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FINAL RESEARCH PLAN OF STATISTICAL ANALYSIS FOR 
SUPPLEMENTAL MAINTENANCE EFFECTIVENESS RESEARCH 

PROGRAM (SMERP) DATA 
 

 
One of the tasks in this project is to develop a set of tools to analyze the 

Supplemental Maintenance Effectiveness Research Program (SMERP) data.  In pursuit of 

this, we have reviewed several different models and approaches. 

The repeated measures, linear covariate, and non-linear covariate models have 

been fitted to the SMERP data. We treated the distresses (fatigue or alligator cracking, all 

other cracking, and bleeding) as three univariate response variables in the models.  Since 

the results for each distress are similar, cracking data was selected to be representative.  

In addition, in the following context, treatment types 1 - 7 refer to seven pavement 

treatments: 1 - asphalt rubber, 2 - microsurfacing, 3 - polymer modified emulsion seal 

coat, 4 - latex modified seal coat, 5 - conventional asphalt cement seal coat, 6 - fog seal, 

and 7 – control section with no treatment applied.     

A plot of all other cracking is shown graphically in Figure 1. 

Figure 1. Cracking. 
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REPEATED MEASURES MODEL  

The repeated measures model was the first candidate model tested because for 

each experimental section, the pavement condition was measured several times and the 

inspection intervals were nearly equal.  

There are two main ways to analyze a repeated measures design: split-plot and 

multivariate approaches.  Multivariate analysis is a necessary complement to verify the 

validity of the split plot analysis.  

For the cracking, the split plot model is 

Y d eijk i k ik j ij ijk= + + + + + +µ α ρ β α β( ) ,  

where  

     i  = 1, 2,..,7,  

     k = 1, 2,…, 20,   

     j  = 1,2, …, 9, 

     α i   = fixed pavement treatment, 

     ρ k  = fixed site effect (block), 

     β j  = fixed time effect,  

( )α β
ij

 = fixed treatment × time interaction effect, and 

     dik  = whole plot random error.  

The subplot errors are assumed to satisfy the Huynh-Feldt condition of equal variances 

for differences between all inspection times.  

 The following is an example analysis of variance (ANOVA) table output for this 

model: 
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Table 1. Example ANOVA Table for Repeated Measures Model 
( R2 = 77%). 

 

Source DF Sum of 
Squares Mean Squares F Value P-value 

Model 195 76038405.6 389940.5 14.89 0.0001 
  TYPE                       6 8895403.0 1482567.2 11.16 0.0001 
  INSP                8 12330871.5 1541358.9 58.86 0.0001 
  INSP*TYPE         48 2699722.8 56244.2 2.15 0.0001 
  PLACE              19 30689140.5 1615217.9 9.96 0.0001 

 TYPE*PLACE 114 19096833.0 167516.1 6.40 0.0001 
Error 866 22676605.2 26185.0   
Corrected Total 1061 98715010.8    

 

 

The first p-value listed in the last column is less than 0.0001.  A value this low 

indicates that the model is significant with a satisfied squared multiple correlation, R2  

value of 77 percent. This correlation means that 77 percent of variation in cracking is 

captured by this split-plot model. The other p-values are all much less than 0.05, hence 

the effects of treatment type, inspection date, site location, and interaction are all 

significant. We are especially concerned with the effects of treatment type, so we 

implemented a post-ANOVA analysis to provide more detail. The Tukey Honestly 

Significant Difference (HSD) test (Kuehl, 1994), which was developed by Tukey for 

pairwise comparison of all treatment types, gives the result shown in Table 2. 

 

 

 

 

 

 

 

 

 



4 

 

Table 2. Results of the Tukey’s HSD Test. 

Grouping    Mean        N     TYPE 

A             313.54     139            6  

A             298.80     143            7  

A             277.95     156            2  

B             113.82     156            5  

B             105.94     156            4  

B               98.62     156            3  

B               63.59     156            1  

 

This table shows that types 2, 6, and 7 are not significantly different; types 1, 3, 4, 

and 5 do not differ significantly.  The data can be arranged into groups A (2, 6, and 7) 

and B (1, 3, 4, and 5), and the types in the different groups are significantly different.  

The trend analysis was conducted to determine the quantitative trend relationship 

between cracking condition and inspection time, which can be simplified by examining 

orthogonal contrasts among the inspection time levels that measure the linear, quadratic, 

and higher-level polynomial effects. These contrasts, known as orthogonal polynomials, 

enable us to evaluate the importance of each polynomial component with a specific 

contrast. Table 3 shows the output of the orthogonal polynomial analysis. 

