TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. FHWA/TX-88/399-1F, Vol. II.	2. Government Accession No		3. Recipient's Cotolog No.	
4. Titile and Subtitle Accident Analysis for Urban Freeways Volume II. Maap User Manual			$\begin{array}{\|r\|} \hline \text { 5. Reoorn Date } \\ \\ \text { May } 1988 \\ \hline \end{array}$	
7. Author's) Rebecca Yette, Don Young and David Provines			8. Parforming Organization Report No. Research Report 399-1F,Vol.II	
9. Performing Orgonization Nome ond AddressTexas Transportation Institute The Texas A\&M University System College Station, Texas 77843-3135			11. Controct or Grant No. Study No. $2-18-84-399$	$-84-399$
12. Sponsoring Agency Name ond Address Texas State Department of Highways and Public Transportation; Transportation Planning Division P. O. Box 5051 Austin, Texas 78763			$\begin{aligned} & \text { 13. Type of Report ond Period Covered } \\ & \text { Fina1 - September } 1983 \\ & \text { May } 1988 . \end{aligned}$	
15. Supplementary Notes Research performed in cooperation with DOT, FHWA. Research Study Title: Analysis of Accident Rates Along Urban Freeways To Determine Where and When Added Enforcement or Other Remedial Measures Are Required.				
16. Abstroct This volume of the final report represents the computer software documentation of the Microcomputer Accident Analysis Program. This report describes in detail the actions to be taken by the analyst and the results the analyst can expect as the computer program is executed. An overview of the process used to create the analysis data is included to provide the analyst with the necessary information to interpret the computer-generated reports. This report is designed to be used by traffic engineers and highway safety analysts in the District offices throughout Texas.				
17. Key Words Microcomputer; Accident An High Accident Location; Hig	alysis; ghway Safety	18. Distribution No restric available National T 5285 Port Springfield	This documen the public throug ical Information 1 Road irginia 22161	is the Service
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified		$\begin{aligned} & \text { 21. No. of Poges } \\ & 96 \end{aligned}$	22. Price

Form DOT F 1700.7 (8-69)
ACCIDENT ANALYSIS FOR URBAN FREEWAYSVOLUME II. MAAP USER MANUAL
By
Rebecca Yette
Don YoungDavid Provines
Research Report399-1F Volume IIon
Research Study Number 2-18-84-399Analysis of Accident Rates Along Urban FreewaysTo Determine Where and When Added Enforcementor Other Remedial Measures Are Required
Sponsored By
Texas State Department of
Highways and Public Transportation
In Cooperation With
Federal Highway Administration
U. S. Department of TransportationMay 1988
Texas Transportation InstituteThe Texas A\&M University SystemCollege Station, Texas 77843

METRIC CONVERSION FACTORS

DISCLAIMER

The statements and claims expressed in this document are statements and claims of the authors, and do not necessarily represent the official position of the state of Texas, the State Department of Highways and Public Transportation, or any political subdivision of the State or Federal government regarding the subject matter.

TABLE OF CONTENTS

Page
Introduction 1
WINDOW 3
Analysis of Accident Sites 8
Supplemental Reporting 11
Run Instructions 17
Section 1 Master Menu 19
Section 2 Analysis of Accident Sites 23
Enter Site Number for Analysis. 24
Alter the site Boundary 25
Analysis of Multiple Sites 27
Change to a Different County/Roadway Type 27
Return to Main Menu 28
Section 3 Supplemental Reporting 29
Begin Reporting Process 31
Alter the Site Boundary. 31
Change to a Different County/Roadway Type 31
Exit to Main Menu 31
Begin Reporting Process Options 32
Enter Subset Number to Run 33
Add 33
Edit 38
Delete 40
Copy 41
Exit 41
Print Subset Definition 41
Scroll 42
Section 4 Installation 43
Organization Title 45
Printer Codes 46
Both of the Above 49
Return to Main Menu 50
References 51
Appendices 53

LIST OF APPENDICES

Appendix Page
A Minimum Microcomputer Configuration 55
B Recoding Methodology and Formats for the MAAP County Accident Analysis File Variables. 59
C Overrepresented Conditions and the Corresponding Suggestions for Field Observations and Improvements. 75
D How to Get Started 81
E Example Subset Definition Printout 85
LIST OF EXHIBITS
Exhibit
1 Example WINDOW Reports 4
2 Typical MAAP Output 9
3 Example List Format 12
4 Example Histogram Format 13
5 Example Bar Chart Format 14
6 Example Table Format. 15
LIST OF FIGURES
Figure
1 Schematic of the Overall MAAP Process 2
2 Overview of MAAP 18
LIST OF TABLES
Table
1 MAAP County Accident Analysis File Record Layout 6

The Microcomputer Accident Analysis Program (MAAP) is designed specifically for use with urban Interstate highways and urban non-Interstate freeways. The data analyzed and reported by the MAAP System originate with the merged accident/roadway data file. For a detailed description of these data, refer to the Roadway Information System User Manual ${ }^{1}$. The major components of the system are as follows:

1. WINDOW Ranking Program - identifies and ranks high accident locations.
2. WINDOW Recode Program - combines variables for analysis purposes and creates the analysis file.
3. Analysis Program - Analyzes accident data at selected high accident sites in order to identify causative factors and suggest appropriate remedial measures.
4. Supplemental Reporting Program -provides descriptive statistics for user-defined subsets of the analysis file.

Figure 1 is a schematic representation of the overall MAAP process. After a short explanation of each major component, the specific instructions for running the microcomputer part of the MAAP procedure are given. Instructions for requesting the WINDOW run and the MAAP county analysis data file are provided in the WINDOW explanation. Instructions for copying the MAAP county accident tape file (created on the mainframe) onto a diskette to be sent to the District are provided in the WINDOW Users Manual available at D-18STO. Appendix A lists the minimum requirements for running the microcomputer portion of the MAAP System.

Figure 1. Schematic of the Overall MAAP Process

WINDOW

The methodology used to identify and rank high accident locations is based on an existing mainframe computer program known as the "WINDOW" program.

The WINDOW program is designed with numerous built-in options to accommodate the specific user needs. When a run of the MAAP WINDOW is requested from D-18STO, the following criteria are specified:
a) Report to rank segments by accidents per 100 million vehicle miles of travel
b) 3 consecutive years of accident data
c) A 2-mile long window (segment)
d) A minimum of 30 accidents to be considered for ranking
e) Urban Interstate or urban non-Interstate freeways
f) 1 county only
g) Main lanes only
h) Property damage only accidents excluded
i) Construction zone accidents excluded

Two reports produced by the WINDOW program can be used to select specific segments of high accident locations for evaluation. Example reports are shown in Exhibit 1. One report is sorted by rank (the relative accident rate) and the other is sorted by segment within each highway. At the microcomputer level, minor changes in the beginning and ending milepoints of the locations can be made to coincide with identifiable landmarks such as interchanges and bridge structures for field evaluation purposes. (See option A on the Analysis Menu.)

RECODE which is automatically run with the MAAP version of WINDOW creates a county accident analysis data file that includes the rank numbers assigned by the WINDOW program. This county data file includes all accidents within the county that meet the subsetting criteria used with the WINDOW ranking program, plus the property damage only accidents which were not included during the ranking process. The county data file contains the ranking for the site, primary analysis variables, secondary analysis variables, additional report variables, and the control section and milepoint for the accident. Refer to section 4.3 Microcomputer Accident Analysis Program in Volume I of this report for additional information about the analysis variables. Table 1 lists the county data analysis file record layout. The analysis variables are created by recoding and combining several variables. With the exception of the variables contributing factors 1 and 2, the report variables retain the same value as on the original merged accident/roadway data file. The source of each variable is detailed in Appendix B.

Once the county analysis file is created, it is forwarded to

1984-1986 HARRIS COUNTY INTERSTATE MAINLANE ACCIDENTS
segments sorted by rank for rate

RANK	HWY DIST	HIghway	beginning milepoint			ENDING MILEPOINT			ACCS	RATE (ACCS/100 MVM)	fatal ACCS	FATAL- ITIES	$\begin{aligned} & \text { INJ } \\ & \text { ACCS } \end{aligned}$	$\begin{aligned} & \text { INJ- PDO } \\ & \text { URIES ACCGS } \end{aligned}$	
			countr	CONTROL- SECTION	MPT	county	CONTROL- SECTION	MP T							
1	12	1H 0610	HARAIS	0271-17	33.1	harris	0271-17	35.1	403	270.55	2	2	401	596	0
2	12	1H 0610	HARRIS	0271-15	5.9	HARRIS	0271-16	21.0	209	250.48	3	3	206	299	0
3	12	IH 0045	HARRIS	0500-03	15.4	HARRIS	0500-03	17.4	310	237.44	2	2	308	496	0
4	12	1H0010	HARRIS	0271-07	28.0	HARRIS	0508-01	1.9	147	200.97	4	4	143	201	0
5	12	IH 0610	HARRIS	0271-14	5.6	HARRIS	0271-14	7.6	143	192.24	0	0	143	211	0
6	12	IH 0610	HARRIS	027t-15	3.3	HARRIS	0271-15	5.3	136	189.91	4	5	132	208	0
7	12	1H0045	HARRIS	0500-03	20.6	HARRIS	0500-03	22.6	250	182.89	3	3	247	367	0
8	12	1H 0610	HARRIS	0271-16	9.6	HARRIS	0271-17	31.5	163	151.90	2	2	161	237	0
9	12	1H 0610	HARRIS	0271-16	6.5	HARRIS	0271-16	8.5	173	146.29	0	0	173	280	0
10	12	1H0010	HARRIS	0508-01	34.4	HARRIS	0508-01	36.4	131	143.16	6	8	125	188	0
11	12	1H 0010	HARRIS	0271-07	25.9	HARRIS	0271-07	27.9	124	142.62	5	5	119	165	0
12	12	IH 0610	HARRIS	0271-14	10.6	HARRIS	0271-14	12.6	88	140.83	1	1	87	116	0
13	12	1H 0045	HARRIS	0500-03	11.5	HARRIS	0500-03	13.5	139	140.58	1	1	138	212	0
14	12	1H 0610	HARRIS	0271-17	36.9	HARRIS	0271-14	0.9	223	132.76	1	1	222	324	0
15	12	1H 0010	HARRIS	0508-01	2.3	HARRIS	0508-01	32.3	102	131.76	3	5	99	134	0
16	12	1H 0610	HARRIS	0271-16	21.1	HARRIS	0271-16	23.1	107	125.76	2	2	105	149	0
17	12	1H 0610	HARRIS	0271-14	1.0	HARRIS	0271-14	3.0	150	108.75	1	2	149	201	0
18	12	1H 0610	HARRIS	0271-14	8.4	HARRIS	0271-14	10.4	65	106.96	1	1	64	96	0
19	12	IH 0610	HARRIS	0271-16	24.1	HARRIS	0271-16	26.1	105	105.34	0	0	105	169	0

