ESTIMATES OF RELATIVE MOBILITY IN MAJOR TEXAS CITIES

byTimothy J. LomaxEngineering Research Associate
andDennis'L. ChristiansenAssociate Research Engineer
Edited byA. V. FitzgeraldAssistant Research Specialist
Research Report 323-1F
Methodologies for Predicting Levels of Urban CongestionResearch Study Number 2-1-82-323
Sponsored by
State Department of Highways and Public Transportation
Texas Transportation Insititute
The Texas A\&M University System'College Station, TX 77843
August 1982

ABSTRACT

The major urban areas in Texas have recently experienced a period of unprecedented growth. Along with that growth came significant increases in traffic congestion with corresponding declines in urban mobility. Maintaining moblilty is essential if continued economic growth is to be realized. This study uses available data to assess the seriousness of congestion in the major urban areas and to estimate the relative levels of mobility that exist in major Texas cities.

This study focused on using available data. The Institute was provided considerable assistance in obtaining these data and would like to acknowledge the assistance of the following individuals.

Hous ton Area
Chris Olavson
Houston-Galveston Regional Transportation Study
State Department of Highways and Public Transportation

Dallas-Fort Worth Area

Donald Walden and Mark Young
Regional Planning Office
State Department of Highways and Public Transportation
Tom Ryden and David Roden
North Central Texas Council of Governments
Burton Clifton and J. W. Renfro
District 2, Fort Worth
State Department of Highways and Public Transportation
John Blain
District 18, Dallas
State Department of Highways and Public Transportation

San Antonio Area

Emil Seewald and David 0twell
District 15, San Antonio
State Department of Highways and Public Transportation
Herb Mueller
Department of Planning-Data Management
City of San Antonio
E1 Paso Area
Tom Kelly and Judy Ramsey
District 24, El Paso
State Department of Highways and Public Transportation
Judy Price
Metropolitan Planning. Organization

Statewide Data

Tom Alford, Ben Barton, Terry Cearley, Harrison Scott, Fred Stutz, Otto Wehring
Planning and Research Division, Austin
State Department of Highways and Public Transportation

SUMMARY

All major Texas cities are facing increasing problems in maintaining mobility. Maintaining that mobility is essential if a high quality of life is to be provided along with a climate conducive to continued economic growth.

Congestion can increase rapidly as evidenced in Houston during the 1970's. In that decade, Houston changed from a city with a very high mobility level to, perhaps, the most congested city in the United States. This occurred since, during a period where travel demand continued to increase rapidly, the rate of growth in new roadway construction decreased significantly.

The rapidity with which mobility can be lost has to be a cause of concern for all the major Texas cities. To maintain mobility and continue to accommodate growth will require a large scale commitment of funds to transportation improvements. While area-wide congestion may not yet be severe in all urban areas, significant traffic problems do exist at various locations within all of the urban areas.

The data base for identifying relative congestion levels has significant limitations. It appears that the following represent measures that should not be allowed to occur in an urban area. Once these measures have been met or exceeded, severe congestion is present in the urban area.

- Daily traffic volume per lane
- Freeway: 13,000
- Arterial: 4,500
- Percentage of freeway system with ADT/lane ≥ 15000 : 30%
- Systemwide freeway K factor: 9.2%
- Land area within 30 minutes of CBD in peak hour: 300 square miles, equivalent to approximately a 20 mph average speed.

These measures were used to compare and rate the various cities. The results are summarized in Figures $S-1$ and $S-2$. Figure $S-1$ shows the relative congestion levels in the study cities. Figure S-2 shows how many years the various cities are "behind" Houston and the congestion standard based on existing conditions and extrapolated growth rates. Figures $S-1$ and $S-2$ were derived using 1980 data; this implies, for example, that in 1982 Dallas is probably only 3 more years away from reaching the congestion standard.

Figure S-1: Relative Congestion Levels in Major Texas Cities, 1980

Houston has already crossed into the serious congestion situation. Indeed, the Regional Mobility Plan developed in Houston is designed to "bring" Houston back to a congestion level roughly equivalent to the standards developed in this study. If historical trends continue, Dallas and San Antonio will surpass the congestion standards in the mid 1980's, and congestion will continue to increase in Fort Worth and El Paso.

Figure S-2: Number of Years Until the Congestion Levels Characterized by the Congestion Standard and Houston are Attained in Other Major Texas Cities, 1980.

All of the major urban cities will be confronted with significant problems during the 1980's in an effort to just maintain -- not necessarily improve -mobility. To maintain that mobility, the rate of new facility construction in the 1980's will have to be greater than that experienced in the 1970's.

As a means of assisting the State Department of Highways and Public Transportation in planning future highway needs and identifying funding requirements, it is desirable to have a measure of the seriousness of the congestion and moblility problem in major Texas cities. The report provides a quantification of those mobility levels. This information should be of value in identifying and prioritizing roadway needs.

Key Words: Mobility, Congestion, Transportation Planning

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State Department of Highways and Public Transportation. This report does not constitue a standard, specification, or regulation.

TABLE OF CONTENTS

Abstract i
Acknowledgements iii
Summary iv
Implementation Statement vii
Disclaimer vii
Introduction 1
Study Objectives 3
Study Cities 5
The Data Base 7
Statewide Data 8
Houston Data 10
Dallas and Fort Worth Data 10
El Paso Data 11
San Antonio Data 12
Overview 12
The Mobility Decline, The Case of Houston 13
Overview 24
Measures of Urban Mobility and Congestion 25
Importance of Arterial Streets 25
Measures of Congestion 26
Traffic Per Lane 27
Percentage of Congested Freeway 28
K Factor 29
Peak-Hour Travel Distance 30
Overview of Congestive Travel Measures 30
Relative Congestion and Mobility in Texas Cities 33
The Urban Freeway Systems 33
Data Comparison 36
Comparison of Mobility Indicators 36
Traffic Per Lane 41
Percentage of Congested Freeway 43
K Factor 44
Peak-Hour Travel Distance 44
Conclusions 49
References 53
Appendix A - Examples of Information Used in Study A-1
Appendix B - Peak-Period Delay B-1
Appendix C - Peak-Period Delay, Houston, Dallas, Fort Worth C-1

INTRODUCTION

Major urban areas in Texas have, historically, had outstanding levels of mobility. Even in the most congested of Texas cities -- Houston -- mobility actually improved during the 1950's and most of the 1960's. There is little doubt that the high level of mobility present in major Texas cities has been a prime reason that these cities have experienced tremendous growth. It follows that, unless ways are found to maintain mobility and a high quality of life, the rate of future growth in the larger cities may be adversely affected.

Significant losses in mobility did occur during the 1970's. These losses occurred for two primary reasons. First, the rate of growth in highway construction slowed; for example, in the Houston area lane-miles of freeway were expanded at an annual rate of 15.1% from 1960 to 1970 and at an annual rate of 2.4% from 1970 to 1980. Second, growth in vehicle-miles of travel accelerated with the migration to the Sunbelt; for example, daily vehicle-miles of travel in the Houston area increased by 74% from 1960 to 1970 and increased by 104% from 1970 to 1980. Thus, absolute demand increased at a greater rate during the same time period in which supply, or roadway capacity, was increasing at a decreasing rate.

The result, quite obviously, was a significant increase in urban congestion and loss in mobility. While major Texas cities enjoyed the near ultimate in urban mobility in the late 1960's, in a period of only ten years one of those cities -- Houston -- had become, perhaps, the most congested city in the United States; and other major Texas cities are not that far behind the congestion levels that exist today in Houston.

The decline in mobility carries with it a substantial cost resulting from congestion. A recent study (1)* performed in Houston estimated that in 1981

[^0]congestion cost Houstonians $\$ 1.9$ billion. It can certainly be argued that the level of congestion that exists in Houston today, and which is continuing to increase, is not acceptable. Significant transportation improvements are needed to "bring back" a higher level of mobility. It can be further argued that the levels of congestion that exist in other major Texas cities should not be allowed to reach the levels that currently exist in the Houston area. That, too, will require significant transportation improvements.

The major urban areas in Texas face a challenge to maintain acceptable levels of mobility. This is a challenge that will require large-scale capital expenditures; the Regional Mobility Plan (1) recently developed in Houston estimates that over the next 15 years it will be necessary to expend $\$ 16.2$ billion just to "recreate" the level of mobility that existed in 1974. Expenditures of slightly over $\$ 1$ billion per year will go a long ways toward alleviating a problem that is now costing $\$ 1.9$ billion per year and is getting worse.

Unless large-scale commitments of funds are made in the major Texas cities, mobility will continue to decline along with the quality of life. Permitting this to occur will certainly have an adverse impact on the spectacular economic growth that has been taking place in major Texas cities.

It is evident to most observers that congestion has increased and mobility has declined in the major urban areas in Texas. The primary intent of this study is to provide a quantification of this occurrence. The following represent the major objectives of the study.

- Develop quantitative measures that can be used to define "acceptable" levels of urban mobility and compare existing conditions in major cities to those measures of acceptability.
- Document the relative levels of mobility that now exist in major Texas cities.

STUDY CITIES

This study addresses the larger urban centers in Texas. Travel data are analyzed for Houston, Dallas, Fort Worth, San Antonio, and El Paso. These are the largest cities in the state and are also the cities included in another major research study (Study 2-10-74-205) addressing freeway travel; considerable data are available through that related study. Locations of these study cities are shown in Figure 1.

Figure 1: Location of Study Cities

THE DATA BASE

Good, highly reliable data are not available from which to develop extremely accurate estimates of mobility in the various urban areas. The same data are not available for all urban areas, and the data that are available have not necessarily been collected in the same manner or using the same definitions. Some of the limitations of the data base are highlighted in this section.

As a result, in reviewing the findings of this study, it must be realized that the data base is not perfect. It is felt that the quantitative measures used in this study do provide a reasonably accurate measure of the overall mobility in each urban area, however.

The measures presented in this report are intended to describe general mobility and congestion for an entire urban area. Simply because the measures might suggest that area wide congestion may not be critical for a specific city does not mean that, at specific locations within that urban area, intense congestion does not occur on a regular basis. All of the major urban areas considered in this study do have such locations.

It should also be noted that, in order to develop travel numbers that can be compared between urban areas, it was necessary for the research staff to estimate several numbers. For example, in defining urban area, it was not always possible to use jurisdictional limits as the defining boundaries due to either lack of data on related travel measures or non-comparability of information (e.g., while counties might initially appear to be a good unit of measure, variations in county size as well as percent urbanization significantly reduce the attractiveness of the county data for assessing urban area mobility). As a result, some data developed in this study, such as the definition of urban area,
do not necessarily correlate directly to the definitions that may be used and preferred by planning agencies in the individual study cities.

