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IMPLEMENTATION STATEMENT 

Based on the results of this study, a number of recommendations are made regarding 
the uses of Automatic Incident Detection Algorithms for freeway traffic management. Among 
the most important is the operator capability of specifying different data smoothing periods and 
speed thresholds for different freeway sections when speed-based incident algorithms are used. 
In addition, the operator should monitor and flag the end of incident through video monitoring 
techniques to reduce the false alarms. Also, methods should be devised to check data 
collection systems for malfunctions. Other suggestions to improve the algorithm performance 
as an effective freeway traffic management tool are provided in Chapter 5. 
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SUMMARY 

The Texas Department of Transportation, San Antonio District, is developing the San 
Antonio Traffic Management System (TransGuide). TransGuide is envisioned to be the next 
evolution in control systems in the management of traffic. The initial phase of the Advanced 
Traffic Management System program is now under construction. This study evaluates 
alternative incident detection-algorithms for automatic incident management. 

This study has identified and implemented alternative algorithms, evaluated the 
operational effectiveness of the San Antonio ATMS algorithm, evaluated the potential of 
advanced techniques in improving San Antonio ATMS operations, and recommended 
operational improvements to the existing system operations. 

The study has found that the existing San Antonio Incident Detection Algorithm 
worked well as compared to other algorithms in San Antonio, Texas. However, other 
algorithms evaluated in this study may also have potential with more data available for 
calibration. This study has also recommended system enhancements to assist the San Antonio 
District in the refinement of their speed-based algorithm. 
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1.0 INTRODUCTION 

1.1 STUDY BACKGROUND 

With increasing traffic congestion in the United States, many states have constructed 
transportation management centers to improve service vehicle response to incidents and 
decrease delays. To reduce the time to respond to incidents, the traffic management system 
must quickly and correctly detect incidents. One method of detecting incidents is to apply 
volume, occupancy, or speed data to an incident detection algorithm. One or more algorithms 
attempt to determine whether an incident has occurred based on variations in traffic flow 
patterns. When an algorithm determines that an incident may have occurred, it produces an 
alarm. Next, the operators check the area using Closed Circuit Television (CCTV), activate 
necessary control devices, and dispatch appropriate service vehicles. 

The Texas Department of Transportation, San Antonio District, is developing the San 
Antonio Traffic Management System (TransGuide). The initial phase of the TransGuide 
program is now operational. The San Antonio TransGuide system uses a speed-based 
algorithm created by the Texas Department of Transportation (TxDOT). This algorithm is 
simple in structure, sounding an incident alarm when the average speed drops below a 
specified threshold. This research tested this algorithm to determine its effectiveness for 
automatic incident detection purposes. Other algorithms were also selected for comparative 
testing against this algorithm. 

Incident detection algorithms have been used since the 1960s. The most popular 
algorithm developed in that decade was the California algorithm. Several modifications were 
made to the algorithm to create the California #7 and #8 algorithms which are still employed 
at traffic management centers today (1). While a number of other algorithms have been 
developed over the years, there is still no single algorithm which can detect all incidents and 
distinguish between recurrent and non-recurrent congestion. When an algorithm produces too 
many false alarms, operators begin ignoring the incident alarms, and service vehicles may not 
be promptly dispatched. Therefore, it is desirable that the algorithm detects incidents as 
accurately as possible. 

Incident congestion, bottleneck congestion, slow traffic due to steep grades, congestion 
from a single slow moving vehicle, and slow movement caused by geometric design 
deficiencies all affect speed, occupancy, and volume loop detector data. For an algorithm to 
appropriately detect incidents, it must distinguish between data for recurrent and non-recurrent 
congestion conditions. Algorithm performance also depends on calibration methods and the 
definition of conditions when thresholds should change. Accuracy of algorithms is dependent 
on all of these factors and is essential in having an effective traffic management system. 
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1.2 STUDY OBJECTIVES 

The research was conducted by the Texas Transportation Institute (TTI) at Texas A&M 
University System for TxDOT. The primary objectives of the proposed research were to: 

1. Identify and implement alternative algorithms by which to assess the effectiveness of 
the San Antonio ATMS algorithm. 

2. Evaluate the effectiv~ness of the San Antonio ATMS algorithm in comparison to the 
alternative algorithms. 

3. Evaluate the potential of advanced techniques in improving San Antonio ATMS 
operations. 

1.3 STUDY SCOPE 

This research assessed which algorithm can most quickly and correctly identify an incident 
by generating an alarm near the incident site. In particular, the Texas Transportation Institute 
performed the following tasks for the TxDOT San Antonio District: 

Task 1. Operational Test Computer. TTI purchased a VAX station 4000 Model 90 computer 
system for use by TTI in the Incident Detection phase of the Operational Test Study. 

Task 2. Determine Alternative Algorithms. This task has selected a group of the algorithms 
used to comparatively assess the effectiveness of the San Antonio ATMS incident detection 
algorithm. A list of candidate algorithms were developed from a current TTI research effort 
through which existing and proposed incident detection algorithms are being identified. Final 
selection of these algorithms were made prior to the ATMS becoming fully operational. 

Task 3. Implement Alternative Algorithms. The algorithms chosen in Task 2 were 
implemented concurrently with the San Antonio algorithm. These alternative algorithms were 
operated off-line (in parallel). In this fashion, a direct comparison was made between the 
various algorithms using real-time data from the field without having an adverse impact on the 
ATMS operations. This task was initiated just prior to the ATMS becoming fully operational 
and includes the coding, testing, and calibration of the alternative algorithms. 

1.4 CONTENTS 

This report contains six chapters which present the research study methods and results. 
Chapter 1 includes the study background, objective, and scope. Chapter 2 presents previous 
research regarding incident detection algorithms. The structure and theory of each algorithm 
is defined, and the performance results of the algorithms from other studies are stated. The 
chapter also provides a discussion of why each algorithm was or was not selected for 
comparison with the TxDOT algorithm. Chapter 3 outlines the study design for this research, 
traffic patterns, and test cases. It also provides a description of the study site selection process 

2 



and states which sites were selected with their corresponding camera and loop detector 
names/numbers. The process of calibrating the algorithms for each site is described, and the 
selected thresholds are presented. The traffic characteristic analysis was followed which 
includes normal weekday and weekend patterns, and incident patterns. The chapter also 
provides a description of test cases which include seven incidents. Chapter 4 provides 
evaluation results, presenting the performance of each algorithm and the statistic analysis. 
Chapter 5 presents operational sensitivity analysis and investigates further improvements of 
TxDOT's speed-based algorithm with different smoothing periods and speed thresholds. 
Chapter 6 includes the conclusions and recommendations of this research. Chapter 7 provides 
references. The appendix includes algorithm listings. 
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2.0 LITERATURE REVIEW 

2.1 DIFFERENT ALGORITHMS 

A literature review of existing incident detection algorithms was conducted to determine 
the appropriate algorithms for comparison with the TxDOT algorithm. This chapter provides a 
brief description of each algorithm as a background for selecting which algorithms to examine in 
this study. There are seven sections which group the algorithms by theoretical approach: 

• Comparative Algorithms 
• Statistical Algorithms 
• Time-Series Algorithms 
• Smoothing/Filtering Algorithms 
• Modeling Algorithms 
• Low Volume Algorithms 
• Algorithms Using Advanced Techniques 

Each algorithm is described within its respective section. The Algorithm Selection section 
discusses why each algorithm was or was not selected for comparison with the TxDOT algorithm. 

2.1.1 Comparative Algorithms 

Comparative algorithms are the simplest of all existing algorithms. These algorithms are 
based on the theory that loop detector volume and occupancy will increase while speed will 
decrease if an incident should occur. The algorithms compare actual occupancy, volume, and/or 
speed data with predefined thresholds. The TxDOT speed algorithm, variations of the California 
algorithm, and the All Purpose Incident Detection algorithms are categorized as comparative 
algorithms. 

2.1.1.1 TxDOT Speed Algorithm 

The TxDOT speed algorithm attempts to detect incidents with loop detector speeds using 
a two minute moving average (six 20 second polling cycles). Ifno vehicles pass over a detector 
during a polling period, the reported zero speed is not computed in the two minute average. The 
algorithm sounds an incident alarm when the two minute average speed is less than the predefined 
threshold. This algorithm has not been tested against other algorithms. 

2.1.1.2 California Algorithms 

The family of California algorithms compare loop detector data with defined thresholds 
to detect incidents. Based on the original California algorithm, ten variations were developed 
with various parameters and program structures. This report describes the most commonly 
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applied variations of the California algorithm. 

2.1.1.2.1 Basic Algorithm 

The California algorithm is typically used for comparison purposes to evaluate the 
performance of a new algorithm. Occupancy data from system loop detectors are applied to the 
parameters which are defined in Table 1. Incidents are detected by applying the OCCDF, 
OCCRDF, and DOCCTD tests. For this study, the time interval, t, is 20 seconds, and I denotes 
the station number. When OCCDF, OCCRDF, and DOCCTD exceed their thresholds, the 
algorithm produces an alarm that an incident occurred between station I and the adjacent 
downstream station, I+ 1. The primary structure of the California algorithm is shown in Figure 
1. The structure of the basic California algorithm can be expanded by increasing the number and 
type of parameters applied to its structure to account for the variations of wide data fluctuations 
and congestion. 

The other California algorithms discussed in this report represent an attempt to improve 
the basic California algorithm. The algorithms were run with Los Angeles Freeway data to 
determine which algorithms had the best performance. According to the evaluation, the basic 
California algorithm had an 82% detection rate, a 1. 73 % off-line false alarm rate, and an average 
detection time of0.85 minutes (2). 

O - Incident free 
1 - Incident occurred 

OCCRDF 
~T2 

0 

·~ 
DOCCTD 

~T3 

/ 
0 

F 

Figure 1. Basic Decision Tree for the California Algorithm (2) 

6 



Table 1. Parameters Applied to California Algorithms (2) 

Parameter Equation Definition 

occ (i,t) ace (I, tJ Occupancy at station I for time interval t 

DOCC (i,t) ace (l+I, tJ Downstream occupancy at station I for 
interval t 

OCCDF (i,t) ace (i,tJ - acc(l+ I,tJ Spatial difference in occupancies 

OCCRDF (i,t) 
OCCDF(i,t) 

Relative spatial difference in occupancies 
OCC(i,t} 

DOCCTD (i,t) 
OCC(i+ 1,t-2)-0CC(i+ 1,t) Relative temporal difference in downstream 

OCC(i+ 1 t-2) occupancy 

O - Incident free 
1 - Incident occurred 
2 - Incident continuing 

Figure 2. California Algorithm #4 Decision Tree (2) 

2.1.1.2.2 California Algorithm #4 

The basic California algorithm was modified in an attempt to detect compression waves. 
Compression waves occur in heavy stop-and-go traffic, forming at speeds of about 8 to 24 km/hr 
(5 to 15 mph) in the opposite direction of the flow of traffic. Compression waves increase 
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occupancies at the downstream station to values greater than 20%. In an incident situation, on 
the other hand, downstream occupancies are typically much less than 20% (3). Based on this 
phenomenon, it is appropriate to replace the time differential in the occupancy (DOCCTD) 
parameter of the basic California algorithm with the downstream detector station occupancy 
(DOCC). The DOCC parameter improves the algorithm structure because it also looks at the 
downstream station to detect compression waves. Figure 2 shows the structure of California 
algorithm #4. 

This algorithm was originally tested with Los Angeles Freeway data. The evaluation 
produced a detection rate of 82%, a 1.577% off-line false alarm rate, and an average of 0.64 
minutes to detect an incident (2). 

2.1.1.2.3 California Algorithm #7 

Algorithm #7 is nearly the same as .algorithm #4, but it includes a persistence check (see 
Figure 3). When the algorithm applies a persistence check, a tentative incident is declared for the 
first few time periods that the data exceed the threshold; if the conditions continue, the algorithm 
produces an incident alarm. A longer persistence check will decrease the number of false alarms 
but increase the detection time. A persistence check may last for as many periods as selected by 
the programmer or operator. Typically, a persistence check will delay declaring an alarm by four 
20 second (1:20) or three 30 second (1:30) time periods. 

0 - Incident free 

1 - Tentative incident 

2 - Incident occurred 

3 - Incident continuing 

Figure 3. California Algorithm #7 Decision Tree (.2) 
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California algorithm #7 compares the spatial difference in occupancy (OCCDF), relative 
spatial difference in occupancy (OCCRDF), and relative temporal difference in downstream 
occupancy (DOCC) values computed from the loop detector data with predefined thresholds. 
If the OCCDF and OCCRDF values exceed their given thresholds while DOCC does not, then 
the algorithm compares OCCRDF to its threshold value during the next iteration. If OCCRDF 
exceeds the threshold, the algorithm will continue to check its values against the threshold for the 
defined number of persistence check iterations. In other words, the algorithm determines whether 
the exceeded threshold was instantaneous or if it occurred because of an incident. Another 
feature of this algorithm is that it detects the continuation of incidents, alerting an operator of the 
termination of an incident. 

When California algorithm #7 was tested with Los Angeles Freeway data, the reported 
best performance included a detection rate of 67%, an off-line false alarm rate of0.134%, and 
a mean time to detect of2.91 minutes (2). 

2.1.1.2.4 California Algorithm #8 

With 30 decision nodes, algorithm #8 is more complex than other California algorithms, 
but it applies only four parameters. The decision tree for Algorithm #8 is shown in Figure 4. The 
algorithm compares OCCDF, OCCRDF, DOCC, and DOCCTD to their respectively defined 
thresholds. This algorithm is essentially the same as algorithm #7, but it includes a check for 
compression waves. 

Compression waves form during heavy traffic conditions. They are characterized by a 
sudden increase in occupancy which propagates at an upstream station within 2 to 5 minutes (2). 

Algorithm #8 applies DOCC and DOCCTD parameters to test for the presence of 
compression waves. This algorithm typically repeats its check for a compression wave for 5 
minutes. If the compression wave continues for 5 minutes, the algorithm starts again at state 0 
(incident free) to check for incidents and compression waves. The algorithm also restarts with 
state 0 when the compression wave terminates before the end of the 5 minutes. This 
configuration allows the algorithm to discern between compression waves and incidents. 
Algorithm #8 also includes persistence check and incident continuation features. Payne et al. (2) 
reduced the complexity of algorithm #8 and managed to decrease the number of decision nodes 
from 30 to 21 using a tree optimization procedure (Figure 5). Although the decision tree is 
different, it is the same algorithm. 

The reported best performance for California algorithm #8 included a 68% detection rate, 
an off-line false alarm rate of0.177%, and an average detection time of 3.04 minutes. These 
results were based on an analysis using data from the Los Angeles Freeway (2). 
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....... 
0 

SIA.IE DESIGNATES 

0 Incident free 
Compression wave downstream in this minute 
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Figure 4. California Algorithm #8 Decision Tree (2) 
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2.1.1.2.5 California Algorithm #9 

Algorithm #9 is essentially equivalent to algorithm #8, but it does not include the 
persistence check. Figure 6 is the decision tree for Algorithm #9. According to a study using Los 
Angeles Freeway data, the algorithm's performance consisted of a 71 % detection rate, a 1.190% 
off-line false alarm rate, and a mean-time-to-detect of 0.47 minutes (2). 

