

# TEXAS <br> TRANSPORTATION INSTITUTE 

STATE DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION

COOPERATIVE RESEARCH

## EVALUATION OF THE TEXAS

## TRUCK WEIGHING

PROGRAM

RESEARCH REPORT 424-IF
STUDY 2-20-424-IF
TRUCK WEIGHING EVALUATION

in cooperation with the
Department of Transportation
Federal Highway Administration

TECHNICAL REPORT STANDARD TITLE PAGE


## EVALLATION OF THE TEXAS TRUCK WEIGHING PROGRAM

Final Report

by<br>Donald A. Maxwell<br>Research Engineer<br>Ted Chira-Chavala Assistant Research Engineer<br>Habib Nassiri<br>Engineering Research Associate

Research Report 424 -1F
Evaluation of The Texas Truck Weighing Program Research Study Number 2-10-84-424

Sponsored by<br>State Department of Highways and Public Transportation<br>In Cooperation with the<br>U.S. Department of Transportation<br>Federal Highway Administration

Texas Transportation Institute The Texas A\&M University System College Station, Texas 77843

## METRIC CONVERSION FACTORS



## ABSTRACT

This report documents the findings of an evaluation study of the Texas Truck Weighing Program. The evaluation included an analysis of: the data from the six existing sites, the current and future data needs, the existing highway system and related truck traffic stream, statistical sampling techniques, and procedures for stratified sample distribution. The emphasis of the evaluation was on the data capture, data reduction and archiving procedures to satisfy the internal and external reporting requirements and planning, design and maintenance needs of the Department.

The evaluation resulted in a Truck Weighing Program that would increase the number of weigh-in-motion sites from six to twenty-six. These sites would be distributed across the state so as to capture the variability in the truck traffic stream from interstate to farm-to-market road classes, from high to low percentage of heavy trucks, and from region to region. The system design proposes several ways and formats to get the results into the hands of the user in a timely and efficient manner.

## ACKNOWLEDGEMENT

The Authors wish to thank the State Department of Highways and Public Transportation for providing the support necessary to conduct this study. We particularly appreciate the assistance of the D-10 Technical Support Services group for their efforts in furnishing the data for our analysis and for allowing us to participate in their field operations.

Staff members from the Texas Transportation Institute and the State Department of Highways and Public Transportation who contributed to the Project are:

Jon Underwood -- D-10, Engineer of Research Curtis Goss -- D-10, Technical Support Services

John Mason:-- TTI, Program Manager
Wyley Cunagin -- TTI, Associate Research Engineer
Olga Pendelton -- TTI, Research Statistician

## DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the interpretation and accuracy of the data presented to support their conclusions. The contents do not necessarily reflect the official views or policies of the Texas Transportation Institute, The State Department of Highways and Public Transportation, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.


## LIST OF FIGURES

Fiqure Paqe
1 - Gross Vehicle Weight Distributions ..... 5
2 - Optimal Number of Weight Stations by Desired Accuracy Level ..... 7
3 - Regions for Truck Weight Data Collection ..... 10
4 - WIM Data Collection System ..... 22
5 - Typical Dutput from DECODE Program ..... 26
6 - Typical LOTUS GVW and Vehicle Speed Frequency Distributions ..... 27
7 - Typical LOTUS GVW and Vehicle Speed Frequency Distributions Plots ..... 28
LIST DF TABLES
Table Paqe
1 - Number of Sites by Road Class - Standard Method ..... 6
2 - Number of Sites by Road Class - Economic Design Method ..... 8
3 - Distribution of Road Class by Truck Traffic and Region ..... 11
4 - Distribution of Sites Across All Variables
4(a) - Allocation Indices and Allocation Numbers by Percent Truck Traffic and Region ..... 12
$4(b)-R a n d o m$ Allocation Matrix and Selection Units ..... 13
5 - Number of Weight Stations Required by Road Class, Percent Truck Traffic and Region ..... 14
6 - Number of Existing Manual Count Stations by Percent Truck Traffic, Road Class and Region ..... 16
7 - Locations Selected for Truck Weight Stations ..... 18
8 - Heavy Truck Traffic Data Requirements ..... 20
9 - Vehicle-Type Classification ..... 23

## INTRODUCTION

## Goals, Objectives and Scope

The volume/classification/weight characteristics of the truck traffic using the Texas highway system are estimated by sampling the traffic stream using those highways. Volume counts are collected daily at 128 sites located along various highways within the State. Likewise there are also 206 volume/classification count stations where data are gathered and reported annually. The weigh component of this data collection effort is confined to six (as of August 1984) sites located along major highways with annual reporting of summary results. It is generally understood that the truck weighing program is inadequate and needs to be improved; however, additional sites and the manpower required to collect the data carry a high cost. The question then is: How should the Department employ its limited resources in gathering an improved truck weight sample.?

Thus from the very beginning, the goal of this research project was to evaluate the Texas Truck Weighing Program being conducted by D-10 Research with the expressed purpose of designing an enhanced Program that would more nearly serve the purposes of the Department. Since D-10 Research had been collecting weight data at the six sites and had some experience in the operation of Radian WIM equipment, it was decided to build upon this base in formulating the following research objectives:

1. Determine how many additional WIM sites would be needed to attain the accuracy required for the Department's internal planning, design and maintenance operations and the external reporting procedures.
2. Determine where these sites should be located and how often they should be visited. If possible, the six existing sites would be kept within the selected sites.
3. Design a system that would cover all operations from the time the data were generated by the WIM equipment (including the microcomputer used to collect the data and transmit them to $\mathrm{D}-19$ ) to the time that the results would be furnished to the various users. The system should also satisfy the needs of the Department for both internal and external reporting.

D-10 continued to gather data and gain experience during the conduct of the project. However, the three objectives, agreed upon from the beginning, remained unchanged throughout the project.

Even though the focus of the research was concentrated on the WIM Program being conducted by $D-10$, a number of other factors influenced the results of the analysis. Internal and external reporting requirements, possible uses of the results, and the evolving state-of-the-art in weighing equipment and computers all had an effect on the results. In addition, the Department has ongoing programs in vehicle classification and traffic counting that can not be ignored in the design of a weighing program.

The relationship between truck traffic and roadway damage has recently become an issue of national concern. As the Nation's highways continue to deteriorate at an accelerated rate, more and more research effort is being put into the design of more resistant pavement structures. With the increased emphasis on dealing with this situation, a number of research studies have been initiated to learn more about the problem. There are studies to: correlate heavy truck traffic with pavement damage, to measure the incidence of special-use trucks, to develop and test weigh-in-motion equipment, and so forth.

This study interfaces with the studies underway in Texas in the following way. On one hand there are a number of hardware studies seeking to develop new vehicle counting, classification, and weighing hardware. The RTAP Project (The Seguin Equipment Experiment) helped to demonstrate the viability of the Radian weigh-in-motion (WIM) equipment. On the other hand there are projects which make use of use weight data. These would include the Pavement Damage Assessment type projects which require detailed data not furnished by the existing procedure -- in spite of the fact that these data are being collected. At the other extreme, Economic Effects type studies require background and trend data. Finally there are studies which suggest changes in equivalent axle-load estimation procedures. The Dil Field Truck Traffic (2-299) study gave focus to the need to study special-use truck traffic in localized areas. The Special Use Truck ( $2-420$ ) study demonstrated the need to segregate the truck traffic stream into a "baseline" count plus one or more special uses.

## Research Study Activities

The research study was organized into ten specific tasks for administrative and work assignment purposes. The results from each of these tasks had an effect on the final result. The task description and the effect on the final result are summarized below.

## Task 1. Review Existing Procedures

The first step was to determine how truck weight/classification data were being collected. Project staff visited several of the permanent collection sites and observed the process from start to finish. This experience influenced all phases of the study, especially the final design.

## Task 2. Review Existing State-Of-The Art

This was accomplished in two ways: first, project staff conducted a detailed literature search, and second, project staff examined first hand, portable and permanent type WIM equipment. This is also reflected in the final design.

## Task 3. Determine Areas of Vehicle Concentration

The areas of greatest vehicle traffic concentration are known to the Department and displayed upon readily available maps. These maps were used in the design of the site distribution procedure.

## Task 4. Determine Areas of Heavy Truck Concentration

Some of the results from the Special-Use Truck study and the existing Departmental classification data from 1982-1983 were used during the design of the site distribution procedure.

## Task 5. Stratify Concentration by Functional Classification

The traditional functional classes were divided into four road classes as suggested by a recent FHWA research report. District highway maps were used to determine the road-miles of each class per district and by percent combination vehicles.

## Task 6. Determine System Requirements.

External and internal reporting requirements for the system came from the literature search conducted in Task 1 and first-hand knowledge of the Department's procedures; the design of the data flow came from observation of the existing procedures; and equipment specifications from the equipment in use at the time of the study.

## Task 7. Develop Candidate Systems <br> Task 8. Select Implementation Approach

These two tasks were combined for two reasons. First, the final system is essentially an enhancement of the existing system. Second, most of the suggested enhancements were implemented as the project progressed. These enhancements specify that the data be archived and reported in several new formats to serve the needs of a variety of users.

## Task 9. Develop Estimation Procedure

The results of this task are based upon the work in Tasks 1-6 and are covered in the two following sections of this report.

## Task 10. Design Implementation Plan

Except for a few suggestions developed during the final draft of this resort, all enhancements to the Truck Weighing Program were implemented by D-10 research during the conduct of the project.

## Summary of Results

The results of the study are covered in the following three sections of the report. Although work on all three sections proceeded in parallel (in fact a preliminary design of the proposed system was completed before the sampling procedure was completed), they are reported as though they occurred in sequence. The first step is to determine the number of sample sites to achieve the required accuracy. Second, distribute the sites across the state in a rational pattern. And finally, describe a system to collect, store, etc. the data so that it can be used to its best advantage.

## NUMEER OF SITES

The primary purpose of the Truck Weighing Program is to capture, as much as possible, the variability in truck weights and types on various functional highway classes and traffic volumes. In this way a relatively small sample will yield representative results for the entire state. The critical "sample size" for truck weight data is the number of sampling sites, not the number of trucks. The equally important companion problem of distributing the sample sites in a random way is covered in the next section.

The first approach for estimating the sample size \{called the Standard Method) resulted in a unrealistically large number of sites. This method assumed that neither geography, functional class, nor traffic volume was variable. Secondly, the truck weight distributions on which it was based are bimodal (see Figure 1); this causes the variance to be larger than the scatter in the data would indicate and this in turn caused the large sample size. The second approach (called the Economic-Design Method) resulted in a much more acceptable number of sites. Both of these two methods are described below.

## Standard Method

The following equation illustrates a standard statistical technique for estimating sample size required to achieve a desired level of error for the average of a number of samples.

$$
\text { Number of Sites }=\frac{(z \times C O V)=}{(\%-E r r o r) e}
$$

Where:
$z$ is a tabular value associated with a $95 \%$ level of confidence.
COV is the Coefficient of Variation; the ratio of the Standard Deviation and the Mean of a distribution of values. The Mean is used as the point estimate of a value and the standard deviation is a measure of scatter in the data.
\%-Error is the ratio of tolerable error in gross vehicle weight to the mean weight. For example, if the mean weight is 30,000 pounds and an error in the weight is 3,000 pounds, then the percent error is $10 \%$

The procedure for determining the sample size involves estimating the coefficient of variation for the parameter to be estimated. This can either be estimated from a small sample or from data from other sources. Since no data were available from the Texas Program, national averages were obtained from an FHWA report. The next step is to determine the percent error to be tolerated for each road class. This is usually an administrative decision. Once these are in hand, the sample size is determined by substituting into the above equation. The results are shown in the Table 1.