Statewide Data

Much of the traffic volume data used in this analysis is collected at automatic traffic recorder (ATR) stations by the State Department of Highways and Public Transportation (SDHPT). The average daily traffic (ADT) and peakhour factor (phf), as determined from the ATR stations, are published annually by SDHPT for many locations on Texas freeways. Other traffic counts consisting of volumes only are presented on the Annual Texas Traffic Map prepared by SDHPT in Austin. These count data were used in calculating delay time in several major urban areas.

Several aggregations of roadway mileage are compiled by SDHPT for all the study cities. Examples of the way in which the data are presented are included in Appendix A. SDHPT's Planning and Research Division (D-10) has recently completed traffic modeling schemes for the Houston-Galveston and Dallas-Fort Worth areas that present road-miles and vehicle-miles of travel for all functional classes of roadway. The regions are divided into several sectors which can be grouped into boundaries for the Houston, Dallas and Fort Worth urban areas. The relative accuracy of these data are discussed later, but the point must be made that these data are only available for one year. There are no similar data from which to develop trends for this particular measure of travel and capacity. This same problem currently exists in the case of the Highway Performance Monitoring System (HPMS). The Planning and Research Division (D-10) is required to use this form to report on urban Texas roadways to the Federal Highway Administration. This system compiles road miles and
vehicle-miles by functional classification for all roads in Texas urban areas. Fortunately, though, in the future it will be updated every two years and will become a more useful planning tool.

Two groupings of roadway data are compiled by D-10 on a yearly basis for all Texas counties. The Form TT tables are grouped into city and rural areas with only those roads inside incorporated city limits included in the city tables. The deficiency with this system is that it does not include the unincorporated suburbs, which in many cases may be as important as the cities. These tables include only those miles maintained by SDHPT and are grouped by administrative classifications (e.g., Federal-Aid Primary, Federal-Aid Urban, etc.) rather than the more desirable, at least for this analysis, functional classification which categorizes roads by the volume of traffic that can be carried. The Interstate category is presented in the TT tables and the RI2-TLOG (discussed below) which might allow the two to be compared, but the defined urban boundaries are not always the same. Freeway miles other than Interstate and principal arterial mileage are nearly impossible to ascertain from the TT tables because each administrative classification may include different types of roadway.

The RI2-TLOG includes all SDHPT-maintained mileage arranged by functional classification for each year since 1976. Within each county the functional roadway classifications are grouped according to several ranges of urban area population (e.g., 5,000-10,000, over 50,000 etc.) as well as rural areas. The biggest hindrance to the effective use of either the TT or RI2-TLOG table is the fact that these tables do not include all mileage of a certain roadway type. The state-maintained mileage of freeways and expressways is fairly close to the actual total in most cities, but the percentage drops for other roadway types. Thus, knowing only state-maintained mileage doesn't result in ap accurate reflection of overall urban mobility.

The State Department of Highways and Public Transportation's Motor Vehicle Division supplied countywide vehicle registration data for the study areas. These were modified to reflect urban area use in this study by using ratios of urbanized area to total county area and population.

Houston Data

The Houston-Galveston Regional Transportation Study (HGRTS) provided considerable data on roadway capacity and travel in the Houston urban area. Most of this material is published in the HGRTS Newsletter (see Appendix A). The HGRTS Study Office provided estimates of the land area comprising the Houston urban area based on a minimum population density of 1000 persons per square mile. The population and registered vehicle values for the urban area were interpolated from population and vehicle data for the City of Houston and Harris County. HGRTS Travel and Time and Speed Maps were utilized, along with SDHPT traffic counts, to analyze vehicle delay time.

The Planning and Research Division (D-10) transportation planning model and the HPMS derived slightly higher numbers for roadway capacity and travel than HGRTS. The different methods of determining an urban area boundary contributed to the discrepancy. The RI2-TLOG and TT tables were useful in confirming the growth pattern of the HGRTS data, but again the designations of urban area were not derived in the same manner.

Dallas and Fort Worth Data

The main source of transportation data for this study was the North Central Texas Council of Governments (NCTCOG) and the Regional Planning Office of SDHPT in Arlington. The NCTCOG Major Thoroughfare Link (MTL) File provides road miles, lane miles and vehicle miles of travel by functional classification for all roads in the Intensive Study Area (ISA) which includes Dallas County; Tarrant County and parts of the surrounding counties.

A map of trip end distributions was used to derive the urban area boundaries. The road mileage and travel were then estimated from the MTL File. The file (example in Appendix A) has three groupings of urbanized area (Central Business District, Duter Business District, Suburbs) plus a rural category. The Dallas and Fort Worth urban area boundaries contain portions of the rural designation in addition to the urban designation. The RI2-TLOG and TT tables were consulted to check the trends developed from the MTL.

Population estimates were derived from data provided by NCTCOG. The resulting population densities were checked against the other study cities to assure that both the population and area estimates were reasonable.

Other roadway data and a review of the values developed in this study for the Dallas and Fort Worth areas were supplied by the SDHPT Regional Planning Office in Arlington.

El Paso Data

The Metropolitan Planning Organization (MPO) and the Planning Section of the Department's District 24 provided transportation data for the E1 Paso area in addition to that available at the state level. The MPO provided data on vehicle registration, population and vehicle travel, and also assisted in the determination of the impact of Cuidad Juarez on travel values in the El Paso area. That area has a population of approximately 750,000 , making any numbers derived for just the El Paso area suspect.

District 24 provided information on roadway capacity and travel which were used along with the data from the Planning and Research Division (D-10) in Austin. One travel time and speed study (1976-77) has been conducted for the El Paso area by SDHPT.

The San Antonio-Bexar County Urban Transportation Study (SABCUTS) Long Range Transportation Plan was used in addition to those estimates available from SDHPT's Planning and Research Division for roadway travel and capacity in San Antonio. The SABCUTS data were used in estimating the urban area vehicle miles of travel (VMT) and the number of registered vehicles. The HPMS and R12-TLOG tables were used to estimate roadway mileage growth over the study period. These two sources were combined with daily traffic volume derived from the Texas Traffic Map to estimate the VMT change for each year.

Population and land area figures from the City of San Antonio Planning Department were utilized in determining values for the urban area. County maps were also used in estimating the extent of the urban area. As in Dallas and Fort Worth, the population density was used as a check for reasonable values for these numbers.

Overview

An intent of this section is to point out that, while a variety of data sources exist, those sources are not necessarily comparable. To develop reasonably comparable numbers for use in this study, it was necessary to make numerous assumptions and develop estimates based on the limited available data. The data base leaves much to be desired; the measures on congestion and mobility developed in the study should be representative of the overall urban area. However, it should be recognized that an error range certainly does exist.

The decline in mobility in the Houston area is traced for two reasons. First, the rapidity with which that decline occurred is alarming and emphasizes that major actions are needed in all major urban areas to maintain mobility. Second, the Houston experience can be used to provide a basis for developing some quantitative measures of the seriousness of urban congestion.

The disparity increases in freeway lane-miles and increases in freeway travel during the 1970's in Houston, referred to in the introduction to this report, is quantified in Figure 2. The rate of new freeway construction in the 1970's was one-sixth of that of the 1960's. If freeways had been built at the 1960-1970 rate throughout the $70^{\prime} \mathrm{s}$, Houston would have had 1900 Tane-miles of freeway in 1980 instead of 960 . On the other hand, the absolute increase in freeway travel during the 1970's was substantial; from 1960 to 1970 daily freeway VMT increased by 6.3 million, while from 1970 to 1980 daily freeway VMT increased by 9.0 million.

The data in Table 1 further illustrate the problems that developed in the 1970's. As a result of the reduced rate of new freeway construction and the continued increase in travel demand, daily travel per lane mile of freeway increased at an annual rate of 5.9 percent, from 9600 in 1970 to 17,000 in 1980 (2). That 1980 level, the average for the entire freeway system, is equivalent to the accepted measure for level-of-service (LOS) D operation. Although population increased at a significant rate during the 1960^{\prime} s and 1970's (3), vehicle registrations increased at almost twice the population rate. In 1980, Houston had 1.27 million registered vehicles and 959 lane-miles of freeway, or 4 feet of freeway lane per registered vehicle.

Average daily traffic (ADT) per lane represents the most readily available indicator of the condition of freeway operation. Permanent count data at the Automatic Traffic Recorder Stations (4) in the Houston urban area were evaluated

Source: Reference 2

Figure 2: Lane Miles of Freeway and Freeway Vehicle Miles of Travel, Houston, 1950-1980
as a means of assessing general trends; since there are only a limited number of such stations and since they are not necessarily located at the more critical traffic areas, these counters do not provide a highly accurate measure of urban congestion. Figure 3 shows trends in the ATR data, broken down by the location in the urban area relative to Loop I-610. The numerous drops in the graph are due, in part, to the opening of new ATR stations in relatively less travelled freeway sections. The solid line at $15,000 \mathrm{vpd} / \mathrm{l}$ ane indicates the maximum volume associated with LOS C as determined in the interim Highway

Table 1: City of Houston Growth Trends

Year	Annual Average Population (1000)	Annual Average Vehicles (1000)		$\begin{aligned} & \text { Freeway } \\ & \text { Capacity } \\ & \text { (Lane-Miles) } \end{aligned}$	```Daily VMI Per freeway Lane-Mile (1000)```
1950	$596{ }^{2}$	240	201	24	8.4
1955	692^{2}	375	620	100	6.2
1960	$938{ }^{2}$	480	1,044	187	5.6
1965	1,084	625	3,425	456	7.5
1970	1,240	777	7,320	761	9.6
1975	1,440	1,000	11,366	898	12.7
1980	1,604	1,272	16,308	959	17.0

Percent
Increase
Per Year

| $1960-70$ | 2.8 | 4.9 | 19.6 | 15.1 | 5.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1970-80$ | 2.6 | 5.1 | 8.4 | 2.4 | 5.9 |

IVMT-Vehicle Miles of Travel
${ }^{2}$ As of April 1
Source: References 2,3

Capacity Manual. (5). Since 1970, the ADT at all count stations has jncreased by 3.7 percent per year; outside of $I-610$ these counts increased at an annual rate of almost 6 percent.

All of the lines plotted in Figure 3 are, in 1980, either in excess of or nearly at $15,000 \mathrm{vpd} / \mathrm{lane}$; this represents the beginning of LOS D operation. An entire freeway system operating at an average LOS D means that many segments of that system are operating at $\operatorname{LOS} E$ or \dot{F}, an operating level well below design standards.

