC Intersections ✓ Sub-nets ✓ Phasing Options Sandwidth-constrained Delay Minimization ✓ Adjusting Bands

Solution S.W. Military Drive, San Antonio, Texas

70

S5–Performance Measures

Transportation Operations Group

exas

nstitute

ransportation

S5–NTCIP Coord Phase

Sp1-32	ø1	2.	3.	4 .	5	6.	7 .	8 ->
Time	25	25	25	25	25	25	25	25
Coor-Ø		Х						
Mode	NON	MAX	NON	NON	NON	MAX	ION	NON

S5–NTCIP Coord Phase

(continued)

Coordinate Phase: 2

Offset Reference Phase

S5–Offset Adjustments

Lag-Lead Example

S5–Programming Sequences

S5–Programming Sequences (continued)

EPAC	SEQUE	NCE 1	(ALT S	SEQ 0)			
PHASE SEQUENCE BY RING .								
PHSE	## ##	## ##	## ##	## ##	## ##	## ##		
R1-	01-02	03-04	00-00	00-00	00-00	00-00		
R2-	05-06	07-08	00-00	00-00	00-00	00-00		
R3-	00-00	00-00	00-00	00-00	00-00	00-00		
R4-	00-00	00-00	00-00	00-00	00-00	00-00		
A-UP	B-DN		E-F	EDIT 1	F-PRIO	R MENU		

S5-Example Phase Sequences

Sequence Name	Ring	Phase Order	Sequence # Eagle/Naztec
Lead-Lead	1	1234	0/1
	2	5678	
Lag-Lead	1	1234	1/2
	2	6578	
Lead-Lag	1	2134	2/3
	2	5678	
Lag-Lag	1	2134	3/4
	2	6578	

S5–How Genetic Algorithm (GA) Works

- Randomly Generate Population
- Perform Reproduction Operation
 - Select Pairs/Parents and Generate Offspring

Parents

Offspring

Evaluate Each Using Simulation
 ✓ Note Population Has Doubled

S5-How GA Works (continued)

Keep Best Half of New Population

Perform Mutation Operation

Next Generation

S5-How GA Works (continued)

Stop If

- No Improvement Possible or Maximum Generations Reached
- Report the Best Plan
- Else
 - ✓ Repeat Process

S5-Arterial Exercise 2

S5–More Theory

Handling of TWSC Intersections on Arterial

✓ Upstream Signals

» Platoon Dispersion ✓ Handling in Various Tools » PASSER II

» Other Tools (Except P3)

S5–Arterial Exercise 3

SH 71, Bastrop, Texas

S5–Bandwidth vs. Efficiency

S5–Delay and Attainability

S5–Tradeoffs in Performance

nstitute

86

Session 6: Diamond Interchange Analysis

- Background and Operational Issues
- Diamond Exercise
 - ✓ Create Interchange
 - Apply Optimization Tools and View Output
 - » PASSER III
 - » GA-Based Optimizer
- Apply Other Tools

 Volume Analysis
 Time-Space Diagram
 Delay Analysis

S6-Background on Diamonds

- Two Closely Spaced Intersections
- Flow Characteristics Very Different from Arterials
 - Significant Turning Traffic
- Types
 - ✓ Conventional (More than 800 ft)
 ✓ Compressed (400-800 ft)
 ✓ Tight (Less than 400 ft)

S6–Background on Diamonds (continued)

Often Experience Operational **Problems** Capacity Dependent on ✓ Splits at Both Intersections Queuing and Spillback TxDOT/Texas Diamond Controller ✓ Basic Three-Phase ✓TTI Four-Phase ✓ Separate Intersection Mode

Transportation Operations Group

ransportation

nstitute

S6-Three-Phase Operation

S6–Four-Phase Operation

- Lead-Lead Phasing
- Phase Times and Offset Calculated Simultaneously
- Needs Longer Cycle

S6–Other Options

Separate Intersection Control under Diamond Mode Restricted to Lead-Lead Phasing ✓ Can Provide Ring-lag/Offset • User Programmed Mode ✓ Difficult Programming ✓ Flexibility of Operation • Use Two Controllers

S6–Phasing Selection Guidelines

Conventional Diamonds ✓ Three-Phase Four-Phase Not Recommended Compressed Diamonds ✓ Three-Phase with Short Cycle ✓ Four-Phase Tight Diamonds ✓ Four-Phase ✓ Three-Phase for Light Traffic

S6-Data Entry/Analysis

- Draw Links/Define Interchange
- Load Data
- Select Tool and Analyze
- Review Results

S6-More Tools in PASSER V

Volume Analysis
Time-Space Diagram
Delay Analysis

Session 7: Diamond and Adjacent Signals

- Exercise Using Existing Data
- Apply Various Tools
- Review Output

S7–SH 195 Data

Session 8: Workshop Conclusion

- Survey
 Tell Us How We Did
 Feedback about PASSER V

