TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalog N	•.	
FHWA/TX-83/ +340-4F		1			
4. Title and Subtitle	·····		5. Report Date		
Pressuremeter Design of Rei	October 1983				
riessuremeter besign of Ke	6. Performing Organizatio	on Code			
7. Author's)			8. Perferming Orgenizetie	n Report Ne.	
Jean-Louis Briaud, Michael Hubert Porwoll	Research Report 340-4F				
9. Performing Organization Name and Addres	10. Work Unit No.				
Texas Transportation Instit					
The Texas A&M University Sy	ystem		11. Contract or Grant No. Research Study		
College Station, Texas //84	+3		Research Study	2-J-03-340	
			13. Type of Report and P	eriod Covered	
State Department of Highway	vs and Public	Transportation	Firial - S	eptember 1982	
Transportation Planning Div	vision	ransportación	Final A	ugu st 1983	
P = 0 Box 5051	151011		14. Secretice Access C	-de	
Austin, Texas 78763			the sponsoring Agency C		
15 Supplementary Notes		·····			
Research performed in coope Research Study Title: The Four	eration with D Pressuremeter ndations	OT, FHWA and the Design	n of Highway Rel	ated	
16. Abstract	8				
developed from the embedd first part the basic fin wall problems is describe part a parametric analys performed to point out w important. The pressure in the third part. Final shaft walls in Houston,	ded part of the ite difference ed and a simpl is of the solu hich of the wa meter method r lly prediction Fexas.	e wall by flexe method of solve e example is g tion using a co 11 and soil par ecommended by 1 s are made for	ural rigidity. ving such retain iven. In a secc onventional meth rameters are mos Menard is presen two future dril	In a ning ond nod is st nted Lled	
		·			
	· · · · ·	. •		·: '•	
17. Key Words		18. Distribution States	nent		
PRESSUREMETER, RETAINING WA	ALLS, DESIGN,	No restriction able to the U National Tech 5285 Port Roya 22161.	ns. This documen S. public throu nical Informatic al Road, Springf	nt is avail- igh the on Service, field, Virginia	
19 Security Classif. (of this report)	20. Security Cles	sif. (of this page)	21. No. of Peges	22. Price	
Unclassified	Unclassi	fied	85		
Form DOT F 1700.7 (8-69)		· · ·			

^ Y

. ÷ •

3

ч.

, .

?

^

PRESSUREMETER DESIGN OF RETAINING WALLS

by

Jean-Louis Briaud, Michael Meriwether, and Hubert Porwoll

Research Report 340-4F

The Pressuremeter and the Design of Highway Related Foundations Research Study 2-5-83-340

Sponsored by

١

. A gran an an ag

State Department of Highways and Public Transportation In cooperation with the U.S. Department of Transportation, Federal Highway Administration

> Texas Transportation Institute The Texas A&M University System College Station, Texas

> > October 1983

- ·

SUMMARY

The retaining walls which are dealt with in this report are drilled shaft retaining walls. For these walls the resistance to overturning is developed from the embedded part of the wall by flexural rigidity. In this study an assessment of the existing pressuremeter method for the design of such walls is attempted.

In a first part the finite difference p-y method to solve such problems is described and a simple example is given to clarify the steps followed by the computer program.

In a second part a conventional method is described which consists of using an elastic plastic p-y curve model using the active and passive earth pressure coefficients. A parametric analysis of the solution using the above method is performed, and it is shown that the pile flexural rigidity and the soil friction angle are two of the most influencial parameters.

In a third part the method proposed by Menard is presented. This method is based on the use of the pressuremeter modulus and the pressuremeter limit pressure to generate the p-y curves for the embedded part of the wall.

In a fourth part, two case histories of drilled shaft walls in Houston, Texas, are reported. The two drilled shaft walls are not yet built but pressuremeter tests were performed at the sites and behavior predictions are presented.

i

The authors are grateful for the continued support and encouragement of Mr. George Odom of the Texas State Department of Highways and Public Transportation.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views of policies of the Federal Highway Administration or the State Department of Highways and Public Transportation. This report does not constitute a standard, a specification, or a regulation.

TABLE OF CONTENTS

		Page
	SUMMARY	i
CHAPTER 1.	INTRODUCTION	1
CHAPTER 2.	FINITE DIFFERENCE METHOD	4
	2.1. Theory	4 9
CHAPTER 3.	PARAMETRIC STUDY	14
	3.1. Conventional Method	14
	3.1.1 The P-V Curve	14
	3.1.2. The Wall Stiffness	16
	3.2. Parametric Analysis	19
CHAPTER 4.	THE MENARD PRESSUREMETER METHOD	25
	4.1. Menard Modulus of Horizontal Subgrade	
	Reaction	25 25
CHADTER 5		29
CHAFTER J.		20
	5.1. Houston Wall: Liberty and Mesa	29
	5.1.1. Purpose and Scope	29
	5.1.2. Pressuremeter Testing	32
	5.2. Houston Wall: Kimberly and West Belt	32
	5.2.1. Purpose and Scope	32
	5.2.3. Pressuremeter Results	35
	5.3. Assumptions and Analysis	- 38
CHADTED 6	CONCLUSTONS	45
CHAFIER 0.		45
CHAPTER 7.	REFERENCES	46
	APPENDIX A - Results of Parametric Study	47
	APPENDIX B - Soil Data: Kimberly and West Belt.	53
	APPENDIX C - Soil Data: Liberty and Mesa	65

IMPLEMENTATION STATEMENT

This report gives the details of an existing pressuremeter method for the design of drilled shaft retaining walls. This method requires the use of a new piece of equipment: a preboring pressuremeter. This method is directly applicable to design practice and should be used in parallel with current methods for a period of time until a final decision can be taken as to its implementation.

CHAPTER 1. INTRODUCTION

This study is related to the design of drilled shaft retaining walls, sheet pile walls, slurry trench walls, and more generally to the design of walls which develop part or all of the retaining force from the resistance of the embedded portion of the wall (Fig. 1).

1

There are various types of methods available to design such retaining walls. The first type of method which can be used is the limit equilibrium approach, where the global equilibrium of the wall is considered; the distribution of soil pressure is assumed to be the active pressure behind the wall and the passive pressure in front of the embedded part of the wall multiplied by an appropriate factor of safety. This method does not predict the deformation of the wall.

The second type of method is the finite element method where the wall and the soil surrounding the wall are modeled by finite elements. This method gives the prediction of soil and wall displacements. At the present time, however, this method is rather expensive due to the large number of elements necessary to model the problem properly and the associated cost of computer runs.

The third type of method is the finite difference method where the wall is modeled by a series of elements acted upon by nonlinear spring models representing the soil reaction. This method gives a prediction of wall displacement and can be considered as being of intermediate complexity between the first and second type of method. The nonlinear springs modeling the soil behavior are described by p-y curves where p is the pressure on the wall at depth z and y is the displacement of the wall at the same depth z (Fig. 2). This method is the one which is described and used throughout this report.

. .

FIG. 1. Retaining Wall

ν.

CHAPTER 2. FINITE DIFFERENCE METHOD

2.1 Theory

The constitutive equation for the wall in bending is

where M = the bending moment at depth z,

E = the modulus of elasticity of the wall,

I = the moment of inertia of the wall for a unit width
 of wall,

$$\phi$$
 = the wall curvature = 1/R = d²y/dz²,

R = the wall radius of curvature,

y = the wall lateral displacement, and

z = the depth.

Considering a unit width of wall, the equilibrium equations of a wall element lead to

where w = the force per unit length or loading intensity on the wall,

V = the shear force at depth z,

and $dM = Qdy + Vdz \dots$ (3)

where Q is the axial load,

The governing equation is obtained by combining equations 1 and 4:

Generally there is no axial load Q on the wall and the equation reduces to:

Taking a unit width of wall, soil pressure p can be substituted for loading intensity since loading intensity is the product of pressure and width. For simplicity, pressure will be assumed to vary linearly with deflection resulting in the expression (Fig. 2)

$$p = q - ky$$

where q = the pressure at zero deflection, and

k = the slope of the p-y line.

This gives the equation

$$\frac{q - ky}{EI} = \frac{d^2y}{dx^4} \qquad (7)$$

When the wall is divided into a number of discrete segments, the finite difference method can be used to solve this equation.

From finite differences:

$$\frac{d^2 y}{dx^3} = \frac{y_{i+2} - 2y_{i+1} + 2y_{i-1} - y_{i-2}}{2h^3} \dots \dots \dots \dots \dots \dots \dots \dots (9)$$

where $y_i = deflection at node i, and$

0

h = distance between nodes.

Substituting equation (8) into equation (7) gives

$$\frac{q_{i} - k_{i}y_{i}}{EI} = \frac{y_{i+2} - 4y_{i+1} + 6y_{i} - 4y_{i-1} + y_{i+2}}{b^{4}}$$

r
$$\frac{q_{i}h^{4}}{EI} = y_{i+2} - 4y_{i+1} + (6 + \frac{k_{i}h^{4}}{EI}) y_{i} - 4y_{i-1} + y_{i+2}$$
. (11)

For a wall of n nodes, n equations of this form can be written. Since q, h, k, and EI are known for each node, the only unknowns are the n+4 deflections. The four extra deflections come from imaginary nodes: two above the top node and two below the bottom node of the wall. The four additional equations required come from boundary conditions. Shear and moment are known to be zero at both top and bottom of the wall and the resulting equations are:

$$\frac{v_{o}}{EI} = 0 = \frac{d^{3}y_{o}}{dx^{3}} = \frac{y_{2} - 2y_{1} + 2y_{-1} - y_{-2}}{2h^{3}}$$

$$\frac{M_{o}}{EI} = 0 = \frac{d^{2}y_{o}}{dx^{2}} = \frac{y_{1} - 2y_{o} + y_{-1}}{h^{2}}$$

$$\frac{v_n}{EI} = 0 = \frac{d^3 y_n}{dx^3} = \frac{y_{n+2} - y_{n+1} + 2y_{n-1} - y_{n-2}}{2h^3}$$

$$\frac{M_{n}}{EI} = 0 = \frac{d^2 y_n}{dx^2} = \frac{y_{n+1} - 2y_n + y_{n-1}}{h^2}$$

These equations can be rewritten as:

$$y_2 - 2y_1 + 2y_{-1} - y_{-2} = 0$$
 (12)

Collecting equations gives

$$0 = y_{2} - 2y_{1} + 2y_{-1} - y_{-2}$$

$$0 = y_{1} - 2y_{0} + y_{-1}$$

$$\frac{q_{0}h^{4}}{EI} = y_{2} - 4y_{1} + (6 + \frac{k_{0}h^{4}}{EI}) y_{0} - 4y_{-1} + y_{-2}$$

$$\frac{q_{1}h^{4}}{EI} = y_{3} - 4y_{2} + (6 + \frac{k_{1}h^{4}}{EI}) y_{1} - 4y_{0} + y_{-1}$$

$$\vdots$$

$$\frac{q_{n}h^{4}}{EI} = y_{n+2} - 4y_{n+1} + (6 + \frac{k_{n}h^{4}}{EI}) y_{n} - 4y_{n-1} + y_{n-2}$$

$$0 = y_{n+2} - 2y_{n+1} + 2y_{n-1} - y_{n-2}$$

$$0 = y_{n+1} - 2y_n + y_{n-1}$$

All and the second

7

Rewriting in matrix form gives

~										
-1	2	0	-2	1				y-2		0
	1	-2	1					y-1		0
1	-4	$6 + \frac{k_0 h^4}{EI}$	4	1				^у о		$\frac{q_0^{h^4}}{EI}$
	1	-4 6	$+\frac{k_1h^4}{EI}$	-4	1		ł	^у 1	}	$\frac{q_1^{h^4}}{EI}$
		1	-4 ($\frac{k_n h}{EI}$	4 	1		: ^y n		$\frac{q_n^4}{EI}$
			1	-2	1 '			^y n+1		0
-		-1	2	0	-2	1		^y n+2		0 .

This method will not work when the wall has infinite stiffness because the coefficient matrix becomes singular and the solution matrix is uniformly zero.