Source: Reference 4

Figure 3: Trends in Traffic Counts at Automatic Traffic Recorder Stations, Houston, 1950-1980

The data in Figure 2 suggest that the rate of increase in new freeway construction slowed perceptibly in 1970 while demand continued to increase. The result was increased travel volumes per lane. Figure 4 shows the percentage of the freeway lane-miles in Houston operating at 15,000 vpd or more from 1970 to 1980. In 1970, only 11 percent of the lane-miles were in this category; in 1975 28 percent of the lane-miles exceeded that measure, and in 1980 this measure was exceeded on 45 percent of the system. Although it is not known what percentage of the system exceeding $15,000 \mathrm{vpd} / \mathrm{l}$ ane is an "acceptable" measure, it

Source: References 2, 4, 6
Figure 4: Percent of Freeway Lane-Miles with Daily VMT Greater Than 15,000 - Harris County
might be assumed that the 11 percent in 1970 did not suggest large-scale deficiencies; however, the 45 percent in 1980 would appear to suggest such deficiencies exist.

A more comprehensive description of travel trends in Houston and Harris County is provided in Tables 2 through 5. While neither the Houston nor the Harris County numbers are directly relatable to urban area values; the numbers in the tables do reflect general travel conditions in the area.

As would be expectied, along with the increases in travel per lane came

Table 2: City of Houston Freeway and Expressway Travel Trends

* Includes Expressways

Source: Reference 2

Table 3: Harris County Freeway and Expressway Travel Trends

Year.	Freeway Travel in VMT Per Day* (1000's)	Total Travel in VMT Per Day (1000's)	Freeway Travel in \% of Total*	Freeway Route Mileage*	Freeway Lane Mileage*	Travel Per Mile of Freeway and Expressway		Travel Per Lane-Mile of Freeway and Expressway	
						$\begin{aligned} & \text { Freeway } \\ & \text { Travel* } \\ & (1000 \text { 's) } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { Travel } \\ & (1000 \text { 's) } \end{aligned}$	$\begin{aligned} & \text { Freeway } \\ & \text { Travel* } \\ & (1000 \text { 's }) \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Travel } \\ (1000 ' s) \end{gathered}$
1950	250	7,600	3.3	8.4	41.6	29.76	904.76	6.01	182.69
1955	- 810	11,000	7.4	37.6	173.8	21.54	292.55	4.66	63.29
1960.	1,392	14,500	9.6	66.6	331.2	20.90	217.72	4.23	43.78
1965	4,300	19,500	22.1	125.1	706.6	34.37	155.88	6.09	27.60
1966	4,850	20,400	23.9	144.0	830.4	33.68	141.67	5.84	24.57
1967	5,675	21,900	25.8	153.8	893.0	36.90	142.39	6.36	24.52
1968	6,509	23,400	27.8	162.1	960.6	40.15	144.36	6.72	24.16
1969	7,835	24,975	31.4	172.3	1047.2	45.47	144.95	7.48	23.85
1970	9,115	26,475	36.5	181.4	1102.0	50.25	145.95	8.27	24.03
1971	10;323	28,000	37.0	185.5	1129.6	55.65	150.94	9.14	24.79
1972	11,486	29,776	38.6	193.1	1163.4	59.70	154.76	9.87	25.59
1973	12,348	32,089	38.5	194.4	1177.4	63.71	165.58	10.49	27.25
1974	12,823	32,476	39.5	202.6	1247.2	63.29	160.29	10.28	26.04
1975	14,456	35,203	41.1	207.2	1291.8	69.77	179.90	11.19	27.25
1976	. 15,447	37,918	40.7	207.2	1298.3	74.55	183.00	11.90	29.21
1977	16,811	40,990	41.0	207.2	1298.3	81.13	197.83	12.95	31.57
1978	17,881	43,033	41.5	208.2	1304.3	85.88	206.69	13.71	32.99
1979	18,278	44,354	41.2	211.5	1314.7	87.25	211.71	13.90	33.74
1980	18,758	46,795	40.1	210.1	1306.0	89.28	222.73	14.36	35.83

* Includes Expressways

Source: Reference 2

Table 4: City of Houston Mobility Trends

N

Year	Annual Average Population (1000's)	Annual Average Registered Vehicles (1000's)	Daily Freeway Travel per Capita*	Total Daily Vehicle Travel per Capita	Daily Freeway Travel per Vehicle*	```Total Daily Vehicle Travel per Vehicle```	Population Ratios		Vehicle Ratios	
							$\begin{aligned} & \text { Per Mile } \\ & \text { of Freeway* } \\ & (1000 ' s) \end{aligned}$	Per Lane Mile of Freeway* (1000's)	Per Mile of Freeway* (1000's)	Per Lane Mile of Freeway* (1000's)
1950	596^{1}	240	0.3	8.8	0.8	21.9	149.00	24.83	60.00	10.00
1955	692 ${ }^{\text { }}$	375	0.8	10.0	1.7	20.5	39.95	7.66	$19.63{ }^{\circ}$	3.74
1960	$938{ }^{1}$	480	1.1	10.9	2.2	21.3	29.68	5.01	15.19	2.56
1905	1084	625	3.1	12.5	5.5	22.0	15.13	2.41	8.62	1.37
1966	1114	650	3.5	12.8	6.0	22.2	13.93	2.13	8.03	1.23
1967	1144	690	4.0	13.4	6.7	22.5	12.78	1.96	7.60	1.17
1968	1174	730	4.5	14.0	7.3	22.7	11.91	1.77	7.37	1.09
1969	1207	753	5.3	14.6	8.6	23.5	11.08	1.62	6.89	1.01
1970	1240	777	5.9	15.2	9.4	24.2	11.09	1.63	6.95	1.02
1971	1268	800	6.4	15.8	10.7	25.0	11.26	1.65	7.64	1.12
1972	1296	850	7.0	16.5	10.7	25.2	11.55	1.69	8.05	1.18
1973	1330	900	7.4	17.5	11.0	25.8	11.80	1.72	8.47	1.23
1974	1377	940	7.4	17.3	10.8	25.3	11.69	1.67	8.37	1.19
1975	1440	1000	7.9	18.2	11.4	26.3	11.99	1.69	8.62	1.21
1976	1491	1075	8.1	19.0	11.3	26.3	11.79	1.65	8.50	1.19
-1977	1517	1170	9.2	21.6	11.9	28.0	11.22	1.59	8.65	1.22
1978	1543	1203	9.7	22.8	12.4	29.3	11.41	1.61	8.90	1.26
1979	1569	1234	9.7	22.9	12.4	29.1	11.44	1.62	9.00	1.27
1980	1604	1272	10.2	23.9	12.8	30.2	11.83	1.67	9.38	1.33

* Includes Expressways
${ }^{1}$ As of April 1

Source: References 2, 3, 7

Table 5: Harris County Mobility Trends

[^1]Source: References 2, 3, 7
increases in delay time in both the peak and off-peak periods (8). Data from six radial freeways (Figure 5) -- North (I-45), Eastex (US 59), East (I-10), Gulf (I-45), Southwest (US 59), and Katy (I-10) -- were used to compute the delay values shown in Figure 6 and Table 6.

Figure 5: Major Houston Area Roadways

Note: The values presented are averages of the six freeways studied. The data for each freeway are presented in Appendix C.
Source: References 2, 4, 6, 8, Appendices B and C
Figure 6: Delay by Segments for Houston Freeways, P.M. Peak Perioci

Table 6: Average Peak Period Delay by Freeway Segement Per Major Radial Freeway

Year	$\begin{gathered} \text { Inside } \\ \text { I-160 } \\ \text { (Veh-Mins) } \end{gathered}$	$\begin{aligned} & \text { I-6l0 to } \\ & \text { Beltway } 8 \\ & \cdot(\text { Veh-Mins })\end{aligned}$	$\begin{gathered} \text { Total } \\ \text { (Veh-Mins) } \end{gathered}$
1969	18;193	23,318	102.111
1973	93,674	41,207	134,881
1976	126,4.73	69,934	196,407
1979	109,745	111,730	221,475

Source: References ?, 4,6,8, ippendices 18 and 6

The most dramatic increase in delay appears in the I-610 to Beltway 8 segment where delay increased by 380 percent from 1969 to 1979 . The decrease in delay inside I-610 after 1975 might be attributed to several factors, including data reliability, the completion of certain freeway sections, and the traffic metering effect of I-610.

Overview

It is not possible or necessary to pinpoint a specific date at which the traffic problems in Houston became critical. The evidence presented seems to confirm that the Houston urban area was provided with a reasonably good level of transportation service as late as 1970. Peak-period delay was not excessive and travel speeds were fairly high. Freeways, for the most part, operated at acceptable levels of service. By 1978, however, the situation had changed noticeably. Data derived for Figure 4 indicated that nearly 40 percent of the entire freeway system countywide would be considered operating at LOS D in 1978. When the rural areas of the county are subtracted from the analysis and only urban freeway mileage is used, this number approaches 50 percent. Total delay time on six major radial freeways had more than doubled in 10 years, severely affecting many travel patterns. "Rush hour" had become "peak-period," and drivers at almost any daylight hour could encounter congestion. These numbers appear to suggest that the "acceptable" level of transportation service in Houston ceased to exist somewhere in the 1975-1976 time frame. That assumption allows quantitative measures of relative mobility and congestion to be developed and then compared for the different urban areas in Texas. Those analyses are presented in the following two major sections of this report.

An objective of this study is to identify quantitative measures that can be used to assess relative mobility levels. Houston is used as the source for this data, assuming that travel conditions in the Houston area were "acceptable" in 1970, not "acceptable" in 1980, and crossed into the "not-acceptable" range in the 1975-1976 period (refer to previous section of this report).

The measures developed in this section describe the general mobility level in an urban area; just because the general mobility may be acceptable does not mean that significant congestion does not occur at specific locations within the urban area. It is also intended that the measures developed from the Houston data base be generally applicable to other urban areas. As a result, the measures need to use data that are generally collected or available for all urban areas in Texas.

Importance of Arterial Streets

The discussion to this point has centered on the freeway system. However, the primary arterial system is also an integral part of the mobility provided by the system. As a result, the arterial system is included as part of the mobility analysis. Estimates of urban area and lane-miles, as obtained from the Houston-Galveston Regional Transportation Study (2), are presented in Tables 7 and 8.

