TECHNICAL	REPORT	STANDARD	TITLE	PAGE
. connere		JIANDAND	- 1 I I I I I I I I I I I I I I I I I I	1.401

u

1. Report No.	2. Government Access	ion No.	3. Recipient's Catalog No.		
FHWA/TX-86/ +414-1F					
4. Title and Subtitle			5. Report Date		
Field Evaluation of Geotext	iles Under Ba	se Courses	January 1986		
(Supplement)	6. Performing Organization Code				
7. Author's)			8. Performing Organization Report No.		
Tom Scullion and Eddie Chou	Research Report 414-1F				
 Performing Organization Name and Address Texas Transportation Instit 	10. Work Unit No.				
The Texas A&M University Sy	stem		11. Contract or Grant No.		
College Station, Texas 778	43	· · · · · · · · · · · · · · · · · · ·	Study No 2-8-83-414		
			13. Type of Report and Period Covered		
12. Sponsoring Agency Name and Address	· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	September 1982		
Texas State Department of H	ighways and P	ublic	Final - January 1986		
P = 0 Box 5051	Ton Framming		14. Sponsoring Agency Code		
Austin, Texas 78763			1		
¹⁵ Supplementary Notes Research performed in cooperation with DOT, FHWA. Research Study Title: Fabrics Under Base Courses.					
<pre>ing Weight Deflectometer and Dynamic Cone Penetration measurements were made. The FWD test was used to generate a load versus deflection plot for each pavement. The penetrometer indicated the layer strengths and effective base thickness. The pavement at the District 1 site consisted of a surface treatment and six inches of flexible base course over a poor clay subgrade. Analysis of the FWD de- flection data indicated that the section containing the geotextile was statiscally stronger than the control section. The cone penetrometer readings indicated effect- ive base thickenss of the experimental section was almost 1.5 inches thicker than the control section. This implies that, even under this very light traffic loadings, the geotextile has prevented soil intrusion into the base course. The pavement at the District 21 site consisted of 1.5 inches of Hot Mix, 12 inches of flexible base over a lime stabilized subgrade. In analyzing the data from the experimental and control sections no significant differences in performance were found. It is concluded from this study that geotextiles are cost-effective in stabil- izing lightly trafficked thin pavements over difficult subgrade. Further studies are required to determine where and when geotextiles can replace traditional soil stabilization procedures.</pre>					
Geotextiles, Falling Weight Deflectometer, Dynaflect, Dynamic Cone Penetrometer, Penetrometer, FWD data. No restrictions. This document is available to the public through the National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161					
19. Security Classif, (of this report)	20, Security Class	if. (of this page)	21. No. of Pages 22. Price		
Unclassified	Unclassif	ied	56		
Form DOT F 1700.7 (8-69)	.				

the second

FIELD EVALUATION OF GEOTEXTILES UNDER BASE COURSES

A SUPPLEMENT

by

Tom Scullion

and

Eddie Chou

Research Report 414-1F (Supplement) Research Study Number 2-10-83-414 Fabrics Under Base Courses

Sponsored by

Texas State Department of Highways and Public Transportation in cooperation with U. S. Department of Highways, Federal Highway Administration

January 1986

TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas

	Approximate C	onversions to M	etric Measures		33 0	ŀ	Approximate Con	versions from N	Aetric Measures	
Symbol	When You Know	Multiply by	To Find	Symbol		Symbol	When You Know	Multiply by	To Find	Symbol
		LENGTH			20			LENGTH		
in	inches	•2.5	centimeters	cm		mm	millimeters	0.04	inches	in
TT_	feet	30	centimeters	cm		cm	centimeters	0.4	inches	in
γđ	yards	0.9	meters	m	✓ -: ॾ - 8	m	meters	3.3	feet	ft
mi	miles	1.6	kilometers	km		m	meters	1.1	yards	yď
						km	kilometers	0.6	miles	mi
		AREA								
								AREA		
in²	square inches	6.5	square centimeters	cm²	o - <u> </u>					
ft ²	square feet	0.09	square meters	m³		cm ³	square centimeters	0.16	square inches	in ²
yd²	equare yards	0.8	square meters	m²		. m ¹	square meters	1.2	square vards	vd ²
mi²	square miles	2.6	square kilometers	km²		km ³	square kilometers	0.4	square miles	mi ²
	acres	0.4	hectares	ha	=	ha	hectares (10,000 m ²)	2.5	acres	
					5					
	!	MASS (weight)			3		M	ASS (weight)		
	A	20		-				• • • • •		
02 Ib	ounces	0 45	grøms kilnerome	9 1		9	grams	0.035	ounces	OZ
10	short tons	0.9	tonnes	t	* _ = = ?	Kg t	Kilograms tonnes (1000 kg)	2.2	pounds short tons	10
	(2000 10)							VOLUME		
		VOLUME						VOLUME		
					ω -Ξ ===	mi	milliliters	0.03	fluid ounces	fl oz
tsp	teaspoons	5	millilitors	m		1	liters	2.1	pints	pt
Tbsp	tablespoons	15	milliliters	ml		l l	liters	1.06	quarts	qt
floz	fluid ounces	30	milliliters	m	- <u>:</u> = •	1	liters	0.26	galions	gal
C	cups	0.24	liters	1		m'	cubic meters	35	cubic feet	ftð
pt	pints	0.47	liters	!	N S	m'	cubic meters	1.3	cubic yards	λq,
qt	quarts	0.95	litors	1						
gal	gallons	3.8	liters	1			TEMP	ERATURE (ex	act)	
11	cubic feet	0.03	cubic meters	m						
Aq.	cubic yards	0.76	cubic meters	m,	· · · · · · · · · · · · · · · · ·	°c	Celsius	9/5 (then	Fahrenheit	°F
	TEM	PERATURE (ex	act)				temperature	add 32)	temperature	
۴F	Fahrenheit	5/9 (after	Celsius	°c						
-	temperature	subtracting	temperature	-			°_		°	F
		32)					F 32	98.6	212	?
		-				-	40 0 40	80 120	160 200	
									,	
• • • in # •	54 (exectiv) For ou	har event conversio	and more detailed a	ables and	201		-40 -20 0	∡∪ '4U (NU BU 100) · · ·

°c

37

°c

METRIC CONVERSION FACTORS

* 1 in = 2.54 (exactly). For other exact conversions and more detailed tables, see NBS Misc. Publ. 286, Units of Weights and Measures, Price \$2.25, SD Catalog No. C13.10:286. ABSTRACT

This report describes a structural evaluation of two thin pavements which had a woven geotextile as a separator between base and subgrade. On both pavements Falling Weight Deflectometer and Dynamic Cone Penetration measurements were made. The FWD test was used to generate a load versus deflection plot for each pavement. The penetrometer indicated the layer strengths and effective base thickness.

The pavement at the District 1 site consisted of a surface treatment and six inches of flexible base course over a poor clay subgrade. Analysis of the FWD deflection data indicated that the section containing the geotextile was statistically stronger than the control section. The cone penetrometer readings indicated that the effective base thickness of the experimental section was almost 1.5 inches thicker than the control section. This implies that, even under this very light traffic loadings, the geotextile has prevented soil intrusion into the base course.

The pavement at the District 21 site consisted of 1.5 inches of Hot Mix, 12 inches of flexible base over a lime stabilized subgrade. In analysing the data from the experimental and control sections no significant differences in performance were found.

It is concluded from this study that geotextiles are cost-effective in stabilizing lightly trafficked thin pavements over difficult subgrade. Further studies are required to determine where and when geotextiles can replace traditional soil stabilization procedures.

IMPLEMENTATION STATEMENT

The results in this report indicate that geotextiles can be cost effective as separators in thin pavements over difficult subgrades. Under the action of construction equipment and normal traffic, soil from the subgrade can intrude into the base course markedly reducing its strength. The placement of a permeable fabric between the base and subgrade can help maintain design thicknesses. In 1984 prices these geotextiles cost between \$0.60 and \$0.80 per square yard.

DISCLAIMER

This report is not intended to constitute a standard, specification, or regulation, and does not necessarily represent the views or policy of the FHWA or Texas Department of Highways and Public Transportation.

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
2.	EVALUATION PROCEDURE. 2.1 Introduction. 2.2 Falling Weight Deflectometer. 2.3 Dynaflect. 2.4 Cone Penetrometer. 2.5 Analysis Procedure.	2 2 3 3 10
3.	RESULTS FROM SH186 IN DISTRICT 21 3.1 Site Description 3.2 Summary of Results	12 12 12
4.	RESULTS FROM RR3 IN DISTRICT 1. 4.1 Site Description. 4.2 Summary of Results. 4.3 Conclusions.	17 17 17 22
5.	CONCLUSIONS AND RECOMMENDATIONS	22
API A. B.	PENDICES Detailed Field Results From SH186 in District 21 Detailed Field Results From RR3 in District 1	

1. INTRODUCTION

As described in Research Report 414-1, "Testing Procedures, Specifications, and Applications for Geofabrics in Highway Pavements" $(\underline{1})$, the Texas Department of Highways and Public Transportation, as of August 1984, had nine projects in which geofabrics had been used on an experimental basis. Several of these projects used geomembranes (impermeable geofabrics) as vertical moisture barriers at the pavements edge to minimize moisture movements into expansive clay subgrades. These moisture barriers have reportedly ($\underline{2}$) reduced pavement roughness and increased life between overlays.

