TTI-2-9-81-297-1F

TEXAS TRANSPORTATION INSTITUTE

STATE DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION

COOPERATIVE RESEARCH

FIELD EVALUATION OF THE TEXAS SEAL COAT DESIGN METHOD

RESEARCH REPORT 297-IF STUDY 2-9-81-297 HIGHWAY MATERIALS AND PAVEMENT SYSTEMS

TECHNICAL REPORT STANDARD TITLE PAGE

				JIANDARD TITEL AU
1. Report No. TX-85/297-1F	2. Government Acce	ssion No. 3.	Recipient's Catalog	No.
4. Title and Subtitle		5.	Report Date	· ·
Field Evaluation of the Tex			June 1985	
Coat Design Method	as seal	6.	Performing Organiza	ition Code
7. Author's)			Performing Organizo	tion Report No
R. J. Holmgreen, Jon A. Epp and Bob M. Gallaway	s, C. H. Hugl	nes,	Research Rep	ort 297-1F
9. Performing Organization Name and Address		10.	Work Unit No.	
Texas Transportation Instit	ute			
The Texas A&M University Sy	stem	11.	Contract or Grant N	lo.
College Station, Texas 7784	3	50	uay No. 2-9	-81-297
· · · · · · · · · · · · · · · · · · ·		13.	Type of Report and	Period Covered
12. Sponsoring Agency Name and Address		Fi	hal - Septer	nber 1980
Texas State Department of H	ighways and I	Public	June 1	1985
Iransportation; Iransporta	tion Planning		Spontoring Agency	Code
P. U. BUX SUSI Austin Toyas 78763			-pointering regency	
15. Supplementary Nates		 _	· · · · · · · · · · · · · · · · · · ·	
Research Study Title: Impro	ovements in H	lighway Materials a	and Pavement	Systems.
16. Abstract				· · · · · · · · · · · · · · · · · · ·
The information contain	ned in this r	eport represents o	lata collecte	ed
on over 80 seal coats in se	ven districts	in Texas. The se	ections inclu	uded
variables such as a range of	f traffic cor	centration, climat	e and road s	surface
conditions. All projects us	sed in this s	tudy were construc	cted in 1982	and 1983.
A proconstruction field	ovaluation of	sito involving a	vicual ovalu	uation and
surface texture test was neg	rformed. Spe	cific construction	n data were c	athered
from district records which	consisted of	aggregate spread	rates, aspha	alt shot
rates, aggregate and asphal	t sources and	type. Postconstr	ruction evalu	lations
were conducted at intervals	which allowe	d as many environm	nental cycles	sas
possible.				
	.	• • • • • •		
The data gathered in the	course of th	is study provide t	he necessary	infor-
mation for further design me	ethoa retinen	ent and design cur	ve adjustmer	its. In-
cruded in chis report is the	e present sea	i coac design metr	iou.	
17. Key Words		18. Distribution Statement	This docume	nt is
Seal Coats, Asphalt, Seal Co	oat Design.	available to the	public throu	ah the
		National Technica	1 Informatio	n Service
		5285 Port Roval R	oad	
		Springfield, Virg	inia 22161	
19. Security Classif, (of this report)	20. Security Class	if. (of this page)	21. Na. of Pages	22. Price
Unclassified	Unclassi	fied	174	

FIELD EVALUATION OF THE TEXAS SEAL COAT DESIGN METHOD

by

R. J. Holmgreen, Jr.

Jon A. Epps

C. H. Hughes

and

Bob M. Gallaway

Research Study Number 2-9-81-297

Report No. 297-1F

Sponsored by the

State Department of

Highways and Public Transportation

Texas Transportation Institute Texas A&M University College Station, Texas 77843

June, 1985

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State Department of Highways and Public Transportation.

PREFACE

Seal coats have for the past decade played an extremely important role in the highway maintenance activities of the State of Texas. Any efforts made to improve the chances of assuring and/or increasing seal coat performance can have a positive economic impact.

In effort to increase the potential for success, a seal coat design method was produced under Research Project 2-9-74-214. The design criteria, however, was based on limited laboratory and field information. The data gathered for this report represent about a three-year effort to field verify and correct where necessary, the criteria used in the design method.

The request by the Federal Highway Administration to nationally distribute this manual indicates the widespread interest in proper seal coat design and construction. It was the desire of the authors to further refine this method for increased reliability.

IMPLEMENTATION STATEMENT

The revised seal coat design manual should provide field personnel adequate information to determine approximate quantities of aggregate and asphalt for successful seal coat construction. This design manual has been field evaluated for Texas graded aggregates 3 and 4, but has only limited information for any other grade. However, as a starting point, it should provide good information for any aggregate. It is recognized that the surface of a pavement changes within a given construction section and it will be necessary for field personnel to adjust quantities as the surface required.

OBJECTIVES

The purpose of this investigation was to field evaluate the design procedure recommended in Research Report 214-25, "Field Manual on Design and Construction of Seal Coats." While a number of grade 4 aggregate sections were used, the primary objective of this program was aimed at adjusting the design criteria for grade 3 aggregate. The results of this study are intended to provide initial design quantities for field personnel.

ABSTRACT

The information contained in this report represents data collected on over 80 seal coats in seven districts in Texas. The sections included variables such as a range of traffic concentration, climate and road surface conditions. All projects used in this study were constructed in 1982 and 1983.

A preconstruction field evaluation of site involving a visual evaluation and surface texture test was performed. Specific construction data were gathered from districtorecords which consisted of aggregate spread rates, asphalt shot rates, aggregate and asphalt sources and type. Postconstruction evaluations were conducted at intervals which allowed as many environmental cycles as possible.

The data gathered in the course of this study provide the necessary information for further design method refinement and design curve adjustments. Included in this report is the present seal coat design method.

Keywords: Seal Coats, Asphalt, Seal Coat Design

TABLE OF CONTENTS

Pag	е
DISCLAIMER	i
PREFACE	i
IMPLEMENTATION STATEMENT	v
OBJECTIVES	v
ABSTRACT	i
INTRODUCTION	1
HISTORICAL DEVELOPMENT OF EXISTING SEAL COAT DESIGN	
МЕТНОД	2
FIELD EVALUATION	4
ANALYSIS OF FIELD DATA	4
PRESENT PRACTICE	7
NEW DESIGN CURVE	7
VARIATION IN ASPHALT SURFACE DEMAND	8
CONCLUSIONS AND RECOMMENDATIONS	0
REFERENCES	2
TABLES 1	4
FIGURES	4
APPENDIX A - MEASUREMENT OF TEXTURE DEPTH BY THE SILICONE	
PUTTY METHOD	3
APPENDIX B - VISUAL CONDITION SURVEY 5	8
APPENDIX C - PRECONSTRUCTION, CONSTRUCTION, AND	
POSTCONSTRUCTION DATA 6	0
APPENDIX D - SEAL COAT DESIGN METHOD	7
APPENDIX E - BULK SPECIFIC GRAVITY	4

INTRODUCTION

The Texas State Department of Highways and Public Transportation (SDHPT) and the Texas Transportation Institute (TTI) through their cooperative research program have developed a seal coat* design procedure. This design procedure is based on a modification (1) of the original Kearby Method (2) and includes separate design curves for seal coats made from lightweight (high friction) manufactured aggregates and normal aggregates (3).

A review of the historical development of this method has indicated that the design procedure has been verified by a limited field performance study which considered aggregate in a narrow size range (4). Field observations made on normal weight aggregate seal coats of relatively large maximum size aggregate have indicated that the existing design procedure calls for inadequate asphalt. In an attempt to determine the validity of the design and/or to alter the method, an additional field verification study was undertaken. The study consisted of visual evaluation of seal coats placed in eight districts (Figure 1) as a part of the districts' normal seal coat program. Details of this field evaluation and subsequent analyses of data are described below.

^{*}A seal coat is a bituminous surface that results from one or more successive alternative applications of bituminous binder and cover aggregate to an <u>existing paved surface</u>. A surface treatment is a bituminous surface that results from one or more successive alternative applications of bituminous binder and cover stone to a prepared compacted gravel, crushed stone, stabilized soil or similar base.

HISTORICAL DEVELOPMENT OF EXISTING SEAL COAT DESIGN METHOD

Methods available for the design of asphalt quantity and aggregate spread rate for seal coats and surface treatments have been summarized by the Asphalt Institute (5). Three methods are presented by the Asphalt Institute and are referred to as design method for one-sized aggregate, design method for graded aggregate and design method for multiple surface treatments. These methods are based on references 1,2,4,5,6,7,8,9,10,11,12,13. The design method for one-sized aggregate is based on Hanson's work (9), the design for a graded aggregate seal coat is based on work performed by Lovering (6) while the method for multiple surface treatments is based on studies by Kearby (2) and Benson and Gallaway (1).

A review of SDHPT practices (14) indicates that the Kearby method also referred to as the "board" method appears to be the most popular method utilized in Texas. The Asphalt Institute (5) further suggests that this method be utilized for final design quantities when the aggregate has been selected and available for design.

In order to obtain a comparison of the existing design methods, asphalt and aggregate design quantities for SDHPT Grade 4 lightweight aggregate (Item 303) (15) were determined by Hanson's Method as described in reference 5 and by the Modified Kearby Method as developed by Benson and Gallaway and described in Reference 16. These values for the extreme fine and coarse side and the median of the gradation specification are shown in Table 1. In general, the aggregate rates determined by the modified Kearby Method are in agreement with proven field experience gained by SDHPT and the research team. Thus, those aggregate quantities determined by Hanson's method are greater than required. The asphalt quantities resulting from both methods are lower than those generally utilized for high friction manufactured lightweight aggregate seal coats in Texas. Therefore, it appears as if adjustments should be made in these design methods for prediction of asphalt quantities for lightweight aggregates.

An additional comparison of existing seal coat design methods was made on aggregates obtained from trial field sections placed on State Highway 95 District 14 (Table 2) (14). Hanson's and Lovering's design calculations were performed according to the procedure given in Reference 5 while the Modified Kearby Method was performed according to the procedure given in Reference 16. The fourth method, whose results are shown in Table 2, is a modification of the Kearby Method as described in an unpublished memorandum by J. W. Livingston of District 19 (Atlanta) of SDHPT. Of the methods investigated, the Modified Kearby Method again appears to be the best predictor of aggregate quantity while the Lovering and District 19 method give the best prediction of the asphalt quantity. Inaccuracies in determination of aggregate bulk specific gravity may be responsible for the unusually high aggregate quantities predicted by Hanson's method.

In order to more accurately predict the quantities of asphalt required for a particular lightweight aggregate seal coat, a modification of the existing Kearby Method was developed and reported in Reference 3. These modifications include the development of correction factors for traffic volume and surface condition as well as a shift in the relationship between percentage of embedment and average mat thickness (Figure 2). A single design methodology and equation was suggested for use, however, depending on the selection of the aggregate (lightweight or normal weight), a different relationship between percentage of embedment and average mat thickness was suggested (Figure 2).

As indicated above, field verification of the design method was performed on a limited basis and is reported in Reference 4. This study provided data which allowed the design curve to be corrected. Available field data were obtained from four field trail experimental projects containing sixty sections. Unfortunately, each project contained a single aggregate and the aggregates utilized represented a narrow size range. The field verification study reported in the report obtained data on over eighty projects which contained aggregates over an extended size range.

In an attempt to obtain verification of the proposed seal coat design in excess of eighty seal coat sections were evaluated in eight of the twenty five highway districts in Texas. The location of the districts are shown on Figure 1. The locations were selected to insure that variables of climate and traffic might be included in the study (Figure 3).

Preconstruction, construction and post construction data were obtained on each section (Tables 3 and 4) (Appendix C). Preconstruction information obtained included; project limits, traffic volume, surface texture (Appendix A), and visual condition survey (17) (Appendix B). Asphalt shot quantities, aggregate spread quantities and asphalt shot temperatures were obtained from construction records.

Post construction visual condition surveys were performed by the project team using the form shown on Figure 4. These surveys were performed when possible after the first summer (approximately 3 months), first winter (approximately 9 months), second winter (approximately 21 months) and during the third summer (approximately 24 months). Data collected included a visual determination of aggregate embedment depth, bleeding, raveling and overall visual condition scores in the outer wheel path (OWP), between the wheel path (BWP) and at the center line (CL).

The visual data were summarized and combined with preconstruction, construction and laboratory measured properties of the aggregates as shown on Table 3 and 4. These data formed the basis for the analysis presented below.

ANALYSIS OF FIELD DATA

The equation utilized to determine asphalt quantity by the existing Texas seal coat design method is shown below.

A = 5.61E $(1 - \frac{W}{62.4G})$ (T) + V

```
A = asphalt quantity, gals per sq. yd. at 60<sup>o</sup>F
E = embedment depth, inches
where
E = ed, inches
e = aggregate embedment, percent (Figure 2)
d = average aggregate or mat depth, inches
d = <u>1.330</u>, inches
W
```

Q = aggregate quantity determined from board test, lbs per sq. yd. W = dry loose unit weight, lbs. per cu. ft.

G = dry bulk specific gravity of aggregate

T = traffic correction factor (Table 5)

V = correction for surface condition (Table 6)

The quantities "T" and "V" are adjustments to the asphalt quantity for traffic and surface condition of the pavement upon which the seal coat is to be placed.

The quantity "1 - \underline{W} " is a calculation which determines the 62.4G

percent air voids in the seal coat aggregate as if it were placed in a container without any form of compaction. Theoretically, this is the volume available for the asphalt to fill.

The quantity "E" is the depth of the asphalt in the seal coat. This quantity is derived from use of Figure 2 which allows the engineer to determine the desired percent embedment depth, "e", based on "d", the expected average depth of the aggregate.

The values of "W" and "G" are unit weight and specific gravity of the aggregate which can be measured in the laboratory; thus, it appears as if "E", "T" and "V" are the variables that may be changed to improve the design equations prediction of asphalt quantity. The terms "T" and "V" have been defined in the literature cited above. A rather extensive field testing program would be required to reliably change the values of "T" and "V". Thus the current values have been accepted; however, the use of surface texture measurements as an indication of what value to select for "V" has been developed (Figures 5 and 6, Table 7).

Adjustment of Percent Aggregate Embedment Versus Mat Thickness Relationship

The relationship between percent aggregate embedment and average mat thickness is the logical variable in the proposed design equation to alter, if field performance is to correlate with design method. A methodology as described below was developed and utilized to make the desired correlation.

Values of "W" and "G" were determined from laboratory tests on aggregates utilized on the various field projects. The values of "T" and "V" were obtained from Tables 5 and 6 by using the field determined traffic and surface texture as shown in Table 3. The value of "A" was obtained from field construction records and corrected for temperature (Table 3).

The value of "E" is a function of "e" and "d". Since "d" can be obtained from laboratory tests performed on the aggregates, the only unknown in the design equation becomes "e". Thus, the following relationship results.

 $e = \frac{A - V}{5.61(d) (1 - \frac{W}{62.6G})} (T)$

Calculated values of e and d are shown on Table 3. Field performance of the individual projects are shown on Table 4. Performance information representative of a minimum of 12 months to a maximum of 24 months after construction was utilized to develop the correlation between percent aggregate embedment, mat thickness and pavement performance (Figure 7). Performance at ages of 2 to 3 years or (2 summers) is desirable but not available during the duration of this research project. Figures 8-11 suggests that nearly maximum aggregate embedment is obtained after two summers provided adequate asphalt qualities are utilized.

A correlation between percent aggregate embedment, mat thickness and performance (Figure 12) is reported in Reference 4 based on four field trial experimental sections containing sixty sections (4). Because of the limited number of aggregates utilized on the projects, a different methodology was utilized to obtain the designed relationships.

PRESENT PRACTICE

Information obtained on the eighty seal coat projects reported in this project allow for comparison between existing practice in Texas as compared with the suggested design method presented in Reference 4. Figures 13 and 14 compare aggregate and asphalt quantities actually used with those suggested by the design method. In general, less aggregate and less asphalt is used for the larger maximum size cover aggregate than recommended by the proposed design method. Seal coats prepared with relatively small size aggregates utilized more aggregate and less asphalt than recommended by the proposed design method. Raveling of seal coats constructed with larger maximum size cover stone is a problem on some Texas highways. In addition, field engineers have indicated that the suggested design method over estimates the asphalt demand for the smaller sized aggregate.

NEW DESIGN CURVE

Figure 7 contains the suggested design curve for normal weight aggregates based on information presented in Reference 4 and data collected in this study. For the smaller sized coverstone a reduction in asphalt is suggested and a slight increase is suggested for the larger sized coverstone. This has been accomplished by increasing the slope of the relationship between aggregate embedment (e) and average mat thickness (d) (Figure 7). The proposed location of the e versus d relationship is based on the following:

- A. For aggregate which produce average mat thickness of about 0.25-0.30 inches:
 - Field experience has suggested that the existing design curve over estimates the asphalt spray quantity required for normal weight.

- Field performance data reported in Reference 14 suggests
 a location as shown for the existing design curve.
- Field performance data collected in this study suggests a new location.
- B. For aggregates which produce average mat thickness of about 0.40 inches:
 - Field experience has suggested that presently used asphalt spray quantities are not adequate as raveling often occurs and fog seals are applied (Figure 7).

The data scatter as shown on Figures 7 and 12 appear to be excessive. It should be remembered, however, that data from visual observations (field embedment depth) are an intergral part of the calculations. Additionally, it is not unusual to find field asphalt quantities varying \pm 0.03 gallons per square yard (5,14) and surface characteristic of the pavement upon which the seal coat is to be placed to vary considerably (Figure 5). For example, surface texture measurements from State Highway 6 in District 2 have coefficients of variation of the order of 40 percent. Common coefficients of variation associated with asphalt concrete quality control are of the order of 5 to 20 percent (19).

An example to illustrate the variability of the design asphalt quantity associated with the selection of "e" is given below if one assumes that aggregate "C" has been utilized from a trial field section. For an "e" of 0.39 the design asphalt content is 0.32 gallons per square yard. If the value of "e" is varied 7 percentage points, the resulting design asphalt content varies \pm 0.05 gallons per square yard. It is logical to assume that the factors "T" and "V" may be in error and/or the visual evaluation procedure could account for this variation.

VARIATION IN ASPHALT SURFACE DEMAND

As discussed above, the equation for determining asphalt quantity includes the term "V" which is a correction factor dependent on the characteristics of the old pavement upon which the seal coat is to be

placed. According to the design method included in this report, "V" will vary from -0.06 to +0.06 gallons per square yard according to those factors described on Table 6 and Figure 6. Under most conditions the correction factor "V" is applied for a considerable length of pavement or in most cases for the entire section of highway to be seal coated. Occasionally, a different "V" and "T" will be utilized for 4-lane facilities when traffic volumes and/or lane surface textures differ.

Recent field work in District 23 of the SDHPT has illustrated the importance of altering the quantity of asphalt not only in the longitudinal direction but also the transverse direction (18). Variations in asphalt quantities across the pavement are required due to the effect of traffic. The asphalt demand in the wheel path is usually reduced from that required outside the wheel paths. It is not uncommon to find highways whose wheel paths have a tendency to bleed while slight raveling occurs between the wheel path and/or near the edges of the lane.

Surface texture measurements made by the putty method have been obtained on 120 pavements most of which are pavements containing limestone rock asphalt in either seal coat or cold mixed cold laid operations. The average difference in surface texture between the wheel path and in the wheel path is 0.010 cubic inches per square inch. The values ranged from +0.076 to -0.097*. The standard deviation for the 120 sections is 0.024. A surface texture difference of 0.010 represents about 0.06 gallons per square yard of asphalt (Figure 6) from a theoretical standpoint.

Figures 15-18 also indicate the difference in asphalt demand for wheel paths versus pavement areas between wheel paths. Note that maximum embedment depths are obtained in the wheel paths after about two summers of traffic, while areas between wheel paths have not reached the degree of embedment in the wheel path after 5 years of traffic.

^{*}A positive difference indicates there is more texture between the wheel paths than in the wheel path.

In order to achieve the variation in asphalt quantity desired, District 23 has experimented with spray nozzles and methods to measure spray bar outputs. Results to date indicate that a one size reduction in the spray nozzle results in about the desired asphalt variation.

CONCLUSIONS AND RECOMMENDATIONS

Adjustment of the original Kearby Curve (2) by Benson and Gallaway (1) was in the direction of increased asphalt. The adjustment by Epps and Gallaway (14) for lightweight aggregate is also in the direction of increased asphalt. This correlation was made based on increased asphalt embedment depth to insure that the high friction lightweight aggregate would not be overturned and subsequently ravel under the action of traffic. Synthetic lightweight aggregate seal coat trial field sections placed in 1971 and 1972 in four Districts of SDHPT and visually examined in 1976 indicate that on the average the design method proposed for lightweight aggregate results in a slight over-estimate of asphalt quantity. It should be noted, however, that no adjustments were made in the transverse distribution of asphalt.

Field performance results from the study have been used together with information presented in Reference 4 and 14 to revise design relationships. Figure 19 contains the revised curves for both normal weight and lightweight aggregates. The methodology for using the design curves is given in Appendix D. Field techniques for seal coat construction are given in references 20 and 21. Field performance data collected in this study suggests the location shown.

Consideration should be given to varying the asphalt quantity both longitudinally and transversely if demanded by the pavement upon which the seal coat is to be placed. This variation is included in the proposed design equation by the factor "V". Surface texture measurements may provide a basis for determining the magnitude of this correction factor.

Additional field verification is required particularly for normal weight aggregate seal coats. Engineers are encouraged to utilize the suggested design method together with surface texture measurements to establish seal coat asphalt and aggregate requirements. Visual evaluations at various time intervals after construction should be made by a survey team to establish seal coat performance and refine the design procedure. Seal coat projects should be selected such that the aggregate depth (mat thickness) extends beyond the range of 0.25 to 0.45 as data from the study presented herein covers aggregate gradations in this range.

Data presented on Figure 12 indicate that different design curves should be used for emulsions and asphalt cement binders. Additional field data need to be collected prior to establishing this relationship. In the interim it is suggested that several districts place trial sections be placed using the approach given below.

- 1. Use the same design curve as for asphalt cements
- 2. Adjust for the amount of water present in the emulsion
- 3. Multiply by a factor of 0.80
- 4. Adjust for spray temperature

For example, the design method indicates that 0.30 gallons per square yard of asphalt cement will be required for a particular project. If the emulsion proposed has 30 percent water, the corrected quantity would be $\frac{0.30}{0.70} = 0.43$ gallons per square yard Multiplying 0.43 x 0.80 gives the amount of emulsion to be sprayed on the surface (0.34 gallons per square yard). If the emulsion were to be sprayed at 140°F, the temperature correction would be 0.98. Thus, $\frac{0.30}{0.70}$ or 0.35 gallons per square yards of emulsion would be sprayed at 140°F. The 0.80 factor may be low, particularly for high friction aggregate and for large sized stone.

REFERENCES

- Benson, F. J. and B. M. Gallaway, "Retention of Cover Stone by Asphalt Surface Treatments", Bulletin 133, Texas Engineering Experiment Station, Texas A&M, September, 1953.
- 2. Kearby, J. P., "Tests and Theories on Penetration Surfaces", Proceedings, Highway Research Board, Vol. 32, 1953.
- Epps, J. A., Gallaway, B. M., and Brown, M. R., "Synthetic Aggregate Seal Coats", Research Report 83-2F, Texas Transportation Instittue, May 1974.
- Epps, J. A., Chaffin, C. W. and Hill, A. J., "Field Evaluation of a Seal Coat Design Method", Research Report 214-23, Texas Transportation Institute, August, 1980.
- 5. _____, "Asphalt Surface Treatments and Asphalt Penetration Macadam", The Asphalt Institute, Manual Series No. 13, November, 1969.
- Hveem, F. N., W. R. Lovering, and G. B. Sherman, "The Design of Seal Coats and Surface Treatments", California Highways and Public Works, July-august, 1949.
- McLeod, N. W., "Basic Principles for the Design and Construction of Seal Coats and Surface Treatments with Cutback Asphalts and Asphalt Cements", Proceedings, Association of Asphalt Paving Technologists, Supplement to Vol. 29, 1960.
- 8. McLeod, N. W., "A General Method of Design of Seal Coats and Surface Treatments", Proceedings, Association of Asphalt Paving Technologists, Vol. 38, 1969.
- Hanson, F. M., "Bituminous Surface Treatments of Rural Highways", Proceedings, New Zealand Society of Civil Engineers, Vol. XXI, 1934-35.
- Hanson, F. M., "Symposium on Seal Coats on Surface Treatments for Existing Bituminous Surfaces", Proceedings, Association of Asphalt Paving Technologists, Vol. 24, 1955.
- Kersten, M. S. and E. L. Skok, Jr., "Criteria for Seal Coating Bituminous Surfaces", Minnesota Department of Highways, Interim Report, University of Minnesota, 1969.
- 12. "Full-Scale Road Experiments with Surface Treatments", National Institute for Road Research, Bulletin No. 2, January, 1957.
- "Bituminous Surface Treatments for Newly Constructed Rural Roads", National Institute for Road Research, Pretoria, South Africa, 1971.

- 14. Epps, J. A. and B. M. Gallaway, "Synthetic Aggregate Seal Coats -Current Texas Highway Department Practices", Research Report 83-1, Texas Transportation Institute, May, 1972.
- 15. 1972 Standard Specifications for Construction of Highways, Streets and Bridges, Texas Highway Department, January, 1972.
- 16. Monismith, C. L., "Asphalt Paving Mixtures--Properties, Design and Performance", The Institute of Transportation and Traffic Engineering, University of California, 1961.
- 17. Epps, J. A., Meyer, A. L., Larrimore, E. I. and Jones, J. L., "Roadway Maintenance Evaluation User's Manual", Reserach Report 151-2, Texas Transportation Institute, September, 1974.
- 18. Arthur, J. M., "Personal Communication", District 23, SDHPT, 1976.
- 19. Kuhn, S. H. and R. H. Walker, "Rational Quality Assurance", HRB Record No. 385, 1972.
- Epps, J. A., Gallaway, B. M. and Hughes, C. H., "Field Manual on Design and Construction of Seal Coats", Research Report 214-25, Texas Transportation Institute, July, 1981.
- Epps, J. A., Gallaway, B. M. and Hughes, C.H., "Field manual on Design and Construction of Seal Coats, represented by U. S. Department of Transportation's Technology Sharing Program, 1983.

		Hanson's M	le thod *	Modified Karb	y Method **
Aggregate Identification	Grading	Aggregate Sq. Yds/Cu. Yd.	Asphalt Gal/Sq. Yd.	Aggregate Sq. Yds/Cu. Yd.	Asphalt Gal/Sq. Yd.
	Fine	105	0.21	P 15	0.22
Α	Medium	95	0.23		
	Coarse	85	0.25	130	0.26
	Fine	100	0.21	145	0.21
В	Medium	06	0.23	:	
	Coarse	80	0.24	120	0.26
	Fine	110	0.20	140	0.19
D	Medium	100	0.21	8	
	Coarse	06	0.23	125	0.22
	Fine	70	0.22	140	0.22
т	Medium	65	0.24	1	8
	Coarse	60	0.26	135	0.23

4SH95 Project.
ы Б
Used
Aggregates
for
Quantities
Aggregate
and
Asphalt
Design
2.
Table

	Hanson's Me	thod (1)	Loverings' Met	thod (2)	Modified Kearby	Method (3)	Texas Highway Dist. 19	y Dept. (4) Method
Aggregate dentification	Aggregate Sq. Yds/Cu. Yds.	Asphalt Gal/Sq. Yds.						
¥	- 62	0.23	011	0.33	145	0.20	011	0.30
8	70	0.28	011	0.33	140	0.23	95	0.32
٩	80	0.26	011	0.33	115	0.27	011	0.36
Ŧ	60	0.27	125	0.29	011	0.35	120	0.45
¥	85	0.26	120	0.31	140	0.20	011	0.17

(1) Quantities determined for 500-1000 vehicles per day, a slightly porous, slightly oxidized surface and no aggregate waste.

15

Quantities determined for 500-1000 vehicles per day, a slight porous, slightly oxidized surface and no aggregate waste. (2)

(3) Quantities determined for moderate traffic, a slightly porous, slightly oxidized surface and no aggregate waste.

(4) Method developed by District 19, Atlanta based on Kearby Method.

Percent Aggr. Embed	(e)	0.46	0.30	0.41	0.33	0.35	0.31	0.38	0.33	0.24	0.27	0.30	0.30	*	*	*	*	*
Average Mat. Depth	(P)	0.284	0.284	0.284	0.284	0.284	0.284	0.284	0.284	0.477	0.284	0.381	0.381	*	*	*	*	*
Sp. Gr. Aggr.	(9)	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	*	*	*	*	*
Loose Unit Weight lbs/ft	(M)	86.4	86.4	86.4	86.4	86.4	86.4	86.4	86.4	85.9	86.4	84.2	84.2	*	*	*	*	*
t Shot ities	Cor 60 ⁰ F	0.302	0.299	0.299	0.308	0.293	0.307	0.299	0.318	0.362	0.276	0.341	0.307	0.303	0.303	0.303	0.331	0.303
Asphalt Quant	Act.(Job)	0.328	0.325	0.325	0.335	0.318	0.334	0.325	0.346	0.394	0.300	0.371	0.334	0.330	0.330	0.330	0.360	0.330
	Cor Fac	03	+.06	0	+.06	+.03	+.06	03	+.03	+.03	90.+	+.03	0	03	06	03	0	03
ţ.	PRS	83	90	88	65	89	65	95	95	81	72	92	70	99	68	60	85	73
ce Te)	IWP	.005	.040	110.	.044	.026	.036	014	.026	.041	.032	610 .	.018	.007	100.	.004	.020	.037
Surfa	BWP	.022	.030	.013	.088	.026	.023	.021	.036	.040	.050	.023	.026	600	.021	.023	.030	.044
	dMO	.005	.041	.016	.047	.036	.042	.013	.036	.028	.044	.032	.022	010.	.003	.008	.018	.012
	Cor Fac	1.0	ו.ו	1.0	1.05	1.05	l.I	1.2	1.2	1.15	ו.ו	1.1	1.0	1.05	1.0	l.I	1.15	1.1
Traffic	ADT/Lane	13,000	240	2,150	675	875	405	90	95	215	320	275	1,250	175	1,000	410	0/1	450
	ADT	2,600	480	4,300	1,350	1,750	810	180	190	430	640	550	2,500	1.550	2,000	820	340	006
Project	Highway No.	SH 79 (Clay)	FM 2393	US 380	SH 79 (Archer)	SH 79 (Archer)	SH 25	FM 2075	FM 3109	FM 701	SH 25	US 183	US 82/183	SH 137	US 82	FM 788	FM 1760	FM 168
	Dist.	3	°.	۳	e	°	e	e	3	e	e	e	e	5	2	2	2	5

Table 3. Preconstruction and Construction Data.

Table 3. Preconstruction and Construction Data. (Continued)

Percent Aggr. Embed	(e)	*	*	*	66.0	0.40	0.40	0.35	0.35	0.47	0.36	0.37	0.37	0.34	0.35	0.37
Average Mat. Depth	(P)	+	*	*	0.253	0.253	0.315	0.415	0.415	0.415	0.215	0.315	0.315	0.315	0.415	0.315
Sp. Gr. Aggr.	(9)	*	*	*	2.60	2.60	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51
Loose Unit Weight ₃ lbs/ft ³	(M)	*	*	*	83.5	83.5	88.86	87.12	87.12	87.12	87.12	88.86	88.86	88.86	87.12	88.86
t Shot ities	Cor 60 ⁰ F	0.331	0.294	0.303	0.298	0.303	0.396	0.460	0.460	0.450	0.423	0.386	0.368	0.347	0.478	0.331
Asphal Quant	Act.(Job)	0.360	0.320	0.330	0.324	0.329	0.430	0.500	0.500	0.490	0.460	0.420	0.400	0.377	0.520	0.360
	Cor Fac	0	90.+	90.+	0	0	90. +	90.+	+.03	03	0	90.+	90.+	+.06	90.+	+.03
ţţ	PRS	1	85	53	88	60	83	73	55	45	43	95	16	68	20	18
ice Tex	IWP	.016	.041	.044	.036	.041	.065	.063	.038	.002	.028	.039	.049	.060	.061	.007
- Surfa	ВМР	.044	.074	.065	190.	.075	.079	.074	.056	.042	.044	.055	.084	.043	180.	.052
	OWP	.022	.052	.051	.020	.022	.047	.057	.036	.006	.021	.041	.054	.063	.045	.032
	Cor Fac	1.15	1.1	1.1	1.1	1.1	1.05	1.1	1.2	1.0	1.15	1.15	l.,	1.1	1.15	1.05
Traffic	ADT/Lane	125	345	465	350	250	525	290	65	1,275	215	240	320	495	120	700
	ADT	250	069	930	700	500	1,050	580	130	2,550	430	480	640	066	240	1,400
Project	Highway No.	FM 298	SH 86	SH 114	FM 145 (Swisher)	FM 145 (Swisher)	FM 1053	FM 181	FM 1967	US 87	FM 829	SH 349	US 67	FM 1053	FM 1379	US 385
	Dist.	5	5	ç	S	5	9	9	9	9	9	9	9	9	. ص	9

	Project		Traffic		-	Surfa	ice Text	ب		Aspha] Quant	t Shot ities	Loose Unit Weight ₃ lbs/ft	Sp. Gr. Aggr.	Average Mat. Depth	Percent Aggr. Embed
Dist.	Highway No.	ADT	ADT/Lane	Cor Fac	dmo	BWP	dMI	PRS	Cor Fac	Act.(Job)	Cor 60 ⁰ F	(M)	(9)	(P)	(e)
و	SH 349	840	420	1.1	610.	.087	.015	95	0	0.492	0.453	87.12	2.51	0.415	0.40
9	FM 829	280	140	1.15	.020	.028	.036	43	0	0.520	0.478	87.12	2.51	0.415	0.40
9	FM 2212 -	300	150	1.15	.038	.051	.042	78	+.03	0.526	0.484	87.12	2.51	0.415	0.38
9	FM 2002	230	115	1.15	.018	.022	.013	40	0	0.519	0.477	87.12	2.51	0.415	0.40
=	US 259	6,000	3,000	1.0	.021	110.	.016	78	0	0.337	0.310	•	*	*	*
Ξ	US 59	13,900	6,950	1.0	.013	110.	900.	93	03	0.500	0.460	*	٠	*	*
=	FM 2864	490	245	1.15	.044	.064	.045	85	+.06	0.411	0.378	*	*	*	*
=	SH 21	2,500	1,250	1.0	.041	020.	.036	78	90. +	0.368	0.339	*	*	*	*
13	06 SN	1,500	750	1.05	600.	.033	.015	88	03	0.270	0.248	73.9	2.50	0.264	0.34
13	FM 531	250	125	1.15	.069	.069	.040	100	90. +	0.400	0.368	81.1	2.51	0.387	0.26
13	FM 533	130	65	1.2	.049	660.	.068	85	90. +	0.420	0.386	81.1	2.51	0.387	0.26
13	FM 966	430	215	1.15	.018	.018	.023	1 00	0	0.390	0.358	81.J	2.51	0.387	0.30
٤١ .	FM 238	011	55	1.2	.039	.056	.061	98	+.03	0.420	0.386	81.1	2.51	0.387	0.28
13	FM 239	400	200	1.15	.035	.022	.020	80	+.03	0.390	0.358	81.1	2.51	0.387	0.27
13	SH 72	1,200	600	1.05	.030	.078	.018	88	+.03	0.270	0.248	83.9	2.51	0.252	0.32

į

(Continued)
Data.
Construction
and
Preconstruction
е З.
Ē

	Projec	, t		Traffic			Surfa	ce Tex	Ļ		Asphalt Quanti	Shot ties	Loose Unit Weight ₃ lbs/ft ³	Sp. Gr. Aggr.	Average Mat. Depth	Percent Aggr. Embed
Dist.	Hi ghway	No.	ADT	ADT/Lane	Cor Fac	OWP	BWP	IWP	PRS	Cor Fac	Act.(Job)	Cor 60 ⁰ F	(M)	(9)	(P)	(e)
13	FM 710		710	355	1.1	.038	.032	.021	6	+.03	0.380	0.349	81.10	2.50	0.387	0.28
13	FM 441	(Wharton)	120	60	1.2	.050	.035	.048	57	90 .+	0.430	0.396	81.1	2.50	0.387	0.27
13	FM 441	(Wharton)	120	60	1.2	.051	.035	.027	87	+.06	0.430	0.396	81.1	2.50	0.387	0.27
13	FM 961	(Wharton)	. 300	150	1.15	360 .	060.	020.	001	+.06	0.420	0.386	81.1	2.50	0.387	0.27
13	US 87		011	55	1.2	.036	.056	.013	92	+.03	0.230	0.211	83.9	2.51	0.252	0.23
13	FM 961	(Wharton)	350	175	1.15	.073	101.	.065	85	+.06	0.430	0.396	81.1	2.51	0.387	0.28
13	FM 1161		012	355	1.1	.056	.044	610.	88	90.+	0.280	0.256	73.9	2.50	0.248	0.23
13	FM 2067		180	6	1.2	090	.127	.075	88	90°+	0.410	0.377	81.1	2.51	0.387	0.25
13	FM 234		210	105	1.15	.078	160.	.064	68	90.+	0.400	0.368	81.1	2.50	0.339	0.26
13	FM 532		510	255	1.1	.059	620.	.067	95	90.+	0.420	0.386	81.1	2.50	0.339	0.28
13	FM 236		700	350	1.1	.020	.033	.032	85	0	0.370	0.340	81.1	2.50	0.339	0.30
13	FM 404		7,000	3,500	1.0	100.	600.	.002	63	06	0.220	0.202	83.9	2.50	0.239	0.40
13	FM 3131		160	8	1.2	.035	.049	.035	88	+.03	0.390	0.358	73.9	2.50	0.248	0.35
13	FM 710		100	50	1.2	.044	.049	.028	8	90.+	0.400	0.368	73.9	2.50	0.248	0.33
15	SH 97		1,140	570	1.05	.033	1/0.	170.	8	+.03	0.350	0.322	82.3	2.53	0.381	0.27
15	FM 539		630	315	1.1	.075	.074	.056	83	+.06	0.340	0.313	82.3	2.53	0.381	0.22

(Continued)
Data.
Construction
and
Preconstruction
Table 3.

