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PREFACE 

The information contained herein was developed on research study 2-5-62-33 
entitled "Piling Behavior" which is a cooperative research study sponsored jointly 
by the Texas Highway Department and the U. S. Department of Transportation, 
Federal Highway Administration, Bureau of Public Roads. The broad objective of 
this study is to fully develop the use of a computer solution of the wave equation so 
that it may he used to predict driving stresses in piling and to estimate static load 
hearing capacity of piling. 

This report concerns itself with the following specific items in the work plan as 
set forth in the study proposal: 

. l. To determine the effect of .dynamic damping in concrete aU:d steel piling on 
the impact longitudinal stress waves. This was accomplished by correlating theoreti
cal stress waves with data obtained from full scale piles tested under controlled 
conditions. 

2. To study the dynamic load-deformation properties of cushioning materials 
and their effect on the stress waves in piling. This was accomplished by correlating 
theoretical stress waves with data from full scale pile tests under controlled condi
tions. Theoretical results were compared with experimental data gathered for various 
cushion materials. 

3. To evaluate the true energy output of different pile driving hammers (single 
acting steam hammers, double acting steam hammers, and open and closed end diesel 
hammers) using the wave equation to analyze portions of data obtained by the Michi
gan State Highway Commission and published in a report entitled "A Performance 
Investigation of Pile Driving Hammers and Piles." 

4. To determine a uniform basis of rating pile driver energy output applicable 
to different type hammers. 

5. To correlate the wave equation with suitable experimental test data. 

During the course of investigation of the above items, the factors listed below 
were also found to influence the wave equation results, and therefore were also in
vestigated and are reported herein: 

l. A study of the effect of ram elasticity on piling behavior. 

2. A study of the influence of parameters used to describe soil behavior. 

The information reported herein is necessary in order to understand the dynamic 
behavior of piling and to properly simulate pile driving hammers, caphlocks and 
cushion blocks, piles, and soils for wave equation analysis of piling behavior. 

The opinions, findings· and conclusions expressed in this report are those of the 
authors and not necessarily those of the Bureau of Public Roads. 
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Pile Driving Analysis - Simulation of Hammers, Cushions, 

Piles, and Soil 

Chapter I 
INTRODUCTION 

General Background 

The problem of pile-driving analysis has been of 
great interest to engineers for many years. Ever since 
the first engineer proposed a method for predicting the 
load carrying capacity of a pile, the whole subject of pile 
driving has become a much debated field in engineering. 
In other areas new methods of analysis for structural 
elements and systems are constantly being proposed with 
little or no resulting discussion. However, the proposal 
of a new piling analysis is sure to stir much interest and 
often some rather heated discussions. 

Since over four-hundred pile-driving formulas have 
been proposed, 1 not including the countless formula 
modifications which are used,2 many engineers resort to 
the use of only one or two formulas regardless of the 
driving conditions encountered.3 Although many of the 
erroneous assumptions made in these formulas have been 
widely discussed,4•5 the fact that they omit many signifi
cant parameters which affect the problem seems to have 
received less attention. However, when the driving for
mulas omit parameters which change from case to case, 
the engineer has no means of determining how signifi
cant the parameter may be, nor can he tell in which 
direction or to what extent the change will vary the 
results. Thus, to obtain an accurate solution obviously 
requires that fewer erroneous assumptions be made re
garding the dynamic behavior of the materials and equip
ment used in pile driving, and that all significant param
eters are included in the analysis. 

The first of these problems was solved when it was 
noted that pile driving is actually a case of longitudinal 
impact, governed by the wave equation rather than by 
statics or rigid-body dynamics.6•7 However, since the 
exact simulation and solution of the wave equation ap
plied to piling are extremely complex for all but the 
simplest problems, many significant parameTers still had 
to be neglected. 

The second problem was solved by Smith8 who 
proposed a numerical solution to the wave equation, 
capable of including any of the known parameters in
volved in pile-driving analysis. This method of analysis 
was applicable to tapered, stepped, and composite piles, 
to nonlinear soil resistances and damping, to piles with 
cushions, followers, helm.ets, etc. In other words, it was 
a completely general method of analysis for the problem 
of pile driving. 

It should be noted that much of the experimental 
work used in this report was reported by other investi
gators. These cases are referenced, and the problem 
number or name used herein will be the same as used 
by the original reporter. This will enable the reader to 

determine any additional information about the problem 
being solved by referring to the original paper. 

Objectives 

The objectives of this research were: 

l. To review and summarize Smith's original meth
od of analysis and to derive a more general solution. 

2. To determine how the numerical solution is 
affected by the elasticity of the ram. 

3. To determine the energy output of different type 
pile hammers. 

4. To compare results given by the wave equation 
with those determined by laboratory experiments and 
field tests. 

5. To illustrate the significance of the parameters 
involved, including cushion stiffness and damping, ram 
velocity, material damping in the pile, soil damping and 
quake, and to determine the quantitative effect of these 
parameters where possible. 

6. To show how the wave equation can be used to 
determine the dynamic or impact characteristics of the 
materials involved. 

7. To determine the dynamic properties of the 
cushion subjected to impact loading. 

8. To study the effect of internal damping in the 
pile and its significance. 

Literature Review 
The basic purpose of any pile driving formula is to 

permit the design of a functional yet economical foun
dation. According to Chellis,9 there are four basic types 
of driving formulas: 

l. Empirical formulas, which are based on statisti
cal investigations of pile load tests, 

2. Static formulas, which are based on the side 
frictional forces and point bearing force on the pile, as 
determined by soils investigations, 

3. · Dynamic formulas, which assume that the dy
namic soil resistance is equal to the static load capacity 
of the pile, and 

4. The wave equation, which assumes only those 
material properties whose dynamic behavior is not com
pletely understood and has not yet been determined 
experimentally. Each of the preceding formulas has 
advantages and disadvantages which have been widely 
noted10•11 and need not be restated at this time. 
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Isaacs is thought to have first noted that the wave 
equation is applicable to the problem of pile driving.12 

However, Fox13 was probably the first person to propose 
that an exact solution be used for pile-driving analysis. 
Shortly thereafter, Glanville, Grime, Fox, and Davies14 

published the first correlations between experimental 
studies and results determined by the exact solution to 
the wave equation developed by Fox. Since this exact 
solution was extremely complex, they were forced to use 
simplified boundary conditions including zero side fric
tional resistance, a perfectly elastic cushion block, and 
an elastic soil spring acting only at the tip o·f the pile. 
However, even using these simplified boundary condi
tions, they obtained reasonably accurate results. 

In 1940 Cummings15 discussed several errors in
herent in dynamic pile-driving formulas and reviewed 
the previous work done using the wave equation. How
ever, he also noted that even for the simplest problems, 
"the complete solution includes long and complicated 
mathematical expressions so that its use for a practical 
problem would involve laborious numerical calculations." 

A practical pile-driving ·problem usually involves 
side frictional soil resistance, soil damping constants, 
nonlinear cushion and capblock springs, and other fac
tors which prevent a direct solution of the resulting 
differential equation. However, in 1950 Smith16 pro
posed a mathematical model and a corresponding nu
merical method of analysis which accounted for the 
effects of many of these parameters. He has continued 
to update this method and published various other 
works.17,18,19,20,21 

Smith's method of analysis did not really become 
popular until 1960 when he published a summary of the 
method's application to the problem of pile-driving analy
sis.22 In this paper he recommended a number of ma
terial constants and the material behavior curves re
quired to account for the dynamic action of the soil, 
cushion, and pile material. 

Smith's method of analyzing pile-driving problems 
received considerable interest,23 and two immediate ap
plications of the wave equation were suggested: 

l. The immediate application of the wave equation, 
using the most probable material properties to predict 
ultimate driving resistance ·and driving stresses. 

2. Its use to perform extensive parameter studies 
in order to determine trends and to gain more insight 
into the behavior of pile driving, and also determine the 
relative significance of these parameters. 

Immediately after the appearance of Smith's paper 
in 1960, the Bridge Division of the Texas Highway 
Department initiated a research project with the Texas 
Transportation Institute to perform exhaustive studies 
of the behavior of piling by the wave equation. The first 
report dealt with a computer program based on Smith's 
numerical solution.24 This program was used to· deter
mine the driving stresses induced in a number of pre
stressed concrete piles which had failed during driving, 25 
and later to check the conditions at similar sites at which 
pile breakage due to excessive driving stresses might be 
experienced.26 

Forehand and Reese28 investigated the possibility 
of predicting the ultimate bearing capacity of piling 
using the wave equation, but since complete data were 
available for relatively few problems, they were unable 
to draw many firm conclusions. They also studied the 
dynamic action of the soil during driving and recom
mended some values for the soil parameters used in the 
wave equation. 

In August, 1963 several extensions of Smith's method 
were presented by the writers.29 . Two simple cases for 
which "exact" solutions were known were compared 
wifh Smith's numerical solution to indicate the method's 
accuracy. A third section of the paper presented the 
results of a short parameter study which indicated how 
certain trends in pile driving might be determined and 
how to study the significance of various parameters. 
The results for several theoretical and field test problems 
were also compared. 

In 1963 the writers30 published a study on the 
methods employed in measuring dynamic stresses and 
displacements of piling during driving, and presented 
further experimental and theoretical comparisons "to 
demonstrate that the computer solution of the wave 
equation offers a rational approach to· the problems 
associated with the structural behavior of piling during 
driving." This report was based on an earlier study 
dealing with driving prestressed concrete piles. 31 

An investigation by Hirsch32 involved a study of the 
variables which affected the behavior of concrete piles 
during driving. Over 2100 separate problems were 
solved and the results were presented in the form of 
graphs for use by design engineers. 

Later publications dealt with the dynamic load
deformation properties of various pile cushion materials 
and other dynamic properties of materials required to 
simulate as closely as possible the actual behavior of 
a pile during driving. 33·34·35

•
36 

Chapter II 

A NUMERICAL METHOD OF ANALYSIS 

The Basic Solution 
Since 1931, it has been realized that pile driving 

involved theories of longitudinal impact rather than 
statics. However, the application of the wave equation 
to pile driving was restricted to very simple problems 
because the exact solution was complex, involved much 
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labor, and for most practical cases, required many sim
plifying assumptions. 

In 1950, Smith37 proposed an approximate solution 
based on concentrating the distributed mass of the pile, 
as shown in Figure 2.1a, into a series of small weights, 
W ( 1) thru W (MP) , connected by weightless springs 



NOTE' K (m)•INTERNAL 
SPRING CONSTANT FOR 
SEGMENT m. 

K'!ml• SOIL SPRING 
CONSTANT FOR 

(A) ACTUAL PILE (6) I OEALIZED PILE 

SIDE 
FRICTIONAL 
RESISTANCE 

Figure 2.1. Idealization of a pile for purpose of aTUJJlysis. 

K{l) thru K(MP-1), with the addition of soil re
sistance acting on the masses, as illustrated in Figure 
2.1b. Time also was divided into small increments. This 
numerical solution was then applied by the repeated use 
of the following equations, developed by Smith :~8 

D(m,t) = D(m,t-1) + 12AtV(m,t-1) 

C(m,t) D(m,t) - D(m + 1,t) 

F(m,t) 

R(m,t) 

C(m,t)K(m) 

[D(m,t)-D' (m,t)] 

Eq. 2.1 

Eq. 2.2 

Eq. 2.3 

K' (m) [1+J(m)V(m,t-1)] Eq. 2.4 

V(m,t) = V(m,t-1)+[F(m,t)-R(m,t)] 
gAt/W(m) Eq. 2.5 

where m is the mass number, t denotes the time interval 
number, At is the size of the time interval (sec), D(m,t) 
is the total displacement of mass number m during time 
interval number t(in.), V(m,t) is the velocity of mass 
m during time interval t(ft/ sec), C (m,t) is the compres
sion of spring m during time interval t(in.), F(m,t) is 
the force exerted by spring number m between segment 
numbers ( m) and ( m + t) during time interval t (lb) , 
and K(m) is the spring rate of mass m (lb/in.). Note 
that since certain parameters do not change with time, 
they are assigned single rather than double subscripts. 

The quantity R ( m,t) is the total soil resistance act
ing on segment m (lb/in.) ; K' (m) is the spring rate of 
the soil spring causing the external soil resistance force 
on mass m(lb/in.); D(m,t) is the total inelastic soil 
displacement or yielding during the tat segment m(in.); 

J(m) is a damping constant for the soil acting on seg
ment number (m) (sec/ft); g is the gravitational accel
eration (ft/sec2 ); and W(m) is the weight of segment 
number m (lb) . 

The solution is begun by initializing the time
dependent parameters to zero and by giving the ram an 
initial velocity. Then an incremental amount of time 
At elapses during which the ram moves down an amount 
given by Equation 2.1. The displacements D ( m,I) of 
the other masses are computed in the same manner. 

Equation 2.2 is then used to determine the com
pressions C(m,I), after which the internal spring forces 
acting between the masses are found from Equation 2.3 
and the external soil forces R(m,I) are computed from 
Equation 2.4. 

Finally, a new velocity V(m,I) is determined for 
each mass using Equation 2.5, after which another time 
interval elapses. New displacements, compressions, 
forces, and velocities are again computed using the same 
equations and the cycle is repeated until the solution is 
obtained. Smithau and others,~n.H give a detailed expla
nation of this method of solution and the computer·pro
gramming required. The dynamic behavior of various 
parameters will be discussed later. 

Smith would have probably caused little interest had 
he simply given a numerical solution for the wave equa
tion. Instead he presented a simple, physical model, 
easily visualized, using parameters which are readily 
understood. This and the simplicity of the equations 
required for a solution doubtlessly account for much 
of the wave equation's increasing popularity as a means 
of studying the behavior of piling. 

Modifications of the Original Solution 

Although the original method of analysis proposed 
by Smith can be used to solve many of the problems 
given in this report, it has been greatly extended to in
clude other idealizations. The major additions and 
changes are summarized here for reference only, and are 
fully discussed in later chapters. 

l. The relationship between soil resistance to pene
tration of the pile was originally limited to a series of 
straight lines. The revised program allows the use of 
any shape for this curve, as noted in Chapter VI. 

2. The elastic soil deformation "Q" and the soil 
damping constant "J" were each limited to one value at 
the point of the pile and a second value for side resist
ance. These parameters have been generalized to include 
different values at each pile segment. 

3. A new method by which internal damping in the 
pile can be accounted for is now included. This method 
is explained in Chapter V. 

4. A second method is included to account for the 
coefficient of restitution of the capblock or cushionblock. 

5. For correlation with experimental data, it is now 
possible to place forces directly on the head of the pile 
rather than having to calculate them from the hammer
cushion-anvil properties. This method was used exten
sively where the force vs time curve at the head of the 
pile was known; since then the hammer, cushion, and 
anvil properties did not influence the solution. 
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6. The linear force vs compression curve for vari
ous cushion materials used previously has been general
ized as noted in Chapter IV. 

7. The effect of gravity on the solution can now 
be accounted for. 

8. A special "parameter study" sub-program was 
written and included in the general program. This fea
ture was used to vary specific parameters or groups of 

parameters between specified limits in order to study 
their influence on the solution, and to see if trends could 
be found. 

9. For possible later use, several pile-driving for
mulas were included in the computer program. 

10. The soil resistance on the point segment now 
uses two springs, one for the side friction acting on the 
side of the pile and a second spring for point bearing. 

Chapter III 
PILE DRIVING HAMMERS 

Ram Idealization 

Smith42 suggests that since the ram is usually short 
in length, in many cases it can accurately be represented 
by a single weight having infinite stiffness. The exam
ple illustrated in Figure 2.1 makes this assumption since 
K(l) represents the spring constant of only the cap 
block, the elasticity of the ram having been neglected. 
He also notes that where greater accuracy is desired, 
or when the ram is long and slender, it can also be 

LONG RAM DIVIDED 
INTO 'NR' SEGMENTS 

CUSHION BLOCK 

PILE 

W (I) 
K (I) 
w (2) 

W (NR) 
K (NR) 
W (NR+I) 

K (NR+I) 

W (NR-t2) 
K (NR+2) 

K (MP-2) 
W (MP-1) 
K (MP-1) 

W (MP) 

K'(MP) 

· Figure 3.1. Idealization for a long ram striking directly 
on· a cushion block. · 
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divided into a series of weights and springs. However, 
no work has been done to determine how long the ram 
can be before its elasticity affects the accuracy of the 
solution. The most common hammers in the above 
class include drop, air, and steam hammers. Figures 
3.1 and 3.2 show how the ram may be idealized. 

In order to determine the significance of dividing 
the ram into a number of segments, several ram lengths 
ranging from 2 to 10 ft were assumed, driving a 100-ft 

~ 
I 
I 

LONG RAM DIVIDED 

l INTO 'NR' SEGMENTS 

f 
TEEL ANVIL 

CUSHION BLOCK 

* 
PILE ~ 

w (I) 
K (I) 

w (2) 
K (2) 

K (NR-1) 
W (NR) 

K (NR) 

W (NR+I) 

K (NR .. I) 

W (NR+2) 

K (NR+2) 

W (NR+3) 

K (MP-1) 

W (MP) 

K I (MP) 

Figure 3.2. Idealization for a long ram striking directly 
on a steel anvil. , 



TABLE 3.1. EFFECT OF BREAKING THE RAM INTO 
SEGMENTS WHEN RAM STRIKES A CUSHION 

Number 
of Ram 

Divisions 

1 
2 

10 

Maximum 
Length Compressive 
of Pile Force 

Segments in Pile 
(ft) (kip) 

1.25 
1.25 
1.25 

263.1 
262.6 
262.9 

Maximum 
Tensile 
Force 

in Pile 
(kip) 

219.0 
218.8 
218.5 

Maximum 
Point 

Displace
ment 
(in.) 

3.057 
3.058 
3.059 

pile with point resistance only. For this parameter 
study the total weight of the pile varied from 1,500 lb 
to 10,000 lb, while the ultimate soil resistance ranged 
from zero to 10,000 lb. The cushion was assumed to 
have a stiffness of 2,000 kip/in. 

Table 3.1 lists the results found for a typical prob
lem solved in this series, the problem consisting of a 
10-ft ram traveling at 20ft/sec, striking a cushion having 
a stiffness of 2,000 kip/in. The pile used was a 100-ft 
12H53 steel pile, driven by a 5,000-lb ram with an 
initial velocity of 12.4 ft/sec. · No pile cap was included 
in the solution, the cushion being placed directly between 
the hammer and the head of the pile. Since the ram 
was divided into very short lengths, the pile was also 
divided into short segments. 

As shown in Table 3.1, the solution is not changed 
to any extent, regardless of whether the ram is divided 
into 1, 2, or 10 segments. The time interval Llt was 
held constant in each case. 

In certain hammers such as a diesel hammer, the 
ram strikes directly on a steel anvil rather than on a 
cushion. This makes the choice of a spring rate be
tween the ram and anvil difficult because the impact 

occurs between two steel elements. One possible solu
tion is to place the spring constant of the entire ram 
between the weights representing the ram and anvil. 
Also, the ram can be broken into a series of weights 
and springs as is the pile. 

To determine when the ram in this case should be 
divided, a parameter study was run in which the ram 
length varied between 6 and 10 ft and the anvil weight 
from 1,000 to 2,000 lb. In each case, the ram diameter 
was held constant and the ram was divided into equal 
segment lengths as noted in Table 3.2. These variables 
were picked because of their possible influence on the 
solution. 

The pile used was again a 12H53 point bearing pile 
with a cushion of 2,000 kip/in. spring constant placed 
between the anvil and head of the pile. The soil parame
ters used were RU[loint = 500 kip, Q = 0.1 in., and 
J = 0.15 sec/ft. These factors were held constant for 
all problems listed in Table 3.2. 

The most obvious result shown by Table 3.2 is that 
when the steel ram impacts directly on a steel anvil, 
dividing a long ram ( 6, 8 and 10 ft) into segments has 
a significant effect on the solution. 

Energy Output of Hammer 
One of the most significant parameters involved in 

pile driving is the velocity of the ram immediately before 
impact. This velocity is often used to determine the 
maximum kinetic energy of the hammer and its energy 
output rating, and must be known or assumed before 
the wave equation or dynamic formulas can be applied. 

Although the manufacturers of pile-driving equip
ment furnish maximum energy ratings for their ham
mers, these are usually downgraded by foundation ex-

TABLE 3.2. EFFECT OF BREAKING RAM INTO SEGMENTS WHEN RAM STRIKES A STEEL ANVIL 

Anvil 
Weight 

(lb) 

2000 

1000 

Ram 
Length 

(ft) 

10 

8 

6 

10 

8 

6 

Number 
of Ram 

Divisions 

1 
2 
5 

10 

1 
4 
8 

1 
3 
6 

1 
2 
5 

10 

1 
4 
8 

10 

1 
3 
6 

10 

Length 
of Each 

Ram 
Segment 

(ft) 

10 
5 
2 
1 

8 
2 
1 

6 
2 
1 

10 
5 
2 
1 

8 
2 
1 
0.8 

6 
2 
1 
0.6 

Maximum Compressive 
Force on Pile Maximum 

At At At Point 
Head Center Tip Displacement 
(kip) (kip) (kip) (in.) 

513 513 884 0.207 
437 438 774 0.159 
373 373 674 0.124 
375 375 678 0.125 

478 478 833 0.183 
359 359 648 0.117 
360 360 651 0.118 

430 430 763 0.155 
344 344 621 0.110 
342 342 616 0.109 

508 509 878 0.160 
451 451 789 0.159 
381 382 691 0.151 
371 372 681 0.153 

487 488 846 0.151 
443 444 785 0.144 
369 370 675 0.134 
337 338 665 0.133 

457 457 798 0.137 
361 362 666 0.128 
316 316 562 0.109 
320 320 611 0.113 
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perts for various reasons. A number of conditions such 
as poor hammer condition, lack of lubrication, and wear 
seriously reduce the energy output of a ·hammer. In 
addition the energy of many hammers can be controlled 
by regulating the steam pressure or diesel fuel. To 
determine how much the rated energy of any given 
hammer should be reduced is not a simple task. 

Che1lis48 discusses several reasons for this energy 
reduction and recommends a number of possible effi
ciency factors for the commonly used hammers, based 
on his observations and experience. 

The Michigan Study of Pile Driving Hammers 

In 1965 the Michigan State Highway Commission44 

completed an extensive research program designed to 
obtain a better understanding of the complex problem 
of pile driving. Though a number of specific objectives 
were given, one was of primary importance. As noted 
by Housel,45 "Hammer energy actually delivered to the 
pile, as compared with the manufacturer's rated energy, 
was the focal point of a major portion of this investiga
tion of pile-driving hammers." In other words, they 
hoped to determine the energy delivered to the pile and 
to compare these values with the manufacturer's ratings. 

The energy transmitted to the pile was termed 
"ENTHRU" by the investigators44 and was determined 
by the summation 

ENTHRU = X F .Ll S 

Where F, the average force on the top of the pile during 
a short interval of time, was measured by a specially 
designed load cell, and .Ll S, the incremental movement 
of the head of the pile during this time interval, was 
found using displacement transducers and/ or reduced 
from accelerometer data. It should be pointed out that 
ENTHRU is not the total energy output of the hammer 
blow, but only a measure of that portion of the energy 
delivered below the load-cell assembly. 

Since so many variables influence the value of 
ENTHRU, :md since some of these variables were chang
ing during the pile driving operation (e.g., condition of 
the cushion, soil resistance, etc.) , the investigators were 
not able to determine the total energy output of the 
hammer. As noted in the Michigan report :46 "Hammer 
type and operation conditions; pile type, mass, rigidity, 
and length; and the type and condition of cap blocks 
were all factors that affected ENTHRU, but when, how, 
and how much could not be ascertained· with any degree 
of certainty." However, the wave equation can account 
for each of these factors so that their effects can be 
determined. 

The Michigan report also noted that ENTHRU was 
not actually a direct measurement of the hammer's effi
ciency or energy output since the forces and displace
ments were measured below the capblock, as shown in 
Figure 3.3. Thus, ENTHRU was defined as "the amount 
of work done on the load cell." 

The maximum displacement of the head of the pile 
was also reported and was designated LIMSET. Oscillo
graphic records of force vs time measured in the load 
cell were also reported. ·Since force was measured only 
at the load cell, the single maximum observed values 
for each case will be called FMAX .. 
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---sOIL 

~PIPE PILE CLOSED AT TIP 

Figure 3.3. Typical pile driving assembly (after refer
ence 44). 
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Figure 3.4. Idealization of a Vulcan hammer. 



Problem Information 
In selecting which of the Michigan pile problems to 

solve by the wave equation, it was decided to run at least 
two problems for each hammer used at each of the three 
testing sites. As shown in Table 3.3, cases selected from 
the Belleville site include two pile lengths for each of 
four different hammers. Otherwise, the problems were 
selected at random and the hammer energies determined 
are not necessarily typical of the hammer's usual 
operating characteristics. Similarly, the Detroit and 
Muskegon site problems are summarized in Tables 3.4 
and 3.5. Figures 3.4 and 3.5 illustrate how these prob
lems were idealized for purposes of analysis. 

Even though the Michigan study is one of the most 
completely documented and fully reported research proj
ects published concerning pile driving, certain informa
tion was not reported which must be known in order to 
apply the wave equation. This omission was not the 
result of any failure in reporting the data, but was be
cause this information was not required by the methods 
of analysis used in the Michigan project and would have 
been difficult to measure. Two examples are the lack 
of information concerning the stiffness of the cushion 
and the velocity of the ram at impact. 

Preliminary Studies 
Since cushion-block information was not given, and 

because the cushion stiffness varies greatly during driv
ing, a broad parameter study was made using the first 
case mentioned in Table 3.3. In this study, the cushion 
stiffness was varied by a factor of 50, from 540 kip;/in. 
up to 27,000 kip/in. Also studied was the effect of 
varying the total soil resistance, RUT, using resistances 
of 30, 90, and 150 kip and ram velocities of 8, 12, and 
16 ft/sec. 
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Figure 3.5. Idealization of a diesel hammer. 

TABLE 3.3 SUMMARY OF BELLEVILLE CASES SOLVED BY WAVE EQUATION 

PILE INFORMATION 

Pile 
I.D. 

BLTP-6 

BLTP-4 

BRP-4 

BLTP-5 

Case* 

10.0 
57.9 

25.0 

66.4 • 

20.0 
50.0 

15.0 

66.0 

Hammer** 

V-1 
V-1 

LB-312 

LB-312 

M-DE30 
M-DE30 

D-D12 

D-D12 

Cushion Type 

Oak 12H53 
Oak 12H53 

Micarta r-;n.1 Pipe 
Micarta 0.25 

in. J 
wall 

Oak 12H53 
Oak 12H53 

German r ;n.} Oak Pipe 
0.179 

German in. 
Oak wall 

*Case number indicates pile length below ground surface and not necessarily embeddment. 
**Hammer designations are as follows: 

V-1 Vulcan 1 
V-.50C Vulcan 50C 
V-80C Vulcan 80C 

LB-312 Link Belt 312 
LB-520 Link Belt 520 

M-DE30 McKiernen-Terry DE-30 
M-DE40 McKiernen-Terry DE-40 

D-D12 Delmag D-12 
D-D22 Delmag D-22 

Total Embedded 
Length Length 

(ft) (ft) 

32.5 10.0 
72.5 57.9 

40.7 15.0 

81.6 56.4 

40.0 20.0 
60.0 50.0 

40.0 5.0 

80.0 50.0 
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TABLE 3.4. SUMMARY OF DETROIT CASES SOLVED BY WAVE EQUATION 

Pile 
I. D. 