While this is necessary to better define overall urban moblility, since much of the arterial system is not on the state system, data for the arterials are not as reliable as the freeway data. Again, however, the arterial street values presented in the study do appear to be generally reflective of conditions in the urban areas.

Table 7: Urban Houston Area Travel and Capacity Values

Year	Approx. Urban Area (Sq. Mi.)	$\begin{gathered} \text { Freeway } \\ \text { Lane-Miles } \\ L M / M^{2} \end{gathered}$	Primary Arterial Lane-Miles $L M / M^{2}$	Freeway VMI (1000) VMt/ $/ \mathrm{m}^{2}$	Primary Arterial - VMI (1000) VMt/ $/ \mathrm{m}^{2}$	```Freeway VMT Per Lane- Mile```	Primary Arterial VMT Per Lane-Mile
1980	1,350	$\begin{aligned} & 1,256 \\ & 0.93 \end{aligned}$	$\begin{aligned} & 1,655 \\ & 1.23 \end{aligned}$	$\begin{aligned} & 18,404 \\ & 13,630 \end{aligned}$	$\begin{aligned} & 8,566 \\ & 6,350 \end{aligned}$	14,653	5,176
1979	1,300	$\begin{aligned} & 1,265 \\ & 0.97 \end{aligned}$	$\begin{aligned} & 1,586 \\ & 1.22 \end{aligned}$	$\begin{aligned} & 17,952 \\ & 13,810 \end{aligned}$	$\begin{aligned} & 7,691 \\ & 5,920 \end{aligned}$	14,191	4,849
1978	1,250	$\begin{aligned} & 1,182 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 1,518 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 16,405 \\ & 13,120 \end{aligned}$	$\begin{aligned} & 7,228 \\ & 5,780 \end{aligned}$	13,879	4,762
1977	1,200	$\begin{aligned} & 1,176 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 1,449 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 15,648 \\ & 13,404 \end{aligned}$	$\begin{aligned} & 6,924 \\ & 5,770 \end{aligned}$	13,306	4,778
1976	1,150	$\begin{aligned} & 1,212 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1,381 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 14,407 \\ & 12,530 \end{aligned}$	$\begin{aligned} & 6,346 \\ & 5,520 \end{aligned}$	11,887	4,595
1975	1,100	$\begin{aligned} & 1,143 \\ & 1.04 \end{aligned}$	$\begin{aligned} & 1,312 \\ & 1.19 \end{aligned}$	$\begin{aligned} & 13,192 \\ & 11,990 \end{aligned}$	$\begin{aligned} & 5,874 \\ & 5,340 \end{aligned}$	11,542	4,477
1974	1,050	$\begin{aligned} & 1,098 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1,301 \\ & 1.24 \end{aligned}$	$\begin{aligned} & 11,716 \\ & 11,160 \end{aligned}$	$\begin{aligned} & 5,504 \\ & 5,240 \end{aligned}$	10,670	4,231
1973	1,000	$\begin{aligned} & 1,029 \\ & 1.03 \end{aligned}$	$\begin{aligned} & 1,313 \\ & 1.31 \end{aligned}$	$\begin{aligned} & 11,241 \\ & 11,240 \end{aligned}$	$\begin{aligned} & 5,610 \\ & 5,610 \end{aligned}$	10,924	4,273
1972	950	$\begin{aligned} & 1,015 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 1,270 \\ & 1.34 \end{aligned}$	$\begin{aligned} & 10,499 \\ & 11,050 \end{aligned}$	$\begin{aligned} & 5,410 \\ & 5,690 \end{aligned}$	10,344	4,260

Note: $L M / M^{2}=$ lane miles per-square mile
$V M T / M^{2}=$ vehicle-miles of travel per square mile

Source: Reference 2

Measures of Congestion

Numerous measures were evaluated to quantify relative congestion and mobile ity levels. Data availability and comparability greatly influenced that evaluation. Some of the more significant measures are reviewed in this section.

Table 8: Urban Houston Area Mobility Trends

Year	Annual Average Population ($10000^{\prime} \mathrm{s}$)	Annual Average Registered Vehicles (1000's)	$\begin{gathered} \text { Total } \\ \text { Travel } \\ \text { in VMT } \\ \text { Per Day } \\ (10001: \text {) } \end{gathered}$	Oaily Freeway Travel per Capita	Total Daily Travel per Capita	Daily Freeway Travel per Vehicie
1980	2,209	1,700	44,412	8.3	20.1	10.8
1979	2,159	1,669	42,110	8.3	19.5	10.8
1978	1,998	1,533	38,957	8.2	19.5	10.7
1977	1,958	1,492	37,196	8.0	19.0	10.5
1976	1,865	1,394	34,136	7.7	18.3	10.3
1975	1,788	1,291	31,462	7.4	17.6	10.2
1974	1,726	1,174	29,168	6.8	16.9	10.0
1973	1,668	1,132	28,892	6.7	17.3	9.9
1972	1,623	1,078	27,000	6.5	16.6	9.7

Source: References 2,3

Traffic Per Lane

As shown previously, 15,000 vehicles per day per lane (vpd/lane) for freeways represents the beginning of LOS D operation. Once traffic has entered that range, congestion is becoming critical. As a measure of approaching congestion, the $13,000 \mathrm{vpd} /$ lane value used by the Federal Highway Administration in the needs estimate (9) would appear to represent a more appropriate value; that standard also was attained in Houston during the period where mobility was becoming unacceptable (Figure 7).

The corresponding measure for urban arterial streets would be approximately $4500 \mathrm{vpd} / \mathrm{l}$ ane. This value also occurs in Houston about the mid-1970's and is in general agreement with accepted traffic engineering standards for arterial street operations.

Source: Reference 2
Figure 7: Freeway and Primary Arterial Travel Per Lane-Mile - Urban Harris County

Percentage of Congested Freeway

The percentage of the freeway system operating under congested conditions ($15,000 \mathrm{vpd} /$ lane or more) might be another description of congestion and mobility levels. Those data for the Houston area were presented previously (Figure 4). From that information, it appears that, once 30 percent of the lane-miles are operating at or above $15,000 \mathrm{vpd}$, mobility has become significantly inpaired.

K Factor

As congestion increases, the peak hour begins to spread into a peak period and congestion exists for longer periods of time. The result is that the percentage of daily traffic that occurs in the peak hour, or K factor, declines. The decreasing K factor values in Figure 8 are indicative of the rising offpeak traffic volumes and the lengthening of the peak period. Both of these occurrences are associated with increasing freeway congestion.

Source: Reference 4

Figure 8: K Factor Values for the Houston Freeways

Using the K factor as a measure is complicated due to data availability; K factors are readily available only at a limited number of locations, and those locations may or may not be where intense congestion occurs. For example, many sections of roadway in Houston have K factors in the range of 7 percent, data not reflected in Figure 8. A count location added in 1975 on I- 610 with a high K factor value further confuses the trend line.

From the data in Figure 8, it appears that a systemwide freeway peak-hour factor of approximately 9.2 percent defines the limits of acceptable mobility.

Peak-Hour Travel Distance
The distance a motorist can travel from downtown in the peak hour is an additional measure of the level of urban mobility. Travel time and speed maps (7) were used to derive Figure 9. That figure shows the square miles of land area located within 30 minutes of downtown. It appears that approximately 300 square miles, equivalent to a radius of about 10 miles, represents a reasonable minimum acceptable standard. This implies an average travel speed of 20 mph for the first half-hour of any peak-hour trip from downtown.

Overview of Congestion Measures

Using data from Houston, an attempt has been made to develop several quantitative measures that can be used to identify when an urban area is approaching serious congestion. All of the measures developed have limitations due to the accuracy and reliability of the data base.

Many different measures were evaluated as part of this study. Only those that appeared to be most useful in assessing congestion levels were presented in this section. The following, listed in apparent order of reliability and usefulness,

Source: Reference 8
Figure 9: Area Within 30 Minutes of Houston CBD
represent guidelines that can be used to determine if congestion in an urban area is becoming critical.

- Traffic volumes per lane
- Freeway: 13,000
- Arterial: 4,500
- Percentage of freeway system with ADT $\geq 15,000$ per lane: 30%
- Systemwide freeway K factor: 9.2%
- Land area within 30 minutes of CBD in peak hour: 300 square miles (equivalent to approximately 20 mph travel speed).

In the next section of this report, these measures are compared for the major urban areas in Texas. In making this comparison, care should be exercised in placing too much emphasis on any one variable. Rather, the cpmparison should be based on several of the measures.

RELATIVE CONGESTION AND MOBILITY IN TEXAS CITIES

The initial sections of this report have primarily pertained to the Houston area. The mobility decline for that area was traced, and the Houston data were used to quantify measures of congestion and mobility for an urban area. In this section, measures of travel and mobility for the larger Texas. cities -Houston, Dallas, Fort Worth, San Antonio, and El Paso -- are presented and compared to each other as well as the congestion measures developed previously.

The Urban Freeway Systems

The geographical estimate of the 1980 urban area as well as the freeway system in each of the urban areas is shown in Figures 10 through 13. The difficulty in estimating that area has been referred to previously in this report. Estimates of the square miles of urban area are shown in Table 9.

Table 9: Growth of Major Texas Urban Areas

Year	Urban Area (Square Miles)			
	Houston	Dallas	Fort Worth	San Antonio
1980	1,350	1,250	760	675
1979	1,300	1,210	735	650
1978	1,250	1,175	710	625
1977	1,200	1,140	685	600
1976	1,150	1,105	660	580
1975	1,100	1,075		

These estimates were obtained from a variety of sources, including registration, population, traffic models and other transportation data. They are not necessarily statistically accurate but instead represent a "best guess" as to the

Figure 10: Houston Urban Area Boundary

Figure 11: Dallas and Fort Worth Urban Area Boundaries

Figure 12: E1 Paso Urban Area Boundary

Figure 13: San Antonio Urban Area Boundary
shape and size of the urbanized area. Little factual data is available in a usable form that will allow such a map to be drawn on a quantitative basis. It is the opinion of the authors that the maps are fairly consistent from one city to the next and any error made in establishing the boundaries is present to the same degree for all areas. Table 9 does not include any measure of the El Paso Urban Area because of the presence of more than 750,000 persons across the U.S.Mexico border in Ciudad Juarez. While that is part of the overall urban area, its development patterns and travel patterns are considerably different than those of U.S. cities. The urban boundary shown for El Paso is, therefore, used to calculate roadway capacity and travel as well as the other factors, but not ratios pertaining to square miles of urban area.

