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1. INTRODUCTION 

The Shell vibrator has been used to investigate the behavior of a 

number of highway structures in the state of Texas. Measurements have 

been made of the wavelength at the free surface over a range of frequencies. 

It is found that the phse velocity of the wave is not constant but varies 

with the freqttency. It is anticipated that the manner of the variation of 

the velocity relates to some of the physi.cal properties of the structure. 

·The object of the work· was to determine what information can be obtained 

from the frequency-dispersion curves of phase velocity which have been 

obtained during the experimental work. Ultimately, it is desired to 

deduce, in numerical terms, values of the structural parameters, such as 

the interface depths of the layers composing the system and the elastic 

constants of the materials composing the layers. 

Tn the following, empirical and semi-empirical methods of obtaining 

information from the results are discussed. .It will be shown that some 

information can be obtained by simple calculations. These calculations 

are based on the assumption of a "free plate" response; this assumption 

neglects any loss of energy to the media underlying a layer which is acting 

as a free plate. The use of Jones's solutions (!) will then be discussed. 

These solutions provide a means of obtaining rapid results in a few special 

cases. 

The general problem of a solution to the equations of propagation of 

waves in layered media will then be discussed, with the restriction that 

the particle motion is confined to a plane which is perpendicular to the 



free surface of the system, and which is oriented in the direction of 

propagation of the waves. Computer programs will be discussed for the 

solution of this problem, with the restriction that the radiation down­

wards of energy (into the subgrade of a highway pavement) can occur, but 

is limited to a finite depth; the case of propagation to infinite depth 

is not considered in this report. 

- 2 -



2. THE APPLICATION OF THE FREE PLATE SOLUTIONS 

Lamb's solutions for the propagation of SV (shear waves, in which the 

particle movement is perpendicular to the free surface) and P (dilational) 

waves in a plate of finite thickness moving freely in a vacuum has been 

given by Ewing, Jardetzky and Press (~). Two types of wave can exist under 

these conditions. The first, the symmetric, is a type of wave in which the 

motion of the particles of the material composing the plate is symmetrical 

about the plane of symmetry of the plate.* For waves which are long. 

compared with the thickness of the plate, the phase velocity approaches 

a value given by 

When v = 1/4, 313 2 = a2 , we have c = 212/313. The wavelength and frequency 

of waves are related (Reference 2, Equation 6-12) and programs have been 

written which enable numerical results to be obtained .*)'c Numerical results 

are not given explicity and the results are obtained after a number of 

cycles of calculation; the values of the solution sought are compared 

with the values given by the previous cycle, and when these are the 

same within sufficiently close limits that result is taken final. The 

results of a typical set of computations is given by Ewing (Reference 2, 

*The particle movements in the symmetric type of wave are shown in 
a diagram in reference (Reference 3, Figure 5. 3, p. 129). 

** Fortran program designated by WHC33E, and Wang programs designated 
by 681.09, 681.2 and 681.3. 
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Figure 6-1, Page 284). A series of results has been computed using the 

programs referred to. Some of these are shown in Figure 1. In this 

figure, the reciprocal wavelength is plotted against the frequency, with 

both quantities in dimensionless form. This single plot thus represents 

all dimensionally similar systems. The method of plotting which is 

adopted causes a succession of point,EI to fall on or near a straight line. 

Two quantities (the intercept and the slope of the line) are available 

in order to assist the matching of a theoretical system to a given set 

of experimental results •. On repeating the calculations using a range of 

values for Poisson's ratio, it is found that the plotted points are 

distributed in a relatively narrow band. The slope of the lines is close 

to unity, and the intercept on the axis representing the reciprocal of 

the wavelength varies by only a small amount. This intercept is shown 

plotted in Figure 2, with Poisson's ratio as the abscissa. There is 

some uncertainty (about 8%) in the value of the intercept. It depends 

on which of the points on the graph of reciprocal wavelength against 

the frequency are selected, as these points are closely but not exactly 

rectilinear. The result is intended to provide a practical means of 

analysis. As Poisson's ratio for highway materials is large, an average 

value of -0.72 was adopted for 1/A at zero frequency. This is designated 

by l/AJ 0 • 

This method can be applied to the results of measurements of frequency 

and wavelength •. The reciprocal of the slope of the line of points plotted 

as described gives the phase velocity of shear waves in the material of 

which the plate is composed. If the density p of the material is known, 

- 4 -
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FIGURE 2 - Symmetric wave m a free plate. Plot of the intercept 
on the axis of reciprocal wavelength against Poiss,on' s 
ratio. 



the shear modulus ~ can be calculated from the formula 

where 8 is the shear wave velocity. The modulus here is in gravitational 

units (poundals per square foot, if foot- pound- second units are employed). 

The intercept on the reciprocal wavelength axis, l/A] 0 , is used to 

obtain an estimate of the thickness H of the plate. It is obtained from 

the formula 

Similar results are obtained for the case of the second type of wave, 

the asymmetric, for which the solution is given in Ewirtg, Jardetzky and 

Press (Reference 2, Equation 6-110, Page 283). This wave corresponds 

approximately with the Rayleigh surface wave (Reference 3, Page 50); the 

particle movements are smaller on one side of the plate thart on the other. 

A typical set of the results of computations of the phase velocity at the 

surface of the plate over a range of wavelengths is given in Ewing, Jardetzky 

and Press (Reference 2, Figure 6-2, Page 286). At short wavelengths, the 

phase velocity of the waves approaches that of Rayleigh waves in a semi-

infinite medium. The solution has been programmed and a typical set of 

results of the computations is shown in Figure 3.* As before, the reciprocal 

of the wavelength is plotted against the frequency; both the quantities are 

in dimensionless form. On repeating the calculations using a range of 

values of Poisson's ratio, it is found that the plotted points are again 

*The Fortran program is designated by WHC33A, and Wang programs 
by 681.08, 681.09 and 681.1. 
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distributed in a relatively narrow band. Two parameters are available 

for matching a theoretical system to a set of experimental results, as 

in the previous case. The intercept in this case is on the positive 

side of the reciprocal wavelength axis. It is more dependent on the 

value of Poisson's ratio than is the intercept formed by a set of results 

obtained fvom the symmetric type of wave; its value is shown in Figure 4, 

and an average of 0.32 was adopted. The results can be applied in order 

to determine the shear modulus of the material composing the plate, and 

also the ef;fective thickness o;f the plate. The method used. is similar 

to the previous one. The reciprocal slope of the plot described yields 

the phase velocity of shear waves in the material; from which the shear 

modulus may be found in gravitational units. The intercept on the 

reciprocal wavelength axis can be used to determine the effective 

thickness as follows: 

1/ I.] 
0 

1rH = 0, 32 

where H is the thickness of the plate. 
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2.1 - The Application of these Results to some Particular Cases 

. The results of a set of measurements made by means of the Shell 

vibrator may be plotted as shown.in Figures 8-15. These figures show the 

wavelength plotted as functions of frequency of the excitation; the wave­

lengths are those which are measured at the surface of the ground. Alter­

natively' the results may be plotted as ,shown in the same figures' where 

the reciprocal of the wavelength is plotted against the frequency. These 

plots can be represented, approximately at least, by a succession of 

straight lines, suggesting that they may be intetpreted by the methods 

described in the preceding section. The results of interpretation by this 

method for all the sections referred to in Figure 6, Part 1 are shown in 

Table 1. The values of Young's modulus in this table are based on an 

assumed value of 0.45 for Poisson's ratio in order to give a comparison 

with the results given in Figure 6, Part 1 of this report. The results 

are plotted in Figure 5. This figure sho~s the thicknessess of a number 

of free plates, and the elastic moduli of the materials of which they 

are composed; these f.ree plates are those which yield frequency dispersion 

curves of phase velocities which match parts of the frequency dispersion 

curves of the structures shown. 