Figure 1
Gross Vehicle Weight Distribution



Table 1: Number of Sites by Road Class - Standard Method

| Road Class | 纤 |  |
| :--- | ---: | ---: |
|  |  | Sites |
| 1. Interstate | 10 | 18 |
| 2. US Numbered | 20 | 20 |
| 3. Texas Numbered | 30 | 17 |
| 4. Farm-to-Market | 40 | 19 |
| Total |  | 74 |

## Economic-Design Method

Based on Kish (1965), the following formula can be used (when an estimate of scatter in the means is available from existing datal to determine the minimum number of sites required for the desired level of error:

$$
\text { Number of Sites }=\frac{(1-f) \times S_{m} E}{(d / z) E} \quad \text { or approximately }=\frac{S_{m}^{m}}{(d / z) e}
$$

Where:
$f$ is the fraction of trucks to be sampled. Since this is very small, when compared to the total number of trucks in the traffic stream, the second equation is used.

Se. is the known variance in the mean truck weights among the different locations across the state.
d is the desired error margin in estimating the mean truck weight in pounds.
$z$ is the normal variate corresponding to the $95 \%$ confidence interval.
$S_{\text {. }}$ is is the assumed known variance in the mean truck weights from different locations across Texas. In this case from stations at Lubbock, Nacogdoches, San Marcos, Seguin and Sweetwater, prior to August 1985. The value used in this analysis was $1.512 \times 10^{7}$. Figure 2 shows the optimal number of WIM sites required for different margins of error based on the above equation.

The recommended number of weight stations, as determined from this curve is, 26 for a estimated margin of error equal to + or $-1,500$ pounds in the mean weight. The number for a 1,000 pound marginal error is about sixty. This is well within the accuracy of the existing WIM equipment. The number of WIM sites for each road class should be determined independently according to the procedure described above. Since truck weight data by road class were not available, sites were distributed by relative truck traffic volumes. The results are shown in Table 2.


OPTIMAL NUMBER OF !!EIGHT STATIONS BY DESIRED ACCURACY LEVELS
Figure 2

Table 2: Number of Sites by Road Class - Economic-Design Method

Road Class

1. Interstate

Sites
2. US Nutate 10
2. US Numbered 6
3. Texas Numbered 6
$\frac{4 . \text { Farm-to-Market }}{\text { Total }} \quad \frac{4}{26}$

This distribution is based upon the idea that more trucks travel on the Interstate System than on any other, that US and Texas numbered routes have $60-\mathrm{per}-$ cent of the Interstate travel, and that the remainder of the trucks are on Farm-to-Market routes. The number of sites per roadway class can be corrected as soon as data are available to do so.

## LOCATION OF SITES

The 26 weight station sites, or for that matter, any number of sites greater than the 26 minimum, need to be distributed around the state 50 as to prevent a particular region, road class, functional class, or volume class from being over or under represented. The following procedure was used to distribute and locate the 26 sites and can be used to add sites as the situation demands. The procedure is a two step process. First, determine the proper distribution of the sites; then, locate the sites with respect to the existing vehicle classification.

## Distribution of Sites

Different regions within Texas are impacted by differences in industrial truck traffic. Agricultural products not only differ regionally but seasonally by region. Dil field traffic varies by region and by economic conditions. The division of Texas into regions will help account for some of these variations. Finally, to aid in the administration of the program, regional boundaries were made to coincide with District boundaries. As a result, Texas is assumed to be made up of five regions: West, Northwest, North, East, and South, as shown on Figure 3.

There is a suspicion that the relative weight of heavy trucks increases with the percent of heavy trucks in the traffic stream; that is, the larger the percentage of trucks, the larger the percentage of heavy trucks. Because combination vehicles constitute the bulk of the heavy truck traffic, the percent of combination vehicles was used to represent the traffic stream of heavy trucks. Three levels of usage were assumed to exist: low, less than 8 percent combination vehicles; medium, between 8 and 16 percent; and high, greater than 16 percent.

After the regions and percent truck levels were determined, the next step was to estimate the relative distribution of road class (miles) by region and by percent truck. Road class mileages subject to the three levels of truck use were estimated from the 206 vehicle classification stations and road class mileages by region from the District highway maps. Tables 3 and 4 show the results of this analysis.

The fractions in Table 3 were computed by dividing the total number of miles for a particular road class into the number of high, medium, and low percent-truck miles for each region. For example, 21.6 percent of all Interstate road miles occur in the West and 13.5 percent of all Interstate miles occur in the East and have a high percentage of heavy trucks. Table 4 resulted from multiplying each road class fraction by the fraction that roadway class is of the total. That is, of all of the road miles, 2.4 percent are in the Nor thwest and have a high percentage of combination vehicles.

A final allocation of sites to the various combinations of regions and percent trucks can be made by multiplying the number of sites by the factions in Table 4 and rounding to the nearest whole number. These allocation numbers are shown in Table 4 (a). These numbers were then used as bases for a random allocation of the 26 sites to various regions and percent trucks as shown in Table $4(b)$. Each allocation number in Table $4(a)$ was used to allocate the rows


Table 3: Distribution of Road Class by Truck Trafeic and Region

| Region | percent Truck | - Road Class |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Interstate | US | Texas | FM |
| Northwest | $\begin{aligned} & \text { High } \\ & \text { Medium } \\ & \text { Low } \\ & \hline \end{aligned}$ | $\begin{array}{r} .062 \\ .046 \\ .015 \\ \hline \end{array}$ | $\begin{array}{r} .090 \\ .106 \\ .016 \\ \hline \end{array}$ | $\begin{array}{r} .036 \\ .036 \\ .072 \\ \hline \end{array}$ | $\begin{array}{r} .046 \\ .023 \\ .139 \\ \hline \end{array}$ |
| West | High Medium Low | .225 -- - | $\begin{array}{r} .048 \\ .108 \\ .072 \end{array}$ | $\begin{array}{r} .028 \\ .083 \\ .028 \end{array}$ | $\begin{array}{r} .059 \\ .029 \\ .059 \end{array}$ |
| South | High Medium Low | $\begin{array}{r} .101 \\ .101 \\ .017 \\ \hline \end{array}$ | $\begin{array}{r} .061 \\ .081 \\ .092 \\ \hline \end{array}$ | $\begin{array}{r} .044 \\ .094 \\ .143 \end{array}$ | $\begin{array}{r} .010 \\ .058 \\ .164 \\ \hline \end{array}$ |
| East | High Medium Low | $\begin{array}{r} .135 \\ .054 \\ .027 \\ \hline \end{array}$ | $\begin{array}{r} .028 \\ .077 \\ .065 \end{array}$ | $\begin{array}{r} .033 \\ .059 \\ .145 \end{array}$ | $\begin{aligned} & -- \\ & .017 \\ & .205 \end{aligned}$ |
| North | High Medium Low | $\begin{array}{r} .078 \\ .062 \\ .047 \\ \hline \end{array}$ | $\begin{array}{r} .026 \\ .085 \\ .042 \\ \hline \end{array}$ | $\begin{array}{r} .017 \\ .059 \\ .122 \\ \hline \end{array}$ | $\begin{array}{r} -9 \\ .028 \\ .163 \\ \hline \end{array}$ |
| Total |  | 1.000 | 1.000 | 1.000 | 1.000 |

Table 4: Distribution of Sites across all Variables

| Region | Percent Truck | Road Class |  |  |  | $\sum_{i}^{\Sigma} p_{i j k}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Interstate | US | Texas | FM |  |
| Northwest | High Medium Low | $\begin{array}{r} .024 \\ .018 \\ .006 \\ \hline \end{array}$ | $\begin{array}{r} .021 \\ .024 \\ .004 \\ \hline \end{array}$ | $\begin{array}{r} .008 \\ .008 \\ .017 \end{array}$ | $\begin{array}{r} .007 \\ .004 \\ .021 \\ \hline \end{array}$ | $\begin{array}{r} .060 \\ .054 \\ .048 \\ \hline \end{array}$ |
| West | High Medium Low | $.098$ | $\begin{aligned} & .011 \\ & .025 \\ & .017 \end{aligned}$ | $\begin{aligned} & .006 \\ & .019 \\ & .006 \end{aligned}$ | $\begin{aligned} & .009 \\ & .004 \\ & .009 \end{aligned}$ | $\begin{array}{r} .124 \\ .048 \\ .032 \end{array}$ |
| South | High Medium Low | $\begin{array}{r} .039 \\ .039 \\ .007 \\ \hline \end{array}$ | $\begin{array}{r} .014 \\ .019 \\ .021 \\ \hline \end{array}$ | $\begin{array}{r} .010 \\ .022 \\ .033 \\ \hline \end{array}$ | $\begin{array}{r} .002 \\ .009 \\ .025 \\ \hline \end{array}$ | $\begin{array}{r} .065 \\ .089 \\ .086 \\ \hline \end{array}$ |
| East | High Medium Low | $\begin{array}{r} .052 \\ .021 \\ .010 \\ \hline \end{array}$ | $\begin{array}{r} .006 \\ .018 \\ .015 \\ \hline \end{array}$ | $\begin{array}{r} .008 \\ .014 \\ .033 \\ \hline \end{array}$ | $\begin{array}{r} -0 \\ .003 \\ .032 \\ \hline \end{array}$ | $\begin{array}{r} .066 \\ .056 \\ .090 \\ \hline \end{array}$ |
| North | High Medium Low | $\begin{array}{r} .030 \\ .024 \\ .018 \\ \hline \end{array}$ | $\begin{aligned} & .006 \\ & .020 \\ & .010 \end{aligned}$ | $\begin{array}{r} .004 \\ .014 \\ .028 \\ \hline \end{array}$ | $\begin{array}{r} -7 \\ .004 \\ .025 \\ \hline \end{array}$ | $\begin{array}{r} .040 \\ .062 \\ .081 \\ \hline \end{array}$ |
| $\begin{array}{lll}\Sigma & \Sigma & \\ j & k & \\ j\end{array}$ |  | . 386 | . 231 | . 230 | . 154 | 1.000 |

Table 4 (a)
Allocation Indices and Allocation Numbers
by Percent Truck Traffic and Region

| Region | Percent Truck | Allocation Index | Allocation Number |
| :---: | :---: | :---: | :---: |
| Northwest | High | 1.560 | 2 |
|  | Medium | 1.404 | 1 |
|  | Low | 1.248 | 1 |
| West | High | 3.224 | 3 |
|  | Medium | 1.248 | 1 |
|  | Low | 0.832 | 1 |
| South | High | 1.690 | 2 |
|  | Medium | 2.314 | 2 |
|  | Low | 2.236 | 2 |
| East | High | 1.716 | 2 |
|  | Medium | 1.456 | 2 |
|  |  | 2.340 | 2 |
| North | High | 1.040 | 1 |
|  | Medium | 1.612 | 2 |
|  | Low | 2.106 | 2 |
| TOTAL |  | 26 | 26 |

Table 4(b)
RandonAllocation Matrix and Selection Lhits

| Region | Percent | Road Class |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Interstate |  |  |  |  | 15 |  |  |  |  |  |  |  | Texas |  |  | PM |  |  |  |  |  |
|  |  |  | 12\|3| |  | 415 | 516 | 61718 | 81910 |  |  | $111\|2\| 13 \mid$ |  | 13/14\|15|16 |  | 17\|18| |  | 19120 | $\overline{\|2\| 2\|2\| 23 \mid}$ |  |  | $24 / 25126$ |  |  |
| Mrithwest | High \{1 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | t $\{2$ |  |  |  |  |  |  |  |  | $\bar{\chi}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | X |
|  | Medium 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | X |  |  |  |  |  |  |
|  | Low |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mest | High 5 |  |  |  |  |  |  |  |  | x | x |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \{ 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
|  | $\frac{1}{7}$ |  |  | X |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | x |  |  |  |
|  | Medium 8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Low 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| South | High 10 | $x$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 111 |  |  |  |  |  |  | X | $\bar{\chi}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Mectiun $\frac{12}{12}$ |  |  |  |  |  |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |
|  | 13 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Low $\frac{14}{14}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | X |  |  |  |  |  | X |  |  |
|  | - 15 |  |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  | X |  |  |  |  |
| East | -16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | High 17 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 18 |  |  |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Mestiun 19 |  | $\bar{\chi}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | , 20 |  |  |  |  |  | $x$ |  |  |  |  |  |  |  |  |  | X | $\bar{\chi}$ |  |  |  |  |  |
|  | Low 21 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| North | High 22 |  |  |  |  |  |  |  |  |  |  | $x$ |  |  |  |  |  |  |  |  |  |  |  |
|  | Medium $\{23$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | X |  |  |  |  |  |
|  | $24$ |  |  | X | X |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Low 25 |  |  |  |  |  |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  | X |  |
|  | - 36 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

$X$ denoted selected cells

Table 5
Number of Weight Stations Required by
Road Class, Percent Truck Traffic, and Region

| Region | Percent Truck | IH | US | Texas | FM |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Northwest | High | 2 | 1 | - | 1 |
|  | Medium | - | - | 1 | - |
|  | Low | - | - | - | - |
| West | High | 1 | 1 | 1 | 1 |
|  | Medium | - | - | - | - |
|  | Low | - | - | - | - |
| South | High | 2 | - | - | - |
|  | Medium | - | 1 | 1 | - |
|  | Low | 1 | - | 1 | 1 |
| East | High | - | - | - | - |
|  | Medium | 1 | 1 | - | - |
|  | Low | 1 | - | 1 | - |
| North | High | - | 1 | - | - |
|  | Medium | 1 | - | 1 | - |
|  | Low | 1 | 1 | - | 1 |
| TOTAL |  | 10 | 6 | 6 | 4 |

Table 6
Number of Existing Manual Count Stations By Percent Truck Traffic, Road Class, and Region

of Table $4(b)$ each combination of region and percent truck traffic. For example, the allocation number for Northwest and High Percent Truck \{Table 4(a)\} was two, which resulted in two rows of Table $4(b)$ being assigned to Northwest and High Percent Trucks. Next randomly select one row for each of the 26 columns of Table $4(b)$ - based upon Yoo and Reiss (1977). A summary of the complete result is shown in Table 5. If additional sites are added to the system at a later date, Table 4 provides a basis for determining a revised Table 5.

