

by
Jeffery L. Memmott Research Associate
and
Conrad L. Dudek Program Manager

Research Report 292-1

Sponsored by the State Department of Highways and Public Transportation
 in Cooperation with the
 Federal Highway Administration U.S. Department of Transportation

Texas Transportation Institute Texas A\&M University College Station, Texas

September 1982

The authors wish to thank Blair Marsden and Herman Haenel (D-18T, SDHPT) for their constructive comments and suggestions during the course of the research documented herein. The authors would also like to thank Richard W. Denney for his help and comments in improvements to the computer program and the documentation.

The research direction was guided by a Technical Advisory Committee. The contributions of this Committee, whose members are listed below, are gratefully acknowledged:

Benjamin W. Bohuslav, Supervising Maintenance Engineer, District 13
Walter Collier, District Maintenance Engineer, District 15
Billie E. Davis, District Maintenance Engineer, District 2
Milton Dietert, Assistant Chief Engineer of Safety and Maintenance Operations D-18
Herman Gadeke, District Traffic Engineer, District 15
Hunter Garrison, District Maintenance Engineer, District 12
Henry Grann, Supervisory Traffic Engineer, District 18
Herman Haenel, Supervisory Traffic Engineer, D-18T
Bobby Hodge, Supervisory Traffic Engineer, District 2
Steve Levine, Traffic Management Supervisor, District 12
Blair Marsden, Traffic Engineer, D-18T
Silas M. Prince, District Maintenance Engineer, District 11
Lewis Rhodes, Traffic Engineer, D-18T
Russell G. Taylor, Engineering Technician V, District 14
Milton Watkins, District Maintenance Engineer, District 18
John Wilder, District Maintenance Engineer, District 14
The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

This report examines a model designed to calculate the additional road user costs as a result of lane closures at highway work zones. The model, QUEWZ, is designed for evaluation of freeway work zones, but can be used for other highway types. The program presupposes a safe and adequate traffic control plan.

The major characteristics of the model include:

1. Two categories of lane closure strategies are assumed. The first type is closure of one or more lanes in a single direction of travel. The second type is a crossover, where one side of the roadway is closed and two-lane, two-way traffic is maintained on the other side of the roadway.
2. Hourly traffic volumes are used rather than $A D T$. This allows for a much more accurate estimate of average speeds, and the estimated queue when demand exceeds capacity.
3. A typical hourly speed-volume relationship is assumed in the model, but can be changed by the user as part of the input data.
4. Vehicle capacity through the work zone is not a constant parameter but based upon a distribution of work zone capacities in Texas. The model user can select the probability that his work zone capacity estimate will cover a certain percentage of workzone capacities observed in Texas. For those cases which are not supported by Texas data, or if Texas data are not appropriate, the user can override the programgenerated work zone capacity in the input.
5. A relatively small amount of data is required to run QUEWZ. These data elements include, the lane closure strategy, total number of
lanes and the number of open lanes through the work zone, the length of closure, the hours of closure and work zone activity, and hourly traffic volumes.
6. The output from QUEWZ includes vehicle capacity and average speed through the work zone, hourly road user costs, daily user costs, and if a queue develops, the average length of queue each hour.

The user cost calculations in QUEWZ fall into three general categories. Delay costs result from slowing down and going through the work zone at a reduced speed, and if a queue develops, the delay of vehicles in the queue. Change in vehicle running costs come from a lower average running speed through the work zone and queue, if one develops. Speed-change cycling costs come from slowing down to go through the work zone and stop-and-go conditions if there is a queue. Dollar values of operating costs come from the AASHTO Redbook (1), and the values of time from the HEEM program (2). Both are updated to December 1981 values.

Several of the user costs calculations utilize information obtained from recent TTI findings regarding work zone capacities, average speeds through work zones, characteristics of queues which have formed upstream of the closure, and the effect of work activity in the work zone on vehicle reaction while going through the work zone.

The report also presents twenty sample lane closure problems. The estimates of user costs and queue length from QUEWZ are presented, along with some suggestions for using the output in decisions regarding lane closures through work zones.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS i
SUMMARY ii
TABLE OF CONTENTS iv
INTRODUCTION 1
CHARACTERISTICS OF MODEL 2
Characteristics of Strategy 1 , Single Direction Closure 5
Characteristics of Strategy 2, Crossover 7
USE OF THE MODEL 8
EXAMPLES OF THE MODEL'S USE 13
SUMMARY AND RECOMMENDATIUNS 16
REFERENCES 17
APPENDIX A 18
USER COST CALCULATIONS 19
Estimation of Vehicle Capacity Through Work Zone 19
Calculation of Average Speeds 22
Calculation of Delay Through the Lane Closure Section 27
Calculation of Queue Delay 28
Cost of Speed-Change Cycles 32
Change in Vehicle Running Costs 33
Total User Costs 35
APPENDIX B 36
program ducumentation 37
Program Description 37
Program Flowchart 38
Variable Dictionary 63
Program Listing. 68
Sample Uutput 77

INTRODUCTION

An important aspect of a highway work zone is the lane closure strategy and the movement of traffic through the work zone. As part of the evaluation to determine the effects of different lane closure strategies (e.g., one-, two-, or three-lane closures on a four-lane section), the additional costs to vehicle users should be considered. It is therefore necessary to have a model which will improve the accuracy of user costs estimates resulting from the forced movement through a restricted work zone area.

There are several models which attempt to measure those costs ($\underline{3}, \underline{4}, \underline{5}$), but each one has several limitations which prevent it from accurately calculating user costs, or are so complicated that it cannot be used very quickly or easily. Those limitations include, use of average daily traffic (ADT) volume instead of hourly traffic volumes, large amounts of required input data, no adjustment for stop-and-go conditions in a queue, and no adjustment for the effective length of reduced speed through the work zone for low traffic volumes.

This report presents a model, QUEWZ, to estimate the additional user costs resulting from lane closures in one or both directions of travel. User costs can be estimated when one or more lanes are closed in just one direction of travel, or when a crossover is used. Hourly, as well as daily user costs are estimated, and when vehicle demand exceeds capacity, the model also estinates the length of queue. The model is designed specifically for freeway conditions, but it can be used in other situations if appropriate adjustments are made in the input data. Two vehicle types are used in the model, passenger cars and trucks.

User costs resulting from restricted capacity through a work zone can be placed in four general categories, delay or travel time costs, vehicle running costs, speed change cycling costs, and accident costs. Delay costs result from reduced speeds through the work zone, delay in slowing down from and returning to the approach speed, and delay in a queue if demand exceeds capacity. Changes in vehicle running costs result from reduced speeds through the work zone and queue, if any. Speed change cycling costs are generated from slowing down to go through the work zone and stop-and-go conditions if a queue is present. Changes in accident costs are not calculated in this model due to the lack of data on changes in accident rates through a typical work zone.

Two general configurations of lane closures through a work zone are incorporated into QUEWZ. These configurations are illustrated in Figure 1. The first configuration involves situations where one or more lanes are closed in one direction, while traffic moving in the opposite direction is not affected. The second configuration involves a crossover, where all lanes in one direction of travel are closed and two-lane, two-way traffic is maintained on the other directional lanes. A maximum of six lanes in each direction can be handled in the model.

Most other models use ADT as the input data for vehicle volume ($\underline{3}, \underline{4}$). However, the daily peaking pattern can have a significant impact on average speeds and queues during the day. Therefore hourly traffic volumes are used in this model, and the user costs are calculated for each of those hourly traffic volumes. The hourly user costs are then summed, giving the daily user costs. The input and output data for the model are listed in Table 1 . Details are presented in the section entitled "Use of the Model."

LANE CLOSURE STRATEGY 1

ONE OR MORE LANES CLOSED IN ONE DIRECTION OF TRAFFIC

LANE CLOSURE STRATEGY 2 chossover one of more lanes closed in each direction of travel

FIGURE 1 TRAFFIC CLOSURE CONFIGURATION THROLGH A WORK ZONE

Table 1. Input and Output Data for QUEWZ
Input Data
Required
Lane Closure Strategy (See Figure l)
Total Number of Lanes
Number of Open Lanes Through Work Zone
Length of Closure
Time of Lane Closure and Work Zone Activity
Actual Traffic Volumes by Hour
Optional
Factor to Update Cost Calculations
Percentage Trucks
Speeds and Volumes for Speed-Volume Curve
Capacity Estimate Risk Reduction Factor or Work Zone Capacity
Problem Description
Output Data
Vehicle Capacity
Average Speed Through Work Zone by Hour
Hourly User Costs
Daily User Costs
If a Queue Develops, Average Length of Queue each Hour

Many of the items listed on Table 1 are apparent. A few need some additional explanation.

Currently QUEWZ handles two lane closure strategies as shown in Figure 1. The user is required to identify the time when lanes will be closed and reopened. For long term road work that lasts for more than one day, the time of day when the work crews are at the site must also be specified. For short term projects the hours of restricted capacity would coincide with the work zone activity, so the hours of work zone activity could be left blank.

The factor to update cost calculations is used to update the dollar user costs to current prices. The method for determining the factor is presented in the section entitled "Use of the Model."

The QUEWZ program also allows the user to include a problem description. Such information as highway number, location of work zone, etc. can be included.

The program has constant values built into the model for all optional inputs. If the user does not specify values for the optional inputs, the program automatically uses its preset values. These program constant values, or default values, are presented in later sections of the report. Details of the user cost calculations are contained in Appendix A.

CHARACTERISTICS OF STRATEGY 1, SINGLE DIRECTION CLOSURE

The QUEWZ program assumes a typical speed-volume relationship. The user of the program has the option of defining a different speed-volume relationship by inputting the free flow speed, speed and lane volume at the dividing point between level of service D and E, speed at capacity, and lane volume at capacity.

The user has an option of including a capacity estimate risk reduction
factor. Since the QUEWZ program uses a probability distribution for each type of lane closure configuration, the user can select a level of confidence that his work zone capacity estimate will cover a certain percentage of those capacities observed to date in Texas. For example, if the user selects a risk reduction factor of 100 , the estimated work zone capacity will be low but the user can be assured at a 100% level of confidence that the actual work zone capacity will be equal to or larger than the estimated capacity (based on capacities observed thus far for single direction closures in Texas). A lower risk reduction factor will yield a higher estimated work zone capacity with an associated risk that the actual work zone capacity will be less than the estimated capacity (6). The program uses a preset risk factor of 60 which will give approximately the mean capacity for each closure configuration. If a lower risk reduction factor is used in the input data, the result will be a higher estimated capacity through the work zone than the mean capacity observed to date for work zones in Texas. A value more than 60 would have exactly the opposite effect on the estimated capacity. Additional information on the selection of the appropriate value is contained in Appendix A.

It should be noted that the capacity estimate risk factor is used to calibrate the program to actual conditions at a particular work zone. The level of work activity, its proximity to traffic, whether the work is short or long term, and other factors not well defined as of this writing, affect work zone capacity. In addition, the program does not account for traffic diversion. The amount of traffic diverting to alternate routes can vary from site to site. In order to properly calibrate the model, the user should check the program solutions against actual field conditions (e.g., by comparing queue length, speed, etc.), and adjust the risk factor accordingly.

For some lane closure configurations, capacity data are unavailable for Texas work zones, and default values are automatically assigned by the computer program based on NCHRP Report 1-10A (3). If these values are not appropriate, or if the Texas data do not properly describe the actual work zone capacity, then the user can specify the per lane capacity in the work zone. The specified capacity value will override the work zone capacity generated by QUEWZ.

CHARACTERISTICS OF STRATEGY 2, CROSSOVER
Due to the lack of capacity and speed data for crossover configurations, the same approach and parameters previously described for strategy 1 , are used for the crossover strategy. In effect each direction of travel through the work zone is treated independently. The same speed-volume relationship is assumed for each direction of travel.

The capacity in each direction is estimated based upon the previously described Texas capacity data for closures affecting a single direction of travel. For example, a crossover for a 4-lane freeway would consist of twolane, two-way traffic through the work zone. The capacity for each direction of travel would be estimated using the lane reduction in that direction. In this case each direction is being reduced to one lane in a single direction, which would be treated as a single direction closure for both directions of travel. This is the same way crossovers are handled in the FPS Model (3) and the EAROMAR Model (5).
The input data for each prohlem in the model consists of one card to describe the parameters, and an additional two or four cards for the hourly traffic volumes.
Card 1
Card columns
1-2 problem number (1 to 99)
3 lane closure strategy; 1 indicates single direction closure, 2 indicates crossover *4 - 7 factor to update cost calculations (default $=1.00$) *8 - 10 percentage trucks (default = 8)
*11-13 free flow speed in miles per hour (default $=60$)
*14-16 LOS D/E breakpoint speed in miles per hour (default $=40$)
*17-19 capacity speed in miles per hour (default $=30$)
*20-23 LOS D/E breakpoint volume per lane in vehicles per hour (default $=1600$)
*24-27 capacity volume per lane in vehicles per hour (default = 2000)
total number of lanes inbound direction (1-6)
29 total number of lanes outbound direction (1-6)
30-33 length of restricted capacity in miles
34 number of open lanes, inbound direction, through work
zone. Must be equal to or less than card column 28
35
number of open lanes, outbound direction, through work zone. Must be equal to or less than card column 29
36-37 beginning hour of restricted capacity in military time (0 to 23)

38-39 ending hour of restricted capacity in military time (1 to 24), (must be greater than beginning hour of restricted capacity)
*40-41 beginning hour of work zone activity in military time (0 to 23), (default $=$ beginning hour of restricted capacity) ending hour of work zone activity in military time (1 to 24), (default $=$ ending hour of restricted capacity)
*44-47 capacity estimate risk reduction factor, probability that estimated capacity will be less than or equal to actual capacity (default $=60$). If a user-supplied capacity is desired, the work zone capacity per lane should be specified in this field. If this value if greater than 100 , the program assumes that capacity is being specified. This value should not exceed 90% of the per lane normal capacity; otherwise an error message will be displayed and the problem skipped.
*48-80 problem description

* indicates optional data with default values, may be left blank.

Cards 2-3 if lane closure strategy 1 , single direction closure
Cards 2-5 if lane closure strategy 2, crossover
Card columns
1-2 problem number (must be the same as card 1)
3 direction (I-inbound or 0 -outbound).
4 period (1-for first 12 hours of day, 2 -second 12 hours of day)

5-9 total traffic volume, all lanes, in specified direction, in first hour of period (0000 to 0100 hours or 1200 to

1300 hours)

10-14 second hour total traffic volume (0100 to 0200 hours or 1300 to 1400 . hours)

15-19 third hour total traffic volume (0200 to 0300 hours or 1400 to 1500 hours)

20-24 fourth hour total traffic volume (0300 to 0400 hours or 1500 to 1600 hours)

25-29 fifth hour total traffic volume (0400 to 0500 hours or 1600 to 1700 hours)

30-34 sixth hour total traffic volume (0500 to 0600 hours or 1700 to 1800 hours)

35-39 seventh hour total traffic volume (0600 to 0700 hours or 1800 to 1900 hours)

40-44 eighth hour total traffic volume (0700 to 0800 hours or 1900 to 2000 hours)

45-49 ninth hour total traffic volume (0800 to 0900 hours or 2000 to 2100 hours)

50-54 tenth hour total traffic volume (0900 to 1000 hours or 2100 to 2200 hours)

55-59 eleventh hour total traffic volume (1000 to 1100 hours or 2200 to 2300 hours)

60-64 twelfth hour total traffic volume (1100 to 1200 hours or 2300 to 2400 hours)

QUEWZ can be used to look at a number of different work zones at the same time, as well as different closure strategies at a single work zone. Each alternative at each work zone must be given a different problem number. The problem number can range from 1 to 99 . Care must be taken that the first card
for each problem specify the model correctly, and the data are in the correct card columns. Only a few of the data elements on the first card must be specified, most can be left blank. If the card columns are left blank, then the model will use the previously described default values for those data elements. To update the cost calculations to any month since December 1981, merely insert the Consumer Price Index (CPI) for that month, with $1967=100$, into the following formula for the cost update factor (CUF),

$$
\text { CUF }=\frac{C P I}{281.5}
$$

Any other price index could be used by replacing 281.5 in the denominator with the index value for December 1981.