In other applications, a geotextile (permeable geofabric) had been placed between base and subgrade to act as a separator and possible reinforcing member. The mechanisms of separation and reinforcement are discussed in (1). In this project, investigations were made on two experimental sections which had a geotextile between subgrade and base course. Both projects were built and initially monitored by SDHPT personnel. The goal of this investigation was to use the Department's Falling Weight Deflectometer and Cone Penetrometer to determine what effect, if any, the geotextile is having on the pavement structure. The testing procedures are described in Section 2 of this report.

The two projects are located on SH186 in District 21 near Port Mansfield and on Recreational Road 3 in District 1 near Bonham. Site descriptions and a summary of results are presented in Sections 3 and 4. Detailed test results are given in the Appendices.

Neither project exhibited any significant visual distress at the time of testing.

2 EVALUATION PROCEDURE

2.1 Introduction

In this chapter, the equipment used to structurally evaluate the experimental sites will be described. These are the Falling Weight Deflectometer (FWD), the Dynaflect, and the Cone Penetrometer. The testing procedure used at the Bonham site was as follows:

- Twenty test locations were marked in the experimental and control sections. These being at 100 ft intervals in the outer wheel path.
- 2) Dynaflect readings were taken at all 20 test locations.
- 3) At each location Falling Weight Deflectometer reading were taken using four different drop weights, corresponding to loadings of 4500, 9000, 12000 and 15000 lbs.
- 4) From the FWD deflection results a strong, intermediate and weak location was selected in both the experimental and control section.
- 5. At these six locations the Dynamic Cone Penetrometer was driven through the pavement layers to a total depth of approximately 24 inches. The penetrometer was used to obtain an indication of the effective base thickness and relative layer strengths.

Note, the Dynaflect was not available at the SH186 site and only the Falling Weight Deflectometer and Dynamic Cone Penetrometer were used.

The Falling Weight Deflectometer, Dynaflect and Dynamic Cone Penetrometer are described in the following sections.

2.2 Falling Weight Deflectometer

The Deflectometer used in this project was the Department's Dynatest 8002 FWD (3) and its microcomputer which recorded and interpreted the measured loads and deflections. The FWD itself is a light-weight trailer mounted unit, as can be seen in Figure 1.

The FWD can deliver an impulse load of 1500 lbs to 24,000 lbs to a pavement. The impulse is essentially a half sine curve with a duration of 25 to 30 milliseconds. The load is transmitted to the pavement through a 12 in. diameter loading plate which rests on a thick rubber pad which is in contact with the pavement surface. In principle, the force applied to the pavement is dependent on the mass of the drop-weights used, the height of the drop, and the spring constants of the rubber pad as well as that of the overall pavement. In practice, however, only the mass of the drop-weights and/or the height of drop is varied. The actual load relayed to the pavement is measured by the load cell located just above the loading plate.

2

The deflection basin is obtained by monitoring the deflections at seven locations on the pavement surface using velocity transducers. One of these is located in an opening in the center of the loading plate.

In the tests, the height of drop and weight were adjusted to produce four different load levels - 4500 lbs, 9000 lbs, 12,000 lbs, and 15,000 lbs with the exact magnitude being registered by the load cell.

The deflections sensors were commonly spaced at one foot intervals. A typical set of deflection basins observed at the four different load levels is shown in Figure 2.

2.3 Dynaflect

The Dynaflect $(\underline{4})$ is currently the most commonly used NDT device in the United States for the purpose of pavement evaluation and design $(\underline{5})$. This equipment is a dynamic force generator mounted on a covered trailer, as can be seen in Figure 3. The cyclic force is produced by a pair of counter-rotating unbalanced flywheels and this force oscillates in a sine-wave fashion with an amplitude of 500 lbs at a cycle frequency of 8 cycles per second. This force, together with the dead weight of the trailer which is about 1600 lbs, is transmitted to the ground via two steel wheels placed 20 in. apart. The peak-to-peak deflections are measured by five geophones placed at 1 ft intervals with the first directly between the wheels. A typical deflection basin obtained is shown in Figure 4.

2.4 Dynamic Cone Penetrometer

The Dynamic Cone Penetrometer (DCP) $(\underline{6})$ consists of a steel rod with a 60° cone of tempered steel at one end. A sliding hammer of about 17.6 lbs falling over a height of 22.6 in. provided the consistent impact load required to penetrate the pavement. The penetration given as inches per blow gives an indication of the stiffnesses of the pavement layers. This instrument was found to be useful in comparing the stiffnesses of the base courses and subgrades encountered in this study. Figure 5 shows the DCP.

Figure 6 shows the typical results obtained from a DCP test. When passing through a base course, the penetration per blow is fairly constant. Once the subgrade is entered, the penetration per blow increases considerably. As shown in Figure 6, in this study the DCP was used to determine the effective base thickness on both the geotextile and control section. The aim being to determine if the geotextile was acting as a separator between base and subgrade. On weak subgrades clays often penetrate into the base course, reducing base thickness and overall pavement strength.

Figure 1. The Falling Weight Deflectometer

Figure 2. Typical deflection basin from the Falling Weight Deflectometer.

5

Figure 3. The Dynaflect

Figure 5. The Dynamic Cone Penetrometer (6)

The advantage of the DCP is that it is an inexpensive method of determining effective layer thickness and relative layer stiffness. Its disadvantage is that it is labor-intensive and slow.

2.5 Analysis Procedure

One aim of this testing is to determine if the Falling Weight Deflectometer, by applying gradually increasing loads, can determine if the geotextile is having any significant effect on the pavement structure. To accomplish this, the following steps were performed.

Figure 7. Typical FWD Load Versus Deflection

[For simplicity, a straight line was fitted through the available data points. In some cases the load versus deflection plot appears to be curved. Whether this is a true material response or a measurement problem is unclear. The curved load versus deflection plots are associated with pavements exhibiting high deflections, i.e., where the 15,000 lbs load caused a deflection of over 100 mils. However, the maximum range of the geophones used with the FWD was 80 mils. In general, when pavements had deflections less than 80 mils, a straight-line best represented the load versus deflection data.]

<u>Step 2</u>. Using the least squares line through the available data for each section calculate the following parameters:

- 1. The deflection at an FWD load of 4500 lbs
- 2. The deflection at an FWD load of 9000 lbs
- 3. The deflection at an FWD load of 12,000 lbs
- 4. The deflection at an FWD load of 14,000 lbs

5. The slope of the load versus deflection line in lbs/mil.

<u>Step 3</u>. Using a students t-test, determine if the mean deflection or slope of the geotextile section is significantly different from the mean of the control section, as shown below in Figure 8.

 μ , σ are mean and standard deviation

 Δ maximum deflection

Figure 8. Typical T-Test Results

(A separate test was performed for each of the parameters calculated in Step 2.)

<u>Step 4</u>. Compare effective base thicknesses from Cone Penetrometer Data. This analysis was performed on the data from the Bonham site only.

3 RESULTS FROM SH186 IN DISTRICT 21

3.1 Site Description

A section of SH186 near Port Mansfield, Texas, was reconstructed shortly after Hurricane Allan hit South Texas in early 1981. The section of highway was built on very poor subgrade soil, had a high water table, and was prone to flooding at high tide.

In rebuilding, the subgrade was stabilized with lime, a Mirafi geotextile (500X) was placed over the subgrade in the west bound lane, and 12 inches of granular base was added. In the eastbound lane no geotextile was used and the base thickness was reduced to 8 inches. Approximately one and a half inches of hot mix asphaltic concrete was placed as a surfacing. The as built section is shown in Figure 9.

At several locations, the geotextile was placed under the shoulder and two feet of the west bound travel lane. At other locations, the geotextile extended over the entire westbound lane. The purpose of the narrow geotextile sections was to determine if the geotextile could be used to prevent edge failures. These sections were not evaluated in this structural survey. Instead, a section was chosen in which the geotextile covered the entire travel lane.

The test procedure was as follows:

- a) A Falling Weight Deflectograph survey was made at 24 test points in the outer wheel path of the geotextile section. The test locations were marked with paint, they were 100 feet apart. Four drop heights corresponding to approximately 4500 lbs, 9000 lbs, 13,000 lbs, and 15,000 lbs, were used.
- b) The FWD testing was repeated at the 24 test locations in the adjacent east bound direction (no geotextile).
- c) Based on the FWD data, weak, strong, and intermediate test points were selected in the experimental and control sections. At these six locations, a Dynamic Cone Penetrometer test was made.

At the time of conducting this survey, no visual distress was apparent in either the experimental or control section. The detailed field results from this survey are shown in Appendix A.

3.2 Summary of Results

The analysis of the data collected on this section is complicated by the fact that the geotextile section had twelve inches of base course whereas the control only had eight inches.

The statistical analysis procedure described in a previous

Figure 9. Experimental Geotextile Section on SH186 in District 21

section was performed on the FWD data. For each test point the deflections corresponding to exactly 4000, 9000, 13,000, and 15,000 lbs and the slope of the load versus deflection graph were computed. A "T-test" was performed to determine if the distribution of deflection data was different between the experimental and control sections. The results of this analysis are shown in Table 1.