The results indicate that there is little agreement between the values 

of the Young's moduli determined by meart,s of the Dynafleet and those found 

on the basis of the assumptions employed here. The method is an indication 

only, and can be applied without using computing facilities. 
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TABLE 1 - RESULTS OBTAINED ASSUMING THAT THE HIGHWAY STRUCTURES EACH VIBRATE AS A 
SUCCESSION OF FREE PLATES. DATA FROM A&M TEST FACILITY, SECTIONS 1 THROUGH 8 

Slope of P·oints Shear 

Intercept 
Thickness of Assumed to be Modulus Young's Modulus 
·Equbtalent Shear Wave 11 = pS2 E, Assuming Poi~son's illih Frree JUa:t.e Velocity S p=l25 lb/ft3 Ratio v =·0~45 . ......t 

Section (Ft. ) .(Ft.) (Ft/Sec) (Lb/In2) (lb/in2 x 1000) 

1 0.49 . o.z 17,000· 8,000,000 23,000 
0.05 0.6 3,030 250,000 730 
0.05 0.6 1,852 94,000 270 

2 0.04 .. 2. 3 1,110 33,000 96 
-0.16 1.4 1,110 33,000 96 

I-' 0.25 0.4 1,890 96,000 280 N 

3 0.08 1.2 1,110 • 33,000 96 
-0.24 1.2 1,220 41,000 120 
0.35 0. 3. 2,080 120,000 350 

4 0.24 0.4 2,000 110,000 320 
0.06 1.6 1,330 49,000 142 

5 0.14 0.7 3,225 290,000 840 . o.os 1.9 1,695 78,000 ' 230 
-0.02 11. 560 8,000 23 

6 0.04 2.4 11143 35,000 102 
-0.06 3.8 990 26,500 77 
-0.05 . 4.6·· 1,087 32,000 93 
0~75 0.1 3,330 300,000 870 



Section 

7 

...... 8 w 

TABLE 1 - RESULTS OBTAINED ASSUMING THAT THE HIGHWAY STRUCTURES EACH VIBRATE AS A 
SUCCESSION OF FREE PLATES. DATA FROM.A&M TEST FACILITY, SECTIONS 1 THROUGH 8 

(Continued) 

Slope of Points Shear 

Intercept 
Thickness of Assumed to be Modulus Young's Modulus 
Equivalent Shear Wave ~ = pS2 E, Assuming Poisson's 

1/A:] 0 . Free Plate· Velocity S p-125 lb/ft 3 Ratio v = 0.45 
(F_t-j_,_ (Ft.) (Ft/Sec) . (Lb/In2) __ (lb/in2 x 1900) 

0.23 0.4 1,350 50,000 145 
0.02 4,8 1,000 27,000 78 
0.02 4.8 770 16,000 47 

0.02 4.8 833 19,000 55 
.-0.015 15 1,099 33,000 96 

0.27 0.4 1,176 37,000 107 
0.02 4 •. 8 1,053 30,000 87 



3. THE APPLICATION OF THE JONES' SOLUTIONS 

Jones (1) applied the solutions of the wave equation for three distinct 

systems composed of layered isotropic media. -'l'he solutions are intended for 

waves in which the particle movement is in the form of an ellipse, t;he plane 

of which is vertical and oriented in the direction of propagation of the 

wave. The three systems are: 

(1) A solid layer of finite thickness overlying a semi-infinite 

liquid medium. 

(2) As in (1) but with an intermediate layer in which the compressional 

wave velocity is less than that in the underlying liquid medium. 

(3) As in (2) but with an intermediate layer ih which the velocities 

of compressional and shear :waves are similar to those in the 

surface layer but considerably greater than those in the under­

lying medium. 

Jones has given examples of the application of the solutions which he 

discussed. In Jones' paper (Refe;rence 1, Figure 2, Page 23) the figure 

shows the phase velocity-wavelength relationship for a hypothetical case 

(1) above, In the same paper (Figure 4, Page 25) theoretical curves are 

shown for a hypothetical case (3) above; this figure is reproduced, see 

Figure 6, showing the designations of theprograms which have been prepared 

in order tlCndlbtain numerical values of the solutions discussed by Jones. 

The writer was unable to find a set of data which satisfies all the conditions 

of Jones' case (1)· Only a few of the sets of resul~s were considered capable 

of partial interpretation by this means. The restrictions on the values of 
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the parameters of the layers render the solutions valid for only a small 

proportion of cases occurring in practice. The application of this case 

to a particular set of results obtained by means of the She11 Vibrator 

is shown in Figure 7. 
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~Programs: WHC37, WHC38). 
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4. THE SOLUTION OF THE WAVE EQUATION FOR THE TRANSMISSION OF 
RAYLEIGH TYPE WAVES 1N A MULTILAYERED SYSTEM - THOMSON-HASKELL MATRICES 

We shall write the differential equations governing the motion of 

the particles of the materials composing the layers o.f a highway structure 

as follows: 

1 
a2cp 

vz<f> 0 and =-. atL 0 a2 
(1) 

v2w ' I .szw o 
=- . 

0 s2 at2 
(2) 

Within each layer, the displacement .. s u arld v ,and bhe ~tresses a arld y 

't' can be derived from the potentials "' and •1• • If ;~, and ''' are zy •o ~ o/o o/o 

assumed periodic both in time and along the x-axis, the potentials can 

be written 

and (1) and (2) become 

and 

<Po = <f>(y)ei(wt-kx) 

d2 f.¥= s21jl dy 

Following Thrower (i), take the solutions of (3) and (4) as 
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(3) 

(4) 



\~1 b3 . ] i(wt - kx) 
~ =~ cosh ry - ;- sinh ry e (5) * 

fib2 ib4 . ] i (wt - kx) 
~ =[--~- cosh sy - ~ s1nh syj e (6) 

The constants b. are to be determined for each layer from the conditions 
J 

at its interfaces. The stresses'·· a and T. , and the displacements u and 
Y xy 

v are given by 

(J 
y 

T xy [ ~ = ~ 2 SxCly 

u=lP_+2..t 
Clx · .()y 

v lP__ll 
Cly ax 

(7) 

Equations (5), (6), and (7) enable the stresses (cr , -r ) and the x xy 

displacements (u,v) in any one medium to be expressed in terms of the 

four constants b, which appear in the expressions for the potential in 

that medium. The relationsh~p is a simple linear one in the b.'s. It 
J 

may be written in the following form: 

*Here k may be either real or complex; if the phase velocity c is 
real, the amplitudes of the potentials remain the same for all distances 
x from the origin. If i is real, it implies that the phase velocity c 
at the free surface is real. If k (and therefore the phase velocity) is 
complex, the amplitude diminishes with increasing x. Such behavior is 
termed a "leaking mode," because of the leakage of energy into the under­
lying layers of the system. The relative values of a , -r , u and v are 
not affected by the choice of k. Therefore, in what fo113~s it does not 
matter whether k is real or complex. 
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W} = qllbl + + ql4b4 

w2 = q2ibl + + q24b4 
(8) 

w3 "" q3lbl + + q34b4 

W4 = q4lbl + + q44b4 

where the vector w. denotes the quanti ties (cry' T /i, 111v, ]1 1u/i). The 
1 xy 

qij's are the elements of the Q-matrix (see Reference (4) Equation (8), 

Page 214). They are obtained by substituting equations (5) and (6) in 

(7). We can write one such set of equations for each layer. If the q' s 

th th are known at the n interface, their values at the (n-1) interface 

can be determined directly, b-ecause the manner of their variation with 

depth is governed by the potentials, Equations (5) and (6). 

th 
If w 1 represents the value of w within the m- layer and at the 

m, m-

(m- l)th interface, then we can write 

(w m-1)1 "" c11 b1 + + c14b4 m, 

(w m-1) 2 = cz1b1 + + C24b4 m, (9) 
(w m-1) 3 = c31b1 + + c34b4 m, 

(wm, m-1)4 = c41b1 + ... + C44b4 

where the c' s are the q 's with a y-coordinate corresponding with the 1(m-l) th 

interface.* The c's are the elements of Thrower's C-matrix (Reference 4, 

Equation 9). Similarly, the stress/displacement elements at the roth interface 

*As each pair of potentials cp, 1J; is true only within a single layer, 
a separate origin of coordinates can be chosen for each layer. If the 
origin is chosen in the top interface, then the y-coordinate of that 
interfaceis zero; they-coordinate of the lower interface is Hm, the 
thickness of bhe nth layer. 
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can be written 

(w h dllbl + + dl4b4 m,m 

(w h = d2lbl + + d24b4 m,m 

(w ) 3 = d3lb1 + + d34b4 
(10) 

m,m 

(w h = d4lbl + + d44b4 m,m 

where the d's are obtained from the q's by putting y = 

of the mth layer. 