For projects lasting less than a day, just the hours of restricted capacity need to be specified, the hours of work zone activity can be left blank. For projects lasting more than 24 hours, the restricted capacity can be specified for some period greater than the hours of work zone activity. In this situation the hours of restricted capacity must be specified (which would normally be the 24 hour period), along with the hours of actual work zone activity.

The volume cards for each numbered problem can come in any order, after the first card of the problem, but there must be the right number of cards specifying the volume data. There must be two cards for lane closure strategy 1. (the lane closure in one direction problem) and four cards for lane closure strategy 2 (the crossover problem). There are no default traffic volumes, so all volumes on each card must be specified or zero will be used for that hour. Of course only traffic volumes for those hours when the lane(s) are closed would be needed for the cost calculations, so traffic volumes for hours when
all lanes are open can be left blank. It would be advisable, nowever, to include a few hours of traffic after the lanes are open to account for the possibility of a queue at the time the lanes are opened, and the necessary additional time period(s) to relieve the congestion.

Twenty sample problems are presented in the next section using QUEWZ. The program and the complete output for each of the test problems are presented in Appendix B. The output format is basically the same for all problems, except for the treatment of the work zone capacity. If the program calculates the capacity, then the CERF factor used in the calculation is printed out. If the work zone capcity is part of the input data, then the CERF factor is not used, and therefore not printed out.

EXAMPLES OF THE MODEL'S USE

In the examples used to test the model, the same hourly traffic volumes are used for each problem. The freeway work zone is assumed to be one mile in length and work activity begins at 9:00 AM and ends at 3:00 PM. It is also assumed that the lane closures through the work zone remain closed for an entire 24 hour period for some problems, and for others it is assumed that closure begins at 8:00 AM and ends at 4:00 PM. A vehicle mix of eight percent trucks is also assumed.

Table 2 presents some summary results of twenty test problems. Complete output for each problem is contained in Appendix B. In several of the test problems, demand exceeded capacity for some hours and a queue formed. The user costs increased substantially for those hours when a queue was present, which dramatically increased the total daily user costs.

An interesting comparison can be made with problems five and six. Suppose an engineer has to perform maintenance work on a freeway and has the choice of closing one or two lanes of the three inbound lanes. If the hourly traffic volumes were similar to those assumed in these test problems, then a one lane closure would not be expected to produce any queues and a small amount of user costs. If the second lane is closed however, then very long queues could be expected, along with substantial user costs. This is the sort of situation where QUEWZ could be very useful, by providing relevant information concerning the available alternatives.

In addition, Table 2 has three problems to test the work-zone capacity as part of the input data, which replaced the computer generated capacity of 1332 vphvl. The same thing happened with problem 16. However on problem 17 the work-zone capacity was intentionally given a value greater than the restricted
capacity, producing an error, and the problem was not processed. If a workzone capacity is given as part of the input data, it cannot exceed 90% of the normal capacity per lane.

Table 2.
** Summary of example problems ***

$\begin{aligned} & \text { PROB } \\ & \text { NO } \end{aligned}$	TOTAL Number OF LANES INB OUTB		number OF OPEN LANES THRU WZ INB OUTB		$\begin{aligned} & \text { LENGTH } \\ & \text { OF } \\ & \text { WORK } \\ & \text { 2ONE } \\ & \text { (MILES) } \end{aligned}$	$\begin{aligned} & \text { NORMAL } \\ & \text { CAPACITY } \\ & \text { EACH } \\ & \text { DIRETION } \\ & \text { (VPH) } \end{aligned}$	$\begin{aligned} & \text { RES } \\ & \text { WORK } \\ & \text { INACTI } \\ & \text { HOURS } \\ & \text { INB } \end{aligned}$	```gitaicted ZONE Ivity (VPH) outB```	CAPACIT WORK ACTIV HOURS INB	$\begin{aligned} & \text { YY } \\ & \text { ZONE } \\ & 1 \text { TY } \\ & \text { (VPH) } \\ & \text { OUTB } \end{aligned}$		S 0 F ICTED CITY END	HOURS WORK ACTIV BEG		$\begin{aligned} & \text { LON } \\ & \text { EST } \\ & \text { LE } \\ & \text { INB } \end{aligned}$	ST UEUE GH S) OUTB	total add. DAILY USER cosis due to LANE CLOSURE (\$)
1	2	2	1	2	1.00	4000.	1800		1332.		8	16	9	15	1.9	0.0	17647.
2	2	2	1	1	1.00	4000.	1800.	1800.	1354.	1354.	8	16	9	15	1.7	2.9	35112.
3	2	2	1	2	1.00	4000.	1800.		1650.		0	23	9	15	1.0	0.0	1121.4.
4	2	2	1	1	1.00	4000.	1800.	1800	1354.	1354	0	23	9	15	1.7	3.7	78343.
5	3	3	2	3	1.00	6000.	3600.		2983		8	16	9	15	0.0	0.0	546.
6	3	3	1	3	1.00	6000.	1800.		1127.		8	16	9	15	3.6	0.0	64108.
7	3	3	2	3	1.00	6000.	3600.		2983.		0	23	9	15	0.0	0.0	847.
8	3	3	1	3	1.00	6000.	1800.		1127.		0	23	9	15	4.1	0.0	120878.
9	4	4	4	3	1.00	8000.		5400		4577.	0	23	9	15	0.0	0.0	. 368.
10	4	4	4	2	1.00	8000.		3600		2988.	0	23	9	15	0.0	0.0	986.
11	4	4	4	1	1.00	8000.		1800		1200.	0	23	9	15	0.0	3.2	101485.
12	5	5	4	5	1.00	10000.	7200.		6200		0	23	9	15	0.0	0.0	214.
13	5	5	3	5	1.00	10000.	5400.		4500.		0	23	9	15	0.0	0.0	436.
14	5	5	2	5	1.00	10000.	3600.		2745		0	23	9	15	0.0	0.0	1126.
15	5	5	1	5	1.00	10000.	1800.		1200		0	23	9	15	1.7	0.0	81736.
18	6	8	5	6	1. 00	12000	9000.		8250.		9	15	9	15	0.0	0.0	58.
17	PROBLEM MOT PROCESSED																
18	6	6	3	6	1.00	12000	5400.		4500.		9	15	9	15	0.0	0.0	217.
19	B	6	2	6	1.00	12000.	3600.		2800.		9	15	9	15	0.0	0.0	551.
20	B	6	1	B	1.00	12000.	1800.		1200		9	15	9	85	0.8	0.0	27495.

SUMMARY AND RECOMMENDATIONS

This report presents a model to calculate the additional user costs generated by restricted capacity through a work zone. The model goes through a number of calculations to estimate the various user costs associated with work zones. Those user costs, presupposing an adequate Traffic Control Plan, include delay costs and change in vehicle running costs through the work zone, speed-change cycle costs in slowing down and returning to the approach speed, and costs if a queue forms in the form of delay costs, vehicle running costs, and speed-change cycle costs. The accuracy of the cost calculations has been increased significantly over previous models by using hourly rather than daily traffic volume and by incorporating recent findings regarding work zone capacities and average speeds.

Additional work remains in order to accurately estimate the effect on average speeds from varying shoulder widths, and the change in accident rates should be the subject of further research. In addition more work should be done on the user costs generated in a queue including vehicles which divert to avoid waiting in the queue, which is not currently accounted for. This additional information would increase the accuracy of the user cost calculations, which in turn would increase the reliability of decisions regarding work zone configurations and the tradeoffs involved. The program should also be written to output alternative traffic control strategies that can improve traffic operations if excessive queues develop. This will assure that the user explores all alternatives and it increases the probability of completing the required work at minimum cost and time. A few alternative traffic control strategies include closing entrance ramps, temporary use of the shoulder as an operating lane, diverting traffic to the frontage road, and splitting traffic during middle lane closures.

REFERENCES

1. American Association of State Highway and Transportation Officials, A Manual for User Benefit Analysis of Highway and Bus Transit Improvements, Washington, D.C., February 1977.
2. Texas Department of Highways and Public Transportation, Programmer's Supplement to Highway Economic Evaluation Model, Austin, Texas, June 1976.
3. R.L. Lytton and W.F. McFarland, Systems Approach to Pavement DesignImplementation Phase, NCHRP Report 1-10A, Highway Research Board, Washington D.C., March 1974.
4. A.D. St. John, R.R. Blackburn, and D.W. Harwood, Effectiveness of Alternative Skid Reduction Measures, Volume 2, FHWA-RD-79-23, Midwest Research Institute, Kansas City, Missouri, November 1978.
5. B.C. Bulter, Ur., Economic Analysis of Roadway Occupancy for Freeway Pavement Maintenance and Rehabilitation, Volume 1 FHWA-RD-76-14, Byrd, Tallomy, MacDonald and Lewis, Falls Church, Virginia, October 1974.
6. C.L. Dudek and S.H. Richards, Traffic Capacity Through Work Zones on Urban Freeways, Research Report 228-6, Texas Transportation Institute, College Station, Texas, April 1981.
7. Highway Research Board, National Academy of Sciences, Highway Capacity Manual, Washington D.C., 1965.
8. C.L. Dudek, et: al., Improvements and New Concepts for Traffic Control in Work Zones, Interim Report, FHWA, Texas Transportation Institute, Texas A $8 M$ University, College Station, Texas, June 1982.
9. S.H. Richards and C.L. Dudek, Sight Distance Requirements at Lane Closure Work Zones on Urban Freeways, Research Report 228-7, Texas Transportation Institute, Texas A\&M University, College Station, Texas, April 1981.
10. C.J. Messer and C.L. Dudek, Development of a Model for Predicting Travel Time on an Urban Freeway, Research Report 165-8, Texas Transportation Institute, Texas AZM University, College Station, Texas, January 1974.

The calculation of user costs in QUEWZ, in most respects, is typical of user cost calculations elsewhere. There are significant differences, however, for several aspects of speeds, capacities, and queues which incorporate several recent findings by TTI concerning work zones. As a result, several different equations and approaches are presented here which are not found in other models.

Estimation of Vehicle Capacity Through Work Zone

Generally, the primary effect work zones have on traffic is the restricted capacity around the work area and the resulting effect on average speeds. The model assumes highway capacity under normal conditions will be 2,000 vehicles per hour per lane (vphpl), but this can be changed as part of the input data. When lanes are closed for prolonged periods (i.e., longer than one day), but work activity is not taking place in the work zone, previous research by TTI has found the capacity to be about 1800 vphpl, or about 90 percent of normal capacity, which is used in this model.

Data on work zone capacities during work activity hours are reported in TTI Research Report 228-6, (6). Using the data in that report, linear approximations of the cumulative distributions for each reported closure combination are estimated. These capacity approximations are depicted in Figure 2. The numbers in the parentheses indicate the number of original lanes and the number of open lanes through the work zone. The function of the Figure is to assist the users in identifying risks in using certain capacity values for a given lane closure situation to estimate the effects of the lane closures (e.g., queue lengths).

FIGURE 2 CUMULATIVE DISTRIBUTION OF WORK ZONE CAPACITIES

For example, the 85 th percentile for the $(3,1)$ situation is 1030 vphpl. This means that 85% of the studies conducted on 3-lane freeway sections with 1 lane open through the work zone. resulted in capacity flows equal to or greater than 1030 vphpl. The capacity flow was equal to or greater than 1290 vphpl on only 20% of the cases studied. Thus, to assume a higher capacity of 1500 vphpl (which is the mean capacity for $(3,2)$ and $(4,2)$ closures), for $(3,1)$ work zones would tend to underestimate the length of queues caused by the lane reduction at the vast majority of these work zones. While this data only applies to single direction closure strategies, the same capacities are used here for the crossover strategy until capacity data are available for crossover stategies.

For those lane closure combinations which did not have capacity data (i.e., $(4,1),(5,1),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4)$ combinations $)$, the closure capacities in NCHRP Report 1-10A (3) are used. For freeways with four, five, or six lanes in each direction, and only one lane left open through the work zone, an average capacity of 1200 vphpl is used. For five or six lanes with three lanes left open, 1500 vphpl capacity is used, for five or six lanes with four lanes left open, 1550 vphpl capacity is used, and for six lanes with five lanes left open, 1580 vphpl capacity is used. Estimated capacity is calculated in the program with the following equation,

$$
C A P W=a-b(C E R F)
$$

where CAPW = restricted capacity during work zone activity hours CERF = capacity estinate risk factor, probability that the estimated capacity will be less than or equal to the actual capacity.

The values for coefficients a and b are listed in Table 3 . The coefficients were qbtained through regression analyses of the capacity data presented in TTI Research Report 228-6 (6) and illustrated in Figure 2. The capacity estimate risk factor (CERF) in the above equation can take any value from 1 to 100. The value of CERF can be specified as part of the input data, but it is not necessary. If the value is left blank or is zero, a value of 60 will automatically be used in the model, which yields the approximate mean capacity for Texas work zones. This work zone capacity generated within the program can be overriden by a user specified capacity as part of the input data. To input the work zone capacity, it is necessary to replace the CERF number with the work zone capacity per lane. Any number in that field greater than 100 will be used as the work zone capacity, and the program generated capacity will not be used.