FWD	Mean FWD Sensor 1 Deflection (mils)			
Load (lbs)	Geotextile	Control	P-value	Statistical Significance
4500 9000 13,000 15,000	22.3 41.5 53.7 58.1	28.3 49.3 62.5 66.6	0.001 0.006 0.002 0.006	Yes Yes Yes Yes
Slope (lbs/mil)	295.0	272.0	0.20	No

Table 1	T Tost	Doculto	Enom	CU106	Toct	Cito.
lavie 1.	1-1956	Results	FLOID	20100	iest	Sile

[Note: The P-value is a statistical parameter used to evaluate if two mean values U_1 and U_2 belong to the same distribution, at the 95% significance level, if p < 0.05 conclude that the means are different; if p > 0.05 conclude no difference in means.]

At each of the 4 load levels, the geotextile section had significantly lower deflections than the control section. This is to be expected as it also had four inches of additional base course, and both had identical subgrade stabilization. The slopes of the load versus deflection curves were similar, the experimental requiring 295 lbs to cause one mil of deflection as opposed to 272 lbs in the control. These results indicate that the geotextile is having little effect on strengthening the pavement structure.

To assist with the analysis of the deflection data the Corp. of Engineers CHEVDEF (7) moduli back calculation program was used. This program calls a standard linear elastic program as a subroutine, iterations are performed to minimize the percentage error between the measured and computed deflection bowls. The bowls measured under the 9,000 lbs loading and the as built layer thicknesses were input into CHEVDEF. The measured versus computed deflection bowls and the corresponding layer moduli are shown below in Tables 2 and 3 respectively.

Distance from	Geotextil	e Section	Control Se	ection
Center of Load (ins)	Deflections (Mils) Measured Computed		Deflection (Mils) Measured Computed	
0 12 24 48 72	41.5 16.4 8.1 4.0 2.4	42.4 15.9 8.5 4.2 2.7	49.3 17.0 7.0 3.5 2.1	41.9 15.4 7.7 3.7 2.4

Table 2. Measured vs. Predicted Deflections

Table 3 Computed Elastic Moduli (psi)

	Geotextile	Control
Base	20,200	21,100
Súbgrade	12,100	13,300

For the purpose of the analysis the modulus of the 1.5 asphalt layer was fixed at 200,000 psi. The decision to fix the asphalt stiffness is because a) both sections have identical surfacings b) both are in good condition and c) the deflections were measured on the same day at the same temperature. As can be seen from the back calculated moduli values there is little difference between the layer moduli in the experimental and control section.

The cone penetrometer data taken on this section is shown graphically in Appendix A. The results of this testing are difficult to interpret. For instance, consider the results obtained at Station 1 in the Geotextile and Control Section, pages A6 and A9. At this location the geotextile is in the westbound lane and the control is in the eastbound. The control section penetrometer results, page A-6, show clear design thicknesses, a stabilized layer starting at approximately 8 inches below the surface and extending to approximately 14 inches, after which the untreated subgrade is entered. The penetrometer results on the section containing the geotextile (page A-9) do not show any distinct layer thicknesses. It appears on this section that a weak layer is entered at approximately 6 inches below the surface, no lime stabilized layer was found. However, at station 6 (geotextile section on page A-10) very distinct layer thicknesses were observed, the stabilized layer appears to occur between 13 and 19 inches from surface (under a 12 inch base and thin surface). Because of the variability of layer thicknesses and layer strengths, little can be inferred from the cone results about the effect the geotextile is having on the pavement structure.

4 RESULTS FROM RR3 IN DISTRICT 1

4.1 Site Description

Recreational Road 3 is a lightly trafficked two-lane highway near Bonham in District 1. It had become excessively rough primarily due to movements of the expansive subgrade. Several sections of the road had PSI values of less than 1.0. The original pavement structure corsisted of a surface treatment, six inches of flexible base on top of an untreated subgrade.

In September 1983, the base course was bladed off, and the subgrade leveled and recompacted. A geotextile (Mirafi 500X) was placed on the subgrade and the base course was replaced followed by a surface treatment. As shown in Figure 10 the experimental site was 1250 ft long, and a similar length control section was built with a 250 ft transition zone between them. The pavement structure is shown in Figure 11.

In July 1985, this experimental site was evaluated with a Dynaflect, Falling Weight Deflectometer, and Cone Penetrometer survey. The location of the test points are shown in Figure 10, all were in the outer wheel path. The test procedure was as follows.

- a. A Dynaflect survey was made at all 40 test points.
- b. A FWD survey was made immediately after the Dynaflect testing was complete. Four drop heights corresponding to approximately 4500 lbs, 9000 lbs, 12,000 lbs, and 14,000 lbs were used.
- c. Based on FWD data, select a weak, strong, and intermediate test point in both the geotextile and control section. At these six test locations conduct a Cone Penetrometer Test.

At the time of testing, no significant visual distress was apparent in either the experimental or control section.

The detailed field results from this survey are shown in Appendix B.

4.2 Summary of Results

The statistical analysis procedure described in an earlier section, was performed on the FWD data. For each test point the deflections corresponding to exactly 4500, 9000, 12,000, and 14,000 lbs and the slope of the load versus deflection graph were computed. A "T-Test" was performed to determine if the distributions were different between the experimental and control sections. The results of this analysis are shown in Table 4 below.

At each of the four load levels the geotextile section had a statistically lower deflection than the control section. This indicates that the section with the geotextile is stronger than the control section. Furthermore, the slope of the load versus deflection curve was larger in the experimental section (129 lbs load for each

indicates location of FWD and Dynaflect test point
 indicate cone penetrometer data taken at these test points
 Not to Scale

Figure 10. Testing locations at Bonham Test Site

Figure 11. Experimental Geotextile Section on Recreational Road 3 in District 1.

FWD	Mean FWD Sensor 1 Deflection (mils)			
Load (1bs)	Geotextile	Control	P-value	Statistical Significance
4500 9000 12,000 14,000	26.6 63.2 87.3 97.7	34.3 85.3 110.2 113.9	0.0137 0.0021 0.0018 0.0086	Yes Yes Yes Yes
Slope (lbs/mm)	129.7	102.0	0.0017	Yes

Table 4. T-Test Results From Bonham Test Site

mil of deflection) than in the control (102 lbs load for each mil of deflection).

Layer moduli were back calculated for the Bonham pavement using the CHEVDEF program discussed earlier. In this analysis a) the deflections at 9000 lbs were used, b) the pavement was modelled as a two layer system of base and subgrade and c) the effective base thickness as measured by the cone penetrometer was used. The measured versus computed deflection bowls and the corresponding layer moduli are shown below in Tables 5 and 6 respectively.

Distance from	Geotexti	le Section	Control Sec	tion
center of Load (ins)	Deflectio Measured	on (mils) Computed	Deflection Measured	n (mils) Computed
0 7.5 12 24 48	63.2 39.6 26.1 10.6 4.3	64.3 37.0 24.2 11.5 5.6	85.3 54.4 35.5 12.7 7.1	89.1 54.0 35.0 16.2 7.9

Table 5 Measured vs. Predicted Deflections for Bonham Test Site

Table 6 Computed Elastic Moduli (psi)

	Geotextile	Control
Base	22,900	25,900
Subgrade	8,970	6,200

The base courses have similar moduli values, however the moduli of the subgrade in the section containing the geotextile is noticeably stiffer than the subgrade in the control section.

The Cone Penetrometer data taken on this section is shown graphically in Appendix B. The effective base thickness was defined as the depth at which a significant increase in cone penetration was recorded, the interpolated effective thicknesses are tabulated below.

Table 7. Effective Base Thickness Values From Bonham Test Site

Geotextile	Control
Section	Section
6.5 ins.	4.5 ins.
5.8 ins.	4.3 ins.
5.2 ins.	4.3 ins.

The average effective base thickness in the geotextile section was 5.8 ins., whereas the thickness of the control section was only 4.4 ins. As both sections were rebuilt with a nominal 6 in. base thickness, this would indicate that in the two years of trafficking, soil intrusion into the base course has reduced its effective thickness by 1.4 ins. When the reduction in base thickness occurred is not clear. It may have been a result of the construction process or it may have been a gradual reduction under traffic, or a combination of both. It is significant that this is a very lightly trafficked highway with very little truck traffic.

To determine the rate of base loss with time it will be necessary to repeat the Cone Penetrometer test after another performance period (i.e., 2 years). If after that period the thickness of the control section remains constant at 4.3 ins., then it could be assumed that the construction process was the cause of the loss in base thickness. If further base losses are recorded after the additional performance period it should at that point be possible to estimate the effects of traffic and construction procedures on the design base thickness.

21

4.3 Conclusion

The analysis of the FWD readings indicated that the section with the geotextile separator was stronger than the control section. This strength is primarily attributed to the fact that in the experimental section the base design thickness had been maintained at approximately 6 ins. However, in the control section the effective base thickness was almost 1.5 ins. less than in the experimental section. It has been assumed that both sections started with the same base thickness at reconstruction in September 1983 and that either the construction procedure or traffic loads have caused soil intrusion into the base course of the unprotected section. Further work is recommended to validate these conclusions.

5. Conclusions and Recommendations

The following are concluded from this study.

- 1. The geotextile is having little observable affect on the performance of the section on SH186.
- 2. The geotextile at the Bonham test site does appear to be significantly improving pavement performance. It was found that the pavement containing the geotextile had maintained its effective base thickness of almost 6 inches, whereas the control section had lost almost 1.5 inches presumably to soil intrusion.
- 3. At the Bonham site the section with the geotextile also had significantly lower deflection than the control section. However this conclusion is based on the results of one deflection survey taken two years after reconstruction. No other deflection data is available at this site. There is a need to continue to monitor this site.
- 4. It appears from these observations that the most cost effective use of geotextiles would be in strengthening surface treated pavements with "wet" spots. The geotextile could be used to bridge short sections of difficult subgrade.
- Further studies should be undertaken to determine if geotextiles are more cost effective than the traditional soil stabilization methods.

