technical report standard title page

Form DOT F 1700.7 (8.69)
by

The Pressuremeter and the Design of Highway Related Foundations Research Study 2-5-83-340

Sponsored by
State Department of Highways and Public Transportation In Cooperation with the
U.S. Department of Transportation, Federal Highway Administration

Texas Transportation Institute The Texas A\&M University System College Station, Texas

In this report a detailed description is made of the established procedures to design deep foundations subjected to vertical loads on the basis of preboring pressuremeter tests. Both the ultimate capacity and settlement calculations are presented in the form of step-by-step design procedures.

The ultimate point bearing capacity, $q_{\text {max }}$, is given by

$$
\mathrm{q}_{\max }=\frac{\mathrm{kp}_{\mathrm{Le}}}{*}+\mathrm{q}_{\mathrm{OV}}
$$

where k is the pressuremeter bearing capacity factor, ${ }_{\mathrm{P}}^{\mathrm{L}} \mathrm{*}$ is the equivalent net limit pressure obtained from preboring pressuremeter tests performed near the pile point, and $q_{O V}$ is the vertical total pressure at the pile point. The bearing capacity factor k depends on the relative depth of embedment of the foundation, the type of soil, the shape of the foundation, and the method of installation. The ultimate side friction, $f_{\text {max }}$, is also a function of the type of soil and the method of installation as well as the type of foundation material. Charts for k and $f_{\text {max }}$ have been proposed by Menard and Gambin in 1963, Baguelin, Jezequel, and Shields in 1978, and Bustamante and Gianeselli in 1982.

The charts for the three methods are presented and used to solve several example problems. The results of those examples show that generally the Bustamante-Gianeselli method gives the lowest ultimate capacity values, that the Menard-Gambin method gives higher values and
that the Baguelin-Jezequel-Shields method give values which are slightly higher than the values obtained with the Menard-Gambin method.

For the calculation of settlement for deep foundations, the load transfer approach has been used. The unit point bearing-point movement ($q-w$) curve and unit side friction-pile movement ($f-w$) curves have been modeled as linear elastic-plastic. The ultimate valùes, $q_{\text {max }}$, are obtained by the three methods mentioned above. Each of these methods also propose values for the slope of the elastic portion of the transfer curves. This slope is given as a function of either the pressuremeter first loading modulus, E_{o}, or the pressuremeter reload modulus, E_{r}, and the pile width and shape. The Menard-Gambin and the Baguelin-Jezequel-Shields methods are a simple linear elastic-plastic model, whereas Bustamante-Gianeselli propose a bilinear elastic-plastic model. These $q-w$ and $f-w$ curves are to be input into a conventional beam-column computer program to obtain the complete load-settlement curve for the pile. An approximate hand calculation method is also presented for obtaining the load-settlement curve.

Examples are used to illustrate the design procedures for various cases. An example of the hand method for calculation of the loadsettlement curve is given for each of the three design procedures. Experimental evidence is presented for comparison between predicted and measured behavior. The results of 192 pile load tests are presented for the Bustamante-Gianeselli method for ultimate pile capacity. It must be emphasized that one of the critical elements in the accuracy of the predictions is the performance of quality pressuremeter tests and that such quality pressuremeter tests can only be performed by trained professionals.

IMPLEMENTATION STATEMENT

This report gives the details of existing pressuremeter methods for the design of vertically loaded piles. These methods require the use of a new piece of equipment: a preboring pressuremeter. These methods are directly applicable to design practice and should be used in parallel with current methods for a period of time until a final decision can be made as to their implementation.

ACKNOWLEDGEMENTS

The authors are grateful for the continued support and encouragement of Mr. George Odom of the Texas State Department of Highways and Public Transportation. Mr. Larry Tucker's help in completing the report was very valuable.

DI SCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration, or the State Department of Highways and Public Transportation. This report does not constitute a standard, a specification, or a regulation.
TABLE OF CONTENTS
Page
SUMMARY iii
GLOSSARY OF TERMS x

1. INTRODUCTION 1
2. VERTICAL ULTIMATE LOAD 2
2.1 Point Capacity 2
2.1.1 Calculating $p_{\text {Le, }}^{*}$, The Equivalent
Limit Pressure 2
2.1.2 Calculating H_{e} (or D), The Equivalent
Depth of Embedment 2
2.1.3 Determining k, The Pressuremeter
Bearing Capacity Factor 3
2.2 Side Friction 11
2.2.1 Obtaining $f_{\max }$, The Ultimate
Skin Friction 11
2.3 Total Vertical Capacity 14
3. VERTICAL SETTLEMENT 18
3.1 Obtaining the $\mathrm{q}-\mathrm{w}$ and $\mathrm{f}-\mathrm{w}$ Curves 18
3.2 Obtaining the Load-Settlement Curve 25
4. EXAMPLES OF DESIGN 27
4.1 Pile in Uniform Sand: Ultimate Capacity 28
4.2 Pile in Uniform Clay: U1timate Capacity 35
4.3 Pile through Loose Silt Into
Dense Sand: Ultimate Capacity 42
4.4. Pile in Layered Clay: Ultimate Capacity and Settlement 51

TABLE OF CONTENTS (Continued)

Page
5. COMPARISON TO FULL SCALE LOAD TESTS 84
5.1 Experimental Evidence for Bustamante Method 84
5.2 Predicted Settlement Using Menard-Gambin Method
Compared with Measured Settlement 84
5.3 Drilled Shaft Load Test 84
REFERENCES 91

LIST OF FIGURES

Page

1. Soil Categories for Bearing Capacity Determination by Method A. 4
2a. Bearing Capacity Factor Chart for Piles; for Use With Method A 5
2b. Bearing Capacity Factor Chart for Cast-in-situ Walls and Strip Footings; for Use With Method A 6
2. Bearing Capacity Factor Charts for Bored Piles; for Use with Method B 7
3. Bearing Capacity Factor Charts for Driven Piles; for Use with Method B 9
4. Soil Categories for Bearing Capacity Determination by Method C 10
5. Bearing Capacity Factor Chart for Use with Method C 12
6. Skin Friction Design Chart for Use with Method A 13
7. Skin Friction Design Chart for Use with Method B 15
8. Choosing the Skin Friction Design Curve for Use with Method C 16
9. Skin Friction Design Chart for Use with Method C 17
10. $q-w$ and $f-w$ Curves for Use with Method A 19
11. α Values 21
12. Coefficient of Friction Mobilization 21
13. $q-w$ and $f-w$ Curves for Use with Method B 23
14. $q-w$ and $f-w$ Curves for Use with Method C 24
15. Bearing Capacity Factors for Method C :
Experimental Evidence 85
16. Skin Friction Curves for Method C : Experimental Evidence 86
17. Measured and Predicted Settlements Using Method A 89
18. Design Load-Settlement Curves Compared with Actual Load-Settlement Curve 90
```
        A=Area of section, ft 2*
    A
        C = coefficient of strain dependent on the ratio He/R and the
        method of installation of the pile, dimensionless
        D = pile diameter, ft
        E = Young's Modulus for the pile, lb/ft2
    E
    E
fmax = the ultimate skin friction, lb/ft'2
He,h = the equivalent depth of embedment of the pile, ft
    k = the pressuremeter bearing capacity factor, dimensionless
    L = the length of the pile, ft
    P = the load in the pile, lb
    P
        P
    p
    pLe = the equivalent net limit pressure at the point, lb/ft2
    Q = the point bearing capacity, lb
    QS = the skin friction, lb
    QT = the total vertical capacity, lb
q}\mp@subsup{q}{\mathrm{ max }}{}=\mathrm{ the ultimate bearing capacity at the point, lb/ft2
    q
    R = the pile radius, ft
```

* The units shown are not the only ones used in the report.

glossary of terms (Con't)

```
Ro}=1.0 if using U.S. units, ft
            0.30 if using S.I. units,m
    W = the weight of the pile, lb
    w = the movement of the pile shaft, ft
\DeltaZ}\mp@subsup{Z}{i}{}=\mathrm{ the thickness of a layer i, ft
    \alpha= the rheological coefficient, dimensionless
\alpha'}=0.76 R when R is in fee
    2.50 R when R is in meters
    \lambda= the pile shape factor, dimensionless
    v= Poisson's Ratio (approx. 0.33), dimensionless
```

The established procedures to design deep foundations subjected to vertical loads on the basis of preboring pressuremeter tests are presented in detail in this report. In Chapter 2 the ultimate capacity calculations are described in step-by-step procedures. The procedures for calculating settlement are described in detail in Chapter 3. Some design examples are then given and solved in Chapter 4 for various cases. Finally, in Chapter 5, the accuracy of the methods are evaluated by comparing predicted and measured behavior for numerous case histories.

It must be emphasized that one of the critical elements for the successful prediction of deep foundation behavior using these design rules is the performance of quality pressuremeter tests. Such quality pressuremeter tests can only be performed by trained professionals.

CHAPTER 2 - VERTICAL ULTIMATE LOAD

2.1. Point Capacity

The point bearing capacity is calculated as follows:

$$
\begin{aligned}
Q_{p} & =A_{p} q_{\max } \\
A_{p} & =\text { area of the point } \\
q_{\max } & =\text { ultimate bearing capacity at the point } \\
\qquad q_{m a x}= & k_{L} p_{L e}^{*}+q_{o v} \\
k & =\text { pressuremeter bearing capacity factor } \\
p_{L}^{*} & =\text { net limit pressure }=p_{L}-p_{o h} \\
P_{o h} & =\text { total horizontal stress at rest (estimated) } \\
p_{L} & =\text { limit pressure (from test) } \\
* & =\text { equivalent net limit pressure near the point } \\
P_{L e} & \\
q_{o v} & =\text { vertical total pressure at the pile point }
\end{aligned}
$$

2.1.1 Calculating $p_{\text {Le }}^{*}$, The Equivalent Limit Pressure
$\mathrm{p}_{\mathrm{Le}}^{*}=\sqrt[n]{\mathrm{p}_{\mathrm{L} 1}^{*} \times \mathrm{p}_{\mathrm{L} 2}^{*} x \cdots \cdots \mathrm{p}_{\mathrm{Ln}}^{*}}$
where $\mathrm{p}_{\mathrm{L} 1}^{*}, \ldots . \cdot \mathrm{p}_{\mathrm{Ln}}^{*}$ are the net limit pressures obtained from tests performed within the $+1.5 B /-1.5 B$ zone near the point.
2.1.2 Calculating H_{e} (or D), The Equivalent Depth of Embedment

$$
\mathrm{H}_{\mathrm{e}}=\sum_{1}^{\mathrm{n}} \frac{\Delta \mathrm{Z}_{\mathrm{i}} \mathrm{p}_{\mathrm{Li}}^{*}}{\mathrm{p}_{\mathrm{Le}}^{*}}
$$

where $p_{\text {Li }}$ are the limit pressures obtained from tests between the ground surface and the tip of the pile, ΔZ_{i} are the thicknesses of the elementary layers corresponding to the pressuremeter tests.
2.1.3 Determining k, The Pressuremeter Bearing Capacity Factor

The pressuremeter bearing capacity factor, k, is a function of the type of soil, and the embedment and shape of the pile. This factor may be determined using one of three methods.

The first method was proposed by Menard (1) and shall be referred to as Method A. In this method soils are broken down into four categories which are found in Figure 1. After calculating the penetration depth to radius ratio, k is obtained using Figure 2 a for piles or Figure $2 b$ for cast-in-situ walls.

The second method, proposed by Baguelin, Jezequel and Shields (2), shall be referred to as Method B. Method B uses several graphs. This method plots k vs the ratio of penetration depth to foundation width. Values of k for bored piles may be obtained from Figures 3a through 3d; each figure represents one type of soil. Similarly, Figures 4 a through 4d are used for driven piles.

The third method shall be referred to as Method C. This method was proposed by Bustamante and Gianeselli (3). Method C uses soil categories which are found in Figure 5. As in

| Ranges of Pressures
 Limit p_{L} | Nature of Soil |
| :---: | :--- | Soil Categories

Fig. 1 - Soil Categories for Bearing Capacity Determination by Method A (from Reference 1).

Fig. 3a

Fig. 3b

Fig. 3 - Bearing Capacity Factor Charts for Bored
Piles: for use Method B (From Reference 2).

Fig. 3c

Fig. 3d

Fig. 3 - Continued

$$
\begin{aligned}
k & =\text { Bearing Capacity Factor } \\
D / B & =\frac{\text { Depth of Embedment }}{\text { Width of Foundation }}
\end{aligned}
$$

Fig. 4a

Fig. 4c

Fig. 4b

Fig. 4d

Fig. 4 - Bearing Capacity Factor Charts for Driven Piles; for Use With Method B (from Reference 2)

Limit Pressure P_{L}	Soil Type	Category
$\begin{aligned} & 0-14600 \text { psf } \\ & (0-7 \text { bars }) \end{aligned}$	Soft Clay	
$\begin{aligned} & 0-16700 \mathrm{psf} \\ & (0-8 \text { bars }) \end{aligned}$	Silt and Soft Chalk	1
$\begin{aligned} & 0-14600 \text { psf } \\ & (0-7 \text { bars }) \end{aligned}$	Loose Clayey, Silty or Muddy Sand	
$\begin{gathered} 20900-41800 \mathrm{psf} \\ (10-20 \text { bars }) \end{gathered}$	Medium Dense Sand and Grave 1	
$\begin{gathered} 25100-62700 \mathrm{psf} \\ (12-30 \text { bars }) \end{gathered}$	Clay and Compact Silt	
$\begin{gathered} 31300-83500 \text { psf } \\ (15-40 \text { bars }) \end{gathered}$	Mar1 and Limestone-Mar1	
$\begin{gathered} 20900-52200 \mathrm{psf} \\ (10-25 \text { bars }) \end{gathered}$	Weathered Chalk	2
$\begin{gathered} 52200-83500 \text { psf } \\ (25-40 \text { bars }) \end{gathered}$	Weathered Chalk	
$\begin{aligned} & >62700 \mathrm{psf} \\ & (>30 \mathrm{bars}) \end{aligned}$	Fragmented Chalk	
$\begin{aligned} & >94000 \mathrm{psf} \\ & (>45 \text { bars }) \end{aligned}$	Very Compact Marl	
$\begin{aligned} & >52200 \mathrm{psf} \\ & (>25 \text { bars }) \end{aligned}$	Dense to Very Dense Sand and Gravel	3
$\begin{aligned} & >94000 \mathrm{psf} \\ & (>45 \text { bars }) \end{aligned}$	Fragmented Rock	

Fig. 5 - Soil Categories for Bearing Capacity Determination by Method C (from Reference 3).

As in Method A, the penetration depth to radius ratio is calculated. The k value is then determined from Figure 6. This figure has separate curves for driven and bored piles.

2.2. Side Friction

The skin friction is determined as follows:

$$
\begin{aligned}
Q_{S} & =\sum_{1}^{n} f_{\max } \pi D \Delta Z_{i} \\
f_{\max } & =\text { ultimate skin friction in layer } i \\
\Delta Z_{i} & =\text { thickness of layer } i \\
D & =\text { pile diameter }
\end{aligned}
$$

2.2.1 Obtaining $f_{\max }$, The Ultimate Skin Friction.

As for the bearing capacity factor, three methods may be used to determine the ultimate skin friction, $f_{\max }$.

