1. Report No.	2. Government Accession No.	3, Recipient's Catalog No.
FHWA/TX-86/ 2 +285-1		
. Title and Subtitle		5. Report Date November 1985
Hot-Mix Pavement Stabil Laboratory test Results	ity Performance versus	6. Performing Organization Code
. Author/s)		8. Performing Organization Report No.
Fred Benson, D.F. Marti	Research Report 285-1	
Performing Organization Name and Adda Texas Transportation In	10. Work Unit No. (TRAIS)	
The Texas A&M Universit College Station, Texas	11. Contract or Grant No. Study No. 2-9-80-285	
2. Sponsoring Agency Name and Address Texas State Department Transportation: Transp	Interim - September 1979 November 1985	
Austin, Texas 78763	, , , , , , , , , , , , , , , , , , ,	14. Sponsoring Agency Code
Research Study Title: A	opperation with DOT, FHWA, sphalt Concrete Mixture Des	ign and Specification.
6. Abstract		
istics of the Item 340 and service environment surface layer would fun		its production, placement ining how well the hot-mix

In all, 18 separate roadway locations or sites were included in this study. The following types of data were obtained from these sites:

(1) doing visual evaluations and taking rut depths on the surface,

(2) taking roadway cores for subsequent laboratory testing.

Also a records search was made to determine pertinent facts affecting each roadway site from hot-mix design through production, laydown, compaction and service history of the roadway surface.

In general, the more rutted pavements contained softer asphalts, lower air voids and more temperature susceptible asphalts. Indirect tensile strengths and Marshall stabilities tend to be lower for the more rutted pavements. The more rutted pavements tend to have grading curves with the higher humps above the No. 30 sieve of the ASTM continuous grading curve. Hveem stability appears to be no indication of rutting as found in this study.

17. Key Words Hot-mix asphalt concrete stability, rutting	e (HMAC),	No restrictions of the No restrictions available to the National Technology of Springfield, V	he public throu ical Informatio l Road	igh the
19. Security Classif. (of this report)	20. Security Clas	ssif. (af this page)	21. No. of Pages	22. Price
· Unclassified	Unclassified		237	

	·		

HOT-MIX PAVEMENT STABILITY PERFORMANCE VERSUS LABORATORY TEST RESULTS

by

Fred C. Benson

D. F. Martinez

and

Deborah A. Jessup

Research Report 285-1
Research Study Number 2-9-80-285
Asphalt Concrete Mixture Design and Specification

Sponsored by

Texas State Department of Highways and Public Transportation in cooperation with U. S. Department of Transportation, Federal Highway Administration

November 1985

TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas

TABLE OF CONTENTS

																														Page
INTRO)DU(CTI	ON	•			•	•	•		•		•	•		•	•	•	•	•	•	•					•	•		1
DEF I	IIT:	ION	OF	P	'RO	BL	ΕM	1				•											•	•	•					1
STUDY	/ AF	PR	OAO	ЭН	•	•			•		•	•	•	•							•	•	•		•	•		•		2
ROADW	ΙΑΥ	SI	TES	5 0	BS	ER	VE	D	•	•		•	•		•		•			•		•	•	•	•	•	•	•	•	3
DATA	ACC	QUI	SIT	ГΙО	N	ΑN	ID	TE	ES1	ГΙ	٧G	P.	LAi	NS	•	•	•	•	•	•	•	•	•	•	•		•	•	•	4
SUMMA	\R I &	ES	0F	DA	TΑ	١		•			•		•	•		•	•	•	•	•	•						•	•	•	8
DISCL	ISS:	ION	l OF	- [PΑT	Α	RE	SL	ILT	ΓS		•		•	•			•	•	•	•		•	•	•	•	•	•	•	12
CONCL	.US	ΙOΝ	IS	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		23
REFER	REN	CES		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•				•	•	•	•		•		25
SELEC	TE) R	EFE	RE	NC	ES	;	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	.26
TABLE	S		•		•	•	•			•			•	•	•	•	•	•	•					•	•	•	•	•	•	27
FIGUR	RES	_																												173

·		

LIST OF TABLES

<u>Table</u>			<u>Page</u>
la	Test Sequence I results for Item 340 Type "D" HMAC using MacMillan AC-20, U.S. 82, Dickens, Texas		27
1b	Test Sequence I results for Item 340 Type "D" HMAC Dorchester AC-20, U.S. 82, Dickens, Texas		29
lc	Test Sequence I results for Item 340 Type "D" HMAC using Exxon AC-20, U.S. 82, Dickens, Texas		31
1d	Test Sequence I results for Item 340 Type "D" HMAC using Shamrock AC-20, U.S. 82, Dickens, Texas		33
1e	Test Sequence I results for Item 340 Type "D" HMAC using Shamrock AC-10, U.S. 82, Dickens, Texas		35
lf	Test Sequence I results for Item 340 Type "D" HMAC using Cosden AC-20, U.S. 82, Dickens, Texas		37
1g	Test Sequence I results for Item 340 Type "D" HMAC using Cosden AC-10, U.S. 82, Dickens, Texas		39
2 a	Test Sequence I results for Item 340 Type "D" HMAC Macmillan AC-10, U.S. 287, Dumas, Texas	. •	41
2b	Test Sequence I results for Item 340 Type "D" HMAC using Dorchester AC-10, U.S. 287, Dumas, Texas		43
2 c	Test Sequence I results for Item 340 Type """ HMAC Exxon AC-10, U.S. 287, Dumas, Texas		45
2d	Test Sequence I results for Item 340 Type "D" HMAC Diamond Shamrock AC-20, U.S. 287, Dumas, Texas		47
2e	Test Sequence I results for Item 340 Type "D" HMAC Diamond Shamrock AC-10, U.S. 287, Dumas, Texas		49
2f	Test Sequence I results for Item 340 Type "D" HMAC Cosden AC-20, U.S. 287, Dumas, Texas		51
2g	Test Sequence 1 results for Item 340 Type "D" HMAC Cosden AC-10, U.S. 287, Dumas, Texas		53
3A	Test Sequence II results for Item 340 Type "D" cores using MacMillan AC-20, U.S. 82, Dickens, Texas		. 55
3 B	Test Sequence II results for Item 340 Type "D" cores using Dorchester AC-20, U.S. 82, Dickens, Texas		, 58

<u>Table</u>		P	age
30	Test Sequence II results for Item 340 Type "ù" cores using Exxon AC-20, U.S. 82, Dickens, Texas	•	61
3ũ	Test Sequence II results for Item 340 Type "D" cores using Shamrock AC-20, U.S. 82, Dickens, Texas	•	64
3E	Test Sequence II results for Item 340 Type "D" cores using Shamrock AC-10, U.S. 82, Dickens, Texas	•	66
3ř	Test Sequence II results for Item 340 Type "D" cores using Cosden AC-20, U.S. 82, Dickens, Texas		68
3G	Test Sequence II results for Item 340 Type "D" cores using Cosden AC-10, U.S. 82, Dickens, Texas		70
4A	Test Sequence II results for Item 340 Type "D" cores using MacMillan AC-10, U.S. 287, Dumas, Texas		73
4 B	Test Sequence II results for Item 340 Type "D" cores using Dorchester AC-10, U.S. 287, Dumas, Texas	•	76
4 C	Test Sequence II results for Item 340 Type "D" cores using Exxon AC-10, U.S. 287, Dumas, Texas		78
4 Ú	Test Sequence II results for Item 340 Type "D" cores using Shamrock AC-20, U.S. 287, Dumas, Texas	•	81
4E	Test Sequence II results for Item 340 Type """ cores using Shamrock AC-10, U.S. 287, Dumas, Texas		83
4F	Test Sequence II results for Item 340 Type "D" cores using Cosden AC-20, U.S. 287, Dumas, Texas	•	86
46	Test Sequence II results for Item 340 Type "D" cores using Cosden AC-10, U.S. 287, Dumas, Texas	•	88
5	Test Sequence II results for IH 45 18-core section Madisonville, Texas		90
6	Test Sequence II results for IH 45 12-core section, Madisonville, Texas		92
7	Test Sequence II results for IH 45, Huntsville, Texas		94
8	Test Sequence II results for IH 35, waxahachie, Texas		96
9	Test Sequence II results for U.S. 77, Kingsville, Texas .		98
10	Test Sequence II results for U.S. 77, Sinton, Texas		100

<u>Table</u>	<u>Page</u>
11	Test Sequence II results for IH 37, Oakville, Texas 102
12	Test Sequence II results for SH 71, Columbus, Texas 104
13	Test Sequence II for U.S. 90A, Colorado County, Texas 106
14	Test Sequence II for FM 2061 McAllen, original design (Loop 374)
15	Test Sequence II for FM 2061 McAllen, modified design (Loop 374)
16	Test Sequence II results for U.S. 59, Shelby County pavement distress problem
17A	Test Sequence II results for Item 340 Type "D" black cores on U.S. 290, Hempstead, Texas
17B	Test Sequence II results for Item 340 Type "D" iron ore cores on U.S. 290, Hempstead, Texas
18	Test Sequence II results for Item 340 Type "D" Asphadure cores on U.S. 62 in Lubbock, Texas
19	Test Sequence II results for field cores of surface hot-mix Item 340 from U.S. 87 at 34th Street in Lubbock, Texas 122
20A	Test Sequence II results for field cores of surface hot-mix Item 340 from Loop 287, Lufkin, Texas
20B	Test Sequence II results for field cores from second layer of hot-mixed material from Loop 287, Lufkin, Texas 126
2 JA	Test Sequence II results for field cores of surface hot-mix Item 340 from U.S. 59 north of Lufkin, Texas
21B	Test Sequence II results for field cores from bottom layer of hot-mixed material, U.S. 59, north of Lufkin, Texas 130
22	Summary of roadway pavements with Item 340 layers evaluated under Project 2-9-80-285
23	PRS scores and average rut depth measurements for Study 285 roadway sites
23A	Breakdown of US 82 and 287 roadway section subsites by asphalt supplier, type and grade

<u>Tab le</u>		Page
24	Summary of test results on extracted asphalts from Study 285 roadway sites	. 138
25	Summary of resilient modulus, M_R , results for Study 285 roadway sites	. 140
26	Summary of indirect tension, σ_T , test results for Study 285 roadway sites	. 142
27	Summary of Hveem stability test results for Study 285 roadway sites	. 144
28	Summary of Marshall stability test results for Study 285 roadway sites	. 146
29	Characteristics of extracted aggregate grading curves from Study 285 roadway sites	. 148
30	Texas freeze-thaw pedestal test results for US 287 and US 82 roadway subsections	. 150
31	Part I, design and construction records data for pavement sections covered by $\hat{\nu}$ ata Code Numbers 1-48	. 151
32	Part IIA, design and construction records data for pavement sections covered by Data Code Numbers 1-48	. 153
32	Part IIB, design and construction records data for pavement sections covered by Data Code Numbers 1-48	. 156
32	Part IIC, design and construction records data for pavement sections covered by Data Code Numbers 1-48	. 160
33	Part III, design and construction records data for pavement sections covered by Data Code Numbers 1-48	. 163
34	Asphalt properties for roadway sections ranked in order of decreasing rut depths	. 165
35	Air void and resilient modulus, M_{R} , values for roadway sections ranked in order of decreasing rut depths	. 166
36	Differences between resilient modulus, M_R , values at different temperatures for roadway sections ranked in order of decreasing rut depths	. 167
37	Indirect tensile strength results for roadway sections ranked in order of decreasing rut depths	. 168

<u>Tab 1e</u>		Page
38	Hveem stability results for roadway sections ranked in order of decreasing rut depths	. 16 <u>9</u>
39	Marshall stability results for roadway sections ranked in order of decreasing rut depths	. 170
39A	Marshall stability flow results for roadway sections ranked in order of decresing rut depths	. 171
40	Extracted aggregate grading characteristics for Study 285 roadway sections ranked in order of decreasing rut depths	. 172

LIST OF FIGURES

Figure		Page
1	Laboratory Stability Sequence I: field mixed- field lab compacted test specimens placed under Project 2287 in 1982	. 173
2	Laboratory Stability Sequence II: cores of field mixed - roadway compacted hot-mix from 28 pavement sections of Project 2287 and 20 pavement sections chosen from districts under Project 2285	. 174
3	Extracted aggregate gradation curve for US 82, MacMillan AC-10 subsection Data Code Number 15	. 175
4	Extracted aggregate gradation curve for US 82, Dorchester AC-20 subsection, Data Code Number 16	. 176
5	Extracted aggregate gradation curve for US 82, Exxon AC-20 subsection, Data Code Number 17	. 177
6	Extracted aggregate gradation curve for US 82, Shamrock AC-20 subsection, Data Code Number 18	. 178
7	Extracted aggregate gradation curve for US 82, Cosden AC-10 subsection, Data Code Number 21	. 179
8	Extracted aggregate gradation curve for US 287, MacMillan AC-10 subsection, Data Code Number 22	. 180
9	Extracted aggregate gradation curve for US 287, Dorchester AC-10 subsection, Data Code Number 23	. 181
10	Extracted aggregate gradation curve for US 287, Exxon AC-10 subsection, Data Code Number 24	. 182
11	Extracted aggregate gradation curve for US 287, Shamrock AC-10 subsection, Data Code Number 26	. 183
12	Extracted aggregate gradation curve for US 287, Cosden AC-20 subsection, Data Code Number 27	. 184
13	Extracted aggregate gradation curve for US 287, Cosden AC-10 subsection, Data Code Number 28	185

Figure		Page
14	Extracted aggregate gradation curve for IH 45, Madison County, 18-core section (Table 5), Data Code Number 29	186
15	Extracted aggregate gradation curve for IH 45, Madison County, 12-core section (Table 6), Data Code Number 30	187
16	Extracted aggregate gradation curve for IH 45, Walker County, Data Code Number 31	188
17	Extracted aggregate gradation curve for IH 35, Ellis County, Data Code Number 32	189
18	Extracted aggregate gradation curve for US 77 Bypass, Kingsville, Texas Data Code Number 33	190
19	Extracted aggregate gradation curve for US 77 Bypass, Sinton, Texas, Data Code Number 34	191
20	Extracted aggregate gradation curve for IH 37, Oakville, Texas, Data Code Number 35	192
21	Extracted aggregate gradation curve for SH 71, Business, Columbus, Texas, Data Code Number 36	193
22	Extracted aggregate gradation curve for US 90A, west of Colorado River, Data Code Number 37	194
23	Extracted aggregate gradation curve for Loop 374 (FM 2061), original design section in McAllen, Data Code Number 38	195
24	Extracted aggregate gradation curve for Loop 374 (FM 2061), modified design section in McAllen, Data Code Number 39	196
25	Extracted aggregate gradation curve for US 59, Shelby County, Data Code Number 40	197
26	Extracted aggregate gradation curve for US 290/SH 6, black cores in Hempstead, Texas, Data Code Number 41	198
27	Extracted aggregate gradation curve for US 290/SH 6, iron-ore cores in Hempstead, Texas, Data Code Number 42	199

Figure		Page
28	Extracted aggregate gradation curve for "Asphadure" cores on US 62 in Lubbock, Data Code Number 43	200
29	Extracted aggregate gradation curve for US 87 at 34th Street in Lubbock, Data Code Number 44	201
30	Extracted aggregate gradation curve for Loop 287 (top layer) in Lufkin, Texas, Data Code Number 45	202
31	Extracted aggregate gradation curve for Loop 287 (second layer) in Lufkin, Texas, Data Code Number 46	203
32	Extracted aggregate gradation curve for US 59 (top layer) north of Lufkin, Texas, Data Code Number 47	204
33	Extracted aggregate gradation curve for US 59 (bottom layer) north of Lufkin, Texas, Data Code Number 48	205
34	Overall Hveem stability versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28	206
35	Hveem stability after 24-hour Lottman test versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28	207
36	Overall Hveem stability versus percent air voids for roadway sections covered by Data Code Numbers 29-48	208
37	Hveem stability after 24-hour Lottman test versus percent air voids for roadway sections covered by Data Code Numbers 29-48	209
38	Marshall stability versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28	210
39	Marshall stability versus percent air voids for roadway sections covered by Data Code Numbers 29-48	211
40	Marshall stability after 24-hour Lottman test versus percent air voids for roadway sections covered by Data Code Numbers 29-48	212

Figure		Page
41	Overall resilient modulus M _R at 77 ⁰ F versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28	213
42	Resilient modulus M _R at 77 ^o F after 24-hour Lottman test versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28	214
43	Resilient modulus M _R at 77 ⁰ F after 18-cycle Lottman test versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28	215
44	Overall resilient modulus M _R at 77 ^O F versus percent air voids for roadway sections covered by Data Code Numbers 29-48	. 216
45	Resilient modulus M _R at 77 ^O F after 24-hour Lottman test versus percent air voids for roadway sections covered by Data Code Numbers 29-48	. 217
46	Resilient modulus M _R at 77 ^O F after 18-cycle Lottman test versus percent air voids for roadway sections covered by Data Code Numbers 29-48	. 218
47	Resilient modulus M _R at 104 ⁰ F versus percent air voids for roadway sections covered by Data Code Numbers 29-48	. 219
48	Splitting tensile strength, σ_{TD} , versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28	. 220
49	Splitting tensile strength after 24-hour Lottman test, oT24H, versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28	. 221
50	Splitting tensile strength after 18-cycle Lottman test, oT18c, versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28	. 222
51	Splitting tensile strength, σ_{TD} , versus percent air voids for roadway sections covered by Data Code Numbers 29-48	. 223
52	Splitting tensile strength, after 24-hour Lottman test, σ_{T24H} , versus percent air voids for roadway sections covered by Data Code Numbers 29-48	. 224
53	Splitting tensile strength after 18-cyc Lottman test, σ_{T18c} , versus percent air voids for roadway sections covered by Data Code Numbers 29-48	. 225

INTRODUCTION

Flexible pavements are subject to several types of distress. These include cracking, rutting, raveling, slippage and structural failures. The cracking distress covers longitudinal, transverse and alligator cracking. The general area of rutting includes longitudinal or continuous wheelpath rutting, spot rutting or isolated areas of ruts and shoving which are associated with stopping and starting movements of vehicles, usually at intersections.

In hot-mix surface layers, the distress of rutting can become a significant problem. Longitudinal rutting in wheel paths can occur to absolute depths in excess of 1 inch (25 mm) and severely shoved and rutted areas can occur at intersections with magnitudes of distress exceeding those of longitudinal ruts.

Rutting in wheelpaths creates problems for the motorist both from standing water during and after rainfall and from the distorted roadway surface which may make vehicle control difficult. The standing water creates drag, visibility hindering spray and the potential for hazardous hydroplaning. The rut distorted surface makes handling of motor vehicles difficult to dangerous in the achieving of steering maneuvers including passing, moving on and off the roadway and stopping.

Because of the serious problems created by the rutting distress, the Texas State Department of Highways and Public Transportation (SDHPT) has targeted this area for study. Remedial measures governing the design, production and placement of hot-mix placed under SDHPT Specification Item 340 are being implemented as a result of this and other associated research.

DEFINITION OF PROBLEM

The problem to be addressed by this part of Study 2-9-80-285 was to determine what characteristics of the Item 340 hot-mix material itself and its production, placement and service environments were significant in determining how well the hot-mix surface layer would function in the field. Among the questions asked were the following:

- 1. How did the original materials, including aggregates, asphalt cement and any additives affect performance on the roadway?
- 2. How did the design of the hot-mix which fixed proportions of individual components, serve to influence roadway performance?
- 3. How did the type of hot-mix plant and conduct of operations of that plant influence the character of the mix on the roadway?
- 4. How did transportation, construction, weather and compaction operations influence the final hot-mix performance?
- 5. How did the existing roadway structural section and surface affect the characteristics of the Item 340 hot-mix layer?
- 6. Finally, how did the amount and type of traffic, including truck percentages and axle loadings, and service weather environment affect roadway performance?

Answers to the above questions needed to be found to determine why some hot-mix surface layers performed well from a rutting standpoint and to establish why certain other roadway pavements did not perform well.

STUDY APPROACH

Included in the objective of this study was the need to compare the performances of good pavements with Item 340 surface layers versus the performances of marginal Item 340 surface layered pavements. The SDHPT districts and urban office were sent letters of inquiry asking for submission of well and/or poorly performing candidate pavements from a rutting or shoving distress standpoint. Replies were received from 18 districts offering pavement sections for study. Because of study limitations of time and funding, only nine districts had roadway sections ultimately tested under the project.

Data concerning each roadway tested was obtained in the same general manner. First, a time was set and field coring was completed on each selected site chosen by the districts as representative of a particular roadway. During this phase, field cores were obtained, rut

depths measured and roadway evaluations were made for Pavement Rating Scores. General information relating to roadway distress and history was taken. At a later date, the district was again contacted and a thorough files review was made at district offices to obtain data concerning design, production, weather, laydown and service conditions for the Item 340 surface layers. In the meantime, the roadway hot-mix cores were visually inspected, measured, tested under the Texas Transportation Institute (TTI) laboratory test sequences (1); and the data were then tabulated for analysis.

The data obtained from each of the pavement sections was compared with that of the others in determining why some sections performed well and others did not. These comparisons were based on three areas:

(1) data obtained in the field on the pavement site, (2) data obtained from analysis of field cores and (3) data taken from the reviews of files concerning design, production, laydown and field service of the pavements.

Among the roadway sites studied, two major highways were evaluated as a part of Study 2-8-80-287, "Desirable Asphalt Properties". These were US 82, a few miles west of Dickens, Dickens County in District 25, and US 287, just north of Dumas, in Moore County, District 4. Each of these two highways had seven distinct test subsections that differed by containing a different asphalt cement. For this study's purposes, these have been observed and evaluated for one year.

The bulk of the test sections evaluated under Study 285 were existing sections with Item 340 surface layers. Samples from these sections were tested in the laboratory under a somewhat different testing sequences than used for the two roadway sections on US 82 and US 287.

ROADWAY SITES OBSERVED

In all, 18 separate roadway locations or sites were included in the 285 study, not counting the 14 individual subsections in the two joint Study 285-287 efforts on US 82 and US 287. In all, 10 different SDHPT districts were involved. The laboratory test results from all

of this roadway testing and evaluation effort are contained in Tables la through 21.

Table 22 provides a brief summary and general information about each roadway section tested. Also listed is the laboratory test sequence number under which the roadway section field cores or field laboratory compacted specimens were tested. The table area "Comments" notes whether the test sections were part of the joint 285/287 study efforts and gives other unique information concerning the roadway site. Finally, a "Data Code Number" is given for each section and subsection in parentheses in the first column in order to identify each section in further data result tables.

DATA ACQUISITION AND TESTING PLANS

As noted briefly earlier, data was obtained in three areas. These included the field, the laboratory, and the office. The field area for data taking involved (1) doing visual evaluations and taking rut depths on the surface, and (2) taking roadway cores for subsequent laboratory testing. The laboratory area involved testing the specimens and cores obtained in the field. In the office, a records search was made to determine pertinent facts affecting each roadway site from hot-mix design through production, laydown, compaction and service history of the roadway surface.

Laboratory Testing Sequences

Laboratory Testing Sequences I and II used in the 285 study are shown in Figures 1 and 2 respectively. Testing Sequence I was used to test the field laboratory compacted samples of plant produced hot-mix from the on-site monitoring of the joint 285/287 efforts on US 82 and US 287 in 1982. Testing Sequence II was used on cores obtained from roadway sites visited as listed in Table 23, including the 14 subsections subsequently cores on US 82 and US 287.

<u>Laboratory Testing Sequence I</u>. Figure 1 is a schematic of the testing plan as originally planned for testing fresh hot-mix produced for the construction of joint Study 285/287 research efforts that took

place at US 82 in Dickens County and US 287 in Moore County. At each of these roadway locations, seven subsections containing different asphalt cements but the same aggregate combinations and gradings, were paved and the hot-mix sampled and compacted into specimens. For example, the aggregate used to pave US 82 consisted entirely of a gradation from a siliceous gravel crushed from one hill site which was also used as the hot-mix drum-dryer plant site. The seven different asphalt cements used on US 82 were MacMillan AC-20, Dorchester AC-20, Exxon AC-20, Shamrock AC-20, Shamrock AC-10, Cosden AC-20 and Cosden AC-10.

As illustrated in Figure 1, there are four horizontal test series or legs for testing 18 gyratory shear molded samples from the US 82 and US 287 field laboratories. The tests included Hveem and Marshall Stability, resilient modulus, $\rm M_R$, and indirect tension. The testing is first done dry for certain samples, as for Marshall Stability and indirect tension in the top and bottom legs of the series, and then done after water soaking under $\rm 0^{0}$ to $\rm 140^{0}F$ Lottman and the standard Lottman water tests in the two middle legs. By comparing test results from before and after water soaking, an estimate may be obtained concerning a hot-mixed material's susceptibility to moisture damage.

The bottom leg of Testing Sequence I is used to determine Rice specific gravity, percent air voids and percent density of the compacted specimens, when used in conjunction with the bulk specific gravities obtained on all of the specimens at the start of the total sequence. The top leg accomplishes testing of the asphalt cement properties and aggregate gradation used in the mixture. The Marshall samples are failed, then crumbled and the asphalt cement extracted. Then the asphalt properties such as viscosity, penetration, ring and ball and specific gravity are measured on the extracted asphalt. The aggregate remaining from the extraction is sieved for grading analysis.

Some tests in Test Sequence I are labeled "special". These consisted of (1) compacting special sized cylindrical samples of the roadway hot-mix for running creep tests, (2) running the Texas Freeze-Thaw Pedestal Test $(\underline{2})$ on specially prepared samples of the job aggregates and asphalt cements as another indicator of potential water

susceptibility, and (3) performing the one-cycle (0 to 140°F) Lottman water test in the second test leg in order to measure water susceptibility and compare with the standard water test results in leg three. These tests were considered special because they were not ordinarily run in the TTI standard laboratory testing programs as of 1982.

The cross-hatched block in the top horizontal test series or test leg one indicates that results of sieving the extracted aggregate would be also used in another 285 substudy. This is the wet versus dry sieving of hot-mix aggregates substudy to determine the merits of using wet sieving during the design and construction of hot-mix paving layers.

Laboratory Testing Sequence II. This sequence was used for testing cores from roadway sites where the hot-mix surface layers had been in service for some time. Accordingly, no special tests on the original plant produced hot-mixes or aggregates and asphalts were run.

It will be observed that some deviations were made from these sequences from time to time with different roadway sites. These differences will be evident upon examination of Tables la through 21. The changes were believed at the time to be appropriate based on the judgement of the TTI researchers.

Joint Study 285/287 Roadway Sites

The hot-mix surface layers on US 82 and US 287 were placed in 1982, US 82 in June and US 287 in September. The production, placement, compaction and performance of these two hot-mix surfaces have been monitored by TTI researchers under both Studies 285 and 287 through 1983. These sections are still being monitored under Study 287 going through the 1983-1984 fiscal year.

