

Form DOT F 1700.7 (1.69)

by

Jean-Louis Briaud and Gerald Jordan

Research Report 340-1

The Pressuremeter and the Design of Highway Related Foundations Research Study 2-5-83-340

Sponsored by

State Department of Highways and Public Transportation
In cooperation with the
U. S. Department of Transportation, Federal Highway Administration

Texas Transportation Institute
The Texas A\&M University System
College Station, Texas

In this report, a detailed description is made of the established procedures to design shallow foundations on the basis of preboring pressuremeter tests. Both the bearing capacity and settlement calculations are presented in the form of step-by-step design procedures. The bearing capacity equation is:

$$
q_{p}=k p_{L} e^{*}+q_{0}
$$

where q_{p} is the bearing capacity of the foundation, k is the pressuremeter bearing capacity factor, $\mathrm{P}_{\mathrm{Le}}{ }^{*}$ is the equivalent net limit pressure obtained from preboring pressuremeter tests performed within the zone of influence of the foundation and q_{0} is the vertical total pressure at the foundation level prior to construction. The bearing capacity factor k depends on the relative depth of embedment of the foundation, the type of soil, and the shape of the foundation. Charts for k have been proposed by Menard and Gambin in 1963, Baquelin, Jezequel and Shields in 1978, and Bustamante and Gianeselli in 1982.

The three charts are presented and used to solve several example problems. The results of those examples show that generally the Busta-mante-Gianeselli method gives the lowest bearing capacity values, that the Menard-Gambin method gives higher values and that the Baquelin-Jeze-quel-Shields method gives values which are slightly higher than the values obtained with the Menard-Gambin method.

The settlement equation is:

$$
S=\frac{2}{9} \frac{1}{E_{d}} q \cdot B_{0} \cdot\left(\lambda_{d} \frac{B}{B_{0}}\right)^{\alpha}+\frac{\alpha}{9} \frac{1}{E_{c}} q \lambda_{c} B
$$

where S is the settlement of the foundation, E_{d} is the average modulus obtained from preboring pressuremeter tests performed within several foundation widths below the foundation level, q is the net bearing pressure, B_{o} is a reference width, B is the width of the foundation, λ_{d} and λ_{C} are shape factors, α is a rheologic factor, E_{C} is the average modulus obtained from preboring pressuremeter tests performed immediately below the foundation level.

The two terms of the settlement equations correspond to two distinct components: the settlement due to shearing stresses (deviatoric component) and the settlement due to hydrostatic compression (spherical component). When the width of the foundation is small compared to the thickness of the bearing stratum (common case of shallow foundation), the settlement due to shearing stresses is larger than the settlement due to the hydrostatic compression.

The above settlement equation applies when the ratio of the foundation width to the thickness of the bearing stratum is small. This equation is modified when the ratio is large and in this case the pressuremeter settlement analysis should be complemented by a consolidation test analysis. Example of settlement calculations are presented to illustrate the design procedures in various cases.

The above bearing capacity and settlement rules are evaluated by presenting the results of comparisons between predicted and measured behavior for over 50 case histories. It must be emphasized that one of the critical elements in the accuracy of the predictions is the performance of quality pressuremeter tests by trained professionals.

This report gives the details of existing pressuremeter methods for the design of shallow foundations. These methods require the use of a new piece of equipment: a preboring pressuremeter. These methods are directly applicable to design practice and should be used in parallel with current methods for a period of time until a final decision can be made as to their implementation.

The authors are grateful for the continued support and encouragement of Mr. George Odom of the Texas State Department of Highways and Public Transportation.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration, or the State Department of Highways and Public Transportation. This report does not constitute a standard, a specification, or a regulation.

PRESSUREMETER DESIGN OF SHALLOW FOUNDATIONS

Page
SUMMARY iii
gLossary of TERMS AND EQUATIONS x

1. INTRODUCTION 1
2. BEARING CAPACITY 2
2.1 Theoretical Background 2
2.2 Methods for Finding the Bearing Capacity Factor, K 2
2.3 Bearing Capacity Equation 12
2.4 Calculating $\mathrm{p}_{\text {Le }}^{*}$, the Equivalent Limit Pressure 12
2.5 Calculating He, the Equivalent Depth of Embedment 12
2.6 Obtaining k, the Pressuremeter Bearing Capacity Factor 13
2.7 Calculating $q_{p}, q_{\text {safe }}$, and $q_{\text {net }}$ 13
2.8 Reduction of the Bearing Capacity Factor for Footings Near Excavations 14
3. SETTLEMENT 16
3.1 Menard Method 16
3.1.1 Theoretical Background 16
3.1.2 Calculating the Layer Moduli 18
3.1.3 Calculating E_{c} and E_{d} 21
3.1.4 Obtaining α and λ 22
3.1.5 Calculating the Settlement 22
3.1.6 Special Case of a Thin Soft Layer at Depth 22
3.1.7 Special Case of a Thin Soft Layer Close to the Ground Surface 23
Page
3.2 Settlement : Schmertmann Method Using Pressuremeter Moduli 25
4. EXAMPLES OF DESIGN. PROBLEMS AND THEIR SOLUTIONS 28
Example la Shallow Footing on a Clay (Menard Method) 30
Example lb Shallow Footing on a Clay (B.J.S. Method) 32
Example lc Shallow Footing on a Clay (B.G. Method) 34
Example 2a Shallow Footing on Sand (Menard Method) 37
Example 2b Shallow Footing on Sand (B.J.S. Method) 39
Example 2c Shallow Footing on Sand (B.G. Method) 41
Example 3 Strip Footing on Sand 44
Example 4 Rectangular Footing on a Layered Soil (Menard Method) 50
Example 5 Strip Footing on a Soft Layer at Depth 54
Example 6 Mat Foundation on a Soft Layer 57
5. COMPARISON BETWEEN PREDICTED AND MEASURED BEHAVIOR 59
REFERENCES 65
Figure Page
1 Pressuremeter Bearing Capacity Method for Foundations 3
2 Footing Capacity Due to Lateral Soil Support 4
3 Bearing Capacity Factors for Menard 6
4 Bearing: Gpacity Factors for Baquelin, Jezeguel, Shields Method 7
5 Bearing Capacity Factors for Bustamante and Gianselli 9
6 Soil Categories for Use with Menard Bearing Capacity Chart of Figure 3 10
7 Soil Categories for Use with Bustamante and Gianselli Bearing Capacity Chart of Figure 5 11
8 Reduction of the Bearing Capacity of a Footing as a Function of Tan β 15
9 Rheological Factor, α 19
10 Shape Factors λ_{c}, λ_{d} 19
11
Layers to be Considered in the Settlement Analysis 20
12 Schmertmann Settlement Concepts and Influence Factor Distribution 27
13 Pressuremeter Settlement Concepts 60
14 Predicted Versus Measured Settlement (Very Small Settlement) 61
15 Predicted Versus Meansured Settlement (Moderate Settlement) 62
16 Predicted Versus Measured Settlement (Large Settlement) 63
17 Comparison of the Bearing Capacity Factors Predicted by the B.G. Method and Measured by Menard 64

GLOSSARY OF TERMS AND EQUATIONS

BEARING CAPACITY

$$
\begin{aligned}
& k=\text { Pressuremeter bearing capacity factor } \\
& =\frac{p_{L} \text { (sphere) }}{p_{L} \text { (cylinder) }} \\
& p_{L}^{*}=\text { net limit pressure }=p_{L}-p_{o h} \\
& \mathrm{P}_{\mathrm{OH}}=\text { total horizontal stress in soil at rest } \\
& p_{L}=\text { ultimate limit pressure } \\
& q_{p}=\text { pressuremeter bearing capacity } \\
& q_{p}=k p_{L e}^{*}+q_{o} \\
& q_{\text {safe }}=k p_{\text {Le }}^{*} / 3+q_{0} \\
& q_{\text {net }}=k p_{\text {Le }} / 3 \\
& \text { where } p_{\text {Le }}^{*}=\text { equivalent net limit pressure } \\
& q_{0}=\text { total stress overburden at foundation level } \\
& H_{e}=\text { equivalent depth of embedment } \\
& H_{e}=\sum_{1}^{n} \Delta z_{i} \frac{p_{1-i}^{*}}{p_{L e}^{*}} \\
& q_{p}^{\prime}=\text { reduced bearing capacity for slopes and excavations } \\
& q_{p}^{\prime}=\mu q_{p} \text { where: } \mu=\text { reduction factor } \\
& q_{p}=\text { normal bearing capacity }
\end{aligned}
$$

$Q_{v}=$ vertical load on the foundation
$f_{s}=$ friction on the side of the foundation
$C_{u}=$ undrained soil shear strength
D = actual depth of embedment of the foundation
$L=$ length of the foundation
$B=$ width of the foundation
$s_{\mathrm{T}}=$ long-term, drained settlement
$s_{u}=$ rapid, undrained settlement
$s_{\mathrm{c}}=$ consolidation settlement $=s_{T}-s_{u}$