DLTP-8 

DTP-5 

DRP-3 

DTP-13 

DTP-15 

Case* 

41.5 
80.2 

20.0 

79.0 

40.0 
60.0 

40.0 

80.7 

20.0 
80.5 

*See Table 3.3 for notation. 

Hammer* Cushion 

V-1 Oak 
V-1 Oak 

V-50C Micarta 

V-50C Micarta 

LB-312 Micarta 
LB-312 Micarta 

M-DE30 Oak 

M-DE30 Oak 

D-D12 German 
D-D12 Oak 

The results of this study indicate the significance 
of the wave equation in helping to understand the many 
factors that affect pile-driving behavior. The solutions 
for ENTHRU, FMAX, and LIMSET resulting from a 
change in the cushion stiffness, soil resistance, and ram 
velocities are given in Tables 3.6, 3.7, and 3.8, respec· 
tively. Whereas before it could not be determined 
"when, how, or how much," the results of this study 
indicate that in general for these particular problems, 

PILE INFORMATION 
Total Embedded 

Length Length 
Type (ft) (ft) 

12H53 80.1 41.5 
12H53 97.0 80.2 

ri~J 
40.0 20.0 

Pipe 
0.179 
in. 84.0 79.0 

wall 

12H53 80.0 40.0 
12H53 80.0 60.0 

r12 in) 45.0 40.0 
Pipe l 0:179 90.7 80.7 In. 
wall 

12H53 46.1 20.0 
12H53 86.1 80.5 

l) ENTHRU is nearly independent of the cushion 
block stiffness used, since the cushion stiffness was in
creased by a factor of 50 while influencing ENTHRU 
only slightly, 

2) FMAX is almost completely independent of the 
driving resistance, 

3) FMAX is almost linearly related to the ham
mer velocity, and 

TABLE 3.5. SUMMARY OF MUSKEGON CASES SOLVED BY WAVE EQUATION 

PILE INFORMATION 
Total Embedded 

Pile Length Length 
J.D. Case* Hammer* Cushion Type (ft) (ft) 

MLTP-2 20.0 V-1 Oak 

rml 
45.0 20.0 

Pipe 
0.250 

53.0 V-1 Oak in. 60.0 53.0 
wall 

MLTP-9 72.0 V-80C Micarta r in,) 80.0 . 72.0 
Pipe 
0.250 

127.0 V-80C Micarta in. 134.0 127.0 
wall 

MTP-12 30.5 LB-520 Micarta I''in.) 40.0 30.5 
Pipe 
0.250 

70.8 LB-520 Micarta l in. 80.0 70.8 
wall 

MTP-11 69.5 M-DE40 Oak rm.) 80.0 69.5 
and Pipe 

Plywood 0.250 
150.0 M-DE40 in. 165.0 150.0 

l wall 

MLTP-8 31.0 D-D22 German rm.) 40.0 31.0 
Oak Pipe 185.0 

0.250 
178.0 D-D22 German in. 185.0 178.0 

Oak wall 

*See Table 3.3 for notation. 
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TABLE 3.6. EFFECT OF CUSHION STIFFNESS ON 
ENTHRU FOR BLTP-6; 10.0 

ENTHRU (kip ft) 

Ram Cushion Stiffness (kip/in.) Velocity RUT 
(ft/sec) (kip) 540 1080 2700 27,000 

30 3.0 3.0 3.0 2.9 
8 90 3.1 3.2 3.3 2.9 

150 3.0 3.2 3.3 3.0 

30 6.6 6.4 7.1 6.4 
12 90 7.0 7.1 7.2 6.4 

150 6.9 7.2 7.4 6.7 

30 11.8 11.9 12.2 11.3 
16 90 12.3 12.6 12.8 11.5 

150 12.4 12.9 13.2 11.4 

TABLE 3.7. EFFECT OF CUSHION STIFFNESS ON 
FMAX FOR BLTP-6; 10.0 

FMAX (kip) 

Ram Cushion Stiffness (kip/in.) Velocity RUT 
(ft/sec) (kip) 540 1080 2700 27,000 

30 132 185 261 779 
8 90 137 185 261 779 

150 143 186 261 779 

30 198 278 391 1,169 
12 90 205 278 391 1,169 

150 215 279 391 1,169 

30 264 371 522 1,558 
16 90 275 371 522 1,558 

150 288 371 522 1,558 

TABLE 3.8. EFFECT OF CUSHION STIFFNESS ON 
LIMSET FOR BLTP-6; 10.0 

LIMSET (in.) 

Ram Cushion Stiffness (kip/in.) Velocity RUT 
(ft/see) (kip) 540 1080 2700 27,000 

30 1.09 1.08 1.08 1.13 
8 90 0.44 0.44 0.45 0.45 

150 0.32 0.33 0.33 0.33 

30 2.21 2.14 2.19 2.25 
12 90 0.80 0.82 0.84 0.84 

150 0.55 0.57 0.58 0.58 

30 3.62 3.59 3.63 3.68 
16 90 1.30 1.31 1.32 1.34 

150 0.85 0.87 0.88 0.90 

4) FMAX consistently increases as the cushion 
stiffness increases. 

Thus for the first time, a number of trends may be 
established for various pile driving situations by using 
the wave equation. 

In order to analyze other of the Michigan problems, 
certain data given in the Michigan report were used. 
This information is listed in Table 3.9. 

Investigation of Steam Hammers 
Used in the Michigan Study 

As noted in Figure 3.4, the numerical solution to 
the wave equation uses a series of concentrated weights 
and springs which closely represent the actual system 
involved. Time is also divided into small intervals in 
order to arrive at a solution. 

As shown by Smith, 1 the wave equation can be used 
to determine (among other quantities) the displacement 
D(m,t) of any mass "m" at time "t", as well as the force 
F(m,t) of any mass "m" at time "t." Thus the equa
tion for ENTHRU at any point in the system can be 
determined by simply letting the computer calculate the 
equation previously mentioned: 

ENTHRU = ~ F .!l S 

or using the wave equation terms: 

ENTHRU(m) 
""[F(m,t) + F(m,t-1) 
~ 2.0 - ] 
[D(m+1,t) - D(m+1;t-1)] 

where ENTHRU(m) 

m 

the work done on any weight 
(m+1), 

the mass number, and 

the time interval number. 

For example, the Michigan report determined 
ENTHRU (2) for the idealized system shown in Figure 
3.4, since they recorded forces F ( 2,t) in the load cell 
and displacements D (3,t) below the load cell. For the 
system in Figure 3.5, ENTHR U ( 3) was determined. 

Although it may not have been possible, ENTHRU 
should actually have been measured directly under the 
driving hammer ENTHRU(1), since ENTHRU(3) is 
greatly influenced by several parameters, especially the 
type, condition, and coefficient of restitution of the 
cushion, and the weights of the extra driving cap and 
load cell. 

As will be shown later, the coefficient of restitution 
alone can change ENTHRU (2) by 20%, simply by 
changing e from 0.2 to 0.6. Nor is this variation in e 
unlikely since cushion condition varied from new to 
"badly burnt" and "chips added." 

The wave equation was therefore used to analyze 
the problems since what was needed was a method by 
which the available data (ENTHRU, LIMSET, FMAX, 
etc.) could be used to determine the actual hammer 
energy involved, and also to compensate for the influence 
of cushion stiffness, e, additional driving cap weights, 
driving resistance encountered, etc. 

Method Used to Correlate Theoretical 
and Experimental Results 

In order to get the best possible correlation between 
experimental and theoretical solutions, an iterative meth
od was used. This approach was suggested by the pre
liminary studies mentioned earlier. To demonstrate the 
method, an example problem, BLTP-6;10.0, will be 
solved. 
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TABLE 3.9. DATA REPORTED IN THE MICHIGAN STUDY 

Driving 
Location 

Pile 
I.D. 

Hammer* 
Type 

Manufacturer's 
Maximum 

Rated 
Energy 

Estimated 
Permanent Static Soil 

ENTHRU LIMSET Set Resistance 
(ft lb) (in.) (in.) (kip) Case 

Belleville BLTP-6 10.0 V-1 

57.9 V-1 

BLTP-4 25.0 LB-312 

66.4 LB-312 

BRP-4 20.0 M-DE-30 

50.0 M-DE-30 

BLTP-5 15.0 D-D12 

60.0 D-D12 

Detroit DLTP-8 41.5 V-1 

80.2 V-1 

DTP-5 20.0 V-50C 

79.0 V-50C 

DRP-3 40.0 LB-312 

60.0 LB-312 

DTP-13 40.0 M-DE30 

80.7 M-DE30 

DTP-15 20.0 D-D12 

80.5 D-D12 

Muskegon MLTP-2 20.0 V-1 

53.0 V-1 

MLTP-9 72.0 V-80C 

127.0 V-80C 

MTP-12 30.5 LB-520 

70.8 LB-520 

MTP-11 69.5 M-DE40 

150.0 M-DE40 

MLTP-8 31.0 D-D22 

178.0 D-D22 

*See Table 3.3 for notation. 

Since in nearly every case the condition of the 
cushion is unknown, the first assumption must be for the 
cushion rate K(1). For illustrative purposes, assume 
that K(1) = 180 kip/in. and that soil resistances of 
30 and 90 kip were assumed. 

The next step was to run the problem with various 
hammer energies. As shown in Figure 3.6, for each 
energy input (EINPUT) the wave equation predicts a 
corresponding theoretical value of ENTHRU. These 
solutions are then used to plot the curves of Figure 3.6. 
Also, since each solution predicts a value for LIMSET 
and initial ram velocity, it is possible to plot the curves 
of Figure 3.7. 

Returning to Figure 3.6, the question becomes what 
kinetic energy must the falling ram have had in order 
to cause a value of ENTHRU = 6,380 kip ft (the meas
ured experimental value reported by Michigan and listed 
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(ft lb) 

15,000 6,380 0.75 0.48 48 

15,000 4,440 0.42 0.02 400 

18,000 8,010 0.94 0.36 140 

18,000 11,200 0.92 0.02 690 

22,400 4,980 0.57 0.37 100 

22,400 4,470 0.41 0.12 320 

22,500 9,040 1.86 1.43 80 

22,500 9,930 0.79 0.11 340 

15,000 5,760 1.22 1.00 60 

15,000 4,540 0.54 0.50 360 

15,100 2.55 2.00 22 

15",100 11,420 0.82 0.09 235 

18,000 7,060 1.36 1.25 60 

18,000 6,620 1.41 0.77 76 

22,400 9,100 2.21 2.00 30 

22,400 9,480 1.12 O.G7 265 

22,500 10,100 2.07 2.00 40 

22,500 5,480 0.58 0.25 120 

15,000 7,210 1.42 1.00 80 

15,000 4,870 0.57 0.09 200 

24,450 14,660 1.06 0.56 160 

24,450 . 13,110 1.03 0.23 470 

30,000 14,860 1.48 1.00 40 

30,000 13,140 1.02 0.77 156 

32,000 16,760 1.16 0.67 160 

32,000 17,900 1.41 0.05 500 

39,700 25,500 2.35 1.25 40 

39,700 22,050 1.71 0.04 988 

in Table 3.9) ? By entering ENTHRU = 6,380 kip ft, 
and assuming RUT = 30 kip, project to the upper curve 
where EINPUT is found to be 11,000 kip ft. 

To further check the solution, determine the ram 
velocity required for 11,000 kip ft of kinetic energy from: 

V= " I (EINPUT) (64.4) 
V Ram Weight 

= 11.9 ft/sec 

Next, from Table 3.9, find the actual value of LIMSET 
(determined experimentally) and enter this value of 0. 75 
in. and V = 11.9 ft/sec in Figure 3.7. 

Should the projection of these points intersect on 
the RUT = 30 kip curve, then that assumption was 
correct. However, this indicates a soil resistance of 
around 90 kip so that the RUT= 90 kip curve of Figure 
3.6 should probably have been used. 



20 

15 

~ --"-
~ 10 

1-
:::> 
ll. 
z 
w 

E INPUT Required To Give 
ENTHRU Of 6380 ft lb 

____ U,Q99_ft!~~-------
____ J911.Q.Q_f_t_l_!l__ _________ ;( 

I 

/i 
I 
I 
I 

' I 
i 
I 
I 
I 

~: BELLEVILLE SITE 

::: CASE BLTP- 6; 10.0 0. 
~: 
Ul, 

i ENTHRU = 6380 It lb 
~Determined Experimentally 

I 

' I 
I 

' ' ' I 
I 

5 

ENTHRU- (kip ft) 

10 

Figure 3.6. EINPUT vs ENTHRU. 

Returning to Figure 3.6, the new value of EINPUT 
is found to be 10,100 ft lb, which gives a new ram ve
locity of 11.4 ft/sec. Substituting this velocity into 
Figure 3.7, the resulting value of RUT agrees closely 
with the assumed value of 90 kip. 

Since the ram velocity at impact is now known, the 
assumed cushion stiffness of 1080 kip/in. can be checked. 
Holding RUT = 90 kip and the initial ram velocity = 
11.4 ft/sec, and solving for the change in FMAX as the 
cushion stiffness varies, the curve of Figure 3.8 can be 
drawn. The experimental value of FMAX reported in 
the Michigan paper was 244 kip, which entered into 
Figure 3.8 gives a value of K (1) = 900 kip/in. Since 
this is close to the assumed value of 1080 kip/in., the 
solution was considered to be satisfactory. However, 
even in cases where the cushion stiffness was quite inac
curate, ENTHRU was only slightly changed when a more 
accurate value of K ( 1) was used. 

This solution now enables us to determine the energy 
output of the hammer, and other quantities. Since this 
hammer is rated at 15,000 ft lb and its actual output 
was only 10,100 ft lb the hammer must have lost 3,900 
ft lb due to friction in the guides or from other causes. 
Thus, the hammer efficiency is (10,100) X (100) / 
15,000 = 67 percent. Furthermore, since only 6,380 ft 

lb (ENTHRU) of the 10,100 ft lb output reached the 
load cell, the difference must have been lost in the helmet
cushion-load cell assembly. Thus the efficiency of this 
assembly must have been (6,380) X (100) /10,100 = 
63 percent. 

The ability to determine these efficiencies separately · 
is important since it indicates whether the driving ham
mer or cushion-helmet assembly should be studied to 
reduce energy losses during driving. 

The preceding method was used to solve each of the 
Michigan steam hammer cases listed in Tables 3.3, 3.4, 
and 3.5. 

Correlation of Experimental 
and Theoretical Results 

It is interesting to compare the final wave equation 
solution with the experimental results reported in the 
Michigan pile study. For the above case, comparisons 
between the experimental results and those given by the 
wave equation are shown in Figures 3.9 through 3.11. 
These figures show the· experimental and theoretical 
forces and accelerations, displacements, and energy, vs. 
time, measured at the load cell. The correlations are 
reasonably accurate, especially during the first 0.01 sec, 
although the reflected compressive wave seems to be 
overestimated, as shown in Figure 3.9A at 0.014 sec. 
This did not greatly affect either the ENTHRU or dis-
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Figure 3.7. Ram velocity vs LIMSET. 
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placement curves, although it may have caused the rather 
large errors in the acceleration curve of Figure 3.9B. 

A summary of the results for the steam hammer 
cases solved is given in Table 3.10. Listed are the 
energy output of the hammer, the hammer efficiencies, 
the ram velocity, and the total soil resistance, RUT, 
necessary to obtain correlation for each case. 

It should he noted that there was no way to deter
mine the soil damping or elasticity constants. Therefore, 
the constants recommended by Smith47 were used. As 
shown by Forehand and Reese,48 these constants affect 
the resulting RUT values. Therefore, the theoretical 
RUT values shown in Table 3.10 were not expected to 
agree closely with the experimental values reported in 
Table 3.9. However, it is interesting to note that in 
several cases the ratio of the soil resistance determined 

experimentally to that predicted by the wave equation 
is reasonably constant. 

Investigation of Diesel Hammers 
Used in the Michigan Study 

Because the diesel explosive force is much smaller 
than the impact force, it was found to have little effect 
on the driving stresses. 41 However, if explosive pressure 
is neglected, the ram velocity required to predict EN
THRU is much greater than that calculated from the 
free fall of the ram, even assuming 100 percent efficiency. 
Therefore, it was necessary to run the diesel hammer 
cases accounting for the explosive pressure in the 
hammer. 

During impact between the ram and anvil the force 
on the anvil will reach some maximum value and then 
decrease. Following this impact, the diesel explosion 
occurs, exerting an explosive pressure and force between 
the ram and anvil. This behavior has been studied and 
reported by some of the hammer manufacturers.71 In 
order to simulate this action for wave-equation analysis, 
the explosive force acting within the. diesel hammer is 
assumed to behave as shown in Figure 3.12. The maxi
mum explosive force is held on the anvil for 0.01 sec 
after which the force is tapered to zero at 0.0125 sec. 
Actually, the explosive hammer force lasts considerably 
longer than this hut its magnitude is too small to he a 
significant factor in pushing the pile down except during 
the initial driving stages when little or no soil resistance 
is encountered. The magnitudes of explosive pressures 
listed in Table 3.11 were obtained from the hammer 
manufacturer or were assumed. 

In previous solutions, it was an easy matter to solve 
for the total energy of the ram at impact since only its 
kinetic energy, EINPUT, was involved. Now, since 
explosive pressure is included, the total energy devel
oped includes both kinetic and explosive energy. 

This total energy, ENTOTL, is the sum of the energy 
transmitted to the anvil, ENTHRU1, and the kinetic re
bound energy of the ram after impact, where ENTHRU1 
is calculated by the same method as was used for EN-

TABLE 3.10. SUMMARY OF RESULTS FOR MICHIGAN STEAM HAMMERS 

Ram- RUT Ham- Cushion-
mer** Helmet (Theoretical) 
Effi- Assembly Ram RUT 

Driving Pile Hammer* EINPUT ENTHRUt ciency Efficiency Velocity RUT (Experimental) 
Location I.D. Case Type (ft lb) (ft lb) ( o/o) ( o/o) (ft/sec) (kip) ( o/o) 

Belleville BLTP-6 10.1 V-1 10,100 6,380 67 63 11.9 90 190 
57.9 V-1 7,000 4,440 47 63 9.5 200 50 

Detroit DLTP-8 41.5 V-1 9,700 5,760 65 60 11.2 50 83 
80.2 V-1 7,200 4,540 48 63 9.6 120 33 

DTP-5 20.0 V-50C 12,800 8,290 85 65 12.9 25 110 
79.0 V-50C 15,600 11,420 103 73 14.2 300+ 128+ 

Muskeg an MLTP-2 20.0 V-1 12,200 7,210 81 59 12.5 50 62 
53.0 V-1 7,700 4,870 51 63 10.0 1.50 75 

MLTP-9 72.0 V-80C 19,700 14,660 81 74 12.6 175 109 
127.0 V-80C 19,200 13,110 79 68 12.5 300 64 

*See Table 3.3 for notation. 
**Hammer efficiency computed on basis of the manufacturer's maximum rated output. 
tNote: The problems were selected at random and the hammer energies determined are not necessarily typical of the 
hammer's usual operating characteristics. 
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Figure 3.9. Comparison of theoretical and experimental 
load cell forces and accelerations. 

THRU at the load cell, and the kinetic rebound energy 
remaining in the ram after impact is given by WV2 /64.4, 
where W is the weight of the ram and V is the rebound 
velocity of the ram determined by the wave equation. 

The efficiencies and initial ram velocities noted in 
Table 3.11 were found by plotting ENTHRU and EN
THRU1 vs the initial ram velocity as shown in Figure 
3.13. Plotting the values of LIMSET vs ram velocity as 
in Figure 3.14 then gives the total soil resistance pre
dicted by the wave equation. This procedure was used 
on all diesel hammer cases, and the results are sum
marized in Table 3.11. 
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TABLE 3.11. SUMMARY OF RESU!,TS FOR MICHIGAN DIESEL HAMMERS 

Ram- RUT Ham- Cushion Ram (Theoretical) Explosive mer* Assembly Velocity 
Force on Ef- Ef- at RUT 

Driving· Pile Hammer Anvil ENTOTL ENTHRU** ficiency ficiency Impact RUT (Experimental) 
Location I. D. Case Type (kip) (ft lb) (ft lb) (%) (%) (ft/sec) (kip) (%) 

Belleville BLTP-4 25.0 LB-312 98.0 10,630 8,010 59 75 8.2 70 50 
66.4 16,030 11,200 89 70 6.4 250 36 

BRP-4 20.0 M-DE30 98.0 9,450 4,980 42 53 9.8 100 100 
50.0 9,100 4,470 41 49 10.6 200 63 

BLTP-5 15.0 D-D12 93.7 13,000 9,040 58 69 12.8 40 50 
60.0 14,730 9,930 66 67 15.0 400 118 

Detroit DRP-3 40.0 LB-312 98.0 9,270 7,060 52 76 9.8 45 75 
60.0 13,900 6,620 77 48 5.2 60 79 

DTP-13 40.0 M-DE30 98.0 14,390 9,100 64 63 13.7 35 117 
80.7 15,280 9,480 68 62 15.1 120 45 

DTP-15 20.0 D-D12 93.7 15,270 10,100 68 66 15.2 45 112 
80.5 9,430 5,480 42 58 11.6 110 92 

Muskegon MTP-12 30.5 LB-520 98.0 22,140 14,860 74 67 16.4 75 187 
70.8 21,260 13,140 71 62 14.4 70 45 

MTP-11 69.5 M-DE40 138.0 32,800 16,760 102 50 20:6 150 94 
150.0 36,8.50 17,900 115 49 21.5 250 50 

MLP-8 31.0 D-D22 158.7 31,600 25,500 80 81 17.8 70 175 
178.0 27,300 22,050 69 81 17.1 300 30 

*Hammer efficiency based on manufacturer's maximum rated energy. 
**Note: The problems were selected at random and the 
hammer's usual operating characteristics. 

hammer energies determined are not necessarily typical of the 

Determination of Hammer Energy Output 
Diesel Hammers 

At present the manufactures of diesel hammers ar
rive at the energy delivered per blow by two different 
methods. One manufacturer feels that "Since the amount 
of (diesel) fuel injected per blow is constant, the com
pression pressure is constant, and the temperature con
stant, the energy delivered to the piling is also con
stant."09 The energy output per blow is thus computed 
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Figure 3.12. Typical force vs time curve for a diesel 
hammer. 
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as the kinetic energy of the falling ram plus the explo
sive energy found by thermodynamics. Other manufac
turers simply give the energy output per blow as the 
product of the weight of the ram-piston WR and the 
length of the stroke h, or the equivalent stroke in the 
case of closed-end diesel hammers. 

The energy ratings given by these two methods dif
fer considerably since the ram stroke h varies greatly 
thereby causing much controversy as to which, if either, 
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Figure 3.13. ENTHRUI an.d ENTHRU vs ram velocity 
determined by wave equation analysis. 
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method is correct and what energy output should be used 
in dynamic pile analysis. 

In conventional single acting steam hammers the 
steam pressure or energy is used to raise the ram for 
each blow. The magnitude of the steam force is too 
small to force the pile downward and consequently it 
works only pn the ram to restore its potential energy, 
Wn x h, for the next blow. In a diesel hammer on the 
otherhand, the diesel explosive pressure used to raise the 
ram is, for a short time at least, relatively large. 

While this explosive force works on the ram to 
restore its potential energy W R x h, the initially large 
explosive pressure also- does some useful work on the 
pile given by : 

where F 

ds 

E~ = s F ds Eq. 3.1 

the explosive force, and 

the infinitesimal distance through which 
the force acts. 

Since the total energy output is the sum of the 
kinetic energy at impact plus the work done by the 
explosive force. 

Etotal = Ek + E. Eq. 3.2 

where Etotal the total energy output per blow, 

Ek the kinetic energy of the ram at the 
instant of impact, 

and E. = the diesel explosive energy which does 
useful work on the pile. 

It has been noted that after the ram passes the 
exhaust ports, the energy required to compress the air· 
fuel mixture is nearly identical to that gained by the 

remammg fall of the ram.i0 Therefore the velocity of 
the ram at the exhaust ports is essentially the same as 
at impact, and the kinetic energy at impact can be closely 
approximated by: 

where Wn 
h 

and d 

Ek = Wn (h - d) Eq. 3.3 

the ram weight, 
the total observed stroke of the ram, 
the distance the ram moves after closing 
the exhaust ports and impacts with the 
anvil. 

The total amount of explosive energy Ee(totall is 
dependent upon the amount of diesel fuel injected, com
pression pressure and temperature and therefore may 
vary somewhat. 

Unfortunately, the wave equation must be used in 
each case to determine the exact magnitude of Ee since 
it not only depends on the hammer characteristics but 
also on the characteristics of the anvil, helmet, cushion, 
pile, and soil resistance. However, values of Ee deter
mined by the wave equation for several typical pile prob
lems indicates that it is usually small in portion to the 
total explosive energy output per blow, and furthermore, 
that it is on the same order of magnitude as W n X d. 

Thus, Eq. 3.1 can be simplified by assuming: 

Ee = W R X d Eq. 3.4 

Substituting Eqs. 3.3 and 3.4 into Eq. 3.1 gives: 

£total= E~r + E" = Wn (h- d) + Wn d Eq. 3.5 

so that: 
Etotal = Wn h Eq. 3.6 

The results given by this equation are compared with the 
actual values found by the wave equation in Table 3.12. 
Nnte that the results are relatively constant, the average 
efficiency being 100 7r . 
Steam Hammers 

Again using the wave equation in conjunction with 
the Michigan report, Tables 3.13 and 3.14 suggest effi
ciency ratings of 601ft, for the single-acting steam ham
mers, and 87% for the double-acting hammer, based on 
an energy output given by: 

Etotal = Wn h Eq. 3.7 

In order to determine an equivalent ram stroke for 
the double-acting hammers, the internal steam pressure 
above the ram which is forcing it down must be taken 
into consideration. The manufacturers of such hammers 
state that the maximum steam pressure or force should 
not exceed the weight of the housing or casing, or the 
housing may be lifted off the pile. Thus the maximum 
downward force on the ram is limited to the total weight 
of the ram and housing. 

Since these forces both act on the ram as it falls 
through the actual ram stroke h, they add kinetic energy 
tn the ram, which is given by: 

where Wn 
Fn 

and h 

Etotal = Wn h + Fn h Eq. 3.8 

the ram weight, 
= a steam force not exceeding the weight 
= the observed or actual ram stroke. 

Since the actual steam pressure is not always applied at 
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TABLE 3.12. COMPARISON OF ENERGY OUTPUT MEASURED EXPERIMENTALLY WITH THAT PREDICTED 
BY EQUATION 3.6, FOR DIESEL HAMMERS 

Ram Wt. Observed Wn X h ENTOTL Pile ENTOTL WR Ram Stroke Etotnl 
Hammer. I. D. Case (ft lb) (lb) h (ft) (ft lb) Etotal 

LB-312 BLTP-4 25.0 10,630 3,857 3.3* 12,800 .83 
66.4 16,030 3,857 3.6* 13,900 1.15 

DRP-3 40.0 9,270 3,857 2.9* 11,000 .84 
60.0 13,900 3,857 3.0* 11,600 1.20 

DE-30 BRP-4 20.0 9,450** 2,800 6.6 18,500 
50.0 9,100** 2,800 6.9 19,300 

DTP-13 40.0 14,390 2,800 .5.2 14,600 .99 
80.7 15,280 2,800 7.0 19,600 .78 

D-12 BLTP-5 15.0 13,000 2,750 4.9 13,500 .96 
60.0 14,730 2,7.50 6.1 16,800 .88 

DTP-15 20.0 15,270 2,750 6.0 16,500 .93 
80.5 9,430** 2,750 7.0 19,300 

LB-520 MTP-12 30.5 22,140 5,070 3.7* 18,500 1.20 
70.8 21,260 5,070 4.5* 22,750 .93 

DE-40 MTP-11 69.5 32,800 4,000 7.6 30,400 1.08 
150.0 . 36,850 4,000 8.2 32,800 1.12 

D-22 MLTP-8 31.0 31,600 4,850 5.6 27,200 1.16 
178.0 27,300 4,850 5.5 26,700 1.02 

Avg. = 1.00 

*Equivalent stroke derived from bounce chamber pressures. 
**Experimental results for these cases appear to be quite inaccurate. 