 

Table 3. Analysis of Variance for the Orthogonal Polynomial Model. 

Contrast DF Contrast SS Mean Square F Value P-value 

Linear 1 11350662.1 11350662.1 433.47 0.0001 
Quadratic 1 37030.4 37030.4 1.41 0.2347 
Cubic 1 41671.3 41671.3 1.59 0.2075 
Quartic 1 41048.2 41048.2 1.57 0.2109 
Fifth 1 110755.0 110755.0 4.23 0.0400 
Sixth 1 17843.2 17843.2 0.68 0.4093 

 

This table indicates that the only significant trend is the linear model, but the small p-

value for the fifth order component stands, though it is not significant.   
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The Hynh – Feldt (H-F) condition is required for the usual analysis of variance for 

the above model, which means that variance of the difference between any pair of 

observations receiving the same treatment but at the different time must be equal. This 

structure, also termed sphericity, is a necessary and sufficient condition for the F tests to 

be appropriate.  Multivariate analysis of variance can test the H-F condition. The basic 

model for cracking values is: 

Y eijk ij ijk= +µ ,  

where  

     i  = treatment type (1, 2,..,7); 

     k  = site number (1, 2,…, 20); and  

     j  = inspection number (1,2, …, 9).  

The result of the Mauchly’s test, which can be applied to test the null hypothesis of 

sphericity (Littell, Freund, and Spector, 1991) extracted from the multivariate analysis of 

variance, is shown in Table 4. 

 

Table 4. Test for Sphericity. 

Mauchly's 
Criterion 

Chisquare 
Approximation DF P-value 

0.0000298 772.4463 35 0.0000 

 

Data shown in Table 4 confirm that the split-plot analysis may not be valid. The Wilks’ 

Lambda likelihood ratio test on the general linear hypothesis of  no-time effect has a p-

value < 0.0001 and the no-time-treatment interaction effect has a p-value = 0.5653, which 

shows the significance of inspection time but a non-significant interaction effect between 

time and treatment.  

A final analysis forms contrast (orthogonal polynomials) in the time variable and 

tests the differences in this contrast across the levels of the type variable.  Since we have 

nine time periods, we can form eight orthogonal polynomials, which summarize the data 

across the repeated factor (time period).  The polynomial trend can thus be considered the 
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response variable in a complete random design with seven treatments and eight 

responses.  Table 5 shows the p-values from the polynomial analysis.   

                    Table 5. P-values of Tests for Polynomial Trends. 

Polynomial 
Order Mean Type 

Linear 0.0001 0.4888 

Quadratic 0.1279 0.4809 

Cubic 0.0501 0.0035 

Quartic 0.0368 0.6827 

5th 0.0002 0.8954 

6th 0.6379 0.6043 

7th 0.1878 0.0098 

8th 0.0279 0.2457 

The column labeled “Mean” tests the hypothesis that, averaged over all the 

observations, the mean of the specified contrast variable is 0.  The column labeled 

“Type” tests the hypothesis that the mean of the contrast variable is the same for each 

level of type tested. Since the eight tests are not independent, we would use 

α PC = ≈0 05 8 0 0063. / .  as the significance level in these multiple comparisons.  The SAS 

output shows that the linear trend (p-value < 0.0001) and fifth order trend (p-value = 

0.0002) are significant, but the non-significant type effects for linear and fifth order 

shows that the curvatures are almost the same for the seven treatment types. 

Although the data tested do not satisfy the H-F condition, the repeated measures 

model is still a good approach for this project.  We grouped the treatment types and found 

the significant non-linear time trend by ANOVA and post-ANOVA. In the following 

models, we treat inspection times as exact days rather than as several levels.     
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ANALYSIS OF COVARIANCE (ANCOVA) 

Basically, ANCOVA (Huitema, 1980) is useful when the researcher wishes to 

examine the relationship among at least two quantitative variables and at least one 

additional categorical variable.  Especially, the researcher may be interested in examining 

the relationship between two quantitative variables but find that a categorical variable is 

confounding that relationship. ANCOVA allows one to examine the relationship in 

question “controlling for” the confounding categorical variable.  

The model of ANCOVA can be presented as: 

dependent variables = constant + (effect of  treatment type) + (effect of covariate) + error, 

which has two forms: 

(1) Traditional model: 

( )y x x eij i ij i ij= + − +µ β . ,  

where  

µ i  = treatment mean,  

β  = coefficient for the linear regression of  yij  on xij .  

Two additional key assumptions for this model are that the regression coefficient 

β is the same for all treatment groups and the treatments do not influence the 

covariate x .  