Layer moduli by harmonic mean:
$\frac{n}{E_{k}}=\sum_{1}^{n} \frac{1}{E_{i}}$ where $E_{k}=$ average PMT modulus within k th layer

$$
E_{i}=\text { moduli from PMT results in kth layer }
$$

Settlement with a thin, soft layer at depth:

$$
\begin{aligned}
s & =s^{\prime}+s^{\prime \prime} \\
s^{\prime} & =\text { settlement without considering soft layer } \\
s^{\prime \prime} & =\text { settlement of soft layer alone } \\
& =\alpha\left(\frac{1}{E_{\text {soft }}}-\frac{1}{E_{\text {hard }}}\right) \Delta \sigma_{V^{H}} \\
\text { where } \Delta \sigma_{V} & =\text { change in vertical pressure between top } \\
& \text { and bottom of soft layer } \\
H & =\text { thickness of soft layer } \\
\alpha & =\text { rheological factor } \\
E & =\text { pressuremeter modulus }
\end{aligned}
$$

Settlement of a thin, soft layer at ground surface:

$$
\begin{aligned}
& S=\sum_{1}^{n} \frac{\alpha_{i} p_{i}}{E_{i}} \Delta z_{i} \\
& i=\text { layer number, } \\
& \quad \text { where } \beta=\text { coefficient based on the safety factor, } F
\end{aligned}
$$

$$
\begin{aligned}
F & =\frac{\text { ultimate bearing pressure }}{\text { actual bearing pressure }} \\
\beta & =\frac{2}{3}\left(\frac{F}{F-1}\right) \\
\Delta v i & =\text { change in vertical pressure in the ith layer } \\
\alpha i & =\text { rheological factor of each layer } \\
\Delta z_{i} & =\text { thickness of each layer }
\end{aligned}
$$

The pressuremeter settlement equation:

$$
\begin{aligned}
S= & \frac{2}{9 E_{d}} q B_{0} \cdot \lambda_{d} \frac{B^{\prime}}{B_{0}}+\frac{\alpha}{9 E_{c}} q \lambda_{c} B \\
S= & \text { total footing settlement } \\
E_{d}= & \text { pressuremeter modulus within zone of deviatoric } \\
& \text { tensor influence } \\
\frac{1}{E_{d}}= & \frac{1}{4}\left(\frac{1}{E_{1}}+\frac{1}{0.85 E_{2}}+\frac{1}{E_{3 / 5}}+\frac{1}{2.5 E_{6 / 8}}+\frac{1}{2.5 E_{9 / 16}}\right) \\
E_{i}= & \text { pressuremeter modulus within zone of spherical tensor } \\
& \text { influence } \\
E_{C}= & \text { first layer average modulus } \\
q= & \text { net footing bearing pressure }\left(q_{n e t}\right) \\
B_{0}= & \text { reference width }=2 \text { ft or } 60 \mathrm{~cm} \\
\lambda_{d}= & \text { deviatoric shape factor } \\
\lambda_{c}= & \text { spherical shape factor } \\
\alpha= & \text { rheological factor }
\end{aligned}
$$

STRESS, STRAIN, MODULI

$$
\begin{aligned}
\sigma & =\text { total stress tensor } \\
& =\sigma_{s}+\sigma_{d}
\end{aligned}
$$

where: $\sigma_{s}=$ spherical stress component

$\sigma_{d}=$ deviatoric stress component
 likewise: $\varepsilon_{S}=$ spherical strain component
 $\varepsilon_{d}=$ deviatoric strain component

E = Young's Modulus
$\gamma=$ Poisson's Ratio
$G=$ Shear Modulus
$\mathrm{K}=$ = Bulk Modulus

CHAPTER 1. - INTRODUCTION

The established procedures to design shallow foundations on the basis of preboring pressuremeter tests are presented in detail in this report. In a first part the bearing capacity and settlement calculations are described in the form of step-by-step procedures. Then the accuracy of the methods presented are evaluated by comparing predicted and measured behavior of shallow foundations for over 50 case histories. Finally, design examples are solved to illustrate the design rules.

It must be emphasized that one of the critical elements for the successful prediction of shallow foundation behavior using these design rules is the performance of quality pressuremeter tests. Such quality pressuremeter tests can only be performed by trained professionals.

CHAPTER 2. - BEARING CAPACITY

2.1 Theoretical Background

Figures 1 and 2 show the analogy between the pressuremeter limit pressure p_{L} and the ultimate bearing capacity q_{p}. If the penetration of a circular footing is associated with the expansion of a spherical cavity, then the ultimate bearing capacity of that footing is given by the limit pressure to the expansion of a spherical cavity (p_{L} sphere). The pressuremeter test on the other hand is associated with the expansion of a cylindrical cavity and leads to a limit pressure (p_{L} cylinder). The ratio between the pressuremeter limit pressure and the ultimate bearing capacity of a circular footing could therefore be expressed as the pressuremeter bearing capacity factor, k :

$$
\begin{equation*}
k=\frac{p_{L}(\text { sphere })}{p_{L}(\text { cylinder })} \tag{1}
\end{equation*}
$$

This theoretical bearing capacity factor can be evaluated using plasticity theory; such values of k vary from 1.4 to 2.4 (6). However, the k values have been determined from full scale field tests.

2.2 Methods for Funding the Bearing Capacity Factor, k

At present there are three methods available to find the bearing capacity factor for shallow foundations. These are: the Menard chart

FIGURE 1: Pressuremeter Bearing Capacity Method for Foundations.

Bearing Capacity Of Plate $=6 \mathrm{c}_{\mathrm{u}}$ Part Of Bearing Capacity
Due To Vertical Resistonce Only $=2 c_{u}$
Part Of Bearing Capacity Due
To Lateral Resistance Only $=4 c_{u}$
Where $c_{u} \equiv$ Undrained Shear Strength

$$
\begin{aligned}
& q^{*}=k P_{\text {Le }}^{*} \\
& 6 c_{u}=k \times 4 c_{u} \longrightarrow k=1.5
\end{aligned}
$$

FIGURE 2: Footing Capacity Due To Lateral Soil Support
(Ref. 10, Fig. 3), charts by Baguelin, Jezeguel, and Shields (B.J.S., Ref. 1, Fig. 4), and a chart developed after Bustamante and Gianselli (B.G., Ref. 3, Fig. 5).

Figure 5 was obtained from the early part of the B.G. chart for piles. It was assumed that circular footings have the same capacity factors as very shallow bored piles. This led to the design curves for circular footings. The curves for the strip footings were obtained by reducing consistently the k values of the circular footings.

The Menard, the B.J.S., and the B.G. charts relate the bearing capacity factor to a relavtive depth for various soil classifications. These charts can handle circular, square, and strip footings. Values of k must be interpolated for rectangular footings.

The Menard and B.G. charts use similar soil classification tables to distinguish between design curves (Figures 6 and 7). Both charts express k as a function of the ratio of the equivalent embedment depth of the foundation $\left(H_{e}\right)$ to the radius of the foundation R. For non circular footings the radius of the foundation is considered to be half the width B of the foundation.

The B.J.S. charts express k as a function of the depth to width ratio $\frac{H_{e}}{B}$ (Figure 4). There are four charts; each one is used for a single soil classification and gives different curves for different soil strengths $\left(p_{L}^{*}\right)$. This seems to allow for a more detailed determination of k. Anytime an interpolation is necessary to find the bearing capacity factor, a linear variation is assumed to exist between the design points on the chart; for rectangular footings the interpolation parameter is $\frac{B}{L}$ where L is the length of the foundation.

[^0]

FIGURE 4: Bearing Capacity Factors For
Baguel in, Jezeguel, Shields
Method (Reference 1)

FIGURE 4: (Continued)

FIGURE 5: Bearing Capacity Factors
For Bustamante and Gianeselli
(Reference 3)

Fiqure 6: Soil Categories for Use with Menard Bearing Capacity Chart of Figure 3 (Reference 10)

LIMIT PRESSURE (psf)

15000 Soft Clay
17000 Silt and Soft Chalk 1

15000 Loose Clayey, Silty, or Muddy Soil

$21-42,000$	Medium Dense Sand and Gravel
$25-63,000$	Clay and Compact Silt
$31-84,000$	Marl and Limestone-Marl
$21-52,000$	Weathered Chalk
$52-84,000$	Weathered Rock
63,000	Fragmented Chalk
94,000	Very Compact Mar1

52,000 Dense to Very Dense Sand and Grave1
94,000 Fragmented Rock

Figure 7. Soil Categories for Use with Bustamante and Gianeselli Bearing Capacity Chart of Figure 5 (Reference 3)

The B.J.S. and Menard charts give similar k values; the B.G. chart gives consistently lower values. The effects of these differences on bearing capacity can be seen in examples $1 a, b, c$ and $2 a, b, c$.