Exhibit 1. Example WINDOW Reports

1984-1986 harris county interstate mainlane accidents EXCLUDING PDO ANO CONSTEUCTION ZONE ACCIDENTS
segments sorted within highway

RANK	$\begin{aligned} & \text { HWY } \\ & \text { DIST } \end{aligned}$	h.ighway	beginning milepoint			ENDING MILEPOINT			ACCS	RATE (ACCS/ $100 \mathrm{MVM})$	FATAL ACCS	FATALITIES	$\begin{aligned} & \text { INJU } \\ & \text { ACCS } \end{aligned}$	INJ- URIES	$\begin{aligned} & \text { PDO } \\ & \text { ACCS } \end{aligned}$
			county	CONTROL- SECTION	MP T	county	CONTROL - SECTION	MP T							
38	12	1H OO: 0	HARRIS	0271-06	0.3	HARRIS	0271-06	2.3	27	81.65	1	1	26	43	0
49	12	IH 0010	HARRIS	0271-06	2.8	HARRIS	0271-06	4.8	16	27.83	0	0	16	19	0
47	12	1H0010	HARRIS	0271-06	5.7	HARRIS	0271-06	7.7	31	44.94	2	2	29	36	0
35	12	1H0010	HARRIS	0271-06	9.7	HARRIS	0271-07	11.7	68	85.64	6	9	62	83	0
34	12	1H0010	HARRIS	0271-07	13.3	HARRIS	0271-07	15.3	102	88:97	2	2	100	143	-
25	12	IH 0010	HARRIS	0271-07	16.1	HARRIS	0271-07	18.1	128	97.66	1	1	127	171	0
22	12	1H 0010	HARRIS	0271-07	20.2	HARRIS	0271-07	22.2	140	103. 16	3	3	137	188	0
30	12	1H 0010	HARRIS	0271-07	22.7	HARRIS	0271-07	24.7	99	90.96	3	3	96	135	0
11	12	1H 0010	HARRIS	0271-07	25.9	HARRIS	0271-07	27.3	124	142.62	5	5	119	165	0
4	12	1H 0010	HARRIS	0271-07	28.0	HARRIS	0508-01	1.9	147	200.97	4	4	143	201	0
15	12	1H0010	HARRIS	0508-01	2.3	HARRIS	0508-01	32.3	102	131.75	3	E	99	134	0
10	12	IH 0010	HARRIS	0508-01	34.4	HARRIS	0508-01	36.4	131	143.16	6	8	125	188	0
39	12	IH 0010	HARRIS	0508-01	36.6	HARRIS	0508-01	38.6	69	80.54	0	0	69	84	0
42	12	1H 0010	HARRIS	0508-01	38.7	HARRIS	0508-01	40.7	41	66.04	5	5	36	59	0
43	12	1H 0010	HARRIS	0508-01	41.9	HARRIS	0508-01	43.9	33	65.61	2	2	31	55	0
33	12	1H 0010	HARRIS	0508-01	45.1	HARRIS	0508-01	47.1	38	89.90	2	3	36	59	0
24	12	1H0010	HARRIS	0508-01	47.4	HARRIS	0508-0:	49.4	30	102.61	1	1	29	49	0
46	12	1H0010	HARRIS	0508-01	50.0	HARRIS	0508-01	52.0	15	50.18	1	1	14	22	0
40	12	1H 0010	HARRIS	0508-01	52.3	HARRIS	0508-01	64.3	19	77.46	0	0	19	36	0

Exhibit 1. Example WINDOW Reports (Continued)

Table 1. MAAP County Analysis Data File Record Layout

Column	Variable	
01-02	rank (site)	
03	accident time	
04	accident type	
05	weather - surface condition - Primary	
06	degree of curvature	
07	vehicle type	
		- Analysis Variables
08	accident severity	
09	DWI or DW drugs	
10	speeding - S	Secondary
11	prioritized driver age	
12	prioritized driver license status	
13-14	other factor	
15	first harmful event	
16	weather	
17-18	object struck	
19-20	time	
21-22	manner of collision	
23	recoded position at point of impact	
24	surface condition	
25-26	position at point of impact	
27	day	
28	severity	
$\begin{aligned} & 29-34 \\ & 35-37 \end{aligned}$	control section 1 milepoint (no decimal) Location Variables	- Other Accident Variables
38	prioritized contributing factor 1	
39	prioritized contributing factor 2	
40-41	vehicle 1 style	
42-43	vehicle 2 style	
44-45	driver 1 age	
46-47	driver 2 age	
48-49	driver 1 license status	
50-51	driver 2 license status	

the district office on a diskette to be copied to a microcomputer hard disk. The analysis file is named according to the following specifications:
a) Prefix of "I" or "N" for Interstate or nonInterstate respectively
b) The first 7 characters of the unabbreviated county name
c) Suffix of .DAT.
ex: The analysis data file for Interstate highways in Harris county is named IHARRIS. DAT.

To obtain the WINDOW reports and the county accident analysis data file, call $D-18 S T O$ and request a MAAP WINDOW run for the desired county. If subsetting criteria other than those previously listed are warranted, the new criteria should be specified at the time of the request.

ANALYSIS OF ACCIDENT SITES

The Analysis procedure of MAAP is designed to automatically analyze the accident characteristics of a given site and to provide the users with a list of accident factors and their interactions that are significantly overrepresented at the location under consideration in comparison to the countywide average. The accident analysis algorithm was developed specifically for this application and is based on a statistical (discrete multivariate) approach. A description of the algorithm is provided in Appendix B of Volume I. The user will be provided with a list of overrepresented accident conditions and suggested items for field observation and potential improvements for that site at the end of the program.

Exhibit 2 illustrates a typical output from the MAAP program. The overrepresented conditions are reported in tabular format for ease of use. The table heading identifies the county, highway type, location, and accident frequency and rank of the site being evaluated. Significant variables and levels of these variables are shown as rows and columns of the table.

Entries are shown only for those cells, i.e., combinations of levels of variables, that are significantly overrepresented. Each entry shows both the expected and the observed number of accidents. The expected number of accidents is based on the countywide average. In other words, this is the number of accidents expected for that specific combination of factors if the site is an average site. The observed number of accidents is the actual number of accidents for that specific combination of factors found at the high accident location.

The program output also provides a list of suggested items for field observation and improvements based on the overrepresented conditions. A list of the overrepresented conditions and the corresponding suggested items for field observation and improvements is shown in Appendix C. This is a very crude attempt to provide the users with some suggestions on what to look for in the field inspection and some potential remedial measures. Each suggestion corresponds to only one variable and one level of that variable at a time. The suggestions do not take interactions or combinations of factors into account.

OVERREPRESENTED CONDITIONS AND CORRESPONDING SUGGESTIONS

 FOR FIELD OPERSERVATION AND IMPROVEMENTS$$
\text { Accident Type }=\text { Multi-vehicle, Sideswipe }
$$

The proportion of sideswipe accidents are overrepresented. Check merging and weaving areas for potential improvements, e.g., increase the length of merging and weaving areas, ramp metering or other control.

$$
\text { Accident Type }=\text { Multi-vehicle, Head-on/Angle }
$$

The proportion of head-on or angle accidents are overrepresented. Check to make sure that this roadway section is correctly identified as freeway. The number of head-on or angle accidents is probably too high for freeway conditions. If the problem is with median crossovers, assess the possibility of closing off these crossovers.

Accident Time $=$ Weekday, Rush Hour

The proportion of accidents during weekday rush hours is higher than average. This suggests a problem with over-capacity during rush hours which is generally not affected by safety-related improvements. Check for potential means of increasing capacity and improving traffic flow.

Accident Time $=$ Weekday, Non-Rush Hours or Weekend, Daytime
The proportion of accidents during weekday non-rush hours and/or weekend daytime hours is higher than average. Check if the traffic volume is already approaching capacity at these time periods while traffic speeds are relative high. If such is the case, safety-related improvements will generally not be effective. Check for potential means of increasing capacity and improving traffic flow.

Accident Time $=$ Evening/Night
The proportion of accidents during the evening and nights is higher than average. Check lighting conditions and night visibility for potential improvements, such as increasing lighting level, improving delineation, raised pavement markers, etc.

Exhibit 2. Typical MAAP Output (Continued)

SUPPLEMENTAL REPORTING

The Supplemental Reporting procedure of MAAP allows the user to examine accident data on the microcomputer through use of subsetting and reporting functions. This procedure is useful in examining particular variables that are overrepresented. The user performs two steps to produce a report.

First, the user must decide what values of particular variables in the data represent the subset of data of interest. This is a multistep task in MAAP that also includes deciding on a report title, report format, and the variables to be shown in the report. This step need only be done once for each different set of subset requirements because this "subset definition" will be saved in MAAP for later retrieval.

Second, the user runs the subsetting process to produce the report. This step produces a printed report and must be run for each report that is requested.

There are four formats available to view the subset reports. The List Format, illustrated in Exhibit 3, provides a list of the data in each accident that is identified as part of the subset. One page per accident is printed; hence, it is suggested that the List Format be reserved for small subsets of accidents.

The second report, illustrated in Exhibit 4, is in a Histogram Format. This is a frequency line chart which shows each of a particular variable's values vertically down the page. The length of the horizontal line indicates the percentage the value represented in the total subset. This report represents one variable and its values.

The third report, illustrated in Exhibit 5, is in a Bar Chart Format. This is the Histogram Format (see previous description) rotated ninety degrees so that the variable's values appear horizontally on the page. This report represents one variable and its values.