## Selection of Sites

Preliminary locations for weight station sites from Table 5 should be selected in some systematic manner. Of the several ways to do this, the simplest is to select from the list of classification stations until the conditions in Table 5 are satisfied. The first step of this process is to sort the 474 classification count locations for the 206 classification stations into the same categories as Table 5; that is, by region, by road class and by percent trucks. (The differences are caused by counting trucks at all legs of an intersection, if the site is located at an intersection. Some are; some are not.) The results of this operation are shown in Table 6 . The second step is to circle the cells in Table 6 that have non-empty cells in Table 5 ; that is, the cells where sites are required. Finally, randomly pick sites from the "circled" cells. This does not guarantee a selection that represents maximum variability in truck types, a major weakness

A better way is to rank order the sites within the circles, such that the sites with the more diverse truck types are toward the top. For this purpose four different truck configurations were considered: single-unit, truck and tractor, semi-trailer, and doubles. Sites where then selected at random from the ordered lists within the "circled" cells until the distribution of Table 5 was satisfied. If a site selected by this technique, is determined to be infeasible upon field inspection, then the next site in the list is picked. The final list of sites is shown in Table 7; the complete list of rank ordered sites appears in Appendix C.

Table 7
LOCATIONS SELECTED FOR TRUCK WEIGHT STAMONS

| Region | Highway Number | Percent Truck | Station Code | District | County | Renarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Northwest | IH 40 | 31 | M 1083 | 4 | O1dham | IH 40 - West of Adrian |
| Northwest | IH 40 | 30 | MS 1 | 1 | Wheeler | IH $40-$ East of Shanrock |
| Northvest | US 82 | 20 | L 149 | 25 | King | US 82 - South of Guthrie |
| Nortiwest | SH 350 | 15 | M 1105 | 8 | Howard | SH 350 \& FM 820 NE of Big Spring |
| Northwest | FM 10.58 | 23 | M 1094 | 4 | Deaf Smith | US 385, PM 1058 \& 1062 S of Vega |
| West | IH 10 | 35 | MS 152 | 24 | Hudspeth | IH 10 West of Van Horn |
| West | US 277 | 21 | M 1003 | 7 | Edwards | US 277 \& SH55 South of Sonora |
| West | US 137 | 21 | M 1103 | 7 | Glassoock | SH 158 \& 137 West of Garden City |
| West | fM 181 | 23 | M 1100 | 6 | Ector | SH 302, SH 158, \& FM 181 N of Odessa |
| South | IH 37 | 22 | L 371 | 16 | Live Oak | IH 37 North of Three Rivers |
| South | US 83 | 7 | M 1159 | 15 | Zavala | US 83 \& PM 1025-N of Crystal City |
| South | IH 10 | 24 | MS 164 | 3 | Fayette | IH 10 East of Schulenburg |
| South | US 57 | 14 | M 1130 | 15 | Frio | US 57 \& FM 140 NW of Pearsall |
| South | SH 123 | 9 | M 1498 | 15 | Wilson | SH 123 \& FM 1681 North of Stockdale |
| South | SH 71 | 6 | M 904 | 14 | Bastrap | SH 21 \& 71 West of Bastrop |
| South | FM 140 | 8 | M 1130 | 15 | Frio | US 57 \& PM 140-NN of Pearsall |
| East | IH 10 | 10 | M 1200 | 12 | Harris | IH 10 West of SH 6 Houston |
| East | IH 45 | 7 | MA 16 | 12 | Harris | IH 45-N or Houston |
| East | US 59 | 15 | L 72 | 11 | Nacogdoches | US 59 - South of Nacogdoches |
| East | SH 155 | 7 | M 72 | 10 | Smith | US 271 \& SH $155-$ NE of Tyler |
| North | IH 35 | 15 | M 1149 | 18 | Denton | IH 35N N of SH 114 Interchange |
| North | IH 20 | 7 | $\begin{aligned} & M 181 \\ & \text { or }_{1180} \end{aligned}$ | 18 | Dallas | IH 20 West of Dallas |

Table 7 - Continued

| Region | Highway <br> Mmber | Percent <br> Truck | Station <br> Code | District | County | Renarks |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- |
| North | US 82 | 22 | M 278 | 3 | Baylor | US 82 \& 183 West of Wichita <br> Falls |
| North | US 277 | 6 | M 167 | 3 | Wichita | US 287 Wichita River Bridge |
| North | SH 14 | 14 | M 1144 | 17 | Robertson | SH 6 \& 14 South of Bremond |
| North | MM 407 | 8 | M 1089 | 2 | Wise | US 287 \& FM 407 - SE of Decatur |

## DATA COLLECTION SYSTEM

This section describes an enhanced procedure for collecting, reducing, and analyzing heavy truck data using the Texas Truck Weighing Program. The discussion builds upon the procedure in use prior to this project and suggests certain additions and corrections to it in light of the findings of this effort. This discussion is based upon the use of the existing WIM equipment being used by the Department. Experience gained using this equipment should be a key factor in establishing standards for subsequent equipment purchases.

The following discussion is divided into two sections, each of which is in turn split into several topics. First, a discussion of the types of data analysis that the enhanced system will support. The purpose of this discussion is to show how the data collected by the Texas Truck Weighing Program can be used to satisfy the Department's needs. Second, a discussion of how the existing system for stratifying data could be simplified and still meet weight data reporting and analysis requirements. And finally, a stepwise description of the overall system, including the procedures and equipment necessary for implementation. The purpose of this is show how the Department can improve the collection, analysis, and storage of the data.

## INFORMATION REQUIREMENTS

The State Department of Highways and Public Transportation (SDH\&PT) expends a great deal of effort collecting traffic data to satisfy a wide variety of internal and external needs. Among other things, the Department routinely collects data on traffic volumes, vehicle classification, and truck weights in response to these needs:

Internal needs include: estimates of annual average daily traffic (AADT), vehicle-miles traveled (VMT), and equivalent axle loads (EAL) for specific roadway segments as well as averages for functional classes and regions. These are used to design new facilities, program maintenance, and 50 forth.

External needs include data used by other State agencies and the Federal Government, especially the United States Department of Transportation. This information is used to trace national trends, develop reports to Congress, plan for future transportation programs, and assess the effectiveness of existing national programs.

Table 8 contains a summary of traffic data (volume, classification, and weight) requirements usually associated with these needs. This is not intended to be an exhaustive examination of data uses but instead a description of data requirements covering the broadest possible span of individual uses. An analysis of the data requirements in Table 8 shows that three general types of traffic data are required.

Background data are essentially state wide averages for AADT, Vehicle Classification, Vehicle Speed, and Vehicle (and axle group) Weight. These may be also be categorized by functional class, by region, or by urbanized area. This can be thought of as planning type data.

## Table 8: Heay Truek Traffic Data Reouhrements

| Departmental Function |  |
| :---: | :---: |
| Roadvary Management \& Maintenance | Maintence |
|  | TSM Projects |
|  | Safety |
|  | Environmental Impact Statmnt |
|  | Enforcement |
| System Planning \& Design | Trend Analysis |
|  | Project Programming |
|  | Project Design |
|  | Environmental Impact Statmit |
| Adninistrative$\&$ Research | Research |
|  | System Usage <br> Fund Allocation |
|  | System Usage Trend Analysis |
|  | Public Policy \& Legislation |


| Traffic Volume | Classification | Truck Weight |
| :---: | :---: | :---: |
| Site Specific AADT | Average by Functional Class | Average EAL by Functional Class |
| Site Specific AADT \& Turn Volumes | Average by Functional Class | None |
| Site Specific AADT \& Turn Volumes | Average by Functional Class | None |
| Site Specific AADT \& VIT | Site Spececific by Functional Class | None |
| Site Specific AADT | Site Specific by Special Use | Vehicle Specific Weight \& Size Data |
| AADT and VMI by Functional Class | Ave Veh Class by Functional Class by year | Ave EAL by Vehicle Class By Functional Class |
| Site Specific AADT \& MMI | Site Specific Vehicle Class | Ave EAL by Functional Class |
| Site Specific AADT and Functional Class | Site Specific Vehicle By Veh and Func Class | Site Specific EAL's |
| Site Specific AADT \& VMI | Average Vehicle Class by Functional Class | None |
| AADT and VMI by Functional Class | Vehicle Class by Functional Class | Detailed Volume, Weight Classification, etc, |
| VII by Functional Class | Average by Functional Class | Ave EAL and Gross Wt by Veh and Functnl Class |
| WMT by Functional Class | Average by Functional Class | Ave EAL and Gross Wt by Veh and Functnl Class |
| VMI by Functional Class | Average by Functional Class | Ave EAL and Gross Wt by Veh and Funcntl Class |

Site-specific data are related to a given roadway segment. These are the data usually associated with the planning, design, and maintenance of a specific roadway segment. These include: AADT, UMT, Vehicle Classification and EAL's. In addition these may include, vehicle and EAL distribution by lane. This is design type data.

Vehicle-specific data are usually associated with research and/or enforcement of weight/size restrictions. These data are of emerging importance with regards to the Department's expanded activity in assisting the Department of Public Safety and with the Department's own oversize and overweight permit program. This category is enforcement type data.

The enhanced Truck Weighing Program will satisfy all of these data requirements, depending upon how the results are presented. Once the data are in hand and archived (as specified below), it is a matter of retrieving the data and generating the appropriate report.

## DATA STRATIFICATION

The results of this study suggest that the current Texas data collection stratifications can be consolidated somewhat. This can take place during the collection process or during the data reduction process depending upon the wishes of the Department. Based upon the results of this study the following are suggested:

The suggested Texas stratification by road class (Interstate, US Numbered, Texas Numbered, and Farm to Market) is not directly comparable to the preferred stratification of the sites (Interstates, Principal Arterial, Minor Arterial, and Collector). This is because there is not a one-to-one correspondence between the two. That is, an "Interstate" may be a US Numbered highway like US-59 north of Houston, and so forth. The reason for the grouping suggested in this report is that it would have been very difficult to determine the relative road mileage by the preferred grouping -- it was difficult enough by the more obvious highway numbering system. This can be "fixed" by regrouping the sites, after one or two years of data are collected, and filling-in any under represented road-class.

The existing Texas vehicle classification system contains more vehicle types than the proposed system. The proposed stratification tends to consolidate the more unusual types into other classes. The Texas percentages were obtained from manual counts at the existing six WIM stations.