TABLE 3.13. COMPARISON OF MEASURED OUTPUT WITH THAT GIVEN BY EQUATION 3.7, FOR SINGLE 
ACTING STEAM HAMMERS 

Pile Hammer EINPUT* WR h** Etotal EINPUT 
I.D. Case Type (ft lb) (lb) (ft) (ft lb) Etotal 

BLTP-6 10.0 V-1 10,100 5,000 3 15,000 0.67 
57.9 V-1 7,000 .5,000 3 15,000 0.47 

DLTP-8 41.5 V-1 9,700 5,000 3 15,000 0.65 
80.2 V-1 7,200 5,000 3 15,000 0.48 

MLTP-2 20.0 V-1 12,200 5,000 3 15,000 0.81 
53.0 V-1 7,700 5,000 3 15,000 0.51 

Avg. = 0.60 

*EINPUT found by wave equation and listed in Table 3.10. 
**The observed ram stroke h or equivalent ram stroke h. was given in the Michigan report text. 

TABLE 3.14. COMPARISON OF MEASURED ENERGY OUTPUT WITH THAT PREDICTED BY EQUATION 3.11, 
FOR DOUBLE ACTING STEAM HAMMERS 

Pile 
I.D. 

DTP-5 

MLTP-9 

Case 

20.0 
79.0 

72.0 
127.0 

Hammer EINPUT* 
Type (ft lb) 

V-50C 12,800 
V-50C 15,600 

V-80C 19,700 
V-80C 19,200 

*EINPUT found by wave equation and listed in Table 3.10. 

WR h.** Etotnl 
(lb) (ft) (ft lb) 

5,000 3.02 15,100 
5,000 3.02 15,100 

8,000 3.0.5 24,450 
8,000 3.05 24,450 

**The observed ram stroke h or equivalent ram stroke h. was given in the Michigan report text. 
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EINPUT 
Etotal 

0.85 
1.03 

0.81 
0.79 

Avg. = 0.87 



the rated maximum, the actual steam force can he ex
pressed as: 

FR = ( _P ) WH 
Prated 

Eq. 3.9 

where W H is the housing weight, p is the operating 
pressure, and Prated is the maximum rated steam pressure. 

The total energy output is then given by 

Etotal = WR h + r=p WH h Eq. 3.10 
L_:rated 

This can he reduced in terms of Eq. 3. 7 by using 
an equivalent stroke h. which will give the same energy 
output as Eq. 3.10. 

Thus: 
Etotal = WR he Eq. 3.ll 

Setting Eqs. 3.10 and 3.ll equal yields 

WR he WR h + 1-----..L_ WH h 
l]>rated 

= h I WR + _P_ WH I Prated 

or solving for the equivalent stroke: 

h, = h [ 1 + p;:..,- X ::j Eq. 3.12 

Conclusions 
The preceding discussion has shown that it is possi

ble to determine reasonable values of hammer energy 
output simply by taking the product of the ram weight 
and its observed or equivalent stroke, and applying an 
efficiency factor listed in Tables 3.12 thru 3.14. This 
method of energy rating can be applied to all types of 
impact pile drivers with reasonable accuracy. 

A brief summary of this simple procedure for arriv
ing at hammer energies and initial ram velocities is as 
follows: 

Open End 
E 

e 

Diesel Hammers 
WR h (e) 

V 2g (h-d) (e) 
ram weight 
initial ram velocity 
observed total stroke of ram 
Distance from anvil to exhaust ports 
efficiency of open end diesel hammers, 
approximately 100% when energy is 
computed by this method. 

Closed End Diesel Hammers 
E* WR h. (e) 

VR = V 2g (h.-d) (e) 

*Note: For the Link Belt Hammers, this energy can be 
read directly from the manufacturer's chart using bounce 
chamber pressure gage. 

= ram weight 
initial ram velocity 

where WR 
VR 
h equivalent stroke derived from bounce 

chamber pressure gage 
d 
e 

distance from anvil to exhaust ports 
efficiency of closed end diesel hammers, 
approximately 1007< when energy is 
computed by this method. 

Double-Acting Steam. Hammers 
E WR h. (e) 
V y2g h. (e) 

where W R ram weight 
h. = equivalent ram stroke 

= h L1 + _P_ X WH 
Prated Wn 

h actual or physical ram stroke 
p operating steam pressure 

Prated maximum steam pressure recommended 
by manufacturer 

W H weight of hammer housing 
e efficiency of double-acting steam ham

mers, approximately 85 7< by this method. 

Single-Acting Steam Hammers 
E WR h (e) 

VR V2g h (e) 
where WR ram weight 

h ram stroke 
e efficiency of single-acting steam hammers, 

normally recommended around 75 7<· to 
85%.43 In this study of the Michigan 
data, a figure of 60 7<· was found. The 
writers feel the 60% figure is unusually 
low and would not recommend it as a typ
ical value. 

A summary of the properties and operating character
istics of the various hammers is given in Table 3.15. 

Effects of the Experimental 
Measuring Devices 

Another example of the application of the wave 
equation to the Michigan pile study is the solution of 
each of the previous problems, but excluding any effects 
of the experimental apparatus. When the question was 
first raised as to how the elasticity of the load cell and 
the additional weight of the load cell and extra driving 
cap might affect the results, it was decided to drive a 
Belleville H pile to refusal with a Delmag D-12 hammer 
with the load cell and extra driving cap removed. The 
data recorded for this pile were then compared with the 
data for similar piles which were driven by the same 
hammer hut which included the extra driving cap and 
load cell. 

The only data obtainable for the noninstrumented 
pile were the blow count and rate of penetration at vari
ous depths, since there was no way to measure the forces, 
displacements, ENTHRU, etc. It is also possible that a 
pipe pile might have been affected differently than the 
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TABLE 3.15. SUMMARY OF HAMMER PROPERTIES AND OPERATING CHARACTERISTICS 

Hammer Hammer Maximum Ram Casing 
Manu- Type Rated Weight Weight 

facturer (ft lb) (lb) (lb) 

Vulcan #1 15,000 5,000 4,700 
014 42,000 14,000 13,500 

50C 15,100 5,000 6,800 
soc 24,450 8,000 9,885 

140C 36,000 14,000 13,984 

Link Belt 312 18,000 3,857 

520 30,000 5,070 

MKT Corp DE20 16,000 2,000 

DE30 22,400 2,800 

DE40 32,000 4,000 

Delmag D-12 22,500 2,750 

D-22 39,700 4,850 

H-pile tested, and that the soil conditions of the Detroit 
or Muskegon sites could be of influence. Furthermore, 
only one hammer was studied (the Delmag D-12) and 
the effect on the other hammers could be different. 
Obviously, these questions cannot be completely an
swered experimentally since this would mean that every 
time the hammer, pile type, driving location, or any 
other parameter changed, a similar noninstrumented pile 
would also have to be driven under identical conditions. 

SPRING RATE OF SOIL~ 
IN SHEAR ALONG K'(MP-1) 

SEGMENT MP -I 

~ } W(ll=RAM WEIGHT. 

~K(Il =SPRING RATE OF =r-- . CUSHION. 

Figure 3.15. Idealization of a Vulcan hammer without 
measuring devices. 
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Anvil Maximum d Rated Explosive Cap 
Weight or Equiva- (ft) Steam Pressure Block 

(lb) lent Pressure (lb) 
Stroke (psi) 

(ft) 

3.00 
3.00 
3.02 120 
3.06 120 
2.58 140 

1188 4.66 0.50 98,000 5 Micarta 
disks 
1" X 10%" 
dia. 

1179 5.93 0.83 98,000 

640 8.00 0.92 46,300 nylon disk 
2" X 9" 
dia. 

77.5 8.00 1.04 98,000 nylon disk 
2·" x 19" 
dia. 

1350 8.00 1.17 138,000 nylon disk 
2" X 24" 
dia. 

754 8.19 1.25 93,700 15" X 15" 
X 5" 
German 
Oak 

1147 8.19 1.48 158,700 15" X 15" 
X 5" 
German 
Oak 

These effects are easily determined by the wave 
equation, simply by omitting the weights and springs 
corresponding to the extra driving cap and load cell 
shown in Figures 3.4 and 3.5. The modified idealiza
tions are shown in Figures 3.15 and 3.16. 

SPRING RATE OF SOIL} 
IN SHEAR ALONG K'(MP-1) 
SEGMENT MP-1 

~ } Wlll=RAM WEIGHT. 

I_ - K (I) • SPRING RATE OF r-- ... THE RAM. 

& } W(2}• ANVIL WEIGHT. 

L -- K(2} =SPRING RATE OF 
~ CUSHION. 

} 
W(3l = ~~~13tiJG ~P + 

PIPE ADAPTER 
(WHEN USED}. 

K(3} = SPRING RATE OF 
FIRST PILE SEGMENT. 

W{4} = WEIGHT OF PILE 
SEGMENT. 

~ . 

} W{MP-11• WEIGHT OF PILE 
SEGMENT. 

:>------- K{MP-1}• SPRING RATE OF 

} 

PILE SEGMENT. 

W {MP} = WEIGHT OF FINAL 
PILE SEGMENT. SPRING RATE OF SOIL} 

IN SHEAR ALONG K'(MP)·--~ 

U
SPRING RATE OF SEGMENT MP 

K'IMP + t} SOIL IN BEARING 
BENEATH SEGMENT 
MP. 

Figure 3.16. Idealization of a diesel hammer without 
measuring devices. 



TABLE 3.16. EFFECT OF REMOVING LOAD CELL ON ENTHRU, LIMSET, AND PERMANENT SET OF PILE 

ENTHRU 
(kip ft) 

Ram With Without 
Velocity Load Load 

Case (ft/sec) Cell Cell 

8 1.5 1.6 

DTP-15, 12 3.3 3.6 
8(}.5 16 5.8 6.5 

20 9.1 10.1 

8 3.1 3.8 

DLTP-8, 12 7.1 8.5 
80.2 16 12.5 15.1 

20 19.5 23.6 

Although no problems were solved which involved 
H piles driven by a Delmag D-12 hammer at the Belle
ville site, a similar pile was driven at Detroit for which 
a wave equation solution was obtained. 

The results for this problem with the load cell as
sembly included and excluded are given in Table 3.16. 
This agrees with the Michigan study conclusion that for 
case DLTP-15 ;80.5 the permanent set per blow including 
the load cell agrees with that found when the load cell 
is excluded. The corresponding values for ENTHRU 
do not agree nearly so· well. 

The results for a similar problem solved at the 
Detroit site, DLTP-8;80.2, do not agree with this con
clusion. This pile was also an H-pile, was embedded 
to within 0.3 ft of the first H-pile, and also had 55 kip 
soil resistance. However, DLTP-8;80.2 differs from the 
Michigan test pile in that this pile was ll ft longer, and 
was driven by a Vulcan-1 hammer rather than the Del
mag D-12. As shown in the lower half of Table 3.16, 
ENTHRU, LIMSET, and the permanent set per blow all 
show large changes when the measuring devices are 
omitted. This might be overlooked if only the experi
mental results for case DLTP-15;80.5 were known. 

Table 3.17 shows how ENTHRU increases when the 
load cell assembly is removed. 

E"jfects of Cushion Properties on Driving 

Although the general effects of cushioning materials 
on pile driving are discussed in Chapter IV, the follow
ing discussion is given since it deals with the Michigan 
pile study. 

As. previously noted, the Michigan report states that 
the cushion properties influence the values of ENTHRU 
significantly, although "how, when, or how much" 
ENTHRU was affected could not be determined. It was 
thought that ENTHRU could be increased by using a 
more resistant cushion block, in the case of the Vulcan l 
and McKiernan-Terry DE-30 hammers. Although this 
conclusion seems reasonable, results given by the wave 
equation did not seem to agree. For example, as seen 
in Table 3.6, ENTHRU does not always increase with 
increasing cushion stiffness, and furthermore, the maxi
mum increase in ENTHRU noted here is relatively small 

LIMSET PERMANENT SET 
(in.) (in.) 

With Without With Without 
Load Load Load Load 
Cell Cell Cell Cell 

0.27 0.34 0.23 0.25 

0.53 0.67 0.57 0.57 

1.02 1.03 0.94 0.97 

1.54 1.54 1.43 1.47 

0.62 0.71 0.51 0.62 

1.15 1.32 1.06 1.29 

1.91 2.10 1.82 2.15 

2.70 3.08 2.65 3.13 

-only about lO percent. This effect can also be seen 
in Table 3.18, in which the cushion stiffness varies 
greatly, while the displacement of the pile point changes 
less than lO percent. 

However, if a different cushion is used, the coeffi
cient of restitution will probably change too. Since the 
coefficient of restitution of the cushion may affect EN
THRU, a number of cases were solved with "e" ranging 
from 0.2 to 0.6. As shown in Tables 3.19 and 3.20, an 
increase in "e" from 0.2 to 0.6 normally increases 
ENTHRU from 18 to 20 percent, while increasing the 
permanent set from 6 to ll percent. Thus, for the case 
shown, the coefficient of restitution of the cushion has 
a greater influence on rate of penetration and ENTHRU 
than does its stiffness. This same effect was noted in 
the other solutions, and the cases shown in Tables 3.19 
and 3.20 are typical of the results found in other cases. 

As was noted in Table 3.7, any increase in cushion 
stiffness also increases the driving stress. Thus, accord
ing to the wave equation, increasing the cushion stiff
ness to increase the rate of penetration {for example by 
not replacing the cushion until it has been beaten to a 
fraction of its original height or by omitting the cushion 
entirely) is both inefficient and poor practice because 
of the high stresses induced in the pile. It would be 
better to use a cushion having a high coefficient of resti
tution and a low cushion stiffness in order to increase 
ENTHRU and to limit the driving stress. 

This suggests that a long micarta cushion having 
a relatively low spring rate, and a high coefficient of 
restitution might be very effective. 

Comparison of Various Hammers 
Driving the Sam{! Pile 

One of the objectives of the Michigan pile study 
was to determine just how effective the various hammers 
actually were during driving. Therefore, every attempt 
was made to equalize any variables which would affect 
the results, such as choosing the driving location to give 
comparable driving conditions. However, it would be 
impossible to test several hammers without having some 
variations occur, perhaps in the soil resistance or ham
mer condition. Since the wave equation does not have 
this limitation, it can be used to advantage here. 
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TABLE 3.17. EFFECT ON ENTHRU RESULTING FROM REMOVING THE LOAD CELL ASSEMBLY 

ENTHRU 
(ft lb) Increase 

Driving 
With Without ENTHRU 

Pile Load Load in 
Location I.D. Case Cell Cell ( o/o) 

Belleville BLTP-6 10.0 6380 7500 18 
.57.9 4440 5300 19 

BLTP-4 25.0 8010 8800 10 
66.4 11200 12000 8 

BRP-4 20.0 4980 5750 15 
50.0 4470 6450 44 

BLTP-5 15.0 9040 10750 19 
60.0 9930 12300 24 

Detroit DLTP-8 41.5 5760 6900 21 
80.2 4540 5400 19 

DTP-5 20.0 8290 10000 23 
79.0 11420 12700 12 

DRP-3 40.0 7060 7600 13 
60.0 6620 7200 11 

DTP-13 40.0 9100 10850 13 
80.7 9480 11400 20 

DTP-15 20.0 10100 11500 14 
80 .. 5 5480 6600 20 

Muskegon MLTP-2 20.0 7210 8800 23 
53.0 4870 5700 17 

MLTP-9 72.0 14660 17000 16 
127.0 13110 16000 22 

MTP-12 30.5 14860 17000 14 
70.8 13140 15000 14 

MTP-11 69.5 16760 22000 31 
150.0 17900 25300 41 

MLTP-8 31.0 25500 31000 22 
178.0 22050 26600 21 

TABLE 3.18. EFFECT OF CUSHION STIFFNESS ON MAXIMUM POINT DISPLACEMENT FOR CASES BLTP-6; 
10.0 AND 57.9 

Maximum Point Displacement (in.) 
Maximum Ram Cushion Stiffness (kip/in.) Pile RUT Velocity Change 

I.D. (kip) (ft/sec) 540 1080 2700 27,000 ( o/o) 

BLTP-6; 10.0 30 12 2.20 2.14 2.22 2.26 5 
16 3 .. 54 3.47 3.52 3.70 6 
20 4.66 4.93 5.00 5.01 7 

BLTP-6; 57.9 150 12 0.45 0.48 0.38 0.48 6 
16 0.72 0.76 0.76 0.79 9 
20 1.06 1.10 1.11 1.15 8 

TABLE 3.19. EFFECT OF COEFFICIENT OF RESTITUTION ON ENTHRU FOR CASE BLTP-6; 10.0 AND 57.9 

Pile 
I. D. 

BLTP-6; 10.0 

BLTP-6; 57.9 
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RUT 
(kip) 

30 

150 

Ram 
Velocity 
(ft/sec) 

12 
16 
20 

12 
16 
20 

ENTHRU (kip ft) Maximum 
Change 

e = 0.2 e = 0.4 e = 0.6 ( o/o) 

6.0 6.5 7.3 18 
10.5 11.8 12.8 18 
16.5 17.4 20.0 17 

6.7 7.2 8.2 18 
11.6 12.7 14 .. 5 20 
18.2 19.7 22.4 19 



TABLE 3.20. EFFECT OF COEFFICIENT OF RESTITUTION ON MAXIMUM POINT DISPLACEMENT FOR CASE 
BLTP-6; 10.0 AND 57.9 

Pile 
I.D. 

BLTP-6; 10.0 

BLTP-6; 57.9 

RUT 
(kip) 

30 

150 

Ram Maximum Velocity 
(ft/sec) e = 0.2 

12 2.13 
16 3.38 
20 4.73 

12 0.46 
16 0.73 
20 1.05 

Point Displacement (in.) Maximum 
Change 

e = 0.4 e = 0.6 (%) 

2.14 2.36 10 
3.47 3.58 6 
4.93 5.17 8 

0.48 0.50 8 
0.76 0.81 10 
1.10 1.18 11 

TABLE 3.21. STUDY OF VARIOUS HAMMERS DRIVING THE SAME PILE 

Permanent 
Maximum Set of 

Ram Explosive Point Pile Per 
Velocity Force 

Hammer (ft/sec) (kip) 

Vulcan-! 10.0 0 
Vulcan-50C 14.5 0 
Vukan-80C 12.5 0 
Link Belt 312 7.0 98.0 
Link Belt 520 16.0 98.0 
McKiernen-Terry DE-30 13.0 98.0 
McKiernen-Terry DE-40 21.0 138.0 
Delmag D-12 15.0 93.7 
Delmag D-22 17.5 158.7 

As an example of such a comparison, Case BLTP-
6;57.9 is used, with the load cell and extra helmet 
omitted, and with a soil resistance of 300 kips. This 
pile was then analyzed by the wave equation to deter
mine its penetration per blow when driven by each of 
the hammers listed in Table 3.10. In each case, the soil 
and pile parameters were held constant. Thus, for ex
ample, even though the values of the soil damping con
stant or quake may not be exact, they remained constant 
for each problem while experimental results would vary 
unless Q and J did not change at each new driving 
location. 

Again, certain quantities had to be known for each 
hammer before the wave equation could be applied. For 

Displacement Blow Blows 
(in.) (in.) Per Inch 

0.125 0.025 8 
0.284 0.184 3 
0.360 0.260 2 
0.119 0.019 8 
0.357 0.257 3 
0.139 0.039 7 
0.592 0.492 1 
0.173 0.073 5 
0.473 0.373 2 

example, the ram velocity at impact must be known, as 
well as the dynamic behavior of the cushion, the diesel 
explosive pressure in the hammer, and the length of time 
it exerts a force on the pile. Since the above data were 
not directly measured in the Michigan research pro
gram, they were being calculated from the previous data 
reported. The ram velocities at impact and explosive 
forces on the pile for the diesel hammers were based on 
the results given in Table 3.11, assuming the explosive 
force to be acting as shown in Figure 3.12. The Vulcan 
hammer properties were based on Table 3.10. 

The results of driving this pile with the eight differ
ent hammers are listed in Table 3.21 in the form of per
manent set of the pile per blow and blows per inch. 

Chapter IV 
CHARACTERISTIC CUSHION PROPERTIES 

Introduction 
Although a pile cushion serves several purposes, 

its primary function is to limit impact stresses in both 
the pile and hammer.00 In general, it has been found 
that a wood or rope cushion is more effective in reducing 
the driving stresses than one of a relatively stiff material 
such as Micarta. However, a stiffer cushion is usually 
more durable and transmits a greater percentage of the 
hammer's energy to the pile. 

For example, the results given in Tables 3.10 and 
3.11 give an overall average efficiency of 52 percent for 

cushion assemblies using wood, while the Micarta as
semblies have an average efficiency of 66 percent. As 
shown in Table 3.7, an increase in cushion stiffness will 
also cause an increase in impact . stresses which might 
damage the pile or hammer during driving. This in
crease in stress is particularly important when driving 
concrete or prestressed concrete piles. 

Dynamic Stress-Strain Curves 

In order to apply the wave equation to pile driving, 
Smith"1 assumes that the cushion's stress-strain curve is 
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Figure 4.2. Test pile showing placement of strain gages. 
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Figure 4.3. Cushion test stand. 

a series of straight lines as shown in Figure 4.1. Even 
though this curve might be sufficiently accurate to pre
dict maximum compressive stresses in the pile, the shape 
of the stress wave often disagrees with that of the actual 
stress wave. 52 This discrepancy was at first thought to 
be the result of inaccurate soil data, since very little was 
known concerning the soil behavior during driving. It 
was therefore decided to suspend several test piles hori
zontally above the ground53 as shown in Figure 4.2 to 
eliminate the effects o.f soil resistance. 

Table 4.1 lists the pertinent information concerning 
these piles. The cushion was then hit by the ram and 
the resulting strains were measured at six points along 
the pile. Displacements and accelerations of both the 
ram and the head of the pile were also measured. How
ever, even though the soil resistance had now been ex-

TABLE 4.1. SUSPENDED PILE DATA 

Pile Cushion Ram 

E Ap L Ac t Weight Velocity 
Case Material (psi) (in.2

) (ft) Material (in.') (in.) (lb) (ft/sec) 

Class A 
LT-48 Concrete 6.12x10' 254 65 Fir 62.8 9.0 4160 13.91 

Class A 
LT-41 Concrete 6.12x10' 254 6.5 Micarta 89.1 9.0 4160 8.03 

LT-39 Steel 30x10' 21.46 85 Oak 225.0 7.5 2128 11.42 

Class Y 
LT-15 Concrete *3.96x10' 225 65 Oak 225.0 9.5 2128 13.98 

*Esonic = 4.64x1o• psi 
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Figure 4.4. Dynamic and static stress-strain curves for 
a fir cushion. 

eluded, the shape of the stress wave still did not agree 
with the theoretical shape, and so the device illustrated 
in Figure 4.3 was used to see if the cushion's stress-strain 
diagram was actually a straight line. 

Using this method, the dynamic stresses and strains 
were measured for several cushion materials. It was 
later discovered that for a given material, the dynamic 
stress-strain curves were almost identical to the cor
responding static curves. This is demonstrated in Figure 
4.4 in which the dynamic and static curves for a fir 
cushion are compared. 

Since the stress-strain curves are not linear as 
assumed, the shape of the theoretical stress wave in the 
pile is not likely to agree with the experimental shape 
and so the "dynamic" curves were used. 

Figure 4.5. Idealized test pile with known forces applied 
at head of the pile. 

Furthermore, it is not known how much the rigidity 
of the pedestal shown in Figure 4.3 affects the cushion's 
behavior. Therefore, the wave equation was used to 
check the results. The second method required the fol
lowing information: l) the stresses determined experi
mentally at the head of the pile vs time, 2) the velocity 
of the ram at impact, and 3) the physical properties of 
the pile system required for solution by the wave 
equation. 

As shown in Figure 4.5, both the cushion and ram 
are omitted and the previously determined stresses meas
ured experimentally at gage l {see Figure 4.2) are 
placed on the head of the pile. The wave equation is 
then used to determine the motion of the ram and the 
pile, from which the compression of the cushion at any 
instant of time is known. By plotting the measured 
cushion forces against the corresponding compressions 
of the cushion, the dynamic stress-strain curve may be 
determined. The curves obtained by this method are 
illustrated in Figures 4.6, 4.7, and 4.8. Comparing these 
with Figure 4.4, it is noted that the curves are generally 
similar in shape. 

.Dynamic Coefficient of Restitution 

Although the cushion is needed to limit the driving 
stresses in both hammer and pile, it reduces the avail
able hammer energy because of internal damping. The 
load diagram shown in Figure 4.1 illustrates this energy 
loss since the energy input is given by the area ABC 
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B 
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E4y 0= 37,300 PSI 

in 3000 
~ 
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1.1.1 
Q: 

Iii 

2000 

1000 

0.16 0.20 0.24 0.26 
(lN./IN.) 

Figure 4.6. Dynamic stress-strain curve for fir cushion 
(Case LT-48). 
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Figure 4.7. Dynamic stress-strain curve· for a mica-rta 
cushion (Case LT-41). 

w~ile the energy_ output is given by area BCD. Usually 
this energy loss IS accounted for by a coefficient of resti
tution of the cushion "e," in which 

e-
.. / Area under BCD 
V Area under ABD 

When the dynamic stress-strain curve for the cushion 
is known, such as for the previous problem the coeffi. 
cient of restitution can be computed. As sho~n in Figure 
4.6, the a_rea under the dynamic curve ABC is computed 
by summmg elemental areas ijkl until point B is reached 
(i.e., until the strain reaches a maximum) , then the area 
under BCD is determined by summing elemental areas 
mnop until point D is reached. 

Table 4.2 summarizes the results found for the 
curvt;s of Figures 4.6, 4.7, and 4.8. These coefficients 
of_ restitution ~grt;e dose~y with values recommended by 
Hirsch. 55 It IS mterestmg that although e = 0.8 is 
commonly recommended for a micarta capblock, these 

TABLE 4.2. DYNAMIC CUSHION PROPERTIES 

Case Cushion 
Material 

LT-48 Fir 
LT-41 Micarta 
LT-39 Oak 
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Figure 4.8. Dynamic stress-strain curve for an oak 
cushion (Case LT-39). 

experiments indicate that e is actually much lower, 
probably around 0.6. 

Idealized Dynamic Stress-Strain Curves 
The major difficulty in using the dynamic curves 

derived in the previous section is that numerous points 
on the curve must be specified in the input data, unless 
the curve can be input in equation form. Although the 

en 
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Figure 4.9. Idealized dynamic stress-strain curve for 
cushion (parabolic). 
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Figure 4.10. Dynamic force vs compression curves for 
a fir cushion (Case LT-48). 

increasing load curve for each of the curves is nearly 
parabolic, the unloading segment is rather complex. 
Therefore, for convenience, the unloading segmep.t will 
he approximated· by . a straight line having a slope such 
that the areas under the two curves result in the use of 
the correct coefficient of restitution for the cushion 
material being used. 