(2) Heterogeneous ANCOVA model:  

( )y x x eij i i ij i ij= + − +µ β . ,  

which allows different slopes for different treatments. 

We applied this model to study the relationship among cracking, time, and sites 

for each pavement treatment. Time is considered as the continuous covariate (here, we 

calculated the exact days between the inspection date and the construction date, while in 

the repeated measures model, we only used the approximate months) with type and site 

as the categorical variable.    

At first, we fit a more general covariate model:  

y x eijk i j ij ijk ijk= + + + +µ α ρ β ,  
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where  

     i  = 1, 2, .., 7,   

     j  = 1, 2, …, 20,  

     k  = 1, 2, …, 9, α i = fixed pavement treatment, 

    ρ j  = fixed site effect (block),  

    β ij  = coefficient for the linear regression of yijk  on xijk , and 

    yijk  = cracking index - ratio of cracking area to pavement area.  

 

The ANCOVA table output for this model is listed in Table 6. 

 

Table 6. Example ANCOVA Table for Linear Covariate Model ( R2 =91%). 

Source DF Sum of Squares Mean Squares F Value P-value 

Model 159 2.03087849 0.01277282 55.77 0.0001 

TIME 1 0.28783045 0.28783045 1256.67 0.0001 

TYPE 6 0.24615822 0.04102637 179.12 0.0001 

SITE 19 0.67984932 0.03578154 156.22 0.0001 

TIME*TYPE*SITE 133 0.81704049 0.00614316 26.82 0.0001 

Error 889 0.20361924 0.00022904   

Corrected Total 1048 2.23449772    

 

The first p-value listed in the last column is less than 0.0001.  This small value 

indicates that the model is significant with a very high squared multiple correlation, R2  

value of 91 percent. This correlation means that 91 percent of the variation in cracking is 

captured by this linear covariate model.  The other p-values are all much less than the 

0.05 level.  The significant interaction among time, treatment type, and site indicates a 

heterogeneous ANCOVA model.  

We further tried the ANCOVA for each type of treatment. Tables 7 through 13 

contain extracted ANCOVA data showing that for each type of pavement, the model is 

significant and the heterogeneous ANCOVA is necessary.  
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Table 7. ANCOVA Table for Treatment Type 1 ( R2 = 85%). 

Source DF Sum of Squares Mean Squares F Value P-value 

  TIME                       1 0.00819032 0.00819032 111.60 0.0001 
  SITE          19 0.02891665 0.00152193 20.74 0.0001 
TIME*SITE      19 0.01113912 0.00058627 7.99 0.0001 

 

Table 8. ANCOVA Table for Treatment Type 2 ( R2 = 92%). 

Source DF Sum of Squares Mean Squares F Value P-value 

  TIME                       1 0.09764018 0.09764018 301.76 0.0001 
  SITE          19 0.22332694 0.00152193 36.33 0.0001 
TIME*SITE      19 0.08718655 0.00458877 14.18 0.0001 

 

Table 9. ANCOVA Table for Treatment Type 3 ( R2 = 94%). 

Source DF Sum of Squares Mean Squares F Value P-value 

  TIME                       1 0.01651027 0.01651027 283.81 0.0001 
  SITE          19 0.05657327 0.00297754 51.18 0.0001 
TIME*SITE      19 0.02648082 0.00139373 23.96 0.0001 

 

Table 10. ANCOVA Table for Treatment Type 4 ( R2 = 92%). 

Source DF Sum of Squares Mean Squares F Value P-value 

TIME 1 0.02687644 0.02687644 245.41 0.0001 
SITE 19 0.06861267 0.00361119 32.97 0.0001 
TIME*SITE 19 0.05267105 0.00277216 25.31 0.0001 

 

Table 11. ANCOVA Table for Treatment Type 5 ( R2 = 94%). 

Source DF Sum of Squares Mean Squares F Value P-value 

TIME 1 0.03112358 0.03112358 420.09 0.0001 
SITE 19 0.07002234 0.00368539 49.74 0.0001 
TIME*SITE 19 0.04408005 0.00232000 31.31 0.0001 

 

Table 12. ANCOVA Table for Treatment Type 6 ( R2 = 92%). 

Source DF Sum of Squares Mean Squares F Value P-value 



10 

  TIME                       1 0.06774384 0.06774384 154.94 0.0001 
  SITE          17 0.32281973 0.01898940 43.43 0.0001 
TIME*SITE      16 0.08458547 0.00528659 12.09 0.0001 

 

Table 13. ANCOVA Table for Treatment Type 7 ( R2 = 91%). 