This is the method used in the computer program BMCOL7 with the added feature of being able to handle nonlinear expressions for pressure. BMCOL7 uses the iterative technique to handle nonlinear expressions for pressure. To do this, pressure-deflection curves are simplified into a number of straight line segments and the coordinates of each segment end point are entered into the program. Starting with zero deflection, q and k are computed for each node. Where no p-y curve has been input, the program interpolates to find a curve. Next, the program runs through the finite difference method and computes deflections. If these deflections differ sufficiently from the previous ones, another iteration must be done. Using the new deflections, q and k are recalculated from the

p-y curve. K is the slope of the curve and q is the pressure found by extending the tangent to the curve back to where it intercepts the p-axis (Fig. 3).

The iteration process is continued until it closes on the correct deflection for each node. BMCOL7 then uses the deflections to compute the slope, moment, shear, and reaction at each node.

2.2 Example

NODE 1

RETAINING WALL OF UNIT WIDTH EI = 10,000 h = 1

THE P-Y CURVES ARE AS FOLLOWS:

 $\omega_1 = p_1 - k_1 y = 60$ $p_1 = 60$ $k_1 = 0$

THERE ARE NO PRESSURES AT NODE 0 SO $p_0 = k_0 = 0$ BY OBSERVATION $V_0 = M_0 = V_4 = M_4 = 0$

SET UP THE SET OF EQUATIONS IN MATRIX FORM

-1	2	0	-2	1	0	0	0	٥	y_2	$\frac{2v_{o}h^{3}}{\pi}$	
0	1	-2	1 .	0	0	0	0	0	y_1	$\frac{M_{o}h^{2}}{EI}$	
1	-4	$6 + \frac{k_0 h^4}{EI}$	4	1	0	0	0	0	у _о	$\frac{p_0 h^4}{EI}$	
0	1	-4 6	$+\frac{k_1h^4}{EI}$	-4	1	0	0	0	y ₁	$\frac{p_1h^4}{EI}$	
0	0	1	-4 ($6 + \frac{k_2 h^2}{EI}$	• 4	1	0	0	<pre>y2 =</pre>	$\frac{p_2h^4}{2}$	
0	0	0	1	-4 6	$\frac{k_3h'}{EI}$	+ 4	1	0	^y 3	$\frac{p_3h^4}{EI}$	
0	0	0	0	1	-4 6	$5 + \frac{k_4 h^2}{EI}$	+ 4	1	У4	$\frac{p_4 h^4}{EI}$	
0	0	0	0	0	1	-2	1	0	У ₅	$\frac{2v_4h^3}{EI}$	
0	0	0	0	-1	2	0	-2	1	y ₆	$\frac{\frac{M_4 h^2}{EI}}{EI}$	

INPUT VALUES FOR P, K, V, M, h, AND EI

-1	2	0	-2	1	0	0	0	0	y2		0
0	1	-2	1	0	0	0	0	0	^y -1		0
1	-4	6	-4	1	0	0	0	0	у _о		0
0	.1	-4	6	-4	1	0	0	0	^y 1		.006
0	0	1	-4	6	-4	1	0	0	^y 2	=	.012
0	0	0	1	-4	6.1	-4	1	0	^у з		0
0	0	0	0	1	-4	6.15	-4	1	У ₄		0
0	0	0	0	0	1	-2	1	0	^y 5		0
0	0	0	0	-1	2	0	-2	1	^у 6		0

SOLVING THE SET OF 9 SIMULTANEOUS LINEAR EQUATIONS YIELDS THE FOLLOW-ING DISPLACEMENTS:

ANY CONSISTENT SET OF UNITS CAN BE USED.

Deflections will be in units of $\frac{P}{K}$.

KNOWING THE DISPLACEMENTS, THE WALL PRESSURES ARE:

 $\omega_{0} = 0$ $\omega_{1} = 60$ $\omega_{2} = 120$ $\omega_{3} = -1000 (.42) = -420$ $\omega_{4} = -1500 (-.32) = 480$

ASSUMING LINEAR DISTRIBUTION, THE WALL PRESSURE DIAGRAM IS:

SUMMING FORCES AND MOMENTS INDICATES THAT THE WALL IS IN EQUILIBRIUM AND THAT THE SOLUTION IS VALID.

CHAPTER 3. PARAMETRIC STUDY

3.1 Conventional Method

3.1.1. The p-y Curve

Conventional soil mechanics gives the active, passive, and at rest soil pressures at a depth, z, as follows for dry conditions:

$$P_{active} = K_{a} \gamma z$$

$$P_{passive} = K_{p} \gamma z$$

$$P_{at rest} = K_{o} \gamma z$$

where K_a = the active soil pressure coefficient,

 K_{p} = the passive soil pressure coefficient,

 K_{o} = the at rest soil pressure coefficient, and

 γ = the soil unit weight.

K is assumed to be 0.5. K and K are computed from the angle of internal friction, ϕ .

 $K_{a} = \tan^{2} (45^{\circ} - \frac{\phi}{2})$ $K_{p} = \tan^{2} (45^{\circ} + \frac{\phi}{2})$

Various recommendations exist concerning the amount of deflection needed to develop these pressures. For this study, deflections of 2 and 10 mm (0.08 and 0.4 in.) were used as the deflections necessary to mobilize the full active and passive pressures, respectively. The p-y curve can then be plotted as shown (Fig. 4). Note that pressure is assumed to vary linearly between the successive points. For BMCOL7, these three points and two more at very large positive and negative deflections are used as input.

Such p-y curves are applicable only to depths above the excavation level where the soil exists only on one side of the wall. Below the

FIG. 4. p-y Curve Above Excavation Level

excavation level the soil on the other side of the wall must be taken into account. The method of superposition is used to find these p-y curves (Fig. 5). Instead of inputting five points, seven p-y values are now required for BMCOL7.

BMCOL7 does not require the input of a p-y curve at each node since it interpolates between curves. The number of p-y curves needed to get a fair representation of a particular problem is determined by discontinuities. Obvious discontinuities are the excavation limit, both ends of the wall, and changes in soil properties.

3.1.2 The Wall Stiffness

The stiffness of reinforced concrete retaining walls does not remain constant, but decreases as loads are applied. This is due to cracking of the concrete which reduces the moment of inertia. The American Concrete Institute recommends the use of the gross moment of inertia until the applied bending moment exceeds the cracking moment. At this point, the effective moment of inertia should be used (Fig. 6):

$$I_e = \left(\frac{M_{cr}}{M_{a}}\right)^3 I_g + \left[1 - \left(\frac{M_{cr}}{M_{a}}\right)^3\right] I_{cr}$$

where $I_e =$ the effective moment of inertia,

M_{cr} = cracking moment due to bending,

M = the applied bending moment,

 $I_g = the gross moment of inertia, and$

I = the cracked moment of inertia.

Unfortunately, BMCOL7 does not have the capability to compute the effective moment of inertia. The user can address this problem by using the iteration method with each computer run being an iteration.

FIG. 5. Combined p-y Curve Below Excavation Level

٠.

--

Effective Moment of Inertia vs. Applied Bending Moment

First, a graph of applied bending moment versus effective moment of inertia is plotted and BMCOL7 is run using a constant EI throughout. Using the results of this run, an EI value can be obtained from the M versus EI plot for each segment of the wall and BMCOL7 is rerun using the new EI values. This process is repeated until the EI values input correspond to the values from the M versus EI plot. By guessing the applied moments and running four or five trials at once, a reasonable answer can be achieved in three iterations. BMCOL7 has the capability to run many problems at once using the same p-y curves with a minimal amount of input. Note that when steel sheet piling is used, EI remains constant up to yielding of the steel.

3.2 Parametric Analysis

A parametric analysis was done on the wall at Liberty and Mesa in Houston with respect to the embedment depth, the wall stiffness, the soil internal friction angle, and the slope of the soil p-y curve. This wall is made of 60-foot long, three-foot diameter, drilled shafts spaced 3.5 feet center to center. The wall has a stiffness of 9.42 x 10^{10} lb-in.² per foot of wall width. The conventional p-y curves described in the previous section were used with a friction angle of 30° , a unit weight of 120 pcf, and a coefficient of at rest earth pressure of 0.5. The cases studied are summarized in Table 1. Figure 7 shows an example set of p-y curves for one of the cases studied.

An examination of the results (Fig. 8) shows that the slope of the p-y curve has a minor effect on the total displacement at the top of the wall. The reason is that along most of the wall the deflections are large enough to mobilize the full active and passive resistance of

	SO	IL	WALL					
CASE NO.	FRICTION ANGLE, ϕ (°) (AT DEPTH = 22')	SLOPE OF P-Y CURVE, K (PSI/IN.)	EMBEDMENT DEPTH (FT)	STIFFNESS, EI LB-IN. ² PER FT OF WALL LENGTH				
1	25	100	37.5	9.42 x 10^{10}				
2	30	100		▲				
3	35	100						
4	30	50						
5	A	100						
6		200	37.5					
7	-	100	22.5					
8		A	24					
9			25.5					
10			27					
11			30					
12			37.5					
13			45					
14			48	↓				
15			37.5	2.68×10^{10}				
16				5.4 $\times 10^{10}$				
17				9.42 x 10 ¹⁰				
18		V <i>V</i>		15.4×10^{10}				
19	30	V 100	37.5	23.35 x 10^{10}				

TABLE 1: Summary of Cases Studies

-

• .

· .

FIG. 9. Influence of ϕ on the Wall Top Deflection

the soil.

The second soil parameter, the angle of internal friction, has a major effect on the displacement (Fig. 9). The reason is that the active and passive pressures are directly dependent on the angle of internal friction: decreasing ϕ increases the active pressure and decreases the passive pressure.

The effects of the wall properties are shown on Figures 10 and 11. Common sense indicates that a stiff wall will deflect less than a more flexible one. The graph of stiffness versus deflection (Fig. 10) indicates that it is not cost efficient to increase the wall stiffness beyond a certain value.

Figure 11 illustrates the diminishing effect of increasing the wall embedment depth. Beyond a certain point, increasing the embedment depth has no effect on the wall deflection. The wall is essentially fixed and the soil pressures on either side of the wall are nearly equal below the point of fixity.

Varying the stiffness along the cross-section of the wall had a significant effect on the deflection. To reflect the reduction in stiffness due to cracking, the wall was tested with the middle third having a stiffness equal to about one fourth of the regular stiffness. The maximum deflection was nearly double that of the uncracked wall. The stiffness reduction was based on the ACI code and involved an assumption of the amount of reinforcing steel present in the wall. The results are shown in Appendix A as are the detailed results for each case of the parametric analysis.

· ·

CHAPTER 4. THE MENARD PRESSUREMETER METHOD

4.1 Menard's Modulus of Horizontal Subgrade Reaction

The pressure of the soil on a retaining wall can be assumed to be proportional to the horizontal displacement of the wall (Fig. 12) where the constant of proportionality, K, is called the modulus of horizontal subgrade reaction. A value for K can be found from data obtained by a pressuremeter, an in situ testing device described in Chapter 5. Menard (1, 2, 3) gives the following equation for K in tons per cubic foot for a concrete or sheet-pile wall, below excavation level

$$\frac{1}{K} = \frac{1}{E_{M}} \left[\frac{\alpha}{2} a + \frac{13}{30.48} (0.09 \times 30.48 \times a)^{\alpha} \right]$$

where E_{M} = the arithmetic average of the pressuremeter soil modulus in tons per square foot over the upper two-thirds of the considered embedded length, h (Fig. 13),

- a = two-thirds of h in feet, and
- α = a dimensionless coefficient (Table 2) depending on E_M and on the limit pressure of the pressuremeter test.

It can be seen that this equation is correct from the point of view of dimensions when $\alpha = 1$. The coefficient α was introduced by Menard in order to match a data set which he has not described in the referenced publications.