H , the thickness m 

th It is possible to solve equations (9) for the b's in them layer 

in terms of the (w l)'s, and we obtain m,m-

bl = c}l (w 1)} + + c'l4<w 1h m,m- m,m-

b2 c21 (w lh + + c24(w 1)4 m,m- m,m-

b3 c31 (wm m-1) 1 + + c"34 (w 1)4 , m,m-
(10 .1) 

b4 = c4I<w 1) l + + c44(w 1)4 m,m- m,m-

where the c-'s are derived from the c's. 

Using Equations (10) makes it possible to write 

(wm m)l ell(wm,m-1) 1 + + e14 (w 1)4 , m,m-

(wtl\,m) 2 e2l(w 1)1 + + e24(w 1)4 m,m- m,m-

(wm m)3 e31(w 1)} + + e34(w 1h 
' m,m- m,m-

(w h e41 (w 1) l + + e44 (w 1) 4 m,m m,m- m,m-

where 

e = e-il ij 
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Assuming that no slip occurs at the interfaces (5', tv 1 = w 1 1 and 
:::..1 m,:m ... · m- ,m-

(wm m)l = e (w . ) + + e14('w . h 
' 11 m-l,m-1 1 m-l,m--1 

(w )2 = e2l(wm-l,m~l)l + + e24(wm-l,m-1)4 m,m. 

(w!D.J7ll) 3 e3l(wm--l m-1)1 + + e34(wm-l m-·l)q 
(11) 

= 
' ' 

Equations (11) relate the stress/displacement elements at the bottom of 

the mth layer to those at the top of the same layer. Using the condition 

o~ continuity at each interface, (11) can be applied to successive layers, 

· starting with the top layer. This yields 

(wn,n}l = fu(wl o)l + + f14(w1 ,oh 
' 

(wn,n)2 f21(w1,oh + + f24(w1 o)4 
' (12) 

(wn ,n) 3 = f31(w1 o)l + + f34(w1 o)4. 
' ' 

(wn,nh = f41 (w1 oh + + f44(w1 0)4 
' ' 

where fij is a function of the eij's which is tedious to express in full, 

although the individual values of fij are easy to compute as the w's (for 

th . 
successive layers upwards from the n layer) are substituted in equations 

th (11) written for the n layer. 

The operations needed in the foregoing can be performed using the 

1I\ethods of linear algebra as indic:ated. .However, it is very much easier 

to use the eqqivale'Q.t manipulations of matrices composed of the elements 

C 1 d., e, and f!; thi$ applies particularly to the oper.;q:ion of obtaining 

tJ:te ~ t s from the ~ 's. The use of thes@ matl('ices appean? to have been 

proposed by ThOPlS!':m (6) and has been d.;scussed by llaskell (7). 

- 34 -



4.1 The Dispersion Equation for a Compound Free Plate 

If the structure consists of a layered :tree plate, with no underlying 

semi-infinite medium, the stresses cr , T are zero on the two free surfaces. 
y xy 

Equations (12) become 

0 fll . 0 + fl2 . 0 + f13(].11vh 0 + fr4CJ1ru/i)r o 
' ' 

0 = fzr . 0 + fzz . 0 + fz3(].11V)l,O + fz4(J1ru/i)l o 
' (13) 

(JlrV)n n = f3l 0 + f32 
' 

• 0 + f33(J1rv)1 ,o + f34(J1lu/i)J 0 

( Jll u/i) = f4l . 0 + f42 . 0 + f43CJ11v)r,o + £44 (JJl u/ii 1 ,o n·-,n 

The first two of equations (12) can be solved for (JliV)l,O and (JJiufi)l,O• 

the displacements on the upper free surface. The second pair can be used 

to obtain the displacements on the lower free surface. Thus 

fr3(J1:J.v)l o + f14(1J1u/i)1 0 = 0 , 
' (14) 

fz3(J1rV)J ,o + fz4(JJlu/i) 1 o = 0 
' 

and 

f33(J11V)l 0 + f 34 (JJl u/i) 1 ,o = (JliV)n,n 
' 

f43(J11V)1,0 + f44(1Jru/i)r o = (Jllu/i) 
' n,n 

(15) 

From equations (15) , the displacements on the upper free surface can be 

non-zero only if 

= 0 (16) 

This is the frequency equation of the system; it contains the phase velocity 

· c as an implicit function of the wavelength L and can be solved by some 

repetitive method. 
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4.1.1 The Displacements in a Compound Free Plate 

When a pair of values (c,L) have been found which make the determinant 

zero in equation (16), the displacement expressed by (J..qu/i) 1 o can be . ,. 

found in terms of (~lv)l o from 
' 

= -

The particle displacement in the x direction (the direction of propagation) 

thus lags by 90° on the vertical displacement. 

The displacements on the lower face may be found from (15), and the 

:tntermediate di$placements from (8). 
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4.2 The Dispersion Equation for a Layered Half Space 

In order to write the dispersion equation for a layered system which 

rests on a semi-infinite medium, we denote the semi-infinite medium by 

the suffix (n + 1), and put m = n + 1 in equation (10.1). This yields 

(b 1) n+l = ell· (wn+l,n~ 1 + + c14<wn+l,nh 

(b2) n+l = c~l·(w +1 )1 + + c24<w +1 )4 (16 .1) n ,n. n ,n 

(b3) n+l csl·(w ~1·+ + c34<w +1 )4 n+l,n . n ,n 

(b4) n+l c4l·(w +l h + ... + c44Cw +l h n ,n n ,n 

where the c -, s are derived from the c' s for the (n+l) th layer; the c' s in turn 

are obtained from the expressions (7) for the stresses _and displacements 

in terms of the potentials <1> and 1/J in the semi-infinite medium, using (5) 

and (6). 

The stresses and displacements are continuous at the interface between 

layer n and the semi-infinite medium, that is 

(w +. 
1 

. ) = (w ) 
n. ,n n,n 

at the interface. Using this condition and the expressions (1~ for (w ), n,n 

(16.1) can be written 

(b 1) n+l =· Jli(wl o)l + + J14(w1 ,oh , 

(b2) n+l j21 (wl o) 1 + + J24Cw1 oh (17) 
' ' 

(b 3) n+l = J31(w1 oh + + j34(w1,o)4 , 

(b4) n+l = j41Cw1 o)l + ·•· + j44(w1,0)4 
' 
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where 

j - c- · f + c- · f ij - il lj i2 2j 

in which the c-'s are calculated for the semi-infinite medium as in (16.1). 

Following Thrower, it is necessary that b
1 

= b
3

, b
2 

= b
4 

in order that 

<f> and t.P may be expressible in terms of exp(-ry) and exp(-sy); r and s 

may be complex. 

Rewriting (17), and substituting for (w
1

,
0
), 

(bl) n+l = j 11 ·0 + j1z·O + j13(1-qvh 0 + j14(ll1u/i)I 0 • ' 
(bz) n+l = hl ·0 + jzz·O + h3(1J}V)} 0 + h4(1Jru/i)} o 

' ' 
(bl) n+l = j31'0+j32·0 + j33('f..qv)1,0 + h4(lllU/i)l ,0 

This yields, on subtracting the third from the first and the fourth 

;from the second 

0 = (jl3- j23)(lJIV)I,O + (j14- j34)(lJ1U/i)1,0 

0 = (jz3 - j43) (]J}V) l 0 + (j24 - h4) (lJlU/i)l 0 
' ' 

As before, the displacements can be non-zero only if 

1 ~13- ~23 
]23 - ]43 

(18) 

When (18) has been solved, the displacements at the surface are related by 

(]Jlu/i)l o , = -
j13 - jz3 h3- j43 

j14 j24 (]J}V)l,O =- jz4- j44 (]J}V)i ,O • 

In the next chapter, the program for obtaining the zeros of equation 

(16) will be discussed. 
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5 • THE COMPUTATION OF THE REAL ROOTS OF THE DISPERSION EQUATION 

5.1 Limitation of the Solution Involving Only Real Roots 

In determining the numerical values of the wavelertgths and phase 

velocities at the free surface in a layered system, it seemed advisable 

to investigate the results obtainable for a compound free plate. This 

solution involves purely real values of phase velocity. The search for 

the zeros of the frequency equation (16 ) involved some points of program­

ming which require consideration. 
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. 
5. 2 Description of the Computation Procedure 

The main object of the program is to generate the determinant (16). 