Laboratory Testing of Study 285/287 Sites. This testing has been covered under both Test Sequences I and II as shown in Figures 1 and 2 for Study 285 for both the US 82 and US 287 roadway sites. Test Sequence I shown in Figure 1 was first used to test the field laboratory compacted samples of fresh hot-mix produced at the contractor's plant for each of these highways. Results of the laboratory testing of these samples are shown in Tables 1a through 1g for the fresh mix produced for US 82 at Dickens and in Tables 2a through 2g for the US 287 hot-mix near Dumas.

Approximately a year after the surfaces were placed on US 82 and US 287, field cores were taken. These were tested in 1983 under Test Sequence II as shown in Figure 2. These results are shown, respectively, in Tables 3A through 3G and 4A through 4G.

Field Data for Study 285/287 Sites. Some general information concerning US 82 and US 287 was obtained at the time these Item 340 pavement surface layers were placed in 1982. Of course, at that time, no rutting or other major noticeable distress had occurred, and Pavement Rating Scores, PRS $(\underline{3})$, though not taken, would have been 100. It should be mentioned that both US 82 and US 287 were cored under Study 287 within several months after placement, and air voids computed for both pavements were found to be higher than expected. This tendency for high air voids is also evident in the Study 285 1983 cores.

As noted previously, both US 82 and US 287 were cored in 1983 under the joint 285/287 effort. Some localized distress was noted, especially in two subsections for US 287. Neither rut depths nor PRS scores were taken under Study 285 for US 287. The reason for this is that under visual inspection, little or no rutting had developed in the roadway, and the distress in US 287 was limited to two subsites which were undergoing raveling and some raveling of the hot-mix in the wheel paths. Since the US 287 distress was not due to plastic deformation, the payment was not rated nor were depths measured at that time.

Records Data for 285/287 Sites. Some of these data were acquired at the time of placement and in the months subsequent to the placement of the Item 340 layers. This consisted of hot-mix design work sheets, daily reports, observations made and recorded on the job sites and information made available by Districts 25 and 4 after construction.

It should be noted that the Dalhart Residency office provided TTI with 30 combined cold-feed aggregate samples during the US 287 hot-mix production for the Study 285 wet versus dry screening substudy. This aggregate sampling represented 10 days of the drum-dryer plant production and included the two days during which the seven subsections were placed and eight subsequent days of production. Results from screening these samples will be reported in Report 285-2 which this follows this report.

285 Roadway Sites

These sites represent those that had already been in service for different periods of time. These were nominated by the SDHPT districts as either "well performing" or "poorly performing" from a rutting or shoving stability standpoint in the Item 340 surface layers.

Field Data for Study 285 Sites. Pavement Rating Scores, PRS, and rut depths were measured at each location. Pavement Rating Scores were based on the procedure developed by Epps et al. (3). Rut depths were taken in wheel paths by means of placing a saw-toothed gage graduated in two-millimeter (mm) increments under an aluminum bar laid across the rut, and obtaining an average of from 10 to 20 such measurements at each roadway site. Results of these measurements are given in Table 23 for those pavements rated.

At each roadway section location, from 12 to 21 pavement cores were obtained for subsequent laboratory testing. Usually half were taken from a wheelpath and half from between the wheelpath. The number of cores taken was often dictated by field conditions; for example, at one location the drill bit was used up after only 13 cores and no spare bit was available. At another location, an 18-core section had already been cored, and it was decided to take an additional minimum of 12 comparison cores at a more rutted area less than a mile down the road.

<u>Laboratory Testing of Study 285 Sites</u>. This testing was accomplished in general accordance with the plan laid out in Test Sequence II. Results are contained in Tables 5 through 21.

Records Data for 285 Sites. Most of these data have been collected in separate efforts from the field data acquisition and coring work. Thus, this portion of data gathering has been the last to be accomplished on this 285 study.

SUMMARIES OF DATA

Field Data

<u>Tables</u>. Field and some general data concerning the laboratory test results-field stability performance are contained in Tables 22, 23 and 23A. Table 22 includes the following general information about the

roadway sites: highway number, control-section number, district, county and location or limits of the roadway sites. Also included are the laboratory testing sequence or plan used, comments, the table number the data are found in and a Data Code Number assigned to each section to help with identification.

For instance, field laboratory compacted specimens of hot-mix placed on US 82 and studied under the joint Study 285/287 Laboratory Sequence I are shown in Tables la through 1g under Data Code Numbers 1 through 7. Field cores obtained from the US 77 Bypass around Kingsville in Kleberg County and tested under study 285 Laboratory Sequence II are noted under Table Number 10 and Data Code number 34, as shown on the second page of Table 22.

Unless indicated otherwise under the comments column of Table 22, data were obtained by TTI personnel and a TTI coring rig assembled for field coring of pavements in general. SDHPT personnel provided traffic control and safety flagging for the coring crew and equipment. The exceptions were field cores taken and furnished by Districts 18 and 11 from the IH 35 and US 59 roadways.

Table 23 provides Pavement Rating Score, PRS, values and rut depth data for each of the roadway sites studied. In the instances of the IH 35 and US 59 (Data Code Numbers 32 and 40) sites, estimates of 12 mm (millimeters) were given for the rutting distress, which was not measured by TTI on the sites of coring. (Some measurements were actually made by one author on IH 35 in April 1982 during an effort to find a non-rutted spot and averages of those measurements at eight locations ranged from 0 to 13 mm). Finally, two different paving layers were tested in cores taken at each of three different locations as indicated by "Same" for Data Code Numbers 42, 46 and 48.

Table 23A lists the seven different asphalt cements used in the seven subsections at both the US 82 and US 287 roadway sections. Given in this table are the order of the asphalt cements used in building the subsections, the Data Code Number and the Table Number. As noted in this table, Data Code Numbers 1 and 15 signify the same roadway subsection on US 82, with Code Number 1 representing field laboratory prepared specimens tested and shown in Table 1A and Code Number 15 denoting field cores tested and shown in Table 3A.

Laboratory Data

Tables. Laboratory data contained in Tables la through 2g (Data Code Numbers 1-14) provide results of Test Sequence I laboratory testing work on both US 82 and US 287 field laboratory molded samples. These samples were molded in a gyratory shear compactor at the hot-mix plants in June and September, 1982, respectively. Although the asphalt cement source varied from one subsection to another, as shown in Table 23A, the aggregate mix proportions and grading designs and design asphalt content remained the same for each subsection of each of these two roadways, thus making the difference in asphalt cement source the only apparent difference from subsection to subsection for each roadway.

Laboratory data contained in Tables 3A through 4G (Data Code Numbers 15-28) are for test results on cores obtained from the US 82 and US 287 roadways around the first of June, 1983. Since these were cores, Laboratory Sequence II was used as a general testing plan.

Tables 5 through 21A (Data Code Numbers 29-48) represent data results for 17 different pavement sections that the districts submitted as "poorly" or "well" performing pavements. In all instances, these pavements had SDHPT Item 340 surface layers, and in most instances, the next underlying pavement layer consisted of Item 292 (black base) material. As will be evident in some extracted aggregate grading curves, several Item 292 layers were also evaluated, as it was thought possible these might be influencing the surface rutting distress manifestation.

The roadway cores reported on in Tables 5 through 21 were tested under Laboratory Test Sequence II shown in Figure 2. For the bulk of the testing, this test plan was adhered to, but the 18-cycle Lottman water damage testing was dropped after about half of the total testing effort because of its time and cost. Also, the 7-day soak water damage test was used somewhat inconsistently. However, the 24-hour Lottman water damage test was used on most of the roadway section cores and provided the most consistently used water susceptibility test.

For ease of comparison, data from Tables 12 through 21 are presented in Tables 24 through 28. This allows quicker comparison of how the materials from each of the sections compare with each other. For instance, Table 24 draws together most of the properties of the extracted asphalt (Data Code Numbers 1 through 48). Table 25 gathers resilient

modulus M_R data; Table 26, indirect tension; Table 27, Hveem stability and Table 28, Marshall stability and flow.

Table 30 contains results of Texas Freeze-Thaw Pedestal water damage testing on aggregates and asphalts representing the joint 285/287 study effort on US 287, Data Code Numbers 8 through 14. Information on how this test is run may be found in reference 3. The Texas Pedestal test is shown to be run in Laboratory Sequence I. Although also shown to be performed in this sequence, at the time of writing of this report, the creep tests have not been run, so no data is available in Study 285 on creep.

<u>Grading Curves</u>. Figure 3 through 33 are gradation curves of aggregates obtained from extractions of asphalts from laboratory or core specimens as called for in leg I of the testing sequences. The heavy, solid line in each figure represents the actual gradation figured on a weight basis. The lighter, dashed line represents the continuously graded curve specified by the American Society for Testing and Materials (ASTM) (4) as conforming to a dense grading for three-eighths-inch (9.5 mm) nominal sized material. Certain characteristics from the grading curves are summarized in Table 29. These include the following: (1) weight percent retained on the No. 10 (2.00 mm) sieve, (2) percent passing the No. 200 (75 μ m) sieve, (3) the percent hump above the No. 30 (600 μ m) sieve, and (4) the percent of material retained between the No. 10 and No. 40 (2.00 mm to 425 μ m) sieves.

Records Data. Five tables, from Table 31, Part I, through Table 33 are intended to contain summarized data obtained from SDHPT records and files for the roadway sections included in this hot-mix pavement stability performance versus laboratory test results study. Table 31 contains data about the date of placement of the Item 340 layer tested, the layer age in years and the accumulated traffic per lane. This table also gives percent trucks and accumulated 18-kip single axle load information.

Table 32, part IIA, contains data on apshalt source and grade, SDHPT design asphalt content and extracted asphalt content and TTI extracted asphalt content. Also included are SDHPT laboratory density values and any SDHPT field densities from the placed and compacted materials.

Table 32, Part IIB, contains Hveem stability data and a place for

any Marshall stability tests that may have been run. One column is provided for an overall average project Hveem value, another is provided for a Hveem value representative of the place on the roadway cored and the third column is provided for the Hveem value at the design asphalt content. The final column as noted above is provided for any Marshall stabilities that may have been run during design or construction to evaluate the paving mixture.

Table 32, Part IIC, contains data about the type of hot-mix plant used, the breakdown rolling employed and temperatures used in the plant and on the road. This table also lists the thickness of hot-mix placed and the weather at laydown for the pavement site cored.

Table 33 covers the SDHPT extraction test results on aggregate gradations and compares them with the design or expected values. This includes the amount retained in the No. 10 (2.00 mm) sieve and the amount passing the No. 200 (75 μ m) sieve.

DISCUSSION OF DATA RESULTS

Ranking Tables

In Tables 34 through 40, different properties and test results are shown for pavement sections represented by Data Code Numbers 29 through 48 which are ranked in descending order of rut depths. Since rut depths give an approximate indication of pavement stability under loading, this ranking was believed appropriate. Pavement subsections from US 82 and US 287 (Data Code Numbers 1-28) are not listed in these tables because these had not exhibited or had measurable rut depths noted as of June 1983, as indicated in Table 23. Some subsections of US 287, particularly Data Code Numbers 15 and 17, have had significant distress, but this has not been of the rutting or shoving type. Rather, this distress has been one of the raveling and shelling out, leading to some bad pot holes in certain areas.

<u>Table 34</u>. This table compares properties of extracted asphalts for pavement sections Data Code Numbers 29 through 48 listed in order of decreasing rut depths. If averages of asphalt properties of the top ten Data Code Numbers are compared with those of the bottom nine Data Code Numbers, the top ten pavement sections are seen to have somewhat softer

extracted asphalts for every property listed. For instance, average viscosity at 140^{0} F for the top ten (excluding Data Code Number 32) is found to be approximately 4210 poise, whereas that for the bottom nine (excluding Data Code Number 42) is found to be about 6960 poise. Similarly, penetration at 77^{0} C for the top ten numbers averages about 44 whereas that for the bottom nine averages 36. Ring and ball temperature results show an average of about 130^{0} F for the top 10 numbers or sections and an average of 137^{0} F for the bottom nine numbers.

Even with excepting the two high viscosity values at 140°F for Data Code Numbers 32 and 42, the data for the bottom nine pavement sections in all cases are more variable than that for the top ten sections. This may be caused by a number of reasons. One probably is that ages of the pavement sections is not considered here. Another would be that the type of plant used to manufacture the hot-mix is not taken into account. Finally, the actual grade of asphalt cement originally used has not been entered into the consideration, either.

It is further noted that the average asphalt viscosity value at 140° F for the top ten sections for rutting approximates an AC-20 that has hardened to about twice its original viscosity after going through, say, a weigh-batch plant. This average for an AC-20 indicates possibly that these asphalts have hardened little from hot-mix production through service life. Also, this could indicate contamination of the asphalts with softer materials. Another indication may be the use of asphalts softer than the service requirements. Finally, this low average may indicate the use of lower viscosity asphalt cements in drum-dryer plants with little or no hardening taking place during production, to the possible detriment of the service performance of the pavements.

<u>Table 35</u>. This table illustrates average air voids and $\rm M_R$ data at different temperatures for the pavements represented by Data Code Numbers 29 through 48. Pavements are ranked in order of descending rut depths.

In the air voids column, it is noted that from Data Code Numbers 44 through 29, representing the more rutted pavements, air voids range from 1.0 to 3.4 and from 7.1 to 11.2 percent. Therefore, the more rutted pavements are represented by air voids below about three and one-half percent and above seven percent for this limited number of pavements. The average air void content for the top ten rutted pave-

ments is 3.6, and excluding Data Code Numbers 40 and 48, 2.2 percent. The average air void for the bottom ten, Code Numbers 41 through 37, is 4.9 percent. So the better performing pavements on the average are in an air voids state near five percent, and the poorer performing below three percent, if the two high values noted above are not included.

Comparing averages for the 10 higher rutted pavements (code Numbers 44 through 29) versus those for the 10 lower (Code Numbers 41 through 37) for resilient modulus, $\rm M_R$, values taken at four different temperatures shows some important trends. Firstly, average $\rm M_R$ values for the 10 higher rutted sections at $-13^{\rm O}\rm F$ and $33^{\rm O}\rm F$ average 2.917 and 1.832 x $10^{\rm 6}$ psi versus 2.223 and 1.557 x $10^{\rm 6}$ psi*, respectively for the 10 lower rutted sections. At $77^{\rm O}\rm F$ and $104^{\rm O}\rm F$, the deeper rutted sections have average $\rm M_R$ averages of 0.390 and 0.140 x $10^{\rm 6}$ psi versus 0.526 and 0.134 x $10^{\rm 6}$ psi for the lower rutted sections, respectively. Excluding Data Code Numbers 32 $\rm M_R$ at $104^{\rm O}\rm F$, the average of the nine more rutted sections would be 0.067 x $10^{\rm 6}$ psi at $104^{\rm O}\rm F$, or about one-half of the less rutted pavements' average.

Based on the above, the 10 more rutted sections appear to have higher $\rm M_R$ dynamic strengths at the lower temperatures and lower strengths at the higher temperatures and lower strengths at the higher temperatures than the nine less rutted pavements. Thus, the core specimens from the more rutted sections show a larger average loss in $\rm M_R$ dynamic strength with increasing temperatures. At the temperatures nearer actual service temperatures, 77 and $104^{\rm O}F$ (25 and $40^{\rm O}C$), the less rutted pavement sections show $\rm M_R$ dynamic strengths approximately twice those of the more rutted pavements, excluding Data Code Number 32 $\rm M_R$ values at both temperatures. These values are 0.526 and 0.140 x 10^6 psi, respectively for the less rutted pavements versus 0.292 and 0.067 x 10^6 psi for the more rutted pavements.

Table 36. This table was formed by taking the differences between the M_{R} values at different temperatures in Table 35. Taking averages of these groups of differences for the more rutted pavements represented by Data Code Numbers 44 through 29 and comparing these with averages for the less rutted pavements, Data Code Numbers 41 through 37, again shows differences between the two groups of pavements. This is the case for every difference group.

*Note: 10^6 psi is equal to 6.895 x 10^6 pascals (Pa).

For instance, for the difference between ${\rm M_R}$ at ${\rm -13^OF}$ to ${\rm 33^OF}$, the average difference for Data Code Numbers 44 through 29, is ${\rm 1.084} \times {\rm 10^6}$ psi and the average for Data Code Numbers 41 through 37 is ${\rm 0.666} \times {\rm 10^6}$ psi. In every instance except for one the average difference between specified adjacent temperatures is higher for the more rutted pavements.

An interpretation is that the more rutted pavement sections have aggregate-binder systems that are much more temperature susceptible than those of the less rutted pavement sections. Thus, the $\rm M_R$ -temperature curve is steeper for the more rutted materials. For the exception between $77^{\rm O}\rm F$ and $104^{\rm O}\rm F$, the average $\rm M_R$ strength at $104^{\rm O}\rm F$ was previously rated higher by a factor of two for the less rutted pavements. Thus, since the difference is also higher for the less rutted pavements, the $\rm M_R$ value at $77^{\rm O}\rm F$ is also higher on the average, therefore, indicating greater pavement strengths at service temperatures.

Table 37. Taken from this table, the average value for dry tensile strength for the more rutted pavements, Data Code Numbers 44 through 29, is found to be 145 psi, this is compared with an average value of 173 psi for the less rutted sections, Data Code Numbers 41 through 37. Both average values are adequate compared with 125 psi which is often used as a level of hot-mix tensile strength indicating potentially good performance. It is questioned whether these tensile values in most of the pavements were originally as high as now found, especially for the more rutted pavement sections, or whether these results are largely the products increased density and asphalt hardening.

A second comparison that is made from this table is that the tensile strength after 24-hour Lottman testing $(\underline{1})$. The average for the more rutted pavement sections was 99 psi, and that for the less rutted sections was 94 psi. Going from dry to wet tensile strengths, the more rutted pavements actually show a higher retained strength ratio of 99/145 or 68 percent versus 94/173 or 54 percent. A possible explanation for this is that the more rutted pavements cores have lower voids on the average and thus are probably more water tight and less water susceptibile than the less rutted pavements.

There is not enough data from the tensile strength testing after the 18-cycle Lottman to make good comparisons. This is an example where some testing was discontinued because of time and cost.

Table 38. This table compares Hveem stability results for the more rutted pavements versus stability values for the less rutted pavements. the average Hveem for the more rutted represented by Data Code Numbers 44 through 29 is 35.6 percent compared with 31.7 percent for those less rutted of Data Code Numbers 41 through 37. This represents little actual difference in Hveem values, and the fact that the higher Hveem average is associated with the more rutted pavements is probably not significant.

Average Hveem stabilities after the 24-hour Lottman test turn out approximately equal for the two groups of pavements. The average Hveem for the more rutted pavements is 27.0, whereas that for the less rutted is 27.7. Again, no great difference is shown.

Tables 39 & 39A. These tables present average Marshall stability and flow values which may be compared between the more rutted pavements group and the less rutted pavements group. The average dry Marshall for the more rutted pavement sections is found to be 1659 lbs*. This is compared with 2432 lbs making for a much higher average for the less rutted group.

The average Marshall stability after 24-hour Lottman testing for the more rutted group is 1527 lbs. This is compared with a slightly higher average of 1698 lbs for the less rutted pavements.

Overall, the dry Marshall values shown in Table 39 prior to water damage testing are, with one exception, high compared to the Marshall minimum design criteria for the "heavy" traffic category requirement of 750 lbs ($\underline{5}$). Even after 24-hour Lottman water testing, Marshall stability values are still very high even for the more rutted sections, and most exceed the minimum design criteria listed above.

The Marshall flow values for the more rutted pavements, Data Code Numbers 44 through 29, have an average of 10.1 which is almost identical to that for the less rutted pavements, Numbers 41 through 37, of 10.3. Even after 24-hour Lottman water testing, the averages are still almost the same at 14.2 and 14.4, respectively.

*Note: 1 1b = 0.454 kg.

<u>Table 40</u>. This table is a condensation of certain data from Figures 14 through 33, the aggregate grading curves representing pavements of consecutive Data Code Numbers 29 through 48. Averages of values for the more rutted pavements can again be compared with those for the less rutted pavements.

Taking the percent retained on the No. 10 (2.00 mm) sieve, the more rutted pavements, Data Code Numbers 44 through 29, show an average of 53.9 percent, and the less rutted, 60.1 percent. For the percent passing the No. 200 (75 m) sieve, the averages are 4.5 for the more rutted and 4.9 for the less rutted, thus showing little difference.

For the percent hump of the aggregate grading curve above No. 30 sieve of the ASTM curve, the average for the less rutted is 6.9, or about half that of the rutted pavements. Concerning the percent retained between the No. 10 and 40 sieves, the average for the more rutted is slightly higher at 14.1 percent versus 11.4 percent for the less rutted pavements.

It is noted that the six least rutted pavements, Data Code Numbers 39 through 37 at the bottom of the table, have only a two percent average hump above the No. 30 sieve of the continuous grading curve. Above Data Code Number 39 in Table 40, the percents of hump above the No. 30 sieve are much larger. However, age of pavement, total accumulated traffic and accumulated truck loading are not considered in making the above comparison.

Data Result Curves and Figures

The data for this segment of the study consist of those for the extracted aggregate gradation analyses from the first leg of the testing sequences and the data expressed for the results of resilient modulus, M_R , indirect tension, Hveem and Marshall testing in the test sequences. The extracted aggregate grading curves are shown in Figures 3 through 33. The results of the data from the M_R etc. testing is presented in Figures 34 through 53.

<u>Extracted Aggregate Gradation Curves</u>. Figures 3 through 13 are grading curves for most of the subsections on US 82 and US 287 as

represented by Data Code Numbers 15 through 28. As noted in these curves, the results of the sieve analyses on the extracted aggregates are shown in the solid, dark lines. These results are compared with the ASTM three-eighths-inch (9.5 mm) nominal sized continuous grading curve which represents a dense grading design.

As indicated in Figures 3 through 13, two general characteristics stand out about each of these grading curves. One is that each approximates the shape of the dense grading curve. The other is that each of the grading curves from US 82 and US 287 plots to the right and below the ASTM continuous grading curve. According to Hveem $(\underline{6})$, by their aggregate gradations plotting as these do, the US 82 and US 287 hotmixes represent those mixtures that will not tend to become "...readily unstable with slight excess of asphalt or water".

Also, there are no humps at the No. 30 sieve from excessive amounts of fine aggregate. According to Goode and Lufsey(7), the higher the hump at the No. 30 sieve the higher the potential for the bituminous mixture to have stability problems. These authors stated that "Such mixtures have an excess of sand in relation to total sand. This excess of sand not only produces lower compacted densities but tends to float the larger particles and destroy stability that might otherwise result from coarse aggregate interlock. In addition, fine sand is inherently less stable than coarse sand" (7).

Figures 14 through 33 are grading curve results for pavement sections represented by Data Code Numbers 29 through 48 in consecutive order. There is one general trend for these figures, and that is for most of the extracted grading curves to plot to the right of the ASTM continuous curve in the coarse aggregate range and then to plot above the ASTM curve for all or parts of the fine aggregate range. This tendency is partly in response to SDHPT Item 340 specification requirements. As a result of this tendency many of the grading curves do show an excess of No. 30 sieve size material resulting in a "hump" in this part of the grading curve.

The closest extracted aggregate grading to the ASTM continuous grading is the curve for the US 90A aggregates shown in Figure 22. This pavement section happens to be the best from a rutting standpoint, with a zero average rut depth having been measured in the area where

the pavement cores were taken. Other pavement sections whose curves approximately approach the ASTM continuous grading include Data Code Numbers 31, 32, and 38; however, the latter two of these pavement sections are among those most rutted. It is still probably that the gradations of these three roadway sections may have served to retard the onset of rutting, and that possibly other factors overwhelmed the beneficial grading curves, such as stripping below the Item 340 layer, excess asphalt originally placed in the mix, or the use of too soft an asphalt.

Another feature about the grading curves is their tendency to have less material pass the No. 200 sieve as compared with the ASTM continuous grading curve. One group of exceptions are Data Code Numbers 31, 37, and 39 which have ASTM proposed amounts of material passing the No. 200 sieve and are good performing pavements. A second group of exceptions are poorly performing consecutive Data Code Numbers 44 through 48 which also show the ASTM proposed amount of material passing the No. 200 sieve. Except for Data Code Number 44, these grading curves also show large humps above the No. 30 sieve.

Hveem Stability. Hveem stability results for US 82 and US 287 Data Code Numbers 1 through 28 are shown in Figures 34 and 35. In Figure 34, the overall averages of all Hveem values before water susceptibility testing are plotted versus percent air voids, and Figure 35 is a plot of Hveem stability versus air voids after the 24-hour Lottman test for water damage. Thus, the plots are for both laboratory prepared specimens and field cores.

As shown in Figure 34, the trend is for Hveem stability to decline with increasing air voids above nine percent. Another trend is for the values for the US 287 Data Code Numbers to remain above those of the US 82 Data Code Numbers. From laboratory specimens to field cores, the stability values are seen to drop from 10 to 15 percent.

Figure 35 shows that water has affected the stabilities, lowering nearly all of the values, especially those for the US 287 Data Code Numbers. The laboratory molded specimens for Data Code Numbers 8-14 have dramatically dropped; with the exception of these, the trend for decreasing stabilities with air voids is still seen as in Figure 34.

Figures 36 and 37 indicate results of Hveem stability testing for

roadways with Data Code Numbers from 5 to 48. Figure 36 plots overall Hveem averages versus air voids whereas Figure 37 plots Hveem values tested in leg II of the test sequences.

As shown in Figure 35, the trend is for dry Hveem values to increase with increasing air voids. On the surface, this would seem the reverse of the situation in Figure 34. It should be noted, however, that the air voids in Figure 36 range from 1 to 7, and in Figure 34 from 4 to 14. It is believed that the increase in Hveem stability with air voids shown in Figure 36 represents the decreasing effect of the binder upon stability occurring up to air void contents still low enough where the sectional strengths of the cores have not been significantly reduced by increased air space. In Figure 34, it is believed that the air contents are present in magnitudes where the sectional strength has been reduced.

Figure 37 represents Hveem stability values that have declined in general from Figure 36 after 24-hour Lottman water testing for Data Code Number 5 to 48 roadway section cores. The trend is still for Hveem stability to increase with increasing air voids, again probably showing the decreasing influence of binder with increasing air voids that are high enough to markedly reduce core strength.

<u>Marshall Stability</u>. Marshall stability results versus air void contents for US 82 and US 287 are presented in Figure 38. For various reasons, very few tests were run on these subsection samples after the 24-hour Lottman water damage test as shown in Table 28. Therefore, no figure was prepared for this testing.

As shown in Figure 38, there is a general trend for Marshall stabilities to decline with increasing air voids. This decline is approximately 600 lbs (272 kg) going from six to fourteen percent air voids. As would be expected, the laboratory molded samples for Data Code Numbers 1 through 14 plot the highest at approximately six percent air voids and the field cores plot the lowest at the higher air void content.

Figures 39 and 40 are plots of dry and after 24-hour Lottman water test Marshall stability results for Data Code Numbers 29 through 48.