	Project		Traffic		-	Surfa	ace Tex	L.		Asphalt Quanti	: Shot ties	Loose Unit Weight ₃ lbs/ft ³	Sp. Gr. Aggr.	Average Mat. Depth	Percent Aggr. Embed
Dist.	Highway No.	ADT	ADT/Lane	Cor Fac	đ	BWP	đ	PRS	Cor Fac	Act.(Job)	Cor 60 ⁰ F	(M)	(9)	(P)	(e)
15	FM 2505 (Wilson)	50	25	1.2	.051	.076	.065	83	+.06	0.370	0.340	82.3	2.53	0.381	0.23
15	FM 2505 (Wilson)	220	011	1.15	.031	.030	.026	95	+.03	0.370	0.340	82.3	2.53	0.381	0.29
15	FM 1346	850	425	1.1	.013	.034	.017	92	03	0.450	0.309	79.4	2.53	0.408	0.27
15	LP 1604	920	460	1.1	.015	600.	110.	83	03	0.400	0.368	82.3	2.53	0.381	0.35
23	FM 2131	150	75	1.2	620	.083	.054	95		0.253	0.233	98.0	2.68	0.142	0.44
23	FM 2028	150	75	1.2	.035	.049	.031	78	+.03	0.367	0.252	98.6	2.68	0.189	0.43
23	061 SN	800	400	1.1	.024	.066	.040	78	+.03	0.529	0.363	+	*	*	*
23	US 190 (McCulloch	400	200	1.15	104	.107	.089	87	+.06	0.326	0.224	98.6	2.68	0.189	0.33
23	FM 45	810	405	1.1	.049	.089	.056	87	+.06	0.557	0.382	*	*	¥	*
23	FM 500	470	235	1.15	.070	.087	.087	87	90 .+	0.352	0.241	100.0	2.81	0.129	0.51
23	FM 569	700	350	1.1	.063	960.	.075	6	90.+	0.249	0.229	98.0	2.68	0.142	0.47
23	SH 16	530	265	1.1	.028	.034	.035	60	+.03	0.420	0.288	*	*	*	*
23	SH 36	1,430	715	1.05	.014	900.	.007	100	03	0.406	0.279	*	*	*	*
. 23	FM 1476	440	220	1.15	.040	.078	.065	90	+.06	0.304	0.209	98.6	2.68	0.189	0.30
23	FM 2125	415	208	1.15	.064	.096	.074	88	9 0'+	0.381	0.261	98.6	2.68	0.189	0.40

(Continued)
Data.
Construction
and
Preconstruction
Table 3.

•

Table 3. Preconstruction and Construction Data. (Continued)

P PRS Cor Fac Act.(Job) Cor 60 ⁰ F (W) (G) 17 78 +.03 0.332 0.228 98.0 2.68 0 26 88 0 0.397 0.373 * * * 39 70 +.06 0.319 0.219 98.0 2.68 0 26 68 +.03 0.319 0.219 98.0 2.68 0 39 80 +.03 0.339 0.272 98.6 2.68 0 39 80 +.03 0.339 0.233 * * * 14 85 03 0.471 0.323 * * *
17 78 +.03 0.332 0.228 98.0 2.68 0 26 88 0 0.397 0.373 * * * 39 70 +.06 0.319 0.219 98.0 2.68 0 26 68 +.03 0.396 0.272 98.6 2.68 0 39 80 +.03 0.339 0.272 98.6 2.68 0
26 88 0 0.397 0.373 * * 39 70 +.06 0.319 0.219 98.0 2.68 0 26 68 +.03 0.396 0.272 98.6 2.68 0 39 80 +.03 0.339 0.233 * * * 14 8503 0.471 0.323 * *
39 70 +.06 0.319 0.219 98.0 2.68 0 26 68 +.03 0.396 0.272 98.6 2.68 0 39 80 +.03 0.339 0.233 * * 14 85 03 0.471 0.323 * *
26 68 +.03 0.396 0.272 98.6 2.68 0 39 80 +.03 0.339 0.233 * * * 14 8503 0.471 0.323 * * *
39 80 +.03 0.339 0.233 * * 14 8503 0.471 0.323 * *
14 8503 0.471 0.323 * * *

 $\mathbf{\hat{t}}$ Light weight aggregate was used on this job but was not included in this project.

Table 4. Post Construction Visual Condition Survey.

		rall	46	08	8	8	8	7	8	7	4	4	9	8	6	8
		· Ove														
ب	ent	CL	84	35 30	35	50	30	50	30	35	8	30	35	60	20	40
bedmen	, Perc	BWP	75 40	35 40	8	40	80	50	25	40	35	35	40	60	35	35
Ē	Depth	OWP	06 09	30 50	40	35	35	20	35	50	35	50	65	20	65	70
		CL	01	01	10	10	10	10	10	10	10	10	10	0	10	10
	leeding	BWP	4 10	00	10	10	10	10	10	10	8	10	10	01	10	10
	B	OWP	2 10	01 9	10	2	10	10	10	6	7	10	4	8	10	8
	tion	CL	66	01	6	0	10	10	8	6	6	10	6	10	6	7
	Retent	BWP	10 7	0I 9	8	8	6	2	8	8	S	2	9	10	8	6
	Aggr.	OMP	20	01	6	01	2	8	8	8	9	4	10	10	10	10
		Age, Yrs.	1.0	0.7 1.8	0.7	1.8	0.7	1.8	0.7	1.8	0.7	1.8	0.9	0.9	0.9	1.0
		ADT	2600 480	4300 4300	1350	1750	1750	1750	810	810	180	190	430	640	550	2500
	t	ighway No.	SH 79 (1) FM 2393	US 380 US 380	SH 79 (2)	SH 79 (2)	SH 79 (3)	SH 79 (3)	SH 25 (1)	SH 25 (1)	FM 2075	FM 3109	FM 701	SH 25 (2)	US 183	US 82/183
	Projec	District H	ოო	ოო	e	ς γ	c,	e	e	ო	m	e	е П	с	ę	с

(Continued)

Table 4. (Continued)

							Visua	l Condi	tion	Survey				
Pro	ject			Aggr.	Retent	ci on	8	leeding		Emb Depth,	edment Perce	nt		
District	Highway No.	ADT	Age, Yrs.	OWP	BWP	CL	OWP	BWP	С	OWP	BWP	С	Overal1	
5	SH 137	1550	0.6	8	8	9	9	10	10	35	25	25	ω	
2	SH 137	1550	1.7	6	8	9	7	0	10	6	55	40	9	
5	US 82	2000	0.7	2	01	7	6	10	2	45	90	30	8	
2	US 82	2000	1.8	8	7	8	8	8	10	85	85	50	4	
5	FM 78	820	0.8	6	00	6	10	10	2	30	25	25	8	
2	FM 788	820	1.8	6	7	7	10	10	10	50	40	50	8	
2	FM 1760	340	0.8	6	6	10	6	0	10	20	20	20	8	
5	FM 1760	340	١.7	6	6	6	10	01	01	75	75	70	7	
5	FM 168	906	0.8	6	6	10	10	2	2	90	25	25	6	
5	FM 168	006	1.7	6	6	7	2	01	10	55	50	45	6	
5	FM 298	250	0.8	10	6	10	10	01	2	20	20	20	6	
2	FM 298	250	1.7	8	6	6	3	4	7	95	75	70	3	
5	SH 86	690	0.8	8	7	8	01	10	10	20	20	20	7	
2	SH 86	069	1.7	8	8	8	10	0	0	65	50	55	7	
2	SH 114 (1)	930	0.8	б (~ '	~ '	22	01	22	35	22 72	20	თი	
2	SH 114 (1)	930	1./	ת	-	-	2	2	2	2	ft f	CC CC	ת	

(Continued)

Table 4. (Continued)

							Visua	1 Condi	tion	Survey			
Pro,	ject			Aggr.	Retent	;ion	æ	leeding	_	Emb Depth,	edment Perce	nt	
District	Highway No.	ADT	Age, Yrs.	OWP	BWP	CL	dMO	BWP	с	QWP	BWP	С	0vera]]
ۍ س	US 380 cu 214	3300	0.8	70	90	5	4 u	01	22	90 29	35 60	35 AF	ي و
າດເດ	SH 114 (2) FM 145 (1)	5100	0.9	0	10,0	69	0	2 <u>0</u> ∞	008	85 52	42 45	35 33	004
5	FM 145 (2)	500	0.9	8	9	9	9	10	10	6	45	45	5
وووو	FM 1053 FM 1053 FM 181 FM 181	1050 1050 580 580	1.0 2.1 0.8 1.8	e 5 5 5	2222	2222	®000	2222	2222	85 70 70 70	50 00 50 00	35 60 50	6 10 9
وووو	FM 1967 FM 1967 US 87 US 87	130 130 2550 2550	0.7 1.8 0.7 1.8	0086	00 00	01047	0100	2222	2222	35 65 30 95	25 45 20 65	25 45 15 55	10 7 6

(Continued)
				-			Visua	l Condi	tion	Survey			
Pro,	ject			Aggr.	Retent	tion	8	leeding		Emb Depth,	Perce	nt	
District	Highway No.	ADT	Age. Yrs.	QWD	BWP	ป	OWP	BWP	ರ	dmo	BWP	ರ	Overal]
9	FM 829	430	0.7	6	6	6	6	10	01	40	90	25	8
9	FM 829	430	1.8	10	10	01	80	01	0	65	60	60	Ġ
9	SH 349	480	1.0	10	0	01	01	10	0	35	25	25	10
9	SH 349	480	2.1	10	10	10	01	10	10	60	50	50	10
9	US 67	640	1.0	2	01	10	10	01	0	65	45	25	1
9	US 67	640	2.1	10	01	10	8	0	10	0 6	70	65	8
9	FM 1053	066	1.0	0	10	10	10	10	01	65	50	50	8
9	FM 1379	240	0.9	6	6	6	6	10	10	75	55	55	6
9	US 385	1400	1.0	0	10	10	10	10	10	70	60	60	8
9	SH 349	840	1.0	10	01	2	7	01	10	6	50	40	8
9	FM 829	280	0.9	6	10	9	1	0	10	75	70	65	8
9	FM 2212	300	0.9	6	6	8	10	0	10	65	50	55	8
6	FM 2002	230	0.9	6	10	8	10	10	10	55	50	50	8

							Visua	l Condi	tion	Survey			
Pro	ject			Aggr.	Retent	ion	8	leeding		Emb Depth,	edment Perce	nt	
District	Highway No.	ADT	Age. Yrs.	OWP	BWP	CL	OWP	BWP	С	dmo	BWP	ರ	0veral1
===	US 259 US 59 FM 2864	Good 13,900 490	0.8 8.0 8.8 8.0	e 01	و 05	10 10	222	222	222	28 85 20	70 75 50	60 50	8 0 8
=	SH 21	1500	0.6	6	6	6	10	10	01	45	90	30	6
13 13 13 13	US 90 US 90 FM 531 FM 531 FM 533	1500 1500 250 250 130	0.6 1.0 1.0 1.0 0.6 0.6	6 6 0 1 0	66746	68686	0140101	01 01 01 01	01000	45 90 30 35	30 40 30 30 30 40 30 30	%2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	9 6 8 8 9 9 9
13 13 13	FM 533 FM 966 FM 966	130 430 430	1.0 0.6 1.0	10 10 8	4 6	4 9 8	0100	01 01 01	6 01 01	60 35 65	60 50	70 50	4 10 6
13 13 13	FM 238 FM 238 FM 239	110 400	0.6 1.0 0.6	6 8 OI	ფით	880	222	200	200	30 65 45	30 30 30 30	30 30 30	8 7 10

							Visua	l Condi	tion	Survey			
Pro	ject			Aggr.	Retent	tion	8	leeding		Emb Depth,	edment Perce	nt	
District	Highway No.	ADT	Age. Yrs.	QMD	BWP	ป	OWP	BWP	С	QWD	BWP	CL	Overall
13 23	FM 239 SH 72 SH 72	400 1200 1200	1.0 0.6 1.0	01 0	588	01 0 0	800	222	200	75 45 70	70 35 50	60 35 50	800
13	FM 710 FM 710	710 710	0.6 1.0	00	10	01	10 3	10 8	10 4	35 95	30 75	30 75	10
13	FM 441 (1) FM 441 (1) FM 441 (2)	120 120 120	0.6 1.0 0.6	01 05	10 6 10	10 10 10	222	000	222	45 75 45	92 30 92 30	35 35 35	10 7 10
13 13 13	FM 441 (2) FM 961 (1) FM 961 (1)	120 300 300	1.0 0.6 1.0	222	8 01 10	9 01 01	10	0100	00¢	80 35 70	70 30 70	70 30 65	6 10 7
13	US 87	110	0.8	10	10	8	10	10	10	70	50	30	6
13 13 13	FM 961 (2) FM 961 (2) FM 1161	350 350 710	0.8 0.8 0.8	6 6 10	5 10	5 5 10	10 8 8	10 7 10	10 7 10	40 75 75	30 20	30 65 55	7 6 8

~

							Visua	l Condi	tion	Survey			
Pro	ject			Aggr.	Retent	tion	B	leeding		Emb Depth,	edment Perce	ht	
District	Highway No.	ADT	Age, Yrs.	OWP	BWP	CL	QMD	BWP	ы	GWP	BWP	CL	0vera]]
15	FM 2505 (1) FM 2505 (2)	50 220	1.7	66	<u>ہ</u>	6	20	22	22	900	50 25	50 25	æ ه
15	FM 2505 (2) FM 1346	220 850	1.7	00 ⁸	01 6	01 6	200	222	10	60	35	35	. 2 6
15 15 15	FM 1346 LP 1604 LP 1604	850 920 920	1.7 0.7 1.7	200	222	222	006	222	222	02 0 02	ତ୍ୟର	55 50	6 01 6
23	FM 2131	150	0.8	6	4	9	10	10	10	35	30	30	9
23	FM 2131 FM 2028	150	1.8	20	22	01	∞∞	66	66	95 90	80 80	80 80	م 0
53 53	US 190 (1) US 190 (2)	800 40		222	200	8 01 8	01 9	010	000	<u>8</u> 92	50 65	40 65	6 8
23 23 23 23 23	FM 45 FM 500 FM 569 FM 569	810 470 700 700	8.0.0	2222	0000	2022	<u>م</u> 084	500 4	1010	95 85 0 85 95 85 0 85	75 90 90 90	65 45 90 95	രയാര

-

		=													
		0vera	01 8	0 8	9	ωı	0 W D	8	6	6	6	9	0	0	6
	nt	С	50 50	40 55	75	60	40	40	55	40	60	30	30	30	55
	perce.	BWP	40 60	40 65	70	70	40	40	60	80	65	30	90	80	60
Survey	Emt Depth	OWP	45 70	50 90	85	60	45	50	20	45	20	35	40	35	70
tion		СГ	01	01	6	23	00	10	2	10	10	10	0	0	10
l Condi	leeding	BWP	20	00	10	2	00	10	2	01	10	10	10	10	10
Visua	8	ОМР	9 01	იფ	7	ωġ	01	10	10	0	10	10	10	10	10
	cion	CL	01 01	01	10	10	n O	6	10	2	10	9	10	10	8
	Retent	ВМР	01	00	10	٥ ا	40	7	6	б	10	4	01	10	6
	Aggr.	OMP	22	01	10) I	9 6	9	10	2	10	8	10	10	6
		Age, Yrs.	0.8 1.8	0.8 1.8	0.8	1.8	0.5	0.8	0.8	0.5	0.8	0.8	0.8	0.5	0.8
		ADT	530 530	1430 1430	440	440	415 135	135	1170	150	150	225	350	1100	0011
	ect	Highway No.	SH 16 SH 16	SH 36 SH 36	FM 1476	FM 1476	FM 2125 FM 1467	FM 1467	US 84/67	FM 581	FM 581	FM 2131	FM 2525	US 183/190	US 183/190
	Proj	District	23 23	23 23	23	23	23 23	23	23	23	23	23	23	23	23

		Traff	ic - Vehicle	es Per Day Pe	r Lane	
	over 1,000	500 to 1,000	250 to 500	100 to 250	Under 100	
Traffic Factor (T)	1.00	1.05	1.10	1.15	1.20	

Table 5. Asphalt Application Rate - Correction Due to Traffic.

Asphalt Quantity Correction gal/sq.yd.
-0.06
-0.03
0.00
+0.03
+0.06

.

Table 6. Asphalt Application Rate Correction Due to Existing Pavement Surface Condition.

Description of Existing Surface	Approximate Surface Texture, Cubic inch per square inch	Asphalt Quantity Correction, gallons per square yard
Flushed Asphalt Surface	0.001 to 0.005	-0.06
Smooth, Nonporous Surface	0.005 to 0.015	-0.03
Slightly Porous, Slightly Oxidized Surface	0.015 to 0.025	0.00
Slighlty Porous, Oxidized Surface	0.025 to 0.040	+0.03
Badly Pocked, Porous, Oxidized Surface	0.040 and above	+0.06

Table 7. Asphalt Application Rate Correction Due to Existing Pavement Surface Condition.

Figure 1. Location of Field Test Sections by Districts.

Figure 2. Relation of Percent Embedment to Mat Thickness for Determining Quantity of Asphalt.

A. JOB IDENTIFICATION	N
-----------------------	---

	Distri	ct No	•		High	way No				Co	ounty		
	Contro	1 No.			Sect	ion No				Jo	ob No	•	
		m	iles M	N W E	W of	· ·				(r	neares	st towr	n);
	Mile P	ost		to	Mile	Post		•	Tra	ffic,	ADT/	lane	
	Trial	Field	Secti	on No	o				Da	ate Se	ealed_		
B. <u> </u>	MATERI	ALS AI	ND DES	SIGN									
	Aggreg	ate So	ource_						Aggre	egate	Quant	tity	
	Asphal	t Sou)	rce						Aspha	alt Qu	antit	:y	
									(gal.	./sq.y	/d.)		
I	Length	of Se	ection	Eval	uate	d			_mile	es			
:. <u>I</u>	EVALUA	TION erall	Visua	l Ins	pect	ion	3.	Bleed	ina				
	0	2	4	6	8	10	01/0	0	2	4	6	8	10
	Vei Poo	ry Po or	or F	air G	iood	Very Good	OWP Ex	xcess	N	lod.	SI	ight	None
2	2. Ag	gregat	e Ret	entio	n		BWP	0	2	4	6	8	10
	0	2	4	6	8	10	E>	kcess	Mo	od.	S1	ight	None
Oh			+	0		Ne	C,	0	2	4	6	8	10
	Aggr Loss	-e Co A 5 L	aggr. .oss	Lo	gnt SS	Loss	ـــــ ٤	cess	Mo	od.	\$1	ight	None
D1.	0	2	4	6	8	10	4.	Embed	ment	Depth		0	WP
C.	0	2	4	6	8	10	-					В	WP
Ľ	•											ſ	
							-						L

COMMENTS:

Figure 4. Seal Coat Visual Evaluation Form. 37

Figure 7. Relationship Between Aggregate Embedment and Average Mat Thickness.

Figure 8. Field Embedment Depth in OWP vs. Age -District 5, Project 5-SH86.

Figure 9. Field embedment Depth in OWP vs. Age - District 6, Project 6-US285.

Figure 10. Field Embedment Depth in OWP vs. Age - District 15, Project 15-SD123.

Figure 11. Field Embedment Depth in OWP vs. Age - District 20, Project 20-SH321.

Figure 14. Relationship Between Asphalt Quantities Used for Construction versus Determined from Design Method.

WHEEL	ASPHALT	GRADE
PATH	AC-5	AC-10
OWP	0	٠
BWP	0	
CL	X	X

Figure 15. Field Embedment Depth vs. Age AC-5 from Refinery Casden District 5, Project 5-SH86.

Figure 16. Field Embedment Depth vs. Age AC-5 from Refinery Cosden District 20, Project 20-SH321.

Figure 18. Aggregate Embedment in the Field versus Location Across Pavement.

Figure 19. Seal Coat Design Curves.

APPENDIX A

MEASUREMENT OF TEXTURE DEPTH BY THE SILICONE PUTTY METHOD

Scope

This method describes a procedure for determining the average macrotexture depth of a selected portion of a highway pavement surface.

Summary of Method

A known volume of silicone putty is formed into an approximate sphere and placed on the pavement surface. A 6 inch plate with a 4 in. diameter by 1/16 in. deep recess is centered over the putty and pressed down in firm contact with the surface. The average diameter of the resulting flat-topped ring of putty is recorded. The volume of putty is selected so that on a smooth, flat surface with no texture, the silicone putty will completely fill the recess giving a 4 in. diameter flat topped circle. A decrease in diameter of the deformed putty is related to an increase in texture depth thus giving a rapid and simple index of pavement macrotexture.

Significance

The friction between a tire and the highway surface required for various vehicle maneuvers on a wet pavement, particularly in braking, depends in part on the thickness of the water film between the contact surfaces. This thickness, in turn, is controlled by the water drainage characteristics of the pavement as well as tire tread design and condition. Pavement drainage is influenced strongly by its surface macrotexture, one measure of which is the so-called texture depth. Additionally, an important contribution to friction at the tire-pavement interface is the hysteresis energy losses which occur as

a result of cyclic deformation of the tread rubber; these are also influenced by texture depth.

The texture depth determined by this method is a number representing the ratio of the volume of the putty used to the resultant measured circular area covered. Accordingly, it is only an indirect measure of pavement macrotexture wavelength and ampertude, and gives no information on shape, distribution or other factors which may influence pavement surface drainage or hysteresis losses. Additionally, it is assumed that the putty completely fills all voids under the measured circular area.

Apparatus

The apparatus required for calibration and texture depth measurement consists of the following:

 A circular plate 6 in. diameter x 1 in. thick machined from flat acrylic plastic sheet* with a centrally machined 4 in. diameter x 1/16 in. deep recess on one side.

- 2. 50 pound (22.6kg) weight with convenient handle.**
- 3. Steel wire bristle brush.
- 4. Stiff bristle general utility scrubbing brush.
- 5. 250 ml polyethylene "squeeze" washing or dispensing bottle fitted with a delivery tip drawn to give a fine directed stream of dewetting agent.
- Synthetically produced, wear resistant, cellulose, polyurethane, or other type of polymer foam sponge suitable for quick removal of excess dewetting agent from the pavement surface.

^{*}Plastic sheets, usually known as "Plexiglas", manufactured by the Rohm & Haas Co., Philadephia, Pa., or "Lucite", manufactured by E. I. du Pont de Nemours Co., Wilmington, Delaware, have been used satisfactorily.

^{**}Such weights made by Fairbanks-Morse have been found to be satisfactory for the purpose.

- An engineers scale capable of measuring putty diameter to 0.01 in.
- 8. A metal pry bar (for separation of the circular plate from the pavement at the end of test).
- 9. 3 oz seamless tin plate containers with fitted lid (such as used in ASTM D6).
- 10. Flat plateglass plate for use as a reference check surface, approximately 8 in x 8 in x 1/2 in.

Materials

The following materials are required to conduct this test.

1. A filled high viscosity polysiloxane polymer, known as silicone putty.* Approximately 15.9 g of this material will be required to completely fill the recess in the test plate on a flat surface. It is usually possible to completely remove the putty from most pavement surfaces after a test is completed, and reuse this material in subsequent tests. However, it has proven to beadvantageous to provide a number of pre-weighed putty specimens at the test site, transported in the covered 3 oz containers described in 9 above.

2. Dilute solution of dioctyl sodium sulfosuccinate for use as a wetting and parting agent between the pavement surface and silicone putty test specimen. This solution can be made by mixing 5 ml of 75 percent aqueous Aerosol OT solution** with 5 gal (19:1) of distilled water.

^{*}A material marketed as "silly putty" available from Arnold Clark, Inc., Box 741, New Haven, Conn. has been found suitable for this purpose.

Sampling

It is well known that in a given nominally uniform section of highway pavement, surface macrotexture may vary significantly from spot to spot. On the other hand, the area covered by the putty in this test is only a small fraction of the total pavement surface to be evaluated. Accordingly, appropriate selection of test locations will be a significant factor in achieving the objective of this test procedure. In a given section of pavement, putty depth measurement shall be made on at least 10 different locations. These may be selected as follows:

1. Random sampling procedure (preferred method). On a diagram of the pavement surface section to be measured, place a rectangular grid producing at least 1000 square cells, each designating a location on the pavement surface, and number these cells serially by any systematic method. Select 10 of these numbers from a table of random digits, and make tests at the center of the cell numbers so indicated.

2. Selective sampling (for preliminary or quick evaluation tests only). Visually inspect the pavement section to be evaluated, and select, on the basis of such observation, 10 locations which appear to be most representative of the texture of the entire section.

Procedure

At the locations selected for texture depth measurements, proceed as follows:

1. Remove all loose stones, other debris and contaminants by vigorous application of the steel wire brush.

2. Remove remaining sand and dust from the surface by careful dry brushing with the scrubbing brush.

3. Wet a section at least as large as the test plate with a spray of dilute Aerosol OT solution from a squeeze bottle.

**Available from many general laboratory supply house.

4. Remove excess Aerosol OT solution by dropping or wiping the surface with the sponge.

5. Form silicone putty into an approximate sphere and place on the pavement surface.

6. Center the recess of the test plate over the putty and press the plate down in firm contact with the road surface. Use of the 50 pound weight to exert pressure for approximately 1 minute will usually suffice to bring the edges of the test plate into contact with the pavement surface. Time intervals over 5 min. should be avoided.

7. Make four diameter measurements with an angular spacing of 45 deg., with an engineers scale to the nearest 0.01 in. (0.25 mm). The average of these readings is taken as the diameter of the pressed-down circle of putty.

8. Remove the test plate from the pavement surface, using a pry bar if necessary. At the same time the putty also should be removed from the surface. In most instances, complete removal of the putty can be achieved by lightly pressing the putty ball against the few fragments which may try to cling to the surface. In the few cases where more than a few hundredths of a gram of putty cannot be removed, it will be necessary to use a fresh putty specimen of the correct weight.

Calculation of Texture Depth

Texture depth is calculated from the putty diameter by the following equation:

$$Tp = \frac{1}{D^2} - 0.0625$$

where Tp = texture depth, inches

D = average putty circle diameter, inches or

$$Tp = \frac{2.54}{D^2} - 0.1588$$

where Tp = texture depth, cm.

D = average putty circle diameter, cm.

APPENDIX B

VISUAL CONDITION SURVEY

The preconstruction visual evaluation was performed in accordance to practices set forth in Research Report 151-2 (Reference 17). The form used for this evaluation is shown in Figure 1-B.

APPENDIX C PRECONSTRUCTION, CONSTRUCTION AND POST CONSTRUCTION DATA

DISTRICT_## 3 COUNTY_## YOUNG HWY NO. ## FM 2075 NUMBER OF EVALUATIONS_## 2 LOCATION_ ## AT MP 4 IN THE EBL TEXTURE READING DATE ## 08/25/82 TEXTURE LOCATION_ ## AT MILE POST 4 IN THE EBL 3.35 AVERAGE_## 3.58 OWP_## 3.60 3.40 • AVERAGE_## 3.57 3.55 BWP_## 3.55 3.40 . 3.75 3.80 AVERAGE_## 3.75 IWP_## 3.70 TEXTURE LOCATION_ ## 25 FT EAST OF MP 4 IN THE EBL CWP_## 3.50 3.45 3.60 AVERAGE ## 5.62 ٠ BWP_## 3.65 3.70 3.70 AVERAGE_## 5.58 ٠ IWP_## 3.60 3.40 AVERAGE ## 3.40 3.60 • TEXTURE LOCATION_ ## IN THE WEST BOUND LANE 3.70 OWP_## 3.75 BWP_## 3.10 3.70 AVERAGE_## 3.72 AVERAGE_## 3.13 3.10 3.20 • IWP_## 3.50 3.50 3.40 AVERAGE ## 3.47 . AGGREGATE RATE_## 1/105 DES 1/100 SHOT QUANTITY AVG_## 0.325 HI_## 0.356 LOW_## 0.276 ASPHALT GRADE/PROD_## AC-10/AM.PET. AGGREGATE GRADE/PROD_## 9 P9 GR 4A AVG DAILY TRAFFIC_## DATE CONSTRUCTED_## 09/10/82 190 EVALUATION DATE ## OVERALL VISUAL RETENTION ## 4 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 4 OWP_##10 OWP_## 50 BWP_##10 BWP_## 2 BWP_## 35 CL_##10 CL_## 30 CL_##10 EVALUATION DATE_## 5/11/83 OVERALL VISUAL RETENTION ## 4 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 6 0WP ## 7 0WP_## 35 BWP_## CL_## BWP_## 5 BWP_## 8 35 CL_## 9 CL_##10 30

DISTRICT_## J COUNTY_## CLAY HWY NO._## FM 2393 LOCATION_## AT MP 12 BETWEEN DEAN & JOLLY NUMBER OF EVALUATIONS_ ## 1 TEXTURE READING DATE_## 08/24/92 TEXTURE LOCATION_ ## AT MP 12 IN THE WEST BOUND LANE 3.05 3.10 3.15 AVERAGE_## 3.09 GWP ## 3.05 8WP ## 3.15 3.10 3.20 3.10AVERAGE_## 5.14 AVERAGE_## 5.10 IWP_## 3.15 3.00 3.10 3.15 TEXTURE LOCATION_ ## 25 FT WEST OF MP 12 AVERAGE_## 3.06 AVERAGE_## 3.25 OWP_## 3.10 3.00 3.05 3.10 3.20 BWP ## 3.30 3.25 3.25 2.90 2.90 2.90 IWP_## 2.90 AVERAGE ## 2.90 TEXTURE LOCATION_## IN THE EAST BOUND LANE 3.103.35 3.10AVERAGE_## 3.19 OWP_## 3.15 SWP_## 3.40 AVERAGE ## 3.46 3.50 3.50 3.45 AVERAGE ## 5.36 IWP_## 3.40 3.40 3.30 3.35 AGGREGATE RATE_## 1/111 DES 1/110 SHOT QUANTITY AVG_## 0.325 DES 0.300 HI_## 0.350 LOW_## 0.303 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_## 3 P8 GR4A DATE CONSTRUCTED_## 06/18/93 AVG DAILY TRAFFIC_## 480 EVALUATION DATE ## OVERALL VISUAL RETENTION_ ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 OWP ## 60 BWP_##10 CL_##10 BWP_## 40 BWP ## 7 CL_## 9 CL_## 40 EVALUATION DATE_** OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 OWP_## 0 0WP ## SWP_## 0 CL_## 0 3WP_## 0 B₩₽_## CL_## 0 €1_ ##

DISTRICT_## 3 COUNTY_## YOUNG HWY NO._## FM 3109 LOCATION ## NORTH BOUND LANE AT MP 8 NUMBER OF EVALUATIONS_## 1 TEXTURE READING DATE_## 05/23/93 TEXTURE LOCATION_## 30 FT SOUTH OF MP 8 AVERAGE_## 3.14 AVERAGE_## 3.09 OWP_## 3.10 3.20 3.15 3.103.10 3.00 3.15 SWP_## 3.10 AVERAGE_## 3.40 3.40 3.45 3.35 IWP_## 3.40 TEXTURE LOCATION_ ## AT MP 8 OWP_## 3.25 3.30 BWP_## 3.40 3.25 IWP_## 3.40 3.45 3.20 3.25 AVERAGE_## 3.25 AVERAGE_## 3.30 AVERAGE_## 3.44 3.25 3.30 3.45 3.45 TEXTURE LOCATION ## 30 FT NORTH OF MP 8 3.20 3.20 AVERAGE ## 3.16 OWP ## 5.10 3.15 BWP_## 3.20 3.20 AVERAGE_## 3.16 3.15 3.10 IWP_## 3.20 3.20 3.25 AVERAGE ## 3.24 3.30 AGGREGATE RATE_## 1/110 DES 1/100 SHOT QUANTITY AVG_## 0.346 DES 0.350 HI_## 0.364 LOW_## 0.338 ASPHALT GRADE/PROD ## AC-5/AM.PET. AGGREGATE GRADE/PROD_## B PB GR4A DATE CONSTRUCTED_## 08/11/83 AVG DAILY TRAFFIC_## 190 EVALUATION DATE_## OVERALL VISUAL RETENTION ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 0WP_## 33 OWP_##10 3WP_## 30 BWP_## 7 BWP_##10 · CL_## 30 CL_##10 CL_## 9 EVALUATION DATE_ ## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 0 BWP_## 0 **OWP_##** 0 0WP_## BWP_## CL_## 3WP_## 0 CL_## 0 CL_## 0

DISTRICT_## 3 COUNTY_## YOUNG HWY NO. ## FM 701 LOCATION_ ## EAST BOUND LANE AT MP 2 NUMBER OF EVALUATIONS ## TEXTURE READING DATE ## 05/23/83 TEXTURE LOCATION_## 100 FT WEST OF MP 2 3.25 OWP_## 3.20 3.203.20 AVERAGE_## 3.21 BWP_## 2.90 2.90 2.95 3.05 AVERAGE_## 2.95 3.25 IWP_## 3.25 3.20 3.30 AVERAGE_## 3.25 TEXTURE LOCATION_ ## 50 FT WEST OF MP 2 OWP_## 3.70 BWP_## 3.25 3.65 3,70 AVERAGE_## 5.66 3.40 3.25 3.30 3.30 AVERAGE_## 3.19 3.05 IWP_## 3.05 3.05 3.05 AVERAGE ## 3.05 TEXTURE LOCATION_## AT MP 2 QWP_## 3.00 3.10 3.00 5.10AVERAGE_## 3.10 SWP_## 3.10 3.10 AVERAGE_## 3.13 3.10 3.20IWP ## 3.00 3.00 3.05 AVERAGE_## 3.03 3.05 AGGREGATE RATE_## 1/90 DES 1/92 SHOT QUANTITY AVG_## 0.394 DES 0.350 HI_## 0.415 LOW_## 0.377 ASPHALT GRADE/PROD_## AC-3/AM.PET. AGGREGATE GRADE/PROD_## 3 P3 GR2 DATE CONSTRUCTED_## 08/11/83 AVG DAILY TRAFFIC_## 4:30 EVALUATION DATE ## OVERALL VISUAL RETENTION_## 6 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_## 4 QWP_## 55 BWP_## 40 CL_## 35 BWP_##10 BWP_## 6 CL ##10 CL_## 9 EVALUATION DATE_## OVERALL VISUAL RETENTION_ ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 0WP ## 0 0WP ** BWP ## 0 CL ## 0 SWP_## CL_## 8WP_## 0 CL_## 0

DISTRICT_## 3 COUNTY_## ARCHER HWY NO. ## SH 25 NUMBER OF EVALUATIONS_## 2 LOCATION ## AT MP 30 BY WINDTHORST TEXTURE READING DATE_## 08/25/82 TEXTURE LOCATION ## AT MP 30 IN THE EAST BOUND LANE AVERAGE_## 3.10 OWP ## 3.10 3.10 3.10 . BWP ## 3.20 3.20 3.10 AVERAGE ## 3.17 . IWP_## 3.20 3.05 3.10 AVERAGE ## 3.12 . TEXTURE LOCATION_## 25 FT EAST OF MP 30 OWP_## 3.10 3.00 3.15 AVERAGE_## 3.08 ٠ BWP ## 3.20 3.25 3.20 AVERAGE_## 3.22 • IWP_## 3.30 AVERAGE_## 3.20 3.30 3.00 . TEXTURE LOCATION_## AT MP 30 IN THE WEST BOUND LANE OWP_## 3.05 3.10 3.10 AVERAGE_## 3.08 • AVERAGE_## 3.83 AVERAGE_## 3.22 BWP ## 3.40 3.40 3.35 . IWP_## 3.25 3.20 3.20 AGGREGATE RATE ## 1/105 DES 1/110 SHOT QUANTITY AVG ## 0.334 HI_## 0.351 LOW_## 0.304 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_## B PB 4A DATE CONSTRUCTED_## 09/29/82 AVG DAILY TRAFFIC_## 810 EVALUATION DATE ## OVERALL VISUAL RETENTION ## 7 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 8 OWF ## 9 0WP ## 50 BWP_## 8 BWP ## BWP ##10 40 CL ##10 CL ## 35 CL ## 9 EVALUATION DATE_## 5/11/83 OVERALL VISUAL RETENTION_## 8 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING 0WP ## OWP ## 8 35 OWP ##10 BWP_## BWP ## 8 BWP_##10 25 CL_## 8 CL ##10 CL_## 30