2.1.1.2.6 California Algorithm #10 

This algorithm is different from the other California algorithms because it includes a speed 
based feature, the relative temporal difference in speed (SPDTDF), which is computed with the 
following equation (2): 

SPDTDF(i t) = SPD(i, t-2) -SPD(i, t) 
' SPD(i, t-2) 

where: SPD = speed at the specified time and detector station. 

The purpose of including this feature is to detect incidents that occur in light or moderate traffic. 
Figure 7 shows the structure of algorithm # 10. Theoretically, it is better to detect incidents under 
these conditions using vehicle speeds because occupancies might not increase enough for an 
algorithm to detect the change in traffic. According to the speed/flow curve (Figure 8), low flows 
do not necessarily indicate incident conditions. Low flows may indicate slow or fast speeds; 
therefore, applying speed data to an algorithm should make the algorithm operate more 
effectively. 

The performance of California algorithm# 10 was tested with Los Angeles Freeway data. 
The algorithm had a 51% detection rate, a 0.065% off-line false alarm rate, and a mean of3.59 
minutes to detect incidents (2). 
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2.1.1.3 All Purpose Incident Detection Algorithm (APID) 

The APID algorithm uses five variables which were defined within the California 
algorithm section. They include OCCDF, OCCRDF, DOCCTD, DOCC, and SPDTDF. This 
algorithm is similar to California algorithms in its comparison ofloop data to a threshold for each 
parameter. The difference in these algorithms is that the APID algorithm automatically changes 
which parameters are used and adjusts their thresholds according to existing loop conditions, 
while the California algorithm thresholds are changed manually and parameter use is constant. 

After the APID algorithm determines the traffic flow type (low, medium, or high), it 
applies the test designed for that particular flow state. For medium volume conditions, a 
compression wave test is performed, followed with comparisons of OCCRDF and SPDTDF to 
defined thresholds. If both thresholds are exceeded, a persistence check is performed to 
determine whether the conditions still exist. If the conditions remain after a specified number of 
persistence checks, an incident is declared. For high traffic flow, the algorithm checks for a 
compression wave with DOCCTD data. When the section is clear of compression waves, 
OCCDF, OCCRDF, and DOCC values are compared with thresholds. It performs persistence 
checks if thresholds are exceeded. 

For all traffic flow conditions, the APID algorithm is essentially the same as California 
algorithm #8. If the algorithm detects a compression wave, it continues to check for its presence 
until the maximum defined endurance period expires. When the algorithm tentatively finds an 
incident, a persistence test compares actual OCCRDF values with a threshold to determine 
whether an incident occurred. 

This algorithm was designed to handle all flow conditions. It was tested with data from 
the Burlington Skyway in Ontario, Canada, with flows reaching 2000 vphpl. Off-line testing of 
the algorithm produced an 86% detection rate for detectable incidents, a 0.05% off-line false 
alarm rate per station, and a mean time to detect of2.55 minutes (5). This included a 2 minute 
persistence check. 

2.1.2 Statistical Algorithms 

A statistical algorithm may examine the deviation from the mean for a parameter using a 
statistical approach to determine whether the change in the traffic variable data was significant. 
Another approach can determine the statistical probability that an incident occurred based on 
historical data. Two statistical algorithms include the Standard Normal Deviate and Bayesian 
algorithms. 

2.1.2.1 Standard Normal Deviate (SND) 

In general, the standard normal deviate is the number of deviations that a variable is away 
from the mean of that variable. The mean of the variable is computed with a moving average. 
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The SND algorithm can apply occupancy or energy (based on volume and speed measurements) 
data from loop detectors at a single station to detect incidents. For the SND model to work 
effectively, it depends on the passage of a shock wave over a set of sensors. The SND model is 
based on the theory that a large change in traffic variables will indicate the occurrence of an 
incident. SND measures the deviation from the mean with the following equation: 

where: x 
x 
s 

= 
= 
= 

SND = x-x 
s 

a given value for the control variable at time t; 
mean of control variable over previous n sampling periods; and 
standard deviation of control variable over previous n periods. 

Theoretically, a large SND value is indicative of a significant change in the state of a traffic 
variable due to an incident. Evaluating the rate of change of a variable should be more effective 
than comparing values to constant thresholds since traffic variables may constantly change with 
time of day and weather conditions. 

This algorithm was tested on-line with three and five minute moving average samples from 
detector stations on the Gulf Freeway in Houston. With a single persistence check and a critical 
SND value of 4, the five-minute moving average method achieved its best performance in 1979 
(5). Nmety-two percent of all incidents were detected, the off-line false alarm rate was 1.3%, and 
the average response time was 1.1 minutes ( 6). 

2.1.2.2 Bayesian Algorithm 

This algorithm uses Bayesian statistics to determine the probability that an incident 
occurred. The algorithm applies the relative spatial difference in occupancies (OCCRDF) feature 
which was previously defined for the California algorithms. This parameter was selected because 
its values are typically stable, yet there is a considerable difference between its incident and non
incident values (7). 

This approach requires frequency distributions of adjacent station occupancies for incident 
and non-incident situations based on historical data for each detector station. The frequency 
distribution curves and computed probabilities of an incident occurring within each specified 
section are applied to obtain the optimal threshold for OCCRDF. 

The probability of a capacity-reducing incident occurring at a specific detector station at 
a specified time is computed with the following ratio: 

A 
B·C 

where: A = average number of incidents occurring in the study section 
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B 
c 

= 
= 

during the total time period; 
the total number of detectors in the study section; and 
the number of minutes in the time period. 

Probabilities are computed to determine the number of persistence checks required to achieve an 
appropriate probability of an incident occurring according to a comparison of consecutive 
OCCRDF values with the defined threshold. The incident probability value was incorporated in 
computing the OCCRDF threshold. This method will reduce the number of false alarms; 
however, detection time will increase to achieve high probabilities of detection. 

The Bayesian algorithm was tested on-line at the Kennedy Expressway in Chicago during 
the evening peak period. It applied a persistence check which required the algorithm to determine 
the probability of an incident from four consecutive data sets. The algorithm detected 100% of 
the incidents with no false alarms and an average detection time of3.9 minutes (7). 

2.1.3 Time-series Algorithms 

Algorithms using the time-series approach use historical data to predict future parameter 
values. These algorithms typically predict values that are one or two time slices ahead. A 
confidence interval is then computed for future values. If the actual values lie outside the 
predicted range, an incident is declared. Time-series algorithms usually use occupancy as the 
traffic parameter. The Auto Regressive Integrated Moving Average (ARIMA) and High 
Occupancy (HIOCC) algorithms are time-series algorithms. 

2.1.3.1 Auto Regressive Integrated Moving-Average (ARIMA) Algorithm 

The ARIMA algorithm accounts for the dynamic behavior of traffic variables, such as 
occupancy, with a linear model. An ARIMA model is calibrated with three steps: preliminary 
identification, estimation, and diagnostic checking. After the appropriate model is selected, it 
applies the errors of the predicted and existing traffic parameters from the previous three time 
slices. It predicts confidence limits one or two time slices ahead, based on real-time estimates of 
the changes in traffic parameters. The algorithm declares an incident when the actual conditions 
lie outside the confidence interval. 

The algorithm was tested under moderate to heavy flow conditions with data from the 
Lodge Freeway in Detroit. With variable parameter estimates, the ARIMA [O, 1,3] algorithm had 
a 100% detection rate, a 1.4% on-line false alarm rate, and an average detection time of 0.39 
minutes (8). 

2.1.3.2 High Occupancy (HIOCC) Algorithm 

For this algorithm, the computer receives occupancy data from loop detectors every tenth 
of a second. These data are compiled to determine how many times during one second the 

17 



detectors were occupied for each detector station; this is defined as the instantaneous occupancy. 
If the detector station was occupied for more than the defined number of times over one second, 
a tentative incident is declared. Typically, a threshold of 10 is appropriate (9); this means that the 
detector was occupied for a full second. A persistence check helps reduce false alarms; two 
iterations producing an instantaneous occupancy value of 10 should generally be sufficient (9). 

In an off-line test of the HIOCC algorithm with a 2 second persistence check, the 
algorithm detected all capacity reducing incidents. It achieved detection times between 20 
seconds and slightly over 2 minutes (9). 

2.1.4 Smoothing/filtering Algorithms 

The significance of algorithms that use smoothing or filtering techniques is their ability to 
remove noise from data sets. Smoothing algorithms run data through an equation to smooth 
outlying data and then apply the smoothed data to the incident detection algorithm. The filtering 
application uses a linear filter to remove the high-frequency fluctuations that occur in normal 
traffic, while allowing the low-frequency data (i.e., data representative of incident conditions) to 
pass. The Minnesota and Double Exponential Smoothing algorithms apply smoothing and 
filtering techniques. 

2.1.4.1 Minnesota Smoothing Algorithm 

This algorithm uses linear smoothing before applying the data to a spatial occupancy 
algorithm. The algorithm smooths occupancy data for specified time periods before and after an 
incident using a moving average smoother. By smoothing the data, the algorithm is not as likely 
to mistake wide fluctuations in data for incidents. The following equation averages occupancies 
from two adjacent detector stations for a specified time period after the incident ( 10, 11): 

where: Yt 
occu 
occd 
t 
k 
M 

= 

= 

= 

= 

= 

= 

variable filtered with moving-average linear smoother; 
unfiltered upstream occupancy during interval t+k; 
unfiltered downstream occupancy during interval t+k; 
incident occurrence time; 
the interval corresponding to the incident occurrence time; and 
number of averaging intervals before or after t. 

The Yi equation applies to the time period that lasts for M intervals after the incident occurs at 
time t. The temporal difference of Yi before and after t indicates the change in traffic conditions 
before and after anincident that occurred at time t. The temporal difference (~y) is computed by 
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subtracting Yt before t from Yt after t. Computing b.Y filters abnormal traffic flow that geometric 
or weather conditions may cause to reduce false alarms. 

The maximum of upstream and downstream occupancies averaged over a specified time 
period, M, before the incident, is determined as follows (10,11}: 

This normalized occupancy accounts for variations between high-occupancy and low-occupancy 
stations and changes in occupancy due to the time of day. 

The final portion of the algorithm structure involves comparing predefined thresholds with 
two ratios (RATl and RAT2}: 

RATl=y; RAT2=~y 

RATl applies the smoothed occupancy data after time t to test for congestion. If both ratios 
exceed their thresholds, an alarm is declared. 

According to an analysis of the Minnesota algorithm, it works appropriately with five
minute averaging following an incident to remove high-frequency fluctuations. To achieve a 
faster detection time, the algorithm was tested with a three-minute moving average following an 
incident. On-line testing of the Minnesota algorithm on 1-35 in Minneapolis produced an 81.5% 
detection rate with an off-line false alarm rate of 0.34%. It had detection times less than 1.5 
minutes after operator detection (J 0, 11). 

2.1.4.2 Double Exponential Smoothing (DES) 

The DES algorithm compares smoothed traffic variable data with thresholds to detect 
incidents. The algorithm can apply a combination of volume, occupancy, and speed variables 
using data from single detector stations. The operator or programmer can select which variables 
to apply. 

Algorithm execution involves recalculating the traffic variable data to smooth the data. 
The data are smoothed by dividing the cumulative error in prediction by the mean absolute 
deviation. The algorithm continues to recalculate the smoothing values for each execution cycle 
during the incident detection process. The following equations are applied to compute the 
smoothed volume, occupancy, and speed values (5): 

e(x,i,t) =error in prediction e(x,i,t} = x(i,t} - D(x,i,t} 
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E(x,i,t) .=cumulative error in prediction 

m{x,i,t) =mean absolute deviation 

E(x,i,t) = E(x,i,t-1) + e(x,i,t) 

m(x,i,t) = SFMle(x,i,t)I + (l-SF.M)[m(x,i,t-1) 

Smoothed variable x = E(x,i,t) 

where: I 
t 
x 
D 
n 

SFM 

= 
= 
= 
= 
= 

= 

m(x,i,t) 
vehicle detection station number; 
incident detection execution cycle; 
a traffic variable (volume, occupancy, or speed); 
double smoothing value; 
number of polling periods within the average blockage 
clearance duration; and 
mean absolute deviation smoothing factor. 

Once the variables are smoothed, the values are compared with defined thresholds to determine 
whether an incident exists. The algorithm may include a persistence check for a defined number 
of execution periods specified by the programmer. All of the applied variables must exceed their 
respective thresholds for the defined number of periods for the algorithm to declare an incident. 

Using average blockage clearance durations and historical traffic variable data, initial 
values of the double smoothing value and mean absolute deviation are computed with equations 
which are not discussed within this report. They can be found in a paper written by Masters, 
Lam, and Wong (5). 

An off-line evaluation using two weeks of data from the Burlington Skyway, with traffic 
volumes approaching 2000 vphpl, tested the effectiveness of the DES algorithm. The algorithm 
had a detection rate of 82% of detectable incidents with an off-line false alarm rate of 0 .28% per 
station. The average detection time was 5.05 minutes (5). 

2.1.5 Modeling Algorithms 

The traffic modeling approach applies traffic flow relationships for incident detection. 
With historical data, traffic flow relationships are determined for a specified number of conditions, 
including uncongested, congested, and heavily congested. An incident is declared if the data fall 
in the defined range for incident situations. 

2.1.5.1 McMaster Algorithm 

The McMaster algorithm detects incidents based on the volume and occupancy data of 
a single detector station. Figure 9 shows the volume-occupancy relationship divided into four 
sections which are defined as follows: 

Area 1 - Uncongested flow (High volume, low occupancy) 
Area 2 - Congested flow (Low volume, low occupancy) 
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Area 3 - Heavy congestion (Low volume, high occupancy) 
Area 4 - Queue discharge flow (High volume, high occupancy) 

Area 1 is separated by the lower bound of uncongested data (LUD). Areas 2 and 3 are separated 
by the critical occupancy (0 crit), and the critical volume (V crit) separates areas 2 and 3 from 
area4. 

To apply the McMaster algorithm, volume-occupancy templates must be created for each 
detector station. If the observed loop detector data lie in areas 2 or 3 for more than three 
consecutive intervals, the algorithm declares an incident. 

An on-line test was performed with the McMaster algorithm on the Queen Elizabeth Way 
in Ontario. Results of the testing included a 68% detection rate, 0.0008% off-line false alarm rate 
(20 false alarms over 64 days), and a 1.4 minute detection time (13). 
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Figure 9. McMaster Algorithm Template (12) 

2.1.5.2 Dynamic Algorithm 

Two macroscopic dynamic models were applied in testing the Dynamic algorithm created 
by Willsky et al. ( 14), including the multiple model (MM) and the generalized likelihood ratio 
(GLR) methods. Both methods are based on fundamental speed-density and flow-density 
relationships which are depicted in Figure 10. Input data are :filtered by Kalman :filtering. 