Data Comparison

A wider range of data have been collected pertaining to mobility in the different urban areas. These data are presented in Tables 10 through 17. Most of the data presented are derived using city and/or county data to estimate data for the urban area as defined in this study.

Some of these data are used subsequently in comparing the mobility levels. Other data are presented for informational purposes. In reviewing and comparing these data, the reader is again cautioned that the measures such as size of urban area and some travel data relating to the non state-maintained roadway system are not necessarily highly accurate.

Comparison of Mobility Indicators

In the previous section of this report, a series of quantitative indicators were developed. Once conditions in an urban area approach these indicators, reason exists to believe that serious congestion problems will exist in the near future.

Table 10: Freeway Capacity and Travel in Major Urban Areas

Year	Houston		Dallas		E1 Paso		Ft. Worth		San Antonio	
	Lane Miles	$\begin{aligned} & \text { Daily } \\ & \text { VMT } \\ & (1000) \end{aligned}$	Lane Miles	$\begin{aligned} & \text { Daily } \\ & \text { VMI } \\ & (1000) \end{aligned}$	Lane Miles	$\begin{aligned} & \text { Daily } \\ & \text { VMI } \\ & (1000) \end{aligned}$	Lane Miles	$\begin{aligned} & \text { Oaily } \\ & \text { VMT } \\ & (1000) \end{aligned}$	Lane Miles	$\begin{gathered} \text { Daily } \\ \text { VMT } \\ (1000) \end{gathered}$
1980	1,256	18,404	1,486	15,013	297	2,155	856	7,535	748	7,116
1979	1,265	17,952	1,465	14,618	276	1,976	827	7,143	736	6,681
1978	1,182	16,405	1,448	13,696	276	1,788	793	6,658	684	5,880
1977	1,176	-15,648	1,430	12,840	262	1,664	753	6,101	677	5,475
1976	1,212	14,407	1,395	11,553	260	1,544	731	5,670	671	5,078
1975	1,143	13,192	1,351	10,446	260	1,416	719	5,273	662	4,756

Source: References $2,10,11,12,13,14,15,16$

Table 11: Principal Arterial Capacity and Travel in Major Urban Areas

Year	Houston		Dallas		El Paso		Ft. Worth		San Antonio	
	Lane Miles	$\begin{aligned} & \text { Daily } \\ & \text { VMT } \\ & (1000) \end{aligned}$	Lane Miles	$\begin{gathered} \text { Daily } \\ \text { VMT } \\ (1000) \end{gathered}$	Lane Miles	$\begin{aligned} & \text { Daily } \\ & \text { VMT } \\ & (1000) \end{aligned}$	Lane Miles	$\begin{aligned} & \text { Daily } \\ & \text { VMT } \\ & (1000) \end{aligned}$	$\begin{aligned} & \text { Lane } \\ & \text { Miles } \end{aligned}$	$\begin{gathered} \text { Daily } \\ \text { VMT } \\ (1000) \end{gathered}$
1980	1,655	8,566	1,475	5,729	717	2,610	746	3,253	869	3,792
1979	1,586	7,6.91	1,434	5,402	717	2,409	741	3,149	842	3,522
1978	1,518	7,228	1,395	5,079	110	2,300	724	3,002	807	3,269
1977	1,449	6,924	1,374	4,839	696	2,172	710	2,872	767	3,005
1976	1,381	6,346	1,348	4,49?	684	2,070	691	2,727	759	2,896
1975	1,312	5,874	1,318	4,149	674	1,945	665	2,562	741	2,750

Source: References $2,10,11,12,13,14,15,16$

Table 12: Daily VMT Per Lane on Freeways and Principal Arterials in Major Urban Areas

Year	Houston		Dallas		El Paso		Ft. Worth		San Antonio	
	Freeway	Prin. Art.	Freeway	Prin. Art.	Freeway	Prin. Art.	Freeway	Prin. Art.	Freeway	Prin. Art.
1980	14,653	5,176	10,103	3,884	7,526	3,640	8,802	4,360	9,514	4,364
1979	14,191	4,849	9,978	3,767	7,160	3,360	8,637	4,249	9,078	4,183
1978	13,879	4,762	9,459	3,641	6,4/8	3,239	8,396	4,147	8,596	4,051
1977	13,306	4,118	8,979	3,572	6,351	3,121	8,102	4,045	8,087	3,918
1976	11,887	4,595	8,282	3,332	5,938	3,026	7,756	3,947	7,568	3,816
1975	11,542	4,477	7,732	3,148	5,446	2,886	7,334	3,853	7,184	3,711

Source: References $2,10,11,12,13,14,15,16$

Table 13: Freeway and Principal Arterial VMI Per Square Mile of Urban Area

	Houston		Dallas		El Paso*		Ft. Worth		San Antonio	
Year	Freeway	Prin. Art.	Freeway	$\begin{aligned} & \text { Prin. } \\ & \text { Art. } \end{aligned}$	Freeway	$\begin{aligned} & \text { Prin. } \\ & \text { Art. } \end{aligned}$	Freeway	Prin. Art.	Freeway	Prin. Art.
1980	13,630	6,350	12,010	4,583			9,914	4,280	10,542	5,618
1979	13,810	5,920	12,081	4,464			9,718	4,284	10,278	5,418
1978	13,120	5,780	11,656	4,323			9,377	4,288	9,408	4,230
1977	13,404	5,770	11,263	4,244			8,907	4,193	9,125	5,008
1976	12,530	5,520	10,455	4,065			8,591	4,132	8,755	4,993
1975	11,990	5,340	9,717	3,860			8,304	4,035	8,493	4,911

*Not estimated due to discrepancies caused by the presence of Ciudad Juarez
Source: References $2,10,12,13,14,15,16$

Table 14: Freeway and Principal Arterial Lane-Miles Per Square Mile of Urban Area

Year	Houston		Dallas		F1 Paso*		Ft. Worth		San Antonio	
	Freeway	Prin. Art.	Freeway	Prin. Art.	Freeway	Prin. Art.	Freeway	Prin. Art.	Freeway	$\begin{aligned} & \text { Prin. } \\ & \text { Art. } \end{aligned}$
1980	0.93	1.23	1.19	1.18			1.13	0.98	1.11	1.29
1979	0.9%	1.22	1.21	1.19			1.13	1.01	1.13	1.30
1978	0.95	1.21	1.23	1.19			1.12	1.02	1.09	1.29
1977	0.98	1.21	1.25	1.21			1.10	1.04	1.13	1.28
1976	1.05	1.20	1.26	1.22			1.11	1.05	1.16	1.31
1975	1.04	1.19	1.26	1.23			1.13	1.05	1.18	1.32

*Not estimated due to discrepancies caused by the presence of Ciudad Juarez
Source: References $2,10,12,13,14,15,16$

Table 15: Daily freeway Travel Per Capita in Major Urban Areas

Year	Houston		Dallas		El Paso		Ft. Worth		San Antonio	
	$\begin{aligned} & \text { Pop } \\ & (1000) \end{aligned}$	Freeway VMT Per Capita	$\begin{aligned} & \text { Pop. } \\ & (1000) \end{aligned}$	Freeway VMT Per Capita	$\begin{aligned} & \text { Pop. } \\ & (1000) \end{aligned}$	Freeway VMT Per Capita	$\begin{gathered} \text { Pop. } \\ (1000) \end{gathered}$	Freeway VMI Per Capita	$\begin{aligned} & \text { Pop. } \\ & (10 p o) \end{aligned}$	Freeway VMT Per Capita
- 1980	2,209	8.3	1,642	9.1	428	5.0	924	8.2	913	7.8
1979	2,159	8.3	1,597	9.2	418	4.7	893	8.0	893	7.5
1978	1,998	8.2	1,572	8.7	405	4.4	865	7.7	873	6.7
1977	1,958	8.0	1,542	8.3	393	4.2	836	7.3.	855	6.4
1976	1,865	7.7	'1,528	7.6	382	4.0	810	7.0	837	6.1
1975	1,788	7.4	1,515	6.9	373	3.8	753	7.0	817	5.8

Source: References $2,3,10,11,12,13,14,15,16,18,19,20$

Table 16: Total Daily Travel Per Capita in Major Urban Areas

Year	Houston		Dallas		El Paso		Ft. Worth		San Antonio	
	Total VMT (1000)		Total VMI (1000)	Total VMI Per Capita	Total VMT (1000)	Total VMT Per Capita	lotal VMI (1000)	Total VMT Per Capita	Jotál VMI (1000)	
1980	44,412	20.1	34,258	20.9	6,497	15.2	18,381	19.9	18,117	19.8
1979	42,110	19.5	33,211	20.8	6,114	14.6	17,771	19.9	17,136	19.2
1978	38,957	19.5	31,559	20.1	5,741	14.2	16,868	19.5	15,567	17.8
1977	37,196	19.0	30,088	19.5	5,395	13.7	15,550	18.6	14,606	17.1
1976	34,136	18.3	27,794	18.2	5,070	13.3	14,418	17.8	13,867	16.6
1975	31,462	17.6	25,788	17.0	4,757	12.8	12,876	17.1	13,186	16.1

Source: References $2,3,10,11,12,13,14,15,16,17,18,19,20$

Table 17: Daily Freeway Travel Per Registered Vehicle in Major Urban Areas

Year	Houston		Dallas.		El Paso		Ft. Worth		San Antonio	
	$\begin{aligned} & \text { Reg. } \\ & \text { Veh. } \\ & (1000) \end{aligned}$	Freeway VMT Per Vehicle	$\begin{aligned} & \text { Reg. } \\ & \text { Veh. } \\ & (1000) \end{aligned}$	Freeway VMT Per Vehicle	Reg. Veh. (1000)	Freeway VMI Per Vehicle	$\begin{aligned} & \text { Reg. } \\ & \text { Veh. } \\ & (1000) \end{aligned}$	Freeway VMI Per Vehicle	Reg. Veh. (1000).	Freeway VMT Per Vehicle
1980	1,700	10.8	1,340	11.2	264	8.2	780	9.7	682	10.4
1979	1,655	10.8	1,292	11.3	257	7.7	761	9.4	640	10.4
1978	1,533	10.7	1,253	10.9	250	7.2	739	9.0	603	9.8
1977	1,492	10.5	1,211	10.6	242	6.9	701	8.7	569	9.6
1976	1,394	. 10.3	1,169	9.9	232	6.7	655	8.7	537	9.5
1975	1,284	10.3	1,131	9.2	219	6.5	617	8.5	513	9.3

Source: References $2,10,11,12,13,14,15,16,21$

Traffic Per Lane

Figures 14 and 15 show trends in daily travel per lane for both freeways and arterial streets. The congestion standards developed previously in this report are also shown in those figures.