Thus, the curve shown in Figure 4.9 can he defined 
by two different points on the loading curve (other than 
0.0) and "e" of the material. The points on the curve 
are used to define the equation of the loading curve, and 
as long as the cushion strain increases, the increased 
input energy is computed as described earlier. When 
the strain in the cushion hegins to decrease, the total 
input energy and the coefficient of restitution are used 
to determine the slope of the unloading curve in order 
to- give the correct value of "e." 

As shown in Figure 4.9, the total input energy is 
given by the area under the parabolic curve, A1 + A2, 

while the output energy is given by the area under the 
unloading curve, A2 • Since e is defined by 

e2 = A2/(A1+Az), 

then 
A2 = e2 (Al+Az). 

But A2 is also given by 
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Figure 4.11. Dynamic force vs compression curve for 
a mica:rta cushion (Case LT-41). 
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Figure 4.12. Dynamic force vs compression curve for 
an oak cushion (Case LT-39). 

Az (Sm~-O) (Ez-€1) 

( Sn;x) ( Ez-€1) 

2e2 (Al + Az) 
Smax 

Since the slope of the straight line BD is given by: 

K 
_ Smax 

u-
(Ez-el) 

where Ku defines the slope of the unloading curve, e 
is the coefficient o-f restitution of the material, ( A1 + A2 ) 

is the total area under the curve ABD (calculated by the 
computer), and Smax is the maximum stress in the cush
ion determined by the wave equation. 

Figures 4.10, 4.11, and 4.12 compare experimental 
force vs compression curves obtained for the first three 
cases listed in Table 4.1, with those resulting from the 
parabolic idealization of Figure 4.9, and the straight line 
shown in Figure 4.1. Note that the parabolic curves 
closely represent the actual force-displacement curves 
while the linear curves are not nearly so close. In each 
case the parabolic curves tend to- "over-shoot" the true 
maximum force, while the linear curve does not. The 
effect this has on the stress wave in the pile will he 
discussed in Chapter V. 
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Chapter V 
STRESS WAVES IN PILING 

Comparison of Actual 
and Experimental Stress Waves 

As noted in Chapter IV, the shape and magnitude 
of the stress wave in a pile is greatly dependent upon 
the properties of the cushion used. This will become 
apparent by comparing the actual stress wave determined 
experimentally with results found by using the idealized 
cushion properties mentioned earlier. 

The solution for stresses in the pile should be more 
accurate if the effects of the cushion and ram can be 
omitted. To accomplish this, the force measured at the 
head of the pile and the stresses at other gage points were 
then determined by using the wave equation. The cases 
solved by this method are listed in Table 4.1. Compari
sons between the experimental results and wave equation 
solutions at two points on the pile are shown in Figures 
5.1 through 5.6. 

One of the major factors which influenced these 
comparisons was the fact that the prestressed concrete 
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Figure 5.1. Theoretical vs experimental solution for 
Case LT-48, Gage #3. 
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test piles cracked while setting up the experiment. There
fore, any reflected tensile forces greater than the pre
stressing force opened a small gap at the crack such that 
the prestressing strands alone could transmit the tensile 
stress down the pile. This is seen by the relative agree
ment shown in Figures 5.1 through 5.6. Note that the 
stress-waves shown for the concrete piles (Figures 5.1 
through 5.4) do not agree nearly so well as those for 
the steel pile (Figures 5.5 and 5.6) . 

Still, the results agree closely in each case, not only 
in magnitude, but also in the over-all shape of the wave, 
thus indicating that the numerical solution to the wave 
equation is quite accurate. Further, any inaccuracies are 
likely due to faulty assumptions concerning the dynamic 
behavior of other variables such as the cushion, soil, etc. 

As mentioned earlier, the stress-strain curve for the 
cushion is normally assumed to be linear as in Figure 
4.1. The true stress-strain curves shown in Figures 4.6 
through 4.8 indicate that the curves are not actually 
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Figure 5.3. Theoretical vs experimental solution for 
Case LT-41, Gage #3. 
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Case LT-39, Gage #3. 
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though it agrees with the actual stress-strain curve most 
of the time, it cannot follow the reversed curvature at 
the peak of the actual curve and thus "over-shoots" the 
true peak force. Figures 4.10 through 4.12 show how 
closely the parabolic curves follow the true cushion 
forces, and also how far off the straight line assumption 
is. The parabolic curve always peaks above the true 
force vs compression curve, while the spring rate of the 
straight line can be raised or lowered so that the true 
maximum cushion force is not exceeded. 

I.Ei0};-0 -------!-'!-7---.!----::--7.---:7;--:-. ---:.~1~0 -:':,~1~2 -::-,~I.L_-=-,---:~=----=-17---:,.:---=-1.~20 
TIME (SEC X 10-3) 

Thus the use of the straight-line assumption seems 
reasonable since it gives fairly accurate results. The 
linear spring constants used for the curves shown in 
Figures 5.7 through 5.12 were first varied between wide 
limits to obtain the most accurate maximum stresses. 
These spring rates were then used to determine what 
dynamic modulus of elasticity was required to give the 
desired spring rate, using the equation: Edynamic = 
(K cushion) (Length)/(Area of cushion). As shown 
in Table 5.1, these results give a lower value of E for 
oak than for fir, which in this case is correct since the 
fir capblock was highly stressed ( 4,170 psi) while the 
oak capblock was stressed only slightly ( 765 psi). 

Figure 5.6. Theoretical vs experimental solution for Case 
LT-39, Gage #5. 

linear and this assumption might therefore cause 
inaccuracies. 

To determine how the shape of the curve affects the 
solution, the previous three _problems were run using the 
cushion stress-strain curves shown in Figures 4.1 
(straight line), 4.6 through 4.8 (true stress-strain 
curves), and 4.9 (parabolic curve). These solutions are 
compared in Figures 5. 7 through 5.12. In each case, 
it is noted that the straight line solution is more accurate 
than the solution using the parabolic curve. This is 
because a simple parabolic curve was used which, even 

Further consideration of the dynamic stress-strain 
curves revealed that the dynamic modulus of elasticity 
of the capblock is almost exactly lO percent greater than 
that given by the slope of the stress-strain curve (Figures 
4.6 through 4.8) taken at a point halfway between zero 
and the maximum strain. As noted by Hirsch,02 the 
static and dynamic stress-strain curves are quite similar, 
so that curves like those shown in Figures 4.6 through 
4.8 are easily determined for any other cushion material. 

TABLE 5.1 DYNAMIC PROPERTIES OF NEW CUSHION BLOCKS OF VARIOUS MATERIALS 

Slope at 
Linear Spring Depth of Area of Midpoint SMAX in 

Cushion Rate - K Cushion Cushion Ed~·Jutmie of Curve Cushion 
Case Material (lb/in.) (in.) (in.') (psi) (psi) (psi) 

LT-48 Fir 295,000 9.0 62.8 42,200 37,300 4170 
LT-41 Micarta 2,320,000 9.0 89.1 234,000 212,000 3850 
LT-39 Oak 585,000 7.5 225.0 19,500 17,300 765 
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Figure 5.8. Theoretical vs experimental solution for Case 
LT-48, Gage #5. 

It was also recommended that the dynamic modulus be 
increased as the cushion consolidated. Ga 

Internal Damping in Piling 
As noted earlier, differences between experimental 

and theoretical results were assumed to be the result of 
inaccurate soil information. Other parameters were also 
varied in an attempt to obtain more accurate results, 56 

one of which was the material damping or internal damp
ing capacity of the pile material. 

Smith"7 first suggested that the internal damping 
in the pile might prove significant, and proposed the 
following equation by which hysterisis in the pile could 
be accounted for: 

F(m,t) = C(m,t)K(m) 

BK(m) + 12~t [C(m,t) -C(m,t-1)] 

in which B is the internal damping constant. He also 
recommended that B be given a value of about 0.002 in 
order to produce a narrow hysteresis loop. This equa
tion was derived from the model shown in Figure 5.13 

I.Z ,--------------------------

0.8 

- SOLUTION WITH KNOWN FORCES PLACED ON HEAD OF PILE 
.,.,., " SOLUTION USING A LINEAR CUSHION SPRING RATE 
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0 

Figure 5.9. Theoretical vs experimental solution fo·r Case 
LT-4l,Gwge #3. 
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Figure 5.10. Theoretical vs experimental solution for 
Case LT-41, Gwge #5. 

(b) and if B is set equal to zero, no damping is present, 
as seen in Figure 5.13 (a). 

The model shown in Figure 5.13 (c) has one major 
advantage over the previous model in that it is able to 
account for damping by considering the difference be
tween the material's static modulus of elasticity E, and 
its sonic modulus of elasticity E.. This is because a 
slowly applied load gives the dashpot time to relax with
out causing the spring K. to exert a force, thereby result
ing in a spring rate equal to K 0 • However, when the 
loads are applied rapidly the dashpot has no chance to 
deform, resulting in a spring rate of Ko- K.. Thus for 
the model of Figure 5.13 (c), K0 is determined from 
the static modulus of elasticity E, while Kn + K. would 
use the sonic value E •. 

It is interesting to note that when K. is infinitely 
large, model (c) becomes equivalent to model (b) , and 
if K. = 0, model (c) becomes equivalent to model (a). 

In order to derive the equation, Figure 5.14 is pro
vided. Figure 5.14 (a) illustrates the damping model 
wherein point "m" (on the upper mass) has moved a 
distance x1, point "n" (between the dashpot and spring) 
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Figure 5.11. Theoretical vs experimental solution for 
Case LT-39, Gage #3. 



has moved a distance x2, and point "o" (on the lower 
mass) has moved a distance of x3• Assume that at time 
t = t0 there exists a force F0 to in the spring K0 • There 
is also a force in the spring K. given by F.to, and a 
force in the dash pot equal to F n to. 

As shown in Figure 5.14 (b), after a single time 
interval passes, point m moves an additional distance 
Axh point na moves Ax2, and point o moves Ax3• At 
this time, t = t1 = t0 + At, and the forces in K0 , K., 
and B are designated F0 t1, F.t1, and Fnt1, respectively. 

At time t 0 : 

F8to = K.(xl-x2). Eq. 5.1 

At time t1 = t0 + At1: 
F.t1 = K.[ (x1 + Axl) - (x2 + Ax2) ]. 
F.t1 = K.[(xl-x:d + (Ax1-Ax2)]. Eq. 5.2 

Substituting Equation 5.1 into 5.2: 
F.t1 = F.to+K.(Axl-Ax2). 

By definition, at all times: 
F t _ B (Ax2-Axa) 

D 1 - At . . 

Because point n must be in equilibrium: 
F.t1 = Fntl. 

Substituting Equation 5.3 

Fnto + K.(Axl-Ax2) 

Ax2: 

and 5.4 into 5.5: 
= B (Ax2-Axa) 

At 

Solving for 

Ax2 = FntoAt+ K,Ax1At+ BAxa 
K.At+ B 

Substituting Equation 5.6 into 5.4 produces: 

Eq. 5.3 

Eq. 5.4 

Eq. 5.5 

Eq. 5.6 

F t1 = Fnto+K (Ax1-Ax3 ) 

D (K.At/B) + 1 Eq. 5· 7 

The solution begins by setting F D to equal to zero, 
and calculating it for the next time interval from Equa
tion 5.7. The quantity K. is a constant and (Ax1-Axa) 
is simply the change in compression during a single time 
interval. Therefore, returning to the earlier terminology, 
Equation 5. 7 can be written: 

DF(It+ 1) = DF(I,t) +DK(I)[C(I,t+1)-C(I,t)] 
' [DK(I)At/B]+LO Eq.5.8 

where DF(I,t) is the damping force in dashpot number 
"I" during time interval "t," DK (I) is the dynamic 
spring rate of damping spring "I," C (l,t) is the com
pression in spring I during time interval number t, At 
is the time increment, and B is a damping constant. 

The static force in spring I will be computed as 
before, by 

F(I,t+1) = K(I)[C(I,t+1)]. Eq. 5.9 

· Thus by adding the Equations 5.8 and 5.9, the total force 
acting on each mass can be determined for the next time 
interval. 

Since as far as is known this derivation does not 
appear elsewhere, the boundary conditions for the damp-
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Figure 5.12. Theoretical vs experimental solution for 
Case LT-39, Gage #5. 

K B 

(a) NO DAMPING PRESENT (b) INTERNAL DAMPING PROVIDED 
BY DASHPOT 

(c) INTERNAL DAMPING PROVIDED BY AN 
ELASTIC SPRING AND DASHPOT CONNECTED 
IN SERIES 

Figure 5.13. Various idealizations for the spring seg
ment of a pile. 

ing force given by Equation 5. 7 were checked. 
Equation 5. 7, 

( ) L . K - 0 F t1 - F D to+ 0 -a ettmg " - : n - 1 + 0 -

From 

This is correct since F n begins at zero and cannot in
crease in magnitude when K. = 0. 

(b) 
_ Fnto+ oo 

Letting K. = oo : F n t1 
00 

+ 
1 

= oo I oo. 

Since this is indeterminate, 

d 
ciK.[F,to + K,(Axl-Axa)] 
d 
dK. [KBAt + 1] 

1 im O+ (Ax1 -Axa) _ B(Axt-Axa) 
K.~ oo At/B + 0 At 

This checks since it is the equation found when K. = oo 
and only the dashpot remains. In this case the models 
of Figures 5.13 (b) and (c) would be identical 
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(a) POSITION OF MASSES 
AT TIME t =to 

0 

(b) POSITION OF MASSES 
AT TIME t=to•L.t 

Figure 5.14. Idealized pile segment with standard linea.r 
solid damping. 
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Figure 5.15. Comparison of experimental and theoreti
cal solutions for stresses at Gage #3 with damping 
omitted (Ca:se LT-15). 

(c) Letting B = 0: F0 t1 = F 0 to+ K.(..!lxl- .:lx3) 

1 + K • ..!lt 
0 

1 = 0. 
00 

This checks since if the dashpot has no damping ability, 
the damping force must be zero. 

(d) Letting B = oo : F0 t1 = Foto + K.(..!lxl-..!lxs) 

K • ..!lt + 1 
00 

F Dto + K.(..!lxl- Llxs) 
But Foto = Fsto :____ K. Cx1-x2r 
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Substituting this into the previous equation one finds 
Fot1 [K.][(xl-x2)+(..!lxl-llx2)] 

[K.] [ (x1 + ..!lx!) - (x2 + ..!lx2)] 
[K.] [Total compression at time t]. 

This is correct since it is the equation for the spring and 
when B = oo, the dash pot is "locked" and no damping 
occurs. 

( ) Le . Ll _ 
0

. F t
1 

_ Foto+ K.(..!lx1-..!lx3) 
e ttlng t - . 0 -

0 
+ 

1 

This result agrees because it gives the same result as 
letting B = oo. (See part (d) above.) 

(f) Letting Llt-3>oo :F0 t1 

Frito+K.(..!lxl-llxa) = O. 
oo +B -

This checks because the force stored in the damping 
spring would be released by relaxation of the dashpot 
if Llt = 00. 

(g) Let Llx1 = ..!lx2 and assume that the damping 
spring has an initial force stored at t = t0 • Although 
this fmce ehould diminish with time, it cannot go to zero 
during a single time interval, unless ..!lt = oo. 

Foto+ K.(O) 

_Ktt +LO 

This is correct since the force in the spring is reduced, 
but will never actually reach zero unless Llt = oo. 

Figures 5.15 through 5.18 compare the effects of 
damping in a pile using the damping models shown in 
Figure 5.13. The results given are for test pile number 
LT-15 which is described in Table 4.1. This particular 
pile was of lightweight concrete with E = 3.96 X 106 

and E. = 4.63 X 106 psi. This problem was chosen 
since E. was relatively larger than E, indicating the 
possibility of rather high damping. 

However, one is often more interested in the maxi
mum stresses found in the pile, which usually occurs 
during the first or second pass of the stress wave along 
the pile. During this time the effects of damping are 
small and can usually be neglected. 
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Figure 5.16. Comparison of experimental and theo·reti
cal solutions for stresses at Gage #3 for different damp
ing models (Case LT-15). 
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Figure 5.17. Comparison of experimental and theoreti
cal solutions for stresses at Gage #5 with damping 
omitted (Case LT-15). 

This conclusion may not be accurate for timber 
piles since wood has a i:nuch higher damping capacity 
than either the steel or concrete piles for which experi
mental data were available. This higher damping ca
pacity might affect the results earlier in the solution 
which might in turn lower the accuracy of the results. 
Nevertheless, if more testing should indicate that the 
damping models are accurate for timber piling too, then 
the problem, or rather the uncertainties of damping 
effects will no longer be a problem. 

In any case, if the wave is to be studied for an ex
tended period of time, damping in the pile cannot be 
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Figure 5.18. Comparison of experimental and theoreti
cal solutions for stresses at Gage #5 for different damp
ing models (Case LT-15). 

neglected. This is illustrated in Figures 5.15 and 5.17 
where fairly large errors resulted when damping was 
neglected. On the other hand, Figures 5.16 and 5.18 
suggest that in certain cases damping should be account
ed for using either of the damping models of Figure 5.13. 

The most surprising result of this study is not the 
accuracy of the damping models, but rather that both 
models give nearly identical results even though Smith's 
model is extremely simple while the other is rather com
plex. Again, this may also prove incorrect for timber 
piling or other piling which has a large damping ca
pacity. For example, one of the above methods might 
be more accurate than the other. 

Chapter VI 
SOIL PROPERTIES 

Idealized Soil Resistance Curves 

The load-defoTmation characteristics assumed for 
the soil in Smith's numerical solution am shown in 
Figure 6.1 (a). This curve excludes the damping effects 
of the soil caused by rapid loading, and illustmtes only 
the soil resistance caused ~y static loading. As shown, 
the two parameters required to define the load-defm:ma
tion curve are the ground quake "Q(m)" and the ulti
mate static soil resistance "Ru ( m) . " 

When the soil is located along the side of the pile, 
it is assumed to resist any rebound of the pile as well as 
any downward motion. This is typified by the curve 
OABCDEFG. However, the soil located at the tip of the 
pile can only exert upward forces, as represented by the 
curve OABCFCB. 

The spring rate for the curve between point 0 and 
A may now be determined from 

K'( ) = Ru(m) 
m Q(m) 

In order to include the damping effects of the soil, 
a third variable J (m) is defined as the damping con
stant of soil spring "m." Thus the total resistance of 

the soil, including the effect of loading rate, is given by 
R(m,t) = [D(m,t) - D'(m,t)] K'(m)[1 

+ J(m)V(m,t-1)] 

where m denotes the segment number of the pile, t is the 
time interval number, D(m,t) is the displacement of 
segment m at time interval number t, K' (m,t) is the 
plastic deformation of the soil, J( m) is the soil damp
ing constant, K' ( m) is the soil spring constant, V ( m,t) 
is the velocity of mass number m at time interval number 
t, and R(m,t) is the soil resistance acting on that ele
ment at time t. 

In cases in which more accurate soil data are avail
able, the general soil resistance curve of Figure 6.1 (b) 
may be used to advantage. This curve also uses the 
variables Q(m) and Ru(m), but the curve no- longer 
must be linear. In this case, the ground quake Q(m) 
is divided into ten equal segments, and the static soil 
resistances corresponding to these ten points comprise 
the input data required to- establish the curve. Also, 
as shown in Figure 6.1 (b), the slope of the unloading 
curve is given by K' (m). A more complete discussion 
of the use of this method is given in the appendix. 

To- check out the programming changes involved in 
this method, several problems were first solved using 
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(a) ELASTIC-PLASTIC OR"LINEAR" SOIL RESISTANCE CURVE 

1'--------- Q ( m l --------1 

-j~ I 
r------- Q(m) -----j 

DEFORMATION 

(b) GENERALIZED SOIL RESISTANCE CURVE 

Figure 6.1. Load-deformation chamcteristics assumed 
for the soil. 

the regular elastic-plastic curve of Figure 6.1 (a). These 
problems were then solved again using the generalized 
soil resistance method with soil resistance values lying 
on the same curve, the two solutions then being checked 
for identical results. 

A number of other problems were also solved to 
see what changes might result when the shape of the soil 
resistance curve was altered. For example, the linear 
soil resistance curve used in a problem originally solved 
by Smith58 is shown in Figure 6.2 (a). This problem 
was then solved using the nonlinear curve of Figure 
6.2 (b). 

The solutions for these two problems, shown in 
Table 6.1, are typical of the results found for the other 
cases studied, in that a rather large change in the soil 
curve changed the results only slightly. In this case, 

TABLE 6.1. COMPARISON OF RESULTS FOUND BY 
USING ELASTIC-PLASTIC VS NONLINEAR SOIL 

RESISTANCE CURVES 

Maximum Force (kip) Maximum 
At At At Point 

Type Head Center Point Displace-
of Soil of of of ment 

Resistance Pile Pile Pile (in.) 

Elastic Plastic 290 300 405 0.203 

Nonlinear 290 301 370 0.218 

Percent Change 0.0 +0.3 -8.7 . +7.4 
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for example, although the soil quake was doubled and 
the curve made nonlinear, the maximum change in stress 
was less than 9 percent, and the permanent set increased 
less than 8 percent. Only a drastic change in the soil 
resistance curve was found to cause an appreciable dif
ference in the solution. 

Therefore, if the soil resistance curve for the prob
lem even slightly resembles the curve of Figure 6.2 (a) , 
the linear resistance equation will probably be satisfac
tory. Whenever it becomes necessary, the nonlinear soil 
resistance can be used as explained in the appendix. 

Significance of the Soil Quake "Q" 

The properties of the soil under the action of dy
namic loading are probably the least understood of the 
many variables affecting the problem.64 Although a 
number of values for the soil quake may be used, the 
value Q = 0.1, recommended by Chellis65 is probably 
the most widely accepted for general use, except when a 
more accurate value can be determined. As might be 
expected, the trouble stems mainly from the large num
ber of variables influencing the value of Q· at any given 
driving location, the most Dbvious of course being the 
type of soil encountered. Much work is presently being 
done to define these factors and to more accurately de
termine the actual values for both "Q" and "J" to in
crease the solution's accuracy.66,67 
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Figure 6.2. Soil resistance vs deformation curves. 



While it is beyond the scope of this paper to attempt 
to determine values for Q, it is interesting to see how 
the value of Q affects the solution. After a number of 
the Michigan research problems with varying values of 
Q were studied, Case BLTP~6; 57.9 was chosen as 
being fairly representative. The problems were solved 
with Q ranging from 0.1 to 0.5, as seen in Table 6.2. 
To determine whether Q would have similar effects at 
all magnitudes of soil resistance, Rutotal was also varied. 
The results of this parameter study are given in Table 6.2. 

One of the trends noted in Table 6.2 is the small 
effect Q has on the maximum compressive force found in 
the pile. The effect on tensile force is more pronounced, 
although no conclusion could he reached as to whether 
the tensile stress will increase or decrease as Q changes 
since the results did not indicate an apparent trend. 
Maximum ENTHRU values are also relatively inde
pendent of the soil quake, with ENTHRU tending to 
decrease as the soil quake increases. 

The most pronounced and consistent trend is the 
marked increase in maximum point displacement cor
responding to increasing values of Q. It is also noted 
that the percent increa·se in maximum point displace- · 
ment is relatively small for a small soil resistance, hut 
greatly increases as the total soil resistance becomes 
large. This is also shown in Figure 6.3. Similar results 

TABLE 6.2. INFLUENCE OF SOIL QUAKE AT DIF
FERENT SOIL RESISTANCES FOR CASE BLTP-6; 57.9 

WITH NO SOIL DAMPING 

Total Soil 
Resistance 

(kip) 

50 

100 

150 

200 

300 

400 

Q 
(in.) 

0.1 
0.2 
0.3 
0.4 
0.5 

0.1 
0.2 
0.3 
0.4 
0.5 

0.1 
0.2 
0.3 
0.4 
0.5 

0.1 
0.2 
0.3 
0.4 
0.5 

0.1_.,;< 

8:i. 
o .. f 
0.5 

0.1 
0.2 
0.3 
0.4 
0.5 

Maxi
mum 
Point 

Displace- Maximum 
ment ENTHRU 
(in.) (kip ft) 

1.49 6.80 
1.51 6.80 
1.51 6.73 
1.54 6.71 
1.58 6.69 

0.84 6.96 
0.88 6.88 
0.90 6.86 
0.93 6.84 
0.97 6.83 

0.56 7.10 
0.57 7.05 
0.61 6.93 
0.64 6.88 
0.69 6.85 

0.41 7.21 
0.44 7.13 
0.48 7.06 
0.52 6.99 
0.56 6.90 

0.22 7.28 
0.30 7.24 
0.36 7.16 
0.42 7.10 
0.47 7.05 

0.11 
0.21 
0.29 
0.36 
0.41 

7.30 
7.28 
7.24 
7.18 
7.12 

Maxi-
mum Maxi-
Com- mum 

pressive Tensile 
Force Force 
(kip) (kip) 

225 109 
222 109 
221 114 
221 119 
221 124 

230 68 
224 85 
223 97 
222 98 
222 97 

235 91 
227 90 
225 128 
223 163 
223 188 

240 79 
230 67 
226 77 
224 107 
224 118 

250 82 
234 108 
229 111 
225 59 
224 73 

260 
239 
233 
228 
226 

127 
114 
158 
158 
102 

were found for the other Michigan cases studied, except 
that the tensile force often varied substantially more than 
indicated for the case of Table 6.2. 

Significance of the Soil Damping 

Michigan Case BLTP-6;57.9 was also chosen to 
illustrate the damping effects of the soil. These damp
ing constants were given values ranging from 0.0 to 0.5, 
and as was done in the previous section, the total soil 
resistance was varied from 50 to 400 kip to see if trends 
found at low resistances would also be noted when the 
soil resistance was large. Since the soil damping con
stants most commonly used are those recommended by 
Smith,68 i.e., a soil damping constant of 0.05 sec/ft 
along the side of the pile and 0.15 sec/ft at the point 
of the pile, the variation of J = 0.0 to 0.5 very likely 
covers the values typical for many conditions and soils. 
These results are given in Table 6.3. 

As was previously determined for Q, the soil damp
ing constants also have little effect on the maximum 
ENTHRU values. The maximum compressive forces do 

TABLE 6.3. INFLUENCE OF SOIL DAMPING ON 
DIFFERENT SOIL RESISTANCES FOR CASE BLTP-6; 

57.9 (Q = 0.1 FOR ALL CASES) 

Total Soil 
Resistance J 

(kip) (sec/ft) 

50 

100 

150 

200 

300 

400 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

0.0 
i).1 
0.2 
0.3 
0.4 
0.5 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

Maxi
mum 
Point 

Displace-Maximum 
ment ENTHRU 
(in.) (kip ft) 

1.49 
1.11 
0.85 
0.72 
0.63 
0.56 

0.84 
0.58 
0.49 
0.43 
0.38 
0.34 

0.56 
0.42 
0.34 
0.28 
0.24 
0.21 

0.41 
0.28 
0.22 
0.18 
0.15 
0.13 

0.22 
0.12 
0.09 
0.08 
0.07 
0.07 

0.11 
0.07 
0.06 
0.05 
0.05 
0.05 

6.80 
6.89 
7.03 
7.21 
7.23 
7.25 

6.96 
7.12 
7.20 
7.25 
7.27 
7.28 

7.10 
7.23 
7.26 
7.28 
7.27 
7.26 

7.21 
7.28 
7.28 
7.25 
7.22 
7.20 

7.28 
7.23 
7.18 
7.14 
7.11 
7.07 

7.20 
7.13 
7.07 
7.02 
6.96 
6.90 

Maxi
mum 
Com-

pressive 
Force 
(kip) 

225 
221 
221 
221 
222 
222 

230 
222 
223 
223 
224 
225 

235 
223 
224 
225 
239 
251 

223 
225 
239 
255 
267 
274 

250 
272 
286 
293 
298 
302 

260 
308 
313 
314 
314 
314 

Maxi
mum 

Tensile 
Force 
(kip) 

109 
68 
41 
18 

6 
5 

68 
31 
11 
14 
12 
17 

91 
23 
21 
26 
24 
22 

79 
35 
37 
31 
27 
26 

82 
53 
41 
33 
31 
30 

127 
61 
41 
35 
33 
33 
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Figure 6.3. Maximum point: displacement vs quake (Case 
BLTP-6; 57.9). 

have a tendency to increase as J increases, especially 
when the soil resistance is large. While the tensile forces 
still do not follow any definite pattern, they are some
what more regular than those determined by varying 
".Q." 

