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-1. INTRODUCTION

Thé Sh;li vibrator has been ﬁsed to in&éstigaté.tﬁe behavior of a
number of highway struétﬁres in the staté of Texas. Measgrements have
‘been made of the wgvélengtﬁ at the ffeé‘sufface over a range of freqﬁencies.
It is found that the phée velociiy,of'thé wavé is not constant buf»yaries
with the frequency. It is anticipated fhat therﬁanner of the variation of
the velocity relates to some of the physiéal properties of the structure.
“The object of the work was to. determine what information can be obtained
from the frequency-dispersion curves of phase velocity which have been
obtained during the experimental work. Ultimately, it is desired to
deduce, in numerical terms, valﬁés of the structural parameters, such as
the interface depths of the 1ayersrcomposing the system and the'elastic
constants of the materials composing fhe layers.

Tn the following, empirical and semi-empirical methods of obtaining
ipformation from the results are discussed. 1t will bebshown that some
information can be obtained by simple calculations. These calculations
are based on the assumption of a "free plate" response; this assumption
neglects any loss of energy to the media uﬁderlyiqgva layer which is acting
as a free plate. The use of Jones's solutions (1) will then be discussed.
"These solutions provide.a means of obtaining rapid reésults in a few special
cases.

The general problem ofra sbiution to the equations of propagation of
waves in layered media will then be.discussed, with the restriction that

the particle motion is gonfined to a plane which iS'perpendicular to the



free surface of the -system, and which is oriented in the direction of
propagation of tﬁe waves; Compﬁter programs ﬁill be discussed for the
solution of this problem; with the restriction that tﬁe radiation down-
wards of eﬁergy (into'the subgrade of a high&ay pavément) éan occur, but
“is limited to avfihite depth; the case éf propagation to infinite depth

is not considered in this report.



2. THE APPLICATION OF THE FREE PLATE SOLUTIONS

Lamb's solutions for the propagation of SV (shear wéves; in which the
particle movement is perpehdicular to the free surface) and P (dilational)
waves in a plate of finite fhickness moving ffeely in a vacuum}has been
given by Ewing, Jardetzky and Press (2). Two‘types of waﬁe can exist under
these conditions. The first, the symmetric, is‘a type of wave in which the
motion of the'particles of the méterial composing the plate is symmetrical
~about the plane of symmetry of tﬁe ﬁlate.* For waves which are>long
compéred with the thickness of tﬁe plate, the phase velocity approaches

a value given by

When v = 1/4, 382 = az, we have c = 2#375@. The wavelength and frequency
of waves are related (Reference 2, Equatioﬁ 6-12) and programs have been
written which enable numerical results to be obtained.** Numerical results
are not given explicity and the results are obtained after a number of
cycles of calculation; the values of the solution sought are compéred

with éhe values given by the previous cycle, and when these are the

same within sufficiently close limits that result is taken final. The

results of a typical set of computations is given by Ewing (Reference 2,

*The particle movements in the symmetric type of wave are shown in
a diagram in reference (Reference 3, Figure 5.3, p. 129).

*% Fortran program designated by WHC33E, 'and Wang programs de31gnated
by 681.09, 681.2 and 681.3.



Figure 6-1, Page 284). A series of results has been computed using the
prégrams reférred to. Some of these are shown in Figure 1. 1In this
figure, the réciprocal wavelength‘is plotted against the frequency, with
both quantities in dimensionless form. This single plbt thus represents
all dimeﬁsionally similar systems. The method of plotting which is
adopted causes a succession of pointgs to fall on or near a straight line.
Two quantities (the intercepf and the slope of the line) are avgilable
in order to assist the matching of a tﬁeoretiéal system toka given set
of experimeﬁtal results. On repeafing thé calculétions uéiﬁg a range of
values for Poisson'§ ratio, it is found tﬁat the plofted points are
distributed in a relatively narrow band. The slope of the lines is close
to unity; and the intercept on the axis representing the reciprocal of
the wavelength varies by only a small amount. This intercept is shown
plotted in Figure 2, with Poisson's ratio as the abscissa. There is
some uncertaiﬁty (abput 8%) in the value of the intercept. It depends
on which of the points on fhe graph of reciprocal wavelength against
the frequency are selected, as these points are closely but not exactly
rectilinear. The result is intended to provide a p;éctical means of
analysis. As Péisson's ratio for highway materials is large, an averége
value of -0.72 was adopted fér 1/1 at zero frequencyf' This is designated
by l/)]o. |

This method can be applied to the results of measurements of frequency
and wavelength. The reciprocal of the slope of the 1ine of points ﬁlotted
ras described gives the phasevvelocity of sheér waves inbthe méterial of

which the plate is composed. If the density p of the material is known,
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the shear modulus p can be calculated from the formula
p=op - B2
where B is the shear wave velocity. The modulus here is in gravitational
units (poundals per square foot, if foot - pound - second units are employed).
The intercept on the reciprocal wavelength axis, l/k}o, is used to

obtain an estimate of the thickness H of the plate. It is obtained from

the formula
l/A]OﬁH = -0,72.

Similar results arevobtained‘forrthe case of the second type of wave
the asymmetric, for which the solution is given in Ewing, jardetzky and
Press (Reference 2, Equation 6-110, Page 283). This wave corresponds
approximately with the Rayleigh surface wave (Reference 3, Pagé 50); the
particle movements are smaller on one side of the plate than on the other.
‘A typical set of the results oficomputations of the phase velocity at thé
surface of the plate over a rahge of wavelengthé is given in Ewing, Jardetzky
and Press (Reference 2, Figure 6-2, Page 286). At short wavelengths, the
phase velocity of the waves approaches that of Rayleigh waves in a semi-
infinite medium. The solution has been programmed and a typical set of
results -of the compﬁtations is shownrin Figure 3.%* As before, the recipfocal
of the wavelength is-plo;ted_againSt the frequency; both the quantities are
in dimensionless form. .Onrrgpeating the calculations using a range of

values of Poisson's ratiq, it is‘found that the plotted points are again

*The Fortran program is de51gnated by WHCB3A, and Wang programs
by 681.08, 681.09 and 681.1.
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distributed in a relatively narrow band. Two_parameters are available
for matching a theoretical system to a set of experimental results, as

in the previous case. The ihtercept in this case is on the positive
side of the reciprocal wavelength axis. It is more dependent on the
value of Poissomn's ratio than is the fntercept formed by a set of results
obfainedvfmam the>syﬁﬁétric typezéf waQe; its value iévshowﬁ in Figufe 4,
and an average of 0.32 was adopted. The results can be applied in order
to determine the shear modulus of the material composing the plate, and
also the effective thickness of the plate. The metﬁod used is similar

: fofthe previous one. The reciprdéal slope of the plot described yields
the phase velocity of shear wavéé in the material, ffom whigh‘the shear
modulds»may be found in gfavitational units. The intercept on the
reciprocal wavelength axis can be used to determine the effective

thickness as follows:

/3] nH = 0.32

where H is the thickness of the plate.
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2.1 - The Application of these Results to some Particular Cases .

. The results of a set of measureménts made by means of the Shell
" vibrator may be plotted as shown in Figures 8-15. These figures show the
wavelength plofted as functions éf frequency of the excitation; the wave-
lengths are those which are measﬁfed at the surface of the ground. Alter-
natively, the results may be plotted as shown in the same figures, where
the reciprocal of the wavelength is plotted against the frequency. These
plots can be~repreéented,Hapﬁroximately ét»least, by.a succession of
straightflines, suggeéting that théy'may be inte%préted by the methods
described in the preceding section. The results of interpretation by this
method for all the sections referred to in Figure 6, Part 1 are shown in
Table 1. The values of Young's modulus in this table are based on an
assumed vaiue of 0.45 for Poisson;s,ratio in order to give a comparison
withrthe results given ianigure 6, Part 1 of this refort. The results
are plottedvin Eigure 5. This figuré shows the_thicknéssess of a number
of free plates, andrthevelastic @oduli of the materials of which they
are composed; these free plates are those whichbyield frequency dispersion
curvés of phasé velocities_wﬁich match parts of the frequency dispersion
curves of the structures shown.

The results indicate Fhat there‘is little agreement between the values
-of the Young'svmoddli determined by meané éf.the Dynéflept anq those found
on the basis of the assumptions employed here. The methodris an indication

only, and can be applied without usingrcomputing facilities.