The first method was proposed by Menard (1), and will be referred to as Method A. In this method it is assumed that an increase in skin friction will occur near the tip of the pile up to a height of three diameters from the point, due to increased confining pressures in this region. Using p_{L}^{*} for the soil, $f_{\text {max }}$ is obtained using the appropriate curve on Figure 7. Menard recommends that for steel piles or piles with a permanent lining, the values obtained form Curve A and Curve B be reduced by 20% in cohesive soils and 30% in sands or submerged sands and gravels. It must be noted that the values in Figure 7 are for a pile diameter of up to 60 cm and should be reduced by 10% for a diameter of

Fig. 6 - Bearing Capacity Zactor Chart for Use Ẇ.th Method C (from Reference 3).

Fig. 7 - Skin Friction Design Chart for Use With Method A (from Reference 1).

80 cm and 30% for a diameter of 120 cm .
The second method, Method B, was proposed by Baguelin, Jezequel and Shields (2). The value of $f_{\text {max }}$ may be obtained from Figure 8 using p_{L}^{*} of the soil and the appropriate curve. Each of the four curves corresponds to a soil type and installation procedure.

The third method, which was proposed by Bustamante and Gianeselli (3), shall be referred to as Method C. The soil and foundation type ($\left.A, A_{b i s}, B, C, D, E, F\right)$ must first be obtained from Figure 9. The value of $f_{\text {max }}$ is then obtained for the corresponding value of p_{L} and from the appropriate curve on Figure 10.

2.3. Total Vertical Capacity

$Q_{T}=Q_{p}+Q_{S}$
the recommended load at the ground surface is

$$
\mathrm{Q}=\frac{\mathrm{Q}_{\mathrm{p}}}{3}+\frac{\mathrm{Q}_{\mathrm{S}}}{2}-W
$$

where W is the weight of the pile.
The factor of safety of 3 for the point load is due to the fact that it is difficult to transfer load to the point of a pile.

Fig. 8 - Skin Friction Design Chart for Use With Method B (from Reference 2).

SOIL TYPE	LIMIT PRESSURE P_{L} (psf)		INSTALLATION PROCEDURE AND PILE MATERIAL					
		DRILLED	DRILLED WITHCASING		DRIVEN		INJECTED	
		CONCRETE	CONCRETE	STEEL	CONCRETE	STEEL	$\begin{gathered} \text { LOW } \\ \text { PRESSURE } \end{gathered}$	$\begin{gathered} \text { HIGH } \\ \text { PRESSURE } \end{gathered}$
Clayey, Silty or Muddy Sand	< 14600	A bis	A	-				
Soft Chalk	< 14600	A bis	A	-				
Soft to Stiff Clay	≤ 62700	$\begin{aligned} & (\mathrm{A})^{1} \\ & \mathrm{~A} \text { bis } \end{aligned}$	$\begin{aligned} & (\mathrm{A})^{1} \\ & \mathrm{~A} \text { bis } \end{aligned}$	A bis	$\begin{aligned} & (A)^{1} \\ & A \text { bis } \end{aligned}$	A bis	A	D^{2}
Silt and Compact Silt	≤ 62700	$\begin{aligned} & (\mathrm{A})^{1} \\ & \mathrm{~A} \text { bis } \end{aligned}$	$\begin{aligned} & (\mathrm{A})^{1} \\ & \mathrm{~A} \text { bis } \end{aligned}$	A bis	$\begin{aligned} & (\mathrm{A})^{1} \\ & \mathrm{~A} \text { bis } \end{aligned}$	A bis	A	D^{2}
Medium Dense Sand and Gravel	20900 to 41800	$\begin{aligned} & (\mathrm{B})^{1} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & (\mathrm{A})^{1} \\ & \text { A bis } \end{aligned}$	A bis	$\begin{aligned} & (B)^{1} \\ & A \end{aligned}$	A	B	$\geq \mathrm{D}$
Dense to Very Dense Sand and Gravel	> 52200	$(\mathrm{C})^{1}$	$(B)^{1}$	A	$(\mathrm{C})^{1}$	B	C	$\geq \mathrm{D}$
Weathered to Fragmented Chalk	> 20900	$\begin{aligned} & (\mathrm{C})^{1} \\ & \mathrm{~B}^{2} \end{aligned}$	$\begin{aligned} & (B)^{1} \\ & A \end{aligned}$	A	$(\mathrm{C})^{1}$ B	B	c	$\geq \mathrm{D}$
Marl and Limestone Mar1	31300 to 83500	$\begin{aligned} & (E)^{1} \\ & C \end{aligned}$	$\begin{aligned} & (\mathrm{C})^{r} \\ & \mathrm{~B}^{\prime} \end{aligned}$	B	E^{3}	E^{3}	E	F
Very Compact Marl	> 94000	E	-	-	-	-	F	$>\mathrm{F}$
Weathered Rock	52200 to 83500	F	F	-	F^{3}	F^{3}	$\geq \mathrm{F}$	$>\mathrm{F}$
Fragmented Rock	> 94000	F		-	-	-	$\geq \mathrm{F}$	

[^0]FIG. 9. - Choosing the Skin Friction Design Curve for Method C (from Reference 3).

Fig. 10 - Skin Friction Design Chart For Use With Method C (from Reference 3).

3.1 Obtaining the $q-w$ and $f-w$ curves

The q-w curve is the load transfer curve at the point of the pile. The parameter q is the average pressure exerted by the pile point on the soil for a movement w of the pile point. An $f-w$ curve is a load transfer curve along the shaft of the pile. The parameter f is the friction developed between the soil and the pile for movement w of the pile shaft. In order to determine the vertical settlement of a pile the $q-w$ and $f-w$ curves must first be obtained. These curves may be determined using one of three methods.

The first method is the Menard-Gambin method. It shall be referred to as Method A. In this method both $q-W$ and $f-W$ curves are represented by elastic-plastic models (Figure 11). The ultimate values of q and f called $q_{\max }$ and $f_{\text {max }}$ are found by using Method A for point bearing and side friction as described in Chapter 2. The slopes $\frac{G}{W}$ and $\frac{f}{W}$ of the elastic parts of the curves are given by:
a) q^{-w} curve

$$
\begin{array}{cc}
\text { drilled shafts } & R \leq 1 \mathrm{ft} \\
\text { or } R \leq 0.30 \mathrm{~m} \\
& 1 \mathrm{ft}<\mathrm{q} \leq 2.5 \mathrm{ft} \cdot \frac{2 \mathrm{E}}{\lambda R} \\
& \text { or } 0.30 \mathrm{~m}<\mathrm{R} \leq 0.75 \mathrm{~m} \quad \frac{2}{\mathrm{w}}=\frac{2 \mathrm{E}_{\mathrm{o}}}{\left(R_{o}\right)\left(\frac{\lambda R}{R_{o}}\right)^{\alpha}}
\end{array}
$$

Fig. 11 - q-w and f-w Curves For Use With Method A.
where $R_{0}=1.0$ with R in feet
or $\quad R_{0}=0.30$ with R in meters
driven piles

$$
\begin{aligned}
\mathrm{R} & \leq 2.5 \mathrm{ft} \\
\text { or } \mathrm{R} & \leq 0.75 \mathrm{~m}
\end{aligned} \frac{2 \mathrm{E}_{\mathrm{R}}}{\mathrm{~W}}=\frac{1}{\lambda}
$$

where:
E_{O} is the pressuremeter first loading modulus
λ is a shape factor $=1.00$ for circular
1.12 for square
1.53 for length/width $=2$
2.65 for length/width $=10$
R is the pile radius in feet or meters
α is a rheological coefficient (Figure 12)
E_{R} is the pressuremeter reload modulus
b) f-w curve

$$
\begin{aligned}
& \mathrm{R} \leq 1.0 \mathrm{ft} \\
& \mathrm{R} \leq 0.30 \mathrm{~m}
\end{aligned} \quad \frac{\mathrm{f}}{\mathrm{~W}}=\frac{\mathrm{E}_{\mathrm{o}}}{\mathrm{CR}}
$$

$$
\begin{aligned}
& R>1.0 \mathrm{ft} \cdot \frac{f}{\frac{E_{o}}{w}}=\frac{C\left(R_{o}\right)\left(\frac{R}{R_{o}}\right)^{\alpha}}{R>0.30 \mathrm{~m}}
\end{aligned}
$$

where $R_{0}=1.0$ with R in feet
$R_{o}=0.30$ with R in meters
is given in Figure 12
C is a coefficient of strain, dependent on the ratio h / R and the method of installation of the pile (Figure 13)

Soil Type	Peat	Clay		Silt		Sand		Sand and Gravel
	$\mathrm{E}_{\mathrm{o}} / \mathrm{p}_{\mathrm{L}}^{*}$	$\alpha \quad \mathrm{E}_{0} / \mathrm{P}_{\mathrm{L}}^{*}$	α	$\mathrm{E}_{\mathrm{o}} / \mathrm{P}_{\mathrm{L}}^{*}$	α	E_{0} / p_{L}^{*}	α	$\mathrm{E}_{\mathrm{o}} / \mathrm{p}_{\mathrm{L}}^{*} \quad \alpha$
Overconsolidated		> 16	1	> 14	2/3	> 12	1/2	$>10 \quad 1 / 3$
Normally consolidated		$1.9-16$	2/3	8-14	1/2	7-12	1/3	6-10 1/4
Weathered and/or remoulded		7-9	1/2		1/2		$1 / 3$	$1 / 4$
Rock	Extremely fractured		Other			Slightly fractured or extremely weathered		
	$\alpha=1 / 3$			$\alpha=1 / 2$			$\alpha=$	2/3

Fig. 12 - α Values (From Reference 3)

Type of Pile	Friction Pile		End Bearing Pile
	$h / R=10$	$h / R=20$	
Drilled Pile	$4.5-5.0$	$5.2-5.6$	$2.8-3.2$
Driven Pile	$1.8-2.0$	$2.1-2.3$	$1.1-1.3$

Fig. 13. - Coefficient of Friction Mobilization (from Reference 4).

- The second method, Method B, was proposed by Baguelin, Frank, and Jezequel (6) using a selfboring pressuremeter modulus. Because the reload preboring pressuremeter modulus, E_{R}, correlates favorably with that selfboring pressuremeter modulus, E_{R} was used in the calculations. Thus Method B is not exactly Baguelin's method and was called the Pseudo-Baguelin method. An elastic-plastic model is also used for both the $q-w$ and $f-w$ curves (Figure 14). The ultimate values, $q_{\max }$ and $f_{\text {max }}$, are obtained by using Method B for point bearing and side friction as described in Chapter 2. The slopes of the elastic part of the curves are given by:

$$
\begin{aligned}
& \frac{\mathrm{q}}{\mathrm{~W}}=\frac{2 \mathrm{E}_{\mathrm{R}}}{\pi\left(1-\nu^{2}\right) \mathrm{R}} \\
& \frac{\mathrm{f}}{\mathrm{~W}}=\frac{\mathrm{E}_{\mathrm{R}}}{2(1+\nu)\left[1+\ln \left(\frac{L}{2 R}\right)\right] \mathrm{R}}
\end{aligned}
$$

E_{R} is the pressuremeter reload modulus
L is the pile length
R is the pile radius
The third method is the Frank-Bustamante method which will be referred to as Method C. The $q-w$ and $f-w$ curves (Figure 15) are modelled as bilinear elastic-plastic curves.

Fig. $14-q-w$ and $f-w$ Curves for Use With Method B.

Method C (Frank Bustamante)

The ultimate values $q_{\max }$ and $f_{\max }$ are found by using Method C for point bearing and side friction as described in Chapter 2. The first slope in the elastic region is given by:

$$
\frac{\mathrm{q}}{\mathrm{w}}=\frac{5.5 \mathrm{E}_{\mathrm{o}}}{\mathrm{R}}
$$

$$
\begin{aligned}
\frac{\mathrm{f}}{\mathrm{w}}=\frac{\alpha^{\prime} \mathrm{E}_{\mathrm{O}}}{\mathrm{R}} \text { with } \alpha^{\prime} & =0.76 \mathrm{R} \text { with } \mathrm{R} \text { in feet } \\
& =2.5 \mathrm{R} \text { with } \mathrm{R} \text { in meters }
\end{aligned}
$$

E_{o} is the pressuremeter first loading modulus. The second slope in the elastic range is 5 times softer than the first one and the change in slope occurs at one half of the ultimate values $q_{\text {max }}$ or $f_{\text {max }}$.

3.2. Obtaining the load-settlement curve

The approximate load-settlement curve is obtained point by point in the following manner:

1. Divide the pile into segments (about 10).
2. Assume a point pressure.
3. Read the corresponding point displacement w from the $q-w$ curve.
4. Assume that the load in the pile segment closest to the point (segment n) is equal to the point load.
5. Calculate the compression of segment n under that load by:

$$
\Delta \mathbf{w}=\frac{\mathrm{PL}}{\mathrm{AE}}
$$

6. Calculate the settlement of the top of segment n by:

$$
w_{n}=w_{n-1}+\Delta w_{n}
$$7. Use the $f-w$ curve to read the friction f_{n} on segment

n at the displacement w_{n}.
8. Calculate the load in pile segment $(n-1)$ by:

$$
Q_{n-1}=f_{n} \Delta Z_{n} \pi D_{n}+Q_{p}
$$

9. Do 4 through 8 up to the top segment. The load anddisplacement at the top of the pile provide one pointon the load-settlement curve,10. Repeat 1 through 9 for other assumed values of thepoint pressure.The $q-w$ and $f-w$ curves can also be input into a conventionalbeam column program in order to obtain a more accurate load-settle-ment curve.

In this chapter a series of examples have been solved to show the detailed steps of the Pressuremeter Design Method for deep foundations subjected to vertical loads.

Example 4.1 - Pile in Uniform Sand: Ultimate Capacity.
Example 4.2 - Pile in Uniform Clay: Ultimate Capacity.
Example 4.3-Pile through Loose Silt into Dense Sand: U1timate Capacity.
Example 4.4 - Pile in Layered Clay: U1timate Capacity and Settlement.