This is accomplished by first calculating the e 1 s for each layer, in the 

subroutine EMATRX.* The f 1s for the combined system can then be calculated. 

This is done in the subroutine pROMAT by means of the DO loop terminating 

at statement 25 (see Figure 20).** 

After the cycle at which the determinant (16) changes sign, the two 

most recent values having opposite sign are retained, together with their 

corresponding phase velocities. A Newton-Raphson interpolation is used 

to improve the value of the phase velocity CBl by making the determinant 

of the frequency equation VALUE successively closer to zero. The precision 

of the final CBl is set by the constant in the IF statement at statement 

140 + 0002 in the subroutine TRAVEL. Once the Newton-Raphson interpolation 

routine has been entered, it is accessed on all subsequent cycles of com-

. putation until successive values of CBl satisfy the precision criterion. 

Following Thrower, the possibility was considered that .hhe e 1 s may 

introduce precision difficulties owing to the hyperbolic sine and cosine 

terms; these terms become nearly equal for large arguments, and the terms 

involving their differences may be swamped by other t.erms which do not 

contain such differences. Tbe program was, therefore, rewritten,_ using 

*The sets of e's are each 4 x 4 matrices and their continued product 
yields a 4 x 4 matrix; however only a 2 x 2 determinant of this product 
is: required to form the frequency equation. As shown by Thrower [Ref. 4, 
equation (19)], this determinartt can be obtained starting withonly the 
two final columns of e's for the top layer. Subsequent product matrices 
are, therefore, 4 (row) x 2 (column). Half of the resulting product 
matrix is used_ to form the determinant required. 

**Listings of the programs, designated by WHC37 and WHC38, are 
availab-1~ from the Pavement Design Department, Texas Transportation 
Institute, Texas A&M University, College Station, Texas 77843. 
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compound (or delta) matrices instead of the normal matrices for the e's 

(8). It was found, however, that the use of double precision throughout 

enabled results to be achieved by means of the normal matrices which 

are identical with those obtained by the use of compound matrices. The 

use of double precision entails no additional work when programming by 

means of Fortran IV, and the e:x:ectftion time is affected only marginally. 
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6. THE APPLICATION OF THE DISPERSION PROGRAM . 
FOR A COMPOUND FREE PLATE TO THE MEASUREMENTS 

MADE BY MEANS OF THE SHELL VIBRATOR ON 
SECTIONS 1 THROUGH 8 OF THE A&M TEST FACILITY 

In order to show that the theory presented here is at least a 

plausible one, and in order to gain experience with the use of a dispersion 

program of this kind, the computations were applied to eight structures 

within the A&M Test Facility of experimental highway pavements. The 

method of measurement has been described elsewhere (9) and the results 

were used in the form of the plots .shown in Figures 8 through 15. The 

theoretical relationships are shown on the overlaid plots. In these 

figures, both the wavelength and the reciprocal wavelength are plotted 

on a common base of frequency, each providing a sensitive parameter where 

the other fails to do so. Further, the closely rectilinear form of the 

plot when the reciprocal wavelength is used is he~pful in determining 

when the successive branches of the dispersion curve are entered. 

The program was suppl:j_ed with the experimental points as trial values; 

the elastic parameters were obtained from the measurements made by means 

of the Dynaflect, assuming a Poiss6n's ratio of 0.45 as described in Part 

1 of this report. The densities were obtained from nuclear measurements 

both during and after construction, an& their relative values are probably 

within 5% of the true relative values. The scale factor for converting 

the dimensionless output from the computations to actual values is deter-

mined by the modulus established for the material composing the top layer.* 

*The subgrade thickness was set at 5.0 feet. Increasing the subgrade 
thickness from 3.0 to 5.0 feet decreased the calculated frequencies 
corresponding to the roots of the frequency equation by 3%. 
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The writer unfortunately knows of no grounds on which the use of 

Dynaflect results for this purpose can be justified--the expected 

frequency effect on the elastic parameters of such granular materials 

has not been investigated. There was no alternative but to use these 

results, however. The further use of elastic parameters obtained by means 

of readings from the Dynaflect can·. be justified, partly at least; by the 

need for relative values only, 

As the zeros of the frequency equation for the system are very closely 

spaced, the agreement between the theoretical and experimental values 

indicates only that the theory is a·plausible one. The. program selected 

the nearest zero to the experimental value, supplied in dimerisiohless 

form. Neighboring modes are shown in a few cases, indicating the order 

of the discrepancy which may be expected. 
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7 • . CONCLUSIONS 

While the agreement between the theory and the experimental results 

is by no means decisive, the writer feels that much information may be 

obtained from the present work. 

Compa;risons between results obtained for elastic moduli by wave 

meth.ods and those found using observations made by means of the Dynaflect 

are open to suspicion. The Dynaflect measurements are made at a loading 

;frequency of eight cycles per second, while the wave measurements are 

made at frequencies of hundreds or even thousands of cycles per second. 

The values of the elastic parameters may change appreciably between these 

limits of frequency. The writer feels that this point has not been 

investigated sufficiently under highway conditions to ertable conclusions 

to be drawn. The elastic parameters obtained using measurements obtained 

by means of the Dynaflect have been used as a guide only, and are not 

1:;ntended tor direct comparison. 

As indicated in Part 1 of this report, the values of the elastic 

parameters obtained usirtg observations made by means of the Dynaflect may 

be incorrect due to errors inherent in the Dynaflect. 

The assumption that the whole or part of a highway pavement vibrates 

as if it were a free plate is suggested by the fact that the plots of 

reciprocal wavelength against the frequency form sets of straight lines. 

This is the form taken by similar plots obtained from the measurements 

made on a free plate. As shown in Chapter 2, it leads to results which 

are qualitatively correct and which may be used for the purpose of ranking 
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within a group of materials. 

Some engineers believe that the velocity at the free surface of a 

layered structure represents the phase velocity of waves (presumably 

shear waves) at a depth equal to.half of the wavelength. This hypothesis 

can be tested by plotting the results in Figures .8,.-15 on the basis of phase 

velocity against wavelength. It .is seen that the hypothesis holds, if at 

all, in i$olated cases only. 

The writer wishes to emphasize that the theoretical frequency-dispersion 

,,/!urves of wavelength (Figures 8-15) were obtained using the values of the 

Young's moduli found by means of the Dynaflect. There is no suggestion · 

that the reverse operation can be performed: the elastic parameters of· 

the materials cannot be determined by this means from the wave measurements 

which were made. The reverse operation is not possible because there is a 

large variety of structures which correspond (theoretically at least) with 

a given dispersion curve. 
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7.1 Applications of the Simp,le Free Plate Solutions 

The theory used for the analysis of free plates is very well established 

and deserves application where the physical conditions justify its use. 

Information concerning the elastic parameters and the thicknesses of 

reinforced concrete bridge decks may be determined by this means. The 

wavelengths used should equal or be less than the thickness of the deck. 

The frequency of excitation should, thetefore,,exceed ten kilocycles per 

second; :fifty kilocycles per second is the lowest desirable upper limit. 

Another application is in determining the thickness, and secondarily the 

extent, of delamination in decks and pavements; the elastic parameters of 

delaminated material can be found by this means. 
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7.2 The Further Application of the Jones' Solutions 

There may be. an advantage in applying the solutions discussed by 

Jones, particularly where clay subgrades are prevalent. Extensive 

computations could be used, in graphical form, to fit a given frequency 

dispersion curve by cornparison,·thus deducing the associated structure. 