2.3 Bearing Capacity Equation

The ultimate bearing capacity, q_{p} is:

$$
\begin{equation*}
q_{p}=k p_{L e}^{*}+q_{0} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& k=\text { pressuremeter bearing capacity factor (Figs. 3, 4, 5), } \\
& p_{L}^{*}=\text { net limit pressure }=p_{L}-p_{\text {oh }} \text {, } \\
& p_{o h}=\text { total horizontal stress at rest } p_{L}=\text { limit pressure (from test), } \\
& p_{\text {Le }}^{*}=\text { equivalent net limit pressure near the foundation level, and } \\
& q_{u}=\text { total stress overburden pressure at foundation level. } \\
& \text { 2.4 Calculating } P_{\text {Le }}^{*} \text {, the Equivalent Limit Pressure } \\
& p_{L e}^{*}=\sqrt[n]{p_{L 1}^{*} \times p_{L 2}^{*} \times \ldots x p_{L n}^{*}} \tag{3}
\end{align*}
$$

where $p_{L 1}$, • , $p_{L n}$ are the net limit pressures obtained from tests performed within the $(+) 1.5 B$ to (-) $1.5 B$ zone near the foundation level. See examples 3 and 4.
2.5 Calculating H_{e}, the Equivalent Depth of Embedment

$$
\begin{equation*}
H_{e}=\sum_{1}^{n} \Delta z_{i} \frac{p_{L i}^{*}}{p_{L e}^{*}} \tag{4}
\end{equation*}
$$

where $p_{L i}^{*}$ are the limit pressures obtained from tests between the ground surface and the foundation level, and Δz_{i} are the thicknesses of the elementary layers corresponding to the pressuremeter tests. See examples 3 and 4.

2.6 Obtaining k, the Pressuremeter Bearing Capacity Factor

The relative embedment depth is H_{e} / R for the Menard and the B.G. method, and H_{e} / B for the B.J.S. method. The parameter R is the radius of the footing or half the width and B is the diameter or the width of the footing.

The soil category is determined from Figures 6 and 7 for Menard and B.G. method, respectively; B.J.S. has separate charts for different soils. Then the bearing capacity factor is read on Figure 3, 4, or 5 . If the footing is rectangular, linear interpolation is performed between the case of a square footing and the case of a strip footing; the interpolating parameter is B / L. See Examples 1, 2, and 3 .
2.7 Calculating q_{p}, $q_{\text {safe }}$, and $q_{\text {net }}$

$$
\begin{align*}
& q_{p}=k p_{\text {Le }}^{*}+q_{0}, \tag{5}\\
& q_{\text {safe }}=\frac{k p_{\text {Le }}^{*}}{3}+q_{o}, \text { and } \tag{6}\\
& q_{\text {net }}=q_{\text {safe }}-q_{o}=\frac{k p_{L e}^{*}}{3} . \tag{7}
\end{align*}
$$

See Examples 1, 2, and 3, Section 3.

2.8 Reduction of the Bearing Capacity Factor for Footings Near Excavations

It is sometimes necessary or practical to set footings near slopes or excavations. In this case the bearing capacity factor must be reduced to allow for the reduced lateral confinement in the soil below the footing.

Menard (10) proposes a reduction factor (μ) related to the tangent of the angle β between the near edge of the footing and the bottom of the excavation, or the angle of the slope on which the footing rests. The definition of β and the value of μ can be found on Figure 8 . The bearing capacity of the footing, $q^{\prime}{ }_{p}$ is:

$$
q_{p}^{\prime}=\mu q
$$

where q_{p} is the bearing capacity of the footing on flat ground and μ is the reduction factor. According to Menard, $\tan \beta$ should not exceed 0.67 .

FIGURE 8: REDUCTION OF THE BEARING CAPACITY OF A
FOOTING AS A FUNCTION OF TAN β (Reference 10)

CHAPTER 3. - SETTLEMENT

3.1 Menard Method

3.1.1 Theoretical Background

Two settlements can be considered: an undrained or no volume change settlement s_{u} which takes place rapidly and a drained or final settlement s_{T}. In elasticity s_{u} would be calculated by using undrained parameters (E_{u}, v_{u}, G_{u}) and s_{T} by using drained-long term parameters ($E^{\prime}, v^{\prime}, G$) where: E is Young's modulus, v is Poisson's ratio, and G is the shear modulus.

The stress tensor (σ) at any point within the loaded mass of soil can be decomposed into its spherical component (σ_{s}), and deviatoric component $\left(\sigma_{d}\right)$:

$$
\begin{equation*}
\sigma=\sigma_{s}+\sigma_{d} \tag{8}
\end{equation*}
$$

In elasticity the stress-strain relations can be written:

$$
\begin{align*}
& \sigma_{s}=3 K_{\varepsilon S}=\frac{E}{3(1-2 v)} \varepsilon_{s} \tag{9}\\
& \sigma_{d}=2 G_{d}=\frac{E}{1+v}{ }^{\varepsilon_{d}} \tag{10}
\end{align*}
$$

where

$$
\begin{aligned}
K & =\text { Bulk Modulus, } \\
\varepsilon_{s} & =\text { Spherical Strain Tensor, and } \\
\varepsilon_{d} & =\text { Deviatoric Strain Tensor. }
\end{aligned}
$$

The deviatoric component of the stress tensor is the same whether it is expressed in effective stress or total stress. Therefore:

$$
\begin{equation*}
\sigma_{d u}=\sigma_{d} \tag{11}
\end{equation*}
$$

Since,

$$
\begin{equation*}
\sigma_{d u}=2 G_{u} \varepsilon_{d} \tag{12}
\end{equation*}
$$

and,

$$
\begin{equation*}
\sigma_{d}^{\prime}=2 G^{\prime} \varepsilon_{d} \tag{13}
\end{equation*}
$$

then,

$$
\begin{equation*}
G_{u}=G^{\prime}=G . \tag{14}
\end{equation*}
$$

Let us consider the settlement of a rigid circular plate on an elastic half space:

$$
\begin{equation*}
s_{T}=\frac{\pi}{8} \frac{1-v^{\prime}}{G} q B \tag{15}
\end{equation*}
$$

and,

$$
\begin{equation*}
s_{u}=\frac{\pi}{8} \frac{1-0.5}{G} q B \tag{16}
\end{equation*}
$$

The difference $s_{T}-s_{u}$ is the consolidation settlement s_{c},

$$
\begin{align*}
& s_{u}=\frac{\pi}{16} \frac{q B}{G} \tag{17}\\
& s_{c}=\frac{\pi}{16}\left(1-2 v^{\prime}\right) \frac{q B}{G} \tag{18}
\end{align*}
$$

For an average Poisson's ratio (u^{\prime}) of $0.33, s_{u}$ is three times larger. than s_{C} and therefore represent 75% of the total settlement s_{T}; this shows that when the width of the foundation is small compared to the depth of the compressible layer (most common case for shallow footings) the undrained settlement is the major portion of the final settiement.

The above discussion of the settlement problem is the backbone of
the pressuremeter equation for settlement (3):

$$
\begin{equation*}
s=\frac{2}{9 E_{d}} q B_{o}\left[\lambda_{d} \frac{B}{B_{0}}\right]^{\alpha}+\frac{\alpha}{9 E_{c}} q \lambda_{c} B \tag{19}
\end{equation*}
$$

deviatoric settlement
spherical settlement
where
$s=$ footing settlement,
$E_{d}=$ pressuremeter modulus within the zone of influence of the deviatoric tensor,
$q=$ footing net bearing pressure $q_{\text {net }}$,
$B_{0}=$ reference width of 2 ft . or 60 cm .,
$B=$ footing width,
$\lambda_{d}=$ shape factor for deviatoric term (Figure 10),
$\lambda_{c}=$ shape factor for spherical term (Figure 10),
$\alpha=$ rheological factor (Figure 9), and
$E_{C}=$ pressuremeter modulus within the zone of influence of the spherical tensor.

This equation is an elasticity equation which has been altered to take into account the real soil behavior, in particular the footing scale effect B^{α} and the magnitude of the pressuremeter modulus. This equation is applicable to pressuremeter results obtained in prebored holes.

3.1.2 Calculating the Layer Moduli

The soil below the foundation level is divided into a series of elementary layers $\mathrm{B} / 2$ thick (Fig. 11.) . In each layer the average pressuremeter modulus is calculated using the PMT results within that

Soil Type	Peat Clay				Silt		Sand	Sand and Gravel		
	E / p_{L}^{*}	α								
Overconsolidated			. >16	1	>14	2/3	>12	1/2	>10	1/3
Normally consolidated	for all values	1	-9-16	2/3	8-14	1/2	7-12	1/3	6-10	1/4
Weathered and/or remoulded			7-9	1/2		1/2		1/3		1/4
Rock	Extremely fractured				Other		Slightly fractured or extremely weathered			
	$\alpha=1 / 3$				$\alpha=1.2$		$\alpha=2 / 3$			

FIGURE 9: Rheological Factor a (Reference 1)

FIGURE 10: Shape Factors λ_{c}, λ_{d}. (Reference 1)

FIGURE 11: Layers to be considered in the Settlement Analysis
layer and the harmonic mean technique,

$$
\begin{equation*}
\frac{n}{E_{k}}=\sum_{1}^{n} \frac{1}{E_{i}} \tag{20}
\end{equation*}
$$

where

$$
\begin{aligned}
& E_{i}=\text { PMT moduli within } k \text { th layer and } \\
& E_{k}=\text { average PMT modulus of } k \text { th layer. }
\end{aligned}
$$

This process is repeated for all layers (1 through 16); if no.PMT data is available beyond a certain depth z the moduli of the layers deeper than z are assumed to be equal to the deepest measured modulus. See Example 3.
3.1.3 Calculating E_{c} and E_{d} -

According to the theory of elasticity the spherical part of the strain tensor (ε_{s}) decreases rapidly with depth (1); on the contrary, the magnitude of the deviatoric part of the strain tensor (E_{d}) is significant even at large depth. As a result, E_{c} is taken as the modulus of the first layer under the footing (see Example 3). On the other hand, E_{d} is taken as an equivalent modulus within 16 layers, $B / 2$ thick, under the footing; the formula.which gives the equivalent distortion modulus E_{d} is based on an assumed reasonable E_{d} strain distribution (2):

$$
\begin{equation*}
\frac{1}{E_{d}}=\frac{1}{4}\left(\frac{1}{E_{1}}+\frac{1}{0.85 E_{2}}+\frac{1}{E_{3 / 4 / 5}}+\frac{1}{2.5 E_{6 / 7 / 8}}+\frac{1}{2.5 E_{9 / 16}}\right) \tag{21}
\end{equation*}
$$

where $E_{p / q}$ is the harmonic mean of the moduli of layers p to q. For example,

$$
\frac{3}{E_{3 / 4 / 5}}=\frac{1}{E_{3}}+\frac{1}{E_{4}}+\frac{1}{E_{5}}
$$

See Examples 3 and 4 for examples of complete calculations.