4.1 Pile in Uniform Sand: Ultimate Capacity

Driven, Circular, Concrete Pile

Point Bearing Capacity
Driven Pile, in Sand with $\mathrm{p}_{\mathrm{L}}^{*}=10,443 \mathrm{psf}$
Soil is Category II (From Fig. 1)

$$
\begin{aligned}
\mathrm{H}_{\mathrm{e}} / \mathrm{R} & =50 / 0.5=100 \\
\mathrm{k} & =3.6 \text { (From Fig. 2a) } \\
\mathrm{q}_{\max } & =k p_{\mathrm{L}}^{*}+\mathrm{q}_{\mathrm{o}}
\end{aligned}
$$

$$
=3.6(10,443)+50(108)
$$

$$
=42,995 \mathrm{psf}
$$

$$
Q_{p}=A_{p} q_{\max }
$$

$$
=\pi(0.5)^{2}(42,995)
$$

$$
=33768 \mathrm{lb}=16.88 \text { tons }
$$

Friction Capacity

1 ft Diameter Concrete Pile

$$
\begin{aligned}
& \text { Top } 1.5 \mathrm{ft} \text { of Pile, } \mathrm{f}=0 \\
& >3 \text { dia. from point, } f_{\max }=1190 \mathrm{psf} \\
& \text { <3 dia. from point, } f_{\max }=1316 \mathrm{psf} \\
& \begin{aligned}
Q_{\mathrm{s}} & =\sum_{1}^{n} f_{\operatorname{max~} i} \pi D \Delta Z_{i} \\
& =1190(\pi)(1.0)(45.5)+1316(\pi)(1.0)(3) \\
& =182,505 \mathrm{lb}=91.25 \text { tons }
\end{aligned}
\end{aligned}
$$

Total Vertical Capacity

$$
\begin{aligned}
Q_{T} & =Q_{p}+Q_{s} \\
& =16.88+91.25=108.13 \text { tons }
\end{aligned}
$$

the recommended load at the ground surface is

$$
\begin{aligned}
Q & =\frac{Q_{p}}{3}+\frac{Q_{S}}{2}-W \\
& =\frac{16.88}{3}+\frac{91.25}{2}-(150)(\pi)(.5)^{2}(50) / 2000 \\
& =48.31 \text { tons }
\end{aligned}
$$

VERTICAL CAPACITY BY METHOD B

Point Bearing Capacity

Driven Pile in Sand with $p_{L}^{*}=10,443 \mathrm{psf}$

$$
\begin{aligned}
D / B & =50 / 1.0=50 \\
k & =3.3 \text { (From Fig. 4c) } \\
q_{\max } & =k p_{L}^{*}+q_{o} \\
& =3.3(10,443)+50(108) \\
& =39862 \mathrm{psf} \\
Q_{p} & =A_{p} q_{\max } \\
& =\pi(0.5)^{2}(39,862) \\
& =31,3081 b=15.65 \text { tons }
\end{aligned}
$$

Friction Capacity
Concrete Displacement Pile in Sand; Use Curve A (Fig. 8)

$$
\begin{aligned}
f_{\max } & =1608 \text { psf (From Fig. 8) } \\
Q_{s} & =\sum_{1}^{n} f_{\max i} \pi D \Delta Z_{i} \\
& =1608(\pi)(1.0)(48.5) \\
& =245,0061 \mathrm{~b}=122.50 \text { tons }
\end{aligned}
$$

Total Vertical Capacity

$$
\begin{aligned}
Q_{T} & =Q_{p}+Q_{S} \\
& =15.65+122.50=138.15 \text { tons }
\end{aligned}
$$

the recommended load at the surface is

$$
\begin{aligned}
Q & =\frac{Q_{P}}{3}+\frac{Q_{S}}{2}-W \\
& =\frac{15.65}{3} \frac{122.50}{2}-2.95 \\
& =63.52 \text { tons }
\end{aligned}
$$

Point Bearing Capacity

Driven Pile in Sand with $\mathrm{p}_{\mathrm{L}}^{*}=10,443 \mathrm{psf}$
Soil is category 1 (From Fig. 5)

$$
H_{e} / R=50 / 0.5=100
$$

$$
\mathrm{k}=1.5 \text { (From Fig. 6) }
$$

$$
q_{\max }=k p_{L}^{*}+q_{0}
$$

$$
=1.5(10,443)+50(108)
$$

$$
=21065 \mathrm{psf}
$$

$$
Q_{p}=A_{p} q_{\max }
$$

$$
=\pi(.5)^{2}(21065)
$$

$$
=16,544 \mathrm{lb}=8.27 \text { tons }
$$

Friction Capacity
Use Abis Curve (From Fig. 9)

$$
\begin{aligned}
f_{\max } & =460 \text { psf (From Fig. 10) } \\
Q_{s} & =\sum_{1}^{n} f_{\max i}{ }^{\pi D \Delta Z_{i}} \\
& =460(\pi)(1.0)(48.5) \\
& =70,089 \quad 1 \mathrm{~b}=35.04 \text { tons }
\end{aligned}
$$

Total Vertical Capacity

$$
\begin{aligned}
Q_{T} & =Q_{p}+Q_{S} \\
& =8.27+35.04=43.31 \mathrm{tons}
\end{aligned}
$$

the recommended load at the surface is

$$
\begin{aligned}
Q & =\frac{Q_{p}}{3}+\frac{Q_{S}}{2}-W \\
& =\frac{8.27}{3}+\frac{35.04}{2} 2.95=17.33 \text { tons }
\end{aligned}
$$

1.0 ft Diameter, Driven, Circular Pile
q-w Curve

$$
\begin{aligned}
\frac{q}{\mathrm{w}} & =\frac{2 \mathrm{E}_{\mathrm{R}}}{\lambda \mathrm{R}} \\
& =\frac{2(417,700)}{(1.0)(0.5)} \\
& =1,670,800 \\
\mathrm{w} & =.5985 \times 10^{-6} \mathrm{q} . \mathrm{ft} \\
\mathrm{q}_{\max } & =42,995 \mathrm{psf}
\end{aligned}
$$

$\underline{\text { f-w Curve }}$

$$
\begin{aligned}
Q_{s} & =94.06 \text { tons }>Q_{p}=16.88 \text { tons, therefore friction pile } \\
h / R & =50 / 0.5=100 \\
C & =2.3 \text { (From Fig. } 13 \text {) } \\
\frac{f}{W} & =\frac{E_{0}}{C R} \\
& =\frac{87,717}{2.3(.5)} \\
& =76,276 \\
W & =13.11 \times 10^{-6} \mathrm{f} \mathrm{ft} \\
f_{\max } & =1190 \text { psf }>3 \text { dia. from point } \\
f_{\max } & =1316 \text { psf within } 3 \text { dia. of point }
\end{aligned}
$$

q-w Curve

$$
\begin{aligned}
\frac{q}{w} & =\frac{2 E_{R}}{\pi\left(1-v^{2}\right) R} \\
& =\frac{2(417,700)}{\pi\left(1-.33^{2}\right)(0.5)} \\
& =596,827 \\
w & =1.676 \times 10^{-6} \mathrm{q} \mathrm{ft} \\
q_{\max } & =39,862 \mathrm{psf}
\end{aligned}
$$

f-w Curve

$$
\begin{aligned}
\frac{\mathrm{f}}{\mathrm{~W}} & =\frac{\mathrm{E}_{\mathrm{R}}}{2(1+\nu)[1+\ln (\mathrm{L} / 2 \mathrm{R})] \mathrm{R}} \\
& =\frac{417,700}{2(1+.33)[1+\ln (50 / 1)] 0.5} \\
& =63,937 \\
\mathrm{w} & =15.64 \times 10^{-6} \mathrm{f} \mathrm{ft} \\
\mathrm{f}_{\max } & =1608 \mathrm{psf}
\end{aligned}
$$

q-w Curve

$$
\begin{aligned}
& 0 \leq q \leq 1 / 2 \mathrm{q}_{\max }, \frac{\mathrm{q}}{\mathrm{w}}=\frac{5.5 \mathrm{E}_{\mathrm{o}}}{\mathrm{R}} \\
&=\frac{5.5(87,717)}{0.5} \\
&=964,887 \\
& \mathrm{w}=1.036 \times 10^{-6} \mathrm{q} \mathrm{ft} \\
& 1 / 2 \mathrm{q}_{\max }<\mathrm{q}<\mathrm{q}_{\max }, \mathrm{w}=\frac{\left(5 \mathrm{q}-2 \mathrm{q}_{\max) \mathrm{R}}\right.}{5.5 \mathrm{E}_{\mathrm{o}}} \\
&=\frac{\left(5 \mathrm{q}-2 \mathrm{q}_{\max }\right)(0.5)}{5.5(87,717} \\
&=\left(1.036 \times 10^{-6}\right)\left(5 \mathrm{q}-2 \mathrm{q}_{\max }\right) \mathrm{ft} \\
& \mathrm{q}_{\max }=21,065 \mathrm{psf}
\end{aligned}
$$

few Curve

$$
\begin{aligned}
& 0 \leq f \leq 1 / 2 f_{\max }, \frac{f}{w}=\frac{\alpha E_{o}}{R} \\
&=\frac{(0.76)(0.5)(87,717)}{(0.5)} \\
&=66,665 \\
& w=15.00 \times 10^{-6} \mathrm{fft} \\
& 1 / 2 \mathrm{f}_{\max }<\mathrm{f} \leq \mathrm{f}_{\max }, \mathrm{w}=\frac{\left(5 \mathrm{f}-2 \mathrm{f}_{\max }\right) \mathrm{R}}{\alpha \mathrm{E}_{\mathrm{o}}} \\
&=\frac{\left(5 \mathrm{f}-2 \mathrm{f}_{\max }\right)(0.5)}{(0.76)(0.5)(87,717)} \\
&=\left(15.00 \times 10^{-6}\right)\left(5 \mathrm{f}-2 \mathrm{f}_{\max }\right) \mathrm{ft} \\
& \mathrm{f}_{\max }=460 \mathrm{psf}
\end{aligned}
$$

4.2 Pile in Uniform Clay: Ultimate Capacity

Driven, Circular, Concrete Pile

VERTICAL CAPACITY BY METHOD A

Point Bearing Capacity
Driven Pile in Clay with $\mathrm{p}_{\mathrm{L}}^{*}=6266 \mathrm{psf}$
Soil is Category I (From Fig. 1)

$$
\begin{aligned}
\mathrm{H}_{\mathrm{e}} / \mathrm{R} & =50 / 0.5=100 \\
\mathrm{k} & =2.0 \text { (From Fig. 2a) } \\
\mathrm{q}_{\text {max }} & =\mathrm{kP}_{\mathrm{L}}^{*}+\mathrm{q}_{\mathrm{o}} \\
& =2.0(6266)+50(102) \\
& =17632 \mathrm{psf} \\
Q_{p} & =A_{p} q_{\max } \\
& =(0.5)^{2}(17632) \\
& =13848 \mathrm{lb}=6.92 \text { tons }
\end{aligned}
$$

Friction Capacity

1 ft Diameter Concrete Pile

$$
\begin{aligned}
& >3 \text { dia. from point, } f_{\max }=877 \text { psf } \\
& \leq 3 \text { dia. from point, } f_{\max }=1044 \mathrm{psf} \\
& \\
& Q_{\mathrm{s}}= \\
& \sum_{\text {(Fro }} f_{\max } \text { i } \pi D \Delta Z_{i} \\
& = \\
& =877()(1.0)(45.5)+1044()(1.0)(3) \\
& = \\
& =135,200 \mathrm{lb}=67.60 \text { tons }
\end{aligned}
$$

Total vertical capacity

$$
\begin{aligned}
Q_{T} & =Q_{p}+Q_{S} \\
& =6.92+67.60 \\
& =74.52 \text { tons }
\end{aligned}
$$

the recommended load at the ground surface is

$$
\begin{aligned}
Q & =\frac{Q_{p}}{3}+\frac{Q_{s}}{2}-W \\
& =\frac{6.92}{3}+\frac{67.60}{2}-150(\pi)(.5)^{2}(50) / 2000 \\
& =33.16 \text { tons }
\end{aligned}
$$

Point Bearing Capacity

$$
\begin{aligned}
& \text { Driven Pile in Clay with } \mathrm{PL}_{\mathrm{L}}^{*}=6266 \mathrm{psf} \\
& \mathrm{D} / \mathrm{B}=50 / 1.0=50 \\
& \mathrm{k}=2.1 \text { (From Fig. 4a) } \\
& \mathrm{q}_{\text {max }}=\mathrm{kpL}+\mathrm{q}_{\mathrm{O}} \\
&=2.1(6266)+50(102) \\
&=18259 . \mathrm{psf} \\
& \mathrm{Q}_{\mathrm{P}}=\mathrm{A}_{\mathrm{p}} \mathrm{q}_{\mathrm{max}} \\
&=\pi(0.5)^{2}(18259) \\
&=14341 \mathrm{lb}=7.17 \text { tons }
\end{aligned}
$$

Friction Capacity

Concrete, Displacement Pile in Cohesive Soil; Use Curve B (Fig. 8)

$$
\begin{aligned}
f_{\max } & =835 \text { psf (From Fig. 8) } \\
Q_{S} & =\sum_{\max } i \pi D \Delta Z_{i} \\
& =835(\pi)(1.0)(48.5) \\
& =127,2271 b=63.61 \text { tons }
\end{aligned}
$$

Total Vertical Capacity

$$
\begin{aligned}
Q_{\mathbf{T}} & =Q_{\mathbf{p}}+Q_{\mathbf{s}} \\
& =7.17+63.61 \\
& =70.78 \text { tons }
\end{aligned}
$$

the recommended load at the surface is

$$
\begin{aligned}
Q & =\frac{Q_{p}}{3}+\frac{Q_{s}}{2}-W \\
& =\frac{7.17}{3}+\frac{63.61}{2}-2.95 \\
& =31.25 \text { tons }
\end{aligned}
$$

Point Bearing Capacity

Driven Pile in Clay with $\mathrm{p}_{\mathrm{L}}^{*}=6266 \mathrm{psf}$
Soil is Category 2 (From Fig. 5)

$$
\begin{aligned}
\mathrm{H}_{\mathrm{e}} / \mathrm{R} & =50 / 0.5=100 \\
\mathrm{k} & =2.7 \text { (From Fig. 6) } \\
\mathrm{q}_{\max } & =\mathrm{kp}_{\mathrm{L}}^{*}+\mathrm{q}_{\mathrm{O}} \\
& =2.7(6266)+(50)(102) \\
& =22018 \mathrm{psf}
\end{aligned}
$$

$$
Q_{p}=A_{p} q_{\max }
$$

$$
=\pi(0.5)^{2}(22018)
$$

$$
=17293 \mathrm{lb}=8.65 \text { tons }
$$

Friction Capacity
High Value (Use Curve A; from Fig. 9)

$$
\begin{aligned}
\mathrm{f}_{\max } & =835 \text { psf (From Fig. } 10 \text {) } \\
\mathrm{Q}_{\mathrm{S}} & =\sum_{\mathrm{n}} \mathrm{f}_{\max } \mathrm{i} \pi \mathrm{D} \Delta \mathrm{Z}_{\mathrm{i}} \\
& =835(\pi)(1.0)(48.5) \\
& =127,227 \mathrm{lb}=63.61 \text { tons }
\end{aligned}
$$

Low Value (Use Curve Abis; From Fig. 9)

$$
\begin{aligned}
f_{\max } & =292 \mathrm{psf}(\text { From Fig. } 10) \\
\mathrm{Q}_{\mathrm{S}} & =292(\pi)(1.0)(48.5) \\
& =44,491 \mathrm{lb}=22.25 \text { tons }
\end{aligned}
$$