Calculation of Average Speeds

The average approach speed is calculated using the assumed speed-volume curve depicted in Figure 3. Truck speeds are assumed to be 90 percent of car speeds (2). The three speed parameters, $S P_{1}, S P_{2}$, and $S P_{3}$; along with the volume parameters, V_{1}, and V_{2}; have preset constant values or default values if the user does not specify speed and volume parameters. Those default values are given by:

$$
\begin{aligned}
S P_{1} & =60 \mathrm{mph} \\
S P_{2} & =40 \mathrm{mph} \\
S P_{3} & =30 \mathrm{mph} \\
V_{1} & =2,000 \mathrm{vphp} \\
V_{2} & =1,600 \mathrm{vphpl}
\end{aligned}
$$

Table 3. Restricted Capacity Coefficients

 During Work Zone Activity Hours> Normal Number of Open Lanes in One Direction

2	$\frac{1}{1460}$	-2	-3	-4	5
3	1370	1600			
4	1200	1580	1560		
5	1200	1460	1500	1550	
6	1200	1400	1500	1550	1580

		Slope Term (b)			
2	$\frac{1}{2.13}$	-2	-3	-	5
3	4.05	1.81			
4	0.00	1.60	0.57		
5	0.00	1.46	0.00	0.00	
6	0.00	0.00	0.00	0.00	0.00

$$
\begin{aligned}
& \text { VEHICLES PER HOUR PER LANE } \\
& \text { or V/C RATIO } \\
& \text { HOLURLY SPEED - VOLLME }
\end{aligned}
$$

$$
\begin{aligned}
& 5- \\
& \ggg 0
\end{aligned}
$$

> Table 4. Recommended Speeds and Volumes for Freeways of Various Lanes and Peak-Hour Factors

		Peak-Hour Factor		0.77
4 lanes	1.00	0.91	$\underline{0.83}$	
$S P_{1}$	60	60	60	60
SP_{2}	37	38	41	42
SP_{3}	30	30	30	30
VL_{2}	1800	1650	1500	1400
VL_{1}	2000	2000	2000	2000

6 lanes

SP_{1}	60	60	60	60
SP_{2}	37	39	41	43
$S P_{3}$	30	30	30	30
VL_{2}	1800	1650	1500	1400
$\mathrm{~V} \mathrm{~L}_{1}$	2000	2000	2000	2000

8 lanes

SP_{1}	60	60	60	60
SP_{2}	37	39	42	44
SP_{3}	30	30	30	30
VL	1800	1650	1500	1400
VL		2000	2000	2000

Table 4 gives some additional quidance for speed and volume parameters from the Highway Capacity Manual (7) which vary by the number of freeway lanes and the peak-hour factor, which is simply the ratio of the peak-hour traffic volume and the maximum $5-\mathrm{min}$. rate of flow within the peak-hour. The Highway Capacity Manual (1) recommends a peak-hour factor of 0.91 for large metropolitan areas over a million population, a peak-hour factor of 0.83 for areas between 500,000 and $1,000,000$ population, and a peak-hour factor of 0.77 for areas under 500,000 population. These values may need calibration to match field conditions.

The hourly traffic volume specified by the user is converted into a V/C ratio, and the approach speed, in mph, is calculated using the following equations, which is based on the assumed speed-volume relationship. The equations are taken from the Highway Economic Evaluation Model, HEEM (2).

$$
\begin{aligned}
& \text { if } \frac{V_{2}}{V_{1}} \geq V / C \text {, then } \\
& S P=S P_{1}+\frac{V_{1}\left(S P_{2}-S P_{1}\right)}{V_{2}} \cdot(V / C) \\
& \text { if } \frac{V_{2}}{V_{1}}<V / C \leq 1 \text {, then } \\
& S P=S P_{2}+\left(S P_{2}-S P_{3}\right)\left[1-\left(\frac{V / C-V_{2} / V}{1-V_{2} / V_{1}}\right)^{2}\right]^{\frac{1}{2}} \\
& \text { if } V / C>1 \text { or a queue is present, then }
\end{aligned}
$$

$S P=S P_{3}(2-V / C)$, with the speed constrained to the following range,

$$
20 \leq S P \leq S P_{3}
$$

The average speed through the work zone $\left(S P_{W z}\right)$ is calculated from the same speed equations above, using the V / C ratio of the work zone area. Unpublished data on work zones in Texas, collected by TTI (8) (which will be referred to as the "work zone data" in this report), indicates the speed-volume relationship does not change if capacity is restricted through a work zone. The higher V / C ratio accounts for the lower average speeds.

That same "work zone data" also indicate that the minimum speed ($S P_{m n}$) of vehicles is somewhat lower than the average speed through the work zone, and can be estimated using the V/C ratio of the work zone,

$$
S P_{m n}=S P_{w z}-2.3-25.7\left(V / C_{w z}\right)^{2}
$$

If there is a queue, then $S P_{m n}=0$.

Calculation of Delay Through the Lane Closure Section

The "work zone data" also indicate that the distance over which vehicles slow down through a work zone is not always the entire distance of restricted capacity. When the traffic volume is light, vehicles tend to slow down only when passing the paving machine or other major work activity. An adjustment distance of 0.1 miles on each side of the work zone is also included to account for the effects of average speed being reduced upstream of the lane closure. If the work zone closure is less than 0.1 miles, then the model assumes traffic will slow down through the entire work zone. The following equations are used to estimate the effective length of closure (CLL), in miles, of reduced average speeds,

$$
C L L=0.1+(W Z D+0.1)\left(V / C_{W Z}\right)
$$

where $W Z D=$ length of restricted capacity around work zone, in miles.

If $W Z D \leq 0.1$, or if $V / C_{W Z}>1$, then

$$
C L L=W Z D+0.2
$$

The dollar delay cost of going through the work zone at reduced speed (CDWZ), is calculated with,

$$
\begin{aligned}
C D W Z=(C L L) & \left(\frac{1}{S P_{W Z}}-\frac{1}{S P_{a p}}\right)(\mathrm{VL})(C U F)\left(P T C \cdot V L T_{c}+\frac{P T T \cdot V L T_{t}}{0.9}\right) \\
\text { where } S P_{a p} & =\text { approach speed (mph) } \\
V L & =\text { hourly vehicle volume (vph) } \\
C U F & =\text { factor to update cost calculations } \\
P T C & =\text { percentage cars }+100 \\
P T T & =\text { percentage trucks }+100 \\
V L T_{C} & =\text { car value of time }(\$ / \mathrm{hr} .) \\
V L T_{t} & =\text { truck value of time }(\$ / \mathrm{hr} .)
\end{aligned}
$$

Calculation of Queue Delay

If demand exceeds capacity of the work zone, the program assumes that a queue will form. The model also assumes there will be no change in demand as the queue forms, no traffic will divert to avoid the queue. If vehicles are assumed to arrive at a constant rate during a given hour, and enter the work zone at a constant rate during a given hour, then the average delay for each hour a queue is present (DQUE), in vehicle hours, is simply the average of the
accumulated vehicles in the queue at the beginning of hour $\mathfrak{i}\left(\operatorname{ACUM}_{j-1}\right)$ and the end of the hour $\mathfrak{i}\left(A C U M_{i}\right)$,


```
    CAPW = restricted capacity through work zone (vph) for hour i
        VL
```

An example is presented graphically in Figure 4. The times along the horizontal axis represent hours, so $\mathrm{T}_{1}=$ hour $1, \mathrm{~T}_{2}=$ hour 2 , etc. The V's along the vertical axis represent the number of accumulated vehicle demand at any given time. For example, V_{1} represents the total number of vehicles in the first hour, V_{2} represents the total number of vehicles in the first two hours, etc. The C 's represent the work zone capacity. C_{1} represents vehicle capacity for the first hour, C_{2} represents vehicle capacity for the first two hours, etc. The shaded area represents the queue delay, the excess of vehicle demand above capacity. In the first hour, there is no queue at the beginning of the hour so $A C C U M_{0}=0$. The queue at the end of the hour, $\operatorname{ACCUM}_{1}=V_{1}-C_{1}$, so the average delay during the first hour is

The average delay for each of the next two hours can be calculated in exactly the same fashion. However, in the fourth hour the queue dissipates, therefore an adjustment must be made for that portion of the hour when the queue was present. The point E, the time when the queue dissipates, can be calculated by

solving the following equation. The left side of the equation is the capacity line during the fourth hour, and the right hand side is the volume demand line during the same hour.

$$
\begin{aligned}
& \left(E-T_{3}\right)\left(C_{4}-C_{3}\right)=\left(E-T_{3}\right)\left(V_{4}-V_{3}\right)+\left(V_{3}-C_{3}\right) \\
& \left(E-T_{3}\right)\left[\left(C_{4}-C_{3}\right)-\left(V_{4}-V_{3}\right)\right]=V_{3}-C_{3} \\
& E-T_{3}=\frac{V_{3}-C_{3}}{\left(C_{4}-C_{3}\right)-\left(V_{4}-V_{3}\right)} \\
& E=T_{3}+\frac{V_{3}-C_{3}}{\left(C_{4}-C_{3}\right)-\left(V_{4}-V_{3}\right)}
\end{aligned}
$$

Therefore if the queue dissipates during hour \mathfrak{i}, then the delay calculation must be modified by the proportion of the hour that a queue was present (PQUE ${ }_{j}$).

$$
\operatorname{PQUE}_{i}=\frac{V_{i-1}-C_{i-1}}{\left(C_{i}-C_{i-1}\right)-\left(V_{i}-V_{i-1}\right)}=\frac{\text { ACUM }_{i-1}}{\text { CAPW }_{i}-V L_{i}}
$$

Average delay is then calculated as,

$$
\operatorname{DQUE}_{i}=\frac{\text { ACUM }_{i-1}}{2} \cdot \text { PQUE }_{i}
$$

Once the average delay is calculated, then the cost of the delay (CQUE ${ }_{j}$) is calculated as,

$$
\text { CQUE }_{i}=\left(\text { DQUE }_{j}\right)(C U F)\left(P T C \cdot V L T_{c}+P T T \cdot V L T_{t}\right)
$$

The average length of queue (QUEL_{i}), in miles, can also be estimated, assuming an average distance of 40 feet for each vehicle, and vehicles in the closed
lane(s) will merge to the open lane(s) after the queue has formed. It appears that the number of vehicles remaining in the closed lane(s) is a function of the sight distance to the work zone and traffic volumes (9). Until more definitive data become available, the above assumption on vehicle merging will be used.

$$
\text { QUEL }_{i}=\frac{40\left(\text { DQUE }_{\mathfrak{j}}\right)}{5280(\mathrm{TL})}
$$

where $T L=$ total number of lanes upstream of the work zone For the hour when the queue dissipates,

$$
\text { QUEL }_{i}=\frac{40\left(\text { DQUE }_{\mathbf{i}}\right)}{5280(\mathrm{TL}) \cdot \mathrm{PQUE}_{\mathbf{i}}}
$$

Cost of Speed-Change Cycles

An additional delay cost which is included in QUEWZ is the delay cost of slowing down and returning to the approach speed, as a result of the presence of a work zone (CDSC). The "work zone data" indicates a relationship between the distance traveled, in miles, during the speed-change cycle (DSC) to be a function of the V / C ratio through the work zone,

$$
D S C=0.5+0.25\left(V / C_{W Z}\right), \text { with the constraint that } D S C \leq 0.75
$$

If the speed is reduced and increased at an approximately constant rate, then the delay cost can be calculated from,

$$
\mathrm{CDSC}=(\mathrm{DSC})\left(\frac{2}{\mathrm{SP}_{\mathrm{ap}}+\mathrm{SP} \mathrm{P}_{\mathrm{mn}}}-\frac{1}{\mathrm{SP}}\right)(\mathrm{VL})(\mathrm{CUF})\left(\mathrm{PTC} \cdot \mathrm{VLT}_{\mathrm{c}^{+}} \frac{\mathrm{PTT} \cdot \mathrm{VLT}_{\mathrm{t}}}{0.9}\right)
$$

In order to estimate the change in vehicle operating costs resulting from the speed-change cycles, cost equations were developed from tabular data in the AASHTO Redbook (1) and updated to December 1981. The speed-change costs per 1000 vehicle miles for cars (SPCC) and trucks (SPCT) are calculated by,

$$
\begin{aligned}
& \mathrm{SPCC}=-5.2187+1.1241\left(\mathrm{SP}_{\mathrm{ap}}\right)-1.1125\left(\mathrm{SP}_{\mathrm{mn}}\right) \\
& \mathrm{SPCT}=-32.2883+7.1226\left(.9 \mathrm{SP}_{\mathrm{ap}}\right)-6.684\left(.9 \mathrm{SP}_{\mathrm{mn}}\right)
\end{aligned}
$$

The additional operating cost of the speed-change cycle (CSPC) is,

$$
C S P C=\left(\frac{V L}{1000}\right)(C U F)(P T C \cdot S P C C+P T T \cdot S P C T)
$$

If a queue is present, then additional speed-change operating costs (CSPQ) must be added. The "work zone data" indicate approximately three $0-10 \mathrm{mph}$ speed-change cycles occur per mile of queue. herefore the cost can be calculated,

$$
C S P Q=\left(\frac{V L}{1000}\right)(C U F)(3 \cdot Q U E L)(6.0223 \cdot P T C+31.8151 \cdot P T T)
$$

During the hour the queue dissipates, the above equation for CSPQ is multiplied by PQUE.

Change in Vehicle Running Costs

Vehicle running costs are also affected by changes in average speeds. The change in car running costs $\left(V O C_{c}\right)$ and truck running costs ($V O C_{t}$) per 1000 vehicle miles can be calculated by the following equations. These equations were also estimated from tabular data in the AASHTO Redbook (1), updated to December 1981.

$$
\begin{aligned}
& V O C_{c}=f\left(S P_{W Z}\right)-f\left(S P_{a p}\right) \\
& V O C_{t}=g\left(.9 S P_{W Z}\right)-g\left(.9 S P_{a p}\right) \\
& \text { where } f(S P)=(395.6898)_{e} e^{.01537(S P)_{S P}-.45525} \\
& g(S P)=(179.1466)_{e} e^{.02203(S P)_{S P}}-.35902 \\
&+(1201.8847)_{e^{.032(S P)}} e^{.03 P^{-.79202}}
\end{aligned}
$$

The change in vehicle running costs ($O C$) is then calculated as,

$$
O C=\left(\frac{V L}{1000}\right)(C U F)(C L L)\left(V O C_{C} \cdot P T C+V O C_{t} \cdot P T T\right)
$$

If a queue forms, the average speed through the queue ($S P_{q}$) can be calculated using a formula in TTI Research Report 165-8 (10),

$$
\begin{aligned}
& S P_{q}=\left(\frac{S P_{1}}{2}\right)\left[1+\left(1-\frac{C_{W Z}}{C_{a p}}\right)^{\frac{1}{2}}\right] \\
& \text { where } C_{a p}=\text { normal capacity (vph) }
\end{aligned}
$$

The cost equations are:

$$
\begin{aligned}
Q V O C_{c} & =f\left(S P_{q}\right)-f\left(S P_{a p}\right) \\
Q V O C_{t} & =g\left(.9 S P_{q}\right)-g\left(.9 S P_{a p}\right) \\
O C Q & =\left(\frac{V L}{1000}\right)(C U F)(Q U E L)\left(Q \vee O C_{c} \cdot P T C+Q V O C_{t} \cdot P T T\right)
\end{aligned}
$$

During the hour the queue dissipates, $O C Q$ is multiplied by PQUE.

Total User Costs

Total hourly user costs (THC) in each direction are merely the sum of the component user costs,

$$
T H C=C Q U E+C D W Z+C D S C+C S P C+C S P Q+O C+O C Q
$$

In similar fashion, the costs can be summed up to yield the daily user costs resulting from restricted capacity through the work zone.

APPENDIX B

Program Description

QUEWZ is a computerized program written in FORTRAN IV and designed for batch input. The program was tested on a WATFIV compiler but can be run on any ANSI 77 FORTRAN compiler. QUEWZ currently uses about 20K of memory and 0.97 seconds CPU time during execution on the WATFIV compiler for the twenty test problems. The source code is 435 lines long.