21 



Capacity 

Free 

Free Jam Free Jam 
Density Density 

Figure 10. Traffic Flow Relationships in the Dynamic Model Algorithm (15) 

The multiple model algorithm outputs a conditional probability that the extstmg 
speed/density and flow/density conditions are representative of incident conditions. If the 
conditional probability value exceeds the threshold, an incident is declared. It is possible to apply 
a persistence check, but it was not used in their report. 

The generalized likelihood ratio algorithm is designed to detect abrupt system changes. 
The algorithm computes a ratio of the likelihood that an incident occurred. An incident is 
declared when the ratio exceeds the threshold. 

According to an off-line evaluation, the algorithm produced no false alarms with a short 
mean-time-to-detect (no values were reported). When all simulated incidents were detected, the 
detection time was rather high (I 4). 

2.1.6 Low-volume Algorithms 

A common problem with incident detection algorithms is their inability to detect incidents 
during low-volume conditions. It is inappropriate to compare traffic flow conditions, as most 
algorithms do, during low-volume conditions because the flow is inconsistent. One low-volume 
technique, Event Scan, is described in this section (I 6). 

2.1.6.1 Event Scan Algorithm 

This is a microscopic algorithm that was created for the purpose of detecting incidents 
during low-volume situations. Using speed data from a set of trap detectors, three possible 
arrival times at the downstream set of detectors are computed for each vehicle passing over the 
first detector station. 
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The expected time for a vehicle to arrive at the downstream detector station is computed 
with the following equation: 

where: te 
~ 
D 
v 

= 

= 

= 

D 
t = t. + -
e I v 

time that the vehicle exits the study section (seconds); 
time that the vehicle enters the study section (seconds); 
length of study section (feet or meters); and 
vehicle speed as it enters the study section. 

The earliest possible arrival time at the downstream station is computed assuming a maximum 
speed of 160 km/hr (100 mph) (16). The second arrival time at the next station is computed 
based on the speed measured at the first detector station. The latest arrival time is computed 
using a 10 percent reduction factor in the measured speed to allow for errors in the measured 
speed ( 16). If a vehicle does not arrive at the downstream detector within the expected time 
period, the algorithm declares an incident. Since this algorithm predicts the arrival time at the 
downstream station for every vehicle, it would be difficult for the algorithm to correctly 
correspond every predicted arrival time with each vehicle within that section unless volumes are 
very low. 

A simulation study of the Event Scan algorithm with 455 m (1500 ft) detector spacings 
and traffic volumes of 1000 vph found a detection time ranging from 15 seconds to 50 minutes. 
Research conducted by Dudek et al. (J 6) proved that the algorithm performed well with 152 m 
(500 ft) detector spacings and volumes of 100 vph. 

2.1.7 Algorithms Using Advanced Techniques 

A variety of advanced techniques exist which can be applied to incident detection. Neural 
networks and fuzzy logic are artificial intelligence techniques which are discussed in this section. 

2.1.7.1 Neural Network 

The structure of neural networks are designed to emulate the functions of the human brain 
at a simplified level. They consist of numerous interconnected processing elements (PEs). The 
PEs act as neurons while their connections model human synapses. The PEs are arranged into an 
input layer, at least one hidden layer, and an output layer. They are weighted between each layer 
with the activation functions transforming the weighted sum of input PEs into each PEs output. 

While a variety of neural networks exist, Ritchie and cheu (17) selected the multi-layer 
feed-forward neural network to detect incidents. In a feed-forward neural network, the results 
from one neuron are only input to a layer following the current layer. This type of non-linear 
neural network is defined as supervised, comparing outputs of the network with target values. 
If the outputs do not match the target values, weighting values within the network are 
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automatically altered to achieve values which are sufficiently close to the target values. 
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Figure 11. Multi-Layer Feed-Forward Neural Network (18) 

The neural network attempts to define the existing conditions of the freeway with pattern 
recognition to detect lane-blocking incidents. Figure 11 shows the basic structure of the neural 
network with the chosen input features for this network. The network has the ability to form 
decision boundaries with hyperplanes to improve responses to pattern variations. Using 
backpropogation, the network can "learn" what conditions are typical for an incident situation. 

The neural network application was tested off-line with data from Orange County, 
California. The neural network had up to a 97% detection rate for incidents where two or more 
lanes were blocked, and the detection rate reached 78% for incidents blocking one lane. Using 
a three interval persistence check, the off-line false alarm rate was 0.2% (18). 

2.1. 7 .2 California Algorithm #8 with Fuzzy Logic 

The basic version of California algorithm #8 truncates the left or right branch of its 
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decision tree at a decision node; it makes a 1 (yes) decision when the data exceeds the threshold 
or a 0 (no) decision if it does not. The fuzzy version of this algorithm is different in that the fuzzy 
approach considers all paths and then selects the most appropriate result. The fuzzy algorithm 
does not provide a strict 0 or 1 solution; instead, it defines the probability (between the values of 
0 and 1) of each parameter being low or high. Each node, ij, has a membership function, f ij , 

which computes the probability value. A general membership function consists of the following 
equations (18,19,22,23): 

f;ix) = 0 if x < aif 

!;ix) = 
(x-aif) 

if aif ~ x < bif 
(bif-aif) 

fix) = 1 if b .. ~ x 
I} 

where: x is detector occupancy, and a ij and b ij are individual thresholds. Figure 12 shows the 
general membership function in a graphical form. 
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Figure 12. Membership Functions for a Fuzzy System (19) 

For a binary decision tree, ifthe membership function for one branch is f ij (x), then the 
membership function of the other branch is its complement, 1 - f ij (x). The Fuzzy California #8 
algorithm uses the same parameters as the California algorithm #8, but it assigns a probability at 
each decision node. Appendix A contains the membership functions for California algorithm #8 

25 



with Fuzzy Logic. There are five membership functions, with one for the states and one for each 
of the parameters: OCCDF, DOCCTD, OCCRDF, and DOCC. The membership functions for 
the states defines the probability of no incidents, congestion, continuing congestion, tentative 
incidents, confirmed incidents, and continuing incidents. The OCCDF, DOCCTD, and OCCRDF 
membership functions define their probabilities of being low or high, with the membership 
function for DOCC also defining the probability of its value being medium. Based on the 
previous state and the current probabilities of the states and parameters lying within the defined 
regions, the most probable conditions are reported. California algorithm #8 with Fuzzy Logic has 
not been tested in an on-line or off-line evaluation. 

2.2 ALGORITHM SELECTION 

The following criteria were established for selecting which algorithms to evaluate in this 
study. First, the algorithm must have the ability to detect an incident within two minutes of the 
incident's occurrence. The algorithm's structure must be appropriate for the traffic volumes of 
the San Antonio highway sections under evaluation. Also, the algorithm must run from speed, 
volume, and/or occupancy loop detector data that are averaged over 20 seconds across all lanes. 
The algorithm's performance must be sufficient for the existing loop detector spacings which vary 
throughout the system. Due to time constraints of this study, some algorithms were not selected 
on the basis that they require a significant amount of historical data to run effectively. This 
section provides reasons why each algorithm was selected or rejected for this research study. 

2.2.1 California Algorithms 

Because the California algorithms were evaluated in the same study (2), their performance 
measures may be compared for the selection process. California algorithm #4 performed better 
than the basic California algorithm. By replacing DOCCTD with DOCC, the false alarm rate and 
mean-time-to-detect improved. California algorithm #7 was an improvement over #4 with the 
use of a persistence check; although the detection time increased, the persistence check improved 
the false alarm rate. The California algorithm #8 improved on algorithm #7 with a check for 
compression waves, but according to the evaluation, the performance was nearly the same as 
algorithm #7. California algorithm /19 is equivalent to algorithm #8 but eliminates the persistence 
check. Algorithm /19 produced a large increase in the false alarm rate. California algorithm # 10 
uses a different approach, applying the relative temporal difference in speed. With a poor 
detection time and detection rate, it did not perform as well as the others. Algorithm #8 had the 
best performance of the California algorithms and was selected for comparison. 

2.2.2 All Purpose Incident Detection Algorithm 

Although the reported detection time of the APID algorithm exceeded the two minute 
requirement, this could be reduced by decreasing the time for the persistence check. This 
algorithm is nearly equivalent to California algorithm #8 except for its initial check to select 
thresholds according to the current occupancy level. It is unnecessary to test both algorithms in 

26 



this evaluation considering their similarities, so it was not selected. 

2.2.3 Standard Normal Deviate Algorithm 

This algorithm computes the SND value which reflects the degree of change of a traffic 
variable compared to the average. The algorithm is not very sensitive to small fluctuations in 
traffic data; it would require a significant change in traffic flow to detect an incident. This 
algorithm is inappropriate to compare with the TxDOT algorithm because it would only detect 
incidents having a significant impact on traffic. 

2.2.4 Bayesian Algorithm 

According to a previous study, the algorithm exceeded the two minute requirement. 
Although its structure could be altered by changing the threshold to achieve a faster detection 
time, the performance of the algorithm would suffer. Therefore, this algorithm was not chosen 
for evaluation. 

2.2.5 ARIMA Algorithm 

Studies proved that the ARIMA algorithm has excellent performance. However, it 
requires a significant amount of historical data to develop an appropriate model for selected sites; 
the lack of available historical data will not allow a proper analysis. 

2.2.6 High Occupancy Algorithm 

The IIlOCC algorithm is inapplicable for the TransGuide system because it requires 
updated loop detector data every tenth of a second while the TransGuide system uses a 20 second 
polling cycle. Since detector data is not available every tenth of a second, the IIlOCC algorithm 
cannot be tested for this research. 

2.2. 7 Minnesota Algorithm 

The Minnesota algorithm computes a moving average of the difference in upstream and 
downstream occupancies, before and after a hypothesized incident occurrence time. According 
to an analysis by Stephanedes et al. (J J), a five-minute averaging period following the incident 
is appropriate to remove high-frequency fluctuations and achieve good performance. The 
algorithm was tested with a three-minute moving average to reduce the detection time. The 
algorithm performed reasonably well at this level; however, it is not expected that the algorithm 
would perform well while achieving a two-minute detection time. This algorithm should not be 
used in the analysis. 
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2.2.8 Double Exponential Smoothing Algorithm 

The structure of the Double Exponential Smoothing algorithm is such that it cannot 
effectively achieve a two minute detection time requirement. Loop detector data must exceed 
thresholds for all of the selected parameters. This can often take a significant amount of time to 
detect incidents if the thresholds are set such that the number of false alarms are limited. 
Furthermore, these are set thresholds which do not change until physically changed by the 
operator. This type of a system may be more effective with real-time changes in thresholds; 
however, its current structure is insufficient for comparison in this study. 

2.2.9 McMaster Algorithm 

Studies have shown that the McMaster algorithm has excellent performance. Considering 
that San Antonio has wide variations in detector spacings, the McMaster algorithm's use of a 
single point detector may prove to be appropriate for this system. Although application of the 
McMaster algorithm appears promising, it requires ample historical data to define its four 
conditions, so it cannot be evaluated in this study. 

2.2.10 Dynamic Algorithm 

While the multiple method and generalized likelihood ratio algorithms performed well in 
an off-line evaluation, a significant amount of incident data is required to develop models which 
can recognize incident conditions. It will not be used for comparison. 

2.2.11 Event Scan Algorithm 

Considering that the Event Scan algorithm is a microscopic algorithm, it is only 
appropriate to use this algorithm for very low volume conditions. Research by Dudek et. al. ( 16) 
found that the Event Scan algorithm is applicable to low volumes of about 400 vph. This is a 
considerably lower volume than existing volumes on San Antonio highways, so the algorithm 
should not be evaluated in this comparison. 

2.2.12 Neural Network 

Although the use of neural networks for incident detection appears promising, a 
significant amount of detector data is needed to train the neural network. This data was 
unavailable for this analysis due to time constraints, so this algorithm cannot be evaluated in this 
study. 

2.2.13 California Algorithm #8 with Fuzzy Logic 

It appears that the California algorithm #8 with fuzzy logic should have better 
performance than the general California algorithm #8 according to their structures, but the fuzzy 

28 



algorithm has not been tested to date. Theoretically, this algorithm can apply imprecise data to 
generate an approximate output. This is appropriate for incident detection because loop detector 
data is not exact, and traffic conditions may be similar for incident and nonincident situations. 
This algorithm was chosen for evaluation. 

2.2.14 Selected Algorithms 

The California algorithm #8 and Fuzzy Logic algorithm were found to be the most 
appropriate algorithms for the San Antonio TransGuide system. These algorithms will be tested 
against the TxDOT speed based algorithm to determine which has the best performance on the 
San Antonio system. The algorithms will be evaluated by applying real data from selected loop 
detector stations in San Antonio. 

2.3 PERFORMANCE EVALUATION 

The evaluation is made primarily based on the following performance indicators. 

• Detection rate -- ratio of incidents detected out of all incident that occur; 
• False alarm rate -- ratio of false alarms out of all decisions (incident and non-incident) 

made by the system during a specified time period; 
• Mean detection time -- the average time required for the system to detect an incident; 

In addition to these primary measures, secondary measures are used to evaluate the 
performance of the alternative algorithms. Examples of the secondary measures include the 
following factors: 

• Data requirements, 
• Ease of Installation, 
• Ease of Calibration, 
• Algorithm Complexity, and 
• Potential for self-calibration 

The detection rate is defined as 

DR= num. of incidents detected by the algorithm x 100 % 
total num. of incidents 

The false alarm rate (FAR} has been defined in two ways. The first definition is used for on-line 
tests; the second definition is used for off-line tests. In this study, we utilized second definition 
as a FAR since the test was performed with off-line data. The FAR is given by: 
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FAR = num. of incident-free intervals which give false alarms x 100 % 
total num. of incident-free intervals 

The MTTD for a set of n incidents is defined as: 

1 n 
MITD = - L (t;d - tio} 

n i=l 

where txi is the time when an incident i is detected, and tw is the time when an actual incident i has 
occurred. 
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3.0 STUDY METHODS AND DATA 

3.lMETHOD 

Algorithm comparisons may be conducted with an off-line or on-line analysis. In an off
line analysis, the algorithms process real or simulated data on a personal computer or workstation. 
The algorithm results are compared with operator incident logs or with CCTV (closed circuit 
television) recordings of actual freeway conditions. An on-line analysis is generally conducted 
with the traffic management center system. The system immediately receives and processes loop 
detector data. When the algorithms produce alarms, operators verify whether an incident 
occurred. 