Total Vertical Capacity

$$
Q_{T}=Q_{R}+Q_{S}
$$

High $\quad Q_{T}=8.65+63.61=72.26$ tons
Low $\quad Q_{T}=8.65+22.25=30.90$ tons
the recommended load at the surface is

$$
\mathrm{Q}=\mathrm{Q}_{\mathrm{p}} / 3+\mathrm{Q}_{\mathrm{S}} / 2-\mathrm{W}
$$

High

$$
Q=\frac{8.65}{3}+\frac{63.61}{2}-2.95=31.74 \text { tons }
$$

Low $\quad Q=\frac{8.65}{3}+\frac{22.25}{2}-2.95=11.06$ tons
1.0 ft Diameter, Driven, Circular Pile
g-w Curve

$$
\begin{aligned}
\frac{q}{W} & =\frac{2 E_{R}}{\lambda R} \\
& =\frac{2(208,850)}{1.0(0.5)} \\
& =835,400 \\
W & =1.197 \dot{x} 10^{-6} \mathrm{q} \mathrm{ft} \\
\mathrm{q}_{\max } & =17632 \mathrm{psf}
\end{aligned}
$$

f-w Curve

$$
\begin{aligned}
& Q_{\mathrm{s}}=69.67 \text { tons }>\mathrm{Q}_{\mathrm{p}}=6.92 \text { tons, Therefore Friction Pile } \\
& \mathrm{h} / \mathrm{R}=50 / 0.5=100 \\
& \mathrm{C}=2.3 \text { (From Fig. } 13 \text {) } \\
& \frac{\mathrm{f}}{\mathrm{~W}}=\frac{\mathrm{E}_{\mathrm{O}}}{\mathrm{CR}} \\
&=\frac{83540}{(2.3)(0.5)} \\
&= 72643 \\
& \mathrm{w}=13.76 \times 10^{-6} \mathrm{f} \mathrm{ft} \\
& \leq 3 \text { dia. from Point, } f_{\max }=877 \mathrm{psf} \\
& \text { Within } 3 \text { dia of point, } f_{\max }=1044 \mathrm{psf}
\end{aligned}
$$

q-w AND f-w CURVES BY METHOD B

$$
\begin{aligned}
\begin{aligned}
& \text { q-w Curve } \\
&=\frac{2 E_{R}}{\pi\left(1-\nu^{2}\right) R} \\
&=\frac{2(208,850)}{\pi\left(1-.33^{2}\right)(0.5)} \\
&=298,413 \\
& w=3.351 \times 10^{-6} \mathrm{q} \mathrm{ft} \\
& \mathrm{q}_{\text {max }}=18259 \mathrm{psf} \\
& \begin{aligned}
\mathrm{f}-\mathrm{w} \text { Curve }
\end{aligned} \\
&=\frac{\mathrm{E}_{\mathrm{R}}}{2(1+\nu)(1+\ln (\mathrm{L} / 2 \mathrm{R}) \mathrm{R}} \\
&=\frac{208,850}{2(1+.33)\left(1+\ln \left(^{50} / 1\right)\right) 05} \\
&=31969 \\
& \mathrm{w}=31.281 \times 10^{-6} \mathrm{fft} \\
& \mathrm{q}_{\text {max }}=835 \mathrm{ps} \mathrm{f}
\end{aligned}
\end{aligned}
$$

q-w Curve

$$
\begin{aligned}
0 \leq q \leq 1 / 2 q_{\max }, \frac{q}{w} & =\frac{5.5 \mathrm{E}_{\mathrm{o}}}{R} \\
& =\frac{5.5(83,540)}{0.5} \\
& =918,940 \\
& =1.088 \times 10^{-6} \mathrm{q} \mathrm{ft} \\
1 / 2 \mathrm{q}_{\max }<\mathrm{q} \leq \mathrm{q}_{\max }, \mathrm{w} & =\frac{\left(5 \mathrm{q}-2 \mathrm{q}_{\max }\right) \mathrm{R}}{5.5 \mathrm{E}_{\mathrm{o}}} \\
& =\frac{\left(5 \mathrm{q}-2 \mathrm{q}_{\max }\right)(0.5)}{5,5(83,540)} \\
& =\left(1.088 \times 10^{-6}\right)\left(5 \mathrm{q}-2 \mathrm{q}_{\max }\right) \mathrm{ft}
\end{aligned}
$$

$$
\mathrm{q}_{\max }=22,018 \mathrm{psf}
$$

f-w Curve

$$
\begin{aligned}
& 0 \leq f \leq 1 / 2 f_{\max }, \frac{f}{\mathrm{f}}=\frac{\alpha \mathrm{E}_{\mathrm{o}}}{\mathrm{R}} \\
&=\frac{(0.76)(0.5)(83,540)}{0.5} \\
&=63,490 \\
&=15.750 \times 10^{-6} \mathrm{fft} \\
& 1 / 2 \mathrm{f}_{\max }<\mathrm{f} \leq \mathrm{f}_{\max }, \begin{aligned}
\mathrm{W} & =\frac{\left(5 f-2 \mathrm{f}_{\max }\right) \mathrm{R}}{\alpha \mathrm{E}_{\mathrm{o}}} \\
& =\frac{\left(5 f-2 \mathrm{f}_{\max }\right)(0.5)}{(0.76)(0.5)(83540)} \\
& =\left(15.750 \times 10^{-6}\right)\left(5 \mathrm{f}-2 \mathrm{f}_{\max }\right) \mathrm{ft}
\end{aligned}
\end{aligned}
$$

High Value, $f_{\max }=835 \mathrm{psf}$
Low Value, $f_{\text {max }}=292$ psf
4.3 Pile Through Loose Silt, Into Dense Sand: Ultimate Capacity

Drilled, Circular, Concrete Pile

Point Bearing Capacity

$$
\begin{aligned}
\mathrm{H}_{\mathrm{e}} & =\sum_{\mathrm{\Sigma}}^{\mathrm{n}} \Delta \mathrm{Z}_{\mathrm{i}} \frac{\mathrm{p}_{\mathrm{Li} i}^{*}}{\mathrm{p}_{\mathrm{Le}}^{*}} \\
& =\frac{1(8345 \times 19)+(41770 \times 13)}{41770} \\
& =16.8 \mathrm{ft} \\
\mathrm{H}_{\mathrm{e}} / \mathrm{R} & =16.8 / 1.0=16.8
\end{aligned}
$$

Point in Sand with $\mathrm{p}_{\mathrm{L}}^{*}=41770 \mathrm{psf}$
Soil is Category III (From Fig. 1)

$$
\begin{aligned}
\mathrm{k} & =5.25 \text { (From Fig. 2a) } \\
\mathrm{q}_{\max } & =\mathrm{kP}_{\mathrm{L}}^{*}+\mathrm{q}_{\mathrm{o}} \\
& =5.25(41770)+(19 \times 102+13 \times 115) \\
& =222,726 \mathrm{psf} \\
\mathrm{Q}_{\mathrm{p}} & =222,726(\pi)(1.0)^{2} \\
& =699,713 \mathrm{lb}=350 \text { tons }
\end{aligned}
$$

Friction Capacity

2 ft. Diameter, Concrete Pile
Silt Layer $\quad \mathrm{f}_{\max }=1044 \mathrm{psf}$
Sand Layer, > 3 dia. from point $\quad \mathrm{f}_{\text {max }} \doteq 1713 \mathrm{psf}$
Sand Layer, Within 3 dia. of point $f_{\text {max }}=2527$ psf

$$
\begin{aligned}
Q_{\mathbf{S}} & =\sum_{1}^{n} f_{\max } i \pi D \Delta Z_{i} \\
& =(1044)(\pi)(2)(17)+(1713)(\pi)(2)(7)+(2527)(\pi)(2)(6) \\
& =282,121 \quad 1 b=141 \text { tons }
\end{aligned}
$$

Total Vertical Capacity

$$
\begin{aligned}
Q_{T} & =Q_{p}+Q_{S} \\
& =350+141=491 \text { tons }
\end{aligned}
$$

the recommended load at the ground surface is

$$
\begin{aligned}
Q & =\frac{Q_{p}}{3}+\frac{Q_{s}}{2}-W \\
& =\frac{350}{3}+\frac{141}{2}-(150)(\pi)(1.0)^{2}(32) / 2000 \\
& =180 \text { tons }
\end{aligned}
$$

Point Bearing Capacity

$$
\begin{aligned}
\mathrm{D} & =\sum_{\mathrm{I}}^{\mathrm{n}} \Delta Z_{\mathrm{i}} \frac{\mathrm{p}_{\mathrm{Li}}^{*}}{\mathrm{p}_{\mathrm{Le}}^{*}} \\
& =\frac{(8345 \times 19)+(41770 \times 13)}{41770} \\
& =16.8 \mathrm{ft} \\
D / B & =16.8 / 2.0=8.4
\end{aligned}
$$

Bored Pile, Point in Sand with $\underset{\mathrm{P}_{\mathrm{L}}}{*}=41770 \mathrm{psf}$

$$
\begin{aligned}
\mathrm{k} & =5.7 \text { (From Fig. 3a) } \\
\mathrm{q}_{\max } & =\mathrm{kP}_{\mathrm{L}}^{*}+\mathrm{q}_{\mathrm{o}} \\
& =5.7(41770)+(19 \times 102+13 \times 115) \\
& =241,522 \mathrm{psf} \\
Q_{p} & =241522(\pi)(1.0)^{2} \\
& =758,7641 \mathrm{~b}=379 \text { tons }
\end{aligned}
$$

Friction Capacity
Concrete, Non-Displacement Pile in Sand; Use Curve B (Fig. 8)
Silt Layer $f_{\max }=1044 \mathrm{psf}$
Sand Layer $f_{\text {nax }}=1713 \mathrm{psf}$

$$
\begin{aligned}
Q_{\mathbf{S}} & =\boldsymbol{\Sigma} \quad f_{\max } i \pi D \Delta Z_{i} \\
& =(1044)(\pi)(2)(17)+(1713)(\pi)(2)(13) \\
& =251,434 \mathrm{lb}=126 \text { tons }
\end{aligned}
$$

Total Vertical Capacity

$$
\begin{aligned}
Q_{T} & =Q_{p}+Q_{S} \\
& =379+126=505 \text { tons }
\end{aligned}
$$

the recommended load at the ground surface is

$$
\begin{aligned}
Q & =\frac{Q_{p}}{3}+\frac{Q_{s}}{2}-W \\
& =\frac{379}{3}+\frac{126}{2}-(150)(\pi)(1.0)^{2}(32) / 2000 \\
& =182 \text { tons }
\end{aligned}
$$

Point Bearing Capacity

$$
\begin{aligned}
\mathrm{H}_{\mathrm{e}} & =\sum_{1}^{\mathrm{N}} \Delta Z_{i} \frac{\mathrm{P}_{\mathrm{Li}}^{*}}{\mathrm{p}_{\mathrm{Le}}^{*}} \\
& =\frac{(8354 \times 19)+(41770 \times 13)}{41770} \\
& =16.8 \mathrm{ft} \\
\mathrm{H}_{\mathrm{e}} / \mathrm{R} & =16.8 / 1.0=16.8
\end{aligned}
$$

Point in Sand With $\mathrm{P}_{\mathrm{L}}^{*}=41770$
Soil is Category 2 (From Fig. 5)

$$
\begin{aligned}
k & =1.6 \text { (From Fig. 6) } \\
\mathrm{q}_{\max } & =\mathrm{kp}_{\mathrm{L}}^{*}+\mathrm{q}_{\mathrm{o}} \\
& =1.6(41770)+(19 \times 102+13 \times 115) \\
& =70,265 \mathrm{psf} \\
Q_{p} & =70265(\pi)(1.0)^{2} \\
& =221875 \mathrm{lb}=111 \text { tons }
\end{aligned}
$$

Friction Capacity and Total Vertical Capacity

1. Low Value
Silt Layer $\left(\mathrm{A}_{\mathrm{bis}}\right)$

Sand Layer (A) \quad| $\mathrm{f}_{\max }=418 \mathrm{psf}$ |
| :--- |
| (From Fig. 9) | (From Fig 10)

$$
\begin{aligned}
Q_{S} & =\sum_{\mathrm{m}}^{\mathrm{n}} \mathrm{f}_{\mathrm{max}} \mathrm{i} \pi \mathrm{D} \Delta Z_{\mathrm{i}} \\
& =(418)(\pi)(2.0)(17)+(1671)(\pi)(2.0)(13) \\
& =181,1381 b=91 \text { tons } \\
Q_{T} & =Q_{p}+Q_{\mathrm{S}} \\
& =111+91=202 \text { tons }
\end{aligned}
$$

the recommended load at the ground surface is

$$
\begin{aligned}
Q & =\frac{Q_{p}}{3}+\frac{Q_{s}}{2}-W \\
& =\frac{111}{3}+\frac{91}{2}-(150)(\pi)(1.0)^{2}(32) / 2000 \\
& =75 \text { tons }
\end{aligned}
$$

2. High Value

$$
\begin{align*}
& \text { Silt Layer (A) (From Fig. 9) } \begin{array}{l}
\mathrm{f}_{\max }=1044 \mathrm{psf} \\
\text { Sand Layer (B) } \\
\begin{aligned}
\mathrm{Q}_{\mathrm{max}}=2506 \mathrm{psf}
\end{aligned} \\
\quad=(1044)(\pi)(2.0)(17)+(2506)(\pi)(2.0)(13) \\
\\
\mathrm{Q}_{\mathrm{T}}=116,208 \mathrm{lb}=158 \text { tons } \\
\hline 158=269 \text { tons }
\end{array}
\end{align*}
$$

the recommended load at the ground surface is

$$
\begin{aligned}
Q & =\frac{111}{3}+\frac{158}{2}-7.54 \\
& =108 \text { tons }
\end{aligned}
$$