The fourth report, illustrated in Exhibit 6, is in a Table Format. This format shows the subset of data with one or two variables' values shown on the page. One variable is shown on the vertical axis while the second is on the horizontal axis. The values are shown in "cells" on the paper with the values in the cells representing the number of times that the combination of values on the axis occurred within the subset of the data. Therefore, this report allows viewing of one or two variables and their values in relation to each other for the subset in a crosstabular format.

Please note that all the numbers shown in these reports for each possible value of the variables represent the "number of accidents" in the subset having those values.

M A A P
SDHPT DISTRICT 2 List of Fatal Accidents

SITE	16
ACCIDENT TIME	WEEKDAY RUSH HOUR
ACCIDENT TYPE	SINGLE VEHICLE
ACC SEVERITY	FATAL/INJURY
WEATHER/SURFACE	NO ADVERSE
DEGREE OF CURVE	STRAIGHT
VEHICLE TYPE	VAN OR PICKUP
SPEEDING	SPEEDING
DWI	DWI OR DW DRUGS
DRIVER AGE	21 TO 55
DRIVER STATUS	IN STATE
DAY	WEDNESDAY
TIME	5-5:59 PM
FIRST HARMFUL	FIXED OBJECT
SEVERITY	FATAL
WEATHER	CLEAR (CLOUDY)
SURFACE	DRY
MANNER/COLLISION	SINGLE VEHICLE GOING STRAIGHT
OBJECT STRUCK	MEDIAN BARRIER DIVIDER
OTHER FACTOR	NO CODE APPLICABLE
LOC OF IMPACT	MEDIAN
POINT OF IMPACT	AREA BETWEEN MAIN LANES
VEHICLE 1 STYLE	PICKUP TRUCK
VEHICLE 2 STYLE	NO SECOND VEHICLE
CONTRIB FACTOR 1	AT LEAST ONE SPEEDING-UNSAFE
CONTRIB FACTOR 2	AT LEAST ONE DWI OR DW DRUGS
DRIVER 1 AGE	AGE 41
DRIVER 2 AGE	NO SECOND VEHICLE
DRIVER 1 STATUS	TEXAS
DRIVER 2 STATUS	NO SECOND VEHICLE
Control Section	0271-16
MILEPOINT	22.5

SDHPT OISTRICT 2
Fatal Accidents Due to DWI

Exhibit 4. Example Histogram Format

SDHPT DISTRICT 2
Barchart of Accidents Involving Drivers Under 21

Exhibit 5. Example Bar Chart Format

SDHPT DISTRICT 2 DRIVER AGE TABLE YOUNG DRIVERS BY DWI

DRIVER AGE by DWI

Total Row \% Column \% Total \%	UNKNOWN	$\left\lvert\, \begin{aligned} & \text { DWI OR DW } \\ & \text { DRUGS }\end{aligned}\right.$	NO DWI/DW DRUGS	TOTAL
UNKNOWN	undefined $\begin{gathered}0 \\ 0.0\end{gathered}$	0 0.0 0.0 0.0	7 100.0 2.5 2.4	7
OVER 55	undefined $\begin{gathered}0 \\ 0.0\end{gathered}$	1 2.9 10.0 0.3	34 97.1 12.2 11.8	35
UNDER 21	undefined $\begin{gathered}0.0 \\ 0.0\end{gathered}$	1 2.4 10.0 0.3	40 97.6 14.3 13.8	41
21 TO 55	undefined $\begin{gathered}0.0 \\ 0.0\end{gathered}$	8 3.9 80.0 2.8	198 96.1 71.0 68.5	206
TOTAL	0	10\|	279	289

Exhibit 6. Example Table Format

Run Instructions

This manual follows the menu driven format of the MAAP System. Figure 2 shows the structure of MAAP and the flow of this manual. When in MAAP, 3 menus can be accessed from the main menu: 1) Analysis of Accident Sites, 2) Supplemental Reporting, and 3) Installation. Likewise, the run instruction are divided into four (4) sections; 1) Master Menu, 2) Analysis of Accident Sites 3) Supplemental Reporting, and 4) Installation. Beginning each section is a reproduction of the Master Menu which highlights the menu being explained. Prior to running MAAP, the MAAP System and data received from $D-18 S T O$ must be loaded into the computer. Refer to Appendix D for instructions on "How to Get started".

After the program and data have been loaded on the hard disk (C:) the program may be executed by typing the following commands:

$$
\begin{array}{ll}
\text { a. } \quad \text { "CD } \backslash M A A P<C R>" ~ \\
\text { b. } \quad \text { MAAP <CR>" }
\end{array}
$$

Figure 2. Overview of MAAP

SECTION 1

 Master Menu| M A A P SDHPT DISTRICT 12 (HARRIS COUNTY) MASTER MENU |
| :---: |
| 1 ANALYSIS OF ACCIDENT SITES |
| 2 SUPPLEMENTAL REPORTING |
| 3 INSTALLATION |
| X EXIT from MAAP |
| Enter Choice: |

Master Menu

Provides access to:

1. Analysis of Accident Sites
2. Supplemental Reporting
3. Installation
X. Exit from MAAP

If Analysis of Accident Sites (option 1 of screen 1) or Supplemental Reporting is chosen (option 2 of screen 1), you are first prompted for the following:

MAAP
SDHPT DISTRICT 2
MASTER MENU

Evaluating of Overrepresented Conditions

Enter the County Name
Is the Roadway an Interstate (Y / N)
Is the data above correct (Y / N)

Screen 2

The format for the data file name on the computer is as follows:
a) Character 1 will be 'I' for Interstate and 'N' for NonInterstate.
b) The next 1-7 characters will be the first letters (up to 7) of the county name.
c) The extension '.DAT' will be added to the file name.

Ex.: Harris County Interstate data file is named IHARRIS.DAT.
If the data file is not available, this message will be displayed:

IYOURFIL. DAT is NOT a Valid Data File Name

Master Menu

The user wi.ll be returned to screen 1.
Verify that the correct county name has been entered and that the county data file has been loaded onto the microcomputer.

After successfully entering the county name, the menu corresponding to the option chosen, either Analysis of Accident Sites or Supplemental Reporting, will be displayed. These are explained in Section 2 and Section 3 respectively in this manual.

If the Installation option is chosen, the Installation menu will appear without prompting for the county name. Refer to Section 4 in this manual for an explanation of the Installation menu. The Installation only needs to be run when the MAAP System is initially loaded onto the microcomputer, when a title change is desired, or when the printer used by MAAP is changed.

M A A P
SDHPT DISTRICT 12 (HARRIS COUNTY) MASTER MENU

1 ANALYSIS OF ACCIDENT SITES
2 SUPPLEMENTAL REPORTING
3 INSTALLATION
X EXIT from MAAP

Enter Choice: 1

```
Analysis of Accident Sites
```

After entering the data on screen 2 (see screen 2), the Analysis of Accident Sites menu is displayed with the following options:

```
MAAP
SDHPT DISTRICT 12 (HARRIS COUNTY) ANALYSIS OF ACCIDENT SITE
\#\# ENIER SITE NUMBER FOR ANALYSIS
A ALTER THE SITE BOUNDARY
M ANALYSIS OF MUITIIPLE SIIES
D CHANGE TO A DIFFERENT COUNIY/ROADWAY TYPE
Q REIURN TO MAIN MENU
```

Data File IHARRIS.DAT
County Name. HARRIS
Roadway Type INIERSTATE

Enter CHOICE :

Screen 5

1. (\#\#) Enter Site Number for Analysis (option (\#\#) on screen 5)

Enter the site number to be evaluated. This is the only option which will produce the analysis reports. The screen displayed will resemble the following example taken from site 1 of the Tarrant County Interstate data. (screen 6)

The other three options (A,M,D) can be run in any order before the site number is entered. These three options are optional features that add flexibility to the system.

Analysis of Accident Sites

MAAP
 SDHPT DISTRICT 2
 OVERREPRESENTATION FOR SELECIED SITES

Data File being used $=$ ITARRANT.DAT
Evaluating Site Num 1 of 1
Current Site $=01$
TOIAL Record count is 9538 ON-SITE $=717$
Selecting the Primary Condition Selecting the Other Primaries Phase 1 Selecting the Secondaries Phase 1 Secondary Selection of Sparse. Phase 1 PROGRAM WILL NOT CONTINUE UNLESS PRINIER IS READY Fill Contingency Table 1 of 1 Tarrant County, Interstate Freeway. On site accidents were 717 of a County Total of 9538 Rank 01 - Control Section 0014-16 Milepoint 6.5 to 8.5

Hit any KEY to Continue
Screen 6
An example of the report generated by this option is provided in Exhibit 2.
2. (A) Alter the Site Boundary (option A on screen 5)

Enter "A" on screen 5.
The screen below, (screen 7), represents the screen display after all inputs have been entered for the Alter the site Boundary option.

```
MAAP
SDHPT DISTRICT 15 Site Boundary Alteration
```

Which Site 5
How Many Control Sections 1
Control Section \# 1 .[NNNNNN].. 001709
Beginning MilePoint .. [NN.N].. 11.0
Ending MilePoint [NN.N]. . 14.0
MilePoints 110 - 140
Is the data above CORRECT [Y/N]
Alter operation has been performed on the current data file

Analysis of Accident Sites

Acceptable input values for the Alter the Site Boundary option prompts are as follows:
a. Site
b. \# of Control Sections
c. Control Section
d. Beginning/Ending Milepoint

2 digit \# (1-70)
1 digit \# (1-3)
6 digit \# (All digits)
3 digit \# with decimal. Will not accept a whole \# unless followed by a decimal point and a '0'.

The number of digits are given above. Note that the last line in Screen 7 was not input. The Milepoints are calculated by MAAP using the data input as Beginning and Ending Milepoint and will be displayed automatically.

During each run of MAAP the data file can be 'altered' only once. If the file has been altered the system will not allow another alter. To circumvent this message, acutate "Change to a Different County/Roadway Type" even though it may in fact be the same file and then that file can be altered. Once the file has been altered (either from the Analysis Menu or Supplemental Reporting Menu), the altered file will be available to both options.