0.4 

0.2 

RUT •eoK1P 

IWT •IOOICIP 

IWT•IIIOICIP 

-----RUT • 200KI' 
---=::::::==:::::::=======RUT o!OQKIP RUT o4QOKIP 

0o~----O~.~-----O..J.2 ______ 0L~-----O~A-----...lQ~l5----------_..J 

SOIL DAMPING CONSTANT - J (SEC I FT) 

Figure 6.4. Maximum point displacement vs so·il damp
ing constant (Case BLTP-6; 57.9). 

The maximum point displacements again show the 
most consistent trend as J is varied, as shown in Figure 
6.4. The other cases studied showed this same trend, 
i.e., as J increases, the maximum displacement decreases 
rapidly. 

Chapter VII 
CONCLUSIONS 

The correlation between the numerical solution and 
the experimental data presented in Chapter V indicates 
the potential accuracy of Smith's method, but the prob
lem involves so many important parameters that it is 
extremely important to know as much as possible about 
their actual behavior. 

As shown in Chapter III, it is possible to determine 
valuable info.rmation from the wave equation even 
though exact values for some of these parameters are 
unknown. For example, several problems can be solved 
in which the unknown parameter varies between upper 
and lower limits as was done to determine the effect of 
the ram's elasticity. This study shows that only for steel 
on steel impact does the elasticity of the ram affect the 
solution. 

In order to study the Michigan dai~ over 5,000 
problems had to be solved because certain key informa-
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tion such as the ram velocity was not reported. Still, it 
was possible to study the behavior of the pile-driving 
hammers discussed. For example, the efficiency of the 
cushion assembly was remarkably consistent, in that they 
were nearly independent o·f the type of pile, pile length, 
and soil resistance. The correlation between the wave 
equation and the field data shown in Chapter III further 
illustrates that Smith's method is accurate, especially 
when the required data are known and need not be 
assumed. 

Much of the value of this method of analysis is its 
flexibility. As illustrated in Chapter III, the wave equa
tion can be used for any number of studies which other
wise would not be possible. 

It was shown that the stress-strain curve for a cush
ion is not a straight line. Instead, it follows a curve 
which is closely parabolic. However, a straight line 



which has a slope equal to that of the true stress-strain 
curve taken at a point halfway between zero and the 
maximum strain gives accurate results. The cushion's 
dynamic coefficient of restitution was found to agree 
with commonly recommended values. 

The effect of internal damping in the concrete and 
steel piles was shown to he negligible in these cases, 
although it can he accurately accounted for by the wave 
equation if desired. 

The data from the Michigan Study of Pile Driving 
Hammers were extrapolated to evaluate the true energy 
output of different pile driving hammers. It was found 
that the energy output for all types of hammers (steam 

and diesel) can he determined by the simple equation: 
E = WR x h x e 

where E = energy output in ft-lh 
W R = ram weight in lh, 

h ram stroke or equivalent stroke in ft, 
and 

e - hammer efficiency (found to he 60 ';{ 
for the Vul. No. l, 87% for the Vul. 
SOC and SOC, and 100% for the diesel 
hammers investigated by the Michigan 
Study). 

This is believed to be a most significant finding in 
view of the existing controversy over the manufacturers' 
rated energies for diesel hammers. 

Recommendations 
RECOMMENDATIONS FOR FURTHER RESEARCH 

The following areas are recommended for further 
research: 

l. A complete evaluation of the data collected by 
the Michigan State Highway Commission, including cor
relation of hammer energy, permanent set of pile per 
blow, etc. This would require a major research effort 
because of the quantity of data reported. Also, because 
certain variables were not determined, several theoreti
cal solutions must be solved for each attempt correlation 
until the unknown parameter can he "pinned down" with 
reasonable accuracy. For example, the solutions for 
over 5,000 problems were required to complete the 28-
case study made in Chapter III. 

2. A study to determine how to improve the effi-

cien<_::y of the pile-driving hammers pre.sently in use. This 
type of research should be most interesting to the ham
mer manufacturers since present equipment could he 
optimized to drive piling faster and/ or reduce the driv
ing stresses during driving. The possibility that today's 
pile-driving hammers are as efficient as possible through 
trial and error is remote. 

3. Further research is needed to insure that the 
damping models proposed in Chapter IV are also ac
curate for timber piling, and to determine what damping 
constants should be used. 

4. Major research efforts are needed to investigate 
every aspect of the soil resistance acting on the pile 
during driving. 
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Appendix A 

PROGRAM INPUT DATA 

CARD 101 (Required) 
IDl and ID2 All "ID" values are for identifica

tion only and can be either alpha
betic or numeric. 

1/ .lt - Time interval. If left blank, .ltcr/2 

MP 

VELMI 
MH 

NR 
EEM(NR) 

will be used. (1/sec) 
- Total number of segments in the 

system to be analyzed. 
-'- Initial velocity of the ram. (ft!sec) 

Element number of the first pile 
segment. 
Number of divisions of the ram. 
Coefficient of Restitution of spring 
number NR, directly under ram. 

EEM(NR+l) 

GAMMA(NR) 

Coefficient of Restitution of spring 
number NR+l. 
The minimum force in the spring 
beneath the ram once that force 
has reached a maximum. · (kip) 
For example, if the diesel hammer 
explosive pressure causes 158.7 kip 
minimum force in this spring, set 
GAMMA(NR) = 158.7 kip. If the 
minimum force the spring can 
transmit is zero (for example, 
when no tensile force can exist be
tween the ram and anvil) set the 
corresponding GAMMA(!) = 0.0. 
If the spring represents a continu
ous body such as the spring be
tween any two pile segments, it can 
transmit tensile forces between the 
elements. This is signified by set
ting GAMMA(!) equal to any 
negative value, Usually -1.0 kip. 

GAMMA 
(NR+l) 

NSTOP 

NOP(I) 

NOP(l) 

NOP(2) 

VALUE 

=1 
=2 

=3 

=4 

=5 

Same as above, but for spring num
ber NR+l. 
Total number of time intervals the 
program is to run. 

FUNCTION 

Used to read cards 103-106 and 
print out the data for problem 
identification. 

No identification card is to be used. 
Read and print a single ID card. 
(card 103) 
Read and print two ID cards. 
(cards 103 and 104) 
Read and print ID cards 103, 104, 
and 105. 
Read and print ID cards 103, 104, 

105, and. 106. 

Used to specify the input method 
for the segment weights W AM (I). 

= 1 Read one weight for each segment 
(card series 200) . 

== 2 R_ead the segment weights for only 
the first five and last five seg
ments of the pile system from a 
single card· (card 200), and equate 
all remaining segment weights to 
the sixth weight in the system. 
(NOP(2) = 2 is used when a large 
number of equal weights are pres
ent except for the first or last few 
weights.) 
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NOP(I) 

NOP(3) 

VALUE FUNCTION 

Used to specify the input method 
for the internal spring stiffness. 
(XKAM(I). 

= 1 Read one stiffness for each inter
nal spring from card series 300. 

= 2 Read the stiffness values for only 
the first five and last five internal 
springs on a single_ card 300, and 
assign the fifth value to all re
maining internal springs. 

(NOP(3) = 2 is used under the 
same conditions as NOP(2) = 2. 

------------------
NOP(4) 

NOP(5) 

Used to specify what soil resist
ance distribution act along the pile. 

= 1 Read RUM(I) for each element 
from card series 400, and set the 
point bearing soil resistance RUM 
(MP+l) equal to RUP. 

= 2 Set all side resistances equal to 
zero, and set RUM(MP+l) 
RUP. 

= 3 Distribute RUT-RUP uniformly 
along the side of the pile from 
segment MO thru MP, and- set 
RUM(MP+L) = RUP. 

= 4 Distribute RUT-RUP triangularly 
along the pile between segments 
MO and MP, and set RUM(MP+l) 
= RUP. 

= 5 Read one 450 series card for each 
mass upon which a nonlinear re
sistance vs displacement curve 
acts. If a linear curve also hap
pens to be acting on an element, 
it must also be input on a 450 
series card. 

= 1,2 

==3 

Used to specify the input method 
for GAMMA(I). Note: The sig
nificance of GAMMA(!) is dis
cussed in the "500 card series." 

Read GAMMAl and GAMMA2 
from card 101 and assign GAM
MAl to internal spring number 
NR, and assign GAMMA2 to spring 
number NR+l. Then set GAM
MA(!) of the remaining springs 
to -1.0. 

Same as for NOP(5) =2, except 
that GAMMA(NR+2) is also set 
equal to 0.0. 

= 4 Same as for NOP(_5) =2, except 
GAMMA(NR+2) =0.0 and GAM
MA(NR+3) =0.0. This option is 
used when a large number of ele
ments such as an anvil, follower, 
load cell and pile cap are encoun
tered, since these elements cannot 
transmit a tensile force to the next 
element. This option can be used 
to set up to eight consecutive val
ues of GAMMA(!) =0.0 by setting 
NOP(5) =8. 

= 9 Read GAMMA(!) for each spring 
from card series 500. 



NOP(I) 

NOP(6) 

NOP(7) 

NOP(8) 

NOP(9) 

NOP(10) 

NOP(ll) 

NOP(12) 

NOP(13) 

NOP(14) 

VALUE FUNCTION 

Used to specify the input method 
for EEM(I). 

= 1 Read EEM1 and EEM2 from card 
101 set EEM(NR) =EEM1, and 
EEM(NR+1) =EEM(2). Then set 
EEM(I) for all other springs equal 
to 1.0 (perfectly elastic). 

= 2 Read EEM(I) for each spring 
from card series 600. 

Used to specify the input method 
for BEEM(I). 

= 1 Set all BEEM(I) =0.0. 
= 2 Read BEEM(I) for each spring 

from card series 700. 

Used to specify the input method 
for VEL(I). 

= 1 Read VELMI from card 101 and 
set VEL(I,t=O) for all segments 
of the ram (usually one segment) 
equal to VELMI. Set all other 
VEL (I) = 0.0. 

= 2 Read VEL(!) for each segment 
f:rom card series 800. 

Used to specify input method for 
Q(I). 

= 1 Read QSIDE and QPOINT from 
card 102 and set all Q(I) along 
side of the pile equal to QSIDE. 
Set Q(MP+1) under pile tip equal 
to QPOINT. 

= 2 Read Q(I) for each element includ
ing Q(MP+1) from card series 
900. 

Used to specify input method for 
SJ(I). 

= 1 Read SIDEJ and POINTJ from 
card 102. Set all SJ (I) along side 
of pile equal to SIDEJ and SJ(MP 
+1) under pile tip equal to 
POINTJ. 

= 2 Read SJ ( (I) for each element in
cluding SJ(MP+1) from card se
ries 1000. 

Used to specify the input method 
for DYNAMK(I). 

= 1 Set all DYNAMK(I) =0.0. 
= 2 Read DYNAMK(I) for each spring 

from card series 1100. 

Used to specify input method for 
A(I). 

= 1 Read AREA from card 102 and set 
all A(I) equal to AREA. 

= 2 Read A(I) for each internal spring 
from card series 1200. 

Used to specify which method of 
internal damping is to be used in 
the pile. 

= 1 Use Smith's method (refer to Fig
ure 5.13b). 

= 2 Use standard linear solid method 
(refer to Figure 5.13c). 

Used to specify how the ·force in 
the cushion after impact is to be 
determined. 

= 1 Calculate cushion forces from the 
wave equation applied to the mov
ing ram after impact. 

NOP(I) 

NOP(15) 

NOP(16) 

NOP(17) 

VALUE FUNCTION 

= 2 In this case, the force at the head 
of the pile at all times is known, 
probably by experimental methods, 
and this force curve is to be ap
piied at the head of the pile. The 
force at each time interval FOR
GIN (t) is read from card series 
1300 (kip). 

= 3 Same as when NOP(14) =2, except 
that galvanometer readings rather 
than forces at each time interval 
are input and the cushion forces 
are determined by the computer. 
In this case, the information on the 
1400 header card is needed, fol
lowed by the galvanometer deflec
tion at each time interval from 
card series 1400. 

Used to specify how gravity is to 
be accounted for in the solution. 

= 1 The effect of gravity is to be neg
lected. 

= 2 Gravity is to be considered, with 
the initial displacement of each 
segment, D(I,O), and the initial 
soil resistances RAM(I,O) assumed 
to be zero. 

= 3 Gravity is to be considered, and 
D(I,O) and RAM(I,O) are to be 
approximated by Smith's suggest
ed method.'" 

= 4 Gravity is to be considered, and the 
values for D(I,O) and RAM(I,O) 
are computed by Samson's suggest
ed method.61 

Used to specify the number of 
problems to be solved using the 
basic data given on cards 101 
through the 1700 card series. 

= 1 Only one problem is to be solved 
using this set of data. 

= 2 Run more than one problem with 
changes in these data as specified 
on card 1600. 

Used to specify whether the ulti
mate pile capacities predicted by 
various . pile driving equations are 
desired. 

= 1 No capacities are to be computed. 
= 2 Using the information from card 

1700 an!f the information provided 
by the wave equation solution, 
solve for the ultimate resistance 
to failure as predicted by several 
popular pile driving equations. 

CARD 102 (Required) 
ID3 Identification. 
ID4 identification. 
RUT The total static soil resistance act

ing on the pile (kip). 
RUP The total static' soil resistance act

ing beneath .the point (kip). 
MO 

QSIDE 

QPOINT 
SIDEJ 

- Number of first element upon 
which soil resistance acts. 
Soil quake along side of pile, if a 
single value exists. If not, set 
QSIDE=O.O (in.). 
Soil quake beneath pile point (in.). 
Soil damping factor in shear along 
the side of the pile if a single value 
exists. If not, set SIDEJ =0.0 
(sec/ft). 
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POINTJ - Soil damping factor in compres-
sion beneath· the pile point (sec/ 
ft). 

NUMR - Number of elements for which the 
soil spring does not have a linear 
stress-strain curve. 

!PRINT - Print frequency. For example, if 
the solution at every 5th time in
terval is wanted, set IPRINT=5. 

AREA - A constant used to convert the 
forces into stresses or other more 
convenient values (such as chang
ing lb. to kip by setting AREA= 
1000.0). 

NS1-NS6 The element numbers for which 
solutions vs time interval will be 
printed. Maximum values and 
other information are always 
printed for each element after 
NSTOP time intervals have 
elapsed. 

CARDS 103-106 (Required only if NOP(l) =2,3,4,5) 
If NOP(l) =1, no identification card will be read. If 

NOP(l) =2, read card 103 containing 72 columns of alpha
betic or numeric identification and print this information 
above the problem. If NOP(l) =3, read and print two 
identification cards, up to a maximum of four cards 
(NOP0.)=5). 

200 CARD SERIES (Required) 
IDWl, IDW2 - Throughout this Input, variables 

beginning with the letters "ID" are 
for identification, in this case to 
help identify what s e g m e n t 
weights are being used. 

WAM(I) - The weight of element number I 
(kip). a) If NOP(2) =1, the com
puter will read MP s e g m e n t 
weights, ten segment weights to a 
card from cards 201-230, up to a 
maximum of 300 segments. For 
example, if the system is divided 
into 37 segments, four 200 series 
cards must be included in the data: 
201 through 204. b) If NOP(2) =2, 
in this case the pile must have a 
constant weight per foot along its 
length. Since the pile is usually 
divided into equal segment lengths, 
only a few of the element weights 
are different. Therefore, only the 
top five weights (the ram, anvil, 
. . . ) and the bottom five weights 
( ... , pile segment, pile point) 
must be read from the card 200. 
The computer then sets all other 
element weights equal to the sixth 
value punched in the card. 

300 CARD SERIES (Required) 
IDKl, IDK2 - Identification. 
XKAM(I) - The internal spring rate of spring 

I (kip/in.). 
a) If NOP(3) = 1, the computer 
reads MP-1 spring rates from 
cards 301-330. 
b) If NOP(3) =2, the first and last 
five XKAM(I) are read from card 
300, and the remaining XKAM(I) 
are set equal to the sixth 
XKAM(I) value, i.e., XKAM 
(MP-4). 

400 CARD SERIES (Required if NOP(4) =1) 
IDRLl, IDRL2 - Identification. 
RUM(I) - The ultimate static resistance of 

the soil acting on pile segment I 
(kip). a) If NOP(4) =1, read MP 
ultimate soil resistances, from 
cards 401-430, and set RUM(MP 
+1) equal to RUP. 
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b) If NOP(4) =2, set all side fric
tion=O.O and set RUM(MP+l) = 
RUP. 
c) If NOP(4) =3, distribute (RUT
RUP) uniformly along the pile 
starting from segment number MO 
to number MP, and set RUM(MP 
+l)=RUP. 
d) If NOP(4) =4, distribute (RUT
RUP) triangularly between MO 
and MP set RUM(MP+1) =RUP. 
e) If NOP(4) =5, read NUMR 
cards, each of which can define a 
linear or nonlinear force-displace
ment curve for the soil (see card 
series 450). 

450 CARD SERIES (Required if NOP(4) =5) 
When NOP(4) =5, the soil resistance vs displacement 

curve is nonlinear. This requires ten soil resistances to be 
read for each soil spring, one for each displacement cor
responding to a multiple of Q/10. As shown on data card 
451, I is the number of the element upon which the non
linear resistance is. acting, XKIM(I) is the unloading 
spring rate (kip/in.), and R(I,J) are the soil resistances 
(kip) at each of the displacements Q/10, 2Q/10, ... , 
9Q/10, Q. Whenever NOP(4) =.5, one 450 series card is 
required for each element upon which soil resistance acts. 

500 CARD ·SERIES (Required when NOP(5) =2) 
IDG1, IDG2 - Identification. 
GAMMA(!) The minimum force possible in 

spring I after a peak compressive 
force has passed, except that any 
negative GAMMA(!) is construed 
to mean that that spring can trans
mit a tensile force of any magni
tude (kip). 

600 CARD SERIES 
IDE1, IDE2 
EEM(I) 

(Required when NOP(6) =2) 
Identification. 
The coefficient of restitution for 
MP-1 internal springs. This deter-
mines the slope of the unloading 
curve (dimensionless). 

700 CARD SERIES (Required when NOP(7) =2) 
IDB1, IDB2 Identification. 
BEEM(l) - The damping coefficient of the 

MP-1 internal springs (in. sec/ft). 

800 CARD SERIES (Required when NOP(8) =2) 
IDYl, IDV2 - Identification . 
VEL(I) - The initial velocities of each of the 

MP weights (ft/sec). 

900 CARD SERIES (Required when NOP(9) =2) 
IDQ1, IDQ2 Identification. 
Q(I) The soil "quake" for MP+1 soil 

springs (in.) . 

1000 CARD SERIES (Required when NOP(lO) =2) 
IDJ1, IDJ2 Identification. 
SJ(I) The soil damping factor for MP+l 

soil spring (sec/ft). 

1100 CARD SERIES (Required when NOP(11) =2) 
IDDK1, IDDK2 - Identification. 
DYNAMK(I) - The dynamic spring rate of MP-1 

internal springs (kip/in.). 

1200 CARD SERIES (Required when NOP(12) =2) 
IDA1, IDA2 - Identification. 

A(I) - The cross-sectional area of each of 
the MP-1 internal springs (in.'). 

1300 CARD SERIES (Required when NOP(13) =2) 
FORCIN (INTV) - The force acting on the head of the 

pile (kip) at time interval INTV, 
for NSTOP intervals with a maxi
mum NSTOP equal to 100 time 
intervals. 



1400 CARD SERIES (Required when NOP(14) =2) 
CARD 1400 Header Card. 
APILE - The area of the head of the pile 

(in.'). 
EMODUL 

RGAGE 
RCAL 
ACTIVG 
GFACTR 
D1 

D2 Through 
D5 

- The modulus of elasticity of the 
pile (kip/in.'). 

- The strain gage resistance (ohm). 
- Calibration resistance (ohm). 
- Number of active gages. 
- Gage factor for the gages used. 
- Displacement of the galvanometer 

trace when RCAL is thrown into 
the bridge at the head of the pile 
(in.). 

Galvo displacements corresponding 
to RCAL at any other four strain 
gage points (in.). 

CARDS 1401 UP TO 1410 
DGALVI(INTV) - The galvanometer deflection for 

the gage at the head of the pile, at 
interval number INTV (in.). 

CARD 1500 (Required when NOP(15) =4) 
Fl and F2 - Forces known to lie on the true 

dynamic force vs compression 
curve .of the cushion (kip). 

Cl and C2 The cushion compressions corre
sponding to Fl and F2, respective
ly (in.). 

CARD 1600 (Required when NOP(16) =2) 
NOPP(I) When a number of cases are to be 

solved for which only a few pa
rameters will change, NOPP(I) 
designates which parameter to 
vary and how many different val
ues it should be assigned. For ex
ample: NOPP(l) =5 indicates that 
five problems are to be solved, for 
which only the ram's initial veloci
ty will vary. Each NOPP(I) con
trols a single variable as shown in 
Table A.l. 

DVl Through 
DKl These parameters control the per

cent change in the variables men
tioned above. For example, assume 

that the effects of ram velocities 
of 10, 12, 14, 16, 18, and 20 ft/sec 
are being studied. The value of 
DVl would be 
(12 ft/sec- 10 ft/sec) 

10 ft/sec 
or DV1=0.20. In this case, NOPP 
(1) would equal 6 since 6 separate 
problems are to be run. 
The variables controlled by DVl 
to DK1 are also listed in Table A.l. 

TABLE A.l. LIST OF PARAMETER VARIATIONS 
AND THEIR CONTROLLING OPTIONS 

Controlling 
Option 

NOPP(l) 

NOPP(2) 
NOPP(3) 
NOPP(4) 
NOPP(5) 
NOPP(6) 
NOPP(7) 

NOPP(8) 
NOPP(9) 
NOPP(lO) 
NOPP(ll) 
NOPP(l2) 
NOPP(13) 
NOPP(14) 
NOPP(15) 
NOPP(l6) 

CARD 1700 
AREAP 
XLONG 
ELAST 

CENR 

QAVG 
WRAM 
WPILE 
ENERGY 

Per Cent Increase Parameter 
in Original Value Controlled 

DVl VELMI (Initial ram 

DWl W(1) 
velocity) 

DW2 W(2) 
DWl W(3) through W(MP) 
DKl XKAM(1) 
DK2 XKAM(2) 
DKI XKAM(3) through 

XKAM(MP-1) 
DQI O.SIDE 
DQP QPOINT 
DJI SIDEJ 
DJP POINTJ 
DRI RUT 
DRP RUP 
DRI RUT & RUP 
DEl EEM(l) 
DE2 EEM(2) 

(Required when NOP(17) =2) 
Cross-sectional area of pile (in.'). 
Length of pile (ft). 
Modulus of elasticity of pile 
(kip/in.'). 
Value for use in ENR pile driving 
formula. 
Average ground "Quake" (in.). 
Ram weight (kip). 
Pile weight (kip). 
Actual energy output of the ram 
(ft lb). 
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Introduction 

Appendix B 

EXAMPLE PROBLEM 

c. Soil damping factor "J" and soil quake 
"Q" -not known. 

4. Miscellaneous Data 
a. Load Cell Weight = 580 lb. 
b. Additional Helmet Weight 1,080 lb. 

The following example problem is given to illustrate 
the steps necessary to arrive at a solution. In the previ
ous chapters, the functional components involved were 
discussed separately; for example, the driving hammer, 
pile, soil properties, etc. However, the input data is 
more easily handled by grouping according to similar 
physical quantities rather than functional quantities. For 
example, one series of cards is used to input all segment 
weights, another for the spring rates. The order in which 
the input data is set up for the example problems is by 
no means unique, but it probably should be followed 
until the programmer becomes familiar with the opera
tions involved. 

B. Input Data Calculations 

It should be noted that any variable without a deci
mal point (such as MP, MH, NR, NSTOP, and NOP(I) 
on card 101) is always an integer and must be entered 
as far to the right in its field as. possible. Also, the 
decimal point does not have to be punched for any varia
ble which has a decimal place already shown on the 
data sheet unless it is desired to change its position. 
For example, if the initial ram velocity (IVEL on card 
101) is 13.48 ft/sec, the numbers 1, 3, 4, and 8 should 
be punched in columns 19 through 22, respectively. How
ever, to enter a velocity of 127 ft/sec into IVEL, punch 
1, 2, and 7 in columns 19, 20, and 21, and punch a deci
mal point in column 22. 

Except for this last case, decimal points need never 
be punched. 

Example Problem 
Since case BLTP-6; 57.9 (from the Michigan Pile 

Study) was one of the problems most often used in this 
report, the input data required for its solution will be 
determined first. Figures 3.3 and 3.4 show the real 
system and the idealized system. 

A. Given Information-Case BLTP-6; 57.9 
l. Hammer Data-Vulcan #1 

a. Manufacturer's Rated Energy = 15,000 
ft lb, normal stroke = 3 ft. 

b. Ram Weight = 5,000 lb, velocity at im
pact not measured. 

c. Driving Cap Weight = 1,000 lb. 
d. Cushion Data = Oak block, 6-~ in. 

deep by 11-~ in. in diameter, direction 
of grain unknown, condition of cushion 
unknown (somewhere between new and 
"crushed and badly burnt"). 

2. Pile Data-CBP 124 H-section 
a. Area = 15.58 in.2• 

b. Weight = 53 lb/ft. 
c. Total Length = 72.5 ft. 
d. Driven Length = 57.9 ft. 
e. Modulus of Elasticity = 30 x 106• 

3. Soil Data 
a: Ultimate Soil Resistance = 300 kip 

(static value from load test after soil 
"set-up"). 

b. From driving log, 75 percent of the soil 
resistance is assumed point bearing and 
25 percent side resistance. 
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Card 101 
l. IDl-ldentification Tag, use BLTP-6 
2. ID2-Identification Tag, use 57.9. 
3. Segment Lengths- Although s e g m en t 

lengt~s of lO ft are usually satisfactory, a 
5 ft length will be used to increase the ac
curacy of the solution. 

4. Time Interval-The normal time interval 
of l/4000 to 1/5000 iterations/sec must be 
halved since the normal segment length of 
10 ft was reduced by half. Therefore, use 
~t = 1/10,000 sec or l/ ~t = 10,000. 

5. MP-The total number of segments as 
shown in Figure 3.4 is 3 above the pile 
plus 14 pile segments. Thus, MP = 17. 

6. Since the ram velocity at impact was not 
recorded, the following ram velocities will 
be studied: IVEL = 8, 12, 16, and 20 
ft/sec. 

7. MH-The first pile segment weight = 4. 
8. NR-Number of divisions of the ram = l. 
9. EEMI-Coefficient of restitution of cush

ion = 0.4, EEM2--coefficient of restitu
tion of load cell = 1.0. 

10. Since springs 1, 2, and 3 cannot transmit 
tensile forces, GAMMA ( 1), ( 2) , and ( 3) 
are 0.0. The remaining GAMMA (I) are 
set equal to· - 1.0. This is done by setting 
GAMMA1 = GAMMA2 = 0.0 and desig
nating NOP(S) = 3 so that GAMMA(3) 
will also be set = 0.0. 