DISTRICT_## 3 COUNTY_## ARCHER					HWY NO## SH 25		
LOCATIO	v_## SOU	TH BOUND L	ANE AT I	MP 12		NUMBER OF	F EVALUATIONS_## 1
TEXTURE	READING	DATE_##	5/23/83				
TEXTURE	LOCATION	_## 50 F1	r west of	F MP 12			
OWP_## BWP_## IWP_##	3.15 2.95 3.20	3.10 2.90 3.15	3.20 2.90 3.30	3.10 3.00 3.15	A' A' A'	VERAGE_## VERAGE_## VERAGE_##	3.14 2.94 3.20
TEXTURE LOCATION_## AT MP 12							
0WP_## BWP_## IWP_##	2.90 3.10 3.30	2.95 3.10 3.25	2.95 3.10 3.30	2.95 3.15 3.30	A1 A1 A1	VERAGE_## VERAGE_## VERAGE_##	2.94 3.11 3.29
TEXTURE LOCATION_## 50 FT EAST OF MP 12							
OWP_## BWP_## IWP_##	3.15 2.80 3.20	3.15 2.85 3.25	3.05 3.00 3.35	3.10 2.95 3.35	A' A' A'	VERAGE_## VERAGE_## VERAGE_##	3.11 2.90 3.29
AGGREGATE RATE_## 1/106 DES 1/110							
SHOT QUANTITY AVG_## 0.300 HI_## 0.313 LOW_## 0.276							
ASPHALT GRADE/PROD_## AC-5/KERR MCGEE							
AGGREGATE GRADE/PROD_## B PB 4A MOD							
DATE CONSTRUCTED_## 08/01/83 AVG DAILY TRAFFIC_##							\$ 640
EVALUATION DATE_##							
OVERALL	VISUAL RE	ETENTION_#	# 8				
AGGREGATE RETENTION				LEEDING	E	EMBEDMENT	DEPTH
OWF BWF CL	2_##10 2_##10 ##10			DWP_## 8 BWP_##10 CL_##10	****	OWP_## BWP_## CL_##	70 60 60
EVALUATION DATE_##							
OVERALL VISUAL RETENTION_## 0							
AGGREGATE RETENTION				LEEDING		EMBEDMENT	DEPTH
DV Bu C	VP_## 0 VP_## 0 CL_## 0		C)WP_## 0 3WP_## 0 CL ## 0		OWP_## BWP_## CL ##	

HWY NO._## SH 79 DISTRICT ## J COUNTY_## CLAY NUMBER OF EVALUATIONS_## 1 LOCATION ## AT MP 22 NEAR DEAN TEXTURE READING DATE_## 08/24/82 TEXTURE LOCATION_ ## AT MP 22 IN THE NORTH BOUND LANE AVERAGE_## 5.80 3.95 3.90 3.75 OWP ## 3.90 3.55 3.55 AVERAGE_## 3.56 BWP_## 3.55 3.60 AVERAGE_## 5.70 IWP_## 3.45 3.65 3.70 3.80 TEXTURE LOCATION_## 25 FT SOUTH OF MP 22 GWP_## 3.90 3.90 3.85 3.95 AVERAGE_## 5.90 AVERAGE_## 3.59 AVERAGE_## 3.90 BWP_## 3.55 3.55 3.65 3.60 3.90 IWP ## 5.90 3,90 3.90 TEXTURE LOCATION_ ## IN THE SOUTH BOUND LANE AVERAGE ## 3.80 QWP_## 3.80 3.75 3.85 3.80 BWP_## 3.10 3.20 AVERAGE ## 3.14 3.15 3.103.90 IWP_## 4.00 AVERAGE ## 3.94 3.95 3.90 AGGREGATE RATE ## 1/110 DES 1/110 HI_## 0.353 LOW_## 0.307 SHOT QUANTITY AVG_## 0.328 DES 0.300 ASPHALT GRADE/PROD_## AC-10/AM.PET. AGGREGATE GRADE/PROD ## 9 P9 GR4A DATE CONSTRUCTED_## 06/20/83 AVG DAILY TRAFFIC_## 2500 EVALUATION DATE_## OVERALL VISUAL RETENTION ## 4 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_## 2 0WP_## 90 BWP_## 4 BWP_##10 BWP_## 75 CL ##10 CL ## 9 CL_## 30 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 BLEEDING AGGREGATE RETENTION EMBEDMENT DEPTH 0WP_## 0 OWP_## 0 OWP_## BWP_## 3WP_## 0 3WP_## 0 CL_## 0 CL_## 0 CL_##

DISTRICT_## 3 COUNTY_## ARCHER HWY NO. ## SH 79 NUMBER OF EVALUATIONS_## 2 LOCATION ## AT MP 22 SOUTH OF ARCHER CITY TEXTURE READING DATE_## 08/25/92 TEXTURE LOCATION_ ## AT MP 22 IN THE NBL OWP_## 3.00 BWP_## 3.20 2.95 AVERAGE ## 3.00 3.05 ٠ 3.20 AVERAGE ## 3.18 3.15 • AVERAGE_## 3.30 IWP ## 3.30 3.30 3.30 . TEXTURE LOCATION_ ## 25 FT NORTH OF MP 22 IN THE NBL OWP_## 3.20 3.20 3.15 AVERAGE_## 3.18 ٠ 3.45 BWP_## 3.40 3.45 AVERAGE_## 3.43 ٠ 3.55 IWP_## 3.50 3.50 AVERAGE_## 3.52 • TEXTURE LOCATION_ ## AT MP 22 IN THE SOUTH BOUND LANE OWP_## 3.40 3.30 3.33 AVERAGE_## 3.05 ٠ 5.40 BWP_## 3.50 3.55 - AVERAGE_## 3.48 ٠ 3.25 IWP_## 3.35 3.30 AVERAGE ## 3.30 AGGREGATE RATE_## 1/110 HI_## 0.363 LOW_## 0.291 SHOT QUANTITY AVG_## 0.318 ASPHALT GRADE/PROD_## AC-5 /AM.PET. AGGREGATE GRADE/PROD ## 3 P9 4A DATE CONSTRUCTED_## 09/29/82 AVG DAILY TRAFFIC_## 1750 EVALUATION DATE ## 5/11/93 OVERALL VISUAL RETENTION_## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH QWP_## 7 QWP_##10 OWP_## -35 BWP_##10 BWP_## 9 BWP_## 30 CL_##10 CL_##10 CL_## 30 EVALUATION DATE ## OVERALL VISUAL RETENTION ## 7 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING 0WP ## 8 0WP_## OWP_##10 70 BWP_## 50 8WP ##10 BWP_##10 CL ##10 CL_## 50 CL_##10

HWY NO._## SH 79 DISTRICT_## J COUNTY_## ARCHER NUMBER OF EVALUATIONS ## 2 LOCATION ## AT MP 30 N OF OLNEY TEXTURE READING DATE_## 08/25/82 TEXTURE LOCATION_ ## SECTION HAS FABRIC UNDER OLD SEAL COAT 2.90 AVERAGE_## 2.87 OWP_## 2.90 2.80 ٠ AVERAGE_## 2.40 2.40 2.40 8WP ## 2.40 • 3.20 3.30 AVERAGE_## 3.27 IWP_## 3.30 TEXTURE LOCATION_## N.A. OWP_## 2.90 2.90 2.85 AVERAGE ## 2.88 . SWP_## 2.60 AVERAGE_## 2.60 AVERAGE_## 2.83 2.65 2.55 • 2.85 IWP_## 2.90 2.85 TEXTURE LOCATION_## N.A. OWP ## 3.40 3.20 3.35 AVERAGE_## 3.32 . 2.75 BWP ## 2.90 2.70 AVERAGE_## 2.75 • AVERAGE_## 3.07 IWP ## 3.05 3.10 3.05 AGGREGATE RATE_## 1/119 DES 1/110 SHOT QUANTITY AVG_## 0.335 HI_## 0.346 LOW_## 0.321 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_## 3 P9 GR4A DATE CONSTRUCTED_## 09/23/82 AVG DAILY TRAFFIC_## 1350 EVALUATION DATE_## OVERALL VISUAL RETENTION ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 OWP ## 35 8WP_## 8 BWP_##10 BWP_## 40 CL_##10 CL_## 50 CL_##10 EVALUATION DATE_## 5/11/83 OVERALL VISUAL RETENTION ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 9 OWP_##10 OWP_## 40 BWP_## 30 CL_## 35 8WP_## 9 BWP_##10 CL_## 9 CL_##10

DISTRICT_## 3 COUNTY_## THROCKMORTON HWY NO._ ## US 183 LOCATION ## EAST BOUND LANE AT 24 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 05/23/83 TEXTURE LOCATION_## 50 FT WEST OF MP 24 3.05 AVERAGE_## 3.03 2.95 3.00 3.10 0wp ## 3.50 3.55 3-45 AVERAGE_## 5.50 BWP_## 3.50 3.75 3.75 AVERAGE ## 3.73 IWP ## 3.70 3.70 TEXTURE LOCATION_## AT MP 24 AVERAGE_## 3.30 3.30 3.40 3.33 OWP_## 3.30 3.30 BWP_## 3.40 3.35 3.40 AVERAGE_ ## 3.36 3.40 3.40 IWP ## 3.45 3.40 AVERAGE ## 3.41 TEXTURE LOCATION_ ## 50 FT EAST OF MP 24 OWP_## 3.50 3.40 3.40 3.40 AVERAGE ## 3.43 AVERAGE ## 3.39 BWP_## 3.20 3.45 3.40 3.50 IWP_## 3.40 3.40 3.40 3.40 AVERAGE_## 3.40 AGGREGATE RATE_## 1/91 DES 1/90 SHOT QUANTITY AVG_## 0.371 DES 0.350 HI_## 0.389 LOW_## 0.351 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_## B PB GR3 AVG DAILY TRAFFIC ## 550 DATE CONSTRUCTED_## 08/13/83 EVALUATION DATE ## OVERALL VISUAL RETENTION_ ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 0WP_## 65 BWP_## 3WP_## 8 BWP_##10 33 CL_## 20 CL ## 9 CL_##10 EVALUATION DATE_ ## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING 0WP_## 0 0WP_## 0 OWP_## BWP_## 0 BWP ## () BWP ## CL ## 0 CL_## CL_## 0

DISTRICT_## 3 COUNTY_## YOUNG HWY NO. ## US 380 NUMBER OF EVALUATIONS_## 2 LOCATION_ ## AT MP 34 NE OF GRAHAM TEXTURE READING DATE_## 08/25/92 TEXTURE LOCATION_ ## AT MP 34 IN THE EAST BOUND LANE AVERAGE_## 3.85 AVERAGE_## 3.82 GWP_## 3.90 3.85 3.80 ٠ BWP_## 3.90 3.80 3.75 ٠ 3.70 3.75 AVERAGE_## 3.70 IWP ## 3.65 TEXTURE LOCATION_ ## 25 FT EAST OF MP 34 IN THE EBL 3.75 3.70 AVERAGE ## 3.75 0WP ## 3.80 • AVERAGE_## 3.60 AVERAGE_## 3.57 BWP_## 3.60 3.40 3.60 . 3.60 IWP_## 3.60 3.50 . TEXTURE LOCATION_ ## AT MP 34 IN THE WBL OWP ## 3.10 3.10 3.10 AVERAGE ## 5.10 • BWP ## 3.50 3.45 3.50 AVERAGE_## 3.48 • IWP_## 3.85 3.80 3.85 AVERAGE_## 3.83 AGGREGATE RATE_## 1/110 SHOT QUANTITY AVG_## 0.325 HI_## 0.35 LOW_## 0.29 ASPHALT GRADE/PROD_## AC-10/AM.PET. AGGREGATE GRADE/PROD_## CL9 P9 4A DATE CONSTRUCTED_## 09/09/82 AVG DAILY TRAFFIC_## 4300 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_## 9 OWP_## 50 8WP_## 9 BWP_##10 BWP_## 40 CL ## 30 CL_##10 CL ##10 EVALUATION DATE_## 5/11/83 OVERALL VISUAL RETENTION_##10 AGGREGATE RÉTENTION EMBEDMENT DEPTH BLEEDING GWP_##10 OWP_##10 0WP_## - 30 BWP_##10 BM6_## 32 BWP_##10 CL_##10 CL_##10 _CL_## 35

DISTRICT_## 3 COUNTY_## BAYLOR HWY NO._## US 92 193 LOCATION_ ## WEST BOUND LANE AT MP 20 NUMBER OF EVALUATIONS_## 1 TEXTURE READING DATE_## 05/23/83 TEXTURE LOCATION_## 50 FT EAST OF MP 20 AVERAGE_## 3.24 AVERAGE_## 3.18 3.25 QWP_## 3.20 3.20 3.30 3.15 BWP_## 3.20 3.203.15 BWP_## 3.20 IWP_## 3.45 3.40 3.30 3.40 AVERAGE_## 3.39 TEXTURE LOCATION_## AT MP 20 0WP_## 3.50 BWP_## 3.30 3.40 3.40 3.50 AVERAGE_## 3.45 3.40 3.35 AVERAGE ## 3.38 3.45 AVERAGE ## 3.53 IWP_## 3.40 3.50 3.50 3.50 TEXTURE LOCATION_ ## 50 FT WEST OF MP 20 OWP_## 3.55 3.40 3.70 3.45 AVERAGE_## 3.63 BWP ## 3.50 3.55 3.55 3,50 AVERAGE_## 3.53 IWP ## 3.65 3.40 3.65 3.65 AVERAGE ## 3.64 AGGREGATE RATE_## 1/91 DES 1/90 SHOT QUANTITY AVG_ ## 0.334 HI_## 0.344 LOW_## 0.317 ASPHALT GRADE/PROD_## AC-10/KERR-MCGEE AGGREGATE GRADE/PROD_## 9 PB GR3 AVE DAILY TRAFFIC ## 2500 DATE CONSTRUCTED_## 07/29/83 EVALUATION DATE_## OVERALL VISUAL RETENTION_ ## 8 EMBEDMENT DEPTH AGGREGATE RETENTION BLEEDING OWP_##10 owp_## 8 0WP_## 70 BWP_## 9 BWP_##10 BWP_## 33 CL_## 7 CL_##10 CL_## 40 EVALUATION DATE_ ## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH GWP_## 0 0WP_## OWP_## 0 8WP_## 0 ₿₩₽_## · 8WP_## 0 CL_## 0 CL_## CL_## 0

DISTRICT_## 5 COUNTY_##SWISHER HWY NO._ ## FM 145 NUMBER OF EVALUATIONS_## LOCATION ## WEST BOUND LANE AT MP 18 TEXTURE READING DATE_## 05/26/83 TEXTURE LOCATION_## 25 FT EAST OF MP 18 OWP_## 3.45 3.30 3.45 3.45 AVERAGE ## 3.44 BWP_## 2.90 2.90 2.90 3.00 AVERAGE_## 2.93 IWP_## 3.40 3.10 AVERAGE ## 3.14 3.10 3.05 TEXTURE LOCATION ## AT MP 19 3.50 3.55 3.45 OWP_## 3.50 AVERAGE_## 3.50 3WP_## 2.60 AVERAGE_## 2.53 2.65 2.45 2.60 3.25 IWP_## 5.15 3.00 3.10 AVERAGE_## 0.10 TEXTURE LOCATION ## 25 FT WEST OF MP 18 3.45 OWP_## 3.40 3.30 3.45 AVERAGE_## 3.40 AVERAGE ## 2.53 2.60 9WP_## 2.55 2.45 2.50 3.15 IWP_## 3.00 AVERAGE ## 3.05 3.00 3.05 AGGREGATE RATE_## 1/120 SHOT QUANTITY AVG_## 0.329 HI_## 0.346 LOW_## 0.302 ASPHALT GRADE/PROD_## AC-5/AM. PET. AGGREGATE GRADE/PROD_## PB.GR4.MOD/JAKE DIEL.THRASHER PIT DATE CONSTRUCTED_## 07/22/83 AVG DAILY TRAFFIC_## 500 EVALUATION DATE_## 6/28/84 OVERALL VISUAL RETENTION_ ## 5 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH QWP_## 8 OWP ## 6 OWP_## 90 BWP_##10 CL_##10 SWP_## 6 BWP_## 45 CL_## 6 CL ** 45 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH CWP_## 0 QWP_## 0 0WP ## 3WP_## 0 BWP ## 0 3WP_## CL_## 0 CL_## 0 CL_##

DISTRICT ## 5 COUNTY_##SWISHER HWY NO._ ## FM 145 2 LOCATION_ ## EAST BOUND LANE AT MP 10 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 05/26/83 TEXTURE LOCATION_ ## 25 FT EAST OF MP 10 AVERAGE_## 3.48 OWP_## 3.40 3.50 3,50 3.50 2.90 BWP ## 2.90 AVERAGE_## 2.86 2.85 2.80 AVERAGE_## 3.16 IWP_## 3.20 3.30 3.15 3.00 TEXTURE LOCATION_## AT MP 10 3.45 AVERAGE_## 3.50 3.55 3.50 OWP_## 5.50 AVERAGE_## 2.69 2.50 3WP_## 2.70 2.80 2.65 AVERAGE_## 3.11 IWP_## 3.10 3.15 3.10 3.10 TEXTURE LOCATION_ ## 25 FT WEST OF MP 10 AVERAGE_## 3.45 3.50 3.50 3.49 CWP_## 3.50 AVERAGE ## 3.01 BWP_## 3.00 3.00 3.05 3.00 3.20 3.35 3.30 AVERAGE ## 3.29 IWP_## 3.25 AGGREGATE RATE_## 1/120 SHOT QUANTITY AVG_## 0.324 HI ## 0.341 LOW_## 0.302 ASPHALT GRADE/PROD_## AC-5/AM. PET. AGGREGATE GRADE/PROD_## PB.GR4.MOD./JAKE DIEL.THRASHER PIT DATE CONSTRUCTED ## 07/19/83 AVG DAILY TRAFFIC ## 700 EVALUATION DATE ## 6/29/84 OVERALL VISUAL RETENTION ## 4 EMBEDMENT DEPTH AGGREGATE RETENTION BLEEDING OWP_## 7 OWP_## 85-90 OWP_## 5 BWP_## 40 BWP_## 6 BWP_## 8 CL_## 8 CL_## 35 CL_## 6 EVALUATION DATE_ ## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING 0WP ## 0 CWP_## OWP_## 0 9WP_## CL_## BWP_## 0 BWP ## () CL ## 0 CL_## 0

DISTRICT ## 5 COUNTY_## CASTRO HWY NO._## FM 168 LOCATION_ ## AT MP 28 S OF HART NUMBER OF EVALUATIONS_## 2 TEXTURE READING DATE_## 08/13/82 TEXTURE LOCATION_## AT MILE POST 28 IN THE SOUTH BOUND 3.80 3.85 3.80 AVERAGE ## 3.81 OWP ## 5.80 3.00 AVERAGE ## 2.99 BWP_## 3.05 2.90 3.00 IWP_## 3.10 3.00 AVERAGE_## 3.01 2.95 3.00TEXTURE LOCATION_ ## 25 FT NORTH OF MP 28 SOUTH BOUND LANE 5.80 GWP_## 3.40 3.65 3.85 AVERAGE_## 3.73 2.80 2.90 BWP_## 2.90 2.85 AVERAGE_## 2.96 IWP_## 2.80 2.75 3.00 3.00AVERAGE_## 2.89 TEXTURE LOCATION_## AT MILE POST 28 NORTH BOUND CWP_## 3.40 3.50 3.50 3.45 AVERAGE_## 3.46 AVERAGE ## 3.33 BWP_## 3.25 3.40 3.33 3.30 AVERAGE ## 3.61 3.60 IWP ## 3.60 3.65 3.40 AGGREGATE RATE_## 1/120 SHOT QUANTITY AVG_## 0.33 HI_## 0.35 LOW_## 0.30 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_## P9.GR4.MOD./ARISTERA,WESCOTT PIT DATE CONSTRUCTED_## 08/26/82 AVG DAILY TRAFFIC_## 900 EVALUATION DATE_## 6/29/84 OVERALL VISUAL RETENTION_## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP ## 9 OWP ##10 0WP_## 50-60 BWP_## 9 BWP ##10 9WP_## 50 CL_## 7 CL ##10 CL_## 45 EVALUATION DATE_## 5/ 0/83 OVERALL VISUAL RETENTION ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH QWP_## 9 OWP ## 30 OWP ##10 3WP_## 9 BWP_##10 SWP_## 25 CL ##10 CL_## 25 CL_##10

DISTRICT ## 5 COUNTY_## BAILEY HWY NO. ## FM 1760 LOCATION ## AT MP 6 W FM 1731 NUMBER OF EVALUATIONS ## 2 TEXTURE READING DATE_## 08/13/82 TEXTURE LOCATION_ ## AT MILE POST & WEST BOUND AVERAGE_## 3.46 AVERAGE_## 3.31 3.45 3.45 3.55 OWP_## 3.40 BWP_## 3.40 IWP_## 3.55 3.20 3.40 3.25 3.70 AVERAGE_## 3.61 3.40 3.40 TEXTURE LOCATION_ ## 25 FT EAST OF MILE POST 6 WEST BOUND AVERAGE_## 3.46 3.40 3.45 3.40 8WP_## 3.40 AVERAGE ## 3.24 3.20 3.20 BWP_## 3.25 3.30 3.40 AVERAGE_## 3.45 IWP_## 3.50 5.40 3.50 TEXTURE LOCATION_ ## 50 FT EAST OF MILE POST 6 WEST BOUND OWP ## 5.65 3.45 3.40 3.70 AVERAGE ## 3.65 BWP ## 3.25 3.25 3.25 3.40 AVERAGE ## 3.29 3.40 AVERAGE ## 3.41 IWP ## 3.40 3.40 3.45 AGGREGATE RATE_## 1/120 HI_## 0.39 LOW_## 0.33 SHOT QUANTITY AVG ## 0.36 ASPHALT GRADE/PROD ## AC-5/AM.PET. AGGREGATE GRADE/PROD_## GR4.MOD./TS%G. MANSFIELD PIT DATE CONSTRUCTED_## 09/01/82 AVG DAILY TRAFFIC_## 340 EVALUATION DATE_## 6/29/84 OVERALL VISUAL RETENTION_## 7 EMBEDMENT DEPTH AGGREGATE RETENTION BLEEDING 0WP ## 9 OWP_## 75 OWP_##10 8WP_## 9 SWP_##10 3WP_## 75 CL ## 9 CL_## 70 CL_##10 EVALUATION DATE_## 5/ 0/83 OVERALL VISUAL RETENTION ## 9 AGGREGATE RETENTION **BLEED ING** EMBEDMENT DEPTH OWP_## 9 OWP ## 20 OWP ## 9 9WP_## 9 BWP_##10 BWP_## 20 CL ##10 CL_## 20 CL_##10

DISTRICT_## 5 COUNTY_## LAMB HWY NO. ## FM 298 LOCATION_ ## AT MP 4 W OF SUDAN NUMBER OF EVALUATIONS_## 2 TEXTURE READING DATE_## 08/13/82 TEXTURE LOCATION_ ## AT MILE POST 4 IN THE EAST BOUND LANE 3.25 3.30 3.30 AVERAGE_## 3.29 CWP_## 3.30 AVERAGE ## 3.01 3.05 3.40 BWP_## 3.00 3.00 3.00 IWP ## 3.65 3.45 AVERAGE_## 3.43 3.40 TEXTURE LOCATION_ ## 25 FT WEST OF MILE POST 4 EAST BOUND 3.55 OWP_## 5.40 3.50 3.50 AVERAGE_## 3.49 BWP ## 3.15 3.25 AVERAGE ## 3.1a 3.15 5.103.50 AVERAGE ## 3.49 3.55 IWP_## J.50 5.40 TEXTURE LOCATION ## 50 FT WEST OF MILE POST 4 EAST BOUND CWP_## 3.50 3.55 3.50 3.40 AVERAGE_## 3.54 2.95 3.10 BWP_## 3.05 3.10 AVERAGE_## 5.05 3.55 3.55 3.55 IWP_## 3.43 AVERAGE_## 3.58 AGGREGATE RATE_## 1/120 HI_## 0.40 LOW_## 0.34 SHOT QUANTITY AVG_## 0.36 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_## GR4.MOD./TS&G.MANSFIELD PIT DATE CONSTRUCTED_## 08/27/82 AVG DAILY TRAFFIC_## 250 EVALUATION DATE_## 6/29/84 OVERALL VISUAL RETENTION_## 3 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 8 OWP_## 3 OWP_##90-100 BWP_## 4 BWP_## 9 8WP_##70-80 CL_## 70 CL_## 9 CL_## 7 EVALUATION DATE_## 5/ 0/83 OVERALL VISUAL RETENTION ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 0WP_## 20 9WP_## 9 BWP_##10 BWP ## 20 CL ## 20 CL_##10 CL_##10

DISTRICT_## 5 COUNTY_## HALE HWY NO._## FM 788 LOCATION_ ## AT MP 16 NE OF PLAINVIEW NUMBER OF EVALUATIONS ## 2 TEXTURE READING DATE_## 08/13/92 TEXTURE LOCATION_ ## AT MILE POST 16 IN THE WEST BOUND LANE QWP_## 3.80 3.95 3.90 3.90 AVERAGE_## 3.39 AVERAGE_## 3.55 3.55 BWP_## 3.50 3.55 3.60 3.85 IWP_## 3.85 AVERAGE_## 3.85 3.80 5.90 TEXTURE LOCATION_ ## 25 FT WEST OF MILE POST 16 WEST BOUND OWP_## 3.80 3.85 3.80 3.80 AVERAGE_## 3.91 SWP_## 5.40 3.30 AVERAGE ## 3.33 3.35 3.35 AVERAGE_## IWP_## 3.90 3.90 3.85 4.00 3.91 TEXTURE LOCATION ## AT MILE POST 16 EAST BOUND LANE 3.65 5.40 3.55 OWP ## 3.40 AVERAGE_## 3.60 SWP_## 3.20 3.45 3.35 3.30 AVERAGE ## 3.33 IWP ## 3.90 3.90 3.85 AVERAGE ## 3.86 3.80 AGGREGATE RATE_## 1/120 SHOT QUANTITY AVG ## 0.33 HI_## 0.33 LOW_## 0.31 ASPHALT GRADE/PROD ## AC-5 /AM.PET. AGGREGATE GRADE/PROD_## PB.GR4.MOD./ARISTERA WESCOTT PIT DATE CONSTRUCTED_## 08/25/82 AVG DAILY TRAFFIC_## 820 EVALUATION DATE_## 6/28/84 OVERALL VISUAL RETENTION_## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 9 OWP_##10 OWP_## 50 BWP_## 7 BWP_##10 BWP_## 40 CL_## 7 CL_## 50 CL_##10 EVALUATION DATE_## 5/ 0/93 OVERALL VISUAL RETENTION ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 9 8WP_## 8 **DWP_##1**0 OWP_## 30 BWP_##10 3WP_## 25 CL_## 25 CL_## 9 CL_##10

DISTRICT_## 5 COUNTY_##LUBBOCK-HOCKLEY HWY NO._## SH 114 NUMBER OF EVALUATIONS ## 1 LOCATION ## WEST BOUND LANE AT MP 0 TEXTURE READING DATE_## 05/26/83 TEXTURE LOCATION_## 25 FT EAST OF MP 0 3.90 AVERAGE_## 3.98 OWP_## 4.00 4.00 4.00 AVERAGE ## 3.59 3.60 3.85 3.55 BWP_## 3.60 3.60 3.85 3.40 AVERAGE_## 3.88 IWP_## 3.95 3.85 TEXTURE LOCATION_## AT MP 0 4.00 4.00 4.00 3.45 3.50 3.50 AVERAGE ## 3.98 QWP_## 3.90 BWP_## 3.40 AVERAGE_## 3.46 3.80 3.80 3.70 IWP_## 3.85 AVERAGE ## 3.79 TEXTURE LOCATION_## 25 FT WEST OF MP 0 AVERAGE_## 4.00 CWP_## 4.00 4.00 4.00 4.00 3.50 3.55 3.95 3.85 AVERAGE_## 3.56 AVERAGE_## 3.91 3.45 8WP_## 3.55 IWP_## 4.00 3.85 AGGREGATE RATE_## 1/130 SHOT QUANTITY AVG_## 0.325 HI_## 0.338 LOW_## 0.296 ASPHALT GRADE/PROD_## AC-3/AM, PET. AGGREGATE GRADE/PROD_## GR4.MOD./FEATHER LITE CORP., RANGER PIT DATE CONSTRUCTED_## 08/23/83 AVG DAILY TRAFFIC ## 5100 EVALUATION DATE_## 4/29/84 OVERALL VISUAL RETENTION ## 9 . AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP ##10 OWP ##10 OWP_## 50 BWP_##10 CL_##10 BWP_## 45 BWP ##10 CL_## 30 CL ## 9 EVALUATION DATE ## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH CWP ## 0 owp_## () 0WP ## 3WP ## 0 9WP_## 0 3WP ## CL_## 0 CL_## 0 CL_##

DISTRICT_## 5 COUNTY_## COCHRAN HWY NO._ ## SH 114 LOCATION_ ## AT MP 14 W OF MORTON NUMBER OF EVALUATIONS_## 2 TEXTURE READING DATE_## 08/13/82 TEXTURE LOCATION ## AT MILE POST 14 IN THE WEST BOUND LANE 3.05 3.15 3.00 AVERAGE ## 3.08 OWP_## 3.10 BWP ## 2.70 2.80 2.90 2.75 AVERAGE_## 2.79 3.20 IWP_## 3.15 3.20 AVERAGE_## 3.18 3.15 TEXTURE LOCATION_ ## 25 FT. EAST OF MILE POST 14 WEST BOUND 2.95 3.10 3.05 AVERAGE_## 3.05 OWP_## 3.10 2.90 BWP_## 2.90 2.80 2.80 AVERAGE_## 2.85 3.20 AVERAGE ## 3.13 IWP_## 3.10 5.103.10 TEXTURE LOCATION_ ## AT MP 14 IN THE EBL OWP_## 2.80 2.80 2.80 2.75 AVERAGE_## 2.79 AVERAGE ## 2.75 BWP_## 2.45 2.85 2.80 2.70 2.85 IWP_## 2.90 2.80 2.90 AVERAGE ## 2.86 AGGREGATE RATE_## 1/120 SHOT QUANTITY AVG_ ## 0.33 HI_## 0.35 LGW_## 0.21 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_## PB.GR4.MOD./ARISTERA WESCOTT PIT DATE CONSTRUCTED_## 09/08/82 AVG DAILY TRAFFIC_## 930 EVALUATION DATE_## 6/29/84 OVERALL VISUAL RETENTION_## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 9 OWP_##10 0WP_## 70 BWP_##10 9WP_## 7 BWP_## 40 CL_## 7 CL_##10 CL_## 35 EVALUATION DATE_## 5/ 0/83 OVERALL VISUAL RETENTION_## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP ## 9 OWP ##10 0\\P_## -35 BWP ## 25 CL ## 20 3WP ## 7 BWP ##10 CL_## 7 CL_##10

80

DISTRICT_## 5 COUNTY_## TERRY HWY NO._## SH 137 LOCATION ## AT MP 6 SE OF BROWNFIELD NUMBER OF EVALUATIONS_## 2 TEXTURE READING DATE ## 08/12/82 TEXTURE LOCATION_ ## AT MILE POST 6 IN THE SOUTH BOUND LANE OWP ## 3.55 3.60 3.40 3.60 AVERAGE_## 3.59 BWP ## 3.75 3.80 3.80 3.75 AVERAGE_## 3.78 IWP ## 3.70 3.70 AVERAGE ## 3.70 3.70 3.70 TEXTURE LOCATION ## 25 FT FROM MILE POST 6 IN THE STH BOUND 3.80 3.70 3.85 AVERAGE_## 3.91 CWP_## 3.90 3.80 3.85 3.70 AVERAGE_## 3.79 8WP_## 3.80 3.80 3.70 IWP_## 3.80 3.70 AVERAGE_## 3.75 TEXTURE LOCATION ## SO FT FROM MILE POST 6 IN THE S.B. QWP_## 3.70 3.75 3.80 3.80 AVERAGE_## 3.76 BWP ## 3.70 3.70 AVERAGE_## 3.66 3.60 3.45 IWP_## 3.90 3.90 AVERAGE ## 3.89 3.90 3.85 AGGREGATE RATE_## 1/120 SHOT QUANTITY AVG_ ## 0.33 HI_## 0.35 LOW_## 0.31 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_## PB.GR4.MOD./ARISTERA WESCOTT PIT DATE CONSTRUCTED_## 10/02/82 AVG DAILY TRAFFIC_## 1550 EVALUATION DATE_## 6/28/84 OVERALL VISUAL RETENTION_## 6 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 9 QWP ## 7 OWP_## 90 3WP_## 8 BWP_##10 BWP_## 55 CL ## 6 CL_##10 CL_## 40 EVALUATION DATE_## 5/ 0/83 OVERALL VISUAL RETENTION_ ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 8 OWP_##10 OWP_## 35 BWP_## 8 BWP_##10 BWP_## 25 CL_## 6 CL_## 25 CL_##10

DISTRICT_## 5 COUNTY_##GAINES HWY NO._## SH 214 LOCATION_ ## EAST BOUND LANE AT MP 14 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 05/25/83 TEXTURE LOCATION_ ## 25 FT WEST OF MP 14 3.80 3.80 3.80 AVERAGE ## 3.81 OWP ## 3.85 2.90 2.90 BWP ## 2.90 2.85 AVERAGE ## 2.99 3.65 IWP ## 3.40 3.60 3.50 AVERAGE ## 3.59 TEXTURE LOCATION_ ## AT MP 14 QWP_## 3.70 3.80 3.70 3.75 AVERAGE_## 3.74 3.00 3WP_## 5.00 2.95 3.00 AVERAGE_## 2.99 3.70 IWP ## 3.80 3.75 3.70 AVERAGE ## 3.74 TEXTURE LOCATION_## 25 FT EAST OF MP 14 OWP_## 4.00 3.95 4.00 3.95 AVERAGE_## 3.98 AVERAGE ## 2.31 BWP ## 2.80 2.80 2.90 2.75 IWP_## 3.80 3.70 3.40 3.65 AVERAGE_## 3.69 AGGREGATE RATE_## 1/130 SHOT QUANTITY AVG_## 0.343 HI_## 0.339 LOW_## 0.324 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_ ## GR4.MOD./FEATHER LITE CORP.RANGER PIT DATE CONSTRUCTED_## 09/26/83 AVG DAILY TRAFFIC_## 1900 EVALUATION DATE_## 6/28/84 OVERALL VISUAL RETENTION_## 6 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH CWP_## 9 OWP ## 5 OWP_##90-100 BWP_##10 CL_##10 BWP_## 60 CL_## 45 BWP ## 9 CL_## 7 EVALUATION DATE_ ## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 OWP_## 0WP ## 0 BWP_## CL_## SWP_## 0 BWP ## () CL_## 0 CL_## 0