Source: References 2,10,11,12,13,14,15,16
Figure 14: Daily Travel Per Lane-Mile of Freeway

The freeway data, in terms of both VMT and lane-miles, are some of the more reliable data used in this study. As shown in Figure 14, Houston crossed the suggested congestion standard in about 1976. Extrapolation of the historical trend data indicates that both Dallas and San Antonio can be expected to meet

Source: References 2,10,11,12,13,14,15,16
Figure 15: Daily Travel Per Lane-Mile of Principal Arterial
the congestion standards in the mid-1980's. While Fort Worth and E1; Paso have lower VMT per lane values, that ratio for both cities continues to increase.

The arterial data are shown in Figure 15. The relative rankings of Fort Worth, San Antonio, and Dallas are different than those shown in the freeway rankings. However, VMT per lane is increasing in all cities, with Fort Worth and San Antonio approaching the standard.

Combining the freeway and arterial data provides, perhaps, the best indicator of relative mobility. That analysis is presented in the final part of this section.

Figure 16 shows the percentage of freeway lane-miles with daily traffic volumes in excess of 15,000 . These data are shown on a county, rather than an urban area, basis.

Source: References 2, 4, 6
Figure 16: Percent of Freeway Lane-Miles with ADT Greater than 15,000

Harris County (Houston) exceeded the 30 percent standard in the mid-1970's and has been increasing rapidly. In 1980, the percentage of freeway lane-miles in Harris County exceeding 15,000 ADT was twice as great as any other county. Of particular importance in this analysis is that the area covered is the county and not the urban boundary. Some allowance must be made for this
difference, especially in the Dallas area. The 1980 Dallas urban area is almost half again as large as is Dallas County, resulting in the percentage of congested freeway being somewhat high. The percent of freeway lane-miles operating above 15,000 would, therefore, be somewhat lower if calculated on an urban area basis. In the other four counties the opposite is true because the defined urban area is less than the county area.

While Houston surpassed the suggested standard in the 1970's, both Dallas and San Antonio will exceed this standard in the 1980's. This percentage continues to increase in both Fort Worth and El Paso.

K Factor

Figure 17 is derived from data collected by the State Department of Highways and Public Transportation at the Automatic Traffic.Recorder (ATR) stations (3). As has been discussed previously, the abrupt changes in these values are the result of new ATR's being put into operation at relatively low volume sections of roadway.

It is apparent from Figure 17 that, using the available data, good estimates of relative congestion cannot be derived from the K factor values. The absolute number of stations as well as the change in the total number of counters, combined with the impacts of where the counters are located relative to intense traffic demand, adversely affects the usefulness of this measure. Nevertheless, the trend data in Figure 17 confirm the fact that congestion is continuing to intensify.

Peak-Hour Travel Distance

Another, although possibly least accessible, method of determining congestion is delay time, in vehicle-minutes, per freeway. Travel time and speed studies

Source: Reference 4

Figure 17: Peak-Hour Factors at SDHPT Permanent Traffic Count Stations
are necessary to obtain the data used in this type of analysis. The assembly of those data requires many hours of data collection and planning and is not carried out in all major urban areas on a regular basis. Figure 18 displays the relevant data for those areas in which two or more recent travel time studies have been conducted. Appendix B presents an example of the calculations used to derive Figure 18. Appendix C gives the quantitative values for each freeway examined in Houston, Dallas and Fort Worth. The rises in congestion in Dallas and Fort Worth, based on Figure 18, have not been as rapid as the increases in Houston.

Source: References 2,4,6,8,22

Figure 18: Delay per Freeway P.M. Peak Period

Figures 19 and 20 show the square miles of urban area that can be reached from the downtown in 30 minutes. Again, the data are limited. The figures do emphasize the increases in congestion for Houston and show the trend toward more congestion in Dallas and Fort Worth.

Source: References 8, 22
Figure 19: Area Within 30 Minutes of CBD During Peak-Hour

Source: References 8, 22
Figure 20: Area Within 30 Minutes of CBD During Off-Peak Periods

All of the major urban areas in Texas are facing increasing traffic congestion problems. In spite of the relative mobility rankings for the various cities, all of the urban areas experience significant traffic problems at specific locations.

In comparing the different urban areas, the measures of traffic per lane mile appear to be most useful. Since the freeways typically carry about twice as much VMT per mile as do the arterials, the freeway values were given twice the weighting of the arterials. All the values were then normalized with the standard congestion measure being set equal to 1.0 .

The results of the analyses are shown in Figure 21. That figure shows that Houston is already (in 1980) 13 percent above the congestion/mobility standard developed in this report. Congestion in San Antonio and Dallas was approximately 80 percent of the standard, while Fort Worth was 72 percent and El Paso 61 percent of the standard.

Figure 21: Relative Congestion Levels of the Five Study Areas, 1500 Jata

Figure 22 shows a further comparative analysis of the 1980 data. The historical growth rate in VMT per lane and percent of freeway lane-miles with an ADT in excess of 15,000 were used to assess how far "behind" Houston the different cities are as well as how far "behind" the congestion/mobility standard the various cities are. The bars in that figure indicate the number of years each area has until it equals the mobility/congestion standard. In assessing the number of years until the standard is reached, it would be noted that the analyses reflect 1980 data; all of the cities should already be 2 years closer to that standard.

Figure 22: Time Until Standard and Houston Congestion Levels are Attained, $19 E 0$ Data

All of the major urban areas are confronted with significant traffic problems. This document provides an indication of the relative criticality of the problem in the different cities.

REFERENCES

1. Houston Chamber of Commerce, "Houston Regional Mobility Plan," 1982.
2. Houston-Galveston Regional Transportation Study Office, "Various Houston/ Harris County Data."
3. Houston Chamber of Commerce, "Houston Facts 1981," April 1981.
4. State Department of Highways and Public Transportation, "Permanent Automatic Traffic Recorder Data -- 1950-1980."
5. Transportation Research Board, Transportation Research Circular \#212, "Interim Materials on Highway Capacity," January 1980.
6. State Department of Highways and Public Transportation, "Texas Traffic Map -- 1950-1980."
7. $\frac{\text { Texas Almanac and State Industrial Guide, 1978-1979. A. H. Belo }}{\text { Corporation, Dallas, Texas, 1973. }}$
8. Houston-Galveston Regional Transportation Study Office, "Travel Time and Speed Survey -- 1969, 1973, 1976 and 1979."
9. United States Department of Transportation, Federal Highway Administration, "1980 -- 3-R Study."
10. North Central Texas Council of Governments, "Major Thoroughfare Link File -- 1977, 1979 and 1980."
11. State Department of Highways and Public Transportation, Regional Planning Office - Arlington, "Roadway and Population Estimates for the Dallas/ Fort Worth Intensive Study Area."
12. Planning Office - District 15, State Department of Highways and Public Transportation, "Various Bexar County Data."
13. Planning Office - District 24; State Department of Highways and Public Transportation, "Various El Paso County Data."
14. State Department of Highways and Public Transportation, Planning and Research Division, "RI2-TLOG Tables."
15. State Department of Highways and Public Transportation, Planning and Research Division, "Form TT. Tables."
16. State Department of Highways and Public Transportation, Planning and Research Division, "Highway Performance Monitoring System."
17. State Department of Highways and Public Transportation, Planning and Research Division, "El Paso Urban Transportation Study."
18. North Central Texas Council of Governments, "Population Estimates for the North Central Texas Region."
19. City of San Antonio, Department of Planning, "Population Estimates for San Antonio and Bexar County."
20. City of El Paso, Metropolitan Planning Organization, "Demographic Analysis of El Paso City and County."
21. State Department of Highways and Public Transportation, Motor Vehicle Division, "Motor Vehicle Registration Data-- By County."
22. State Department of Highways and Public Transportation, Regional Planning Office --Arlington and North Central Texas Council of Governments, "Travel Time Study -- 1975 and 1981."
23. Houston-Galveston Regional Transportation Study Office, "Highway Travel: Facts and Figures, 1968-1978," August 1979.

APPENDIX A

Examples of Information Used in Study

STATE DEPARTMENT DF HIGHAYY ANC PUBLIC TRANSPGRTATION TKANSPUKTATIDN PLANMING TIVISION
 FEEERAL HISHGAY AOMINISTFAIION hondwar data tables
\qquad 68 OF 10
\qquad

MILES AND AVERAGE DAILY YEHICLE MILES OF RGADS IN CITIES IN EACH HIGHYAY SYSTEM BY HIGHUAY OISTRICTS AND COUNTIES \qquad

STATE DEPARTMENT OF FIENWAYS ANO PUBLIC TRANSPORTATION TRANSPCUTATIUN PLANNING DIVISICN
ON WITH THE UESO DEPARTHENT UF TRANSPGRTATION H COOPERATION WITH THE U.SO DEPARTMENT UF

- . FEDERAL HIGHWAY AOMINISTAATION \qquad

DATA DATE DECEMEER 32, 1980 RUN OATE FEE \& 1982 PROGRAM NO 120262 PAGE. \qquad 0

ROADMAY DATA TABLES
GILES AND AYERAGE DAILY VEHICLE MILES OF ROADS IN CITIES IN EACH HLGHUAY SYSTEM GY HZGHYAY GISTRZCIS AND COUNTIES -INTERSTATE HIGHHAYS MEYEROPOLITAN HIGHWAYS

HIGHMAY TOTALS
CITY STREETS
GRANO. TOTAL

Harris County
1980 RI2 TLOG -- SUMMARY OF LAME MILES ANI VEHICLE MILES
THI COUNTY NUMBER=102 TYFE_=COUNTY BY URZ_RIIRL BY FIINCI_CI

	_ RURL			NCCT_CL	FREQ	LANE MIL	ROAIIMI	UEH.-MI
1	RURAL AREAS		1	interstate	17.	54.216	12.184	353,539
1	RURAL AREAS		3	Principal arterials	32	76.410	24.265	295,97.3
1	rural arieas		5	major collegtor	158	185.382	80.424	512,442
1	rural areas		6	minor collector	10	5.690	2.845	11.494.
5	URBANIZED 50,000	\& DUER	1	Interstate	301	871.378	130.415	14,936,910
5	URBANIZED 50,000	\& DUER	2	FREEUAY \& EXPRESSUAY	245	479.947	85.965	6,227,914
5	URBANIZED 50,000	\& OVER	3	FRINCIPAL ARTERIALS	582	1161.160	323.801	6,702,669
5	URBANIZED 50,000	\& OUER	4	MINOR ARTERIAL	443	970.506	343.432	3,781,613
	URBANIZES 50,000	\& OUER		major collector	66	71.856	30.848	164,200