-1 -
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'~ TABLE 1 - RESULTS OBTAINED ASSUMING THAT THE HIGHWAY STRUCTURES EACH ViBRATE AS A
SUCCESSION OF FREE PLATES. DATA FROM A&M TEST FACILITY, SECTIONS 1 THROUGH 8

Slope of Points Shear

fntercent Thickness of Assumed to be ©  Modulus Young's Modulus
y ifx} P - Bquiwaient Shear Wave u = QBZ_ ' E, Assuming Poisson's
- it Free Blate Velocity B 0=125 1b/ft3 Ratio v = 0.45
Section - _(Ft Y} {FE.) - _(Ft/sec) ‘. _ (Lb/In?) __(1b/in? x 1000)
1 0.49 . 0.2 | 17,000 8,000,000 23,000
0.05 0.6 3,030 © . 250,000 730
0.05 0.6 1,852 o 94 ,000 270
2 0.04 2.3 1,110 : 33,000 96
~0.16 1.4 1,110 © 33,000 96
0.25 0.4 1,890 - 96,000 280
3 0.08 . 1.2 1,110 . 133,000 Y
‘ =024 1.2 1,220 41,000 | 120
0.35 0.3 2,080 . 120,000 350
4 Q.24 0.4 2,000 - 110,000 320
0.06 1.6 1,330 | 49,000 142
5 0.4 0.7 3,225 290,000 | 840
- 0.05 1.9 | 1,695 78,000 - 230
-0.02 . 560 . | 8,000 | .23
6 0.04 2.4 1,143 35,000 102
T 0,06 3.8 990 ' 26,500 A 77
-0.05 4.6 1,087 32,000 - 93
0.75 0.1

3,330 ‘ 300,000 . . 870
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TABLE ‘1 ~ RESULTS OBTAINED ASSUMING THAT THE HIGHWAY STRUCTURES EACH VIBRATE AS A
.- SUCCESSION OF FREE PLATES. DATA FROM A&M TEST FACILITY, SECTIONS 1 THROUGH 8

(Continued)
. Slope of Points * Shear ‘
Intercept Thickness of Assumed to be Modulus Young's Modulus
Hl/k] Equivalent -Shear Wave u = pg? E, Assuming Poisson's
. S 7079 Free Plate -Velocity 8 ~  p-125 1b/ft3 Ratio v = 0.45
Section. _(Ft™°) . (Ft.). (Ft/Sec) - (Lb/In?) (1b/in? x 1000)
7 0.23 0.4 1,350 50,000 - 145
0.02 4.8 1,000 27,000 78
0.02 4.8 - 770 16,000 : L 4T
8 0.02 4.8 833 : - 19,000 55
~-0.015 15 1,099 33,000 96
0.27 0.4 1,176 37,000 ' 107
0.0z 4.8

1,053 v 30,000 : 87



3. THE APPLICATION OF THE JONES' SOLUTIONS

Jones (1) appiiedvthe solutions of the wave eq€a€i¢n for three distinct
systems composed of layered iéotropip'media. The sélutions are intendéd for
wéveé in whiéh the particie movement is in the forﬁiofA;n'eliipse, ﬁhe'plane
of which is vertical énd oriented in the direction of-pfopégatioﬁ of the
wave. The three systems are: |

(1) A solid layer of finite thickneSs-overlying‘aisemi—infinite

vliquid medium, | o } |

(2) As in (1) but with an inééfmediate iéyér in whiéh the compressional

wave velocity is less than fhat in the uﬁdérlying liquid medium.

(3) As in (2) but with an intermediate layer in which the-velociﬁies

of COmp;essional and shear waves are similar to those in the

surface layer but considerabl&Agreater than thosé in,the.undef—

lying medium. .
Joﬁes has given examples of the application of the solutions which he
discussed. In Joneé’ paper (Reference 1, Figurg 2, Page 23) the_figuré
shows the phase velocity-wavelength fglationéhip‘for a hypothetical case
(1) above, In the same paper (Figdre 4, Page 25) theoretical curvesvare
shown for a hypotheﬁigal case (3) above; this figure is reproduced, see
Figure 6, showing the designations of Ehejprograms.whiéﬁ have been prepared
in order tocdébtain numerical valueé of the solutions disciissed by Jonésf
The Writér was unable to find a set of data which satisfiés all the‘coﬁditions
of Jones' case (Q)‘ Only a few‘of the séts of resu1ﬁ$ were considered capéble

of-partial interpretation by this means. The restrictions on the values of

- 14 -



the parameters of the layers render the solutions valid for only a small
proportion of cases occurring in practice. ' The application of this case
to a particular set of results obtained by means of the Shell Vibrator

is shown in Figure 7. .

- 15 -
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' FIGURE 11 - Plot of wavelength and reciprocal wavelength agalnst

frequency, Texas A&M Test Facility -~ Section 4.

The curves show the calculated results for a compound free plate:

#4Programs: WHC37, WHCSB)
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FIGURE" 17 - PIot of wavelength and reciprocal _wavelength against
frequency, Texas A&M Test Facility - Section 5.

-The curves show the calculated results for a compound free- plate
(Programs' WHC37,. WHCSS) —26— :
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FIGURE 13 -~ Plot of wavelength and reciprocal wavclength against
frequency, Texas ASM Test Facillty ~ Section 6.

The curves show the calculated results for a compound free plate
(Programs: WHC37, WHC38). —27- -
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'FIGURE 14 - Plot of wavelength ‘and reciprocal wavelength againit
frequency, Texas A&M Test Facility - Section 7.

The curves show the calculated results for a compound free plate
(Programs: WHC37, WHC38).
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_FIGURE 15 - Plot of wavelength and- seﬁiprecal'wavelength agalnst

frequency, Texas ASM Test Facility - Section 8.

The curves show the calculated results for a compound free plate
(Programs WHC37, WHC38).
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4. 'THE SOLUTION OF THE WAVE EQUATION FOR THE TRANSMISSION OF
RAYLEIGH TYPE WAVES IN A MULTILAYERED SYSTEM - THOMSON-HASKELL MATRICES:
We shall write thé differential equations governing the motion of
the particles of the materials composing the layers of a highway structure

as follows:

\Y (bo = ;L“é* . Y and (1)
. gzw
2, 1 M)
v wo = S . (2)
g2  at2

Within each layer, the displacements u add v .add the stnesses-gy ard

£ _ can be derived from the potentials ¢ and ¢y . If ¢ and ¢ _ are

Xy , o o e o
assumed periodic both in time and along the x-axis, the potentials can

be written

¢o - ¢(y)ei(wt~kx)
wo - ¢(Y)9i(wt~kx)
and (1) and (2) become
2, '
SO
and
a2
¥ = s | )

Following Thrower (4), take the solutions of.(3) and (4) as
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b b .
1 -
$ = ;—-cosh ry - E§~sinh r%] el(wt kx) : (5)*

ib ib, .
¥ ={fﬁg cosh sy - —Gi'sinh s%] el(wt fex) (6)

The constants b, are to be determined for each layer from the conditions
at its interfaces. The stressesyoé and Txy, and the displacements u and

v are given by

(7
= 9% . 9y
=ty o
=99 _ 3y
oy x  °

Equations (5), (6), and (7) enable the stresses (ox, Txy) and the
displacements (u,v) in any one medium to be expressed in terms of the
four constants b, ﬁhich appear in the éxpressions for the potential in
that medium. The relationship is a simple linear one in the bj's. It

may be written in the following form:

~ *Here k may be either redl or complex; if the phase velocity c is
real, the amplitudes of the potentials remain the same for all distances
x from the origin. If k ié real, it implies that the phase velocity ¢
at the free surface is real. If k (and therefore the phase velocity) is
complex, the amplitude diminishes with increasing x. Such behavior is
termed a ''leaking mode,” because of the leakage of energy into the under-
lying layers of the system. The relative values of ¢_, T, u and v are
not affected by the choice of k. Therefore, in what ¥oll§%s it does not
matter whether k is real or complex.
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wy = qpiby + ...+ qiyby