2 ft Diameter, Circular Pile with Drilled Shaft
q-w Curve

$$
\begin{aligned}
\frac{q}{W} & =\frac{2 \mathrm{E}_{\mathrm{o}}}{\lambda \mathrm{R}} \\
& =\frac{2(417,700)}{(1.0)(1.0)} \\
& =835,400 \\
\mathrm{w} & =1.197 \times 10^{-6} \mathrm{q} \mathrm{ft} \\
\mathrm{q}_{\max } & =222,726 \mathrm{psf}
\end{aligned}
$$

f-w Curves

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{s}}=141 \text { tons }<\mathrm{Q}_{\mathrm{p}}=350 \text { tons, Therefore End Bearing } \\
& \mathrm{C}=3.0 \text { (From Fig. } 13 \text {) } \\
& \begin{aligned}
& \frac{\mathrm{f}}{\mathrm{~W}}=\frac{\mathrm{E}_{\mathrm{O}}}{\mathrm{CR}} \\
& \text { Silt, } \frac{\mathrm{f}}{\mathrm{~W}}=\frac{104,425}{(3.0)(1.0)} \\
&=34,808 \\
& \mathrm{w}=28.729 \times 10^{-6} \mathrm{fft} \\
& \mathrm{f}_{\max }=1044 \mathrm{psf} \\
& \text { Sand, } \frac{f}{\mathrm{~W}}=\frac{417,700}{(3.0)(1.0)} \\
&=139,233 \\
& \mathrm{~W}=7.182 \times 10^{-6} \mathrm{f} \text { ft } \\
& \mathrm{f}_{\max }=1713 \mathrm{psf}(>3 \text { dia. from point) } \\
& \mathrm{f}_{\max }=2527 \mathrm{psf}(\text { within } 3 \text { dia. of point) }
\end{aligned}
\end{aligned}
$$

q-w Curve

$$
\begin{aligned}
\frac{q}{W} & =\frac{2 E_{R}}{\pi\left(1-\nu^{2}\right) R} \\
& =\frac{2(1,670,800)}{\pi\left(1-.33^{2}\right) 1.0} \\
& =1,193,653 \\
W & =0.838 \times 10^{-6} \mathrm{q} \mathrm{ft} \\
a_{\max } & =241,522 \mathrm{psf}
\end{aligned}
$$

f-w Curve

$$
\begin{aligned}
& \frac{f}{w}=\frac{E_{R}}{2(1+v)[1+\ln (L / 2 R)] R} \\
& \text { Silt, }=\frac{313,275}{2(1+.33)[1+\ln (32 / 2)] 1.0} \\
&=31,218 \\
& w=32.033 \times 10^{-6} \mathrm{f} \mathrm{ft} \\
& f_{\text {max }}=1044 \\
& \text { Sand, } \frac{f}{w}=\frac{1,670,800}{2(1+.33)\left[1+\ln \left({ }^{32} / 2\right)\right] 1.0} \\
&=166,496 \\
& w=6.006 \times 10^{-6} \mathrm{f} \mathrm{ft} \\
& f_{\text {max }}=1713 \mathrm{psf}
\end{aligned}
$$

q-w AND f-w CURVES BY METHOD C

q-w Curve

$$
\begin{aligned}
0 \leq q \leq 1 / 2 q_{\max }, \frac{q}{\mathrm{w}} & =\frac{5.5 \mathrm{E}_{\mathrm{o}}}{\mathrm{R}} \\
& =\frac{5.5(417.700)}{1.0} \\
& =2,297,350 \\
\mathrm{w} & =0.435 \times 10^{-6} \mathrm{qft} \\
1 / 2 \mathrm{q}_{\max }<\mathrm{q} \leq \mathrm{q}_{\max }, \mathrm{w} & =\frac{\left(5 \mathrm{q}-2 \mathrm{q}_{\max }\right) \mathrm{R}}{5.5 \mathrm{E}_{\mathrm{o}}} \\
& =\frac{\left(5 \mathrm{q}-2 \mathrm{q}_{\max }\right)(1.0)}{5.5(417,700)} \\
& =\left(0.435 \times 10^{-6}\right)\left(5 \mathrm{q}-2 \mathrm{q}_{\max }\right) \mathrm{ft}
\end{aligned}
$$

$$
\mathrm{q}_{\max }=70,265 \mathrm{psf}
$$

$$
\begin{aligned}
& \text { f-w Curves } \\
& 0 \leq f \leq 1 / 2 f_{\text {max }}, \frac{f}{W}=\frac{\alpha E_{o}}{R} \\
& \text { Silt, } \frac{f}{W}=\frac{(0.76)(104,425)}{1.0} \\
&=79,363 \\
& w=12.600 \times 10^{-6} \mathrm{fft} \\
& \text { Sand, } \begin{aligned}
\mathrm{f} & =\frac{(0.76)(417,700)}{1.0} \\
& =317,452 \\
\mathrm{w} & =3.150 \times 10^{-6} \mathrm{fft} \\
1 / 2 \mathrm{f}_{\text {max }}<\mathrm{f} \leq \mathrm{f}_{\text {max }}, \mathrm{w} & =\frac{\left(5 \mathrm{f}-2 \mathrm{f}_{\text {max }}\right) \mathrm{R}}{\alpha \mathrm{E}_{\mathrm{o}}} \\
\text { Silt, } \mathrm{w} & =\frac{\left(5 \mathrm{f}-2 \mathrm{f}_{\text {max }}\right)(1.0)}{(0.76)(1.0)(104,425)} \\
& =\left(12.600 \times 10^{-6}\right)\left(5 \mathrm{f}-2 \mathrm{f}_{\text {max }}\right) \mathrm{ft}
\end{aligned}
\end{aligned}
$$

$$
\text { Sand, } \begin{aligned}
w & =\frac{\left(5 f-2 f_{\max }\right)(1.0)}{(0.76)(1.0)(417,700)} \\
& =\left(3.150 \times 10^{-6}\right)\left(5 f-2 f_{\max }\right) \mathrm{ft}
\end{aligned}
$$

Low Values

$$
\begin{aligned}
& \text { Silt, } f_{\max }=418 \mathrm{psf} \\
& \text { Sand, } f_{\max }=1671 \mathrm{psf}
\end{aligned}
$$

High Values

$$
\begin{aligned}
& \text { Silt, } \mathrm{f}_{\max }=1044 \mathrm{psf} \\
& \text { Sand, } \mathrm{f}_{\max }=2506 \mathrm{psf}
\end{aligned}
$$

4.4 Pile in Layered Clay: Ultimate Capacity and Settlement

$$
\begin{aligned}
\gamma_{t} & =126 \mathrm{pcf} \\
\gamma_{\text {conc }} & =150 \mathrm{pcf} \\
E_{\text {conc }} & =4.5 \times 10^{8} \mathrm{psf}
\end{aligned}
$$

12740	127399	524214	\rightarrow

Point Bearing Capacity

$$
\begin{aligned}
& p_{L e}=\sqrt[N]{p_{L 1}^{*} \times p_{L 2}^{*} \times \ldots \times p_{L n}^{*}} \\
& =\sqrt[3]{50,124 \times 62,655 \times 71,001} \\
& =60,639 \mathrm{psf} \\
& H_{e}=\sum_{1}^{n} \Delta Z_{i} \frac{p_{L i}^{*}}{p_{\text {Le }}^{*}} \\
& [(3.5 \times 8354)+(3.25) \times 7705)+5.25 \times 11487)+(6.25 \times 12740)+ \\
& (6.00 \times 36131)+(3.75 \times 50124)+(20 \times 62655)] /(60639) \\
& =14.40 \mathrm{ft} \\
& H_{e} / R=14.40 / 1.5 \\
& =9.60 \\
& \text { Point in clayey shale with } \mathrm{P}_{\mathrm{L}}^{*}=60,339 \mathrm{psf} \\
& \text { Soil is Category II (From Fig. 1) } \\
& k=3.1 \text { (From Fig. 2a) } \\
& q_{\max }=k p_{L}^{*}+q_{o} \\
& =3.2(60,639)+(126 \times 34.5) \\
& =198,392 \mathrm{psf} \\
& Q_{p}=198,392(\pi)(1.5)^{2} \\
& =1,402,349 \mathrm{lb}=701 \text { tons }
\end{aligned}
$$

Friction Capacity
1.5 ft Diameter, Concrete Pile

$$
\begin{aligned}
& \text { Depth (ft) } \\
& 0.00-1.75 \\
& 1.75-3.50 \\
& 3.50-6.75 \\
& \text { 6.75-12.00 } \\
& 12.00-18.25 \\
& \text { 18.25-24.25 } \\
& 24.25-28.75 \\
& 28.75-30.00 \\
& 30.00-32.50 \\
& 32.50-34.50 \\
& \mathrm{p}_{\ell}^{*} \\
& f_{\text {max }}(\mathrm{psf}) \\
& \text { 8,354 } \\
& \text { 8,354 } \\
& 0 \\
& \text { 7,205 } \\
& 1044 \\
& \text { 11,487 } \\
& 961 \\
& \begin{array}{rr}
12,740 & 1253
\end{array} \\
& \text { 361,311 } \\
& 1316 \\
& 1713 \\
& \text { 33,416 } \\
& 1713 \\
& \text { 50,124 } \\
& 1713 \\
& \text { 50,124 } \\
& 2548 \\
& \text { 62.,655 } 2548 \\
& Q_{S}=\pi(1.5)[(1044 \times 1.75)+(961 \times 3.21)+(1253 \times 5.25)+(1316 \times 6.25)+ \\
& 1713 \times 11.75)+(2548 \times 4.5)] \\
& =241,7871 \mathrm{~b}=120.9 \text { tons }
\end{aligned}
$$

Total Vertical Capacity

$$
\begin{aligned}
Q_{T} & =Q_{p}+Q_{s} \\
& =701+121=822 \text { tons }
\end{aligned}
$$

the recommended load at the ground surface is

$$
\begin{aligned}
Q & =\frac{Q_{p}}{3}+\frac{Q_{S}}{2}-W \\
& =\frac{701}{3}+\frac{121}{2}-150(\pi)\left(0.75^{2}\right)(34.5) / 2000 \\
& =290 \text { tons }
\end{aligned}
$$

VERTICAL CAPACITY BY METHOD B

Point Bearing Capacity

$$
\begin{aligned}
\mathrm{P}_{\mathrm{Le}}^{*} & =60,639 \mathrm{psf}(\text { see Method } \mathrm{A}) \\
\mathrm{D} & =\mathrm{H}_{\mathrm{e}}=14.40 \mathrm{ft}(\text { see Method } \mathrm{A})
\end{aligned}
$$

Bored Pile with Point in Clayey Shale with $\mathrm{F}_{\mathrm{L}}^{*}=60,639 \mathrm{psf}$

$$
\begin{aligned}
\mathrm{k} & =3.1(\text { from Fig. } 3 \mathrm{c}) \\
\mathrm{q}_{\max } & =\mathrm{kp}_{\mathrm{L}}^{*}+\mathrm{q}_{\mathrm{o}} \\
& =3.1(60,639)+(126 \times 34.5) \\
& =192,328 \mathrm{psf} \\
Q_{p} & =192,328(\pi)(1.5)^{2} \\
& =1,359,4871 \mathrm{~b}=680 \text { tons }
\end{aligned}
$$

Friction Capacity

Concrete, Non-Displacement Piles; use Curve B (Fig. 8)

Depth (ft)	$\mathrm{p}_{\mathrm{L}}^{*}$	${ }^{\mathrm{f}_{\text {max }}}$
0.00-1.75	8354	0
$1.75-3.50$	8354	1044
$3.50-6.75$	7205	940
6.75-12.00	11487	1253
12.00-18.25	12740	1316
18.25-24.25	361311	1713
$24.25-28.75$	33416	1713
28.75-32.50	50124	1713
32.50-34.50	62655	1713

$$
\begin{aligned}
Q_{s}= & \pi(1.5)[(1044 \times 1.75)+(940 \times 3.25)+(1253 \times 5.25)+ \\
& (1316 \times 6.25(+1713 \times 16.25)] \\
= & 223,9401 \mathrm{~b}=112 \text { tons }
\end{aligned}
$$

Total Vertical Capacity

$$
\begin{aligned}
Q_{T} & =Q_{p}+Q_{s} \\
& =680+112=792 \text { tons }
\end{aligned}
$$

The recommended load at the ground surface is

$$
\begin{aligned}
Q & =\frac{Q_{p}}{3}+\frac{Q_{S}}{2}-W \\
& =\frac{680}{3}+\frac{112}{2}-4.57 \\
& =278 \text { tons }
\end{aligned}
$$

VERTICAL CAPACITY BY METHOD C

Point Bearing Capacity

$$
\begin{aligned}
\mathrm{F}_{\mathrm{Le}}^{*} & =60,639 \mathrm{psf}(\text { see Method } \mathrm{A}) \\
\mathrm{H}_{\mathrm{e}} & =14.40 \mathrm{ft}(\text { see Method } \mathrm{A})
\end{aligned}
$$

Bored pile, point in clay with $\mathrm{p}_{\mathrm{L}}^{*}=60,639 \mathrm{psf}$.
Soil is category 2 (from Fig. 5)
$\mathrm{k}=1.6$ (from Fig. 6)

$$
q_{\max }={k p_{L}}_{*}^{*}+q_{o}
$$

$$
=1.6(60,369)+(126 \times 34.5)
$$

$$
=100,937 \mathrm{psf}
$$

$$
Q_{p}=100,937(\pi)(1.5)^{2}
$$

$$
=713,482 \mathrm{lb}=357 \text { tons }
$$

Friction Capacity \& Total Vertical Capacity

1. Low value is $A_{b i s}$ (from Fig. 9).
2. High value is A (from Fig. 9).

Depth (ft)		$\mathrm{f}_{\text {max }}$	
	p_{L}	Low	High
0.00-1.75	8,354	0	0
$1.75-3.50$	8,354	397	1023
$3.50-6.75$	7,205	355	940
6.75-12.00	11,478	480	1253
12.00-18.25	12,740	522	1316
18.25-24.25	361,311	668	1671
$24.25-28.75$	33,416	668	1671
$28.75-32.50$	50,124	668	1671
$32.50-34.50$	62,655	668	1671

Low Value

$$
\begin{aligned}
Q_{\mathrm{s}}= & \pi(1.5)[(397 \times 1.75)+(355 \times 3.25)+(480 \times 5.25)+(522 \times 6.25)+ \\
& 668 \times 16.25)]=87,1131 \mathrm{~b}=44 \text { tons } \\
Q_{\mathrm{T}}= & Q_{\mathrm{p}}+Q_{\mathrm{s}} \\
= & 357+44=401 \text { tons }
\end{aligned}
$$

The recommended load at the ground surface is

$$
\begin{aligned}
Q & =\frac{Q_{p}}{3}+\frac{Q_{s}}{2}-W \\
& =\frac{357}{3}+\frac{44}{2}-4.57 \\
& =136 \text { tons }
\end{aligned}
$$

High Value

$$
Q_{S}=\pi(1.5)[(1023 \times 1.75)+(940 \times 3.25)+(1253 \times 5.25)+(1316 \times 6.25)+
$$

$$
(1671 \times 16.25)]
$$

$$
=220,550 \mathrm{lb}=110 \text { tons }
$$

$$
Q_{T}=\dot{Q}_{p}+Q_{s}
$$

$$
=357+110=467 \text { tons }
$$

The recommended load at the ground surface is

$$
\begin{aligned}
Q & =\frac{Q_{p}}{3}+\frac{Q_{S}}{2}-W \\
& =\frac{357}{3}+\frac{110}{2}-4.57 \\
& =169 \text { tons }
\end{aligned}
$$

1.5 ft diameter, Circular Pile, with drilled shaft in clayey shale q-w Curve

$$
\begin{aligned}
\mathrm{E}_{\mathrm{o}} / \mathrm{p}^{*} & =891,700 / 62,655 \\
& =14.2 \\
\alpha & =2.3 \text { (from Fig. 12) } \\
\lambda & =1.0 \\
\frac{\mathrm{q}}{\mathrm{w}} & =\frac{2 \mathrm{E}_{\mathrm{o}}}{\mathrm{R}_{\mathrm{o}}\left(\lambda \mathrm{R} / \mathrm{R}_{\mathrm{o}}\right)^{\alpha}} \\
& =\frac{2(891,700)}{1.0(1.5 / 1.0)^{2 / 3}} \\
& =1,360,989 \\
\mathrm{w} & =0.735 \times 10^{-6} \mathrm{q} \mathrm{ft} \\
\mathrm{q}_{\max } & =198,392 \mathrm{psf}
\end{aligned}
$$