Each method has disadvantages which limit the algorithm analysis. If an off-line analysis 
compares algorithm results with operator incident logs, the overall results depend on the accuracy 
of the logs. If the operators did not detect an incident which an algorithm detected, it is recorded 
as an algorithm false alarm. This problem will not occur with CCTV recordings; all algorithm 
alarms can be verified by watching the recorded conditions. However, camera recordings are 
limited because they can only record in one direction. The evaluation area may also be limited 
by a lack of recording equipment. Another disadvantage of CCTV recording is the amount of 
time required to view the CCTV tapes, but this time can be reduced by viewing the tapes at 
advanced speeds. The advantage of the freeway video recording method is that the exact amount· 
of time for an algorithm to detect incidents can be determined. In this case, synchronization of 
the video camera and the loop detector is necessary. 

The advantage of the on-line method is that the existing conditions are immediately 
checked with CCTV s following an incident alarm; the comparison does not merely depend on the 
reliability of the operator logs or the chance of recording the incident on video. One disadvantage 
of this method is that selected threshold sets may only be tested once in the analysis. Also, it is 
unlikely that exact incident occurrence times are recorded since operators rely on CCTV s and 
algorithm output to detect incidents. In research, an off-line analysis was performed with real 
data, and incidents were verified through videos taped at five CCTV viewing areas. 

3.1.1 Study location 

Three sites were selected for evaluation from Phase I of the San Antonio TransGuide 
system which includes sections ofl-10, I-35, and I-37 in the downtown area of San Antonio. The 
selected sites and their approximate loop detector locations are shown on the map of Phase I in 
Figure 13, with the letters denoting the locations ofloop detector stations selected for video 
recording. 

Figures 14-16 show the locations of the loop detectors and cameras for each of the three 
sites. Both highway directions were monitored at all three sites. The loop detectors and cameras 
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Figure 13. Selected Loop Detector Locations From Phase I of TransGuide 
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Figure 16. Equipment Locations for Site 3on1-10 
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are coded with the same labels as those used at TransGuide, but detector stations were also coded 
from A to G for simplicity. The loop detectors have the same code number for both sides of the 
highway with different notations for the change in direction. For example, Station 35N-158.492 
is a detector station on Northbound IH-35 at milepoint 158.492. 

Site 1 is located slightly east of the IH-35/IH-37/US-281 interchange. The equipment 
monitoring Site 1 includes three detector stations (35N/S-158.036 [Station A], 35N/S-158.492 
[Station B], and 35N/S-158.947 [Station C]) and two cameras (CCTV-0035N-158.560 and 
CCTV-0035N-158.989). Site 2 along IH-10 is monitored by two loop detector stations (lOE/W-
572.973 [StationD] and IOE/W-573.654 [StationE]) and two cameras (CCTV-OOIOW-572.992 
and CCTV-OOIOW-573.645). Site 3 is on IH-10, with two loop detector stations (lOE/W-
576.264 [StationF] and IOE/W-576.846 [Station G]) and one camera (CCTV-OOIOE-576.832). 

3.1.2 Site Selection 

Sites were selected based on relative camera and loop detector locations, as well as 
historical accident rates. Cameras for the chosen sites have sufficient sight distance such that their 
viewing areas encompass at least two loop detector stations for the same freeway direction. 
Selected cameras are not located within sharp horizontal or vertical curves, and their viewing 
areas are not impeded by obstructions. 

According to historical accident data from San Antonio police records, a number of 
incidents were expected to occur during the study period. Monthly accident averages were 
computed for each site based on data from 1993 and 1994. The monthly averages for Sites 1-3 
were 14.8, 13.6, and 7.8 accidents per month, respectively. 

3.2 TRAFFIC PATTERNS 

Loop detector data were plotted to determine typical traffic characteristics for the selected 
sites. These graphs were generated with 15 minute averages ofloop detector data. One of the 
apparent characteristics on San Antonio highways is that speeds are typically constant throughout 
the day, remaining above 72 km/hr ( 45 mph) with normal traffic flow conditions. When an 
incident occurs, speeds drop rapidly below around 40 km/hr (25 mph). 

3.2.1 Normal Weekday/Weekend Patterns 

Figures 17 and 18 show the normal patterns of three basic traffic variables (speed, volume, 
and occupancy) of both weekday (Westbound Station D of Site 2 on February 16, 1996) and 
weekend (Northbound Station A of Site 1 on January 13, 1996), respectively. As shown in 
figures, the freeway, currently under evaluation, does indicate obvious peaking phenomenon with 
some level of traffic congestion. As indicated above, one of the apparent characteristics on this 
specific section in San Antonio is that the operating speed does not fall below 72 km/hr ( 45 mph) 
during normal traffic conditions. 
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Figure 17. Normal Weekday Patterns 
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Figure 18. Normal Weekend Patterns 
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3.2.2 Incident Patterns 

Figure 19 shows incident patterns (Eastbound Station D of Site 2 on February 16, 1996) 
of speed, volume, and occupancy over time. It was observed that during incident periods speeds 
drop below 40 km/hr (25 mph), occupancies go up more than 35%, and volumes remain as usual. 

3.3 TEST CASES 

A total of seven incidents were found during the two month study period. 

3.3.1 Incident Description 

Table 2 provides a brief description of the incidents. The Table lists each incident in a 
specific case number; the incidents are referred to by case number through the remainder of this 
report. The location column of the Table defines the detector stations between which the incident 
occurred. The lane column lists which lanes the incident blocked, with lane 1 being next to the 
median. The column labeled Time denotes the incident occurrence time. 

T bl 2 I 0 d t ti a e . nc1 ens rom s·t 1 3 b tw 1 es - e een J anuary 8 dM h9 1996 an arc 
' . 

Case# Date Incident Type Location Direction Lanes Time 

1 Tues., Jan. 9 Accident StationB-A South 2and3 16:07:40 

2 Sat., Jan. 13 Accident StationC-B South Next to 3 18:26:10 

3 Thurs., Jan. 18 
Motorist 

StationB-C North 4 9:21:30 blocking lane 

4 Thurs., Jan. 18 Debris StationE-D West 1 and2 16:25:50 

5 Mon., Jan. 29 Accident StationE-D West 3 7:46:30 

6 Fri., Feb. 16 Accident StationD-E East 4 15:43:30 

7 Tues., Feb. 20 Stalled Vehicle StationE-D West 3 17:18:00 

3.3.1.1 Case 1 

This incident occurred between Northbound Station A and B. It takes approximately one 
or two minutes for detection. This detection time is appropriate because it takes nearly that 
amount of time for the incident to affect traffic at the upstream station. 
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3.3.1.2 (;ase 2 

It was dark at the time that incident #2 occurred in the gore area. Because of these 
conditions, the incident did not affect traffic until emergency vehicles arrived to handle the 
incident. A policeman arrived at the scene at 18:32:02 in a vehicle travelling in lane 3. This 
affected traffic in lane 3 slightly before arriving at the accident site since drivers were clearing the 
path for him in lane 3. The system detected the conditions about one minute before the policeman 
arrived. 

3.3.1.3 (;ase3 

For this incident, it did not affect speeds in the three main lanes such that they dropped 
below 40 km/hr (25 mph). However, the speed, volume, and occupancy parameters were all zero 
between 9:22:49 and 9:44:49 because of the truck blocking the lane. 

3.3.1.4 (;ase 4 

It was difficult to detect this incident because some vehicles drove over the debris while 
others avoided it. Although the glass debris dropped on the road at 16:25:30, the first queue did 
not form until approximately 16:38, but it dissipated at 16:46. Once the debris was spotted by 
the traffic management center, lane controllers advised drivers that the left two lanes were closed 
ahead. This caused a second queue to propagate at 17:07, forming in the right two lanes first. 
The algorithms could not detect the incident until it began to affect traffic almost 45 minutes later. 

3.3.1.5 (;ase 5 

It was difficult to determine what effect this incident had on traffic at the upstream 
detector because of the video angle. However, it is known that the incident occurred 
approximately halfway between the detectors. Because of the incident location, it is likely that 
it took longer for it to affect traffic at the upstream station and for the system to detect the 
incident. 

3.3.1.6 (;ase 6 

Since this incident occurred directly in front of Station E, it took just a few minutes for 
the queue to propagate and affect data at the upstream detectors. 

3.3.1. 7 (;ase 7 

This incident also occurred immediately in front of a detector. In this case, however, the 
speeds never decreased significantly enough for the speed algorithm to detect the incident, except 
using the data from the lane in which the incident occurred. 
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3.3.2 Data Collection Procedure 

Data were collected from video cameras ano loop detectors from the selected sites. The 
cameras recorded traffic flow from 7 a.m. until 7 p.m. for two months, between January 8 to 
March 9, 1996. The speed, volume, and occupancy loop detector data were automatically 
averaged for 20 second time intervals. The internal camera and computer system clocks were 
adjusted within the limits of manual synchronization. 

3.3.3 Data Reduction Procedure 

As shown in Figures 16 and 17, speeds are typically constant throughout the day, 
remaining above 72 km/hr (45 mph). Based on this assumption, data from the three sites were 
flagged when speeds dropped below 72 km/hr ( 45 mph). Camera recordings were only viewed 
for sections where the data were flagged for more than one minute per lane in an attempt to find 
incidents. 

Two sets of incident-free data were prepared. The first set, which was intended to 
compare the performance of different incident detection algorithms including the TxDOT 
algorithm, California #8 algorithm, and California #8 with fuzzy logic algorithm, was selected 
from the highway sections with less missing data. Where data were missing, values were 
manually inserted for the missing sets. By averaging data from the other lanes for the specified 
time, data were created for the missing data sets. For cases where all lanes were missing data for 
the same period or where one lane's data appeared consistently different from the other lanes, the 
new data were computed by averaging that lane's data from its polling cycles immediately before 
and after the missed period. If a lane's data were missing for the whole incident data set, new 
values were not computed. Instead, this lane was not used in the analysis. 

On the contrary, the second dataset was run for only sensitivity analysis of speed-based 
algorithm. The dataset did not attempt to supersede missing data. Both data sets were run for 
12 hour periods (7 a.m. - 7 p.m.). 

3.3.4 Data Verification 

Loop detector volumes were checked for validity by comparing the values generated by 
the loops with manual volume counts from video tapes. Data were compared for Station C of 
Site 1 using January 11 data, counting vehicles for five minute periods. Loop detector and 
manual volume count values are presented in Tables 3 and 4. Table 5 shows the difference in 
these values, where a negative number represents the loop detectors counting fewer vehicles than 
were counted manually. These differences were generally negligible, with no consistent pattern 
in over-counting or under-counting. However, it appears that the Northbound detector in lane 
2 was malfunctioning at 17:05. It reported normal speeds of88 km/hr (55 mph), yet reported high 
occupancies of approximately 85% and very low volumes, counting only a few vehicles during 
each 20 second period. These data appear erroneous. Their use would inhibit the validity of the 
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study results. 

During the detector data evaluation, it appeared that occupancy values seemed 
unreasonable at times, while speeds were stable and reasonable. Considering that this research 
compares two algorithms which rely only on occupancy data with an algorithm which exclusively 
relies on speed data, it is expected that the TxDOT Speed algorithm will consistently perform 
better since its decisions are based on the acceptable data. With unreasonably high occupancies 
existing in the raw data, California algorithm #8 and the Fuzzy Logic algorithms will produce 
many more false alarms than the TxDOT algorithm. 

It would be unreasonable to compare the results of these algorithms while the input is 
inappropriate for two of the algorithms but reasonable for the other. To account for this 
situation, false alarms were computed twice for the California #8 and Fuzzy Logic algorithms. 
Raw loop detector occupancy data were run through the algorithms, and the total number of false 
alarms were computed. Then the false alarm results were filtered such that a false alarm was not 
counted when the occupancy data appeared unreasonable. An unreasonable data region was 
defined with an equation that is based on traffic flow theory (20): 

where: = 

= 

(Lv+Ln)Flow 
Occupancy(%)=-----

10 (Speed) 

Average vehicle length; and 
Average detector length. 

Assuming an average vehicle length of 5. 7 m (19 ft), an average detector length of 1. 8 m ( 6 ft), 
average volume of 2160 vphpl, and an average speed of 80 km/hr (50 mph), the theoretical 
occupancy should be approximately 20%. The volume of 2160 vphpl was selected because it was 
one of the higher volumes found within the raw data. The average 80km/hr (50 mph) speed was 
selected for the region to reject because it is typical that occupancies are low for these speeds. 
After verifying that actual data appeared unreasonable when 80 km/hr (50 mph) speeds with 
corresponding 20% occupancies were exceeded, this was selected as the filtering region. When 
a false alarm occurred with an occupancy of20% or greater and a speed of80 km/hr (50 mph) 
or more, it was not counted as a false alarm for the California #8 and Fuzzy Logic algorithms with 
filtering. 
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Table 3. Loop Detector Volumes over 5 Minute Periods for 
s . c s. 1 J 11 1996 tat1on ' Ite ' anuary ' 

I I 
North South 

Lane 1 Lane2 Lane3 Lane4 Lane 1 Lane2 Lane3 

7:30-7:35 85 104 80 89 176 171 190 

7:35-7:40 102 106 83 99 183 175 177 

7:40-7:45 89 106 79 99 199 175 180 

17:00-17:05 159 120 112 79 102 166 168 

17:05-17:10 175 35 132 60 189 162 168 

17:10-17:15 170 42 146 68 167 164 133 

Table 4. Manually Counted Volumes over 5 Minute Periods for 
St f C s·t 1 J 11 1996 a ion ' I e ' anuary ' 

I II 
North I South I 

Lane 1 I Lane2 I Lane3 I Lane4 Lane 1 I Lane2 I Lane3 I I 
7:30-7:35 84 105 81 90 171 173 187 

7:35-7:40 104 130 85 101 184 178 184 

7:40-7:45 82 101 97 96 199 163 190 

17:00-17:05 155 136 113 85 124 134 143 

17:05-17:10 166 174 127 76 180 161 177 

17:10-17:15 165 158 133 83 168 176 157 

Table 5. Differences in Loop Detector Volumes and Manually Counted 
V I 5 M 0 t fi St f C s·t 1 J 11 1996 o umes over mu es or a ion ' I e ' 

anuary 
' 

North South 

Lane 1 Lane2 Lane3 Lane4 Lane 1 Lane2 Lane3 

7:30-7:35 1 -1 -1 -1 5 -2 3 

7:35-7:40 2 -24 -2 -2 -1 -3 -7 

7:40-7:45 7 5 -18 3 0 12 -10 

17:00-17:05 4 -16 -1 -6 22 32 25 

17:05-17:10 9 -139 5 -16 9 1 -9 

17:10-17:15 5 -116 13 -15 -1 -12 -24 
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4.0 EVALUATION RESULTS 

4.1 EVALUATION RESULTS 

Raw loop detector data were run in parallel for the three algorithms selected. California 
algorithm #8 and the Fuzzy Logic algorithm detect incidents between two stations by comparing 
the occupancies of those stations. The TxDOT algorithm uses data from just one detector; 
however, it may be able to detect an incident with a detector either upstream or downstream of 
an incident, depending on its location and conditions. The speed algorithm was run with both 
detectors, producing two sets of results for one highway section. 