Wy = dg1by + ...+ qauby :
(8)

w3 = q31b1 + ... + q3uby

Wy = quiby oo+ oayyby

where the vector w, denotes the quantitles (cy, Ty /i, uiv, pyu/i). The
‘qij 's are the elements of the. Q—matrlx (see Reference (&) Equation (8),
Page 214). They are obtained by substituting equations (5) and (6) in
(7)., We can write one such set of equations for each layer. If the q's '
are known at the ﬁth interface, their values at the (n—-l)th interface
can be determined directly, because the manner of their variation with
depth is governed by the potentials, Equations (5) and (6).

s

th
If wm me1 represents the value of w within the m 1ayer and at the

(m - 1)th interface, then we can write

= +oco+ :
n, m-1)7 = ci1b1 ciyby

(W m_l)z = co1by + ..+ coyby v
N S ’ (9
m, m—l)3 = cg1by + ... + c3yby ' :
(w m_l)q = cy1by + .o + cyyby .
where the c's are the q's with a y-coordinate corresponding with the 1(=m--l)th
interface.* Thé c¢'s are the elements of Thrower's C-matrix (Reference 4,

Equation 9). Similarly, the stress/displacement eiements'at the'mch interface

*As each pair of potentials ¢, ¥ is true only within a single layer,
a separate origin of coordinates can be chosen for each layer. If the
origin is chosen in the ‘top interface, then the y-coordinate of that
interface is zero; the y-coordinate of the lower interface is H , the
thickness of bhe ath layer.
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can be written

~ o~ o~
€ g g
S S S~
w N -
i it I

~
g

p—g

=
f

where the d's are obtained

of the mth layer.

= dg;b; + ... + dayby

= d;1by + ... + dyyby

do1by + ... + doyby
" (10)

= dy1by + ... + dyyby

from the q's by putting y = Hm’ the thickness

It is possible to solve equations (9) for the b's in the mth layer

r) . .
in terms of the (wh,m—l) s, and we ‘obtain

o
—
I

cr1(w

Y1+ e F C;q(wm’m_l)q

;m—1
by, = cgl(wm’m_l)l + ...+ cgq(wm,m_l)q
b3 = Cgl(Wm’m_l)l + ..+ CEu(wm’m_l)u (10.1)
by = é;l(wm,m_l)l + ...+ c;“(wm,m~1)”

where the ¢ 's are derived

from the c's.

Using Equations (10) makes it possible to write

Gy )1 =

~
=

~r
w
[

where

= e21(w

ell( 1)1 + ...+ eig(w

m,m—l)“r

Wm ’m_'
+ ...+ eqy '

)1 EZu(Wm’m_l)q

)y

Yy

m,m~1

, )1+ ...+
e31(Wm,m—l)1 e3L*(wtn,m—l

)1 + ...+ EL}L‘,(W

egl(w m,m-1

m,m~1

i2 27 i3 31 iy 45
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Assuming that no slip occurs at the 1n§erfacesr(§), wm,mél = Wm—l,m~l and

(Wm,m)l - ell(wm—'l,m—l)l e f e1‘4‘(AWIII—'1,m-'-l)l+

zwm;m}z = EZI(Wm~l;m~1}1 + ..+ eéq{wm—l,mfl)“

(Wm,m)3 = esl(wm*l,m—l)l + .00+ e3q(wm—l,m;i)4 (11
(Wm’m)q = el*l(wm-l,m—l)l + ...+ eq”(wm—i,m—l)“

Equations (11) relate the stress/displacement elements at the bottom of

the mth

layer to those at the top of the sameé layer.  Using the condition
of continuity at each interface, (11) can be applied to successive layers,

"starting with the top layer. This yields

Gl = f110w o)y + e+ f1u (W o)y

n,n
G2 = f21(W;,0)1 + 0+ f24(W1?0)4 12
CANSERE fal(wl’o)l' + oo # £3u(0 0y
Gt = furGor o)1 + v+ £uu(wr o)

whe:e fij is a function of the'eij's which is tediods'tg express in full,

although the individual values_bf fij afe'easy_tb compute as the w's (fo?

successive layers upwards from the nt" layer) are substituted in equations
(11) written for the ﬁthblayer.

The operatians needed in the foregoing can be‘perfofmed using the
methods of linear algebra as indicated. However, it is very much easier
to use the equivalent manipulations of matrices composed of the elements
c; d,,e; and f; this applies particular;y to the operation of obtaining
the f's from the e's. The use of theég.matg;ces appeérs to have been

proposed by Ihamsén (6) and has been discussed by Haskell N,
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4.1 The Dispersion Equation for a Compound Free Plate

- If the structure consists of a layered free plate, with no underlying
semi~infinite medium, the stresses cy, Txy are zero on the two free surfaces.

Equations (12) become

0 0+ f1o « 0+ flg(ulv)l’o + flh(“lU/i)l,O

il
iy

—

ot

0 = f21 « 0+ f22 - 0+ fzg(plv)l,o + f24(ulu/i)l,0
(13)
nv) | = f31 © 0+ f35 - 0+ f335(u1v)1,0 + £3u(n1u/i); o
] b

(upu/i) = fu1 0+ fup * 0+ fu3(uv)1 o + fuu(ulu/ijl,o
The first two of equations (12) can be solved for (ui1v); o and (ulu[i)l,o,
the displacements on the upper f?ee surface. The second pair can be used

to obtain the diéplacements on the lower free surface. Thus

£13(u3v)y 0 + £14Cuyu/i)g o = 0 '
, (14)
f23Gu1v) g 0 + f24(myu/i)y o = O
and
F33uivdy o + fauGuu/i)y 0 = uv) o
f43Gn1v)y 0 + fuu(uu/i)) o = Guu/i) (15)
s

From equations (15), the displacements on the upper free surface can be

non-zero only - if

f13 fiy
=0 - (16)
f23 fou

This is the fréquency equation of the system; it contains the phase velocity

‘c as an implicit function of the waveiength L and can be solved by some

repetitive method.

- 35 -



4.1.1 The Displacements in a Compound Free Plate

When a pair of values (c¢,L) have been found which make the determinant
zero in equation (16), the displacement expressed byv(qu/i)1’0 can be
found in_terms of (UIV)I,O from.

f13

:(Hlu/i)z,o = = fE:" (U1V)1,o

| £23
=~ (mivd1,0 -
The particle displacement in tﬁe x direction (the diréction of propagation)
thus lags by 90° on the vertical displacement.
The displacements on the lower face may be foupd from (15), and the

Intermediate displacements from (8). .
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4.2 The Dispersion Equation for a Layered Half Space

In order to write the dispersion equation for a layered system which
rests on a semi-infinite medium, we denote the semi-infinite medium by

the suffix (n + 1), and put m = n + 1 in equation (10.1). This yields

®ppy = e Gy g ¥ e Fennbiy Wy
(bz)n+l = C21‘(Wn-i-l,n-)—1 e A C21*(Wn+l,n)L+ (16.1)
() gy = €317 (g QJ1t oo Foemu gy Ju

(b“)n+l -_-lcl*l.(wnfl,n)1 oot cL*"*(W1_-1+l,n)‘+

where the c 's are derived from the c's for the (n+1)th layer; the c's in turn
dre obtaihed from the expressions (7) for the stresses and displacements
in terms of the potentialé ¢ and ¢ in the semi-infinite medium, using (5)
and (6). | .
The stresses and displacements are continuous at the interface between

layer n and the semi-infinite medium, that is

at the interface. Using this condition and the expressions (12 for (wn n),

b

(16.1) can be written

(1) g = 311G )1 + e+ J1u (w10

(b2) 1 = J1Gwy o)1 + ...+ jzﬁ(w1;o)q o (17)

3) 4 = I310v1 000 + oo+ J3uln 0y

(by) g = Ju1 (w1 o)1 + oo+ Juu(wy o)y
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where

+.c « fo, 4 e o f

Jig T eny C Ry tep, By Fogy c gy e, fyy

1]

in which the ¢ 's are calculated for the semi-infinite medium as in (16.1).
Following Thrower, it is necessary that b, = b3,'b2 = b4 in order that
¢ and ¢ may be expressible in terms of exp(-ry) and exp(-sy); r and s

may be complex.