QUEWZ consists of a main program where input is read, arrays set up, most cost calculations performed, and output written out. There is one subroutine, UPCOST, which is called from the main program to calculate vehicle running costs per 1000 vehicle miles, given an average speed and percentage trucks.

This Appendix contains a computer generated flow chart, a variable dictionary, a program listing, and output for the sample problems presented in the section "Examples of the Model's Use."

Program Flowchart

quewz model - quetie and user cost evaluation of a work zone

\qquad
Character*i time
CHARACTERA 1 VT
INTEGER OTL, BHR, EHR, BHW, EHW, OOL

*CP(B, 5), SLP(6,5), CAPN(2), CAPA(2),CAPW(2),VEI(2), CQUE(2,24)VC(24)
-SP(2), QUÉ (2,24), CDSC(2,24), CDWZ(2,24), CSPG(2,24), CVOC(3), OC(2,24)

C value of time for cars and trucks
DATA VLI/9.72.17.71/
c valid letters to identify direction and rime of volume data

c
INTERCEPT TERM FOR WORK ZONE CAPACITY EQUATION
DATA CP/0.0.1460. 1370. 1200. 1200..1200..0.0.0.0.1600

SLOPE TERM FOR WORK ZONE CAPACITY EQUATION

C SLOPE TERM FOR WORK ZONE CAPACITY EQUAYION

c SET END FLAG AND PROBLEM COUNI TO ZERO
IEND $=0$
I $P R O E=0$

5 IPROB=IPROB +

If CAPACIIY is RESTRICTED, inbound ki=i. outbound ko=i If IIENO.EA 1 GOTO 99

98
8
 W WRITE (6, 12) IPROB
\qquad
12 FORMATI/' HOURLY VOLUME DAIA CARDS MISSING. WRONG, OR OUT OF ORDER - For problem .12)
Gото 99
WW
W 9.WRITE I6, I', IPROB, 'CHAR(JK, JK = I, 9), MODEL, CUF, PT, ITL, OTL, WZD.
W
WW

 -/4X. 'OUTBOUND: 135 , II//' HOURS OF RESTRICTED CAPACITY'/4X.' BEGINNI HNG' T34, ${ }^{\prime 2 / 4 X}$. ENDING' T34, I2/1' HOURS OF WORKZONE ACTIVITY'/4X.'B -EGINNING', T34, I2/4X.'ENDING', T34.I2/I

BHW $=B H W+1$
$B H R=B H R+$
EHW=EHW
EHR $=E H R+1$

Goio 40

I
GOio 40
WWW 30 WRITE (6, 13) IPROB
13 FORMAI//' ERROR IN HARDWARE READ, PROBLEM , 12)
GOTO 99
.
\qquad

65 If ifflag NE ol goto 5
c check ingound direction fon cápacily reduction
IF (ITL-IOL) B0.100.90
WW WWWWWWWWWWWWWWW WWW
41 formatuf restricted capacity'ganter than toral capacity...
-PRORLEM - I2'SKIPPEO'
coto 5

$\therefore 90 \times 1 i=$ $i=i$
c Check outbouno diaection for capacity reouction
‘ioo if ioti-ooli ilo, i30, 120

NWWWWWWWWWWEWWWWWWWWWWWWWWWWWWW GY I
IIO WRITE (6, i! I IPAOR

Goto 5
$120 \mathrm{KO}=1$

30 00 140 IR=1, im

IF (TIME (í), NE VIİi) coto 135
iifio.i) $=1 \mathrm{R}$
1

CAPNIII=vOLCAP ITL
CAPR CAPR CAPM(I) (CP(ITL, IOL)-SLPIILL, IOL)-CERF), IOL
C CHECK TO SEE IF WORK ZONE CAPÁCIIY FROM INPUT DATA IS TO BE USED INSTEAD OF PROGRAM GENERATED CAPACITY

C
WWWW WWWWWWW"

* *RESTRICTED
C TESTTO DETERMINEIF USER INPUY CAPACITY IS GREATER THAN
C PESTRICTED CAPACIYY IFII IS, CONTROL TRANSFERS TO THE NEXT proelem and an erron message is displayed
IF (CAPWII).IT GAPR(I)) GOTO 190
WHWWW
WW
W I
43 FORMAT // WORK ZONE CAPACIIY GREAIER THAN RESIRICIED CAPACI!
FORMOBLEM , I2, SKIPPED, POSSIBLE SOURCE OF ERROR: USER-
- SUPPLIEO CAPACITY ESTIMATE GREATER THAN 90\% OF NORMAL CAPACIÍ,
goto 5

$\begin{array}{ll} 1 & 2 \\ 1 & 1 \end{array}$	34567890
1 I	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
1 I	
11	
11	
11	
11	
11	
11	
1 1	
11	
1 I	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
1 I	
1 I	
11	-
11	
11	
1 !	
1 I	
11	
11	
1 I	
1	
1 I	
11	
1 I	
11	

Page 16
270 SLO=VOLGAP.iSPCG-SPFI/VOLCG CGV = VOLCG/VOLCAP
SPE $=$ SPGG-SPGAP
c CALCULATE V/C RATIO AND AVERAGE SPEED FOR NORMAL CONDITONS JC=1. a AD for restricted capacity JC=

Do $280 \mathrm{jc}=1$
if iscean 2010300

VCIJCi:VLIIA.J)/CAPN(IA

Goio 3io

300 VC(JC) $=V L(1 A, s) / C P P$
if iique ea il goto 320

3io jf iveanel GI i, Goro 320
if (VC(JC)-CGV) $305.305,315$

305 SP(JC)=5PF+SLO.VCIJC)

$$
\begin{aligned}
& i \\
& i
\end{aligned}
$$

$\operatorname{cvoc}(3)=\operatorname{VOC}+V L(1 A, J) / 1000$ Oca(IA, J)=(cvocisi-cvoc (1) - Quel $\{1 A, J)+C U F$ If (IQUE EQ,2) OCQ(IA,J)=OCQ(IA, J) PQQUE oc(IA, Ji=OciIA,J):OCQ(IA,J)
c Sum up costs to gey rotal hourly user cost (the) in each direction $\stackrel{1}{1} \quad \underset{1}{1}$

c calculate hourly cost per mile aueue ithcol if iquelitiajjikaoo goto 400
c PUT SPEEOS INTO ARRAY FOR OUIPU

40000410 is =1.2
SPDiIS, IA, Ji=spiISI
410 continue
c SUM HOURLY USER COSTS INIO DAIIY TOIAL
SUM = SUM \cdot THC (IA.J


```
1234567890
M,
WWWWWWWWWWWI (6,21)
```



```
2I FORMAI(GX,(VPH) (VPIH) SPEED ZONE,5X:OF:,7x.'HOURLY.
```



```
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW%
```



```
WWWWWWWWWWWWGW, (6,23)
W WRITE (6,23)
23 fORMAT(34x,'(MPH) (MILES)',5x.'($).,6x,....(91.'(MPH) (MILES).,
```

DO 150 LC=1.24

```
DO 150 LC=1.24
    ici=LC-1
    ici=LC-1
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWVIWWWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWHWW
    39 FORMAT(1X,12,',`,12)
    ifinhrilic) éa it goto 440
    IF IKI EQOO) GOIO 440
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWG
W WWWWWWITE (G,24) VLIH,LCI,CAP(1,LC),SPD(I,I,LC),SPD(2,I,LC),QUEL(I,LC)W
```


END

FORTCHT, VERSION AI MAINTAINED GY DALE LE SCHAFER, PHONE $645-1714$
C

E c
c
c
calculates qunning cosis per 1000 vehicle miles, givem speed and
percentage lrucks
I
$S P C=S P$
$S P T=S P$
$S P T=S P=0.9$
$P T=P T A / 100$
can punning cosis

1

C truck running costs

N

 TIITIGETURN

END

Variable Dictionary

Main Program

ACUM	accumulated number of vehicles in queue at beginning of hour
ALN	total number of lanes upstream of queue
BHR	beginning hour of restricted capacity
BHW	beginning hour of work zone activity
CAP(2,24)	capacity array (vph) for output, in direction IA, hour J CAPN(2)
normal vehicle capacity (vph) in each direction	
CAPW(2)	restricted vehicle capacity (vph) during work zone inactivity hours

$\operatorname{CDSC}(2,24)$ delay cost (\$) of slowing down and returning to approach speed, direction IA, hour J
$\operatorname{CDW}(2,24)$ delay cost (\$) of reduced speed through work zone, direction IA, hour J

CERF - Capacity estimate risk reduction factor or work zone capacity per lane from input

V/C ratio at LUS D/E breakpoint
array to hold problem description
CLL length of reduced speed through work zone area (miles)
$C P(6,5) \quad$ intercept term for work zone capacity equation, up to 6 total lanes and 5 open lanes through direction of closure

CPP vehicle capacity (vph) in direction IA, hour J, which is used in user cost calculations
$\operatorname{CQUE}(2,24)$. cost of queue delay (\$) in direction IA, hour J
CSPQ
CUF cost update factor from input
CVOC(3) hourly vehicle running cost per mile, $\operatorname{CVOC}(1)=$ running cost at approach speed, CVOC(2) = running cost at restricted speed, $\operatorname{CVOC}(3)=$ running cost at queue speed

DIR(4)	direction of traffic for each hourly traffic volume input card, DIR $=I$ for inbound, DIR $=0$ for outbound
dque	vehicle hours of queue delay during hour J
DSC	distance of slowing down and returning to approach speed (miles)
EHR	ending hour of restricted capacity
EHW	ending hour of work zone activity
EXD	excess demand of traffic volume during hour J
I	index for direction of travel for calculating maximum queue length, QMAX
IA	loop index to calculate user costs, IA $=1$ if inbound costs, IA $=2$ if outbound costs
ID	index to indicate the direction of travel for each traffic volume card, $I D=1$ if inbound, $I D=2$ if outbound
IEND	index to indicate end of file, IEND $=1$ if end of file, IEND $=0$ otherwise
IFLAG	index to indicate problem number when there is an error in the read command
I HR	index for type of capacity restriction, $I H R=1$ if work zone inactivity hour, IHR $=2$ if work zone activity hour, $I H R=0$ if capacity not restricted during hour
IM	number of traffic volume cards to be read for problem, $I M=2$ if single-lane closure, $I M=4$ if crossover
IOL	number of open lanes, inbound direction
IOP	index to indicate capacity reduction for cost calculations, IOP $=1$ for normal conditions, $[0 P=2$ for restricted capacity
IPROB	problem number from input data
IQUE	queue index, IQUE $=0$ if there is no queue during hour J , IQUE $=$ 1 if there is a queue during entire hour J, IQUE $=2$ if queue dissipates during hour J
IR	index for the volume card being put into array IT $(2,2)$
IS	index to put speeds into final array for output
ISM	index to sum hourly user costs to daily user costs total

$I T(2,2)$	traffic volume card array, $\operatorname{IT}(1,1)=$ inbound, period $1 ; \operatorname{IT}(1,2)$ $=$ inbound, period 2; $\operatorname{IT}(2,1)=$ outbound, period $1 ; \operatorname{IT}(2,2)=$ outbound, period 2
ITL	total number of inbound lanes
IY	index to zero out traffic card array for each problem
IZ	index to zero out traffic card array for each problem
J	loop index for each hour 1-24, to calculate hourly user costs
UC	```index to calculate V/C ratio, JC = 1 for normal conditions, JC = 2 for restricted capacity```
KI	index of inbound capacity restriction, KI = 1 if capacity restricted in inbound direction, KI $=0$ otherwise
K0	index of outbound capacity restriction, $k 0=1$ if capacity restricted in outbound direction, KO = 0 otherwise
KPROB (4)	problem number on traffic volume card
KS	index for traffic card to set up traffic volume arrays
KT	lower bound to set up traffic volume arrays, $K T=1$ if $\mathrm{KI}=1$, $\mathrm{KT}=2$ if $\mathrm{KI}=0$
KU	upper bound to set up traffic volume arrays, $K U=1$ if $K 0=0$, $\mathrm{KT}=2$ if $\mathrm{KO}=1$
KV	hour index 1-12, to set up traffic volume arrays
KW	hour index 13-24, to set up traffic volume arrays
L	index to zero out accumulated arrays for each problem
LC	index to write out hourly user data
LC1	beginning of hour for hourly user cost output data
M	index to zero out accumulated arrays for each problem
MODEL	closure strategy, $M O D E L=1$ if single-lane closure, MODEL $=2$ if crossover
N	index to zero out accumulated arrays for each problem
NHR (24)	index of capacity reduction during hour J, NHR $=1$ if no capacity reduction, NHR $=0$ otherwise
OC $(2,24)$	change in hourly running cost through work zone (\$)

OCQ $(2,24)$	change in hourly running cost through queue (\$)
00L	number of open lanes, outbound direction
OTL	total number of outbound lanes
PQUE	proportion of the hour the queue is present, for calculations during hour queue dissipates
PT	percentage trucks from input data
PTC	percentage cars + 100
PTT	percentage trucks +100
QMAX	longest queue length during closure period (miles)
QUEL (2,24)	average length of queue (miles) in direction IA, hour J
SLO	slope term for speed-volume equation
$\operatorname{SLP}(6,5)$	slope term for work zone capacity equation, up to 6 total lanes and 5 open lanes through direction of closure
SP(2)	speed through work zone (mph), SP(1) = speed with no capacity restrictions, $S P(2)=$ speed with restricted capacity
SPCAP	capacity speed (mph) from input data
SPCC	car speed-change cycling cost per 1000 vehicles (\$)
SPCG	LOS D/E breakpoint speed (mph) from input data
SPCT	truck speed-change cycling cost per 1000 vehicles (\$)
$\operatorname{SPD}(2,2,24)$	array of average speeds (mph) for output
SPE	difference between LOS D/E breakpoint speed and capacity speed, used in speed-volume equation
SPEED	average speed (mph) for vehicle running cost calculations
SPF	free flow speed (mph)
SPMN	minimum speed (mph) for speed-cycle cost calculations
SRP	surplus of vehicles that capacity exceeds demand for hours when queue is reduced
STL(24)	total additional hourly user costs in both directions (\$)

SUM	total additional daily user costs due to lane closure (\$), the sum of the hourly user costs
THC (2,24)	total additional hourly user cost in each direction (\$)
$\operatorname{THCQ}(2,24)$	total additional hourly cost per mile of queue (\$)
TIME (4)	$\text { period index for each hourly traffic input data card, TIME }=1$ $\text { for first } 12 \text { hours, TIME }=2 \text { for second } 12 \text { hours }$
$\mathrm{VC}(2)$	V / C ratio, $V C(1)=V / C$ ratio for normal conditions, $V C(2)=V / C$ ratio for restricted capacity
VL (2,24)	hourly traffic volumes for 24 hour period, each direction
VLT(2)	value of time ($\$ / \mathrm{hr}.), \operatorname{VLT}(1)=$ car value of time, $\operatorname{VLT}(2)=$ truck value of time
VOC	running cost per 1000 vehicle miles (\$)
$\operatorname{VOL}(4,12)$	hourly traffic volumes (vph) from input data
VOLCAP	capacity volume per lane (vph)
VOLCG	LOS D/E breakpoint volume per lane (vph)
VT(4)	acceptable characters for direction and period on traffic data input cards, $\operatorname{VT}(1)=I, V T(2)=0, V T(3)=1, V T(4)=2$
WZD	- Tength of work zone (miles)