If you decide not to alter a site once you have begun this option or make a mistake and wish to start over, press enter only at the next input prompt.

Example 1: You are editing site 5, control section 001709. You made a mistake in the beginning milepoint. Press 4- Enter at the prompt for the ending milepoint. This will place the cursor back to the "Control Section \#" prompt. You may then either retype your entry or press ad Enter to return to the Analysis of Accident Sites Menu.

Example 2: You have finished entering 2 of 3 control sections and you have decided you really do not wish to change this site. Press 4Enter at the Control Section prompt on the third entry. This will return you to the Analysis of Accident Sites Menu without altering the site.

Analysis of Accident Sites

Rules of Alter Operation:
a) If the record is within the range and a part of the original site, the site \# remains the same.
b) If the accident is within the range it will be changed to the new site \#.
c) If the accident is outside the range and does not have the site \#, it retains its original site number.
d) If the accident is outside the range and has the site \#, the site will be changed to '00'.
3. (M) Analysis of Multiple Sites (option M on screen 5)

If multiple sites are to be evaluated, this option prompts for all sites and then proceeds to evaluate each site consecutively. Screen 8 will be displayed. This option is identical to 'Enter Site Number for Analysis' but allows a minimum of 1 site and a maximum of 70 sites to be evaluated. If evaluating a large number of sites, it is recommended that the program be set up to run overnight.

MAAP
SDHPT DISTRICT 2
OVERREPRESENTATION FOR SELECTED SITES
Data File being used $=$ ITARRANT.TMP
How Many Sites ?2 Site \# 1 ? 5 Site \# 2 ? 3

Screen 8
4. (D) Change to a Different County/Roadway Type (option D on screen 5)

This option allows one to change to a different data file. The current data file is displayed and the user is then prompted for a different county name. See screen 9.

Analysis of Accident Sites

```
                                    M A A P
                            SDHPT DISTRICT 2
        OVERREPRESENTATION FOR SELECTED SITES
    Data File being used = ITARRANT.DAT
    Enter the County Name --------------------------------------
    Is the Roadway an Interstate (Y/N) ---------------Interstate
            Is the data above correct (Y/N)
            Screen 9
As before, the data file to be analyzed must be loaded on the
microcomputer.
5. (Q) Return to Main Menu (option Q on screen 5)
This option allows the user to exit the Analysis of Accident Sites Menu and return to the main menu.
```

SECTION 3 SUPPLEMENTAL REPORTING
M A A P
SDHPT DISTRICT 12 (HARRIS COUNTY) MASTER MENU
1 ANALYSIS OF ACCIDENT SITES
2 SUPPLEMENTAL REPORTING
3 INSTALLATION
X EXIT from MAAP
Enter Choice: 2
Screen 10

SUPPLEMENTAL REPORTING

There are two distinct and different functions performed by the Supplemental Reporting option.

The first function is to process all the data records (accidents) and select those records that qualify based on the "if statement" contained in the subset definition. The last portion of the definition process (screen 18 and screen 23) will determine which records are selected for inclusion in the report.

The second function is to analyze those records that were selected by the subsetting process and produce the requested report. The report type is defined during the first portion of the definition process (screen 14 to 17).

Both the format of the report and the subsetting conditions are stored in the subset definition. Each time a subset is selected for execution (screen 12) the subsetting function is applied to the data file to select the records that will be contained within the report.

If a different report is to be produced from the same subset, an additional subset must be defined. This may be accomplished by editing the report features of an existing subset or copying the subset and then modifying the report feature.

Option 2 (Supplemental Reporting) on Screen 10 lets the user produce reports on any given subset of data that is available. Subsets defined by the user will be saved for use again without regenerating the subset requirements. MAAP allows the user to produce reports on the data four different ways:

- List format - print all data per accident - one page per accident. See Exhibit 3.
- Bar Chart format. See Exhibit 5.
- Table format - print all data in the format of frequencies and cell percents in a one or two-way table. See Exhibit 6.
- Histogram format. See Exhibit 4.

After identifying the data file, (see screen 2), the Supplemental Report Menu is displayed with the following options:

SUPPLEMENTAL REPORTING

M A A P
SDHPT DISTRICT 12 (HARRIS COUNTY)
SUPPLEMENTAL REPORTING MENU
Data File IHARRIS. DAT
County Name \ldots HARRIS
Roadway Type \ldots INTERSTATE

B BEGIN REPORTING PROCESS
A ALTER THE SITE BOUNDARY
D CHANGE TO A DIFFERENT COUNTY/ROADWAY TYPE
Q EXIT TO MASTER MENU
Enter CHOICE:

Screen 11

1. (B) Begin Reporting Process (option B on screen 11)

Using this option, it is possible to define and produce lists, bar charts, tables, and histograms. All Supplemental Reporting screens follow from option B. This is the only option which will produce the reports.
2. (A) Alter the Site Boundary: (option A on screen 11)

See Analysis of Accident Sites Menu Option 'A' on screen 5 and the screen 7 explanation.
3. (D) Change to A Different County/Roadway Type (option D from screen 11).

See Analysis of Accident Sites Menu Option 'D' on screen 5 and the screen 9 explanation.
4. (Q) Exit to Master Menu (option X from screen 11).

Exit from the Supplemental Report Menu to the Master Menu.
When the user chooses option B on screen 11, MAAP displays the following screen. This screen lists current subset definitions according to the user defined titles. Up to 120 subset definitions can be saved in MAAP.

SUPPLEMENTAL REPORTING

```
                        MAAP
                    SDHPT DISTRICT 2
        Subsetting
1 First Harmful Event for Sites 1-3
2
3
...
15
    <Enter Subset NUMBER to Run> [+ or -] = Scroll [Q]uit
    [A]dd [E]dit [D]elete [C]opy [P]rint Subset
```

Screen 12
The above screen has one user created subset definition.
From this menu, (screen 12) the options available are listed at the bottom of the screen. They are summarized below for quick reference and explained in greater detail later in this section:

Enter Subset NUMBER to Run - The user can enter a subset number and MAAP will generate the predefined subset and report.

Add - The user can add ("A") a new subset definition to the list of saved subset definitions.

Edit - The user can edit ("E") an existing subset from the list of saved subsets.

Delete - The user can delete ("D") a subset from the list of saved subsets.

Copy - The user can copy ("C") an existing subset to the next empty slot and then that subset is available for editing.

Quit - The user can exit ("Q") from the process by entering "Q".

Print - The user can generate a printout of one of the saved subset definitions by entering "P".

+ or - Scroll - The user can scroll to the next screen ("+") or the previous screen ("-") of predefined subsets. The system will not 'scroll' past the last defined subset screen.

SUPPLEMENTAL REPORTING

Each screen contains 15 definitions. The system allows a maximum of 120 subsets to be defined. (i.e. 8 screens of 15 subset definitions each.)

1. Enter Subset Number to Run (option from screen 12)

Run a particular subset from the subset menu. To the left of each subset definition is a number. Enter this number to run the corresponding subset. A prompt will then appear asking if the requested subset is the correct subset. Refer to Screen 13. Enter 'Y' if the subset file is correct and the run will proceed. Enter 'N' if the subset file is incorrect and the subset menu will return.

MAAP
SDHPT DISTRICT 2
Subsetting
1 First Harmful Event for Sites 1-3

Is Subset F1.001 the correct subset (Y/N)
<Enter Subset NUMBER to Run> [+ or -] = Scroll [Q]uit
[A]dd [E]dit [D]elete [C]opy [P]rint Subset
Screen 13
2. (A) Add (option A from screen 11)

Add a new subset. This option allows for the addition of new subsets.

The first screen to appear after choosing option A is shown below (screen 14). Enter a descriptive title of the new subset as it will be referenced in the subset menu (screen 12). After entering the subset title, use <CR> to continue. The editing keystrokes (e.g. '"S', ' $\left.{ }^{\prime} \mathrm{D}^{\prime}, ~ e t c.\right) ~ a r e ~ e x p l a i n e d ~ u n d e r ~ t h e ~ ' e d i t ' ~$ option. See screen 21.

SUPPLEMENTAL REPORTING

ADD Subset \# 10				MAAP Row:					
Enter the Title for the Subset (A maximum of 80 characters are allowed)									
Char Left	¢	Prev Scrn	${ }^{\wedge} \mathrm{E}$	Ins	*V	Enter	M	Erase	
Char Right	D	Next Scrn	'X	Del	'G			Abort	ESC

Screen 14
After the subset title screen, the screen shown below (screen 15) is displayed. Choose the type of chart from the list that the subset will include in its definition. See Exhibits 3,4,5, and 6 for examples of each type of chart.

ADD Subset \# 10
MA A P
ROW:
Enter the type of Chart
1 - List
2 - Bar Chart
3 - Table
4 - Histogram
Enter 1 through 4 (Esc to Exit) 3
Screen 15
Bar Chart and Histogram formats are 1-way frequencies. Table must be selected for 2-way frequencies. The table report produces cell, row, column, and total frequencies as well as row, column, and total percentages per cell. The following screen (screen 16) gives the user the option to select 1-way or 2-way table. This screen is only displayed when option '3' ('Table') is selected on screen 15. The 2-way table has one variable and its values across the top of the page(s) (COLUMN VARIABLE) with a second variable and its values down the left side of the page(s) (ROW VARIABLE). The l-way table has only one variable and its values that appear down the left side of the page(s).

NOTE: The variables and their values printed on the page have NOTHING to do with what variable values the user will use to subset the data.

SUPPLEMENTAL REPORITING

ADD Subset \# 10 M A A P

Definition of Subset \# 1

Enter the Frequency Type
$1-1$ Way
$2-2$ Way

Enter 1 or 2 (Esc To exit) 1

Screen 16
When the table option is selected the user will be prompted for the row variable (screen 17). The user scrolls through the screens to view the variables available. Select the row variable by entering the corresponding variable number.

```
                                    M A A P
                                    Row:
                                    ADD Subset # 10
Accident Variables
            Screen 2 of 2
16 WEATHER
17 SURFACE
18 MANNER/COLUISION
19 OBJECT STRUCK
2O OIHER FACTOR
21 LOC OF IMPACT
22 POINT OF IMPACT
23 VEHICLE }1\mathrm{ STYLE
24 VEHICLE 2 STYIE
25 CONIRIB FACIOR 1
26 CONIRIB FACTOR 2
27 DRIVER 1 AGE
28 DRIVER 2 AGE
29 DRIVER 1 STATUS
30 DRIVER 2 STATUS
Which variable will be the Row Variable 16
```

Screen 17

SUPPLEMENTAL REPORTING

Screen 17 is also displayed when the 'Bar Chart' or 'Histogram' option is selected or screen 15.