Figure 39 shows little if any correlation between Marshall stability and air voids in a dry state for these roadway cores. The trend is for Marshall stability to remain almost level from one to seven percent air voids, indicating that both binder amounts and reduction of specimen section due to voids are not influencing the Marshall test results. In Figure 40, the Marshall stability results appear to have been affected by the 24-hour Lottman test, with a general trend for decreasing stabilities with increasing air voids.

Resilient Modulus, M_R . Graphical results of resilient modulus testing for roadway sections represented by Data Code Numbers 1-28 are shown in Figures 41 through 43. Results for roadways with Code Numbers 29 through 48 are shown in Figures 44 through 47.

Figure 41 for results of overall $\rm M_R$ testing on the US 82 and US 287 laboratory compacted and roadway core specimens shows a fairly strong trend for $\rm M_R$ values to decline rapidly with increasing air voids. As shown in this figure, three test samples had very low values at approximately 14 percent voids. Figure 42 reveals that many of the selected samples of the above specimens when subjected to 24-hour Lottman water damage testing suffered dramatic losses of $\rm M_R$ dynamic modulus beginning at approximately seven percent air voids. Other samples selected from the dry $\rm M_R$ testing again show a drastic loss in strength, especially above eight percent air voids, when subjected to the 18-cycle Lottman testing shown in Figure 43. As indicated in the above figures, the breaking point for severe loss of strength appears to be around six to seven percent air voids.

Figure 44 shows overall dry $\rm M_R$ test results on Data Code Numbers 29 through 48 roadway sections. In this figure, all pavement sections with $\rm M_R$ values (at $77^{\rm O}$ F) less than 0.4 x $10^{\rm 6}$ psi (2.8 x $10^{\rm 9}$ pascals) were among those with the highest rut depths. It is noted that cores from these either had measured air voids less than three or greater than seven percent. Data Code Number 40 with 11.2 percent voids and a $\rm M_R$ value of 0.094 x $10^{\rm 6}$ psi (0.6 x $10^{\rm 9}$ pascals) is not shown because of being off the figure scale. Also noted on this figure is the tendency for the peak $\rm M_R$ strengths to occur at between three and four percent air voids in these pavement cores.

Figure 45 illustrates that the 24-hour Lottman water testing dropped the $\rm M_R$ strengths of all specimens having dry $\rm M_R$ values greater than 0.4 x 10^6 psi. Interestingly, the $\rm M_R$ values of those specimens with air voids less than three percent and dry $\rm M_R$'s less than 0.4 x 10^6 psi actually showed an increase. It is believed that water surface tension may be acting here. Also noted in Figure 45 is a light trend for $\rm M_R$ values to decrease with increasing air voids. Somewhat of a peak in the values is noted at from two to four percent air voids.

Figure 46 reveals that 18-cycle Lottman testing generally drops the $\rm M_R$ values from the dry state. Trends are hard to see in this figure. Again, those specimens with low airvoids either gained slightly or were little affected in $\rm M_R$ strength, echoing the trend from Figure 45.

Figure 47 shows the results of $\rm M_R$ testing on Data Code Numbers 29 through 48 samples at $104^{\rm O}F$ ($40^{\rm O}C$), which temperature is close to road service termperature from a stability standpoint. As noted in this figure, there appears to be an $\rm M_R$ strength peak from four to six percent pavement air voids at this higher temperature. The pavements with the highest rut depths either fell below three percent in air voids or below a $\rm M_R$ value of 0.05 x 10^6 psi (0.3 x 10^9 pascals) at air voids above seven percent.

Indirect Tensile Strength. Figures 48 through 50 give results of indirect tensile testing of US 82 and US 287 laboratory specimens and cores. Figures 51 through 53 show the results of this testing on roadway cores obtained for Data Code Numbers 29 through 48.

Figure 48 for dry indirect tension testing on the Dickens and Dumas laboratory and field core specimens shows a definite, strong decline in indirect tensile strength with increasing air voids. Tensile strength appears to be heading up, even at four percent air voids, leaving the conclusion that the peak is yet to be reached at a lower air void content.

Figures 49 and 50 show considerable decreases in splitting tensile strengths after Lottman water testing for most specimens. This decrease is accelerated for increasing void contents especially above

eight percent. The 18-cycle Lottman appears to be somewhat more severe than the 24-hour Lottman test in reducing strengths.

Figure 51 illustrates the results of indirect tensile testing on the dry pavement cores showing that there is a peak in the values around air voids contents of three to five percent. It is significant to note that with the exception of the one tensile strength reading at 2.4 percent air voids, all the pavement sections with three percent or less air voids fall within the group of pavements found to have rutted the most within this study. This one exception is that of Data Code Numbers 39.

Figure 52 illustrates the effects of 24-hour Lottman water testing on the indirect tensile strengths of the dry samples from Figure 51. There is now more of a downward trend in tensile strength running from one to seven percent air voids and much less indication of any peak around three to four percent air voids. Also to be noted is how low air voids specimens have declined very little in tensile strength and have actually risen relative to those specimens having above three percent air voids. Here again, the effects of water tension forces may be acting in the reduced voids of these samples.

Figure 53 is comprised of a mixture of 7-day soaked and 18-cycle Lottman tested samples. There is a lot of scatter in this figure and trends are not readily apparent. Most of the samples retained respectable strength levels above 120 psi.

CONCLUSIONS

Some general conclusions may be drawn concerning the pavement sections that have suffered greater rutting than the well performing pavements. These are as follows:

- 1. On the average, the extracted asphalts for the more rutted pavements were found to be considerably softer than those for the less rutted pavements.
- 2. The rutted pavements, with two exceptions, are pavements with lower percent air voids, from about 3.4 percent down to 1.0 percent. The two exceptions have air voids above seven percent. It seems probably that the rutted pavements represent

- those whose air voids have become excessively filled with asphalt binder for one or more reasons.
- 3. The more rutted pavements have aggregate-asphalt systems that are, on the average, considerably more temperature susceptible, or have steeper, $\rm M_R$ versus temperature curves. These pavements on the average show considerably smaller $\rm M_R$ values at both 77°F (25°C) and 104°F (40°C), 0.292 and 0.067 x 10° psi versus 0.526 and 0.140 x 10° psi, which temperatures more closely approximate the service range of temperatures where as much strength as possible is needed to reduce plastic deformation.
- 4. Indirect tensile strengths before water soaking tend to be lower for the more rutted pavements but are still at or above normally accepted values. The average for the more rutted is 145 psi versus 173 psi for the less rutted.
- 5. There is little or no difference between Hveem values for the more rutted pavements and those of pavements in the less rutted group. Hveem stability appears to be no indication at all of rutting as found in this study.
- 6. Marshall stability values for the more rutted pavements are found to average about 32 percent less than those for the less rutted pavements. After Lottman water soaking, there is little difference between the two average values.
- 7. The more rutted pavements tend to have grading curves with the higher humps above the No. 30 sieve (600 μ m) of the ASTM continuous grading curve.

REFERENCES

- 1. Cook, O.C., Button, J.W., Epps, J.A. and Gallaway, B.M., "Texas Transportation Institute Laboratory Standard Testing Procedures," Texas Transportation Institute, Texas A&M University, College Station, Texas, April, 1981.
- 2. Kennedy, T.W., Roberts, F.L., and Lee, K.W., "Texas Freeze-Thaw Pedestal Test for Evaluating Moisture Susceptibility for Asphalt Mixtures," Research Report No. 253-3, Center for Transportation Research, The University of Texas, Austin, Texas, 1981.
- 3. Epps, J.A., Meyer, A.H., Larrimore, I.E., Jr., and Jones, H.L., "Roadway Maintenance Evaluation Users Manual," Research Report 151-2, Texas Transportation Institute, Texas A&M University, College Station, Texas, September, 1974.
- 4. _____, "Standard Specifications for Hot-Mixed, Hot-Laid Bitum-inous Paving Mixtures," ASTM Designation: D 3515-81, 1982 Annual Book of ASTM Standards, Part 15, American Society for Testing and Materials, Philadelphia, Pennsylvania, 1982.
- 5. _____, Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types, Manual Series No. 2 (MS-2), The Asphalt Institute, College Park, Maryland, March, 1979.
- 6. Hveem, F.N., "Gradation of Mineral Aggregates for Dense Graded Bituminous Mixtures," Proceedings of the Association of Asphalt Paving Technologists, Volume 11, Chicago, Illinois, January, 1940.
- 7. Goode, J.F., and Lufsey, L.A., "A New Graphical Chart for Evaluating Aggregate Gradations," Proceedings of the Association of Asphalt Paving Technologists, Volume 31, New Orleans, Louisiana, January, 1962.

SELECTED REFERENCES

- 1. Button, J.W., Epps, J.A., Little, D.N. and Gallaway, B.M., "Influence of Asphalt Temperature Susceptibility on Pavement Construction & Performance," unpublished Final Report & Supplement to Final Report, Project 1-20, prepared for the National Cooperative Highway Research Program, Transportation Research Board, National Research Council, Washington, D.C., November, 1983.
- 2. ______, Texas State Department of Highways and Public Trans-portation 1982 Standard Specifications for Construction of Highways, Streets and Bridges, State Department of Highways and Public Transportation, adopted by the Department, September 1, 1982.
- 3. _____, Manual of Testing Procedures, 200-F Series, Bituminous Section, State Department of Highways and Public Transportation, revision published by the Department, January, 1978.

Table la. Test Sequence I results for Item 340 Type "D" HMAC using Mac%illan AC-20, U.S. 82, Dickens, Texas.

	-	Bulk Specific	ic M _R Marshall Test		shall Test	Percent	Penetrati	ors, dum	Viscosi	ty, poises	Ring and Ball Softening
Phjase	Samp1c	Gravity	.77°E x 10 ⁶	Stability (1	bs) Flow (0.01 i		39.2°F	.77°F	.77°F 1	40°Γ 2/5°Γ	Point, "f
1	2-2	2.263	0.479	1614	17.5						
	2-14	2.239	0.363	1533	16	5.7	20	38	7 x 10 ⁶ 11	,250 8.3	138
	2-15	2.279	0.378	<u>15</u> 13	21						
	Λvg.	2.260	0.407	155 3	18						
27											
•				Hveem Stabili	ty	Hveem Stability	/* Marshal	l Test*			
				Percent'	M _R *(0	Percent	Stabilit		•	lting Tensile Test	@ 77°Г*
	•			(UNC) (TI	υ) 77°F x 10 ⁶ ps	i (UNC) (TIID	pounds	0.01 in	Stress (psi) <u>Strain (in/in)</u>	Modulus (psi)
11	2-3	2.280	0.474	43.9 37.	8 0.419	34.1 28.0	1,716	23			
	2-7	2.253	0.331	46.5 40.	8 0.269	33.6 27.9	994	25			
	2-8	2.263	0.319	48.3 42.	5 0.280	33.1 27.3	1,065	22			
	2-9	2.265	0.375	48.1 42.	2 0.273	31.8 25.9)		75	.00412	18,186.2
	2-10	2.269	0.343	38.0 31.	9 0.276	28.8 22.6	ı		71	. 00442	16,160.6
	2-17	2.267	0.349	43.2 37.	6 0°. 300	<u>28.9</u> <u>23.2</u>			<u> 14</u>	.00383	19,440.4
	۸vg.	2.266	0.365	45.0 39.	0 0.303	32.0 26.0	1,260	23	73	. 00412	17,929.1

Table la (continued) Test Sequence I results for Item 340 Type "D" HMAC using MacMillan AC-20, U.S. 82, Dickens, Texas.

gertig on an addressor in his on an		Bulk Specific	M _R @		tability cent	M _R ** 0	llveem Stal Perce	-	Marshall Stability			Splitting	y Tensile Test	@ 77°F**
<u>l'hase</u>	<u>Sample</u>	Gravity	77°F x 10 ⁶	(UNC)	(TIID)	77°F x 10 ⁶ ps	(UNC)	(THD)		0.01 in	Stress	(psi) S	Strain (in/in)	Modulus (psi)
											•			
tii	1-2	2.290	0.316	49.9	44.1	0.020	30.4	24.6			59.0)	0.00383	15,393.2
	2-4	2.289	0.348	41.7	35.3	0.177	39.6	33.3			103.8	3	0.00472.	22,016.0
	2-5	2.280	0.328	46.9	40.8	0.081	41.3	35.3			99.1		0.00560	17,693.5
	2-11	2.256	0.368	55.7	49.9	0.205	44.2	38.4			106.1	l	0.00413	25,715.9
	2-12	2.254	0.331	49.9	44.0	0.076	33.9	28.1			78.8	}	0.00678	11,617.9
	2-13	2.251	0.438	5 <u>2, 9</u>	47.4	0.236	<u>50.2</u>	44.7			<u> 105.</u> 6	<u>i</u>	0.00413	25,602.14
28	Avg.	2.270	0.355	50.0	44.0	0.133	40.0	34.0			92.1		0.00487	19,673.1
					M _R x 10 ⁶	ps i	Sp1 i	itting Te	nsile Test	@ 77°F		Rice Specific	Percent Air	
				-13°F	33°F	68°F 104°F	Stress (psi)	Strai	n (in/in)	Modulus	<u>(ps1)</u>	Gravity		
			•											
IV	2-1	2.254	0.398	1.410	1.337	0.539 0.099	101.7	0.	00354	2874)	2.404	6.2	
	2-6	2.272	0.344	1, 935	1.214	0.610 0.094	101.5	0.	00304	3344	3	2.404	5.5	
	2-16	2.268	<u>0.366</u>	<u>2.279</u>	0.966	0.577 0.107	102.3	<u>0.</u>	00316	3242	€	2.404	 57 .	
	Avg.	2.265	0.369	1.875	1.172	0.575 0.100	101.8	0.	00325	31540)	2.404	5.8	

^{*} Denotes test results after (24-hour) Lotiman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

 $[\]mathbf{M}_{\mathbf{R}}$ - Resilient Modulus

R.S.G. - Rice Specific Gravity

Table 1b. Test Sequence I results for Item 340 Type "D" HMAC Dorchester AC-20, U.S. 82, Dickens, Texas.

Phase	Sample	Bulk Specific Gravity	M _R @' 77°F x 10 ⁶	Marshal Stability (1bs)		Percent) Asphalt	Penetration, dm 39.2°F 77°F	_	, porses	Ring and Ball Softening Point, "F
1	4-1	2.277	. 560	1904	15			_		
	4-4	2.264	. 769	2307	17	5.65	21 32	1.4×10^6 113	355 8.737	144
	4-5	2.271	. 463	2006	16					•
	4-11	2.261	. 435	* Makes * Malayan man	a * Seen					
29	Avg.	2.268	.557	2072	16					
9				Hveem Stability Percent (UNC) (THD)	M _R * @ 77°F x 10 ⁶ psi	Hveem Stability* Percent (UNC) (THD)	Marshall Test Stability Fl pounds 0.0	Calife	ing Tensile Test Strain (in/in)	
11	4-7	2.272	.618	46.5 40.6	. 490	42.1 36.2	1725 21	l		
	4-8	2.264	.545	49.1 43.0	.509	39.7 33.6		122.7	.00324	37839.8
	4-13	2.268	. 460	41.8 35.8	. 440	38.1 32.1	1555 22	?		
	4-14	2.280	. 434	46.2 39.8	, 393	34.7 28.3	1397 22	2		
	4-15	2.276	.423	46.8 40.8	. 465	35.7 29.6		106.9	. 00501	21346.4
	4-16	2.259	. 109	46.2 40.0	. 387	<u>34.5</u> <u>28.7</u>	distribution of the designation	106.3	.00422	24037.2
	Avg.	2.270	. 482	46.0 40.0	. 447	38.0 31.0	1559 22	112.0	.00422	27741.0

Table 1b. (continued) Test Sequence I results for Item 340 Type "D" HMAC Dorchester AC-20, U.S. Dickens, Texas.

		Bulk Specific	M _R @	Hveem S	tability cent	M _R ** @	Peri	ability** cent	Marshall Stability		Splitt	ing Tensile Test	@ 77°F**
<u>Phase</u>	<u>Sample</u>	Gravity	77°F x 10 ⁶	(UNC)	(THD)	77°F x 10 ^b ps	i (UNC)			0.01 in	Stress (psi)	Strain (in/in)	<u> Modulus (psi)</u>
111	4-3	2.226	. 608	50.6	45.5	.476	47.4	42.3	1223	35.5			
	4-10	2.289	.427	42.3	35.9	.289	23.0	16.6	1223	55.5	100.0	.00634	15785.6
	4~12	2.269	.419	43.9	37.9	.318	35.9	29.9	1 338	24.0	100.0	.00031	13703.0
	4-17	2.266	. 402	45.9	39.9	.277	29.8	23.8			106.6	.00604	17649.2
	4-18	2.272	.442	44.1	38.0	.331	34.0	27.9	1617	22.0			
	4-20	2.276	.508	46.6	40.5	.389	<u>37.9</u>	<u>31.8</u>	New York and arrang time	# Print resource of	128.9	.00501	25733.2
30	Avg.	2.266	.468	46.0	40.0	. 347	35.0	29.0	1393	27.0	112.0	. 00580	19723.0
					М _{р.} х 10 ⁶	psi	Spl	litting Te	ensile Test	@ 77°F	Rici Speci:		
				-13°F	33°F 6	58°F 104°F	Stress (psi	i) Strai	in (in/in)	Modulus			
īV	4~6	2.274	.579	3.536	1.381 .	678 .128	127.5	.0	0324	39314	.56	4.8	
•	4-9	2.283	.438	1.529	1.322 .	580 .100	109.5	.0	0354	30970	.44 2.38		
	4-19	2.270	<u>.477</u>	1,651	1.303	698 .122	127.8	<u>.0</u>	0368	34720	.98	5.0	
	Avg.	2.276	.498	2.239	1,335 .	652 .117	121.6	.0	0349	35002	.0 2.389	9 4.7	

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

 $^{^{\}star\star}$ Denotes test results after (18 cycle) Lottman moisture treatment procedure.

M_R - Resilient Modulus

Table 1c. Test Sequence I results for Item 340 Type "B" HMAC using Exxon AC-20, U.S. 82, Dickens, Texas

		Bulk Specific	M _R @	Ma	ırshall	Test	Perc	ent	Penetration	n, dam	Vis	cosity,	poises	Ring and Ball Softening
<u>Phase</u>	Sample	Gravity	77°F x 10 ⁶	Stability (lbs)_	Flow (0.01 in			39.2°F	77°F	_77°F	140°F	275°F	Point, °F
1	3-7	2,246	0.838	2,035		19								
	3-8	2.252	0.639	2,068		15	5.1	7	8	21	1.6×10^{7}	8,668	6.055	136
	3-12	2.264	0.703	1,967		<u>16</u>								
	Avg.	2.254	0.727	2,023		17								
										•				
				Hveem Stabil	ity		Hveen St	ability*	Marshall	Test*				
31				Percent		M _R * 0	Per	cent	Stability			Splittin	ng Tensile Test	@ 77°F*
				(UNC) (T	HD) 7	7 °F x 10 ⁶ psi	(UNC)	(THD)	pounds	0.01	n Stress	(ps1)	Strain (in/in)	Modulus (psi)
11	3-1	2.274	0.562	47.0 40	. 9	0.596	35.7	29.6	1,617	19				
	3-2	2.281	0.657	44.3 38	. 0	0.622	36.9	30.6			171.	3	.00442	38741.2
	3-10	2.252	0.629	43.6 38	. 1	0.660	41.5	35.9			168.	2	.00413	40773.8
	3-11	2.248	0.816	49.6 44	.0	0.698	49.9	44.3	2,238	22				
	3-14	2.266	0.609	44.1 38	. 5	0.592	37.7	32.1	1,667	19				
	3-17	2.282	0.623	44.9 38	. 4	0.622	<u>37.0</u>	<u>30.5</u>			156.	0	.00442	35296.4
	Avg.	2.267	0.649	46.0 40		0.632	40.0	34.0	1,841	20	165.		.00432	38271.0

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

 $^{{\}rm M_R}$ - Resilient Modulus

Table 1c. (continued) Test Sequence I results for Item 340 Type "D" HMAC using Exxon AC-20, U.S. 82, Dickens, Texas

same all put an income	material in manufacture y <u>and the</u> state of <u>addition</u> and	Bulk Specific	M _R @	Per	tability cent	M _R ** 0		ability** ent	Harshall Stability		Split	ting Tensile Test	.@ 77°F**
Phase	Sample	Gravity	77°F x 10 ⁶	(UNC)	(THD)	77°F x 10 ⁶ ps	i (UNC)	(THD)	pounds	0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
Ш	3-4	2.280	0.654	45.2	39.0	0.533	36.3	30.1	1,816	19			
	3-5	2.274	0.554	46.7	40.6	0.566	35.9	29.8	1,838	17			
	3-6	2.276	0.626	45.5	39.3	0.495	30.5	24.3			160.7	.00545	29467.6
	3-13	2.258	0.564	46.3	40.4								
	3-15	2.269	0.612	50.2	44.2	0.540	46.1	40.1			174.0	.00516	33742.6
	3-16	2.268	0.726	46.4	40.4	0.498	38.1	<u>32.1</u>	***		162.4	.00560	29003.0
	Avg.	2.269	0.623	47.0	41.0	0.526	37.0	31.0	1,827	18	166.0	.00540	30738.J
32													
					$M_0 \times 10^6$	psi	Sp	litting Te	nsile Test	@ 77°F	Rie Speci		
				<u>-13°F</u>	33°F 6	58°F 104°F	Stress (ps) Strai	n (in/in)	<u> Modulus</u>			
TV.	3-3	2.266	0.641	1.681	1.793 1	.045 0.124	151.9	.0	0383	39640.4	12	6.2	
	3-9	2.271	0.711	2.895	1.638 1	.045 0.149	178.2	.0	0324	54956.0	2.4		
	3~18	2.253	0.642	2,305	1,555	0.987 0.112	147.6	.0	0383_	<u> 38521,0</u>) <u>6</u>	6.7.	
	Avg.	2.263	0.665	2.294	1.662 1	.026 0.128	159.0		0363	44373.0		116 6.3	

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

 $^{{\}rm M_{
m R}}$ - Resilient Modulus

Table 1d. Test Sequence I results for Item 340 Type "D" IMAC using Shamrock AC-20, U.S. 82, Dickens, Texas.

allaharan ng serang sanga		Bulk Specific	и _R е	Marsha	11 Test	Percent	Penetration, dmm	Viscosity	, poises	Ring and Ball Softening
Phase	Sample	Gravity	$77^{\circ}F \times 10^{6}$	Stability (lbs)	Flow (0.01 in)		39.2°F 77°F	77°F 140	°F 275°F	Point, °F
1	5-4	2.261	. 528	1620	17.0					
	5-5	2.260	. 796	1606	17.5	4.91	14 29	1.84 x 10 ⁷ 956	11.028	141
	5-9	2.262	.607	1507	<u>15.5</u>					
	A v g.	2,261	. 644	1578	17.0					
33				Hycem Stability Percent	M _R * @	Hveem Stability* Percent	Marshall Test* Stability Flow	Splitting Tensile Test		t 0 77°F*
				(UNC) (TIID)	77°F x 10 ⁶ psi	(UNC) (THD)	pounds 0.01 ir	Stress (psi)	Strain (in/in	Modulus (psi)
11	5-2	2.261	. 588	42.3 36.5	. 446	37.5 31.8				
	5-3	2.274	. 524	41.6 35.5	.397	35.1 29.0		114.93	.00413	27854.66
	5-6	2.260	.656	43.7 38.1	<u>.510</u>	42.7 37.1		<u>117.49</u>	.00766	15332.6
	Avg.	2.265	. 589	43.0 37.0	.451	38.4 33.0		116.0	.00590	21594.0

Table 1d. (continued) Test Sequence I results for Item 340 Type "D" HMAC using Shamrock AC-20, U.S. 82, Dickens, Texas.

a man in a sense i seculti i	a vient a monomorphia di 1995 monomo. Hillion di 1	Bulk Specific	M _R @	llveem St Perc		M _R ** @		ability** cent	Harshall Test** Stability Flow	Splitt	Ing Tensile Test	@ 77°F**
<u>Phase</u>	Sample	Gravity	77°F x 10°	(UNC)	(ditt)	77°F x 10° psi	(UNC)	(THD)	pounds 0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
ПП	5-7	2.269	.548	43.6	37.8	.240	44.6	38.8		122.18	.00825	14806,72
	5-10	2.262	, 554	44.5	38,8	.263	44.8	39.1		129.36	.00707	18289.35
	5-12	2.268	. 440	14.4	38.6	.236	46.4	40.6		110.20	.00884	12463.71
	Avg.	2.266	.547	44.0	38.4	. 246	45.0	39.5		121.00	.00805	15187.00

3

				И _R х 10 ⁶ psi				Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
				-13°F	33°F	68°F	<u>104°F</u>	Stress (psi)	Strain (in/in)	Modulus (psi)	Gravity	Voids
17	5-1	2.259	. 435	2.557	1,675	. 766	. 103	104.0	.00825	12607.40		5.8
	5-8	2.270	, 6 36	2.376	1.964	. 783	. 159	131.5	. 005 30	24779.69	2.398	5.3
	5-13	2,266	.540	1.868	1.654	. 877	. 106	114.1	.00707	16128.07	ما داران بران الماد الله ما الله الله الله الله الله الله ا	5,5
	Avg.	2.265	, 537	2.267	1.764	. 809	. 123	117.0	.00687	17838.00	2.398	5.5

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) hottman moisture treatment procedure.

 $M_{\hat{R}}$ - Resilient Modulus

Table le. Test Sequence I results for Item 340 Type "O" HMAC using Shamrock AC-10, U.S. 82, Dickens, Texas.