Subroutine OPCOST

CR car running cost per 1000 vehicle miles (\$)
CST total running cost per 1000 vehicle miles (\$)
PT percentage trucks $\div 100$
PTR percentage trucks
SP average speed (mph)
SPC average car speed (mph)
SPT average truck speed (mph)
TK truck running cost per 1000 vehicle miles (\$)

Program Listing

C

c

- valid letters to identify direction and time of volume data DATA VT/'I','0','1','2'/
C INTERCEPT TERM FOR WORK ZONE CAPACITY EQUATION DATA C?/0.0,1460.,1370..1200.,1200.,1200.,0.0,0.0,1600.,
$* 1580 ., 1450 ., 1400 ., 0.0,0.0,0.0,1560, .1500 ., 1500,10.0$,
*0.0,0.0,0.0,1550.,1550.,0.,0.,0.,0.,0.,1580.1
SLOPE TERM FOR WORK ZONE CAPACITY EQUATION
DATA SLP/0.0,2.13,4.05,0.0,0.0,0.0,0.0,0.,1.81,1.6,1.46.0.,
$\star 0.0,0.0,0.0,0.57,0.0,0.0,0.0,0.0,0.0,0.0,0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0.1$ SET END FLAG AND PROBLEM COUNT TO ZERO IEND=0
IPROB $=0$
5 IPROB=IPROB +1
IF CAPACITY IS RESTRICTED, INBOUND $K I=1$, OUTBOUND KO=1
IF (IEND.EQ.I) GOTO 99
$\mathrm{KI}=0$
$\mathrm{KO}=0$
ID $=0$
IFLAG=0
SUM=0.0
C zero all volume, speed, and cost arrays for each problem
DO $15 \mathrm{M}=1,2$
DO $15 \mathrm{~N}=1,24$
DO $35 \mathrm{~L}=1,2$
$\operatorname{SPD}(L, M, N)=0.0$
35 CONTINUE
$\operatorname{CAP}(\mathrm{M}, \mathrm{N})=0.0$
$\mathrm{VL}(\mathrm{M}, \mathrm{N})=0.0$
$\operatorname{CQUE}(M, N)=0.0$
$\operatorname{CDSC}(M, N)=0.0$
$\operatorname{CDWZ}(M, N)=0.0$
$\operatorname{CsPC}(M, N)=0.0$
$O C(\mathrm{M}, \mathrm{N})=0.0$
$\operatorname{QUEL}(M, N)=0.0$
$\operatorname{THC}(M, N)=0.0$

```
        THCQ (M,N)=0.0
    15 CONTINUE
        DO 55 IZ=1,2
        DO 55 IY=1,2.
        IT (IZ,IY)=0
    55 CONTINUE
    10 FORMAT(I2,II,F4.O,4F3.0,2F4.0,2I1,F4.0,2I1,4I2,F4.0,8A4,A1)
    SET DEFAULT VALUES IF NOT PROVIDED FROM INPUT
    IF (CUF.EQ.O.0) CUF=1.0
    IF (PT.EQ.0.0) PT=8.0
    IF (SPF.EQ.0.0) SPF=60.
    IF (SPCG.EQ.0.0) SPCG=40.
    IF (SPCAP.EQ.O.0) SPCAP=30.
    IF (VOLCG.EQ.O.0) VOLCG=1600.
    IF (VOLCAP.EQ.O.0) VOLCAP=2000.
    IF (CERF.EQ.0.0) CERF=60.
    IF (BHW.GT.O..OR.EHW.GT.O.) GOTO }
    BHW=BHR
    EHW=EHR
    PRINT ASSUMPTIONS FOR PROBLEM
    9 WRITE (6,11) IPROB,(CHAR(JK),JK=1,9),MODEL,CUF,PT,ITL,OTL,WZD,
    *IOL,OOL,BHR,EHR,BHW,EHW
    11 FORMAT('1',' PROBLEM ',I2,1X,9A4//' MODEL',T35,I1//' COST UPDATE F
        *ACTOR',T30,F5.2//' PERCENTAGE TRUCKS',T32,F4.0//' TOTAL NUMBER OF
    *LANES'/4X,'INBOUND',T35,I1/4X,'OUTBOUND',T35,I1//' LENGTH OF WORKZ
    *ONE',T30,F6.2,' MILES'//' WORKZONE OPEN LANES'/4X,'INBOUND.',T35,I1
    */4X,'OUTBOUND',T35,I1//' HOURS OF RESTRICTED CAPACITY'/4X,'BEGINNI
    *NG',T34,I2/4X,'ENDING',T34,I2//' HOURS OF WORKZONE ACTIVITY'/4X,'B
    *EGINNING',T34,I2/4X,'ENDING',T34,I2/)
        BHW=BHW+1
        BHR=BHR +1
        EHW=EHW+1
        EHR=EHR+1
        IF(EHW.GT.24) EHW=24
        IF(EHR.GT.24) EHR=24
        GOTO 40
    20 WRITE (6,12) IPROB
    12 FORMAT(/' HOURLY VOLUME DATA CARDS MISSING, WRONG, OR OUT OF ORDER
    * FOR PROBLEM ',I2)
        GOTO }9
    30 WRITE (6,13) IPROB
    13 FORMAT(/' ERROR IN HARDWARE READ, PROBLEM ',I2)
    GOTO }9
```

```
C CHECK FOR VALID LAND CLOSURE STRATEGY NUMEER
    40 IF (MODEL.EQ.1.OR.MODEL.EQ.2) GOTO 45
    WRITE (6,31) IPROE
    31 FORMAT(/' INVALID LANE CLOSURE STRATEGY NUMBER ON PROBLEM ',I2)
        GOTO }9
C READ NEXT TWO CARDS IF LANE CLOSURE STRATEGY 1,
C NEXT FOUR CARDS IF LANE CLOSURE STRATEGY }
    45 IM=MODEL*2
        DO 50 I=1,IM
        READ (5,14,END=60,ERR=70) KPROB(I),DIR(I),TIME(I),(VOL(I,J),
        *J=1,12)
    14 FORMAT (I2,2A1,12F5.0)
        IF (IPROB.NE.KPROB(I)) GOTO 20
        GOTO 50
    70 IFLAG=KPROB (I)
        WRITE (6,13) KPROB(I)
        50 CONTINUE
        GOTO 65
    6 0 ~ I E N D = 1
C IF ERROR IN PROBLEM, GO TO NEXT PROBLEM
    65 IF (IFLAG.NE.O) GOTO 5
C CHECK INBOUND DIRECTION FOR CAPACITY REDUCTION
        IF (ITL-IOL) 80,100,90
    80 WRITE (5,41) IPROB
    41 FORMAT(/' RESTRICTED CAPACITY GREATER THAN TOTAL CAPACITY - ',
        *'PROBLEM ',I2,'SKIPPED')
        GOTO 5
        90 KI=1
C CHECK OUTBOUND DIRECTION FOR CAPACITY REDUCTION
    100 IF (OTL-OOL) 110,130,120
    110 WRITE (6,41) IPROB
        GOTO 5
    120 KO=1
C SET UP (IT) ARRAY SUCH THAT TRAFFIC VOLUME CARD NO. WILL APPEAR IN
C FOLLOWING LOCATION IT (1,1)=INB,AM, IT (1,2)=INB,PM, IT (2,1)=OUTB,AM
C IT (2,2)=OUTB,PM
    130 DO 140 IR=1,IM
    IF (DIR(IR).EQ.VT(1)) ID=1
    IF (DIR(IR).EQ.VT(2)) ID=2
    IF (TIME(IR).NE.VT(3)) GOTO }13
    IT(ID,1)=IR
    GOTO }14
    135 IF (TIME(IR).NE.VT(4)) GOTO 145
        IT(ID,2)=IR
        GOTO 140
    145 WRITE (5,29) IPROB
    29 FORMAT(/' INVALID TIME OR DIRECTION CODE-PROBLEM ',I2,' SKIPPED')
        GOTO 5
    140 CONTINUE
```

```
        IF (KI.LT.1) GOTO 165
        IF (IT(1,1).LT.1) GOTO 185
        IF (IT(1,2).LT.1) GOTO 185
    165 IF (KO.LT.I) GOTO 180
        IF (IT(2,1).LT.1) GOTO 185
        IF (IT(2,2).LT.1) GOTO 185
        GOTO 180
    185 WRITE (6,49) IPROB
    4 9 ~ F O R M A T ( / ' ~ D I R E C T I O N ~ O N ~ T R A F F I C ~ C A R D S ~ D O ~ N O T ~ M A T C H ~ D I R E C T I O N ~ O F ~ ' , '
        *'RESTRICTED CAPACITY - PROBLEM ',I2,' SKIPPED')
            GOTO 5
C SET UP INBOUND AND/OR OUTBOUND TRAFFIC ARRAYS IF CAPACITY IS
C RESTRICTED IN THAT DIRECTION VL(KS,KV)
    180 KT=2-KI
        KU=KO+1
C IF NO CAPACITY REDUCTION, GO TO NEXT PROBLEM
        IF (KT.LE.KU) GOTO 155
        WRITE (6,33) IPROB
        33 FORMAT(' NO CAPACITY REDUCTON, PROBLEM ',I2,' SKIPPED')
            GOTO 5
    155 DO 150 KS=KT,KU
        DO 160 KV=1,12
        VL(KS,KV)=VOL(IT (KS,1),KV)
        KW=KV+12
        VL(KS,KW)=VOL(IT (KS,2),KV)
    160 CONTINUE
    150 CONTINUE
C CALCULATE USER COSTS IA=1 IF INBOUND COSTS, IA=2 IF OUTBOUND COSTS
    DO 200 IA=1,2
    ACUM=0.0
C CALCULATE CAPACITIES CAPN=NORMAL CAPACITY, CAPR=RESTRICTED
C CAPACITY DURING NONWORKZONE ACTIVITY HOURS, CAPW=CAPACITY
C DURING WORKZONE ACTIVITY HOURS
    IF (IA-1) 175,175,170
    175 IF (KI.EQ.0) GOTO 200
    CAPN (1) =VOLCAP* ITL
    CAPR(1)=VOLCAP*IOL*0.9
    CAPW (1) = (CP(ITL, IOL) -SLP (ITL, IOL) *CERF)* IOL
C CHECK TO SEE IF WORK ZONE CAPACITY FROM INPUT DATA IS TO BE USED
C INSTEAD OF PROGRAM GENERATED CAPACITY
    IF (CERF.GT.100.) CAPW(1)=CERF*IOL
    WRITE (6,16) CAPN(1),CAPR(1),CAPW(1)
    16 FORMAT(' INBOUND CAPACITY'/4X,'NORMAL ',T30,F6.0,' (VPH)'/4X,
    *'RESTRICTED ',T30,F6.0,' (VPH)'/4X,'WORKING HOURS ',T30,F6.0,
    *' (VPH)'/)
C TEST TO DETERMINE IF USER INPUT CAPACITY IS GREATER THAN
C RESTRICTED CAPACITY. IF IT IS, CONTROL TRANSFERS TO THE NEXT
C PROBLEM AND AN ERROR MESSAGE IS DISPLAYED.
    IF (CAPW(1).LT.CAPR(1)) GOTO 190
```

```
            WRITE (6,43) IPROB
    43 FORMAT (/' WORK ZONE CAPACITY GREATER THAN RESTRICTED CAPACITY -',
    *' PROBLEM ',I2,' SKIPPED'//' POSSIBLE SOURCE OF ERROR: USER-',
    *'SUPPLIED CAPACITY ESTIMATE GREATER THAN 90% OF NORMAL CAPACITY')
        GOTO 5
    170 IF (KO.EQ.0) GOTO 200
    CAPN (2)=VOLCAP*OTL
    CAPR(2) =VOLCAP*OOL*0.9
    CAPW (2)=(CP(OTL,OOL)-SLP (OTL,OOL)*CERF)*OOL
C CHECK TO SEE IF WORK ZONE CAPACITY FROM INPUT DATA IS TO BE USED
C INSTEAD OF PROGRAM GENERATED CAPACITY
    IF (CERF.GT.100.) CAPW(2)=CERF*OOL
    WRITE (6,17) CAPN (2),CAPR (2),CAPW (2)
    17 FORMAT(' OUTBOUND CAPACITY',/4X,'NORMAL ',T29,F7.0,' (VPH)',/4X,
    *'RESTRICTED ',T29,F7.0,' (VPH)'/4X,'WORKING HOURS ',T29,F7.0,
    *' (VPH)'/)
C TEST TO DETERMINE IF USER INPUT CAPACITY IS GREATER THAN
C RESTRICTED CAPACITY. IF IT IS, CONTROL TRANSFERS TO THE NEXT
C PROBLEM AND AN ERROR MESSAGE IS DISPLAYED.
    IF (CAPW(2).LT.CAPR(2)) GOTO 190
    WRITE (6,43) IPROB
    GOTO 5
C CALCULATE USER COSTS FOR EACH HOUR J
    190 DO 210 J=1,24
    IHR=0
    NHR(J)=0
C SELECT APPROPRIATE CAPACITY THROUGH WORKZONE FOR HOUR J
    IF (J.GE.BHW.AND.J.LE.EHW) GOTO 220
    IF (J.GE.BHR.AND.J.LE.EHR) GOTO 230
    CPP=CAPN (IA)
    CAF (IA,J) = CPP
    IF (ACUM.GT.O.) GOTO 240
    NHR(J)=1
    GOTO 210
    220 CPP=CAPW (IA)
    CAP (IA,J)=CPP
    IHR=2
    GOTO 240
    230 CPP=CAPR(IA)
    CAP (IA,J)=EPP
    IHR=1
C CALCULATE DELAY IN QUEUE (DQUE), COST OF QUEUE (CQUE), AND LENGTH
C OF QUEUE (QUEL). IQUE=1 WITH QUEUE, IQUE=2 HOUR QUEUE DISSIPATES
240 IF (VL(IA,J).GT.CPP) GOTO 250
    IF (ACUM.GT.O.0) GOTO 260
    IQUE=0
    GOTO 270
    250 IQUE=1
    EXD=VL(IA,J)-CPP
```

```
    255 DQUE=ACUM+EXD/2.
        PTC=1.-PT/100.
        PTT=PT/100.
    265 CQUE(IA,J)=DQUE*CUF*(PTC*VLT(1)+PTT*VLT(2))
    IF (IA-1) 275,275,285
    275 ALN=ITL
    GOTO }29
    285 ALN=OTL
    295 QUEL(IA,J)=DQUE/(ALN*132.)
        IF (IQUE.NE.2) GOTO 335
        QUEL(IA,J)=QUEL (IA,J)/PQUE
    335 ACUM=ACUM+EXD
        IF (ACUM.LT.O.0) ACUM=0.0
        GOTO 270
    260 IQUE=1
        SRP=CPP-VL(IA,J)
        PQUE=ACUM/SRF
        EXD=-SRP
        IF (ACUM.GE.SRP) GOTO 255
        DQUE=(ACUM**2)/(2.*SRP)
        IQUE=2
        GOTO 265
C CALCUALTE PARAMETERS FOR SPEED-VOLUME EQUATIONS
    270 SLO=VOLCAP*(SPCG-SPF)/VOLCG
        CGV=VOLCG/VOLCAP
        SPE=SPCG-SPCAP
C CALCULATE V/C RATIO AND AVERAGE SPEED FOR NORMAL CONDITONS JC=1,
C AND FOR RESTRICTED CAPACITY JC=2
    DO 280.JC=1,2
    IF (JC.EQ.2) GOTO 300
    VC (JC)=VL (IA,J)/CAPN (IA)
    GOTO }31
    300 VC(JC)=VL(IA,J)/CPP
    IF (IQUE.EQ.1) GOTO 320
    310 IF (VC(JC).GT.1.) GOTO 320
    IF (VC(JC)-CGV) 305,305,315
    305 SP(JC)=SPF+SLO*VC (JC)
        GOTO }32
    315SP(JC)=SPCAP+SPE*SQRT(1.-((VC(JC)-CGV)/(1.-CGV))**2)
    325 IF (IQUE.EQ.2.AND.JC.EQ.2)SP(JC)=(1.-PQUE)*SP(JC) +PQUE*SPCAP
        GOTO 280
    320 SP(JC)=SPCAP*(2.-VC(JC))
    IF (SP(JC).LT.20.) SP(JC)=20.
        IF (SP(JC).GT.SPCAP) SP(JC)=SPCAP
        vC(JCC)=1.
    280 CONTINUE
C CALCULATE MINIMUM SPEED (SPMN) FOR SPEED-CYCLE COST CALCULATION
    IF (IQUE.EQ.1) GOTO 330
    SPMN=SP(2)-2.3-25.7*(VC(2)**2)
```

```
        IF (IQUE.EQ.2) SPMN=SPMN*(1.-PQUE)
        IF (SPMN.GE.O.O) GOTO 340
    330 SPMN=0.0
C CALCULATE LENGTH OF REDUCED SPEED THROUGH WORK ZONE AREŚ (CLL)
    340 IF (WZD.LE.O.1) GOTO 350
        CLL=0.1+(WZD+0.1)*VC(2)
        GOTO 360
    350 CLL=WZD+0.2
C CALCULATE DISTANCE (DSC) AND DELAY COST (CDSC) OF SLOWING DOWN AND
C RETURNING TO APPROACH SPEED
    360 DSC=0.5+0.25*VC(2)
        PTT=PT/100.
        PTC=1.-PT/100.
        CDSC(IA,J)=DSC*(2./(SP(1)+SPMN)-1./SP(1))*VL(IA,J)*CUF*
    *(PTC*VLT(1)+PTT/0.9*VLT(2))
C CALCULATE DELAY COST OF REDUCED SPEED THROUGH WORK ZONE (CDWZ)
    CDWZ(IA,J)=CLL*(1./SP(2)-1./SP(1))*VL(IA,J)*CUF*(PTC*VLT(1)+PTT/
    * 0.9*VLT(2))
C CALCULATE COST OF SPEED CHANGE CYCLE (CSPC)
    SPCC=-5.2187+1.1241*SP(1)-1.1125*SPMN
    IF (SPCC.LT.0.0) SPCC=0.0
    SPCT=-32.2883+7.1226*0.9*SP(1)-6.684*SPMN*0.9
    IF (SPCT.LT.0.0) SPCT=0.0
    CSPC(IA,J)=VL(IA,J)*CUF*(PTC*SPCC+PTT*SPCT)/1000.
C ADD COST OF quEUE CYCLING COSTS IF THERE IS A quEuE
    IF (IQUE.EQ.0) GOTO 370
    CSPQ=(6.0223*PTC+31.8151*PTT)*CUF*VL(IA,J)*3.*QUEL(IA,J)/1000.
    IF (IQUE.EQ.2) CSPQ=CSPQ*PQUE
    CSPC}(IA,J)=\operatorname{CSPC}(IA,J)+CSPQ
C CALCULATE RUNNING COST DIFFERENCE thROUGH WORK ZONE (OC)
    370 DO 380 IOP=1,2
    SPEED=SP(IOP)
    CALL OPCOST(SPEED,PT,VOC)
    CVOC(IOP)=VOC*VL(IA,J)/1000.
    380 CONTINUE
    OC(IA,J)=(CVOC (2)-CVOC(1))*CLL*CUF
C ADD TO RUNNING COSTS THE ADDITIONAL QUEUE RUNNING COSTS IF ANY
    IF (IQUE.EQ.0) GOTO }39
    SPE=SPF/2.*(1-SQRT(1.-CPP/CAPN(IA)))
    CALL OPCOST(SPEED, PT,VOC)
    CVOC(3)=VOC*VL(IA,J)/1000.
    OCQ(IA,J) =(CVOC(3)-CVOC(1))*QUEL (IA,J)*CUF
        IF (IQUE.EQ.2) OCQ(IA,J)=OCQ(IA,J)*PQUE
        OC(IA,J)=OC(IA,J)+OCQ (IA,J)
C SUM UP COSTS TO GET TOTAL HOURLY USER COST (THC) IN EACH DIRECTION
    390 THC (IA,J) = CDSC (IA,J) +CDWZ (IA,J) +CSPC (IA,J) +OC (IA,J) +CQUE (IA,J)
C CALCULATE HOURLY COST PER MILE QUEUE (THCQ)
    IF (QUEL(IA,J).EQ.O.O) GOTO 400
    THCQ(IA,J)=THC(IA,J)/QUEL (IA,J)
```

```
C PUT SPEEDS INTO ARRAY FOR OUTPUT
    400 DO 410 IS=1,2
        SPD(IS,IA,J)=SP(IS)
    410 CONTINUE
C SUM HOURLY USER COSTS INTO DAILY TOTAL
        SUM=SUM+THC(IA,J)
    210 CONTINUE
    200 CONTINUE
C SUM HOURLY COSTS FOR EACH DIRECTION FOR TOTAL HOURLY COSTS
        DO 420 ISM=1,24
        STL (ISM) =THC (1,ISM)+THC (2,ISM)
    420 CONTINUE
C WRITE OUT CAPACITY ESTIMATE RISK FACTOR IF WORK ZONE CAPACITY
C IS CALCULATED IN FROGRAM AND IS NOT PART OF INPUT DATA
        IF (CERF.GT.100.) GOTO 430
        WRITE (6,37) CERF
        37 FORMAT (' CAPACITY ESTIMATE RISK FACTOR,'/
            *' PROBABILITY THAT ESTIMATED'/' WORKING HOURS CAPACITY IS'/
            *' LESS THAN ACTUAL CAPACITY',T32,F4.0,' PERCENT'/)
C WRITE OUT SUMMARY HEADINGS
    430 WRITE (6,18) IPROB
    18 FORMAT('1',48X,'SUMMARY OF USER COSTS - PROBLEM ',I2,//19X,
        *'*** INBOUND DIRECTION ***',18X,'*',15X,'*** OUTBOUND ',
        *'DIRECTION ***',14X,'* TOTAL ADD.')
            WRITE (6,19)
    19 FORMAT(' HOUR VOLUME CAPACITY APRCH WORK LENGTH',
        *T5I,'ADDITIONAL * VOLUME CAPACITY APRCH WORK LENGTH',
        *TIO7,'ADDITIONAL * HOURLY USER')
            WRITE (6,21)
        21 FORMAT(9X,'(VPH) (VPH) SPEED ZONE',5X,'OF',7X,'HOURLY',
        *T63,'* (VPH) (VPH)',4X,'SPEED ZONE',5X,'OF',7X,'HOURLY',
        *T119,'* COSTS DUE')
            WRITE (6,22)
    22 FORMAT(27X,'(MPH) SPEED QUEUE USER COSTS *'.T84,'(MPH)',
        *2X,'SPEED QUEUE USER COSTS * TO LANE')
        WRITE (6,23)
    23 FORMAT(34X,'(MPH) (MILES)',5X,'($)',6X,'*',T91,'(MPH) (MILES)',
        *5X,'($)',6X,'* CLOSURE ($)'/)
C WRITE OUT CALCULATED USER DATA FOR EACH HOUR AND DAILY TOTAL
        DO 450 LC=1,24
        LCl=LC-1
        WRITE(6,39) LCl,LC
    39 FORMAT(1X,I2,'-',I2)
        IF(NHR(LC).EQ.1) GOTO 440
        IF (KI.EQ.0) GOTO 440
        WRITE (6,24) VL(1,LC), CAP (1,LC),SPD (1,1,LC),SPD (2,1,LC),QUEL(1,LC)
    24 FORMAT('+',T9,F7.0,2X,F7.0,3X,F4.O,3X,F4.0,T41,F6.1)
    440 WRITE (6,25) THC(1,LC)
    25 FORMAT('+',T52,F8.0,T63,'*')
```

```
            IF(NHR(LC).EQ.1) GOTO 460
            IF (KO.EQ.0) GOTO 460
            WRITE (6,26) VL(2,LC), CAP (2,LC),SPD(1;2,LE),SPD (2,2,LC),QUEL (2,LC)
            26 FORMAT ('+',T65,F7.0,T74,F7.0,T84,F4.0,T92,F4.0,T97,F6.1)
    460 WRITE (6,27) THC (2,LC),STL (LC)
            27 FORMAT ('+',T108,F8.0,T119,'*',T121,F9.0/)
    4 5 0 ~ C O N T I N U E ~
        WRITE (6,28) SUM
    28 FORMAT (5X,'TOTAL ADDITIONAL DAILY USER COSTS DUE TO LANE',
        *' CLOSURE = ',F10.0./)
C WRITE OUT WARNING IF QUEUE GREATER THAN A MILE
        QMAX=0.
            DO 500 I=1,2
            DO 500 J=1,24
            IF (QUEL(I,J).GT.QMAX) QMAX=QUEL(I,J)
    500 CONTINUE
            IF (QMAX.LE.1.) GOTO 480
            WRITE (6,42) QMAX
    42 FORMAT (' *** WARNING *** QUEUE ESTIMATED TO REACH ',FG.1,' MILES'
        *,' LONG. QUEUE DOES NOT CONSIDER DRIVERS LEAVING THE FREEWAY ',
        *'TO DIVERT '/' TO OTHER ROUTES. CHECK ALTERNATE ',
        *'ROUTES - DIVERSION MAY TAKE PLACE.')
C GO TO NEXT PROBLEM, IF ANY
    480 IF (IEND.EQ.1) GOTO 99
        GOTO 5
    99 STOP
        END
C
    SUBROUTINE OPCOST(SP,PTR,CST)
C
C CALCULATES RUNNING COSTS PER 1000 VEHICLE MILES, GIVEN SPEED AND
C PERCENTAGE TRUCKS
    SPC=SP
    SPT=SP*0.9
    PT=PTR/100.
C CAR RUNNING COSTS
    CR=395.6898*EXP(.0157*SPC)*(SPC)**(-.45525)
C TRUCK RUNNING COSTS
    TK=179.1466*EXP(.02203*SPT)* (SPT)** (-.35902) +(1201.8847*
    *EXP(.0322*SPT)*(SPT)**(-.79202))
    CST=((1.-PT)*CR+PT*TK)
    RETURN
    END
```