Examples of such applications are given by Vidale (10). 
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7.3 Further Investigation of the Roots of the Dispersion Equation 

An investigation should be made of the complex roots of the dispersion 

equation for a layered half space. When the behavior of these is known~ 

it should be possible to investigate the displacements within the media. 

The next aim should be to determine the cause of the change in the phase 

velocity, well known to the operators of the field equipment, which often 

occurs as the pick-up is moved radially from the source of vibration. 

This change may be related to the relative damping of the various modes 

of response of the structure. 
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7.4 A Note on Computation which is the Reverse of that Performed by 
the dispersion program for a compound free plate 

The dispersion programs WHC37 and WHC38 are not adequate for engineering 

purposes. The problem which engineers face is as follows: given the 

frequency dispersion of the phase velocities, as in Figures 8-15, find 

the elastic parameters of the materials and the thicknesses of the layers 

composing the structures. Owing to the close spacings of the.zeros of 

Equation (16), the solution is not unique and, therefore, a large nuinber 

of structural parameters may exist which satisfy the equation. 

If indeed it is possible to perform the reverse calculations of those 

performed in the programs mentioned, the problem which engineers face will 

still not be solved. This is particularly true in view of the assumption 

of a compound free plate, which is an inaccurate model of a highway structure. 
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----------------------------

APPENDIX A - A NOTE ON THE ARBITRARY CONSTANTS INVOLVED 
IN THE SOLUTION OF THE DISPERSION EQUATION IN A 

LAYERED HALF-"SPACE 

Equations (5), (6) and (7) enable the stresses (o , T ) and the y xy 

displacements (u, v) in any one medium to be expressed in terms of the 

four constants bj in the expressions for the potentials for that medium. 

Consider a system composed of n layers, each of finite known thickness, 

overlying a semi-infinite medium; all the elastic parameters are assumed 

known, leaving the bj's as the only unknowns. There are 4i1 such unknowns 

introduced by then layers, and four tnore due to the semi-infinite medium, 

a total of 4 (n+l) unkrtowns. Equations for these unknowns are established 

as follows: 

Free Surface: 

Interfaces: 

Stresses (oy, 'xy) are zero 

There are (n-1) layer/layer inter-

faces. There is 1 layer/semi-

infinite medium interface. The 

stresses (o ; T . ) and the dis­y xy 

placements (u,v) are continuous, 

yielding 4 equations for each 

interface. 

Semi-infinite Medium: Potentials ~ and $ 

vanish as y becomes large 

Total 

No. of Equations 

2 

4(n-l) + 4 

2 

4 (n+l) 

This number of equations is sufficient to solve for the arbitrary constants bj. 
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However, there is no need to determine all the arbitrary constants 

and much algebraic work is avoided by not solving for the b's but by 

adopting a fresh approach. Start by considering the stresses and dis-

placements in the semi-infinite medium. As these must vanish for infinite 

values of y, they are governed by only two arbitrary constants and are 

relatively simple in form. Using the condition of continuity of stresses 

and displacements over an interface, we can write expressions for these 

th quantities in the n layer, putting yn = hn' and equate them to the 

expressions for the same quantities in the semi-infinite medium, putting 

yn+l = 0*. A similar procedure can be adopted, relating the quantities 

in the (n-l)th layer (putting y 
1 

= h 
1

) with those in the nth layer 
n- n-

(putting y = 0), and in turn with those within the semi-infinite medium. 
n 

Continuing upwards, an expression for the stresses and displacements 

at the free surface is found. If the displacements at the free surface 

are to be non-zero, a sub-matrix of the product matrix formed (by fol-

lowing the stresses and displacements upwards from the semi-infinite medium) 

must be zero. This is the frequency equation of the system. Its zeros are 

found by trial and error. 

The displacements can be found, if required, as described in Chapter 4. 

*As the expressions for each pair of potentials ~' ~hold true only 
within the-medium for which they are intended, it is correct and much easier 
to establish origins of the y-coordinate in the upper face of each layer. 
It is correct to do this because the y for each layer is never required 
outside that layer; it is easier because we are saved the inconvenience of 
keeping a tally of layer thickness in specifying a y coordinate within a 
multi-layer structure. 
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APPENDIX B - FORTRAN PROGRAMS WRITTEN FOR THIS WORK 

The following programs have been written for use w~th a Fortran 

compiler, using the language Fortran IV (G-level). They operate also 

on the Watfor compiler. Execution is macbl faster in almost all cases if 

the latter compiler is used. Basic language has been used as far as 

possible, in order to minimize the changes n~cessary for any other 

Fortran compiler. 

In the followilmg, "f" denotes a floating point field in a punched 

card. It should in general contain a decimal point. For example, 

H;ff;f;fff;ffff" denotes a ten-column data field, starting in column z~ro of 

the card; and including one column in which there is a decimal point. 

Similarly, "b" denotes a blank column, and "n"' denotes a right-justified 

field for fixed-point data. 

The notation is as follows: 

CB, CBl 
XK 

HH, H 
ALPHA 

BETA 
V, STGMA 

XLMDA, XMU 
RHO 

EM 

The phase velocity of waves at the free surface 
The wave number, expressed as 21T/wavelength 
A layer thickness 
Phase velocity of compres-sion waves in a medium 
Phase velocity of shear waves in a medium 
Poisson's ratio 
Lame's constants 
Density of the medium (Mass per unit volume) 
Young's modulus 

Suffixes or subscripts (1, 2, ••• ) denote a particular medium within 

the structure. The surface layer is medium /11. 

Almost all the inputs can be expressed in terms of relative rather 

than absolute values; this permits the programs to be used with a variety 
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of systems of units. The following quantities in the programs are independent 

of the unit system: 

RHO (the density); EM (Young's modulus); HH (layer thickness); 

SIGMA (Poisson's ratio). 

The wavelength (WLNGTH) must be expressed in the same units as the 

layer thickness, however. The phase velocity at the free surface (CBl) 

is the ratio c/B 1, where B1 is the phase velocity of shear waves in the 

material composing the first (the top) layer and c is the phase velocity 

at the free surface. In the output from the programs, the frequency (FREQ) 

is the dimensionless phase velocity divided by the wavelength WLNGTH, also 

in dimensionless form. 
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B.l - Fortran Programs Written for the Free Plate Solutions 

The free plate solutions of Lamb (see Chapter 1) have been programmed 

for use with the Fortran IV (G-level) or the Watfor compiler. 
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B.l.l Program Which Computes the Solution to the Anti-Symmetric Mode 

The data cards for the program to compute the solution for the anti­

symmetric mode (WHC33A) are as follows: 

First card type 

Column 1-10 f •••. f 

Column 11-80 b •.•. b 

where ffffffffff is a ten-column field containing S/a. 

Sec?nd card. tYE;:. 

Column 1~80 f .••• f 

where the f's are seven fields of ten columns each containing the 

values of c/B for which results are required. If more than seven 

fields of c/B are needed, a 999. should be punched in columns 72-

80 and the subsequent velocity values punched on the next card; other­

wise columns 72-80 should be left blank. 

If a zero is read in a field where a value of c/S is expected, 

the program expects to read a card of the first type as the subsequent 

card. The program can be terminated by making the values of S/a in 

the first card a negative quantity. The flow diagram of the program 

is shown in Figure 16. 