		Bulk Specific	M _R @	Marsha	ıll Test	Percent	Penetration, dom	Viscosity	y, poises	Ring and Ball Softening
Phase	Sample	Gravity	77°F x 10 ⁶	Stability (lbs)	Flow (0.01 in)		39.2°F 77°F	_77°F140	O°F 275°F	Point, °F
1	5-14 5-17	2.269 2.273	.319 .375	1187 1444	14.5 14.0	5.06	21 62	1.20 x 10 ⁷ 200	0 5.934	122
	5-23	2.277	.363	1285	14.0					
	Λvg.	2.273	. 352	1305.0	14.0					
<u>ა</u>				Hveem Stability Percent	M _R * @	Ilveem Stability* Percent	Marshall Test* Stability Flow	Split	ting Tensile Test	: @ 77°F*
				(UNC) (THO)	77° x 10 ⁶ psi	(UNC) (THD)	pounds 0.01		Strain (in/in)	Modulus (psi)
п	5-16	2.269	. 372	43.6 37.6	.327	29. 9 23. 9		71.16	.01179	6036.15
	5-18	2.261	.317	42.8 37.0	.285	31.9 26.3		70.81	.01002	7066.26
	5-20	2.257	.349	44.0 38.8	.314	<u>33.7</u> <u>28.1</u>		<u>66,51</u>	.01031	6447.95
	Avg.	2.262	. 346	44.0 38.0	. 309	32.0 26.0		70.0	.01071	6517.00

Table le. (continued) Test Sequence 1 results for Item 340 Type "D" IMAC using Shamrock AC-10, U.S. 82, Dickens, Texas.

						illi.						
		Bulk Specific	ecific ^{MR e} Perce		_	M _R ** 0		ability** cent	Marshall Test** Stability Flow	Splitt	ing Tensile Test	@ 77°F**
Phase	<u>Sample</u>	Gravity	77°F x 10 ⁶	(UNC)	(1HD)	77°F x 10 ^b ps1	(UNC)	(THD)	pounds 0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
ili	5-19	2.266	. 369 ′	46.1	40.2	.251	47.3	41.4		80.7	.01267	6369,6
	5 -21	2.263	. 309	44.9	39.2	. 227	45.3	39.6		84.4	.01650	5111.8
	5 -22	2,246	<u>. 345</u>	44.9	<u>39.4</u>	.239	46.4	40.9		85. <u>9</u>	. 00884	9716.0
	Avg.	2,258	. 341	45.0	40.0	. 239	46.0	41.0		84.0	.01267	7066.0

8

				M _R x 10 ⁶ psi				Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
				- <u>13°F</u>	33°F	68°F	104°F	Stress (ps1)	Strain (in/in)	<u> Modulus (psi)</u>	Gravity	Voids
łV	5 -24	2.264	. 368	2.096	1.665	.616	.053	109.9	.01179	93 20. 12		4.5
	5 -25	2.277	. 281	2.413	1.556	.671	. 051	74.5	.00943	7900.15	2.370	3.9
	5 -26	2.274	.335	2.658	1.538	. 602	.056	<u>72.6</u>	.00884	8210.74		4.1
	Avg.	2.272	. 328	2.389	1.586	.630	.053	86.0	.01002	8477.00	2.370	4.1

 $[\]star$ Denotes test results after (24-hour) Lottman moisture treatment procedure.

 $[\]ensuremath{^{\star\star}}$ Denotes test results after (18 cycle) Lottman moisture treatment procedure.

 $M_{\tilde{R}}$ - Resilient Modulus

Table 1f. Test Sequence 1 results for Item 340 Type "D" HMAC using Cosden AC-20, U.S. 82, Dickens, Texas.

Miller maybe on the pay	***********	Bulk Specific	M _R @		Marsha	ll Test	Perc	ent	Penetratio	on, dum	Viso	osily,	poises	Ring and Ball Softening
Phase	Sample	Gravity	_77°Γ x 10 ⁶	Stabili	ty (lbs)	Flow (0.81 in			39.2°F	77°F	.77°F	140°F	275°F	Point, °F
ı	6-5	2.260	.733	14	133	20								
	6-11	2.255	.611	18	318	16	5.1	7	9	29	1.4×10^{7}	4750	4.49	132
	6-2	2.225	.653	14	151	27								
	Avg.	2.247	.667	1!	567	21								
				Hveem St	ability	M + 0	Hveem St	ability*	Marshall	lest*				
37				Perc		MK + 6		cent	Stability			-	ig Tensile Test	
				(<u>nnc)</u>	(THD)	77°F x 10 ⁶ psi	(UNC)	(TIID)	pounds	0.01 fr	Stress	(psi)	Strain (in/in)	<u>) Modulus (psi</u>
П	6-3	2.278	. 589	43.0	36.9	.558	35.8	35.1			142.6	i	.00825	17280.50
	6-8	2.239	.543	49.6	44.3	.475	38.1	36.6			112.7	4	.00707	15938.98
	6-13	2228	<u>.674</u>	42.1	<u>37.1</u>	.459	<u>37.9</u>	36.2			<u>104.1</u>	5	.00589	17669.58
	Avg.	2.248	.602	44.9	39.4	.497	37.3	36.0			119.8		.00707	16963.00

Table If. (continued) Test Sequence I results for Item 340 Type "D" HMAC using Cosden AC-20, U.S. 82, Dickens, lexas.

description of the state of the		Bulk Specific	M _R @	liveem St. Perc		M _R ** 0	llveem Sta Pero	obility** ent	Harshall Test** Stability Flow	Splitt	ing Tensile Tes	t @ 77°F**
Phase	<u>Sample</u>	Gravity	77°F x 10°	(UNC)	(THD)	77°F x 10° psi	(UNC)	(THD)	pounds 0.01 in	Stress (psi)	Strain (in/in) Modulus (psi)
111	6-6	2.247	. 565	50.7	45.1	. 444	50.7	45.2		108.9	.01002	10863.1
	6-7	2.235	.508	40.6	35.4	.458	47.8	42.6		85.2	.00384	9640.3
	6-12	2.225	<u>.653</u>	44.4	<u>39.5</u>	.373	48.5	43.5		<u> 77.1</u>	.00825	9339.9
	Avg.	2,235	.575	45.2	40.0	. 425	49.0	43.8		90.4	.00904	9947.8

£ 4.3
m

-					M _R x 10	o ⁶ psi		Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
				-13"F	33°F	68°F	104°F	Stress (psi)	Strain (in/in)	Modulus (pst)	Gravity	Voids
IV	6-1	2,269	. 502	2.276	1.990	. 907	. 108	135.8	. 00884	15363.36		6.2
	6-4	2.258	.648	2,104	1.408	.914	. 158	154.9	.00813	19047.00	2.418	6.6
	6-10	2,243	.555	2,106	1.480	. 882	.123	130.4	.00766	<u>17020.0</u> 4		
	Avg.	2.257	.568	2.162	1.626	. 901	, 130	140.0	.00821	17144.0	2.418	6.7

^{*} Denotes test results after (24-bour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

 $[\]mathbf{M}_{\mathbf{R}}$ - Resilient Modulus

Table 1g. Test Sequence I results for Item 340 Type "D" HMAC using Cosden AC-10, U.S. 82, Dickens, Texas.

******		Bulk Specific	M _R @	Magazana Palapara ay kinamahanya dakiridar - An	Marsha	ll Test	Perce	ont.	Penetratio	n, dam	Visc	osity,	poises	Ring and Ball Softening
Phase	Sample	Gravity	77°F x 10 ⁶	<u>Stabil</u>	ity (lbs)	flow (0.01 in)			39.2°F	77°F	_/7°F	140°F	275°F	Point, °F
1	6-16	2.235	.470	1	480	13.5								
	6-21	2.295	. 505	1	539	15.0	4.48	В	8	28	1.3 x 10 ⁶	4322	4.155	1 32
	6-24	2.293	.709	<u>]</u>	755	15.5								
	Avg.	2.274	.561	1	591	15.0			3					
				Hveem St	tahility		Hveem Sta	bility*	Marshall	Test*.			T 13 T .	0.73054
39				Perc		MR* 0	Perc		Stability				g Tensile Test	
				(UNC)	(THD)	77°F x 10 ^b psi	(UNC)	<u>(THD)</u>	pounds	0.01 In	Stress (psi)	Strain (in/in)	Modulus (psi)
11	6-15	2.253	.501	44.9	39. 3	.440	36.7	35.5			95.9		.00825	11621.5
	6-17	2.256	.466	45.7	39.9	, 356	36.7	35.6			106.16		.00825	12864.32
	6-18	2.247	.573	44.7	39.2	.473	39.5	38.2			99.47		.00825	12054.35
	Ava.	2.252	.513	45.0	40.0	.423	38.0	36.0			101.0		.00825	12180.00

Table 1g. (continued) Test Sequence I results for Item 340 Type "D" HMAC using Cosden AC-10, U.S. 82, Dickens, Texas.

* 100 000 000 000 000		Bulk Specific	M _R @	liveem St Perc		M _R ** @		ability** cent	Marshall Test** Stability Flow	Splitt	ing Tensile Test	@ 77°F**
<u>Phase</u>	Sample	Gravity	77°F x 10 ⁶	(UNC)	(THD)	77°F x 10° psi	(UNC)	(THD)	pounds 0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
111	6 -14 6 -22 6 -25	2.242 2.284 2.295	. 440 . 488 . 529	47.2 43.3 43.4	41.8 37.3 36.9	. 364 . 463 <u>. 479</u>	46.9 49.3 50.1	41.6 43.4 43.7		85.6 126.4 <u>136.0</u>	.01179 .01210 .01150	7262.1 9750.6 11829.1
	Avg.	2.274	.486	45.0	39.0	. 435	50.0	43.0		116.0	.01178	9614.0

40

				M _R x 10 ⁶ psi				Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
				<u>-13°F</u>	33°F	68°F	104°F	Stress (psi)	Strain (in/in)	<u>Modulus (psi)</u>	Gravity	Voids
17	6 -19	2.232	. 457	1.668	1.291	. 806	. 094					6.9
	6 -20	2.290	.517	2.050	1.267	. 755	.087	124.4	.00943	13189.72	2.396	4.4
,	6 -23	2.299	. 485	2.205	1. <u>/</u> 84	.821	.094	138.2	.00872	15838.75		4.0
	Avg.	2.274	. 486	1.974	1.447	. 794	.092	131.0	. 00908	14514.0	2.396	5.1

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

M_R - Resilient Modulus

Table 2a. Test Sequence 1 results for Item 340 Type "D" HMAC MacMillan AC-10, U.S. 287, Dumas, Texas

4 Nove to		Bulk M. 0' Marshall lest Specific M. 0' Marshall lest Specific 725 v 10 ⁶ Stability (1bc) Flow (0.01)	l) lest	Perce	 ent	Penetratio	n, dmm	Visc	cosity, po	oises	Ring and Ball Softening			
Phase	Sajiib Le	Gravity	77°F x 10 ⁶	Stabili	ity (lbs)	Flow (0.01 in)			39.2°F	77°F	.7 <u>7</u> °F	140°F	<u>275°F</u>	Point, °F
1	1-10	2, 261	. 310											
•	1-13	2,265	. 319	259	4	18	5,2	6	57	107	5.6×10^5	1360	3.491	112
	1- 15	2.247		246		17	3,1	•	٠,	•••	0.0 X 10	1300	2.131	,,,
		2.258	.274	252		18								
	Avg.	2.230	. 301	232	O	10								
41	-													
-				Hveem St	ability		Hveem Sta	bility*	Harshall	Test*				
				Perc		M _R * @	Perc		Stability			•	lensile Test	
				(ninc)	(THD)	77°F x 10 ⁶ psi	(UNC)	<u>(THO)</u>	pounds	0.01 in	n Stress	(ps 1) S1	<u>lrain (in/in)</u>	Modulus (psi)
11	1-2	2, 236	. 247	49.7	47.1	. 081	27.3	24.8					Ψ.	
• •	1-3	2.225	.230	46.1	42.9	.083	26.6	23.4	1032	24				
	1-5	2.239	,292	49.8	46.3	,118	26.2	22.7	1105	27				
	1-9	2,250	. 307	50.8	46.8	. 092	28.7	24.7			52.7		. 00794	6633.6
	1-12	2,272	, 318	55.3	50.6	.088	18.5	13.8			49.8		.01079	4617.4
	1-18	2,250	.289	53.9	48. 1	.074	26.8	20.9			43,3		. 00992	4363.8
	Avg.	2.245	, 281	51.0	47.0	.089	26.0	22.0	1069	26	49.0		. 00955	5205.0

Table 2a. (Continued) Test Sequence I results for Item 340 Type "D" HMAC MacMillan AC-10, U.S. 287, Dumms, Texas

the offen been provided assumption, and	and the second s	Bulk Specific	M _R @	liveem S	tability cent	M _R ** @		ability** cent	Marshal Stability		Splitti	ng Tensile Test	@ 77°F**
Phase	<u>Sample</u>	Gravity	77°F x 10 ⁶	(UNC)	(THD)	77°F x 10 ⁶ ps	it (UNC)	(THD)		0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
[]]	1-1	2.233	. 285	49.5	46.2	.042	21,9	18.7	851	22			
	1-4	2.227	.236	41.9	39.5	.045	24.9	22.4	938	34			
	1-6	2.230	.155	42.9	39.3	.038	20.9	17.3	839	28			
	1-8	2.235	.317	58.8	53.3	.036	21.7	16.2					
	1-16	2.250	.263	50.2	46.4	.034	17.4	13.5	•		30.04	.01357	2213.24
	1-17	2.273	. 304	57.6	<u>54,5</u>	.034	18.6	15.5	As these response		<u>33.16</u>	.01208	2745.05
42	Avg.	2.241	.260	50.0	47.0	.038	21.0	17.0	876	28	32.00	.01283	2479.00
10													
					И _В х 10 ⁶	psi	Spl	itting Te	ensile Test	@ 77°F	Rice Specif		
				-13°F	33°F 6	68°F 104°F	Stress (psi) Strai	n (in/in)	Modulus			
17	1-7	2.250	.311	1.792	1.656	.387 .080	83.4	.0	0454	18372	.8	8.7	
	1-11	2.262	. 303	1.958		.377 ,080	74.6	.0	0482	15469		8.2	
	1-14	2.250	.279	2.294		.326 .079	60.3	<u>.0</u>	0454	13279		8.7	
	Avg.	2.254	.298	2.015	1.657	.363 .080	73.0		0463	15707	.0 2.464		

M_R - Resilient Modulus

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

Table 2b. Test Sequence I results for Item 340 Type "D" NMAC using Dorchester AC-10, U.S. 287, Dumas, Texas.

-		Bulk Specific	M _R @	Marshal	Marshall Test		Penetrati	on, dam	Viscosit	y, poises	Ring and Ball Softening
Pjiase	Sample	Gravity	//"F x 10 ⁶	Stability (lbs)	Flow (0.01 in	Percent) Asphalt	39.2°F	77°F [†]	77°F 14	<u>0°</u> F 275°Г	Point, "F,
1	2-10	2.261	. 371	1522	14						
	2-13	2.249	. 344	1533	14	5.7	26	66	1.5 x 10 ⁶ 1	989 3.976	122
	2-16	2.245	<u>. 318</u>	1745	<u>16</u>						
43	Avg.	2.252	. 344	1600	15						
				Hveem Stability+	M _K *(0	Ilveem Stabilit			Split	ting Tensile Test	@ 77°Γ*
				Percent (UNC) (TIID)	77°F x 10 ⁶ psi	Percent (UNC) (THE	Stability) pounds			Strain (in/in)	
11	2-1	2,233	.290		.060	11.9 5.7	558	20			
	2-6	2.239	. 26 0		.066	11.8 5.8	621	21			
	2-8	2.238	, 313		.061	11.8 5.9	595	21			
	2-9	2.262	. 342		.110	10.9 4.4			40.0	.00851	4698.0
	2-11	2.249	. 360		. 107	21.4 15.7			51.1	.00682	7498.6
	2-15	2.239	<u>. 300</u>		.070	9.9 4.0			<u>31.6</u>	<u>.00910</u>	3474.6
	Avg.	2.243	. 311		.079	13.0 7.0	591	21	41.0	.00814	5224.0

^{*} The Before - Saturation Testing of the HVEEM Stability samples in this leg was inadvertently omitted and the samples were only tested after being subjected to the accelerated Lottman test.

Table 2b. (continued) Test Sequence I results for Item 340 Type "D" HMAC using Dorchester AC-10, U.S. 287, Dumas, Texas.

		Bulk Specific	M _R @	Perd	lability ent	M _R ** 0	liveem Stal Perce	-	Marshall Stability		Splitti	ng Tensile Test	@ 77°[**
<u>Phase</u>	Sample	Gravity	77°F x 10 ⁶	(UNC)	(THD)	77°F x 10 ^b ps	1 (UNC)	(TIID)		0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
111	2~2	2.240	. 303	49.3	43.9	.061	6.9	1.5	749	27			
	2-4	2.254	. 204	57.0	51.0	.045	6.7	8.0	818	24			
	2-5	2.248	.291	48.5	43.3	.063	12.9	7.7	839	26			
	2-7	2.265	. 347	55.3	49.2	.064	11.5	5.4			33.74	.00748	4511.72
	2~14	2.240	.286	52.2	46.2	.060	9.5	3.5			27.66	.00863	3205.74
	2-18	2.232	.325	49.9	<u>43.9</u>	<u>.040</u>	<u>13.6</u>	<u>7.5</u>			23.76	.01611	1474.95
	Avg.	2.247	.293	52.0	46.0	.056	10.0	5.0	802	26	28.00	.01074	3064.00
44										•			
					M _R x 10 ⁶	psi	Spli	Itting Te	ensile Test	@ 77°F	Rice Specif		
	•			-13°F	33°F 6	58° <u>F 104°F</u>	Stress (psi)	Strai	In (in/in)	Modu l u s			
IV	2-3	2.266	, 301	1.809	1.211	.472 .101	87.4	.0	0397	22003	.8	6.9	
	2-12	2.247	. 346	1.833	1.379	.463 .101	88.0	.0	0126	20681	.4 2.433		
	2-17	2.239	.323	1.731	1.182	.415 .095	82.4	<u>.0</u>	0312	26402	.4	8.0	
	Λvg.	2.251	.323	1.791	1.257	.450 .099	86.0	.0	0378	23029	.2 2.433	7.5	

st Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

M_R - Resilient Modulus

Table 2c. Test Sequence I results for Item 340 Type "D" HMAC Exxon AC-10, U.S. 287, Dumas, Texas.

Phase	Samile	Bulk Specific Gravity	M _R e ^c 77°F x 10 ⁶	Marshal Stability (Ibs)		Percent) Asphalt	Penetration 39.2°F	n, dana 77°F		y, poises O°Γ 275°F	Ring and Ball Softening Point, °F
i	3-12 3-14 3-16 Avg.	2.219 2.202 2.202 2.208	. 415 . 525 <u>. 424</u> . 455	1708 1820 1633 1720	15 16 <u>15</u> 15	5.7	7	4 5 2	.9 x 10 ⁶ 299	5 3,858	126
45				Hveem Stabllity ⁺ Percent (UNC) (THD)	M _R * @ 77°F x 10 ⁶ psi	Hveem Stability* Percent (UNC) (THD)	Marshall Stability pounds		-	ing Tensile Test Strain (in/in)	
u	3-6 3-7 3-8	2.205 2.226 2.197	. 380 . 400 . 422		.086 .119 .124	28.9 23.8 28.9 23.5 24.6 19.5	327 367 431	17 23 18			
	3-9 3-13 3-18	2.215 2.228 2.198	. 343 . 371 . 512		.113 .117 .260	27.6 22.9 27.0 21.9 40.1 35.1	, com 18 m	· • • • • • • • • • • • • • • • • • • •	28. 7 38. 7 73. 2	. 00709 . 00767 . 00284	4049.2 5047.4 2 <u>5805.8</u>
	Avg.	2.212	. 405		.137	30.0 25.0°	375	19	47.0	. 00587	11634.0

⁺The before-saturation testing of the NVEEM Stability samples in this leg was inadvertently omitted and samples were only tested after being subjected to the accelerated Lottman test.

Table 2c. (continued) Test Sequence I results for Item 340 Type "D" HMAC Exxon AC-10, U.S. 287, Dumas, Texas.

		Bulk Specific	M _R e	Ilveem Si Perc		M _R ** @	Hveen Sta	bility** :ent	Marshall Stability			Splitting	J Tensile Test	€ 77°F**
Phase	<u>Sample</u>	Gravity	77°F x 10 ⁶	(auc)	(1110)	77°F x 10 ⁶ ps	i (UNC)	(THD)		0.01 in	Stress ((<u>psi)</u> S	<u>Strain (in/in)</u>	<u>Modulus (psi)</u>
111	3-2	2.202	.417	49.5	44.2	.025	26.4	21.6	199	17				
	3-3	2.202	.339	51.5	46.2	.027	33.0	28.2	224	19				
	3-4	2.198	.378	51.4	46.2	.027	24.4	18.9	247	20				
	3-5	2.193	.387	53.1	48.3	.024	30.2	25.6			15.3	7	.01035	1484.53
	3-5A	2.204	. 396	49.6	44.8	.026					13.4	4	.01151	1167.94
	3-10	2.240	.351	50.0	44.5	.028					19.5	2	.01035	1885.71
~	3~17	2.210	.464	48,5	43.8	<u>.050</u>				most	26.7	<u>9</u>	.00920	2911.42
46	Avg.	2.207	. 390	51.0	45.0	.030	29.0	24.0	223	19	19.0	0	.01027	1862.00
					M _R x 10 ⁶				ensile Test			Rice Specific		
				<u>-13°F</u>	33°F 6	58°F 104°F	Stress (psi) Stra	in (in/in)	Modulus	(psi)	Gravity	/ Voids	
ĮΨ	3-1	2.209	.440	2.370	1.440	.591 .116	108.1	.(00255	42322	.0		10,5	
	3-11	2.202	.383	2.073	1.342	.540 .124	97.6	. (00341	28 65 8	.2	2.467	10.7	
	3-15	2.201	.415	2,176	1.268	.626 .126	<u>104.9</u>	<u>. (</u>	00397	26395	.8		10.8	
	۸ v g.	2.204	.413	2.206	1.350	.586 .122	104.0	.0	00331	32459	.0	2.467	10.7	

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure. $\rm M_{R}$ - Resilient Modulus

Table 2d. Test Sequence I results for Item 340 Type "D" HMAC Diamond Shamrock AC-20, U.S. 287, Dumas, Texas.

F1 % 6 hors		Bulk Specific	M _R @	Marshal	l Test	Perc		Penetration	n, dhun	Vi:	scosity,	poises	Ring and Ball Softening
Phase	Sample	Gravity	$.77^{\circ}F \times 10^{6}$	Stability (lbs)	Flow (0.01 in			39.2°F	77°F	_ 77 ^ F	140°	275°F	Point, "F
I	4-10	2.250	. 486	1825	16								
	4-11	2.253	.512	1788	16	5.	39	12	51	3.4×10^6	298	4 7.13	125
	4-18	2.255	<u>. 441</u>	1988	<u>17</u>								
	Avg.	2.253	.480	1867	16								
47				Hveem Stability *	M _R ** @	Nveem Sta	ability* cent	Marshall Stability	Test*		Splitti	ng Tensile Test	.€ 77°Γ*
				(UNC) (TIID)	77°F x 10 ⁶ psi	(UNC)	(TIID)	bonúqz	0.01 Ir	<u>Stress</u>	(psi)	Strain (in/in)	Modulus (psi)
11	4-4	2.242	. 422		.261	7.5	2.6	1022	26				
	4-5	2,242	. 417		. 295	8.0	2.2	1001	26				
	4-7	2,245	. 406		. 180	12.5	7.1	922	25				
	4-12	2.223	. 388		. 150	20.4	15.1			54.	. 4	.00511	10656.6
	4-13	2.254	. 429		. 253	19.8	14.2			55.	.0	.00680	8083.4
	4-14	2.254	.468		.231	12.1	5.9			54.	.8	.00539	10170.4
	4-16	2.270	.511		.220	12.6	6.8	e namenta se		<u>75.</u>	4	.00482	15634.2
	Avg.	2.247	. 434		.227	13.0	8.0	982	26	60.	0	.00553	11136.0

[†]The before-saturation testing of the HVEEM Stability samples in this leg was inadvertently omitted and samples were only tested after being subjected to the accelerated Lottman test.

Table 2d. (continued) Test Sequence I results for Item 340 Type "D" HMAC Diamond Shamrock AC-20, U.S. 287, Dumas, Texas.

		Bulk Specific	M _R @	liveem S Peri	tability cent	M _R ** @	Ilveem Sta	ıbility** cent	Marshall Stability		Sp	litting	Tensile Test	@ 77°F**
<u>Phase</u>	Sample	Gravity	77°F x 10 ⁶	(UNC)	(1110)	77°F x 10 ⁶ p	si (UNC)	(THD)		0.01 in	Stress (p	si) S	train (in/in)	Modulus (psi)
Ш	4-1	2.251	.417	50.5	44.6	.413			1407	25				
	4-6	2.238	.401	41.6	36.4	·.265			1107	25				
	4-9	2.248	.423	53.6	48.0	.235			1001	24				
	4-15	2.259	.458	57.1	50.7	. 358	15.9	9.5			67.88		.00748	9077.77
	4-17	2.252	.498	50.9	45.1	. 294	18.1	12.2			45.28		.00690	6560.41
	4-19	2.253	.409	<u>54.3</u>	<u>48.1</u>	.124	10.0	4.2		_	43.25		.00978	4422.97
	Avg.	2.250	.434	51.0	46.0	. 282	15.0	9.0	1172	25	52.00		.00805	6687.00
48														
					$M_R \times 10^6$	ps t	Spl	itting T	ensile Test	@ 77"F	S	Rice pecific	Percent Air	
				-13°F	33°F	68°F 104°F	Stress (psi	<u>) Stra</u>	in (in/in)	Modulus		Gravity		
17	4-2	2.249	.423	1.989	1.421	.547 .137	97.4	.(00426	22891	.6		6.4	
	4 - 3	2.239	.446	2.039	1.460	.571 .142	101.0		00340	29672		2.402	6.8	
	4-8	2.245	.487	1.764	1.495	.547 .134	100.2	<u>. c</u>	00340	29442	.0		6.5	
	Avg.	2.244	.452	1.931	1.459	.555 .138	100.0	.0	00369	27335	.0	2.402	6.6	

notes

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

M_D - Resilient Modulus

Table 2e. Test Sequence 1 results for Item 340 Type "D" HMAC Diamond Shamrock AC-10, U.S. 287, Dumas, Texas

20.4 s 100 g gas 100 g		Bulk Specific	H _R Ø	Marsha	ill Test	Percent	Penetratio	on, dom	Viscos	ty, poises	Ring and Ball Softening
Phase	Sample	Gravity	77°F x 10 ⁶	Stability (1bs)	Flow (0.01 in		39, 2°F	77°F	17°F	40°F 275°F	Point, °F
Ī	5-1	2.277	, 362	1764	16				-		
	5-17	2,259	.317	1241	15	6.18	20	75	1.6 x 10 ⁶	1723 5,236	121
	5-18	2.253	. 330	1314	<u>15</u>						
	Avg.	2.263	. 336	1440	15						
				Hveem Stability		llveem Stabilit	y* Marshall	Test*			
49				Percent	MR* 0	Percent	Stability		Spli	tting Tensile Test	@ 77°F*
				(UNC) (THD)	77°F x 10 ⁶ psi	(UNC) (THD		0.01 tn	Stress (psi) Strain (in/in)	Modulus (psi)
										,	
ΙΙ	5-4	2.266	.290	51.0 44.8	. 286	15.1 8.8	1250	25			
	5-8	2.281	.311	46.8 40.3	. 317	15.5 9.0	1267	22			
	5-10	2.263	. 305	44.5 38.4	. 333	12.7 6.6	1183	25			
	5-11	2.259	, 322	46.8 40.4	. 315	14.3 7.9			99.9	.00710	14079.8
	5-15	2.263	.284	46.0 39.6	. 286	19.7 13.3			95.8	. 00681	14065.6
	5-16	2.252	. 349	48.1 42.5	. 246	12.9 7.2	% ****** v ****** ******* *******	-	121.4	.00880	13802.6
	Avg.	2.264	.310	47.2 41.0	.297	15.0 9.0	1233	24	106.0	.00757	13983.0

Table 2e. (continued) Test Sequence I Results for Item 340 Type "D" HMAC Diamond Shamrock AC-10, U.S. 287, Dumas, Texas.