11. To allow the wave time to make two com
plete passes up and down the pile, NSTOP 
is set = 173 iterations. This is found from 
the velocity of travel of the stress wave and 
the value of ~t. 

v 'IE/ .. /30,000,000 
wave = v p = V (0.283/386) 

= 202,000 ips or 
- 202,000 Vwave -

12 
= 16,800 ft/sec. 

Total distance wave must travel = 4(72.5) 
= 290 ft. 

T l . . d 290 ft .0173 
ota time reqmre = 16,800 ft/sec 

sec. 

NSTOP 
Total time 

~t 

.0173 sec -:-::--;::-::-::-:::-:::.,....---;-;---:-- = 1 73 iterations. 
( 1/10,000) sec/iteration 

Therefore, use NSTOP = 173 iterations. 



12. Option Calculations-NOP(I) 
a. NOP(1)-No header cards to be read 

in and printed out, so NOP(1) = L 
b. NOP(2)-Read segment weights from 

card series 200 (long form), so NOP(2) 
=L 

c. NOP(3)-Read spring constants from 
card series 300 (long form) , so N OP ( 3) 
=L 

d. NOP ( 4) -Assume triangular soil dis
tribution along the side of the pile, so 
NOP(4) = 4. 

e. NOP(S)-Since GAMMA(3) is to be 
set equal to 0.0, NOP(S) = 3. 

f. NOP(6)-Since all the internal springs 
are considered perfectly elastic, except 
for the first one or two for which values 
of "c" are given by EEM1 and EEM2, 
set NOP(6) = 1 (short form, no series 
600 cards). 

g. NOP(7)-Assume zero internal damp
ing in the steel pile, thus set NOP(7) 
= 1 and do Iiot include the 700 card 
series. 

h. NOP(8)-0nly the ram has an initial 
velocity, so NOP(8) = 1, no 800 card 
series. 

i. NOP(9) and NOP(10)-Since more 
exact soils information is not available 
Smith's recommended values for Q and 
J will be used and input on card 102 
(short form). Thus, NOP(9) 
= NOP(10) = L 

j. NOP(ll)-No damping, set NOP(ll) 
=L 

k. NOP(12)-Use a single factor to 
change force to stress for all springs
NOP(12) = L 

I. NOP(13)-Use the damping procedure 
illustrated in Figure 5.13(a), so NOP 
(13) = l. 

m. NOP(14)-Calculate the force at the 
pile head from the action of the ram 
so NOP(14) = L 

n. NOP(15)-Neglect gravity effects
NOP(15) = L 

o. NOP(16)-Since several parameters 
are to be varied, set NOP(16) = 2, 
thus card 1600 must be included in the 
data. 

p. NOP(17)-Do not calculate driving re
sistance predicted by pile driving equa
tions. NOP(17) = L 

Card 102 
L ID3-Identification Tag, use 12H53. 
2. ID4-Identification Tag, use L = 72. 
3. RUT-Since the Michigan Report noted a 

soil "set-up" of about 2.0, the static resist
ance actually encountered during driving 
was probably around half of the measured 
400 kip, so RUT = 200 kip. 

4. RUP-Assuming 75 percent of the total soil 
resistance at the point, RUP = 150 kip. 

'--------------- ------ --

5. MO-Sinee the length of pile in the ground 
was 57.9 ft, the first segment upon which 
soil resistance acts is given by: 

MO = MP + 1 _ ( Depth Driven ) 
Segment Length 

17 + 1- 57.9 
5.0 

18 11.6 
18 12 

so MO 6 
6. QSIDE and QPOINT-Smith's recommend

ed value of 0.1 in. will be used due to lack 
of better soils data. 

7. SIDEJ and POINTJ-For the same reasons 
above for values of Q, use SIDEJ = 0.05 
sec/ft and POINTJ = 0.15 sec/ft. 

8. NUMR-Since the soil springs all act as 
shown in Figure 6.1 (a) , NUMR = 0. 

9. Set IPRINT = 5 to print out the solution 
at every 5th iteration. 

10. AREA-A single factor will be used to 
change all forces from lb to kip, thus AREA 
= 1000.0. 

11. NS1 through NS6-In this case, the solu
tions for segments 1, 2, 3, 4, 11, and 17 
are desired and, therefore, NS1 through 
NS6 are given these values. 

Cards 201-202 
Segment Weights-As shown in Figure 3.4, 
several weights normally present during 
driving have been added between the pile 
and the driving cap to obtain experimental 
data. 
a. W ( 1) = ram weight = 5.0 kip. 
b. W ( 2) = driving cap weight + ¥z of 

the load cell weight = 1.29 kip. 
c. W(3) = ¥z load cell weight + helmet 

= 1.37 kip. 
d. W(4) through W(17) = pile segment 

weights = (53 lb/ft) (5 ft) = 0.265 
kip. 

Cards 301-302 
Segment Stiffness 
a. Because of the lack of data concerning 

cushion stiffness, several values of K ( 1) 
will be run: K ( 1) - 500, 1,000, and 
1,500 kip. in. 

b. The helmet was found to be extremely 
stiff compared to the load cell, so K(2) 
was taken as the stiffness of the load 
cell alone. From dimensions of the load 
cell given in the Michigan Report and 
using K = AE/L, the spring rate of the 
load cell was found to be 86,500 kip/in. 

c. The spring rate of each 5 ft pile segment 
is found by: · 

K = AE 
L 

= 7,790 kip/in. 

(15.58) (30x103 ) 

5x12 

So K(3) through K(16) 7,790 
kip/in. 
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Card I600 
I. Parameter Options-NOPP (I) -Note that 

all values of NOPP(I) are set = I except 
when an option is used to vary its assigned 
parameter, in which case NOPP(I) can 
equal 2 through 9. 

a. Since IVEL is to he given the four 
values of 8, I2, I6, and 20 ft/sec, 
NOPP(I) = 4. 

h. NOPP(2) through NOPP(4) = I since 
no segment weights are to he varied. 

c. NOPP(5) = 3 since three different 
cushion stiffnesses are to he used (K (I) 
= 500, 1,000, and I,500 kip/in.) 

d. NOPP(6) through NOPP(7)-I since 
no other parameter changes are re
quired. 
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L_ __________________ _ 

2. Parameter Change Constants-DVI, DEI, 
DE2, etc. These values specify the desired 
increase in a given parameter based on the 
parameter's original value. They may he 
calculated from the equation: 

C 
_ Second V aue · Initial Value 

onstant - I . . l V l mha a ue 
Thus, since the initial value of IVEL is 
8 ft/sec and the second value is I2 ft/sec 

DVI = I2 8 8 : = 1.0 

The value for DKl is therefore given by 

DKI = 1000-500 = 500 = I O 
500 500 . 

All other values such as DWl, DW2, etc., 
may he left blank or given any value for 
later use since they are not used as long as 
the corresponding NOPP(I) = I. 



Appendix C 
PROGRAM LISTING 
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$EXECUTE IBJOB 
$18JOB 
SIBFTC MAIN 
C - PROGRAM CONSISTS Of APPROXIMATELY 1200 LINES OUTPUT 
C - LINES/PROBLEM = 50 +2•MP +NSTOP/IPRINT (UNLESS JS CHANGES) 
C - RUN TIME FOR PROGRAM IS ABOUT 1 MINUTE 
C - RUM TIME FOR ONE PROBLEM IS ABOUT = (MP•NSTOP)/60,000 (MINUTES) 
C NOP(l) = OtltNO IDENTIFICATION CARDS (SERIES 103) 
C = 2, READ IDENTIFICATION CARD 103 {72 COLS OF ALPHAMERIC POOP) 
C = 3, READ 2 IDENTIFICATION CARDS 
C = 4, ETC. UP TO 4 CARDS 
C NOP(2) = 0 
C = l,REAO NEW WAM(I),I=l,MP 
C = 2t READ CARD 200 MAXIMUM DIFFERENT WAM(I} = TEN 
C NOP(3J = 0 
C = l,READ NEW XKAM(Il,l=l,N 
C = 2, READ CARD 300 MAXIMUM DIFFERENT XKAM(I) = TEN 
C ~0P(4) = O,USE OLD SOIL RESISTANCE VALUES,STANDARD OR GENERAL METHOD 
C =!,READ NEW STANDARD RUM(I),I=l,MPP 
C = 2,ZERO SIDE RESISTANCE, SET RUM(MPP) = RUT 
C = 2,ZERO SIDE RESISTANCE, SET RUM(MPPJ = RUP 
C = 3rUNIFORM SIDE RESISTANCEtRUT-RUP) WITH RUM(MPP) = RUP 
C = 4rTRIANGULAR SIDE RESISTANCE(RUT-RUP) WITH RUM(MPPJ = RUP 
C = 5,READ NUMR CARDS AND USE GENERAL SOIL BEHAVIOR ROUTINE 
C NOP(5) = O,USE OLD GAMMA(!) 
C = lr2 SET GAMMACNR)=GAMMAl AND GAMMACNR+l)=GAMMA2 (SOP} 
C = 3, USE SOP ABOVE AND SET GAMMACNR+2) = 0.0 
C = 4, USE SOP ABOVE AND SET GAMMAStNR+2) AND (NR+3) = 0.0 
C = 4, ETC. 
C = 9, USE LONG FORM INPUT 
C NOTE THAT NOPf5) IS USED TO SET ADDITIONAL GAMMA(.IJS = 0.0 
C NOP(6) = O, USE OLD EEMtiJ,I=l,N 
C = lrUSE SHORT FORM .INPUT 
C = 2t USE LONG FORM INPUT 
C NOPl7) = O, USE OLD BEEMII), l=ltN 
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C = l,USE SHORT FORM INPUT 
C = 2, USE LONG FORM INPUT 
C NOP(8) = O,USE OLD VEL(I), l=l,MP 
C = ltUSE SHORT FORM INPUT 
C = 2, USE LONG FORM INPUT 
C NOP(9) = O,USE OLD Q(l), I=l,MPP 
C = lrUSE SHORT FORM INPUT 
C = 2, USE LONG FORM INPUT 
C NOPClOl = O,USE OLD SJ(J}, I=l,MPP 
C = l,USE SHORT FORM INPUT 
C = 2, USE LONG FORM INPUT 
C NOPCll) = O,USE OLD DYNAMK(I), I=l,N 
C = ltDYNAMK=O.O 
C = 2t USE LONG FORM INPUT 
C NOP(l2) = O,USE OLD All), I=lrN 
C = lrUSE SHORT FORM INPUT 
C = 2, USE LONG FORM INPUT 
C NOPC13) = O,I,US~ SMITHS EEM ROUTINE 
C = 2, USE LINEAR SOLID DAMPING 
C NOP(l4) = O,l,USE FOMfMIJ COMPUTED FROM RAMS BEHAVIOR 
C = z, READ NSTOP VALUES OF FORCIN(INTV) (CARD SERIES 1300) 
C = 3,READ HEADER CARD+ NSTOP GALVO DEFLECTIONS(IN.) CARDS 1400 
C = 4,READ CARD 1500 AND USE PARABOLIC FOM(l) VS. CEEM(l) 
C NOP(l5) = ltNO GRAVITY 
C = 2tGRAVITY WITH DEM(J,O) = 0.0 
C = 3,GRAVITY WITH DEMCI,O} BY SMITH 
C = 4,GRAVITY WITH DEMti,O) BY EXACT 
C = S,GRAVITY WITH DEMti,Ol AS USED FOR PREVIOUS PROBLEM 
C NOPC16) = O,l,NO PARAMETER. C.HANGES 
C = 2t READ CARD 1600 WITH PARAMETER CHANGES 
C NOPC17l =O,l,NO PILE DRIVING FORMULA OUTPUT 
C = 2t READ CARD 1700 WITH PILE DRIVING CONSTANTS 
c 
c 
C NUMBER OF CASES= NOPP11l•NOPPC2)• ••• * NOPP(l4) 
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c 
l,RAM VELOCITY = VELMI C NOPP ( ll 

c 2,RAM VELOCITY=VELMI,tl.O+OVll*VELMI 
c 
c 

3,RAM VELOCITY=VELMI,(l.O+OVll*VELMI,tl.0+2.*DVl)•VELMI 
4,ETC. 

C NOPP(2) 
C NOPP(3) 
C NOPP(4) 
C NOPP(5) 
C NOPP(6) 
C NOPPC7J 
C NOPP 8) 
C NOPP(9) 
C NOPP(lO) 
C NOPP( 11) 
C NOPP(l2) 
C NOPPC13) 
C NOPPll4) 
C NOPP(l5) 
C NOPP(l6) 
c 

WAMt 1) CHANGE 
WAM(2) CHANGES 
WAM(3,MP) CHANGES 
XKAM(l) CHANGES 
XK.AM(2) CHANGES 
XKAM(3,N) CHANGES 
QSIOE CHANGES 
QPOINT CHANGES 

c 
c 

COMMON 
COMMON 

.COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 

SIOEJ CHANGES 
POINTJ CHANGES 
RUM(l,MPl CHANGES 
RUMfMPP) CHANGES 
BOTH RUM(l,MP) AND RUM(MPP) CHANGE 
EEMCl) CHANGES 
EEM(2) CHANGES 

WAMllOO), XKAM(l00), RUMtlOO), BEEMllOO}, EEMtlOO) 
GAMMA(lOO), XKIM(lOO),CEEMAS(lOO}, NFOM{lOO), XOEMtlOO) 

OEMClOO), XCEEMClOO), CEEM(lOO), FOMtlOO}, XFOMtlOO) 
VEL(lOO), DIM(100), RAM(l00), RMAXtlOO), RSTAT(l00) 

RtlOO,lO) , ITRIG(l00) 1 Q(lQO),FORCIN{lOO), DFOM(l00) 
FOMAX(l00),IFOMAXC100), FOMIN(l00l,IFOMIN(l00), A(lOOl 
OEMAX(l00) 1 10EMAX(l00), SJtlOO), NOP( 22),DYNAMKClQOl 

CEEMIN(l00) 1 HOLOEM(l00),ANSVECt 50),SE(50,51) , IROW( 51) 
RUMAtlOO), WAMCI100), XKAMCtlOO), QA(l00), SJAtlOO) 
ICOL( 51), NOPP( 20),ENTHRUClOO),ENTMAX(l00), IDS( 50) 

QSIOE , QPOINT, SIOEJ , POINTJ, NQOIV , 'NORAMS, NSTOP 
INTV , ISECTN 1 NUMR , Fl , F2 , Cl , C2 

1 
2 
3 
4 
5 
6 
7 
R 
9 

10 
50 
51 
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c 
c 
c 

c 

COMMON IPRINT, OELTEE, EEMl , EEM2 ' GAMMA!, GAMMA2, INT 
COMMON INTT ' I ' ITST ' IX , NR , MO , MP 
COMMON NPAGE , N , QUAKE , RUP , RUT , VELMI ' 101 
COMMON 102 f 103 ' 104 ' I OWl ' IDW2 ' IDKl ' IDK2 
COMMON IORLl , IORL2 , IOGl ' IOG2 , I DEl ' IDE2 ' IDBl 
COMMON 1082 , IOVl f IOV2 ' IDQl ' IDQ2 ' IOJl , IDJ2 
COMMON IOOKl , IOOK2 , IOAl ' IDA2 , KGRAOO, J5 t TMIN 
COMMON THAX , SHIN , SMAX , NOPNT,S, AREA , NSl , NS2,NS6 
COMMON NS3 , NS4 , NSS ' IOEEM , MH , VEll ' ACCELR 
COMMON 8 ' c , AREAP • XLONG , ELAST , ACELMX 
COMMON OVl,OEl,OE2,DRI,ORPrDQI,OQP,DJI,OJP,OWl,OW2,0WI,OKl,DK2,0KI 

NPAGE =0 
9 CONTINUE 

NSl = 0 
CALL INPUT 
MP .:: MP 
MO = MO 
NR : NR 
MH=MH 
N = MP-1 
MPP : MP+l 

DELTAA = OELTEE 
WAMA = WAM(l) 
WAMB = WAM(2) 
XKAMA = XKAM(l) 
XKAM8 .:: XKAH{2) 
00 1 l=lrMP 
RUMAtl) = RUM(I) 
WAMCCI) = WAM(I) 
XKAMC(I) = XKAM(I) 

INITIALIZE PARAMETER CONSTANTS 

52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
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c 

QA{Il = Q(l} 
SJA(I} = SJ{I) 

1 CONTINUE 
NOPA = NOPP ( 1) 
NOPB = NOPP( 2) 
NOPC = NOPP(3 l 
NOPD = NOPP( 4) 
NOPE = NOPPf5 ) 
NOPF = NOPP( 6) 
NOPG = NOPP( 7) 
NOPH = NOPP( 8) 
NOPI = NOPP( 9) 
NOPJ = NOPPtlO) 
NOPK = NOPP ( 11} 
NOPL = NOPP(l2) 
NOPM = NOPP{l3) 
NOPN = NOPP(l4) 
NOPO = NOPP(l5) 
NOPQ = NOPP(l6) 

DO 98 IQ = l,NOPQ 
DO 98 10 = l,NOPO 

11 DO 98 IN = l,NOPN 
IM = IN 
Il = IN 
DO 98 IK = l,NOPK 
DO 98 IJ = I,NOPJ 
00 98 II = ltNOPI 
DO 98 IH = l,NOPH 
DO 98 IG = l,NOPG 
00 98 IF = l,NOPF 
DO 98 IE = I,NOPE 
DO 98 ID = l,NOPO 

: DO 98 IC = l,NOPC 
~ 
m DO 98 IS = l,NOPB 
~ 
~ 
~ 

0 z 
m 

BEGIN PARAMETER VARIATIONS 
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00 98 lA = lrNOPA 
OELTEE = OELTAA 
00 4 l=l,MP 
VEL(l) = 0.0 
WAMCI) = WAMC(l) •(1.0 + FLOATCI0-1) *OWl) 
XKAH(I) = XKAMC(I) *(1.0 + FLOATliG-1) * DKI) 
Q(l) = QA(I) *(1.0 + FLOAT(IH-1) * DQI) 
SJ(I) = SJA(I) •(1.0 + FLOATtiJ-1) * DJI) 
RUM(I) = RUMA(I) *(1.0 + FLOAT(IL-1) * ORI) 

4 CONTINUE 
00 3 I=l,NR 
VEL(l) = VELMI •(1.0 + FLOATCIA-1) * OVl) 

3 CONTINUE 
VEll = VEL ( 1) 
WAH(l) = WAMA *(1.0 + FLOATIIB-1) * OWlt 
WAM(2) = WAMB •(1.0 + FLOATtiC-11 * 0W2) 
XKAM(l) = XKAMA •(1.0 + FLOAT{IE-1) * OKl) 
XKAH(2) = XKAMB *(1.0 + FLOATCIF-1) * DK2) 
Q(MPP) = QPOINT •(1.0 + FLOATCII-1) * DQP) 
SJtMPP) = POINTJ •(1.0 + FLOATliK-1) * DJP) 
RUHtMPPl = RUP •(1.0 + FLOATCIM-1) * DRP) 
EEM(NR)= EEM1 •11.0 + FlOAT(I0-1) *DEll 
EEMCNR+l)= EEM2 •Cl.O + FlOAT(IQ-1) * DE2) 
IFINOP(4)-5)13rl6rl3 

13 00 15 I=l,MPP 
15 XKIMCil = RUM(I)/Q(I) 
16 CONTINUE 

C IF OELTEE IS LEFT BLANK, 1/2 THE CRITICAL TIME INTERVAL WILL BE USED 
IFCDElTEEl32,32r31 

32 00 33 1=1,N 
33 OELTEE = AMAX1(0ElTEE,39.296•SQRTlXKAM(I)/WAM(I)), 

1 39.296•SQRT(XKAM(J)/WAM(I+l))) 
31 CONTINUE 

C END PARAMETER VARIATIONS 
ClPC2 = 0.0 
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ACELMX = 0.0 
CALL PRINT l 
CAll REP 1 
J5 = IPRINT 
KXT=l 
INTV = 0 
INTT =1 
MP = MP 
N = MP-1 
MPP = MP+l 
NOP15P = NOP(l5)+1 
GO T0(50,50.49,48,47,43,50,50,50) 1 NOPl5P 

43 DO 42 I = l,MP 
42 DEM{I) = HOLDEMfl) 
44 RAMlHP) = DEM(MP)•XKIH(MP) 

RAM(MP+l) = DEM(MPl•XKIM(MP+l) 
HOLDEH(MP) = DEMlMP) 
HOLDEM(l) = OEM(l} 
CEeMfl) = OEM(l) - OEM(2) 
FOM(l) = CEEM(l)•XKAM(l) 
00 45 1 = 2,N 

'HOLOEMtl) = DEMII) 
CEEMtll = OEM(I)-OEM(I+l) 
FOM(IJ = CEEM(I)•XKAM{l) 

45 RAM(I) = FOM(l-1)-FOM(I)+WAM(I) 
GO TO 49 

47 CAll EXACTG 
GO TO 49 

48 CAll SMlTK 
49 CON-TINUE 

WRITEt6,8002){0EM(IJ,I=l,MPJ 
WRITE(6,800l)l01M(I),I=l,MP) 
WRITE(6,8003)(FQM(I),I=ltMP) 
WRITE(6,8004)lCEEMII),I=l,N) 
WRITEI6 1 8005)(RAM(I),I=l,MPPl 
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50 CONTINUE 
NSM = MP-1 
NSM=MINOtNS6,NSH) 
WRITEC6tll04)NSl,NS2,NS3,NS4,NS5,NSM,NSl,NS2,NS3 1 N$4 1 NS5,NS6,MPP 

C BEGIN ITERATION LOOP 
12 CAll REP N 

INTT=INTT 
GO T0(22,9 ),INTT 

22 CONTINUE 
CMAX = 0.0 
DO 24 I=NR,N 

24 CMAX = CHAX+CEEM(l) 
ClPC2 = AHAXllClPC2,CMAX) 
IFliNTV-999)25,23,25 

23 J5 = 25 
25 CONTINUE 

lf(((INTV/J5)*J5)-INTV)94,26,94 
26 CONTINUE 
27 FOHA = FOMCNSl)/A(NSl) 

FOMB = FOM(NS2)/AfNS2) 
FOMC = FOM(NS3)/ACNS3) 
FOMO = FOM(NS4)/A(NS4) 
FOME = FOMCNS5)/A{NS5) 
FOMF = FOMlNSH)/ACNSM) 
RAMP = RAH(MP)/1000.0 

C WRITEI6,99)1NTV ,FOMA,FOMB,FOMC,FOMO,FOME, CEEM(llrOEM(NS3), 
C 1 OEMCNS4l,OEMCNS5),0EMlNS5P),tENTHRU(I),I=2,4),ENTHRU(N),ACCELR 

WRITE(6 1 99)fNTV,FOMA 1 FOM8 1 FOMC,FOM0 1 FOME,FOMF,OEMtNS1) 1 0EM(NS2), 
lOEMCNS3~tDEMtNS4l,OEMfNS5),0EMCNS6),RAMP 

94 CONTINUE 
lf(INTV-NSTOP )12,14,14 

14 WRITEC6,105) 
MP = MP 
N = MP-1 



MH = MH 
D020I=l,N 
FOMAX(I) = FOMAX(l)/A(l) 
FOMIN(I) = FOMIN(I)/A(I) 
WRITE(6,106)1,1FOMAX(I),FOMAXti),IFOMIN(I) 1 FOMIN{I), 

1 ENTHRUtiJ,ENTMAX(I) 
20 CONTINUE 

C BLOWS= 1.0/0IM(MP) OLD STATEMENT. 
C WRITE(6,2107JQIM(MP},BLOWS OLD STATEMENT 

WRITE ( 6,2108 )OEM.AX ( MH-1), DE MAX ( MP) 
SMIN = SKIN/12.0 
SMAX = SMAX/12.0 
ERESl = SQRT(SMIN/SMAX) 
WRITE(6,109)SMIN,SMAX,ERESl 
EINPUT = CWAMllJ•VEL1••2)/64.4 
WRITE(6,ll0)EINPUT 
WRITE(6,lll)ACELMX 

C BEGIN ULTIMATE LOAD FORMULAS 
IF(NOPtl7)-1}98,98,5 

5 CONTINUE 
C4 = 0.1 
AEL = AREAP•ELAST/XLONG 
NRP = NR+l 
C3 = QAVG 
S = OlMlMPP) 
W =WRAM 
U = ENERGY 
P = WPILE 
RWAVE =- 0.0 
00: 6. t=·l t MPP 
RWAVc = RWA\/E+RUMflt/tOOO.O 

6 CONTINUE 
SEGL = XLONG/(flOATIMP-MH+l)) 

~ SUMR = 0.0 > = DO 10 I=MH,MP 
~ 
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10 SUMR : SUMR+RUMtl )~SEGL•CFLOATli -MH)+0.5) 
SUMR : SUMR+RUMCMPP)•XLONG 
HILEYL = SUMR/RWAVE 
RENEWS = U/(S+CENR) 
REYTEL = U/fS+(C4•P/W)) 
RTERZG: AEL•f-S+SQRTfS••2+(2.0•U•(W+P•EEM1••2)/(AEL•(W+P))))) 
REDTEN: AEL•(-S+SQRT(S••2+(2.0•U•W/(AEL•(W+P))))) 
RHILYD =AEL•t-(S+C3)+SQRT((S+C3)••2+(2.0•U•(W+P*EEM1••2)/ 

1 (AEL•CW+P))))) 
RHILYC=U•lW+P•EEM1••2)/((S+0.5•(ClPC2+C3))•(W+P)) 
RCOAST =tAEl/2.)•(-S+SQRT(S••2+(4.•U•(W+P•EEM1~•2)/(AEL•fW+P))))) 
WRITE(6,107) . 
WRITE(6,108)RENEWS,REYTEL,RTERZG,R£DTEN,RHILYO,RHILYC,RCOAST,RWAVE 

C END ULTIMATE LOAD FORMULAS 
98 CONTINUE 

GO TO 9 
99 FORMATflX,I3,6F9.2,6F9.3,F9.1) 

C 99 FORMATllX, 13, 5Fl0.2, 5Fll.7,F9.1) 
105 FORMATtlHQ,//, 18X, 63HMAXIMUM COMPRESSIVE AND TENSILE STRESSES 

lPSI) IN THE SEGMENTS ,//,19X, 7HSEGMENT , lX, 5H TIME , 
2 3X, 6HSTRESS , SX, 4HTIME,3X,6HSTRESS,7X,6HENTHRU,7X, 
3 lOHHAX ENTHRU , //) 

106 FORMATl20X,I4,I8,F9.l,I9 1 F9.1,2F13.1) 
107 FORMAT( 16X,30H ULTIMATE PILE LOADS (KIPS) 
108 FORMAT( 21X,25H BY ENG NEWS FORMULA = , Fl5.3,/ , 

1 22X,25H BY EYTELWEIN = , Fl5.3 1 / , 

2 22X,25H BY TERZAGHI = , Fl5.3,/ , 
3 22X,2SH BY REOTENBACHER = , Fl5.3,/ , 
4 22X,25H BY HILEY (DUNHAM) = , Fl5.3,/ , 
5 22X,25H BY HILEY CCH~LLIS) = , Fl5.3,/ , 
6 22X,25H BY PACIFIC COAST = , Fl5.3,/ , 
7 22X,25H BY THE WAVE EQUATION = , F15.3) 