Rewriting (17), and substituting for (w1 0),
b
(1) 1y = 3110 + 31,70 + J13(u1v)y o + J1uGnu/i)y o
12) 41 = 32170 + 32270 + Jo3G0v)1 o + Fau(upu/)y
(1) gy = 33170+ 3320 + F33(u1v)y 0 + F3u(uiu/i)y o

(b2) pg = Ju1-0 + Ju20 + Ju3Guiv)i, o + Juu(uiu/idy o
This yields, on subtracting the third from the first and the fourth
from the second
0= (J1s - 3230 Guvd1,0 + (Gry = F3u) uuu/i)y o
0= (323 = Ju3) 1v)1 0 + Uzu = Juw) (u/idy o

As before, the displacements can be non-zero .only if

J13 = jo3 Jiw = Jau

I
=]

(18)
J23 - Ju3 Jou = Juy

When (18) has been solved, the displacements at the surface are related by

Jis - J23 J23 — Jus

ISt L iy P R P A

In the next chapter, the program for obtaining the zeros of equation

(16) will be discussed.
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5. THE COMPUTATION OF THE REAL ROOTS OF THE DISPERSION EQUATION

5.1 Limitation'of the Solution Involving Only Real Roots

In determining the numerical values of the wavelerigths aﬁd phase
velocities at the free surface in a layered system, it seemed advisable
to investigate the results obtaiﬁable for a compound free plate. This
solution involves purely real values of phase velocity. The search for
the zeros of the frequency equatioﬁ'(16 ) involved some points of program-

ming which require consideration.
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5.2 Description of the Computation Procedure

The main object of the program is to generate the determinant (165.
This is accomplished by firstrcalculating the e's for each layer,‘in the
subroutine EMATRX.* The f's for the combined system can then be calculated.
This is done in the subroutine PROMAT by means of the DOrloop terminating
at stétement 25 (see Figure 20).%=% ‘ |

After the cycle at which the dete;miﬁént (16) changes sign, the two
most recent values having opposite sign are retained, together with their
corresponding phase velocities. A Newton-Raphson interpolation is used
fo improve the value of the phase velocity CBl ﬁy making the determinant
of the frequency equation VALUE successively closer to zero. The precision
of the final CBl is set by the constant in the IF statement at statement
140 + 0002 in the subroutine TRAVEL. Once the Newton-Raphson interpélation
routine has been entered, it is accessed on all sqbsequent cycles of com-
. putation until successive values of CBl satisfy the precision criterion.

Following Thrower, the possibility was considered that bhe e's may
introduce precision difficulties owing to the hyperbolic sine and cosine
terms; these terms become nearly equal for large arguments, and the terms
involving their differences‘may be swamped by other terms which do not

contain such differences. The program was, therefore, rewritten, using

v *The sets of e's are each 4 x 4 matrices and their continued product
yields a 4 x 4 matrix; however only a 2 x 2 determinant of this product
¥s required to form the frequency equation. As shown by Thrower [Ref. 4,
equation (19)], this determinant can be obtained starting with only the
two final columns of e's for the top layer. Subsequent product matrices
are, therefore, 4 (row) x 2 (column). Half of the resulting product
matrix is used to form the determinant required.

**Listings of the programs, designated by WHC37 and WHC38, are

available from the Pavement Design Departmefnt, Texas Transportation
Institute, Texas A&M University, College Station, Texas 77843.
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.compound (6r delta) matrices instead of the normal matrices for the e's

(8). It was found, however, that the use of double précisibn throughout
enabled results to be achieved by means of the normal matrices which

are identical with those obtained by the use of compound matrices. The
use of double precision entails no additional work when programming by

means of Fortran IV, and the exécution time is affected only marginally.
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6. THE APPLICATION OF THE DISPERSION PROGRAM .

FOR A COMPOUND FREE PLATE TO. THE MEASUREMENTS.
MADE BY MEANS OF THE SHELL VIBRATOR ON

SECTIQNS 1 THROUGH 8 OF THE A&M TEST FACILITY

In order to show that the thebry,preééﬁted hére is ;t least a
plausible one,; and in‘order to gain expérienée with the use ofré diSpersion
program of this kind, the computations were appiied to eight structures:
within the A&M Test Facility of experimental highway pavements. The
method of measurement has been described alsewhere (9) and the results
were used in fhe form of the plots'shown in Figures 8‘thr6ugh 15. The
theoretical relationships are showﬁ on the overlaid plots. In these
figures, both the wavelength and the reciﬁrocal wavelength are plotted
on a common base of frequency, each providingra sensitive parameter where
the other fails to do so. Further, the closely rectilinear form of the
plot when the reciprocal wavelength is used is helpful in determining
when the successive branches of the dispersion curve are enterea.

The program was supplied with the experimental points as trial values;
the elastic parameters were obtained from the measurements made by means
of the Dynaflect, assuming a Poissdn's ratio of 0.45 as described in Part
1 of this report. The densities were obtained from nuclear measurements
both during and after construction, and theitr relative values. are probably
within 5% of the true relative values. The'scéle factor for converting
the dimensionlesg'output from the compuéations to actual values is deter-

mined by the modulus established.for the material composing the top layer.*

*The subgrade thickness was set at 5.0 feet. Increasing the subgrade
thickness from 3.0 to 5.0 feet decreased the calculated frequencies
corresponding to the roots of the frequency equation by 3%.
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The writer unfortunately knows of no grounds on which the use of

Dynaflect results for this purpose can be justified--the expected
frequency effect on the elastic parameters of such granular materials

has not been investigated. There was no altérnative but to use these
results, however. The further use of elastic parameters obtained by means
of readings from the Dyngflectfcah:be justified, partly at least; by the
need for relative values only,

As the zeros of the frequency equation for the system dre very closely
spaced, the agreement between the theoretical and experimental values
indicates only that the theory is a plausible one. The program selected
the nearest zero to the experiméhtal value, supplied in dimensiohless
form. Neighboring modes are shown in a few cases, indicating the order

of the discrepancy which may be expected.
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7. CONCLUSIONS

While the agreement between the theory and the ékperimentél.results
is by no means décisive, the writer feels that muchrinfbrmation may be
obtained from the present work. |

Comparisons between results obtained for elastic moduli by wave
methods ‘and those found using observationé made by means of tﬁe Dynaflect
are open to suspicion. The Dynaflect measurements are made at a loading
frequency of éight cycles per second, while the wave ﬁéasurements are
made at frequencies of hundreds or even thousands of cycles per second.
Thé values of the elastic parameteré may change appreciably between these
limits of frequency. The writer feels that this point has not been
investigated sufficiently under highway condifions t& eriable conclusions
to be drawn. The elastic parameters‘obtained using measurements obtained
- by means of the Dynaflect have been used as a guide only, and are not
intended for direct comparison.

As indicated in ?art 1 of this report, the values of the elastic
parameters obtained using observations made by means of the Dynaflect may
be incorrect due to errors imherent in the Dynaflect.

The assumption that the whole or ﬁart of a highway pavement vibrates
as if it were a free plate is suggested by the fact that the plots of
4recipro§al wavelength against the frequency form sets of straight lines.
This is the form taken by similér plots obtained from the measurements
made on a freéAplate. As shown in Chapter 2, it leads to results which

are qualitatively correct and which may be used for the purpose of ranking

- 44 -



within a group of materials.

Some engineers believe that the velocity at the free surface of a
layered structure represents the phase velocity of waves (presumably
shear waves) at a depth equal to half of the wavelength. This hypothesis
can be tested by plotting the resplts in Figures 8-15 on the basis of phase
veiocity against wavelength. . It is seen that the hypothesis holds, if at
all, in isolated cases only.

The writer wishes to emphasize that the theoretical frequency—dispersionr
curves of wavelength (Figures 8-15) were'obtaiﬁéd using the valﬁes of‘tﬁe
Young's moduli found by means of the Dynaflect. There is n6 suggestion -
that the reverse operation can be performed: the elastic parameters éf'
the materials cannot be determined by this means from the wave measurements
which were made. The reverse operation is not possible because there is a
large variety of structures which correspond (theoretically at least) with

a given dispersion curve,
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7.1 Applications of the Simple Free Plate Solutions

The theory used for the analysis of free plates is very well established
and deserves application where the physicdl conditions justify its use.
Information concerning the elastic parameters and the thicknesses of
reinforced concrete bridge decks méy be detetmined by this means. The
wavelengths used should equal or be less than the thickness of the deck.