3.1.4 0btaining. α and λ

The parameters α, λ_{d}, and λ_{c} are obtained from Figures 9 and 10 . The determination of α is made by assessing the soil type and estimating the state of consolidation through the use of the ratio, E / p_{L}^{*}. The shape factors λ_{c} and λ_{d} depend on the length to width ratio, L/B. See Examples 1, 2, and 3.

3.1.5 Calculating the Settlement

The settlement is calculated using equation (19) mentioned above; the bearing pressure is taken to be the net safe pressure:

$$
\begin{equation*}
q_{\text {net }}=q_{\text {safe }}-q_{0} . \tag{7}
\end{equation*}
$$

See Examples 1, 2, and 3.

3.1.6 The Special Case of a Thin Soft Layer at Depth

In this case the settlement is (1):

$$
\begin{equation*}
s=s^{\prime}+s^{\prime \prime} \tag{22}
\end{equation*}
$$

where s ' is the settlement of the footing when considering that the modulus of the soft layer ($E_{\text {soft }}$) is the same as the modulus of the soil immediately above the soft layer ($E_{\text {hard }}$) ; and $s^{\prime \prime}$ is the compression of the soft layer alone.

$$
\begin{align*}
& s^{\prime}=\frac{2}{9 E_{d}} q B_{o}\left(\lambda_{d} \frac{B}{B_{0}}\right)^{\alpha}+\frac{\alpha}{9 E_{c}} q \lambda_{c} B \text { and } \tag{19}\\
& s^{\prime \prime}=\alpha\left(\frac{1}{E_{\text {soft }}}-\frac{1}{E_{\text {hard }}}\right) \Delta \sigma_{v} H . \tag{23}
\end{align*}
$$

$\Delta \sigma_{V}$ is the average increase in vertical stress in the soft layer and H is the thickness of the soft layer. The settlement $s^{\prime \prime}$ is calculated using an elasticity formula with a modulus equal to E / α. See Example 5.
3.1.7 The Special Case of a Thin Soft Layer Close to the Ground Surface

If the raft or the embankment rests on a soft layer which is thinner than $B / 2$, the settlement of the soft layer is calculated as (1):

$$
\begin{equation*}
s=\sum_{1}^{n} \frac{\alpha \mathfrak{i} \beta}{E_{i}} \Delta \sigma i \quad \Delta z_{i}, \tag{24}
\end{equation*}
$$

where n is the number of layers constituting the soft layer and β is a. function of the safety factor, F.

$$
\beta=\frac{2}{3} \times \frac{F}{F-1}
$$

F is the ratio of ultimate bearing capacity to the pressure applied by the foundation, $\Delta \sigma_{v i}$ is the average increase in vertical pressure in the $i \frac{\text { th }}{}$ layer computed by elastic theory, αi is the rheological factor for the i th layer, E_{i} is the pressuremeter modulus for the $i \frac{t h}{}$ layer, and $\Delta_{z i}$ is the thickness of the $i \frac{t h}{}$ layer. Equation (24) above is based on the theory of elasticity using a modulus $\frac{E}{\alpha}$.

The coefficient β tends to take into account the increase in compressibility beyond the preconsolidation pressure and is explained as
follows:

1. s is a consolidation settlement,
2. if the factor of safety is 3 , the bearing pressure is likely to be close to or smaller than the preconsolidation pressure, and β is 1 in this case.
3. if the factor of safety is less than 3 , the bearing pressure is likely to exceed the preconsolidation pressure and β increases accordingly.

See Example 6.

3.2 Settlement : Schmertmann Method Using Pressuremeter Moduli

A method was developed by Schmertmann to calculate the settlement of shallow footings on sands $(11,12)$. The method is based on the theory of elasticity. A simplified strain distribution under the footing is assumed, a profile of moduli is obtained, and the compression of the layers within the depth of influence is calculated.

Schmertmann recommended that the soil modulus be obtained from the cone penetrometer test (CPT) by a correlation to the CPT point resistance. If no cone penetrometer data is available, the Standard Penetration Test blow count could also be used. Although Schmertmann made no mention of it, it appears to be logical to use the pressuremeter modulus profile in connection with this method. However, the pressuremeter modulus is usually a large strain modulus and may not be appropriate for Schmertmann's method. Further work is necessary to prove whether or not this alternate method is accurate. Encouraging results have already been obtained (4).

The Schmertmann-pressuremeter method is described in detail below:

$$
\begin{equation*}
s=c_{1} c_{2} \Delta p \sum_{0}^{n}\left(\frac{I_{z i}}{E_{i}} \Delta z_{i}\right) \tag{26}
\end{equation*}
$$

where:
$C_{1}=$ Correction factor to take into account beneficial effect of embedment depth
$C_{1}=1-0.5 \frac{p_{o v}^{\prime}(1)}{p} ; 0.5<c_{1}<1$ $p_{o v(1)}^{\prime}=$ effective vertical stress at foundation level after construction (See Figure 12)
$C_{2}=$ correction factor accounting for creep settlement

$$
\begin{aligned}
& c_{2}= 1+0.2 \log \left(\frac{t(y r s)}{0.1}\right) ; c_{2} \leq 1 \\
& t \leq 1 \mathrm{yrs} \\
& \Delta p= \text { net bearing pressure }=p-p_{o v}^{\prime} \\
& p= \text { bearing pressure at foundation level } \\
& p_{o v}^{\prime}= \text { effective vertical stress at foundation level before } \\
& \text { construction } \\
& n= \text { total number of layers } \\
& I_{z i}= \text { average influence factor for the } i \text { th layer }
\end{aligned}
$$

Figure 12 shows the simplified distribution of the strain influence factor proposed by Schmertmann. This distribution reaches a maximum $I_{z m a x}$, expressed as:

$$
I_{z \max }=0.5+0.1 \sqrt{\frac{\Delta p}{\sigma_{v p}^{\prime}}}
$$

where:

$$
\begin{aligned}
& \sigma_{v p}^{\prime}=\text { effective stress at the depth of } I_{z m a x} \text { before construction } \\
& E_{i}=\text { pressuremeter modulus of the } i \text { th } \\
& \Delta z_{i}=\text { thickner } \\
& \Delta \frac{t h}{} \text { layer }
\end{aligned}
$$

The distribution of I_{z} for square and strip footings is shown on Figure 12. Interpolations must be made for rectangular footings.

INFLUENCE FACTOR DISTRIBUTION
 FOR SQUARE AND STRIP FOOTINGS

Figure 12: Schmertmann Settlement Concepts and the Influence Factor Distribution.

In this chapter a series of examples have been solved to show the detailed steps of the Pressuremeter Design Method for shallow foundations.

Example 1: Rectangular footing on a uniform deposit of clay. Menard, B.J.S., and B.G. methods demonstrated.

Example 2: Rectangular footing on a uniform deposit of sand. Menard, B.J.S., and B.G. methods demonstrated.

Example 3: Strip footing on a layered deposit of sand. Menard, B.J.S., and B.G. methods demonstrated.

Example 4: Rectangular footing on a layered deposit of clay. Menard method.

Example 5: Strip footing on a layered deposit of sand with a soft silt layer at depth.

Example 6. Mat foundation on a soft soil layer close to the ground surface.