REFERENCES

- 1. Scullion, T., Lux, S. M., and Holland, C. N., "Testing Procedures, Specifications, and Applications for Geofabrics in Highway Pavements," TTI Research Report 414-1, September 1984.
- Steinberg, M. L., "Deep Vertical Fabric Moisture Barriers in Swelling Soils," Transportation Research Record 790, Transportation Research Board, Washington, D.C., 1981, pp. 87-94.
- 3. Dynatest 8000 FWD Test System, Dynatest Consulting, Inc., P.O. Box 71, Ojai, California 93023.
- 4. Scrivner, F. H. and Moore, W. M., "An Electro-Mechanical System for Measuring the Dynamic Deflection of a Road Surface Caused by an Oscillating Load," TTI Research Report 32-4, December 1964.
- 5. Scrivner, F. H., Moore, W. M., McFarland, W. F., and Carey, G. H., "A Systems Approach to the Flexible Pavement Design Problem," TTI Research Report 32-11, October 1968.
- 6. Klien, E. G., Maree, J. H., and Savage, P. F., "The Application of a Portable Pavement Dynamic Cone Penetrometer to Determine In Situ Bearing Properties of Road Pavement Layers and Subgrades in South Africa," <u>Proceedings</u>, 2nd European Symposium on Penetration Testing, Amsterdam, 24-27, May 1982, pp. 277-283.
- Bush, A. J., "Nondestructive Testing for Light Aircraft Pavements, Phase II, Development of the Nondestructive Evaluation Methodology" U.S. Army Engineer Waterways Experiment Station, <u>Report No. FAA-RD-80-9-II</u>, August 1980.

APPENDIX A

Detailed Field Results From SH186 Near Port Mansfield in District 21

Sensor	Distance from Center of load (ins)
W1	0
W2	12
W3	24
W4	36
W5	48
W6	60
W7	72

Pages A1-A5 Falling Weight Deflectometer Results

Westbound lane - With Geotextile Eastbound lane - No Geotextile

Pages A6-A11 Cone Penetrometer Results

FWD Deflection Data From SH186 in District 21

			Def	Fab lectio	ric on (mi	15)	Ana - 1944 - 1977 - 193 - 1997 - 1997	****			Def	Non-Fa	abric on (mi	15)		
Station	Load (lbs)	W1	W2	W3	W4	W5	W6	W7	Load (1bs)	W1	W2	W3	W4	W5	W6	W7
0	5,056	29.8	12.6	5.0	3.4	2.4	1.6	1.4	4,560	38.1	12.3	3.8	2.3	1.7	1.3	1.0
	9,912	54.6	23.9	11.0	6.8	4.9	3.6	2.9	9,312	67.8	24.0	7.8	4.9	3.7	3.0	2.4
	13,704	66.1	31.1	14.8	9.2	6.6	5.0	3.8	13,064	78.5	27.7	10.6	6.5	5.1	4.1	3.4
	15,768	75.9	33.1	17.1	10.7	7.7	5.7	4.5	14,968	88.7	31.3	12.4	7.6	5.9	4.7	4.0
1	5,032	30.3	11.0	4.3	2.6	1.9	1.4	1.2	4,552	38.3	14.0	4.4	2.4	1.7	1.2	1.0
	9,880	53.8	21.7	9.4	5.8	4.2	3.2	2.5	9,376	65.6	28.1	9.0	5.0	3.7	2.8	2.4
	13,600	72.2	28.4	12.6	7.8	5.7	4.3	3.4	13,160	81.6	36.0	12.0	6.7	5.1	4.1	3.3
	15,784	68.4	28.9	14.7	9.1	6.6	5.0	4.0	15,136	98.3	36.1	13.9	7.8	6.0	4.7	3.9
2	4,752	30.6	12.2	4.3	2.6	1.7	1.2	1.0	4,600	23.6	9.7	3.0	1.9	1.5	1.2	1.0
	9,544	56.7	24.3	9.7	5.6	3.8	3.0	2.4	9,224	41.8	18.4	6.7	4.4	3.4	2.6	2.2
	13,464	74.0	33.3	13.4	7.8	5.3	4.1	3.4	13,128	53.8	23.7	9.3	6.1	4.7	3.8	3.1
	15,472	82.5	34.1	15.7	9.1	6.3	4.9	4.0	15,376	62.3	22.6	11.0	7.1	5.5	4.3	3.5
3	4,896 9,488 13,552 15,712	22.8 56.2 52.1 63.4	8.2 17.4 22.6 22.6	3.6 8.2 11.3 13.1	2.4 5.2 7.2 8.4	1.8 3.7 5.2 6.1	1.4 2.8 3.9 4.6	1.1 2.3 3.2 3.7	4,568 9,352 13,176	29.4 56.5 62.5	12.8 24.3 29.5	3.8 8.3 11.4	2.1 4.8 6.7	1.7 3.8 5.2	1.4 3.0 4.0	1.0 2.4 3.2
4	4,976	18.9	6.9	3.5	2.4	1.9	1.4	1.1	4,520	34.1	12.9	3.5	2.0	1.6	1.0	1.0
	9,464	36.3	15.5	8.0	5.3	3.9	3.0	2.4	9,312	58.5	24.7	7.7	4.6	3.7	2.8	2.4
	13,544	42.2	20.9	11.2	7.4	5.5	4.1	3.4	13,160	85.1	32.6	10.8	6.5	5.1	4.0	3.4
	15,984	52.7	19.0	13.2	8.7	6.4	4.8	3.8	15,120	88.5	31.2	12.8	7.7	6.0	4.7	4.0

· · · · · ·	Fabric Deflection (mils					1s)	ls)			Non-Fabric Deflection (mils)						
Station	Load (lbs)	W1	W2	W3	W4	W5	W6	W7	Load (1bs)	W1	W2	W3	W4	W5	W6	W7
5	4,984	24.2	8.6	4.3	3.1	2.2	1.5	1.1	4,544	26.6	11.6	4.4	2.6	1.9	1.4	1.1
	9,472	43.3	17.3	9.9	7.0	4.9	3.4	2.4	9,240	49.9	24.0	9.9	5.9	4.2	3.3	2.6
	13,400	55.4	23.2	13.8	9.5	6.8	4.7	3.4	13,040	58.7	32.2	13.8	8.2	5.9	4.7	3.6
	15,960	57.7	26.7	16.1	11.2	7.9	5.4	4.0	15,312	67.8	34.9	16.4	9.6	6.9	5.4	4.1
6	4,904	32.4	12.7	4.7	3.0	2.0	1.6	1.2	4,576	30.8	11.4	4.0	2.4	1.6	1.2	1.0
	9,640	59.0	24.2	10.1	6.3	4.5	3.4	2.7	9,304	57.9	23.2	9.0	5.2	3.7	2.8	2.2
	13,472	66.2	28.8	13.7	8.6	6.3	4.7	3.8	13,104	76.4	27.9	12.2	7.1	5.1	3.9	3.1
	15,480	77.7	29.4	15.9	10.0	7.1	5.5	4.4	15,048	79.7	29.4	14.5	8.4	5.9	4.5	3.6
7	4,984	21.9	8.9	4.2	2.7	1.9	1.6	1.2	4,760	27.4	11.9	3.7	2.2	1.7	1.2	1.0
	9,640	40.7	17.6	9.0	5.7	4.2	3.2	2.6	9,392	49.5	18.3	7.5	4.6	3.7	2.8	2.2
	13,536	51.0	22.8	12.1	7.8	5.7	4.4	3.5	13,096	65.2	21.1	10.1	6.4	5.1	4.0	3.2
	15,616	58.9	23.2	14.0	9.0	6.6	5.1	4.1	15,520	68.4	23.5	11.7	7.3	6.0	4.7	3.7
8	5,072	29.4	10.8	4.6	3.0	2.1	1.6	1.3	4,728	28.3	12.1	3.7	2.2	1.7	1.3	1.0
	9,848	52.1	20.5	9.8	6.3	4.6	3.5	2.8	9,288	50.4	22.2	8.0	4.4	3.5	2.7	2.2
	13,440	88.2	20.2	12.8	8.7	6.2	4.8	3.8	13,152	58.1	22.4	10.6	6.1	4.8	3.8	3.0
	15,728	65.3	23.0	14.8	10.0	7.2	5.5	4.3	15,288	64.7	24.5	12.4	7.2	5.6	4.4	3.5
9	4,832	27.2	10.9	4.8	3.0	2.1	1.5	1.3	4,608	35.4	14.0	4.4	2.3	1.8	1.3	1.1
	9,592	48.2	19.4	10.3	6.6	4.4	3.4	2.8	9,376	59.2	26.3	8.9	4.9	3.7	2.9	2.3
	13,520	64.0	23.1	13.9	8.9	6.2	4.6	3.8	13,192	70.2	32.7	12.4	6.9	5.1	4.0	3.2
	15,512	73.7	24.9	16.0	10.2	7.1	5.3	4.3	15,168	79.9	34.1	14.6	9.1	6.0	4.8	3.8