Algorithms were run using two data input methods, one using overall lane average data 
and one using per lane data. For the first method, the computer program averaged data across 
lanes for each time slice; then the algorithm ran the averaged data. In the second case, the 
algorithm ran data for each lane individually. If there were three lanes, for example, the algorithm 
would produce results for each of the three lanes. However, more than one lane may sound an 
incident alarm at nearly the same time when an incident occurs (incident detection) or when the 
algorithm misinterprets incident-free conditions (false alarms) as an incident. The reported 
incident detection time refers to the first lane detecting the incident. Similarly, to compute false 
alarms, only one alarm is counted if two or more lanes produce alarms at nearly the same time. 

The times that the algorithms detected each incident are presented in Table 6, with total 
detection times in Table 7. For three instances, an algorithm declared a false alarm just prior to 
the incident, and the false alarm continued during the time that the incident occurred. This 
situation is denoted by an asterisk in Tables 6 and 7. If the algorithm was unable to detect the 
incident, it is noted as ND (no detection). When the second incident occurred on January 13, the 
loop detector in lane 2 for Station C was not producing any data. Since the algorithms could not 
produce any results, Tables 6 and 7 denote this occurrence as MD (missing data). Detection 
times for the California #8 and Fuzzy Logic algorithms with filtering are not reported separately 
in these tables because their results are equivalent to the algorithms without filtering. 

Reported speed algorithm detection times refer to the time of detection by upstream 
detectors adjacent to the incident, except for Case 3 which detected the incident with downstream 
detectors. Downstream detectors may detect incidents faster when incidents are close to those 
detector stations. Conversely, upstream detectors are typically better for detecting incidents 
which cause queues to propagate upstream of the incident. 

The algorithm detection times were slow for a number of the incidents. Many of these 
delays can be explained by conditions of the incident. For Cases 2, 5, 6, and 7, the incidents 
locations relative to the detectors and the traffic volumes are such that it takes a few minutes for 
queues to develop and affect upstream detectors. 
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Incident #2 occurred in the gore area; therefore, the incident did not affect traffic until 
emergency vehicles arrived to handle the incident. A policeman arrived at the scene at 18 :3 3 :02 
in a vehicle traveling in lane 3. This affected traffic in lane 3 slightly before arriving at the 
accident site since drivers cleared a path in lane 3 to provide access for the policeman. The 
system detected the conditions about one minute before the policeman arrived. 

T bl 6 Al . h D T" a e . 12or1t m etection 1mes 

I II 
Incident Nwnber 

I Case I I Case2 I Case3 I Case4 I cases I Case6 I Case? 

I Incident Occurrence II 16:07:40 I 18:26:10 I 9:21:30 I 16:2s:3o I 7:46:30 I 1s:43:3o I 11:18:00 I 
Speed (25 

Average Calif. 8 

Fuzzy 

Speed (25) 

Lane 1 Calif. 8 

Fuzzy 

Speed (25) 

Lane2 Calif. 8 

Fuzzy 

Speed (25) 

Lane3 Calif 8 

Fuzzy 

16:09:50 18:32:30 

16:08:50 18:31:40 

16:08:50 18:35:00 

16:10:10 18:32:50 

16:09:30 18:32:00 

16:09:30 18:34:30 

16:09:50 :MD 

16:08:50 :MD 

16:08:50 :MD 

16:10:10 18:32:10 

* 18:31:00 

* 18:31:00 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

9:26:50 

ND 

ND 

* 
ND 
MD 

17:23:00 7:53:00 15:50:20 ND 

17:19:00 7:53:00 15:49:00 * 
17:23:20 7:55:40 15:50:20 ND 

17:34:40 7:52:40 ND ND 

ND 7:52:40 15:48:00 ND 

ND 7:55:40 15:48:20 ND 

17:34:40 7:52:40 15:49:40 ND 

17:35:00 7:52:00 15:46:00 ND 

17:35:00 7:52:00 15:46:00 ND 

17:09:40 ND 15:49:00 17:25:30 

17:07:20 7:52:00 ND 17:20:10 

17:08:20 7:53:20 ND 17:21:50 

False alarm continuing through incident 
No detection of incident 
Missing data 

Case 3 was not necessarily an incident because it did not require response by emergency 
vehicles. However, it was considered in the analysis because algorithms should be able to detect 
the change in the traffic patterns caused by this event. 

Case 4 was a difficult incident to detect because some vehicles drove over the debris while 
others avoided it. Although the glass debris dropped on the road at 16:25:30, the first queue did 
not form until approximately 16:38, but it dissipated at 16:46. Once the debris was spotted by 
the traffic management center, lane controllers advised drivers that the left two lanes were closed 
ahead. This caused a second queue to propagate at 17:07, forming in the right two lanes first. 
Therefore, it is reasonable that the traffic management center could not detect the incident until 
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it began to affect traffic almost 45 minutes later. Algorithms were tested in detecting this 
incident, but the detection time was not included in computing the algorithm mean time to detect. 

T bl 7 Al 0 th T° t D t t I 0 d t a e . 1~or1 m 1me 0 e ec DCI ens 

Case 1 Case2 

Speed (25) 2:10 6:20 

Average Calif. 8 1:10 5:30 

Fuzzy 1:10 8:50 

Speed (25) 2:30 6:40 

Lane 1 Calif 8 1:50 6:10 

Fuzzy 1:50 8:20 

Speed(25) 2:10 MD 

Lane2 Calif 8 1:10 MD 

Fuzzy 1:10 MD 

Speed (25) 2:30 6:00 

Lane3 Calif 8 * 4:50 

Fuzzy * 4:50 

* 

MD 

4.2 ALGORITHM PERFORMANCE 

Incident Number 

Case3 Case4 cases Case6 Case7 

- 57:30 6:30 6:50 -
- 53:30 6:30 5:30 * 
- 57:50 9:10 6:50 -
- 1:09:10 6:10 - -
- - 6:10 4:30 -
- - 9:10 4:50 -
- 1:04:10 6:10 6:10 -
- 1:09:30 5:30 2:30 -
- 1:09:30 5:30 2:30 -

5:20 44:10 - 5:30 7:30 

- 41:50 5:30 - 2:10 

- 42:50 6:50 - 3:50 

False alarm continuing through incident 
No detection of incident 
Missing data 

This section provides algorithm results of running incident and incident-free detector data. 
Table 8 presents values for the 10 algorithm cases for the measures of effectiveness defined in the 
Performance Measure section of Chapter 2. 

Mean time to detect values do not include the detection time for Case 4 where there was 
debris on the road. This was a special case where the debris did not affect all traffic, making the 
time to detect very long. Including this detection time in the average would skew the mean time 
to detect for all algorithms. For by lane data inputs, the mean time to detect equals the average 
of the fastest lane detection times in each case. A different lane may detect the incident first for 
every case; it is typical for a lane being blocked by the incident to detect the incident first. For 
all algorithms, by lane detections were always faster than with lane average inputs. Overall, 
California algorithm #8 detected incidents first for the cases it was able to detect. 
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According to the compiled results shown in Table 8, the Tx:DOT Speed algorithm 
performance was excellent with per lane input. Most of its false alarms occurred during 
congestion. California algorithm #8 performance was poor using inputs from each lane, with 
1463 false alarms. Even after filtering false alarms caused by unreasonable data, the algorithm 
produced 1213 false alarms. Off-line false alarm rates were computed by dividing false alarms by 
the total number of decisions made by the algorithms during the 56 cases (113,347 decisions for 
California #8 and Fuzzy without filtering; with filtering, subtract the number of filtered false 
alarms from 113,347; 226,694 for Tx:DOT). 

T bl 8 M a e . easures o f Etli ti E hAI . h ect1veness or ac 12orit m 
Detection Mean Time False Off-Line 

Rate to Detect Alanns FAR 

Speed ( 40 km/hr, 25mph) 71.4% 5:28 13 0.001% 

California #8 71.4% 4:40 164 0.145% 

Average Calif #8 with Filter 71.4% 4:40 114 0.101% 

Fuzzy 71.4% 6:30 42 0.037% 

Fuzzv with Filter 71.4% 6:30 11 0.010% 

Speed ( 40 km/hr, 25mph) 100% 5:27 41 0.002% 

California #8 85.7% 2:42 1463 1.291% 

By Lane Calif. #8 with Filter 85.7% 2:42 1213 1.073% 

Fuzzy 85.7% 2:58 478 0.422% 

Fuzzy with Filter 85.7% 2:58 189 0.167% 

4.3 STATISTIC ANALYSIS 

To determine whether there was a significant difference in the mean time to detect when 
using detector data averaged across lanes versus per lane data, an upper-tailed paired t-test was 
performed (21). Two-tailed paired t-tests were performed to compare the mean time to detect 
for the seven algorithms (21); they were compared with per lane inputs and average of lane 
inputs. Performing this statistical test requires the use of normally distributed data. It could not 
be determined from this data whether there was a normal distribution because of the limited data. 
However, it is believed that the data have nearly a normal distribution, with a slight shift to the 
right. It would have a shift because algorithms typically do not detect incidents in less than a 
minute. Because of the robustness of this test, it was determined that this statistical test could 
still be used with the data. Tables 9-11 report the results of the statistical tests. 
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I 

Table 9. Paired t-Test Comparing Mean Time to Detect for Per Lane 
and Average of Lanes Results 

Algorithm Tested I tcalculated I a. I iiab!e I Result 

Speed ( 40 km/hr, 25mph) 1.190 0.10 1.533 Cannot reject Ho 

California #8 1.513 0.10 1.533 Cannot reject Ho 

FuzzvLogic 2.139 0.05 2.132 ReiectH. 

Table 10. Paired t-Test Comparing Algorithm Mean Time to Detect 
• A fL I usm2 vera2e o an es nput 

Algorithms Compared tcalculated a./2 iiab1e Result 

Speed ( 40 km/hr,25mph) Calif 2.791 0.05 2.353 Reject Ho 

Calif #8 Fuzzy 2.480 0.05 2.353 Reject Ho 

Speed (40 km/hr,25 mph) Fuzzv 1.140 0.05 2.353 Cannot r~ect Hn 

Table 11. Paired t-Test Comparing Algorithm Mean Time to Detect 
. P L I t usm2 er ane npu 

Algorithms Compared tcalculate a./2 iiab!e Result 

Speed ( 40km/hr) Calif #8 2.552 0.05 2.132 Reject Ho 

Calif #8 Fuzzy 1.000 0.05 2.132 Cannot reject Ho 
Sneed (40 km/hr) Fuzzv 3.167 0.025 2.776 Reiectl-l 

I 

The null hypothesis ~) stated that the difference in the mean algorithm results was zero 
(µ1-~=0). When the results in the tables state 'cannot reject JI.,' it means that there was not 
sufficient evidence to prove that there was a significant difference in the algorithm results. But 
if the null hypothesis is rejected, the difference in the performance for the algorithms tested was 
statistically significant. The smaller the value of a. when Ho is rejected, the stronger the evidence 
of a difference in algorithm performance. The null hypothesis for upper-tailed tests was tested 
at 0.10, 0.05, and 0.025 levels. Two-tailed tests were tested at 0.10 and 0.05 levels. If the result 
was to reject the null hypothesis, the a. values reported in the tables correspond to the most 
conservative (smallest a. value) level for which it was true. When the table reports that the null 
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hypothesis was not rejected, the listed a values correspond to the most liberal (largest a value) 
values that were tested. 

Tables 9-11 did not compare the filtered versions of California algorithm #8 and the Fuzzy 
Logic algorithm since their detection times were equivalent to the unfiltered algorithm results. 
In Tables 10 and 11, the algorithms were compared using a mean time to detect that did not 
include the debris incident. 

As revealed in Table 9, there is a difference in the mean time to detect between using per 
lane data and data averaged across lanes for the Fuzzy Logic algorithm. A t-test also compared 
these two input methods using the total number of false alarms. The null hypothesis was rejected 
at a level of 0.05 (tcalc = 2.139, tw,1e = 2.132), showing a statistical difference in false alarms for 
the average of lane versus per lane input. 

Table 10 shows that there was a statistically significant difference for the mean time to 
detect between California algorithm #8 with both the Tx:DOT Speed algorithm and the Fuzzy 
Logic algorithm. There was not a significant difference in the detection time for the other 
algorithms when input data were averaged across lanes. 

The results of the paired t-test with per lane input showed a significant difference in mean 
time to detect between the Tx:DOT Speed algorithm with California algorithm #8 and with the 
Fuzzy Logic algorithm. There was not a significant difference in the mean time to detect between 
California algorithm #8 and the Fuzzy Logic algorithm. 

4.4 GENERAL OBSERVATIONS 

Determining which algorithm has the overall best performance is a complicated task; while 
one algorithm's detection rate and mean time to detect are good, that algorithm may produce 
many false alarms. However, another algorithm which has few false alarms may have a poor 
detection rate and slow average detection time. Due to the limited data available, it is emphasized 
that the results may be considerably different if the algorithms were calibrated with large incident 
cases and incident-free data set. 

By running data for each lane, as opposed to the average of the lanes, all algorithms had 
better performance in detecting incidents; but there were more false alarms. California algorithm 
#8 had the fastest mean detection time, but it performed poorly by producing a significant number 
of false alarms. Even after filtering out alarms caused by questionable detector data, it still 
produced numerous false alarms. The Tx:DOT algorithms had the best detection rates and false 
alarm rates. However, the Tx:DOT algorithm needs to improve its mean time to detect to become 
the best algorithm. 

The Fuzzy Logic algorithm produced moderate results for all the algorithm performance 
measures. With its general structure being based on California algorithm #8, its results were 
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similar to that algorithm, except for false alarms. Results of the Fuzzy Logic algorithm indicated 
that it could filter variations in data better than California algorithm #8. 
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5.0 DETAILED ANALYSIS OF SAN ANTONIO 
SPEED BASED ALGORITHM 

5.1 OVERVIEW 

Based on the previous analysis of alternative incident detection algorithms, the TxDOT 
speed-based algorithm was investigated in detail to increase system responsiveness and reduce 
false alarms of San Antonio TransGuide system. The analysis was performed with different 
moving average intervals and threshold values. Seven incident datasets and over two months of 
incident-free datasets were examined in the analysis. 

It should be noted that the speed-based algorithm was run not on a per average lane basis 
but on a per lane basis. The reason is that a preliminary study of Chapter 4 showed the average 
lane basis not only takes a longer time to detect but also produces less detection rate. 

5.1.1 Different Moving Average Intervals 

Currently, TxDOT speed-based algorithm uses six polling cycles as a moving average 
interval. As mentioned earlier, the study results show that six polling cycles of a moving average 
interval can not always detect incident within two minutes. 

The analysis was designed with different moving average intervals from two to eight 
polling cycles, i.e., ranging from 40 seconds to 160 seconds, or 0.67 minutes to 2.67 minutes. 

5.1.2 Different Threshold Values 

Currently, the TransGuide system uses 40 km/hr (25 mph) as a threshold value to detect 
incidents. This analysis indicates that 40 km/hr (25 mph) is a low value and may cause a longer 
time to detect. In order to increase system responsiveness, the analysis was performed with 
different threshold values of 40 km/hr (25 mph), 48 km/hr (30 mph), and 56 km/hr (35 mph). 