- 55 -



READ & 

F 

WRITE HEADING (1), INCLUDING Sa 

WRITE HEADING (2), INCLUDING SIGMA 

WRITE HEADING ~3), INCLUDING A COLUMN FOR A 

READ NEXT f (ten fields to a card) 

F 

A tlo 4rs 
·b2k2 

[(.. cc2\ "T 1 
XITi= tanh l~ - ~~ /~j 

COUNTER TO ZERO 

FIGURE 16 - Anti-syltmletric mode of free plate - flow diagram of 
program. 
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X = 

B = XITl/A 

_l 
tanh · 

XIT2 = tanh 

CAILCULATE ~ 

CALCULATE(f) /x 

WRITE*' x, 
1 (f)/x 

X 

F 

COUNTER READING 

AlJD 1 TO 
COUNTER 

XITl XIT2 

FIGURE 16 - Anti-symmetric mode of free plate - flow diagram of 
program (continued). 
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B.l.2 Program which Computes the Solution to the Symmetric Mode 

The data cards for the program which computes the solution to the 

symmetric mode (WHC33E) are as follows: 

First card type 

Column 1-10 f •••• f 

Column 11~80 b .•• ,b 

'jhere ffff;ffff£f is ten-column field containing S/a. 

Second card type 

Column 1-80 f .•.. f 

where the f's are fields of ten columns each, containing the values 

of c/S for which results are required. If less than eight fields 

are required, the last field should contain not zeros bu.t 999.; the 

program then expects the next card to contain a new value of S/a. 

If the latt:er is zero the program terminates. 

NOTE: Values of c/S. in this program are greater than unity. 

The flow diagram for the program is shown in Figure 17. 
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READ ~ 
a 

F 

WRITE HEADING(!), INCLUDING S/ct 

WRITE HEADING(2), INCLUDING SIGMA 

WR,ITE HE.tVJIN,G(3), INCLUDING A COLUMN FOR A 

READ NEXT f (ten fields to a card) 

F 

A_ 4~s 
- ·bZkT 

FIGURE 17 - Symmetric mode of free plate - flow dl:agram of program. 
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COL 5 ~ -A * XiTl 

X= 

1 
7 -1 

(n 2 /~1 2 - 1) /tan (COL 5) 

F 

CALCULATE 1/'X 

CALCULATE (C:/8) /X. 

WRITE 6/f3, X, 1/X, (t./f3)/X., A 

COUNTER READING 

( NOTE Ci. > c ONLY I 

ADD 1 
TO 

COUNTER 

XiTl = XiT2 

FIGURE 17 - Symmetric mode of. ·free plate - flow diagram of program 
. (continued) • 
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B.2 Fort;rran Programs Written for the Jones' Solutions 

B.2.1 Program Written for the Computation of the Solution of Jones' 
Equation (26), Reference'.'" (1). 

This program (WHC33B) computes the numerical values of the solutions 

to Jones' equation (26), reference (1). The wavelength, wave number and 

frequency are computed for input values of the phase velocity c/S1· 

First card·type 

The first card is punched as follows: 

Columns 1-60 f. ... f 

Columns 61-80 b •••• b 

wilere the f' s are six fields of ten columns each. They contain the 

following in order: S/a, a 1/a2, a 1/a3, P3/p2, p 3 /~l• H2/H1 

Second card type 

The second card is punched as follows: 

Columns l-8b f .... f 

where the f's are eight fields of ten columns each. They contain 

the values of c/Si for which results are required. Any field may 

contain zeros, and if it does the program will read the subsequent 

card as a card containing values of c/81· If 999. is punched in 

any field which is expected to contain a value of c/S1, the next 

card read will be data of the type contained in cards of the first 

type; the program terminates if it encounters a blank or a zero 

in the first field of a card of the first type. 

The flow diagram of the program is shown in Figure 18. 
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S1 a1 a1 P3 P2 H2 
f.RINT-PUNCH HEADING (1), INCLUDING ~, az, (i3• P2. • Pl Hl 

READ NEXT ~ 1 (ten fields to a card) 

F 

moL 3 = itf. ~ ,c2 li 1 2 ;:~t 40i!l aot \31lfs aoF:i Cl .. 

COL 5. = c2 I S12 • · s1 
2 I a 12 ; COL 6 = 1 - COL 5 

COL 7 .., 2'. - o2 ¢~i 2 ; COL 8 = COL 7 * COL 7 

COL 10M= (COL 7 * COL 7 * COL 6 - 4. * COL 4) * 8. 

COL 11 = (tiiSl) ** 4; COL 13 = COL 5 * (a 1 1a~) 2 

COL 14 = 1. - COL 13; COL 15 = COL 5 * (a1 1a3) 2 

COL 16 = 1. • COL 15; R = (p3IP2) * SQRT (COL 14ICOL 16) 

COL 18M = (H2IH1) * SQRT (COL 14) 

COL 20M = (p2IPI)ISQRT (COL 14) 

PRINT-PUNCH HEADING (3) 

COUNTER TO ZERO 

XiTl = 0 

FIGURE 18 _Jones' Equation (26) Lower Branch- flow diagram of 
program. _62_ 



COL18 = COL18M*2./X 

COL19 tanh COL18 

COL 20 = COL 20M* (R+COL19)/(l.+R * COL 19) 

COL 21 = COL 20 + 2./X 

COL 22 = COL 11 * 12. 

X = (COL 10M/COL 22) ** (1/3) 

F 

CALCULATE 1/K 

PRINT-PUNCH 'c/B, :il: , 1/*-., (·.C/~) /x . 

COUNTER READING 

ADD 1 
TO 

COUNTER 

XiTl = XiT2 

FIGURE 18 - Jones' Equation (26) Lower Branch - flow diagram of 
Program (continued). 
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B.2.2 Program Written for the Computation of the Solution of Jones' 
Equation (28), Reference (1) 

This program (WHC33D) computes the numerical values of the solutions 

to Jones' equation (28); reference (1). The wavelength, wave number and 

frequency are computed for input values of the phase velocity c/S1· 

The data cards for the program are as follows: 

First card type 

Columns 1-70 f •••• £ 

Columns 71-80 b •••• b 

where the f's are ten-colitmn fields containing the following input 

parameters: 131 /al, a 1 /a2, <Y. 1 /a3, p3/p2, p2/pi, H2/Hlt mode number 

required (1~, 2.,.;.) 

Second card type 

Columns 1-80 f ••• ;f 

where the f's are ten-column fields, each containing a value of 

c/S 1 for which results are required. If a field is blank or zero, 

the pz:ogram will read a further card of the second type. If the 

field contains 999. the program will read the subsequent card as 

one of the first type. 

The flow diagram of the program is shown in F:l.gure 19 ~ 
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FIGURE 19- Jones' Equation (28) Intermediate Branch -flow diagram 
of program. 

81 en ct1 P3 Pz Hz 

READ ~· az, ~· p;-• P!' ii"l (All on one card) 

READ NEXT C/81 (ten fields to a card) 

F 

CAl = CBl * BlAl 

CA2 CB2 * BlAl * AlA2 

CA3 CBl * BlAl * AlA3 

RlK = SQRT (ABS (1. -CAl* CAl)) 
R2K = SQRT (ABS (1. - CA2 * CA2)) 
R3K = SQRT (A3S (1. ~ CA3 * CA3)) 
SlK = SQRT (1. - CBl * CBl) 
BSQD = (2 - CBl * CBl) ** 2 

R = RH03R2 * R2K/R3K 
PSI = ATAN (R) 
S = RlK * SlK 
R2H2S·= SQRT (ABS.(l.- CA2 * CA2)) * H2Hl 
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XiT = V 
RlH • (2. /V) * SQRT (ABS (L - CAl * CAl)) 
SlH = (2. /V) * SQRT (ABS (1. - CBl * CB1)) 

XNUM = (BSQD * BSQD + 16 * S * S) * SINH(R1H) * SINH(S1H) 

.+ 8 * BSQD * S * (1. - COSH(R1H) * COSH (S1H)) 

DENOM = (BSQD * COSH(RiH) * SINH(SiH) 

- 4 * S * SINH(R1H) * COSH(SlH)) * Rlt02R1 * (R1K/R2K) 

* {CBl ** 4) 

ARG s ATAN(XNUM/DENOM) 

R2H2 = ARG - PSI 

V = 2 * R2H2S/R2H2 

WNMBR = 1./V'; FREQ =- CSl/V 

F 

0------t•liil·'l . WRITE ¢/B'. WNMBR, FREQ~ v' KOUNT I v ---~_...;..,__,----..J· 

KOUNT = 

KOUNT + 1 

FIGURE 19 - Jones' Equation (28) Intermediate Branch -flow diagram . 
of program (e.ontinued) • 
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B.3 Fortran Program Written for the Computation of the Real Roots of 
the Frequency Equation for a Compound Free Plate (Program Designated 
by WHC37) 

B.3.1 Data Cards 

First card type 

Columns 1-72; Title' and description of data. 