Sample Output

problem i simgle lane closure test problem

MODEL	
COST LPDATE FACIOR	1.00
PERCEMTAGE IRUCKS	a.

percentage trucks
.00
rotal numaER of lames I ABOUND
$\frac{2}{2}$
LEMGTH OF WORKZONE I.OO MLLES
WORKZOME OPEN LAMES INBOUND
$\frac{1}{2}$
hours of restaicted capacity EEGIMNIMG ENOING

18
HOURS OF WORKZONE ACTIVITY EEGINNIM
EMDING

9
15
ImbOUND CAPACITY noamal aESTRICTEO
4000. (VPH) wormimg houns 1800. (VPH)
1332. (VPH)

CAPACITY ESTIMAIE RISK FACTOR.
PAOBABIGITY THAT ESTIMAIED
MORKIMG HOURS CAPACITY IS
LESS THAN ACTUAL CAPACITY
Bo. PERCENT

total adoitional daily user costs due to lane closure =

17647

** warning ** queue estimated to aeach íg miles long quele does not consider drivers leavimg the faemay to divert queue estimated to reach routes chegk alternate routes - diversion may take place.

PROBLEA 2 CROSSOVER TEST PROBLEM

							Summary or use		cosis -	Problem	2					
	hour	volume (VPH)	*** INB CAPACITY (VPM)	DUND DI $A P R C H$ SPEED (MPH)	$\begin{aligned} & \text { RECTION } \\ & \text { WORK } \\ & \text { ZONE } \\ & \text { SPEED } \\ & \text { (MPH } \end{aligned}$	$\begin{aligned} & \text { QENGTH } \\ & \text { QF } \\ & \text { QUEUE } \\ & \text { (MILES) } \end{aligned}$	adDITIONAL hourly USER COSTS (s)		VOLUME (VPH)	capacity (VPH)	OUTBOUND APRCH SPEED (MPH)	DIREC WORK ZOME SPEED (MPH)	$\begin{aligned} & \text { TION \#** } \\ & \text { LENGTH } \\ & \text { OF } \\ & \text { QUEUE } \\ & \text { (MILES) } \end{aligned}$	$\begin{aligned} & \text { ADDITIONAL } \\ & \text { HOURLY } \\ & \text { USER COSTS } \\ & \text { Is } \end{aligned}$	*	total ADD hourly user costs due to LanE closure (\$)
	0-1						0	*						0.	*	0 .
	1-2						0	*						0	*	0.
	2-3						0	*						0.	*	0.
	3-4						0	-						0.	*	0
	4-5						0	-						0.	-	0.
	5-6						0	*						0.	,	0
	6-7						0	*						0	-	0
	7-8						0	-						0.	-	0
	8-9	1750.	1800.	49.	35.	0.0	443	,	1280	1800.	52.	42	00	138	-	581
	9-10	1490	1354	51.	27.	0.3	1344	-	1240	1354	52	3 A	0.0	250.	-	1594
	10-11	1360	1354.	52.	30.	0.5	1972	*	1250	1354.	52.	38	0.0	259.	*	2231
∞	11-12	1040.	1354.	54	36.	0.3	575	*	1300.	1354	52	36.	0.0	319.	-	894
	12-13	1040.	1354.	54	41.	00	143	*	1300	1354.	52	36.	0.0	319.	-	462
	13-14	1210.	1354.	52.	39	0.0	227.	-	1330.	1354.	52.	34	0.0	376.	*	602
	14-15	1490.	1354.	51	27	0.3	1344	*	1500.	1354.	51	27	0.3	1406.	*	2750.
	15-16	1670.	1354.	50	23	11	3918	*	1860.	1354.	48.	20.	1.5	5276.	-	9194
	16-17	1790.	1800.	49.	30	17	5343	*	2010.	1800.	47	26	2.9	8779.	*	14121
	17-18	1610	4000	50	46	08	518	*	1970	4000	48.	40.	1.6	2164.	*	2682
	18-19						0	*						0.	*	0
	19-20.						0	*						0.	*	0
	20-21						0	*						0	*	0
	21-22						0	*						0	*	0
	22-23						0	*						0	*	0
	23-24						0	*						0.	*	0
	10	ADDIt	dal dalty	y user	cosis du	E TO LAN	closume =		35112.							