IHO COINTY NUABER=102 _TYPE_ =COUNTY GY URB_RURL

THO COINTY WIMAEER $=102$ _TYPE_ $=$ COUNTY BY FIJNCT_CL

THD COIANTY NIJKBER $=102$
TYPE = BY COUNTY

URB_RURL	FUNCT.Cl	_ FREQ_	lane_hil.	ROAD_MI	VEH_KI
		1854	3876.545	1034.179	32,986,755

\qquad
\qquad

STATION - SL4O
LOCATION-US $59, \quad 0 . \overline{6 M I}$ WOFIH $610.5 . H C U S T C A$

annual average week total - 1.382,991
AADT - =- 197.533

STATION - S S 140
LOCATION- US 59, 0.6 MI H OF IH EIO, S. HCUSTCN

Houston-Galveston Regional Transportation Study 1980 Roadway Mileage and Vehicle Travel by Functional Classification

LOCATOM	Inturstite Plighors		ARTERIALS				Minor Atwrists		Major	ctus	COLLECTORS Minor Collecters		Frontare Roods		locals		toral	
	milus.	OVM*	mites	OW*	Miles	DVIM*	mives	DW\%	Miles	DVM*	miles	OWM*	mites	DVM*	Miles	OWN*	Milies	OwM*
arcomia	.																	
Utem	-	-	13	114.285	289													
Ruma		-	1.	145.285	28.9	44.389	34.5	21.803	-	-	534	95.900	3.0.	6.000	550.1	80.000	6972	1.000 .557
Total	-	-	13	115.285	662 951	564881 1005470	795	450.020	198.3	559.401	1706	146.735	-	-	8582	84.278	1.372 .8	1.800 .307
			13	145.265	95.1	1.005470	134.0	158.003	198.3	559.401	224.0	242.635	3.0	6000	1.605 .3	16.270	2.0700	2.881 .054
Crameens																		
Urimn	-	-	-	-	-	-	-	-	-									
Runal	32	666.269	2.2	10.680	42.	53.501	22.2	92.649	100.3	146.516	949	- 36.057	65.5	6.550	2750	41.031	5985	1.053 .253
Total	362	666.269	22	10.680	12	5350:	22.2	92.549	100.3	146.516°	90	36.057	65.5	6.550	2750	41.031	5985	1.053 .283
fort aemo																		
Urasm	-	-	8.5	292.650	189	346051	26.6	251.120	-	-	59.0	134.832	34	42.000	347.6	71.938	469.0	1.145.29\%
Runa	21	61.080	23.0	44.830	335	262.537	471	221.185	904	233.937	133.8	122810	6.3	2.000	651.3	40.380	988	1.428.200
Tater	2.1	61.060	11.5	738.480	52.4	608.588	14.3	479.005	90.4	235,937	1928	267.642	147	44.000	998.9	136.203	1.457.7	2.571 .51
gaveston																		
Unten	201	637.400	31	19.900	574	853.601	1171	876.971	-	-	924							
Rural	31	165.000	-	-	94	81867	396	197.711	80.1	109.285	26.6	113.582 17502	38.3 5.5	58.450 9.350	793.1 2024	188.100 20.200	$\begin{gathered} 1.1215 \\ 3473 \end{gathered}$	2.876 .980 636 980
Town	238	802,400	3.1	19.900	568	935468	156.7	1.074.698	60.1	105.285	1190	231.049	43.8	66.600	9955	208.300	14688	3.513900
manals																		
Urism	1306	13.390.931	67.0	5.013 .068	3671	2566.170	999	11.362.956	-	-	758	2.490 .020	212.4	1.392 .000				
Rund	125	354.485	-	-	113	269.978	10.3	66. 310	113.9	935.315	2086	2465.535	11.4	13.000	1.1908	163.600	16318	2.170.26
Tetas	143.1	13.745.416	67.0	5.013.054	. 3850	8.856148	1.0052	11.451.254	133.9	935.315	967.0	2.835 .555	300.8	1.405.000	8.7118	2.553 .955	11.7538	2.170 .26 46.195 .477
herry																		
Uuten	-	-	3.8	52.125	152	180.764	9.1	35.109	-	-			-	-	115.9			
funat	-	-	4.5	90.000	2.1	34.430	1022	454.373	145.5	174.74	113.9	114.467	-	-	5504	22,270	919.2	935281
Total	-	-	8.3	142.125	179.	215.190	111.9	459.482	145.5	178.741	134.0	152.186	-	-	665.3	83.733	198.2 1.0839	1.264061
montcomesy																		
Uriman	40	138.900	-	-	11.6	159,364	100	45.662	-	-	14.1	23.863	6.3	12.600	1378	25.289	1831	405678
Rund	24.0	11.550	17.7	502.800	-	-	39.8	16.092	206.9	502.279	215.4	238.436	519	72.375	1.195 .4	139.000	1.757 .1	2.411 .512
Total	28.0	913.450	17.7	502.600	11.6	159.364	488	231.754	206.9	502.279	229.5	258.299	64.2	86.973	1.333 .2	16.289	1.9009	2.811210
- malen																		
Urom	-	-	-	-	-	-	-		-									
Rurad	11.1	231.100	2.8	15.064	23.3	196.360	4.5	15.875	100.5	116.618	83.1	65,627	9.0	900	511.1	48.671	745.4	689.17
Total	. 11.1	231.100	2.8	15.064	23.3	196.30	4.5	15.815	100.5	116.618	83.1	65,427	9.0	900	511.1	68.671	145.4	659.71
TOIAL HGRIS																		
Urben	134.7	14.167.231	89.7	5.533.024	499.1	10.547.339	1.212 .8	12.070.455	-	-	997.4		338.4		9.665. 5	2.188.146	12.750 .2	50.422.421
Rural	88.2	2.252,484	50.2	1.064,374	156.6	1.482 .774	305.8	1.122.275	1.075 .9	2.816 .102	1.006 .4	1,092,975	162.6	100,175	5.34 .6	628.118	8.360.8	11.163 .857
Toter	24.9	16,419.71's	139.9	6,617.398	656.3	12.030.113	1.558 .6	14.592.130	1.075.9	2.816,102	2.04 .3	4.089,451	501.0	1.614.225	14.990 .1	3.406.658	21.119 .0	61.586.27

NCTCOG Major Thoroughfare Link File 1980 Network Information Pertaining to Freeways

NETWORK STRATIFICATION		PORTION OF INTENSIVE STUDY AREA (ISA)						
AREA TYPE	$\begin{aligned} & \text { NUMBER OF } \\ & \text { LANES } \end{aligned}$	DALLAS COUNTY			TARRANT COUNTY			REST OF ISA
		MILES	AVERAGE COUNT	CV*********	MILES	AVERAGE COUNT	CV ${ }^{\text {* }}$	MILES
CBD	4	0.37	78148	0.24	0.75			
OBD	4	14.45	86276	0.32	4.78	76888	0.08	
SUBURB	4	42.61	37277	0.59	38:94	46164	0.36	11.76
RURAL	4	20.31	18701	0.23	:32.00	15722	0.82	36.78
CBD	6	1.48	891,60	0.52	0,72	94490	0.09	
OBD	6	23.00	78471	0,44	8. 87	73439	0.26	
SUBURB	6	51.53	51157	0.50	57.15:	49070	0.45	
RURAL	6	8.10	35944	0.39	12.72	36923	0.36	
CBD	8	0.38	113113	0.68				
OBD	8	15.88	116252	0.25	1.19	61714	0.07	
SUBURB	8	43.78	69317	0.58	1201	41607	0.35	
RURAL	8	9.81	25455	0.09	510	29920	0.08	
OBD	10	2.43	149308	0.19				
SUBURB	10	0.51	$\therefore \quad 160180$	0.00				
OBD	12	0.14			.			

APPENDIX B

P.M. Peak-Period Delay

This Appendix documents the analyses used to obtain the travel delay estimates for six major Houston radial freeways. The results of this analysis are presented in Tables 6 and 7, Figure 5 and Appendix B. Travel time studies conducted by the Houston-Galveston Regional Transportation Study (HGRTS) Office (4) were utilized as were volume counts from automatic traffic recorders and traffic maps of the State Department of Highways and Public Transportation (3).

The freeways were divided into two sections, inside I-610 and between I-610 and the proposed Beltway 8. These are both circumferential facilities; I-610 is located 6 miles radius from the CBD and Beltway 8 is approximately 12 miles radius.

The average peak hour at each location was determined to be the 100th highest hour for the years 1969; 1973 and 1976 and the 75th highest. hour for 1979 (1). The change in the hour used was necessitated by the changing traffic conditions, i.e., the decreasing variation in hourly volumes across the day. Instead of two distinct peaks with a low period between, there now exists a generally high volume of traffic across the entire day. The directional distribution factor from the Department's count stations was used to obtain the peak direction hourly volume (column 1)*. Estimates were generated from Department traffic maps for those segments of roadway not having automatic traffic count stations (3,7)

Southwest Freeway (US 59S)--- Inside I-610 Year 1979
75th highest hour----14,100
Directional distribution factor---0. 51

$$
14,100 \times 0.51=7191 \text { vehicles in P.M. peak hour, peak direction }
$$

HGRTS travel time maps (7) were used to calculate peak-hour delay. Measurements of travel time, both peak and off-peak, were taken at the intersection of each freeway and I-610 and Beltway 8 . The difference in peak-period and off-peak travel times to these points is considered to be equal to the peak-hour delay per vehicle (column 2). There was no significant delay outside of Beltway 8 in any of the years examined. Volume was multiplied by the delay per vehicle to obtain peak-hour delay (column 3).
S.W. Fwy. - Inside I-610 1979

Peak-hour travel time to I-610 23.0
-Off-peak travel time to I-610. 11.8
Peak-hour delay per vehicle 11.2 minutes

[^2]| Peak-hour
 volume | \times | Peak-hour
 delay |
| :--- | :--- | :--- |
| 7191 vehicles X | 11.2 minutes | $=$ Total peak-hour delay |
| 710,539 vehicle-minutes of delay | | |

The evening peak-period in Houston typically lasts three hours with congestion during the peak hour equal to that of the total remaining portion of the peak-period. Peak-hour delay was therefore assumed to be one-half of the total peak-period delay for each year (column 4). Peak-period volume was obtained by comparing peak hourly traffic to peak-period volume for 1968 and 1978 (8) and assuming a straight line change in the ratio. this factor was used to expand the peak-hour volume to a peak-period volume (column 6).
S.W. Fwy. - Inside I-610 1979