The frequency of excitation should, therefore, exceed ten kilocycles per
second; fifty kilocyCles per second is;the 1owest.desirab1e uéper limit.
Another application is in determining the thickness, and secondarily the
éxtent,,of delaminétion in decks and ﬁavemenfs; the elastic parameters éf

- delaminated material can be found by this means.
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7.2 The Further Application of the Jones' Solutions

There may be an advantage in applying the solutions discussed by
Jones, particularly where clay subgrades aﬁe prévalent. Extensive
computations could be psed, in graphical form, to fit avgiven frequency
dispérsion curve by compafison;’thus deducing fhe associated structure.

Examples of such applications are given by Vidale (10).
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7.3 Further Investigation of the Roots of the Dispersion Equation

An investigation shbuld be made‘of the complex roots‘of the dispersion
equation for a layered half space. When the behavior of these is known,
it shoﬁld be possible to inveétigafe the displédements within the media.
The'qegt aim should be‘to determine éhe cause of the change in the phase
velocity, ﬁell known to the operators of thé fiéld equipment, which often
occurs as the pick-up is moved radially from the source of vibrationm.
This change ﬁay be related to the reiative damping of the vérious modes

of response of the structure.
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7.4 A Note on Computation which is the Reverée of that Performed by
the dispersion program for a compound free plate

The dispersion programs WHCB7.and WHC38 are not adequate for engineering
purposes. The broblem which engineers face is as follows: given the
frequency dispersion of the phase velocities, as in Figures 8-15, find
the elastic parameters of the materials and the thicknesses of the layers
;composing the structures. Owing to the close spacings of the zeros of
Equation (16), the solution is not unique and, therefore, a large number
of structural parameters may exist which satisfy the equation.

| If indeed it is possible to perform the reverse calculations of those
~performed in the programs mentioped, the.problem which engineers face will
étill not be solved. This is particularly true in view of the assumption

of a compound free plate, which is an inaccurate model of a highway structure.
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APPENDIX A ~ A NOTE ON THE ARBITRARY CONSTANTS INVOLVED
IN THE SOLUTION OF THE DISPERSION EQUATION IN A
LAYERED HALF-SPACE

Equations (5), (6) and (7) enable the stresses (cy, T#y) and the
disﬁlacements (u, v) in any one medium to Be expressed in terms of ihe
foqr constants bj in the expressions for theApotentials for that medium.

Consider a system‘composed of n layers, each of finite knoanthiékness,
overlying a semi-infinite medium; all the elastic parameters dre assumed
knpwn, 1eaving the bj's as the only unknowns. - There aré 4n such unknowns
introduced by the n layers, and four more due to the semi-infinite medium,

a total of 4 (n+l1) unknowns. Equationsrfor these unknowns are established

as follows:

No. of Equations

- Free Surface: Stresses (cy, Txy) are zero ' 2
Interfaces: There are (n-1) layer/layer inter-
faces. There ig 1 layer/semi- -

infinite medium interface. The

_stresses (o, 1) and the dis- 4(n-1) + &

: y' xy _

placements (u,v) are continuous,
yielding 4 equations for each
interface.
Semi-infinite Medium: Potentials ¢ and ¢ 2
vanish as y becomes large

Total 7 4 (ntl)

'This number of equations is sufficient to solve for the arbitrary constants bj.
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However, there is no need to determine all the arbitrary consfants
and much algebraic work is avoided by not solving for the b's but by
adopting a fresh approach. Start by considering the stresses and dis-
placements in the semi-infinite medium. As these must vanish for infinite
values of y, they are governedvby only two arbitrary constants and are
relatively simple in form. Using the condition of continuity of stresses
and displacements over anAinterface, we can write expressions for these

quantities in the nth layer, puttiﬁg Vo = h_, and equate them to the

n

expressions for the same quantities in the semi-infinite medium, putting

Yo+l = 0*. A similar procedure can be adopted, relating the quantities

. th e , . th

in the (n-1) layer (putting Vo1 = hn—l) with those in the n layer

(putting v, = 0), and in turn with those within the semi-infinite medium.
Continuing upwards, an expression for the stresses and displacements

at the free surface is found. If the displacements at the free surface

are to be non-zero, a sub-matrix of the product matrix formed (by fol-

lowing the stresses and displacements upwards from the semi-infinite medium)

" must be zero. This is the frequency equétion of the system. Its zeros are

found by trial and error.

The displacements can be found, if required, as described in Chapter 4.

*As the expressions for each pair of potentials ¢, ¥ hold true only
within the medium for which they are intended, it is correct and much easier
to establish origins of the y-coordinate in the upper face of each layer.

It is correct to do this because the y for each layer is never required
outside that layer; it is easier because we are saved the inconvenience of
keeping a tally of layer thickness in specifying a y coordinate within a
multi-layer structure.
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APPENDIX B ~ FORTRAN PROGRAMS WRITTEN FOR THIS WORK

The following programs have been written for use with a Fortran
compiler, using the laﬁguage Fortran IV (G-level). They operate also
on the Watfor compiler. -Execution is much faster in almost all cases if
the latter compiler is used. Basic language has been used as far as
possible, in order to minimize the changes necessary for any other
Fortran compiler.

In the followthng, "f'" denotes a floating point field in a punched
card. It should in general contain a decimal point. For example,
MEfFEFFEFEE" denotes a ten-column data field, starting in column zero of
the card, and including one column in which there is a decimal point.
‘Similarly, "b" denotes a blank column, and "n" denotes a right-justified
field for fixed-point data.

'The notation is as follows:
CB, CB1 The phase velocity of waves at the free surface
XK The wave number, expressed as 2m/wavelength
HH, H A layer thickness '
ALPHA ~ Phase velocity of compression waves in a medium
BETA Phase velocity of shear waves in a medium
V, SIBMA. Poisson's ratio '
XLMDA, XMU Lame's constants . ‘
RHO Density of the medium (Mass per unit volume)
EM  Young's modulus

Suffixes or subscripts (1, 2,...) denote a pafticular medium within

the structure. The'surface layer is medium #1.

Almost all the inputs can be expressed in terms of relative rather

than absolute values; this permits the programs to be used with a variety
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of systems of units: The following quantities in the programs are independent

of the unit system:

RHO (the density); EM (Young's modulus); HH (layer thickness);

SIGMA (Poisson's ratio).

The wavelength (WLNGTH) musf_be expressed in the same units as the
layer thickness, however. The phase velocity at the free surface (CBl)
is the ratio c/B1, where B; is the phase velocity of shear waves in the
material'COmposing the first (tﬁe top) layer and c is the phase velocity
at the free surface. In the output from the programs, the frequency (FREQ)
is the dimensionless phase velocity divided by the wavelength WLNGTH, also

in dimensionless form.
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B.1 ~ Fortran Pfograms Written for the Free Plate Solutions

The free plate solutions of Lamb (see Chapter 1) have been pfogrammed

for use with the Fortran IV (G-level) or the Watfor compiler.
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B.1.1 Program Which Computes the Solution to the Anti-Symmetric Mode

The data cards for the program to compute the solution for the anti-

symmetric mode (WHC33A) are as follows:

First card type

Column 1-10 Cfolllf
Column 11-80 b....b

where ffffffffff is a ten-column field containing B/a.

Second card type

Column 1-8Q f.,..f
where the f's are seven fields of ten columns each containing the
values of c¢/B for which resﬁlts are required. VIf mbre than seﬁen
fields of c¢/B are needed, a 999. should be punched in columns 72-
80 and the subsequent velocity values punched on tﬁe next card; other-
wise columns 72-80 should be 1eft blank.