[^0]| problem 3 single lane test | PROBLEM | |
| :---: | :---: | :---: |
| MODEL | 1 | |
| COST UPDATE factor | | |
| percentage trucks | θ. | |
| total number of lanes I NBOUND outbouno | $\stackrel{2}{2}$ | |
| LENGIH OF WORKZONE | 1.00 MILES | |
| workzone open lanes INBOUND OUTBOUND | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | |
| houbs of restricted capacity BEGINNING ENDING | $\begin{array}{r} 0 \\ 23 \end{array}$ | |
| HDURS OF WORKZONE ACTIVITY EEGINNING ENDING | $\begin{array}{r} 9 \\ 15 \end{array}$ | |
| IMBOUND CAPACIty | | |
| NORMAL | 4000 | $\left(\begin{array}{l}\text { (VPH) } \\ (V P H)\end{array}\right.$ |
| RESTRICTED WORKING HOURS | 1800 1650 | (VPH) |

PROBLEM
COS: UPDATE FACIOR 1. 00percentage raucksB.
total number of lanes INBOUND ${ }_{2}^{2}$
LENGTH OF WOAKZONE 1. OO MILES
WORKZONE OPEN LANES
INBOUND
OUTBOUN i
hours of restricteo capacity EEGINNI
ENOING 23
HOURS OF WDRKZONE ACIIVITY EEGINNING
EMDING 9
15

I MBOUND CAPACITY NORMAL RESTRICTEO 4000 (VPH)| 1800 (VPH) |
| :--- |
| 1354. |
| (VPH) |

OUTBOUND CAPACIIY NORMAL 4000 (VPH)WORKING HOURS1354 (VPPH)
CAPACITY ESTIMATE AISK FACTOR
PROBABILITY THATE
PROBABILITY THAT ESTIMATE
WORKING HOURS CAPACITY IS
working hours capacitr is

total additional daily user costs due to lane closure =

problem 6 single lane test problem

MODEL	1
COST UPDATE FACTOR	1.00
PERCENTAGE TRUCKS	8.

PERCENTAGE
TOIAL NUMBER OF LANES
INBOUND
OUTBOUND

LENGTH OF WORKZONE 1.00 MILES
WORKZONE OPEN LANES
INBOUND
OUTBOUND
hours of Restaicted capacity or or EEGINNING.
ENDING

16
HOURS OF WORKZONE ACTIVITY
BEGINNING
ENDING
I NBOUND CAPACITY NORMAL GESIRICTED
6000. (VPH) WORKING HOURS $\begin{array}{ll}1800 & (V P H) \\ 1127 & (V P H)\end{array}$

CAPACITY ESTIMATE RISK FACTOR.
PROQABILIIY THATE ESIIMATED
WORKING HOURS CAPACITY IS
LESS THAN ACIUAL CAPACITY 60. PERCENT

							summary of	USER COSTS	Problem	6					
	Hour	valume (VPH)	$\begin{aligned} & \text { CAPAC INB } \\ & \text { (VPH) } \end{aligned}$	OUND DI APRCH SPEED (MPH)	RECTION wORK ZONE SPEED (MPH)	$\begin{gathered} \text { "*NGTH } \\ \text { OF } \\ \text { QUEUE } \\ \text { (MILES } \end{gathered}$	ADDITIONAL HOURLY USER COSTS (\$)		$\begin{gathered} \text { CAPACITX } \\ \text { (YPH) } \end{gathered}$	outbound APRCH SPEED (MPW)	DIREC WORK ZONE SPEED (MPH)	$\begin{aligned} & \text { TION *** } \\ & \text { LEFG } \\ & \text { QUEUE } \\ & \text { MMILES: } \end{aligned}$	ADOITIONAL hOURLY USER COSTS (5)	*	total add hourly user casis due to LANE closure (\$)
	0-1						0 -	*					0.	*	0.
	1-2						0	*					0	,	0.
	2-3						0	*					0.	*	0.
	3-4						0	*					0.	*	0.
	4-5						0	*					0.	*	0.
	5-6						0	*					0	*	0.
	6-7						0	-					0.	*	0
	7-8						0	-					0.	*	0
	8-9	1750.	1800.	53.	35.	0.0	464.	-					0.	*	464.
	9-10	1490.	1127.	54.	20.	0.5	2760	-					0	*	2760.
	10-11	1360.	1127.	54	24	12	5646	*					0	*	5646
∞	11-12	1040.	1127	56.	30.	1.4	6126	*					0	*	6126
	12-13	1040.	1127.	56.	30.	1.2	5225	*					0 .	*	5225.
	13-14	1210.	1127.	55.	28.	1.2	5310	*					0.	*	5310.
	14-15	1490.	1127.	54.	20.	17	8004	*					0.	*	8004
	15-16	1670	1127	53.	20.	2.9	12841	*					0.	-	12841
	16-17	1790.	1800.	53.	30	3.6	15282	*					0	*	15282
	17-18	1610.	6000	53	46	- 8	2451	*					0	*	2451
	18-19						0	*					\bigcirc	*	0
	19-20						0	-					0	*	0
	20-21						0	*					0	-	0
	21-22						0	-					0	-	0
	22-23						\bigcirc	*					0	*	0
	23-24						0	*					0	*	0
		ADD: 1	ONAL DAIL	y USER	cosis du	IO to Lan	closure =	64108.							

[^1]
proslem 7 single lane test problem

MODEL

COST UPDATE FACTOR 1.00
PERCENTAGE TRUCKS
B.

TOTAL NUMBER OF LANES
INBOUND
OUTBOUND
ENGTH OF WORKZONE 1.00 MILES
WORKZONE OPEN LANES
INBOUND
OUR
INBOUND
OUTBOUND
2
3
hours of restricted capacitr BEGINNING

0
23
hOUAS OF WORKZONE ACTIVITY BEGINNING

9
15
I MBOUND CAPACITY

NORMAL 6000. (VPH)
$\begin{array}{ll}6000 . & \text { (VPH) } \\ 3600 . & \text { (VPH) } \\ 2983 . & (V P H)\end{array}$
CAPACITY ESTIMATE RISK FACTOR,
PROBABILITY THATE ESTIMATED
WORKING HOURS CAPACITY IS
LESS THAN ACTUAL CAPACITY

TOTAL ADDITIONAL DAILY uSER costs due to Lane closure $=047$

probetem 9 single lane test	Problem	
MODEL	1	
COST UPDATE FACTOR	1.00	
PERCENTAGE TRUCKS	a.	
TOTAL NUMBER OF LANES I NBOUND OUTBOUND	4	
LENGIH OF WORKZONE	1.00 miles	
WORKZONE OPEN LAMES I NBOUND OUTBOUND	4	
hours of restricted capacity beginning ENDING	$\begin{array}{r} 0 \\ 23 \end{array}$	
HOURS OF WORKZONE ACTIVITY beginning ENDING	$\begin{array}{r} 9 \\ \hline \end{array}$	
OUTBOUND CAPACITY		
NORMAL	8000	(VPH)
RESTRICTED WOAKING HOURS	5400	(VPH) $(\mathrm{YPH}$
WOAKING Hours	4573	
capacity estimate risk factor. PROBABILIIY IHAI ESIIMATED WOAKING HOURS CAPACITY IS		

PROBLEM 10 SINGLE LANE TEST PROBLEM

model
cost update factor
percentage trucks
8
otal number of lanes INBOUND OUTBOUND
${ }_{4}^{4}$
1.00 miles 2
WORKZONE OPEN LANES IMAOUND ourteound2
hours of restaicted capacity BEGINNIN $\begin{array}{r}0 \\ \hline\end{array}$
HOURS OF WORKZONE ACIIVITY BEGINNI 9
15
ourbound capacityNOAMAL

$$
\begin{aligned}
& \text { NORMAL } \\
& \text { RESTED }
\end{aligned}
$$

8000. (VPH) WORKING HOURS 3600 (VPH)
capacity estimate risk factor,
PROBABILITY THATESTIMATED WORKING HOURS CAPACITY IS
LESS THAN ACTUAL CAPACIIY

problem 11 single lane iest problem

MODEL
cost update factor 1.00
penentage trucks
${ }_{4}^{4}$
INBOUND
OUTBOUND
. 00 MILES
nork one i INBOUND
OUTBOUNO

HOURS OF RESTRICTED CAPACITY
BEGINNING
ENDING
23
hours of warkzone activity BEGINMING 9
15 ENDING
OUTBOUND CAPACITY MORMAL

8000 . (VPH) AESTRICTED 1800. (VPH) (VPH)
CAPACITY ESTIMATE RISK FACTOA,
PROBABILITY IHAT ESTIMATED WORKING HOURS CAPACITY IS

summary of user cosis - problem 12

	HOUR	VOLUME (VPH)	** INB CAPACITY (VPH)	OUND D APRCH SPEEO (MPH)	DRECTION WORK ZONE SPEED (MPH)	```*** LENGIH OF quEuE (MILES)```	adoitional hourty USER COSTS (5)		volume (VPH)	CAPACITY (VPH)	OUI日OUNO $A P A C H$ SPEEO (mpH)	OIREC work ZOME SPEED (MPH)	$\begin{aligned} & \text { MON "." } \\ & \text { LENGIH } \\ & \text { OF } \\ & \text { QUEUE } \\ & \text { (MILES) } \end{aligned}$	$\begin{aligned} & \text { ADOIT1ONAL } \\ & \text { HOURLY } \\ & \text { USER COSTS } \\ & \text { is) } \end{aligned}$	+	total ado. hourly user cosis due 10 LANE Closure (\$)
	0-1	270	7200.	59.	59	0.0	1	*						0.	*	1
	1-2	160.	7200.	60.	59.	0.0	0 .	*						0	*	0.
	2-3	120	7200.	60.	60.	0.0	0	*						0 .	*	0.
	3-4	100.	7200.	60.	60	0.0	0.	*						0	*	0.
	4-5	130.	7200.	60.	60	0.0	0	*						0	*	0.
	5-6	460.	7200.	59.	58.	0.0	1	*						0	*	1
	6-7	1620.	7200.	56.	54	0.0	14	*						0	*	14
	7-8	2080.	7200.	55.	53	0.0	28	-						0	*	28.
	8-9	1750.	7200.	56.	54.	O. 0	18	*						0.	*	18
	9-10	1490.	8200.	58.	54.	0.0	17	*						0.	*	17
	10-11	1360.	6200.	57.	55	0 0	14	*						0.	*	14
$\stackrel{1}{8}$	11-12	1040.	6200.	57.	56	0.0	7	*						0.	*	7
	12-13	1040.	6200.	57	56	0.0	7	*						0.	-	7
	13-14	1210.	6200.	57	55.	0.0	10	*						0	*	10
	14-15	1490.	6200.	56	54.	0.0	17	*						0	*	17
	15-16	1670.	6200.	56.	53.	0.0	23.	*						0	*	23
	16-17	1790	7200.	56.	54.	0.0	19	*						0.	*	19
	17-18	1810	7200.	56	54	0.0	14	*						0	-	14
	18-19	1240	7200.	57	56	00	7	*						0.	-	7
	19-20.	1000.	7200.	58	57	00	5	*						0.	*	5
	20-2!	680	7200.	58	58	00	2	-						0	*	2
	21-22	630.	7200.	58.	58	0 O	2	*						0.	*	2
	22-33	560.	7200.	59	58	0.0	2	*						0	*	2
	23-24	500	7200.	59	58	0.0	2	*						0	+	2
		A ADDI	OnAL dally	y USER	cosis	UE TO LAN	Closure =		214.							

	problem 13 single lane test problem		
	model		
	cost update factior	1.00	
	Percentage trucks	8.	
	TOTAL NUMBER OF LANES INBOUND OUTBOUND	5	
	Length of workzone	1.00	miles
	WORKZONE OPEN LANES INBOUND OUTBOUND	3 5	
	hours of restricted capacity beginning ENDING	${ }^{3} 8$	
	HOURS OF WORKZONE ACTIVITY EEGINNING ENDING	15	
$\stackrel{\square}{\square}$	I NBOUNO CAPACIty NORMAL RESTRICTED WORKING HOURS	$\begin{gathered} 10000 \\ 5400 \\ 4500 \end{gathered}$	$\begin{aligned} & (\mathrm{VPH}) \\ & (\mathrm{VPH}) \\ & (\mathrm{VPH}) \end{aligned}$
-	capacity estimaie risk factor probability that esimaied WORKING HOURS CAPACIIY IS Less than actual capacity	60.	percent

summary of user costs - problem 13

	HOUR	VOLUME (VPH)	$\begin{aligned} & \text { CAPACHINBC } \\ & \text { INPH) } \end{aligned}$	OUND D APRCH SPEED (MPH)	RECIION WORK ZONE SPEED (MPH)	$\begin{gathered} \text { OENGTH } \\ \text { OF } \\ \text { QUEUE } \\ \text { (MIEES } \end{gathered}$	$\begin{aligned} & \text { ADOI IIONAI } \\ & \text { HOURLY } \\ & \text { USER COSTS } \\ & \text { (\$) } \end{aligned}$	$* \quad$ VOLUME $*$ $*$ $*$	$\underset{\text { CAPACITY }}{\text { (VPH) }}$	outbound APRCH SPEED (MPH)	$\begin{aligned} & \text { D DIREC } \\ & \text { WORK } \\ & \text { ZONE } \\ & \text { SPEED } \\ & \text { (MPH) } \end{aligned}$	$\begin{aligned} & \text { ION * } \\ & \text { LENG } \\ & \text { OF } \\ & \text { QUEUE } \\ & \text { (MILESS } \end{aligned}$	ADDIIIOMAL hoURLY USER COSTS (\$)		rotal ado hourly user cosis due To LANE closure ist
	0-1	270.	5400.	59.	59.	0.0	1	*					0.	*	1.
	1-2	160.	5400.	60.	59	0.0	0	*					0	*	0.
	2-3	120.	5400	60.	59	0.0	0	*					0.	*	0
	3-4	100.	5400.	60.	60	0.0	0	*					0.	*	0
	4-5	130.	5400.	60.	59.	0.0	0.	*					0.	*	0
	5-6	460.	5400.	59.	58.	0.0	2	*					0.	*	2
	6-7	1620.	5400.	56	52	0.0	30	*					0	-	30.
	7-8	2080.	5400.	55	50	0.0	59	*					0	*	59
	8-9	1750.	5400.	56.	52.	0.0	37	*					0.	*	37.
	9-10	1490.	4500.	56.	52.	0.0	36	*					0	*	36.
	10-11	1360.	4500	57	52.	0.0	29	*					0.	*	29.
N	11-12	1040.	4500	57	54	O. 0	14	*					0.	*	14
	12-13	1040.	4500	57	54.	00	14	*					0.	-	14
	13-14	1210.	4500.	57.	53.	00	21	*					0.	*	21
	14-15	1490.	4500.	56	52.	00	36	*					0.	+	36.
	15-16	1670	4500	56	51	0.0	49	*					0	,	49
	16-17	1790	5400.	56	52	00	39	*					0	*	39
	17-18	1610	5400	56	53	00	30	*					0.	*	30
	18-19	1240	5400	57	54	00	15	*					0.	*	15
	19-20	1000	5400	58	55	0.0	9	*					0	*	9
	20-21	680	5400	58	57	0.0	4	*					0	*	4
	2:-22	630	5400	58	57	00	3	*					0.	*	3
	22-23	560.	5400	59	57	0.0	3	*					0	*	3
	23-24	500	5400	59	58	O. 0	2	*					0	*	2
			al daily	Y USER	osis	10	E closune =	436							

problem 14 simgle lane test problem

model
COST UPDAIE FACTOR 1.00
percentage truc
total numaen of lanes INBOUND

5
5
LENGIH OF WORKZONE 1.00 MILES
WORKZONE OPEN LANES 1 MBOUND
OUTBOUND

2
5
HOURS OF RESTRICTED CAPACITY EEGINNING
ENDING

23
HOURS OF WORKZONE ACTIVITY aEGINNING

9
15

I MBOUND CAPACIYY NORMAL RESTRICTEO RESTRICTED
WORKING HOURS
0000. (VPH) 3600 . (VPH)
2745. (VPH)