Peak-hour delay $=$ Remaining peak-period delay
$=11.2$ minutes

Peak-hour
volume
:---:
peak-period to
peak-hour

$7191 \times 2.81=20,207$ vehicles
1976 ratio $=2.75$
1973 ratio $=2.68$
1969 ratio=2.59
Peak-period volume - Peak-hour volume = Remaining peak-period volume 20,207 vehicles $-7,191$ vehicles $=13,016$ vehicles

This number was multiplied by the remaining peak-period delay per vehicle (column 4) yielding the remaining peak-period delay (column 7). Total peakperiod delay (column 8) was arrived at by the addition of peak-hour and remaining peak-period delay values. Tables 6 and 7 in the text summarizes the peakperiod delay estimates by freeway segment for 1969, 1973, 1976 and 1979.
S.W. Fwy. - I-610 1979

$$
\begin{aligned}
& \begin{array}{c}
\text { Remaining peak-period } \\
\text { volume }
\end{array} \begin{array}{c}
\text { Reniaining peak-period } \\
\text { delay per venicle }
\end{array} \\
& \qquad \begin{array}{l}
13,016 \text { vehicles } x \quad 11.2 \text { minutes }
\end{array}=145,780 \text { vehicle-minutes } \\
& \text { Peak-hour delay + Remaining peak-period }=\text { Total peak-period delay } \\
& 80,539 \text { veh-mins + } 145,780 \text { veh-mins }=226,319 \text { vehicle-minutes }
\end{aligned}
$$

APPENDIX C

P.M. Peak-Period Delay Houston, Dallas, Fort Worth

Table C-1: 1969 P.M. Peak-Period Delay-Houston

	Freeway	Segment	Peak Hour volume (Veh) 1	Peak Hour Delay/Veh (Mins) 2	$\begin{gathered} \text { Peak Hour } \\ \text { Delay } \\ (\text { Veh-Hins })^{1} \\ 3 \end{gathered}$	Remaining Peak Period Delay/Veh (Mins) ${ }^{2}$ 4	Peak Period Volume (Veh) 5.	Remaining Peak Period Volume $\underset{6}{(\mathrm{Veh})^{3}}$	Remaining Peak Period Delay (Veh-Mins) ${ }^{4}$	Peak Period Total Delay (Veh-Mins) 8
	Southwest	Ins 610	5;060	7.2	36,432	7.2	13,105	8,045	57,924	94,356
		$610-\mathrm{Belt}$	5,800	1.7	9,860	1.7	15,022	9,222	15,677	25,537
\%	Katy$1-10 W$	Ins 610	4,597	2.2	10,113	2.2	11,906	7,309	16,030	26,193
		610-Belt	6,297	4.2	26,447	4.2	16,309	10,012	42,050	68,497
	North I-45N	Ins 610	6,329	4.1	25,949	4.1	16,392	10,063	41,258	67,207
		610-Belt.	5,683	2.3	13,071	2.3	14;719	9,036	20,783	33,854
$\dot{\stackrel{\rightharpoonup}{\omega}}$	Eastex US 59N	Ins 610	6,045	4.5	27,203	4.5	15,655	9,610	43,245	70,448
		610-Belt	3,840	0.7	2,688	0.7 -	9,946	6,106	4.274	6,962
,	East I-10E	Ins 610	4,040	4.3	17,372	4.3	10,464	6,424	27.623	44,995
		610-Belt	4,892	. 0.1	489	0.1	12,670	7,778	778	1,267
.	$\begin{aligned} & \text { Gulf } \\ & I-45 S \end{aligned}$	Ins 610	5,845	11.2	6.5,464	11.2	15,139	9,294	104,093	169,557
		610-Belt	3,660	0.4	1,464	0.4	9,478	5,818	2,327	3,791
${ }^{1}$ Col. $3=$ COI. $1 \times$ Col. 2 ${ }^{2}$ Col. $4=$ Col. 2×0.5 ${ }^{3}$ Col. $6=$ Col. $5-$ Col. 1				$\begin{aligned} & { }^{4} \mathrm{Col} .7=\mathrm{Col} .4 \times \mathrm{Col} . \\ & { }^{5} \mathrm{Col} .8 \\ & 6=\text { Col. } 7+\text { Col. } 3 \end{aligned}$						

Source: References 2, 4, 6, 8

Table C-2: 1973 P.M. Peak-Period Delay - Houston

Freeway	Segment	Peak Hour volume (Veh) 1	Peak Hour Delay/Veh (Mins) 2	$\begin{gathered} \text { Peak Hour } \\ \text { Delay } \\ (\text { Veh-Hins })^{1} \\ 3 \end{gathered}$	Remaining Peak Period Delay/Veh (Mins) ${ }^{2}$ 4	Peak Period Volume (Veh) 5	Remaining Peak Period Volume $(\mathrm{Veh})^{3}$ 6	Remaining Peak Period Delay (Veh-Mins) ${ }^{4}$ 7	Peak Period Total Delay (Veh-Mins) ${ }^{5}$ 8
Southwest US 595	Ins 610	5,435	8.6	46,741	8.6	14,566	9,131	78,527.	125,268
	610-Belt	6,832	2.2	15,030	2.2	18,310	11,478	25,252	40,282
$\stackrel{\text { Katy }}{\text { I-10W }}$		6,504	2.3	14,959	2.3	17,431	10,927	25,132	40,091
	$610-\mathrm{Be} 1 \mathrm{t}$	6,102	6.4	39,053	6.4	16,353	10,251	65,606	104,659
North I-45N		6,624	8.8	58,291	8.8	17,752	11,128	97,926	156,217
	$610-\mathrm{Belt}$	6,065	3.1	18,802	3.1	16,255	10,190	31,589	50,391
Eastex US 59N	Ins 610	5,688	1.1	6,257	1.1	15,244	9,556	10,512	16,769
	610-Belt	4,493	2.0	8,986	2.0	12,040	7,547	15,094	24,080
East$1-10 E$	Ins 610	4,978	2.6	12,943	2.6	13,341	8,363	21,744	34,687
	610-Belt	3,471	2.1	7,289	2.1	9,303	5,832	12,247	19,536
Gulf I-45S	Ins 610	5,866	12.0	70,392	12.0	15,751	9,885	118,620	189,012
	$610-B e l t$	4,422	0.7	3,095	0.7	11,852	7,430	-5,201	8,296
${ }_{2} \mathrm{Col} .3=\mathrm{COT} .1 \times \mathrm{COT} .2$ ${ }_{3}$ Col. $4=$ Col. 2×0.5 Col. $6=$ Col. $5-\mathrm{Col}$.			${ }^{4}$ Col. $7=$ Col. $4 \times$ Col. 6 ${ }^{5}$ Col. $8=$ Col. $7+$ Col. 3						

Source: References 2, 4, 6, 8

Table C-3: 1976 P.M. Peak-Period Delay- Houston

Source: References 2, 4, 6, 8

Table C-4: 1979 P.M. Peak-Period Delay-Houston

Source: References 2, 4, 6, 8

Table C-5: 1975 P.M. Peak-Period Delay - Dallas

						Remaining		Remaining		
			Peak			Peak	Peak	Peak.	Remaining	
			Hour	Peak Hour	Peak Hour	Period	Period	Period	Peak Period	Peak Period
	Freeway	Segment	Volume (Veh)	Delay/Veh (Mins)	$\begin{aligned} & \text { Delay } \\ & (\text { Veh-Mins })^{1} \end{aligned}$	$\begin{gathered} \text { Delay/Veh } \\ (\text { Mins })^{2} \end{gathered}$	volume (Veh)	Volume (Veh)	$\begin{gathered} \text { Delay } \\ (\text { Veh-Mins) } \end{gathered}$	Tota: Delay (Veh-Mins)
			1	2	3	4	5	6	7	8
	US 75N									
		Ins L12	4,447	20.0	88,940	10.0	12,096	7,649	76,490	165,430
		L12-635	4,235	11.7	49,550	5.9	11,519	7,284	42,976	92,526
	I-35E N									
		Ins Ll2	5,151	4.3	22,149	2.2	14,011	8,860	19,492	4, 641
		L12-635	4,597	1.6	7,355	0.8	12,504	7,907	6,326	13,681
	I-30W									
\bigcirc		Ins Ll2	3,587	1.7	6,098	0.9	9,757	6,170	5,553	11.651
\checkmark		Ll2-Belt	3,377	0.2	675	0.1	9,185	5,808	581	$\therefore, 256$
	I-35E S									
		Ins Ll2	5,832	0.7	4,082	0.4	15,863	10,031	4,012	8,094
		L12-635	2,878	--	------	----	------	------	-------	-
	I-45S									
		Ins Li2	2,697	4.6	12,406	2.3	7,336	4,639	10,670	23,076
		L12-635	1,593.	1.4	2,230	0.7	4,333	2,740	1,918	4,148
	I-30E									
		Ins Ll2	6,658	4.6	30,267	2.3	18,110	11,452	2.6,340	56,967
		Ll2-635	3,161	2.0	6,322	1.0	8,598	5,437	5,437	11,759
		1. $1 \times C_{0}$ 1.2×0. $1.5-C_{0}$			$\begin{aligned} & \text {. } 7=\text { Col. } 4 \\ & .8=\text { Col. } \\ & 7\end{aligned}$	Col. 6		-		

Source: References 2, 4, 6, 8

Table C-6: 1981 P.M. Peak-Period Delay - Dallas

[^3]Source: References 2, 4, 6, 8

Table C-7: 1975 P.M. Peak-Period Delay - Fort Worth

Source: References 2; 4, 6, 8

Table C-8: 1981 P.M. Peak-Period Delay - Fort Worth

Source: References 2, 4, 6, 8

[^0]: *Denotes number of reference listed at the end of the main text.

[^1]: * Includes Expressways
 ${ }^{1}$ As of April 1

[^2]: * Refer to Tables C-1 through C-4 in Appendix C.

[^3]: ${ }^{1} \operatorname{Col} .3=\operatorname{Col} .1 \times \operatorname{Col} .2$
 ${ }_{3}^{2}$ Col. $4=$ Col. 2×0.5

 $$
 \begin{aligned}
 & { }^{4} \text { Col. } 7=\text { Col. } 4 \times \text { Col. } 6 \\
 & { }^{5} \text { Col. } 8=\text { Col. } 7 \times \text { Col. } 3
 \end{aligned}
 $$