	Fabric Deflection (mils)								Non-Fabric Deflection (mils)							
Station	Load (1bs)	W1	W2	W3	W4	W5	W6	W7	Load (1bs)	W1	W2	W3	W4	W5	W6	W7
10	4,896	20.4	9.3	4.5	2.9	2.1	1.6	1.3	4,736	33.1	12.4	4.4	3.0	2.2	1.6	1.2
	9,432	35.8	18.8	9.7	6.4	4.6	3.4	2.7	9,408	56.3	21.1	9.9	6.4	4.7	3.6	2.8
	13,464	44.1	21.2	13.4	8.9	6.3	4.7	3.7	13,072	69.4	26.0	13.8	8.9	6.4	4.9	3.9
	15,912	48.7	23.1	15.5	10.2	7.3	5.5	4.3	15,104	78.6	27.6	16.1	10.4	7.5	5.7	4.5
11	4,872	28.1	11.6	4.6	2.8	2.2	1.5	1.3	4,792	26.1	10.8	4.1	3.0	2.2	1.6	1.2
	9,440	48.4	23.2	10.1	6.4	4.6	3.5	2.7	9,552	46.0	21.4	8.9	6.3	4.8	3.6	2.8
	13,304	60.2	28.6	13.9	9.0	6.4	4.9	3.8	13,176	56.5	23.5	12.6	8.9	6.6	5.0	3.9
	15,664	71.8	28.3	16.2	10.4	7.5	5.6	4.4	15,440	62.8	23.6	14.8	10.4	7.7	5.8	4.5
12	4,960	27.4	10.2	4.4	2.9	2.2	1.6	1.2	4,832	25.7	11.2	3.8	2.5	1.9	1.4	1.1
	9,752	47.0	17.1	9.6	6.5	4.7	3.5	2.6	9,528	45.2	17.1	8.3	5.4	4.1	3.1	2.5
	13,368	61.7	20.6	13.0	8.8	6.5	4.7	3.6	13,240	54.5	20.0	11.5	7.6	5.7	4.3	3.5
	15,872	68.5	22.1	15.2	10.3	7.5	5.4	4.3	15,432	60.3	23.0	13.3	8.9	6.6	5.1	4.1
13	5,136	23.4	8.9	3.9	2.7	2.0	1.5	1.2	4,912	25.2	6.8	2.9	2.1	1.6	1.2	1.0
	10,208	39.9	13.7	8.5	5.6	4.2	3.1	2.5	9,584	39.7	13.7	6.2	4.6	3.5	2.7	2.2
	13,368	45.8	16.4	11.2	7.7	5.7	4.3	3.4	13,040	47.7	15.6	8.5	6.3	4.9	3.8	3.1
	16,088	54.3	17.8	13.0	8.9	6.6	5.0	4.0	15,976	55.6	15.0	10.0	7.3	5.6	4.4	3.6
14	5,024	22.1	8.2	3.7	2.7	2.0	1.5	1.2	4,912	23.8	8.9	3.1	2.1	1.6	1.2	1.0
	9,624	37.1	12.7	7.8	5.8	4.4	3.2	2.5	9,664	40.6	17.2	6.7	4.4	3.3	2.6	2.1
	13,328	48.3	15.0	10.7	7.9	6.0	4.5	3.4	13,104	56.1	16.3	9.1	6.0	4.6	3.6	2.9
	16,176	58.3	16.8	12.5	9.2	7.0	5.1	4.0	15,920	60.5	17.8	10.8	7.0	5.4	4.1	3.6

			Def	Fabr lectio	ic on (mi	15)					N Defl	lon-Fa	abric n (mi	15)		
Station	Load (1bs)	W1	W2	W3	W4	W5	W6	W7	Load (1bs)	W1	W2	W3	W4	W5	W6	W7
15	5,064	22.9	8.3	3.7	2.5	1.9	1.4	1.2	5,080	31.2	9.8	2.1	1.5	1.5	1.2	0.8
	9,728	40.1	16.4	8.0	5.4	4.0	3.0	2.5	10,096	53.4	12.8	5.0	3.8	3.3	2.5	2.0
	13,312	48.6	17.6	10.8	7.3	5.4	4.2	3.4	13,296	56.1	15.6	7.0	5.4	4.5	3.5	2.8
	16,168	51.7	18.9	12.5	8.6	6.3	4.9	3.9	16,144	59.9	18.7	8.4	6.4	5.3	4.1	3.2
16	4,872	21.7	8.1	3.5	2.4	1.8	1.4	1.1	5,048	32.0	9.7	2.5	1.9	1.5	1.2	0.9
	9,432	36.7	16.2	7.6	5.1	3.9	2.9	2.4	10,048	49.3	13.5	5.8	4.1	3.4	2.6	2.1
	13,224	49.3	17.3	10.3	6.9	5.3	4.0	3.2	13,240	59.4	15.2	8.0	5.6	4.6	3.6	2.9
	15,808	51.5	18.1	11.9	8.1	6.1	4.7	3.8	16,024	66.3	17.9	9.4	6.7	5.3	4.2	3.4
17	4,920	19.0	7.7	3.5	2.4	1.8	1.4	1.1	5,136	29.5	8.4	2.1	1.5	1.3	1.0	0.8
	9,360	34.5	15.2	7.6	5.2	3.9	3.0	2.4	10,120	43.5	11.9	4.7	3.4	2.8	2.3	1.9
	13,256	44.8	16.5	10.5	7.0	5.3	4.1	3.3	13,120	54.1	12.6	6.7	4.8	4.0	3.2	2.6
	15,848	49.2	17.4	12.1	8.2	6.0	4.7	3.8	16,432	59.9	15.2	7.8	5.7	4.7	3.8	3.0
18	5,224	17.0	6.4	3.2	2.4	1.8	1.4	1.1	5,080	27.8	8.1	2.4	1.9	1.5	1.2	0.9
	9,992	28.4	12.6	6.9	5.1	3.9	2.9	2.4	9,904	42.6	11.4	5.6	4.0	3.3	2.5	1.9
	13,344	35.1	16.3	9.4	7.0	5.3	4.0	3.2	13,040	50.2	14.1	7.7	5.7	4.6	3.5	2.7
	16,696	39.7	18.8	11.1	8.2	6.1	4.7	3.7	16,152	56.2	16.6	9.0	6.7	5.3	4.1	3.2
19	4,936	23.1	6.7	3.4	2.5	1.8	1.3	1.1	5,120	34.0	10.5	2.3	1.8	1.5	1.0	0.9
	9,464	42.7	13.6	7.4	5.2	3.9	2.9	2.4	10,248	54.5	15.5	5.2	3.8	3.2	2.4	1.9
	13,144	48.3	16.0	10.1	7.2	5.3	4.1	3.3	13,488	64.0	17.0	7.1	5.3	4.3	3.4	2.7
	16,008	52.5	15.8	11.8	8.4	6.1	4.8	3.8	15,920	67.6	17.9	8.5	6.2	5.1	3.9	3.2

A-4

DISTRICT :	21 COUNTY	CAMERON	SECTION	FA186 STA	100 NF
CN	INS	NOS	CM/BLOW	IN/BLOW	
0.00	0.00	0.00	0.25	0.10	
1.52	0.60	10.00	0.15	0.06	
2./9	1.10	15.00	0.24	0.10	
6.35	2.50	25.00	0.52	0.20	
9.14 16.51	3.60	30.00	1.02	0.40	
19.81	7.80	40.00	0.53	0.21	
23.88	8.60 9.40	45.00 50.00	0.41	0.16	
26.67	10.50	55.00	0.53	0.21	
31.75	12.50	60.00 65.00	0.51 0.48	0.20	
34.04	13.40	70.00	0.45	0.18	
38.74	15.25	/5.00 80.00	0.47	0.19	
42.67	16.80	85.00	0.88	0.34	
52.71	20.75	95.00	$1.00 \\ 1.35$	0.40	
60.96 73 AT	24.00		1.45	0.35	
, U + V U	LUSI	144-44	1.0.1	U. 63	