Columns 73-80: Floating'Point Constant "WSWTCH" 

If WSWTCH 0.0 "VALUE'' is not printed 

If WSWTCH = 1.0 "VALUE" is printed with the final table of output. 

L;f WSWTCH;:: 2.0 "VALUE" and its corresponding trial velocity 

"CBl" are printed after each cycle of calculation. 

Second card type 

Columns 1-2: not read 

Column 3: # of layers of finite thickness plus unity 

Columns 4-6: not read 

Columns 7-78: Twelve floating point fields of six columns each 

containing, in order, EM(l), V(l), EM(2), V(2), 

... , EM(6), V(6). The program will read only 

the number of pairs given in Column 3. 

Third ca,rd trpe 

Columns 1-6: not read 

Columns 7-42: six floating point fields of six columns each, 

(:ontaining RHO(l), RH0(2), RH0(3), ... , RH0(6). 

The program will read only the # of values given 

in Column 3 of the preceding card of the second 

type. 
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Fourth card type 

Colunms 1-36: 

Fif:fth card type 

Six floating point fields of six colunms 

each; containing HH(l), HH(2), ... , HH(6). 

Colunms 1-6: The wavelength fbr which results are required, 

in six-colunm floating point form 

Celunms 7-18: The trial value of phase velocity at which 

the search for a root is to start, and the 

increments to this value for the initial sweep; 

both are in six-column floating point fields, 

and both are expressed as a fraction of BETA(l). 

The data set may include any number of cards of the,fi,fth type in 

order to obtain the results required. If the program expects a card of 

the sixth type and encounters a blank, the subsequent card will be read 

as a new title card (card of the first type); if the expected title card 

is ,supplied, the printer will advance one page. This permits termination 

withdut an error record on the page containing the computed output. 

All cards, except those of the fifth type must be in' sequence. 
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B. '3. 2 Description of the Program 

The program consists of a main program, five subroutines and an 

arithmetic function; the program involving compound matrices has one 

less subroutine.* A flow diagram of the program is shown in Figure 20. 

The operations performed by the routines are as follows. 

MAIN MAST 

This routine performs the input/output operatings and does some· 

calculation of parameters. 

TRAVEL TRASTR 

This subroutine calculates a pair of values (CBl, WLNGTH) which 

satisfies the frequency equation (16). Its main function is to calculate 

the e's for each layer. This is performed in the subroutine EMATRX 

ESTAR which is accessed through TRAVEL. The subroutine PROMAT PROMST 

is also accessed~* The TRAVEL TRASTR carries out a Newton-Raphson 

interpolation which approximates the root of the frequency equation CBl 

to the accuracy specified. The accuracy is controlled by the IF state-

ment at statement 140 + 0002; this statement contains a constant specify-

ing half of the greatest difference between successive values of CBl 

which is acceptable for the result to be printed as final. 

*The program in which compound matrices have been esed has been 
renamed in order to avoid its mistaken use. The names of the routines 
have been altered as follows: MAIN MAST; TRAVEL TRASTR; 
EMATRX ESTAR; (GMATRX GSTAR); PROMAT PROMST. Owing to 
the resulting economy of programming, the subroutine corresponding with 
CHECK is not required in the program employing compound matrices. 

**The subroutine GMATRX 
future development. 

GSTAR has been included to allow for 
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READ TITLE AND DATA 

WRITE TITLE AND DATA 

CALCULATE LAME CONSTANTS , XLMDA & XMU 

CALCULATE ALPHA & HTA IN EACH LAYER 

READ WAVELENGTH AND A TRI~ SOLUTION 

T 

IMPROVE THE TRIAL SOLUTION BY MEANS 

OF THE SUBROUTINES TRAVEL OR TRASTR 

WRITE OUTPUT 

FIGURE 20 - Program for determining the rea! roots of the frequency 
equation for a compound free plate - fl<lw diagram of program. 
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FIGURE 20 - Program for determining the real roots of the frequency 
equation for a compound free plate - flow diagram of 
program (continued). 

(121) 
INCREMENT THE TRIAL SOLUTION 

F BACKTRACK CB1 TO MOST RECENT 

RESIGN, RETURN 
TO MAIN 

(9001) 

RETURN TO MAIN 

NON-UNITY VALUE, DECREASE INCREMENT 

F 

WRITE "CB1" IF SO DIRECTED BY "WSWTCH" 

(130) 

CALCULATE PARAMETERS A, R, S & T 

CALCULATE THE CONVERGENCE TEST: "VALUE" 

BY MEANS OF THE SUBROUTINES ESTAR, 

GSTAR AND PROMST. 

(1371) 

WRITE "VALUE" IF SO DIRECTED BY "WSWTCH" 

(138) 
~--------------~------------~ 

SAVE PREVIOUS TWO VALUES OF "VALUE" 
AS DELTA1 AND DELTA2 CYCLE EXCEPTED) 

-71- T 

(140 + 0001) 

F 

INTERPOLATE 
ROUTINE, 

USING 
XTERPL. 

(300 + 0006) 



EMATRX ESTAR 

, This subroutine calculates the values of the e's {or the corresponding 

compound matrix) • 

PROMAT PROMST 

This subroutine calculates.the values of the f 's and the element:!'; 

of the determinant which is used as the frequency equation. 

CHECK 

This subroutine calculates the value of the determinant used as the 

frequency equation. The result is returned to the subroutine TRAVEL 

TRASTR for testing. 

The arithmetic function XTERPL 

This function performs the Newton-Raphson interpolation of a value 

of the determinant of the frequency equation, and the corresponding phase 

velocities. 
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APPENDIX C - WANG PROGRAMS WRITTEN FOR THIS WORK 

C.l A Description of the Wang Computer 

The Wang Model 360 computer is a desk instrument with four storage 

registers and two addition/subtraction registers. It can be programmed 

by means of a machine language code of up to 80 steps punched on a 

standard IBM card. All calculations are made in floating point with 

fourteen-digit accuracy, although only the ten most significant are 

displayed; the indication of an error due to floating point overflow 

occurs when the number registered exceeds 1010 . Hardware subroutines 

are available for the following operations: add, subtract, multiply, 

divide, square, square root, natural logarithm and exponential. A 

library of sub-programs is available for routines such as trigonometric 

functions and statistical calculations. 

This computer was used in the present work for the following: 

(1) Programming the Jones' solutions (!); it was found practicable 

to solve these equations by iteration, as the comparative slowness of 

the Wang computer was outweighed by its accessibi.lity relative to an 

IBM360. 

(2) Statistical calculations such as the determination of mean 

square errors and li~ear regression coefficients. 

(3) Calculations of compression and shear wave velocities in 

elastic materials as functions of the Lame constants; relationships 

between the Lame constants, Poisson's ratio and Young's modulus. 
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C.2 Notes on the Programs Written for the Wang Computer 

The set of programs consists of cards which are described in this 

Appendix. The following information is available in TTI files. 

(1) Details of the statements in each program; the comments on these 

sheets are intended to permit each program to be followed step by step. 

when the cards are punched afresh or if a card is damaged. Detailed 

operating instructions are included. 

(2) Flow diagra~s, showing whi~h cards are to be combined in order 

to perform the operations intended, and the sequence.in which they are to 

used. Abbreviated operating instructions are given on the diagrams in 

order that an operator accustomed to the use of the programs need refer 

only to the block diagrams for directions and not to the d-etailed sheets 

giving the actual statements. 

(3) Tests are given for each group of programs, which include the 

:intermediate readings and the final results for typical values of the 

parameters. 