		Bulk Specific	M _R @	Hveem S	tability cent	M _R ** 0		tability** rcent	Marshall Stability		Split	ting Tensile Test	@ 77°F**
<u>Phase</u>	Sample	Gravity	77°F x 10 ^b	(UNC)	(1110)	77°F x 10 ^b ps		(THD)		0.01 in	Stress (psi)	Strain (in/in)	Modulus (psj)
111	5-3	2.265	. 303	33.3	27.8	.272			1247	23			
	5-5	2.264	. 279	46.2	39.9	.225			1205	21			
	5-6	2.267	.290	47.8	41.5	.241			1220	23			
	5-7	2.268	.336	46.4	40.2	.285	15.3	9,1			67.54	.00690	9785.15
	5-9	2.277	.319	47.1	40.6	. 285	21.3	14.9			67.54	.00690	9785.15
	5-13	2.269	.311	48.1	41.4	.280	13.1	6.5	** **	*****	66,32	.00805	8235.15
50	Avg.	2.268	.306	45.0	39.0	.265	17.0	10.0	1224	22	67.00	.00728	9269.00
					м _R х 10 ⁶	pst	Sp	olitting Te	ensile Test	@ 77°F	Rio Spec		
				-13°F	33°F (58°F 104°F	Stress (ps	ii) Strai	in (in/in)	Modulus		vity Voids	
ŧv	5-2	2.269	. 335	1.903	1.437	.410 .075	66.6	.0	0454	14678	.6	5.4	
	5-12	2.269	. 306	1.538	1.275	.386 .071	63.1	.0	0511	12360	.8 2.3		
	5-14	2.264	.317	1.988	1.378	.376 .069	59.8	<u>. 0</u>	05]]	<u>117</u> 00	.0	5.6	
	Avg.	2.267	.319	1.810	1.363	.391 .072	63.0	.0	0492	12913	.0 2.39	98 5.5	

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

 $^{^{\}star\star}$ Denotes test results after (18 cycle) Lottman moisture treatment procedure. $\rm M_R$ - Resilient Modulus

Table 2f. Test Sequence I results for Item 340 Type "D" HMAC Cosden AC-20, U.S. 287, Dumas, Texas

		Bulk Specific	M _R @	Marsha	II Test	Percent	Penetration	n, døm	Viscosil	y, poises	Ring and Ball Softening
Phase	Sample _	Gravity	77°F x 10 ⁶	Stability (1bs)	Flow (0.01 in		39.2°F	77°F		<u>0°F 275°F</u>	Point, °F
I	7-1	2.276	.541	1898	16						
	7-7	2.249	.673	1935	16	5,56	12	41	5.0 x 10 ⁶ 2	374 3.415	125
	7-15	2.236	. 578	2080	17						
	۸vg.	2.254	. 597	1971	16						
				Hveem Stability		Hveem Stability*	Marshall	Test*			
51				Percent	WK * 0	Percent	Stability	Flow	Split	ting Tensile Test	@ 77°F*
•				(UNC) (TIID)	77°f x 10 ⁶ psi	(UNC) (THD)	pounds	0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
11	1-2 ·	2.268	.510	54.5 48.2	. 260	14.9 8.6	970	26			
	7-8	2.235	. 520	55.8 50.1	.194	24.2 18.5	754	24			
	- 7-11	2.249	.519	54.1 48.0	. 193	16.2 10.1	949	20			
	7-14	2.251	.649	55.8 49.8	. 249	12.1 6.2			79.1	.00454	17416.0
	7-17	2.222	. 559	54.8 49.4	. 192	25.4 20.0			54.5	.00425	12813.0
	7-18	2.273	.535	48.5 42.4	. 209	13.8 7.8	~~~		106.8	.00596	17931.4
	۸vg.	2.250	.549	54.0 48.0	.216	18.0 12.0	891	23	80.0	.00492	16054.0

Table 2f. (continued) Test Sequence I results for Item 340 Type "D" HMAC Cosden AC-20, U.S. 287, Dumas, Texas.

		Bulk Specific	M _R @		tability cent	M _R ** 0	Pero	obility** cent	Marshall Stability		Spl	itting	Jensile Test	@ 77°F**
<u>Phase</u>	Sample	Gravity	77°F x 10 ⁶	(UNC)	(THD)	77°F x 10 ⁶ ps	i (UNC)	(THD)		0.01 in	Stress (ps	<u>i) s</u>	Strain (in/in)	Modulus (ps1)
111	7-4	2.261	.519	51.1	45.0	.132			569	23			٠	
	7-5	2.2/3	.533	53.5	47.4	.277			993	23				
	7-6	2.269	.516	42.0	35.8	. 259			825	21				
	7-9	2.336	. 478	55.9	50.7	.063	13.7	8.5			30.99		.00798	3884.24
	7-12	2.254	.558	55. 9	49.8	.192	14.3	8.2			47.56		.00532	8939.76
	7-13	2.248	.632	<u>57.0</u>	<u>51.1</u>	<u>.172</u>	23.7	17.8		· Allerghous	47.39		.00532	8908.70
52	Λvg.	2.274	.539	53.0	47.0	.183	17.0	12.0	796	22	42.00		.00621	7244.00
					м _R × 10 ⁶	ps i	Spl	litting To	ensile Test	@ 77°F		Rice ecific	Percent : Air	
				-13°F	33°F (58°F 104°F	Stress (psi	i) Stra	in (in/in)	Hodulus		ravity		
18	7-3	2.256	.531	1.964	1.449	.660 .151	146.2	.0	00482	30309	.4		8.0	
	7-10	2.234	.545	1.911		.682 .148	136.9	.0	0312	43874	.0 2	.451	8.9	
	7-16	2.236	.596	1.915	1.274	.714 .144	137.3	0	00340	40336	.8		8.8	
	۸vg.	2.242	. 557	1.930	1.387	.685 .148	140.0		00378	38173	.0 2	. 451	8.6	

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{^*} Denotes test results after (18 cycle) Lottman moisture treatment procedure. ${\rm M_R}$ - Resilient Modulus

Table $_{29}$. Test Sequence I results for Item 340 Type "D" HMAC cosden AC-10, U.S. 287, Dumas, Texas

14.99	THE WILLIAM WILLIAM	Bulk Specific	M _R @	Marsha	ll Test	Percent	Penetratio	n, down	Visc	osity, p	ooises	Ring and Ball Softening
Phase	Sample	Gravity	77°F x 10 ⁶	Stability (lbs)	Flow (0.01 in		39.2°F	77°F	_ / <u>7°F</u>	140°F	275°F	Point, °F
ı	6-3	2,275	. 523	1752	16							
	6-6	2.262	. 544	1552	15	5.77	12	47	2.0 x 10	1943	3.078	122
	6-16	2.254	. 595	1799	16							
•	Avg.	2.264	. 554	1701	16							
53				Nveem Stability Percent	M _R * @	Nveem Stability*	Marshall Stability		· s	plitting	g Tensile Test	@ 77°r*
				(UNC) (THD)	77°F x 10 ⁶ psi	(UNC) (THD)	pounds	0.01 In	Stress (<u>psi) 5</u>	Strain (in/in)	Modulus (psi)
11	6-2	2.263	.488	46.7 40.7	237	17.7 11.7	840	25				
	6-7	2.274	.463	53.1 46.5	,283	9.7 3.0	1020	24				
	6-8	2.268	. 515	50.0 44.2	.242	16.0 10.1	964	26				
	6-11	2.259	.538	45.0 39.0	.226	16.0 10.0			75.1		.00596	12599.6
	6-13	2,283	. 456	50.8 44.3	. 254	12.9 6.4			104.2		.00515	20238.8
	6-17	2,236	568	52.7 47.4	,224	34.3 28.9			74.0		.00454	16294.4
	Ava.	2.264	.505	50.0 44.0	. 244	18.0 12.0	941	25	84.0		.00522	16378.0

Test Sequence I results for Item 340 Type "D" HMAC Cosden AC-10, U.S. 287, Dumas, Texas.

e rigge, gappagellithining of gas vis, differ	Province Code (1976) p. at. 1 and André — Hanson Valo (1976)	Bulk Specific	M _R @	liveem S Per	tability cent	H _R ** @	Ilveem St.	ability** :ent			Splittin	g Tensile Tes	t @ 77°F**
<u>Phase</u>	<u>Sample</u>	Gravity	77°F x 10 ⁶	(UNC)	(TIID)	77°F x 10 ^b ps	i (UNC)	(THD)	pounds	0.01 in	Stress (psi)	Strain (in/in	Modulus (ps1)
111	6-1	2.275	.427	52.9	46.6	. 325			1169	22			
	6-4	2.269	,457	53.7	47.3	.352			1110	24			
	6~5	2.271	.510	52.4	46.1	.320			1014	23			
	6-14	2.247	.480	53.2	47.3	.216	28.8	22.9	1011	23	43.38	.00532	8154.17
	6-15	2.253	.554	56.0	49.8	.210	28.7	22.6			55,59	.00538	8708.78
	6-18	2.245	.532	<u>55.6</u>	<u>50.3</u>	. 195	22.4	<u>17,1</u>			56.40	.00532	10601.58
	Avg.	2.260	.493	54.0	48.0	.270	27.0	21.0	1098	23	52.00	.00567	9155.00
54													
					м _R × 10 ⁶	ps i	Spi	litting T	ensile Test	0 77°F	Rice Specific	Percent c Air	
				-13°F	<u>33°F 6</u>	8°F 104°F	Stress (ps) Stra	tn (in/in)	Modulus			
14	6-9	2.270	.496	1.731	1,600 .	694 .144	123.5	_ {	00425	29010	.8	5.8	
	6-10	2.257	. 526	1.793		669 .135	126.6		00410	30866		6.4	
	6-12	2,267	.552	2.093		557 .144	127.8		20483	26489		6.0	
	Avg.	2.265	. 525	1.872	1.676 .	640 .141	126.0		004 39	28789		6.1	

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure. $\rm M_{\tilde{R}}$ - Resilient Modulus

Table 3A. Test Sequence II results for Item 340 Type "D" cores using MacMillan AC-20, U.S. 82, Dickens, Texas.

I EG	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	MARSHALL STABILITY	MARSHALL Flow		VISCOSITY		PENETRA		RING & BALL	PERCENT ASPHALT
NU.		HETOM	GRAVITY	@ 77°F	31/01[111	r LUM	@ 77°F	@ 140°F	@ 275°1	39.2°F	77°F	DALL	Marimei
Ī	1-4 1-8 1-10	1.406 1.370 1.286	2.159 2.141 2.137	. 347 . 325 . 433	1,065 990 1,150	11 13 9							
	AVG.	1.354	2.146	. 368	1,068	11	2.1x10 ⁷	9,787	5.669	3	17	143	5.95

55	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ 77"F	HVE STABI UNC		M * R @ 77"F		EEM* ILITY THD	MODULUS	RECT TENSI	ON* STRAIN	MARSHALL STABILITY	MARSHALL FLOW	
	11	1-7 1-12 1-15	1.071 0.792 1.331	2.126 2.134 2.151	. 432 . 324 . 343	58.9 66.1 38.9	34. 1 35. 6 19. 3	. 156 . 082 . 285	45.3 63.5 41.7	20.5 33.0 22.1	6,225.0 5,471.0 12,272.0	22.0 13.0 29.0	. 00353 . 00238 . 00236			
		AVG.	1.065	2. 137	. 366	54.6	29.7	.174	50.2	25.2	7,989.3	21.3	.00276		- 10	

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ 77°F	HV(STABI		M _R **	HVEEM ** STABILITY		INDIRECT TENSION **			
					UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN	
111	1-13 1-14 1-16	1.273 1.419 1.193	2.143 2.145 2.141	. 324 . 342 . 409	45.5 38.1 47.3	24.7 20.2 24.9	.301 .275 .310	51.9 44.0 57.4	31.1 26.1 35.0	32,315.0 18,586.0 26,492.0	51.0 52.0 42.0	.00518 .00280 .00159	
	AVG.	1.295	2.143	. 358	43.6	23.3	.295	51.1	30.7	25,797.7	48.3	.00319	

Table 3A.(Continued) Texas Sequence II results for Item 340 Type "D" cores using MacMillan AC-20, U.S. 82, Dickens, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC - GRAVITY	M _R @ -13°F	M _R @ 33°F	11 _R @ 77°F	M _R Ø 104°F	HVEFM STABILITY		M***	HVEEM*** STABILITY		INDIRECT TENSION***			*** MARSHALL	*** MARSHALL
								NHC	THD	0 77°F	UNC	TIID	MODULUS	STRESS	STRAIN	STABILITY	LFOM
	1-2	1.356	2.172			. 388	Tanaha Lamana an anakara	40.6	21.4	.053	37.6	17.6	2,748.0	15.0	.00346		
	1-5	1.465	2.157		İ	.295		34.6	17.6	. 040	+	+				+	+
١٧	1-6	1.332	2.137	ĺ		. 294		34.3	14.7	.040	36.2	16.5	2,385.0	11.0	.00461		
	1-9	1.106	2.051			.114	1	44.7	20.6	.013	39.0					+	+
	1-11	1.019	2.139			. 320		47.3	21.4	.033	42.0	16.1	1,253.0	11.0	.00878		
	1-17	1.274	2.154			. 337		42.5	21.7	.053	41.7	21.0				93	25
	AVG.	1.259	2.135			.291		40.7	19.6	. 039	39.3	17.2	2,128.7	12.3	.00562	93	25

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ -13°F	M _R @ 33°F	M _R @ 77°F	MR	INDII	RECT TENS	RICE SPECIFIC	PERCENT	
							@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
٧	1-1 1-3 1-18	1.335 1.493 1.080	2. 155 2. 162 2. 142	2,736 1,994 2,244	1.307 1.285 1.348	. 378 . 315 . 327	.072 .049 .072	33,292.0 20,413.0 39,506.0	85.0	.00357 .00416 .00299	2.366 2.406 2.400	8.9 10.1 10.8
	ΛVG.	1.303	2.153	2. 325	1.313	. 340	. 064	31,070.3	107.3	.00357	2.391	9.9

Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

Denotes Test Results Following the 7-day Soak Period.

^{***} Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

 $[\]mathbf{M}_{\mathbf{R}}$ Modulus of Resiliency.

In Table 3A (MacMillan AC-20) the sample (1-5) in the fourth leg of the test procedure fell apart after the standard Lottman. The Marshall tests could not be performed, and therefore there are no results. The sample (1-9) was damaged in the Hveem stability test after the Lottman in leg 4. No Marshall tests could be performed.

In Table 3B (Dorchester AC-20), the sample (2-9) fell apart after the standard Lottman, and no further testing could be performed. The sample (2-6) was damaged in the Hveem stability test following the standard Lottman. Both samples were in the fourth leg sequence.

In Table 3C (Exxon AC-20), the samples [(3-10), (3-11)] fell apart after the standard Lottman in the fourth leg. No other tests could be performed.

In Table 3G (Cosden, AC-10) in the 3rd leg, all of the samples were allowed to completely dry out. After they were relocated, they were allowed to soak at $77^{\circ}F$ over a weekend. The Hveem stability test was run at $77^{\circ}F$. Also, starting with 3G, the 4th leg was dropped from the testing procedure sequence. Only the resilient modulus tests (-13°F, 33°F, $77^{\circ}F$, and $104^{\circ}F$) were performed. The sequence was modified due to the long period of time required to perform the 18-cycle Lottman testing performance.

Table 3B. Test Sequence II results for Item 340 Type "D" cores using Dorchester AC-20, U.S. 82, Dickens, Texas.

LEG NO.	SAMPLE NO.	REIGHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY		PENETRA	AT LON	RING &	PERCENT ASPIIALT
			GRAVITY	0 77 F	JINDILITI	(LON	0 77°F	0 140°F	@ 275°F	39.2°F	77°F	DALL	MOTTINE
ı	2-8 2-10 2-17	.855 1.358 1.328	2.066 2.085 2.114	. 341 . 359 . 320	1,112 550 1,160	12 17 13							
	AVG.	1.180	2.088	. 340	941	14	2.1x10 ⁷	8,670	5.787	2	20	140	4.96

58	LEG NO.	SAMPLE NO.	HE1GHT	BULK SPECIFIC GRAVITY	M _R @ 77°F	HVE STABI UNC		M * R 77°F		EEM* Ility Thd	INDIE MODULUS	STRESS	ON* STRAIN	MARSHALL STABILITY	MARSHALL FLOW
	11	2-2 2-3 2-5	1.024 1.232 .956	2.084 2.091 2.085	. 337 . 313 . 350	70.0 45.9 62.6	42.9 24.3 36.8	.192 .154 .105	54.1 41.7 62.7	28.4 20.0 35.6	10,417.0 5,772.0 5,579.0	19.0 21.0 13.0	.00182 .00364 .00233		
		AVG.	1.071	2.087	. 333	50.9	34.7	. 150	52.8	28.0	7,256.0	17.2	.00260		

LEG	SAMPLE	нелент	BULK	M _R	HVE		M _R **	5	EEM **	INDIREC	T TENSION	**
NO.	NO.	netoni	SPECIFIC GRAVITY	@ 77°F	UNC	THO	@ 77"F	UNC	TIID	MODULUS	STRESS	STRAIN
. 111	2-11 2-13 2-16	.843 1.380 1.484	2,112 2,089 2,112	.337 .349 .288	73.1 45.1 40.3	43.7 26.5 23.8	. 164 . 270 . 272	76.5 47.9 40.4	47.1 29.2 23.9	14,759.0 22,539.0 26,143.0	29.0 36.0 31.0	.00196 .00160 .00119
	AVG.	1.236	2.104	. 325	52.8	31.3	. 235	54.9	33.4	21,147.0	32.0	.00158

Table 3B. (Continued) Test Sequence II results for Item 340 Type "D" cores using Dorchester AC-20, U.S. 82, Dickens, lexas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	M _R	MR	M _R	HVE	ITV	M***	HVE	E/4**	INDIR	ECT: TENS	ION***	*** MARSHALL	*** MARSHALL
""	""	1	GRAVITY	@ -13°F	@ 33°F	19 77°F	@ 104°F	LINC	THD	@ 77°F	UNC	TIID	MODULUS	STRESS	STRAIN	STABILITY	FLOW
10	2-1 2-4 2-6 2-9 2-18 2-19	1.373 1.216 1.488 1.340 1.337 1.374	2.097 2.101 2.101 2.085 2.095 2.093	The second secon		. 348 . 287 . 277 . 238 . 327 . 235		42.1 44.7 33.6 37.5 42.7 38.8	23.3 22.7 17.2 18.0 23.1 20.0	.052 .052 .046 .017 .039	37.2 33.9 32.4 + 35.7 37.9	18.4 12.0 15.9 + 16.1 19.1			.00626 .00808 +	† 121.0 33.3	+ 13 17
	AVG.	1.355	2.095			.285		39.9	20.7	.041	35.4	16.3	1,578.0	11.0	.00717	77.2	15

9

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	MR	M _R	M _R	INDII	RECT TENS	ION	RICE SPECIFIC	PERCENT AIR
			GRAVITY	@ -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
ý	2-7 2-12 2-14 2-15	1.347 1.387 1.348 1.464	2.088 2.101 2.084 2.087	1.707 2.009 2.132 1.641	1.204 1.382 1.235 1.171	.277 .343 .326 .284	. 059 . 076 . 058 . 056	27,716.0 32,044.0 32,641.0 22,769.0	115.0 97.0	.00299 .00359 .00297 .00360	2.439 2.419 2.449 2.419	14.4 13.2 14.9 13.7
	AVG.	1.387	2.090	1.872	1.248	. 308	.062	28,792.5	94.3	.00329	2.432	14.1

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

Denotes Test Results Following the 7-day Soak Period.

^{***} Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ See attached notes.

 $M_{\mbox{\scriptsize R}}$ Modulus of Resiliency.

In Table 3A (MacMillan AC-20) the sample (1-5) in the fourth leg of the test procedure fell apart after the standard Lottman. The Marshall tests could not be performed, and therefore there are no results. The sample (1-9) was damaged in the Hveem stability test after the Lottman in leg 4. No Marshall tests could be performed.

In Table 3B (Dorchester AC-20), the sample (2-9) fell apart after the standard Lottman, and no further testing could be performed. The sample (2-6) was damaged in the Hveem stability test following the standard Lottman. Both samples were in the fourth leg sequence.

In Table 3C (Exxon AC-20), the samples [(3-10), (3-11)] fell apart after the standard Lottman in the fourth leg. No other tests could be performed.

In Table 3G (Cosden, AC-10) in the 3rd leg, all of the samples were allowed to completely dry out. After they were relocated, they were allowed to soak at $77^{\circ}F$ over a weekend. The Hveem stability test was run at $77^{\circ}F$. Also, starting with 3G, the 4th leg was dropped from the testing procedure sequence. Only the resilient modulus tests $(-13^{\circ}F, 33^{\circ}F, 77^{\circ}F, \text{ and } 104^{\circ}F)$ were performed. The sequence was modified due to the long period of time required to perform the 18-cycle Lottman testing performance.

<u>0</u>

Table 3C. Test Sequence II results for Item 340 Type "D" cores using Exxon AC-20, U.S. 82, Dickens, Texas.

LEG	SAMPLE NO.	HELGHT	BULK SPECIFIC	M _R	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY	Market W. No. of Market Workship.	PLNETR	ATION	RING & BALL	PERCLNT ASPHALT
NO.	NO.	ne ton	GRAVITY	@ 77°F	SIMUILIT,) LOW	9 77°F	@ 140°F	@ 275°f	39.2°F	77°F	BALL	Waliwei
ī	3-3 3-9 3-16	1.352 1.217 1.186	2, 173 2, 160 2, 139	.211 .181 .165	986 1,188 1,105	10 12 11	·						
	AVG.	1.252	2.157	. 186	1,093	11	8.0x10 ⁶	5,523	8.082	8	32	137	6.19

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ 77°F	•	EEM ILITY THD	M * R @ 77°F		EEM* ILITY THD	INDTE	STRESS	ON*	MARSHALL STABILITY	MARSHALL Flow
11	3-2 3-8 3-18	1.431 1.292 1.214	2.173 2.163 2.163	.248 .200 .177	44.4 45.4 51.6	26.8 24.9 29.7	. 181 . 172 . 123	43.9 48.1 51.0	26.3 27.7 29.0	13.045.0 9,460.0 9,445.0	39.0 34.0 28.0	.00299 .00359 .00296		
	AVG.	1.312	2.166	.208	47.1	27.1	. 159	47.7	27.7	10,650.0	33.2	. 00397		

LEG	SAMPLE	UELOUT	BULK	M _R	HVE STABI		M _R **		EEM **	INDIREC	T TENSION	\ **
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN
111	3-6 3-7 3-14	1.398 1.279 1.247	2.170 2.164 2.160	. 227 . 196 . 176	48. 1 46. 5 48. 1	29.8 25.9 26.8	. 204 . 182 . 164	48.6 55.7 59.2	30.3 35.0 37.9	13,158.0 16,670.0 14,160.0	63.0 53.0 56.0	.00479 .00318 .00395
	AVG.	1.308	2.165	.200	47.6	27.5	.183	54.5	34.4	14,442.7	57.3	.00397

lable 3C.(Continued) Test Sequence II results for Item 340 Type "D" cores using Exxon AC-20, U.S. 82, Dickens, Texas

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	MR	II _R	M _R	HVE	ITV	M***	IIVE	EN***	INDIE	ECT TENS	***NO1	*** MARSHALL	*** MARSHALL
1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	GRAVITY	0 −13°F	@ 33°F	@ 77°F	@ 104°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN	STABILITY	FLOW
• •	3-4	1.376	2.165			.216		40.4	21.6	.048	37.7	19.0	2,917.0	19.0	.00651	the resemble of the second of	
	3-10	1.218	2.147	1		. 148		50.1	28.2	.035	+	+				+	+
IV	3-11	1.353	2.140			. 164	1	42.9	23.7	.046	+	+				+	+
	3-13	1.229	2.150	1	1	. 194		47.9	26.3	.046	52.6		4,082.0	16.0	. 00392		1
	3-15	1.144	2.150			.169	j	50.6	27.3	.039	51.7	28.3	3,362.0	16.0	. 00476		
	3-17	1.289	2.157			. 159	<u> </u>	40.8	20.3	.040	41.4	21.0				93	15
	AVG.	1,268	2,152			. 175		45.5	24.6	.042	45.9	24.8	3,453.7	17.0	. 00490	93	15

0.7

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	M _R	M _R	MR	INDI	RECT TENS	ION	RICE SPECIFIC	PERCENT AIR
			GRAVITY	@ -13°F	0 33°F	0 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
V	3-1 3-5 3-12	1.432 1.420 1.196	2.152 2.155 2.157	2.026 2.004 2.357	1.307 1.233 1.068	.260 .210 .180	.049 .043 .039	18,622.0 15,128.0 12,162.0	89.0 81.0 80.0	.00478 .00535 .00658	2.400 2.387 2.392	10.3 9.7 9.8
	AVG.	1.349	2.155	2.129	1.203	.217	.044	15,304.0	83.3	.00557	2.393	9.9

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

Denotes Fest Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺⁺ See attached notes.

 $M_{\mbox{\scriptsize R}}$ Modulus of Resiliency.

In Table 3A (MacMillan AC-20) the sample (1-5) in the fourth leg of the test procedure fell apart after the standard Lottman. The Marshall tests could not be performed, and therefore there are no results. The sample (1-9) was damaged in the Hveem stability test after the Lottman in leg 4. No Marshall tests could be performed.

In Table 3B (Dorchester AC-20), the sample (2-9) fell apart after the standard Lottman, and no further testing could be performed. The sample (2-6) was damaged in the Hveem stability test following the standard Lottman. Both samples were in the fourth leg sequence.

In Table 3C (Exxon AC-20), the samples [(3-10), (3-11)] fell apart after the standard Lottman in the fourth leg. No other tests could be performed.

In Table 3G (Cosden, AC-10) in the 3rd leg, all of the samples were allowed to completely dry out. After they were relocated, they were allowed to soak at $77^{\circ}F$ over a weekend. The Hveem stability test was run at $77^{\circ}F$. Also, starting with 3G, the 4th leg was dropped from the testing procedure sequence. Only the resilient modulus tests $(-13^{\circ}F, 33^{\circ}F, 77^{\circ}F, \text{ and } 104^{\circ}F)$ were performed. The sequence was modified due to the long period of time required to perform the 18-cycle Lottman testing performance.

δ

Table 3D. Test Sequence II results for Item 340 Type "D" cores using Shamrock AC-20, U.S. 82, Dickens, Texas.