DISTRICT_## 5 COUNTY_## PARMER HWY NC._ ## 5H 86 LOCATION ## AT MP 6 W OF BOVINA NUMBER OF EVALUATIONS ## 2 TEXTURE READING DATE ## 08/13/82 TEXTURE LOCATION ## AT MILE POST 6 IN THE EAST BOUND LANE OWP_## 2.80 9WP_## 2.50 2.75 2.75 2.75 AVERAGE_## 2.76 AVERAGE ## 2.50 2.50 2.40 2.60 AVERAGE_## 2.88 IWP_## 2.80 2.90 2.90 2.90 TEXTURE LOCATION_ ## 25 FT EAST OF MILE POST & EAST BOUND AVERAGE_## 5.09 GWP_## 3.10 3.20 2.95 3.10 2.95 BWP_## 3.00 3.20 AVERAGE_## 3.04 3.00 2.95 IWP ## 3.00 3.10 3.00 AVERAGE ## 3.01 TEXTURE LOCATION_ ## 50 FT EAST OF MILE POST 6 EAST BOUND OWP_## 3.10 2.00 3.00 3.05 AVERAGE_## 3.04 BWP_## 2.40 2.55 2.65 2.55 AVERAGE_## 2.59 IWP_## 3.40 3.45 3.45 3,45 AVERAGE_## 3.44 AGGREGATE RATE_## 1/120 SHOT QUANTITY AVG_## 0.32 HI_## 0.34 LOW_## 0.29 ASPHALT GRADE/PROD ## AC-5/AM.PET. AGGREGATE GRADE/PROD_## PB.GR4.MOD./ARISTERA.WESCOTT PIT DATE CONSTRUCTED_## 09/01/82 AVG DAILY TRAFFIC ## 690 EVALUATION DATE_## 6/28/84 OVERALL VISUAL RETENTION ## 7 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 8 OWP ##10 OWP ## 60-70 3WP_## 8 BWP_##10 8WP_## 50 CL_## 55 CL ## 8 CL_##10 EVALUATION DATE ## 5/ 0/83 OVERALL VISUAL RETENTION ## 7 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP ## 3 OWP ##10 0WP_## 20 BWP_## 7 BWP ##10 BWP_## 20 CL_## 8 CL_## 20 CL_##10

DISTRICT_## 5 COUNTY_##TERRY HWY NO. ## US 380 NUMBER OF EVALUATIONS ## LOCATION ## WEST BOUND LANE AT MP 14 TEXTURE READING DATE ## 05/25/83 TEXTURE LOCATION_## 25 FT EAST OF MP 14 3.40 3.55 3.50 AVERAGE_## 3.54 OWP_## 3.60 AVERAGE_## 3.19 BWP_## 3.10 3.20 3.25 3.20 AVERAGE ## 3.54 IWP_## 3.50 3.55 3.45 3.45 TEXTURE LOCATION_## AT MP 14 3.85 QWP_## 3.85 3.90 3.80 AVERAGE_## 3.95 3.00 BWP_## 3.00 3.05 2.95 AVERAGE_## 3.00 3.40 AVERAGE_## 3.38 IWP_## 5.40 3.30 3.40 TEXTURE LOCATION_## 25 FT WEST OF MP 14 OWP_## 3.75 3.80 3.80 3.75 AVERAGE_## 3.79 3.00 BWP_## 3.20 3.10 3.00 AVERAGE_## 3.08 IWP_## 3.05 3.10 3.00 3.10 AVERAGE_## 3.06 AGGREGATE RATE_## 1/130 SHOT QUANTITY AVG_## 0.326 HI_## 0.338 LOW_## 0.301 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_## GR4.MOD./FEATHERLITE CORP.RANGER PIT DATE CONSTRUCTED_## 08/25/83 AVG DAILY TRAFFIC_## 3300 EVALUATION DATE_## 6/29/84 OVERALL VISUAL RETENTION ## 6 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP ## 7 OWP ## 4 CWP_## 90 3WP_## 6 BWP_##10 3WP_## 33 CL_## 5 CL_##10 CL_## 35 EVALUATION DATE ## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 0WP ## OWP ## 0 BWP_## 0 CL_## 0 BWP_## 3WP ## 0 CL_## 0 CL_##

COUNTY_## YOAKUM HWY NO._ ## US 82 DISTRICT_## 5 LOCATION_ ## AT MP 14 SW OF PLAINS NUMBER OF EVALUATIONS ## 3 TEXTURE READING DATE ## 08/12/82 TEXTURE LOCATION_ ## AT MILE POST 14 IN THE EAST BOUND LANE AVERAGE_## 3.98 4.00 4.00 OWP_## 3.90 4.00 BWP_## 3.80 3.85 AVERAGE_## 3.83 3.80 3.85 AVERAGE_## 3.94 IWP_## 3.95 3.90 3.90 4.00 TEXTURE LOCATION_## 25 FT EAST OF MILE POST 14 AVERAGE_## 3.93 3.90 3.85 3.95 OWP_## 4.00 SWP_## 2.80 2.85 2.60 AVERAGE_## 2.67 2.60 IWP_## 4.00 4.00 4.00 4.00 AVERAGE_## 4.00 TEXTURE LOCATION_ ## 50 FT EAST OF MILE POST 14 3.90 AVERAGE_## 3.84 0WP_## 3.80 3.80 3.85 3.85 3.90 AVERAGE_## 3WP_## 3.85 3.80 3.85 AVERAGE ## 4.00 IWP_## 4.00 4.00 4,00 4.00 AGGREGATE RATE_## 1/120 SHOT QUANTITY AVG_## 0.33 HI_## 0.37 LOW_## 0.26 ASPHALT GRADE/PROD_## AC-3/AM.PET. AGGREGATE GRADE/PROD_## PB.GR4.MOD./ARISTERA WESCOTT PIT DATE CONSTRUCTED_## 09/15/82 AVG DAILY TRAFFIC_## 2000 EVALUATION DATE_## 6/28/84 OVERALL VISUAL RETENTION_## 4 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 8 OWP ## 8 OWP ## 80-90 BWP_## 7 8M6_** 8 BWP_## 80-90 CL_## 50 CL_##10 CL_## 8 EVALUATION DATE_## 5/ 0/83 OVERALL VISUAL RETENTION ## 8 EMBEDMENT DEPTH AGGREGATE RETENTION BLEEDING OWP ##10 0WP_## OWP ## 9 45 BWP ##10 3WP ##10 BWP_## - 30 CL_## 30 CL_## 7 CL_##10

DISTRICT ## 6 COUNTY ##CRANE HWY NO._ ## FM 1053 LOCATION_ ## SOUTH BOUND LANE AT MP 4 NUMBER OF EVALUATIONS ## : TEXTURE READING DATE_## 05/24/83 TEXTURE LOCATION_ ## 25 FT SOUTH OF MP 4 2.85 OWP_## 2.85 2.45 2.80 AVERAGE_## 2.79 BWP_## 2.55 2.40 2.75 2.50 AVERAGE_## 2.60 IWP_## 2.90 2.80 2.45 2.80 AVERAGE ## 2.75 TEXTURE LOCATION_## AT MP 4 QWP_## 3.00 2.90 2.85 2.90 AVERAGE_## 2.91 BWP_## 2.80 2.70 2.70 2.65 AVERAGE_## 2.71 IWP_## 2.80 2.85 2.90 2.90 AVERAGE_## 2.86 TEXTURE LOCATION_ ## 25 FT NORTH OF MP 4 QWP_## 2.80 2.75 2.45 2.80 AVERAGE_## 2.75 BWP_## 2.30 2.30 2.40 2.25 AVERAGE_** 2.31 3.00 IWP_## 2.90 3.00 2.95 AVERAGE_## 2.95 AGGREGATE RATE_## 1/122 SHOT QUANTITY AVG_## 0.377 HI_## 0.420 LOW_## 0.350 ASPHALT GRADE/PROD_## AC-10/AM. PET. AGGREGATE GRADE/PROD_## GR4.MOD/TRANS PECOS MAT. DATE CONSTRUCTED_## 06/17/83 AVG DAILY TRAFFIC_## 990 EVALUATION DATE_## 6/12/84 OVERALL VISUAL RETENTION_## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 QWP_##10 OWP ## 55 BWP_##10 BWP_##10 SWP_## 40 CL_## 40 CL_##10 ## 40 CL_##10 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 0 0WP ## 0 0WP ## BWP_## () BWP_## 0 3WP_*# CL_## 0 CL_## 0 CL_##

DISTRICT_## 6 COUNTY_## CRANE HWY NO. ## FM 1053 LOCATION_## BETWEEN PECOS R. & SH 329 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 08/12/82 TEXTURE LOCATION_ ## NB LANE BIWN THE PECOS R. AND SH 329 2.95 AVERAGE ## 3.05 OWP_## 3.00 5.103.15 BWP ## 2.55 2.55 2.70 2.60 AVERAGE ## 2.60 AVERAGE_## 2.98 IWP ## 2.90 3.00 3.05 2.95 TEXTURE LOCATION_## IN THE NORTH LANE 2.95 CWP_## 3.05 2.95 3.00 AVERAGE_## 2.99 3WP_## 2.30 2.75 2.65 2.70 AVERAGE_## 2.73 AVERAGE_## 2.51 IWP_## 2.60 2.40 2.65 2.40TEXTURE LOCATION_ ## IN THE NORTH BOUND LANE OWP_## 3.00 3.00 2.90 3.15 AVERAGE_## 3.01 AVERAGE_## 2.66 AVERAGE_## 2.80 2.70 2.80 BWP ## 2.65 2.70 2.50 IWP ## 2.90 2.80 2.80 AGGREGATE RATE_## 1/111 SHOT QUANTITY AVG_## 0.43 HI_## 0.45 LOW_## 0.39 ASPHALT GRADE/PROD_## AC5/AM.PET. AGGREGATE GRADE/PROD_## CL B TY PA GR4 MOD./HOBAN DATE CONSTRUCTED_## 05/10/82 AVG DAILY TRAFFIC_## 1050 EVALUATION DATE ## 6/12/84 OVERALL VISUAL RETENTION_ ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 60 OWP_##10 OWP ##10 BWP_##10 BWP_##10 BWP ## 50 CL_## 50 CL_##10 CL ##10 EVALUATION DATE ## 5/ 0/83 OVERALL VISUAL RETENTION ## 6 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 9 OWP ## 8 OWP_## 85 BWP_##10 BWP ##10 BWP ## 40 CL_##10 CL_## 35-40 CL_##10

DISTRICT_## 6 COUNTY_##MIDLAND HWY NO._ ## FM 1379 LOCATION ## NORTH BOUND LANE AT MP 2 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 05/24/83 TEXTURE LOCATION_ ## 25 FT SOUTH OF MP 2 AVERAGE_## 3.30 AVERAGE_## 2.54 3.30 OWP_## 3.25 BWP_## 2.40 3.35 3.30 2.60 2.55 2.40 AVERAGE_## 2.90 IWP_## 2.80 2.80 2.75 2.85 TEXTURE LOCATION_ ## AT MP 2 AVERAGE_## 3.04 0WP_## 3.05 3.10 3.05 3.05 BWP_## 2.40 IWP_## 3.10 2.55 2.55 AVERAGE ## 2.58 2.60 AVERAGE ## 3.08 3.00 3.10 3.10 TEXTURE LOCATION_ ## 25 FT NORTH OF MP 2 2.80 OWP_## 2.90 2.85 2.70 AVERAGE ## 2.79 SWP_## 2.90 2.80 2.80 2.80 AVERAGE ## 2.80 IWP_## 2.60 2.80 2.40 2.45 AVERAGE ## 2.66 AGGREGATE RATE_## 1/92 HI_## 0.549 LOW_## 0.485 SHOT QUANTITY AVG ## 0.52 ASPHALT GRADE/PROD_## AC-10/AM. PET. AGGREGATE GRADE/PROD_## GR3.MOD/TRANS PECOS MAT. DATE CONSTRUCTED_## 07/06/83 AVG DAILY TRAFFIC_## 240 EVALUATION DATE ## 6/13/84 OVERALL VISUAL RETENTION ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH CWP_## 9 OWP ## 9 OWP_## 60-70 BWP_## 9 BWP_##10 3WP_## 50-60 CL ## 9 CL ##10 CL ## 50-60 EVALUATION DATE ## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 **⊡₩₽_**## 0 OWP_## 8WP_## 0 BWP_## 0 3WP_## CL ## 0 CL_## 0 CL_##

DISTRICT ## 6 COUNTY ## ANDREWS HWY NO. ## FM 181 LOCATION_ ## AT MP 12 NW OF FRANKEL CITY NUMBER OF EVALUATIONS_## 2 TEXTURE READING DATE_## 08/12/82 TEXTURE LOCATION ## AT MILE POST 12 IN THE NB LANE 2.90 2.90 OWP_## 2.85 2.80 AVERAGE_## 2.86 2.75 3WP ## 2.75 2.70 2.70 AVERAGE ## 2.73 2.75 2.70 IWP ## 2.80 AVERAGE_## 2.75 2.75 TEXTURE LOCATION ## 25 FEET NORTH OF MILE POST 12 AVERAGE_## 2.80 AVERAGE_## 2.69 AVERAGE_## 2.95 2.95 2.80 OWP_## 2.70 2.75 3WP_## 2.80 IWP_## 2.95 2.61 2.65 2.70 3.00 2.90 2.95 TEXTURE LOCATION_ ## AT MILE POST 12 IN THE NB LANE OWP_## 3.00 3.00 3.05 3.00AVERAGE_## 3.01 AVERAGE_## 2.71 AVERAGE_## 2.75 BWP_## 2.75 2.70 2.70 2.70 IWP ## 2.70 2.80 2.75 2.75 AGGREGATE RATE_## 1/85 SHOT QUANTITY AVG_## 0.50 HI_## 0.58 LOW_## 0.45 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_## P9.GR3.MOD/HOBAN DATE CONSTRUCTED_## 08/27/82 AVG DAILY TRAFFIC_## 580 EVALUATION DATE_## 6/13/84 OVERALL VISUAL RETENTION ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH QWP_##10 0WP_##10 0WP_## 60 BWP_##10 3WP_##10 BWP ## 50 CL_##10 CL_##10 CL ## 40-50 EVALUATION DATE_## 5/ 0/83 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 QWP ##10 OWP_## 30 BWP_##10 BWP_##10 BWP_## 30 CL_##10 CL_## 25 CL_##10

DISTRICT_## 6 COUNTY_## ANDREWS HWY NO._## FM 1967 LOCATION_ ## AT MILE POST 4 NEAR FRANKEL CITY NUMBER OF EVALUATIONS ## 2 TEXTURE READING DATE_## 08/12/82 TEXTURE LOCATION ## AT MILE POST 4 IN THE EB LANE 3.00 5.103.10AVERAGE_## 3.05 OWP ## 3.00 BWP_## 2.70 2.70 AVERAGE_## 2.70 2.60 2.80 IWP ## 3.10 3.20 3.05 3.00 AVERAGE ## 3.09 TEXTURE LOCATION_ ## 25 FEET EAST OF MILE POST 4 OWP_## 2.95 2.95 2.95 3.05 AVERAGE_## 2.98 3.05 3.00 BWP ## 3.10 3.10 AVERAGE_## 5.04 IWP_## 3.40 3.30 3.40 3.40 AVERAGE_## 3.38 TEXTURE LOCATION_ ## AT MILE POST 4 IN THE WB LANE OWP_## 3.55 BWP_## 2.85 3.50 3.50 3.40 AVERAGE_## 3.54 AVERAGE_** 2.95 AVERAGE_** 2.98 2.95 2.90 3.10 2.90 2.90 IWP ## 3.00 3.00 3.00 AGGREGATE RATE_## 1/93 SHOT QUANTITY AVG_## 0.50 HI_## 0.54 LOW_## 0.45 ASPHALT GRADE/PROD_## ACS/AM.PET. AGGREGATE GRADE/PROD_ ## CL B TY PA GR3 MOD/HOBAN DATE CONSTRUCTED_## 08/26/82 AVG DAILY TRAFFIC_## 130 EVALUATION DATE_## 6/13/84 OVERALL VISUAL RETENTION_## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 OWP_## 50-50 BWP_##10 BWP_## 30-40 CL_## 30-40 BWP_##10 CL_##10 CL_##10 EVALUATION DATE_## 5/ 0/83 OVERALL VISUAL RETENTION ##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP ##10 OWP_##10 0WP_## 33 BWP_## 25 CL_## 25 BWP_##10 9WP ##10 CL_##10 CL_##10

DISTRICT_## 6 COUNTY_##MARTIN HWY NO._## FM 2002 LOCATION_ ## WEST BOUND LANE AT MP 16 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 05/26/83 TEXTURE LOCATION_## 25 FT WEST OF MP 16 AVERAGE_## 3.46 AVERAGE_## 3.43 3.50 OWP_## 3.35 3.40 3.40 3.40 3.45 3.40 BWP_## 3.45 3.50 3.50 3.55 IWP_## 3.50 AVERAGE_## 3.51 TEXTURE LOCATION_ ## AT MP 16 3.50 3.45 OWP_## 5.50 3.45 AVERAGE_## 3.48 AVERAGE_## 3.29 AVERAGE_## 3.54 BWP_## 3.30 IWP_## 3.40 3.25 3.30 3.30 3.50 3.50 3.65 TEXTURE LOCATION_ ## 25 FT EAST OF MP 16 CWP_## 3.70 3.40 3.40 AVERAGE_## 3.64 3.45 BWP_## 3.40 3.40 3.55 3.70 AVERAGE_## 3.61 3.90 IWP_## 5.90 3.80 3.85 AVERAGE_## 3.84 AGGREGATE RATE_## 1/92 SHOT QUANTITY AVG_## 0.519 HI_## 0.551 LOW_## 0.467 ASPHALT GRADE/PROD_## AC-10/AM. PET. AGGREGATE GRADE/PROD_## GR3.MOD/TRANS PECOS MAT. DATE CONSTRUCTED_## 07/11/83 AVG DAILY TRAFFIC ## 230 EVALUATION DATE_## 6/13/84 OVERALL VISUAL RETENTION_## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 9 OWP_##10 OWP_## 40-50 BWP_##10 BWP_##10 BWP_## 40 CL_## 8 CL_##10 CL_## 40 EVALUATION DATE_## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH CWP_## BWP_## CL_## OWP ## O 0WP_## 0 BWP_## 0 CL_## 0 8WP_## 0 CL_## 0

DISTRICT_## 6 COUNTY_##MARTIN HWY NO._## FM 2212 NUMBER OF EVALUATIONS_** 1 LOCATION_ ## NORTH BOUND LANE AT MP 4 TEXTURE READING DATE_## 05/25/83 TEXTURE LOCATION_## 25 FT SOUTH OF MP 4 3.20 AVERAGE_## 3.23 3.20 3.20 OWP ## 3.30 AVERAGE_## 5.08 BWP ## 3.05 3.05 3.10 3.10IWP ## 2.90 2.90 2.90 2.90 AVERAGE ## 2.90 TEXTURE LOCATION_ ## AT MP 4 OWP ## 2.95 3.05 3.10 3.00 AVERAGE_## 3.03 2.95 BWP ## 2.90 2.90 2.95 AVERAGE_## 2.95 3.20 IWP_## 3.15 3.05 3.15 AVERAGE_## 5.14 TEXTURE LOCATION_ ## 50 FT SOUTH OF MP 4 OWP_## 3.25 3.20 AVERAGE_## 5.13 3.20 3.05 BWP_## 2.95 IWP_## 3.30 AVERAGE ## 2.90 2.80 2.90 2.39 AVERAGE ## 3.25 3.20 3.20 3.30 AGGREGATE RATE_## 1/92 SHOT QUANTITY AVG_## 0.526 HI_## 0.568 LOW_## 0.504 ASPHALT GRADE/PROD_## AC-10/AM. PET. AGGREGATE GRADE/PROD_## GR3.MOD/TRANS PECOS MAT DATE CONSTRUCTED_## 07/08/83 AVG DAILY TRAFFIC_## 300 EVALUATION DATE_## 6/13/84 OVERALL VISUAL RETENTION_## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH QWP_## 9 CWP_## 50-60 OWP_##10 BWP_## 40 CL_## 40-50 BWP ## 9 BWP_##10 CL_## 8 CL_##10 EVALUATION DATE_ ## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING 0WP ## 0 0WP_## 0 0WP ## 3WP ## () 8WP ## 0 3WP_## CL_## 0 CL ## 0 CL ##

HWY NO. ## FM 829 DISTRICT_## 6 COUNTY_##MARTIN NUMBER OF EVALUATIONS ## 1 LOCATION ## NORTH BOUND LANE AT MP 2 TEXTURE READING DATE ## 05/25/83 TEXTURE LOCATION_## 25 FT NORTH OF MP 2 AVERAGE ## 3.54 3.55 3.55 3.50 OWP_## 3.55 BWP_## 3.35 IWP_## 3.10 AVERAGE_## 3.36 3.40 3.40 3.30 3.25 AVERAGE_## 3.15 3.20 3.10 TEXTURE LOCATION_ ## AT MP 2 3.45 3.50 3.40 AVERAGE_## 3.44 OWP_## 3.40 AVERAGE ## J.J1 BWP_## 3.20 3.35 3.40 3.30 IWP_## 0.25 3.30 3.20 3.20 AVERAGE ## 3.24 TEXTURE LOCATION_ ## 25 FT SOUTH OF MP 2 3.45 3.50 3.40 AVERAGE_## 3.45 QWP_## 3.45 AVERAGE_## 3.31 AVERAGE_## 3.15 3.30 3.35 BWP_## 3.30 3.30 3.10 3.10 3.20 IWP_## 3.20 AGGREGATE RATE_## 1/92 HI_## 0.56 LOW_## 0.48 SHOT QUANTITY AVG_## 0.52 ASPHALT GRADE/PROD_## AC-10/AM. PET. AGGREGATE GRADE/PROD_## GRJ.MOD/TRANS PECOS MAT DATE CONSTRUCTED_## 07/14/83 AVG DAILY TRAFFIC_## 290 EVALUATION DATE_## 6/13/84 OVERALL VISUAL RETENTION_## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 0WP ## 9 OWP_## 60-70 9WP_##10 BWP_##10 9WP ## 60 CL ##10 CL_## 50-60 CL ## 6 EVALUATION DATE ## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING 0WP ## 0 0WP ## **owp** ## 0 BWP ## 0 BWP_## BWP_## 🔿 CL_## 0 C1_## CL_## 0
DISTRICT_## 6 COUNTY_## MARTIN HWY NO. _ ## FM 829 LOCATION_ ## AT MP 28 NW OF DIX NUMBER OF EVALUATIONS_## 2 TEXTURE READING DATE_## 08/12/82 TEXTURE LOCATION_ ## AT MILE POST 29 3.70 OWP_## 3.80 3.60 AVERAGE_## 3.73 3.80 3.00 BWP_## 3.05 3.00 3.05 AVERAGE_## 5.03 IWP ## 3.45 3.35 3.45 3.45 AVERAGE_## 3.43 TEXTURE LOCATION_## 25 FT SOUTH OF MILE POST 28 OWP_## 3.25 3.20 3.30 3.15 AVERAGE_** 3.23 BWP_## 0.00 3.00 2.90 3.05 AVERAGE_## 2.99 3.25 IWP ## 3.20 3.40 3.25 AVERAGE_## 3.29 TEXTURE LOCATION ## 50 FT SOUTH OF MILE POST 29 QWP_## 3.45 3.50 3.40 3.40 AVERAGE ## 5.44BWP_## 3.20 3.20 3.25 3.15 AVERAGE ## 5.20 IWP ## 3.20 3.20 3.45 3.20 AVERAGE_## 3.26 AGGREGATE RATE_## 1/90 SHOT QUANTITY AVG_## 0.46 HI_## 0.53 LOW_## 0.31 ASPHALT GRADE/PROD_## AC-10/AM.PET. AGGREGATE GRADE/PROD_## CLB.TY.PA.GR5.MOD/HOBAN DATE CONSTRUCTED_## 08/20/82 AVG DAILY TRAFFIC_## 400 EVALUATION DATE_## 6/13/84 OVERALL VISUAL RETENTION ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 0wp ## 8 OWP_## 50-60 BWP_##10 BWP_##10 9WP ## 50 CL_## 50 CL_##10 CL ##10 EVALUATION DATE ## 5/ 0/83 OVERALL VISUAL RETENTION_## 8 AGGREGATE RETENTION BLEED ING EMBEDMENT DEPTH OWP_## 9 OWP ## OWP ## 9 40 BWP_## 9 9WP ##10 3WP ## 30

CL_##10

CL_++

25

CL_## 9

DISTRICT_ ## 6 COUNTY_ ##MIDLAND HWY NO. ## SH 349 LOCATION ## NORTH BOUND LANE AT MP 20 NUMBER OF EVALUATIONS_## 1 TEXTURE READING DATE_## 05/24/83 TEXTURE LOCATION_ ## 25 FT SOUTH OF MP 20 3.853.802.602.703.903.90 AVERAGE_## 3.85 AVERAGE_## 2.61 AVERAGE_## 3.85 OWP_## 3.90 3.85 2.55 BWP_## 2.60 IWP_## 3.75 3.85 TEXTURE LOCATION_## AT MP 20
 3.40
 3.45
 3.30

 2.60
 2.65
 2.60

 3.40
 3.40
 3.60
AVERAGE_## 0.06 OWP_## 3.30 BWP_## 2.50 IWP_## 3.60 AVERAGE_## 2.51 AVERAGE_## 3.50 TEXTURE LOCATION_## 25 FT NORTH OF MP 20 AVERAGE_## 3.30 AVERAGE_## 2.56 3.30 OWP_## 3.30 3.30 3.30 BWP_## 2.60 2.50 2.50 2.65 3.40 IWP_## 3.50 3.50 3.40 AVERAGE ## 3.45 AGGREGATE RATE_## 1/92 HI_## 0.550 LOW_## 0.441 SHOT QUANTITY AVG_## 0.492 ASPHALT GRADE/PROD ## AC-10/AM. PET. AGGREGATE GRADE/PROD_## GR3.MOD/TRANS PECOS MAT DATE CONSTRUCTED_## 06/29/83 AVG DAILY TRAFFIC ## 840 EVALUATION DATE_## 6/13/84 OVERALL VISUAL RETENTION_ ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_## 7 OWP_## 80-90 BWP_##10 BWP_## 40 BWP_##10 CL_## 7 CL_##10 CL_## 30 EVALUATION DATE ## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## OWP_## 0 0WP_## 0 BWP_## 0 CL_## 0 BWP_## 0 9WP_## CL_## 0 CL_##

DISTRICT_## 6 COUNTY_## PECOS HWY NO._ ## SH 349 LOCATION_ ## NORTH OF PECOS RIVER NUMBER OF EVALUATIONS ## 2 TEXTURE READING DATE_## 08/12/82 TEXTURE LOCATION_ ## IN THE NB LANE NORTH OF THE PECOS RIV. 3.20 3.10 3.15 AVERAGE ## 5.14 OWP_## 3.10 AVERAGE_## 2.90 2.80 2.90 2.84 BWP_## 2.85 AVERAGE_## 3.04 3.05 IWP_## 3.10 3.00 3.00 TEXTURE LOCATION_ ## IN THE NB LANE NORTH OF PECOS RIVER OWP_## 3.05 3.15 3.05 3.00 AVERAGE_## 3.06 2.95 AVERAGE_## 2.99 BWP_## 2.90 3.103.00 3.15 AVERAGE_## 5.15 IWP_## 3.15 3.15 3.15 TEXTURE LOCATION_ ## IN THE NB LANE NORTH OF PECOS RIVER 3.15 3.103.15 AVERAGE_## 3.13 OWP_## 3.10 2.85 2.95 2.90 AVERAGE_## 2.90 BWP ## 2.90 3.20 3.25 3.25 IWP_## 3.20 AVERAGE_## 3.20 AGGREGATE RATE_## 1/110 HI_## 0.45 LOW_## 0.41 SHOT QUANTITY AVG_## 0.42 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_ ## CL. 3. TY. PA. GR4. MOD. / HOBAN AVG DAILY TRAFFIC ## 480 DATE CONSTRUCTED ## 05/24/82 EVALUATION DATE_## 6/12/84 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING OWP_## OWP_##10 OWP ##10 50 BWP_##10 BWP_##10 8WP_## 40 CL_##10 CL_## 40 CL_##10 EVALUATION DATE_## 5/ 0/83 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP ## OWP_##10 .35 OWP_##10 BWP_##10 3WP_## 25 BWP_##10 25 CL_##10 CL_## CL_##10

DISTRICT ## 6 COUNTY ##UPTON HWY NO. _ ## US 385 LOCATION_ ## SOUTH BOUND LANE AT MP 2 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE ## 05/24/83 TEXTURE LOCATION_## 25 FT NORTH OF MP 2 OWP_## 3.65 BWP_## 2.90 IWP_## 3.75 3.75 3.70 AVERAGE_## 3.68 3.40 AVERAGE ## 2.86 2.95 2.85 2.75 AVERAGE_## 3.64 3.60 3.70 3.50 TEXTURE LOCATION_## AT MP 2 CWP_## 3.15 3.10 3.05 5.10 AVERAGE_## 3.10 BWP_## 5.00 2.90 2.85 2.85 AVERAGE_## 2.90 IWP_## 3.80 3.90 3.85 3.90 AVERAGE_## 3.84 TEXTURE LOCATION_ ## 25 FT SOUTH OF MP 2 2.95 OWP_## 3.05 3.00 2.95 AVERAGE_## 2.99 3.05 BWP_## 3.10 3.15 3.10 AVERAGE_## 3.10 IWP_## 3.95 4.00 3.90 3.80 AVERAGE_## 3.91 AGGREGATE RATE_## 1/122 SHOT QUANTITY AVG_## 0.360 HI_## 0.390 LOW_## 0.300 ASPHALT GRADE/PROD_## AC-10/AM. PET. AGGREGATE GRADE/PROD_## GR4.MOD/TRANS PECOS MAT DATE CONSTRUCTED_## 06/21/83 AVG DAILY TRAFFIC ## 1400 EVALUATION DATE_## 6/12/84 OVERALL VISUAL RETENTION ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 QWP ##10 0WP ## 60 BWP ##10 BWP_##10 CL_##10 BWP_## 50 CL ##10 CL_## 50 EVALUATION DATE ## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 OWP_## 0 OWP ## 3WP_## 0 3WP ## 0 BWP_## CL ## 0 CL_## 0 CL_##

COUNTY_## CRANE HWY NO. ## US 67 DISTRICT_## 6 NUMBER OF EVALUATIONS_## 1 LOCATION ## SW OF MCCAMEY SBL TEXTURE READING DATE_## 08/12/82 TEXTURE LOCATION_ ## IN THE SB LANE 2.90 2.90 AVERAGE_## 2.98 2.80 2.90 UWP_## 2.50 2.55 AVERAGE_## 2.50 2.50 BWP_## 2.45 2.95 AVERAGE_## 2.96 IWP ## 5.00 3.00 2.90 TEXTURE LOCATION_ ## IN THE SOUTH BOUND LANE 2.85 2.90 2.95 AVERAGE_## 2.90 OWP_## 2.90 AVERAGE_** 2.75 AVERAGE_** 2.94 2.70 2.75 2.80 BWP_## 2.75 2.90 2.95 IWP ## 3.00 2.90 TEXTURE LOCATION ## IN THE SBL 2.95 OWP_## 2.95 3.10 3.05 AVERAGE_## 3.01 BWP_## 2.60 2.55 2.40 2.40 AVERAGE ## 2.59 AVERAGE ## 3.10 3.25 IWP ## 3.00 3.10 3.05 AGGREGATE RATE_## 1/111 SHOT QUANTITY AVG_ ## 0.40 HI_## 0.42 LOW_## 0.39 ASPHALT GRADE/PROD_## AC-5/AM.PET. AGGREGATE GRADE/PROD_ ## CL B TY PA GR4 MOD./ HOBAN DATE CONSTRUCTED_## / / AVG DAILY TRAFFIC_## 640 EVALUATION DATE_## 6/12/84 OVERALL VISUAL RETENTION_## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 owp_## 8 OWP_## 80-90 BWP_##10 BWP_##10 BWP_## 60 CL_##10 CL_##10 CL_## 50-60 EVALUATION DATE_## 5/ 0/83 OVERALL VISUAL RETENTION ## 7 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING OWP_## QWP_4#10 GWP_##10 65 BWP_##10 BWP_## 45 BWP_##10 CL_## 25 CL_##10 CL_##10

DISTRICT_## 6 COUNTY_## MARTIN HWY NO._## US 97 NUMBER OF EVALUATIONS ## 2 LOCATION ## AT MP 4 NEAR ACKERLY TEXTURE READING DATE_## 08/12/82 TEXTURE LOCATION_ ## AT MP 4 1ST MP S OF FM 2002 NB T. LANE OWP_## 3.90 3.80 3.80 3.85 AVERAGE_## 3.84 3.20 4.00 3.15 4.00 8WP_## 5.20 3.10 AVERAGE_## 3.14 AVERAGE_## 4.00 4.00 IWP_## 4.00 TEXTURE LOCATION_ ## AT MP 4 IN THE NORTH BOUND T. LANE 3.70 3.75 3.45 AVERAGE_## 3.68 CWP ## 5.60 BWP ## 3.10 IWP ## 3.90 AVERAGE_## 3.06 AVERAGE_## 3.89 3.10 3.00 3.05 3.95 3.90 3.80 TEXTURE LOCATION_ ## AT MILE POST 4 IN THE NB TRAVEL LANE CWP_## 3.90 3.95 4.00 4.00 AVERAGE_## 3.94 3.05 3.15 3.00 BWP ## 3.00 AVERAGE ## 3.05 3.90 3.90 3.90 AVERAGE_## 3.90 / IWP_## 3.90 AGGREGATE RATE_## 1/97 SHOT QUANTITY AVG_## 0.49 HI_## 0.50 LOW_## 0.45 ASPHALT GRADE/PROD ## AC-10/AM.PET. AGGREGATE GRADE/PROD_## PB.GRJ.MOD/HOBAN AVG DAILY TRAFFIC_## 2550 DATE CONSTRUCTED_## / / EVALUATION DATE_## 6/13/84 OVERALL VISUAL RETENTION_## 6 AGGREGATE RETENTION BLEEDING EMBEDMENT DEFTH OWP_## 9 QWP_## 3 0WP_## 90 B₩P_##10 BWP_##10 3WP_## 50-40 CL_## 7 CL_##10 CL_## 40-50 EVALUATION DATE_## 5/ 0/83 OVERALL VISUAL RETENTION ## 7 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP ## 8 QWP_## 9 OWP ## 30 BWP_##10 8WP_## 9 9WP_## 20 CL_## 4 CL_##10 C1__## 15

COUNTY_## NACOGDOCHES HWY NO. ## FM 2964 DISTRICT_##11 NUMBER OF EVALUATIONS_## 1 LOCATION ## SBL AT MP 2 TEXTURE READING DATE ## 05/18/83 TEXTURE LOCATION ## AT MILE POST 2 AVERAGE_## 3.15 OWP_## 3.25 3.15 3.10 3.10BWP ## 2.40 2.40 2.45 2.45 AVERAGE ## 2.43 AVERAGE_## 3.14 IWP ## 3.20 3.15 3.10 3.20TEXTURE LOCATION_## 30 FEET SOUTH OF MILE POST 2 3.30 OWP_## 5.20 3.20 3.20 AVERAGE_## 3.23 3.25 3.05 3.20 AVERAGE_## J.1a BWP_## 3.15 AVERAGE_## 3.15 IWP_## 3.10 3.10 3.15 3.25 TEXTURE LOCATION_ ## READING 3 2.80 OWP_## 2.85 2.85 2.75 AVERAGE_## 2.81 AVERAGE_## 2.84 BWP_## 2.80 2.90 2.85 2.80 AVERAGE_** 2.84 IWP_## 2.80 2.80 2.85 2.90 AGGREGATE RATE_## 1/140 SHOT QUANTITY AVG_## 0.411 HI_## LOW_## ASPHALT GRADE/PROD_## CRS-2/TEXAS EMULSION AGGREGATE GRADE/PROD_## LT.WT.GR4/TXI AVG DAILY TRAFFIC ## 490 DATE CONSTRUCTED_## 07/19/83 EVALUATION DATE_## 5/ 1/84 OVERALL VISUAL RETENTION ## 8 EMBEDMENT DEPTH AGGREGATE RETENTION BLEEDING OWP_##10 QWP ##10 QWP ## 60 8WP_## 6 BWP_##10 BWP_## 40 CL_##10 _## 7 CL ## CL EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 OWP_## OWP_## 0 3WP_## () BWP_## 3WP_## () CL_## CL_## 0 CL_## 0

DISTRICT_##11 COUNTY_## NACOGDOCHES HWY NO._## SH 21 LOCATION ## EBL AT MP 24 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 05/18/83 TEXTURE LOCATION_## AT MILE POST 24 AVERAGE_## 3.09 AVERAGE_## 2.74 3.10 CWP ## 3.05 3.10 3.10 2.80 2.75 2.70 3WP_## 2.70 AVERAGE_## 3.33 3.40 3.30 3.30 IWP_## 3.30 TEXTURE LOCATION_## 25 FEET WEST OF MILE POST 24 OWP_## 3.15 BWP_## 2.65 3.20 3.20 3.20 AVERAGE ## 3.19 2.45 AVERAGE_## 2.63 AVERAGE_## 3.16 2.40 3.30 2.60 IWP_## 3.10 3.15 TEXTURE LOCATION_## 50 FEET WEST OF MILE POST 24 3.00 3.10 3.05 AVERAGE_## 3.06 OWP_## 3.10 2.85 2.95 3.20 3.20 AVERAGE_## 2.89 BWP_## 2.90 2.85 3.00 AVERAGE ## 3.08 IWP_## 2.90 AGGREGATE RATE_## 1/110 SHOT QUANTITY AVG_## 0.368 HI_##0.376 LOW_## 0.357 ASPHALT GRADE/PROD_## AC-5/TEXACO/PORT NUECHES AGGREGATE GRADE/PROD_## GR3 MOD. LT.WT./TXI DATE CONSTRUCTED_## 08/23/83 AVG DAILY TRAFFIC_## 2500 EVALUATION DATE_## 5/ 1/84 -OVERALL VISUAL RETENTION ## 7 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH GWP_## 8 0wp_##10 OWP_## 40-50 BWP_## 5 BWP_## 40 BWP_##10 CL_## 35-40 CL_## 6 CL_##10 EVALUATION DATE_## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING OWP_## 0 OWP_## 0 0WP_## BWP_## 0 CL_## 0 BWP_## BWP_## 0 CL_## 0 CL_##