$\underline{f-w \text { Curve }}$

$$
\begin{aligned}
Q_{s} & =121 \text { tons }<Q_{p}=701 \text { tons, THEREFORE ENDBEARING } \\
C & =3.0 \text { (from Fig. 13) } \\
\frac{\mathrm{f}}{\mathrm{~W}} & =\frac{\mathrm{E}_{\mathrm{o}}}{\mathrm{CR}}
\end{aligned}
$$

Segment	Depth (ft)	E_{o} (psf)	w (ft)	$\mathrm{f}_{\text {max }}(\mathrm{psf})$	$\triangle \mathrm{L}(\mathrm{ft})$
8b	0.00-1.75	125,310	$\left(17.96 \times 10^{-6}\right) \mathrm{f}$	0	1.75
8a	$1.75-3.50$	125,310	$\left(17.96 \times 10^{-6}\right) \mathrm{f}$	1044	1.75
7	$3.50-6.75$	69,921	$\left(32.65 \times 10^{-6}\right) \mathrm{f}$	961	3.25
6	6.75-12.00	83,540	(26.93×10 ${ }^{-6}$) f	1253	5.25
5	12.00-18.25	127,399	$\left(17.66 \times 10^{-6}\right) \mathrm{f}$	1316	6.25
4	18.25-24.25	407,258	$\left(5.52 \times 10^{-6}\right) \mathrm{f}$	1713	6.00
3	24.25-28.75	236,001	$\left(9.53 \times 10^{-6}\right) \mathrm{f}$	1713	4.50
2 b	28.75-30.00	346,691	$\left(6.49 \times 10^{-6}\right) \mathrm{f}$	1713	1.25
2 a	30.00-32.50	346,691	$\left(6.49 \times 10^{-6}\right) \mathrm{f}$	2548	2.50

THE BELL IS IN THE REGION OF 32.50-34.50. IT WILL BE ASSUMED TO ACT LIKE A 2.25 FT DIAMETER CYLINDER.

$$
\begin{aligned}
\frac{f}{W} & =\frac{E_{o}}{C\left(R_{o}\right)\left(R / R_{o}\right)^{\alpha}} \\
& =\frac{891790}{(3.0)(1.0)(1.125 / 1.0)^{2 / 3}} \\
& =274,815 \\
W & =3.64 \times 10^{-6} \mathrm{f} \mathrm{ft} \\
f_{\max } & =2548 \mathrm{psf}
\end{aligned}
$$

Assuming A Point Bearing Pressure $\mathrm{q}_{1}=20,000 \mathrm{psf}$
Then $P_{1}=\pi(1.5)^{2}(20,000)=141,3721 \mathrm{~b}$

$$
\begin{aligned}
& W_{1}=\text { Point Settlement } \\
& =0.735 \times 10^{-6}(20,000)=1.47 \times 10^{-2} \mathrm{ft} \\
& W_{2 a}=\text { Settlement of top of pile segment } 1 \\
& =W_{1}+\frac{\mathrm{p}_{1} \Delta \mathrm{~L}_{1}}{\mathrm{AE} \mathrm{E}_{\text {conc }}}=1.47 \times 10^{-2}+\frac{141372}{\pi(1.125)^{2}} \times \frac{2.0}{4.5 \times 10^{8}}=1.49 \times 10^{-2} \mathrm{ft} \\
& f_{1}=\frac{W_{1}}{3.64 \times 10^{-6}}=\frac{1.47 \times 10^{-2}}{3.64 \times 10^{-6}}=4038 \mathrm{psf} \text {; use } \mathrm{f}_{\max }=2548 \mathrm{psf} \\
& \Delta \sigma_{1}=\frac{2 \pi R_{1} \Delta L_{1} f_{\text {max }}}{\pi R_{2}^{2}}=\frac{2(1.125)(2.0)(2548)}{(0.75)^{2}}=20,384 \mathrm{psf} \\
& \sigma_{2 \mathrm{a}}=\sigma_{1}+\Delta \sigma_{1}=\frac{141372}{(.75)^{2}}+20,384=100,384 \mathrm{psf} \\
& \mathrm{~W}_{2 \mathrm{~b}}=\text { Settlement of top of pile segment } 2 \mathrm{a} \\
& =\mathrm{W}_{2 \mathrm{a}}+\frac{\sigma_{2 \mathrm{a}}+\Delta \mathrm{L}_{2 \mathrm{a}}}{\mathrm{E}_{\text {conc }}}=1.49 \times 10^{-2}+\frac{(100,384)(2.5)}{4.5 \times 10^{8}}=1.55 \times 10^{-2} \mathrm{ft} \\
& \mathrm{f}_{2 \mathrm{a}}=\frac{\mathrm{W}_{2 \mathrm{a}}}{6.49 \times 10^{-6}}=\frac{1.49 \times 10^{-2}}{6.49 \times 10^{-6}}=2296 \mathrm{psf} \\
& \Delta \sigma_{2 \mathrm{a}}=\frac{2 \Delta \mathrm{~L}_{2 \mathrm{a}} \mathrm{f}_{2 \mathrm{a}}}{\mathrm{R}}=\frac{2(2.5)(2296)}{0.75}=15307 \mathrm{psf} \\
& \sigma_{2 b}=\sigma_{2 \mathrm{a}}+\Delta \sigma_{2 \mathrm{a}}=100,384+15307=115,691 \mathrm{psf} \\
& W_{3}=\text { Settlement of top of pile segment } 2 b \\
& =W_{2 b}+\frac{{ }_{2 b} \Delta \mathrm{~L}_{2 \mathrm{~b}}}{\mathrm{E}_{\text {conc }}}=1.55 \times 10^{-2}+\frac{(115,691)(1.25)}{4.5 \times 10^{8}}=1.58 \times 10^{-2} \mathrm{ft} \\
& f_{2 b}=\frac{W_{2 b}}{6.49 \times 10^{-6}}=\frac{1.55 \times 10^{-2}}{6.49 \times 10^{-6}}=2388 \mathrm{psf} \text {; use } f_{\text {max }}=1713 \mathrm{psf} \\
& \Delta \sigma_{2 b}=\frac{2 \Delta L_{2 b}{ }^{f} \text { max }}{R}=\frac{2(1.25)(1713)}{0.75}=5710 \mathrm{psf} \\
& \sigma_{3}=\sigma_{2 b}+\Delta \sigma_{2 b}=115,691+5710+121,401 \mathrm{psf}
\end{aligned}
$$

$W_{4}=$ Settlement of top of pile segment 3
$=W_{3}+\frac{\sigma_{3} \Delta \mathrm{~L}_{3}}{\mathrm{E}_{\text {conc }}}=1.58 \times 10^{-2}+\frac{(121,401)(4.50)}{4.5 \times 10^{8}}=1.70 \times 10^{-2} \mathrm{ft}$
$\mathrm{f}_{3}=\frac{\mathrm{W}_{3}}{9.53 \times 10^{-6}}=\frac{1.58 \times 10^{-2}}{9.53 \times 10^{-6}}=1658 \mathrm{psf}$
$\Delta \sigma_{3}=\frac{2 \Delta \mathrm{~L}_{3} \mathrm{f}_{3}}{\mathrm{R}}=\frac{2(4.5)(1658)}{(.75)}=19896 \mathrm{psf}$
$\sigma_{4}=\sigma_{3}+\Delta \sigma_{3}=121,401+19896=141,297 \mathrm{psf}$
$W_{5}=$ Settlement of top of pile segment 4
$=W_{4}+\frac{\sigma_{4} \Delta L_{4}}{E_{\text {conc }}}=1.70 \times 10^{-2}+\frac{(141,297)(6.00)}{4.5 \times 10^{8}}=1.89 \times 10^{-2} \mathrm{ft}$
$f_{4}=\frac{W_{4}}{5.52 \times 10^{-6}}=\frac{1.70 \times 10^{-2}}{5.52 \times 10^{-6}}=3080 \mathrm{psf} ;$ use $\mathrm{f}_{\max }=1713 \mathrm{psf}$
$\Delta \sigma_{4}=\frac{2 \Delta \mathrm{~L}_{4}{ }^{\mathrm{f}} \text { max }}{\mathrm{R}}=\frac{2(6.00)(1713)}{(0.75)}=27,408 \mathrm{psf}$
$\sigma_{5}=\sigma_{4}+\Delta \sigma_{4}=141,297+27,408=161,705 \mathrm{psf}$
$W_{6}=$ Settlement of top of pile segment 5
$=W_{5}+\frac{\sigma_{5} \Delta \mathrm{~L}_{5}}{E_{\text {conc }}}=1.89 \times 10^{-2}+\frac{(161,705)(6.25)}{4.5 \times 10^{8}}=2.11 \times 10^{-2} \mathrm{ft}$
$f_{5}=\frac{W_{5}}{17.66 \times 10^{-6}}=\frac{1.89 \times 10^{-2}}{17.66 \times 10^{-6}}=1070 \mathrm{psf}$
$\Delta \sigma_{5}=\frac{2 \Delta \mathrm{~L}_{5} \mathrm{f}_{5}}{\mathrm{R}}=\frac{2(6.25)(1070)}{(0.75)}=17833 \mathrm{psf}$
$\sigma_{6}=\sigma_{5}+\Delta \sigma_{5}=161,705+17833=179,538 \mathrm{psf}$

$$
\begin{aligned}
W_{7} & =\text { Settlement of top of pile segment } 6 \\
& =W_{6}+\frac{\sigma_{6} \Delta L_{6}}{E_{\text {conc }}}=2.11 \times 10^{-2}+\frac{(179,538)(5.25)}{4.5 \times 10^{8}}=2.32 \times 10^{-2} \mathrm{ft} \\
\mathrm{f}_{6} & =\frac{\mathrm{W}_{6}}{26.93 \times 10^{-6}}=\frac{2.11 \times 10^{-2}}{26.93 \times 10^{-6}}=784 \mathrm{psf} \\
\Delta \sigma_{6} & =\frac{2 \Delta \mathrm{~L}_{6} \mathrm{f}_{6}}{\mathrm{R}}=\frac{2(5.25)(784)}{0.75}=10976 \mathrm{psf} \\
\sigma_{7} & =\sigma_{6}+\Delta \sigma_{6}=179,538+10976=190,514 \mathrm{psf} \\
\mathrm{~W}_{8 \mathrm{a}} & =\text { Settlement of top of pile segment } 7
\end{aligned}
$$

$$
=\mathrm{W}_{7}+\frac{\sigma_{7} \Delta \mathrm{~L}_{7}}{\mathrm{E}_{\text {conc }}}=2.32 \times 10^{-2}+\frac{(190,514)(3.25)}{4.5 \times 10^{8}}=2.46 \times 10^{-2} \mathrm{ft}
$$

$$
\mathrm{f}_{7}=\frac{\mathrm{W}_{7}}{32.65 \times 10^{-6}}=\frac{2.32 \times 10^{-2}}{32.65 \times 10^{-6}}=711 \mathrm{psf}
$$

$$
\Delta \sigma_{7}=\frac{2 \Delta \mathrm{~L}_{7} \mathrm{f}_{7}}{\mathrm{R}}=\frac{2(3.25)(711)}{(0.75)}=6162 \mathrm{psf}
$$

$$
\sigma_{8 \mathrm{a}}=\sigma_{7}+\Delta \sigma_{7}=190,514+6162=196,676 \mathrm{psf}
$$

$$
\mathrm{W}_{8 \mathrm{~b}}=\text { Settlement of top of pile segment } 8 \mathrm{a}
$$

$$
=W_{8 a}+\frac{\sigma_{8 a^{\Delta L}} 8 a}{E_{\text {conc }}}=2.46 \times 10^{-2}+\frac{(196,676)(1.75)}{4.5 \times 10^{8}}=2.54 \times 10^{-2} \mathrm{ft}
$$

$$
\mathrm{f}_{8 \mathrm{a}}=\frac{\mathrm{W}_{8 \mathrm{a}}}{17.96 \times 10^{-6}}=\frac{2.46 \times 10^{-2}}{17.96 \times 10^{-6}}=1370 \mathrm{psf} ; \text { use } \mathrm{f}_{\max }=1044 \mathrm{psf}
$$

$$
\Delta \sigma_{8 \mathrm{a}}=\frac{2 \Delta \mathrm{~L}_{8 \mathrm{a}} \mathrm{f}_{\text {max }}}{R}=\frac{2(1.75)(1044)}{0.75}=4872 \mathrm{psf}
$$

$$
\sigma_{8 b}=\sigma_{8 a}+\Delta \sigma_{8 a}=196,676+4872=201,548 \mathrm{psf}
$$

$$
W_{T}=\text { Settlement of top of pile segment } 8 \mathrm{~b}
$$

$$
=W_{8 b}+\frac{\sigma_{8 b^{\Delta L_{8}}}}{E_{\text {conc }}}=2.54 \times 10^{-2}+\frac{(201,548)(1.75)}{4.5 \times 10^{8}}=2.62 \times 10^{-2} \mathrm{ft}
$$

$$
\begin{aligned}
\mathrm{f}_{8 \mathrm{~b}} & =0 \\
\Delta \sigma_{8 \mathrm{~b}} & =0 \\
\sigma_{\mathrm{T}} & =201,548 \mathrm{psf} \\
Q_{\mathrm{T}} & =\sigma_{\mathrm{T}} \times \pi \mathrm{R}^{2} \\
& =201,548 \times \pi(0.75)^{2} \\
& =356,165 \mathrm{lb}=178 \mathrm{tons}
\end{aligned}
$$

q-w Curve

$$
\begin{aligned}
\frac{q}{w} & =\frac{2 E_{R}}{\pi\left(1-v^{2}\right) R} \\
& =\frac{2(2,088,500)}{\pi\left(1-.33^{2}\right)(1.5)} \\
& =994,711
\end{aligned}
$$

$w=1.01 \times 10^{-6} \mathrm{q} \mathrm{ft}$
$q_{\max }=192,328 \mathrm{psf}$
f-w Curves

$$
\begin{aligned}
\frac{\mathrm{f}}{\mathrm{~W}} & =\frac{\mathrm{E}_{\mathrm{R}}}{2(1+\nu)\left(1+\ln \left({ }^{L} / 2 R\right) R\right.} \\
& =\frac{E_{R}}{2(1+.33)(1+\ln (34.5 / 2(.75)) .75}=\frac{E_{R}}{8.250} \\
W & =\frac{8.250 \mathrm{f}}{\mathrm{E}_{\mathrm{R}}}
\end{aligned}
$$