Cone Penetrometer Results SH186, Station 1, Control Section

	Fabric Deflection (mils)							Non-Fabric Deflection (mils)								
Station	Load (lbs)	Wl	W2	W3	W4	W5	W6	W7	Load (1bs)	W1	W2	W3	W4	W5	W6	W7
20	4,760	24.5	9.9	4.2	2.7	2.0	1.4	1.2	5,056	32.5	9.3	2.5	1.9	1.6	1.2	1.0
	9,344	43.6	19.3	9.1	5.7	4.2	3.1	2.5	10,024	56.0	13.2	5.6	4.0	3.4	2.7	2.2
	13,232	58.8	25.2	12.3	7.8	5.7	4.3	3.5	13,168	63.1	15.0	7.7	5.5	4.6	3.7	3.0
	15,536	61.7	22.0	14.2	8.9	6.5	5.0	4.0	15,944	68.4	17.4	9.2	6.5	5.4	4.3	3.5
21	4,736	25.7	9.3	4.3	2.8	2.1	1.5	1.2	4,976	34.3	11.6	3.2	2.3	1.8	1.4	1.1
	9,368	45.3	18.8	9.2	5.9	4.4	3.3	2.7	9,776	57.8	20.7	7.0	4.7	3.8	3.0	2.4
	13,216	56.1	24.6	12.4	8.1	5.9	4.5	3.7	13,216	68.4	22.7	9.6	6.7	5.2	4.1	3.3
	15,336	70.5	22.7	14.3	9.3	6.8	5.2	4.3	15,600	78.6	24.9	11.3	7.9	6.2	4.8	3.9
22	4,672	19.2	7.2	3.9	2.7	2.0	1.6	1.2	5,016	32.8	11.2	3.3	2.4	1.8	1.4	1.1
	9,408	36.9	15.0	8.5	5.9	4.3	3.2	2.6	9,752	56.5	17.6	7.1	4.9	3.7	2.8	2.4
	13,160	46.0	20.1	11.5	8.0	5.8	4.4	3.5	13,176	64.8	19.6	9.6	6.8	5.1	3.9	3.2
	15,616	53.3	22.3	13.2	9.2	6.7	5.1	4.1	15,672	69.3	21.9	11.2	7.9	5.9	4.5	3.7
23	4,872	19.0	8.5	4.1	2.8	2.1	1.5	1.1	4,864	28.1	11.2	3.8	2.5	1.9	1.4	1.1
	9,408	34.3	16.7	8.7	5.9	4.2	3.1	2.4	9,440	47.4	21.1	8.3	5.0	3.8	2.9	2.3
	13,248	49.3	22.1	11.8	8.0	5.7	4.2	3.1	13,232	58.3	21.2	11.1	6.9	5.2	4.0	3.2
	15,992	53.9	22.0	13.6	9.2	6.6	4.9	3.6	15,400	68.2	22.5	12.6	7.9	6.0	4.6	3.7
24	4,808	29.6	12.3	4.8	2.9	2.1	1.6	1.2	4,952	28.2	11.2	4.0	2.6	1.9	1.4	1.2
	9,560	51.5	23.8	10.1	6.1	4.2	3.1	2.5	9,488	48.5	21.1	8.5	5.2	3.8	2.9	2.3
	13,192	64.5	27.0	13.4	8.1	5.8	4.3	3.5	13,248	61.7	21.0	11.4	7.1	5.2	3.9	3.2
	15,296	73.3	29.5	15.5	9.4	6.8	5.1	4.1	15,456	69.3	22.4	13.0	8.0	5.9	4.5	3.7

DISTRICT :	21 COUNTY DEPTH	CAMERON	SECTION	FM-186 STA	600ft	NF
CH	INS	NÖS	CA/RI DA	IFE N The/Rinu		
0.00	0.00	0.00	0.20	0.08		
1.02	0.40	.5.00	0.23	0.09		
3.18	1.25	15.00	0.22	0.09		
3.81	1.50	20.00	0.32	0.06		
6.35	2.50	25.00	0.51	0.20		
12.07	3.30 1.75	30.00	0. 57	0.23		
14.99	5.90	40 00	V.61 0 55	0.24		
17.53	6.90	45.00	0.46	0.18		
19.56	7.70	50.00	0.34	0.14		
23.37	8.20	33.00 40 00	0.38	0.15		
26.04	10.25	65.00	0.51	0.20		
29.85	11.75	70.00	0.76	0.30		
33.00	13.25	75.00	0.89	0.35		
46.23	13.23	80.00	1.26	0.49		
53.34	21.00	90.00	1.40	0.5/		
62.99	24.80	95.00	1.93	0.76		
/3.69	27.80	100.00	1.93	0.76		

Cone Penetrometer Results SH186, Station 6, Control Section

DISTRICT :	21 COUNTY	: CAMERON	SECTION	FN 186 STA	2400ft	NF
CA	INS	NÖS	CH/BLÖŇ	ÎN/BLOW		
0.00	0.00	0.00	0.25	0.10		
1.27	0.50	5.00	0.15	0.06		
1.52	0.60	10.00	0.10	0.04		
2.29	0.90	15.00	0.13	0.05	× v	
2.79	1.10	20.00	0.10	0.04		
3.30	1.30	25.00	0.20	0.08		
4.85	1.90	30.00	0.28	9.11		
0.10	2.40	33.00	0.30	V.12		
/.8/	3.10	40.00	V-38	U.13 A 10		
12 45	3.70	50.00	0.10	0.10		
14.99	5.90	55 00	0.53	0 21		
17.78	7.00	60.00	0.66	0.26		
21.59	8.50	65.00	0.61	0.24		
23.88	9.40	70.00	0.38	0.15		
25.40	10.00	75.00	0.30	0.12		
26.92	10.60	80.00	0.31	0.12		
28.45	11.20	85.00	0.38	0.15		
<u> 39./3</u>	12.10	90.00	0.51	0.20		
33.33	13.20	YJ.VV	V.61	V.24		
J0-03 10 70	14.30	100.00	0.07	U.2/		
40.37	13.70	110 00	V./0 A 99	0.30		
19.78	10 20	115 00	1 02	0.10		
54.61	21.50	120.00	0.91	0.36		
58.42	23.00	125.00	0.76	0.30		
64.77	25.50	130.00	0.76	0.30		

Cone Penetrometer Results SH186, Station 24, Control Section

DISTRICT : 2	1 COUNTY Depth	CAMERON	SECTION	FN 186 ST	A 100ft FABRIC	
CN 0.00	INS 0.00	- NOS 0.00	CA/BLOW 0.20	UPE N IN/BLOW		
1.02 1.27 1.65	0.40 0.50 0.65	5.00 10.00	0.13	0.05		
$ \begin{array}{c} 1.91 \\ 2.54 \\ 3.18 \end{array} $		20.00	0.09 0.13	0.03 0.04 0.05		
3.56	1.40	30.00 35.00 40.00	0.10 0.13 0.20	0.05 0.05		
5.59 6.65 8.64	2.20	45.00 50.00	0.22	0.09		
10.67 12.70	4.20 5.00	33.00 60.00 65.00	0.40 0.41 0.41	0.16 0.16		
14.73 17.78 24.13	5.80 7.00	70.00 75.00	0.51 0.94	0.20		
33.66	13.25	80.00 85.00 90.00	1.59	0.43		
55.88	22.00	95.00	2.92	1.15		

Cone Penetrometer Results SH186, Station 1, Geotextile Section

DISTRICT :	21 COUNTY	CARERON	SECTION	: FR 186 ST	A 600ft FABRIC
ČŅ "	INS	NOS	CM/BLOW	IN/BLOW	
1.27	0.50	5.00	0.19	0.08	
1.91	0.75	10.00	0.13	0.05	
3.18	1.25	20.00	ŏ.23	0.09	
4.83	1.90	25.00	0.25	0.10	
7.87	3.10	35.00	0.47	0.18	
10.41	4.10	40.00 45.00	0.55 0.56	0.22	
16.00	6.30	50.00	0.44	0.17	
17.78	7.00	55.00	0.41	0.16	
21.84	8.60	65.00	0.45	0.18	
24.56	9.67 10.56	70.00 75 AA	0.48	0.19	
28.58	11.25	80.00	0.45	0.18	
$\frac{51.12}{33.27}$	12.25	85.00 90 00	0.47	0.18	
34.93	13.75	95.00	0.30	0.12	
36.32 38.10	14.30 15.00	100.00	0.32	0.12	
39.37	15.50	110.00	0.19	0.08	
40.01	15./5	115.00 120.00	0.15	0.06	
41.91	16.50	125.00	0.23	0.09	
43.18	17.35	130.00	0.22	0.09	
45.72	18.00	140.00	0.29	0. <u>11</u>	
48.26	19.00	150.00	0.25	0.10	
49.53	19.50	155.00	0.25	0.10	
52.07	20.50	165.00	0.23	0.10	
53.59	21.10	170.00	0.38	0.15	
58.67	23.10	180.00	0.31	0.20	
63.25	24.90	185.00	0.92	0.36	
00.30	2/.00	174.04	4.72	4.39	

Cone Penetrometer Results SH186, Station 6, Geotextile Section

DISTRICT :	21 COUNTY : DEPTH	CANERON BLOWS	SECTION	; F# 186 ST	A 2400ft	FABRIC
CA	INS	NÖS	CR/RI NĂ	TW/RINU		
Ő.QQ	0.00	Ö.Ö0	0.25	0.10		
1.27	0.50	5.00	0.15	0.02		
1.52	0.60	10.00	0.13	0.05		
2.54	1.00	15.00	0.13	0.05		
2.79	1.10	20.00	0.13	0.05		
3.81	1.50	25.00	0.23	0.09		
<u>ว.98</u>	2.00	30.00	0.25	0.10		
9-32	2.30	32.00	0.28	0.11		
/.8/	5.10	40.00	9.38	0.15		
10.10	4.00	43.00	0.48	0.19		
12./0	J.VV 5 JA	30.00	0.45	0.1/		
14.40	3./V	33.00	9.41	0.16		
10./0	9.00	6U.UU	9.46	0.18		
17.VJ 21 50	7.30	0J.VV 70 AA	¥•24	0.19		
21.37	0.19	75 00	9.33	V.ZI		
27.30	7.0V 10 40	73.0V 0A AA	V.40	0.19		
28.02	11.2%	85.00	X-29	N-10		
31.75	12.50	90.00	Å 57	0.21 0.91		
34.29	13.50	95.00	0.56	0 22		
37.34	14.70	100.00	0.44	ð. 25		
40.64	16.00	105.00	0.53	0.21		
42.67	16.80	110.00	0.51	0.20		
45.72	18,00	115.00	0.76	0.30		
50.29	19780	120.00	1.02	0.40		
55.88	22.00	125.00	1.12	0.44		
63.75	25.10	130.00	1.12	0.44		

APPENDIX B

Detailed Field Results From Recreational Road 3 near Bonham in District 1

Pages B1-B7 Falling Weight Deflectometer Result	S
---	---

Sensor	Distance from Center of load (ins)
W1	0
W2	7.5
W3	12
W4	18
W5	24
W6	30
W7	48