DISTRICT_##11 COUNTY_## NACOGDOCHES HWY NO._ ## US 59 LOCATION_## SBTL AT MP 32 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 05/18/83 TEXTURE LOCATION_## AT MILE POST 31.1 OWP_## 3.80 BWP_## 3.90 3.90 3.80 3.95 AVERAGE_## J.94 AVERAGE_## 3.96 AVERAGE_## 4.00 3.95 4.00 4.00 IWP_## 4.00 3.98 4.00 4.00 TEXTURE LOCATION_## 25 FEET NORTH OF MILE POST 31.1 OWP_## 3.50 3.50 3.55 3.40 AVERAGE_## 3.54 3.90 3.80 BWP ## 3.80 3.85 AVERAGE_## 3.84 IWP_## 3.75 3.80 3.80 3.90 AVERAGE ## 5.81 TEXTURE LOCATION ## 50 FEET NORTH OF MILE POST 31.1 0WP ## 3.50 3.55 3.55 3.50 AVERAGE ## 3.53 3.20 BWP_## 3.20 3.30 3.25 AVERAGE_## 5.24 IWP_## 3.60 3.70 AVERAGE_## 3.68 3.65 3.75 AGGREGATE RATE_## 1/110 SHOT QUANTITY AVG_## 0.50 HI_## L0W_## ASPHALT GRADE/PROD_## CRS-2/TEXAS EMULSIONS AGGREGATE GRADE/PROD_## LT.WT.GR3/TX1 AVG DAILY TRAFFIC_## 13900 DATE CONSTRUCTED_## 07/26/83 EVALUATION DATE_## 5/ 1/84 OVERALL VISUAL RETENTION_##10 BLEEDING AGGREGATE RETENTION EMBEDMENT DEPTH QWP_##10 OWP_##10 DWP_## 80 SWP_##10 BWP_##10 BWP_## 70 CL_## 60-70 CL_##10 CL_##10 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 0 0WP_## 0 OWP_## BWP_## CL_## B₩₽_## 0 BWP_## 0 CL_## 0 CL_## 0

DISTRICT_##11 COUNTY_## NACOGDOCHES HWY NO._## US 259 NUMBER OF EVALUATIONS ## LOCATION_## NBL AT MP 6 TEXTURE READING DATE_## 05/18/83 TEXTURE LOCATION ## AT MILE POST 5 AVERAGE_## 3.41 AVERAGE_## 3.58 3.40 3.45 3.40 0WP ## 3.40 3.55 BWP_## 3.60 3.60 3.55 AVERAGE ## 3.51 IWP_## 3.50 3.55 3.50 3.50 TEXTURE LOCATION_## 25 FEET NORTH OF MILE POST 6 3.55 3.55 AVERAGE_## 3.54 CWP_## 3.50 3.55 BWP ## 3.75 AVERAGE_## 3.73 3.70 3.65 3.80 IWP_## 3.45 AVERAGE ## 3.55 3.40 3.55 3.40 TEXTURE LOCATION_## 25 FEET SOUTH OF MILE POST 6 OWP_## 3.50 3.45 3.40 3.40 AVERAGE_## 3.44 AVERAGE_## 3.79 AVERAGE_## 3.68 BWP_## 3.80 3.75 3.80 3.80 IWP ## 3.60 3.65 3.70 3.75 AGGREGATE RATE_## 1/110 SHOT QUANTITY AVG_## 0.337 HI_## 0.346 LOW_##~0.325 ASPHALT GRADE/PROD ## AC-10/TEXACO AGGREGATE GRADE/PROD_## PB-3 MOD./TXI DATE CONSTRUCTED_## 08/26/83 AVG DAILY TRAFFIC_## 6000 EVALUATION DATE ## 5/ 1/84 OVERALL VISUAL RETENTION_ ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 9 OWP_##10 OWP_## 70-80 8WP_## 5 BWP_##10 BWP_## 60 CL_## 6 CL_##10 CL_## EVALUATION DATE ## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 0 OWP_## 0 OWP ## BWP_## 0 BWP_## 0 BWP ## CL_## 0 CL_## 0 CL_##

COUNTY_## WHARTON DISTRICT_##13 HWY NO._## FM 1161 LOCATION_ ## WBL AT MP 8 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 05/19/83 TEXTURE LOCATION ## AT MP 8 AVERAGE_## 2.49 AVERAGE_## 2.59 OWP_## 2.50 2.40 2.50 2.55 8WP_## 2.60 2.60 2.60 2.55 IWP_## 3.40 3.30 3.40 3.35 AVERAGE_## 3.36 TEXTURE LOCATION_ ## 25 FEET EAST OF MILE POST 8 OWP_## 3.25 3.20 3.20 3.35 AVERAGE_## 3.25 BWP_## 3.35 3.30 3.25 AVERAGE_## 3.30 3.30 IWP_## 3.50 3.65 3.55 3.40 AVERAGE ## 3.58 TEXTURE LOCATION_## 25 FEET WEST OF MP 8 0WP ## 3.00 2.90 AVERAGE ## 3.00 3.10 3.00 BWP_## 3.20 3.30 3.30 3.40 AVERAGE_## 3.303.55 3.55 IWP_## 3.60 3.60 AVERAGE ## 3.58 AGGREGATE RATE_## 1/131 SHOT QUANTITY AVG_## 0.28 HI_## 0.00 LOW_## 0.09 ASPHALT GRADE/PROD_## AC-10 /EXXON-BAYTOWN AGGREGATE GRADE/PROD_## PB.GR4./AZROCK DATE CONSTRUCTED_## 07/ /83 AVG DAILY TRAFFIC_## 710 EVALUATION DATE_## 5/ 8/84 OVERALL VISUAL RETENTION_ ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH CWP_##10 0WP_## 8 0WP_## 70-80 BWP_##10 BWP_##10 BWP_## 60 CL_## 50-60 CL_##10 CL_##10 EVALUATION DATE_ ## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING 0WP_## 0 QWP_## 0 OWP_## BWP_## 0 BWP_## BWP_## 0 CL_## 0 CL_## CL_## 0

COUNTY_## GONZALES HWY NO._## FM 2067 DISTRICT_##13 NUMBER OF EVALUATIONS_## 1 LOCATION ## TEXTURE READING DATE_## 08/09/82 TEXTURE LOCATION ## AT MP 4 SBL OWP ## 3.30 3.25 3.30 3.30 AVERAGE ## 3.29 2.20 BWP_## 2.30 2.40 2.30 AVERAGE_## 2.30 IWP_## 2.80 2.90 2.75 2.90 AVERAGE_## 2.84 TEXTURE LOCATION_ ## AT MP 4 NBL CWP_## 2.50 2.40 2.40 2.35 AVERAGE_## 2.41 BWP ## 2.40 2.50 2.40 2.55 AVERAGE_## 2.46 IWP_## 2.50 AVERAGE_## 2.60 2.70 2.40 2.60 TEXTURE LOCATION_## 30 FT NORTH OF MP 4 SBL AVERAGE_## AVERAGE_## OWP_## 2.85 3.00 2.80 2.90 2.89 BWP_## 2.10 2.15 2.20 2.05 2.13 IWP_## 2.65 2.70 2.45 2.60 AVERAGE_## 2.45 AGGREGATE RATE_## 1/101 SHOT QUANTITY AVG_## 0.41 HI_## 0.44 LOW_## 0.39 ASPHALT GRADE/PROD_## AC-5 /EXXON-BAYTOWN AGGREGATE GRADE/PROD ## P9. GR3./SERVTEX DATE CONSTRUCTED_## 07/ /83 AVG DAILY TRAFFIC_## 190 EVALUATION DATE ## 2/16/83 OVERALL VISUAL RETENTION ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 0WP_## 9 OWP_##10 33 BWP_## 7 BWP_##10 BWP_## 30 CL ## 8 CL_##10 CL_## 30 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP ## 0 0WP_## 0 OWP ## BWP_## 0 BWP_## CL_## BWP ## 0 CL_## 0 CL_## 0

DISTRICT ##13 COUNTY_## JACKSON HWY NO._ ## FM 234 LOCATION_## NUMBER OF EVALUATIONS_## 1 TEXTURE READING DATE_## 08/19/82 TEXTURE LOCATION_## AT MP 10 SBL 0WP_## 2.20 2.35 2.25 AVERAGE_## 2.30 2.28 BWP_## 2.15 2.10 2.20 2.10 AVERAGE ## 2.14 IWP_## 2.60 2.50 2.50 AVERAGE ## 2.55 2.60 TEXTURE LOCATION_## 30 FT SOUTH OF MP 10 SBL 0WP_## BWP_## 2.20 2.25 2.20 2.20 AVERAGE_## 2.21 2.05 2.10 1.90 2.10 AVERAGE ## 2.04 IWP_## 2.30 2.30 2.30 2.40 AVERAGE_## 2.33 TEXTURE LOCATION ## 230 FT SOUTH OF MP 10 SBL GWP_## 3.50 BWP_## 3.50 3.40 3.40 3.40 AVERAGE_## 3.50 3.50 3.40 3.50 AVERAGE_## 3.48 IWP_## 3.55 3.50 3.50 3.40 AVERAGE_## 3.54 AGGREGATE RATE_## 1/101 HI_## 0.42 SHOT QUANTITY AVG_## 0.40 LOW_## 0.34 ASPHALT GRADE/PROD_ ## AC-5/EXXON-BAYTOWN AGGREGATE GRADE/PROD ## GR3.LRA/WHITE'S MINES DATE CONSTRUCTED ## 07/ 8/2 AVG DAILY TRAFFIC ## 210 EVALUATION DATE_## 2/16/83 OVERALL VISUAL RETENTION_ ##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP ##10 OWP ## 40 BWP_##10 BWP_##10 BWP_## 30-35 CL_##10 CL_##10 CL ## 30 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING OWP_## 0 OWP_## OWP ## 0 BWP_## 0 CL_## 0 BWP_## 0 BWP_## CL_## CL_## 0

COUNTY ## DEWITT HWY NO. ## FM 236 DISTRICT ##13 NUMBER OF EVALUATIONS_## 1 LOCATION_## SBL AT MP 4 TEXTURE READING DATE_## 05/17/83 TEXTURE LOCATION ## AT MILE POST 4 OWP_## 3.55 BWP_## 3.10 3.40 3.40 3.50 AVERAGE_## 3.46 AVERAGE_## 3.28 3.35 3.30 3.35 AVERAGE_## 3.14 IWP_## 3.25 3.20 3.05 3.05 TEXTURE LOCATION_## 20 FEET NORTH OF MILE POST 4 AVERAGE_## 3.54 AVERAGE_## 3.23 OWP_## 3.50 3.50 3.55 3.40 BWF_## 3.25 3.203.25 3.20 IWP_## 3.10 3.10 3.10 3.05 AVERAGE_## 3.09 TEXTURE LOCATION ## 20 FEET SOUTH OF MILE POST 4 OWP_## 3.40 3.45 3.45 3.50 AVERAGE ## 3.45 BWP_## 3.25 3.20 3.203.05 AVERAGE ## 3.19 3.55 IWP ## 3.58 3.60 3.50 AVERAGE ## 3.56 AGGREGATE RATE_## 1/104 SHOT QUANTITY AVG_## 0.37 HI_## 0.39 LOW_## 0.33 ASPHALT GRADE/PROD_## AC-5/EXXON-BAYTOWN AGGREGATE GRADE/PROD_## PB. GR3./WHITE'S AVG DAILY TRAFFIC_## 700 DATE CONSTRUCTED_## 07/ /83 EVALUATION DATE_## 5/ 8/84 OVERALL VISUAL RETENTION ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 7 OWP_##10 OWP_## 60-80 BWP_## 6 BWP_##10 BWP_## 50-60 CL_## 6 CL_##10 CL_## 40 EVALUATION DATE ## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 0 OWP_## OWP_## 0 BWP_## 0 BWP_## 0 BWP ## CL_## 0 CL_## 0 CL ##

COUNTY_## DEWITT DISTRICT_##13 HWY NO._## FM 238 NUMBER OF EVALUATIONS_## 1 LOCATION ## TEXTURE READING DATE ## 08/10/82 TEXTURE LOCATION_ ## AT MP 2 WBL 0WP_## 3.00 3.00 3.10 AVERAGE ## 3.10 3.05 BWP_## 2.80 2.70 2.85 2.75 AVERAGE ## 2.78 IWP_## 2.80 2.75 2.85 2.80 AVERAGE_## 2.90 TEXTURE LOCATION_ ## 30 FT WEST OF MP 2 WBL 2.90 0WP:_## 3.00 2.85 2.95 AVERAGE_## 2.93 BWP_## 2.75 2.80 2.80 2.95 AVERAGE ## 2.93 IWP_## 2.85 2.80 2.90 2.90 AVERAGE_## 2.86 TEXTURE LOCATION_ ## 40 FT EAST OF MP 2 WBL 3.50 OWP_## 3.40 3.40 3.40 AVERAGE_## 3.43 BWP_## 3.10 3.15 3.10 3.10AVERAGE_## 3.11IWP ## 3.00 2.80 2.80 2.85 AVERAGE_## 2.86 AGGREGATE RATE_## 1/98 SHOT QUANTITY AVG_## 0.42 HI_## 0.43 LOW_## 0.41 ASPHALT GRADE/PROD_## AC-5/EXXON-BAYTOWN AGGREGATE GRADE/PROD_## PB.GR3./SERVTEX DATE CONSTRUCTED_## 07/ /82 AVG DAILY TRAFFIC_## 110 EVALUATION DATE_## 2/16/83 OVERALL VISUAL RETENTION ## 8 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING OWP_## 9 BWP_## 8 QWP_##10 0WP_## 30 BWP_##10 BWP_## 20 CL. CL ## 8 CL. _##10 ## 30 EVALUATION DATE_ ## OVERALL VISUAL RETENTION_ ## 0 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING OWP_## 0 OWP_## 0 OWP ## BWP_## CL_## BWP_## 0 BWP_## 0 CL_## 0 CL_## 0

HWY NO._## FM 239 COUNTY ## DEWITT DISTRICT ##13 NUMBER OF EVALUATIONS ## 1 LOCATION ## TEXTURE READING DATE_## 08/10/82 TEXTURE LOCATION_## AT MP 2 SBL AVERAGE_## 3.40 CWP_## 3.50 3.40 3.35 3.35 BWP_## 3.20 AVERAGE_## 3.20 3.15 3.20 3.25 IWP_## 3.25 3.25 3.35 AVERAGE_## 3.29 3.30 TEXTURE LOCATION_ ## AT MP 2 NBL 3.15 3.10 3.25 AVERAGE_## 3.19 OWP ## 3.20 3.70 3.70 AVERAGE_## 3.58 BWP_## 3.50 3.70 IWP_## 3.60 3.65 3.60 3.60 AVERAGE_## 3.61 TEXTURE LOCATION_## 15 FT NORTH OF MP 2 OWP_## 3.00 3.10 3.05 3.10AVERAGE ## 3.06 BWP_## 3.40 3.40 3.50 3.50 AVERAGE_## 3.45 IWP_## 3.50 3.40 3.45 3.60 AVERAGE_## 3.59 AGGREGATE RATE_## 1/100 SHOT QUANTITY AVG_## 0.39 HI_## 0.44 LOW_## 0.35 ASPHALT GRADE/PROD_## AC-S/EXXON-BAYTOWN AGGREGATE GRADE/PROD ## PB.GR3./SERVTEX AVG DAILY TRAFFIC_## DATE CONSTRUCTED_## 07/ /82 400 EVALUATION DATE_## 2/16/83 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 OWP_## 45 BWP_## 9 BWP_## 30 BWP_##10 CL_## 30 CL_##10 CL_##10 EVALUATION DATE ## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING OWP_## 0 OWP ## 0 022 ## BWP_## 0 BWP_## 8WP_## 0 CL_## 0 CL_## 0 ⊂CL_¥¥,+

DISTRICT_##13 COUNTY_## JACKSON HWY NO._## FM 3131 LOCATION_ ## WEL AT MP 10 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 05/19/83 TEXTURE LOCATION_## AT MILE POST 10 3.20 3.15 3.10 AVERAGE_## 3.14 AVERAGE_## 2.93 OWP_## 3.10 BWP_## 2.90 2.90 2.90 3.00IWP ## 3.20 3.15 3.25 3.20 AVERAGE_## 3.20 TEXTURE LOCATION_## 25 FEET EAST OF MP 10 3.20 OWP_## 3.20 3.15 3.20 AVERAGE_## 3.19 2.80 BWP ## 2.85 2.85 2.90 AVERAGE_## 2.95 3.40 3.30 IWP_## 3.30 3.30 AVERAGE_## 3.33 TEXTURE LOCATION_## 25 FEET WEST OF MILE POST 10 3.25 OWP_## 3.25 3.30 3.30 AVERAGE ## 3.28 BWP ## 3.20 3.30 3.20 3.15 AVERAGE ## 3.21 IWP_## 3:10 AVERAGE_## 3.08 3.10 3.00 3.10 AGGREGATE RATE_## 1/93 SHOT QUANTITY AVG_## 0.39 HI_## 0.42 LOW_## 0.36 ASPHALT GRADE/PROD_## AC-5/EXXON-BAYTOWN AGGREGATE GRADE/PROD_## PB.GR4./AZROCK DATE CONSTRUCTED_## 07/ /83 AVG DAILY TRAFFIC_## 160 EVALUATION DATE_## 5/ 8/84 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 0WP_## 90 OWP_## 9 BWP_##10 BWP_##10 BWP_## 70-80 CL_## 70 CL_##10 CL_##10 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING OWP_## 0 0WP_## 0 OWP_## BWP_## 0 BWP_## BWP_## 0 CL_## 0 CL_## CL_## 0

COUNTY_## VICTORIA DISTRICT_##13 HWY NO._## FM 404 LOCATION_## NBL AT MP 4 NUMBER OF EVALUATIONS_## 1 TEXTURE READING DATE ## 05/17/83 TEXTURE LOCATION_## 20 FEET SOUTH OF MILE POST 4 3.90 OWP_## 3.90 3.90 3.80 AVERAGE ## 3.88 BWP_## 3.75 3.80 3.80 3,70 AVERAGE ## 3.76 IWP_## 3.80 3.85 3.90 3.90 AVERAGE ## 3.86 TEXTURE LOCATION ## READING 2 0WP ## 4.00 4.00 4.00 4.00 AVERAGE_## 4.00 BWP_## 3.65 IWP_## 4.00 3.70 3.70 3.70 AVERAGE_## 3.57 AVERAGE_## 4.00 4.00 4.00 4.00 TEXTURE LOCATION_## READING 3 OWP_## 4.00 4.00 4.00 4.00 AVERAGE_## 4.00 BWP_## 3.75 3.80 3.80 3.75 AVERAGE_## 3.78 IWP_## 4.00 4.00 4.00 4.00 AVERAGE_## 4.00 AGGREGATE RATE_## 1/139 SHOT QUANTITY AVG_## 0.22 HI_## 0.23 LOW_## 0.22 ASPHALT GRADE/PROD_## AC-10/EXXON-BAYTOWN AGGREGATE GRADE/PROD_## P8.GR4./WHITE'S DATE CONSTRUCTED ## 07/ /83 AVG DAILY TRAFFIC_## 7000 EVALUATION DATE_## 5/ 8/84 OVERALL VISUAL RETENTION ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH QWP_##10 OWP ## 5 OWP ##90-100 BWP_## 80-90 CL_## 70-80 BWP_##10 BWP ## 7 CL_##10 CL ##10 EVALUATION DATE_## 1 OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP ## 0 0WP_## 0 OWP_## 8WP_## 0 BWP_## 0 BWP_## CL_## 0 CL_## 0 CL_##

COUNTY_## WHARTON DISTRICT_##13 HWY NO._## FM 441 NUMBER OF EVALUATIONS_## 1 LOCATION_## TEXTURE READING DATE_## 08/24/82 TEXTURE LOCATION_ ## AT MP 16 EBL OWP_## 2.90 2.90 2.90 2.90 AVERAGE_## 2.90 BWP_## 3.15 3.25 3.20 AVERAGE_## 3.23 3.30 AVERAGE_## 3.11 IWP_## 5.10 3.15 3.10 3.10 TEXTURE LOCATION_ ## AT MP 16 WBL 3.00 AVERAGE_## 3.00 0WP_## 3.00 3.00 3.00 AVERAGE_## 3.25 3.25 3.20 BWP_## 3.30 3.30 2.90 AVERAGE ## 2.83 IWP_## 2.90 2.80 2.80 TEXTURE LOCATION_## 30 FT EAST OF MP 16 3.05 3.00 3.00 AVERAGE_## 3.03 0WP_## 3.05 BWP ## 3.10 3.15 3.15 3.10AVERAGE_## 3.13 IWP ## 3.10 3.05 3.05 3.10 AVERAGE_## 3.08 AGGREGATE RATE_## 1/100 SHOT QUANTITY AVG_## 0.43 HI_## 0.45 LOW_## 0.40 ASPHALT GRADE/PROD_## AC-5 /EXXON-BAYTOWN AGGREGATE GRADE/PROD_## GR3 LRA/WHITE'S MINES AVG DAILY TRAFFIC_## 120 DATE CONSTRUCTED_## 07/ /82 EVALUATION DATE_## 2/16/83 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 OWP_## 45 B₩₽_## CL_## BWP_##10 BWP_##10 30 35 CL_##10 CL_##10 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING OWP_## 0WP_## 0 OWP_## 0 BWP_## 0 BWP_## BWP_## 0 CL_## 0 _____## CL_## 0

HWY NO._## FM 441 COUNTY_## WHARTON DISTRICT_##13 NUMBER OF EVALUATIONS_## 1 LCCATION ## TEXTURE READING DATE_## 08/24/82 TEXTURE LOCATION ## AT MP 12 SBL CWP_## 3.05 BWP_## 3.40 IWP_## 3.40 AVERAGE ## 3.11 3.10 3.20 3,10 3.40 3.35 AVERAGE_## 3.39 3.40 3.40 3.35 AVERAGE_## 3.34 3.30 TEXTURE LOCATION_## AT MP 12 NBL 0WP_## 2.60 BWP_## 2.80 AVERAGE_## 2.75 2.80 2.80 2.85 AVERAGE_## 2.75 2.75 2.75 2.70 AVERAGE_## 3.19 IWP_## 3.20 3.20 3.20 3.15 TEXTURE LOCATION_## 30 FT SOUTH OF MP 12 SBL 3.00 3.05 3.00 AVERAGE_## 3.03 OWP_## 3.05 3.45 3.45 3.45 AVERAGE_## 3.45 BWP_## 3.45 IWP_## 3.45 3.45 3.50 3.45 AVERAGE_## 3.44 AGGREGATE RATE_## 1/100 SHOT QUANTITY AVG_## 0.43 HI_## 0.45 LOW_## 0.40 ASPHALT GRADE/PROD_## AC-5 /EXXON-BAYTOWN AGGREGATE GRADE/PROD ## LRA GR3 /WHITE'S MINES DATE CONSTRUCTED ## 07/ /82 AVG DAILY TRAFFIC ## 120 EVALUATION DATE ## 2/16/83 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP ##10 OWP_##10 0WP_## 45 9WP_##10 BWP_##10 BWP ## 30 CL_## 35 CL_##10 CL_##10 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING 0WP_## 0 0WP_## 0 OWP_## 8WP_## 0 BWP_## BWP_## 0 CL_## 0 CL_## 0 CL_##

DISTRICT_##13 COUNTY_## LAVACA HWY NO. _ ## FM 531 LOCATION_## NUMBER OF EVALUATIONS_## 1 TEXTURE READING DATE_## 08/05/82 TEXTURE LOCATION_ ## AT MP 4 SBL OWP ## 3.00 2.90 2.90 AVERAGE_## 2.95 3.00AVERAGE_## 2.73 BWP_## 2.75 2.70 2.80 2.45 IWP_## 2.80 2.80 2.80 2.75 AVERAGE ## 2.79 TEXTURE LOCATION_ ## AT MP 4 NBL 2.80 2.74 2.70 2.70 AVERAGE ## OWP_## 2.75 BWP_## 2.60 2.60 2.50 2.40 AVERAGE_## 2.50 3.35 IWP_## 3.30 3.35 3.35 AVERAGE_## 5.34 TEXTURE LOCATION_## 0.5M FROM US 77A SBL 2.60 2.60 2.40 2.60 2.60 AVERAGE_## 0WP_## AVERAGE ## 2.94 BWP_## 3.00 2.90 2.95 2.90 AVERAGE_## 3.25 3.20 3.20 IWP_## 3.30 3.30 AGGREGATE RATE_## 1/102 SHOT QUANTITY AVG_ ## 0.40 HI_## 0.43 LOW_## 0.08 ASPHALT GRADE/PROD_## AC-5 /EXXON-BAYTOWN AGGREGATE GRADE/PROD_## PB.GR3./SERVTEX DATE CONSTRUCTED_## 07/ /82 AVG DAILY TRAFFIC_## 250 EVALUATION DATE_## 2/16/83 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP ## 9 OWP_##10 OWP_## - 50 BWP_## 7 BWP_## BWP_##10 - 20 CL_## 30 CL ## 9 CL_##10 EVALUATION DATE ## OVERALL VISUAL RETENTION ## 0 EMBEDMENT DEFTH AGGREGATE RETENTION BLEEDING OWP_## OWP_## 0 OWP_## 0 BWP_## 0 BWP_## 0 BWP_## CL_## 0 CL_## 0 CL_##

DISTRICT_##13 COUNTY_## LAVACA HWY NO._## FM 552 LOCATION ## WEL AT MP 18 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE ## 05/17/83 TEXTURE LOCATION_## 40 FEET WEST OF MILE POST 18 2.75 AVERAGE_## 2.77 OWP ## 2.72 2.90 2.81 BWP ## 2.62 AVERAGE ## 2.57 2.65 2.50 2.50 IWP ## AVERAGE_## 2.69 2.52 2.70 2.78 2.45 TEXTURE LOCATION_## AT MILE POST 18 2.95 2.90 3.00 AVERAGE_## 2.94 OWP_## 2.90 AVERAGE ## SWF_## 2.30 2.70 2.45 2.65 2.70 2.80 IWP_## 2.90 2.90 2.85 AVERAGE_## 2.84 TEXTURE LOCATION_## 80 FEET WEST OF MILE POST 18 2.90 2.95 OWP_## 2.80 2.90 AVERAGE_## 2.89 2.60 SWP_## 2.80 2.70 2.72 AVERAGE ## 2.71 2.85 2.75 2.92 IWP ## 2.80 AVERAGE_## 2.81 AGGREGATE RATE_## 1/99 SHOT QUANTITY AVG_## 0.42 HI_## 0.45 LOW_## 0.39 ASPHALT GRADE/PROD_## AC-5/EXXON-BAYTOWN AGGREGATE GRADE/PROD_## P9.GR3./WHITE'S AVG DAILY TRAFFIC_## DATE CONSTRUCTED ## 07/ /83 510 EVALUATION DATE_## 5/ 9/94 OVERALL VISUAL RETENTION_## 7 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING 0WP ## 7 OWP ##10 0WP ## 50 BWP_## 30-40 CL_## 40 BWP_##10 CL_##10 BWP_## 4 CL ## 7 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP ## 0 OWP_## 0 OWP_## BWP ## 0 8WP_## 0 BWP_## CL_## 0 CL_## 0 CL_##

DISTRICT_##13 COUNTY_## GONZALES HWY NO._## FM 533 LOCATION ## NUMBER OF EVALUATIONS_## 1 TEXTURE READING DATE_## 08/06/82 TEXTURE LOCATION_ ## AT MP 4 NEBL OWP_## 3.20 BWP_## 2.50 IWP_## 3.10 3.20 3.15 3.10 AVERAGE_## 3.16 AVERAGE_## 2.48 2.40 2.50 2.50 2.90 3.10 3.25 AVERAGE ## 3.09 TEXTURE LOCATION_## 30 FT SW OF 1ST MEA. NEBL OWP_## 2.90 2.90 2.80 2.95 AVERAGE_## 2.89 2.20 AVERAGE_## 2.19 BWP_## 2.25 2.20 2.10 IWP_## 2.40 2.45 2.40 2.45 AVERAGE_## 2.43 TEXTURE LOCATION_## AT MP 2 NEBL OWP_## 2.90 2.95 2.80 3.00 AVERAGE_## 2.91 BWP_## 2.80 2.85 2.95 2.75 AVERAGE_## 2.81 IWP_## 2.80 2.80 2.75 2.75 AVERAGE_## 2.78 AGGREGATE RATE_## 1/101 SHOT QUANTITY AVG_## 0.42 HI_## 0.44 LOW_## 0.37 ASPHALT GRADE/PROD_## AC-5/EXXON-BAYTOWN AGGREGATE GRADE/PROD_## PB.GR3./SERVTEX DATE CONSTRUCTED_## 07/ /82 AVG DAILY TRAFFIC_## 130 EVALUATION DATE_## 2/16/83 OVERALL VISUAL RETENTION ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 BWP_## 9 CL_## 9 OWP_##10 0wp_## 35 BWP_##10 BWP_## 30 CL_## CL_## 9 - 30 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 BWP_## 0 OWP_## 0 OWP_## 9WP_## 0 BWP_## CL_## 0 CL_## 0 CL_##

COUNTY_## JACKSON HWY NO._## FM 710 DISTRICT_##13 NUMBER OF EVALUATIONS ## 1 LOCATION ## TEXTURE READING DATE_## 08/20/82 TEXTURE LOCATION_ ## AT MP 8 SBL OWP_## 3.30 BWP_## 2.95 3.25 3.35 AVERAGE_## 3.33 5.40 AVERAGE ## 2.98 3.00 2.95 3.00AVERAGE ## 3.23 IWP_## 3.30 3.20 3.15 3.25 TEXTURE LOCATION_## 30 FT SOUTH OF MP 8 SBL AVERAGE_## 2.84 OWP_## 2.75 2.80 2.90 2.90 3.30 9WP_## 3.35 3.30 3.30 AVERAGE_## 3.31 3.55 3.55 AVERAGE_## 3.50 3.40 IWP_## 3.50 TEXTURE LOCATION ## 30 FT NORTH OF MP 8 SBL AVERAGE_## 3.29 3.25 3.30 3.30 OWP ## 3.30 3.45 AVERAGE_## 3.45 3.45 BWP_## 5.40 3.50 3.70 3.65 AVERAGE_## 3.68 IWP_## 3.45 3.70 AGGREGATE RATE_## 1/101 SHOT QUANTITY AVG_## 0.38 HI_## 0.38 LOW_## 0:37 ASPHALT GRADE/PROD_## AC-5/EXXON-BAYTOWN AGGREGATE GRADE/PROD_## GR3 LRA /WHITE'S MINES AVG DAILY TRAFFIC_## DATE CONSTRUCTED_## 07/ /82 710 EVALUATION DATE_## 2/16/83 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 BWP_##10 OWP_##10 0WP_## 35 BWP_## BWP_##10 30 CL_##10 CL_## CL_##10 - 30 EVALUATION DATE ## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 0 OWP_## 0 OWP_## BWP_## CL_## B₩₽_## 0 8WP_## 0 CL_## 0 CL ## 0

DISTRICT_##13 COUNTY_## JACKSON HWY NO._## FM 710 LOCATION ## SBL AT MP 4 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 05/19/83 TEXTURE LOCATION_ ## AT MILE POST 4 2.80 2.90 AVERAGE_## 2.89 3.00 2.85 0WP_## BWP_## 2.90 2.95 2.85 2.95 AVERAGE_## 2.91 AVERAGE ## 3.25 3.30 3.20 3.30 3.20 TEXTURE LOCATION_ ## 25 FEET NORTH OF MILE POST 4 OWP_## BWP_## 3.20 AVERAGE_## 3.21 3.20 3.20 3.25 3.00 AVERAGE_## 2.90 3.10 3.05 3.013.40 3.45 AVERAGE_## 3.41 IWP ## 3.40 3.40 TEXTURE LOCATION_## 25 FEET SOUTH OF MP 4 AVERAGE_## 3.15 OWP_## 3.10 3.10 3.10 3.11 AVERAGE_## 3.06 9WP_## 3.05 3.10 3.00 3.10AVERAGE_## 3.33 3.35 IWP_## 3.30 3.35 3.30 AGGREGATE RATE_## 1/119 SHOT QUANTITY AVG_## 0.40 HI ## 0.42 LOW_## 0.39 ASPHALT GRADE/PROD_## AC-5/EXXON-BAYTOWN AGGREGATE GRADE/PROD_## PB.GR4./AZROCK DATE CONSTRUCTED_## 07/ /83 AVG DAILY TRAFFIC_## 100 EVALUATION DATE_## 5/ 8/84 OVERALL VISUAL RETENTION_## 8 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING 90 OWP_## OWP_##10 QWP_## 6 9WP_## BWP_##10 8WP_## 8 80 CL_## 70 CL_## 9 CL_##10 EVALUATION DATE_ ## OVERALL VISUAL RETENTION_## 0 EMBEDMENT DEPTH AGGREGATE RETENTION BLEEDING 0WP_## 0 0WP ## OWP_## 0 BWP_## BWP_## 0 5WP_## 0 CL_## 0 CL_## CL_## 0

COUNTY ## WHARTON HWY NO._## FM 961 DISTRICT ##13 NUMBER OF EVALUATIONS_## 1 LOCATION_## TEXTURE READING DATE_## 08/25/82 TEXTURE LOCATION_## AT MP 12 SBL 2.60 2.50 AVERAGE_## 2.58 OWP_## 2.60 2.60 2.55 BWP_## 2.50 2.45 2.50 AVERAGE_## 2.50 IWP_## 2.50 2.45 2.55 2.60 AVERAGE_## 2.63 TEXTURE LOCATION_## 30 FEET SOUTH OF MP 12 SBL OWP_## 2.45 2.65 2.45 2.70 AVERAGE ## 2.34 BWP ## 2.80 2.85 3.00 3.05 AVERAGE_## 2.93 IWP ## 2.90 2.90 2.85 2.90 AVERAGE_## 2.89 TEXTURE LOCATION_## 30 FT SOUTH OF MP 12 NBL 2.25 OWP ## 2.35 2.35 2.30 AVERAGE ## 2.31 BWP ## 2.35 2.30 2.20 2.10 AVERAGE_## 2.24 2.70 IWP ## 2.70 2.80 2.70 AVERAGE_## 2.73 AGGREGATE RATE_## 1/102 SHOT QUANTITY AVG_## 0.42 HI_## 0.45 LOW_## 0.33 ASPHALT GRADE/PROD ## AC-5 EXXON-BAYTOWN AGGREGATE GRADE/PROD ## GR3 LRA/WHITE'S MINES DATE CONSTRUCTED_## 07/ /82 AVG DAILY TRAFFIC ## 200 EVALUATION DATE_## 2/16/83 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP ##10 OWP_##10 OWP_## 35 BWP_##10 BWP_##10 BWP_## 30 CL_##10 CL_##10 CL_## 30 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 OWP_## OWP_## 0 BWP_## 0 BWP ## O BWP_## CL_## 0 CL_## 0 CL_##

DISTRICT_##13 COUNTY_## WHARTON HWY NO._## FM 961 LOCATION ## WBL AT MP 6 NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 05/19/83 TEXTURE LOCATION_ ## AT MILE POST 6 2.80 2.90 2.75 OWP_## 2.85 AVERAGE ## 2.83 BWP_## 2.30 IWP_## 2.75 2.25 2.30 2.25 AVERAGE_## 2.28 2.70 2.75 2.70 AVERAGE_## 2.73 TEXTURE LOCATION_## READING 2 AVERAGE_## 2.54 AVERAGE_## 2.50 OWP_## 2.55 2.60 2.45 2.55 BWP_## 2.40 2.50 2.70 2.60 2.70 2.75 IWP_## 2.70 2.80 AVERAGE_## 2.74 TEXTURE LOCATION_## READING 3 OWP_## 2.70 2.80 2.90 2.70 AVERAGE_## 2.79 2.50 BWP_## 2.55 2.50 2.60 AVERAGE_## 2.54 IWP_## 3.00 2.90 2.85 AVERAGE_## 2.94 3.00 AGGREGATE RATE_## 1/102 SHOT QUANTITY AVG_## 0.43 HI_## 0.44 LOW_## 0.40 ASPHALT GRADE/PROD_## AC-5/EXXON AGGREGATE GRADE/PROD_## PB.GR3./SERVTEX DATE CONSTRUCTED_## 07/ /83 AVG DAILY TRAFFIC_## 350 EVALUATION DATE_## 5/ 8/84 OVERALL VISUAL RETENTION ## 7 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 6 OWP_## 40-45 OWP_##10 BWP_##10 CL_##10 BWP_## 30-40 CL_## 30-40 BWP ## 5 CL_## 5 EVALUATION DATE_ ## OVERALL VISUAL RETENTION_ ## 0 EMBEDMENT DEPTH AGGREGATE RETENTION BLEEDING OWP_## 0 BWP_## 0 0WP_## OWP_## 0 3WP_## BM6_## 0 . CL_## 0 CL_## 0 CL_##