EXAMPLE PROBLEM I: RECTANGULAR FOOTING ON CLAY

EXAMPLE Ra. SHALLOW FOOTING ON A CLAY (MENARD METHOD)

Bearing Capacity

$$
\begin{array}{ll}
q_{L}=k p_{L}^{*}+q_{0} & q_{\text {safe }}=\frac{k}{3} p_{L}^{*}=q_{0} \\
p_{L e}^{*}=p_{L}^{*} & E d=E c \text { (homogenous soil layer) } \\
h e=h=5.0 \mathrm{ft} & R=\frac{B}{2}=3.0 \mathrm{ft}
\end{array}
$$

From Fig. $6 \rightarrow$ Soil Category II
$\mathrm{He} / \mathrm{R}=1.67$ and $B / \mathrm{L}=0.46$

From Fig. $3 \rightarrow k($ strip $)=1.20$

$$
k(\text { square })=1.76
$$

$$
\begin{aligned}
& \text { Interpolating } \rightarrow k\left(\frac{B}{L}=0.46\right)=1.46 \\
& q_{\text {safe }}=1.46 / 3 \times 30700 \mathrm{psf}+\left(115 \frac{1 \mathrm{~b}}{3} \times 5 \mathrm{ft}\right)=15516 \mathrm{psf}
\end{aligned}
$$

Settlement

$$
s=\underbrace{\frac{2}{9 E_{d}} q_{n e t} B_{o}\left[\lambda_{d} \frac{B}{B_{0}}\right]}_{\begin{array}{l}
\text { deviatoric } \\
\text { settlement }
\end{array}}+\underbrace{\frac{\alpha}{9 E_{c}} q_{n e t} \lambda_{c} B}_{\begin{array}{l}
\text { spherical } \\
\text { settlement }
\end{array}}
$$

$$
q_{\text {net }}=q_{\text {safe }}-q_{0}=15516-575=14941 \text { psf }
$$

$$
E / p_{L} \sim 7 \text {; From Fig. } 9 \rightarrow \alpha=0.5
$$

$$
L / B=2.2 ; \text { From Fig. } 10 \rightarrow \lambda_{d}=1.58 \text { and } \lambda_{c}=1.22
$$

$s=\frac{2}{9} \frac{1}{230,000} \times 14941 \times 2.0\left[1.58 \frac{6.0}{2.0}\right]^{0.5}+\frac{0.5}{9 \times 230,000} \times$ $14941 \times 1.22 \times 6.0$
$s=.063+.026=.089 \mathrm{ft}>\mathrm{s}_{\mathrm{a} 11}=.082 \mathrm{ft}$
therefore, use $q_{a 11}=\frac{.082}{.089} \times 15516=14296$ psf

EXAMPLE 1b. SHALLOW FOOTING ON A CLAY (B.J.S. METHOD)

Bearing Capacity

$$
\begin{array}{ll}
q_{L}=k p_{L}^{*}=q_{0} & \\
p_{L e}^{*}=p_{L}^{*} & E d=E c \\
H e=h=5.0 \mathrm{ft} & R=\frac{B}{2}=3.0 \mathrm{ft} \\
D=H e=5.0 \mathrm{ft} & D / B=1.7
\end{array}
$$

From Fig. 4, k values for clay square footing:

$$
\begin{aligned}
& \text { for } p_{L}^{*}=83540 \text { psf } \rightarrow k=2.66, \\
& \text { for } p_{L}^{*}=20880 \text { psf } \rightarrow k=2.36, \text { then } \\
& \text { for } p_{L}^{*}=30700 \text { psf } \rightarrow k=2.41
\end{aligned}
$$

Similarly, for a strip footing: $k=1.54$

One most interpolate between strip and square footings to yield:

$$
\begin{aligned}
& \quad k\left(\frac{B}{2}=0.46\right)=1.94 \\
& q_{\text {safe }}=\frac{1.94}{3} \times 30700+(115 \times 5)=20428 \mathrm{psf} \\
& q_{\text {net }}=19853 \mathrm{psf}
\end{aligned}
$$

Settlement

$$
s=\frac{2}{9 E_{d}} q_{n e t} B_{o}\left[\lambda_{d} \frac{B}{B_{0}}\right]^{\alpha}+\frac{\alpha}{9 E_{c}} q_{n e t} \lambda_{c} B
$$

$E / p_{L} \sim 7$, then from Fig. $9 \rightarrow \alpha=0.5$
$L / B=2.2$, then from Fig. $10 \rightarrow \lambda_{c}=1.22$ and $\lambda_{d}=1.58$
$s=\frac{2}{9} \frac{1}{230,000} \times 19853 \times 2.0 \times\left(1.58 \times \frac{6.0}{2.0}\right)^{0.5}+\frac{0.5}{9} \frac{1}{230,000} \times$
$19853 \times 1.22 \times 6.0$
$s=.082+.035=.117 \mathrm{ft}>\mathrm{s}_{\mathrm{a} 17}=.082 \mathrm{ft}$
therefore, use $p_{a 11}=\frac{.082}{.117} \times 20428=14317$ psf

EXAMPLE Rc. SHALLOW FOOTING ON A CLAY (B.G. METHOD)

Bearing Capacity

$$
\begin{array}{ll}
q_{L}=k p_{L}^{*}+q_{0} \\
p_{L e}^{*}=p_{L}^{*} & E d=E c \quad h=H e=5.0 \mathrm{ft}
\end{array}
$$

From Fig. 7, hard silty clay \rightarrow soil category 2

$$
R=\frac{B}{2}=3.0 \mathrm{ft} \quad \frac{H e}{R}=1.7 \quad \frac{B}{L}=0.5
$$

From Fig. 5: k(strip) $=1.0$

$$
k(\text { square })=1.09
$$

Interpolating: $k\left(\frac{B}{L}=0.46\right)=1.04$
$q_{\text {safe }}=\frac{1.04}{3} \times 30700+(115 \times 5)=11218 \mathrm{psf}$
$q_{\text {net }}=10643$ psf

Settlement

$s=\frac{2}{9 E_{d}} q_{n e t}\left[\lambda_{d} \bar{B} \bar{B}_{0}^{\alpha}+\frac{\alpha}{9 E_{c}} q_{\text {net }} \lambda_{c} B\right.$
$E / p_{L} \sim 7$, then from Fig. $9 \rightarrow \alpha=0.5$
$L / B=2.2$, then from Fig. $10 \rightarrow \lambda_{c}=1.22$ and $\lambda_{d}=1.58$

$$
s=\frac{2}{9} \frac{1}{230,000} \times 10643 \times 2.0 \times\left(1.58 \frac{6.0}{2.0}\right)^{0.5}+\frac{0.5}{9 \times 230,000} \times
$$

$$
\begin{aligned}
& 10643 \times 1.22 \times 6.0 \\
& s=.045+.034=.079 \mathrm{ft}>s_{\mathrm{all}}=.082 \mathrm{ft} \\
& \text { therefore, } p_{a 11}=q_{\text {safe }}=11218 \mathrm{psf}
\end{aligned}
$$

EXAMPLE PROBLEM 2: RECTANGULAR FOOTING ON SAND

EXAMPLE Ra. SHALLOW FOOTING ON SAND (MENARD METHOD)

Bearing Capacity

$$
\begin{aligned}
& q_{L}=k p_{L}^{*}+q_{0} \\
& p_{L e}^{*}=p_{L}^{*} \quad E d=E c \text { (homogenous soil) } \quad H e=h=5.0 \mathrm{ft}
\end{aligned}
$$

From Fig. 6 + Soil Category III

$$
R=\frac{B}{2}=3.0 \mathrm{ft} \quad \frac{\mathrm{He}}{\mathrm{R}}=1.7 \quad \frac{B}{L}=0.46
$$

then from Fig. $3 k(s t r i p)=1.35$

$$
k(\text { square })=2.33
$$

interpolating $k\left(\frac{B}{L}=0.46\right)=1.80$

$$
\begin{aligned}
& q_{\text {safe }}=\frac{1.80}{3} \times 54300+(115 \times 5)=33155 \mathrm{psf} \\
& q_{\text {net }}=q_{\text {safe }}-q_{0}=32580 \mathrm{psf}
\end{aligned}
$$

Settlement

$$
s=\underbrace{\frac{2}{9 E_{d}} q_{\text {net }} B_{0}\left[\lambda_{d} \frac{B}{B_{0}}\right]^{\alpha}}_{\begin{array}{l}
\text { deviatoric } \\
\text { component }
\end{array}}+\underbrace{\frac{\alpha}{9 E_{c}} q_{\text {net }}{ }_{c}{ }^{B}{ }^{B}}_{\begin{array}{c}
\text { spherical } \\
\text { component }
\end{array}}
$$

$\frac{E}{p_{L}} \sim 12$; then from Fig. 9: $\alpha=0.33$
$L / B=2.2$, then from Fig. $10: \lambda_{c}=1.22$ and $\lambda_{d}=1.58$

$$
\begin{aligned}
& s=\frac{2}{9} \frac{32580}{689,000} \times 2.0 \times\left(1.58 \frac{6.0}{2.0}\right)^{0.33}+\frac{0.33}{9} \times \frac{32580}{689,000} \times \\
& \quad 1.22 \times 6.0 \\
& s=.035+.013=.048 \mathrm{ft}<s_{a 11}=.082 \mathrm{ft} \\
& \text { therefore, use } p_{a 11}=q_{\text {safe }}=33155 \mathrm{psf}
\end{aligned}
$$

EXAMPLE Rb. SHALLOW FOOTING ON SAND (B.J.S. METHOD)

Bearing Capacity

$$
\begin{array}{ll}
q_{L}=k p_{L}^{*}+q_{0} & \\
p_{L e}^{*}=p_{L} & E d=E C \quad D=H e=5.0 \mathrm{ft}
\end{array}
$$