GAPACITY ESTIMATE RISK factor.
GAPACITY ESTIMATE RISK FACI WORKING HOURS CAPACIIY IS
LESS THAN ACTUAL CAPACITY

rotal additional daily user cosis due to tane ciosure = 1126
problem 15 single lane test problem

MODEL
COST UPDATE FACTOR
percentage trucks.
total humber of Lanes INBOUND INBRUND
OUTBOUND
LENGTH OF WORKZONE
WORKZONE OPEN LANES I NBOUNO
OUTBOUND
houns of restricteo capactity BEGINNIN
ENDING

HOURS OF WORKZONE ACTIVITY BEGINNING
inbound capacity NORMAL
estricted
CAPACITY ESTIMATE RISK FACTOR
PROBABILITY THATESTIMAIED
WORKING HOURS CAPACITY IS
LESS THAN ACTUAL CAPACIIY
.
1
5

0
23
9
15
1
1.00

日

5
5
1.00 MILES
0000. (VPH) $1800,(\mathrm{VPH})$
$1200 .(\mathrm{YPH})$

	Summary of user cosis - problem 15														
	HOUR	volume (VPH)	$\begin{gathered} \text { CAPACIINE } \\ \text { (YPH) } \end{gathered}$	$\begin{aligned} & \text { OUNO DI } \\ & \text { APRCH } \\ & \text { SPEED } \\ & \text { (MPH) } \end{aligned}$	```RECTION WORK ZONE SPEED (MPH)```	$\begin{aligned} & \text { Q+ } \\ & \text { LENGTH } \\ & \text { OF } \\ & \text { QUEUE } \\ & \text { IMILES: } \end{aligned}$	ADOITIONAL HOURLY uSEA cosis (\$)	$\begin{aligned} & * \\ & \text { * VOLUME } \\ & \text { (VPH) } \\ & \text { : } \end{aligned}$	$\begin{gathered} \text { CAPACITíY } \\ \text { (VPH) } \end{gathered}$	oulbound APRCH SPEED (MPH)	DIREC WORK ZONE SPEED (MPH)	$\begin{aligned} & \text { TION *** } \\ & \text { LENGTH } \\ & \text { OF } \\ & \text { QUEUE } \\ & \text { MILES) } \end{aligned}$	$\begin{aligned} & \text { ADDIIIONAL } \\ & \text { HOURIY } \\ & \text { USER COSIS } \\ & \text { is) } \end{aligned}$	*	iotal ado. HOURLY USER cosis due TO LANE closure (s)
	0-1	270.	1800.	59.	56	0.0	3.	,					0	*	3
	1-2	160	1800.	60.	58	0.0	1	*					0.	*	1.
	2-3	120.	1800.	60.	58.	0.0	1	*					0	*	1
	3-4	100.	1800.	60.	59.	0.0	0	-					0.	*	0
	4-5	130.	1800.	60	58	0.0	1	*					0.	*	1.
	5-6	460.	1800.	59.	54.	0.0	10	*					0 .	*	10
	6-7	1620	1800.	56.	39.	0.0	328	*					0 .	*	328.
	7-8	2080.	1800.	55.	25.	0.2	2414	*					0.	*	2414
	8-9	1750.	1800.	56.	30.	0.4	3318	*					0.	*	3318
	9-10	1490.	1200.	56.	23.	0.6	4664	*					0.	*	4664
	10-11	1360.	1200.	57	26.	0.9	6829	-					0.	-	6829.
$\stackrel{\rightharpoonup}{8}$	11-12	1040.	1200.	57.	30	0.9	6617	*					0.	-	6617
	12-13	1040.	1200.	57.	30.	07	4960	*					0.	*	4960
	13-14	1210.	1200.	57	30	0.6	4254	*					0	*	4254
	14-15	1490.	1200.	56	23	0.8	6115	*					0.	*	6415
	15-16	1670.	1200.	56	20	1.4	10284.	*					0.	*	10284
	16-17	1790.	1800.	56	30.	17	12348	-					0.	*	12348.
	17-18	1610	1800.	56.	30	16	11241	*					0.	-	11241
	18-19	1240.	1800.	57	30	10	72.13.	*					0.	*	7213
	19-20	1000.	1800.	58	39	0.3	1061	*					0.	*	1061.
	20-21	680	1800.	58.	51	00	26	*					0.	*	26
	21-22	630	1800.	58	51	0.0	21	*					0	*	21
	22-23	560	1800	59	52	0.0	16	,					0	*	16.
	23-24	500.	1800	59	53	00	12	*					0.	*	12
	total adoitional daily user costs due to lane closure = 81736														
	** Warning ** queue estimated to reach 1 ? miles long queue does not consider drivers leaving the freeway to diveri to gther houtes check alternate routes - diversion may take place.														

Problem 16 single lane closure test problem

MODEL
COST UPDATE FACTOR
percentage trucks
rotal number of lanes INBOUNO
OUTBOUND
LENGTH OF WORKZONE
WORKZONE OPEN LANES 1 NBOUND
OUTBOUND
hours of restricted capacity BEGINNING EREING
HOURS OF WORKZONE ACTIVITY GEGINNIMC
ineound capacity NOAMAL RESTRICTED WORKING HOURS

1
1.00
a

6
6
1.00 miles

5
6
9
15
9
15
12000. (VPH)

9000 . (VPH)
$\mathbf{9 2 5 0}$. (VPH)

	hour	$\begin{aligned} & \text { VOLUME } \\ & \text { (VPH) } \end{aligned}$	$\begin{gathered} \text { CAPACHITMB } \\ (V P H) \end{gathered}$		DIRECTION WORK ZONE SPEED (MPH:	$\begin{aligned} & \text { UENGGI } \\ & \text { OGF } \\ & \text { QUEUE } \\ & \text { MILESS } \end{aligned}$	adDItIONAL hourly USER cosis (\$)	:	volume VRPH	$\underset{\text { CAPACIIX }}{\underset{\text { CVPH) }}{ }}$	outbound SPEED (MPH)			adoitional hourly uSER $\cos 15$ (5)		rotal ado COSIS DUE IO LANE closure is
	$0-1$						0. .	,						0.		0
	1-2						0	*						0.		0
	2-3						0	*						0		0.
	3-4						0	-						0.		0.
	4-5						0	-						0.		0.
	5-6						0	-						0.		0
	6-7						0	,						0.		0
	7-8						0	,						0		0
	8-9						0	,						0.	,	0.
	9-10	1490.	8250	57	55.	0.0	10	,						0.		10
	10.11	1360.	8250	57	56	00	0	,						0	-	8
8	11-12	1040	8250.	58.	57	0.0	5	*						0.	-	5
	12-13	1040	8250.	58	57	0.0	5	*						0	-	5
	13-14	1210	8250	57.	56.	0.0	6	-						-	-	6
	14-15	1490.	8250.	57	55.	0.0	10.	*						0.	-	10
	15-18	1670.	8250.	57	55	0.0	13	*						0	-	13
	18-17		.				0	*						0	,	0
	17-18						0	:		.	.			0	-	0.
	18-19						0	*						0	-	0
	19-20						0	*						\bigcirc	-	0
	20-21						0	,						0.	-	0
	21-22						\bigcirc	+						-	-	0
	22-23						0.	*						0	-	0
	23-24				-		${ }^{0}$	*						0		0

total adoitional daily usea costs due to lane closure $=\quad 58$.

```
PROBLEM 17 SINGLE LANE TEST PROBLEM
model
                                    I
COST UPDATE FACIOR 1.00
percentage trucks B.
TOTAL numBER of LANES 
lENGTH OF WORKZONE 1.00 MILES
WORKZONE OPEM LANES
    INBOUND
    G
HOURS OF RESTRICTED CAPACITY
    GRSGINNING
    BEGINNI
    %9
HOURS OF wORKZONE ACTIVITY
    BEGINNING
    9
INBOUND gapACITY
    NORMAL
        MRESTRICTED
12000. (VPH)
    72000. (VPH)
    WORKING HOURS: 7200. (VPH)
WORK zONE CAPACITY GREATER THAN RESTRICTED CAPACITY - PROGLEM IT SKIPPED
POSSIBLE SOURCE OF ERROR: USER-SUPPLIEO CAPACITY ESTIMAIE GREATER THAN SO% OF NORMAI. CAPACITY
```

problem is single lane test problem

model

1.00

COST UPDATE FACTOR B.
percentage thucks 6
6
total number of lanes INBOUND
ENGTH OF WORKZONE

1. 00 MILES

WORKZONE OPEN LANES INBOUND 3
8
hours of restricted capacity BEGINNING 9
15
hours of warkzone activity BEGINNING
$\stackrel{9}{15}$
BEGINNI
ENDING
I MBQUND CAPACIIY
NORMAL
RESTRICTED
WORKING HOLR
12000 (VPH)
WORKING HOLIRS $\quad 4500$ (VPH)
(VPH)

CAPACITY ESTIMATE RISK FACTOR.
CAPACITY ESTIMATE RISK FAC
PRORAEILITY THAY ESJIMATED
WORKING HOURS CAPACITY IS
wess Than actual capacity

total additional daily user cosis due to lane closure =

```
    PROBLEM 19 SINGLE LANE TESI Problem
    MODEL
                            I
    percentage trucks a
    oial number of lanes
        INBOUND
        6
LENGTH OF WORKZONE 1.00 mILES
WORKZONE OPEN LANES
        INBOUND2
```

GURS of restricted capacity

```BEGINNING9
15
```

HOURS OF WORKZONE ACTIVITY EEGINNING 9
15

```nBouno capacityNORMAL
```

12000. (VPH)
``` RESIRICTED
WORKING HOURS 2000. (VPH)
3600 . (VPH)
capacity estimate risk factóo.
pRobability thate esimmated WORKIMG HOURS CAPACITY IS Less than actual capacity
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & HOUR & \begin{tabular}{l}
VOLUME \\
(VPH)
\end{tabular} & \[
\begin{gathered}
\text { CAPACIINB } \\
\text { (VPH) }
\end{gathered}
\] & OUND DI APRCH SPEED (MPH) & RECTION WORK ZONE speep (MPH) & \[
\begin{aligned}
& \text { QENGTH } \\
& \text { OF } \\
& \text { QUEUE } \\
& \text { MILESS }
\end{aligned}
\] & ADDITIONAL hounty USER COSIS ( 5 ) & : & \begin{tabular}{l}
volume \\
(VPH)
\end{tabular} & \[
\begin{gathered}
\text { capacitír } \\
\text { (VPH) }
\end{gathered}
\] & outbound APRCH SPEED (MPH) & DIRE WORK ZONE SPEED (MPH) & \[
\begin{aligned}
& \text { TION MO" } \\
& \text { CENGIH } \\
& \text { OF } \\
& \text { (MILEES) }
\end{aligned}
\] & ADDITIONAL hourty USER COSTS ( 5 ) & * & total add. hourly user cosis due TO LANE closure (5) \\
\hline & 0-1 & & & & & & 0 & - & & & & & & 0. & * & 0 . \\
\hline & 1-2 & & & & & & 0 & * & & & & & & 0. & * & 0 \\
\hline & 2-3 & & & & & & 0 & , & & & & & & 0. & * & 0. \\
\hline & 3-4 & & & & & & 0 & * & & & & & & 0. & * & 0 \\
\hline & 4-5 & & & & & & 0 & * & & & & & & 0. & * & 0. \\
\hline & 5-6 & & & & & & 0 & - & & & & & & 0. & * & 0. \\
\hline & 6-7 & & & & & & 0 & * & & & & & & 0. & * & 0 \\
\hline & 7-8 & & & & & & 0 & * & & & & & & 0. & * & 0 \\
\hline & B-9 & & - & & & & 0 & * & & & & & & 0. & * & 0 \\
\hline & 9-10 & 1490. & 2600 & 57 & 47. & 0.0 & 101 & - & & & & & & 0 & * & 101 \\
\hline & 10-11 & 1360 & 2800 & 57. & 48. & 0.0 & 78 & * & & & & & & 0 & - & 78 \\
\hline \[
\omega_{\infty}
\] & 11-12 & 1040. & 2800 & 58. & 51 & 0.0 & 37 & * & & & & & & 0 & * & 37 \\
\hline & 12-13 & 1040. & 2800 & 58. & 51 & 0.0 & 37 & * & & & & & & 0. & * & 37 \\
\hline & 13-14 & 1210. & 2800 & 57 & 49 & 0.0 & 56 & - & & & & & & 0 & * & 56 \\
\hline & 14-15 & 1490. & 2800 & 57 & 47 & 00 & 101 & * & & & & & & 0 & * & 101 \\
\hline & 15-16 & 1670. & 2800 & 57 & 45. & 0.0 & 141 & * & & & & & & 0 & * & 141. \\
\hline & 16.17 & & & & & & 0 & * & & & & & & 0 & - & 0 \\
\hline & 17-18 & & & & & & 0 & * & & & & & & 0 & * & 0 \\
\hline & 18-19 & & & & & & 0 & * & & & & & & 0 & * & 0 \\
\hline & 19-20 & & & & & & 0 & * & & & & & & 0. & * & 0. \\
\hline & 20-21 & & & & & & 0 & * & & & & & & 0 & * & 0 \\
\hline & 21-22 & & & & & & 0 & * & & & & & & 0 & * & 0. \\
\hline & 22-23 & & & & & & 0 & * & & & & & & 0 & * & 0. \\
\hline & 23-24 & & & & & & 0 & * & & & & & & 0. & * & 0. \\
\hline & & AL ADDI & ONAL dall & Y USEA & cosis du & to Lan & CLOSURE = & & 551 & & & & & & & \\
\hline
\end{tabular}

```


[^0]: ** Warning . * queue estimated to reach other routes. check alternate moutes - diversion may take piage. dorivers leaving the freeway to diveri

[^1]: * WARNING ** queue estimateo to reach or g miles long queue does not consider