If a 2-way table was selected on screen 16 , the user is prompted for the column variable after the row variable has been selected. The same procedure is followed to select a column variable as was used to select the row variable. The user is not prompted for a column variable unless the 2-way table option was selected on screen 16.

The next screen displayed, (screen 18), describes the subset definition. This is where the "IF Statement" conditions are generated. If desired, the subset definition may be printed using option "P" on screen 12. The variable names are shown in the column at the left of the screen. The variables are chosen by entering the corresponding variable number.
<Control>-A will display a screen similar to screen 23 which will allow one to view the subset definition that has already been entered.

MAAP
Row: WEATHER

ADD Subset \# 10
Accident Variables Screen 1 of 2
1 SITE
2 ACCIDENT TIME
3 ACCIDENT TYPE
4 ACC SEVERITY
5 WEATHER/SURFACE
6 DEGREE OF CURVE
7 VEHICLE TYPE
8 SPEEDING
9 DWI
10 DRIVER AGE
11 DRIVER STATUS
12 DAY
13 TIME
14 FIRST HARMFUL
15 SEVERITY

Select the variables that define the Subset 14

SUPPLEMENTAL REPORTING

It is recommended that the subset definition be printed immediately prior to any report run to avoid later confusion about the data printed on the report.

After a variable is chosen (screen 18), a range can be specified for that variable (screen 19). The range is displayed on the right side of the screen surrounded by a double line. In screen 19 the variable is FIRST HARMFUL and its range is from 0- to 09. To choose all of the variables within the range simply enter "0-" for the Beg Value and "09" for the End Value. If only part of the range is desired, either enter the corresponding Beg Value and End Value or use the And/Or to choose specific values. Other variables to be used in the subsetting can be selected by entering 'and' or 'or' in the and/or field. MAAP processes the list of conditions in order and performs the "and/or" comparison as it encounters them. (See Screen 23.) When finished, press <control>-Q and the user will return to screen 18. ESC will also bring back screen 18. Pressing ESC or ${ }^{*} Q$ on screen 18 will return the user to screen 12 .

Screen 19

SUPPLEMENTAL REPORTING

3. (E) Edit (option E from screen 12)

Edit a subset. This option will retrieve an existing subset definition and allow it to be modified. After entering ' E ' on the subsetting option screen (screen 12), the following message will appear at the bottom of the screen:

Enter the Subset Number to be Edited : [1-15] ("ESC" - Abort) 1
Screen 20
The editing procedure almost mirrors the (A) ADD option of screen 12. When the value displayed is the value to be used then <CR>. The existing value is retained and the next screen is displayed. First, the title can be edited. (screen 21)

MAAP

EDIT Subset \# 1

Enter the Title for the Subset (A maximum of 80 characters are allowed) First Harmful Event for Sites 1-3

Char Left 's	Prev Scrn ${ }^{\text {A }}$	Ins *V	Enter *M	Erase "W
Char Right 'D	Next Scrn ${ }^{\text { }} \mathrm{X}$	Del 'G		Abort ESC

Screen 21
An explanation of the keystrokes follows:
control-S Moves one character to the left
control-D Moves one character to the right
control-E Returns to the previous screen after saving any changes to the title
control-X Continues to the next screen after saving any changes to the title
control-V Allows insertion of characters
control-G Deletes the character at which the cursor is positioned
control-M Saves any changes and continues to the next screen
control-W Erases the title
ESC Returns to the previous screen without saving any changes

SUPPLEMENTAL REPORTING

Following the title, the previously defined report is displayed on the screen (screen 22). To retain the existing value, press the enter key; otherwise enter the corresponding number of another chart.

MAAP
EDIT Subset \# 1

Enter the type of Chart

> 1 - List
> 2 - Bar Chart
> 3 - Table
> 4- Histogram

Enter 1 through 4 (Esc to Exit) 1
Screen 22
After the chart type, a screen similar to the one below (screen 23) appears. Here it is possible to redefine the variables of the subset. (Screen 23 defines a subset of wet pavement fatal accidents.) Enter: a) the line number <CR> to change the range of the variable (see screen 19 and accompanying text)
b) <control>-X for the subsetting screen (see screen 18 and accompanying text)
c) <control>-R to delete a line. After <control>-R, enter the line number to be deleted.
d) TEnter to continue. The user will return to screen 18.

SUPPLEMENTAL REPORTING

Variable		Beginning	Ending	
Num	Name	Range	Range	/or
1	SEVERITY	03	03	And
2 SURFACE 0205				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
Ente Pres	$\begin{aligned} & \text { r the Line } \\ & S^{\prime} R \text { To De } \end{aligned}$	tting Screen	or Enter	$r \text { to }$

Screen 23
4. (D) Delete (option D from screen 12)

Delete a subset.

```
MAAP
SDHPT DISTRICT 15
Subsetting
```

1 List of Accidents in Bexar County
2
...
15
Enter the Subset Number to be Deleted: [1-15] ("ESC" - Abort) 1
Screen 24

After the number has been entered the following screen (Screen 25) will appear.

SUPPLEMENTAL REPORTING

> MAA P
> SDHPT DISTRICT 15
> Subsetting

1 List of Accidents in Bexar County

Is Above Subset Correct Choice for DETEIION (Y/N) -
Screen 25
5. (C) Copy (option C from screen 12)

Copy a subset definition.

MAAP
SDHPT DISTRICT 15
Subsetting
1 List of Accidents in Bexar County
2
...
15
Enter the Subset Number to be Copied: [1-15] ("ESC" - Abort) __
Screen 26
Enter the number of the subset to be copied.
This is useful when changing a few variables in a complex definition. The new copy will have the same name as the old. It is recommended that immediately after copying the subset, edit the title of the new copy to avoid confusion.
6. (X) Exit (option X from screen 12)

Exit from this menu.
7. (P) Print (option Prom screen 12)

Print the subset's definition.

```
SUPPLEMENTAL REPORTING
```

MAAP
SDHPT DISTRICT 15Subsetting1 List of Accidents in Bexar County215
Enter the Subset Number to be Printed: [1-15] ("ESC" - Abort)

\qquad
Screen 27
Enter the corresponding subset number that is to be printed. (screen 27)An example of the report produced by option P is shown inAppendix E.
8. (+ or -) Scroll (options + and - from screen 12)
Entering a '+' will scroll to the next screen of predefinedsubsets. Entering a '-' will scroll to the previous screen ofpredefined subsets. The system will not scroll past the lastdefined subset screen.

```
    M A A P
SDHPT DISTRICT 12 (HARRIS COUNTY)
            MASTER MENU
    1 .... ANALYSIS OF ACCIDENT SITES
    2 ... SUPPLEMENTAL REPORTING
    3 .... INSTALLATION
    X .... EXIT from MAAP
```

Enter Choice: 3
Screen 28
M A A P
SYSTEM INSTALLATION
INSTALLATION MENU
1...Organization Title
$2 \ldots$ Printer Codes
3...Both of the Above
Q...Return to Main Menu
CHOICE?

Screen 29

Provides access to :

1. Organization Title
2. Printer Codes
3. Both of the Above
Q. Return to main menu

Installation Menu

Screen 30
Option 1 on screen 30 allows the user to change the organization title that is displayed on the top of the screen and on any output generated by MAAP. When entering a new title, any part of the old title that is not deleted either by being typed over, using control-G, or the <- key, will remain in the new title. Pressing the Del key will exit this option leaving the title unchanged. Pressing any key on the keypad other than " S , ${ }^{\text {a }} \mathrm{D}$, ${ }^{\wedge} \mathrm{V}$, " G, or ${ }^{~} Q$ will abort the screen as will the "ESC" key.

Screen 31

Installation Menu

M A A P
SYSTEM INSTALLATION
INSTALLATION MENU
1...Organization Title
2...Printer Codes
3... Both of the Above
Q...Return to Main Menu
CHOICE? 2

Screen 32
Option 2 on Screen 32 allows the user to enter the code sequences for compressed and normal print modes (number of characters per line and lines per page) along with the number of lines per page available for each print mode. MAAP uses these codes to convert the printer to the necessary mode dependent on the type of report being generated. The first menu that the user will see is the following:
M A A P
SDHPT DISTRICT 2
SYSTEM INSTALLATION
PRINTER CODE MENU
1 ... Set Normal Print
$2 \ldots$ Set Condensed Print
Q.... Return to Install
CHOICE ?

Screen 33
The user selects the printer mode that he wishes to install (NOTE: The user must install both types of print so that MAAP can print the various reports correctly). To return to the Installation menu, the user can type " Q " at this menu prompt.

Installation Menu

For setting Normal Print, MAAP displays the following:

MAAP
SDHPI DISTRICT 2
SYSTEM INSTALIATION

Set Characters per Line for NORMAL WIDIH Printing

Printer Codes $=18$
Enter New Codes : \qquad , __ \qquad , \qquad , _' \qquad , \qquad , , \qquad ,

To leave the codes Unchanged, press the abort character To Clear a code, type "000"

Screen 34
MAAP displays the current printer codes that the user has previously entered, if any. The user enters decimal codes representing the values necessary for the printer to print in the normal non-compressed printing mode. The user can enter up to ten codes for the normal print code sequence. These codes will be sent to the printer each time MAAP prints a report requiring the normal print mode. To clear a code, the user must type three consecutive zeroes ("000") in the code location he wishes to clear. By striking ESC during the edit process, MAAP goes to the next screen without changing the codes that were originally in the file. Upon completing the code entry, the user can type " Q and the codes will be saved and MAAP will continue with the next screen.