From Fig. 4 : Use chart for sand and gravel

$$
\frac{D}{B}=\frac{5.0}{6.0}=0.83 \quad p_{L}^{*}=54300
$$

For a square footing: $\quad p_{L}^{*}=125300$ psf $\rightarrow k=2.64$

$$
\left.\begin{array}{rl}
p_{L}^{*} & =41770 \mathrm{psf} \rightarrow k
\end{array} \begin{array}{rl}
& 2.55 \\
\text { then for } p_{L}^{*} & =54300 \mathrm{psf} \rightarrow k
\end{array}\right) 2.56
$$

Similarly, for a strip footing: $k=1.43$
Interpolating with $\frac{B}{L}=0.46 \rightarrow k=1.95$
$q_{\text {Safe }}=\frac{1.95}{3} \times 54300+(115 \times 5)=35870 \mathrm{psf}$
$q_{\text {net }}=35295$ psf

Settlement

$$
\begin{aligned}
& s=\frac{2}{9 E_{d}} q_{\text {net }} B_{0}\left(\lambda_{d} \frac{B}{B_{0}}\right)^{\alpha}+\frac{\alpha}{9 E_{c}} q_{\text {net }} \lambda_{c} B \\
& E / p_{L} \sim 12, \text { From Fig. } 9 \rightarrow \alpha=0.33 \\
& L / B=2.2, \text { From Fig. } 10 \rightarrow \lambda_{d}=1.58 \text { and } \lambda_{c}=1.22
\end{aligned}
$$

$$
\begin{aligned}
& s=\frac{2}{9} \frac{35295}{689,000} \times 2.0 \times\left(1.58 \frac{6.0}{2.0}\right)^{0.33}+\frac{0.33}{9} \frac{35295}{689,000} \times 1.22 \times 6.0 \\
& s=.038+.014=.052 \mathrm{ft} \\
& s<s_{a 11} \text {, therefore, use } p_{a 11}=q_{\text {safe }}=35870 \mathrm{psf}
\end{aligned}
$$

EXAMPLE 2c. SHALLOW FOOTING ON SAND (B.G. METHOD)

Bearing Capacity

$$
\begin{array}{ll}
q_{L}=k p_{L}^{*}+q_{0} & \\
p_{L e}^{*}=p_{L}^{*} \quad H e=h=5.0 \mathrm{ft} \quad E d=E C
\end{array}
$$

From Fig. $7 \rightarrow$ Soil Category 3

$$
\frac{H e}{R}=1.7 \quad \frac{B}{L}=0.46
$$

From Fig. 5: $k($ square $)=1.21$

$$
k(\text { strip })=1.11
$$

Interpolating: $k\left(\frac{B}{L}=0.46\right)=1.16$

$$
\begin{aligned}
& q_{\text {safe }}=\frac{1.16}{3} \times 54300+(115 \times 5)=21571 \mathrm{psf} \\
& q_{\text {net }}=20996 \mathrm{psf}
\end{aligned}
$$

Settlement

$s=\frac{2}{9 E_{d}} q_{\text {net }} B_{o}\left(\lambda_{d} \frac{B}{B_{0}}\right)^{\alpha}+\frac{\alpha}{9 E_{c}} q_{\text {net }} \lambda_{c} B$
$E / p_{L} \sim 12$, then from Fig. $9 \rightarrow \alpha=0.33$
$L / B=2.2$, then from Fig. $10 \rightarrow \lambda_{d}=1.58$ and $\lambda_{c}=1.22$
$s=\frac{2}{9} \frac{20996}{689,000} \times 2.0 \times\left(1.58 \frac{6.0}{2.0}\right)^{0.33}+\frac{0.33}{9} \frac{20996}{689,000} \times 1.22 \times 6.0$
$s=.023+.008=.031 \mathrm{ft}$
$s<s_{a 11}$, therefore, use $p_{a 11}=q_{\text {safe }}=21571$ psf

EXAMPLE PROBLEM 3:
STRIP FOOTING ON SAND

EXAMPLE 3 STRIP FOOTING ON SAND

Bearing Capacity

$q_{L}=k p_{L e}^{*}+q_{o}$
where

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{Li}}^{\star}=\left[\begin{array}{ll}
n & \mathrm{p}_{\mathrm{Li}}
\end{array}\right]^{1 / \mathrm{n}} \equiv \text { equivalent net limit pressure } \\
& \mathrm{p}_{\mathrm{L} 1}^{\star}=(50100 \times 39700)^{1 / 2}=44600 \\
& \mathrm{p}_{\mathrm{L} 2}^{\star}=(39700 \times 35500 \times 33400)^{1 / 3}=35700 \\
& \mathrm{p}_{\mathrm{L} 3}^{\star}=37400 \\
& \mathrm{p}_{\mathrm{Le}}^{\star}=(44600 \times 35700 \times 37400)^{1 / 3}=38600 \\
& H \mathrm{He}=\frac{1}{\mathrm{p}_{\mathrm{Le}}^{\star}} \sum_{1}^{n}\left(\mathrm{p}_{\mathrm{Li}}^{*} \times \mathrm{z}_{\mathrm{i}}\right) \equiv \text { equivalent embedment depth where } 1-\mathrm{n} \text { are } \\
& \text { layers within the actual depth of embedment } \\
& H e=\frac{1}{38600}(50100 \times 5.0)=6.5 \mathrm{ft}
\end{aligned}
$$

Determination of k, (Menard)

From Fig. 6, silty sand \rightarrow soil category 1

$$
\frac{B}{L}=\frac{7.0}{33.0}=0.21 \quad \frac{h e}{R}=\frac{6.5}{3.5}=1.9
$$

From Fig. 3: k(strip) $=1.11$

$$
\begin{aligned}
& k(\text { square })=1.58 \\
& k\left(\frac{B}{L}=0.21\right)=1.30
\end{aligned}
$$

$$
q_{\text {safe }}=\frac{1.30}{3} \times 38600+(124 \times 5)+17347 \mathrm{psf}
$$

$$
q_{\text {net }}=16727 \mathrm{psf}
$$

Determination of k, (B.J.S.)

$$
\frac{D}{B}=\frac{5.0}{7.0}=0.71 \quad \frac{B}{L}=0.21
$$

From Fig. 4, sand and gravel:
square footing \rightarrow for $P_{L}^{*}=41770 ; k=2.4$

$$
\text { for } p_{L}^{*}=20890 ; k=2.0
$$

$$
\text { then, for } \mathrm{p}_{\mathrm{Le}}^{*}=38600 ; k=2.34
$$

Similarly, for a strip footing:

$$
\begin{aligned}
& \text { for } p_{L}^{*}=41770 ; k=1.35 \\
& \text { for } p_{L}^{*}=8350 ; k=1.10
\end{aligned}
$$

$$
\text { then, for } p_{L}^{*}=38600 ; k=1.31
$$

Interpolating with $\frac{B}{L}=0.21 \rightarrow k=1.53$

$$
q_{\text {safe }}=\frac{1.53}{3} \times 38600+(124 \times 5)=20306 \mathrm{psf}
$$

$$
q_{\text {net }}=19686 \mathrm{psf}
$$

Determination of k, (B.G.)

$$
\begin{array}{lll}
H e=6.5 \mathrm{ft} & \frac{\mathrm{He}}{\mathrm{R}}=\frac{6.5}{3.5}=1.9 & \frac{B}{L}=0.21
\end{array}
$$

From Fig. 7, Soil Category 2

From Fig. 5: k(square) $=1.11$

$$
\begin{gathered}
k(\text { strip })=1.0 \\
k\left(\frac{B}{L}=0.21\right)=1.02 \\
q_{\text {safe }}=\frac{1.02}{3} \times 38600+(124 \times 5)=13744 \mathrm{psf} \\
q_{\text {net }}=13124 \mathrm{psf}
\end{gathered}
$$

Settlement

$$
s=\frac{2}{9 E_{d}} q_{n} B_{0}\left(\lambda_{d} \frac{B}{B_{0}}\right)^{\alpha}+\frac{\alpha}{9 E_{c}} q_{n} \lambda_{c} B
$$

$$
\text { where } E_{c} \equiv \text { harmonic mean of E's within layer } 1
$$

$$
\begin{aligned}
E_{d} & \equiv \text { weighted average of E's from layers 1-16 } \\
E_{c}+\frac{3}{E_{C}} & =\frac{1}{343,000}+\frac{1}{326,000}+\frac{1}{299,000} \\
E_{c} & =321,632 \mathrm{psf} \\
E_{d} \rightarrow E_{1} & =E_{c}=321,632 \mathrm{psf} \\
\frac{2}{E_{2}} & =\frac{1}{299,000}+\frac{1}{372,000} \\
E_{2} & =331,529 \mathrm{psf} \\
\frac{3}{E_{3 / 4 / 5}} & =\frac{1}{428,000}+\frac{1}{585,000}+\frac{1}{524,000} \\
\frac{3}{E_{3 / 4 / 5}} & =503,842 \mathrm{psf}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3}{E_{6 / 7 / 8}}=\frac{1}{520,000}+\frac{1}{622,000}+\frac{1}{693,000} \\
& E_{6 / 7 / 8}=603,161 \mathrm{psf}
\end{aligned}
$$