109 FORMAT(l7X,7HSMIN = FlO.l, 7HSHAX: FlO.lt lOHERES(l) = F10.7) 
110 FORHAT(l6X,l8H EINPUT 1FT LBS) = F9.1) 
111 FORHAT(l6X 1 24H MAX ACCELERATION (GS) = F9.1) 
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1104 FORMATC3H T,6{6XtlHFtl2)t1X, 6(6X 1 1HO,I2) 1 6X,lHR,I2,//) 
Cll04 FORMATlll5H TIME F(l) f(2) F(3) Fl4) F(5} 0(2) 0(3) 0( 
C 14) 0(5) OlP) ENT(2) ENT(3) ENT(4) ENTIN) ACCCMH-1) ) 
Cll04 FORMATt5H TIME,5l2X,4HFOM( 13, lHl } ,5(3X,4HOEM( 13 1 lH) ) , 
C 1 3X, 12HENTHRU (1) /1) 

2107 FORMATtlH I tl7X,24HPERMANENT SET OF PILE = Fl3.8,8H INCHES/ 
1 ,17X,27HNUMBER OF BLOWS PER INCH = Fl3.8) 

2108 FORMATllH I tl7X,24HLIMSET FOR lMH-1) = Fl3.8,8H INCHES/ 
1 t17X,27HMAX DISPLACEMENT OF POINT= Fl3.8) 

8001 FORMAT(33HOINITIAL VALUES FOR DIM(I),I=l,MP /(6El9.8)) 
8002 FORMATC33HOINITIAL "VALUES FOR DEMCI),.=l,MP /(6El9.8~) 
8003 FORMAT(33HOINITIAL VALUES FOR FOMli),I=l,MP ll6El9.8)) 
8004 FORMATt33HOINITIAl VALUES FOR CEEMtl), I=l,N /(6El9.8J) 
8005 FORMATC35HOINITIAL VALUES FOR RAM(J),I=l,MP+l 1(6El9.8)) 
8006 FORMAT(38HOCONSTANT VA-t:UES FOR XKIM(I),I=l,MP+l /(6El9.8)} 

END 
$lBFTC INPUTT 

SUBROUTINE INPUT 
COMMON WAMllOOl, XKAMllOO}, RUM(l00), BEEMllOO), EEM(l00) 
COMMON GAMMAllOO), XKIMllOO);CEEMAS(lOO), NFOMllOO), XOEMllOO) 
COMMON OEMtlOO), XCEEM(lOO), CEEMllOO), FOMllOO), XFOM(l00) 
COMMON VELllOO), OIMllOO), RAMllOO), RMAXClOO), RSTAT(l00) 
COMMON R(l00,10) , ITRIG(l00), Q(l00),FORCIN(l00), OFOM(l00) 
COMMON FOMAXllOO),IFOMAXtlOO), FOMIN(lOO),IFOMINllOO), AllOO) 
COMMON OEMAX{lOO),IOEMAXClOO)t SJ(l00), NOPl 22),0YNAMK(l00) 
COMMON CEEMINllOO),HOLDEMClOO),ANSVEC( 50),SE(50,51) , IROW( 51) 
COMMON RUMAilOO), WAMC(l00}, XKAMCClOO), QA(l00), SJA(l00) 
COMMON ICOL{ 51), NOPP( 20),ENTHRUllOOJ,ENTMAX(l00}, IDS( 50) 
COMMON QSIDE , QPOINT, SIOEJ ~ POINTJ, NQOIV , NORAMS~ NSTOP 
COMMON INTV , ISECTN, NUMR , Fl , F2 , Cl , C2 
COMMON IPRINT, OELTEE, EEMl , EEM2 , GAMMAl, GAMMA2~ INT 
COMMON INTT , I , ITST , IX , NR , MO , MP 
COMMON NPAGE , N , QUAKE , RUP , RUT , VELMI , 101 
COMMON 102 , 103 , 104 , IOWl , IOW2 , IOKl , IOK2 
COMMON lORLl , IORL2 , IOGl , IOG2 , JOEl , IOE2 , IDBl 

1 
2 
3 
4 
5 
6 
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10 
50 
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53 
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COMMON 1082 , IOVl , IOV2 , IDQl , IOQ2 , IDJl , IDJ2 
COMMON IDOKl , IODK2 , IOAl , IOA2 , KGRADO, J5 , TMIN 
COMMON TMAX , SMIN , SMAX , NOPNTS, AREA , NSl , NS2,NS6 
COMMON NS3 , NS4 , NS5 , IOEEM , MH , VEll , ACCELR 
COMMON ~ , C , AREAP , XLONG , ELAST ,· ACELMX 
COMMO~ DVl,DE!,OE2,DRI,ORP,DQI,OQP,OJI,OJP,DWl,OW2,0WI,OKl,DK2,0KI 

READC5,100)101,102,0ELTEErMPrVELMI,MH,NR,EEMl,EEM2,GAMMAl, 
1 GAMMA2,NSTOP,(N0P(l)r1=1,20) 
REA0(5,101)103r104,RUT,RUP,MO,QSIOE,OPOINT,SIDEJ,POINTJ 1 NUMR, 

1 IPRINT,AREA,NSl,NS2,NS3,NS4,NS5,NS6 
RUT = RUT•lOOO.O 
RUP = RUP•lOOO.O 
NR = MAXO ( NR ,.l) 
N = MP-1 
MPP = MP+l 
WAM(MPP) = -0.0 
XKAM(MP) = -0.0 
XKAM(MPP) = -0.0 
IF(NOP(l)-2)9,7,7 

7 NOIOS = 12•(N0P(l}-l) 
REA0(5,103)(10S(I),I=l,NOIOS) 

9 CONTINUE 
IF(N0Pl2)-l) 1,1,14 

1 REA0(5,102)10Wl,IOW2,(WAM(l),I=l,MP) 
GO TO 2 

14 NRPl = NR+l 
NRP5 = NR+5 
NRP6 = NR+6 
MPM3 = MP-3 
REAOl5,lllliOWl,IOW2,WAM{l)~(WAM(Llrl=NRPl,NRP5), 

1 ( WAMt I) • .I=-MPH3,.MP·) 
111 FORMAT( A5,A4 ,-3Pl0F6.4) 

00 76 l=l,NR 
76 WAMCI) = WAM(l) 

57 
58 
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DO 11 I=NRP6,MPM3 
11 WAM(I) = WAM(NRP5) 

2 CONTINUE 
IF(N0P(3)-l) 3,3,15 

3 REA0{5,L04)IDKltiDK2,tXKAMtl),l=l,N) 
GO TO 4 

15 NRMl = NR-1 
NRP5· = NR+5 
NRP6 = NR+6 
MPM3 = MP-3 
REA0(5,112)10Kl,IDK2,XKAM(l),(XKAM(l),I=NR,NRP5lt 

1 (XKAHtil,I=MPM3,N) 
112 FORMA Tl AS·, A4,-3Pl0F6.0) 

DO 78 I=l,NRML 
18 XKAM{I) = XKAM(l) 

DO 79 I=NRP6,MPM3 
79 XKAM{l) = XKAM(MPM3) 

4 CONTINUE 
1FlNOP{4)-1)22,5,5 

5 NOP4 = NOP(4} 
DO 6 I=l,MP 

6 RUM(I) = 0.0 
RUM(MPP) = RUP 
GO TOil0,22,lltl3tl7,22t22,22,22),NOP4 

10 REA0(5,106)10RlltlDRL2,(RUM(I)ri=l,MPP) 
C INPUT RUM({) IN UNITS OF KIPS - THE COMPUTER WILL CONVERT TO LBS. 

GO TO 22 
ll RCONST = (RUT-RUP)/FLOATlMPP-MO) 

DO 12 I=MO,MP 
12 RUM(l) = RCONST 

GO TO 22 
13 DO 16 I=MO,MP 
16 RUM( I) = C2.0•lRUT-RUP)•(FLOATII-M0)+0.5) )/tFLOATCMPP-MO) >••2 

GO TO 22 
C GENERAL R(I,J) INPUT 

''• ":.':::?'~' ~' ... • .• ,,._, -~ ... ..,... .• "="' 
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20 XKIM(I} = 0.0 
DO 21 K=l,NUMR 

21 READ(5,115)1, XKIM(I),(RCI,J),J=l,lO) 
22 CONTINUE 

C THE RCI,J) INPUT CARDS CAN BE IN RANDOM ORDER 
C THE RCI,J) ARRAY NEED NOT BE ZEROED SINCE IF XKIM(I)=O THE GENERAL 
C SOIL RESISTANCE ROUTINE FOR SEGMENT(!) IS NOT CONSIDERED 
C NUMR =TOTAL NUMBER OF SEGMENTS WIGEN. R COONT FORGET TO ADO MPP) 
CC I =THE SEGMENT NUMBER FOR WHICH R(I,J) VALUES ARE BEING INPUT 
C RtL,Jl = STATIC RESISTANCE ON SEGMENT I AT EACH OF TEN POINTS J 

IFINOP(S)-1)29~27,26 
26 IF(NOP(5)-9)24t25,24 
25 READ(5,106)1DGl,IDGZ~lGAMMAfi),I=1,N) 

GO TO 29 
24 !GAMMA = NOP(51+NR-l 

DO 23 I=l ,N . 
23 GAMMA(!) = -1000.0 

DO 19 I=NR,IGAMMA 
19 GAMMA(I) = 0.0 

GAMMA(NR) = GAMMAl 
GAMMACNR+l) = GAMMA2 
GO TO 29 

21 DO 28 1=1,N 
28 GAMMA{I) = -1000.0 

GAMMA(NR) = GAMMAl 
GAMMAfNR+l) = GAMMA2 

29 GAMMA{MP) = -0.0 
GAHMA{MPPJ = -0.0 
IF(NOPI6)-1J33,31,30 

30 REA0(5,107JIDEl,IDE2,(EEM(I),I•1,N) 
GO TO 33 

31 00 32 l=l ,N 
32 EEM(I) = 1.0 

EEMINR) = EEMl 
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EEMCNR+U = EEM2 
33 EEMCMP) = -0.0 

EEMlMPPl = -0.0 
JF(NOP(7}-1)37,35,34 

34 READC5,107)1DB1,I082,(BEEHti),I=l,Nl 
GO TO 37 

3 5 DO 36 I = 1 , N 
36 SEEM( I) = 0.0 
37 BEEMlMP) = -0.0 

SEEMfHPP) = -0.0 
C DO NOT TRY TO USE LAST PROBLEMS VALUES OF VEL(I) 

1FlNOP(8)-1)39,39,38 
38 READC5,108)10Vl,IDV2,( VELti),l=lrMP) 

GO. TO. 71 
39 DO 40 I=NR,MPP 
40 VEL(!) = 0.0 

DO 41 1=1 ,NR 
41 VEL{!) = VELMI 
71 VEL(MPP) = -0.0 

IF(N0P(9)-1)45r43,42 
42 REAOC5,107)IDQl,IOQ2,(Q(I),J=l,MPP) 

GO TO 45 
43 PO 44 1=1,MPP 

Q(l) = QSIOE 
44 CONTINUE 

Q(MPP) = QPOINT 
45 IFtNOP(l0)-1)49,47,46 
46 REA0(5,107)10Jl,IOJ2,(SJ(I),I=l,MPP) 

~0 TO 49 
47 DO 48 I=1,MP 
48 !SJ(l) = SIDEJ 

SJCMPP) = POINTJ 
49 iJFCNOP(ll)-1)53,51,50 
50 REA0(5,104)1DOKltiOOK2,(0YNAMK(I),J=l,N} 

00 72 I=l,N 

--·---~ ..... _.... -··--~ 
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72 DYNAMKtl} = DYNAMK{I}-XKAMtl} 
GO TO 53 

51 DO 52 I = 1 , N 
52 DYNAMK(I) = 0.0 

C STATEMENT 52 SETS DYNAMK(I) = 0.0 SO SMITHS ROUTINE WILL BE USED 
53 DYNAMKIMP) = -0.0 

DYNAMK(MPP) = -0.0 
IFINOP(l2)-1157,55,54 

54 REA0(5,109)1DAltiDA2,(A(I),I=l,NJ 
GO TO 57 

55 DO 56 I=l,N 
56 A(ll =AREA 
57 A(MP) = -0.0 

A(MPP) = -0.0 
IF(N0Pl4)-1)61,58,58 

58 IFlNOP(4)-5)59,61,61 
59 DO 60 l=l,MPP 
60 XKIM(I) = RUM(I)/Q(l) 
6l CONTINUE 

NOP14 = NOPtl4)+1 
GO T0(65,65,62,63,65),NOP14 

C READ NSTOP VALUES OF FOM(l,T) - MAXIMUM NSTOP = 300 
62 READ(5,120)(f0RCIN(I),I=l,NSTOP) 

GO TO 65 
63 READ(5,122)AREAPrEMODUL,RGAGE,RCAL,ACTIVG,GFACTR,Ol,02,03,04,05 

REA0(5,12l)(FORCIN(I),I=l,NSTOP) 
CE = (AREAP•EMOOUL•RGAGE•lOOO.O)/(ACTIVG•GFACTR•RCAL) 
AtNSl) = CE/01 
A(NS2) = CE/02 
A(NS3) =- CE/03 
AlNS4) = CE/04 
A(NS5) = CE/D5 
DO 64 I=lrNSTOP 

64 FORCIN(I) = FORCiN(I)•ACll 
65 CONTINUE 
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1FlNOP(14)-4)67,66~67 
66 REA0(5,123)F1,F2,C1,C2 
67 CONTINUE 

00 90 1=1,20 
90 NOPPll) = 1 

IFlNOP(16)-2)69,68,69 
68 REA0(5,124)(NOPP{l),I=1,20),0Vl,OWl,OW2,DWI,OKl,OK2,0KI,DOI, 

1 DQP,OJI,OJP,DRI,ORP,OEl,OE2 
69 CONTINUE 

DO 8 1=1 ,zo 
NOPP(I) = MAXOlNOPPlll,1) 

8 CONTINUE 
IF(NOPC17) .... ll74,.74t.73 

73 REA0(5,125)AREAP,XLONG,ELAST,CENR,QAVG,wRAM,WPILE,ENERG"Y 
XLONG = XLONG•l2.0 

74 CONTINUE 
100 FORMAT(A5,A4;F6.0,I3,F4.2,213t2F4.3,2F6.0,I4,20il) 
101 FORMATCA5,A4,2F7.2,I3,4F4.3,2I3,F6.2,613) 
102 FORMAT(A5,A4,-3PlOF6.4,/(9X,-3PlOF6.4)) 
103 FORMA Tl 12A6) 
104 FOR~ATCA5,A4,-3PlOF6.0,/(9X,-3PlOF6.0)) 
106 FORMATlA5,A4,-3PlOF6.1,/(9X,-3P10F6.1)) 
107 FORMAT(A5 1 A4, 10F6.5,/(9X, 10F6.5)) 
108 FORMATIA5,A4, 10f6.3,/(9X, 10F6.3)) 
109 FORMATCA5,A4t 10F6.2,/(9X, 10F6.2)) 
115 FORMATCI3,-3Pllf6.1) 
120 FORMATf-3PlOF6.1) 
121 FORMAT( 10F6.4) 
122 FORMAT(F7.2,3Fl.'0,7F4.2) 
123 FORMATl-3P2F6.liOP2F6.5) 
124 FORMAT{ 2011, 17F'3.2'J 
125 FORM-ATCF6.2!F5.2,F7.2) 

RETURN 
END 

SIBFTC PRINT 
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PRINT 1 IS A SUBROUTINE TO PRINT INPUT DATA. 

SUBROUTINE PRINT 1 
COMMON WAM(l00), XKAMClOO), RUM(lOO), BEEM(l00), EEMClOO) 1 
COMMON GAMMA(lOO), XKIMClOO),CEEMAS(lOO), NFOMC100), XOEM(lOOl 2 
COMMON DEMtlOO), XCEEM(lOO), CEEM(l00), FOM(l00}, XFOM(l00} 3 
COMMON VElllOO), OIM(l00) 1 RAM(l00), RMAX(l00), RSTAT(100) 4 
COMMON RllOO,lO) , ITRIG(l00), Q(lOO),FORCINtlOO), OFOM(l00) 5 
COMMON FOMAX(l00),IFOMAX(l00}r FOMIN(l00),IFOMIN(l00), A(l00) 6 
COMMON DEMAX(lOOl,IOEMAXIlOQJ, SJ(lOO), NOP( 22),0YNAMK(l00) 7 
COMMON CEEMINtlOO),HOLDEM(lOO),.ANSVEC( 50),SEC50,5U" , IROW( 51) 8 
COMMON RUMAClOO), WAMCl-100)• XKAMC(l00),. QA(l00), SJA(100) q 
COMMON ICOL( 51), NOPP( 20),ENTHRU(l00),ENTMA~fl00), IOSC 50) 10 
COMMON QSIOE , QPOINTr SIOEJ , POINTJ, NQOIV , NORAMS, NSTOP 50 
COMMON INTV , ISECTN, NUMR , Fl , F2 , Cl , C2 51 
COMMON IPRINT, DEtTEE, EEMl , EEM2 , GAMMAt, GAMMA2, INT 52 
COMMON INTT , 1 , ITST , IX , NR , MO , MP 53 
COMMON NPAGE , N , QUAKE , RUP , RUT , VELMI , 101 54 
COMMON 102 r 103 t 104 , IOWl , IDW2 ,. lOKl , IDK2 55 
COMMON IORll , IDRL2 , IOGl , IOG2 , IDE! , IDE2 , 1081 56 
COMMON 1082 , IOVl , IOV2 , IOQl , IOQ2 , IOJl , IOJ2 57 
COMMON IODKl , IOOK2 , IOAl , IOA2 , KGRAOO, J5 , TMIN 5R 
COMMON TMAX r SMIN , SMAX , NOPNTS, AREA , NSl , NS2,NS6 59 
COMMON NS3 , N$4 , NS5 r IOEEM , MH , YEll , ACCELR 60 
COMMON 8 , C , AREAP , XLONG , ELAST , ACELMX 61 
COMMON DV1 1 DEl,OE2,DRI,ORP,OQI,OQP,OJI,OJP,OWl,DW2,0WI,DKl,OK2,0KI 

NPAGE = NPAGE+l 
WRITE 16.,1.02) N.PAGE 
IF c·N{lP( 1) -213,2 t2 

2 NOIOS = 12•tNOP(ll-lt 
WRITE ( 6, 10 1) 
WRITE(6,103 )(IOS(I),I=lrNOIOS) 
WRITEC6,10ll 

3 CONTINUE 
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MPP=MP+l 
RCT = 0.0 
DO 6 I= l,MPP 
RCT = RCT+RUM(IJ/1000.0 

6 CONTINUE 
RCP = RUM(MPP)/1000.0 
WRITE(6,105)0ELTEE,NOP(l) 1 NOP(l6) 
DELTEE = 1.0/DELTEE 
WRITE(6,106)MP,NOP(2},NOP(l7) 
WRITE(6,107)101,102,VELMI,NOP(3) 1 NOP(l8) 
WRITE(6,108)!03,104,NSTOP 1 NOP(4),NOP(l9) 
WRITE(6,110)10WltiDW2,RCT.NOPt5),NOP(20) 
WRITEt6,lllliOKltlOK2,RCP,NOP(6) 
WRITEl6tll2)10RLl,IDRL2,MO,NOP{7) 
WRITEl6,113)IOGl,IDG2,QSIOE 1 NOP(8) 
WRITE(6,114}10El,IOE2,QPOINT,NOP(9} 
WRITE(6,115)10Bl,fOB2,SIOEJ,NOP(l0) 
WRITE(6,116)10Vl,IDV2,POINTJ,NOPC11) 
WRITEt6,117liDQl,IDQ2,NUMR,NOP(l2) 
WRITE(6,118)10Jl,IOJ2,IPRINT,NOP(l3) 
WRITE(6,119)IODKltiOOK2,AREA,NOP{l4) 
WRITE(6,120)10AltiOA2,NR,NOP(l5} 
WRITE(6,10l) 
WRITE ( 6,121 l 
MPP = MP+l 
LINES = 19 
00 5 I=l,MPP 
WRITE(6,122)1,WAM(I},XKAMli),RUM{I),GAMMA(J),EEMCI),BEEMCIJ, 

1 VEL(I),Q{I), SJ(I),OYNAMK(I),A(J) 
LINES = LINES+l 
IF(LINES-58)5,4,4 

4 NPAGE = NPAGE 
LINES = 5 
WRITEt6,102)NPAGE 
WRITE ( 6, 101 ) 
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WRITE ( 6, 121) 
5 CONTINUE 

IFINOP(4)-5)30,7,30 
7 lf(LINES-50)9,9,8 
8 NPAGE = NPAGE 

LINES = -1 
WRITE(6,102)NPAGE 
GO TO 10 

9 WRITE( 6,101) 
10 WRITE(6,123)(J,J=1,10) 

LINES =· LINES+6 
LlNAOO = NQOIV/10 
IF ( NQOI V.-LINAOO• 10)13, 14·, 13 

13 LINAOO = liNAOO+l 
14 LINAOO = LINAOO+l 

00 29 l=l,MPP 
lf(XKIM(l)-0.0)29,29,20 

20 LINES = LINES+LINAOO 
lf(LINES-59)24,24,23 

23 NPAGE = NPAGE 
WRITE(6,102)NPAGE 
WRITE ( 6, 12 3) ( J t J = 1, 10) 
LINES = 6 

24 WRITE(6,124)l,(R{I,J),J=I,l0) 
29 CONTINUE 

WRITE (6, 101 l 
LINES = LINES+2 

30 WRITE(6,101) 
LINES = LINES+2 
LINAOO = MP/8 
lf(MP-LINA00•8)40.41,40 

40 LINAOO = LINA00+1 
41 LINAOO = LINA00+2 

fOl FORMAT(lHO) 
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102 FORHAT(lHl, 20H 66X 1 7HPR08LEM 14) 
103 FORMATllX,l2A6l 
123 FORMATC85H .R(M,N) = STATIC SOIL RESISTANCE FOR GIVEN SEGMENTS-

1 OTHERS HAVE R(I,JJ = 0.0 II 5X,l0(8X,I2l ) 
105 FORMATl4X,29H CARD 101 102 1/0ELTEE = FB.0 1 12H. NOP(l) = 

1 12, 12H NOPC16) = 12) 
106 FORMAT(28X, 5H MP = IB,l2H NOP(2) =12tl2H NOP(l7) =12) 
107 FORMATCllH 101 A6,A4,12H VELMI =FB.2,12H NOP(3) = 

1 12, 12H NOPtlB) = 12) 
108 FORMATlllH 102 A6,A4 1 12H NSTOP = 18 ,·12H NOP(4) = 

1 12, 12H NOP(l9) = 12) 
110 FORMATI11H WAM A6rA4tl2H RUT =F8.1,12H NOPt5J =12, 

l. 12H NOPI201 = 12) 
111 FORMATCllH XKAM A6,A4,12H RUP =F8.ltl2H NOP(6) =12) 
112 FORMAT(llH RUM A6,A4t12H MO =18 t12H NOP(7) =12) 
113 FORMATI11H GAMMA A6,A4tl2H QSIOE :f;8.4tl2H NOP(8) =12) 
114 FORMATCllH EEM A6,A4~12H QPOINT =~8.4,12H NOP(9) =12) 
115 FORMAH11H BEEM A6,A4,12H SlOE-J =F8.4,l2H NOP(lO) =12) 
116 FORMATI11H VEL A6,A4tl2H POINTJ =F8.4,l2H NOP(ll) =12) 
117 FORMATC11H Q A6,A4tl2H NUMR =18 tl2H NOPC12) =12) 
118 FORMATCllH SOILJ A6,A4,12H !PRINT =18 rl2H NOP(l3l =12) 
119 FORMATC11H DYNAMK A6,A4,12H AREA =F8.2,12H NOP(l4) =12) 
120 FORMATCllH A A6,A4,12H NR =IS t12H NOPfl5) =12) 
121 FORMAT(ll6H M WAMCM) XKAMCM) RUM(M) GAMMA(M) EEM(M) 

1 BEEMCM) VELCM) QCM) SOILJCM) OYNAMK(M) ACM) /, 
2 116H CKIPS) (KIPS/IN) lKIPS) (KIPS) (NONE) (SECIN/ 
3FT) CFT/SEC) fiN) CSEC/FT) (KIPS/IN) fSQ IN) ) 

122 FORMAT(14,-3Pfl0.4,3FlO.ltOP2Fl0.6,Fl0.3,2Fl0.6,-3PF10.3,0PFl2.3) 
12-4 FORMATl/4H 7 = 13,2X,lOflO.l,(/9X,lOF10.1)) 

RETURN 
EMil. 

ti·BFTC REPONE 
SUBROUTINE REPl 
COMMON WAMClOO), XKAM(lOO), RUMflOO), BEEMClOO), EEM(lOO) 
COMMON GAMMA(lOO), XKIM(l00),CEEMAS(100), NFOMtlOO), XOEMflOO) 

c: f) 

1 
2 
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COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 

DEMI100), XCEEM(l00), CEEM(l00), FOMClOO), XFOMC100) 
VEL(l00), 01Mtl00) 1 RAM(l00), RMAX(lOO), RSTATC100) 

R(lOO,lO) , ITRIG(l00), Q{l00),FORCINC100), OFOMC100) 
FOMAXtlOO),IFOMAXtlOO), FOMIN(lOOJ,IFOMINClOO), A(l00) 
OEMAXClOO),IOEMAX(lOO), SJ(l00), NOP( 22),0YNAMKtl00) 

CEEMINClOO),HOLDEMClOO),ANSVECf 50J,SEC50,51) , IROWC 51) 
RUMA(l00), WAMCtlOO), XKAHC(l00), QA(l00), SJA(l00) 
ICOL( 51), NOPP( 20),ENTHRU(l00),ENTMAXC10Q), IDS( 50) 

QSIDE , QPOINT, SIOEJ , POINTJ 1 NQDIV , NORAMS, NSTOP 
INTV , ISECTN, NUHR , Fl , F2 , Cl , C2 
!PRINT, DELTEE, EEMl , EEM2 , GAMMA!, GAMMA2t INT 
INTT , I , ITST t IX r NR , MO , MP 
NPAGE , N , QUAKE , RUP , RUT , VELMI , 101 
102 , 103 , 104 1 IOWl , IDW2 , IDKl , IDK2 
IDRLl , IDRL2 t IOGl , IDG2 , !DEl , IDE2 , IOBl 
1082 t IOVl , IDV2 , IDQl , IOQ2 , IDJl , IDJ2 
IDDKl , IDDK2 , IOAl , IOA2 , KGRAOD, J5 , TMIN 
TMAX , SMIN , SMAX , NOPNTS, AREA , NSl , NS2,NS6 
NS3 , NS4 t NS5 t IDEEM , MH , VEll , ACCELR 
B , C , AREAP , XLONG , ELAST , ACELMX 
OVI 1 0El 1 DE2,0Rl,ORP,OQI 1 0QP 1 DJI,OJP,OW1,0W2,0Wl,OKl,OK2,0KI 

MP = MP 
MPP = MP+l 
SMAX = 0.0 
SHIN = 0.0 
DO 64 I = l,MPP 
ITR IG (I l = 1 
DEM(l.). = 0.0 
XD.EMC.tl = 0.0 
DEMAX{I). = 0.0 
IDEMAX(I) = 0 
CEEM (I) = O. 0 
XCEEM(I) = 0.0 
CEEMAStl) = 0.0 

3 
4 
5 
6 
1 
8 
9 

10 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
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FOH(I) = 0.0 
XFOM( I) = 0.0 
FOMAX(I) -= 0.0 
FOM IN ( I ) -= 0. 0 
IFOMAX(I) -= 0 
IFOMINC I) = 0 
NFOM (I) = 1 
RAM(l) -= 0.0 
RMAX(I) = 0.0 
RSTATIIJ = o.O 
DIM( IJ = 0.0 
ENTHRUII) = 0.0 
ENTMAX(I) = O. 0 