When the user has finished with this screen, MAAP requests the lines per page available in the Normal Print mode by displaying the following screen:

Installation Menu

MAAP
 SDHPT DISTRICT 2
 SYSIEM INSTALIATION

Number of Lines per Page for NORMAL WIDIH Printing
Lines per page $=66$
Enter New Page Length : \qquad
To leave the lines/page unchanged, press the abort character To Clear a code, type "000"

Screen 35

The user enters the decimal number of lines that the printer has available in Normal Print mode. To clear the page length, the user must type three consecutive zeroes ("000"). By striking ESC during the edit process, MAAP returns to the Printer Code menu without changing the page length value that was originally in the file. (The default value for first time installation is 66 lines per page). Upon completing the entry, the user can type " Q and the value will be saved and MAAP will return to the printer code menu.

For setting Compressed Print (option 2 or Screen 33), MAAP displays the following two screens:

> MAA P
> SDHPT DISTRICT 2
> SYSTEM INSTALIATION

Set Characters per Line for CONDENSED Printing
Printer codes $=15$
Enter New Codes : \qquad , \qquad
\qquad , \qquad , \qquad , \qquad , \qquad , , \qquad ,

To leave the codes Unchanged, press the abort character To Clear a code, type "000"
prev fld "A char left "S insert "V finish "Q next fld ${ }^{\wedge} F$ char right ${ }^{\wedge} D$ delete ${ }^{\wedge} G$ abort ESC

Installation Menu

Screen 37

The procedure for the above screens is the same as used to set Normal Print in screens 34 and 35.

> M A A P
> SYSTEM INSTALLATION
> INSTALLATION MENU
> 1... Organization Title
> 2... Printer Codes
> 3... Both of the Above
> Q... Return to Main Menu
> CHOICE? 3

Screen 38
Option 3 on screen 38 will first bring up the organization title set-up screen (screen 31) and then pass into the printer code set-up screen (screen 33) without re-displaying the Installation menu.

Installation Menu

M A A P
SYSTEM INSTALLATION
INSTALLATION MENU
1...Organization Title
2...Printer Codes
3...Both of the Above
Q...Return to Main Menu
CHOICE? Q
Screen 39

Select "Q" to return to the main menu.

REFERENCES

1. "Roadway Information System User Manual", Transportation Planning Division, Texas State Department of Highways and Public Transportation, Austin, Texas 1986.

APPENDICES

APPENDIX A
Minimum Microcomputer Configuration

Minimum Microcomputer Configuration

MAAP is written in Turbo-Pascal for an IBM PC-XT or compatible microcomputer using MS-DOS version 2.1 or above. A minimum configuration of 512 K memory, a floppy diskette drive, a hard disk drive, a monochrome display monitor, and a printer which allows condensed print is required to use the program. A full memory of 640 K is recommended to increase the efficiency of the program and to reduce the processing time. Processing time might be reduced further by compiling the source code using Turbo-87 PASCAL which utilizes a math co-processor. This would require the microcomputer to have a math co-processor in order to run MAAP.

```
            APPENDIX B
    Recoding Methodology and Formats
            for the
MAAP County Accident Accident Analysis File Variables
```


MAAP ANALYSIS FILE VARIABLES REPORT VARIABLES	accident file variables
CONTRIBUTING FACTOR 1 CONFA1_R	CONTRIBUTING FACTOR 1 DICONT1/D2CONT2* * Values listed in priority order. the driver with the highest priority SETS CONFA1_R
1 at least one speeding-limit	1 Speeding - Limit
2 at least one speeding-unsafe	2 Speeding - Unsafe
3 disregard traffic signal	3 failed to yield right of way 4 DISREGARD STOP SIGN OR LIGHT 5 DISREGARD STOP AND GO SIGNAL 6 disRegard flashing yellow signal
4 OTHER	- hrong side, not passing + WRNG WAY ON 1-WAY ROAD 7 IMPROPER TURN, WIDE RIGHT 8 IMPROPER TURN, CUT CORNER ON LEFT 9 IMPROPER TURN, WRONG LANE 0 NONE APPLIES
0 UNKNOWN	MI SCOOES
CONTRIBUTING FACTOR 2 CONFAZ_R	CONTRIBUTING FACTOR 2 D1CONT2/D2CONT2* * Values listed in priority order. THE DRIVER WITH THE HIGHEST PRIORITY SETS CONFA2_R
1 AT Least 1 dWI OR DW drugs	9 DWI - DW DRUGS
2 IMPROPER PASSING ILLEGAL/OVERTAKE	```1 FOLLOWING TOO CLOSELY 2 OVERTAKE & PASS, INSUFFICIENT CLEARANCE 3 passing in no passing zONE 4 OTHER ILLEGAL pASSing```
3 OTHER	0 NONE APPLIES 5 NO SIGNAL OR URONG SIGNAL OF INTENT 6 IMPROPER START FROM PARKED POSITION 7 FAIL TO YIELD RIGHT-OF-WAY TO PEDESTRIAN 8 IMPROPER PARKING + OTHER FACTOR
0 UNKNOWN	MISCOOES

MAAP ANALYSIS FILE VARJABLES REPORT VARIABLES	accident file variables
POSITION OF POINT OF IMPACT POSIMPAC	POSITION OF POINT OF IMPACT POSIMPCT
1 Left of milepoint	1 OUter shoulder or parking lane on milepoint left frontage
	2 inner shoulder or parking lane on milepoint left frontage
	3 Outer shoulder or parking lane on milepoint left main lanes
	4 InNer shoulder or parking lane on milepoint left main lanes
	10 3rd or more main lane on milepoint left
	11 2nd main lane on milepoint left
	12 1St main lane on milepoint left
	20 OUter driving lane on milepoint left frontage road
	21 CENTER DRIVING LANE ON MILEPOINT LEFT frowtage road
	22 InNer driving lane on milepoint left frontage road
	23 CENTER STRIPE ON MILEPOINT LEFT FRONTAGE ROAD
	30 RIGHT TURN SLOT OR RAMP TO LEFT MAIN LANE 31 RIGHT TURN SLOT OR RAMP FROM LEFT MAIN LANE
	33 Left turn slot or ramp for traffic moving opposite to milepoint
	34 RIGHT TURN SLOT OR RAMP TO LEFT FRONTAGE ROAD
	35 RIGHT TURN SLOT OR RAMP FROM LEFT FRONTAGE ROAD
	40 ON RAMP TO LEFT MAIN LANE - REGARDLESS OF LENGTH OR ORIGIN
	50 CHANNELIZING ISLAND FOR 30 ABOVE
	51 CHANNELIZING ISLAND FOR 31 above
	52 Channelizing ISLAND IN LEFT frowtage road
	54 CHANNELIZING ISLAND FOR 34 above
	55 CHANNELIZING ISLAND FOR 35 ABOVE
	61 AREA TO LEFT OF LEFT FRONTAGE ROAD 62 area to left of main lanes
2 Right of milepoint	5 inner shoulder or parking lane on milepoint right main lanes
	6 OUter shoulder or parking lane on milepoint right main lanes
	7 inNer shoulder or parking lane on milepoint right frowtage road
	8 OUter shoulder or parking lane on milepoint right frontage road
	13 CENTER STRIPE for main lane
	14 Center main lane of three lane road
	16 1st main lane on milepoint right
	17 2nd main lane on milepoint right
	18 3RD OR MORE MAIN LANE ON MILEPOINT RIGHt
	26 InNer driving lane on milepoint right frontage road
	27 CENTER DRIVIng lane ON milepoint right frontage road
	28 OUTER DRIVING Lane on milepoint right frontage road
	29 CENTER STRIPE ON MILEPOINT RIGHT FRONTAGE ROAD
	36 RIGHT turn slot or ramp to right main lanes
	37 RIGHT TURN SLOT OR RAMP FROM RIGHt main lanes
	39 LEFT TURN SLOT OR RAMP FROM TRAFFIC MOVING WITH MILEPOINT
	46 ON RAMP to right main lane - REGARDLESS OF LENGTH OR TERMINATION
	47 Off ramp from right main lane - regardless of length or origin 56 Channelizing island for 36 above
	57 CHANNELIZING ISLAND FOR 37 Above
	58 channelizing island in right frontage road
	64 AREA TO RIGHT OF MAIN LANES
	65 area to right of right frontage road
	66 attenuation device (normally between right main lanes and off ramp)
	3- RIGHT turn slot or ramp to right frontage road
	3+ RIGHT TURN SLOT OR RAMP FROM RIGHT frontage road
	5- Channelizing island for 3- above
	5+ CHANNELIzING ISLAND FOR 3+ AbOVE
3 MEDIAN	9 CENTER PARKING AREA
	42 opening in median between left main lanes and frontage road 43 opening in median between main lanes
	48 opening in median between right main lane and frontage road
	53 Channelizing island in 43 above
	63 area between main lanes
	70 LOCATION SHOWN IN PHYSICAL feature a
	71 LOCATION SHOWN IN PHYSICAL meature b
O UNKNOUN	MISCODES