4.2 Ultimate Value

The modulus of horizontal subgrade reaction, K, is actually the slope of the p-y curve in the elastic region. In order to get a

FIG. 13. Definition of Embedment Length

FIG. 14. Pressure-deflection Curve
			:					:			
			, 								
· · · ·		Clay	Sil	lt	Sar	nd	Sand and	l Gravel	Peat	Rock	
Degree of Consolidation	$\frac{E}{Pl}$	α	E Pl	α	E Pl	α	E Pl	α		Condition	α
Over-consolidated	16	1	14	2/3	12	1/2	10	1/3	1	Very Fractured	1/3
Normally Consolidated	9-16	2/3	8-14	1/2	7-12	1/3	6-10	1/4	1	Normally Fractured	1/2
Under-consolidated or Weathered	9	1/2	8	1/2	7	1/3	6	1/4	1	Not Fractured or Very Weathered	2/3

,

•

TABLE 2: Recommended α Values

E/pl	10	15
Clay	2.7	3.2
Sand	3.5	4.2

TABLE 3: Recommended K_{B} Values

complete p-y curve, the ultimate values of the active and passive pressures versus deflection are needed.

Menard (1, 2, 3) gives the following equation for the ultimate passive resistance of the soil:

$$p_{p} = \frac{p_{\ell} - p_{o}}{K_{p}} + p_{o}$$

where $p_0 =$ the limit pressure of the pressuremeter test,

 p_{o} = the at rest pressure in the soil, and

 $K_B = a \text{ dimensionless coefficient dependent upon } E_M \text{ and } p_l$ (Table 3).

Given the modulus of subgrade reaction and assuming that the at rest coefficient of earth pressure and the coefficient of active earth pressure are one-half and one-third, respectively, a complete p-y curve can be constructed (Fig. 14).

CHAPTER 5. CASE HISTORIES

5.1 Houston Wall: Liberty and Mesa

5.1.1 Purpose and Scope

A geotechnical investigation was undertaken as part of the evaluation of the foundation conditions for the retaining walls of a railroad underpass. The site is located close to the intersection of Liberty Road and Mesa Road (FM 527) in Houston, Texas (Fig. 15). Each retaining wall will be made of a line of drilled piers, 3 feet in diameter with a 42 inches spacing center to center. At the final stage of construction, those piers will have a total length of 60 feet and retain 22.5 feet of soil (Fig. 16).

The work consisted of performing pressuremeter tests at the site in order to obtain the soil properties as follows:

- first loading modulus
- reload modulus
- net limit pressure

A total of eight tests were performed on June 29, 1983.

5.1.2 Pressuremeter Testing

The pressuremeter used was a TEXAM model sold by Roctest, Inc. This is a monocell pressuremeter inflated with water. The probe is 70 mm in diameter and has an initial deflated volume of 1380 cm³. Eight tests and two calibrations were performed. One of the eight test boreholes was too large and the results are not reported.

All tests were performed in the same boring. The hole was drilled using rotary drilling with axial injection of prepared mud with a 4 inches drilling bit down to a level located 3 feet above testing level.

RAILROAD TRACKS

÷

FIG. 16. Depths of Pressuremeter Tests

For the last 3 feet, a 2-15/16 inches bit was used with a slower rotation speed and a lower mud pressure. This procedure gave very satisfactory overall results.

5.1.3 Pressuremeter Results

The raw data obtained in the field was reduced. Corrections were applied for membrane resistance and volume losses in order to obtain the corrected curves.

The corrected p.v. data was then transformed and plotted as a p, $\Delta R/R_{o}$ curve (Appendix C). The parameter p represents the actual total pressure against the wall of the borehole, ΔR is the increase in probe radius and R_{o} the deflated probe radius.

The first load modulus E_0 was obtained from the straight part of the pressuremeter curve on the first loading, the reload modulus E_R from the unload-reload cycle. The net limit pressure pl* was obtained by manual extension of the curve. The moduli E_0 and E_R were computed assuming a Poisson's ratio of 0.33 in all case. The values of the above parameters are shown on the profiles on Figure 17.

5.2 Houston Wall: West Belt and Kimberly

5.2.1 Purpose and Scope

A geotechnical investigation was undertaken as part of the evaluation of the foundation conditions for the retaining walls of a highway underpass. The site is located at the intersection of the West Belt and Kimberly Lane in Houston, Texas (Fig. 18). Each retaining wall will be made of a line of drilled piers, 3 feet in diameter with a 42 inches spacing center to center. At the final stage of construction, those

:

Location of Pressuremeter Borings

piers will have a total length of 68 feet and retain 22 feet of soil (Fig. 19).

The work consisted of performing pressuremeter tests at the site in order to obtain the soil properties as follows:

- first loading modulus

- reload modulus

- net limit pressure

A total of seven tests were performed on August 31, 1983. Their position is shown on Figure 20 along with the observed soil layers.

5.2.2 Pressuremeter Testing

The pressuremeter used was a TEXAM model sold by Roctest, Inc. This is a monocell pressuremeter inflated with water. The probe is 70 mm in diameter had has an initial deflated volume of 1380 cm³. Seven tests and two calibrations were performed.

All tests were performed in the same boring. The hole was drilled using rotary drilling with axial injection of prepared mud with a 4 inches drilling bit down to a level located 3 feet above testing level. For the last 3 feet, a 2-15/16 inches bit was used with a slower rotation speed and a lower mud pressure. This procedure gave satisfactory overall results. In the sand layers future drilling might be more successful if a tricone roller bit is used and if the drilling mud is thickened significantly.

5.2.3 Pressuremeter Results

The raw data obtained in the field was reduced. Corrections were applied for membrane resistance and volume losses in order to obtain the corrected curves.

્36

TESTS

The corrected p.v. data was then transformed and plotted as a p, $\Delta R/R_{o}$ curve (Appendix B). The parameter p represents the actual total pressure against the wall of the borehole, ΔR is the increase in probe radius and R_{o} the deflated probe radius.

The first load modulus E_0 was obtained from the straight part of the pressuremeter curve on the first loading, the reload moduli E_{RI} and E_{R2} from the first and second unload-reload cycles, respectively. The net limit pressure pl* was obtained by manual extension of the curve. The moduli E_0 , E_{R1} and E_{R2} were computed assuming a Poisson's ratio of 0.33 in all cases. The values of the above parameters are shown on the profiles on Figure 21.

5.3 Assumptions and Analysis

In order to analyze the two retaining walls in Houston, the following assumptions were made:

- Each pier affects a width of soil equal to 3.5 feet.
- The reinforcing steel is such that the cracking moment is not exceeded in each pier.
- The modulus of elasticity for the concrete is four million psi.
 For the analysis using conventional p-y curves, the soil properties were assumed as follows:

$$\gamma = 120 \text{ pcf}$$

 $\phi = 30^\circ$,

Displacement needed to develop active pressure is 2 mm. Displacement needed to develop passive pressure is 10 mm. For the Menard method, the procedure outlined in Chapter 4 was

FIG. 21. - Summary of Pressuremeter Results

.

used below the excavation level. Above the excavation level, the conventional p-y curves were used.

Tables 4 and 5 contain a summary of the p and y coordinates used to analyze the two walls. Z is the depth in feet from the top of the wall, P is the pressure in psf, and Y is the corresponding lateral displacement in feet. A, B, C, and D refer to the four points on the p-y curve shown on Tables 4 and 5.

The results of the analysis are shown on Figures 22 and 23 for both the pressuremeter and conventional method.

P-Y Coordinates from Conventional Method

Z(ft)		A	В		(5	D	
	P(psf)	Y(ft)	P(psf)	Y(ft)	P(psf)	Y(ft)	P(psf)	Y(ft)
0	0	-1000	-	-	_	-	0	1000
22.5	8064	033	1296	0	-		864	.007
60	20160	033	1296	0	-2160	.007	-11088	.033

7	- A	•	E	3	(C	D	
2	Р	Y	Р	Y	Р	Y	Р	Y
0	0	- 1000	-	-	-	-	0	1000
23	8280	0328	1380	-	-	-	920	.0066
25	22900	0337	1350	00008	390	.00078	-22100	.0343
32	3720	0136	2510	00121	20 · :	.00408	- 3120	.0241
56	10460	0872	4010	00691	⁻ 850	.01155	- 9860	.10444
60	10460	0872	4010	00691	850	.01155	- 9860	.10444

P-Y Coordinates from Menard Method

TABLE 4: P-y Curve Data for Liberty and Mesa Wall

P-Y Coordinates from Conventional Method

7		A	В		С		, D	
2	Р	Y	Р	Y	Р	Y	P	Y
0	0	-1000	<u> </u>	-	_	-	0	1000
22	7920	033	1320	0	-	-	880	.007
68	22644	033	1320	0	-2796	.007	9999	.033

. P-Y Coordinates from Menard Method

7		A	I	3	(C	D		
2	Р	Y	P .	Ŷ	Р	Y	Р	Y	
0	0	-1000	-	-	-	-	0	1000	
22	7920	033	1320	0	-	-	880	.007	
31	16640	14	1670	0016	230	.0056	-9999	.14	
42	10000	39	2930	019	-2100	.04	-7820	.39	
57	13800	62	4090	032	- 940	.06	-9999	.62	
68	7280	23	4900	04	-1354	.06	-5060	.23	

e a star a star a st

TABLE 5: P-y Curve Data for West Belt and Kimberly Wall

The results of the parametric analysis show that, for the cases studied, the influence of various parameters on the top deflection of the wall is as follows:

- When the slope of the p-y curve is multiplied by 3, the top deflection of the wall is multiplied by 0.65 and the maximum bending moment is practically unchanged.
- 2. When the angle of internal friction of the soil is multiplied by 1.40 the top deflection of the wall is multiplied by 0.35 and the maximum bending moment is multiplied by 0.5.
- 3. When the drilled shaft diameter is multiplied by 2, the top deflection of the wall is multiplied by 0.2 and the maximum bending moment is practically unchanged.
- 4. Maximum benefit is obtained for an embedment depth equal to 1.4 times the cantilever height (height of retained soil). The analysis of the two walls in Houston was made using a conventional analysis and the Menard pressuremeter method. The results
 - 1. The Menard pressuremeter method predicted 25% and 50% less top deflection of the walls than the conventional method.

of the predictions show that, in these two cases:

ί.

2. The Menard pressuremeter method predicted maximum bending moments which were 15% and 39% less than the maximum

bending moment predicted by the conventional method. The above results need to be further investigated at full scale in the field at the time of construction and also at small scale in the laboratory.

.

CHAPTER 7. REFERENCES

- Menard, L., Bourdon, G., and Hcuy, A., "Etude experimentale de l'encastrement d'un rideau en fonction des caracteristiques pressiometriques du sol de fondation," Sols-Soils No. 9, pp. 11-27, 1964.
- Menard, L., and Bourdon, G., "Calcul des rideaux de soutenement: methode nouvelle prenant en compte les conditions reeles d'encastrement," Sols-Soils No. 12, pp. 18-32, 1965.
- Menard, L., Bourdon, G., and Gambin, M., "Methode generale de calcul d'un rideau ou d'un pieu sollicite horizontalement en fonction des resultats pressiometriques," Sols-Soils No. 22-23, pp. 16-29, 1969.

. -.

. .

.

APPENDIX A

-

RESULTS OF PARAMETRIC STUDY

-

. . .

·. .

÷. +

۰. ۰

. .

Influence of the Slope of the p-y Curve on the Wall Response

Influence of Angle of Internal Friction on Wall Response

Influence of Pier Diameter on the Wall Response

Influence of Embedment Depth on Wall Response

Influence of Variable EI on Wall Response

.

.

、 、

.

APPENDIX B

SOIL DATA: KIMBERLY AND WEST BELT

·

e de la deserva

-

N - - 4

.

۰.

έ.

-:

÷....

.

Second

ŝ

pl* = 6.5 TSF (ESTIMATED)

55.

. . .

ŧn.

(F)

έ.,

5

.

Sec. 1

......

C.

Land S

1

.

اد~

-

.

Sec. 2

Sec. 1

pl* = 14 TSF (ESTIMATED)

 $E_0 = 367 \text{ TSF}$ $E_R = 2344 \text{ TSF}$

pl* = 20.5 TSF (ESTIMATED)

57 1 1

. .

....

.

ï

ι

!

1. A.

1......

Sature 5

DBULLING REPORT

:

..

:

.