64 CONTINUE 
IFtNOP(l41-4)18,65,18 

65 CONTINUE 
C = (Fl•C2- F2•Cl)/(Cl•C2•(Cl-C2)) 
B = (f2•Cl••2- FI•C2••2)/(Cl•C2•(Cl-C2)) 
IF(8)22,22,18 

22 IF(Fl-F2)24,23,23 
23 C = Fl/Cl••2 

GO TO 25 
24 C = F2/C2••2 
25 B = 0.0 

WRITE{6,104) 
104 FORMAT(47HOPARABOLA BASED ON F2 AND C2 ONLY MUST BE USED 

18 CONTINUE 
RETURN 
END 

$:18FTC REPREP 
S.UBR'OtJTl.NE REP N 
COMMON WAMClOO), 
COMMON GAMMA(l00), 
COMMON DEMC100) 1 
COMMON VEL(lOO), 

XKAMllOO), RUMllOOl, 
XKIM(lOO),CEEMASflOO), 

XCEEM(lOO), CEEM(100)~ 
DIM(l00), RAMtlOO), 

BEEM(lOO), EEM(l00) 
NFOM(lOOJ, XDEMC100) 

FOM(l00), XFOM(l00) 
RMAX(l00}, RSTAlClOO) 

~ 

1 
2 
3 
4 

~-.·-.. . ---
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COMMON RllOO,lO) , ITRIG(lOQ), Q(lOO),FORCINtlOO), DFOMI100) 
COMMON FOMAX(l00),1FOMAX(l00), FOMIN(l00),IFOMIN(l00), A(l00) 
COMMON OEMAX(l00),10EMAXfl00), SJ(l00), NOP( 22),0YNAMK(l00) 
COMMON CEEMINtlOO),HOLOEMflOO),ANSVECt 50l,SE(50,51) , tROW( 51) 
COMMON RUMA(lOO), WAMC(lQO), XKAMCflOO), QA(l00), SJA(l00) 
COMMON ICOL( 5U, NOPP( 20),ENTHRU(l00),ENTMAX(l00), IDS( 50) 
COMMON QSIOE , QPOINT, SIOEJ , POINTJ, NQDIV , NORAMS, NSTOP 
COMMON INTV r ISECTN, NUMR , Fl , F2 , Cl , C2 
COMMON IPRINT, DELTEEr EEMl , EEM2 , GAMMAl, GAMMAi, INT 
COMMON INTT , I , ITST , IX , NR , MO , MP 
COMMON NPAGE t.N , QUAKE , RUP , RUT , VELMI, IDl 
COMMON 102 , 103 , 104 t IDWl , IOW2 , IDKl , IDK2 
COMMON- IDRLl , IORL2 , IOGl , IDG2 , IDEl , IDE2 , 1081 
COMMON 1082 , IDYl , IOVZ , IOQl , IOQ2 , IOJl ~ IDJ2 
COMMON IODKl , IDOK2 , IDAl , IOA2 , KGRAOD, J5 , TMIN 
COMMON TMAX , SHIN , SMAX , NOPNTS, AREA , NSl , NS?,N$6 
COMMON N$3 , NS4 , N$5 , IDEEM t MH , YEll , ACCELR 
COMMON B , C , AREAP , XLONG , ELAST , ACELMX 
COMMON DVl,OEl,DE2rORitDRPtDQitDQP,OJI,oJP,DWl,DW2,DWI,OKl,OK2,0KI 

INTV = INTV+l 
MP=MP 
MPP = MP+l 
NOP(4) = NOP(4) 
NOPC13) = NOPC13J 
NOPll4) = NOP(l4) 
NOP(l5) = NOP(l5) 
ITESTl = 1 
ITESTP = 1 
00 68 I = 1,. MP 
l=l 
lFl I-MP Jl8, :t7, 18 

17 I TE.S.TP = 2 
18 CONTINUE 

XDEMCI) = DEMCI) 

5 
6 
7 
8 
9 

10 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
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DEM{I) = XDEMliJ +VELCI)*12.0*0ELTEE 
IF(OfMAX(IJ~OEM(IJ)20,21,21 

20 DEMAXCI)= DEM(I) 
IDEMAX(I) = INTV 

21 GO TOC34,19),JTESTP 
34 XCEEMtlJ = CEEMCIJ 

C STATEMENT 34 MUST USE A COMPUTED VALUE FOR THE ACTUAL OEMCI+l) 
CEEMCI) = OEMCI) -OEMCI+l) -VELCI+l)*l2.0*0ELTEE 
XFOM( I) = FOM( I) 
IFfBEEMCl)-0.000001)36,36,30 

30 IFCOYNAMK(IJ )31,31,32 
C SMITHS DAMPING METHOD 

31 OFOMCIJ = BEEM(I)•XKAMtll*lCEfM(I)-XCEEMCIJ)/(OELTEE•IZ.O) 
GO TO 33 

C STANDARD LINEAR SOLID DAMPING 
32 OFOM{IJ = (OfOMCIJ+OYNAMK{I)*(CEEMCI)-XCEEM(I)))/ 

1 Cl.O+DYNAMKCIJ•OELTEE/flOOO.O*BEEMCIJ)) 
33 FOM(I) = CEEMfi)*XKAM(I) + OFOM(I) 

GO TO 43 
36 1Fl0.99999-EEMCI)l38,38,39 
38 FOM{l) = CEEMli)*XKAMCI) 

CEEMASliJ = AMAXlCCEEMAS(I),XCEEM(I)) 
GO TO 43 

39 CEEMASCil = AMAXllCEEMAS{I),XCEEM(I)) 
CEEMIN(I) = AMINlCCEEMINCIJ,XCEEM(I)J 
1FlCEEMCI))l3,43,5 

5 IFCCEfM(IJ-CEEMASCillll,ll,38 
11 FOM(I)=AMAXlCXKAM(I)*(CEEMAS(I)-CCEEMASCIJ-CEEMCIJ)/EEMCI)**2),0.) 

GO TO 43 
13 IF CCEEMCIJ-CEEMIN(I)J38,14,14 
14 FOM(I)=AMINl(XKAMCI)+(CfEMI~(I)-CCEEMTMtfJ-CEEMCl))/EEMCI)**2),0.) 
43 CONTINUE 

C IF NOPC14)=2, SET FOM(l} = FORCINCINTV) 
GO TO(l,l6),1TEST1 

1 NOP14 = NOPC14)+1 

;:· 
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GO T0(6,6,2,2,6),NOP14 
2 FOM(l) = FORCINtiNTV) 

IF(FOM(l)-1.0)3,3,4 
3 DEM(l) = XDEM(l) 

CEEMll) = XCEEM(l} 
GO TO 16 

C IF NOPtl4) = 4, USE PARABOLIC FOM(l) VS. CEEM(l} CURVE 
C THE RAM MUST BE A SINGLE MASS IF FOM VS. OEM IS PARABOLIC 

6 IF(N0P(l4)-4)4,7,4 
1 IFtCEEMlll- CEEMASll))9,8,8 
a FOM(l) = C•CEEM(l}••2 + B•CEEMfl) 

GO TO 12 
4 IFICEEM(l)-CEEMAS(l))l6,12,12 
9 FOMAX(1} = AMAXllXFOM(l),FOMAX(l)) 

FOM(l) = FOMAX(l)-(lCEEMAStll-CEEM(l))•FOMAX(1)**2)/(2.0•SMAX• 
1 EEMtU••2) 

GO TO 16 
12 SMAX = SMAX+((f0M(l)+XFOM(l))/2.0)•(CEEM(ll-XCEEM(l)). 
16 CONTINUE 

lflGAMMA(I))46,44,45 
44 FOM(I} =AMAXl (.0, FOMCI)) 

GO TO 46 
45 IF(FOMtl) - XFOM(l))48,47,47 
48 NFOM( I) = 2 
4 7 I X = NF OM ( I ) 

GO TO (46,49),1X 
49 HOLOF = FOMll) 

FOr•H IT = AMA Xl ( FOM( I), GAMMA (I)) 
COMMEN-T THE ~O.l HOLDS. MtM .. PRESSUAE A.T GAMMA( U FOR. .• 0.1 SECONDS WHILE THE 
COMMENT .0025 REDUCES THE PRESSURE TO ZERO l~ .002> ADDITIONAL SECONDS. 

TINT = INTV 
IFlTINT - .Ol/OELTEE)46,46,90 

90 FOM(J) = AMAXllO.O, GAMMAll)•(l.0-(0ELTEE•TINT-.01)/.0025),HOLDF) 
46 CONTINUE 

ENTHRUfl) = ENTHRU(I)+tFOM(J)+XFOM(I))*(DEM(I+l)-XOEM(I+l))/24.0 

~o.;· 
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c 

c 

ENTMAX(I) = AMAXllENTMAX(I),ENTHRU(I)) 
GO T0(22,19),1TEST1 

22 IF(CEEM(1) - CEEMAS(l))l5,19,19 
15 SMIN = SMIN-((F0M(l)+XFOM(l))/2.0)•(CEEM(l)-XCEEM(l)) 
19 CONTINUE 

1F(NOP(4)-5)29 1 28,29 

28 CALL GENRAM 
.GO TO 55 

29 CONTINUE 

IF(XKIM(I)}50,155,50 
155 GO T0(55,156),ITESTP 
156 IF(XKIM(MPP ))50 1 55,50 

50 IF(OIM(l) -OEM(I) +Q(l) )51,52,52 
51 OIM(I) = DEMtl) -Q(I} 
52 CONTINUE 
70 IF(OIM(I) -DEM(I) -Q(I) }53,53,54 
54 DIM(I) = DEM(I) +Q(I) 
53 CONTINUE 

DIM(MPP } =AMAXl CDIM(MP),OIM(MPP )) 
ITST = ITRIG(I) 
GO TO(l0,57),ITST 

GENERALIZED SOIL RESISTANCE 

SMITHS SOIL RESISTANCE 

10 IF{OEMtll -DIM(I} -Q(I) )56,57 1 57 
56 RAM(I} = (OEM{I)-OIM(I))•XKIM(I}•(l.O+(SJ(I) •VELII))) 

GO T0(55,171),1TESTP 
171 RAM(MP) = RAM(MP)+(OEM(MPJ~OIM(MPP ))•XKIMlMPP )• 

1 (l.O+(SJ(MPP)•VEL(MP))) 
C SEGMENT MP HAS RAM(MPl + RAM(MP+1) APPLIED 
C RAM(MP+ll MAY BE TENSILE 

GO ro· S5 
57 RAM(IJ ::: IOEMfll-DIMCil+ S..J(I) •Q4l) •VElliJl•XKIMCI}. 

ITRIGU) = 2 
G.O T0(55,172l,ITESTP 

172 RAMCMPl=RAM(MP)+(OEM(I)-DIM(MPP)+SJ(MPP)•Q(MPP)•VEL(MP))*XKIM(MPP) 

r... -~· 
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55 CONTINUE 
GO T0{58,72),1TEST1 

58 VEL(l) = VEll1l-(FOMll) +RAM(l))•32.17•DELTEE/WAM{l) 
ITESTl = 2 
GO TO 59 

72 VELlll = VElli)+(FOMll-1) -FOM(I) -RAMll)}•32.17•DELTEE/WAM(I) 
59 CONTINUE 

IFlNOPll5l-1)85,85,83 
83 VELlll = VElfl) + 32.1T•DELTEE 
85 CONTINUE 
65 IFlFOMAXlll-FOMll))67i67,66 
67 FOMAX(I) = FOM(I) 

IFOMAX(I) = INTV 
66 IFlFOMINll)-F0M(I))68,69,69 
69 FOMINtll = FOM(l) 

IFOMINll) = INTV 
68 CONTINUE 

IFlVELl2l/VEll -2.1)61,60, 60 
60 WRITE(6,105) 

INTT = 2 
RETURN 

RATIO OF THE VElOCITY OF W(2) 
2.1. ) 
-2. 1) 63 t 62 '62 

TO THE VELOCITY OF 105 FORMAT(76HO THE 
lTHE RAM EXCEEDS 

61 IF(VEL(MP)/VEll 
62 WRITE ( 6 tl 06) 

106 FORMATI76HO THE RATIO OF THE VELOCITY OF ~{P) TO THE VELOCITY OF 
lTHE RAM EXCEEDS c.l. ) 

INTT ::z 2 
R:ETUR~ 

63 CONTINUE 
LDCEtt = MH-1 
ACCELR = lFOM(LDCELL-1)-FOM(LOCELL))/WAM(LOCELL) 

71 ACELMX=AMAXl(ACELMX,ACCELR) 
73 CONTINUE 

RETURN 
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END 
$1BFTC RAMGEN 

SUBROUTINE GENRAM 
c 
C NQDIV =NO. OF EQUAL SEGMENTS INTO WHICH Q(IJ IS DIVIDED= 10 
C RSTATCI) = STATIC SOIL RESISTANCE NEGLECTING THE SOIL DAMPING EFFECTS 
C RMAXCil =A TEMPORARY MAXIMUM STATIC SOIL RESISTANCE 
C PERCQ =DISTANCE FROM ZERO DISPLACEMENT TO OEM(!) IN UNITS (1.732, •• ) 
c 

c 

COMMON WAM(lOQ), XKAMClOOl, RUM(l00), BEEMClOO), EEMC100) 
COMMON GAMMA(l00), XKIMC100),CEEMAS(l00), NFOMC!OO), XOEMClOO) 
COMMON DEMllOO), XCEEMC100), CEEMCtOO), FOM(lOQ}, XFOMC100} 
COMMON VELC_lOOlt OIM(lQQ), RAM( 100), RMA.X( 1001, RSTATC 100) 
COMMON RClOO,lO) , ITRIGC100), Q(lOOJ,FORCIN(lOO), OFOM{l00) 
COMMON FOMAX(l00l,IFOMAX(l00), FOMIN(l00),IFOMINC100), A(l00) 
COMMON DEMAXtlOO),IOEMAX(!OO), SJCtOO), NOP( 22),0YNAMK(l00) 
COMMON CEEMIN(l00),HOLOEM(l00),ANSVECC 50),SEC50,51) , IROW( 51) 
COMMON RUMA(lOQ), WAMC(lOO), XKAMC(l00), QAClOO), SJA(l00) 
COMMON ICOL( 51), NOPP( 20),ENTHRU(l00),ENTMAXC100), IDS( 50) 
COMMON QSIDE , QPOINT, SIDEJ , POINTJ, NQDIV , NORAMS, NSTOP 
COMMON INTV , ISECTN, NUMR , Fl , F2 , Cl , C2 
COMMON !PRINT, OELTEE, EEMl , EEM2 , GAMMA!, GAMMA2, INT 
COMMON INTT , I , ITST , IX , NR , MO , MP 
COMMON NPAGE , N , QUAKE , RUP , RUT , VELMI , IDl 
COMMON ID2 , 103 , 104 , IDWl , IOW2 i IDKl , IDK2 
COMMON IORLl , IDRL2 , IOGl , IOG2 , IDEl , IDE2 , 1081 
COMMON IDBZ t IDVl , IDV2 , IOQl , IOQ2 , IDJl , IDJ2 
COMMON IOOKl , IODK2 , IOAl , IDA2 , KGRAOD, J~ , TMIN 
COMMON TMAX , SMIN , SMAX 1 NOPNTSt AREA , NSl , NS2,NS6 
COMMON NS3 , NS4 , NS5 , ID£EM , MH , VEll , ACCELR 
COM~ON 8 r C ,. AREAP -. XLONG- • EtAST , ACELMX 
COMMON OVt.OE.L, O.U,ORI ,QRP, ffiU ,OQP-,.OJ-I, DJP, OW 1, DW2, O.Wl, OK I ,_OK2, OK I 

MP = MP 
K : I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
50 
51 
52 
53 
54 
55 
56 
57 
5B 
59 
60 
61 
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QDIV = 10.0 
NQDIV = 10 
IF(XKIM(K)-0.1) 1,2,2 

1 RAM(K) = 0.0 
GO TO 70 

2 IFCDEM(Kl-DIM(K})32,3 1 3 
3 DIM(K) = DEM(K) 

IF(DEM(Kl-Q(K))7,6,6 
6 RSTAT(K) = RlK,NQDIV) 

GO TO 50 
1 PERCQ = DEM(K)/(Q(K}/QDIY) 

IPERCQ = PERCQ 
XPERCQ = IPERCQ 
IFliPERCQ)8,8,9 

8 RSTAT(K) = PERCQ•R(K,l) 
GO TO 50 

9 RSTAT(K) = R(K,IPERCQ)+(PERCQ-XPERCQ)•(R(K,IPERCQ+l)-R(K,IPERCQ)) 
GO TO 50 

32 RMAX(K) =AMAXl(RMAXtKltRSTAT(K)) 
RSTAT(K) = RMAX(K)-(DIM(K)-DEM(K})•XKIM(K) 

C THE STATIC FORCE SHOULD REALLY LEAVE THE XKIM(I) SLOPE AND REMAIN 
C CONSTANT IF RMAX(I)+RSTATtl) EVER EXCEEDS 0.0 

IF{RMA·XlK)+RSTAT(K) )39,50,50 
39 WRITE(6,200)RMAX(K),RSTAT(K),K 

200 FORMATl11HORMAX(I) = Fl0.2, 6X, 12H RSTAT(I) = Fl0.2,6X,4H I =16) 
C STATEMENTS 50 THRU 70 INCLUDE THE SOIL DAMPING EFFECT 

50 ITST = ITRIG(K) 
GO T0(51,57),ITST 

51 1FlDEMlK)-Q(K))56t57,57 
56 RAMfKJ = RSTATlKJ+RS.TATfK.l•SJ{KJ•VEL.tiO 

GO TO 70 
57 RAM(K) = RSTAT(K)+R(K,NQOIVl•SJ(KJ•VEL(K) 

ITRIG(K) = 2 
GO TO 70 

10 IF(K-MP)80,71,73 

·-:;, 
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71 CONTINUE 
K = MP+l 
lF(XKIM(K)-0.01)80,80,72 

72 OEM(K) = DEM(MP) 
VEL(K) = VEL{MP) 
GO TO 2 

73 CONTINUE 
C 73 IF(RAM(K))74,75,75 (OLD STATEMENT) 
C 74 RAM(K) = 0.0 (OLD STATEMENT) 1 

c 

74 CONTINUE 
75 RAM(MP) = RAMCMP)+RAM(MP+l) 

80 RETURN 
END 

RAM(MP+l) CAN GO INTO TENSION 

$1BFTC EXCTG 
SUBROUTINE EXACTG 
COMMON WAMClOO), XKAM(l00), RUM(l00), BEEMClOO}, EEMC100) 
COMMON GAMMA(lOQ), XKIM(l00),CEEMAS(l00), NFUM(lQO), XDEM(l00) 
COMMON OEMC100), XCEEMflOO), CEEM(l00), F0M(l00), XFOMC100) 
COMMON VEL(100), OIM(l00), RAMClOO), RMAXClQQ), RSTAT(l00) 
COMMON R(lOO,lO) , ITRIG(l00), QC100),FORCIN(l00), DFOM(lOO) 
COMMON FOMAX(lOO),IFOMAXClOO), FOMIN(lOO),IFOMIN(lOO), A(l00) 
COMMON OEMAX(lOOJ,IDEMAX(lOO), SJ(l00), NOP( 22),DYNAMK(l00) 
COMMON CEEMIN(l00),H0LOEM(l00),ANSVEC( 50),SE(50,51) , IROW( 51) 
COMMON RUMA(l00), WAMC(lOO), XKAMC(l00), QA(lQO), SJA(l00) 
COMMON ICOL( 51), NOPP( 20),ENTHRU(l00),ENTMAXC100), IDS( 50) 
COMMON QSIDE , QPOINT, SIDEJ , POINTJ, NQOIV , NORAMS, NSTOP 
COMMON INTV , ISECTN, NUMR , Fl , F2 , Cl , C2 
COMMON !PRINT, DELTEE, EEMl , EEM2 , GAMMAl, GAMMA2, INT 
COMMON INTT , I , ITST , IX , NR , MO , MP 
COMMON NPAGE , N , QUAKE , RUP , RUT , VELMI , 101 
COMMON ID2 , 103 , 104 , IDWl , IDW2 , IDKl , IOK2 
COMMON IDRLl , IDRL2 , IOGl , IOG2 , IOEl , IOE2 , IOAl 
COMMON 1082 , IOVl , IOV2 , IOQl , IDQ2 , IOJl , IOJ2 
COMMON IOOKl , IODK2 , IOAl , IOA2 , KGRAODr J5 , TMIN 

1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
50 
51 
52 
53 
54 
55 
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57 
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COMMON TMAX , SMIN , SMAX , NOPNTS, AREA , NSl , NS2,NS6 
COMMON NS3 , NS4 , NS5 , IOEEM , MH , VEll , ACCELR 
COMMON 8 , C , AREAP , XLONG , ELAST , ACELMX 
COMMON 0VftDEl,OE2rDRirORP,OQI,OQP,OJI,OJP,OWl,OW2,DWI,DKl,DK2,0KI 

MP = MP . 
MO = MO 
MMD = MO-l 
MMOO = MO - 2 
MAO = MP - MO 
NSDD = MP-MO+l 
00 6 NSEW = ltNSDD 
DO 6 NSE = 1rNSOD 

6 SElNSEW,NSE) = o.O 
SE(1,1) = XKAM(MO) + XKIM(MQ) 
SE(2,1) = -XKAMfMO) 
DO 13 K = 2,MAO 
NN = K + MMOO 
NNN = K + MMO 
SE(K-l,K) = SE(K,K-1) 
SE(K,K) = XKAM(NN) + XKAM(NNN) + XKIM(NNN) 
SE(K+1,K) = -XKAM(NNN) 

13 CONTINUE 
SECMAO,NSOO) = SECNSODrMAO) 
SECNSDOtNSOO) = XKAM(MP-l)+XKIM(MP) + XKIM(MP+l) 
DET = TAMINV(SE,ICOL,NS00,50,0.00001) 
IFC0.00001- ABS(OET))l4,12,12 

12 WRITEt6,100)0ET 
100 FORMATf33HOTHE VALUE OF THE DETERMINANT = Fl0.1) 

INTT = 2 
RETURN 

14 CONTINUE 
WAMTL = 0.0 
DO 15 NSEW = 2,MO 

15 WAMTL = WAMTL + WAM(NSEW) 

59 
60 
61 
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SE(l,NSDD+l) = WAMTL 
DO 16 NSEW = 2,NSDD 
NUTZ = MMO+NSEW 

16 SElNSEWrNSDD+l) = WAMINUTZ) 
DO 17 IANS = lrNSDD 

17 ANSVEC(IANS) = Q.O 
DO 23 IMl = l,NSDD 
DO 23 1M2 = l,NSDO 

23 ANSVEC(IMl) = ANSVECIIMl)+SEliMl,IM2l•SE(IH2,NSDD+l) 
NAT = 0 
DO 26 NST = MO,MP 
NAT = NAT+l 
OEM{NST) = ANSVEC(NATl 
HOLDEMCNST) = DEM(NST) 

26 CONTINUE 
wos = o.o 
DO 27 NSt = 2,MMO 
WOS = WOS+WAMlNSTl 
CEEM (NST) = WOS/XKAMlNST) 
FOM(NSTl = WOS 

21 CONTINUE 
00 28 NST = l,MMO 
NEL = MO-NST 
DEMlNEL) = OEM(NEL+l) + CEEM(NEL) 
HOLDEM(NEl) = DEM(Nfl) 

28 CONTINUE 
MAM = MP-1 
00 29 NST = MO,MAM 
CEEMtNST) = DEM!NST) - DEMfNST+l) 
FOM(NST) = CEEMtNSTl•XKAMlNST) 
R4PHN.ST} = DEM'fNST)•XKIMfNS.Tl 

29 CONTINUE 
RAM(MP) = OEMlMP)•XKIMlM~) 
RAM(MP+l) = DEM(MPl•XKIM(MP+l) 
RETURN 
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SIBFTC SMTH 

c 

SUBROUTINE SMITH 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 

MP = MP 

WAMI100), XKAM(l00), RUMllOO), 8EEMflOQ), EEM(l00) 
GAMMA(lOO), XKIM(lOO),CEEMA$(100), NFOM(l00), XOEM(l00) 

DEM(lQO), XCEEM(l00), CEEM(l00), FOM{l00), XFOM(l00} 
VEL(l00) 1 OIM(l00), RAM(l00}, RMAXClOO), RSTAT(l00) 

RllOO,lO) , ITRIGtlOO), QClOO),FORCIN(lQO), OFOM(l00) 
FOMAXllOO),IFOMAXllOO), FOMIN(l00),1FOMIN(l00), A(l00) 
DEMAX(l0Q),l0EMAX(100), SJ(l00), NOP( 22),0YNAMK(100} 

CEEMINtlOO),HOLOEM(lOO),ANSVECI 50),SEI50,5ll , IROW( 51) 
RUMA(l00), WAMC(lOO), XKAMCtlOO), QA(lOQ), SJA£100) 
ICOL( 51), NOPP( 20l 1 ENTHRUtlOO),ENTMAX(l00), IDS( 50) 

QSIOE ,. QPOINT, SIDEJ , POINTJr. NOOIV , NORAMS, NSTOP 
INTV , ISECTN, NUMR , Fl , F2 , Cl , C2 
!PRINT, DELTEE, EEMl , EEM2 t GAMMAl, GAMMA2, INT 
INTT , I , ITST , IX , NR , MO , MP 
NPAGE , N , QUAKE , RUP , RUT t VELMI , 101 
102 , 103 , 104 , IDWl , IDW2 , IDKl t IOK2 
IORLl , IORL2 , IOGl , IDG2 , lOEl , IOE2 , IDBl 
1082 , IDVl , IOV2 , IOQl , IOQ2 , IOJl , IOJ2 
IOOKl , IODK2 , IDAl , IOA2 , KGRAOD, J5 , TMIN 
TMAX , SMIN , SMAX , NOPNTS, AREA , N~l , NS2,NS6 
NS3 , N$4 , N$5 , !DEEM , MH , VELl , ACCELR 
B , C , AREAP , XLONG , ELAST , ACELMX 
DVl,DEl,OE2 1 DRI,ORP,DQI,OQP,DJI,DJP,DWl,DW2,DWI,OKl,OK2,0KI 

N = MP-1 
WAMTL = 0.0 
RAMTL = 0.0 
00 5 JT = 2,MP 
WAMTL = WAMTL + WAMtJT) 

5 RAMTL = RAMTL + RUM(JT) 
RAMTL = RAMTL + RUM(MP+l) 

1 
2 
3 
4 
5 
6 
7 
8 
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00 8 JT = 2tN 
RAM(JT) = (RUM(JT)*WAMTL)/RAMTL 

8 FOM(JT) = FOM(JT-l)+WAMlJT)-RAM(JT) 
RAM(l) = RUM(l)*WAMTL/RAMTL 
RAM(MP) = RUMCMP)*WAMTL/RAMTL 
RAM(MP+l) = RUM(MP+l)*WAMTL/RAMTL 
OEM(MP) = (RAM(MP)+RAMlMP+l))/(XKIM{MP)+XKIM(MP+l)) 
HOLDEM(MP) = DEM(MP) 
DO 11 JT = l,N 
JTM = MP-JT 
CEEM(JTM) = FOM{JTM)/XKAM(JTM) 
OEM(JTM) = DEM(JTM+l) + CEEMCJTM) 
HOLOEM(JTM) = DEMCJTM) 
DlM(JTM)=OEMlJTM)-WAMTL*Q(JTM)/RAMTL 

11 CONTINUE 
RETURN 
END 

$0ATA 

;'· 