Segment	Depth (ft)	E_{R} (psf)	w (ft)	$\mathrm{f}_{\max }(\mathrm{psf})$	$\Delta \mathrm{L}$ (ft)
8b	0.00-1.75	710,090	$\overline{\left(11.62 \times 10^{-6}\right) \mathrm{f}}$	0	1.75
8 a	1.75-3.50	710,090	(11.62×10^{-6}) f	1044	1.75
7	$3.50-6.75$	148,284	$\left(55.64 \times 10^{-6}\right) \mathrm{f}$	940	3.25
6	6.75-12.00	227,647	$\left(36.24 \times 10^{-6}\right) \mathrm{f}$	1253	5.25
5	12.00-18.25	524,214	$\left(15.74 \times 10^{-6}\right) \mathrm{f}$	1316	6.25
4	18.25-24.25	998,303	(8.26×10^{-6}) f	1713	6.00
3	24.75-28.75	1,142,410	$\left(7.22 \times 10^{-6}\right) \mathrm{f}$	1713	4.50
2	28.75-32.50	1,743,898	$\left(4.73 \times 10^{-6}\right) \mathrm{f}$	1713	3.75

1 The bell is in the region from 32.50 to 34.50 . It will be assumed to behave like a 2.25 ft diameter cylinder.

$$
\begin{aligned}
\frac{f}{\mathrm{~W}} & =\frac{2,088,500}{2(1+.33)(1+\ln (34.5 / 2.25))} 1.125 \\
& =187,106 \\
\mathrm{~W} & =5.34 \mathrm{No}^{-6} \mathrm{fft} \quad \Delta \mathrm{~L}=2.00 \mathrm{ft} \\
\mathrm{f}_{\max } & =1713 \mathrm{psf}
\end{aligned}
$$

Assuming A Point Bearing Pressure $q=20,000 \mathrm{psf}$, Then $P_{1}=\pi(1.5)^{2}(20,000)=141,372 \mathrm{lb}$

$$
\begin{aligned}
& \mathrm{W}_{1}=\text { Point Settlement } \\
&=1.01 \times 10^{-6}(20,000)=2.02 \times 10^{-2} \mathrm{ft} \\
& \mathrm{~W}_{2}=\text { Settlement of Top of Pile Segment } 1 \\
&=\mathrm{W}_{1}+\frac{\mathrm{P}_{1} \Delta \mathrm{~L}_{1}}{\mathrm{AE}_{\text {conc }}}=2.02 \times 10^{-2}+\frac{(141,372)(2.00)}{\pi(1.125)^{2}\left(4.5 \times 10^{8}\right)}=2.04 \times 10^{-2} \mathrm{ft} \\
& \mathrm{f}_{1}=\frac{\mathrm{W}_{1}}{5.34 \times 10^{-6}}=\frac{2.04 \times 10^{-2}}{5.34 \times 10^{-6}}=3820 \mathrm{psf} ; \text { use } \mathrm{f}_{\text {max }}=1713 \mathrm{psf} \\
& \Delta \sigma_{1}=\frac{2 \pi \mathrm{R}_{1} \Delta \mathrm{~L}_{1} \mathrm{f}_{\text {max }}}{\pi_{2}^{2}}=\frac{2(1.125)(2.00)(1713)}{\left(0.75^{2}\right)}=13,704 \mathrm{psf} \\
& \sigma_{2}=\sigma_{1}+\Delta \sigma_{1}=\frac{141,372}{\pi(.75)^{2}}+13704=93,704 \mathrm{psf} \\
& \mathrm{~W}_{3}=\text { Settlement of Top of Pile Segment } 2 \\
&=\mathrm{W}_{2}+\frac{\sigma_{2} \Delta \mathrm{~L}_{2}}{\mathrm{E}_{\mathrm{conc}}}=2.04 \times 10^{-2}+\frac{(93,704)(3.75)}{4.5 \times 10^{8}}=2.12 \times 10^{-2} \mathrm{ft} \\
& \mathrm{f}_{2}=\frac{\mathrm{W}_{2}}{4.73 \times 10^{-6}}=\frac{2.04 \times 10^{-2}}{4.73 \times 10^{-6}}=4313 \mathrm{psf} ; \mathrm{use} \mathrm{f} \\
& \max =1713 \mathrm{psf} \\
& \Delta \sigma_{2}=\frac{2 \Delta \mathrm{~L}_{2} \mathrm{f} \mathrm{max}_{\text {max }}}{\mathrm{R}}=\frac{2(3.75)(1713)}{(0.75)}=17,130 \mathrm{psf} \\
& \sigma_{3}=\sigma_{2}+\Delta \sigma_{2}=93,704+17130=110,834 \mathrm{psf} \\
& \mathrm{~W}_{4}=\text { Settlement of Top of Pile Segment } 3 \\
&=\mathrm{W}_{3}+\frac{\sigma_{3} \Delta \mathrm{~L}_{3}}{\mathrm{E}_{\text {conc }}}=2.12 \times 10^{-2}+\frac{(110,834)(4.50)}{4.5 \times 10^{8}}=2.23 \times 10^{-2} \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
& f_{3}=\frac{W_{3}}{7.22 \times 10^{-6}}=\frac{2.12 \times 10^{-2}}{7.22 \times 10^{-6}}=2936 \text { psf; use } \mathrm{f}_{\max }=1713 \mathrm{psf} \\
& \Delta \sigma_{3}=\frac{2 \Delta \mathrm{~L}_{3} \mathrm{f}_{\text {max }}}{R}=\frac{2(4.50)(1713)}{0.75}=20556 \mathrm{psf} \\
& \sigma_{4}=\sigma_{3}+\Delta \sigma_{3}=110,834+20556=131,390 \mathrm{psf} \\
& W_{5}=\text { Settlement of Top of Pile Segment } 4 \\
& =W_{4}+\frac{\sigma_{4} \Delta \mathrm{~L}_{4}}{E_{\text {conc }}}=2.23 \times 10^{-2}+\frac{(131,390)(6.00)}{4.5 \times 10^{8}}=2.41 \times 10^{-2} \mathrm{ft} \\
& f_{4}=\frac{W_{4}}{8.26 \times 10^{-6}}=\frac{2.23 \times 10^{-2}}{8.26 \times 10^{-6}}=2700 \mathrm{psf} ; \text { use } \mathrm{f}_{\text {max }}=1713 \mathrm{psf} \\
& \Delta \sigma_{4}=\frac{2 \Delta \mathrm{~L}_{4} \mathrm{f}_{\text {max }}}{\mathrm{R}}=\frac{2(6.00)(1713)}{0.75}=27,408 \mathrm{psf} \\
& \sigma_{5}=\sigma_{4}+\Delta \sigma_{4}=131,390+27408=158,798 \mathrm{psf} \\
& W_{6}=\text { Sett1ement of Top of Pile Segment } 5 \\
& =\mathrm{W}_{5}+\frac{\sigma_{5} \Delta \mathrm{~L}_{5}}{\mathrm{E}_{\text {conc }}}=2.41 \times 10^{-2}+\frac{(158,798)(6.25)}{4.5 \times 10^{8}}=2.63 \times 10^{-2} \mathrm{ft} \\
& f_{5}=\frac{W_{5}}{15.74 \times 10^{-6}}=\frac{2.41 \times 10^{-2}}{15.74 \times 10^{-6}}=1531 \mathrm{psf} ; \text { use } f_{\text {max }}=1316 \mathrm{psf} \\
& \Delta \sigma_{5}=\frac{2 \Delta L_{5} f_{\text {max }}}{R}=\frac{2(6.25)(1316)}{0.75}=21,933 \mathrm{psf} \\
& \sigma_{6}=\sigma_{5}+\Delta \sigma_{5}=158,798+21,933=180,731 \mathrm{psf} \\
& W_{7}=\text { Sett1ement of Top of Pile Segment } 6 \\
& =W_{6}+\frac{\sigma_{6} \Delta L_{6}}{E_{\text {conc }}}=2.63 \times 10^{-2}+\frac{(180,731)(5.25)}{4.5 \times 10^{8}}=2.84 \times 10^{-2} \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
& f_{6}=\frac{W_{6}}{36.24 \times 10^{-6}}=\frac{2.63 \times 10^{-2}}{36.24 \times 10^{-6}}=726 \mathrm{psf} \\
& \Delta \sigma_{6}=\frac{2 \Delta L_{6} \mathrm{f}_{6}}{\mathrm{R}}=\frac{2(5.25)(726)}{0.75}=10,164 \mathrm{psf} \\
& \sigma_{7}=\sigma_{6}+\Delta \sigma_{6}=180,731+10,164=190,895 \mathrm{psf} \\
& W_{8 a}=\text { Sett1ement of Top of Pile Segment } 7 \\
& =W_{7}+\frac{\sigma_{7} \mathrm{LL}_{7}}{\mathrm{E}_{\text {conc }}}=2.84 \times 10^{-2}+\frac{(190,895)(3.25)}{4.5 \times 10^{8}}=2.98 \times 10^{-2} \mathrm{ft} \\
& \mathrm{f}_{7}=\frac{\mathrm{W}_{7}}{55.64 \times 10^{-6}}=\frac{2.84 \times 10^{-2}}{55.64 \times 10^{-6}}=510 \mathrm{psf} \\
& \Delta \sigma_{7}=\frac{2 \Delta L_{7} f_{7}}{R}=\frac{2(3.25)(510)}{0.75}=4420 \mathrm{psf} \\
& \sigma_{8 \mathrm{a}}=\sigma_{7}+\Delta \sigma_{7}=190,895+4420=195,315 \mathrm{psf} \\
& W_{8 b}=\text { Settlement of Top of Pile Segment } 8 \mathrm{a} \\
& =W_{8 a}+\frac{\sigma_{8 a^{\Delta L}} 8 \mathrm{a}}{E_{\text {conc }}}=2.98 \times 10^{-2}+\frac{(195,315)(1.75)}{4.5 \times 10^{8}}=3.06 \times 10^{-2} \mathrm{ft} \\
& f_{8 a}=\frac{W_{8 a}}{11.62 \times 10^{-6}}=\frac{2.98 \times 10^{-2}}{11.62 \times 10^{-6}}=2565 \mathrm{psf} ; \text { use } f_{\max }=1044 \mathrm{psf} \\
& \Delta \sigma_{8 a}=\frac{2 \Delta L_{8} \mathrm{a}_{\text {max }}}{R}=\frac{2(1.75)(1044)}{0.75}=4872 \mathrm{psf} \\
& \sigma_{8 b}=\sigma_{8 a}+\Delta \sigma_{8 a}=195,315+4872=200,187 \mathrm{psf} \\
& W_{T}=\text { Settlement of Top of Pile, Segment } 8 \mathrm{~b} \\
& =W_{8 b}+\frac{\sigma_{8 \mathrm{~b}} \Delta \mathrm{~L}_{8 \mathrm{~b}}}{\mathrm{E}_{\text {conc }}}=3.06 \times 10^{-2}+\frac{(200,187)(1.75)}{4.5 \times 10^{8}}=3.14 \times 10^{-2} \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{f}_{8 \mathrm{~b}} & =0 \\
\Delta \sigma_{8 \mathrm{~b}} & =0 \\
\sigma_{\mathrm{T}} & =200,187 \mathrm{psf} \\
Q_{\mathrm{T}} & =\sigma_{\mathrm{T}} \times \pi \mathrm{R}^{2} \\
& =(200,187) \times \pi(0.75)^{2} \\
& =353,760 \mathrm{lb}=177 \text { tons }
\end{aligned}
$$

q-w Curve

$$
\begin{aligned}
0 \leq q \leq \frac{1}{2} q_{\max }, \frac{q}{w} & =\frac{5.5 E_{o}}{R} \\
& =\frac{5.5(891,700)}{1.5} \\
& =3,269,567 \\
w & =0.306 \times 10^{-6} \mathrm{qft} \\
\frac{1}{2} q_{\max }<q \leq q_{\max }, w & =\frac{\left(5 q-2 q_{\max }\right) R}{5.5 \mathrm{E}_{\mathrm{o}}} \\
& =0.306 \times 10^{-6}\left(5 \mathrm{q}-2 q_{\max }\right) \mathrm{ft}
\end{aligned}
$$

f-w Curves

$$
\begin{aligned}
0 \leq f \leq \frac{1}{2} f_{\max }, \frac{f}{w} & =\frac{\alpha E_{o}}{R} \\
& =\frac{(0.76)(R) E_{o}}{R} \\
& =0.76 \mathrm{E}_{0} \\
w & =\frac{1.316 \mathrm{f}}{\mathrm{E}_{\mathrm{o}}} \\
\frac{1}{2} f_{\max }<\mathrm{f} \leq \mathrm{f}_{\max }, w & =\frac{\left(5 f-2 \mathrm{f}_{\max }\right) \mathrm{F}}{2 \mathrm{E}_{\mathrm{o}}} \\
& =\frac{\left(5 f-2 \mathrm{f}_{\max }\right) 1.5}{(.76)(1.5) \mathrm{E}_{\mathrm{o}}} \\
& =\frac{1.316\left(5 \mathrm{f}-2 \mathrm{f}_{\max }\right)}{\mathrm{E}_{\mathrm{o}}}
\end{aligned}
$$

VERTICAL LOAD SETTLEMENT CURVE BY METHOD C
 (Using High $f_{\text {max }}$ Values)

Assuming A Point Bearing Pressure $\mathrm{q}_{1}=20,000 \mathrm{psf}$
Then $P_{1}=\pi(1.5)^{2}(20,000)=141,372 \mathrm{lb}$

$$
\begin{aligned}
W_{1} & =\text { Point Settlement } \\
& =0.306 \times 10^{-6}(20,000)=0.61 \times 10^{-2} \mathrm{ft}
\end{aligned}
$$

The Bell (Segment 1) is Assumed to be A 2.25 ft Dia. Cylinder
$W_{2}=$ Settlement of Top of Pile Segment 1

$$
=0.61 \times 10^{-2}+\frac{\mathrm{P}_{1} \Delta \mathrm{~L}_{1}}{\mathrm{~A}_{1} \mathrm{E}_{\text {conc }}}=0.61 \times 10^{-2}+\frac{(141,372)(2.00)}{\pi(1.125)^{2}\left(4.5 \times 10^{8}\right)}=
$$

$$
0.63 \times 10^{-2} \mathrm{ft}
$$

$$
f_{1}=\frac{W_{1}+2.95 \times 10^{-6} \mathrm{f}_{\text {max }}}{7.38 \times 10^{-6}}=\frac{0.61 \times 10^{-2}+\left(2.95 \times 10^{-6}\right)(1671)}{7.38 \times 10^{-6}}=1495 \mathrm{psf}
$$

$$
\Delta \sigma_{1}=\frac{2 \pi R_{1} \Delta L_{1}{ }_{1}{ }_{1}}{\pi R_{2}^{2}}=\frac{2(1.125)(2.00)(1495)}{(0.75)^{2}}=11,960 \mathrm{psf}
$$

$$
\sigma_{2}=\sigma_{1}+\Delta \sigma_{1}=\frac{141,372}{\pi(.75)^{2}}+5316=91,960 \mathrm{psf}
$$

$W_{3}=$ Settlement of Top of Pile Segment ?