Pages B8-B11 Dynaflect Data

Pages B12-B17 Cone Penetrometer Data

						Defle	ection (m	ils)		
Section	Lane	Fabric	Load (1bs)	W1	W2	W3	W4	W5	W6	W7
1	R	Yes	4,560	20.5	12.1	8.5	5.3	3.7	2.9	1.7
			8,952	42.5	26.3	19.0	12.5	8.3	6.5	4.1
			12,440	58.3	36.8	26.9	18.0	12.1	9.4	5.6
		14,656	74.2	44.0	32.1	21.5	14.4	11.3	6.7	
2	R	Yes	4,552	23.9	15.4	11.6	8.3	5.4	4.5	2.2
			9,120	50.3	34.4	26.4	18.6	12.6	9.8	4.8
			12,488	66.6	49.8	38.9	27.4	18.8	14.4	7.1
			14,920	75.4	60.1	46.3	32.6	22.3	17.1	8.2
3	R	Yes	4,672	26.5	15.5	11.2	7.5	4.9	4.3	2.4
			9,192	58.8	37.4	27.3	18.2	12.2	9.4	5.1
			12,640	83.3	55.3	41.1	27.4	18.3	14.1	7.5
			14,776	98.3	66.0	49.4	32.9	22.1	16.9	8.8
4	R	Yes	4,624	23.4	14.1	10.1	6.3	3.6	2.9	1.6
			9,256	57.6	35.7	25.2	15.0	8.9	6.1	2.8
			12,664	82.1	54.1	38.6	22.8	13.1	8.9	4.2
			14,816	97.6	65.9	47.6	27.9	16.1	10.6	4.7
5	R	Yes	4,792	16.4	9.6	6.7	4.3	2.6	2.1	1.2
			9,152	35.7	21.2	14.8	9.5	5.8	4.3	2.2
			12,648	51.7	30.7	21.5	13.8	8.4	6.2	3.0
			14,968	73.1	38.8	26.0	16.5	9.9	7.3	3.6
6	R	Yes	4,528	25.5	17.7	12.5	8.0	4.6	3.5	1.9
			9,064	59.7	42.5	30.2	18.9	11.1	7.8	4.0
			12,344	85.7	62.7	45.0	28.2	16.6	11.5	5.7
			14,720	100.8	74.9	54.4	34.1	20.1	14.0	6.9

FWD Deflection Data from Rec. Road 3 near Bonham

						Defle	ection (m	nils)		
Section	Lane	Fabric	Load (1bs)	W1	W2	W3	W4	W5	W6	W7
7	R	Yes	4,536	25.6	16.0	11.1	7.2	4.7	3.7	2.5
			9,048	62.3	39.5	27.2	16.9	10.8	8.3	4.6
			12,488	91.4	59.6	41.4	25.5	16.2	12.1	6.6
			14,568	108./	/1.8	50.3	31.0	19.6	14./	8.0
8	R	Yes	4,536	35.9	21.1	14.5	9.1	5.7	4.3	2.1
			8,880	81.2	51.2	35.8	21.9	13.6	9.6	4.1
			12,224	114.1	76.1	54.2	33.2	20.6	14.3	6.1
			14,224	116.7	91.5	66.0	40.5	25.1	17.2	7.2
9	R	Yes	4,480	33.3	19.2	13.1	8.0	5.1	4.0	2.0
			8,832	80.2	49.1	33.6	19.9	12.3	8.7	3.9
			12,144	114.8	73.7	51.5	30.5	18.5	12.9	5.7
			14,160	130.5	88.6	62.7	37.3	22.6	15.5	6.7
10	R	Yes	4.576	22.4	14.5	10.4	6.7	4.3	3.3	1.8
.			8,864	51.2	32.9	24.0	15.3	9.8	7.3	3.6
			12.304	78.4	49.1	35.7	22.7	14.5	10.7	5.2
			14,568	96.3	60.7	43.6	27.9	17.6	13.0	6.2
						, <u>, , , , , , , , , , , , , , , , </u>		<u></u>		<u> </u>
1	R	No	4,832	20.9	12.7	8.3	5.4	3.9	3.1	1.8
			8,864	51.2	30.7	20.0	12.7	8.7	7.2	3.9
			12,408	76.3	46.4	30.6	19.1	13.0	10.4	5.6
			14,392	93.6	56.6	37.8	23.2	15./	12./	6.8
2	R	No	4,440	24.2	12.3	8.3	5.3	3.3	2.7	1.5
			8,896	61.2	32.4	20.8	12.0	7.4	5.9	3.2
			12,312	94.8	51.1	33.1	17.6	10.6	8.0	4.5
			14,464	112.8	64.0	41.8	21.6	12.7	9.5	5.4

FWD Deflection Data from Rec. Road 3 near Bonham (Cont'd)

						Defle	ection (m	nils)		
Section	Lane	Fabric	Load (1bs)	W1	W2	W3	W4	W5	W6	W7
3	R	No	4,464	28.1	15.1	9.4	5.5	3.2	2.4	1.4
		8,984	71.3	38.4	23.1	12.4	6.8	4.9	3.0	
			12,440	128.4	59.6	35.8	18.7	9.8	6.9	4.1
			14,544	140.8	76.3	44.3	22.8	11.7	8.2	4.9
4	R	No	4,560	20.2	12.2	8.6	5.7	3.8	3.0	1.8
			9,136	48.6	30.7	21.5	13.5	8.8	6.7	3.7
·		12,512	71.9	46.8	33.2	20.4	12.9	9.6	5.3	
			14,808	85.3	57.0	41.5	24.9	15.6	11.5	6.1
5	5 R	No	4,536	32.0	18.3	12.4	7.8	5.1	4.1	2.4
			8,832	89.2	51.7	33.5	18.9	11.5	8.7	4.8
			12,120	126.1	81.1	53.7	29.2	17.1	12.6	7.0
			14,144	136.5	99.4	66.6	36.1	20.7	15.0	8.3
6	R	No	4,424	52.4	30.2	18.7	9.9	5.4	4.1	2.4
			8,648	117.3	75.6	49.3	25.1	12.9	8.5	4.7
			11,936	100.4	107.8	73.5	38.3	19.5	12.4	6.7
			13,792	104.3	122.3	87.0	46.6	23.6	15.1	7.9
7	R	No	4,520	27.3	13.8	8.4	5.2	3.5	2.7	1.5
-			8,712	68.2	35.6	20.9	12.0	7.8	5.7	3.1
			12,224	102.3	57.6	33.0	18.2	11.5	8.3	4.5
			14,232	131.4	72.0	40.9	22.2	13.7	9.8	5.3
8	R	No	4.504	46.2	26.3	16.6	9.5	5.4	4.0	2.1
-			8,736	103.9	67.4	44.1	24.2	13.1	8.6	4.2
			12,048	144.4	99.5	66.8	37.0	19.9	12.8	6.3
			13,984	100.8	117.1	80.3	44.9	24.1	15.5	7.5

			t i			Defle	ection (m	iils)		
Section	Lane	Fabric	Load (lbs)	W1	W2	W3	W4	W5	W6	W7
9	R	No	4,448	48.0	26.0	16.6	9.6	5.8	4.5	2.3
			8,712	113.7	67.0	43.2	23.3	13.7	9.6	4.8
			11,952	130.6	98.8	65.5	35.2	20.3	14.0	6.9
			13,840	11/.1	110.5	18.9	42.8	24.0	10.8	8.4
10	R	No	4,488	22.7	12.8	8.1	4.9	3.1	2.2	1.0
			8,864	56.5	32.8	21.0	11.8	7.0	4.9	2.2
			12,288	87.6	52.3	33.8	18.3	10.4	6.9	3.1
			14,512	107.7	65.5	42.5	22.7	12.6	8.3	3.6
1	L	No	4,472	40.8	21.7	12.9	7.0	4.2	3.3	2.1
			8,808	93.9	56.1	33.4	16.9	9.6	6.9	3.6
			12,152	123.5	85.6	52.4	26.2	14.2	10.0	5.3
			14,016	138.5	106.6	64.9	32.5	17.4	11.8	6.0
2	L	No	4,384	39.5	24.1	15.7	9.1	5.9	4.7	2.8
			8,688	90.7	60.1	40.2	22.5	14.1	10.4	5.6
			12,000	120.3	87.8	60.7	34.1	21.0	15.3	8.1
			13,912	100.6	104.6	/3.0	41.5	25.5	18.3	9.4
3	L	No	4,480	44.6	27.3	17.3	10.0	6.2	4.5	2.4
			8,704	101.4	68.6	44.9	25.1	14.6	10.0	4.9
			11,968	143.4	100.9	68.5	38.6	22.2	14.8	7.1
			13,832	132.4	120.1	83.3	47.4	27.1	18.1	8.6
4	L	No	4,624	30.2	17.6	11.0	6.9	4.6	3.5	1.7
			8,944	76.4	47.7	29.4	16.4	10.3	7.7	4.0
			12,280	110.0	73.3	47.0	25.3	15.2	11.0	5.6
			14,224	147.9	90.0	59.1	31.7	18.6	13.3	6.9