If a zero is read in a field where a value of c¢/Bf is expected,
the program expects to read a card of the first type as the subsequent
card. The program can be terminated by making the values of B/a in
the first card a negative quantity. The flow diagram of the program

is shown in Figure 16.
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1o
[

READ <

0T —
LAST N E b EXIT.
FIELD : ' —

T

_WRITE HEADING (1), INCLUDING 8fa

sIcmA=B/ (o+8)

)4

. y
WRITE HEADING (2), INCLUDING SIGMA

WRITE HEADING f3), INCLUDING A COLUMN FOR A
x = 1.0

(:::)—————;- READ NEXT é-(ten fields to a card)

| | .
[ 2 ’
XITi= tanh gg -‘ﬁg) 27§}

COUNTER TO ZERO

'FIGURE 16 - Anti-symmetric mode of free plate - flow diagrom of
program. -
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= XIT1/A

ADD 1 TO
COUNTER

XIT2 =

tanh 1 - v X

4

XITl = XIT2

CALCULATE %

(CALCULATE (%) /%

WRITE

B

1

F C
,X,—, —B_/X

COUNTER READING

FIGURE 16 - Anti-symmetric mode of free plate - flow diagram of
program (continued).
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B.1.2 Program which Computes the Solution to the Symmetric Mode

The data cards for the program which computes the solution to the

symmetric mode (WHC33E) are as follows:

First card type

Column 1-10 f....f
COlumn 11"’80 b v e ‘b
where ffEffFffff is ten~column field containing B/a.

Second ¢ard type

Column 1-80 f....f
where the f;s are fields of ten columns each, containing the values
of c/B‘for which results are required. 1If less than eight fields
are required, the last field should contain not zeros but 999.; the
program then expects the next card to contain a new value of B/a.

If the latter is zero the program terminates.

NOTE: Values of c/s in this program are greater than unity.

The flow diagram for the program 1s shown in Figure 17.
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READ — fog—
a

EXIT

WRITE HEADING(1), INCLUDING B/d

!

SIGMA=B/ (a+B)

y

WRITE HEADING(2), INCLUDING SIGMA

T

WRITE HEADIN?(B), INCLUDING A COLUMN FOR A

Y
% = 1.0

. ¢
(:::)————~N READ NEXT E—(ten fields to a card)

, o o2\
XIT1 = tanh (1‘—- ;Z)z/x}

'

COUNTER TO ZERO

FIGURE 17 - Symmetric mode of free plate ~ flow diagram of program.
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NOTE o > € ONLY

COL 5 = -A * XiT1 I‘

1
-1
X = @2/8,2 ~ 1)°/tan (COL 5)

|

1
_ ' 2
| XiT2 = tanhg(l -d2/02) /xg

XiT1-XiT2 < 10

ADD 1
TO
COUNTER

i

XiTl = XiT2

CALCULATE 1/%

CALCULATE (&/B)/X

!

WRITE 6/8, X, 1/X, (¢/8)/%, A
' ' COUNTER READING

FIGURE 17 - Symmetric mode of free plate - flow diagram of program

. (gontinued) .
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B.2 Fortwan Programs Written for the Jones' Solutions

B.2.1 Program Written for the Computation of the Solution of Jones'
Equation (26), Referencewx(1).

This program’(WHCBBB)'compﬁtés the numerical values of the solutions
~ to Jones' equation (26), reference (1). The wavelength, wave number and
frequency are computed for input values of the phase velocity c/B;.

First card type

The first card is punchéd asAfollows:
Columns 1-60 mf....f
Columns 61-80  b....b
where the f's are six fields of ten columns each. They contain the
following in order: B/a, *l/as, *1/as, ps/pz, ps/ﬂ],. H2/H1

Second card type

The second card is punched'as follows:
quumns 1-80 f....f

where the f's are eight fields of‘ten columns each. They contain
the values of c¢/Bj{ for which results are required. Any field may
contain zeros, and if it does the program will read the subsequent
card as a card containing values of ¢/B;. If 999. is punched in
any field which is expected to contain a value of c¢/By, the'next
card read will be data of the type contained in cards of the first
type; the program terminates if it encounters a blank or a zero
in the first field of a card of the first type.

The flow diagram of the program is shown in Figure 18.
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By a1 o1 p3 pp Hp

READ a1’ 550 a3 530 it E, (ALL ONEAC D)

R

i

(:::)—--—s READ NEXT %i (ten fields to a card) -

| eor 3 = @i » €27B;2;760L 40K GOB 80K GOE G.

COL 5 = ¢2/B;2 +.8;2/0y?; COL 6 = 1 - COL 5

COL 7 = 2. - o2#B{2; COL 8 = COL 7 * COL 7

COL 10M = (COL 7 * COL 7 % COL 6 ~ 4. * COL 4) * 8.

COL 11 = (6/B1) ** 4; COL 13 = COL 5 * (a;/a3)?

COL 14 = 1. - COL 13; COL 15 = COL 5 * (a;/ag)?

] COL 16 = 1. = COL 15; R = (p3/p,) * SQRT (COL 14/COL 16)
COL 18M = (Hp/Hj) * SQRT (COL 14) '

(COL 20M = (pp/p1)/SQRT (COL 14)

]

[

PRINT~PUNGH HEADING (3)

. Y .
~ COUNTER TO ZERO

}

XiT1 = 0

- ] - diagram of
FIGURE 18 - Jones' Equation (26) Lower Branch - flow g _

program.. . _go



COL18 = COL18M*2./x [

COL19 = tanh COL1S8

COL 20 = COL 20M * (R+COL19)/(1.+R * COL 19)

COL 21 = COL 20 + 2./%

4 - ADD 1
COL 22 = COL 21 * COL 11 * 12. ‘TO '
' COWTER
XiT2 = COL 22
. XiTl = XiT2
X = (COL 10M/COL 22) ** (1/3)

XiT1-XiT2 < 10~©

CALCULATE 1/x

| GACOURAEE C aBB) ¥

i

PRINT-PUNCH ‘¢/B, ., 1/%, C&/B)/x.
COUNTER READING

‘FIGURE 18 - Jones' Equation (26) Lower Br_anch - flow diagram of
program . (continued). '




B.2.2 Program Written for the Computation of the Solutlon of Jones'
BEquation (281j Reference 1)

This program‘(WHCB3D) computes ﬁhe numericaiivalues,of the solutions
td'Jones' equation (28), reference (1), The Wa&elength,'wave ﬁﬁﬁber and
frequency are computéd fbr input values of the phase vélocity>c/81.

The data cards for the program are as follows:

First card type

Columns 1-70 f....f

Columns 71-80 b....b
where the f's are ten-golﬁmn fields cqntaining the following input
fparametefs:rsl/al, " /ay, *ag, P3/0,, P2/, H27H1, mode number

required (1,, 2.,.:;)

S_econd card type 7
Columns 1-80 f£....f
where the f's are tén—coiumn fields, each containing a value of
¢/B; for ﬁhich results_ére required. If a field is blank of zZero,
: tﬁe program will read a furthérAéard of the second type. 1f the

field contains 999. the program will read the subsequent card as

one of the first type.

~ The f16w diagtam of the program is shown in Figure>19;_
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FIGURE 19 - Jones' Equation (28) Intermediate Branch - flow diagram
of program,

By al a3 p3 pp Hy

READ —, —, —, —, —, 7 (All on one card
a;® a2’ ag’ p2’ p1” Hi ¢ )

o= Bi/a; (l+81/a1)

[

B1 a1 a1 p3 ez Hy
WRITE HEADING (1), INCLUDING —, ——, — , O

a1’ ap’ @3’ pp” o) Hy
4
vV =1.0
£ : READ NEXT ¢/B8; (ten fields to a card)

CAl = CB1 * B1lAl
CA2 = CB2 * B1lAl * AlA2
CA3 = CBl * BlAl * AlA3

!

SQRT (ABS (1. - CAl * CAl))-

- RIK =

‘ RZK = SQRT (ABS (L. - CA2 * CA2))
R3K = SQRT (ABS (1. = CA3 * CA3))
SIK = SQRT (1. - CB1 * CBI)

BSQD = (2 -~ CBL * CBl) #* 2

R = RHO3R2 * R2K/R3K

PSI = ATAN (R)

S$ = RIK * §1K

R2H2S = SQRT (ABS (1. - CA2 * CA2)) * H2HI1
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KOUNT = 1

|

XiT = V
RIH = (2./V) * SQRT(ABS(1l. - CAl * CAl)) ,
S1H = (2./V) * SQRT(ABS(l. - CBl * CBl)) REEEE——

+ 8 % BSQD * S * (1. - COSH(RIH) * COSH (SIH))

XNUM = (BSQD * BSQD + 16 * S * §) * SINH(RIH) * SINH(S1H)

l

DENOM = (BSQD * COSH(RIH) * SINH(SIH)
- 4 * 'S * SINH(RIH) * COSH(SlH)) * RHO2RL * (R1K/R2K)

% (CBl ** 4)

ARG = ATAN (XNUM/DENOM) -
‘R2H2 = ARG ~ PSI

KOUNT =
KOUNT + 1

= 2 * R2H2S/R2H2

) . =B
V - X4IT < 10

WNMBR = 1,/V} FREQ = CBL/V

?9

'WRITE ¢/8, WNMBR, FREQ, V, KOUNT

FIGURE 19 - Jones Equation (28) Intermediate Branch - flow diagram»

of program (continued)
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B.3 Fortran Program Written for the Computation of the Real Roots of
the Frequency Equation for a Compound Free Plate (Program Designated

by WHC37)
B.3.1 Data Cards

First card type

Columns 1-72; Titléﬁand description of data.