7

1

•

;

ous,	H	arr	is			Structure	Reta	ini	ng	<u>Wa 1</u>	1 at West Belt District No. 12
lighwa	y No.	elt	way 8			Hole No	5				Dete2-2-81
('ostrol	3	25 <u>6</u>	-1			Station	601	+]	18.4	7	Grd. Elev. 77,59
Project	No	PE	<u>3-399C</u>			Loc. from Co	enterli	be		R	11 78.39 Lt Grd. Water Elev. 58.0
Eley.	Depth	1	TED PI No. o	EN. TRAT I Blove	Sample	Lat. Pressure & Uit. Hiress	Denaity	187 Mi 196	H H (36)	liekty (%)	DESCRIPTION OF MATERIAL
(F t.)	(FL).	1	Jat d"	and 4"		(Jaci)	¥ Û	C M of		11	AND REMARKS
										-	
				1				!			3' washed bore
		11_		_	BW-5-1	0-11.1	132	15	39		clay, silty, gray, tan, soft, moist & calcite nodule
	5			_	2	0-9.5	131	18			same + calcite nodules
	I	×	11	11							
	ļ	┥╌┝──	1		3	0-35.3	134	15			same + calcite nodules
	<u> </u>	44-	ŀ		4	0-30.9	132	16	48		same + calcite nodules
		44			5	0-12.0		12	L	ļ	same +ferrous & calcite nodules
	10	┫-╎	·		6	0-10.3	132	25	f		same + ferrous & calcite nodules
		X	9	9				I	L	_	
. 		┥┿╾			7	0- 9.0	132	15	38		clay, silty, gray, tan, moist & ferrous nodules
		┫╌┝╾╸			8	0-24.6	134	15	ļ		same
]		┫.	·		9	0-37.4	139	13	 		clay,silty,gray,brown,moist & ferrous nodules
	15	┵┟ー			10	0-49.5	137	117			same
		×	19	22	<u> </u>			 		ł	
		┥┥──	· · · · · · · · · · · · · · · · · · ·		+11	0-52.0	137	15	42	 	clay,silty,gray,brown,moist
			ļ		12	0-51,4	135	15		_	same
	+	┥┤──	<u> </u>	ļ	13	0-28.4	130	13			silty,sand,gray,soft,moist
	20	┥┼──			14	0-14.1	124	15	ļ		same
		X _	42	18				<u> </u>	h		\
	<u> </u>	d-l		·	15	MC		10	50	 	silty, sand, gray, soft, moist
	-	┥┥╌		·{	16	0-23.2	132	111	<u> </u>		same
	- 05	┫┥┨┯╸			17-	MC		10	<u>+</u>		ailty and may anot wat
	25	┥┧──	24					10	<u>+</u>		Sity, Sand, gray, Soit, wet
•·	<u>+</u> •	4-	- 34		+				┣	· ~	
		┨	30	40					f	ŀ	
+ } .	<u></u>	11-			·			ł	+	·	
	30	f+						t	<u>+</u>		
;		1	. 44	48				1	+	·····	
	• • • • • • •	f¶	+ ^{***}	· · · · · · · · · · · · · · · · · · ·	1	• • •			1	1 1	
			50/6"	50/45"	1				i · · ·		
· · ·				1997.39	t -		·· -··	1	F · ·		
	+		·		1 .	••	1		ł		

•

••

(

• •

			· .								
			•								
louaty.		ar	ris			Structure R	etai	nin	g W	a11	lat West Belt 12
Highway	No	Bel:	tway 8			Hole No. 5					District No Date2-2-81
Project	No	LPE	3-399C			Station	UI +	18	.47		Grd. Blev. 77.60°
	· · · · ·	.1	TED PE			1	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T	<u></u>	Grd. Water Elev
Elev.	Depth	5160	No. of	Blowe	Sample	Lat. Pressure	i i i	2	8	₽¥	DESCRIPTION OF MATERIAL
(F t.)	(F L.)		1at 4"	tud 4"	Number	(pel)	Ĵ	K I I	Leeld	The	AND REMARKS
	35										
			50/41"	50/31"							
		x	50/21"	50/13"							
	40	╂╋─					<u> </u>		_		
		x	26	19							
			· · · · · · · · · · · · · · · · · · ·		18	MC	122	26	45		silt, clayey, brown, very soft, moist
					20	0- 3.2	123	26	45		Same
	45		05	00	21	0-35.1	129	27	_		Same
			25	23	22	MC		26	-		clay, brown, firm, moist
					23	0-17.4	125	30	L		
	50				24	0-48.3	123	29 25	66		Same Same
		x	17	22							
					······						
									_		
											· · · · · · · · · · · · · · · · · · ·
											· · · · · · · · · · · · · · · · · · ·
		-									
		_									
		+									
		-	· · · · · · · · · · · · · · · · · · ·								
		+-	··· ··· ,···								······
								• • • •			

14. 17. - 17. - 17. - 17. - 17. - 17. - 17. - 17. - 17. - 17. - 17. - 17. - 17. - 17. - 17. - 17. - 17. - 17. - 17.

.

CALCULATED ALLOWABLE STATIC FRICTIONAL RESISTANCE (Based on Coulomb's Theory, TAT)

| | Elev | • | a | h | ~ | g • | Tan Ø | с | whTan \$ | c+wh | Tan 🌶 | Design
Stress
or
y Shear
Strength | Allo
Static F
Resis
d | wable
rictional
tance
S |
|---|--|--|--|---|--|---|--|--|---|----------------------|----------------------|---|--------------------------------|----------------------------------|
| | (Ft. |) | (? t.) | (Ft.) | (#/Et.3) | | | (#/Ft ²) | (#/Ft ²) | (#/Ft ²) | (T/Ft ²) | S
(Tons/Ft ²) | (Tons/
Perim | Ft. of
eter) |
| | | | | | | | | | | | | Per | Per | Accumu- |
| 77.5 | to | 74.5 | 3 | | | | DISR | EGARD | ED | | | acracum | Stratum | LACIVE |
| 74.5 | to | 72.5 | 2 | 4 | 132 | 0 | 0 | 742 | 0 | 742 | 0.37 | 0.18 | 0.37 | 0.37 |
| 72.5 | to | 71.5 | 1 | | | | PEN | - 22 | | | | 0.36 | 0.36 | 0.73 |
| 71.5 | to | 69.5 | 2 | 7 | 133 | 0 | 0 | 2382 | 0 | 2382 | 1.19 | 0.60 | 1,19 | 1 92 |
| 69.5 | to | 67.5 | 2 | 9 | 132 | 0 | 0 | 804 | 0 | 804 | 0.40 | 0.20 | 0.40 | 2.32 |
| 67.5 | to | 66.5 | 1 | | | | PEN | - 18 | | | | 0.30 | 0.30 | 2.62 |
| 66.5 | to | 64.5 | 2 | 12 | 133 | 0 | 0 | 1210 | 0 | 1210 | 0.60 | 0.30 | 0.60 | 3 22 |
| 64.5 | to | 62.5 | 2 | 14 | 138 | 0 | 0 | 3130 | 0 | 3130 | 1.56 | 0.78 | 1.56 | 4.78 |
| 62.5 | to | 61.5 | 1 | | | | PEN | - 41 | <u> </u> | | . = • • • | 0.68 | 0.68 | 5,46 |
| 61.5 | to | 59.5 | 2 | 17 | 136 | 0 | 0 | 3722 | 0 | 3722 | 1.86 | 0,93 | 1.86 | 7.32 |
| 59.5 | to | 57.5 | 2 | 19 | 127 | 0 | 0 | 1530 | 0 | 1530 | 0.76 | 0.38 | 0.76 | 8.08 |
| 57.5 | to | 56.5 | 1 | | | | PEN | - 60 | | | | 1.00 | 1.00 | 9.08 |
| 56.5 | to | 52.5 | 4 | 23 | 70 | 0 | 0 | 1670 | 0 | 1670 | 0.83 | 0.41 | 1 67 | 10 75 |
| 52.5 | to | 50.5 | 2 | | v | | PEN | - 73 | <u> </u> | ANIN_ | | 1.04 | 2.08 | 12.83 |
| 50.5 | to | 47 5 | 3 | | | | DEN | - 79 | | | | 1.13 | 3 38 | 16 21 |
| 47.5 | to | 45.5 | 2 | | | | PEN | 92 | | | | 1.15 | 2.30 | 18.51 |
| 45.5 | to | 39.5 | 6 | | | | PEN | - 100 | | _ | · · · · | 1.25 | 7.50 | 26.01 |
| 39 5 | to | 35 8 | 4 | | | | DEN | 4 5 | | | | 0.75 | 3.00 | 29 01 |
| 35 5 | +0 | 22 4 | 2 | 43 | 61 | 0 | 0 | 230 | 0 | 230 | 0 11 | 0.05 | 0 11 | 29 12 |
| 33 5 | <u>to</u> | 32 5 | 1 | 44 5 | 67 | 0 | 0 | 2527 | 0 | 2527 | 1 26 | 0.63 | 0.63 | 29.75 |
| 32.5 | to | 30.5 | 2 | 11.0 | | ~ + | PEN | - 48 | | | | 0.80 | 1.60 | 31.35 |
| 30 5 | +0 | 28 4 | 2 | 48 | 60 | 0 | 0 | 1600 | 0 | 1600 | 0.80 | 0 40 | 0 80 | 32 15 |
| 50.0 | | 20.9 | | | | | | | | | | | | <u>v=</u> |
| d (st
w (we
minus
from '
strend
around | ratum
62.4
TAT x
gth o
fou | thickn
sity of
; Ø (an
144; s
f soil)
ndation | iess); h
soil):
igle of
: (shear
= s/2;
i). | n (depth
For su
interna
streng
founda | of over
bmerged
L frict:
th of so
tion per | rburden
condit
Lon); c
pil) = c
rimeter | to cen
ions us
(cohes
c + whT
(short | troid of
e wet de
ion of s
an \emptyset ; S
est meas | stratum)
nsity
oil) = c
(¼ shear
uure | 1 | -+ | h ₂ | | |
| Accum
facto
Perim
Remar | ilati
r of
ster)
<u>ka:</u> | ve Allo
2.0. f
. To c | wable S
ORMULA:
alculat | itatic F
: p (Ac
te Σ (S _R d | riction
cumulat:
S) for (| al Resi
ive All
Brilled | stance
owable
shafts | in Tons/
Static F
, comple | 'ft. of Pi
'rictional
ite form l | le Peri
Resist | meter =
ance in | ΣdS based
Tons) = (Σ | on a safe
(ds) (Pile | ety
e |
| | | | | | | | | | | | | | | |
| • | | • | <u>÷</u> | | <u> </u> | • | | | | | | • • | <u></u> | |
| County | , | Ha | ris | | _ Struc | ture _E | let_i | Vall a | t West | Belt | Distr | ict No. | 12 | <u></u> - |
| Highwa | IY NO | . <u>Bel</u> | tway | 8 | Hole
Stari | No | $\frac{5}{101 +}$ | 18.47 | , | | - Date
By I | Dong Q. | Nguven | |
| IPE | · | 399 | 9C | | _ Loc. | trom Ce | aterli | le Rt | . 78.4L | t | | | | |