If the purpose is to estimate average weights, the classification system can be compacted even further. Because of the predominance of 352 's in the combination vehicles and light trucks in the single unit class, and the fact that only those vehicles with axle loads in excess of 3,000 pounds are weighed, a more workable classification is single unit vehicle and combination vehicles in excess of 6,000 pounds.


WIM DATA COLLECTION SYSTEM
Figure 4

## Table 9: Vehicle Type Classifications

|  | National | Texas |
| :---: | :---: | :---: |
| Passenger Vehicles: |  |  |
| Standard Car | 42.0\% | 47.8\% |
| Small Car | 18.0 | -- |
| Motorcycle | . 5 | . 3 |
| Bus | . 3 | . 4 |
|  | 60.8 | 48.4 |
| Single Unit Trucks: |  |  |
| 2 axle, 4 tire | 18.0 | 23.8 |
| 2 axle, 6 tire | 2.5 | 4.3 |
| 3 or more axles | . 3 | . 9 |
|  | 20.8 | 28.9 |
| Combination Trucks |  |  |
| 3 axle | . 6 | . 6 |
| 252 (most common 4 axle) | . 9 | 1.2 |
| Other 4 axle | . 7 | . 5 |
| 352 (most common 5 axle) | 12.6 | 19.5 |
| Other 5 axle | . 9 | . 6 |
| 6 or more axles | . 4 | . 3 |
|  | 15.1 | 22.7 |

## DATA COLLECTION SYSTEM

The suggested procedure for collecting, reducing, and storing the WIM data is a four phase process, numbered 1 through 6 on Figure 4. Each of these phases consists of three or more processes or steps. Phases 1 and 2 existed before the study began. Phases 3 and 4 were implemented during the study as a result of the evaluation effort. A description of each, along with suggestions for improvement, follows:

## Phase-1: Data Collection

As a vehicle rolls over the WIM weight sensor assembly, which has been previously embedded in the pavement at considerable expense, an electric impulse is generated and communicated to an attached microcomputer (IBM PC-XT) located in a near by trailer. A program (written in FORTH) in the microcomputer interprets the data and stores it on a hard-disk. In general, data collection at a site begins at 00:00:00 (midnight) and proceeds until 24:00:00. Data collected at the site includes:

Administrative:

| Sequence Number | - For that day beginning with 1 |
| :--- | :--- |
| Location and Operator | - Operator may change during day |
| Date | - Matches file name |
| Time record is taken | - To the nearest second |

Summary Information:
Lane -
Speed -
Gross Vehicle Weight -
Vehicle Configuration

- From 2 to 4 lanes
- Recorded to the nearest MPH.
- Recorded to the nearest 100 lbs. Accurate to the nearest 2,000 lbs.
- Based upon input table.

Detail Information:
Axle weights -
Axle Spacing -
Weight Violations

- Recorded to the nearest 100 lbs. Accurate to the nearest 2,000 lbs.
- Recorded to the nearest 0.1 ft . Accurate to the nearest 1.0 ft .
- Gross weight, bridge formula, etc. Not recommended

The information from the weight sensing assembly is combined with information resident within the computer (for example, time and date) to form the complete data record. The exact layout for records from the existing RADIAN equipment is shown in Appendix - B.

Losing the contents of the hard-disk has been a source of problems. This could be solved by obtaining a tape back-up unit for the equipment and dumping the hard-disk to tape at the end of the day. (This is well worth the $\$ 1,000$ in cost.) Otherwise, this operation goes smoothly, when the equipment is working as specified.

## Phase-2: Transmittal to D-19

When the field crew returns to Austin, the microcomputer, used to collect the data, is connected to the D-19 mainframe computer (IBM) and the data are transmitted to permanent storage. From time to time these data are combined with other records and sent to the FHWA to produce W-Tables. 【The additional sites suggested by this evaluation will increase the quality of the results greatly.) From time to time listings of the daily records stored upon the $\mathrm{D}-19$ computer are transmitted to the Technical Support Group for their review.

This has been a source of problems in the past. Data has been lost, the host computer is difficult to communicate with, etc. Some of these problems would be solved by shifting to the VAX computer system. Additionally, the data would then be more accessible to personnel in the field.

## Phase-3: Oriqinal Data Archive

A major weakness of the existing system is the fact that it would be difficult to get detailed information in the hands of researchers and others who require it. Storing each day's data on a set of floppy-disks and/or micro-tape and then organizing the disks/tapes into a data library is recommended highly. This should be done by someone other than the field crew responsible for collecting the data and could be accomplished using the back-up tapes instead of the hard-disk.

## Phase-4: Statistical Analysis

The statistical analysis phase serves two purposes. First, it gives the D-10 staff the opportunity to examine the data for quality control purposes. Second, it affords the possibility for on-the-spot analysis of data for enforcement, research, and/or design purposes. The analysis is accomplished as follows:

Step-1: The individual floppy disks for the daily records on the hard disk) are processed with a DECODE program. (The program listing is in Appendix - A.) This program looks for errors in the data (illogical data combinations) and extracts: lane number, speed, gross vehicle weight, number of axles, and vehicle type.

Step-2: The summary, detail, and EAL records are passed through an editor for possible corrections, deletions and additions. Any word processing program with the ability to read and manipulate nondocument, ASCII files, is used for this purpose. (As the field crew gained experience and RADIAN Corp. corrected some errors in the data capture program, this became unnecessary.)

Step-3: These records are then read into LOTUS 1-2-3, a powerful spread sheet program. LOTUS has extensive data manipulation and statistical analysis capability along with the ability to produce plots of the results. Plots of vehicles per lane, distributions of gross vehicle weights, vehicle speeds are produced with LOTUS along with a statistical analysis of the data.

This phase should be improved in the following ways. First, and most important, purchase a copy of LOTUS 1-2-3 Release 2.1. This version will accommodate up to 8,000 trucks per day; the current version can read in only 2024 and this is smaller than some of the available samples. Second, the DECODE program should be given the capability to produce distributions of axle (singles, doubles, etc.) weights. Third, DECODE, could be recoded in the " $C$ " language for portability and speed.

Figure 5 contains an example of a summary record produced by DECODE. Figure 6 shows a statistical summary of GVW and Speed distributions. Figure 7 shows example plots of the same distributions.

Figure 5
Typical Output From Decode
Seguin - December 12, 1984

```
3,68,36688,5,"3-S2"
1,50,35424,3,"SU-2"
2,66,34744,5,"3-S2"
1,66,68136,6,"3-S1-T2"
4,56,31016,5,"3-S2"
4,50,30768,3,"SU-2"
1,63,44688,5,"3-S2"
4,53,30232,2,"SU-1"
1,58,30976,3,"2-S1"
1,70,75784,5,"3-S2"
2,60,34680,4,"2-S2"
1,67,49184,5,"3-S2"
1,57,72456,5,"3-S2"
4,53,34608,5,"3-S2"
1,62,62664,5,"3-S2"
1,62,50216,6,"3-S1-T2"
1,66,35336,5,"3-S2"
4,52,21336,2,"SU-1"
3,66,72400,5,"3-S2"
3,62,74328,5,"3-S2"
4,60,73960,5,"3-S2"'
4,58,35072,5,"3-S2"
4,54,9568,2,"SU-1"
4,56,43192,5,"3-S2"
1,51,23360,3,"SU-2"
4,58,14520,2,"SU-1"
3,68,36440,5,"3-S2"
3,62,13128,2,"SU-1"
1,56,68536,2,"SU-1"
4,56,33128,5,"3-S2"
1,64,78184,5,"3-S2"
2,61,72480,5,"3-S2"
1,54,15456,2,"SU-1"
1,63,79080,5,"3-S2"
2,58,80064,5,"3-S2"
1,50,26800,4,"2-S2"
4,66,37344,3,"SU-2"
1,53,33400,5,"3-S2"
2,53,33400,5,"3-S2"
4,63,43856,5,"3-S2"
1,59,32456,5,"3-S2"
1,58,46544,5,"2-S1-T2"
1,59,65256,5,"3-S2"
4,60,12968,2,"SU-1"
1,60,15320,2,"SU-1"
1,51,56288,5,"3-S2"
1,52,70648,5,"3-S2"
4,66,73264,5,"3-S2"
1,59,13712,2,"SU-1"
1,61,43320,5,"3-S2"
```



Figure 7


Gross Vehicle Weight Distribution


## CONCLUSIONS AND RECOMMENDATIONS

The proposed enhancements described in the previous sections should provide a framework for improving the quality of the data resulting from the activities of the Texas Truck Weighing Program. In fact, many of the suggestions implemented during the conduct of the study resulted in immediate improvements. (For example, the results from program DECODE assisted RADIAN in fixing a "bug" in the data collection program.) These improvements were procedural; because improvements in the quality of the overall results will not be apparent until data are available from all of the proposed sites.

So far as further efforts to improve the Texas Truck Weighing Program are concerned, and assuming that the Department will continue to add WIM sites according to the analysis in this report, there are three specific areas deserving of some work.

1. There is no doubt that the WIM equipment will undergo improvements over the coming years. In this regard, the RADIAN equipment should set the standard by which additional equipment is judged. There seems little point in obtaining equipment that does not measure truck weights at least as accurate as the original equipment. Other experiments, such as the RTAP scale comparison near Seguin, should be used to "certify" new equipment before it is purchased.
2. One major problem that remains is the fact that, while $D-10$ Research is gathering a much larger quantity of substantial more accurate data, the information is not getting into the hands of the users. First, getting the data into usable form is not always easy. And second, "selling" others on the need to use the the latest and best data available is not always easy.
3. Dnce the twenty-six sites are in place and a year's worth of data gathered, the problem of how many sites are required (remember we estimated the distribution by road class) and their location needs to be reworked using the procedure described in this report. This may show that, more or less sites are needed, or that they need to be redistributed.
4. Finally, the DECODE program needs to be expanded to output distributions of axle weights so that they can be converted the Equivalent Axle Weights (EAL's) for immediate use by designers.

## REFERENCES

Peat, Marwick, Mitchell \& Co. Development of a Statewide Traffic Counting Program Based Upon the Highway Performance Monitoring System. Prepared for the Federal Highway Administration, Office of Highway Planning. Washington, D.C.: August, 1984

Kish, L. Survey Sampling. John Wiley \& Sons. 1965.
Yoo, C. S. and Reiss; M. L. "Sampling Procedure Using Multistate Traffic Records to Sellects Accident and Exposure Data-Collection Sites." TRR 683, 1977, pp 6-9.