HWY NO. ## FM 966 DISTRICT_##13 COUNTY_## LAVACA NUMBER OF EVALUATIONS ## LOCATION_## TEXTURE READING DATE_## 08/06/82 TEXTURE LOCATION_## AT MP 2 SBL 3.45 AVERAGE_## 3.41 OWP_## 3.45 5.40 3.35 3.70 3.75 AVERAGE_## 3.69 BWP_## 3.60 3.70 IWP_## 3.40 3.40 3.40 3.45 AVERAGE_## 3.41 TEXTURE LOCATION_## AT MP 2 NBL 3.90 3.85 AVERAGE ## 3.86 CWP_## 7.95 3.85 BWP ## 3.80 3.80 AVERAGE ## 3.91 3.85 3.80 IWP_## 5.70 AVERAGE_## 3.68 3.65 3.70 3.65 TEXTURE LOCATION ## AT MP 4 SBL OWP_## 3.30 BWP_## 3.10 3.35 3.30 3.25 AVERAGE_## 3.30 3.00 3.10 3.00 AVERAGE_## 3.05 3.05 3.10 IWP_## 3.20 3.15 AVERAGE_## 3.13 AGGREGATE RATE_## 1/100 SHOT QUANTITY AVG ## 0.39 HI_## 0.42 LOW_## 0.07 ASPHALT GRADE/PROD_## AC-5/EXXON-BAYTOWN AGGREGATE GRADE/PROD_## PB.GR3./SERVTEX DATE CONSTRUCTED ## 07/ /82 430 AVG DAILY TRAFFIC_## EVALUATION DATE_## 2/16/83 OVERALL VISUAL RETENTION_##10 EMBEDMENT DEPTH AGGREGATE RETENTION BLEEDING OWP_##10 OWP_##10 OWP_## 35 BWP_## 8 9WP_##10 BWP_## 30 CL_##10 CL_## 30 CL_## 9 EVALUATION DATE_## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP ## 0 OWP_## 0 0WP ## 8WP ## 0 BWP_## 0 BWP_## CL_## 0 CL_## 0 CL_##

DISTRICT_##13 COUNTY_## DEWITT HWY NO. _ ## SH 72 LOCATION_## NUMBER OF EVALUATIONS ## 1 TEXTURE READING DATE_## 08/11/82 TEXTURE LOCATION_## AT MP 8 SWBL OWP_## 3.20 3.30 3.20 3.30 AVERAGE_## 3.25 BWP_## 2.60 2.60 2.70 2.55 AVERAGE_## 2.61 IWP_## 3.45 AVERAGE ## 3.55 3.60 3.55 3.60 TEXTURE LOCATION_## AT MP 8 NEBL OWP_## 3.20 3,40 3.30 3.35 AVERAGE_## 3.31 BWP_## 2.75 2.75 2.80 AVERAGE_## 2.73 2.60 IWP_## 0.50 3.50 3.30 3.55 AVERAGE_## 3.51 TEXTURE LOCATION_## AVERAGE_## 0WP_## ٠ . • BWP_## AVERAGE_## • IWP_## AVERAGE_## . AGGREGATE RATE_## 1/130 LOW_## 0.24 SHOT QUANTITY AVG_## 0.27 HI_## 0.33 ASPHALT GRADE/PROD_## AC-10/EXXON-BAYTOWN AGGREGATE GRADE/PROD_## PB.GR4./SERVTEX DATE CONSTRUCTED_## 07/ /82 AVG DAILY TRAFFIC_## 1200 EVALUATION DATE_## 2/16/93 OVERALL VISUAL RETENTION ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## BWP_## CL_## OWP_##10 BWP_##10 OWP ## 9 45 BWP_## 8 35 CL_## 9 CL_##10 35 EVALUATION DATE_## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## OWP_## 0 OWP_## 0 BWP_## 0 BWP_## BWP_## 0 CL_## 0 CL_## 0 CL_##

COUNTY_## DEWITT HWY NO. ## US 87 DISTRICT ##13 NUMBER OF EVALUATIONS ## LOCATION ## WBL AT MP 14 TEXTURE READING DATE_## 05/17/83 TEXTURE LOCATION_## AT MILE POST 14 3.32OWP_## 3.20 3.50 3.40 AVERAGE_## 3.36 AVERAGE_## 2.62 BWP_## 2.65 2.62 2.60 2.60 3.45 IWP_## 5.40 3.42 3.35 AVERAGE_## 3.41 TEXTURE LOCATION_## 25 FEET WEST OF MILE POST 14 OWP_## 2.37 3.25 3.20AVERAGE_## 3.03 3.30 BWP ## 3.15 3.20 3.20 3.18 AVERAGE_## 3.18 IWP_## 3.65 3.70 3.70 3.80 AVERAGE_## 3.71 TEXTURE LOCATION_ ## 50 FEET WEST OF MILE POST 14 OWP_## 3.20 3.20 3.15 3.20 AVERAGE_## 3.19 2.95 BWP ## 2.95 2.95 2.90 AVERAGE_## 2.94 IWP_## 3.80 3.85 3.80 3.80 AVERAGE ## 3.81 AGGREGATE RATE_## 1/140 SHOT QUANTITY AVG_## 0.23 LOW_## 0.2 HI_## 0.24 ASPHALT GRADE/PROD_ ## AC-10/EXXON-BAYTOWN AGGREGATE GRADE/PROD ## PB. GR4./SERVTEX DATE CONSTRUCTED ## 07/ /83 AVG DAILY TRAFFIC_## 110 EVALUATION DATE_## 5/ 8/84 OVERALL VISUAL RETENTION_## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 OWP_## 60-80 BWP_## 50 BWP_##10 BWP_##10 CL_## 8 CL_##10 CL_## 30 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 0 OWP ## 0 0WP_## 9WP_## 0 BWP_## 0 BM6_## CL_## 0 CL_## 0 CL ##

NUMBER OF EVALUATIONS ## 1 LOCATION_## TEXTURE READING DATE_## 08/04/82 TEXTURE LOCATION_ ## AT MP 20 EBL OWP_## 3.75 3.75 3.75 3.85 AVERAGE_## 3.78 3.30 AVERAGE_## 3.30 BWP_## 3.30 3.30 3.30 IWP_## 3.60 3.45 3.70 AVERAGE_## 3.64 3.40TEXTURE LOCATION_## 15 FT EAST OF MP 20 EBL OWP_## 3.70 3.75 3.80 3.70 AVERAGE ## 3.74 3.25 BWP_## 3.30 3.20 3.25 AVERAGE_## 3.25 IWP_## 3.60 3.50 3.55 3.50 AVERAGE_## 3.54 TEXTURE LOCATION_## AT MP 22 EBL 0WP ## 3.65 3.75 3.45 3.70 AVERAGE_## 3.69 BWP_## 3.10 3,20 3.20 AVERAGE_## 3.15 3.10 AVERAGE ## 3.59 IWP_## 3.60 3.55 3.40 3.40 AGGREGATE RATE_## 1/132 SHOT QUANTITY AVG_## 0.27 HI_##0.23 LOW_##0.22 ASPHALT GRADE/PROD_## AC-10/EXXON-BAYTOWN AGGREGATE GRADE/PROD_## GR4.LRA/WHITE'S MINES DATE CONSTRUCTED_## 07/ /82 AVG DAILY TRAFFIC_## 1500 EVALUATION DATE_## 2/16/83 OVERALL VISUAL RETENTION_## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH QWP_## 9 OWP_##10 OWP_## 45 8WP_## 9 BWP_##10 BM6_## 20 CL ## 9 CL_##10 CL_## 30 EVALUATION DATE_## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 0WP_## 0WP_## 0 BWP_## 0 BWP_** 0 BWP_** CL_## 0 CL_## 0 CL_##

HWY NO._ ## US 90

COUNTY_## LAVACA

DISTRICT_##13

HWY NO._## FM 1346 COUNTY ## BEXAR DISTRICT ##15 LOCATION ## AT LOOP 1604 EAST BOUND LANE NUMBER OF EVALUATIONS ## TEXTURE READING DATE_## 09/00/82 TEXTURE LOCATION_## 1 MILE FROM LOOP 1604 EBL 3.50 3.50 AVERAGE_## 3.46 OWP_## 3.40 3.45 3.30 BWP_## 3.20 3.30 3.15 AVERAGE_## 3.24 3.30 IWP_## 3.35 3.40 3.40 AVERAGE_## 3.36 TEXTURE LOCATION_## 15 FT. EAST OF ABOVE OWP_## 3.70 3.75 3.70 3.80 AVERAGE ## 3.74 BWP_## 3.10 3.30 3.00 3.00 AVERAGE_## 3.10 3.55 IWP_## 3.40 3.40 3.45 AVERAGE_## 3.60 TEXTURE LOCATION_## 1 MILE WEST OF LOOP 1604 EBL OWP_## 3.70 3.45 3.65 3.70 AVERAGE_## 3.48 BWP ## 3.30 3.30 3.33 3.30 AVERAGE_## 3.31IWP ## 3.60 3.40 3.70 3.70 AVERAGE ## 3.65 AGGREGATE RATE_## 1/85 SHOT QUANTITY AVG_## 0.45 LOW_## HI_## ASPHALT GRADE/PROD ## HEVRS/RIFFE PET. AGGREGATE GRADE/PROD_## GR 3 MOD PC/AFFILIATED LIMEST DATE CONSTRUCTED ## 09/ /82 AVG DAILY TRAFFIC ## 850 EVALUATION DATE_## 5/23/84 OVERALL VISUAL RETENTION ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 60 BWP_##10 BWP_##10 BWP_## 40 CL_##10 CL_##10 CL ## 40 EVALUATION DATE_## 4/ 0/83 OVERALL VISUAL RETENTION_## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 8 OWP ##10 OWP_## 60 BWP_## 9 BWP_##10 BWP_## 22 CL_## 9 CL_##10 CL_## 35

COUNTY_## WILSON DISTRICT_##15 HWY NO._## FM 2505 LOCATION_ ## BETWEEN FM 3161 AND FM 541 NUMBER OF EVALUATIONS_## 2 TEXTURE READING DATE_## 09/00/82 TEXTURE LOCATION_ ## AT MP 12 SBL OWP_## 3.40 3.40 3.40 3.50 AVERAGE_## 3.43 BWP_## 3.30 3.40 3.30 3.25 AVERAGE_## 3.31 IWP_## 3.15 3.20 3.20 AVERAGE ## 3.16 3.10 TEXTURE LOCATION_## AT MP 12 NBL OWP_## 3.10 3.15 3.10 3.10 AVERAGE_## 3.11 BWP_## 3.30 3.20 3.25 3.25 AVERAGE_## 3.25 IWP_## 3.60 AVERAGE ## 3.58 3.55 3.65 3.50 TEXTURE LOCATION ## 0WP_## AVERAGE_## • . . ٠ ٠ AVERAGE_## BWP_## • • . • • IWP_## AVERAGE_## AGGREGATE RATE_## 1/95 SHOT QUANTITY AVG_## 0.37 HI_## 0.38 LOW_## 0.38 ASPHALT GRADE/PROD_## AC-10/TFA AGGREGATE GRADE/PROD ## GR 3 MOD PC/MCDONOUGH LIMESTONE 220 AVG DAILY TRAFFIC_## DATE CONSTRUCTED_## 09/ /82 EVALUATION DATE_## 5/23/84 OVERALL VISUAL RETENTION_ ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 OWP_## BWP_##10 BWP_##10 9WP_## CL_## CL_##10 CL_##10 EVALUATION DATE_## 2/17/83 OVERALL VISUAL RETENTION_## 9 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING OWP_## 9 OWP_## 30 OWP_##10 BWP_## 9 BWP_##10 BWP_## 25 CL_## 9 CL_## 25 CL_##10

HWY NO._## FM 2505 DISTRICT_##15 COUNTY_## WILSON LOCATION_ ## BETWEEN FM 541 AND THE END NUMBER OF EVALUATIONS ## TEXTURE READING DATE ## 09/00/82 TEXTURE LOCATION_## 1.5 MILES FROM FM 541 NBL 2.90 3.00 AVERAGE ## 3.00 0WP ## 3.00 3.10 2.80 BWP_## 2.70 2.65 2.50 AVERAGE_## 2.69 2.90 2.95 IWP ## 2.90 AVERAGE_## 2.94 3.00 TEXTURE LOCATION_ ## 1.5 MILES FROM FM 541 SBL 2.90 2.90 AVERAGE ## 2.93 OWP_## 2.90 3.00 BWP_## 2.70 2.75 AVERAGE_## 2.59 2.65 2.45 AVERAGE_## 2.66 2.70 2.65 IWP_## 2.70 2.30 TEXTURE LOCATION_## 0WP_## AVERAGE_## . BWP ## AVERAGE_## • • IWP ## AVERAGE_## AGGREGATE RATE_## 1/97 SHOT QUANTITY AVG_## 0.37 HI_## .LOW_## ASPHALT GRADE/PROD_## AC-10/TFA AGGREGATE GRADE/PROD ## GR3 MOD PC/MCDONOUGH LIMESTONE DATE CONSTRUCTED_## 09/ /82 AVG DAILY TRAFFIC_## 50 EVALUATION DATE_## 5/23/84 OVERALL VISUAL RETENTION ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 9 OWP ##10 0WP ## 50 BWP_## 40 CL_## 40 BWP_## 7 8WP_##10 CL ##10 CL_## 7 EVALUATION DATE_## 2/17/83 OVERALL VISUAL RETENTION ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 9 OWP_##10 OWP_## .30 BWP_## 9 8WP_##10 BWP_## 25 CL_## 8 CL_##10 CL_## 25

DISTRICT_##15 COUNTY_## WILSON HWY NO._## FM 539 NUMBER OF EVALUATIONS_## 2 LOCATION ## AT MP 10 TEXTURE READING DATE_## 09/00/92 TEXTURE LOCATION_## 30 FT WEST OF MP 10 SWBL AVERAGE_## 2.90 AVERAGE_## 2.74 OWP_## 2.90 2.90 2.95 2.85 2.70 BWP_## 2.75 2.80 2.70 IWF_## 3.00 3.103.00 AVERAGE_## 3.04 TEXTURE LOCATION_ ## AT MP 10 SWBL 2.65 2.60 2.85 GWP_## 2.70 AVERAGE_## 2.67 2.70 2.70 AVERAGE_## 2.59 BWP_## 2.60 2.55 2.60 AVERAGE_## 2.89 IWP_## 2.80 2.90 3.00 TEXTURE LOCATION_ ## AT MP 10 NEBL OWP ## 2.25 2.70 2.55 2.50 AVERAGE_## 2.50 AVERAGE ## 2.81 BWP_## 2.80 2.70 2.90 2.85 IWP ## 2.85 AVERAGE ## 2.75 2.70 2.70 2.80 AGGREGATE RATE_## 1/97 HI_## 0.35 LOW_## 0.32 SHOT QUANTITY AVG_## 0.34 ASPHALT GRADE/PROD_## AC-10/TFA AGGREGATE GRADE/PROD_## GR 3 MOD PC/MCDONOUGH LIMESTONE AVG DAILY TRAFFIC_## 530 DATE CONSTRUCTED_## 09/ /82 EVALUATION DATE_## 5/23/84 OVERALL VISUAL RETENTION_## 5 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 30 OWP_## 4 OWP_##10 BWP_## 4 BM6_## 20 BWP_##10 CL ## 4 CL_## 30 CL ##10 EVALUATION DATE_## 2/17/83 OVERALL VISUAL RETENTION_##10 EMBEDMENT DEFTH AGGREGATE RETENTION BLEEDING OWP_## 30 0WP ##10 OWP_##10 BWP_##10 CL_## 9 BWP_##10 BWP_## 25 CL_## 25 CL_##10

COUNTY_## BEXAR HWY NO._## LP 1604 DISTRICT_##15 LOCATION ## 2 MILES EAST OF IH 37 NUMBER OF EVALUATIONS ## 2 TEXTURE READING DATE_## 09/00/82 TEXTURE LOCATION_## 2 MI EAST OF IH 37 EBL 3.60 3.50 3.55 AVERAGE_## 3.55 OWP_## 3.55 5WP_## 3.60 AVERAGE ## 3.60 3.60 3.60 3.60 IWP ## 3.90 AVERAGE ## 3.86 3.85 3.80 3.90 TEXTURE LOCATION_## 2 MI EAST OF IH 37 WBL AVERAGE_## 3.63 0WP_## 3.65 3.65 3.40 3.40 3.85 3.95 3.95 BWP_## 3.85 AVERAGE_## 3.90 3.60 IWP_## 3.55 3.50 3.45 AVERAGE_## 3.53 TEXTURE LOCATION_## 0WP ## AVERAGE ## • • ٠ • BWP_## AVERAGE_## . • • • . IWP ## AVERAGE ## AGGREGATE RATE_## 1/85 SHOT QUANTITY AVG_## 0.40 HI_## LOW_## ASPHALT GRADE/PROD_## AC-10/TFA AGGREGATE GRADE/PROD_ ## GR 3 MOD PC/MCDONOUGH LIMESTONE DATE CONSTRUCTED_## 09/ /82 AVG DAILY TRAFFIC_## 920 EVALUATION DATE_## 5/23/84 OVERALL VISUAL RETENTION_ ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH QWP_##10 OWP_## 70 BWP_## 60 OWP_## 9 BWP_##10 BWP_##10 CL_##10 CL_##10 CL_## 50-60 EVALUATION DATE ## 4/ 0/83 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 GWP_## 40 BWP_##10 BWP_## 30-35 BWP_##10 CL_##10 CL_## 30 CL_##10
DISTRICT_##15 COUNTY ## WILSON HWY NO._ ## SH 97 LOCATION_ ## AT MP 8 NUMBER OF EVALUATIONS ## 2 TEXTURE READING DATE_## 09/00/82 TEXTURE LOCATION_ ## AT MP S NEBL OWP_## 3.30 3.25 3.30 3.40 AVERAGE ## 3.31 BWP_## 2.70 2.70 2.65 2.70 AVERAGE_## 2.69 IWP_## 2,70 2.80 2.70 2.70 AVERAGE_## 2.73 TEXTURE LOCATION_ ## AT MP 8 SWBL 0WP_## 3.00 3.10 2.90 3.10 3.03 AVERAGE_## BWP_## 2.70 2.70 2.70 2.40 AVERAGE_## 2.48 IWP_## 2.60 2.55 2.60 2.60 AVERAGE_## 2.59 TEXTURE LOCATION_## 15 FT SW OF MP 8 NEBL OWP_## 3.40 3.30 3.40 3.40 AVERAGE_## 3.38 BWP_## 2.90 2.85 2.85 2.80 AVERAGE_## 2.35 IWP_## 2.85 2.90 2.95 2.90 AVERAGE_## 2.90 AGGREGATE RATE_## 1/95 SHOT QUANTITY AVG_## 0.35 HI_## 0.36 LOW_## 0.33 ASPHALT GRADE/PROD_## AC-10/TFA AGGREGATE GRADE/PROD_## GR 3 MOD PC/MCDONOUGH LIMESTONE DATE CONSTRUCTED_## 09/ /82 AVG DAILY TRAFFIC_## 1140 EVALUATION DATE_## 5/23/84 OVERALL VISUAL RETENTION_## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP ##10 OWP_##10 0WP_## 60-70 BWP_##10 BWP_##10 BWP_## 40 CL ## 8 CL_##10 CL_## 40-50 EVALUATION DATE_## 2/17/83 OVERALL VISUAL RETENTION_## 9 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING OWP_##10 30 OWP ##10 OWP_## BWP_## 9 BWP_##10 3WP_## 25 CL_## 9 CL_## CL_##10 25

DISTRICT_##23 COUNTY_##BROWN HWY NO._## FM 1467 LOCATION ##AT MILE POST 20 IN THE SOUTH BOUND LANE NUMBER OF EVALUATIONS_## 2 TEXTURE READING DATE ## 05/27/83 TEXTURE LOCATION_ ##25 FEET NORTH OF MILE POST 20 OWP_## 0.40 3.35 3.35 3.30 AVERAGE ## 3.35 BWP_## 3.30 IWP_## 3.60 AVERAGE ## 3.24 3.25 3.203.30 AVERAGE_## 3.65 3.80 3.60 3.40 TEXTURE LOCATION_ ##AT MILE POST 20 OWP_## 3.55 3.70 3.65 3.40 AVERAGE ## 3.63 AVERAGE_## 3.25 AVERAGE_## 3.90 BWP_## 3.20 IWP_## 3.90 3.20 3.30 3.30 3.90 3.90 3.90 TEXTURE LOCATION ##25 FEET SOUTH OF MILE POST 20 AVERAGE_## 2.95 AVERAGE_## 2.65 OWP_## 2.90 2.95 2.90 3.05 SWP_## 2.70 2.60 2.40 2.70 AVERAGE_## 3.08 IWP_## 3.00 3.10 3.105.10AGGREGATE RATE_## 1/181 DESIGN 1/170 SHOT QUANTITY AVG_## 0.332/WP DES.30/WP.292/OP.387 HI_## 0.367 LOW_## 0.291 ASPHALT GRADE/PROD_## HFRS/RIFFE, BROWNWOOD AGGREGATE GRADE/PROD ## TYPE B GRSA/WHITE'S MINES DATE CONSTRUCTED ## 07/29/83 AVG DAILY TRAFFIC_## 135 EVALUATION DATE ## 5/29/84 OVERALL VISUAL RETENTION ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP ## 6 0WP_##10 OWP_## 40 BWP_## 7 BWP_##10 BWP_## 30 CL ## 9 CL ## 30 CL ##10 EVALUATION DATE_## 1/11/84 OVERALL VISUAL RETENTION_ ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 9 OWP_##10 OWP_## 45 BWP_## 9 BWP_##10 BWP_## 40 CL_## 9 CL_##, 40 CL_##10

DISTRICT_##23 COUNTY_## COMANCHE HWY NO._ ## FM 1475 LOCATION_ ## NBL SO OF PROCTOR @ MP 4 NUMBER OF EVALUATIONS ## 2 TEXTURE READING DATE_## 08/11/82 TEXTURE LOCATION_ ## NBL SO OF PROCTOR 3.20 3.25 OWP_## 3.20 3.10AVERAGE_## 3.19 BWP_## 2.60 2.50 2.60 2.50 AVERAGE_## 2.55 IWP_## 2.65 2.60 2.40 2.60 AVERAGE_## 2.61 TEXTURE LOCATION_ ## NBL OWP_## 2.95 2.90 2.90 2.95 AVERAGE_## 2.93 8WP_## 2.75 AVERAGE ## 2.94 2.80 2.90 2.90 IWP_## 3.10 3.**05** 3.10 AVERAGE ## 3.06 3.00TEXTURE LOCATION_ ## NBL 3.25 OWP_## 3.30 3.20 3.30 AVERAGE_## 3.25 BWP ## 2.50 AVERAGE_## 2.61 2.50 2.60 2.65 IWP_## 2.70 2.70 AVERAGE_## 2.73 2.75 2.75 AGGREGATE RATE_## 1/164 DESIGN 1/191 SHOT QUANTITY AVG_## 0.304 HI_## 0.337 LOW_## 0.293 ASPHALT GRADE/PROD_## HFRS AGGREGATE GRADE/PROD_ ## GR.4 MOD/WHITE'S MINES DATE CONSTRUCTED_## 09/ /82 AVG DAILY TRAFFIC_## 440 EVALUATION DATE_## 5/29/84 OVERALL VISUAL RETENTION_ ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_## 8 OWP_## 80 BWP_##10 BWP_##10 BWP_## 60 CL_## 50 CL_##10 CL_##10 EVALUATION DATE_## 5/10/83 OVERALL VISUAL RETENTION ## 6 AGGREGATE RETENTION EMBEDMENT DEPTH BLEEDING OWP ##10 0WP_## OWP_## 7 95 BWP_##10 CL_## 9 BWP_## CL_## BWP_##10 70 CL_##10 75

DISTRIC	T_##23	COUNTY_	## McCUI	LLOCH		HWY NC)## FM 2028
LOCATIO	N_## TAKE	N 🤋 END OF	F COMPLI	ETED SECTI	ON EBL	NUMBER OF	EVALUATIONS_## 3
TEXTURE	READING	DATE_## (08/10/93				
TEXTURE	LOCATION	_## EBL WE	EST OF 1	BRADY			
0WP_## BWP_## IWP_##	3.20 3.10 3.00	3.30 3.10 3.10	3.35 3.05 3.10	3.40 3.10 3.10		AVERAGE_## AVERAGE_## AVERAGE_##	3.13 3.09 3.08
TEXTURE	LOCATION	_## EBL					
0WP_## 8WP_## IWP_##	3.20 3.10 3.25	3.20 3.10 3.40	3.15 3.25 3.30	3.25 3.15 3.40		AVERAGE_## AVERAGE_## AVERAGE_##	3.20 3.15 3.34
TEXTURE	LOCATION	_## EBL					
0WP_## BWP_## IWP_##	3.25 2.75 3.40	3.35 2.80 3.35	3.30 2.70 3.40	3.20 2.70 3.35		AVERAGE_## AVERAGE_## AVERAGE_##	3.28 2.74 3.38
AGGREGAT	FE RATE_#4	¥ 1/150 DE	ESIGN 1/	/191			
SHOT QUA	ANTITY AV	9_## 0.34	57			HI_## 0.48	2 LOW_## [*] 0.272
ASPHALT	GRADE/PRO	DD_## HFRS	TEXAS	EMULSIONS			
AGGREGAT	E GRADE/F	PROD_## GR	.4 MOD/	WHITE'S M	INES		
DATE CON	STRUCTED	_## 09/	/82		AVG DAIL	Y TRAFFIC_##	150
EVALUATI	ON DATE_	## 5/28/84	ŀ				
OVERALL	VISUAL RE	ETENTION_#	# 9				
AGGREGAT	E RETENTI	[ON		BLEEDING		EMBEDMENT	DEPTH
OWF BWF CL ******** EVALUATI	2_##10 2_##10 ##10 X********* CON DATE #	******	*****	OWP_## 8 BWP_## 9 CL_## 9 :********	*******	OWP_## 8 BWP_## CL_## ********	0-90 70 70 **********
OVERALL	VISUAL RE	TENTION #	• # ()				
AGGREGAT	E RETENTI	ON		BLEEDING		EMBEDMENT	DEPTH
DW BW C	IP_## 0 IP_## 0 IL_## 0			OWP_## 0 BWP_## 0 CL_## 0		OWP_## BWP_## CL_##	

DISTRIC	T_ ## 23	COUNTY	##BROWN				HWY	NO.	_## FM 2	125	
LOCATIO	N_##AT MI	LE POST 2	IN THE	SOUTH	BOUND	LANE	NUMBER	OF	EVALUATI	0NS_##	:
TEXTURE	READING	DATE_##	05/27/83	:							
TEXTURE	LOCATION	_##25 FEE	T NORTH	OF MIL	e post	r 2					
OWP_##	2.95	2.90	2.85	2.90			AVERAGE_*	**	2.90		
8WP_##	2.60	2.40	2.60	2.50			AVERAGE_+	**	2.58		
IWP_##	2.70	2.40	2.75	2.40			AVERAGE_*	Þ#	2.66		
TEXTURE	LOCATION	##AT MIL	E POST 2	1							
0WP ##	2.80	2.70	2.45	2.70			AVERAGE #	**	2.71		
BWP_##	2.75	2.70	2.40	2.65			AVERAGE .	*#	2.58		
IWP_##	2.70	2.70	2.70	2.65			AVERAGE_#	**	2.59		
TEXTURE	LOCATION	_##25 FEE'	T SOUTH	OF MIL		2					
OWP ##	2.90	2.85	2.70	2.85			AVERAGE #	**	2.83		
BWP ##	2.30	2.30	2.25	2.25			AVERAGE .	#	2.28		
IWP_##	2.80	2.80	2.80	2.70			AVERAGE_#	#	2.78		
AGGREGAT	TE RATE_#	# 1/133 DE	ESIGN 1/	145							
SHOT QUA	NTITY AVE	3_## 0.38:	L/WP DES	.33/WP	.327/0	P.432	HI_## 0.	423	LOW_#4	+ 0.331	
ASPHALT	GRADE/PR	DD_## HFRS	S/RIFFE,	BROWNW	מסכ						
AGGREGAT	E GRADE/F	PROD_## TR	P.8 GR.4	MOD/Wł	ITE'S	MINES					
DATE CON	STRUCTED	_## 08/03	1/83		'AV	G DAILY	TRAFFIC_	**	415		
EVALUAT I	ON DATE	+# 5/29/84	1								
OVERALL	VISUAL RE	ETENTION_	+# 5								
AGGREGAT	E RETENT	[ON	1	BLEEDIN	łG		EMBEDMEN	T DI	EPTH		
OWF	· ** 5		(OWP_##1	10		0WP_##				
BWF	≥_ * # 4		1	BWP]##1	0		BWP_##				
CL	** 5			CL_##1	10		CL_##				
EVALUATI	ON DATE_	**************************************	******	*****	*****	*****	********	***:	*******	*****	
OVERALL	VISUAL RE	TENTION_*	•								
AGGREGAT	E RETENT		1	BLEEDIN	IG		EMBEDME	NT I	DEPTH		
	IP_## 0		C	JWP_##	0		OWP_#	#			
BW	P_## 0		1	3WP_**	0		BM6_#	#			
C	L_## 0			CL ##	0		CL_#	#			

DISTRICI_##25	COUNTY_## COLE	MAN	HWY NO.	## FM 2131
LOCATION_## TAKEN	P END OF COMPL	ETED SECTION	NBL NUMBER OF	EVALUATIONS_## 1
TEXTURE READING DA	ATE_## 08/10/8	2		
TEXTURE LOCATION_	## NBL NORTH OF	SHIELDS		
OWP_## 2.60 2 BWP_## 2.50 2 IWP_## 2.85 2	2.60 2.60 2.65 2.60 2.95 2.90	2.55 2.55 2.80	AVERAGE_## Average_## Average_##	2.59 2.58 2.83
TEXTURE LOCATION_	## NBL			
OWP_## 2.60 2 BWP_## 2.55 2 IWP_## 3.00 3	2.65 2.60 2.50 2 .55 3.00 3.00	2.45 2.50 3.05	AVERAGE_## AVERAGE_## AVERAGE_##	2.43 2.53 3.01
TEXTURE LOCATION_#	## NBL			
OWP_## 2.80 2 BWP_## 2.90 2 IWP_## 2.95 2	2.80 2.75 2.40 2.70 2.95 3.00	2.70 2.80 2.90	AVERAGE_## AVERAGE_## AVERAGE_##	2.75 2.75 2.95
AGGREGATE RATE_##	1/187 DESIGN 1	/252		
SHOT QUANTITY AVG_	_## 0.253		HI_## 0.304	LOW_## 0.230
ASPHALT GRADE/PROD	D_## AC-3/COSDE	N		
AGGREGATE GRADE/PR	ROD_##GR.5 MOD/	WHITE'S MINES		
DATE CONSTRUCTED_#	+# 09/ /82	AV	G DAILY TRAFFIC_##	150
EVALUATION DATE_##	\$ 5/29/84			
OVERALL VISUAL RET	FENTION_## 8			
AGGREGATE RETENTIO	N	BLEEDING	EMBEDMENT D	EPTH
OWP_##10 BWP_##10 CL_##10		0WP_## 8 8WP_## 9 CL_## 9	0WP_## 80 9WP_## 70 CL_## 70	-90 -80 -80
**************************************	*************** 5/28/83	*****	*************	******
OVERALL VISUAL RET	ENTION_## 6			
AGGREGATE RETENTIO	IN	BLEEDING	EMBEDMENT	DEPTH
OWP_## 9 BWP_*# 4 CL_*# 6		OWP_##10 BWP_##10 CL_##10	OWP_## 3 BWP_## CL_##	0-40 30 30

DISTRICT_##23 COUNTY_##COLEMAN HWY NO._## FM 2131 LOCATION ##AT MILE POST 2 IN THE SOUTH BOUND LANE NUMBER OF EVALUATIONS ## TEXTURE READING DATE ## 05/27/93 TEXTURE LOCATION_##25 FEET NORTH OF MILE POST 2 3.15 3.15 0WP_## 3.00 3.10 AVERAGE_## 3.10 BWP ## 2.95 3.00. 3.00 3.05 AVERAGE_## 3.00 IWP_## 3.40 3.40 3.50 3.45 AVERAGE_## 3.44 TEXTURE LOCATION_ ##AT MILE POST 2 3.05 OWP_## 3.00 3.05 3.05 AVERAGE_## 3.04 2.80 BWP_## 2.80 2.85 2.70 AVERAGE_## 2.79 IWP_## 3.35 3.40 3.30 3.30 AVERAGE_## 3.34 TEXTURE LOCATION_##25 FEET SOUTH OF MILE POST 2 3.40 OWP_## 3.40 3.40 3.40 AVERAGE_## 3.40 BWP_## 2.90 2.90 3.00 2.80 AVERAGE_## 2.90 IWP_## 3.40 3.40 3.20 3.35 AVERAGE_## 3.34 AGGREGATE RATE_## 1/134 DESIGN 1/145 SHOT QUANTITY AVG_## 0.396/WP DES.36/WP.349/QP.461 HI_## 0.429 LOW_## 0.375 ASPHALT GRADE/PROD_## HFRS/RIFFE, BROWNWOOD AGGREGATE GRADE/PROD_ ## TY.B GR.4 MOD/WHITE'S MINES DATE CONSTRUCTED_## 08/03/83 AVG DAILY TRAFFIC_## 225 EVALUATION DATE_## 5/28/84 OVERALL VISUAL RETENTION ## 6 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH QWP_## 8 OWP_##10 OWP_## 30-40 BWP_## 4 BWP_##10 BWP ## 30 CL ## 30 CL_## 6 CL_##10 EVALUATION DATE_ ## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 OWP_## 0WP_## 0 BWP_## 0 BWP_## BWP_## 0 CL_## 0 CL_## 0 CL_##

HWY NO._ ## FM 2525 DISTRICT_##23 COUNTY_##BROWN LOCATION_##AT MILE POST 2 IN THE WEST BOUND LANE NUMBER OF EVALUATIONS_## 1 TEXTURE READING DATE_## 05/27/83 . TEXTURE LOCATION_##25 FEET EAST OF MILE POST 2 AVERAGE_## 3.20 AVERAGE_## 3.29 AVERAGE_## 2.99 3.20 3.20 3.20 OWP_## 3.20 3.30 SWP_## 3.20 3.35 3.25 3.00 3.00 2.95 IWP ## 5.00 TEXTURE LOCATION_ ##AT MILE POST 2 3.10AVERAGE_## 3.05 OWP_## 2.90 3.10 3.10 3.25 AVERAGE_## 3.15 3.10 3.20BWP ## 3.10 2.80 2.80 2.80 AVERAGE_## 2.78 IWP_## 2.70 TEXTURE LOCATION ##25 FEET WEST OF MILE POST 2 OWP ## 3.10 3.20 3.00 3.10AVERAGE_## 3.10 3.15 BWP_## 3.00 3.15 3.15 AVERAGE ## 3.11 IWP_## 3.60 3.70 3.70 AVERAGE_## 3.65 3.60 AGGREGATE RATE_## 1/174 DESIGN 1/170 SHOT QUANTITY AVG_## 0.339/WP DES.33/WP.299/0P.395 HI_## 0.387 LOW_## 0.299 ASPHALT GRADE/PROD ## HFRS/RIFFE.BROWNWOOD AGGREGATE GRADE/PROD ## LT.WT.GR.S/FEATHERLITE, RANGER DATE CONSTRUCTED_## 07/29/83 AVG DAILY TRAFFIC_## 350 EVALUATION DATE_## 5/29/84 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 OWP_## 40 BWP_##10 BWP_## 30 CL_## 30 BWP_##10 CL_##10 CL_##10 EVALUATION DATE ## ţ OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 0 OWP_## 0WP_## 0 BWP_## 0 BWP_## 0 BWP_## CL_## 0 CL_## 0 CL_##