						Defle	ection (m	ils)		
Section	Lane	Fabric	Load (1bs)	W1	W2	W3	W4	W5	W6	W7
1	L	Yes	4,520	21.3	13.8	10.5	7.8	5.4	4.5	2.4
			8,928	54.9	35.4	26.4	18.5	12.9	10.3	5.3
			12,328	84.3	55.8	40.9	28.1	19.3	15.2	7.6
	ŕ		14,360	104.2	68.8	50.5	34.3	23.4	18.3	9.2
2	L	Yes	4,536	25.1	14.3	10.6	7.3	5.0	3.7	1.8
			9,000	65.1	39.2	28.6	18.7	12.0	8.6	3.6
		12,384	97.6	61.5	45.1	28.9	18.3	13.0	5.4	
			14,368	116.3	75.1	55.4	35.6	22.4	15.8	6.5
3	L	Yes	4,584	23.0	15.3	12.0	8.6	6.0	4.7	2.3
			9,064	60.5	40.3	31.4	21.5	14.6	10.8	4.9
			12,400	93.5	62.8	49.0	33.3	22.3	16.1	7.0
			14,352	113.6	76.9	60.0	40.0	27.2	19.6	8.8
4	L	Yes	4,496	29.8	18.0	13.2	8.9	6.3	4.8	2.6
			8,832	72.6	44.9	32.5	21.7	14.7	11.3	5.8
			12,216	105.7	68.2	49.5	32.8	22.0	16.8	8.4
			14,216	122.2	83.5	60.7	40.0	26.7	20.4	10.2
5	L	Yes	4,528	17.3	12.0	9.2	6.5	4.5	3.5	1.7
			9,064	43.9	30.2	22.7	15.7	10.6	8.0	3.5
			12,360	67.9	46.6	35.1	23.7	15.8	11.7	5.2
			14,736	83.5	57.8	43.3	29.0	19.2	14.0	6.2
6	L	Yes	4,696	34.4	20.2	11.6	5.8	3.7	3.0	1.7
-	_		9,016	64.0	37.1	22.0	11.6	7.2	5.8	3.3
			12,304	89.2	50.3	29.4	15.4	9.6	7.8	4.5
			14,344	104.5	58.1	33.9	17.3	10.5	8.7	5.1

						Defle	ection (m	uils)		
Section	Lane	Fabric	Load (1bs)	W1	W2	W3	W4	W5	W6	W7
5	L	No	4,448	51.0	31.6	20.6	10.8	6.4	4.4	2.5
			8,592	115.8	76.8	52.1	27.5	14.4	10.0	5.4
			11,880	123.9	111.1	77.9	42.0	22.0	14.8	7.9
			13,688	104.9	130.4	93.7	50.8	20.9	1/.8	9.5
6	L	No	4,328	34.1	20.4	13.7	8.6	5.5	4.4	2.6
			8,704	82.7	54.4	36.3	21.3	13.3	10.0	5.3
			11,880	139.6	82.7	56.0	32.4	19.8	14.7	7.5
			13,752	136.2	100.7	69.3	39.7	24.0	1/.5	8.8
7	L	No	4,544	30.4	19.3	12.9	7.8	4.9	3.7	1.8
			8,896	80.9	52.6	34.4	19.3	11.1	7.8	3.8
			12,160	119.4	81.9	54.5	29.8	16.7	11.5	5.3
			14,096	120.3	101.5	68.2	37.1	20.5	14.0	6.3
8	L	No	4,512	23.6	13.5	8.6	5.2	3.2	2.6	1.6
			9,008	64.6	36.0	22.1	11.7	7.2	5.6	3.2
			12,440	97.9	56.6	35.0	17.6	10.6	8.1	4.8
			14,504	115.1	69.9	44.0	21.8	12.8	9.8	5.7
g,	1	No	4,408	45.2	27.5	16.9	9.0	5.1	4.0	2.2
Ū.			8,608	115.6	74.3	46.1	22.2	10.9	8.0	4.3
			11,840	112.4	113.0	72.6	35.4	16.1	10.7	6.3
			13,680	114.8	133.9	90.7	44.9	19.9	12.4	7.5
10	L	No	4,504	21.3	13.8	10.5	7.8	5.4	4.5	2.4
	-		9,024	54.9	35.4	26.4	18.5	12.9	10.3	5.3
			12,288	84.3	55.8	40.9	28.1	19.3	15.2	7.6
			14,432	104.2	68.8	50.5	34.3	23.4	18.3	9.2

						Defle	ection (m	nils)		
Section	Lane	Fabric	Load (1bs)	W1	W2	W3	W4	W5	W6	W7
7	L	Yes	4,520 8,776 12,088 13,952	34.4 85.8 120.9 126.2	21.5 56.6 86.5 105.9	14.5 38.4 59.9 73.8	9.0 22.2 34.5 42.6	5.8 13.3 20.0 24.5	4.3 9.3 13.8 16.6	2.3 4.7 6.8 8.2
8	L	Yes	4,504 8,816 12,160 14,032	40.2 91.2 114.7 132.3	23.1 55.9 84.5 103.0	15.5 37.7 57.2 70.0	9.4 22.5 33.9 41.5	5.9 13.8 20.8 25.3	4.5 10.2 15.1 18.3	2.5 5.4 7.9 9.5
. 9	L	Yes	4,368 8,744 12,112 14,216	33.6 75.4 107.9 132.5	18.6 45.5 68.4 82.7	12.5 30.8 47.0 57.7	8.2 19.3 29.2 35.6	5.7 12.8 19.1 23.1	4.4 9.7 14.4 17.3	2.5 5.1 7.4 8.9
10	L	Yes	4,496 8,928 12,336 14,448	23.5 55.1 81.4 99.6	13.1 31.5 48.4 59.6	9.4 22.2 34.2 42.4	6.3 14.5 22.1 27.2	4.6 10.4 15.6 19.0	3.7 8.2 12.2 14.8	2.2 4.6 6.9 8.3

FWD Deflection Data from Rec. Road 3 near Bonham (Cont'd)

District	County Bonham	Highway Rec. Rd. 3	Milepost
Date 6/27/85		Temperature <u>80</u>	

Fabric/Left Lane/Coming Back

	Dynaflect Readings								
LUCALION	Sc 1	Sc 2	Sc 3	Sc 4	Sc 5				
1	2.26	1.41	0.79	0.48	0.31				
2	2.07	1.33	0.78	0.47	0.28				
3	2.34	1.58	0.96	0.56	0.35				
4	2.86	1.83	1.18	0.80	0.58				
5	1.99	1.29	0.79	0.47	0.29				
6	2.14	1.10	0.53	0.35	0.25				
7	2.75	1.75	0.98	0.59	0.36				
8	2.50	1.66	1.06	0.71	0.50				
9	2.44	1.49	1.07	0.70	0.49				
10	2.14	1.34	0.96	0.63	0.45				

District County Bonham Highway Rec. Rd 3 Milepost Date 6/27/85 Temperature 78

Non-Fabric/Left Lane/Coming Back

location		Dynaflect Readings						
	Sc 1	Sc 2	Sc 3	Sc 4	Sc 5			
1	3.00	1.62	0.84	0.48	0.30			
2	3.02	1.88	1.16	0.77	0.53			
3	3.07	1.83	1.02	0.61	0.39			
4	2.41	1.40	0.83	0.52	0.33			
5	3.31	1.86	1.04	0.65	0.43			
6	2.40	1.50	1.02	0.70	0.50			
7	2.11	1.22	0.72	0.45	0.29			
8	1.49	0.90	0.55	0.37	0.26			
9	2.86	1.69	0.87	0.50	0.29			
10	2.11	1.38	0.94	0.64	0.44			

District	County Bonham	Highway Recreatio	n Rd.	3	Milepost
Date 6/27/85		Temperature	78		

Temperature 78

.

Non-Fabric/Right Lane/Going

	Dyneflect Readings					
Location	Sc 1	Sc 2	Sc 3	Sc 4	Sc 5	
1	1.99	1.27	0.83	0.57	0.41	
2	2.27	1.38	0,80	0.49	0.31	
3	1.98	1.07	0.58	0.36	0.25	
4	1.94	1.21	0.73	0.47	0.31	
5	3.02	1.78	1.06	0.67	0.45	
6	3.16	1.88	1.04	0.64	0.42	
. 7	2.05	1.20	0.70	0.44	0.30	
8	2.65	1.60	0.92	0.54	0.33	
9	3.13	1.94	1.12	0.71	0.47	
10	1.73	1.01	0.58	0.34	0.22	

.

DISTRICT COUNTY Bonham HIGHWAY Rec.Rd 3 MILEPOST _____ DATE 6/27/85 TEMPERATURE 76

Fabric/Right Lane/Going

location	Dyneflect Readings					
LUCALIUN	Sc 1	Sc 2	Sc 3	Sc 4	Sc 5	
1	1.95	1.35	0.87	0.62	0.46	
2	2.35	1.75	1.18	0.75	0.51	
3	2.26	1.59	1.04	0.68	0.48	
4	1.81	1.18	0.70	0.40	0.25	
5	1.79	1.04	0.57	0.34	0.24	
6	2.13	1.53	0.85	0.48	0.31	
7	2.35	1.57	1.01	0.86	0.46	
8	2.42	1.46	0.81	0.47	0.28	
9	2.46	1.48	0.82	0.47	0.28	
10	2.34	1.46	0.86	0.51	0.32	

1

Cone Penetrometer Results RR3, Station 5, Control Section

Cone Penetrometer Results RR3, Station 8, Control Section

,

Cone Penetrometer Results RR3, Station 8, Geotextile Section

Cone Penetrometer Results RR3, Station 9, Geotextile Section