Form 1091

۰,

D-- 5 2/71

CALCULATED ALLOWABLE STATIC FRICTIONAL RESISTANCE (Based on Coulomb's Theory, TAT)

| | | E ler | | | a | h | | F | Tan 🖉 | c | whTan \$ | C-wh | Tan 🌶 | Design
Stress
or
4 Shear
Strength
of Soil | Allo
Static H
Resis | Friction
stance |
|------------------------------------|--------------------------------|------------------------------------|-------------------------------|-------------------------------------|-------------------------------|---|--|--|--|---|---|--------------------------|--|--|---------------------------|--------------------|
| | | (Ft. |) | | (Pt.) | (Pt.) | (#/Ft.3 | | | (#/Ft2) | (#/F+2) | (#/#=2 | (T/Ft ²) | S (TODE/Et 2) | Perir | eter) |
| | | | | | | | | | | <u>,,,,,,,,,,</u> | | 11-(| (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Per | Per | Accurs- |
| 28 | .5 | to | 2 | 7.5 | | 49.5 | 62 | 0 | 0 | 3473 | 0 | 2479 | 1 74 | Stratum | Stratum | lativ- |
| 27 | .5 | to | 2 | 6.5 | 1 | | | -× | DEN | - 41 | | 0410 | A | 0.82 | 0.87 | 22 01 |
| | _ | | | | _ | | | | | | | | | 0.02 | 0.02 | 33.07 |
| - | | | | | ŀ | | | | | | | | | | | |
| <u> </u> | | | | | | | | | | | | | | · · · · · · · · · | | <u>+</u> - |
| | | | | | | | | | | | | | · | | | · |
| | | | | | | <u>├</u> | | | | | | | i | | | |
| | - | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | _ | | | | | | | | | | | | |
| | | | | - | | ł | į | [| | | | | · | i | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | <u> </u> | | | | | | | | :
•••••••••••••••••••••••••••••••••••• | | |
| | | | | - | | | | | | | | | | | | |
| | | | | | - | | | 1 | | i | | | | | | |
| _ | | | | | | | | | | | | | | i | | |
| | | | | | | | | | | | i | | | | | |
| | | | | | | | | i | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| _ | | | | | | | | | | | | | | | | |
| | | | | | | | | | ſ | 1 | | | | | | |
| | | | | T_ | | | | | ii | | | | | | | |
| | | | | -+ | | | | | | | | | | | | |
| | | • | | | | | | | | | | | | | | |
| d (
w (
min
from
strop | str
ue
n T
eng
und | den
62.4
AT x
th o
fou | th
si:
14
f s
nda | ickr
y of
(ar
4; 1
0il) | (shear = s/2; | (depth
For su
internal
strengt
founda | of over
hmerged
1 fricti
th of so
tion per | rburden
conditi
ion): c
bil) = c
rimeter | to cert
ons use
(cohesi
+ whTe
(short) | iraid of
wet de
on of s
in f: S
st mess | stratum);
nsity
oil! = c
(4 shear
ure | : | | | | ₹-
-+
 |
| Acc
fac
Fer | | lati
of
ter; | 2.0 | Alla
. H
To d | Wable S
ORMULA:
alculat | static F
p (Ac
te Σ (S _R d) | cumulat:
S) for d | i Resid
ive Allo
drilled | wable :
whatts | in Tons,
Static F
comple | Ft. of Fi
rictional
te Form 1 | le Peri
Resist
193 | meter *
Shie in | ∑ds based
Tons; = .∑ | on a saf
ds: {Pil- | • : y
2 |
| Rez | ar: | | | | | | | | | | | | | | | |
| Court
High
Cont
IPE | nty
nwa
tro | y No
1 | C. Marken | 25
99 | tway | 8 | Hole
Steri
Loc. | No. 6
from Ce | et 1
5
01 + | all a
18.47 | t West | Belt | _ Distr
_ Date .
_ By | 3-13-81
Dong Q. | 2
Ng iye | |

D-5 2/71

Form 1091 '

=

-

· · · ·

a Anna an ann an tao an Tao ann an ta

APPENDIX C

SOIL DATA: LIBERTY AND MESA

. 1

~

. . .

-

; --

, , ,

;

ŗ

••••

....

- -

÷.,

••••

...

--

...

ал. С

•••

·....

17" .

57. . . .

ара 1. 1. 1.

17

×...

 $E_0 = 319 \text{ tsf}$

 $E_0 = 418 \text{ tsf}$

1

••)

 $E_0 = 55.3 \text{ tsf}$

.

۲. ۱

С: :

1111 - L

 $(\cap$

. Ľ-

f.

С.: і

i

ſ

1. 5

Sec. 2

E

فنسرون

ſ

 $E_0 = 245 \text{ tsf}$ $E_R = 504 \text{ tsf}$ pl* = 28.5 tsf

70

 $E_0 = 306 \text{ tsf}$ $E_R = 712 \text{ tsf}$ pl* = 10.4 tsf

ŗ

Ľ

| form 864 | hway Daj | Marti | jų en i | L | • | | (For u |]
se wit | DRILI
h Vad | LING | RE
ed Br | POR
mpli | T
ng & Teeting) |
|-----------------|---|-----------|---------|---------------------------------------|---------------------------------------|-------------------|----------------------------|-----------------------|----------------|-----------------|---|------------------------|---|
| ounty . | Har | ri | S | | | | Rivnet | | Railı | 08.d | Unde | erpa | 68 Distate No. 12 |
| llehwai | No | FM | 1 5 | 27 | | | 11.1.5 | 1. | 4 | | | | 4-11-79 |
| Tuntral | 980 |)-i | | - | · · · · · · · · · · · · · · · · · · · | | Sinilar | 4 | 23 + | 08 | | • | |
| | X. I | PF | 13 | -339 | | | Statio | u | | | | 10 m | Urg, Bier, |
| Lolect 1 | 10 | | | | | | 1.0c. I | rom C | BALGERIL | 10 | | | L Urd, Water Biev |
| Elar,
(Ft.) | Bopth
(#4.) | Samples + | Log | THD PR
No. of
1st 4" | N. TEAT
Biowa
J 2nd 6" | fiample
Number | Lat. P
Uit. Si
(pol) | Tropuro
B
Itess | Wat Deserty | | Liquid
Limit (%) | Manufalty
Lades (%) | DESCRIPTION OF MATHELAL |
| _ | | | | | ł | | + | | | | | | and a start and a start and a start a s |
| · | · | 44 | | | | | + · | | | | | | |
| | | | ŀ | | | | | | | ł | | | rish tailed fill |
| | | | | | | | | | <u>↓</u> | | | ' | <u> </u> |
| | | 4- | | | | | | | | | | · | <u>5</u> , |
| | | - | | | | I | L | | | | L | | |
| | <u> _ 6 _ </u> | | ł. | | | | L | | | | L | | · · · · · · · · · · · · · · · · · · · |
| | | ון | | | | 527-4- | 1.12 | <u> </u> | 127 | 25 | | | Clay, slight sand, silt, dark grav soft moist |
| | |] | | | | 2 | 5 | <u> </u> | 130 | 21 | | | Same |
| | 1 | | [| | | 3 | 3.0 | 23 | 131 | 19 | | | Clay, sandy, gray, tail, soft moist |
| | | ٦. | | | | 4 . | 15 | 32 | 132 | 10 | | | Same |
| | | 1: | 1 | •····• | | 5 | 0 | | | 21 | 32 | | Supra (cc) |
| | +++++++++++++++++++++++++++++++++++++++ | " | | | 5 | 2 | | | | - Fild | | | 10000 (100 / |
| | f | 1 | | | | 16 . | 5- | 11 | 132 | 20 | | 1 | Fine cond glight glass 14 mms ton - gt |
| | | 1 |] · · | · | - | 7 | 10 | | 13- | 121 | 25 | | Fine sondy 1t give ton and the solt, wet |
| | | 1 | | | | · J | | | | <u> 5 4</u> | <u>-</u> | | Fine should it. Elay, tall, soit, water hearing |
| | ſ · | - | • | ····· ··· ···· ···· | | a | | | <u> </u> | 00 | | | Same as above |
| · · · · · · · · | 15 | - | | | 15 | | | | | <u> <2_</u> | 21. | | Same |
| | · | - I · | • | · · · · · · · · · · · · · · · · · · · | · # | | - | | | · | | | Using wasner pen |
| | · · · · · | - I - | | | | | · | | | | | | Sand, no recovery- washed out |
| | | 4 | | | | | | | · | 1.1 | | | Same |
| | | 4. | . | <u>ر</u> ے۔ | 20 | | | | · | | <u>ن</u> ــــــــــــــــــــــــــــــــــــ | | (8) |
| | 20 - | 4 | 1. | | | | | | · | <u> </u> | ÷ | | Washed out |
| | | 1. | | 23 | | | | | | | | · · · · | |
| | | _ | | | | | | | | | | | Same |
| - | - · · | | | 23 | 2/1 | | | | | | | | · |
| | | | | | | | | | | | | | Same |
| | 26 | | | 412 | 80 - | | | | | J | 1.1 | | |
| | 169- | ٦. | | | | | | | | | 1 | | Same |
| | | 1 | 1 " | 19 | 10 | , | | | | | | | |
| | | 1 | Ľ | | | 9 | 15. | 32 | 125 | 29 | | | Clay, brown, gray, stiff, moist, w/calcareous |
| | 1 | 1 | Ľ | | | 10 | 0 | 22. | 128 | 23 | | 1 | Clay, slight silt, hown, gray, stiff, motet w/onl |
| | | 1. | 1 " | | | lii - | 5 | 30 | 1130 | 22 | 58 | | Same (ch) |
| | 130 - | 1 | · · | 1 | 15 | | ····· | | 1 | 1 | ∽ *- | | === ================================ |
| | | - | 1 - | · | | 12 | 10 | 40 | 128 | 24 | t | | (law brown stiff moist w/seles |
| · ·- | 1 | · | 1 | |] | 5 | 110 | <u>- 70</u> | 122 | 20 | | · · | Cley condy bypun glay, moist, W/cales |
| | · [| - | | | · [· | 1.3 | | 0.1 | حدم | 123 | | | Fine sand, silty, brown, very solt, water bearl |
| | 1 | - I - | - 1 | | | 1.49. · · · · | 1 | 717 | 125 | 178 | 51 | | Clay silty, brown, Stiff, moist |
| | | | 1 | L | <u> </u> | <u></u> | | - 71- | <u>1130</u> | 17.7 | 1.24 | <u>.</u> | |

•

,

Δ.

0

.

.

.

1

.

Σ.

Bob Spiningfer R.K. CurSon Tille Tille Industry and for by shallow for core createry, having blank for no voie recovery, and constant (not by shallow for no voie recovery, and constant (not by shallow for no voie recovery, and constant (not by shallow for no voie recovery).

.

.

Tozan Highway Department Form 554

٠.

· .

+ 7 -

.

.

.

DRILLING REPORT (For use with Undisturbed Sampling & Testing)

and the second second

•

| County ¹
Highway
Control
Project l | No | 527
1 PE- | 3-630 | ······································ | | Structu
Hole No
Station
Loc. fro | 423
423 | } + O | 8 | | R | District_Ng_14=79
Date
Grd. Biter,
t Grd. Water Eler |
|--|----------------|-------------------|-------------|--|------------------|---|------------|-------|--------------|---------------------|-------------------------|---|
| Eler,
(Ft.) | Depth
(Ft.) | t vidara | THD PR | N. TEST
Blows
Ind 4" | Rampio
Namber | Lat. Pro
&
Uit. Btr
(psl) | | | Kenner (%) | Linetd
Limit (%) | Plauticity
Index (%) | DESCRIPTION OF MATERIAL |
| | | 1 | 50.10. 50 | | | | | | | | | |
| | ·• | ┫ | 50/3.50 | 50/4.75 | | | | | 1. | | | lising tooth barrel |
| | , | ╉┟╌╌ | | | 10 | ł | | | 14 | | | Silty sand, brown, loose, water bearing |
| [| | ┫╌┟╌┄ | ł | 20 | K | | | | 24 | 28 | | Same (a) |
| | | • | 50/6 | 50/2 | | | | | | | | Using washer pen washed out |
| | 10 | • • • • | 2010 | | | | | | | | | the above and |
| · | 1 | 1-1- | 5072 | 50/1 | · | 1 | | | | | | Deck sail |
| | | 11 | / <u>*/</u> | -2-1 | 18 | 5 | 36 | 124 | 20 | | | Silty cley prom stiff moist |
| | | 1 | | | 19 | 10 | 48 | 125 | 31 | | | Same |
| 1 | |] [| | | 20 | 15 | 58 | 123 | 30 | 79 | | Sume (ch) |
| | כין |][" | 12 | 14 | | | | | | | | |
| | |]]. | | | 21 | <u>v</u> | 24 | 123 | 31_ | | | • • • |
|] | | 41 | | | 22 | 5 | 45 | 125 | 25. | | | Same |
| | L., . | 41 - | | | 23_ | 10 | 21 | 134 | <u>19</u> _ | | | |
| | 1-0 | • • • | | | | 15 | -35 | 136 | 119 | 131 | | Same |
| | f | 41 | | | | t | 12 | 1.24 | 10 | | | |
| ····· | | 1 * | }····· | | 26 | 5 | 24 | 126 | 10 | | | Sandy, dlay, brown, gray, soft, moist |
| | · · | 11 | | | 27 | 10 | 47 | 138 | 17 | · | | Same |
| | | 11 | ··· | | 28 | 15 | 74 | 138 | 17 | 30 | | Sand slight clay brown gray noft with (a) |
| | 55 |] [| _27 | 33 | | | | | | | | |
| | | | | | 29 | 0 | 12 | .138 | 16 | | | Same |
| | |] [| | | | 5 | -36 | 136 | 17 | | | Same |
| | | | | | | 10 | _44. | 135 | 17 | | | Same w/calcs |
| | 60 - | ┥╽╷ | | | | j15 | - \$5- | 135 | 17 | 31. | i | |
| | | $\{ \cdot \}$ | | | | | | • · | | | • | |
| | | +· | | | | 19 | 8 8 | -131 | <u> 28</u> - | | · | - Clay,-brown,-stiff,-moist, w/calcs |
| | | - · | | | - 35 | 10 | 88- | 132 | 52 | | | Clow gilt byggy gtiff make |
| | + | t t | | | 36 | 15 | 73 | 122 | 22 | 16 | ÷ | Samo |
| | 65 - | 1 | 41 | 37 | | | | | | 1.4 | | |
| | | 11 | | | 37 | | | | 27 | [| | Dist core clay, brown, stiff, moist |
| | | 11 | | L | 38 | | | | 27 | | | Same |
| | |]. | | · · · - · | . 39 | 0 | 20 | 124 | 25. | | | Clay, sandy, brown, stiff, moist |
| | 1 | JĽ | | 1 | 110 | 15 | 49 | 122 | 29 | 70 | | Same (ch) |

 Title
 *

 Driller
 *

 Indicate each funt by shading for core recovery, fearing blank for no core recovery, and crossing (X) for undisturbed informations samples infere
 HW20-1005 8-12041 3.66 2M

74

· · ·

.