Columns 73-80: Floating Point Constant "WSWICH"

If WSWICH = 0.0 "VALUE" is not printed
If WSWICH = 1.0 "VALUE" is printed with the final table of output.
Lf WSWTCH = 2.0 "VALUE" and its corresponding trial velocity

"CB1" are printed after each cycle of calculation.

Second card type

Columns 1-2: not read

Column 3: # of layers of finite thickness plus unity

Columns 4-6: mnot read

Column; 7-78: Twelve floating point fields of six columns each
containing, in order, EM(I1), V(1), EM(2), V(2),
<., EM(6), V(6). The program will read only

the number of pairs given in Column 3.

Third card type
‘ Columns 1-6: not read
Columns 7-42: six floating point fields of six columns each,
containing RHO(1), RHO(2), RHO(3),..., RHO(6).
The program will read only the # of values given
in Column 3 of the preceding card of the second

type.
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Fourth card type
Colums 1-36: Six floating point fields of six columms

each, containing HH(1), HH(2),..., HH(6).

Fifth card type
Columns 1-6: Theﬁwavelength for which reéults are required,
in six-column floating point form
Colums 7-18: The tri;I value of phase velocity at which
the search for a root is to start, and the
" increments to this value for the initial sweép;
both are in six-column floating point fields,
and both are expressed as a fraction of BETA(1l).
The data set may include ény number of cards of thefiftﬁrtype in
ordér to obtain the'results required. If the program expects a card of
the sixth type gnd'encounters a blank, the subsequent card‘will be read
as a new title card (card,of,the first type); 1f the expected title card
is :supplied, the printerrwill advance one page. This permits termination
without an error record'oﬁ the page containing the computed output. |

All cards except those of the fifth type must be in sequence.
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B.3.2 Description of the Program

The program consists of a main program, five subroutines and an
arithmetic function; the programhinvolving compound matrices has one
less subroutine.* A flow diagram of the program'is shown in Figure 20.
The operations performed by the routines are as follows.

MAIN : MAST

This routine performs the iﬁput/output operatings and does some
calculation of parameters.

TRAVEL ; TRASTR

This subroutine calculates a palr of values (CBl, WLNGTH) which
satisfies the frequency equaéioh (16). 1Its main function is to'calculate
the e's for each layer. This is performed in the subroutine EMATRX :
ESTAR which is accessed through TRAVEL. The subroutine PROMAT : PROMST
is also accessed®* The TRAVEL : TRASTR Carriés out a Newton-Raphson
interpolation which approximates the root of the frequency equation CBl
to the accuracy specified. The accuracy .is controlled by the IF state-
ment at statement 140 + 0002; thiégstatement contains a constant specify-
ing half of the greatest differehce between successive values of CBl

which is acceptable for the result to be printed as final.

*The program fn which compound matrices have been used has been
renamed in order to avoid its mistaken use. The names of the routines
have been altered as follows: MAIN : MAST; TRAVEL : TRASTR;
EMATRX : ESTAR; (GMATRX : GSTAR); PROMAT : PROMST. Owing to
the resulting economy of programming, the subroutine corresponding with
CHECK is not required in the program employing compound matrices.

**%*The subroutine GMATRX : GSTAR has been included to allow for
future development.
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READ TITLE AND BATA = |t

- S
WRITE TITLE AND DATA

\ I
CALCULATE LAME CONSTANTS, XLMDA & XMU

Y

'CALCULATE ALPHA & BETA IN EACH LAYER

, 3
READ WAVELENGTH AND A TRIAL SOLUTION

18
WAVELENGTH
ZERO? -

 IMPROVE THE TRIAL SOLUTION BY MEANS
OF THE SUBROUTINES TRAVEL OR TRASTR

WRITE OUTPUT

5 2C ; , ' : “roc f the frequency
FIGURE 20 - Program for determining the real roots o e fr ey
" _equation for a compound free plate - flow diagram of program. -
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FIGURE 20 - Program for determining the real roots of the frequency

equation for a compound free plate - flow diagram of
progtram (Cnntinued).

. (121)
INCREMENT THE TRIAL SOLUTION

F BACKTRACK CBl TO MOST RECENT
NON-UNITY VALUE, DECREASE INCREMENT

RESIGN, RETURN

NO OF
~ TRIALS BELOW .
LIMIT?

(9001) (140 + 0002)

(1221)

WRITE "CB1'" IF SO DIRECTED BY "WSWTCH"

(130)

CALCULATE PARAMETERS A, R, S & T

CALCULATE THE CONVERGENCE TEST: '"VALUE"
BY MEANS OF THE SUBROUTINES ESTAR,
GSTAR AND PROMST.

(1371)

WRITE "VALUE" IF SO DIRECTED BY "WSWTCH"

(138)

SAVE PREVIOUS TWO VALUES OF 'VALUE"
AS DELTAl AND DELTA2 (1ST CYCLE EXCEPTED)

(140 + 0001)

RETURN TO MAIN

CB1 CONVERGED?

HAS T INTERPOLATE

INTERPOLATION ROUTINE,
STARTED? USING
XTERPL.

ARE .
DELTA1 & DELTA2
OF SAME SIGN?

(300 + 0006)




EMATRX : ESTAR

This subroutine calculates the values of the e's (or the'corresponding

compound matrix).

f

PROMAT _: PROMST

This subroutine calculates.the values of the f 's and the eieme:n,_t;_,s{
of the determi-_nant which is used as the frequency equation. |

This subroutine ca-lculatesx the value of' the determinant used as the
frequency Vevq-uatio'n'. | The result is ‘r'eturned._ to the subroutine TRAVEL :
TRASTR for testing.

The arithmetic funét ion XTERPL

This function performs the Newton-Raphson int'erpolation of a value
of the determinant of the f_requency equation, and the corresponding phase

velocities.
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APPENDIX C - WANG PROGRAMS WRITTEN FOR THIS WORK

C.1 A Description of the Wang Computer

The Wang Model 360 computer is a desk instrument with four storage
registers and two addition/subtraction registers. it can be programmed
by means of a machine language code of up to 80 steps punched on a
standard IBM card. All calculations are made in floating poiﬁt with
fourteen-digit accuracy, although only the ten most significant are
displayed; the indication of an error due to’floating point overflow
occurs when the number registered exceeds 1019.' Hardware subroutines
are available for the following'operations: add, subtract, multiply,
divide, square, square root, natural logarithm and exponential. A
‘library of sub-programs is available for routines such as trigonometric
functions and statistical calculatiOns.‘ | |

This computer was used in the present work for the following:

(1) Programming the Jones'_solutions 1; it was found practicable
to solve these equations by iteration, as the comparative slowness of
the ‘Wang computer was outweighed by its accéssibiiity relative to an
IBM360.

(2) Statistical calculations such as the determination‘of mean
square‘e?rors and linear regression coefficients.

(3) Calculations of compression and shear wave velocities in
elastic materials as functions of the Lame constants; relationships

between the Lame constants, Poisson'S'ratio and Young's modulus.
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C.2 Notes on the Programs Written for the Wang Computer

The set:of programs consistsvof cards which are described in this

Appendix. The following information is available in TTI files.'

| (1) Details of the s;atements iﬁ each program; the.comﬁents on thesé
sheets are intended to permit each program to be followed step by step-
wﬁen the cards are punched afresh or if a card is damaged. Detailed
operating instructions are included.

(2) Flow diégrams, showing which cards.are to be combined in order
to perform the operations intended, and the sequence.in which they are to
used. Abbreviated operating‘instrggtions are given.on the diagrams in
order that an operator accustomed to the use of the programs need refer
only to the block diagrams for directions and not to the detailed sheets
giving the aqfual statemenfé.