LEG	SAMPLE	HEIGHT	BULK SPECIFIC	W ^K	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY		PENETRA	ATION	RING &	PERCENT ASPIJALT
NO.	NO.	(1); (G)(1)	GRAVITY	n 77°F	SIMBILIT	FLOW	@ 77°F	@ 140°F	@ 275°I	39.2°F	77°Γ	BALI.	ASCIMI.I
I	4-3 4-14 4-16	1.215 1.193 1.331	2:114 2:180 2:117	. 315 . 253 . 266	674 1,147 982	20 9 13			:				
	AVG.	1.246	2,137	. 278	934	14	1.2x10 ⁷	12,300	11.762	5	25	143°	5.86

	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	HVI STAB		M _R *		EEM*	INI)II	RECT TENSI	ON*	MARSHALL STABILITY	MARSHALL FLOW
				GRAVITY	@ 77°F	UNC	THD	@ 77"F	UNC	THD	MODULUS	STRESS	STRAIN		
***************************************	11	4-4 4-5 4-15	1.376 1.494 1.457	2.139 2.121 2.131	. 264 . 290 . 244	46.2 42.7 39.9	27.4 26.3 22.0	.173 .205 .185	41.4 37.5 33.9	22.6 21.2 16.8	11,628.0 10,412.0 10,982.0	34.7 37.3 32.8	.00298 .00358 .00299		
	,	AVG.	1.442	2.130	. 266	42.9	25.2	. 188	37.6	20.2	11,007.3	34.9	.00318		4 (10 Miles) - 14 (10 - 10)

LEG	SAMPLE	NEIGHT	BULK	MR	IIVI		M _R **	1	EEM **	INDIREC	T TENSION	٧ **
NO.	NO	HEIGHT	SPECIFIC GRAVITY	@ 77°F	STABI Unc	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN
111	4-8 4-10 4-17	1.258 1.437 1.415	2.105 2.151 2.156	.289 .264 .240	44.6 50.5 44.3	23.5 33.0 26.4	.189 .167 .201	46.6 51.7 48.1	25.5 48.1 30.1	11,356.0 14,846.0 14,134.0	47.4 44.3 30.6	.00417 .00298 .00358
	AVG.	1. 370	2.137	. 264	46.5	27.6	. 186	48.8	34.6	13,445.3	40.8	.00358

Table 3D. (Continued) Test Sequence II results for Item 340 Type "D" cores using Shamrock AC-20, U.S. 82, Dickens, Texas

LEG NO.	SAMPLE NO.	HE EGHT	BULK SPECIFIC > GRAVITY	M _R 0 -13°F	M _R @ 33°F	И _R 0 77°F	M _R @ 104°F	HVE STABI UNC		M*** @ 77°F	IIVE STABII UNC	EM*** LITY THD	IND LE	ECT TENS	ION*** STRAIN	*** MARSHALL STABILITY	*** Marshall Flow
IV	4-2 4-6 4-11 4-12 4-13 4-18	1.487 1.357 1.507 1.330 1.378 1.556	2.120 2.132 2.138 2.151 2.151 2.151			.282 .237 .258 .228 .239 .236		36.9 42.0 40.7 50.8 47.0 39.0	20.3 22.9 24.6 31.1 28.3 23.9	.060 .075 .157 .067 .071 .081	39.5 41.0 41.7 47.9 50.5 40.8	23.0 21.9 25.6 28.3 31.8 25.7	,	34.0 28.0 42.0	.00394 .00483 .00315	446 515 375	18 16 13
go rae sonthonous e	AVG.	1.436	2.141			.247		42.7	26.1	.085	43.6	26.1	9,248.3	34.7	. 00397	445	16

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	MR	M _R	MR	INDI	RECT TENS	ION	RICE SPECIFIC	PERCENT AIR
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	GRAVITY	@ -13°F	@ 33°F	0 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
V	4-1 4-7 4-9	1.410 1.295 1.282	2.141 2.129 2.141	1.413 1.978 1.810	.980 1.010 .921	.279 .253 .238	.051 .051 .042	9,456.0 9,724.0 6,619.0	56.0 52.0 44.0	.00592 .00535 .00665	2.383 2.364 2.377	10.2 9.9 9.9
	AVG.	1,329	2.137	1.734	, 970	,257	. 048	8,599.7	50.7	. 00597	2.375	10.0

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

 $M_{
m R}$ Modulus of Resiliency.

Table 3E. Test Sequence II results for Item 340 Type "D" cores using Shamrock AC-10, U.S. 82, Dickens, Texas.

LEG	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	MARSHALL STABILITY	MARSHALL FLOW	W	VISCOSITY		PENETR	ATION	RING &	PERCENT
NO.	NO.	ILE I GELL	GRAVITY	@ 77°F	21/01/1111	FLUW	@ 77°F	@ 140°F	@ 275°F	39.2°F	77°F	BALI.	ASPIIALT
1	5-3 5-6 5-7	1.796 1.795 1.401	2.128 2.095 2.108	. 261 . 204 . 285	1029 895 1439	10 12 12							
	AVG.	1.663	2.110	. 250	1121	11	1.7x10 ⁷	12439	7.289	15	37	139.5	+

r)	LEG NO.	SAMPLE NO.	HETGHT	BULK SPECIFIC	M _R	1	ELM ILITY	M _R *		EEM*	IIONI	RECT TENSI	ON*	MARSHALL STABILITY	MARSHALL Flow
	no.	NO.	TIE TAIT	GRAVITY	@ 77"F	3170		@ 77"F	JIND		MODULUS	STRESS	STRAIN	JIMUICITI	TLOW
	11	5-1 5-5 5-9	1.647 1.782 1.651	2.074 2.107 2.078	. 251 . 234 . 238	37.9 38.1 34.9	24.6 27.5 21.6	.103 .116 .093	30.2 34.5 32.2	16.9 23.9 19.0	7207 7668 5956	14.5 26.4 13.7	.00201 .00345 .00230		
		AVG.	1.693	2,086	.241	37.0	24.6	.104	32.3	19.9	6944	18.2	.00259		

LEG	SAMPLE	UETCUT	BULK	MR	HVI STAB	EM	M _R **	IIVE STABI		INDIRE	T TENSION	**
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	(a 77°F	31/101	LIII	@ 77°F	21AD1		MODULUS	STRESS	STRAIN
Ш	5-2 5-4 5-8	1.767 1.646 1.688	2.120 2.103 2.084	.218 .274 .115	34.7 37.2 35.1	23.8 23.9 22.6	. 107 . 127 . 102	36.9 34.8 31.2	26.6 21.5 18,7	8360.0 8273.4 5048.8	28.8 28.5 18.9	.00345 .00345 .00373
	AVG.	1.700	2.102	. 202	35.7	23.4	.112	34.3.	22.3	7227.4	25.4	.00354

Table 3E. (Continued) Test Sequence II results for Item 340 Type "D" cores using Shamrock AC-10, U.S. 82, Dickens, Texas

116 NO.	SAMPLE OR	in telli	BUCK SPECIFIC GRAVETY	м _R 0 ~13"F	M _R 0-33°f	M _R 19-77/7	17 _R		LM H TTY	M _R *** @771	STAR	TEI***	MARSHALL*** STABILITY	MARSHALL CLOW	INDIR MODULUS	CE TENS	FON***	
וא	5-10 5-13 5-15 5-17 5-11 5-12 AVG.	1.678 1.704 1.474 1.543 1.686 2.065	2.049 2.039 2.035 2.039 2.058 2.065	1.215 1.234 1.496 1.471 1.219 1.176	. 741 . 838 . 871 . 874 . 848 . 651	.230 .210 .256 .238 .228 .176	.086 .067 .080 .082 .080 .058	41.2 35.7 39.1 35.1 35.3 34.8	28.5 23.5 22.3 19.7 22.8 29.8	.011 .011 .015 .014 .015 .014	31.9 30.0 30.8 30.2 27.2 23.0 28.9	19.3 17.8 13.1 14.8 14.6 18.1	135 104 76 - 105	16 16 11	3721.7 697.3 918.7	8.3 7.9 5.5 7.2	.00223 .01133 .00595	,

I EG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R 0 77°F	INDII MODULUS	STRESS	ON STRAIN	RICE SPLCIFIC GRAVITY	PERCENT AIR VOIDS
v	5-14 5-16 5-18	1.754 1.640 1.656	2.037 2.054 2.062	.211 .251 .276	19435.3 28035.6 18637.2	72.6 80.5 75.0	.00373 .00287 .00402	2.391 2.398 2.390	14.9 14.2 13.8
	AVG.	1.683	2.051	.246	22036.0	76.0	. 00354	2.393	14.3

NOTES:

^{**} Denotes lest Results Following The 7-day Soak Period.

Denotes lest Results Following The (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

 $M_{\mbox{\scriptsize R}}$ Modulus of Resiliency.

83

Table 3F. Test Sequence 11 results for Item 340 Type "D" cores using Cosden AC-20, U.S. 82, Dickens, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL. FLOW		VISCOSITY	y +	PENETRA	ATION	RING &	PERCENT ASPHALT
no.	NO.	ME COLL	GRAVITY	@ 77°F	JIMALITY	, Lon	@ 77°F	@ 140°F	@ 275°F	39.2°F	77°F	BWLL	WattiveT
	6-6 6-9	1.413 1.250	2.090 2.092	. 446 . 427	1167 1194	9 10		·					
1	6-11	1.375	2.106	. 425	1299	10				:			
						e samentanan same also harry harry har more man harry.			we as an outside the of the pro-	·			
	AVG.	1.346	2.096	. 433	1220	10	3.0x10'	15,466	7.447	0	18	142	5.25

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	IIVI STABI	EEM	MR		EEM*	Initi	RECT TENSI	ON*	MARSHALL STABILITY	MARSHALL FLOW
		,	GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THD	MODULU'	SIRESS	STRAIN	e de estado en e	# C. C. P. S.
11	6-3 6-5 6-14	1.578 1.547 1.450	2.102 2.101 2.108	. 429 . 461 . 440	42.1 43.6 44.5	24.7 28.3 27.3	.200 .215 .215	37.8 35.8 38.8	23.1 20.5 21.5	41,854.0 46,894.9 43,035.9	49.2 42.7 41.7	.00117 .00091 .00097	·	
٠	AVG.	1.525	2,104	. 443	43.4	27.7	.210	37.5	21.7	43,928.3	44.5	.00102		

LEG	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	HVE STABI		M _R	1	EEM [LITY	INDIREC	CT TENSION	I
NO.	NO.	netuni	GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THO	MODULUS .	STRESS	STRAIN
111	6-2 6-12 6-17	1.492 1.400 1.400	2.098 2.104 2.097	. 444 . 437 . 435	44.8 47.7 45.8	28.4 29.4 27.5	.260 .258 .216	52.9 53.4 49.4	36.5 35.1 31.2	51,824.2 55,515.3 39,814.0	62.4 62.0 40.9	.00120 .00112 .00103
	AVG.	1.431	2.100	. 439	46.1	28.4	. 245	51.9	34.2	49,051.2	55.1	.00112

Table 3F. (Continued) Test Sequence II results for Item 340 Type "D" cores using Cosden AC-20, U.S. 82, Dickens, Texas.

	.EG	SAMPLE NO.	HE I GHT	BULK SPECIFIC	M _R	MR	M _R	M _R	HVE	TTV	M***	HVE STABI	EM***	INDIR	ECT TENS	ION***	*** Marshall	*** MARSHALL
		1101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	GRAVITY	@ -13°F	@ 33°F	@ 77°F	@ 104°F	UNC	THD	@ 7 7 °F	UNC	THD	MODULUS	STRESS	STRAIN	STABILITY	FLOW
3	V	6-1 6-4 6-7 6-13 6-15 6-18	1.702 1.549 1.400 1.400 1.450 1.582	2.101 2.092 2.098 2.111 2.105 2.099	3.114 3.420 2.120 2.191 2.178 2.184	1.330 1.356 1.417 1.531 1.463 1.471	. 435 . 391 . 428 . 428 . 381 . 300	.058 .055 .054 .055 .062 .054	32.1 40.1 43.7 48.3 42.4 47.9	19.9 24.8 25.5 30.1 25.1 33.3	. 234 . 286 . 215 . 233 . 239 . 232	42.0	31.8	27,472.6 41,517.9 29,174.5	65.4 65.9 69.4	.00238 .00159 .00238	618 800 716	23 21 20
		AVG.	1.514	2.101	2.534	1.482	. 394	. 056	40.6	26.5	.240	41.9	25.9	32,721.7	66.9	.00212	711	21

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	@ -13°F	@ 33°F	0 77°F	@ 104°F		RECT TENS		RICE SPECIFIC	PERCENT AIR
			GRAVITY	e -13 1	16 33 1	''	041	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
V	6-8 6-10 6-16	1.325 1.238 1.813	2.085 2.099 2.112			. 445 . 432 . 492		85,534.6 28,241.5 55,432.6	151.7	.00119 .00537 .00239	2.379 2.366 2.391	12.4 11.3 11.7
	AVG.	1.125	2.099			. 456		56,402.9	128.7	.00298	2.379	11.8

Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

Denotes Test Results Following the 7-day Soak Period.

^{***} Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

 $M_{\mbox{\scriptsize R}}$ Modulus of Resiliency.

Table 3G. Test Sequence II results for Item 340 Type "D" cores using Cosden AC-10, U.S. 82, Dickens, Texas.

LEG	SAMPLE	истент	BULK	M _R	MARSHALL	MARSHALL		VISCOSITY		PENETR	ATION	RING &	PERCENT ASPHALT
NO.	NO.	HE1GHT	SPECIFIC GRAVITY	@ 77°F	STABILITY	FLOW	@ 77°F	@ 140°F	@ 275°F	39.2°F	77°F	BALL	ASPIALI
I	7-5 7-10 7-15	1.280 1.341 1.492	2.086 2.078 2.098	. 156 . 168 . 161	963 ' 1,071 1,001	14 12 14							
	AVG.	1.371	2.087	. 162	1,012	13	1.85×10 ⁷	23,115	9.7	10	21	141°	4.23

LEG NO.	SAMPLE	HEIGHT	BULK SPECIFIC	M _R	HVI	EEM	M _R		EEM* ILITY	INDII	RECT TENSI	ON*	MARSHALL STABILITY	MARSHALL FLOW
MU.	NO.	nerom	GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN	SINDILIII	1 LON
II .	7-1 7-3 7-9	1.444 1.459 1.445	2.071 2.059 2.068	. 156 . 150 . 185	38.0 40.7 36.6	20.6 23.6 19.2	.129 .135 .121	41.9 40.1 42.8	24.6 23.0 25.4	14,732 4,409 14,667	19.3 11.2 13.2	.00131 .00254 .00090		
-	AVG.	1.449	2.066	. 164	38.4	21.1	. 128	41.6	24.3	11,269	14.6	.00158		

LEG	SAMPLE		BULK	M _R	HVE		M _R		EEM	INDIRE	CT TENSIO	N
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	IJLITY THD	MODULUS	STRESS	STRAIN
	7-6 7-7 7-12	1.486 1.213 1.535	2.067 2.059 2.082	. 156 . 141 . 126	39.1 44.4 34.4	22.6 22.5 18.8	. 072 . 045 . 055	32.8 39.8 24.5	16.3 17.8 TLTC	3,038.4 1,930.0 1,307.3	14.5 9.2 10.4	.00476 .00476 .00793
	AVG.	1.411	2.069	. 141	39.3	21.3	. 057	32.4	17.1	2,091.9	11.4	. 00582

Table 3G. (Continued) Test Sequence II results for Item 340 Type "D" cores using Cosden AC-10, U.S. 82, Dickens, Texas.

LEG NO.	SAMPLE NO.	HE IGHT	BULK SPECIFIC	MR	MR	HR	MR	HVEI		M***	HVE STABI	EM***	INDIF	RECT TENS	ION***	*** MARSHALL	*** MARSHALL
110.		I I I I I I I I I I I I I I I I I I I	GRAVITY	Ø −13°F	@ 33°F	@ 77°F	@ 104°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN	STABILITY	FLOW
1V	7-6 7-8 7-14	1.486 1.213 1.535	2.058 2.050 2.095	1.255 1.292 1.869	. 549 . 766 . 742	. 106 . 123 . 151	. 028 . 032 . 041	++ ++ ++									
4	AVG.	1.411	2.068	1.472	. 686	. 127	. 034										V41/

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC					INDI	RECT TENS	ION	RICE SPECIFIC	PERCENT
no.	10.	, iE i Gili	GRAVITY	@ -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
٧	7-4 7-13 7-16	1.267 1.288 1.293	2.055 2.100 2.070			.130 .134 .119		1,420.7 1,378.3 1,008.3	50.9 57.6 54.2	.03583 .04179 .05375	2.428 2.423 2.429	15.4 13.3 14.8
	AVG.	1.283	2,075			.128		1,269.1	54.2	.04379	2.427	14.5

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺⁺ See attached notes.

 $[\]mathbf{M}_{\mathbf{R}}$ Modulus of Resiliency.

In Table 3A (MacMillan AC-20) the sample (1-5) in the fourth leg of the test procedure fell apart after the standard Lottman. The Marshall tests could not be performed, and therefore there are no results. The sample (1-9) was damaged in the Hveem stability test after the Lottman in leg 4. No Marshall tests could be performed.

In Table 3B (Dorchester AC-20), the sample (2-9) fell apart after the standard Lottman, and no further testing could be performed. The sample (2-6) was damaged in the Hveem stability test following the standard Lottman. Both samples were in the fourth leg sequence.

In Table 3C (Exxon AC-20), the samples [(3-10), (3-11)] fell apart after the standard Lottman in the fourth leg. No other tests could be performed.

In Table 3G (Cosden, AC-10) in the 3rd leg, all of the samples were allowed to completely dry out. After they were relocated, they were allowed to soak at $77^{\circ}F$ over a weekend. The Hveem stability test was run at $77^{\circ}F$. Also, starting with 3G, the 4th leg was dropped from the testing procedure sequence. Only the resilient modulus tests $(-13^{\circ}F, 33^{\circ}F, 77^{\circ}F, \text{ and } 104^{\circ}F)$ were performed. The sequence was modified due to the long period of time required to perform the 18-cycle Lottman testing performance.

Table 4A. Test Sequence 11 results for Item 340 Type "D" cores using MacMillan AC-10, U.S. 287, Dumas, Texas.

FEG	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY		PENETRA		RING &	PERCENT ASPHALT
NO.	Mn.	WEIGHT	GRAVITY	@ 77°F	SIMULLITY	/ (UM	@ 77°F	@ 140°F	@ 275°F	39.2°F	77°F		NOT THE !
I	1-2 1-7 1-17	1.604 1.313 1.707	2.138 2.123 2.115	.149 .165 .122	1,180 982 894	11 13 12	maratan maratan da mara						
	AVG.	1.541	2.125	.145	1,019	12	7.0x10 ⁵	1,453	3.592	30	90	116°	4.01

73	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ 77°F		EEM ILITY Thd	M * R @ 77°F	1	EEM* ILITY THD	INDIA MODULUS	RECT TENSI	ON* STRAIN	MARSHALL STABILITY	MARSHALL FLON
	II	1-4 1-9 1-12	1.535 1.707 1.555	2.130 2.107 2.122	.129 .D91 .143	50.8 43.3 48.5	35.2 31.2 33.4	.011 .014 .044	27.6 28.0 40.6	11.9 15.9 25.5	10,857.8 11,207.1 14,405.1	77.8 76.9 77.4	.00716 .00686 .00537		
	,.	AVG.	1.599	2.120	. 121	47.5	33.3	.023	32.1	17.8	12,156.7	77.4	.00646	,	

LEG	SAMPLE	LUE LOUIT	BULK	MR	HVE		M _R **	L	EEM **	INDIREC	TENSION	**
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77 ⁴ F	STABI Unc	THD	@ 7 <i>1</i> "F	UNC	THD	MODULUS	STRESS	STRAIN
[1]	1-1 1-5 1-14	1.558 1.570 1.709	2.143 2.131 2.109	. 144 . 149 . 129	57.0 48.6 44.7	41.9 33.7 32.7	. 035 . 023 . 037	† † †	+ + + .	2,795.6 849.2 7,801.8	20.0 5.1 46.6	.00716 .00579 .00597
	AVG.	1.612	2.128	.141	·50.1	36.1	.032	+	+	3,815.5	23.9	.00631

Table 4A. (Continued) Test Sequence II results for Item 340 Type "D" cores using MacMillan AC-10, U.S. 287, Dumas, Texas.

LEG NO.	SAMPLE NO.	HE I GHT	BULK SPECIFIC GRAVITY	M _R @ -13°F	M _R @ 33°F	M _R @ 77°F	M _R @ 104°F	IIVEI STABII UNC		И <u>*</u> ** @ 77°F	IIVE STABI UNC	EM*** LITY THD	INDIR MODULUS	ECT TENS STRESS	ION*** STRAIN	*** MARSHALL STABILITY	*** Marshall Flow
1 V	1-3 1-8 1-10 1-13 1-16 1-18	1.555 1.516 1.559 1.608 1.667 1.646	2.091 2.129 2.114 2.111 2.118 2.129	1.377 1.547 1.416 1.588 1.692 1.639	. 751 . 788 . 785 . 805 . 823 . 913	.141 .125 .121 .125 .115	. 026 . 030 . 026 . 026 . 026 . 029	48.5 52.8 47.3 49.5 47.5 47.3	33.4 36.9 32.2 35.4 34.6 33.9	.018 .031 .029 .035 .033	32.5 41.2 35.7 38.6 39.9 41.0	27.0	2,709.8 2,785.9 3,413.6	15.0 15.5 19.0	. 00555 . 00555 . 00555	50 181 175	9 4 11
7,	AVG.	1.592	2.115	1.543	.811	.129	.027	48.8	34.4	.032	38.2	23.8	2,969.8	16.5	.00555	135	8

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	M _R	M _R	MR	INDI	RECT TENS	10N	RICE SPECIFIC	PERCENT
.,,,,			GRAVITY	0 -13°F	0 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOTOS
٧	1-6 1-11 1-15	1.388 1.363 1.602	2.124 2.110 2.130			. 159 . 115 . 134		13,928.9 12,717.0 13,060.6	49.9 49.3 50.7	.00358 .00388 .00388	2.451 2.459 2.465	13.3 14.2 13.6
	company of such such succession or						·					
	AVG.	1.451	2.121			.136		13,235.5	50.0	.00378	2.458	13.7

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

^{**} Denotes Test Results Following the 7-day Soak Period.

^{***} Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

 $^{{\}rm M}_{\rm R}$ Modulus of Resiliency.

US 287 DUMAS, TEXAS PROBLEMS

In Table 4A (MacMillan AC-10) the results for the Hveem stability test following the 7-day soak and resilient modulus $(77^{\circ}F)$ tests were lost in the lab.

In Table 4C (Exxon AC-10) the asphalt properties were lost and no samples could be located to rerun an extraction and recovery. In the 2nd leg, all samples fell apart before the testing sequence could be completed. In the 4th leg the samples (3-5, 3-18) were damaged during the testing sequence and no further tests could be run on them.

In Table 4E (Shamrock AC-10), the 4th leg testing sequence was discontinued due to the long period of time required to perform the 18-cycle Lottman. The program has been revised to include the resilient modulus tests at different temperatures in another leg. Also, there are no results for the indirect tension test run on Sample 5-8 because the test was incorrectly run.

Table 4B. Test Sequence II results for Item 340 Type "D" cores using Dorchester AC-10, U.S. 287, Dumas, Texas.

LEG	SAMPLE	HE I GHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY		PENETR/	ATION	RING &	PERCENT ASPHALT
NO.	NO.	HEIGH	GRAVITY	@ 77°F	SIMPLETIT	reon	@ 77°F	@ 140°F	@ 275°F	39.2°F	77°F	DALL	MOLUMET
I	2-2 2-7 2-15	1.192 1.251 1.128	2:154 2:146 2:157	.295 .323 .292	1460 1405 1362	11 10 10							
	AVG.	1.190	2,152	.303	1409	10	1.28×10 ⁶	1930	4.043	26	71	123°	4.99

76	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ 77°F	IIVE STABI UNC		M R @ 77°F		EEM* ILITY TIID	INDII Modulus	RECT TENSI	ON* STRAIN	MARSHALL STABILITY	MARSHALL FLOW
	11	2-1 2-9 2-17	1.242 1.180 1.246	2.146 2.145 2.146	. 275 . 328 . 325	58.7 61.1 57.5	37.3 38.5 36.2	.031 .035 .034	43.3 47.5 43.7	21.9 24.9 22.4	2957.9 2890.9 3316.9	17.9 17.5 17.9	.00607 .00607 .00539		
		AVG.	1.223	2,146	. 309	59.1	37.3	.033	44.8	23.1	3055.2	17.8	. 00584		

LEG	SAMPLE		BULK	M _R	HVE		MR	HVI		INDIRE	CT TENSION	1
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77°F	STABILITY @ 77°F		0 77°F	STABI UNC	THD	MODULUS	STRESS	STRAIN
111	2-3 2-12 2-16	1.037 1.263 1.214	2.147 2.155 2.148	. 317 . 321 . 348	69.2 57.0 58.3	43.7 36.0 36.3	. 031 . 035 . 044	54.3 43.0 41.2	28.8 22.1 19.2	4175.2 4541.0 3890.7	25.3 21.4 23.6	.00607 .00472 .00607
	AVG.	1.171	2.150	. 329	61.5	38.7	. 337	46.2	23.4	4202.3	23.4	.00562

Table 4B. (Continued) Test Sequence II results for Item 340 Type "D" cores using Dorchester AC-10, U.S. 287, Dumas, Texas.

LE NC		SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ -13°F	M _R @ 33°F	^{II} R @ 77°F	M _R @ 104°F	HVEE STABIL UNC	1 T V	M*** 0 77°F	HVER STABII UNC	 *** 	INDIA	ECT TENS		*** MARSHALL STABILITY	*** MARSHALL
]					·							1000000	21ME 22	214414	SIMBILITY	FLOW
Liv	,								ľ									
	- 1										!							
-							··		· · · - · - ·			ļ <u> </u>				·		
1_		AVG.										1 1						

-	ч
`	_1

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC					INDI	RECT TENS	ION	RICE SPECIFIC	PERCENT AIR
			GRAVITY	@ -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
v .	2-8 2-13 2-18	1.226 1.202 1.204	2.150 2.156 2.147	1.784 1.906 1.787	.981 1.085 1.093	. 310 . 332 . 315	. 094 . 098 . 099	36920.6 29471.3 28932.0	74.6 79.4 78.0	.00202 .00270 .00270	2.453 2.447 2.450	12.4 11.9 12.4
	AVG.	1,211	2.151	1,826	1.053	. 319	. 097	31774.6	77.3	.00247	2.450	12.2

Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

 M_R Modulus of Resiliency.

Denotes Test Results Following the 7-day Soak Period.