maAp analysis file report variables which use accident file original value and variable name

```
OBJECT STRUCX
OBJECT
OO NO COOE SHOWN IS APPLICABLE
01 VEHICLE OVERTURNED
O2 VEHICLE HIT HOLE IN ROAD
03 VEHICLE JACK-KNIFED
04 PERSON FELL OR JUMPED FROM VEHICLE
O9 VEHICLE HIT TRAIN ON TRACKS PARALLEL TO ROAD - NO CROSSING
10 VEHICLE HIT TRAIN MOVING FORWARD
11 VEHICLE HIT TRAIN BACKING
12 VEHICLE HIT TRAIN STANDING STILL
13 VEHICLE HIT TRAIN - ACTION UNKNOWN
20 VEHICLE HIT HIGHWAY SIGN
21 VEHICLE HIT CURB
22 VEHICLE HIT CULVERT - HEADWALL OR MARKER POST
23 VEHICLE HIT GUARD POST, GUARD RAIL OR DELINEATOR
24 VEHICLE HIT RAILROAD SIGNAL POLE OR POST
25 VEHICLE HIT RAILROAD CROSSING GATES
26 VEHICLE HIT TRAFFIC SIGNAL POLE OR POST
27 VEHICLE HIT OVERHEAD OBSTRUCTION (SIGNAL LIIGHT, WIRES, ETC.)
28 VEHICLE HIT CONSTRUCTION BARRICADE, CONES, WARNINGS SIGNS, OR MATERIAL
29 VEHICLE LUMINAIRE POLE
30 VEHICLE HIT UTILITY POLE
31 VEHICLE HIT MAIL BOX
32 VEHICLE HIT TREE OR SHRUB &
33 VEHICLE HIT FENCE
34 VEHICLE HIT HOUSE, BUILDING OR BUILDING FIXTURE
35 VEHICLE HIT COMNERCIAL SIGN
36 VEHICLE HIT OTHER FIXED OBJECT
37 VEHICLE HIT MAINTENANCE BARRICADE, CONES, OR MATERIALS
38 VEHICLE HIT MAINTENANCE MACHINERY
39 VEHICLE HIT MEDIAN BARRIER (DIVIDER)
40 VEHICLE HIT END OF BRIDGE (ABUTMENT OR RAIL END)
41 VEHICLE HIT SIDE OF BRIDGE (BRIDGE RAIL)
42 VEHICLE HIT PIER OF SUPPORT AT UNDERPASS OR TUNNEL
43 VEHICLE HIT TOP OF UNDERPASS OR TUNNEL
44 VEHICLE HIT BRIDGE CROSSING GATE
45 VEHICLE HIT ATTENUATION DEVICE
49 VEHICLE HIT BY FALLING/BLOWING ROCKS FROM A TRUCK
50 VEHICLE HIT FALLEN TREES OR DEBRIS ON ROAD
51 VEHICLE HIT OBJECT FROM ANOTHER VEHICLE IN ROAD
52 VEHICLE HIT PREVIOUSLY WRECKED VEHICLE
53 VEHICLE HIT CONSTRUCTION OR MAINTENANCE MACHINERY
54 VEHICLE HIT OTHER MACHINERY
55 VEHICLE HIT OTHER OBJECT
```

madp analysis file report variables which use accident file original value and variable name

MANNER OF COLLISION
 COLISION

movement of vehicle in other than motor hith motor accidents
01 VEHICLE GOING STRAIGHT
02 VEHICLE TURNING RIGHT
03 VEHICLE TURNING LEFT
04 VEHICLE BACKING
05 OTHER

Tho motor vehicles approaching at an angle
10 BOTH GOING STRAIGHT
11 \#1 STRAIGHT - \#2 BACKING
12 \#1 STRAIGHT - \#2 STOPPED
13 \#1 Straight - \#2 Right turn
14 \#1 STRAIGHT - \#2 LEFT TURN
15 BOTH RIGHT TURN
16 \#1 RIGHT TURN - \#2 LEFT TURN
17 \#1 RIGHT TURN - \#2 STOPPED
18 BOTH LEFT TURN
19 \#1 LEFT - \#2 STOPPED
TWO MOTOR VEHICLES - GOING SAME DIRECTION
20 BOTH GOING STRAIGHT - REAR END
21 bOTH GOING STRAIGHT - SIDESWIPE
22 \#1 STRAIGHT - \#2 STOPPED
23 \#1 straight - \#2 RIGht turn
24 \#1 STRAIGHT - \#2 LEFT TURN
25 воth RIGHT TURN
26 \#1 RIGHT TURN - \#2 LEFT TURN
27 \#1 RIGHT TURN - \#2 STOPPED
28 BOTH LEFT TURN
29 \#1 LEFT TURN - \#2 STOPPED
TWO MOTOR VEHICLES - GOING OPPOSITE DIRECTIONS
30 BOTH GOING STRAIGHT
31 \#1 STRAIGHT • \#2 BACKING
32 \#1 STRAIGHT • \#2 STOPPED
33 \#1 STRAIGHT - \#2 RIGHT TURN
34 \#1 STRAIGHT • \#2 LEFT TURN
35 \#1 BACKING - \#2 STOPPED
36 \#1 RIGHT TURN - \#2 LEFT TURN
37 \#1 RIGHT TURN - \#2 STOPPED
38 BOTH LEFT TURN
39 \#1 LEFT TURN • \#2 STOPPED
THO MOTOR VEHICLES - OTHER
40 \#1 STRAIGHT - \# 2 ENTERING OR LEAVING PARKING SPACE
41 \#1 RIGHT TURN - \#2 ENTERING OR LEAVING PARKING SPACE
42 \#1 Left turn - \#2 entering or leaving parking space
43 \#1 ENTERING OR LEAVING PARKING SPACE - \#2 STOPPED
44 BOTH ENTERING OR LEAVING PARKING SPACE - \#2 STOPPED
45 BOTH VEHICLES BACKING
46 ALL OTHERS

madp analysis file report variables hhich use accident file original value and variable name	
POSITION OF POINT OF IMPACT POSIMPCT	POSITION OF POINT OF IMPACT POSIMPCT (cont.)
	47 OFF RAMP FROM RIGHT MAIN LANE - REGARDLESS OF LENGTH
SHOULDERS \& PARKING LANES	OR TERMINATION
01 OUTER SHOULDER OR PARKING LANE ON MILEPOINT LEFT FRONTAGE	48 opening in median between right main lane and frontage road
02 INNER SHOULDER OR PARKING LANE ON MILEPOINT LEFT FRONTAGE	
03 OUTER SHOULDER OR PARKING LANE ON MILEPOINT LEFT MAIN LANES	CHANNELIZING ISLANDS
04 INNER SHOULDER OR PARKING LANE ON MILEPOINT LEFT MAIN LANES	
05 INNER SHOULDER OR PARKING LANE ON MILEPOINT RIGHT MAIN LANES	50 CHANNELIZING ISLAND FOR 30 ABOVE
06 OUTER SHOULDER OR PARKING LANE ON MILEPOINT RIGHT MAIN LANES	51 CHANNELIZING ISLAND FOR 31 ABOVE
07 INNER SHOULDER OR PARKING LANE ON MILEPOINT RIGHT FRONTAGE ROAD	52 CHANNELIZING ISLAND IN LEFT FRONTAGE ROAD
08 OUTER SHOULDER OR PARKING LANE ON MILEPOINT RIGHT FRONTAGE ROAD	53 CHANNELIZING ISLAND IN 43 ABOVE
09 CENTER PARKING AREA	54 CHANNELIZING ISLAND FOR 34 ABOVE
	55 ChANNELIZING ISLAND FOR 35 ABOVE
MAIN ORIVING LANES	56 CHANNELIZING ISLAND FOR 36 ABOVE
	57 CHANNELIZING ISLAND FOR 37 ABOVE
10 3RD OR MORE LANE ON MILEPOINT LEFT	58 CHANNELIZING ISLAND IN RIGHT FRONTAGE ROAD
11 2ND LANE ON MILEPOINT LEFT	5- CHANNELIZING ISLAND FOR 3-ABOVE
12 1St Lane on milepoint left	$5+$ CHANNELIZING ISLAND IN 3+ ABOVE
13 CENTER STRIPE	
14 CENTER LANE OF THREE LANE ROAD	AREAS TO LEFT AND RIGHT
16 1St Lane On MILePOINT RIGHT	
17 2ND LANE ON MILEPOINT RIGHT	61 AREA TO LEFT OF LEFT FRONTAGE ROAD
18 3RD OR MORE LANE ON MILEPOINT RIGHT	62 area to left of main lanes 63 area between main lanes
FRONTAGE ROAD DRIVING LANES	64 AREA TO RIGHT OF MAIN LANES
20 OUTER DRIVING LANE ON MILEPOINT LEFT FRONTAGE ROAD	65 area to right of right frontage road 66 ATTENUATION DEVICE (NORMALLY BETWEEN RIGHT MAIN
21 CENTER DRIVING LANE ON MILEPOINT LEFT FRONTAGE ROAD	∞ ATTENUATION DEVICE (NORMALLY BETWEEN RIGHT MAIN LANES AND OFF RAMP)
22 INNER DRIVING LANE ON MILEPOINT LEFT FRONTAGE ROAD	
23 CENTER STRIPE ON MILEPOINT LEFT FRONTAGE ROAD	OTHER
26 INNER DRIVING LANE ON MILEPOINT RIGHT FRONTAGE ROAD	
27 CENTER DRIVING LANE ON MILEPOINT RIGHT FRONTAGE ROAD	70 LOCATION SHOWN IN PHYSICAL FEATURE A
28 OUTER DRIVing lane on milepoint right frontage road	71 LOCATION SHOWN IN PHYSICAL fEATURE B
29 CENTER STRIPE ON MILEPOINT RIGHT FRONTAGE ROAD	
TURN SLOTS / RAMPS	
30 RIGHT TURN SLot OR RAMP to left main lane	
31 RIGHT TURN SLOT OR RAMP FROM LEFT MAIN LANE	
33 LEFT TURN SLOT OR RAMP FOR TRAFFIC MOVING OPPOSITE TO MILEPOINT	
34 RIGHT TURN SLOT OR RAMP TO LEFT FRONTAGE ROAD	
35 RIGHT TURN SLOT OR RAMP FROM LEFT FRONTAGE ROAD	
36 RIGHT TURN SLOT OR RAMP TO RIGHT MAIN LANES	
37 RIGHT TURN SLOT OR RAMP FROM RIGHT MAIN LANES	
39 LEFT TURN SLOT OR RAMP FROM TRAFFIC MOVING WITH MILEPOINT	
3- RIGHT TURN SLOT OR RAMP TO RIGHT FRONTAGE ROAD	
3+ RIGHT TURN SLOT OR RAMP FROM RIGHT FRONTAGE ROAD	
RAMPS AND OPENINGS IN MEDIANS	
40 ON RAMP TO LEFT MAIN LANE - REGARDLESS OF LENGTH OR ORIGIN	
41 Off ramp from left main lane - regardless of lengit or termination	
42 OPENING IN MEDIAN BETWEEN LEFT MAIN LANES AND FRONTAGE ROAD	
43 OPENING IN MEDIAN BETWEEN MAIN LANES	
46 ON RAMP TO RIGHT MAIN LANE - REGARDLESS Of LENGTH OR ORIGIN	