5.2 EVALUATION 

5.2.1 Increase System Responsiveness 

Seven incident dataset were run with different moving average intervals and speed 
thresholds to determine the optimum interval size and threshold value which minimize mean time 
to detect. It was observed that more than one lane sounded an incident alarm at nearly the same 
time when an incident occurred (incident detection) or when the algorithm misinterpreted 
incident-free conditions (false alarms) as an incident. The reported incident detection time refers 
to the first lane detecting the incident. The sensitivity analysis results were plotted in Figure 20. 
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Case 1: Jan. 9, 1996. 358-158.492 (lane 2) Case 2: Jan. 13, 1996. 358-158.947 (lane 3) 
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Figure 20. Sensitivity of Mean Time To Detect 



As shown in Figure 20, mean time to detect can be reduced significantly with different 
moving average inteIVals and threshold values. These figures show the relationship between the 
moving average inteIVal versus mean time to detect with different speed threshold values. As 
previously envisioned, as the speed thresholds lower and/or moving average inteIVals increase, 
more time to detect incident is required. It is noted that the results of only four accident cases 
were plotted in the report since the other three cases out of seven incidents were not detected 
immediately. That is, case 3 of motorist blocking lane, case 4 of debris, and case 7 of stalled 
vehicle were not serious enough to affect the traffic flow during the study evaluation. 

5.2.2 Reduce False Alarms 

Two different datasets were analyzed; one consisted of incident data, and the other 
consisted of over two months of incident-free data. It should be noted that since more than one 
lane sounded an incident alarm at nearly the same time when an incident occurred (incident 
detection) or when the algorithm misinterpreted incident-free conditions (false alarms) as an 
incident, the reported incident detection time ofFigure 20 and Tables 12-15 refers to the first lane 
detecting the incident. However, to compute false alarms, every alarm was counted whenever 
lanes produced alarms at nearly the same time unless they were continuous false alarms. 

Incident data were run first to count the number of false alarms. The results were 
obtained from the off-line evaluation of 12 hours of 20 second speed data which included 
incidents. It indicated that most of the alarms occur during incident periods which are attributed 
to the traffic speed fluctuations. Tables 12-15 show that most false alarms can be removed with 
the system operator's monitoring. That is, if the operator turns off the incident alarms after it is 
confirmed, the system no longer yields false alarms. This is the reason that moving average 
speeds, even during incident periods, show relatively high fluctuations. Incident-free data were 
also run to measure number of false alarms with different moving average inteIVals and speed 
threshold values. Appendix C shows the total number of false alarms, the daily average of false 
alarms, and the false alarm rates according to the different moving average inteIVals and speed 
threshold values. It is found that the moving average inteIVal and threshold value should be 
selected such that the number of false alarms can be minimized. That is, the optimum moving 
average inteIVal and speed threshold value can be determined differently according to the location 
characteristics. In Table 16, the moving average inteIVal and speed threshold value were 
summarized by every direction from seven stations selected. The recommended moving average 
inteIVals and speed threshold values for each direction of seven locations are emphasized in bold. 

As the moving average inteIVal and threshold value are lowered, the less mean time is 
required to detect. The moving average inteIVal and threshold value shown in bold can reduce 
mean time to detect. The question is whether this can reduce number of false alarms or not. It 
is believed that the average daily false alarms, which come from each lane, could be further 
reduced with site specific modifications and would reasonably lower such that it could be 
acceptable for system operators. 

53 



Table 12. False Alarm, Mean Time To Detect - Case 1. 

Location: 358-158.492 Jan. 9, 1996 Accident lane 2&3 
Actual Time of Incident Occurred = 16:07:40 

Detected Time Mean Time To Detect Actual Num. of False Alarms 

Lane Threshold Value Window Size Num. of False Alarms with Operator Monitoring 

40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

1 16:09:11 16:09:11 16:09:11 2 0:01:31 0:01:31 0:01:31 4 4 4 0 0 0 

16:09:31 16:09:31 16:09:11 3 0:01:51 0:01:51 0:01:31 4 4 4 0 0 0 

16:09:31 16:09:31 16:09:31 4 0:01:51 0:01:51 0:01:51 4 4 4 0 0 0 

16:09:51 16:09:51 16:09:31 5 0:02:11 0:02:11 0:01:51 5 5 5 0 0 0 

16:10:11 16:09:51 16:09:51 6 0:02:31 0:02:11 0:02:11 4 4 4 0 0 0 

16:10:11 16:10:11 16:09:51 7 0:02:31 0:02:31 0:02:11 4 4 4 0 0 0 
16:10:30 16:10:11 16:09:51 8 0:02:50 0:02:31 0:02:11 4 4 4 0 0 0 

2 16:08:50 16:08:50 16:08:50 2 0:01:10 0:01:10 0:01:10 3 3 4 0 0 0 

16:09:11 16:08:50 16:08:50 3 0:01:31 0:01:10 0:01:10 5 5 5 0 0 0 
16:09:11 16:09:11 16:08:50 4 0:01:31 0:01:31 0:01:10 5 5 5 0 0 0 

16:09:31 16:09:31 16:09:11 5 0:01:51 0:01:51 0:01:31 5 5 5 0 0 0 

16:09:51 16:09:31 16:09:11 6 0:02:11 0:01:51 0:01:31 4 4 4 0 0 0 

16:09:51 16:09:51 16:09:31 7 0:02:11 0:02:11 0:01:51 4 4 4 0 0 0 

16:10:11 16:09:51 16:09:31 8 0:02:31 0:02:11 0:01:51 4 4 4 0 0 0 

3 16:09:11 16:09:11 16:08:50 2 0:01:31 0:01:31 0:01:10 7 5 6 0 0 1 

16:09:31 16:09:11 16:09:11 3 0:01:51 0:01:31 0:01:31 5 4 5 0 0 1 

16:09:31 16:09:31 16:09:11 4 0:01:51 0:01:51 0:01:31 5 4 5 0 0 1 

16:09:51 16:09:31 16:09:31 5 0:02:11 0:01:51 0:01:51 5 4 4 0 0 0 

16:10:11 16:09:51 16:09:31 6 0:02:31 0:02:11 0:.01:51 5 4 4 0 0 0 

16:10:30 16:10:11 16:09:31 7 0:02:50 0:02:31 0:01:51 5 4 4 0 0 0 
16:10:51 16:10:30 16:09:51 8 0:03:11 0:02:50 0:02:11 5 4 4 0 0 0 

4 16:11:11 16:09:31 16:09:11 2 0:03:31 0:01:51 0:01:31 7 12 11 0 0 1 
16:11:11 16:09:51 16:09:31 3 0:03:31 0:02:11 0:01:51 5 9 10 0 0 1 
16:11:31 16:11:11 16:09:51 4 0:03:51 0:03:31 0:02:11 5 6 7 0 0 0 

16:11:31 16:11:11 16:10:11 5 0:03:51 0:03:31 0:02:31 3 5 4 0 0 0 

16:11:51 16:11:11 16:10:30 6 0:04:11 0:03:31 0:02:50 3 5 3 0 0 0 
16:11:51 16:11:11 16:10:51 7 0:04:11 0:03:31 0:03:11 3 3 3 0 0 0 
16:11:51 16:11:11 16:10:51 8 0:04:11 0:03:31 0:03:11 3 4 3 0 0 0 

Table 13. False Alarm, Mean Time To Detect - Case 2. 

Location: 358-158.947 Jan. 13, 1996 Accident next to lane 3 

Actual Time of Incident Occurred= 18:26:10 

Detected Time Mean Time To Detect Actual Num. of False Alarms 

Lane Threshold Value Window Size Num. of False Alarms with Operator Monitoring 

40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

1 18:31:54 18:31:34 18:31:34 2 0:05:44 0:05:24 0:05:24 1 1 1 0 0 0 
18:31:54 18:31:54 18:31:54 3 0:05:44 0:05:44 0:05:44 1 1 1 0 0 0 
18:32:13 18:32:13 18:31:54 4 0:06:03 0:06:03 0:05:44 1 1 1 0 0 0 
18:32:33 18:32:13 18:31:54 5 0:06:23 0:06:03 0:05:44 1 1 1 0 0 0 
18:32:53 18:32:13 18:32:13 6 0:06:43 0:06:03 0:06:03 1 1 1 0 0 0 
18:33:14 18:32:33 18:32:13 7 0:07:04 0:06:23 0:06:03 1 1 1 0 0 0 
18:33:34 18:32:53 18:32:33 8 0:07:24 0:06:43 0:06:23 1 1 1 0 0 0 

2 2 
3 
4 

Missing Data 5 NIA NIA NIA 
6 
7 

8 

3 18:31:14 18:31:14 18:31:14 2 0:05:04 0:05:04 0:05:04 4 4 6 1 1 2 
18:31:54 18:31:54 18:31:14 3 0:05:44 0:05:44 0:05:04 5 5 6 0 0 1 
18:32:13 18:31:54 18:31:54 4 0:06:03 0:05:44 0:05:44 6 6 6 0 0 0 
18:32:33 18:32:13 18:31:54 5 0:06:23 0:06:03 0:05:44 5 5 5 0 0 0 
18:32:33 18:32:33 18:32:13 6 0:06:23 0:06:23 0:06:03 5 5 5 0 0 0 
18:32:53 18:32:33 18:32:13 7 0:06:43 0:06:23 0:06:03 5 5 5 0 0 0 
18:33:14 18:32:53 18:32:33 8 0:07:04 0:06:43 0:06:23 5 5 4 0 0 0 
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Table 14. False Alarm, Mean Time To Detect - Case 5. 

Location: lOW-573.654 Jan. 29, 1996 Accident lane 3 

Actual Time oflncident Occurred= 7:46:30 

Detected Time Mean Time To Detect Actual Num. of False Alarms 
Lane Threshold Value Window Size Num. of False Alarms with Operator Monitoring 

40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

l 7:51:44 7:51:44 7:51:44 2 0:05:14 0:05:14 0:05:14 7 7 7 0 0 0 
7:51:44 7:51:44 7:51:44 3 0:05:14 0:05:14 0:05:14 8 8 8 0 0 0 
7:51:44 7:51:44 7:51:44 4 0:05:14 0:05:14 0:05:14 9 9 9 0 0 0 
7:52:04 7:51:44 7:51:44 5 0:05:34 0:05:14 0:05:14 9 9 9 0 0 0 
7:52:24 7:52:04 7:52:04 6 0:05:54 0:05:34 0:05:34 9 9 9 0 0 0 
7:52:24 7:52:24 7:52:04 7 0:05:54 0:05:54 0:05:34 9 9 9 0 0 0 
7:52:44 7:52:44 7:52:24 8 0:06:14 0:06:14 0:05:54 9 9 9 0 0 0 

2 7:51:44 7:51:44 7:51:44 2 0:05:14 0:05:14 0:05:14 3 3 4 0 0 0 
7:51:44 7:51:44 7:51:44 3 0:05:14 0:05:14 0:05:14 3 3 4 0 0 0 
7:51:44 7:51:44 7:51:44 4 0:05:14 0:05:14 0:05:14 3 3 2 0 0 0 
7:52:04 7:52:04 7:51:44 5 0:05:34 0:05:34 0:05:14 3 2 2 0 0 0 
7:52:24 7:52:04 7:52:04 6 0:05:54 0:05:34 0:05:34 3 2 2 0 0 0 
7:52:44 7:52:24 7:52:04 7 0:06:14 0:05:54 0:05:34 2 2 2 0 0 0 
7:52:44 7:52:44 7:52:24 8 0:06:14 0:06:14 0:05:54 2 2 2 0 0 0 

3 7:54:44 7:53:25 7:51:44 2 0:08:14 0:06:55 0:05:14 0 2 9 0 0 0 
7:54:44 7:53:44 7:51:44 3 0:08:14 0:07:14 0:05:14 0 1 4 0 0 0 

ND 7:54:04 7:52:04 4 NIA 0:07:34 0:05:34 0 1 3 0 0 0 
ND 7:54:24 7:52:24 5 NIA 0:07:54 0:05:54 0 1 3 0 0 0 
ND 7:54:44 7:52:44 6 NIA 0:08:14 0:06:14 0 1 2 0 0 0 
ND 7:54:44 7:53:04 7 NIA 0:08:14 0:06:34 0 0 1 0 0 0 
ND 7:54:44 7:53:04 8 NIA 0:08:14 0:06:34 0 0 1 0 0 0 

Table 15. False Alarm, Mean Time To Detect - Case 6. 

Location: lOE-572.973 Feb. 16, 1996 Accident 
Actual Time oflncident Occurred= 15:43:30 

Detected Time Mean Time To Detect Actual Num. of False Alarms 
Lane Threshold Value Window Size Num. of False Alarms with Operator Monitoring 

40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

1 16:02:19 15:49:19 15:48:19 2 0:18:49 0:05:49 0:04:49 1 5 6 0 0 0 
16:02:19 15:49:39 15:48:59 3 0:18:49 0:06:09 0:05:29 1 3 3 0 0 0 
16:02:39 15:49:59 15:48:59 4 0:19:09 0:06:29 0:05:29 1 3 3 0 0 0 
16:02:59 15:50:19 15:49:19 5 0:19:29 0:06:49 0:05:49 1 2 2 0 0 0 
16:03:18 15:50:19 15:49:19 6 0:19:48 0:06:49 0:05:49 1 2 2 0 0 0 
16:03:18 15:50:39 15:49:39 7 0:19:48 0:07:09 0:06:09 1 2 2 0 0 0 
16:03:18 15:55:39 15:49:59 8 0:19:48 0:12:09 0:06:29 l 1 2 0 0 0 

2 15:48:59 15:48:59 15:46:38 2 0:05:29 0:05:29 0:03:08 6 5 3 0 0 0 
15:49:59 15:48:59 15:48:38 3 0:06:29 0:05:29 0:05:08 2 3 2 0 0 0 
15:49:59 15:48:59 15:48:38 4 0:06:29 0:05:29 0:05:08 2 3 2 0 0 0 
15:49:59 15:49:19 15:48:38 5 0:06:29 0:05:49 0:05:08 1 2 2 0 0 0 
15:50:19 15:49:39 15:48:59 6 0:06:49 0:06:09 0:05:29 l 2 2 0 0 0 
15:50:19 15:49:59 15:48:59 7 0:06:49 0:06:29 0:05:29 l 2 0 0 0 0 
15:50:19 15:49:59 15:48:59 8 0:06:49 0:06:29 0:05:29 l 2 0 0 0 0 