^{***} Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

Table 4C. Test Sequence 11 results for Item 340 Type "D" cores using Exxon AC-10, U.S. 287, Dumas, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY		PENETRA		RING & BALL	PERCENT ASPHALT
10.			GRAVITY	0 77°1	C. A. S. A. S. A. SHALL MARKET		@ 77°F	@ 140°F	@ 275"1	39.2°F	7 7"F	D/LL	MORIONE I
	3-4 3-8	1.252 1.295	2.072 2.081	.154	905 893	9 12	,		,				
1	3-15	1,380	2.113	.210	1,099	11							
	AVG.	1.309	2.089	.184	967	11	++						

	LEG NO.	SAMPLF NO.	HEIGHT	BULK SPECIFIC	MR	HVI STAB		M _R		EEM*	INDI	RECT TENSI	ON*	MARSHALL STABILITY	MARSHALL FLOW
78	ACM # 70 2 8 9 1	NO.		GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN	JINDILIII	rlum
	11	3-2 3-12 3-17	1.381 1.324 1.387	2.057 2.109 2.055	. 179 . 214 . 194	41.9 57.7 40.6	23,3 37.9 22.1	.023 ++	++						
		AVG.	1.364	2.074	. 196	46.7	27.8	. 023						entered the second of the seco	Market and the trade of the

LEG	SAMPLE	HEIGHT	BULK SPECIFIC	M _R	IIVE STABI		MR	1	EEM ILITY	INDIREC	T TENSION	
NO.	NO.	ur tan i	GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN
111	3-6 3-10 3-14	1.304 1.303 1.394	2.058 2.098 2.118	. 189 . 224 . 243	44.2 48.6 55.5	24.1 28.4 37.1	. 021 . 037 . 052	56.2 36.1 36.5	36.0 16.0 18.1	485.7 3,958.0 2,608.6	4.64 16.54 17.13	.00955 .00418 .00567
	AVG.	1.334	2.091	.219	49.4	29.9	.037	42.9	23.4	2,350.7	12.77	.00676

Table 4C. (Continued) Test Sequence II results for Item 340 Type "D" cores using Exxon AC-10, U.S. 287, Dumas Texas.

LEG NO.	SAMPLE NO.	HE I GIIT	BULK SPECIFIC GRAVITY	M _R @ -13°F	M _R @ 33°F	M _R @ 77°F	M _R @ 104°F	HVEE STABIL UNC		M*** @ 77°F	HVE STABII UNC	EM*** LTTY THO	IND LE	STRESS	ION*** SIRAIN	*** MARSHALL STABILITY	*** MARSHALL FLOW
ΙV	3-1 3-5 3-9 3-13	1.306 1.361 1.302 1.335 1.457	2.043 2.061 2.087 2.096 2.123	1.361 1.106 1.427 1.239 1.561	1.051 0.846 0.876 0.819 1.061	. 195 . 134 . 151 . 175 . 213	.035 .040 .045 .043	45.4 48.1 41.4 48.1 60.8	25.3 29.1 21.2 28.6 41.2	.054 ++ .040 .092	34.8 30.9 42.0 51.7	14.6 10.7 22.4	2,608.1	37.8	. 01507	89 72 266	17 13 14
	3-16 3-18 AVG.	1.494	2.047	1.226	0.854 0.918	.142	.028	38.0	21.6	.074	33.7	17.3	2,508.1	37.8	.01507	142	15

LEG NO.	SAMPLE NO.	HELGHT	BULK SPECIFIC		a 220r	0 7706	0.10405	INDII	RECT TENS	ION	RICE SPECIFIC	PERCENT AIR
			GRAVITY	@ -13°F	@ 33°F	@ 77°F	0 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOLDS
V	3-3 3-7 3-11	1.379 1.331 1.181	2.074 2.08 4 2.096			.202 .201 .214		16,989.5 19,301.2 18,666.5	69.2 69.4 70.1	.00408 .00359 .00375	2.469 2.463 2.455	15.8 15.4 14.9
	AVG.	1.297	2.085		.~	.206		18,319.1	69.6	. 00381	2.462	15.4

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

^{**} Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺⁺ See attached notes.

 $M_{\mbox{\scriptsize R}}$ Modulus of Resiliency.

US 287 DUMAS, TEXAS PROBLEMS

In Table 4A (MacMillan AC-10) the results for the Hveem stability test following the 7-day soak and resilient modulus $(77^{\circ}F)$ tests were lost in the lab.

In Table 4C (Exxon AC-10) the asphalt properties were lost and no samples could be located to rerun an extraction and recovery. In the 2nd leg, all samples fell apart before the testing sequence could be completed. In the 4th leg the samples (3-5, 3-18) were damaged during the testing sequence and no further tests could be run on them.

In Table 4E (Shamrock AC-10), the 4th leg testing sequence was discontinued due to the long period of time required to perform the 18-cycle Lottman. The program has been revised to include the resilient modulus tests at different temperatures in another leg. Also, there are no results for the indirect tension test run on Sample 5-8 because the test was incorrectly run.

<u>∞</u>

Table 4D. Test Sequence II results for Item 340 Type "D" cores using Shamrock AC-20, U.S. 287, Dumas, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY		PENETR/	\T10N	RING &	PERCENT ASPIIALT
NU.	110.	/ II. 1 Gill	GRAVITY	⊕ 77°F	JIMPILITI	/ LUN	@ 77°F	@ 140°F	@ 275°F	39.2°F	77°F	DALL	ASCIIACT
I	4-1 4-7 4-12	1.851 1.818 1.786	2.168 2.069 2.120	. 395 . 411 . 373	1094 1074 905	14 14 12				,			
	AVG.	1.818	2.119	. 393	1024	13	5.8x10 ⁶	4468	8.41	10	41	130°	4.99

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	•	EEM ILITY	MR		EEM* ILITY	INDI	RECT TENSI	ON*	MARSHALL STABILITY	MARSHALL FLOW
		1110,11	GRAVITY	@ 77°F	UNC	THO	@ 77°F	UNC	TIID	MODULUS	STRESS	STRAIN	5/101C(1)	
11	4-3 4-8 4-20	2.003 1.833 1.837	2.158 2.147 2.147	. 389 . 385 . 380	40.2 37.9 39.7	34.0 28.3 30.2	. 096 . 069 . 069	31.3 32.6 29.5	25.1 23.0 20.0	14148.6 6135.2 7633.2	47.7 34.7 32.9	.00337 .00566 .00431		
	AVG.	1.891	2.151	. 385	39. 3	30.8	. 078	31.1	22.7	9305.7	38.4	.00445		

LEG	SAMPLE		BULK	M _R	HVI		M _R		EEM	INDIREC	CT TENSIO	٧
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	€ 77°F	UNC	THO	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN
111	4-5 4-13 4-19	1.926 1.685 1.784	2.160 2.140 2.154	. 402 . 317 . 281	40.5 41.2 39.4	32.8 28.7 28.9	. 105 . 082 . 084	31.0 33.7 30.7	23.3 21.2 20.1	6621.4 6131.8 6288.0	44.6 26.4 33.9	. 00674 . 00431 . 00539
	AVG.	1.798	2.151	. 333	40.4	30.1	.090	31.8	21.5	6347.1	35.0	. 00548

Table 4D. (Continued) Test Sequence II results for Item 340 Type "D" cores using Shamrock AC-20, U.S. 287, Dumas, Texas.

		HE 1GHT	BULK SPECIFIC GRAVITY	• M _R @ -13^F	M _R @ 33°F	M _R № 77°F	M _R @ 104°F	IIVEE STABIL UNC	THD	M <mark>*</mark> ** 0 77°F	IIVEE Stabil Unc	M*** 1TY THD	INDIA MODULUS	STRESS	r	*** MARSHALL STABILITY	*** MARSHALL FLOW
10	"] !												· · · - <u>-</u>	W V			
	AVG.										, v v	* · ·-			*185	- 14 (4) (4)	

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	0 1005	0.2205	0 7705	0.10495	10011	RECT TENS	ION	RICE SPECIFIC	PERCENT ATR
	Alfano (Alam) agrama agramada da		GRAVITY	0 -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOLOS
	4-6 4-13	1.856 1.856	2.162 2.108	1.809 1.549	1.156 1.095	. 371 . 338	.088	26721.0 31810.8	90.0 72.9	.00337	2.425 2.422	10.8
V	4-18	1.780	2.158	1.816	1.120	.388	.088	38697.2	93.9	.00243	2.429	13.0 11.2
												}
						_		- vices springs may a sign quee section of			to me'm the white annument was to accompanied with the	
<u> </u>	AVG.	1.831	2.143	1.725	1.124	. 366	. 086	32409.7	85.6	.00270	2.425	11.6

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

 M_{R} Modulus of Resiliency.

^{**} Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

83

Table 4E. Test Sequence II results for Item 340 Type "D" cores using Shamrock AC-10, U.S. 287, Dumas, Texas.

LEG	SAMPLE NO.	BETGHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY		PLNETRA	NOTE	RING &	PERCENT ASPHALT
NO.	NO.	19, 10111	GRAVITY	(a 77")	SIMPLEIT.	(L.ON	@ 77"F	@ 140°F	@ 275°I	39.2°F	77°F		NS/TIME, I
ji	5-2 5-7 5-14	1.345 1.248 1.330	2.219 2.209 2.190	.148 .154 .169	12 4 9 1155 893	14 12 16							
	AVG.	1.308	2.206	. 157	1099	14	2.0x10 ⁶	2263	4.813	15	57	123°	5.95

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	IVI STARI	EM LITY	M _R		EEM* ILITY	INDII	RECT TENSI	ON*	MARSHALL STABLLLY	MARSHALL FLOW
NO.	NO.	nerdin	GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	TIID	MODULUS	STRESS	STRAIN		* * * * * * * * * * * * * * * * * * *
 11	5-6 5-11 5-16	1.472 1.379 1.414	2.214 2.202 2.189	. 139 . 126 . 162	43.4 44.3 44.7	25.0 25.6 26.8	.054 .065 .059	35.9 40.1 37.3	19.1 21.5 19.4	2717.4 2513.9 2912.7	32.4 30.0 31.3	.012 .012 .011		
•	AVG.	1.422	2.202	. 142	44.1	25.8	.059	37.8	20.0	2714.7	31.2	.012		

LEG	SAMPLE		BULK	M _R	IIVE		M _R		EEM	INDIREC	T TENSION	٧
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77°F	STABI	THO	@ 77°F	UNC	THO	MODULUS	STRESS	STRAIN
111	5-3 5-9 5-13	1.455 1.454 1.429	2.221 2.212 2.182	. 163 . 150 . 162	43.1 42.3 42.2	26.0 25.2 24.5	. 108 . 092 . 059	38.2 41.5 42.1	21.0 24.3 24.4	7753.9 7195.0 5187.8	60.2 55.8 31.0	.00776 .00776 .00576
	AVG.	1.446	2.205	. 158	42.5	25.2	. 086	40.6	23.2	6712.2	49.0	.00709

Table 4E. (Continued) Test Sequence II results for Item 340 Type "D" cores using Shamrock AC-10, U.S. 287, Dumas, Texas.

LEG NO.	SAMPLE NO.	HE I GHT	BULK SPECIFIC GRAVITY	M _R @ -13°F	M _R @ 33^F	M _R @ 77°F	M _R @ 104°F	STAB I UNC	 M*** @ 77°F	IIVE STABI UNC	EM*** LITY THD	INDIA MODULUS	STRESS	r	*** MARSHALL STABILITY	*** Marshall Flow
17	5-1 5-5 5-10 5-12 5-15 5-18	1.403 1.454 1.269 1.319 1.425 1.438	2.227 2.222 2.221 2.200 2.196 2.213	1.509 1.789 1.788 1.579 1.563 1.350	.947 1.002 .934 .952 .902 1.010	.136 .163 .143 .169 .144 .164	.029 .023 .027 .046 .040 .031	++ ++ ++ ++ ++						The second of th		

1	T
-	_
	4

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	2 2205	2 2225			INDI	RECT TENS	10N	RICE SPECIFIC	PERCENT AIR
ALM BULL TO THE PARTY OF THE			GRAVITY	@ -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	2010v
v	5-4 5-8 5-17	1.350 1.392 1.363	2.216 2.215 2.222			.148 .123 .170		11851.9 + 13529.1	70.736 + 78.819	. 00597 + . 00597	2.364 2.366 2.366	6.3 6.3 6.0
	AVG.	1.368	2.218			, 147		12529.1	74.777	. 00597	2.365	6.2

Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

 $M_{\mbox{\scriptsize R}}$ Modulus of Resiliency.

n_R modulus of Resiliency.
 See the footnote on the attached page.

US 287 DUMAS, TEXAS PROBLEMS

In Table 4A (MacMillan AC-10) the results for the Hveem stability test following the 7-day soak and resilient modulus $(77^{\circ}F)$ tests were lost in the lab.

In Table 4C (Exxon AC-10) the asphalt properties were lost and no samples could be located to rerun an extraction and recovery. In the 2nd leg, all samples fell apart before the testing sequence could be completed. In the 4th leg the samples (3-5, 3-18) were damaged during the testing sequence and no further tests could be run on them.

In Table 4E (Shamrock AC-10), the 4th leg testing sequence was discontinued due to the long period of time required to perform the 18-cycle Lottman. The program has been revised to include the resilient modulus tests at different temperatures in another leg. Also, there are no results for the indirect tension test run on Sample 5-8 because the test was incorrectly run.

Table 4F. Test Sequence II results for Item 340 Type "D" cores using Cosden AC-20, U.S. 287, Dunias, Texas.

LEG NO.	SAMPLE NO.	REIGHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY		PENETRA	AT ION	RING & BALL	PERCENT ASPUALT
130.	10.	11210111	GRAVITY	@ 77^F	311012111		@ 77°F	@ 140°F	@ 275°I'	39.2°F	77"F		
1	6-1 6-11 6-17	1.580 1.382 1.471	2.155 2.152 2.152	. 377 . 393 . 392	634 606 606	10 11 9							
	AVG.	1.478	2.153	. 387	615	10	4.6x10	2453	5.800	8	43	126°	5.16

- 1	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ 77°F	1	EEM ILITY THD	M R @ 77°F		EEM* ILITY THD	INDII Modulus	RECT TENSI	ON* STRAIN	MARSHALL STABILITY	MARSHALL Flow
S	IJ	6-2 ⁻ 6-4 6-7	1.576 1.430 1.366	2.176 2.150 2.131	.431 .396 .337	50.2 50.5 45.6	35.4 32.9 26.7	.229 .185 .187	48.8 46.0 40.8	34.1 28.4 21.8	37021.7 21568.6 17357.7	84.8 63.9 44.5	.00229 .00297 .00256		
	-	AVG.	1.457	2.152	. 388	48.8	31.7	.200	45.2	28.1	25316.0	64.4	.00261		<u></u>

LEG	SAMPLE	lu: I Cut	BULK	M _R	HVE		M _R		EEM	INDIREC	CT TENSIO	٧
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77°F	UNC	THD	@ 7 7 °F	UNC	THO	MODULUS	STRESS	STRAIN
III	6-3 6-6 6-16	1.399 1.444 1.647	2.169 2.142 2.170	.422 .397 .395	54.3 50.7 45.1	36.1 33.3 31.8	.173 .147 .163	53.4 49.2 44.1	35.1 31.8 30.8	14702.7 13738.0 13495.5	61.4 46.3 61.8	.00418 .00337 .00458
	AVG.	1.497	2.160	, 405	50.3	33.7	. 161	48.9	32.2	13978.7	56.5	.00404

Table 4F. (Continued) Test Sequence II results for Item 340 Type "D" cores using Cosden AC-20, U.S. 287, Dumas, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	MR	MR	MR	IIVEE STABIL		M***	HVEI	M***	ł	ECT TENS		*** MARSHALL	*** MARSHALL
	200 SP N SPR NAME OF		GRAVITY	0 -13°F	@ 33°F	0 77°F	@ 104°F 	UNC	THD	@ 77°F	UNC		MODULUS	STRESS	STRAIN	STABILITY	FLOW
IV																	
	Ave		u. a.v.			The second secon								P. C			* **** **** * * * * * * * * * * * * *
l	AVG.	.1		<u> </u>	l	L		1	<u> </u>	<u> </u>	<u> </u>					nder har bet en engren verketet en en	# NOTE + 1

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC					INDI	RECT TENS	ION	RICE SPECIFIC	PERCENT AIR
			GRAVITY	0 -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
٧	6-5 6-8 6-13	1.322 1.356 1.525	2.149 2.120 2.158	1.836 1.641 1.553	1.317 1.164 1.389	. 401 . 314 . 405	. 089 . 078 . 084	39406.1 32655.3 47184.3	90.3 88.0 101.8	.00229 .00270 .00216	2.398 2.387 2.390	10.2 11.4 9.8
	AVG.	1.401	2.142	1.677	1.290	. 373	.084	39748.6	93.4	.00238	2.392	10.5

Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

M_R Modulus of Resiliency.

Denotes Test Results Following the 7-day Soak Period.

^{***} Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

Table 4G. Test Sequence II results for Item 340 Type "D" cores using Cosden AC-10, U.S. 287, Dumas, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY	grammer and a second	PENITRA	VI TON	RING &	PERCENT ASPHALT
110.			GRAVITY	@ 77°F	300072		@ 77°F	@ 140°F	@ 275°1	39.2°F	77°F	Druc L	//3/1///
I	7-1 7-7 7-11	1.392 1.494 1.427	2.106 2.100 2.093	. 499 . 454 . 405	1116 1046 909	10 10 12							
	AVG.	1.438	2.100	. 453	1024	11	8.5x10 ⁶	4492	4.384	8	28	130°	5.26

_	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R 0 77°F	HVE STABI UNC		M R @ 77°F	1	ECM* ILITY THD	IND16 MODULUS	STRESS	ON*	MARSHALL STABILITY	MAI: HALL FLOW
88	II	7-5 7-9 7-13	1.561 1.560 1.460	2.099 2.106 2.084	. 449 . 450 . 419	47.8 42.9 45.7	32.8 27.9 28.6	.136 .195 .204	35.3 36.0 37.5	20.3 20.9 20.4	21180.6 27249.6 34839.7	57.1 73.5 61.0	.00270 .00270 .00175		
		AVG.	1.527	2.096	. 439	45.5	29.8	.178	36.3	20.5	27756.6	63.9	.00238		

LEG	SAMPLE	HEIGHT	BULK	M _R	HVE		MR		E EM ILITY	INDIREC	T TENSION	(
NO.	NO.	HETOILI	SPECIFIC GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	TIID	MODULUS	STRESS	STRAIN
[1]	7-6 7-10 7-15	1.577 1.457 1.356	2.104 2.092 2.111	.481 .432 .428	42.9 47.4 52.1	28.2 30.2 33.0	.126 .118 .132	32.3 35.3 42.5	17.6 18.2 23.4	8904.3 11022.0 11843.0	44.4 37.1 39.9	.00499 .00337 .00337
	AVG.	1.463	2.102	. 447	47.5	30.5	. 125	36.7	19.7	10589.8	40.5	.00391

Table 4G. (Continued) Test Sequence II results for Item 340 Type "D" cores using Cosden AC-10, U.S. 287, Dumas, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	. М _R ,@ -13°Г	M _R @ 33°F	M _R @ 77°F	^M R @ 104°F	HVEE STABIL UNC	174	M*** @ 77"F	IIVEE STABIL UNC	M*** THO	IND1R Modulus		 *** MARSHALL STABILITY	*** MARSHALL FLOH
īv					**************************************	AMERICAN AND AND AND AND AND AND AND AND AND A				* ************************************				<u></u>	 t	, , , , , , , , , , , , , , , , , , , ,
	AVG.		New York of the State St					Name and the Agency						no	 	· · · · · · · · · · · · · · · · · · ·

89

LEG NO.	SAMPLE NO.	HE I GHT	BULK SPECIFIC	The state of the s				INDI	RECT TENS	ION	RICE SPECIFIC	PERCENT AIR
			GRAVITY	@ -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
v	7-3 7-12 7-14	1,352 1,465 1,315	2.065 2.085 2.087	1.817 1.747 1.752	1.196 1.262 1.234	. 387 . 422 . 456	. 088 . 085 . 089	40221.7 47412.9 40408.2	103.0 108.6 108.9	.00256 .00229 .00270	2.402 2.416 2.420	14.4 13.6 13.5
	AVG.	1.377	2.079	1.772	1.231	. 422	: 087	42680.9	106.8	.00252	2.413	13.8

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

F Denotes No Test Values Available.

M_R Modulus of Resiliency.

Table 5. Test Sequence [1 results for IH 45 18-core section, Madisonville, Texas.

C TS(+	K 99 30 300 VON	Bulk Specific	M _R @ '	* =	Marshal	II Test	Perc	ent	Penetration	n, dinni	Vis	cosity,	poises	Ring and Ball Softening
Phase	Sample	Gravity	77"F x 10 ^b	Stabilit	ty (1bs)	Flow (0.01 in)	Asph		39.2°F	17°F	71°F	140°	F 275°F	Point, "F
ı	2-10 2-12 2-18	2.374 2.384 2.389	. 748 . 848 . 960	139 120 119	8	7 8 8								
	AVG	2,382	.852	126	5	8	4.1	3	4	22	1.4x10 ⁷	8300	5.24	135
90				liveem Sta	shilitv	ı	Hveem St	ability*	Marshall	Tact*				
				Perce	•	MR*10		cent	Stability			Splittir	ng Tensile Test	@ 77°F*
				(UNC)	(THD)	77°F x 10° psi	(UNC)	(THD)	pounds	0.01 in	Stress	(psi)	Strain (in/in)	Modulus (psi)
П	2-1 2-2 2-3	2.395 2.374 2.416	. 684 . 576 . 885	49.0 38.1 46.3	30.4 25.1 32.6	. 418 . 365 . 364	36.5 29.2 35.2	17.6 16.1 21.5	916 715 624	11 14 14		e		
	2-9	2.383	.650	42.8	27.6	. 397	33.2	21.5	QL I	• •	147.7		.00244	60468.2
	2-13 2-17	2.418 2.392	. 657 . 798	47.3 39.3	31.2 29.5	.532 .400					128.7		.00172	7466.0
	AVG	2.396	. 708	43.8	29.4	.413	33.6	18.4	752	13	138,2		.00208	33967. 1

Table 5. Test Sequence II results for III 45 18-core section, Madisonville, Texas (Continued).

***************************************	···· •·····	Bulk Specific	M _R @	Hveem St Perc		M _R ** 0		ability** cent	Harshall Stability		Splitt	ing Tensile Test	@ 77°F**
Phase	Sample	Gravity	77°F x 10°	(UNC)	(THD)	77°F x 10 ^b pst	(UNC)	(THD)	pounds	0.01 <u>In</u>	Stress (psi)	Strain (in/in)	Modulus (psi)
	2-5	2.367	.797 .	51.2	38. 3	.474	40.7	27.7	678	13			
111	2-7	2.388	. 546	36.2	22.3	. 412	36.0	22.1	908	14			
	2-11	2.366	. 854	49.9	34.4	.530	51.9	36.4	788	ii			
	2-14	2.415	.613	41.4	25.7	.537	42.2	26.5	700	• • •	227.7	.00395	57624.4
	2-15	2.419	.651	50.1	32.0	.531	47.7	29.6			209.1	.00442	47358.9
	2-16	2.418	. 666	51.3	34.3	. 578	40.1	23.1			244.8	.00442	60184.7
	AVG	2.396	.688	46.7	31.2	.510	43.1	27.6	791	13	227.2	.00415	55056.0

۹	Ω	
	_	

					M _R × 10	0 ⁶ pst		Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
				-13°F	33°F	68°F	104°F	Stress (ps1)	Strain (in/in)	Modulus (psi)	Gravity	Voids
IV	2-4 2-6 2-8	2.387 2.396 2.389	.749 .853 .661	2.711	2,430 2,138 1,950		. 187 . 186 . 069	230.8 236.9 226.3	. 00402 . 00460 . 00569	57381.0 51527.7 39786.2	2.481 2.462 2.482	3.8 2.7 3.7
	AVG	2.391	. 754	2.691	2.173		. 147	231.3	.00477	49565.0	2.475	3.4

Notes

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

 $[\]mathbf{M}_{\mathbf{R}}$ ~ Resilient Modulus

⁺ Denotes No Data Available.

Table 6. Test Sequence II results for IH 45 12-core section, Madisonville, Texas.

Dhaco.	Samulo	Bulk Specific Gravity	M _R @	Marshall Test Stability (lbs) Flow (0.01 in)		Percent Asphalt	Penetration, dum		Viscosity, poises			Ring and Ball Softening
Phase	≥ Sambjië (uravicy	77 T X 10	3 capitity (105)	Flow (0.01 III)	vabilair	39.2		/! <u>I.</u>	140°F	275°F	Point, "F
	1-1	2.414	0.683	1056	7	4.01	7	32	5.3x10 ⁶	4038	4.089	127
1	1-6	2.391	0,646	1537	7	4.52	10	40	+ c	2450	3.947	128
	1-9	2.398	0.763	1300	5	4.11	4	23	9.8x10°	6422	6.132	131 -
	ΛVG	2.401	0.697	1298	6	4.21	7	32	7.6x10 ⁶	4303.3	4.723	129

92

Hveem Stability		Ilveem Stability*	Marshall Test*	
Percent	M _R * 0	Percent	Stability Flow	Splitting lensile Test @ 77°f*
(UNC) (THD)	77°F x 10° ps1	(UNC) (THD)	pounds 0.01 1n	Stress (psi) Strain (in/in) Modulus (psi)

Table 6. Test Sequence II results for IH 45 12-core section, Madisonville, Texas (Continued).

AND ELECTION TO		Bulk Specific	M _R @	liveem St Perc		M _R ** @	Hveem Sta Pero		Marshall Stability		Splitt	ing Tensile Test	@ 77°F**
Phase	<u>Sample</u>	Gravity	17°F x, 10°	(UNC)	(THD)	17°F x 10° psi	(UNC)	(THD)	pounds	0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
111	1-2 1-4 1-5 1-7 1-10	2.404 2.390 2.398 2.389 2.401 2.399	0.576 0.618 0.675 0.754 0.562 0.596	79.2 71.6 74.9 67.1 76.3 73.1	46.3 35.9 40.4 38.4 38.6 38.5	.614 .619 .644 .510 .668 .585	69.0 65.7 64.5 58.5 73.2 63.2	36.1 30.0 29.9 29.9 35.5 29.1	+ + 8 64	+ + 12	186.0 185.0 173.0	.00699 .00641 .00350	26604.0 28848.0 49366.0
	AVG	2.397	0.630	73.7	39.7	.607	65.8	31.18	864	12	181.0	.00563	34939.0

S	
w	

					M _R x 10	0 ⁶ pst		Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
				-13°F	33°F	_68°F 1	04°F	Stress (pst)	Strain (in/in)	Modulus (psi)	Gravity	Voids
IV	1-3 1-8 1-12	2.394 2.389 2.402	0.694 0.617 0.675		2.039 2.143 2.316	.0	175 194 158	.00519 .00384 .00396	162.0 130.0 202.0	31243.0 33821.0 50993.0	2.481 2.449 2.477	3.5 2.4 3.0
	AVG	2.395	0.662	3.029	2.166	.0	76	.00433	165.0	38686.0	2.469	3.0

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

 $[\]star\star$ Denotes test results after (18 cycle) Lottman moisture treatment procedure.