LICENSE1/LICENSE2	VEH1STYL/VEH2STYL
al alabama	00 BCOY STYLE SHOUN UNDER VEhICLE TYPE (BUS, MOTOTCYCLE, ETC.)
AK ALASKA	++ UNKNOWN
AZ ARIZONA	01 COACH (2 DOOR CONVENTIONAL)
AR ARKANSAS	022 DOOR HARD TOP
CA CALIfORNIA	032 DOOR COUPE
CD CANADA	044 DOOR SEDAN
CO COLORADO	054 DOOR HARDTOP
CT CONNECTICUT	06 STATION WAGON
DE DELAWARE	07 CONVERTIBLE
DC DISTRICT OF COLUMBIA	08 Minibus
FL FLORIDA	09 AMBULANCE
GA GEDRGIA	10 HEARSE
HI HAWAII	11 LIMOUSINE
ID IDAHO	12 HATCHBACK/LIFTBACK (3 OR 5 DOOR)
IL ILLINOIS	13 POLICE VEHICLE
in indiana	14 fire vehicle (Other than fire truck)
IA IOWA	
KS KANSAS	TRUCK
KY KENTUCKY	
LA LOUISIANA	20 beverage
ME MAINE	21 BOB-TAIL
MD MARYLAND	22 DUMP
MA MASSACHUSETTS	23 FIRE TRUCK
MM MEXICO	24 FLATBED, LOUBOY, PLATFORM, FLOAT, STAKE
MI MICHIGAN	25 LIVESTOCK (INCLUDES 2-STORY)
MN MINNESOTA	26 GARBAGE
MS MISSISSIPPI	27 MIXER (CONCRETE)
MO MISSOURI	28 MOTOR HOME OR MOTOR CAMPER
MT MONTANA	29 PANEL (SMALL VAN)
NB NEBRASKA	30 PICKUP
NV NEVADA	31 POLE (LOG)
NH NEW HAMPSHIRE	32 REFRIGERATOR
NJ NEW JERSEY NM NEW MEXICO	33 CEMENT (USUALLY DRY AS OPPOSED TO MIXER)
NM NEW MEXICO NY NEW YORK	34 TANK (OIL, GAS, CHEMICALS, MILK)
NC NORTH CAROLINA	36 VAN (LARGE, FURNITURE, ETC.)
NO NORTH DAKOTA	37 WRECKER
OH OHIO	38 PICKUP W/CAMPER
OK OKLAHOMA	39 OILFIELD EQUIPMENT (USUALLY SPECIAL DESIGN)
OR OREGON	40 ALL Other styles not listed above
RI RHCOE ISLANDSC SOUTH CAROLINA	
SD SOUTH DAKOTA	
th tennessee	
TX TEXAS	
UT UTAH	
Vt Vermont	
Va virginia	
WA WASHINGTON	
WV WEST VIRGINIA	
WI WISCONSIN	
UY Wraming	
XX RESIDENT Of texas - not licensed	
YY RESIDENT Of TEXAS - LICENSE UNKNOWN	
22 NON-RESIDENT OF TEXAS - NOT LICENSED	
WW NON-RESIDENT OF TEXAS - LICENSED UNKNOWN	
KK Residence not listed above but licensed	
++ RESIDENT AND LICENSE UNKNOWN	

APPENDIX C

Overrepresented Conditions and Corresponding Suggestions for Field Observation and Improvements

Overrepresented

 Condition> Suggested Items for Field Observations and Improvements

1. Accident Type
= Single Vehicle, Fixed Object or Other
2. Accident Type
= Multi-Vehicle, Rear-End
3. Accident Type
= Multi-Vehicle, Sideswipe
4. Accident Type
= Multi-Vehicle, Head-On/Angle
5. Accident Time
= Weekday, Rush Hour
6. Accident Time = Weekday, Non-Rush Hours or Weekend, Daytime
7. The proportion of single vehicle accidents are overrepresented. Check roadside conditions for possible clearing of roadside objects, shielding of hazardous objects with guardrails, or increasing the clear recovery area.
8. The proportion of rear-end accidents are overrepresented. Check the roadway section for conditions leading to sudden stops and rear-end accidents, such as traffic backup on main lanes, poor sight distance, frequent entrance and exit of slow-moving vehicles, etc.
9. The proportion of sideswipe accidents are overrepresented. Check merging or weaving areas for potential improvements, e.g., increase the length of merging and weaving areas, ramp metering or other control.
10. The proportion of head-on or angle accidents are overrepresented. Check to make sure that this roadway section is correctly identified as freeway. The number of head-on or angle accidents is probably too high for freeway conditions. If the problem is with median crossovers, assess the possibility of closing off these crossovers.
11. The proportion of accidents during weekday rush hours is higher than average. This suggests a problem with over-capacity during rush hours which is generally not affected by safety-related improvements. Check for potential means of increasing capacity and improved traffic flow.
12. The proportion of accidents during weekday nonrush hours and/or weekend daytime hours is higher than average. Check if the traffic volume is already approaching capacity at these time periods while traffic speeds are relatively high. If such is the case, safety-related improvements will generally not be effective. Check for potential means of increasing capacity and improved traffic flow.

Overrepresented

Condition

Suggested Items for Field
Observations and Improvements
7. Accident Time
= Evening/Night
8. Weather/Surface

Condition
= Adverse
9. Degree of Curve
= Less than
4 Degrees
10. Degree of Curve $=4$ Degrees or More
11. Vehicle Type = Pickup Truck/Van
12. Vehicle Type
= Truck/Bus
7. The proportion of accidents during evenings and nights is higher than average. Check lighting conditions and night visibility for potential improvements, such as increased lighting level, improved delineation, raised pavement markers, etc.
8. Accidents under adverse weather or surface condition are overrepresented. Check pavement condition for low skid resistance and/or poor drainage.
9. Accidents on curve sites are overrepresented. Look for any unusual situation with the curves that may contribute to accidents occurring at these curves. Check if the roadway geometrics and cross-sectional design elements, such as superelevation, at the curves can be improved. Also, check if any warning or advance warning signs are warranted for the curve sites.
10. Accidents on curve sites with high degree of curvature are overrepresented. Identify the sharp curve sites within the roadway section and look for any unusual situation with the curves that may contribute to accidents occurring at these curves. Check if the roadway geometrics and cross-sectional design elements, such as superelevation, at the curves can be improved. Also, check if any warning or advance warning signs are warranted for the curve sites.
11. Accidents involving pickup trucks or vans are overrepresented. Check if the overrepresentation is simply a reflection of the exposure (i.e., higher than average percentage of pickup trucks or vans in the traffic mix) or there are specific factors causing their over-involvement.
12. Accidents involving trucks or buses are overrepresented. Check if the overrepresentation is simply a reflection of the exposure (i.e., higher than average percentage of trucks or buses in the traffic mix) or there are specific factors causing their over-involvement.

Overrepresented Conditions and Corresponding Suggestions For Field Observation and Improvements (Continued)

Overrepresented
 Condition

Suggested Items for Field Observations and Improvements

13. Accident Severity = Fatal or Injury
14. Driver Age = Under 21
15. Driver Age = Over 55
16. Speeding $=$ Yes
17. DWI or DW Drugs = Yes
18. Driver License Status = Out-of-State
19. The proportion of fatal or injury accidents is higher than average for this roadway section. Check for possible causes of such overrepresentation of fatal or injury accidents. Examples of such possible causes are work zones, excessive speeding, limited sight distance, hazardous roadside conditions, etc. Identify appropriate countermeasures once the possible causes are determined.
20. Younger drivers under 21 years of age are overinvolved in accidents. Check for conditions, e.g., poor signing and delineation, that may contribute to this over-involvement of younger inexperienced drivers.
21. Older drivers over 55 years of age are overinvolved in accidents. Check for conditions, e.g., poor signing and delineation, inadequate merging or weaving areas, poor lighting condition, etc., that may contribute to this over-invol vement of older drivers.
22. The proportion of accidents involving excessive speeding is higher than average. Check if traffic speed is excessive during time periods shown to be overrepresented. Speed control measures, such as increased level of law enforcement, may be considered if excessive speeding is found to be a problem.
23. The proportion of accidents involving driving under the influence of alcohol or drugs is higher than average. Check the roadway section for potential sources of alcohol or drugs. Increased level of law enforcement, such as a STEP program, may be considered. Also, check the signing and delineation for possible assistance to the impaired drivers.
24. The proportion of accidents involving out-ofState drivers is higher than average. Check the signing and delineation for possible confusion and miscues to unfamiliar drivers.

APPENDIX D
How to Get Started

The following instructions are to be done only if MAAP does not already exist on your computer system. When updates of MAAP are received, specific instructions will be included with the update for its particular installation requirements. MAAP is provided to you on floppy diskettes. First, ensure that the diskettes are available and labeled as follows:

MAAP
VERSION X.X
DATE
DISK 1 of Z
STEPS to Follow for Installing MAAP on the Computer system for the FIRST TIME:
(NOTE: For clarity, the following discussion assumes that Drive A is a diskette drive and Drive C is a hard disk (20 MB minimum).)

1. Set the default drive of the computer to Drive C (the hard disk) by typing:

C:
2. Create the subdirectory (MAAP) that will contain the MAAP database programs by typing:

MD C: \MAAP
3. Put "MAAP PROGRAM" diskette (1 of 2) into Drive A.
4. Log onto the subdirectory created in step 2 by typing:

CD C: \MAAP
5. Load MAAP to the hard disk by typing:

A: LOAD
6. Follow the instructions on the screen. When all the programs have been loaded, you will be asked to remove disk 1 and insert disk 2. Place the "MAAP DATA" diskettes (2 of 2) in Drive A and strike the "Enter" key.
7. PLEASE STORE the working diskettes AWAY FROM THE COMPUTER in a safe place in case they are needed again.

APPENDIX E
Example Subset Definition Printout
Subset Definition Page: 1
Organization Title: SDHPT DISTRICT 2
Report Title: Driver Age Table -- Young Drivers by Alcohol InvolvementType of Chart...........TableType of Frequency...... 2 WAY FREQUENCY
Row Variable............DRIVER AGE
Column Variable.........DWI

	Variable	Beginning	Ending	And
Num	Name	Range	Range	Or