Source DF Sum of Squares Mean Squares F Value P-value 

TIME   1 0.05575945 0.05575946 118.42 0.0001 
SITE 17 0.3519001 0.02070000 43.96 0.0001 
TIME*SITE 16 0.07847784 0.00490486 10.42 0.0001 

 

 The linear covariate model captures the data more precisely than the other 

models, since we treat the inspection time as a continuous covariate.  From the view of 

the goodness-of-fit, this model is better than the repeated measures model. However, as  

with the split-plot model, the data cannot satisfy an important assumption of the linear 

covariate model which requires that the errors be independent. Therefore, this approach is 

still an approximation.    

 

NON-LINEAR COVARIATE MODEL 

    The above linear covariate model has already shown to be a good approximation. 

However,  some high order polynomial trends presented in the above polynomial trend 

analyses indicate strong non-linearity. Previous pavement studies (Freeman, 2000) 

recommend an S-shaped curve: 

g e W=
−�
�
�

�
�
�

ρ β

 

where  

g  = damage index,  

W  = pavement age depending upon the distress type under consideration, and 

  ρ β,  = scale and shape parameters, respectively.   

 

 

An assumed exponential error structure: 

g e W
e

=
−�
�
�

�
�
�

ρ β
ε
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can give us a linear model after transformation: 

[ ]log log( ) log( ) log( )− = − +g Wβ ρ β ε . 

It was interesting to exert more covariate analysis with this general linear relation, 

called non-linear covariate analysis. We applied this model to study the relationship 

among log[-log(cracking)] (the new response variable), log(time) (the new covariate), 

and site (still the categorical variable) for each pavement treatment. The results are very 

close to the linear covariate analysis.  In order to compare these two approaches, we also 

did the linear covariate analysis based on the formula: 

g a bW= + + ε . 

As with the linear covariate modeling, we fit a more general covariate model after the 

above transformation. The ANCOVA table output for this model is included in Table 14. 

 

Table 14. Example ANCOVA Table for Non-linear Covariate Model ( R2 = 90%). 

Source DF Sum of Squares Mean Squares F Value P-value 

Model 121 82.5054439 0.6818632 30.61 0.0001 
  W                       1 6.4265315 6.4265315 288.47 0.0001 
  TYPE               6 12.5931327 2.0988555 94.21 0.0001 
  SITE          18 40.9097879 2.2727660 102.02 0.0001 
W*TYPE*SITE      96 22.5759918 0.2351666 10.56 0.0001 
Error 400 8.9113327 0.0222783   
Corrected Total 521 91.4167766    

 

The first p-value listed in the last column is less than 0.0001.  This very small 

value indicates that the model is significant with a very high squared multiple correlation, 

R2  value of 90 percent.  This correlation means that 90 percent of the variation in 

cracking is captured by this non-linear covariate model. The other p-values are all much 

less than the 0.05 level. The significant interaction among time, treatment type, and site 

indicates a heterogeneous ANCOVA model.  

Further, we tried this ANCOVA model for each type of treatment. All of the 

ANCOVA results show that for each type of pavement, the model is significant and the 

heterogeneous ANCOVA is necessary.  We list the R2  for both models in Table 15.  
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              Table 15.  Results of ANCOVA for Each Treatment. 

Type Non-linear 
Model 

Linear 
Model 

1 81.9% 85.0% 
2 96.3% 91.6% 
3 92.7% 93.7% 
4 92.2% 92.1% 
5 89.2% 94.4% 
6 95.4% 91.7% 
7 95.5% 91.2% 

 

The  R2  values are all very similar. Figures 2 and 3 illustrate this point.  In Figure 

2, the linear model is better than the non-linear, but the non-linear model fits more 

closely in Figure 3. Overall, the S-shaped covariate analysis is slightly better than linear 

covariate analysis.  

Obviously, we still cannot overcome the problem of the existence of the 

covariance when modeling by linear ANCOVA.  Also, because there are many zeros in 

the original dataset, the logarithm transformation leads to more undefined values.  

However, the S-shaped modeling is an appropriate way to handle non-linearity.  

 

CONCLUSION 

We have tried several statistical models. The linear models work well, but non-

linearity also exists, which has been proven by several analyses.  We will continue to 

study the univariate analysis by the more complicated non-linear models with more 

parameters (Haas, Hudson and Zaniewski; 1994, Han and Lukanen, 1994; and Visser, 

Queiroz and Caroca, 1994) then move to multivariate analysis,  Finally, we will cope 

with the data sets where the sites were taken out of service (right censored, with 

competing risks).    
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Figure 2. Cracking Type = 1 Site = C. 