Symbols used: 

SR indicates "store in s.torage register 0, 1, 2, or 3" 0;1,2,3 

indicates "add, subtract to adder 'left, 

right" 

The contents of the storage registers are shown enclosed in a box thus, 

d..· ~ 
c:. 2. 
b I 
Q. 0 

indicates that the numbers represented by the symbols a, b, c, dare 

held in registers 0, 1, 2, 3 respectively. 
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APPENDIX D - LIST OF FORTRAN PROGRAMS WRITTEN FOR THIS WORK 
(Available in Texas Transportation Institute Files) 

Designation 

WHC33A 

WHC33B 

WHC33C 

WHC33D 

WHC33E 

WHC33F 

WHC35 

WHC36 

WHC37 

WHC38 

Description 

Antisymmetric waves in a simple free plate. Lamb 
Solution. Q = 0. 

Jones (!) Lowenbranch, Equation '(26). 

Jones (l) Intermediate branch, Equation (23), 
short wavelengths only. 

Jones (1) Intermediate branch, Equation (28), 
long wavelengths . 

Symmetric waves in a simple free plate. Lamb 
solution. P = 0. 

Rayleigh-type waves in a structure consisting of 
a solid layer overlying a solid semi-infinite 
medium Ewing, Jardetzky and Press (~) Equation (4-202) 

Data checking program for WHC36 

Program for finding the values the Young's moduli of 
the materials composing the layers of a highway 
structure, using the deflection basin as input. 

Program for calculating the points on the frequency 
dispersion curve of phase velocities for a compound 
free plate. 

Same as WHC37, employing compound (or delta) matrices. 
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APPENDIX E - WANG PROGRAMS 
(Available in Texas Transportation Institute Files) 

x = wavelength/~Hl 

Designation Description 

681.08 

681.09 

681.1 

Lamb solution Q = 0. Set trial XITI in R . 
0 

Lamb solution Q = 0. Set parameters in registers R1 , 
R2 , R3 (R

0 
is unaffected) 

Lamb solution Q = 0. Iterate x. 

CO~lliENT: 681.08, 681.09 and 681.1 form the set for iterating the 
Lamb solution Q = 0. 

681.2 

681.3 

Lamb solution P 0. Find tan l/2sH. 

Lamb solution P = 0. Complete the iteration cycle 
for determining x. 

COMMENT: 681.09, 681.2 and 681.3 form the set for iterating the 
Lamb solution P = 0. 

681.41 

681.3 contains an arctan routine, the result being 
available at the first stop (step 68); the argument 
in radians must be in adder left at the start. 

Jones Equation (26), for two surface layers over­
lyinga semi-infinite m~dium. Lower branch. Set: 
up parameters. 

681.42 Jones Equation (26), for two surface layers over-
lying a semi-infinite medium. Lower branch. Iterate 2/x. 

CO~ENt: 681.41 and 681.42 form the set for iterating Jones 
Equation (26). 

681.50 Jones Equation (28), for two surface layers over-
lying a semi-infinite medium. Intermediate branch. 
Determine parapmeters which may be required for 
checking manually the corresponding Fortran program. 

681.51 Jones Equation (28), for two surface layers over-
lying a semi-infinite medium. Intermediate branch. 
Calculate multipliers. 

681.52 Jones Equation (28), for two surface layers over~ 
lying a semi-infinite medium. Intermediate branch. 
Iterate 2/x (1st card) 
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Designation.· 

681.53 

681.54 

Description 

Jones Equation·(z8), for two surface ~layers over­
lying a semi-infinite medium. Intermediate branch~-
Iterat~ 2/x '(2nd card) -~·· 

Jones Equation (28), for two surface layers over­
lying a semi-infinite medium. Intermediate branch. 
Iterate 2/x (3rd card) 

COMMENT; 681.51, 681.52, 681.53, and 681.54 form the set for 
iterating Jones Equation (28). 

681.61 Jones _Equation (23), for two surface layers over-
lying a semi-infinite medium. Intermediate branch: 
short wavelengths. Calculate parameters. 

681.62 Jones Equation (23), for two surface layers over-
lying a semi-infinite medium. Intermediate branch: 
short wavelengths. Determine tan (r

2
H

2
). 

681.63 Jones Equation _(23), for two surface layers over-
lying a semi-infinite medium. Intermediate branch: 
short wavelengths. Determine 2/x. 

COMMENT: 681.61, 681.62 and 681.63 form the set for solving Jones 
Equation (23). 

681.7 Determine Poisson's ratio, gmven the ratio S/a. 

681.71 Jones Equation (24), for two surface layers over-
lying a semi-infinite medium. Lower branch: 
short wavelengths. Card 1. 

681.72 Jones Equation (24), for two surface lay~rs over-
lying a semi-infinite medium. Lower branch: 
short wavelengths. Card 2. 

681.73 Jones Equation (24), for two surface layers over-
lying a semi-infinite medium. Lower branch: 
short wavelengths. Card 3. Determine 2/x. 

COMMENT: 681.71, 681.72 and 681.73 form the set for solving Jones 
Equation (24) 

682 Inverse Chevron. Linear law for log (y). Determine 
parameters. 
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Designation 

684 

Description 

Inverse Chevron. Square law for log·, (y) . Determine 
parameters used as input for WHC36, Fortran program. 

COMMENT: 682 and 68a require Chevron calculations, with theE's for 
the layers spaced factors of two apart. Three Chevron cal­
culations are needed for each Wang program input. 
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ADDENDUM - PROGRAM FOR COMPUTING THE DISPERSION 
CURVE IN A LAYERED HALF SPACE 

A program was written with the object of computing the frequency 

dispersion curve of phase velocity in a layered half space (WHC39). The 

stiffness of the materials composing the layers is entirely arbitrary. 

The data cards are the same as those for the programs :;which compute 
-~ 

the dispersion curves in a compound free plate, except for the cards which 

provide the starting points for the trial solutions. The format of these 

cards is as follows: 

Cols. 1-6, 7-12 The real and imaginary parts of the value of WLNGTH 
for which. a solution is required; the imaginary part 
may be left blank if desired, and the program will 
compute it in such a way as to yield a purely real 
value of the frequency FREQ. 

Cols. 13-18, 19-24 The real and imaginary parts of the trial value of 
the phase velocity CB1 at which the search for a 
root is to start. 

Cols. 25-30, 31-36 The real and imaginary parts of the increment to 

RESULTS 

the trial value of the phase velocity; this increment 
will be used in the initial search for a solution. 

The writer has not succeeded in finding the true zeros of the dispersion 

Equation (18) by means of this program. An initial search was carried as 

far as a zero on the real axis of CBl; this was followed by a search for 

a zero (in the imaginary part of the determinant representing the frequency 

equation) along the negative imaginary axis of CBl. The point reached in the 

imaginary plane of CBl was used as the center of a spiral of decreasing radius, 

restricted to negative values of the imaginary part of CBl. Whenever a small 

increment along the spiral produced simultaneous changes in sign of both 

parts of the solution criterion (the determinant of Equation 18), the center 

of the spiral was moved in that direction. 
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The impression was gained that roots exist in the vicinity of points 

shown in Figure 21. There appear to be fewer roots of the frequency 

equation in this case than in the case of the equation relating to a 

compound free plate. An approximate fit of the experimental points is 

obtained if the phase velocity of shear waves in the top layer is taken 

as 2500 feet per second. Assuming a value of 0. 45 for Poisson's ratio, · 

the value of Young's modulus for the material composing this layer is 

600,000 lb./inch, about twice that obtained as the result of observations 

made by means of the Dynaflect. 

LIMITATIONS 

1. The program requires values of the Young's moduli and the densities 

of the materials composing the structure as data. It does not perform the 

reverse operation required by engineers of calculating the elastic parameters 

of the materials composing the structure, using the dispersion curve of 

phase velocities as data. 

2. There is no certainty that roots exist in the vicinity of the sign 

changes which are used here as a means of improving the trial phase velocity 

CBl. 

3. The program has not been fully tested and may contain significant 

malfunctions. 
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SECTION NO. 5 

FIGURE 21 - P'lot of wavelfimg.th against frequency, Texas A&M Test: 
Facility - Section 5. 

The squares show the calculated results for a layered half space 
(Program: WHC39) • 
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