COUNTY_## SAN SABA DISTRICT ##23 HWY NO. ## FM 45 LOCATION_ ## NBL NORTH OF SAN SABA NUMBER OF EVALUATIONS_## 1 TEXTURE READING DATE_## 08/10/82 TEXTURE LOCATION_ ## AT END OF SECTION COMPLETED NBL 3.20 AVERAGE_## 3.28 OWP_## 3.25 3.30 3.35 BWP_## 2.75 2.75 2.70 2.70 AVERAGE_## 2.73 IWP_## 2.90 2.95 3.15 3.05 AVERAGE_## 3.01 TEXTURE LOCATION_ ## NBL DWP_## 3.00 3.00 3.00 3.05 AVERAGE_## 5.018WP_## 2.55 2.45 2.50 2.45 AVERAGE_## 2.49 IWP_## 2.90 2.90 2.90 2.90 AVERAGE_## 2.90 TEXTURE LOCATION_## NBL 2.70 OWP ## 2.70 2.70 2.75 AVERAGE ## 2.71 BWP ## 2.55 2.40 2.45 AVERAGE ## 2.48 2.50 IWP_## 2.85 2.85 2.80 2.80 AVERAGE ## 2.93 AGGREGATE RATE_## 1/119 DESIGN 1/120 SHOT QUANTITY AVG_## 0.537 HI_## 0.625 LOW_## 0.433 ASPHALT GRADE/PROD_ ## HFRS/TEXAS EMULSIONS AGGREGATE GRADE/PROD_## LT.WT.GR.4/RANGER DATE CONSTRUCTED_## 09/ /82 AVG DAILY TRAFFIC_## 910 EVALUATION DATE_## 5/28/84 OVERALL VISUAL RETENTION_## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEFTH OWP_##10 OWP ## 9 0WP_## 70-80 BWP_##10 BWP_##10 BWP_## 60 CL_##10 CL_##10 CL ## 50-60 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 OWP_## 0 OWP_## 8WP_## 0 8WP_## 0 BWP_## CL_## 0 CL_## CL_## 0

DISTRIC	1_##23	COUNTY_*	+# SAN SA	BA		HWY N	0## FM 500
LOCATIO	N_## NBL !	NW OF SAN	SABA			NUMBER O	F EVALUATIONS_## 1
TEXTURE	READING I	DATE_## G	8/10/92				
TEXTURE	LOCATION	## TAKEN	e end of	SECTION	NBL		
0WP_## 3WP_## IWP_##	2.75 2.30 2.80	2.85 2.25 2.80	2.85 2.25 2.90	2.75 2.25 2.85		AVERAGE_## AVERAGE_## AVERAGE_##	2.80 2.26 2.81
TEXTURE	LOCATION	_## NBL					
0WP_## BWP_## IWP_##	2.60 2.50 2.60	2.45 2.50 2.60	2.70 2.50 2.65	2.45 2.45 2.45		AVERAGE_## AVERAGE_## AVERAGE_##	2.45 2.49 2.43
TEXTURE	LOCATION	_## NBL					
OWP_## BWP_## IWP_##	2.80 2.95 2.40	2.80 3.05 2.35	2.80 3.00 2.30	2.75 3.05 2.30		AVERAGE_## AVERAGE_## AVERAGE_##	2.79 3.01 2.34
AGGREGAT	TE RATE_##	♦ 1/123 DE	SIGN 1/2	79			
знат QUA	ANTITY AVE	6_## 0.352	:			HI_## 0.4	25 LOW_## 0.244
ASPHALT	GRADE/PRO	D_## HFRS	i				
AGGREGAT	E GRADE/F	PROD_## GR	.5 MOD/BA	ARRON COP	2P		
DATE COM	STRUCTED_	** 09/	/82		AVG DAILY	TRAFFIC_#	# 470
EVALUATI	ON DATE_#	# 5/28/84					
OVERALL	VISUAL RE	TENTION_#	₩ 0				
AGGREGAT	E RETENTI	ON	BL	EEDING		EMBEDMENT	DEPTH
OWF BWF CL	9_##10 9_## 8 ## 9		01 Bu (NP_##10 NP_##10 CL_##10		OWP_## BWP_## CL_##	40 30 30-40
EVALUATI	ON DATE_*	********** **	*******	*******	*******	*********	******
OVERALL	VISUAL RE	TENTION_#	# 0 ·				
AGGREGAT	E RETENTI	ON	BL	EEDING		EMBEDMEN	T DEPTH
ulo Bw C	IP_## 0 IP_## 0 IL_## 0		40 48 0	NP_## 0 NP_## 0 CL_## 0		0WP_## BWP_## CL_##	

DISTRICT_##23 COUNTY_## EASTLAND HWY NO. ## FM 567 LOCATION_## 1 MI NORTH OF SH 206 SBL N OF PIONEER NUMBER OF EVALUATIONS_## 2 TEXTURE READING DATE_## 08/11/82 TEXTURE LOCATION_ ## SBL NORTH OF PIONEER OWP_## 2.70 2.80 2.80 2.80 AVERAGE_## 2.78 BWP ## 2.55 AVERAGE_## 2.58 2.55 2.40 2.50 IWP_## 2.80 2.80 2.80 2.80. AVERAGE_## 2.80 TEXTURE LOCATION_ ## SBL 2.80 2.55 OWP_## 2.80 2.90 2.80 AVERAGE_## 2.83 BWP_## 2.60 AVERAGE_## 2.55 2.55 2.50 2.70 AVERAGE_## 2.69 IWP_## 2.70 2.45 2.70 TEXTURE LOCATION_ ## SBL OWP_## 2.90 2.85 AVERAGE_## 2.85 AVERAGE_## 2.39 2.80 2.85 BWP_## 2.40 2.35 2.40 2.40 AVERAGE_## 2.61 IWP ## 2.60 2.65 2.45 2.55 AGGREGATE RATE_## 1/234 DESIGN 1/252 SHOT QUANTITY AVG_## 0.249 HI_## 0.268 LOW_## 0.209 ASPHALT GRADE/PROD_## AC-3/COSDEN AGGREGATE GRADE/PROD_## GR.5 MOD/WHITE'S MINES DATE CONSTRUCTED_## 09/ /82 AVG DAILY TRAFFIC_## 700 EVALUATION DATE_## 5/28/84 OVERALL VISUAL RETENTION_## 6 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 80-90 OWP_##10 OWP_## 4 BWP_##10 BWP_## 4 3WP_## 80 CL_##10 CL_## 4 CL_## 90 EVALUATION DATE_## 5/10/83 OVERALL VISUAL RETENTION_## 6 EMBEDMENT DEPTH AGGREGATE RETENTION BLEEDING OWP_## 8 BWP_##10 OWP ## 85 CWP_##10 BWP_##10 BWP_## 75 CL_## 90-75 CL_##10 CL_## 6

HWY NO._## FM 581 DISTRICT ##23 COUNTY ##LAMPASAS LCCATION ##AT MILE POST 12 IN THE NORTH BOUND LANE NUMBER OF EVALUATIONS ## 2 TEXTURE READING DATE_## 05/27/83 TEXTURE LOCATION_##25 FEET SOUTH OF MILE POST 12 OWP_## 2.70 2.70 2.70 2.70 AVERAGE_## 2.70 BWP_## 2.50 AVERAGE_## 2.54 2.55 2.50 2.60 IWP_## 3.15 3.103.10 3.15 AVERAGE_## 3.13 TEXTURE LOCATION_ ##AT MILE POST 12 3.25 OWP_## 3.15 3.15 5.15 AVERAGE_## 3.18 SWP_## 2.60 2.80 2.80 2.70 AVERAGE_## 2.73 AVERAGE_## 3.29 IWP ## 3.30 3.25 3.30 3.30 TEXTURE LOCATION_##25 FEET NORTH OF MILE POST 12 OWP ## 2.85 2.90 2.80 2.80 AVERAGE_## 2.84 2.90 2.90 BWP ## 2.90 2.90 AVERAGE ## 2.90 3.05 AVERAGE_## 2.99 2.90 IWP_## 3.00 3.00 AGGREGATE RATE ## 1/175 DESIGN 1/170 SHOT QUANTITY AVG_## 0.319/WP DES.30/WP.291/OP.372 HI_## 0.351 LOW_## 0.298 ASPHALT GRADE/PROD_## HFRS/RIFFE, BROWNWOOD AGGREGATE GRADE/PROD_## TY.B GR 5A/WHITE'S MINES DATE CONSTRUCTED_## 08/16/83 AVG DAILY TRAFFIC_## 150 EVALUATION DATE_## 5/29/84 OVERALL VISUAL RETENTION_## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP ##10 OWP ##10 OWP ## 60 BWP_## 50-60 BWP ##10 BWP_##10 CL_##10 CL_##10 CL_## 50 EVALUATION DATE_## 1/11/84 OVERALL VISUAL RETENTION ## 9 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP ##10 OWP ## 45 BWP_## 9 BWP_##10 BWP_## 30 CL_##10 CL_##10 CL_## 40

DISTRICT_##23 COUNTY ## COMANCHE HWY NO. _ ## SH 14 LOCATION_ ## NBL NORTH OF DE LEON @ MPS NUMBER OF EVALUATIONS ## 4 TEXTURE READING DATE_## 08/11/82 TEXTURE LOCATION_ ## NBL NORTH OF DE LEON OWP_## 3.55 3.60 3.40 3.55 AVERAGE_## 3.53 BWP_## 3.20 3.30 3.25 3.30 AVERAGE_## 3.26 IWP_## 3.05 3.103.10 AVERAGE_## 3.06 3.00 TEXTURE LOCATION_## NBL 0WP_## 2.75 BWP_## 3.40 2.80 2.95 2.85 AVERAGE_## 2.91 3.34 AVERAGE ## 3.35 3.25 3.35 AVERAGE ## 3.38 IWP_## 3.35 3.40 3.40 3.35 TEXTURE LOCATION_ ## NBL 0WP_## 3.403.60 3.60 3.65 AVERAGE_## 3.61 2.95 BWP_## 3.15 3.05 3.05 AVERAGE_## 3.05 3.20 3.20 IWP_## 3.25 3.15 AVERAGE_## 3.20 AGGREGATE RATE_## 1/119 SHOT QUANTITY AVG_## 0.420 HI_## 0.641 _LOW_## 0.394 ASPHALT GRADE/PROD ## HFRS/TEXAS EMULSIONS AGGREGATE GRADE/PROD_## LT.WT.GR.4/RANGER DATE CONSTRUCTED_## 09/ /92 AVG DAILY TRAFFIC_## 530 EVALUATION DATE_## 5/29/84 OVERALL VISUAL RETENTION_ ## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_##10 OWP_##10 OWP_## 60 BWP_##10 CL_##10 BWP_## 50 CL_## 40 BWP_##10 CL_##10 EVALUATION DATE_## 5/10/83 OVERALL VISUAL RETENTION_##10 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH 0WP_## 45 BWP_## 40 OWP_##10 0WP_## 9 BWP_##10 BWP_##10 CL_## 50 CL_##10 CL_##10

DISTRICT_##23	COUNTY_## COMA	NCHE	HWY NO	## SH 36
LOCATION_## WBL S	O OF CHUCKSVILL	E @ MP2	NUMBER OF	EVALUATIONS_## 2
TEXTURE READING D	ATE_## 08/11/8	2		
TEXTURE LOCATION_	## WBL SOUTH OF	CHUCKSVIL	_E	
CWP_## 3.50 BWP_## 3.90 IWP_## 3.80	3.50 3.50 3.75 3.80 3.75 3.80	3.40 3.90 3.90	AVERAGE_## AVERAGE_## AVERAGE_##	3.53 3.81 3.81
TEXTURE LOCATION_	## W8L			
OWP_## 3.60 BWP_## 3.80 IWP_## 3.80	3.55 3.55 3.85 3.90 3.80 3.75	3.55 3.85 3.80	AVERAGE_## AVERAGE_## AVERAGE_##	3.56 3.85 3.79
TEXTURE LOCATION_	## WBL			
OWP_## 3.70 BWP_## 3.80 IWP_## 3.80	3.45 3.75 3.80 3.85 3.70 3.45	3.85 3.85 3.75	AVERAGE_## AVERAGE_## AVERAGE_##	3.74 3.83 3.73
AGGREGATE RATE_##	1/141			
SHOT QUANTITY AVG	_## 0.406		HI_## 0.438	B LOW_## 0.359
ASPHALT GRADE/PRO	D_## HFRS			
AGGREGATE GRADE/PF	ROD_## LT.WT.GR	4/RANGER		
DATE CONSTRUCTED	** 09/ /82		AVG DAILY TRAFFIC_##	1430
EVALUATION DATE_##	* 5/29/84			
OVERALL VISUAL RET	TENTION_## 8			
AGGREGATE RETENTIO	אכ	BLEEDING	EMBEDMENT C	EPTH
OWP_##10 BWP_##10 CL_## 9		OWP_## 8 BWP_##10 CL_##10	CWP_## 9 BWP_## 4 CL_## 5	90 90 50
**************************************	************** • 5/10/83	*********	*******	*******
OVERALL VISUAL RET	TENTION_##10			
AGGREGATE RETENTIO	אנ	BLEEDING	EMBEDMENT	DEPTH
OWP_##10 BWP_##10 CL_##10		OWP_## 9 BWP_##10 CL_###10	0WP_## BWP_## CL_##	50 40 40

DISTRICT_##23 COUNTY_## McCULLOCH HWY NO._## US 190 LOCATION_ ## TAKEN @ END OF COMPLETED SECTION EBL NUMBER OF EVALUATIONS_## 1 TEXTURE READING DATE_## 08/10/82 TEXTURE LOCATION_## EBL NE OF BRADY OWP_## 2.50 2.35 2.30 2.35 AVERAGE_## 2.38 2.40 2.40 BWP_## 2.35 2.25 AVERAGE_## 2.35 IWP_## 2.45 2.50 2.45 2.60 AVERAGE_## 2.60 TEXTURE LOCATION_## EBL OWP_## 2.50 AVERAGE_## 2.58 2.55 2.55 2.70 BWP_## 2.50 2.45 2.50 2.40 AVERAGE_## 2.49 IWP_## 2.45 2.45 2.50 2.40 AVERAGE ## 2.50 TEXTURE LOCATION_ ## EBL 2.40 2.35 0WP ## 2.40 2.40 AVERAGE_## 2.39 BWP ## 2.50 2.40 2.35 2.50 AVERAGE ## 2.44 AVERAGE ## 2.60 IWP ## 2.60 2.60 2.65 2.55 AGGREGATE RATE_## 1/150 DESIGN 1/191 SHOT QUANTITY AVG_## 0.325 HI_## 0.379 LOW_## 0.300 ASPHALT GRADE/PROD_## HFRS AGGREGATE GRADE/PROD_## GR.4 MOD/WHITE'S MINES DATE CONSTRUCTED_## 09/ /82 AVG DAILY TRAFFIC_## 400 EVALUATION DATE_## 5/28/84 OVERALL VISUAL RETENTION_## 8 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH QWP_## 9 0WP_##10 OWP_## 50-70 BWP_##10 BWP_## 40 BWP_##10 CL_## 50-60 CL_## 8 CL_##10 EVALUATION DATE_## OVERALL VISUAL RETENTION_## 0 AGGREGATE RETENTION BLEEDING EMBEDMENT DEPTH OWP_## 0 OWP_## QWP_## 0 BWP_## 0 BWP_## 0 BWP_## CL_## 0 CL_## CL_## 0

DISTRIC	1_##23	COUNTY_#	H McCUL	LOCH		HWY N	0## US 190
LOCATION	N_## TAKEI	N 🖲 END OF	F COMPLE	ETED SECTI	ON EBL	NUMBER O	F EVALUATIONS_##
TEXTURE	READING I	DATE_## G	8/10/82	2			
TEXTURE	LOCATION	_## EBL SC	UTHWEST	r of brady			
0wp_## Bwp_## Iwp_##	3.25 2.75 3.20	3.20 2.80 3.20	3.25 2.45 3.30	3.20 2.85 3.20		AVERAGE_## AVERAGE_## AVERAGE_##	3.23 2.76 3.23
TEXTURE	LOCATION	_## EBL					
0WP_## BWP_## IWP_##	3.4 5 2.70 3.20	3.45 2.80 3.20	3.45 2.70 3.20	3.40 2.75 3.25		AVERAGE_## AVERAGE_## AVERAGE_##	3.44 2.74 3.21
TEXTURE	LOCATION	_## EBL					
0WP_## BWP_## IWP_##	3.55 2.85 2.90	3.55 2.85 2.95	3.50 2.85 2.95	3.50 2.90 2.90		AVERAGE_## AVERAGE_## AVERAGE_##	3.53 2.86 2.93
AGGREGAT	E RATE_##	\$1/120					
SHOT QUA	NTITY AVE	9_## 0.529	1			HI_## 0.64	43 LOW_## 0.434
ASPHALT	GRADE/PRO	D_## HFRS	TEXAS	EMULSIONS			
AGGREGAT	E GRADE/P	ROD_## LT	.WT.GR.	4/FEATHER	LITE RANGE	R	
DATE CON	STRUCTED_	## 09/	/82		AVG DAILY	TRAFFIC_##	* 800
EVALUATI	ON DATE_#	## 5/28/84					
OVERALL	VISUAL RE	TENTION_#	# 9				
AGGREGAT	E RETENTI	ON		BLEEDING		EMBEDMENT	DEPTH
OWF BWF CL *******	2_##10 2_##10 ##10 (**********	******	*****	OWP_##10 BWP_##10 CL_##10 *********	*****	OWP_## BWP_## CL_## ********	60 50 40 ******
OVERALL	VISUAL RE	TENTIÓN #	# 0				
AGGREGAT	E RETENTI	ON		BLEEDING		EMBEDMENT	DEPTH
Ok Bk	IP_## 0 IP_## 0			OWP_## 0 BWP_## 0		OWP_## BWP_##	
C	; ∟_ ## 0			CL_## 0		CĽ_##	

COUNTY ## COLEMAN HWY NO._ ## US84 67 DISTRICT_##23 LOCATION ## AT MILE POST 4 IN THE EB TRAVEL LANE NUMBER OF EVALUATIONS ## TEXTURE READING DATE_## 05/27/83 TEXTURE LOCATION_## 25 FT WEST OF MILE POST 4 3.30 3.30 3.30 AVERAGE_## 3.30 OWP_## 3.30 2.90 2.90 2.90 AVERAGE_## 2.89 BWP_## 2.85 3.35 3.34 3.35 AVERAGE_## 3.35 IWP_## 3.35 TEXTURE LOCATION ## AT MILE POST 4 AVERAGE_## 3.59 OWP_## 3.55 3.60 3.40 3.60 BWP_## 3.05 3.15 3.05 3.00 AVERAGE_## 3.06 3.15 AVERAGE_## 3.19 3.15 3.15 IWP_## 3.30 TEXTURE LOCATION_## 25 FT EAST OF MILE POST 4 3.90 AVERAGE_## 3.88 OWP_## 3.75 3.85 4.00 AVERAGE_## 3.15 BWP_## 3.10 3.20 3.20 3.10 AVERAGE_## 3.53 IWP_## 3.50 3.50 3.60 3.50 AGGREGATE RATE_## 1/124 DES 1/125 SHOT QUANTITY AVG_## 0.397/WP DES.36/WP.343/OP.454 HI_## 0.421 LOW_## 0.377 ASPHALT GRADE/PROD_## HFRS/RIFFE PET, BROWNWOOD AGGREGATE GRADE/PROD ## LT.WT.GR4./FEATHERLITE.RANGER AVG DAILY TRAFFIC ## 1170 DATE CONSTRUCTED_## 08/13/83 EVALUATION DATE ## 5/29/84 OVERALL VISUAL RETENTION_## 9 EMBEDMENT DEPTH AGGREGATE RETENTION BLEEDING OWP_##10 GWP_##10 OWP_## 60 BWP_## 9 BWP ##10 BWP_## 50 CL ##10 CL ##10 CL ## 40-50 EVALUATION DATE ## OVERALL VISUAL RETENTION ## 0 AGGREGATE RETENTION **BLEED ING** EMBEDMENT DEPTH OWP_## OWP_## 0 0wp_## 0 BMP_## 0 BWP_## 0 3WP ## CL_## 0 CL_## 0 CL_##

APPENDIX D

SEAL COAT DESIGN METHOD

Laboratory Tests

Dry Loose Unit Weight. The dry loose unit weight determination shall be made in accordance with Tex-404-A (ASTM C29 shoveling method) except that the aggregate shall be tested in an oven-dry condition.

Bulk Specific Gravity. The bulk specific gravity shall be made in accordance with Tex-403-A (ASTM C127) for all natural aggregate and by the test method Tex 433-A (Appendix E) for synthetic aggregates.

Board Test. Place a sufficient quantity of aggregate on a board of known area such that full coverage one stone in depth is obtained. A one-half square yard area is a convenient laboratory size. The weight of the aggregates applied in this area is obtained and converted to units of pounds per square yard. Good lighting is recommended and care should be taken to place the aggregate only one stone deep.

Calculations

The quantity of aggregate expressed in terms of square yards of road surface that can be covered with a cubic yard of aggregate and the quantity of asphalt in gallons per square yard can be found as described below:

Aggregate Quantity

$$S = \frac{27W}{0}$$

$$A = 5.61E (1 - W) (T)' + V$$

62.4G

where:

S = Quantity of aggregate required, sq. yds. per cu. yd. W = Dry loose unit weight, lbs. per cu. ft. Q = Aggregate quantity determined from board test, lbs. per sq. yd. A = Asphalt quantity, gallons per sq. yd. 0.60° F E = Embedment depth obtained from Figure D-1 as follows: E = edwhere: e = Aggregate embedment, percent (Figure D-1) d = Average map depth, inches = 1.330W G = Dry bulk specific gravity of aggregate T = Traffic correction factor obtained from Table D-1 V = Correction of surface condition obtained from Table D-2 5.61 = (7.48) (9/12), or conversion factor Note: Asphalt quantities calculated by these methods are for asphalt cement. Appropriate corrections must be made where a cutback or an emulsion is used as illustrated in the examples given below.

Sample Calculations

Given:

- (W) Dry loose unit weight of aggregate = 52.4 lbs/cu.ft.
- (G) Dry bulk specific gravity of aggregate = 1.57

(Q) Quantity of aggregate (board test) = 9.7 lbs./sq.yd.

Traffic = 700 vehicles per day per lane

Roadway Surface Condition + slightly pocked, porous, oxidized

Quantity of Aggregate

S =	<u>27W</u> =	27(52.4)	146 sq. yds. (square	yards of roadway
	Q	97	surface per 1 cubic y	yard of aggregate)

Quantity of Asphalt

 $A = 5.61E (1 - \underline{W}) (T) + V$ 62.4G $d = \underline{1.330} = \underline{1.33(9.7)} = .246 \text{ inches}$ $W \qquad 52.4$ e = 40 percent from Figure D-1 E = ed = .40(.246) = 0.0985 inches T = 1.05 from Table D-1 V = +0.03 from Table D-2 $A = 5.61 (0.0985) (1 - \underline{52.4}) (1.05) + 0.03$ 62.4(1.57)

A = 0.30 gallons of asphalt per square yard of roadway surface If an emulsion or cutback is to be used, the quantity to be utilized must be corrected for the amount of volatiles present in the asphalt material. The approximate amount of volatiles present in those cutbacks recommended for use in seal coats is shown on Table D-3. For example, the seal coat design method suggests that 0.30 gallons per square yard of residual asphalt cement is required.

Theoretically the amount of RC-250 to be placed on the pavement is
$$\frac{0.30}{0.75} = 0.40 \text{ gallons per square yard}$$

However, field experience indicates that bleeding is likely if the theoretical amount is utilized. Thus, it is recommended that the calculated theoretical value be reduced and the method described below be utilized to calculate the amount of cutback to be used. $A_{\text{recommended}} = A + K (A_{\text{theoretical}} - A)$

where:

- A recommended = recommended quantity of cutback or emulsified asphalt to be used in field
 - A = residual quantity of asphalt obtained from the design method given above
- ^Atheoretical = theoretical quantity of cutback or emulsified asphalt obtained by dividing A by the quantity of residual asphalt in the cutback (Table D-3) or emulsion and as described above.

K = correction factor based on field experience

It should be noted that correction factors (K) have not been verified for cutbacks by carefully controlled field experiments and therefore should be used as guidelines only: Suggested K factors for cutbacks are as follows:

K = 0.70 for spring construction
K = 0.60 for summer construction
K = 0.80 for fall construction
K = 0.90 for winter construction

If the RC-250 is to be placed in the fall, the quantity to be used is $A_{\text{recommended}} = 0.30 + 0.80 (0.30 - 0.30)$

0.75

Arecommended = 0.38 gallons of RC-250 per square yard of roadway surface

Field trail sections placed in Texas and reported in reference 4 suggest that reduced quantities of emulsion (as compared to the theoretical value calculated) can be utilized successfully. Thus, it is recommended that the calculated theoretical value be reduced and the method outlined above be utilized.

It should be noted that corrective factors (K) have not been verified by extensive controlled field experiments and therefore should be used as guidelines only. Suggested K factors for emulsions are as follows:

K = 0.60 for spring construction

K = 0.40 for summer construction

K = 0.70 for fall construction

K = 0.90 for winter construction

Assuming that the design method suggests that 0.30 gallons per square yard is required, the amount of an RS-2H emulsion that contains 70 percent residual asphalt that should be used in the summer is

 A recommended = 0.30 + 0.40 (0.30 - 0.30)

0.70

Arecommended = 0.35 gallons of EA-CRS-2h emulsion per square yard of roadway surface.

It should be noted that the quantity of asphalt to be sprayed from the asphalt distributor must be corrected for temperature in order

that the proper quantity will be retained on the roadway as measured at $60^{\circ}F$. If the design quantity of asphalt cement was 0.30 and the spray temperature was $340^{\circ}F$, the temperature correction factor would be 0.9057 (D-4). Thus, <u>0.30</u> or 0.33 gallons of asphalt cement per 0.9057

square yard would be sprayed at 340⁰F in order to have 0.30 gallons per square yard on a 60⁰F surface. Temperature correction factors for asphalt cement are shown in Table D-4, for cutbacks in Table D-5 and for emulsions in Table D-6.

Environmental Considerations

Experience shows that the ideal environment for the construction of seal coats is hot, dry weather with no rain for the next several days. Thus, the two most important environmental factors are temperature and moisture. Wind velocity is also a factor to be considered.

Both road surface and atmospheric temperatures are important because they influence how well the cover aggregate can be embedded in the binder and then how soon the roadway can be reopened to traffic. Soon after the asphalt is shot, its temperature will approach that of the roadway surface temperature. At this temperature the asphalt will be much more viscous (thicker) than at the spraying temperature. If the road surface is cool, the binder may become so viscour (depending on the type and grade of asphalt) that it will become nearly impossible to obtain adequate adhesion between the aggregate and asphalt and proper aggregate embedment during the rolling operation. The net result will be aggregate loss when the roadway is opened to

traffic. Aggregate loss may also cause windshield damage and even result in loss of friction. On the other hand, if the road surface temperature is too high and the asphalt is low in viscosity a longer time will be required to cool the mat to the point where traffic will no longer dislodge the aggregate particles. During hot, sunny weather, the most critical time of day to reopen a new seal coat job to traffic is between midday and late afternoon when the pavement surface temperature is highest. This problem will be most serious when dark colored aggregates are used and the area is one of the high solar flux.

Asphalt emulsions have relatively low viscosities at low temperature as compared to asphalt cement. This physical feature of emulsions allows this asphalt material to satisfactorily adhere to the aggregate and to obtain adequate embedment at lower road surface temperatures.

Wet aggregates will not adhere to asphalt cements. However, wet aggregates can be used with asphalt cements provided the water evaporated from the aggregate surface and adequate adhesion is obtained prior to finish rolling and opening to traffic. If wet aggregates and asphalt cements are to be used successfully, they should be used on hot, low humidity days. Wind will speed aggregate drying and thus promote adhesion. Similar reasons dictate that asphalt cement should not be sprayed on top of a wet pavement surface.

The problems with moisture are reduced considerably if cationic asphalt emulsions are used. If properly compounded and used, such emulsions tend to displace surface water and allow the binder to make direct contact with the aggregate surface. However, an excess of

153

,

moisture may slow the emulsion break and the evaporation of the separated water which may still present problems.

Wind speed is also a consideration. A light breeze may help evaporate moisture (or the solvent from cutbacks). High winds may distort the distributor spray pattern making it impossible to obtain uniform asphalt coverage. Also, in some areas the dust carried by high winds will have detrimental effects.

Specific limits for the environmental conditions prevailing during construction are given in Table D-7. If these limits are carefully observed the chance of successfully placing a seal coat is greatly improved.

Aggregate Embedment

The seal coat design method, the construction operations and considerations for climatic conditions should be aimed at providing adhesion between the asphalt binder and the aggregate and proper embedment of the aggregate into the asphalt film. Improper adhesion and/or inadequate embedment depth will result in loss of coverstone aggregate. Suggested percent embedment depths during the life of seal coats are listed below:

immediately after construction $30 \pm 10\%$ start of cool weather (first year) $35 \pm 10\%$ start of cold weather (first year) $45 \pm 10\%$ after two years of service $70 \pm 10\%$

For low traffic facilities aggregate embedment immediately after construction should be in the range of 30 to 40 percent while 20 to 30 percent embedment is the preferred range for high traffic volume facilities.

Figure D-1. Relation of Percent Embedment to Average Mat Thickness for Determining Quantity of Asphalt for Lightweight Aggregate Seals.

		Traff	ic - Vehicle	es Per Day Pe	er Lane	
	over 1,000	500 to 1,000	250 to 500	100 to 250	Under 100	
Traffic Factor (T)	1.00	1.05	1.10	1.15	1.20	

Table D-1. Asphalt Application Rate - Correction Due to Traffic.

Description of Existing Surface	Asphalt Quantity Correction gal/sq. yd.
Flushed asphalt surface	-0.06
Smooth, nonporous surface	-0.03
Slightly porous, slightly oxidized surface	0.00
Slightly pocked, porous, oxidized surface	+0.03
Badly pocked, porous, oxidized surface	+0.06

Table D-2. Asphalt Application Rate Correction Due to Existing Pavement Surface Condition.

Type of Grade	Approximate Quantity	of Cutter Stock, percent
Of Cutback	by weight	by volume
RC-2	18	23
RC-250	18	23
RC-3	11	14
RC-4	8	12
RC-5	6	9
MC-800	11	14
MC-3000	6	8

Table D-3. Approximate Quantity of Cutter Stock in Cutbacks Commonly Used for Seal Coat Operations.