Borland International. TURBO PASCAL 3.0. Scotts Valley, California, 1985

## AFFENDIX $X A$

Program DECODE -- TURED Pascal 3.0 Program

```
Frogram Decode: { Latest Version: August 10, 1985 }
```



```
    This Frogram decodes SDH&FT WIM data from Fadian Corp. Scales
    and converts it to LOTUS 1-2-3 compatable data. Developed by:
        Don Maxwell
        Texas Transportation Institute
        Texas A&M University
        College Station, Texas 77843
        409/845-1717
{$C-.U-}
const
    Bell : Char = "g;
    IOerr : Boolean = False;
    Writekey : Boolean = False:
    Fieadkey : Boolean = False;
    BtSequence : Integer = -1;
var
    Cmd : Char:
    WIMFath : String[16];
    WIMFile : File;
    SuMFile : Text;
    WIMFathName : String[1S];
    WIMFileName : String[13];
    SUMFileName : String[1S];
    FirstRecord : array[0..6S] of Integer:
    SecondFecord : array[0..63] of integer:
    Number0fRecords : Integer;
    CurrentFiecord : Integer:
    DutputRecords : Integer;
    Sequence
    Hr,min,sec,mo,da,yr : Integer:
    Lane,MPH,Axles : Integer:
    SiteOperator : String[16];
    GVW : real:
    Spc : Array[0.. 12] of Fieal:
    WtLt,WtFit,WtAx : Array[1..12] of Integer:
    Vtype : String[7];
    Buffer : String[80];
Type
    Frompt = string[80]:
{------------------------------------------------------------------------------
Frocedure EuildWorkScreen:
}
    Build the working sereen layout and default notes
3
var
    Inde: :Integer;
begin
```

```
{ ----- Build Command Window}
    ClrScr:
    gotoxy(1,1); write(Chr (201));
    for Index:=2 to 79 do write(chr (205));
    Write(Chr (187)):
    gotoxy(20,1);write(" DEEUG Ver S.O: Enter Command From Menue "):
    for Index:=2 to 4 do
    begin
        gotaxy(1:index);write(chr(186)):
        gotoxy(80, index); write(chr(186));
    end:
    gotoxy(1,5); write(chr(200));
    for index:=2 to 79 do write(chr(205));
    write(chr(188)):
{ ---- and Fut in Text }
    gotoxy(3,3): write("I: Dpen WIM Input File");
    gotoxy(3,4); write("0: Dpen FFN Output File");
    gotoxy(54,4);write("Q: Quit & Close Files');
    gotoxy(27,2); write('F: Find 1-st WIM Fecord");
    gotoxy(27,3):write('S: Find Seq No. O or 1');
    gotoxy(27,4);write('N: Decode next WIM Record");
    gotoxy(3,2); write("F: Set Fath to WIM File");
    gotosy(54,5);write("A: Start Auto File Scan");
{----- Build the File Info Window}
    gotoxy(1,10); for index:=1 to 80 do write(chr (196));
    gotoxy(2,11); write('Input File: E:\Vyymmdd.WIM');
    gotaxy(36,11); write('Length = Records');
    gotoxy(60.11); write("Current Record = ");
    gotoxy(1,12); write("Output File: ');
    gotoxy(1,13): for index:=1 to 80 do write(chr (205));
{----- Build Record Sequence/Date/Time Window}
    gotony(1,17): for index:=1 to 80 do write(chr(196));
{---- Build Axle Data Summary Window.}
    gotony(3,18): write('Lt Wt: ");
    gotoxy(3,19): write('Ft Wt: ");
    gotoxy(1,20); write("Axle Wt: ");
    gotoxy(1,21); Write('Axle Spacing: *);
end:
{---------------------m----------m-------------------------------------
procedure ClrActMsg;
begin
    gotoxy(1,9):clreol
end:
{--------------------------------------------------------------------------
procedure ActMsg(msg:prompt);
{
    Write Action message on line % of the screen
3
begin
```

```
    gotony(1,9):ClrEol;
    Write(msg)
end;
```



```
Procedure ErrMsg(msg:prompt);
{
    Write any error message on line 24 of the screen
3
begin
    gotoxy(1,24):ClrEol:
    write(bell,msg)
end:
{-------------------------m--------------------------------------------------
Function StopScan :Boolean;
{
    Stop Scan by Fressing the Space-Bar
}
const
    blank :Char = " ';
var
    Ch: Char:
begin
    stopscan:=fal se;
    If keypressed then begin
        read(kbd,Ch):
        if ch=' " then stopscan:=true;
end end;
{----------------------------------------------------------------------------
Procedure IOcheck:
{
    Chect: for IDerrors and print messages.
}
var
    IDcode :Integer:
    Ch :Char;
Begin
    IOcode:=IOresult:
    IOerr:=(IOcode<>0);
    if IDerr then begin
        case IOcode of
            $01 :errmsg('File does not exist'):
            $02 :errmsg('File not open for input');
            $03 :errmsg('flie not open for output');
            $04 :errmsg("File not open');
            $10 :errmsg('Error in numeric format"):
            $20 :errmsg('Operation not allowed on logical device');
            $21 :errmsg("Not allowed in direct mode"):
            $22 :errmsg("Assign to standard files not allowed");
            $90 :errmsg('Fecord length mi smatch');
            $91 :errmsg('Seek beyond end-of-file');
            $99 :errmsg('Unexpected end-Of-file');
```

```
                $f0 :errmsg('Disk write error');
                $f1 :errmsg('Directory is full'):
                $f2 :errmsg("File size overflow');
                &ff :errmsg('File disappeared'):
            else {part of case}
                errmsg("Unknown I/O error: ")
            end; {of case}
    ActMsg!"Fress any key to continue..... "):
    read(kbd,ch)
    end {end of then begin....?
End;
{-----------------------------------------------------------------------
Frocedure GracefulHalt;
begin
If writekey then close(SumFile):
if readkey then close(WimFile);
ActMsg(" All Files Closed Upon Frogrammed Halt.....');
gotoxy(1,8): halt
end:
```



```
Frocedure FeadCommand(var CindFi:Char);
{
    Fead, check and decode Action Commands
}
const
```



```
begin
    gotoxy(1,6);ClrEol;
    gotoxy(31,6);write('Command: ");
    write(bell); {beep to get attention}
    repeat {read and screen for valid commands}
        gotoxy (40,6); read (Kbd, CmdRd); CmdFid:=UpCase (CmdFd);
        gotoxy(40,6);write(CmdRd);
        if not(cmdrd in Cmdset)
            Then Actmsg("Unrecognized Command, Try Again....")
    until (CmdRd in CmdSet):
    gotoxy(1,24);clreol;ClrActMsg; {Clear Messages}
end;
{--------------------------------------------------------------------------------
Frocedure GetWimFath;
{
    Set the Fath for the WIM Data File
}
const
    DefaultFath ='E:\';
begin
    ActMsg("Fress Feturn to accept Default Fath Name...... ");
```

```
    gotoxy(23,7);write('Input Fath Name: ");
    gotoxy(40,7);write(DefaultFath); gotoxy(40,7);
    FeadLN(TFM, Buffer);
    if ( length(Euffer) = 0 ) then WIMFathName:=DefaultFath
    else WIMPathName:=Buffer;
    gotony(14,11);write(WIMFathname);
    gotoxy(1,7);clreol;clractmsg;
    ChDir(WIMFathName)
    end:
```



```
procedure OpenInputFiles
{
    Open the WIM Input Data File and check for errors
}
const
    Default = "V840725':
    FtWim = '.WIM":
    drive :integer=0;
var
    InputFileName : String[0%];
begin
    ActMsg("Press Feturn to accept Default File Name...... *);
    gotoxy(23,7);write("Input File Name: ");
    WIMFil eName: =Default:
    gotoxy(40,7);write(WIMFileName);gotoxy(40,7);
    ReadLN(TFM, Buffer);
    If(length(Buffer)<1)
        then WIMFileName:=Default
        el se WIMFil eName: =Buffer;
    WIMfileName:=concat(wimfil ename+ptwim);
    gotoxy(14,11);write(WIMFathName,WIMFileName);
    gotoxy(1,7);clreol;clractmsg;
{$I-}
    Assign(WimFile,WIMFileName); IDcheck;
    Reset(WimFile);IOcheck;
{$I+}
    if not lDerr then begin
        NumberOfFecords:=Filesize(WIMfile);
        CurrentFecord: =Filepos(WIMfile);
        gotoxy(45,11);write(NumberOfRecords);
        gotoxy(77,11);write(CurrentRecord):
        Readkey:=true:
    end
    else Gracefulhalt
end; {of OpenInputFile Froc}
```



```
Frocedure WriteSummaryRecord;
```

```
{
    Write The Next Summary File Record to Disk.
}
const
    qc : char = ',':
    qq : char = ";'
Begin
{I-}
writeln(Sumfile,lane:1,qc,MFH:2,qc,gvw: b:0,qc, axles:2,qc,qq,vtype,qq);
{I+}
if not IDerr then begin
    OutputFecords:=0utputrecords+1;
    gotony(77,12):write(Dutputrecords);
    end
else GracefulHalt
end; {of WriteSummaryRecord Proc}
```



```
Frocedure OpenOutputFile;
{
    Open the Summary File and set Writekey to True.
}
var
    Default : String[09];
    OutputFileName : String[09];
Begin
    ActMsg('Fress ENTEF to Accept Default File Name ..... ");
    Default:="A:S"+copy(wimfilename, 2,6);
    gotoxy(22,7);write('Dutput File Name: ',Default);
    gotoxy(40,7);
    ReadLN(TFM, OutputFil eName):
    if (length(OutputFileName)<1)
        then SumFileName:=Default
        else SumFileName:=0utputFil eName;
    SumFileName: =SumFileName+'. FFN';
    gotoxy(14,12);write(SumFileName);
    gotoxy(1,7);ClrEol;
{I-}
    Assign(Sumfile,SumFileName):IDcheck;
    Rewrite(SumFile);IDcheck;
{I+}
    if not IDerr then begin
        Writekey:=true;
        OutFutFiecords:=0;
        gotoxy(77,12);write(outputrecords);
        WriteSummaryRecord;
        ClrActMsg:
    end
    else Gracefulhalt
    end: {of open Dutput File Froc}
```



```
function cvi(i:integer):integer:
{
    Function to convert FORTH binary data into "normal"
    format. Note that "i" is a switch associated with
    sequence.
3
var
    cv: integer:
begin
if (i>0) then
    begin
        cv:=hi(firstrecord[i]):
        cvi:=cv*256+lo(firstrecord[i])
    end
else
    begin
        i:=-i; cv:=hi (secondrecord[i]);
        cvi:=cv*256+10(secondrecord[i])
end end;
```



```
procedure ReadNextWimRecord;
{
    Get the next valid WIM record in the data-set
}
const
    SiteOprtr :String[16]= 'looks OK!";
var
    Seq,Zero,Dne : Integer:
    LoChr,HiChr : Char;
    Index:Ia : Integer:
{----- Get type "0" Fiecord.}
{$I-}
begin
repeat
    Bl ockFead (WimFile,firstrecord, 1);IDcheck;
    if ioerr then GracefulHalt;
    CurrentRecord:=Filepos(Wimfile);
    gotoxy(77,11);write(currentrecord);
    zero:=lo(firstrecord[0]):yr:=lo(firstrecord[11]):
until (zero=00) and ((yr=84)or (yr=85));
{机}
EEq:=cvi(1);
mo:=hi(firstrecord[11]);da:=lo(firstrecord[12]);
hr:=hi (firstrecord[12]);min:=lo(firstrecord[13]);
sec:=hi(firstrecord[13]):
{----- Determine site and operator}
delete(siteoprtr,1,16):
for index:=2 to }9\mathrm{ do begin
```

```
    lochr:=Chr(lo(firstrecord[index]));
    hichr:=Chr(hi (firstrecord[index]));
    SiteOprtr:= siteoprtr+lochr+hichr;
    SiteOperator:=SiteDprtr:
end;
gotomy(1,14);clreol:
write('Seq No.: ',seq:4,
    * Time:',hr:2,':'min:2,':',sec:2,
    " Date:',mo:2,'/',da:2,'/',yr:2,' Site: ',SiteOprtr);
Sequence:=seq;
{----- Fead a type "1" card if axles>6 }
axles:=cvi(14);
if (axles>b) then begin
{I-}
    Bl ockRead(WimFile,SecondRecord, 1): IDcheck;
    If INerr then GracefulHalt;
    CurrentFecord:=FilePos(WimFile);
    gotoxy{77,11);write(CurrentRecord);
{I+}
    one:=10(secondrecord[0]);
    if (one<>1) then begin
        axles:=0;
        Errmsg("Second Record Expected Eut Not Found. ')
        end
end; end; {of ReadNextRecord Froc}
{-------------------------------------------------------------------
Frocedure SummerizeVehicleData;
{
    Gather Vehicle Summary Data from Current Record
}
const
    TD : real=6;
var
    index,ia : integer;
begin
    lane:=cvi (10)+1;
    mph:=cvi(16);
    gvw:=cvi (19);g\veew:=gvw*B;
    axles:=cvi(14);
for index:=1 to axles do Begin
    if index<=6 then begin
        ia:=30+(index-1)*6;
        Spc[index-1]:=cvi(ia)*0.1;ia:=ia+1;
        WtLt[index]:=cvi(ia)*8;ia:=ia+1;
        WtFt[index]:=cvi(ia)*8;ia:=ia+1;
        WtAx[index]:=cvi(ia)*8;ia:=ia+1
        end
```

```
    else begin
        ia:=(3+(index-7)*6);
        spc[index-1]:=cvi(-ia)*0.1;ia:=ia+1;
        WtLt[index]:=cvi(-ia)*8;ia:=i a+1;
        WtFit[index]:=cvi (-ia)*8;ia:=ia+1;
        WtAx[index]:=cvi(-ia)*8;ia:=ia+1
    end;
end:
{-----Determine vehicle type}
vtype:='?-?-?';
if axles=2 then vtype:='SU-1';
if axles=3 then begin
if spc[2]<TD
    then vtype:='SU-2*
    else vtype:='2-S1"
end;
if axles=4 then begin
    if(spc[2]<TD) and (Spc[S]<TD)then vtype:='SU-S':
    if(spc[2]<TD) and(spc[3]>TD) then vtype:='3-S1';
    if(spc[2]>TD) and (spc[3]<TD) then vtype:='2-52';
    if(spc[2]>TD) and (spc[3])TD) then vtype:='2-T2';
    end;
if axles=5 then begin
    if(spc[2]<TD) and (spc[3]>TD) and(spc[4]<TD) then vtype:='3-52';
    if(spc[2]>TD) and (spc[J]<TD) and (spc[4]<TD) then vtype:='2-S3';
    if(spc[2]>TD) and(spe[3]>TD) and(spc[4]>TD) then vtype:="2-S1-T2';
    end;
if axles=6 then begin
    if(spc[2]<TD) and (spc[3]<TD) and (spc[4])TD) and (spc[5]<TD) then vtype:="4-52';
    if(spc[2]<TD) and (spc[3]>TD) and (spc[4]<TD) and (spc[5]<TD) then vtype:='3-53';
    if (spc[2]<TD) and (spc[3]>TD) and (spc[4]>TD) and (spc[5]>TD) then vtype:=>3-S1-T2;;
    end:
if axles=7 then begin
    if(spc[2]<TD) and (spc[3]<TD) and (spc[5]<TD) and (spc[6]<TD) then vtype:= * 4-S3';
    if (spc[2]<TD) and (spe[4]<TD) and (spc[5]<TD) and (spc[6]<TD) then vtype:='J-54*;
    end;
{----- Write Type ?-?-? and Axles>6 to printer }
    if (Vtype=`?-?-?') or (axles>6) then begin
        writeln(lst):
        writeln(lst:*Seq No.: *sequence:4;
            * Time:',hr:2,'`,'min:2,*:',sec:2,
            Date:',mo:2,'/',da:2,'/',yr:2," Site: ',SiteOperator);
        writeln(lst,"Lane: ",lane," MPH: ",mph," GVW: ",gVw:G:0,
            * Axles:',axles:2,' Type: ',vtype);
        write(lst, 'Lt Wt: ");
        for index:=1 to axles do write(lst,wtlt[inden]:6);writeln(lst);
        write(lst,'Rt Wt: ');
```

```
        for index:=1 to axles do write(lst,wtrt[index]:6);writeln(lst);
        write(lst,'Axle Spacing:');
        for index:=1 to axles-1 do write(lst,spc[index]:6:1);writeln(lst);
    end;
{----- Write the results on the screen}
gotoxy(1,16); clreol;
writel'Lane: ',lane," MPH: ',mph,' GVW:',gVw:6:0,
            Axles:',axles:2,' Type: ',vtype);
gotoxy(11,18); clreol;
for index:=1 to axles do write(wtlt[index]:6);
gotoxy(11,19); clreol;
for index:=1 to axles do write(wtrt[index]:6);
gotoxy(11,20); clreol;
for index:=1 to axles do write(wtax[index]:6);
gotoxy(14,21); clreol;
for index:=1 to axles-1 do write(spc[index]:6:1);
end; { of Summarize Data Froc)
{---------------------------------------------------------------
Frocedure FindZeroSequence;
{
    Look for the next Zero Sequence No. or Break: In Sequnece
3
begin
ActMsg(`Press Space Bar to Halt Sequence Search ..... ');
repeat
ReadNextWimRecord;
If axles>0 then SummerizeVehicleData;
until (sequence=00) or (sequence<=BkSequence)
    or (stopscan) or eof(WIMfile);
if eof(WIMfile) then GracefulHalt;
clractmsg
end; {of FindZero Froc}
{------------------------------------------------------------------
procedure FindNextWimRecord;
{
    Look for the first valid WIM Record and Decode
}
begin
ReadNextWimFiecord;
If axles>0 then SummerizeVehicleData;
if writekey then WriteSummaryFecord;
if eof(wimfile) then GracefulHalt
end; {of next record Froc}
{-----------------------------------------------------------------
procedure AutoScanFecords;
{
    Scan through the records until E-0-F or a Key is pressed.
}
```

```
begin
ActMsg('Fress Space Bar to Halt AutoScan ..... ");
repeat
FindNextWimFiecord;
until stopscan;
ClrActMsg
end; {of AutoScan Proc}
```



```
begin
    ClrScr;
    BuildWorkScreen;
    readkey:=fal se;writekey:=false;
{-----Loop through the commands until stopped with a "Q" }
    repeat
        ReadCommand (Cmd);
        case Cmd of
            'I': if not Readkey
                then OpenInputFile
                else Actmsg('Input File Already Dpen, TFY AGAIN....*):
            '0': if not writekey
                then OpenOutputFile
                else Actmsg('Output File Already Open, TRY AGAIN....');
            "F': FindNextWimFiecord;
            'N': FindNextWimRecord;
            "S': FindZeroSequence;
            'A': AutoScanRecords;
            'P': GetWimPath
        end:
    until (Cmd='Q');
    GracefulHalt
end. {Of program Decode}
```