Texas Highway Department Form 664

1

.

.

•

4

DRILLING REPORT (For use with Undisturbed Sampling & Testing)

.

| niroj | No
to, | PE-3- | -630 | , | | Btall
Loc. | no
on
from Co | 23 +
mterili | 08
•• | | Rı | District No. 12
Date 5-14-79
Ord. Elev.
Lt. Ord. Elev.
DESCRIPTION OF MATERIAL
AND REMARKS
Clay, silty, brown, stiff, moist
Same
Clay, slight silt, gray, stiff, moist
Same
Same
Same
Same
Same
Same
Same
Same
Clay, slight silt, gray, stiff, moist
Same
Same
Same
Clay, slight silt, gray, stiff, moist
Same
Same
Same
Clay, slight silt, gray, stiff, moist
Same
Clay, slight silt, gray, stiff, moist
Same
Same
Clay, slight silt, brown, stiff, moist
Same
Clay, sondy, silty, brown, stiff, moist
Same w/calcs
Same w/calcs
Same w/calcs
Same w/calcs | | | | | | | | | |
|-----------------|----------------|--------------|-----------------------------|----------------------------|------------------|------------------------|-------------------------|------------------------|----------|--|-------------------------|---|--|--|--|--|--|--|--|--|--|
| Elav.
(3'l.) | Dopth
(Tt.) | 1 Midera | THD FEI
No. of
lot d" | i, TENT
Blows
Sud d" | Sampia
Number | Lat.
UK. (
(psl) | Pressure
A
Birees | With Denselsy
(ped) | Materia | Linut
Linut
Linut (%) | Planticity
Index (%) | DESCRIPTION OF MATERIAL
And Remarks | | | | | | | | | |
| | · | ┫┨──┤ | | 207 | | | | | <u> </u> | | | | | | | | | | | | |
| | | ┫┫╼╼┙ | - 20 | | <u></u> | 10 | 67 | 121 | 20 | | - | | | | | | | | | | |
| | | ╉╂╼╴ | | | | 116 | -21- | 124 | 120 | | | CIBY, SLILY, DROWD, SLITT, MOIST | | | | | | | | | |
| | | <u>+</u> | | | | <u></u> | - 29_ | 124 | 69 | ł | | Same | | | | | | | | | |
| | | | | | - 42 | <u> </u> | - 25 | 162 | 62- | | ┝──╂ | <u>Clay, Silt, Jaminate, brown, stift, moist</u> | | | | | | | | | |
| | 75 - | ╉-┨ | | | 44 | 12. | 20 | 151 | 120 | 11 | ├ ╋ | Same (cn) | | | | | | | | | |
| | | ┥┽── | 10 | 9 | | 10 | 1.7 | 177 | 120 | <u> </u> | ┟──┤ | | | | | | | | | | |
| | | ┫╍┨─── | | | | 10 | 40 | hio. | 137 | ┡ | + | Same | | | | | | | | | |
| | · · · · · · | | | | 40 | 12 | 44 | <u> 117</u> | 34 | | | Same | | | | | | | | | |
| | ļ | | | | | | -12- | <u>h 16</u> | 130 | | ┟──┟ | <u>Same</u> | | | | | | | | | |
| | 80 | d | | | 40 | 12 | 42 | 110 | 178 | 127 | | Same | | | | | | | | | |
| | | 1 | 9 | 9 | | | · | | | <u> </u> | | | | | | | | | | | |
| · · | | | | 10 | 42 | 125 | 25 | ļ | | <u>Clay, slight silt, gray, stiff, moist</u> | | | | | | | | | | | |
| | I | | | | | 15 | <u>_51</u> _ | <u>p25</u> | 25 | | Same | | | | | | | | | | |
| · | ļ | | | | 51 | <u>l</u> 0 | 32 | <u>p24</u> | 25 | | łł | Same | | | | | | | | | |
| | 85 - | | L | | 52_ | 5 | 46 | 126 | 23 | 51 | | Same | | | | | | | | | |
| _ | Ľ | | · 14 | 15 | | ļ | | | | L | | · | | | | | | | | | |
| | | | | | 53_ | 10 | 54 | 128_ | 28 | · | | Vlay, brown, blue, stiff, moist, w/calcs | | | | | | | | | |
| | | | | | <u>54</u> _ | 15 | <u> 56 </u> | 128 | 22 | | | Same | | | | | | | | | |
| | | 11_ | | | 55 | 0 | 49_ | 130 | 21 | L | | Clay, sandy, silty, brown, stiff, moist | | | | | | | | | |
| | 00 | T | | | 56 | 5 | 47_ | 130 | 20 | 35 | | Same w/calca | | | | | | | | | |
| | P0 - | | 50/3.75 | 50/1.50 | | | | | s | | | | | | | | | | | | |
| | | | | | 57 | <u>]</u> 2Ω | 49 | 130_ | .ks. | | | Clay, silty, brown, stiff, moist | | | | | | | | | |
| | | | | | 58 | 15 | 47_ | <u>130</u> | 21 | | L., | Same w/calcs nodules | | | | | | | | | |
| | | 1-1 | | | 59 | | | _ | 19 | | | Silt. slight clay. brown. stiff. most w/ silt st | | | | | | | | | |
| e : e : - | 5 | 11 | | | 60 | | | | 18 | 41 | | Same (cl) | | | | | | | | | |
| r) | 00 | | 36 | 33 | | | | | 1 | | | | | | | | | | | | |
| | | 1 ·] | 1 | | 61 | 10 | 50 | 1.32 | ho | 1 | | Same | | | | | | | | | |
| | | | | | 62 | 5 | 63 | 131 | bi | <u> </u> | | Same | | | | | | | | | |
| | | 11- | | | 63 | 10 | 46 | 128 | 23 | Γ. | | Same | | | | | | | | | |
| | 1 | 1-1 | 1 | | 61 | 115 | 71 | 130 | 63 | 51 | | Same | | | | | | | | | |
| | p05- | - | 30 | 32 | | | p.1. | | T - | | | | | | | | | | | | |
| | · | 1/- | | | 65 | 0 | 50 | 121 | 61 | 1 | 11 | Silty, clay, brown, stiff, moist | | | | | | | | | |
| | | 1-1 | 1 | •• | | 5 | 57 | 630 | 23 | — | | Same | | | | | | | | | |
| | 1 | + | | | 67 | 1-1- | | P-42- | 21 | 36 | | Clay, sand, silt, brown, stiff, moist | | | | | | | | | |
| | | 11- | 50/3.25 | 50/2 | ₩4 | 1 | | 1 | 7= | 122 | 11 | Using washer pen (s) | | | | | | | | | |
| | _ | | 120101-0 | | | | | × 0 | TROP | | | | | | | | | | | | |

•

...*k*

75

1

| Teres | lighway | Department |
|--------|---------|------------|
| Form i | 14 | - |

٠.

1

.

(

DRILLING REPORT (For use with Undisturbed Sampling & Testing)

.

| County | No | 52 | s
7 | | | | Structur
Hole No | (* | i | | | : | District No. <u>12</u>
Date |
|------------------------|-----------------|----------|--------|-----------------------------|---------------------------------------|------------------|-------------------------------------|------------|----------------------|-------------------------|---------------------|---------------------------|---|
| Control _
Project N | ło. , | II | Е | 3-630 | | | Station .
Loc. fro | in Ce | nterila | • | | R | |
| 123av.
(171.) | Beyth
(Bit.) | - niquel | Lag | TRD FE.
No. of
lot 5" | N. TENT
Piaws
Sad S" | Hample
Number | Lat. Pro
&
Ult. Mire
(pol) | *** | Wet Decaily
(pel) | Mainture
Content (%) | Liquid
Limit (%) | Pleaticity
Index (%) - | DESCRIPTION OF MATERIAL
AND BRWARKS |
| | | | | 50/4.25 | 50/ 1 .50 | | | | ***** | |
 | | Washed out very bard pack sand |
| | 110- | | | 50/50 | 50/75 | | | | | | | | No Recovery |
| | | - | | | · · · · · · · · · · · · · · · · · · · | <u>68</u> | | | | 24 | 29 | | Silt, clay, slight sand, laminate, gray, stiff, upict
Silt, clay, slight sanu, laminate, gray, stiff, upist
same as below |
| | 115- | | | 50/2.75 | 50/1.75 | 70
71 | 10 | 49 | 122 | 25
22 | 35 | | Fine_sand, very slight clay, gray, firm, moist (cl)
Same |
| | | - | | | | 72_
73_
74 | 15
 | 97 | 129
125 | 42
26 | | | Same |
| ····· | 120- | | | 25 | 28 | 75
76 | -5 | 22 | | 26
27 | 36 | | |
| | · · · · | | | | | | | | | 37_ | 30 | | Disturhed_core, clay, slight_sand, gray, stiff, moist |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | · | | | ······ | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |

Dritler _____

Logger ______ Title ______ Title ______ Title ______ ILW 29-1005 F-12011 3-68 2M :