$E_{9 / 16}$ is taken as equal to $E_{6 / 7 / 8}$. This is conservative since modulus increases with depth.
$\frac{4}{E_{d}}=\frac{1}{321,632}+\frac{1}{(0.85)(331,529)}+\frac{1}{503,842}+\frac{1}{(2.5)(603,161)}+$
$\frac{1}{(2.5)(603,161}$
$E_{d}=401,250 \mathrm{psf}$
Note: (0.85) and (2.5) are weighing coefficients used to indicate the relative importance of the depth to the soil layers in question.
$\frac{E_{d}}{P_{\text {Le }}^{\star}}=\frac{401,250}{38600} \sim 10$
From Fig. $9 \rightarrow \alpha_{d}=0.33$
$\frac{E_{c}}{p_{\text {Le }}^{*}}=\frac{321,632}{38600} \sim 8$
From Fig. $9 \rightarrow \alpha_{c}=0.33$

$$
\frac{L}{B}=\frac{33}{7}=4.7 \quad \text { From Fig. } 10 \rightarrow \lambda_{d}=2.09 \text { and } \lambda_{c}=1.38
$$

Settlement with Menard $q_{\text {net }}$:

$$
\begin{aligned}
& s=\frac{2}{9}=\frac{16727}{401,250}(2.0)\left(2.09 \frac{7.0}{2.0}\right)^{0.33}+\frac{0.33}{9} \frac{16727}{321,632}(1.38)(7.0) \\
& s=.036+.018=.054 \mathrm{ft}
\end{aligned}
$$

Settlement with B.J.S. ${ }^{9}$ net :

$$
\begin{aligned}
& s=\frac{2}{9} \frac{19686}{401,250}(2.0)\left(2.09 \frac{7.0}{2.0}\right)^{0.33}+\frac{0.33}{9} \frac{19686}{321,632}(1.38)(7.0) \\
& s=.042+.021=.063 \mathrm{ft}
\end{aligned}
$$

Settlement with B.G. $q_{\text {net }}$:

$$
\begin{aligned}
& s=\frac{2}{9} \frac{13124}{401,250}(2.0)\left(2.09 \frac{7.0}{2.0}\right)^{0.33}+\frac{0.33}{9} \frac{13124}{321,632}(1.38)(7.0) \\
& s=.028+.014=.042 \mathrm{ft}
\end{aligned}
$$

EXAMPLE PROBLEM 4:

RECTANGULAR FOOTING ON LAYERED SOIL

EXAMPLE 4. RECTANGULAR FOOTING ON A LAYERED SOIL (MENARD METHOD)

Bearing Capacity

$$
\begin{aligned}
& q_{L}=k p_{L e}^{*}+q_{0} \\
& \text { where: } p_{L e}^{*}=\left(p_{L 1}^{*} \times p_{L 2}^{*} \times p_{L 3}^{*}\right)^{\frac{1}{3}} \\
& p_{L 1}^{*}=33500 \mathrm{psf} \\
& p_{L 2}^{*}=(26800 \times 37900 \times 37900)^{\frac{1}{3}} \\
& p_{L 2}^{*}=33415 \mathrm{psf} \\
& p_{L 3}^{*}=(37900 \times 40200)^{\frac{1}{2}} \\
& p_{L 3}^{*}=39033 \mathrm{psf} \\
& p_{L e}^{*}=(33500 \times 33415 \times 39033)^{\frac{1}{3}} \\
& p_{L e}^{*}=34855 \mathrm{psf} \\
& H e=\frac{1}{p_{L e}^{*}} \sum_{1}^{n}\left(p_{L 1}^{*} \times \Delta z_{i}\right)=\frac{1}{34855} 33500 \times 6.0 \\
& \text { so that: }=5.77 \mathrm{ft}
\end{aligned}
$$

From Fig. $6 \rightarrow$ Soil Category II

$$
\frac{B}{L}=\frac{16}{40}=0.40 \quad \frac{H e}{R}=\frac{5.77}{8.00}=0.72
$$

$$
\text { From Fig } 3 \rightarrow k(\text { square })=1.32
$$

$$
k(\text { strip })=1.00
$$

From Fig. $3 \rightarrow k\left(\frac{B}{L}=0.40\right)=1.13$
$q_{\text {safe }}=\frac{1.13}{3} \times 34855+(6.0 \times 102)=13741 \mathrm{psf}$
$q_{\text {net }}=13129$ psf

Settlement

$$
\begin{aligned}
& s=\frac{2}{9 E_{d}} q_{\text {net }} B_{o}\left(\lambda_{d} \frac{B}{B_{0}}\right)^{\alpha}+\frac{\alpha}{9 E_{c}} q_{\text {net }} \lambda_{c} B \\
& E_{C}=\text { harmonic mean of } E \text { 's within layer } 1 \\
& \frac{3}{E_{c}}=\frac{1}{290,000}+\frac{1}{446,000}+\frac{1}{357,000} \\
& E_{c}=353,292 \mathrm{psf} \\
& E_{d}=\text { weighted harmonic mean of } E \text { 's from layers } 1-16 \\
& E_{1}=E_{c}=353,292 \mathrm{psf} \\
& \frac{2}{E_{2}}=\frac{1}{603,000}+\frac{1}{893,000} \\
& E_{2}=719,892 \text { psf } \\
& \frac{8}{E_{3 / 4 / 5}}=\frac{1}{781,000}+\frac{1}{536,000}+\frac{1}{781,000}+\frac{1}{826,000}+\frac{1}{1,562,000}+ \\
& \frac{1}{1,228,000}+\frac{1}{1,339,000}+\frac{1}{1,562,000} \\
& E_{3 / 4 / 5}=943,539 \mathrm{psf} \\
& \frac{2}{E_{6}}=\frac{1}{1,674,000}+\frac{1}{1,897,000} \\
& E_{6}=1,778,537 \mathrm{psf}
\end{aligned}
$$

$E_{6 / 8}$ and $E_{9 / 16}$ are taken equal to E_{6} since no deeper modulus data is available. This assumption is conservative if the modulus continues to increase with depth.
$\frac{4}{E_{d}}=\frac{1}{353,292}+\frac{1}{(0.85)(719,892)}+\frac{1}{943,539}+\frac{1}{(2.5)(1,778,537)}+$ $\frac{1}{(2.5)(1,778,537)}$
$E_{d}=669,523$ psf
$\frac{E d}{\star}=\frac{669,523}{34855} \sim 19$; From Fig. $9 \rightarrow \dot{\alpha}_{d}=1.0$
$P_{\text {Le }}$
$\frac{E C}{p^{\star}}=\frac{353,292}{34855} \sim 10$; From Fig. $9 \rightarrow \alpha_{c}=0.67$
$p_{\text {Le }}$
$\frac{L}{B}=\frac{40}{16}=2.5$; From Fig. $10 \rightarrow \lambda_{d}=1.82$ and $\lambda_{c}=1.25$
$s=\frac{2}{9} \frac{34855}{659,523}(2.0)\left(1.82 \frac{16}{2.0}\right)^{1.0}+\frac{0.67}{9} \frac{34855}{353,292}$
$s=.337+.147=.484 \mathrm{ft}$

Recommend bearing pressure: $p_{a 11}=\frac{.082}{.484} \times 13741$

$$
\mathrm{p}_{\mathrm{a} 11}=2328 \mathrm{psf}
$$

EXAMPLE PROBLEM 5:
STRIP FOOTING WITH SOFT LAYER AT DEPTH

EXAMPLE 5. STRIP FOOTING ON A SOFT LAYER AT DEPTH

Bearing Capacity

Estimate: $\quad q_{\text {safe }}=\frac{1}{3} k p_{\text {Le }}^{*}+q_{0}$

$$
q_{\text {net }}=q_{\text {safe }}-q_{0}=\frac{1}{3} k p_{\text {Le }}^{*}
$$

Silty sand, from Fig. $7 \rightarrow$ Soil Category 2

$$
\frac{B}{L}=\frac{6.5}{33.0}=0.2 \quad \frac{H e}{R}=\frac{5.0}{3.25}=1.54
$$

Now, from Fig. $5 \rightarrow k$ (square $)=1.06$

$$
\begin{aligned}
& k(\text { strip })=1.02 \\
& k\left(\frac{B}{L}=0.2\right)=1.03
\end{aligned}
$$

Assume that $p_{\text {Le }}^{*}$ is probably controlled by weak layer. (This is conservatively false.)