 

Figure 3. Cracking Type = 2 Site = S. 
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RESULTS OF LITERATURE SEARCH 

 
 The following is a list of much of the reference material used to develop the 
models.  Not all models studied were used, but valuable information was discovered that 
helped guide the research.  Other sources were consulted, but these represent the majority 
of the reference. 
 
Allison, P. D. (2001) Missing Data, Sage University Series Paper on Quantitative 
Applications in the Social Sciences, Thousand Oaks, CA: Sage. 
 This report provided a basic idea about mechanisms for handling missing data 
which was to help us to model the missing data in SMERP.  
 
Chinchill, V. M. and Vonesh, E. F. (1997), Linear and Nonlinear Models for the Analysis 
of Repeated measurements, New York: M. Dekker. 
 A review of the general repeated measures models, which were used in the data 
analysis, was provided in this reference.  
 
Diggle, R. J., Liang, K. – Y. and Zeger, S. L. (1994), Analysis of  Longitudinal Data, 
Oxford University Press Inc. 
 This document reviews the general strategy for analyzing longitudinal data.  This 
approach was followed in the exploratory data analysis stage.  
 
Fox, J. (1999), Nonparametric Regression Analysis: Smoothing Scatterplots, University 
Series Paper on Quantitative Applications in the Social Sciences, Thousand Oaks, CA: 
Sage. 
 This report provides an excellent review of non-parametric smoothing techniques 
to help us understand the “LOWESS” procedure used in the exploratory data analysis 
stage. 
 
Freeman, T. (2000), Project 0-4040 Proposal. 
 An introductory background of the SMERP study and some terminology used 
throughout the whole statistical analysis was included in this report.  An attempt was 
made during the first research stage to fit the nonlinear model included in this proposal.  
We are currently revisiting that analysis.  
 
Gallant, A. R. and Fuller, W. A. (1973), Fitting Segmented Polynomial Regression 
Model Whose Joint Points Have to Be Estimated, Journal of the American Statistical 
Association, 68, 144-147.  
 The information in this journal helped us to understand the numerical techniques 
for segmented regression.  Since the method outlined in this paper requires stronger 
conditions on the data than we have, we cannot use the method directly.  
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Haas, R., Hudson, W. and Zaniewski, J., (1994), Modern Pavement Management, 
Krieger Publishing Company. 
 This book was used a background book to help the statisticians know more about 
pavement knowledge, terminology, and especially, the many kinds of distress.  
 
Han, C. and Lukanen, E. O.,  (1994), “Performance History and Prediction Modeling for 
Minnesota Pavements”, Third International Conference on Managing Pavements, 
Volume I. 
 The methods proposed for a modeling procedure based on simple, two variable 
models which relate distress density to age, and additional variables such as surfaces 
type, traffic and structure were described. We did not use this procedure.  
 
Hand, D. J. and Crowder, M. J. (1996), Practical Longitudinal Data Analysis, Chapman 
& Hall.  
 Information in this reference compares several models for longitudinal data. We 
used the random-coefficient model and some ideas of handling non-normal and non-
linear in current study.   
 
Hazelrig, J. B., Turner, M. E. and Blackstone, E. H. (1982), Parametric Survival Analysis 
Combining Longitudinal and Cross-sectional-censored and Interval censored Data with 
Concomitant Information, Biometrics, 38, 1-15.  
 The analysis techniques included in this report were studied very carefully during 
the second research stage.  In the final analysis, the methods were not used it treated the 
missing data as dropouts, but not as censored.  
 
Huitema, B. E. (1980), The Analysis of Covariance and Alternatives, Wiley-Interscience 
Publication.  
 This book helped us to understand the covariance model, and was used in the first 
research stage.  
 
Kuehl, R. O. (1994), Statistical Principles of Research Design and Analysis, Duxbury 
Press.  
 This report reviews classical experimental designs.  We used the split-plot and 
covariance models introduced in the book.  
 
Laird, N. C. and Ware, J. H. (1982) Random-effects Models for Longitudinal Data,  
Biometrics, 38, 963-974.  
 This report is the pioneering work on longitudinal data. We used the random-
coefficient model found in this report.  
 
Littell, R. C., Freund, R. J. and Spector, P. C. (1991), SAS System for Linear Models, 3rd 
Edition, SAS Institute Inc. 
 This programming reference helped us to program in the SAS statistical language 
using PROC GLM to implement the repeated measures and covariance models in the first 
research stage.  
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for Mixed Models, SAS Institute Inc.  
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