## APPENDIX - E

## Record Lay-out for RADIAN Corporation WIM Files

This information was furnished by RADIAN Corporation to SDH\&PT during previous work with the RADIAN WIM equipment by the SDH\&PT and was made available to TTI in support of this research project. It describes the data file sequence and record layout for information generated and transferred to disk by the RADIAN WIM equipment located at the six existing sites.
-

## SPECIFICATIONS

for

# VEHICLE CLASSIFICATIDN \& WEIGHT SYSTEM SOFTWARE (DATA FILE FORMAT) 



## GENERAL:

 following software format for i: sigh-imomotior data fales cortaimed orm pages $E$ through 8 .

## Fage

WIM data files are named as follows:
FYYMIMDD. WIM
ALL FILES ARE fREFIXED WITH "F" (FOR PORTAELE SYSTEM)
AND SUFFIXED WITH THE EXTENSION ".WIM"
$Y Y=$ TWO DIGITS FOR YEAR
MM = TWO DIGITS FOR MONTH
$D D=$ TWO DIGITS FOR DAY (af month)

## EXAMPLE:

```
PG40706.WIM = all vehicle data recorded or July E, 1984.
```

THE FILES ARE RECORDED ON DUAL-SIDED, DUAL-DENSITY $5-1 / 4$." DISKETTES ( $3 E Q$ KE CAPACITY) UNDER THE FILE STRLICTURE CREATED EY IEM FC-DOS, VERSION E.1. THEREFORE, THEY SHOLILD EE AELE TO RE: READ BY THE SAME DISK DFERATING SYSTEM OR EOUIVALENT.

ALTHOUGH IBM DISKS ARE FORMATTED WITH S1E EYTES FER SECTOR, THE STANDARD IEM LOGICAL RECORD CONSISTS OF 1 EE EYTES. WITHIN A FILE, A VEHICLE RECORD CONSISTS OF EITHER ONE OR TWO COMFLET: LOGICAL RECORDS, DEFENDING ON THE NUMEER OF VEHICLE AXLES. A VEHICLE RECORD WITH SIX OR FEWER AXLES REQUIRES ONE LDGICGL RECORD (1EB BYTES), WHEREAS A VEHICLE RECORD WITH 7 THROUGH 1 E AXLES REQUIRES TWO COMFLETE LOGICAL RECORDS (ESE BYTES). THE FIRST BYTE IN A LQGICAL RECORD INDICATES WHETHER THE LOGICAL RECDRD IS THE FIRST (AND, FERHAFS. ONLY) LOGICAL RECORD IN A VEHICLE RECORD OR WHETHER IT IS THE SECOND LOGICAL RECORD IN A VEHICLE RECORD (FOR A VEHICLE WITH MORE THAN SIX AXILES). IN THE FIRST CASE, THE VALUE OF THE FIRST EYTE IN A LOGICAL RECORD IS ZERD (Q); IN THE SECOND CASE, THE VALUE OF THE FIRST BYTE IS ONE: (1).

THE FORMAT OF A VEHICLE RECORD, AS RECORDED ON DISK, IS DEDICTED IN FIGURES 1 AND E. WITH SOME FEW EXCEPTIONS (TO BE INDICATED) VEHICLE DATA IS RECORDED AS 1G-BIT BINARY INTEGER DATA. THEREFORE, FOR CLARITY, FIGURES 1 AND $\Xi$ ARE IN $1 G-B T T$ "WORD" FORMAT, ALTHOUGH EYTE BOUNDARIES ARE INDICATED.

| SOFTWARE SPECIFICATIONS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Weight records must be stored on floppy disk in the followng binary format: |  |  |  |  |
| FORMAT FOR DISK RECORD |  |  |  |  |
|  | EYTE NO. |  |  | $\begin{aligned} & \text { EYTE } \\ & \text { NG. } \end{aligned}$ |
| LOGICAL RECORD NUMEER | 01 | 0000000 | 0000000 | 008 |
| VEHICLE SEQUENCE NUMEER | 20 | 16-ETT | Integer | 12E |
| SITE (ASCII CHAR.) | 05 | END char | $15 T$ CHar | 24 |
| SITE (ASCII CHAR.) | 07 | 4 TH CHAF | 3RD C¢AR | 26 |
| SITE (ASCII CHAR.) | 89 | ETH CHAR | ETH CHAR | 08 |
| SITE (ASCII CHAR.) | 11 | 8 TH CHAR | 7TH CHAR | 12 |
| SITE (ASCII CHAR.) | 13. | 1 10TH CHAR | 9TH CHAR | $x=$ |
| SITE (ASCII CHAR.) | 15 | 1 ETH CHAR | 11 TH Char | 14. |
| OFERATOR | 17 | END CHAR | $15 T$ Char | 1 E |
| OFERATOR | 19 | 4 TH CHAR | 3RD CHAR | 10 |
| vehicle lane (v. Lane) <br> (IE: $D=L N-1 ; 1=L N-E ; E=L N-3 ; 3=L N-4$ | E1 | $16-\mathrm{BIT}$ | NTEGER | 20 |
| VEHICLE DATE AND TIME (V.D\&T) <br> IE. QQDOD 1100 E FOR DECEMEER | ЕЗ | MONTH | YEAR | 2 こ |
| VEHICLE DATE AND TIME (V.D\&T) IE. OR100 1101 E FOR 1 FM | 2s | HOUR | DAY | 24. |
| VEHICLE DATE AND TIME (V.D\&T) | e7 | SECONDS | MINUTES | 26 |
| no. of axles detc. e scle (V.num) | еэ | 16-EIT I | NTEGER | 20 |
| *STATUS EITS (V. STAT) | 31 | VIOLATIONS | SCALES | $3 \%$ |
| INITIAL SPEED ESTIMATE (V.SFD) | 33 | 16-EIT I | NTEGER | 3 E |
| WHLEASE (Q. 1 FT INC.) (V.WBASE) | 35 | 16-EIT I | NTEGER | 34 |
| *OVRAL LEN. (D. 1 FT INC.) (V. OLEN) | 37 | 16-BIT I | NTEGER | 36 |

[^0]Fig. 1-1. Disk Record Format, Logical Record.


ECT. up to 6 axies.

* Not required, store zeros in these locations

Fig. 1-2. Disk Record Format, Logical Record.


ECT. up to $1 E$ axles

Fig. E. Disk Record Format, Logical Record E; Required only for vehicle with mare than $E$ axles.