76

CALCULATED ALLOWABLE STATIC FRICTIONAL RESISTANCE (Based on Coulomb's Theory, TAT)

| Elev. | e | h | * | g . | Tan Ø | C . | whTan Ø | c++h? | an Ø | Design
Stress
or
Strength
of Soil | Allo
Static F
Resis
d | wable
rictional
tance
S |
|--|--|---|---|---|--|---|---|---|--------------------|---|--------------------------------|--|
| (Ft.) | (Ft.) | (Ft.) | (#/Ft ³) | | | (#/Ft ²) | (#/Ft ²) | (#/Ft ²) | (T/Ft2) | S
(Tons/Ft ²) | (Tona/)
Perim | ft. of
ter) |
| | | | | | | | | | | Per | Per | Accusu- |
| 46 to 41 | 5 | | | DISRE | ARDED | | | . | | P CAN COM | o cra cua | I CLVY |
| 41 to 37 | 4 | 7 | 130 | 18.4 | •333 | 274 | 303 | 577 | .29 | .14 | .50 | .56 |
| 37 to 36 | 1 | 9.5 | 133 | 12.5 | .222 | 432 | 280 | 712 | •35 | .18 | .18 | •74 |
| 36 to 35 | 1 | | l | PEN = | 0 | | | | | .14 | .14 | . 38 |
| 35 to 32 | 3 | 12.5 | 133 | 12.5 | ,222 | L32 | 369 | 801 | .40 | .20 | .60 | 1.48 |
| 32 to 28 | 4 | | | PEN = | 27 | | | l | | •33 | 1.32 | 2.80 |
| 28 to 36 | 2 | | | PEN = | 43 | | | | | -54 | 1.08 | 3.88 |
| 26 to 22 | 4 | | | PEN = | 47 | | | 1 | | •59 | 2.36 | 5.24 |
| 22 to 21 | 1 | | | PEN = | 82 | | | | 1 | 1.03 | 2.03 | 7.27 |
| 21 to 19 | 2 | | | PEN = | 19 | | | | | •23 | •40 | 7.73 |
| 19 to 17 | 2 | 27 | 64 | 0 | 0 | 1440 | 0 | 1:+40 | .72 | . 36 | .72 | 5.45 |
| 17 to 16 | 1 | 29.5 | 68 | 32.5 | .636 | 677 | 1276 | 1953 | •93 | .49 | . ¹ 9 | 3.94 |
| 16 to 15 | 1 | | | PEN = | 29 | | | 1 | | .59 | • 59 | 9.53 |
| 15 to 11 | 4 | 33 | . 68 | 32.5 | .636 | 677 | 1427 | 12104 | 1.05 | .53 | 2.10 | 11.63 |
| 11 to 10 | 1 | | | PEN = | 100 | | | 1 | | 1.25 | 1.25 | 12.85 |
| 10 10 8 | 2 | | | = गानप | 50 | | | | | .63 | 1.26 | 14.14 |
| 8 to 4 | <u>)</u> , | | | - एउप | 100 | _ | · · · · · · | | | 1.25 | 5.00 | 19.14 |
| 4 to 1 | 3 | 43.5 | 62 | 28.3 | .538 | 1051 | 1451 | 2502 | | 2.25 | 3.75 | 22.39 |
| 1-to 0 | 1 | | | PEN = | 26 | | | | | . 52 | •52 | 232 |
| 0 to -2 | 2 | 47 | ó2 | 28.3 | .538 | 1051 | 2563 | 2619 | 1.31 | . 65 | 1.30 | 27- |
| -2 to all | 2 | 49 | _73 | 23.2 | .429 | 43 | 253+ | 1577 | •79 | • 39 | •78 | 259 |
| -4 to -5 | 1 | | i | PEN = | 24 | | | | ! | 1 | .41 | 25.90 |
| <u>-5 to -9</u> | 4 | 53 | 74 | 36.9 | .759 | 258 | 2941 | 3229 | 1.01 | .81 | 3.23 | 29.13 |
| d (stratum thick
w (wet density o
minus 62.4 ; β (e
from TAT x 144;
strength of soil
eround foundatio | <pre>nase);) f soil); ngls of e (shear) = g/2; n).</pre> | h (dept)
: For en
interna
: Strend
; founde | h of ove
limerged
al frict
th of s
ation pe | rburden
condit
ion); c
oil) =
rimeter | to cen
ions us
(cohes
c + whT
(short | troid of
e wat de
ion of i
an \$; S
act mea | f stratum)
ensity
soil) = c
(4 shear
sure | ; | | h
h
2 | | €
-
-
-
-
-
-
-
-
-
-
-
-
- |
| Accumulative All
factor of 2.0.
Perimeter). To | cweble :
FORMULA
calculat | Stetic)
: p (A
te ∑ (S _R | Priction
coundate
(S) for | al Resi
ave All
drilled | stance
owable
ahefts | in Tone,
Static
, compl | /Ft. of P:
Frictional
ste Form | ile Per:
l Resiau
1190. | ance in | ΣdS based
Tons) = (2 | on a saf
EdS) (Pil | ety
e |
| Remarks: | | | | | | · | | ·• | | | <u></u> | |
| County <u>Harris</u>
Highway No. <u>F</u>
Control <u>980</u> - | 527 | · | Stru
Hole
Stat | No | Railro | ad Und
8 | erpass | | Dift
Date
By | richlyn.79
Gordon wi | | |
| IPE 630 | | | Loc. | from C | artarli | ne Rt | با | · · <u>· · · · · · · · · · · · · · · · · </u> | | | | |
| orm 1091 | | | | | | | | | | | | |

,

20

-

.

77

Ч.

- CALCULATED ALLOWABLE STATIC FAICTIONAL RESISTANCE (Based on Coulomb's Theory, TAT)

| Elev. | d | h | • | g • | Tan Ø | c | whTan Ø | c+wh: | fan Ø | Design
Stress
OF
1 Shear
Strength
of Soil | Allo
Static F:
Resis
di | wable
rictional
tance |
|---|--|---|--|--|--|---|---|----------------------------|----------------------|--|----------------------------------|-----------------------------|
| (Pt.) | (Pt.) | (Pt.) | (#/Ft.3 | | | (#/Ft ²) | (#/F+ ²) | (#/F+ ²) | (T/Pt2) | S
(Tons/Ft ²) | (Tons/)
Perim | ft. of
eter) |
| | | | | | | | | 1 | | Per | Per | Accusu- |
| -9 to -10 | 1 | | | PEN = | 60 | | | | | 1.01 | 302200 | 20 1 |
| -10 to -14 | 4 | 58 | 74 | 32.0 | .625 | 504 | 2582 | R186 | 1.59 | .79 | 3,18 | 22,22 |
| -14 to -15 | 1 | | | PEN = | 77 | | | | | 1 20 | 1 20 | 21. 51 |
| -15 to -19 | 4 | 63 | 68 | B1.0 | .600 | 1829 | 2570 | 4399 | 2.20 | 1.10 | 4.40 | 39.01 |
| -19 to -22 | 3 | | | PEN = | 78 | | | | | 1.31 | 3.02 | 42 uh |
| -22 to -24 | 2 | 69 | 61 | 45.0 | 1.00 | 590 | 1200 | .700 | 2 20 | 1 20 | 3 1.0 | 1.E 21. |
| -25 to -24 | 1 | | | PEN = | 53 | | | | | 1 27 | 1 27 | 46.61 |
| -25 to -29 | 4 | 73 | 61 | 25.C | .467 | 1440 | 2079 | 8519 | 1.76 | .88 | 3.52 | 50.13 |
| -29 to -30 | 1 | | | PEN = | 19 | | | | | .29 | 20 | 50.=2 |
| -30 to -34 | 4 | 78 | 54 | 29.7 | .571 | 691 | 2405 | 8096 | 1.55 | .78 | 3.10 | 53.62 |
| -34 to -35 | 1 | | | PEN = | 18 | | | 1 | 1 | .36 | .36 | 53.98 |
| -35 to -37 | 2 | 82 | 63 | 18.4 | •333 | 1109 | 1720 | 1829 | .91 | .46 | .91 | 54.89 |
| -37 to -39 | 2 | 84 | 63 | 21.8 | 400 | 1526 | 2117 | 3643 | 1.82 | . 91 | 1.82 | 56.71 |
| -39 to -40 | 1 | | | PEN = | 29 | | | 1 | | 59 | -59 | 57.30 |
| -40 to -41 | l | 86.5 | 63 | 21.8 | .400 | 1526 | 2180 | 3706 | 1.85 | .93 | .93 | 58.27 |
| -41 to -44 | 3 | 68.5 | 68 | 0 | о 🛛 | 2880 | 0. | 2880 | 1.44 | 72 | 2.16 | 6030 |
| -44 to -45 | 1 | | | PEN = | 100 | | | | | 1.25 | 1.25 | 61.6- |
| -45 to -49 | 4 | 93 | 68 | 0 | C i | 2380 | 0 | 2880 | 1.44 | .72 | 2.88 | 6452 |
| -49 to -50 | 1 | | | Pev = | 69 I | | | | 1 | 1.16 | 1.16 | 65.68 |
| -50 to -54 | 4 | 98 | 68 | 13.0 | -231 | 2332 | 1530 | 8873 | 1.93 | .07 | 3.87 | 6935 |
| -54 to -55 | 1 | | | PEN = | 62 I | | | | | 1.09 | 1.09 | 7064 |
| -55 to -58 | 3 | 102 | 68 | 10.3 | .182 | 2966 | 1262 | 4228 | 2.11 | 1.05 | 3,19 | 73.82 |
| -58 to -63 | 5 | | | PEN = | 100 | | | | | 1.25 | 5.25 | 80.07 |
| d (stratum thick
w (wet density o
minus $62.4; \beta$ (a
from TAT x 144;
etrength of soil
around foundatio | ness); 1
f soil)
ngle of
s (shea:
) = s/2
n). | h (dept)
: For su
interna
r strand
; founda | t of over
the state of a
tion pe | rburden
 condit
:ion): c
 cil) =
 rimeter | to cen
ions us
(cones
c + whT
(short | troid of
s wat do
ion of
an β ; S
set means | f stratum)
shsity
soil) = c
(4 shear
sure | ; | | 22
22 | | • |
| Accumulative All
factor of 2.0.
Perimeter). To | owabla
FORMULA
Calcula | Static I
$p = \lambda c$
$t = \sum (S_R^2)$ | riction
comulat
(\$) for | ive Ali
drilled | stance
owable
shafts | in Tons
Static
, compl | /ft. of P
Frictiona
sts Form | ile Per:
Reels
1190. | imeter •
tence in | ΣdS based
Cons) = () | on a saf
EdS) (Pil | ety
• |
| Remarks: | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | | | | <u>.</u> | |
| County Harris
Highway No FM
Control 980-1
IFE 630 | 527 | | Stru
Hole
Stat
Loc. | No
ion
from C | Railr
+23 * | OS
OS
Ne Ri | lerpass . | e. <u>73</u> | Dist
Date
By | Gorder. W | ALS | |

Form 1091

.

۰.

•

CALCULATED ALLOWABLE STATIC FRICTIONAL RESISTANCE (Based on Coulomb's Theory, TAT)