3 15:48:59 15:48:59 15:46:19 2 0:05:29 0:05:29 0:02:49 5 6 7 0 l 4 
15:49:19 15:48:59 15:46:38 3 0:05:49 0:05:29 0:03:08 4 4 l 0 0 0 
15:49:19 15:48:59 15:46:59 4 0:05:49 0:05:29 0:03:29 2 4 0 0 0 0 
15:49:39 15:48:59 15:47:18 5 0:06:09 0:05:29 0:03:48 2 3 0 0 0 0 
15:49:59 15:49:19 15:47:39 6 0:06:29 0:05:49 0:04:09 2 1 0 0 0 0 
15:50:19 15:49:19 15:47:58 7 0:06:49 0:05:49 0:04:28 2 2 0 0 0 0 
15:50:19 15:49:19 15:48:19 8 0:06:49 0:05:49 0:04:49 1 1 0 0 0 0 
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Table 16. Reasonable Movin2 Avera2e Intervals and Threshold Values 

Moving Average 
Interval 40 km/hr (25 mph) 

Speed Threshold Values 

48 km/hr (30 mph) 56 km/hr (35 mph) 

2 

3 

4 

5 

6 

D-E (0.6), E-W (0.5), 
F-E (0.3), F-W (0.2), 
G-E (0.1), G-W(0.2) 

A-N (0.4), C-S (0.8), 
D-E (0.2), E-E (0.4), 
E-W (0.2), F-E (0.2), 
F-W(0.1), G-E (0.1), 

G-W(O.O) 

A-N (0. 0), B-N (0.9), 
B-S (0.6), C-N (0.8), 
C-S (0.8), D-E (0.1), 
E-E (0.3), E-W(0.1), 
F-E (0.1), F-W(O.O), 
G-E (0.0), G-W (0.0) 

A-N (0.0), A-S (0. 7), 
B-N (0. 7), B-S (0.5), 
C-N (0. 7), C-S (0.5), 
D-E (0.1), E-E (0.2), 
E-W (0.0), F-E (0.0), 
F-W (0.0) ,G-E (0.0), 

G-W(O.O) 

A-S (0.6), B-N (0.6), 
B-S (0.3), C-N (0.7), 
C-S (0.4), D-E (0.0), 
D-W(O. 7), E-E (0.1), 
E-W (0.0), F-E (0.0), 
F-W (0.0), G-E (0.0), 

G-W(O.O) 

E-W (0.8), F-E (0.5), 
F-W (0.3), G-E (0.2), 

G-W(0.5) 

A-N (0.7), D-E (0.6), 
E-E (0.8), E-W (0.4), 
F-E (0.2), F-W (0.2), 
G-E (0.1), G-W (0.1) 

A-N (0.1), B-S (0.8), 
D-E (0.3), E-E (0.5), 
E-W (0.1), F-E (0.1), 
F-W (0.0), G-E (0.1), 

G-W (0.1) 

A-N (0.1), B-S (0.5), 
C-S (0.9), D-E (0.2), 
E-E (0.3), E-W (0.1), 
F-E (0.0), F-W (0.0), 
G-E (0.1), G-W (0.1) 

A-N (0.1), A-S (0.8), 
B-N (0.9), B-S (0.3), 
C-S (0.7), D-E (0.2), 
E-E (0.2), E-W (0.0), 
F-E (0.0), F-W (0.0), 
G-E (0.1), G-W (0.0) 

F-E (0.7), F-W (0.7), 
G-E (0.7) 

E-W (0.7), F-E (0.2), 
F-W (0.2), G-E (0.3), 

G-W(0.6) 

A-N (0.8), D-E (0.6), 
E-E (0.7), E-W (0.3), 
F-E (0.1), F-W (0.1), 
G-E (0.2), G-W (0.3) 

A-N (0.4), B-S (0.9), 
D-E (0.3), E-E (0.5), 
E-W (0.1), F-E (0.1), 
F-W (0.1), G-E (0.2), 

G-W(0.2) 

A-N (0.2), B-S (0.6), 
D-E (0.2), E-E (0.4), 
E-W (0.1), F-E (0.0), 
F-W (0.1), G-E (0.2), 

G-W (0.1) 

Note: The number in blanket represents the average daily false alarms per direction. 
The first letter (A-G) relates to the site location. The second letter (N,S,E,W) 
Indicates direction. 
The sites bolded with direction are located within the cell of recommended 
moving average interval and threshold value. 
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5.3 TRADE-OFF ANALYSIS 

Trade-offs always exist between how to reduce the mean time to detect and how to 
reduce the number of false alarms when any automatic incident detection algorithms have to be 
used. In order to provide better guidance for future operational evaluation, a graph analysis 
method was performed to examine how to select the optimum moving average interval and 
threshold speed when using the speed-based incident detection algorithms. 

The trade-offs between mean time to detect and number of false alarms were provided in 
Figures 21-24. The number of false alarms are represented in average daily false alarms per 
direction. From this analysis, the optimum combination of moving average interval and threshold 
value can be determined. For example, Figure 21 indicates that the incident can be detected 
within two minutes either with a moving average interval of 5 and 40 km/hr (25 mph) threshold 
value, or with a moving average interval of 6 and 48 km/hr (30 mph) speed threshold. 
Furthermore, the combinations of decreasing the moving average interval up to four intervals with 
40 km/hr (25 mph) can detect incident more quickly, although it will increase number of false 
alarms slightly for the incidents being evaluated. As mentioned in Chapter 4, for cases 2, 5, and 
6, the accident locations relative to the detectors and the traffic volumes are such that it takes a 
few minutes for queues to develop and affect upstream detectors. 
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Figure 21. Average Daily False Alarms Vs. MTTD - Case 1 
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Figure 22. Average Daily False Alarms Vs. MTTD - Case 2 
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Figure 23. Average Daily False Alarms Vs. MTTD - Case 5 
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Figure 24. Average Daily False Alarms Vs. MTTD - Case 6 
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6.0 CONCLUSIONS AND RECOMMENDATIONS 

The effectiveness of freeway incident management systems depends upon agency 
operating policies and system response strategies. In order to reduce incident response time, 
control strategies should be used to increase the operational efficiency and traffic safety. This 
research has evaluated incident detection algorithms with several real traffic data collected from 
the TxDOT San Antonio TransGuide traffic management system. The analysis of the TxDOT 
San Antonio speed-based algorithm was performed to further increase incident detection system 
responsiveness and reduce the total number of false alarms of the freeway traffic management 
system. 

6.1 CONCLUSIONS 

This study has found that the TxDOT San Antonio incident detection algorithm worked 
well as compared to other algorithms being used in other systems. This is based on the 
performance evaluation criteria on the mean time to detect, false alarm rate, and data verification 
simplicity. However, other incident detection algorithms evaluated in this study may also have 
potential with more data available for calibration. This study also indicates the importance of 
taking advantage of both the operational procedures and automatic incident detection algorithms 
in order to enhance system responsiveness of freeway traffic management systems. 

Even with very limited incident cases, this study has shown the speed-based algorithm 
works well to provide adequate automatic incident detection capability. Furthermore, the speed
based incident detection algorithm can be improved with variable a moving average interval and 
selecting a specific threshold speed value for the specific locations. 

6.2 RECOMMENDATIONS 

In order to further improve the overall system operations, it is also recommended that the 
operator should monitor and flag the "end of incident" manually through CCTV monitoring 
during the period of known incident occurrence to reduce secondary alarms for the same incident. 
Although the existing TxDOT algorithm had few false alarms within this analysis, it is likely that 
it would produce more false alarms in a more congested area. Since Phase II of San Antonio's 
TransGuide system will be implemented within a more congested area, it will be desirable to 
continue to refine the algorithm. 

In addition, the TransGuide system should develop methods or algorithms that can detect 
and screen out erroneous loop detector data. Since the erroneous data typically produce high 
occupancies and low volumes which have the same characteristics of incidents, the use of such 
data will increase the false alarm rates of algorithms that apply these parameters. The data 
collection process should discard the invalid data so that it will not be run through the incident 
detection algorithms. 
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It also appears appropriate to develop a database system which manages loop detector 
data as well as incident alarm logs. It is hard to distinguish between recurrent congestion and 
non-recurrent congestion conditions using current methodologies. Advanced technologies such 
as neural network, fuzzy logic, and catastrophe theory should be tested as a means to distinguish 
between recurrent and non-recurrent congestion conditions. For example, advanced technologies 
such as neural network and numerical analysis can learn normal situations based on observed 
traffic data, helping to overcome the difficulty of calibrating threshold values. 
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APPENDIX A 

MEMBERSHIP FUNCTIONS FOR 
CALIFORNIA ALGORITHM #8 WITH FUZZY LOGIC 





A-1. Membership Functions for OCCDF 

If OCCDF ~ OCCDF T 1 then OCCDF is low. 

If OCCDF T 1 < OCCDF ~ OCCDF T2 

then the probability of OCCDF being low = OCCDF - OCCDF T1 
OCCDF T1 - OCCDF T2 

and the probability of OCCDF being high = 1 - P (OCCDF low). 

If OCCDF > OCCDF T2 then OCCDF is high. 

A-2. Membership Functions for DOCCTD 

If DOCCTD ~ DOCCTD T 1 then DOCCTD is low. 

If DOCCTD T 1 < DOCCTD ~ DOCCTD T2 
. . . DOCCTD - DOCCTD T 

then the probab1hty ofDOCCTD bemg low = 1 
DOCCTD T1 - DOCCTD T2 

and the probability of DOCCTD being high = 1 - P (DOCCTD low). 

If DOCCTD > DOCCTD T2 then DOCCTD is high. 

A-3. Membership Functions for OCCRDF 

If OCCRDF ~ OCCRDF T 1 then OCCRDF is low. 

If OCCRDF T1 < OCCRDF ~ OCCRDF T2 

then the probability of OCCRDF being low = OCCRDF - OCCRDF T1 

OCCRDF T1 - OCCRDF T2 

and the probability of OCCRDF being high = 1 - P (OCCRDF low). 

If OCCRDF > OCCRDF T2 then OCCRDF is high. 
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A-4. Membership Functions for DOCC 

If DOCC ~ DOCC T 1 then DOCC is low. 

If DOCC T1 <DOCC ~ DOCC T2 

then the probability of DOCC being low = DOCC - DOCC T2 
DOCC T1 - DOCC T2 

and the probability of DOCC being medium = 1 - P (DOCC low). 

If DOCC T2 <DOCC ~ DOCC T3 

then the probability ofDOCC being medium = DOCC - DOCC T3 
DOCC T2 - DOCC T3 

and the probability of DOCC being high = 1 - P (DOCC medium). 

If DOCC > DOCC T3 then DOCC is high. 

A-5. Membership Functions for States 

If the state ~ 1 then the probability of the state being incident-free= 1 - State. 

and the probability of the state being congested = State . 
4 

If 1 < state ~ 4 then the probability of the state being congested = State 
4 

If 4 < state ~ 5 then the probability of the state being congested = 5 - State. 
and the probability of the state being continued congestion= State - 4. 

If 5 < state ~ 6 then the probability of the state being continued congestion = 6 - State. 
and the probability of the state being a tentative incident= State - 5. 

If 6 < state ~ 7 then the probability of the state being a tentative incident = 7 - State. 
and the probability of the state being a confirmed incident = State - 6. 

If the state > 7 then the then the state confirms an incident. 
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A-6. State Output Conditions 

If the last state = confirmed incident and OCCRDF is high 
then the new state is incident continuing. 

If the last state = confirmed incident and OCCRDF is low 
then the new state is incident-free. 

If the last state = tentative incident and OCCRDF is high 
then the new state is incident confirmed. 

If the last state = tentative incident, OCCRDF is low, and DOCC and DOCCTD are high 
then the new state is incident-free. 

If the last state = tentative incident, OCCDRF and DOCCTD are low and DOCC is high 
then the new state is congested. 

If the last state = tentative incident, OCCRDF is low and DOCC is not high 
then the new state is incident-free. 

If the last state = continuing congestion, DOCC is high and DOCCTD is high 
then the new state is incident-free. 

If the last state = continuing congestion and DOCC is not high 
then the new state is incident-free. 

If the last state = congestion, DOCC is high and DOCCTD is high 
then the new state is continuing congestion. 

If the last state = congestion and DOCC is not high 
then the new state is continuing congestion. 

If the last state= incident-free, OCCDF and OCCRDF are high and DOCC is medium 
then the new state is incident-free. 

If the last state= incident-free, OCCDF and OCCRDF are high and DOCC is low 
then the new state is tentative incident. 

If the last state= incident-free, OCCDF is high, OCCRDF is low, and DOCC is not high 
then the new state is incident-free. 

If the last state= incident-free, OCCDF is low and DOCC is not high 
then the new state is incident-free. 
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If the last state= incident-free, DOCC is high and DOCCTD is high 
then the new state is incident-free. 

If the last state= incident-free, DOCC is high and DOCCTD is low 
then the new state is congestion. 
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APPENDIXB 

INCIDENT-FREE DATA SETS SELECTED FOR ALGORITHM 
TESTING 





Table B-1. January Incident-Free Data Sets Selected for Algorithm Testing 

North South North South East West East West 
A-B B-A B-C C-B D-E E-D F-G G-F 

January 8 • • • 
January 9 

January 10 

January 11 D • 
January 12 D • 
January 13 • • 
January 14 

January 15 • • 
Januarv 16 D 
January 17 • • 
January 18 • • 
January 19 

January 20 

January 21 

January 22 • • • 
January 23 • 
January 24 

January 25 • 
January 26 • • 
January 27 

January 28 

January 29 • • • 
January 30 • • 
Januarv 31 • • • • 

+ = 7 am- 7 pm (12 hrs) 
D =Congestion Period (1 hr) 
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Table B-2. February Incident-Free Data Sets Selected for Algorithm Testing 

I I 
North South North South East West East West 
A-B B-A B-C C-B D-E E-D F-G G-F 

February 1 

February 2 

February 3 

February4 

February 5 

February 6 • 
February 7 • • • • 
February 8 

February 9 • 
February 10 

February 11 

February 12 

February 13 

February 14 

February 15 • • • 
February 16 • • 
February 17 

February 18 

February 19 

February 20 • • • 
February 21 • • 
February 22 

February 23 

February 24 

February 25 

February 26 

February 27 • • • 
February 28 

Februarv 29 
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Table B-3. March Incident-Free Data Sets Selected for Algorithm Testing 

North South North South East West East West 
A-B B-A B-C C-B D-E E-D F-G G-F 

March 1 • 
March2 

March3 

March4 

March5 • 
March6 • 
March 7 

March8 • • 
March9 
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APPENDIXC 

TOTAL NUMBER OF FALSE ALARMS 
OF INCIDENT-FREE DATASET 
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Table C-1. Total Number of False Alarms 

35N-158.036 
Number of False Alanns 

Total Daily Average False Alann Rate 
Window Size 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

2 71 122 274 1.3 2.3 5.2 0.0598% 0.1027% 0.2306% 
3 22 36 103 0.4 0.7 1.9 0.0185% 0.0303% 0.0867% 
4 5 14 41 0.1 0.3 0.8 0.0042% 0.0118% 0.0345% 
5 1 7 21 0.0 0.1 0.4 0.0008% 0.0059% 0.0177% 
6 1 5 11 0.0 0.1 0.2 0.0008% 0.0042% 0.0093% 
7 1 4 7 0.0 0.1 0.1 0.0008% 0.0034% 0.0059% 
8 1 3 5 0.0 0.1 0.1 0.0008% 0.0025% 0.0042% 