A UEHICLE RECORD IS COMFRISED OF TWO FARTS: VEHICLE DATA AND AXLE DATA. EASIC VEHICLE AND SITE/TIME DATA OCCLIFY THE FJRGT SE EYTES OF A RECORD. THE REMAINDER OF THE VEHTCLE RECORD IS FILLED WITH AXLE DATA, WITH DATA FOR EACH AXLE REDUIRTNG IE EYTES. THUS, A VEHICLE RECORD FOR GN N-AXLE VEHICLE REOUTMES

```
56 + 1EN EYTES (ZSNSG)
```

IF A END LQGICAL RECQRD IS REQUTRED (FOR A VEHICLE WITH MORE THAN $\in$ AXLES), THE FIRST TWO EYTES OF THE END LOGICAL RECORD ARE REQUIRED FOR "HOUSEKEEFING" INFORMATION: IN THIS CASE, A VEHICLE RECORD REQUIRES

```
58 + 1EN BYTES (7\leqN\leq12)
```

ALL BYTES NOT REQUIRED FOR A VEHICLE RECORD (AT THE END OF A LOGICAL RECORD) ARE FILLED WITH A NUMERIC VALUE OF ZERO.

THE FOLLOWING TABLES DEFINE THE PARAMETERS INDICATED IN FIGURES 1 AND 2 .


| NAME | \# WORDS | FARAMETER DESCRIFTION |
| :---: | :---: | :---: |
| V.FIRST | 1 | -first axle |
| V. LAST | 1 | -last axde \# |
| V. GLEN | 1 | -axle group lerigth (d. it ft imerements) |
| *V. GWET | 1 | -axle craup weight (e lo increments) |
| *V. XWGT | 1 | -excess weight (lbs) |

Axle Data FGrmat

| *A. STAT | 1 | axle status bit mask: <br> bit: D off-scale indicator during weighirg <br> 1 left wheel weight cioutled (rigght igmorned) <br> E right wheel weight deubled (left igmored) <br> 3 scale buffer overficw <br> 4 excessive speed charge <br> 5 axle querweight |
| :---: | :---: | :---: |
| A. SFD | 1 | axle speed (mph) |
| A. SFACE | 1 | spacing (Q. 1 ft ) from pricr axle <br> - if mo speed estimate avali. <br> - if first vehicle axle |
| A. LWGT | 1. | left wheel weight ( $\%$ It imeremerts) |
| A. RWGT | 1 | right wheel weight (B lb incremerts) |
| A. FWGT | 1 | axle weight ( $\theta$ ib imcrements) -ircludes doublimg |

* NOT REQUIRED, STORE ZEROS IN THESE LOCATIONS


## APPENDIX - $C$

Rank Ordering of Existing Count Locations by Diversity Index

Notes:

1. Region 1 is Northwest; 2 is West; 3 is South; 4 is East; and 5 is North
2. Based upon 1983 Vehicle Classification Data Furnished by the SDH\&PT.者





| REGION | PERCENT | HIGHWAY | OBS. | LOCATION | D.I. | RANK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | HIGH | IH | 124 | M-1083 | . 373412 | 1 |
|  |  |  | 429 | MS-1 | . 369537 | 2 |
|  |  |  | 13 | L-201 | . 352758 | 3 |
|  |  |  | 461 | MS-153 | . 338878 | 4 |
| 1 | HIGH | US | 12 | L-149 | . 381903 | 1 |
|  |  |  | 375 | M-1302 8 | . 367947 | 2 |
|  |  |  | 371 | M-1301 8 | . 365173 | 3 |
|  |  |  | 370 | M-1301 4 | . 354412 | 4 |
|  |  |  | 462 | MS-158 | . 349218 | 5 |
|  |  |  | 165 | M-1106 8 | . 346097 | 6 |
|  |  |  | 163 | M-1106 4 | . 342762 | 7 |
|  |  |  | 373 | M-1302 3 | . 326938 | 8 |
|  |  |  | 139 | M-1904 1 | . 320188 | 9 |
|  |  |  | 85 | M-954 A | . 308060 | 10 |
|  |  |  | 141 | M-1094 5 | . 285801 | 11 |
| 1 | MEDIUM | SH | 161 | M-1105 6 | . 281820 | 1 |
|  |  |  | 159 | M-1105 2 | . 277350 | 2 |
|  |  |  | 160 | M-1105 5 | . 172100 | 3 |
| 1 | HIGH | FM | 142 | M-1094 7 | . 262256 | 1 |
|  |  |  | 140 | M-1094 3 | . 259825 | 2 |
| 2 | HIGH | IH | 460 | MS-152 | . 375370 | 1 |
|  |  |  | 435 | MS-14 | . 357588 | 2 |
|  |  |  | 9 | L-101 | . 349252 | 3 |
|  |  |  | 23 | M-173 A | . 341170 | 4 |
|  |  |  | 353 | M-1267 | . 335836 | 5 |
|  |  |  | 25 | M-178 A | . 334042 | 6 |
| 2 | HIGH | US | 95 | M-1003 5 | . 334044 | 1 |
|  |  |  | 90 | M-1002 1 | . 326770 | 2 |
|  |  |  | 93 | M-1003 1 | . 313292 | 3 |
|  |  |  | 92 | M-1002 5 | . 296770 | 4 |
| 2 | HIGH | SH | 155 | M-1103 1 | . 336500 | 1 |
|  |  |  | 157 | M-1103 5 | . 278936 | 2 |
|  | HIGH | FM | 151 | M-1100 8 | . 300145 | 1 |
|  |  |  | 154 | M-1101 6 | . 267149 | 2 |
| 3 | HIGH | IH | 18 | L-371 | . 369726 | 1 |
|  |  |  | 258 | $\mathrm{m}-1158$ | . 355251 | 2 |
|  |  |  | 10 | L-102 | . 354094 | 3 |
|  |  |  | 465 | MS-164 | . 352679 | 4 |
|  |  |  | 450 | MS-54 | . 342922 | 5 |
|  |  |  | 347 | M-1249 | . 336065 | 6 |


| 3 | LOW | IH | 257 | M-1130 4 | . 196214 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | MEDIUM | US | 210 | M-1130 | . 297481 | 1 |
|  |  |  | 391 | M-1311 8 | . 291284 | 2 |
|  |  |  | 385 | M-1310 3 | . 289172 | 3 |
|  |  |  | 208 | M-1130 2 | . 280086 | 4 |
|  |  |  | 387 | M-1310 7 | . 277864 | 5 |
|  |  |  | 389 | M-1311 4 | . 266365 | 6 |
|  |  |  | 455 | MS-121 | . 264576 | 7 |
|  |  |  | 376 | M-1305 1 | . 261769 | 8 |
|  |  |  | 378 | M-1305 5 | . 254704 | 9 |
|  |  |  | 46 | M-905 8 | . 248660 | 10 |
|  |  |  | 44 | M-905 3 | . 247844 | 11 |
|  |  |  | 53 | M-913 5 | . 247623 | 12 |
|  |  |  | 57 | M-914 7 | . 246306 | 13 |
|  |  |  | 51 | M-913 1 | . 240146 | 14 |
|  |  |  | 40 | M-901 8 | . 237200 | 15 |
|  |  |  | 218 | M-1135 8 | . 221493 | 16 |
| 3 | MEDIUM | SH | 422 | M-1498 5 | . 275548 | 1 |
|  |  |  | 420 | M-1498 1 | . 270219 | 2 |
|  |  |  | 296 | M-1210 1 | . 253408 | 3 |
|  |  |  | 54 | M-913 8 | . 251308 | 4 |
|  |  |  | 201 | M-1125 1 | . 247130 | 5 |
|  |  |  | 37 | M-901 3 | . 240146 | 6 |
|  |  |  | 254 | M-1158 2 | . 233627 | 7 |
|  |  |  | 215 | M-1134 7 | . 232790 | 8 |
|  |  |  | 203 | M-1125 6 | . 228150 | 9 |
|  |  |  | 362 | M-1287 8 | . 223051 | 10 |
|  |  |  | 256 | M-1158 7 | . 222103 | 11 |
|  |  |  | 202 | M-1125 2 | . 219060 | 12 |
|  |  |  | 360 | M-1287 3 | . 214267 | 13 |
|  |  |  | 198 | M-1124 2 | . 207172 | 14 |
|  |  |  | 445 | MS-28 | . 193894 | 15 |
|  |  |  | 199 | M-1124 4 | . 185691 | 16 |
|  |  |  | 114 | M-1042A 7 | . 179715 | 17 |


| 3 | LOW | SH | 43 | M-904 8 | . 226000 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 41 | M-904 3 | . 224542 | 2 |
|  |  |  | 42 | M-904 6 | . 209196 | 3 |
|  |  |  | 299 | M-1210 6 | . 202978 | 4 |
|  |  |  | 297 | M-1210 2 | . 199530 | 5 |
|  |  |  | 86 | M-957 1 | . 196050 | 6 |
|  |  |  | 219 | M-11372 | . 193485 | 7 |
|  |  |  | 220 | M-1137 6 | . 193464 | 8 |
|  |  |  | 45 | M-905 6 | . 192301 | 9 |
|  |  |  | 289 | M-1189 4 | . 183456 | 10 |
|  |  |  | 200 | M-1124 6 | . 181182 | 11 |
|  |  |  | 217 | M-1135 7 | . 176035 | 12 |
|  |  |  | 470 | M-1309 | . 170052 | 13 |
|  |  |  | 88 | M-957 | . 163226 | 14 |
|  |  |  | 290 | M-1189 8 | . 153570 | 15 |
|  |  |  | 204 | M-1129 2 | . 121725 | 16 |
|  |  |  | 298 | M-1210 5 | . 099332 | 17 |
|  |  |  | 403 | M-1316 3 | . 093122 | 18 |
|  |  |  | 405 | M-1316 7 | . 091941 | 19 |
|  |  |  | 207 | M-1129 7 | . 066221 | 20 |
|  |  |  | 451 | MS-69 | . 050565 | 21 |
|  |  |  | 205 | M-1129 4 | . 027118 | 22 |
|  |  |  | 206 | M-1129 5 | . 015591 | 23 |
| 3 | LOW | FM | 209 | M-1130 4 | . 196215 | 1 |
|  |  |  | 421 | M-1498 4 | . 181676 | 2 |
|  |  |  | 328 | M-1232 3 | . 174077 | 3 |
|  |  |  | 413 | M-1318 7 | . 158901 | 4 |
|  |  |  | 258 | M-1159 3 | . 150427 | 5 |
|  |  |  | 377 | M-1305 2 | . 134404 | 6 |
|  |  |  | 211 | M-1130 8 | . 121068 | 7 |
|  |  |  | 112 | M-1042A 3 | . 111441 | 8 |
|  |  |  | 390 | M-1311 6 | . 098100 | 9 |
|  |  |  | 383 | M-1308 | . 075923 | 10 |
|  |  |  | 404 | M-1316 5 | . 073865 | 11 |
|  |  |  | 402 | M-1316 1 | . 074420 | 12 |
|  |  |  | 379 | M-1307 1 | . 054315 | 13 |
|  |  |  | 221 | M-1137 8 | . 035581 | 14 |
|  |  |  | 408 | M-1317 5 | . 034366 | 15 |
|  |  |  | 288 | M-1189 3 | . 028934 | 16 |
|  |  |  | 286 | M-1188 6 | . 027485 | 17 |
| 4 | MEDIUM | IH | 292 | M-1200 | . 279280 | 1 |
|  |  |  | 472 | MS-117 | . 244569 | 2 |



| 5 | HIGH | US | 29 | M-278 6 | . 366095 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 27 | M-278 3 | . 365427 | 2 |
|  |  |  | 3 | L-20 | . 358425 | 3 |
|  |  |  | 133 | M-1089 4 | . 348887 | 4 |
|  |  |  | 33 | M-675 4 | . 348887 | 5 |
|  |  |  | 134 | M-1089 8 | . 347322 | 6 |
|  |  |  | 26 | M-278 1 | . 345335 | 7 |
|  |  |  | 35 | M-675 8 | . 322026 | 8 |
|  |  |  | 344 | M-1240 | . 301910 | 9 |
|  |  |  | 342 | M-1240 4 | . 301508 | 10 |
| 5 | LOW | US | 473 | MS-167 | . 241842 | 1 |
|  |  |  | 283 | M-1183 | . 219080 | 2 |
|  |  |  | 418 | M-1497 5 | . 214736 | 3 |
|  |  |  | 351 | M-1254 8 | . 210732 | 4 |
|  |  |  | 281 | M-1183 3 | . 205809 | 5 |
|  |  |  | 260 | M-1161 2 | . 199494 | 6 |
|  |  |  | 349 | M-1254 4 | . 187462 | 7 |
|  |  |  | 263 | M-1162 2 | . 176606 | 8 |
|  |  |  | 222 | M-1142 3 | . 161102 | 9 |
|  |  |  | 224 | M-1142 7 | . 155793 | 10 |
|  |  |  | 439 | MS-17 | . 150331 | 11 |
|  |  |  | 306 | M-1217 3 | . 146778 | 12 |
|  |  |  | 137 | M-1090 4 | . 143243 | 13 |
|  |  |  | 307 | M-1217 7 | . 142334 | 14 |
|  |  |  | 135 | M-1090 2 | . 141335 | 15 |
|  |  |  | 423 | MA-1 | . 060937 | 16 |
| 5 | LOW | FM | 306 | M-1089 3 | . 211622 | 1 |
|  |  |  | 307 | M-1142 5 | . 197189 | 2 |
|  |  |  | 341 | M-1218 5 | . 185383 | 3 |
|  |  |  | 305 | M-1163 3 | . 183597 | 4 |