| (rc.) (rc.) (e/rt2) | Elev. | a | h | | 5. | Tan 🕖 | c | whTan Ø | c+wh | Tan B | Design
Stress
or
'i Shear
Strength
of Soil | Allo
Static P
Resis
d | wable
rictiona
tance
S |
|--|---|---|---|---|--|--|---|--|-----------------------------|----------------------|---|--------------------------------|---------------------------------|
| d Fert Pert Pert <t< th=""><th>(Ft.)</th><th>(Ft.)</th><th>(Ft.)</th><th>(#/Ft3)</th><th></th><th></th><th>(#/Ft2)</th><th>(#/Ft²)</th><th>(#/Ft²</th><th>(T/Ft2)</th><th>S
(Tons/Ft²)</th><th>Perim</th><th>eter)</th></t<> | (Ft.) | (Ft.) | (Ft.) | (#/Ft3) | | | (#/Ft2) | (#/Ft ²) | (#/Ft ² | (T/Ft2) | S
(Tons/Ft ²) | Perim | eter) |
| -63 to -69 6 112 61 35.5 .714 144 4878 5022 2.51 1.25 7.50 8
-69 to -70 1 12787 = 100 12.51 7.50 8
-70 to -74 4 118 61 35.5 .714 144 5139 5283 2.64 1.32 5.28 9
-74 to -77 3 2787 = 53 | | 1 | | | | | | | | | Per | Per | Accumu- |
| -62 to -70 1 1287 = 100 1.25 </td <td>-63 to -69</td> <td>6</td> <td>112</td> <td>61</td> <td>35.5</td> <td>714</td> <td>744</td> <td>4878</td> <td>5022</td> <td>2.51</td> <td>1.25</td> <td>7 50</td> <td>87 57</td> | -63 to -69 | 6 | 112 | 61 | 35.5 | 714 | 744 | 4878 | 5022 | 2.51 | 1.25 | 7 50 | 87 57 |
| -70 to -74 4 118 61 35.5 .714 144 5139 5283 2.64 1.32 5.28 5
-74 to -77 3 PEN = 53 | -69 to -70 | 1 | | _ | PEN = | 100 | | | | | 1.25 | 1.25 | 85.82 |
| <pre>-74 to -77 3</pre> | -70 to -74 | 4 | 118 | 61 | 35.5 | .714 | 144 | 5139 | 5283 | 2.64 | 1,32 | 5.28 | 94.10 |
| <pre>d (stratum thickness); h (depth of overburden to centroid of stratum);
v (st denicy of soil): For subserged conditions use vet density
minus 62.4; s (inple of internal friction); c (consein on f soil) = c
from TAT x 144; s (shear strencth of soil) = c + whran f; S (h shear
strength of soil) = x2: foundstion perimeter (shortest measure
sround foundation).
Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance in Tons) = (TdS) (Pale
Perimeter). To calculate I (Accumulative Allowable Static Frictional Resistance I (Frictional Resistance I (Frictional Resistance I (Frictional Resistance I (Frictiona</pre> | -74 to -77 | 3 | | | সম্প | 53 | | | 1 | | - 89 | 2.67 | 96=77 |
| d (strstum thickness); h (depth of overburden to centroid of strstum); i d (strstum thickness); h (depth of overburden to centroid of strstum); i v (vet density of soil): For submarged conditions use vet density of soil): sor submarged conditions use vet density of soil) = s/2; foundation perimeter (shortest measure eround foundation). Accumulative Allowable Static Frictional Resistance in Tons/Ft. of File Perimeter - EdS based on a safet factor of 2.0. FONWOIA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (EdS) (Fale Perimeter). To calculate E (sgdS) for drilled shafts. complete Form 1190. Remarks: | | | | | | ~~ | | | 1 | | | | |
| d (stratum thickness); h (depth of overburden to centroid of stratum); v (wet density of soil): For submarged conditions use wet density in in s0.4; f (angle of internal friction); v (wet density of soil): For submarged conditions use wet density from TAT x 144; s (shear strength of soil) = c + whin f; S (g shear strength of soil) = s/2; foundstion perimeter (shortest measure strength of 2.0. FOMWDA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (ZdS) (Pale Perimeter). To calculate E (sgdS) for drilled shafts, complete Form 1190. Remarks: | | | | | | | | | <u> </u> | | | !
! | |
| d (stratum thickness); h (depth of overburden to centroid of stratum); v (vet density of soil): For submerged conditions use vet density ninus 62.4; ß (engle of internal friction); c (cohesion of soil) = c from TAT x 144; s (shers strandth of soil) = c + whrm fis S (shear eround foundation). Accumulative Allowable Static Frictional Resistance in Tons Ft. of File Perimeter = EdS pased on a safet fsctor of 2.0. FORWIA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (EdS) (Pile Perimeter). To calculate E (SgdS) for drilled shafts, complete Form 1190. Remarks: | | | | | | | | | | <u> </u> | | | : |
| <pre>d (stratum thickness); h (depth of overburden to centroid of stratum);
w (vet density of soil): For submerged conditions use vet density
ninus 62.4; β (angle of internal friction); c (cohesion of soil) = c
from TAT x 144; s (shear strencht of soil) = c + 0.5; f is hear
strength of soil) = s/2; foundation perimeter (shortest measure
around foundation).
Accumulative Allowable Static Frictional Resistance in Tons.Ft. of File Perimeter = IdS pased on a safet
factor of 2.0. FORMUTA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (IdS) (Pile
Perimeter). To calculate I (SgdS) for drilled shafts, complete Form 1190.
Remarks:</pre> | <u> </u> | | | | | | | | 1 | | | | |
| d (stratum thickness); h (depth of overburden to centroid of stratum); v (vet density of soil): For subserged conditions use vet density minus 62.4; ß (angle of internal friction); c (cohesion of soil) = c from TAT x 144; s (shear strength of soil) = c + whTan §; S (j shear strength of soil) = s/2; foundation perimeter (shortest measure strength of soil) = s/2; foundation perimeter (shortest measure strength of 2.0. FORWTA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (IdS) (Plie Perimeter). To calculate I (sgdS) for drilled shafts, complete Form 1190. Remarks: | | | | | · | | | | | | | | |
| d (strätum thickness); h (depth of overburden to centroid of stratum); w (vet density of soil): For submarged conditions use wet density minus 52.4; ß (angle of internal friction); c (cohesion of soil) = c from TAT x 144; s (shear strength of soil) = c + whTan ß; S (j shear strength of soil) = s/2; foundetion perimeter (shortest measure strength of soil) = s/2; foundetion perimeter (shortest measure strength of 2.0. FORWITA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (IdS) (Plic Perimeter). To calculate I (sgdS) for drilled shafts, complete Form 1190. Remarks: | | | | | | • | | | | ļ | | | ! |
| d (strätum thickness); h (depth of overburden to centroid of stratum); w (vet density of soil): For submerged conditions use vet density minus 52.4; ß (angle of internal friction); c (cohesion of soil) = c from TAT x 144; s (shear strength of soil) = c + whTan ß; S (j shear strength of soil) = s/2; foundetion perimeter (shortest measure strond foundation). Accumulative Allowable Static Frictional Resistance in Tons/Ft. of File Perimeter = EdS pased on a salest factor of 2.0. FORWTA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (EdS) (Plie Perimeter). To calculate E (SgdS) for drilled shefts, complete Form 1190. Remarks: | | | | | | | | | | | | | |
| d (strätum thickness); h (depth of overburden to centroid of stratum); w (vet density of soil): For submerged conditions use vet density minus 62.4; ß (angle of internal friction); c (cohesion of soil) = c from TAT x 144; s (shear strength of soil) = c + whTan ß; S (j shear strength of soil) = s/2; foundetion perimeter (shortest measure strond foundation). Accumulative Allowable Static Frictional Resistance in Tons/Ft. of File Perimeter = EdS pased on a salest factor of 2.0. FORWTA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (EdS) (Plie Perimeter). To calculate E (SgdS) for drilled shafts, complete Form 1190. Remarks: | ļ | | | | | | | | ļ | ↓ | | | : |
| d (stratum thickness); h (depth of overburden to centroid of stratum); h w (vet density of soil): For submarged conditions use vet density h minus 62.4; for all firstion); c (cohesion of soil) = c h from TAT x 144; s (shear strength of soil) = c + whTan \$; S (\$; shear h strength of soil) = s/2; foundation perimeter (shortest measure iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | | | | | | | | | | <u> </u> | | | |
| d (stratum thickness); h (depth of overhurden to centroid of stratum); v (vet density of soil): For submarged conditions use vet density minus 62.4; ß (angle of internal friction); c (cohesion of soil) = c from TAT x 144; s (shear strength of soil) = c + whTan §; S (j shear strength of soil) = s/2; foundation perimeter (shortest measure strength of soil) = s/2; foundation perimeter (shortest measure strength of 2.0. FORMUTA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (IdS) (Plie Perimeter). To calculate I (sgdS) for drilled shafts, complete Form 1190. Remarks: | | | | | | | | | | | | | |
| d (stratum thickness); h (depth of overburden to centroid of stratum);
v (vet density of soil): For submarged conditions use vet density
minus 62.4; s (angle of internal friction); c (cohesion of soil) = c
from TAT x 144; s (shear strength of soil) = c + whTan f; S ('s shear
strength of soil) = s/2; foundation perimeter (shortest measure
eround foundation).
Accumulative Allowable Static Frictional Resistance in Tons. Ft. of File Perimeter = IdS pased on a salet
factor of 2.0. FORWTA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (IdS) (Pile
Perimeter). To calculate Σ (S _R d5) for drilled shefts, complete Form 1190. | | | | | | | | | <u> </u> | | | | ; |
| d (stratum thickness); h (depth of overburden to centroid of stratum); v (vet density of soill: For submarged conditions use vet density minus 62.4; ß (angle of internal friction); c (cohesion of soil) = c from TAT x 144; s (shear strength of soil) = c + whTan ß; S (; shear strength of soil) = s/2; foundation perimeter (shortest measure around foundation). Accumulative Allowable Static Frictional Resistance in Tons/Ft. of File Perimeter = IdS pased on a safet fsctor of 2.0. FORWTA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (IdS) (Pile Perimeter). To calculate I (sgdS) for drilled shafts, complete Form 1190. Remarks: | | | | | | | | | | i | | | |
| d (stratum thickness); h (depth of overburden to centroid of stratum); v (vet density of soil): For submarged conditions use vet density ninus 62.4; ß (angle of internal friction); c (cohesion of soil) = c from TAT x 144; s (shear strength of soil) = c + whTan ß; S (shear strength of soil) = s/2; foundation perimeter (shortest measure around foundation). Accumulative Allowable Static Frictional Resistance in Tons/Ft. of File Perimeter = IdS pased on a safet fstor of 2.0. FONUTA: p (Accumulative Allowable Static Prictional Resistance in Tons) = (IdS) (Pile Perimeter). To calculate I (sgdS) for drilled shafts, complete Form 1190. Remarks: | ······ | | | | | | | | | | | | |
| d (stratum thickness); h (depth of overburden to centroid of stratum);
w (vet density of soil): For submerged conditions use vet density
ninus 62.4; β (angle of internal friction); c (cohesion of soil) = c
from TAT x 144; s (shear strength of soil) = c + whTan ß; S (; shear
strength of soil) = 3/2; foundation perimeter (shortest measure
eround foundation).
Accumulative Allowable Static Frictional Resistance in Tons. Pt. of Pile Perimeter = ZdS based on a safet
factor of 2.0. FORMULA; p (Accumulative Allowable Static Frictional Resistance in Tons) = (ZdS) (Pile
Perimeter). To calculate Σ (s _R dS) for drilled shafts, complete Form 1190.
Remarks: | | | | | | | | | | | | | ` |
| d (stratum thickness); h (depth of overburden to centroid of stratum);
v (vet density of soil): For submarged conditions use vet density
minus 62.4; β (angle of internal friction); c (cohesion of soil) = c
from TAT x 144; s (shear strencth of soil) = c + whTan β; S (g shear
strength of soil) = x/2; foundation perimeter (shortest measure
around foundation).
Accumulative Allowable Static Frictional Resistance in Tons/Ft. of Pile Perimeter = ZdS based on a salet
factor of 2.0. FORMULA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (ZdS) (Pile
Perimeter). To calculate Z (SgdS) for drilled shafts, complete Form 1190.
Remarks: | | | | | | | | | <u> </u> | | | | |
| <pre>d (stratum thickness); h (depth of overburden to centroid of stratum);
v (vet density of soil): For submarged conditions use vet density
minus 62.4; ß (angle of internal friction); c (cohesion of soil) = c
from TAT x 144; s (shear strencth of soil) = c + whTan ß; S ('s shear
strength of soil) = s/2; foundation perimeter (shortest measure
around foundation).
Accumulative Allowable Static Frictional Resistance in Tons. Ft. of Pile Perimeter = IdS based on a salet
factor of 2.0. FORMULA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (IdS) (Pile
Perimeter). To calculate I (SgdS) for drilled shafts, complete Form 1190.
Remarks:</pre> | | | | | | | | | | | | | |
| Accumulative Allowable Static Frictional Resistance in Tons/Ft. of File Perimeter = ZdS pased on a salet
factor of 2.0. FORMULA: p (Accumulative Allowable Static Frictional Resistance in Tons) = (ZdS) (Pile
Perimeter). To calculate Z (SgdS) for drilled shafts, complete Form 1190.
Remarks: | d (stratum thick
w (wet density o
minus 62.4; Ø (a
from TAT x 144;
strength of soil
around foundatio | ness);)
of soil)
ngle of
s (shea:
) = s/2
m). | h (dept)
: For sv
interna
: strend
; founda | to of over
the state of the sta | rburden
 condit
:ion); c
 oil) =
 rimeter | to cen
ions us
(cohes
c + whT
(short | troid of
e wet de
ion of s
an \$; S
cet mea | f stratum)
snsity
soil) = c
('s shear
sure | 7 | 11 | 1
1
1
1 | | |
| | Accumulative All
factor of 2.0.
Perimeter). To | Calcula | Static 1
; p (Ad
te Σ (S _R | riction
cumula
(S) for | tive All
drilled | stance
owable
shafts | in Tons
Static
, compl | Ft. of P
Prictions
ete Form | ile Per
1 Resis
1190. | imeter (
tance 12 | ΣdS pased
Tons) = (| on a sai
EdS) (Pij | ety
¢ |
| | Remarks: | | | | | <u> </u> | | | | | | | |
| County Harris Structure Bailroad Underpass District Ny 12
Highway No EM 527 Hole No. 4 Date D-5-70 Dat | County Harris
Highway No FM
Control 980-1 | 527 | | Stru | No. 4 | Bailro
23 ÷ 0 | ad Und | erpass | | Dist | Deserve | 2
liams | |

4

ì

*** * * 5 7.

Form 1091

.