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{Le}}^{*}=(5850 \times 5640)^{\frac{1}{2}}=5744 \mathrm{psf} \\
& q_{\text {safe }}=\frac{1}{3}(1.03)(5744)+(5 \times 124)=2592 \mathrm{psf} \\
& q_{\text {net }}=1972 \mathrm{psf}
\end{aligned}
$$

Settlement

Here: $s_{T}=s^{\prime}+s^{\prime \prime}$
Where: $s^{\prime}=\frac{2}{9 E_{d}} q_{n} B_{o}\left(\lambda_{d} \frac{B}{B_{o}}\right)^{\alpha}+\frac{\alpha}{9 E_{c}} q_{n} \lambda_{\underline{c}} B$

$$
s^{\prime \prime}=\alpha\left(\frac{1}{E_{c}}-\frac{1}{E_{m}}\right) \Delta p_{c} H
$$

From Example 3, Menard method yields s' $=.054 \mathrm{ft}$
Now consider the softness of the silt layer:

$$
\begin{aligned}
& E_{c}=\text { pressuremeter modulus of soft layer } \\
& \frac{2}{E_{c}}=\frac{1}{58500}+\frac{1}{52400} \\
& E_{c}=55282 \text { psf } \\
& E_{m}=E_{d}=401,250 \text { psf (from Example 3) }
\end{aligned}
$$

Note: $\frac{1}{E_{c}}-\frac{1}{E_{m}}$ is a measure of the different hardnesses of the soil layers in question.

From Boussinesq theory and Nemmark's chart, the vertical stresses at the upper and lower surfaces of the soft layer have changed by:

$$
\begin{aligned}
& z=14.75 \mathrm{ft} \rightarrow \Delta \sigma_{v}=0.24 \text { qnet } \\
& z=20.75 \mathrm{ft}+\Delta \sigma_{v}=0.17 \mathrm{q}_{\text {net }} \\
& q_{\text {net }}=1972 \text { psf }\left(\Delta \sigma_{v}\right) \text { at } 14.75 \mathrm{ft}=473 \mathrm{psf} \\
& \left(\Delta \sigma_{\mathrm{v}}\right) \text { at } 20.75 \mathrm{ft}=335 \mathrm{psf} \\
& \text { Average } \Delta \mathrm{p}=(473+335) / 2=404 \mathrm{pst} \\
& s^{\prime \prime}=\alpha\left(\frac{1}{E_{c}}-\frac{1}{E_{m}}\right) \Delta p H \\
& \frac{\mathrm{E}_{\mathrm{C}}}{\mathrm{p}_{\mathrm{L}}^{\star}}=\frac{55282}{5744} \sim 10 \text {, From Fig. 9, silt } \rightarrow \alpha=0.5 \\
& s^{\prime \prime}=0.5\left(\frac{1}{55282}-\frac{1}{401,250}\right)(404)(20.75-14.75) \\
& s^{\prime \prime}=0.018^{\prime} \\
& \text { thus, } s_{T}=0.054^{\prime}+0.018^{\prime}=0.072^{\prime}
\end{aligned}
$$

EXAMPLE PROBLEM 6:
MAT FOUNDATION ON A SOFT LAYER CLOSE TO GROUND SURFACE

Bearing Capacity

Estimate $q_{\text {safe }}=\frac{1}{3} k p_{\text {Le }}^{*}+q_{o}$ $q_{n e t}=\frac{1}{3} k p_{\text {Le }}^{*}$

Since $\frac{\mathrm{He}}{\mathrm{R}} \sim 0 \rightarrow k=0.8$

Assume that the silt layer controls bearing capacity; then let:

$$
p_{\text {Le }}^{*} \equiv \text { average of the compressible layer }
$$

$$
P_{\text {Le }}^{*}=(5000 \times 3970 \times 3550 \times 3760)^{\frac{1}{4}}=4035 \mathrm{psf}
$$

$$
q_{\text {safe }}=\left(\frac{1}{3} \times 0.8 \times 4035\right)+(124 \times 1.5)=1262 \mathrm{psf}
$$

$$
q_{\text {net }}=1076 \mathrm{psf}
$$

Settlement

For a wide foundation underlain by a soft layer (i.e. relatively thin, soft layer)

$$
s=\int_{0}^{h} \frac{\alpha(z) B(F) p(z)}{E(z)} d z=\sum_{1}^{n \alpha} \frac{B_{i} p_{i}}{E_{i}} \Delta z_{i}
$$

For silt layer:

$$
\begin{aligned}
& \frac{E}{P_{L}^{*}} \sim 9, \text { From Fig. } 9 \rightarrow \alpha=0.5 \\
& F \equiv \text { safety factor }=\frac{k p_{L e}^{*}}{q_{\text {net }}}, \text { where } k=0.8
\end{aligned}
$$

$$
\begin{aligned}
& F=(0.8) \frac{4035}{1076}=3.0 \\
& \text { thus, } B(F)=\frac{2}{3}\left(\frac{F}{F-1}\right)=\frac{2}{3}\left(\frac{3.0}{3.0-1.0}\right)=1.0
\end{aligned}
$$

Assume that Δp_{v} due to foundation loading is equal to actual foundation pressure since layers of silt are thin compared to foundation.

Then: $\quad s=\Sigma \frac{\alpha B q_{n}}{E} \Delta z=\alpha B q_{n} \Sigma\left(\frac{\Delta z}{E}\right)$

$$
\begin{aligned}
& s=(0.5)(1.0)(1.076 \mathrm{psf})\left(\frac{(3.5-1.5)}{45100}+\frac{2.0}{34200}+\frac{2.0}{32600}+\frac{2.0}{29900}\right) \\
& s=0.124 \mathrm{ft}
\end{aligned}
$$

CHAPTER 5. - COMPARISON BETWEEN PREDICTED AND MEASURED BEHAVIOR

It has been shown in 3.1.1 that when the width of the footing (B) is small compared to the depth of the deposit (H), the major part of the settlement is induced by the deviatoric tensor (very little consolidation settlement). In section 3.1 .6 and 3.1 .7 special steps were taken to deal with the cases where the width of the foundation (B) is large compared to the thickness of the compressible layer (H); in this case the major part of the settlement is due to consolidation (Figure 13). As a result, the pressuremeter approach to settlement of shallow foundations is recommended when H / B is large (2 or more); otherwise the pressuremeter approach must be complemented by conventional consolidation tests.

Numerous comparisons of predicted versus measured settlement have been made with the pressuremeter approach (1); they are presented in Figures 14 through 16.

Experimental evidence for the bearing capacity factor k (shallow foundation) can be found in references $6,7,8$, and 1 . The experimental results are presented in Figure 17.

Figure 17 shows the design bearing capacity curves for the B.G. method and the actual data points found through experiment by Menard (1). In the investigation by Menard, the ultimate bearing capacity was considered to be the pressure at a footing penetration of 1.6 inches. The design curves shown on Figure 17 are the design curves of Bustamante and Gianeselli (Figure 7).

FIGURE 13: Pressuremeter Settlement Concepts

FIGURE 14: PREDICTED VERSUS MEASURED SETTLEMENT (Very Small Settlement)

FIGURE 15: PREDICTED VERSUS MEASURED SETTLEMENT (Moderate Settlement)

$\underline{\text { FIGURE } 16:} \begin{aligned} & \text { PREDICTED VERSUS MEASURED SETTLEMENT } \\ & \text { (Large Settlement) }\end{aligned}$

FIGURE 17: Comparison of the Bearing Capacity Factors Predicted by the B.G. Method and Measured by Menard (References 1, 6, 7, 8).

1. Baguelin, F., Jezequel, J.-F., and Shields, D. H., "The Pressuremeter and Foundation Engineering", Trans-tech Publication, Rockport, Mass., 1978.
2. Briaud, J.-L., "The Pressuremeter: Application to Pavement Design", Ph.D. Dissertation Civil Engineering Department, University of Ottawa, Canada.
3. Bustamante, M., and Gianeselli, L., Portance Reelle et Portance Calculee des Pieux Isoles, Sollicit Verticalement", Revue Francaise de Geotechnique, No. 16, August, 1981.
4. Kahle, J. G., "Predicting Settlement in Piedmont Residual Soil With the Pressuremeter Test," presented at the Transportation Research Board Meeting, Washington, January 1983.
5. Menard, L., Rousseau, J., "L' Evaluation des Tassements, Tendances Nouvelles", Sols - Soils No. 1, 1962.
6. Menard, L., "Calcul de la Force Portante des Fondations sur la Base des Resultats des Essais Pressiometriques", Sols - Soils No. 5. 1963.
7. Menard, L., "Calcul de la Force Portante des Fondations sur la Base des Resultats des Essais Pressiometriques: Resultats Experımentaux et Conclusions", Sols - Soils No. 6, 1963.
8. Menard, L., "Etude Experimentale du Tassement et de la Force Portante des Fondations Superficielles", Sols - Soils No. 10, Septembre, 1964.
9. Menard, L., "Le Tassement des Fondations et les Techniques Pressiometriques", Annales ITBTP, Paris, Supplement No. 288, Decembre, 1971.
10. Menard, L., "The Menard Pressuremeter: Interpretation and Application of Pressuremeter Test Results to Foundation Design", General Memorandum, Sols - Soils, No. 26, 1975.
11. Schmertman, J. H., "Static Cone to Compute Static Settlement over Sand," Journal of the Soil Mechanics and Foundation Engineering Division of ASCE, Vot. 96, SM3, 1970.
12. Schmertman, J. H., "Improved Strain Influence Factor Diagram," Technical Note, Journal of the Soil Mechanics and Foundation Engineering Division of ASCE, Vol. 104, No. BT8, August 1978.

[^0]: FIGUPE 3: Bearina Capacity Factors For
 Menard (Reference 10)