(3) Tests are given for each group of programs, which include the
intermediate readings and the final results for typical values of thé
barametersﬁ

Symbolsrused:

SRO-] 9.3, indicates ''store in storage register 0, 1, 2, or: 3"
LI Rk R . - -

+AL’ -4, FAps ~Ap indicates "add, subtract to adder left,
right"

The contents of the storage registers are shown enclosed in a box thus,
o4 K
c 2
b
o o)

indicates that the numbers represented by the symbols a, b, ¢, d are

held in registers 0, 1, 2, 3 respectively.
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APPENDIX D - LIST OF FORTRAN PROGRAMS WRITTEN FOR_THIS WORK
(Available in Texas Transportation Institute Files)

Designation

WHC33A

WHC33B

WHC33C

WHC33D

WHC33E

WHC33F

"WHC35

WHC36

WHC37

WHC38

Description

Antisymmetric waves in a simple free plate. Lamb
Solution. Q = 0.

Jones (1) LowefTbranch, Equation €26) .

Jones (1) Intermediate branch, Equation (23),
short wavelengths only.

Jones'(l) Intermediate branch, Equation (28),
long wavelengths.

Symmetric waves in a simple free plate. Lamb
solution. P = 0.

Rayleigh~type waves in a structure consisting'of
a solid layer overlying a solid semi-infinite
medium Ewing, Jardetzky and Press (2) Equation (4-202)
Data checking program for WHC36
Program for finding the values the Young's moduli of
the materials composing the layers of a highway
structure, using the deflection basin as input.
Program for calculating the points on the frequency
dispersion curve of phase velocities for a compound

free plate.

Same as WHC37, employing compound (or delta) matrices.
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APPENDIX E - WANG PROGRAMS
(Available in Texas Transportation Institute Files)
x = wavelength/mH;

Designation Description
681.08 Lamb solution Q = 0. Set trial XITI in R_.

681.09 Lamb solution Q = 0. Set parameters in'registers Rl’
RZ’ R3’<Ro is unaffected)

681.1 Lamb solution Q 0. Iterate x.

COMMENT: 681.08, 681.09 and 681.1 form the set for iterating the
Lamb solution Q = 0.

681.2 Lamb solution P = 0. Find tan 1/2sH.

681.3 Lamb solution P = 0. Complete the iteration cycle
for determining x. -

COMMENT: 681.09, 681.2 and 681.3 form the set for iterating the
Lamb solution P = 0.

681.3 contains an arctan routine, the result being
available at the first stop (step 68); the argument
in radians must be in adder left at the start.

681.41 Jones Equation (26), for two surface layers over-
lying a semi-~infinite medium. Lower branch. S8et
up parameters.

681.42 Jones Equation (26), for two surface layers over—
lying a semi-infinite medium. Lower branch. Iterate 2/x%.

COMMENT: 681.41 and 681.42 form the set for iterating Jones
©  Equation (26). '

681.50 Jones Equation (28), for two surface layers over-
lying a semi-infinite medium. Intermediate branch.
Determine parapmeters which may be required for
checking manually the corresponding Fortran program.

681.51 Jones Equation (28), for two surface layers over-—
: " lying a semi-infinite medium. Intermediate branch.
Calculate multipliers. '

681.52 Jones Equation (28), for two surface layers over=-
lying a semi-infinite medium. Intermediate branch.
-Iterate 2/x (lst card)

- 76 -



Designation 7 o Description

681.53

681,54

COMMENT ;

681.61

681.62

681.63

COMMENT :

681.7

681.71

681.72

681,73

COMMENT :

682

Joﬁeerquation'(ZS), for two surfééevlayers over—
lying a semi-infinite medium. Intermediate branch..
Iterate 2/x (2nd card) ; e

Jones'EQuation'(283,-f0r two surface ié&ers'oﬁer—
lying a semi-infinite medium. Intermediate branch.
Iterate 2/x (3rd card)

681.51, 681.52, 681.53; and 681.54 form the set for
iterating Jones Equation (28).

Jones Equation (23), for two surface layers over-
lying a semi-infinite medium. Intermediate branch:
short wavelengths. Calculate parameters.

Jones Equation (23), for two surface layers over-—
lying a semi~infinite medium. Intermediate branch:
short wavelengths. Determine tan (rsz).

Jones Equation (23), for two surface layers over-
lying a semi-infinite medium. Intermediate branch:
" short wavelengths. Determine 2/x.

681.61, 681.62 and 681.63 form the set for solving Jones
Equation (23). '

Determine Poisson's ratio, given the ratio B/a.

Jones Equation (24), for two surface layers over-
lying a semi-infinite medium. Lower branch:
short wavelengths. Card 1.

Jones Equation‘(24), for two surface layers over-
lying a semi-infinite medium. Lower branch:
short wavelengths. Card 2.

Jones Equation (24), for two surface layers over-
lying a semi~infinite medium. Lower branch:
short wavelengths. Card 3. Determine 2/x.

681.71, 681.72 and 681.73 form the set for solving Jones

Equation (24)

Inverse Chevron. Linear law for log (y). Determine
parameters.
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Designation Description

684 - Inverse Chevron. Square law for log-(y). Determine
parameters used as input for WHC36, Fortran program.

COMMENT: 682 and 684 require'Chevron calculations, with the E's for

the layers spaced factors of two apart. Three Chevron cal-
culations are needed for each Wang program input.
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ADDENDUM - PROGRAM FOR COMPUTING THE DISPERSION
CURVE IN A LAYERED HALF SPACE

A program was written with the object of computing the frequency
dispersion curve of phase velocity in a layered half space (WHC39). The
stiffness of the materials compoéing the layers is entirely arbitrary.

The data cards are the same as those for the programs:swhich compute
the dispersion curves in a compoﬁhd free plate, except for the cards which
provide the starting points for the trial solutions. The format of these’
cards is as follows:

Cols. 1-6, 7-12 The real and imaginary parts of the value of WLNGTH
for which a solution is required; the imaginary part
may be left blank if desired, and the program will
compute it in such a way as to yield a purely real
value of the. frequency FREQ.

Cols. 13-18, 19-24 The real and imaginary parts of the trial value of

'~ the phase velocity CBl at which the search for a
root is to start. - '

Cols. 25~30, 31-36 The real and imaginary parts of the increment to
the trial value of the phase velocity; this increment
will be used in the initial search for a solution.

RESULTS

The writer has not succeeded in finding the true zeros of the dispersion
Equation (18) by means of this program. An initial search was carried as
far as a zero on the real axis of CBl;Athis was followed by a search for
_ a zero (in the imaginary part of the determinant representing the frequency
equatidn) along the negative imaginary axis of CBl. The point'reached in the
imaginary plane of CBl was used as the centef of a spiral of decreasing radius,
restricted to negative values of the imaginary part of CBl. Whenever a small
increment along the spiral produced simultaneous changes in sign of both

parts of the solution criterion (the determinant of Equation 18), the center

of the spiral was moved in that direction.

- 79 -



The impression was gained thaf roots exist in the vicinity of points
shown in Figﬁre 21. There appear ﬁd-be fewer roots :of the frequency
equation in this case than in.the case of the equation relating to a
compoupd free plate. An approximate_fit‘of the experimental -points is
obtained if the phase velocity of shear.anes in the top layer is taken
as 2500 feet per second. Assuming ézvalue of 0.45 for Poisson's ratio,:
the &alue of Young's modulus for the material composing this layer is
600,000 1b./inch, about twice that obtained as the result of'observations
made by means of the Dynaflect.

LIMITATIONS

1. The program requires valﬁeé'of the Young's moduli and the densities
§f the materials composing the strucfure as .data. It does not perform the
reverse operation required by engineérs of calculating the elastic parameters
of the materials composing the structure, using the dispersion curve of
phase velocities as.data.'

2. There is no certainty that:roots exist in the vicinity_of the sign
changes which are used here as a means of improviﬁg the trial phase'velqcity
CB1. |

. 3., The program hgs not been fully tested and may contain significant

malfunctions.
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SECTION NO. 5

FIGURE 21 - Plet of wavelength- against frequency, Texas A&M Test
- Facility ~ Section 5.

The squares show the calculated results for a layered half space
{Program: WHC39). '
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