Table D-4. Temperature-Volume Corrections for Asphalt Contents.*

	*	0.00		0.869	0.869	0.869	0.869	0.00		0.0	0.0	0.0	0.00				9.6	3					1603U	.8624	1907	.0615		2093	2001			202			574	200	0545	205	3 <u>5</u>
	-	5	Ē	5	3	5		ļ		5	3	ş	3			1	3	3	5	25	2	22	52	2			83	20	50 33	0	00 21			00 22	20	50	00		33 ••
	×	0.0044	0.0061	0.0057	0.0054	0.001				0.0035	0.0032	0.0029	0.000	2700.0				9000		0000	0794	10/0	7.04	10/0	775		1765	0762	0756 4	4 523	8749 4 8746 4	14 14		73.4	1671	724	721 44	715	1007
	-	8	ş	Ş	Ş	Į	54	53	2	Ş	2	3	22			2	2				22		23	200			30	22) (1	50		00		33 22	20	55	30		
	¥	9024	9021		5104				866	995	992	686		020	976	C 26	969	996		957	953	047	944	941	100		924	921	15	12	50	003 003		92	44	1			14 25
	_	0 9	0 2:						0	ð	00 Q -		50		30.0	0	2			50	00									00				0	0.0	0.8		0.0	
ŀ	-	N N							2	7	7				1	-				2	22	Â	5		Ā		Ā		ž					Ē					
I	¥	10.01					0.916	0.916	0.916	0.9151	0.915		0.914	0.9141	0.9134	0.9135	0.9132	0.9125	0.9122	0.9110	0.9115	0.9109	0.9105	0.9099	0.9096	0.9089	0.9086	0.9003	0.9076	0.9073	0.9066	0.9060	0.9057	0.9053	0.9047	0.9044	0.9040	0.9034	.9028
	-	ğ		Ş	į		2	ğ	Ž.	5			:;	i	:				320	2		ž	325				2		ž	506			2	33	12	1			•
ŀ	¥	0.9352	44FA-0	0.0342	0.9139	ALE9.0	0.9332	0.9329	0.9326	77640	4164.0	0.0312	0.9309	0.9306	0.9302	0.9299	0.9240	0.9289	0.9286	0.9283	0.9279	0.9273	0.9269	0.9263	0.9259	.9253	9250	.9243	9240	0236	9230	9223	9220	9217	9210	9207	9200	1010	0616
ŀ	-		55	52	12	255	254	337				12	5	ž	1			2	220	5	55	2	22	2			=				5) 	8						0
N	0.0530	0.9516	0.9513	0.9509	0.9506	0.9503	0.9404	0.9493	0.9489	0.9486	0.9483	0.9479	0.74/0		0.9466	0.9462	0.9459	0.9456	0.9452	0.9446	0.9442	4544.0 A 6140 0	0.9432	0.9429	0.9422	0.9419	0.9412	0.9409	0.9402	0.9399	0.9392	0.9389	0.9385	0.9379	0.9375	0.9369	0.9365	0.9359	0.730
Â.	300 0 0530	201 0.9516	202 0.9513	203 0.9509	204 0.9506	205 0.9503	205 0.7477 307 0.040A	208 0.9493	209 0.9489	210 0.9486	211 0.9483	212 0.9479	ZIJ U.Y4/0 914 0.9173		216 0.9466	217 0.9462	210 0.9459	219 0.9456	220 0.9452 331 0.9448	222 0.9446	223 0.9442	464470 462 1640 166	224 0.9432	227 0.9429 238 0.9424	229 0.9422	230 0.9419	232 0.9412	233 0.9409 234 0.9405	235 0.9402	236 0.9399	238 0.9392	239 0.9369	240 0.9385 241 0.0182	242 0.9379	242 0.9375 244 0.9372	245 0.9369	246 0.9365 247 0.9342	248 0.9359	0CC1.0 117
× - ×	0.0480 200 0.0530	0.9686 201 0.9516	0.9682 202 0.9513	0.9679 203 0.9509	0.96/3 204 0.9306	0.9672 205 0.9503	U.7007 205 0.4477 0.9445 707 0.9494	0.9662 208 0.9493	0.9658 209 0.9489	0.9655 210 0.9486	0.9652 211 0.9483	0.9648 212 0.9479	U.7043 213 U.74/0 D 0441 914 D 0473		0.9635 216 0.9466	0.9631 217 0.9462	0.9628 218 0.9459	0.9624 219 0.9456	0.9621 220 0.9452	0.9614 222 0.9446	0.9611 223 0.9442	U.760/ 234 U.7437	0.9601 224 0.9432	0.9597 227 0.9429 0.9594 238 0.9424	0.9590 229 0.9422	0.9587 230 0.9419	0.9580 232 0.9412	0.9577 233 0.9409 0.9574 234 0.9405	0.9570 235 0.9402	0.9567 236 0.9399	0.9560 238 0.9392	0.9557 239 0.9389	0.9553 240 0.9385 0.9550 241 0.9383	0.9547 242 0.9379	0.9540 243 0.9375 0.9540 244 0.9372	0.9536 245 0.9369	0.9533 246 0.9365 0.9530 347 0.9363	0.9526 248 0.9359	0004-0 457 C704-0
	150 0 0480 300 0 0530	151 0.9686 201 0.9516	152 0.9682 202 0.9513	151 0.9679 201 0.9509	134 0.96/3 204 0.9306		139 U.7007 205 U.7477 157 no445 207 no404	150 0.9662 200 0.9493	159 0.9658 209 0.9489	160 0.9655 210 0.9486	161 0.9652 211 0.9483		163 U.Y043 213 U.Y4/0 144 D 9441 914 D 9473		144 0.9635 216 0.9466	167 0.9631 217 0.9462	168 0.9628 218 0.9459	169 0.9624 219 0.9456	170 0.9621 220 0.9452	172 0.9614 222 0.9446	173 0.9611 223 0.9442	1/14 0.0404 214 0.9454 10405 114		177 0.9597 227 0.9429 172 0.9594 238 0.9426	179 0.9590 229 0.9422	180 0.9587 230 0.9419		183 0.9577 233 0.9409 184 0.9574 234 0.9405	165 0.9570 235 0.9402	196 0.9567 236 0.9399	100 0.9560 230 0.9392	189 0.9557 239 0.9389	190 0.9553 240 0.9385 191 0.9550 241 0.9182	192 0.9547 242 0.9379	193 0.9543 243 0.9375 194 0.9540 244 0.9372	195 0.9536 245 0.9369	196 0.9533 246 0.9365 187 0.9530 247 0.9363	198 0.9526 248 0.9359	000470 448 070470 448
	0.9861 150 0.9680 200 0.9530	0.9857 151 0.9686 201 0.9516	0.9854 152 0.9682 202 0.9513	0.9851 153 0.9679 203 0.9509	0.784/ 154 0.76/2 204 0.9306	0.9844 155 0.9672 205 0.9503	0.9837 153 0.4007 205 0.447 0.9837 153 0.0445 907 0.0404	0.9833 158 0.9462 208 0.9493	0.9830 159 0.9658 209 0.9489	0.9826 160 0.9655 210 0.9486	0.9823 161 0.9652 211 0.9483	0.9819 162 0.9648 212 0.9479	U.7516 163 U.7643 213 U.7476 Dobij 144 Dokai 914 Dol73	27110 11 10 10 10 10 10 10 10 10 10 10 10	0.9806 164 0.9635 216 0.9466	0.9802 167 0.9631 217 0.9462	0.9799 168 0.9628 218 0.9459	0.9795 169 0.9624 219 0.9456	0.9792 170 0.9621 220 0.9452 0.0788 191 0.0418 331 0.0448	0.9765 172 0.9614 222 0.9446	0.9782 173 0.9611 223 0.9442	0.7775 174 0.7007 224 0.4437 0.0775 174 0.0404 395 0.0414	0.9771 176 0.9601 226 0.9432	0.9768 177 0.9597 227 0.9429 0.9764 178 0.9594 338 0.9426	0.9761 179 0.9590 229 0.9422	0.9758 180 0.9587 230 0.9419 0.9754 181 0.9584 231 0.9413	0.9751 182 0.9560 232 0.9412	0.9747 183 0.9577 233 0.9409 0.0744 184 0.9574 244 0.9405	0.9740 185 0.9570 235 0.9402	0.9737 186 0.9567 236 0.9399	0.9730 188 0.9560 238 0.9392	0.9727 189 0.9557 239 0.9389	0.9723 190 0.9553 240 0.9385 0.9720 141 0.9554 241 0.9382	0.9716 192 0.9547 242 0.9379	0.9713 193 0.9543 243 0.9375 0.9710 194 0.9540 244 0.9372	0.9706 195 0.9536 245 0.9369	0.9703 196 0.9533 246 0.9365 0.9699 167 0.9530 347 0.9363	0.9696 198 0.9526 248 0.9359	000470 ANY 177470 AAA 1740470
	100 0.9261 150 0.9680 200 0.0530	101 0.9857 151 0.9686 201 0.9516	102 0.9854 152 0.9682 202 0.9513	101 0.917 1151 0.9679 201 0.9509	104 U.944/ 134 U.96/3 204 U.9506		107 0.9137 1157 0.0445 347 0.0445	106 0.9833 158 0.9462 208 0.9493	109 0.9830 159 0.9658 209 0.9489	110 0.9826 160 0.9655 210 0.9486	111 0.9823 161 0.9652 211 0.9483		113 C.YULS 163 U.YO43 213 U.Y4/6 114 A 0813 144 A 0441 914 A 0473	111 0 0400 114 0 0130 115 0 0110	116 0.9806 146 0.9635 216 0.9466	117 0.9802 167 0.9631 217 0.9462	118 0.9799 168 0.9628 218 0.9459		120 0.9792 170 0.9621 220 0.9452 131 0.0788 171 0.0418 331 0.0448	122 0.9785 172 0.9614 222 0.9446	123 0.9782 173 0.9611 223 0.9442	124 ()97/() 174 ()90// 224 ()9439 134 ()0775 174 ()040/ 994 ()0434	124 0.9771 174 0.9601 224 0.9432	127 0.9768 177 0.9597 227 0.9429 128 0.9764 178 0.9594 398 0.9426	129 0.9761 179 0.9590 229 0.9422	130 0.9758 180 0.9587 230 0.9419	132 0.9751 182 0.9560 232 0.9412	133 0.9747 183 0.9577 233 0.9409 134 0.0744 144 0.9574 234 0.9405	135 0.9740 185 0.9570 235 0.9402	136 0.9737 196 0.9567 236 0.9399		139 0.9727 189 0.9557 239 0.9369	140 0.9723 1990 0.9553 240 0.9385 141 0.9720 191 0.9550 241 0.9122	142 0.9716 192 0.9547 242 0.9379	143 0.9713 193 0.9543 243 0.9375 144 0.9710 194 0.9540 244 0.9372	145 0.9706 195 0.9536 245 0.9369	146 0.9703 196 0.9533 246 0.9365 147 0.9699 147 0.9530 247 0.9363	148 0.9696 198 0.9526 248 0.9359	0004-0 AND 1774-0 ALL 1404-0 ALL
	1.0015 100 0.9861 150 0.9689 200 0.9590	1.0031 101 0.9037 151 0.9606 201 0.9516		1.0024 103 0.9451 153 0.9679 203 0.9509	1.0021 104 0.944/ 134 0.96/3 204 0.9306		1.0010 107 0.0237 157 0.0445 507 0.004	1.0007 100 0.9833 138 0.9662 200 0.9493	1.0003 109 0.9830 159 0.9658 209 0.9489	1.0000 110 0.9826 160 0.9655 210 0.9486	0.9997 111 0.9823 161 0.9652 211 0.9483	0.9993 112 0.9819 162 0.9648 212 0.9479	U.YYYU 113 U.YBIG 163 U.YG43 213 U.Y4/6 0.0086 114 0.0813 144 0.0441 914 0.0473	0.0011 115 0.0000 115 0.0000 115 0.0000	0.9979 116 0.9006 146 0.9635 216 0.9466	0.9976 117 0.9802 167 0.9631 217 0.9462	0.9972 1118 0.9799 168 0.9628 218 0.9459	0.9969 119 0.9795 169 0.9624 219 0.9456	0.9965 120 0.9792 170 0.9621 220 0.9452 0.9943 131 0.9788 131 0.9418 331 0.946	0.9958 122 0.9785 172 0.9614 222 0.9446	0.9955 123 0.9782 173 0.9611 223 0.9442	0.0018 1 124 0.7/78 1 174 0.700/ 234 0.7437 0.0018 1 124 0.0775 1 124 0.0401 244 0.012	0.9944 126 0.9771 176 0.9601 226 0.9432	0.9941 127 0.9768 177 0.9597 227 0.9429 0.9937 128 0.9764 178 0.9594 328 0.9426	0.9934 129 0.9761 179 0.9590 229 0.9422	0.9930 130 0.9758 180 0.9587 230 0.9419 0.9927 131 0.9754 181 0.9584 331 0.9414	0.9923 132 0.9751 182 0.9560 232 0.9412	0.9920 133 0.9747 183 0.9577 233 0.9409 0.9914 134 0.9744 184 0.9774 234 0.9405	0.9913 135 0.9740 185 0.9570 235 0.9402	0.9909 136 0.9737 186 0.9567 236 0.9399	0.9902 138 0.9730 188 0.9560 238 0.9392		0.9890 140 0.9723 190 0.9553 240 0.9385 0.9892 141 0.9720 161 0.9554 241 0.9382	0.9689 142 0.9716 192 0.9547 242 0.9379	0.9885 143 0.9713 193 0.9543 243 0.9375 0.9882 144 0.9710 194 0.9540 244 0.9372	0.9878 145 0.9706 195 0.9536 245 0.9369	0.9875 146 0.9703 196 0.9533 246 0.9365 0.9871 147 0.9699 197 0.9510 347 0.9142	0.9868 148 0.9696 198 0.9526 248 0.9359	9004-0 444 070-0 444 0404-0 444
	50 1.0015 100 0.9161 150 0.9610 200 0.0530	51 1.0031 101 0.9057 151 0.9606 201 0.9516		51 1.0024 101 0.9451 153 0.9679 201 0.9509	34 1.0021 104 0.984/ 134 0.96/3 204 0.9306	55 1.0017 105 0.9844 155 0.9672 205 0.9503	57 1.0010 107 09237 157 00445 507 0.0464	50 1.0007 100 0.9033 150 0.9662 200 0.9493	50 1.0003 100 0.9830 159 0.9458 200 0.9489	40 1.0000 110 0.9826 140 0.9655 210 0.9486	61 0.9997 111 0.9823 161 0.9652 211 0.9483		44 0.000Å 114 0.9013 144 0.041 314 0.470	AL 0001 115 0000 145 0040 145 0040	44 0.9979 116 0.9106 164 0.9635 214 0.9466	47 0.9976 117 0.9802 167 0.9631 217 0.9462	68 0.9972 1118 0.9799 168 0.9628 218 0.9459		70 0.9965 1120 0.9792 1170 0.9621 220 0.9452	72 0.9958 122 0.9785 172 0.9614 222 0.9446		74 0.0012 134 0.7775 174 0.7007 24 0.7437 74 0.0012 135 0.0775 135 0.0401 255 0.0434		77 0.9941 127 0.9768 177 0.9597 227 0.9429 78 0.9937 128 0.9744 178 0.9594 398 0.9426	79 0.9934 129 0.9761 179 0.9590 229 0.9422	80 0.9930 130 0.9758 180 0.9587 230 0.9419		83 0.9920 133 0.9747 183 0.9577 233 0.9409	85 0.9913 135 0.9740 185 0.9570 235 0.9402		60 0.9902 130 0.9730 180 0.9560 230 0.9392		90 0.9890 140 0.9723 190 0.9553 240 0.9385 91 0.9892 141 0.9720 191 0.9554 341 0.9122	92 0.9889 142 0.9716 192 0.9547 342 0.9379	94 0.9885 144 0.9713 193 0.9543 244 0.975 94 0.9882 144 0.9710 194 0.9540 244 0.9372	95 0.9878 145 0.9706 195 0.9336 245 0.9369	96 0.9875 146 0.9703 196 0.9533 246 0.9365 97 0.9871 147 0.9699 197 0.9510 347 0.9365	98 0.9868 148 0.9696 198 0.9526 248 0.9359	000470 ABE (000470 AAS 040470 ABS 000470 AA
	10211 50 1.0035 100 0.9861 150 0.9689 200 0.9530	1.0208 31 1.0031 101 0.9857 151 0.9686 201 0.9516		1.0201 53 1.0024 103 0.9451 153 0.9679 203 0.9509			1.0170 37 1.0010 107 0.0237 1157 0.0445 307 0.0455		1.0179 39 1.0003 109 0.9820 1159 0.9658 209 0.9489	1.0)76 40 1.0000 110 0.9826 160 0.9655 210 0.9486	1.0172 61 0.9997 111 0.9823 161 0.9652 211 0.9463		1.0103 63 U.YYYU 113 U.YB10 163 U.Y043 213 U.Y4/0 1 D163 24 D.9086 114 D.0813 144 D.6441 914 D.6473	10141 At 0001 115 00400 14 00400 14 00400	10155 66 0.9979 116 0.9106 146 0.9635 216 0.9466	1.0151 47 0.9976 117 0.9402 167 0.9631 217 0.9462	1.0148 68 0.9972 118 0.9799 168 0.9628 218 0.9459		1.0141 70 0.9965 120 0.9792 170 0.9621 220 0.9452 1.0137 71 0.6642 151 0.6788 171 0.6418 351 0.6448	1.0133 72 0.9958 122 0.9785 172 0.9614 222 0.9446		1.0129 74 0.7731 144 0.77/8 174 0.7007 234 0.7437 10131 74 0.0048 134 0.0775 134 0.604 146 0.614	10119 76 0.9944 136 0.9771 176 0.9601 236 0.9432	1.0116 77 0.9941 127 0.9768 177 0.9597 227 0.9429 1.0112 78 0.9937 128 0.9764 178 0.9594 398 0.9426	1.0109 79 0.9934 129 0.9761 179 0.9590 229 0.9422	1.0105 80 0.9930 130 0.9758 180 0.9587 230 0.9419 1.0107 81 0.0077 131 0.0744 181 0.0484 331 0.0414	1.0098 B2 0.9923 132 0.9751 182 0.9560 232 0.9412	1.0095 83 0.9920 133 0.9747 183 0.9577 233 0.9409 1.0091 84 0.9914 134 0.9744 144 0.9774 314 0.9465	1.0000 05 0.9913 135 0.9740 105 0.9570 235 0.9402		1.0077 3.0 0.9902 13.0 0.9730 18.0 0.9560 23.0 0.9392		1.0067 91 0.9999 141 0.9723 199 0.9553 240 0.9385 1.0067 91 0.9992 141 0.9701 191 0.9444 341 0.9123	1.0063 92 0.9889 142 0.9716 192 0.9547 242 0.9379	1.0000 93 0.9985 143 0.9713 193 0.9543 244 0.9375 1.0056 194 0.9882 1144 0.9710 194 0.9540 1244 0.9372	1.0053 95 0.9878 145 0.9706 195 0.9536 245 0.9369	1.0049 96 0.9873 146 0.9703 196 0.9533 246 0.9365 1.0046 97 0.9871 147 0.9409 197 0.9510 347 0.9363	1.0042 98 0.9868 148 0.9696 198 0.9526 248 0.9359	000410 AND CZCCID AAN CLOAND ANN NORALID AA GOOD

M = Multiplier for correcting oil volumes to the basis of 60°F.

- t = Observed temperature in degrees Fahrenheit. M = Multiplier for connecting oil columns to the
- * Specific gravity of materials at 60°F above 0.966.

Table D-5. Temperature-Volume Correction for Cutback Asphalts.

	E		0	0		2	•					-				-	-				-	-	-	-	-	0			•		• •	•	o o	5	20				-						90	0	0	0	9	•	•
-	•	\$	151	452	3	÷	455	Į				3					1	1	Ì		Ì	10	Į	472	173	114	174												;		1			1	Ş	Ę	495	Į	Ì	į	ŧ
	E	0.0724	0.0721	0.0717	0.0714	0.4/10	0.8707	0.8703	0.100	0408.0		0.8689			1.00.0	C /00.7	0.8472	0.8668	0.8665	0.8661	0.8038	0.8654	0.8651	0.8647	0.8444	0.840	0.417						0.801					0.000	14094		0.0500			0.878	0.0574	0.0571	0.8567	0.0564	0.8560	0.0557	0.8554
-	•	Ş	ē	Ş	Ş	į	ŝ	\$	è												ļ	120	121	422	423	124															1			ŝ	1	1	115	\$	1	Į	ŧ
1	E	0.8902	C. 8000	0.895	0.8891		0.8884					0.8800					0.044	0.041	0.8841		0.0034	0.0031	0.8827	0.8823	0.8820	0.0016					0.700									0.747	0.0763	01740	0.0756	0.0753	0.0749	0.8746	0.0742	0.0738	0.0735	0.0731	0.8728
-	•	250	5	332		į	335															370	1	372	273	1																		ŝ		ž	205	ž	10	i	Ë
-		0.9083	0.9080	0.9076	0.9072	1.7007	0.9065	0.9061				1000					0.9029	CZ0A.0	0.9028		0.7014	0.9010	0.9007	0.9003	0.9000	0.8996	0.000		20000		0.070					09000				2 7 0 U	0.0942		0.0014	1294.0	0.0927	0.8924	0.8920	0.8916	0.013	0.000	0.8906
-	•	8	ā	5		Ş	50		Ì	Ş												320	12	322	323	324													;;		1				1	E	345	ł	1	I	Ì
		0.9268	0.9264	0.9260	0.9257		0.9249	0.7240		00210		1.723	00001	0100	0014		0.9212	0.720	C024.0	0.720		0.9194	0.9190	0.9186	0.9182	0.9179	0.0175	0171	00140	14100	00100					0143				00127	0.9124	00100	0110	0.013	0.9109	0.9105	0.9102	0.9098	0.9094	0.9091	0.9087
-		22	22	332			235															220	22	112	273	11	275															-		1		Z	562	ž		200	Į
1		50			1			129	125	122		114	110	407	103	100	195	101		100			2/0		304	363	361	358	1354	350	346		955	335	166	9320	324	1320	916	6160	906	2005	1301	9298	9294	9290	9286	9203	A /7 A	C /7 A	1111
×	0.0154	0.4430			0.9441	1000		0.9429	0.9425	0.9422	0.9418	0.9414	0.9410	0.9407	0.9403	0 0 100	20202	10.0391		0.9384			1 U.V.J.V 0 1 D.D.J.V 0	2 (LYJ/)	0.730V	4 U.V303	5 0.9361	6 0.9358	7 0.9354	B 0.9350	9 0.9346	C.0343	9229	2 0.9335	1669.0 6	4 0.9328	15 0.0324	4 0.9320	17 0.9316	6 0.9313	90E6.0 4	60 0.9305	11 0.9301	12 0.9298	43 0.9294	44 0.9290	45 0.9286	40 0.9283	4/7470 14	C/7470 84	44 U.74/4
X -	400 00154	200 0.7430			204 0.9441			207 0.9429	200 0.9425	209 0.9422	210 0.9418	211 0.9414	212 0.9410	213 0.9407	214 0.9403	0100 0100	214 0.9395	10200 715		210 0.9304			1 ZZ 0 U/J/0		723 0.736Y	234 0.4363	1 225 0.9361	7 226 0.9358	227 0.9354	P 228 0.9350	b 229 0.9346	E100.000 000 000 000 000 000 000 000 000	9669.0 162	222 0.9335	1669.0 662 0	7 234 0.9328	1 235 0.0324	0.9320	5 237 0.9316	1 238 0.9313	60540 675 0.9309	4 240 0.9305	0 241 0.9301	6 242 0.9298	2 243 0.9294	a 244 0.9290	3 245 0.9286	1 246 0.9283	V/247 U.V.7/V	C/240 0.72/3	7/7A'N 462 00
2 - 2	ADD 00117 400 00154	0.9647 200 0.9430	0.7043 201 0.7435		0.7633 204 0.9441		10.902 1 202	0 0420 207 0.9429	0.9616 208 0.9425	0.9612 209 0.9422	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9605 211 0.9414	0.9601 212 0.9410	0.9597 213 0.9407	0.9593 214 0.9403	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10201 217 0.0391		0.0574 219 0.9304			1 0.9306 ZZ 0.9306 0.9306 0.9306 0.9306 0.9306 0.9306 0.9306 0.9306 0.9306 0.9306 0.930		3 0.9559 223 0.936Y	4 0.9555 224 0.73e3	5 0.9551 225 0.9361	6 0.9547 226 0.9358	7 0.9543 227 0.9354	a 0.9539 228 0.9350	9 0.9536 229 0.9346	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0.6528 231 0.9339	2 0 9524 232 0.9335	1 0.9520 233 0.9331	4 0.9517 234 0.9328	A 0011 335 00324	A 0 9509 234 0.9320	7 0.0505 227 0.9316	A 0.9501 238 0.9313	90 0.9496 239 0.9309	D 0.9494 240 0.9305	0.9490 241 0.9301	2 0.9486 242 0.9298	P3 0.9482 243 0.9294	94 0.9478 244 0.9290	95 0.9475 245 0.9286	P6 0.9471 246 0.9283	PT 0.946/ 247 0.72/V	98 0.9463 248 0.72/2	7/7/0 1 245 0.77/ F
¥	4710 0011 400 0114	150 0.9647 200 0.4430	151 U.Yo43 201 U.Y436		133 U.Y633 204 0.9441		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 12 0 0420 207 0.9429	150 0.9616 200 0.9425	159 0.9612 209 0.9422	140 0 0400 210 0.9418	111 0.9605 211 0.9414	142 0.9601 212 0.9410	143 0.9597 213 0.9407	144 0.9593 214 0.9403	0100 316 00400 317 00100		147 00502 217 0.0391		1 140 0.0574 219 0.9384				172 0.9562 ZZZ 0.91/2	VIT 0.9559 223 0.7369	1 174 0.9555 224 0.7305	1 175 0.9551 225 0.9361	0 176 0.9547 226 0.9358	5 177 0.9543 227 0.9354	2 17 0.9539 228 0.9350	0 179 0.9536 229 0.9346	E120 022 C120 021 2	1 1 0.0528 231 0.9339	7 112 0.0524 232 0.9335	100 00520 233 0.9331	9 144 0.9517 234 0.9328	A 100 0011 235 0.0324	1 1 1 1 1 0 0500 234 0.9320	7 117 0.0505 217 0.9316	2 1 1 0 0.9501 238 0.9313	0 189 0.9498 239 0.9309	A 190 0.9494 240 0.9305	2 191 0.9490 241 0.9301	0 192 0.9486 242 0.9290	4 193 0.9482 243 0.9294	0 194 0.9478 244 0.9290	6 195 0.9475 245 0.9286	2 194 0.9471 246 0.9283	9 197 0.9467 247 0.727	55 198 0.9463 248 0.92/3	11 144 0.4460 244 U.Y.
H - H	100 00117 400 00114	0 0.9842 150 0.9647 200 0.4430	1 0.9030 131 0.7043 201 0.7445	2 0.9034 132 0.7037 202 0.114	0.7430 133 0.7037 204 0.9441		5 0.9022 1555 0.9620 209 0.743/	- U.VEIO 100 U.V.V.V. 207 0.9429	A DODIO 15 0.9616 200 0.9425	0.9006 159 0.9612 209 0.9422	0.041 0.0400 310 0.941 0.040 A	1 0 0 700 1 1 0 0 0 0 0 1 1 0 0 4 1 4	2 0 0795 142 0.9601 212 0.9410	2 0.0701 143 0.9597 213 0.9407	4 0.9727 144 0.9593 214 0.9403			• 0.7/77 147 0.0507 217 0.0391	7 U.Y//3 10/ U.Y.01/ 11/ U.Y.01	0.9307 140 0.9574 219 0.9304		0.0.7763 170 0.93/0 ZZ0 0.7360	0.9760 171 0.9366 221 0.2470	2 0.9756 177 0.9562 222 0.91/3	2 0.9752 177 0.9559 223 0.7Jev	14 0.9748 174 0.9555 234 0.7305	15 0.9744 175 0.9551 225 0.9361	A 0.9740 176 0.9547 226 0.9358	7 0.9736 177 0.9543 227 0.9354	A 00732 178 0.9539 228 0.9350	0.0728 179 0.9536 229 0.9346	00315 100 0010 230 0.0343	0.00701 101 0.0520 201 0.9339	0 0 0 1 7 1 1 2 0 0 5 2 4 2 2 2 0 9 3 3 5	0.0211 111 0.0520 213 0.9331	24 0.9709 144 0.9517 234 0.9328	A 0 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 0.7/03 124 0.6500 236 0.9320	7 0 0 0 0 1 1 0 0 0 5 0 5 2 2 0 0 9 3 1 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29 0.9690 189 0.9498 289 0.9309	AN DOARA 100 0.0494 240 0.9305	41 0.9682 191 0.9490 241 0.9301	42 0.9678 192 0.9486 242 0.9298	43 0.9674 193 0.9482 243 0.9294	44 0.9670 194 0.9478 244 0.9290	45 0.96666 195 0.9475 245 0.9286	46 0.9662 196 0.9471 246 0.9283	47 0.9659 197 0.9467 244 0.727	40 0.9655 198 0.9463 248 0.925	40 0.9651 199 0.9460 244 0.747
	100 000 000 000 000 000 000 000 000 000	100 0.9842 150 0.9647 200 0.4430			103 0.4830 138 0.7033 204 0.9441		105 0.9022 155 0.9020 200 0.703		100 0010 150 0.9616 200 0.9425	100 0.9006 159 0.9612 209 0.9422	110 0 000 120 0 000 210 0.941 B		112 0.0795 142 0.9601 212 0.9410	113 0.9791 143 0.9597 213 0.9407	114 0.07M7 144 0.9593 214 0.9403	010 0 010 010 010 0100		100 0.7/77 147 00(2) 217 0.030		1 1 0 0 0 7 7 1 1 40 0 0 5 7 1 2 1 0 0 3 0 4			121 0.9760 171 0.9306 ZZI 0.24	122 0.9756 172 0.9567 222 U.VJ/	1 123 0.9752 173 0.9559 223 0.7369	1 134 0.9748 174 0.9555 234 0.7303	0 125 0.9744 175 0.9551 225 0.9361	124 0.9740 176 0.9547 226 0.9358	127 0.9736 177 0.9543 227 0.9354	0.9350 0.0537 178 0.9539 228 0.9350	5 1 120 0.9720 179 0.9536 229 0.9346	210 0010 100 0010 100 001 000 001	7 1.01 0.0731 1.01 0.0530 231 0.9339	21 1 1 1 0 0 7 1 7 1 2 0 0 5 2 4 2 2 2 0 9 3 3 5	0.0331 101 0.0520 223 0.9331	5 114 0.9709 184 0.9517 294 0.9328	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 1 1 2 0 0 4 0 1 2 0 0 5 0 5 1 2 2 0 9 3 1 6	0 111 0 0000 110 0.9501 200 0.9313	5 139 0.9690 189 0.9498 289 0.9309	1 140 DOADA 100 D.0404 240 0.9305	7 141 0.9482 191 0.9490 241 0.9301	3 142 0.9678 192 0.9486 242 0.9298	9 143 0.9674 193 0.9482 243 0.9294	5 144 0.9670 194 0.9478 244 0.9290	1 145 0.9666 195 0.9475 245 0.9286	7 146 0.9662 196 0.9471 246 0.9283	14 147 0.9659 197 0.9467 347 U.Y./Y	0 148 0.9655 198 0.9463 Z48 0.727	19 146 0.9651 199 0.9460 Z4F 0.777
	A210 000 000 000 0000 0000	1.0040 100 0.9942 150 0.9647 200 0.4430			1.0028 103 0.9830 133 0.7031 204 0.9441		1.0020 105 0.9822 135 0.9628 209 0.733		1.0016 100 0010 150 0.9616 200 0.9425	1 0004 100 0.9006 159 0.9612 209 0.9422	······ ····· ····· ····· ····· ····· ····		0.0000 112 0.0795 162 0.9601 212 0.9410	0.0000 113 0.0701 143 0.9597 213 0.9407	0.0004 114 0.9707 144 0.9593 214 0.9403							0.9960 120 0.510 0.61 100 0.61 0.00 0.00 0 0.00 0.00 0	0.9956 121 0.9760 171 0.9366 ZZI 0.937	3 0.9952 122 0.9756 172 0.9562 222 0.915	0.9948 123 0.9752 173 0.9559 223 0.936	4 0.9944 124 0.9748 174 0.9555 224 0.7305	1 0 0040 1 125 0 0744 175 0 0551 225 0.9361	C 0 001 1 1 1 1 0 0 1 0 1 1 0 0 9547 226 0 9358	7 0 0017 127 0.9736 177 0.9543 227 0.9354	A A A A A A A A A A A A A A A A A A A	a 00075 1120 09728 1179 0.9536 229 0.9346		0.0771 1.0 0.771 1.0 0.6524 2.21 0.939	- 0.001 1 100 00717 100 00524 232 0.9335	2 0.000 111 0.011 111 0.0520 233 0.9331	A 0 0005 111 0 0709 184 0.9517 234 0.9328		15 U.YVU 135 U.Y/U 16 U.Y.U 16 U.Y.U 216 U.9320		10 0 0000 110 00001 100 09501 238 0.9313	9 0.9885 139 0.9690 189 0.9498 239 0.9309	A A BART 11A A BARK 100 0.9494 240 0.9305	1 0.0077 141 0.9402 191 0.9490 241 0.9301	9 0.0273 142 0.9678 192 0.9486 242 0.9298	13 0.9869 143 0.9674 193 0.9482 243 0.9294	14 0.9865 144 0.9670 194 0.9478 244 0.9290	15 0.9861 145 0.9666 195 0.9475 245 0.9286	54 0.9857 144 0.9662 194 0.9471 246 0.9283	77 0.9054 147 0.9659 197 0.9467 247 U.Y.Y	P. 0.9050 140 0.9655 198 0.9463 248 0.727	P 0.9846 149 0.9651 199 0.9460 247 0.777
	A2100 000 0110 0000 0000 000000000000000	50 1.0040 100 0.9042 150 0.9647 200 0.4430		5 1.0032 102 0.9434 123 0.904.0 261	53 1.0028 103 0.9030 134 0.903 204 0.9441				27 1.0014 107 0.010 158 0.0516 208 0.9425	2 1 0004 100 0.9806 159 0.9612 209 0.9422	110 0 010 110 0 010 110 0 010 0 0 0 0 0			22 00000 113 00701 143 0.9597 213 0.9407	A 0000 114 00707 164 0.9593 214 0.9403								2/240 122 0.9956 121 0.9760 171 0.9366 221 0.9567	72 0.9952 122 0.9756 172 0.9756 27	V0240 23 0.9948 123 0.9752 173 0.9559 233 233	1 74 0.9944 124 0.9748 174 0.9355 224 0.9365	7 7 0940 125 0.9744 175 0.9551 225 0.9361	24 00014 124 0.0740 176 0.9547 226 0.9358	1 77 0 0012 1 137 0.9736 1 17 0.9543 227 0.9354	1 74 00000 1 14 00732 1 17 0.9539 228 0.9350	75 00035 129 00728 179 0.9536 229 0.9346	E100 012 100 011 100 000 100 0000				L DA DODAS 134 0.9709 144 0.9517 234 0.9328			2 2 0 0.7 1 1 2 0.6 1 1 2 0.6 0 1 2 0.9 1 6 0 0 9 1 6	2 8 0.010 0.011 0.000 118 0.0501 238 0.0313	4 89 0.9885 139 0.9690 189 0.9498 239 0.9309	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A DI DOD77 141 0.9462 191 0.9490 241 0.9301	2 9 9 00021 142 09678 192 09486 242 0.9298	A 0 0 0060 143 0.9674 193 0.9482 243 0.9294	4 94 0.9865 144 0.9670 194 0.9478 244 0.9290	0 95 0.9661 145 0.9666 195 0.9475 245 0.9286	6 56 0.9857 146 0.9662 196 0.9471 246 0.9283	2 97 0.9054 147 0.9659 197 0.9467 247 247	0 98 0.9850 148 0.9655 198 0.9463 248 0.7273	14 99 0.9846 149 0.9651 199 0.9460 247 0.727
		1.0241 50 1.0040 100 0.9842 150 0.9647 200 0.9420		1.0233 52 1.0032 102 0.9034 122 0.9034 122 0.002 202 1202 1202 1202 1202 1202	1.0229 53 1.0028 1.003 0.0420 1.33 0.0423 304 0.941									1.01 2 2 0.00 1 1 0 0 0 0 1 1 1 2 0 0 5 9 7 2 1 0 0 9 4 0 7	1.0157 42 0.0001 114 0.0727 164 0.9593 214 0.9403									1.0152 72 0.9952 122 0.9756 172 0.9562 222 0.957	1.0148 73 0.9948 123 0.9752 173 0.9559 223 0.956	1.0144 74 0.9944 124 0.9748 174 0.9355 224 U.9355	1 01 10 74 0 0940 125 0 0744 175 0.9551 225 0.9361	1.0140 74 00014 134 0.0740 176 0.9547 226 0.935	0.15 7 7 0.0012 1 127 0.9736 177 0.9543 227 0.9354		10121 70 00055 120 09728 179 0.9536 229 0.9346					1.010 as 0.005 134 09709 144 0.9517 234 0.9320				10072 4 0 0000 110 0 0001 100 0.9501 230 0.9313	1 1 0004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 1.0040 V 0.077 141 0.9682 191 0.9490 241 0.9301	1.0073 9.5 0.973 142 0.9578 192 0.9486 242 0.9298	1 10044 91 0.9869 143 0.9674 199 0.9482 243 0.9294	1 1.0064 94 0.9865 144 0.9670 194 0.9478 244 0.9290	1 1 0040 95 0.9861 145 0.9666 195 0.9475 245 0.9286	1.0036 56 09857 146 0.9662 196 0.9471 246 0.9283	7 1.0052 97 0.9654 147 0.9659 197 0.9467 347 0.747	0 1.0040 90 0.9850 140 0.9655 198 0.9463 248 0.927.	9 1.0044 99 0.9846 149 0.9651 199 0.9400 Z47 U.Y//

 * Specific gravity of materials at 60°F of 0.850 to 0.966.

t = Observed temperature in degrees Fahrenheit.

M = Multiplier for correcting oil volumes to the basis of 60°F.

50/60*F	Country *	per Collen	per Pound	per Ten
0.855	34.0	7.119	0.1405	280.9
40	33.0	1 .161	.1370	277.3
45	32.1	.203		274 3
~	31.7		1377	274.5
	29.3	328	1345	272.9
15	28.4	369	.1357	271.4
90	27.5		.1349	249,9
95	26.6	,453	.1342	268.4
0.900	25.7	.494	.1334	200.7
05	24.9	.536	.1327	203.4
10	24.0			242.5
13	1 23.1		1305	261.1
25	215	703	1298	259.4
30	20.7	745	,1291	258.2
35	19.8	786	.1284	256.9
40	19.0	.828	.1270	255.5
45	18.2	.870	.1271	254.1
50	17.5		.1264	252.8
55	.167	.753	.1257	251.5
60	15.7		1244	248.0
• <u>•</u> 2	13.1	078	1218	247.4
70	1 137	120	1232	244.3
	12.9	162	.1225	245.0
iii	12.2	.203	.1219	243.8
90	11.4	.245	.1213	242.4
95	10.7	.287	.1207	241.4
1.000	10.0	.328	.1 201	240.2
05	9.3		.1175	217.8
10		-412		236.4
13			1177	2354
20		337	1171	234.3
30	5.9	378	.1144	233.1
35	5.2	.420	.1160	232.0
40	4.6	.662	.1154	230,7
45	3.9	704	.1147	227.5
50	3.3	.745	.1143	2207
55	2.4		.1130	224.5
40	2.0		1127	225.5
-3	1 1 7		1122	224.4
75	1 1	954	.1117	223.4
76	0.0	.962	.1116	223.2

Table D-6. Temperature-Volume Corrections for Emulsified Asphalts.

 AP1 Gravity, Degrees = 141.5 5.P. Gr. 40°/40°F. - 131.5
 For Lis per imperial Gellen multiply values in this estemn by 1.20094. the for imperial Gellens per Lb or per Tan multiply values in these advants by 0.83248.

- t = Observed temperature in degrees Fahrenheit.
- M = Multiplier for correcting volumes to the basis of 60°F.

Table D-7. Temperature Limitations for Asphalt Selection at the Time of Construction.

Temperature Limitations, °F	AC	Anionic	Cationic
Min. Surf Temp. for 2 Days Prior	70	60	60
Min Ambient Temp. for 7 Days After	70	60	60
(With moderate traffic after construct	tion)	No rainfall	in 48 hours

APPENDIX E

BULK SPECIFIC GRAVITY

The value of the bulk specific gravity of the aggregate is required to calculate the asphalt cement requirement in seal coats. The bulk specific gravity of normal weight aggregates can be determined by ASTM method C127 "Specific Gravity and Absorption of Coarse Aggregate". The specific gravity of synthetic (lightweight) aggregates or aggregates with high water absorption should be determined by the test method described below.

<u>Scope.</u> This method of test is intended for use in determining dry bulk specific gravity of synthetic coarse aggregate.

Apparatus. The apparatus shall consist of the following:

- (a) Balance--A balance having a capacity of 3
 kilograms or more and a sensitivity of 0.1 gram or less.
- (b) Container--A glass small mouth quart Mason jar fitted with a pycnometer cap.

<u>Sample</u>. A sample of sufficient size to yield approximately 400 grams after being oven dried shall be selected, by the method of quartering, from the aggregate to be tested.

Procedure.

- (a) The test shall be conducted at a temperature of 72 $+ 5^{\circ}F.$
- (b) The sample shall be dried in an oven at a temperature of 105^oC for a minimum of 24 hours. The sample shall then be allowed to cool to room temperature in a desiccator.
- (c) The weight of the pycnometer jar and cap shall be determined to the nearest 0.1 gram.
- (d) The weight of the pycnometer completely filled with distilled water shall be obtained to the nearest 0.1 gram. Match marks shall be used on the jar and cap to insure that the same volume is obtained throughout the test.
- (e) The dry sample shall be placed in the pycnometer and the total weight determined to the nearest 0.1 gram.
- (f) The jar shall be filled with distilled water. The top shall then be placed on the jar with the match mark coinciding the water added to fill the jar and top completely. The pycnometer with sample and water shall then be weighed to the nearest 0.1 gram. With a little practice, the first weighing can be accomplished two minutes after the water is first introduced into the container. Weighings shall then be made at intervals of 4, 6, 8, 10, 20, 30, 60, 90 and 120 minutes from the beginning of the test, taking care to agitate the sample by rolling and shaking the jar and then add water as required to return the water level to the reference level before each weighing is made.

165

<u>Calculations</u>. A curve with time (to at least 10 minutes) as the absicissa and weight of pycnometer plus sample plus water as the ordinate shall be plotted on rectangular coordinate paper. This curve shall be extended back to include zero time and the weight of pyconometer plus sample plus initial water read from the curve. The dry bulk specific gravity shall be calculated by dividing the oven dry weight of the sample by the bulk volume of the sample determined at zero time.