## NOTE:

D.I. = DIVERSITY INDEX

OBS = NUMBER REFERRING TO THE LINE NUMBER IN THE ORIGINAL DATA FILE.

| Region | I.H. | U.s. | Texas | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 344 | 2,618 | 1,918 | 7,806 | 12,686 |
| 2 | 704 | 2,921 | 1,826 | 5.507 | 10,864 |
| 3 | 605 | 2,885 | 3,713 | 8,689 | 15,998 |
| 4 | 600 | 2,104 | 3,150 | 8,326 | 14,181 |
| 5 | 51 | 1,889 | 2,629 | 7,195 | 12.E35 |

Total Mileage in Each Region as a Proportion of Total State Mileage, Before and After Adjustment

| Region | Before <br> Adjustment | After <br> Adjustment |
| :---: | :---: | :---: |
| 1 | 0.156 | 0.086 |
| 2 | 0.224 | 0.187 |
| 3 | 0.140 | 0.140 |
| 4 | 0.121 | 0.121 |
| 5 | 0.087 | 0.124 |
| 6 | 0.071 | 0.141 |
| 7 | 0.116 | 0.075 |
| 8 | 0.085 | 0.126 |
| Total | 1.000 | 1.000 |

C-6

Mileage in Each Region Subject to 55 MPH by Type of Facility

| Region | Interstate | U.S. | Texas | Farm to <br> Market | Loop | Spur | Dirt <br> Road | Total |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| 1 | 232.5 | $2,076.8$ | $1,581.7$ | $6,474.5$ | 28.6 | 3.5 | 17.3 | $10,414.9$ |
| 2 | 715.0 | $2,237,1$ | $3,186.1$ | $8,478.3$ | 50.6 | 262.2 | 6.1 | $14,935.4$ |
| 3 | 322.3 | $1,314.0$ | $2,076.8$ | $5,449.8$ | 64.6 | 121.1 | 2.4 | $9,351.0$ |
| 4 | 248.3 | $1,341.8$ | $1,566.3$ | $4,827.7$ | $-0-$ | 69.6 | 12.2 | $8,065.9$ |
| 5 | 279.0 | $1,353.7$ | 840.6 | $3,327.7$ | $-0-$ | $-0-$ | $-0-$ | $5,801.0$ |
| 6 | 459.9 | $1,566.6$ | 804.9 | $1,917.9$ | $-0-$ | $-0-$ | $-0-$ | $4,749.3$ |
| 7 | 466.7 | $1,498.1$ | $1,579.3$ | $4,160.7$ | $-0-$ | 17.1 | $-0-$ | $7,721.9$ |
| 8 | 56.9 | 944.1 | $1,622.7$ | $2,935.6$ | 23.5 | 57.9 | 11.3 | $5,652.0$ |
| Total | $2,780.6$ | $12,332.2$ | $13,258.4$ | $37,572.2$ | 167.3 | 531.4 | 49.3 | $66,691.4$ |
| Percent |  |  |  |  |  |  |  |  |
| of | 0.041 | 0.185 | 0.199 | 0.563 | 0.003 | 0.008 | 0.001 | 1.00 |
| Total |  |  |  |  |  |  |  |  |

Mileage in Each Region, After Adjustment, Subject to 55 MPH by Type of Facility

| Region | Interstate | U.S. | Texas | Farm to <br> Market | Loop | Spur | Dirt <br> Road | Tota1 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| 1 | 194.7 | $1,176.1$ | $1,062.9$ | $3,281.4$ | 6.2 | 3.5 | 8.4 | $5,733.2$ |
| 2 | 693.0 | $1,717.2$ | $2,705.4$ | $7,008.6$ | 50.6 | 259.6 | 6.1 | $12,440.5$ |
| 3 | 322.3 | $1,314.0$ | $2,076.8$ | $5,449.8$ | 64.6 | 121.1 | 2.4 | $9,351.0$ |
| 4 | 248.3 | $1,341.8$ | $1,566.3$ | $4,827.7$ | $-0-$ | 69.6 | 12.2 | $8,065.9$ |
| 5 | 301.0 | $1,873.6$ | $1,321.3$ | $4,797.4$ | $-0-$ | 2.6 | $-0-$ | $8,295.9$ |
| 6 | 497.7 | $2,467.3$ | $1,323.7$ | $5,111.0$ | 22.4 | $-0-$ | 8.9 | $9,431.0$ |
| 7 | 390.6 | 967.5 | $1,018.2$ | $2,624.2$ | $-0-$ | $-0-$ | $-0-$ | $5,000.5$ |
| 8 | 133.0 | $1,474.7$ | $2,183.8$ | $4,472.1$ | 23.5 | 75.0 | 11.3 | $8,373.4$ |
| Tota1 | $2,780.6$ | $12,332.2$ | $13,258.4$ | $37,572.2$ | 167.3 | 531.4 | 49.3 | $66,691.4$ |

## Districts

Arms trong ..... 4
Bailey ..... 5
Briscoe ..... 25CarsonCastroChildress
Cochran
Collingsworth
Cottle
Crosby
Dallam
Dawson
Deaf Smith
Dickens
Donley
Floyd
Foard
Gaines
Garza
Gray
Hale
Hall
Hansford
Hardemen
Hartley
Hemphill
Hockley
Hutchinson
King
Knox
Lamb
Lipscomb
Lubboch
Lynn
Moore
Motley
Ochiltree
01 dham
Parmer
Potter
Randall
Roberts
Sherman
Swisher
Terry
Wheeler
Yoakum

| Anderson | Wichita |  |
| :---: | :---: | :---: |
| Archer | Wilbarger | 2 |
| Baylor | Wise | 3 |
| Bowie | Wood | 10 |
| Camp | Young | 18 |
| Cass |  | 19 |
| Cherokee |  |  |
| Clay |  |  |
| Collin |  |  |
| Cooke |  |  |
| Dallas |  |  |
| Delta |  |  |
| Denton |  |  |
| Ellis |  |  |
| Erath |  |  |
| Fannin |  |  |
| Franklin |  |  |
| Grayson |  |  |
| Gregg |  |  |
| Harrison |  |  |
| Henderson |  |  |
| Hood |  |  |
| Hopkins |  |  |
| Hunt |  |  |
| Jack |  |  |
| Johnson |  |  |
| Kaufman |  |  |
| Lamar |  |  |
| Marion |  |  |
| Montague |  |  |
| Morris |  |  |
| Navarro |  |  |
| Palo Pinto |  |  |
| Panola |  |  |
| Parker |  |  |
| Rains |  |  |
| Red River |  |  |
| Rockwal1 |  |  |
| Rusk |  |  |
| Smith |  |  |
| Somervell |  |  |
| Tarrant |  |  |
| Throckmoton |  |  |
| Titus |  |  |
| Upshau |  |  |
| Van Zandt |  |  |

Counties

|  |  | 11 |
| :--- | :--- | ---: |
| Angelina | Nacogdoches | 12 |
| Austin | Newton | 17 |
| Brazoria | Orange | 20 |
| Brazos | Polk |  |
| Burleson | Robertson |  |
| Chambers | Sabine |  |
| Freestone | San Augustine |  |
| Fort Bend | San Jacinto |  |
| Galveston | Shelby |  |
| Grimes | Trinity |  |
| Hardin | Tyler |  |
| Harris | Walker |  |
| Houston | Waller |  |
| Jasper | Washington |  |
| Jefferson |  |  |
| Leon |  |  |
| Liberty |  |  |
| Madison |  |  |
| Matagorda |  |  |
| Milam |  |  |
| Montgomery |  |  |
|  |  |  |
| Counties |  |  |
|  |  |  |
| Bastrop |  |  |
| Bell |  |  |
| Blanco |  |  |
| Bosque | San Saba |  |
| Brown | Stephens |  |
| Burnet | Willis |  |
| Caldwell |  |  |
| Coleman |  |  |
| Comanche |  |  |
| Coryell |  |  |
| Eastland |  |  |
| Falls |  |  |
| Gillespie |  |  |
| Hamilton |  |  |
| Hays |  |  |
| Hill |  |  |
| Lampasas |  |  |
| Lee |  |  |
| Limestone |  |  |
| Llano |  |  |
| Mason |  |  |
| McCulloch |  |  |
| McLennan |  |  |
|  |  |  |

Area 3
Districts

Newton 12
Orange 20
Robertson
Sabine
San Augustine
San Jacinto
Shelby
Trinity
Tyler
Walker
Waller
Washington

## Districts

San Saba 14
Stephens
23

Travis
Williamson

Caldwell
Coleman
Comanche
Coryell
Eastland
Falls
Gillespie
Hamilton
Hays
Hill
Lampasas
Lee
Limestone
Llano
Mason
McCulloch
McLennan

| Borden | Shackelford | 7 |
| :--- | :--- | :--- |
| Callahan | Sterling | 8 |
| Coke | Stonewall |  |
| Concho | Sutton |  |
| Crockett | Taylor |  |
| Fisher | Tom Green |  |
| Glasscock |  |  |
| Haskell |  |  |
| Howard |  |  |
| Irion |  |  |
| Jones |  |  |
| Kent |  |  |
| Kimble. |  |  |
| Menard |  |  |
| Mitchell |  |  |
| Nolan |  |  |
| Reagan |  | Runnels |
| Schleicher |  |  |
| Scurry |  |  |

## Area 6

|  |  |  |
| :--- | :--- | ---: |
| Andrews | Martin | 6 |
| Brewster | Midland |  |
| Crane | Pecos |  |
| Culberson | Presidio |  |
| Ector | Reeves |  |
| El Paso | Terrell |  |
| Hudspeth | Upton |  |
| Jeff Davis | Ward |  |
| Loving | Winkler |  |
|  |  |  |
|  |  |  |
|  |  |  |
| Area 7 |  |  |
| Bandera |  |  |
| Bexar | Kinney | 13 |
| Calhoun | La Salle | 22 |
| Colorado | Lavaca |  |
| Comal | Maverick |  |
| Dewitt | McMullen |  |
| Dimmit | Medina |  |
| Edwards | Real |  |
| Fayette | Uvalde |  |
| Frio | Val Verde |  |
| Gonzales | Victoria |  |
| Guadalupe | Wharton | Wilson |
| Jackson | Zavala |  |
| Kendall |  |  |


| Aransas | 16 |
| :--- | :--- |
| Bee | 21 |
| Brooks |  |
| Cameron |  |
| Duval |  |
| Goliad |  |
| Hidalgo |  |
| Jim Hogg |  |
| Jim Wells |  |
| Karnes |  |
| Kenedy |  |
| Kleberg |  |
| Live Oak |  |
| Nueces |  |
| Refugio |  |
| San Patricio |  |
| Starr |  |
| Webb |  |
| Willacy |  |
| Zapata |  |


[^0]:    * NOT REQUIRED, STORE ZEROS IN THESE LOCATIONS