35S-158.036 
Number of False Alarms 

Total Daily Average False Alarm Rate 
Window Size 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

2 164 286 576 3.1 5.4 10.9 0.1380% 0.2407% 0.4848% 
3 77 122 255 1.5 2.3 4.8 0.0648% 0.1027% 0.2146% 
4 52 73 135 1.0 1.4 2.5 0.0438% 0.0614% 0.1136% 
5 36 54 93 0.7 1.0 1.8 0.0303% 0.0455% 0.0783% 
6 32 44 73 0.6 0.8 1.4 0.0269% 0.0370% 0.0614% 
7 29 47 57 0.5 0.9 1.1 0.0244% 0.0396% 0.0480% 
8 27 36 52 0.5 0.7 1.0 0.0227% 0.0303% 0.0438% 

35N-158.492 
Number of False Alarms 

Total Daily Average False Alarm Rate 
Window Size 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

2 80 123 230 1.5 2.2 4.2 0.0673% 0.1035% 0.1936% 
3 54 76 110 1.0 1.4 2.1 0.0455% 0.0640% 0.0926% 
4 50 58 74 0.9 1.1 1.4 0.0421% 0.0488% 0.0623% 
5 38 56 60 0.7 1.1 1.1 0.0320% 0.0471% 0.0505% 
6 34 48 52 0.6 0.9 1.0 0.0286% 0.0404% 0.0438% 
7 32 36 44 0.6 0.7 0.8 0.0269% 0.0303% 0.0370% 
8 30 34 40 0.6 0.6 0.8 0.0253% 0.0286% 0.0337% 

35S-158.492 
Number of False Alanns 

Total Daily Average False Alarm Rate 
Window Size 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

2 118 152 306 2.1 2.8 5.6 0.0993% 0.1279% 0.2576% 
3 56 76 129 1.1 1.4 2.4 0.0471% 0.0640% 0.1086% 
4 33 43 73 0.6 0.8 1.4 0.0278% 0.0362% 0.0614% 
5 24 28 50 0.5 0.5 0.9 0.0202% 0.0236% 0.042.1% 
6 14 18 30 0.3 0.3 0.6 0.0118% 0.0152% 0.0253% 
7 12 18 26 0.2 0.3 0.5 0.0101% 0.0152% 0.0219% 
8 12 16 26 0.2 0.3 0.5 0.0101% 0.0135% 0.0219% 
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Table C-1. Total Number of False Alarms (Cont'd) 

35N-158.036 
Number of False Alarms 

Total Daily Average False Alarm Rate 
Window Size 25 30 35 25 30 35 25 30 35 

2 71 122 274 1.3 2.3 5.2 0.0598% 0.1027% 0.2306% 

3 22 36 103 0.4 0.7 1.9 0.0185% 0.0303% 0.0867% 

4 5 14 41 0.1 0.3 0.8 0.0042% 0.0118% 0.0345% 

5 7 21 0.0 0.1 0.4 0.0008% 0.0059% 0.0177% 

6 5 11 0.0 0.1 0.2 0.0008% 0.0042% 0.0093% 

7 4 7 0.0-- . --0.l .. 0.-1-- . -0.0008% -O.Q034%-0,0QS9% 

8 3 5 0.0 0.1 0.1 0.0008% 0.0025% 0.0042% 

358-158.036 
Number of False Alarms 

Total Daily Average False Alarm Rate 
Window Size 25 30 35 25 30 35 25 30 35 

2 164 286 576 3.1 5.4 10.9 0.1380% 0.2407% 0.4848% 
3 77 122 255 1.5 2.3 4.8 0.0648% 0.1027% 0.2146% 
4 52 73 135 1.0 1.4 2.5 0.0438% 0.0614% 0.1136% 
5 36 54 93 0.7 1.0 1.8 0.0303% 0.0455% 0.0783% 
6 32 44 73 0.6 0.8 1.4 0.0269% 0.0370% 0.0614% 
7 29 47 57 0.5 0.9 1.1 0.0244% 0.0396% 0.0480% 
8 27 36 52 0.5 0.7 1.0 0.0227% 0.0303% 0.0438% 

35N;.;158.492 
Number of False Alarms 

Total Daily Average False Alarm Rate 
Window Size 25m h 30mph 35 mph 25 mph 30mph 35 mph 25 mph 30mph 35mph 

2 80 123 230 1.5 2.2 4.2 0.0673% 0.1035% 0.1936% 
3 54 76 110 1.0 1.4 2.1 0.0455% 0.0640% 0.0926% 
4 50 58 74 0.9 1.1 1.4 0.0421% 0.0488% 0.0623% 
5 38 56 60 0.7 1.1 1.1 0.0320% 0.0471% 0.0505% 
6 34 48 52 0.6 0.9 1.0 0.0286% 0.0404% 0.0438% 
7 32 36 44 0.6 0.7 0.8 0.0269% 0.0303% 0.0370% 
8 30 34 40 0.6 0.6 0.8 0.0253% 0.0286% 0.0337% 

358-158.492 
Number of False Alarms 

Total Daily Average False Alarm Rate 
Window Size 25 mph 30mph 35mph 25mph 30mph 35 mph 25 mph 30 mph 35mph 

2 118 152 306 2.1 2.8 5.6 0.0993% 0.1279% 0.2576% 
3 56 76 129 l.l 1.4 2.4 0.0471% 0.0640% 0.1086% 
4 33 43 73 0.6 0.8 1.4 0.0278% 0.0362% 0.0614% 
5 24 28 50 0.5 0.5 0.9 0.0202% 0.0236% 0.0421% 
6 14 18 30 0.3 0.3 0.6 0.0118% 0.0152% 0.0253% 
7 12 18 26 0.2 0.3 0.5 0.0101% 0.0152% 0.0219% 
8 12 16 26 0.2 0.3 0.5 0.0101% 0.0135% 0.0219% 
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Table C-1. Total Number of False Alarms (Cont'd) 

35N-158.947 
Number of False Alanns 

Window Size 40 km/hr 

2 80 
3 51 
4 45 
5 38 
6 35 
7 32 
8 30 

358-158.94 7 
Number of False Alarms 

Window Size 40 km/hr 

2 72 
3 43 
4 41 
5 29 
6 20 
7 17 
8 15 

lOE-572.973 
Number of False Alarms 

Window Size 40 km/hr 

2 33 
3 10 
4 4 
5 3 
6 2 
7 2 
8 2 

lOW-572.973 
Number of False Alarms 

Window Size 40 km/hr 

2 886 
3 385 
4 146 
5 64 
6 38 
7 18 
8 13 

Total 
48 km/hr 56 km/hr 

115 203 
73 109 
60 79 
55 72 
51 63 
46 54 
45 52 

Total 
48 km/hr 56 km/hr 

139 404 
72 207 
56 159 
48 122 
38 98 
36 86 
28 79 

Total 
48 km/hr 56 km/hr 

65 143 
31 59 
15 30 
11 18 
10 13 
9 14 
10 13 

Total 
48 km/hr 56 km/hr 

1189 1798 
539 1028 
268 617 
154 362 
89 233 
51 154 
34 107 

Daily Average False Alann Rate 
40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

1.5 2.1 3.7 0.0673% 0.0968% 0.1709% 
1.0 1.4 2.1 0.0429% 0.0614% 0.0918% 
0.8 1.1 1.5 0.0379% 0.0505% 0.0665% 
0.7 1.0 1.4 0.0320% 0.0463% 0.0606% 
0.7 1.0 1.2 0.0295% 0.0429% 0.0530% 
0.6 0.9 1.0 0.0269% 0.0387% 0.0455% 
0.6 0.8 1.0 0.0253% 0.0379% 0.0438% 

Daily Average False Alarm Rate 
40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

1.3 2.5 7.3 0.0606% 0.1170% 0.3401% 
0.8 1.4 3.9 0.0362% 0.0606% 0.1742% 
0.8 1.1 3.0 0.0345% 0.0471% 0.1338% 
0.5 0.9 2.3 0.0244% 0.0404% 0.1027% 
0.4 0.7 1.8 0.0168% 0.0320% 0.0825% 
0.3 0.7 1.6 0.0143% 0.0303% 0.0724% 
0.3 0.5 1.5 0.0126% 0.0236% 0.0665% 

Daily Average False Alarm Rate 
40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

0.6 1.2 2.6 0.0278% 0.0547% 0.1204% 
0.2 0.6 1.1 0.0084% 0.0261% 0.0497% 
0.1 0.3 0.6 0.0034% 0.0126% 0.0253% 
0.1 0.2 0.3 0.0025% 0.0093% 0.0152% 
0.0 0.2 0.2 0.0017% 0.0084% 0.0109% 
0.0 0.2 0.3 0.0017% 0.0076% 0.0118% 
0.0 0.2 0.2 0.0017% 0.0084% 0.0109% 

Daily Average False Alarm Rate 
40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

16.1 21.6 32.7 0.7458% 1.0008% 1.5135% 
7.3 10.2 19.4 0.3241% 0.4537% 0.8653% 
2.8 5.1 11.6 0.1229% 0.2256% 0.5194% 
1.2 2.9 6.8 0.0539% 0.1296% 0.3047% 
0.7 1.7 4.4 0.0320% 0.0749% 0.1961% 
0.3 1.0 2.9 0.0152% 0.0429% 0.1296% 
0.2 0.6 2.0 0.0109% 0.0286% 0.0901% 
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Table C-1. Total Number of False Alarms (Cont'd) 

lOE-573.654 
Number of False Alarms 

Window Size 40 km/hr 

2 68 
3 21 
4 14 
5 9 
6 7 
7 6 
8 5 

lOW-573.654 
Number of False Alarms 

Window Size 40 km/hr 

2 29 
3 12 
4 5 
5 2 
6 1 
7 0 
8 0 

lOE-576.264 
Number of False Alarms 

Window Size 40 km/hr 

2 18 
3 10 
4 3 
5 2 
6 0 
7 0 
8 0 

lOW-576.264 
Number of False Alarms 

Window Size 40 km/hr 

2 10 
3 5 
4 1 
5 1 
6 1 
7 1 
8 1 

Total 
48 km/hr 56 km/hr 

91 161 
41 75 
28 38 
16 25 
11 19 
11 13 
7 11 

Total 
48 km/hr 56 km/hr 

45 82 
19 35 
6 15 
3 6 
2 5 
2 5 
2 5 

Total 
48 km/hr 56 km/hr 

26 38 
10 13 
3 5 
2 3 
0 1 
0 1 
0 1 

Total 
48 km/hr 56 km/hr 

17 37 
8 12 
2 7 
2 7 
1 5 
1 3 
1 4 

Daily Average False Alarm Rate 
40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

1.2 1.7 2.9 0.0572% 0.0766% 0.1355% 
0.4 0.8 1.4 0.0177% 0.0345% 0.0631% 
0.3 0.5 0.7 0.0118% 0.0236% 0.0320% 
0.2 0.3 0.5 0.0076% 0.0135% 0.0210% 
0.1 0.2 0.4 0.0059% 0.0093% 0.0160% 
0.1 0.2 0.2 0.0051% 0.0093% 0.0109% 
0.1 0.1 0.2 0.0042% 0.0059% 0.0093% 

Daily Average False Alarm Rate 
40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

0.5 0.8 1.5 0.0244% 0.0379% 0.0690% 
0.2 0.4 0.7 0.0101% 0.0160% 0.0295% 
0.1 0.1 0.3 0.0042% 0.0051% 0.0126% 
0.0 0.1 0.1 0.0017% 0.0025% 0.0051% 
0.0 0.0 0.1 0.0008% 0.0017% 0.0042% 
0.0 0.0 0.1 0.0000% 0.0017% 0.0042% 
0.0 0.0 0.1 0.0000% 0.0017% 0.0042% 

Daily Average False Alarm Rate 
40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

0.3 0.5 0.7 0.0152% 0.0219% 0.0320% 
0.2 0.2 0.2 0.0084% 0.0084% 0.0109% 
0.1 0.1 0.1 0.0025% 0.0025% 0.0042% 
0.0 0.0 0.1 0.0017% 0.0017% 0.0025% 
0.0 0.0 0.0 0.0000% 0.0000% 0.0008% 
0.0 0.0 0.0 0.0000% 0.0000% 0.0008% 
0.0 0.0 0.0 0.0000% 0.0000% 0.0008% 

Daily Average False Alarm Rate 
40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

0.2 0.3 0.7 0.0084% 0.0143% 0.0311% 
0.1 O.i 0.2 0.0042% 0.0061% 0.0101 % 
0.0 0.0 0.1 0.0008% 0.0017% 0.0059% 
0.0 0.0 0.1 0.0008% 0.0017% 0.0059% 
0.0 0.0 0.1 0.0008% 0.0008% 0.0042% 
0.0 0.0 0.1 0.0008% 0.0008% 0.0025% 
0.0 0.0 0.1 0.0008% 0.0008% 0.0034% 
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Table C-1. Total Number of False Alarms (Cont'd) 

lOE-576.846 
Number of False Alanns 

Window Size 40 km/hr 

2 7 
3 6 
4 2 
5 2 
6 2 
7 2 
8 2 

lOW-576.846 
Number of False Alanns 

Window Size 40 km/hr 

2 9 
3 1 
4 1 
5 1 
6 ' 1 
7 1 
8 0 

Total 
48 km/hr 56 km/hr 

12 39 
6 18 
4 11 
3 10 
3 10 
3 9 
2 9 

Total 
48 km/hr 56 km/hr 

28 84 
7 33 
4 15 
3 8 
2 7 
2 4 
1 2 

Daily Average False Alarm Rate 
40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

0.1 0.2 0.7 0.0059% 0.0101% 0.0328% 
0.1 0.1 0.3 0.0051% 0.0051% 0.0152% 
0.0 0.1 0.2 0.0017% 0.0034% 0.0093% 
0.0 0.1 0.2 0.0017% 0.0025% 0.0084% 
0.0 0.1 0.2 0.0017% 0.0025% 0.0084% 
0.0 0.1 0.2 0.0017% 0.0025% 0.0076% 
0.0 0.0 0.2 0.0017% 0.0017% 0.0076% 

Daily Average False Alann Rate 
40 km/hr 48 km/hr 56 km/hr 40 km/hr 48 km/hr 56 km/hr 

0.2 0.5 1.5 0.0076% 0.0236% 0.0707% 
0.0 0.1 0.6 0.0008% 0.0059% 0.0278% 
0.0 0.1 0.3 0.0008% 0.0034% 0.0126% 
0.0 0.1 0.2 0.0008% 0.0025% 0.0067% 
0.0 0.0 0.1 0.0008% 0.0017% 0.0059% 
0.0 0.0 0.1 0.0008% 0.0017% 0.0034% 
0.0 0.0 0.0 0.0000% 0.0008% 0.0017% 
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