$$
\begin{aligned}
& =W_{2}+\frac{\sigma_{2} \Delta \mathrm{~L}_{2}}{\mathrm{E}_{\text {conc }}}=0.63 \times 10^{-2}+\frac{(91,960)(3.75)}{4.5 \times 10^{8}}=0.71 \times 10^{-2} \mathrm{ft} \\
\mathrm{f}_{2} & =\frac{\mathrm{W}_{2}+7.59 \times 10^{-6} \mathrm{f}_{\text {max }}}{18.98 \times 10^{-6}}=\frac{0.63 \times 10^{-2}+\left(7.59 \times 10^{-6}\right)(1671)}{18.98 \times 10^{-6}}=1000 \mathrm{psf} \\
\Delta \sigma_{2} & =\frac{2 \Delta \mathrm{~L}_{2} \mathrm{f}_{2}}{\mathrm{R}}=\frac{2(3.75)(1000)}{0.75}=10,000 \mathrm{psf} \\
\sigma_{3} & =\sigma_{2}+\Delta \sigma_{2}=91,960+10,000=101,960 \mathrm{psf}
\end{aligned}
$$

$W_{4}=$ Settlement of Top of Pile Segment 3

$$
\begin{aligned}
& =W_{3}+\frac{\sigma_{3} \Delta \mathrm{~L}_{3}}{\mathrm{E}_{\text {conc }}}=0.71 \times 10^{-2}+\frac{(101,960)(4.50)}{4.5 \times 10^{8}}=0.81 \times 10^{-2} \mathrm{ft} \\
\mathrm{f}_{3} & =\frac{\mathrm{W}_{3}+11.15 \times 10^{-6} \mathrm{f}_{\text {max }}}{27.88 \times 10^{-6}}=\frac{0.71 \times 10^{-2}+\left(11.15 \times 10^{-6}\right)(1671)}{27.88 \times 10^{-6}}=
\end{aligned}
$$

$$
923 \mathrm{psf}
$$

$$
\Delta \sigma_{3}=\frac{2 \Delta L_{3} \mathrm{f}_{3}}{\mathrm{R}}=\frac{2(4.50)(923)}{(0.75)}=11,076 \mathrm{psf}
$$

$$
\sigma_{4}=\sigma_{3}+\Delta \sigma_{3}=101,960+11076=113036 \mathrm{psf}
$$

$$
W_{5}=\text { Settlement of Top of Pile Segment } 4
$$

$$
\begin{aligned}
& =W_{4}+\frac{\sigma_{4} \Delta \mathrm{~L}_{4}}{\mathrm{E}_{\text {conc }}}=0.81 \times 10^{-2}+\frac{(113,036)(6.00)}{4.5 \times 10^{8}}=0.96 \times 10^{-2} \mathrm{ft} \\
\mathrm{f}_{4} & =\frac{\mathrm{W}_{4}+6.46 \times 10^{-6} \mathrm{f}_{\text {max }}}{16.15 \times 10^{-6}}=\frac{0.81 \times 10^{-2}+6.46 \times 10^{-6}(1671)}{16.15 \times 10^{-6}}=1170 \mathrm{psf}
\end{aligned}
$$

$$
\Delta \sigma_{4}=\frac{2 \Delta \mathrm{~L}_{4} \mathrm{f}_{4}}{\mathrm{R}}=\frac{2(6.00)(1170)}{0.75}=18,720 \mathrm{psf}
$$

$$
\sigma_{5}=\sigma_{4}+\Delta \sigma_{4}=113,036+18720=131,756
$$

$$
W_{6}=\text { Settlement of Top of Pile Segment } 5
$$

$$
=W_{5}+\frac{\sigma_{5} \Delta L_{5}}{E_{\text {conc }}}=0.96 \times 10^{-2}+\frac{(131,756)(6.25)}{4.5 \times 10^{8}}=1.14 \times 10^{-2} \mathrm{ft}
$$

$$
f_{5}=\frac{W_{5}+20.66 \times 10^{-6} \mathrm{f}_{\max }}{51.64 \times 10^{-6}}=\frac{0.96 \times 10^{-2}+\left(20.66 \times 10^{-6}\right)(1316)}{51.64 \times 10^{-6}}=.712 \mathrm{psf}
$$

$$
\Delta \sigma_{5}=\frac{2 \Delta \mathrm{~L}_{5} \mathrm{f}_{5}}{\mathrm{R}}=\frac{2(6.25)(712)}{0.75}=11,867
$$

$$
\sigma_{6}=\sigma_{5}+\Delta \sigma_{5}=131,756+11,867=143,623
$$

$W_{7}=$ Settlement of Top of Pile Segment 6
$=W_{6}+\frac{\sigma_{6} \triangle_{6}}{E_{\text {conc }}}=1.14 \times 10^{-2}+\frac{(143,623)(5.25)}{4.5 \times 10^{8}}=1.31 \times 10^{-2} \mathrm{ft}$ $f_{6}=\frac{W_{6}+31.50 \times 10^{-6} f_{\text {max }}}{78.75 \times 10^{-6}}=\frac{1.14 \times 10^{-2}+31.50 \times 10^{-6}(1253)}{78.75 \times 10^{-6}}=646 \mathrm{psf}$

$$
\Delta \sigma_{6}=\frac{2 \Delta L_{6} f_{6}}{R}=\frac{2(5.25)(646)}{0.75}=9044
$$

$$
-\sigma_{7}=\sigma_{6}+\Delta \sigma_{6}+143,623+9044=152,667
$$

$W_{8 a}=$ Settlement of Top of Pile Segment 7

$$
\begin{aligned}
& =W_{7}+\frac{\sigma_{7} \Delta \mathrm{~L}_{7}}{\mathrm{E}_{\text {conc }}}=1.31 \times 10^{-2}+\frac{(152,667)(3.25)}{4.5 \times 10^{8}}=1.42 \times 10^{-2} \mathrm{ft} \\
\mathrm{f}_{7} & =\frac{\mathrm{W}_{7}+\left(38.12 \times 10^{-6}\right) \mathrm{f}_{\text {max }}}{95.46 \times 10^{-6}}=\frac{1.42 \times 10^{-2}+\left(38.12 \times 10^{-6}\right)(940)}{95.46 \times 10^{-6}}=524 \mathrm{psf}
\end{aligned}
$$

$$
\Delta \sigma_{7}=\frac{2 \Delta \mathrm{~L}_{7} \mathrm{f}_{7}}{\mathrm{R}}=\frac{2(3.25)(524)}{0.75}=4541 \mathrm{psf}
$$

$$
\sigma_{8 \mathrm{a}}=\sigma_{7}+\Delta \sigma_{7}=152,667+4541=157,208 \mathrm{psf}
$$

$W_{8 b}=$ Settlement of Top of Pile Segment $8 a$

$$
\begin{aligned}
= & W_{8 \mathrm{a}}+\frac{\sigma_{8 \mathrm{a}} \mathrm{~L}_{8 \mathrm{a}}}{\mathrm{E}_{\mathrm{conc}}}=1.42 \times 10^{-2}+\frac{(157,208)(1.75)}{4.5 \times 10^{8}}=1.48 \times 10^{-2} \mathrm{ft} \\
\mathrm{f}_{8 \mathrm{a}} & =\frac{\mathrm{W}_{8 \mathrm{a}}+\left(21.00 \times 10^{-6}\right) \mathrm{f}_{\mathrm{max}}}{52.50 \times 10^{-6}}=\frac{1.42 \times 10^{-2}+\left(21.00 \times 10^{-6}\right)(1023)}{52.50 \times 10^{-6}}= \\
& 680 \mathrm{psf} \\
\Delta \sigma_{8 \mathrm{a}} & =\frac{2 \Delta \mathrm{~L} 8 \mathrm{a} \mathrm{f}_{8 \mathrm{a}}}{\mathrm{R}}=\frac{2(1.75)(680)}{0.75}=3173 \mathrm{psf} \\
\sigma_{8 \mathrm{~b}} & =\sigma_{8 \mathrm{a}}+\Delta \sigma_{8 \mathrm{a}}=157,208+3173=160,381 \mathrm{psf}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{T}} & =\text { Settlement of Top of Pile Segment } 8 \mathrm{~b} \\
& =\mathrm{W}_{8 \mathrm{~b}}+\frac{\sigma_{8 \mathrm{~b}} \Delta \mathrm{~L}_{8 \mathrm{~b}}}{\mathrm{E}_{\text {conc }}}=1.48 \times 10^{-2}+\frac{(160,381)(1.75)}{4.5 \times 10^{8}}=1.54 \times 10^{-2} \mathrm{ft} \\
\mathrm{f}_{8 \mathrm{~b}} & =0 \\
\Delta \sigma_{8 \mathrm{~b}} & =0 \\
\sigma_{\mathrm{T}} & =160,381 \text { psf } \\
Q_{\mathrm{T}} & =\sigma_{\mathrm{T}} \times \pi \mathrm{R}^{2} \\
& =(160,381) \times \pi(0.75)^{2} \\
& =283,4161 \mathrm{~b}=142 \text { tons }
\end{aligned}
$$

Assuming A Point Bearing Pressure $\mathrm{q}_{1}=20,000 \mathrm{psf}$ Then $P_{1}=\pi(1.5)^{2}(20,000)=141,372 \mathrm{lb}$

$$
\begin{aligned}
W_{1} & =\text { Point Settlement } \\
& =0.306 \times 10^{-6}(20,000)=0.61 \times 10^{-2} \mathrm{ft}
\end{aligned}
$$

The Bell. (Segment 1) is Assumed to be A 2.25 ft Dia. Cylinder

$$
\begin{aligned}
W_{2} & =\text { Settlement of Top of Pile Segment } 1 \\
& =W_{1}+\frac{P_{1} \Delta L_{1}}{A_{1} E_{\text {conc }}}=0.61 \times 10^{-2}+\frac{(141,372)(2.00)}{\pi(1.125)^{2}\left(4.5 \times 10^{8}\right)}=0.63 \times 10^{-2} \mathrm{ft} \\
f_{1} & =\frac{W_{1}+2.95 \times 10^{-6} \mathrm{f}_{\text {max }}}{7.38 \times 10^{-6}}=\frac{0.63 \times 10^{-2}+\left(2.95 \times 10^{-6}\right)(668)}{7.38 \times 10^{-6}}=
\end{aligned}
$$

$$
\begin{gathered}
1121 \mathrm{psf} ; \text { use } f_{\max }=668 \mathrm{psf} \\
\Delta \sigma_{1}=\frac{2 \pi R_{1} \Delta \mathrm{~L}_{1} \mathrm{f}_{\mathrm{max}}}{\pi \mathrm{R}_{2}^{2}}=\frac{2(1.125)(2.00)(668)}{(0.75)^{2}}=5344 \mathrm{psf}
\end{gathered}
$$

$$
\sigma_{2}=\sigma_{1}+\Delta \sigma_{1}=\frac{141,372}{\pi(0.75)^{2}}+5344=85344
$$

$$
W_{3}=\text { Settlement of Top of Pile Segment } 2
$$

$$
=W_{2}+\frac{\sigma_{2} \Delta \mathrm{~L}_{2}}{E_{\text {conc }}}=0.63 \times 10^{-2}+\frac{(85,344)(3.75)}{4.5 \times 10^{8}}=0.70 \times 10^{-2} \mathrm{ft}
$$

$$
\mathrm{f}_{2}=\frac{\mathrm{W}_{2}+7.59 \times 10^{-6} \mathrm{f}_{\max }}{18.98 \times 10^{-6}}=\frac{0.70 \times 10^{-2}+\left(7.59 \times 10^{-6}\right)(668)}{18.98 \times 10^{-6}}=639 \mathrm{psf}
$$

$$
\Delta \sigma_{2}=\frac{2 \Delta L_{2} f_{2}}{R}=\frac{2(3.75)(639)}{0.75}=6390 \mathrm{psf}
$$

$$
\sigma_{3}=\sigma_{2}+\Delta \sigma_{2}=85,344+6390=91,734 \mathrm{psf}
$$

$W_{4}=$ Settlement of Top of Pile Segment 3

$$
\begin{aligned}
& =W_{3}+\frac{\sigma_{3} \Delta L_{3}}{E_{\text {conc }}}=0.70 \times 10^{-2}+\frac{(91,734)(4.50)}{4.5 \times 10^{8}}=0.79 \times 10^{-2} \mathrm{ft} \\
f_{3} & =\frac{W_{3}+11.15 \times 10^{-6} f_{\max }}{27.88 \times 10^{-6}}=\frac{0.70 \times 10^{-2}+\left(11.15 \times 10^{-6}\right)(668)}{27.88 \times 10^{-6}}=518 \mathrm{psf} \\
\Delta \sigma_{3} & =\frac{2 \Delta \mathrm{~L}_{3} \mathrm{f}_{3}}{\mathrm{R}}=\frac{2(4.50)(518)}{0.75}=6216 \mathrm{psf} \\
\sigma_{4} & =\sigma_{3}+\Delta \sigma_{3}=91,734+6216=97,950 \mathrm{psf}
\end{aligned}
$$

$$
W_{5}=\text { Settlement of Top of Pile Segment } 4
$$

$$
=\mathrm{W}_{4}+\frac{\sigma_{4} \Delta \mathrm{~L}_{4}}{\mathrm{E}_{\text {conc }}}=0.79 \times 10^{-2}+\frac{(97,950)(6.00)}{4.50 \times 10^{8}}=0.92 \times 10^{-2} \mathrm{ft}
$$

$$
f_{4}=\frac{W_{4}+\left(6.46 \times 10^{-6}\right) f_{\max }}{16.15 \times 10^{-6}}=\frac{0.79 \times 10^{-2}+\left(6.46 \times 10^{-6}\right)(668)}{16.15 \times 10^{-6}}=
$$

$$
\begin{gathered}
756 \mathrm{psf} ; \text { use } f_{\max }=668 \mathrm{psf} \\
\Delta \sigma_{4}=\frac{2 \Delta L_{4} f}{\mathrm{~m}} \mathrm{max} \\
=\frac{2(6.00)(668)}{0.75}=10,688 \mathrm{psf} \\
\sigma_{5}=\sigma_{4}+\Delta \sigma_{4}=97,950+10,688=108,638 \mathrm{psf}
\end{gathered}
$$

$$
W_{6}=\text { Settlement of Top of Pile Segment } 5
$$

$$
\begin{aligned}
& =W_{5}+\frac{\sigma_{5} \Delta \mathrm{~L}_{5}}{\mathrm{E}_{\text {conc }}}=0.92 \times 10^{-2}+\frac{(108,638)(6.25)}{4.5 \times 10^{8}}=1.07 \times 10^{-2} \mathrm{ft} \\
\mathrm{f}_{5} & =\frac{\mathrm{W}_{5}+\left(20.66 \times 10^{-6}\right) \mathrm{f}_{\max }}{51.64 \times 10^{-6}}=\frac{0.92 \times 10^{-2}+\left(20.66 \times 10^{-6}\right)(522)}{51.64 \times 10^{-6}}=
\end{aligned}
$$

[^0]: ${ }^{1}$ Use the letter in bracket for a careful execution of the drilled shaft with a low disturbance drilling technique or for a soil which will set up or densify around the driven pile.
 ${ }^{2}$ For soils with $\mathrm{P}_{\mathrm{L}} \geq 31328 \mathrm{psf}$.
 ${ }^{3}$ Only if driving is possible.