 $M_{
m R}$ - Resilient Modulus

⁺ No Test Value Available.

Table 7. Test Sequence II results for IH 45, Huntsville, Texas.

51.7

63.7

59.2

. 484

. 748

.578

2.420 2.338

2.366

3-8

3-9

AVG

42.6

51.8

49.5

. 194

. 162

, 4.		Bulk Specific	M _R e	Marshal	l Test	Percent	Penetratio	on, dam	Vis	cosity, p	oises	Ring and Ball Softening
Phase	Sample	Gravity	77°F x 10 ⁶	Stability (1bs)	Flow (0.01 in)		39.2°F	77°F	77°F	140°F	275°F	Point, °F
ī	3-1 3-2 3-3	2.403 2.354 2.389	. 426 . 461 . 477	2148 1560 2155	8 7 7	4.24	29	52	2.83x10 ⁶	3583	3.832	128
	AVG	2.382	. 445	1954	7	4.24	29	52	2.83×10 ⁶	3583	3.832	128
94												
				Percent	M _R *1 0	Percent	Marshall Stability	Flow		•	Tensile Test	
				(UNC) (TIID)	had and the second of seco	(UNC) (THD)	pounds	<u>0.01 in</u> 17	Stress	(h21) 3	Crain (in/in)	Modulus (psi)
11	3-4 3-5	2.381 2.350	.435 .854	66.0 57.4 70.1 58.2	,066 ,192	39.5 30.9 52.9 41.0	224 672	12				
11	3-6 3-7	2.343 2.363	. 466 . 483	42.6 39.5 61.0 47.7	. 150 . 148	39.7 31.6 48.9 35.6 40.6 31.6	577	11	29.0 67.7		. 00290 . 00383	99733.3 176560.2

40.6

49.5

45.2

31.6

37.7

34.7

491'

13

.00383

.00267

.00313

67.7

43.5

46.7

99733.3 176560.2

162920.9

Table 7. Test Sequence II results for IH 45, Huntsville, Texas (Continued).

	, , , , , , , , , , , , , , , , , , ,	Bulk Specific	M _R @		Stability MR** @		e Percent S		* Marshall Test** Stability Flow pounds 0.01 in		Splitt	ing Tensile Test	@ 77°F**
Phase	Sample	Gravity	77°F x .10°	(UNC)	(THD)	77°F x 10° psi	(UNC)	(THD)	pounds	0.01 In	Stress (psi)	Strain (in/in)	Modulus (psi)
	3-10	2.440	.564	63.0	53.7	. 365	55.8	46.5	2138	12			
Ш	3-11	2.396	. 303	49.4	39.2	. 174	42.1	31.9	1002	12			
• • •	3-12	2.346	.514	50.4	39.3	. 078	41.1	30.0					
	3-13	2.364	. 409	50.9	41.2	.083	38.7	28.9			23.0	.00431 -	5345.2
	3-14	2.334	. 824	59.2	52.3	. 168	37.4	30.5			31.5	.00316	9979.8
	3-15	2.335	. 936	63.7	50.9	.078	48.4	35.7			22.3	.00431	5181.3
	AVG	2.369	. 592	56.1	46.1	. 158	43.9	33.9	1570	12	22.3	.00393	6835.4

109.0

.00151

76324.8

2.499

5.0

-				M _R x 10	o ⁶ pst		Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
			<u>-13°F</u>	33°F_	68°F	104°F	Stress (ps1)	Strain (in/in)	Modulus (psi)	Gravity	Voids
***	3-16	2.355	2.205		.727	.317	130.5	.00116	112281.5	2.496	5.6
17	3-17 3-18	2.344 2.427	2.093 2.421	1.307 1.474	. 425 . 514	.197 .237	88.6 107.9	.00151 .00186	58676.5 58016.4	2.496 2.504	6.1 3.1

. 250

Notes

AVG

2.240

1.441 .555

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure. ${\rm M_R}$ - Resilient Modulus

Table 8. Test Sequence II results for IH 35, Waxahachie, Texas.

• • • •	•	Bulk Specific	M _R 0	gament of the species of	Marshal	1 Test	Perc	ent	Penetratio	n, dann	γ i	scosity, p	oises	Ring and Ball Softening
Phase	Saimbij6	Gravity	77°F x 10 ⁶	Stabili	ity (lbs)	Flow (0.01 in)			39.2°F	77°F	77°F	140°F	275°F	Point, "F
i	400-3 OS 405-325 BWP 404 BWP	2.225 2.229 2.234	1.244 1.180 1.026	254 267 261	8	9 8 8								
	AVG	2.229	1.150	261	3	8	5.1	4	14	39	1.5×10 ⁷	22920	8.4	135
96														
				Ilveen St	-	M _R *(0	Hveem Sta	•				Splitting	lensile Test	@ 77°F*
				Perc (UNC)	(THD)	77°F x 10 ⁶ psi	Peri (UNC)	(TIID)	Stability pounds	Flow 0.01 in	Stress		train (in/in)	Modulus (psi)
11	399 BWP 406-575 OS 406-575 BWP	2.375 2.337 2.166	1.055 1.481 0.506	56.4 88.3 75.2	40.5 61.9 52.3	. 744 . 629 . 445	57.9 50.6 66.4	42.1 24.1 43.4	2460 1890 3023	10 21 14				
	406-575 BWP 399 BWP 406 BWP		1.643 1.137 1.192	87.2 78.2 85.0	63.5 57.0 58.1	1.064 .808 .775	66.9 45.3 66.8	43.2 24.0 39.9	50	••	77.6 68.1 57.5		. 00170 . 00284 . 00227	45584.3 22987.4 25352.2
	AVG	2.330	1.169	78.4	55.6	. 774	59.0	36.1	2458	15	67.7		.00227	31308.0

Table 8. Test Sequence II results for IH 35, Waxahachie, Texas (Continued).

		Bulk Specific	M _R @	Hveem St Perc	ent	M _R ** 0		ability** cent	Marshall Stability		Splitt	ing Tensile Test	@ 77°F**
<u>Phase</u>	<u>Sample</u>	Gravity	77°F x 10°	_(UNC)	(THD)	77°F x 10° psi	(UNC)	(THD)	pounds	0.01 in	Stress (psi)	Strain (in/in)	<u> Modulus (psi)</u>
	404 OS	2.390	1.048	89.0	59.6	. 492	78.0	48.7	2372	15			
ш	399 OSWP	2.395	1.213	89.4	61.7	. 596	85.1	57.4	2363	13			
	399 OS	2.391	0.935	71.3	47.6	, 430	67.1	43.3	2389	15			
	404 BWP	2.366	1, 132	80.0	52.1	. 315	63.6	35.6			30.5	0.00144	21236.0
	399 BWP	2, 389	1.086	88.9	60.1	. 26 3	81.3	52.6			45.4	0.00345	13159.3
	402 NS	2.315	0.863	85.0	54.5	. 074	72.0	41.6			24. 2	0.00373	6472.7
	AVG	2.374	1.046	83.9	55,9	. 362	74.5	46.5	2375	14	33.3	0.00287	13622.7

ശ	

				M _R x 1	0 ⁶ psi		Split	ting Tensile Test	⊌ 77°F	Rice Specific	Percent Air
			<u>-13°F</u>	33°F	68°F	<u>104°F</u>	Stress (psi)	Strain (in/in)	Modulus (psi)	Gravity	Voids
14	400-3 BWP 400-30 SWP 399 BWP	2.347 2.375 2.394	3,564	2.372 3.844 2.482	.816 1.538 1.460	. 835 . 541 . 804	120.0 207.1 177.5	.00086 .00056 .00077	138805.0 373169.0 230912.0	2.456 2.439 2.471	4.4 2.6 3.1
	AVG	2.372	3.269	2.899	1.271	. 727	168.2	. 00073	247628.7	2.455	3.4

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) LoLtman moisture treatment procedure. $\rm M_{\rm R}$ - Resilient Modulus

Table 9. Test Sequence II results for US 77, Kingsville, Texas.

AVG

2.203

.423

gir A	*** ****	Bulk M _R 0 Marshall Test Specific M _R 0 Stability (1bs) Flow (0			ll Test	Percent	Penetration, down		Viscosity, poises			Ring and Nall Softening	
Phase	Sample	Gravity	77°F x 10°	Stability (lbs)	Flow (0.01 in)		39.2°F	77°F	_77°F	140°F	275°F	Point, "F	
ı	5-1 5-2	2.194 2.199	. 442 . 470	† †	+	8.43	10	48	4.75x10 ⁶	2861	4.144	130	
•	5-19	2. 192	.575	2984	8								
	AVG	2.195	. 496	2984	8	8.43	10	48	4.75x10 ⁶	2861	4.144	. 130	
98				Hveem Stability	M _R *′ 0 _	Hveem Stability*				Splittina	Tensile Test	. @ 77°I*	
				Percent (UNC) (TIID)	77°F x 10 ⁶ psi	Percent (UNC) (TIM)	Stability pounds	Flow 0.01 to				Modulus (psi)	
П	5-3 5-8 5-9 5-10 5-13 5-15	2.217 2.207 2.180 2.185 2.211 2.219	. 462 . 362 . 430 . 400 . 507 . 374	21.7 2.60 2.15 4.2 32.0 11.6 34.6 14.5 31.3 17.0 40.0 20.7	. 106 . 244 . 244 . 170 . 378 . 447	6.8 12.3 4.1 13.2 3.0 17.5 3.8 16.3 5.7 8.6 11.3 8.0	1250 1300 1636	18 19 17	43.0 58.0 38.0		00417 00444 00418	10310.0 13049.0 9087.0	

5.8

. 265

11.8

30.2

12.7

1395

18

46.3

.00426

gat yan san militara da ananana s	Manager and the second	Bulk Specific	M _R 0	IIveen St Perc	-	M _R ** @		ability** cent	Marshall Stability	•	Splitt	ing Tensile Test	@ 77°F**
Phase	_Sample_	Gravity	77°F x 10 ^D	(UNC)	(TIID)	77°F x 10° psi	(UNC)	(THD)	pounds	0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
	5-6	2.201	. 475	41.7	21.1	.296	19.7	.1			95.0	.00297	31983
111	5-7	2.202	. 383	22.7	4.5	. 316	11.0	7.2			125.0	.00538	23247
	5-11	2.216	. 454	39.1	23.4	. 259	15.8	. 1			114.0	. 002 38	47930
	5-12	2.218	. 425	37.3	22.5	. 317	14.2	.6	1419	14			
	5-14	2,214	, 368	30.5	18.8	. 321	34.2	22.4	1421	18			
	5-16	2.218	. 346	20.7	3,9	.286	11.7	5.7	1779	17			,
	AVG	2.212	. 409	32.0	15.7	. 299	17.8	6.1	1540	16	111.3	.00358	34386.7

99

				M _R x 10 ⁶ ps t			Split	ting Tensile Test	0 77°F	Rice Specific	Percent Air
				-13°F	33°F 68°F	104°F	Stress (psi)	Strain (in/in)	Modulus (psi)	Gravity	Voids
TV .	5-4 5-5 5-17 5-18	2.198 2.190 2.203 2.194	. 471 . 452 . 319 . 409	2.272 2.063 2.034 2.370	1.368 1.245 0.938 1.261	.117 .096 .065 .076	173.0 + 166.0	.00418 .00716	41415 23170	2.266	
	AVG	2.196	.413	2.185	1.203	.089	170.0	.00567	32293	2.261	3.0

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

 M_{R} - Resilient Modulus

⁺ No Test Value Available.

Table 10 . Fest Sequence II results for US 77, Sinton, Texas.

2.250 2.154

2.179

2.191

2.212

.478

.416

.602 .545

. 492

29.3

46.7

30.2

29.1

32.6

19.1

23.1

19.4

16.8

19.4

6-7

6-13

6-15

6-17

AVG.

		Bułk Specific	M _R e	Marshall Test Per		Percent	Percent Penetration, dmm			scosity, p	ooises	Ring and Ball Softening
Phase	Sample	Gravity	$77^{\circ}\hat{F} \times 10^{6}$	Stability (lbs)	Flow (0.01 in)		39.2°F	77°F	77°F	140°F	2/5°F	Point, °F
	6-2	2.251	. 483	2667	11							
	6-12	2.182	. 548	2335	11							
•	6-16	2.189	. 608	2832	9							
	AVC.	2.207,	.546	2611	10	6.51	10	55	4.95×10 ⁶	2712	4.078	128
100				Hveem Stability		Hveem Stability*	Marshall	l Test*				
				Percent	M _R ** 0	Percent	Stability	y Flow		Splitting	Tensile Test	@ 77°F*
				(UNC) (THD)	77°F x 10° pst	(UNC) (THD)	pounds	0.01 t	n <u>Stress</u>	(psi) 9	itrain (in/in)	Modulus (psi)
	6-5	2.246	.463	30.1 16.7	. 469	25.6 12.2				+	+	4
11	6-6	2.251	. 450	30.2 19.4	. 405	31. 9 21.0			(68.0	.00361	18843.0
11	c 7	2 250	A 70	20 2 10 1	220	21 2 21 n				71 0	91100	16041.0

31.3

42.6

34.9

34.0

33.4

21.0

18.9

24.1

21.6

19.8

1251

816

1196

1088

10

19

18

16

71.0

69.5

.00419

.00390

16941.0

17892.0

. 338

.210

.251

. 367

Table 10. Test Sequence II results for US 77, Sinton, Texas (Continued).

a alban ya aman ka aman ka ka a		Bulk Specific	M _R @	Hveem St Perc	•	M _R ** @_		ability** cent	Marshall Stability		Splitt	ing Tensile Test	0 77°F**
Phase	<u>Sample</u>	Gravity	$77^{\circ}F \times 10^{\circ}$	(DNC)	(THD)	77°F x 10° ps1	(UNC)	(THD)	pounds	0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
	6-1	2.224	. 330	35.2	20.8	.097	22.6	8.1			.00149	88.0	59076.0
111	6-4	2.216	. 448.	34.7	16.5	.244	36.8	18.6			. 00060	114.0	189772.0
	6-8	2.192	.611	37.5	22.1	. 096	35.8	20.4			.00089	49.0	54878.0
	6-10	2,183	. 536	48.2	29.3	.255	38.2	19.3	916	15			
	6-11	2.204	. 456	34.7	18.9	.215	33.5	15.5	1321	15			
	6-14	2.170	. 476	42.0	24.0	.251	34.9	19.1	1136	11			
	AVG.	2.193	. 476	38.7	21.9	. 193	33.6	16.8	1124	14	.00099	83.7	101225.3

01					M _R × 1	0 ⁶ ps 1		Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
				-13°F	33°F	68°F	104°F	Stress (psi)	Strain (in/in)	Modulus (psi)	Gravity	Voids
	6-3 6-9	2.235 2.229	. 470 . 508	1.087 2.056	1.591 1.546		.083 .080	222.0 240.0	.00418 .00417	53061.0 57514.0	2.309 2.331	3.2 4.4
17	6-18	2. 154	. 556	1.880	1.429		.148	236.0	.00658	65854.0	2.331	6.0
	AVG.	2.706	.511	2.008	1.522		. 104	232.7	.00498	58809.7	2.311	4.5

 $[\]star$ Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

M_R - Resilient Modulus

^{+ -} No Test Data Available.

Table 11. Test Sequence II results for IH 37, Oakville, Texas.

		Bulk Specific	M _R @	Marsha1	l Test	Percent	Penetration, dmm		Visc	ises	Ring and Ball Softening	
Phase	Sample	Gravity	77°F x 10 ^b	Stability (lbs)	Flow (0.01 in)	Asphal t	39.2°F	77°F	7/ºE	140°F	275°F	Point, °F
	4-1	2.161	.412	2572	12				7			
ī	4-4	2.162	. 399	2340	18	5.59	10	33	1.30x10'	8776	5.837	140
	4-11	2.161	. 455	2323	16							
	AVG.	2.161	. 122	2412	15							

102	Hveem Stability		Hveem Stability*	Marshall Test*	
	Percent (UNC) (TIID)	M _R */0 77°F x 10 ⁶ psi	Percent (UNC) (THD)	Stability Flow pounds 0.01 to	Splitting Tensile Test 0 77°F* Stress (psi) Strain (in/in) Modulus (psi)

Table 11. Test Sequence II results for IH 37, Oakville, Texas (Continued).

		Bulk Specific	M _R 0	Hveem St Perc	•	M _R ** @		ability** cent	Marshall Stability		Splitt	ing Tensile Test	@ 77°F**
Phase	Sample	<u>Gravity</u>	77°F x 10°	(UNC)	(THD)	77°F x 10° ps1	(UNC)	(THD)	pounds	0.01 ln	Stress (psi)	Strain (in/in)	Modulus (ps1)
	4-3	2.168	. 382	35.2	26.8	.283	32.1	23.7			112.0	.00089	125234
111	4-8	2.152	. 379	38.7	28.5	. 283	29.9	19.7			97.0	.00090	108008
, , ,	4-9	2.158	. 397	44,8	30.2	.290	35.8	21.1			120.0	. 00060	200590
	4-10	2.153	. 406	40.0	35.8	.277	31.3	27.2	1494	28			
	4-12	2.161	. 428	41.3	33.3	. 307	27.7	19.7	1677	25			
	4-13	2.155	386	38.1	31.3	. 260	24.6	17.8	1323				
	AVG.	2.158	. 396	39.7	31.0	.283	30.2	21.5	1498	27	109.7	. 00080	144611

	_
-	$\bar{\omega}$

w					M _R x 10	6 psi	Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
				-13°F	33°F	68°F 104°F	Stress (ps1)	Strain (in/in)	Modulus (ps1)	Gravity	Voids
	4-2	2.157	. 402	1.768	1.020	.078					
17	1-5	2.173	. 432	2.039	1.133	.080	141.0	.00418	33728.0	2.306	
	4-6	2.150	.373	1.647	1.083	. 070	135.0	.00419	32219.0		
	4-7	2.145	. 386	1.980	1.286	.077	143.0	.00417	34288.0	2.297	
	AVG.	2,156	. 398	1.859	1.131	.076	139.7	.00418	33411.7	2.302	6.3

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

 $[\]ensuremath{^{\star\star}}$ Denotes test results after (18 cycle) Lotiman moisture treatment procedure.

 $^{{\}rm M_{
m R}}$ - Resilient Modulus

Table 12. Test Sequence II results for SH /1, Columbus, Texas.

Dhane Ce	p record to the Links and Adv.	Bulk Specific	MR @		Marshal	1 Test	Perc	ent	Penetration	n, dama	Vi	scosity, po	ises	Ring and Balt Softening
Phase	Sample	Gravity	77°F x 10 ⁶	Stabili	t <u>y (16s)</u>	Flow (0.01 in)			39.2°F	77°F	_7/ <u>"</u> J"	140°F	275°F	Point, F
1	2-9 2-12 2-15	2.256 2.298 2.271	. 764 . 875 . 721	2380 4462 2890		12 11 11	5.41		3	20	1.6x10 ⁶	10,200	6.851	139
	۸۷G	2.275	. 787	3244		11	5.41	*	3	20	1.6x10 ⁶	10,200	6.851	139
104				Hveem Sta	-	M _R * @	Hveem St	-	Marsball			Snlitting	Tensile les	t 0 77°Γ*
				Perce (UNC)	(IIID) eu <i>t</i>	77°F x 10 ⁶ psi	(UNC)	Cent (TMD)	Stability pounds	Flow 0.01 in		•) Modulus (psi)
11	2-3 2-4 2-5 2-11 2-13 2-18	2.258 2.250 2.234 2.298 2.261 2.273	. 848 . 720 . 760 . 526 . 592 . 653	44.7 42.3 52.2 48.3 41.5 50.8	20.9 27.7 38.2 26.8 23.2 29.7	. 562 . 491 . 520 . 369 . 482 . 476	32.9 35.1 40.8 40.6 30.5 32.6	17.2 20.5 26.8 19.1 12.2 13.4	2224 2250 1793	16 11 15	174.0 202.0 196.0	.(00479 00358 00298	36349.0 56427.0 65817.0
	AVG	2.262	.683	46.6	27.8	. 483	35.4	18.2	2089	14	190.7	.(00378	52864.3

Table 12. Test Sequence II results for SII 71, Columbus, Texas (Continued).

a considerate displace anno.	Specific MR ^R 6 1		Ilveem Stability MR** @		Ilveem Stability** Percent		Marshall Test** Stability Flow		Splitt	Splitting Tensile Test @ 77°F**			
Phase	Sample	Gravity	77°F x 10°	(INC)	(THD)	77°F x 10 ⁶ psi	(UNC)	(TIID)	pounds	0.01 in	Stress (ps1)	Strain (in/in)	Modulus (psi)
	2-2	2.254	. 740	40.2	24.1	.694	41.5	25.4					
111	2-6	2.250	.691	40.1	26.0	. 666	42.5	28.5					
	2-8	2.247	.818	42.6	26.7	. 778	45.0	29.1					
	2-10	2.308	. 466	42.9	23.4	. 415	37.0	17.6	1725	14	203.0	.00358	56735.0
	2-14	2.274	.638	44.9	25.5	. 561	39.9	20.6	2225	14	218.0	.00359	60732.0
	2-17	2.283	.560	42.7	20.3	. 524	44.0	21.6	2602	13	226.0	.00418	54027.0
	AVG	2.269	.652	42.2	24.3	.606	41.7	23.8	2184	14	215.7	.00378	57164.7

105	,			М _R х 10	6 pst		Split	ting Tensile Test	₽ 77°F	Rice Specific	Percent Air
			-13°F	33°F	17'F	104°F	Stress (psi)	Strain (in/in)	Modulus (ps1)	Gravity	Volds
17	2-1 2-7 2-16	2.250 2.281 2.259	2.803 2.286 2.304	2.137 1.659 2.001	.795 .727 .687	. 120 . 086 089	284.0 277.0 259.0	.00030 .00030 .00060	952000.0 920562.0 433651.0	2.353 2.335 2.318	4.4 2.3 2.5
	AVG	2.263	2.464	1.932	. 736	.098	273.3	. 00040	771737.7	2.335	3.1

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

M_R - Resilient Modulus

Table 13. Test Sequence II for US 90A Colorado County, Texas.

		Bulk Specific	M _R 8	Marshal	l Test	Percent	Penetratio	n, dom	٧f	scosity, po	ises	Ring and Ball Softening
Phase	Sample	Gravity	77°F x 10 ⁶	Stability (lbs)	Flow (0.01 in		39.2°F	77"F	//°F	140°F_	275°F	Point, "F
	3-2	2.234	.533	+	4							
Į.	3-3 3-10	2.232 2.204	. 477 . 492	1444 +	12 +	5.45	16	41	5.2x10 ⁶	6508	6.209	132
	AVG	2.223	. 501	1444	12	5.45	16	41	5.2x10 ⁶	6508	6.209	132
106				Nveem Stability		Hveem Stability*	Marshall	Test*				
				Percent	MR*/ @	Percent	Stability			Splitting 1		
				(UNC) (THD)	77°F x 10 ^b psi	(UNC) (TIID)	pounds	0.01 fr	ı Stress	(psi) Sti	rain (in/in) Modulus (psi)

Table 13. Test Sequence II for US 90A Colorado County, Texas (Continued)

+ ***		Bulk	u a	Hveem St	tability	M ₀ ** @	liveem St	ability**			Cn1444	ing Tancila Tack	G 779F44
		Specific	M _R @	Perc	ent	15 ~	Per	cent	Stability	Flow	Spritt	ing Tensile Test	6 // 1
Phase	Sample	Gravity	77°F x 10 ^b	(UNC)	(THD)	77°F x 10 ⁶ psi	(UNC)	(TIID)	pounds	0.01 In	Stress (psi)	Strain (in/in)	Modulus (psi)
	3-1	2,253	.507	50.8	36.5	. 455	51.3	37.0			160.0	.00299	53467.0
111	3-5	2.267	.443	49.9	41.7	. 370	46.8	38.6			188.0	.00299	39453.0
	3-6	2.249	. 469	46.6	40.7	. 451	44.4	38.5			164.0	.00359	45677.0
	3-8	2,222	. 489	48.7	36.9	. 403	48.9	37.1	1620	15			
	3-9	2.209	. 456	43.4	33.8	. 306	41.2	31.6	1285	15			
	3-11	2.215	. 464	40.6	29.5	. 347	43.5	32.4	1373	18		*	
	ΛVG	2.236	. 471	46.7	36.5	. 389	46.0	35.9	1426	16	170.7	.00378	46199.0

107				М _R х 10	6 pst		Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
			-13°F	33°F	77°F	104°F	Stress (psi)	Strain (in/in)	Modulus (psi)	Gravity	<u>Voids</u>
17	3-4 3-7	2.226 2.232	1.723 2.147	1.155 1.506	.506 .481	075	154.0 136.0	.00060 .00052	258389.0 260911.0	2.404 2.387	7.4 6.5
	3-12	2.224	2.468	1.316	. 469	.075	137.0	. 00030	459487.0	2.309	3.7
	AVG	2.227	2.113	1, 326	. 485	. 076	142.3	.00047	326262.3	2.367	5.9

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

 $^{{\}rm M_{
m R}}$ - Resilient Modulus

⁺ No Data Available.

14. Test Sequence II for FM 2061 McAllen, original design (Loop 374). Table

Phase	Sample	Bulk Specific Gravity	М _R Ф 77°F x 10 ⁶	Stabili	Marshal ty (1bs)	ll Test Flow (0.01 in)	Perc Asph		Penetration 39.2°F	on, dmu 77°F	Visc 77°F	osity, po	275°F	Ring and Ball Softening Point, °F
I	7-3 7-10 7-12	2.591 2.394 2.377	.274 .360 .287	1169 1599 647	Facilities of the	10 9 10		.8	15	64	1.73x10 ⁶	2000	3.605	122
	AVG	2.454	. 307	1138		10	5	.8	15	64	1.73x10 ⁶	2000	3.605	122
108				Hveem Sta Perce (UNC)		M _R *i@ 77°F x 10 ⁶ pst	Hveem Sta Pera (UNC)	ability* cent (THD)	Marshall Stability pounds	/ Flow			Tensile Test train (in/in)	, @ 77°f* Modulus (psi)
11	7-1 7-2 7-7 7-8 7-9 7-11	2.365 2.369 2.372 2.370 2.403 2.389	. 286 · . 283 . 227 . 226 . 355 . 211	29.3 19.3 20.2 24.9 52.0 62.1	15.3 10.3 12.4 16.3 30.2 47.5	.299 .301 .289 .297 .416 .373	28.2 18.6 19.8 14.8 55.3 64.4	14.1 9.6 12.0 6.1 33.5 39.3	1164 1636 1479	12 10 13	119.0 124.0 128.0	. (00659 00716 00714	18069.0 17315.0 17930.0
	AVG	2.378	. 265	34.6	22.0	. 329	33.5	19.1	1426	12	123.7		00696	17771.3

Table 14. Test Sequence II for FM 2061 McAllen, original design (Loop 374). (Continued)

	·	Bulk		Hveem Stability		llveem Stability**	Harshall Test**	
		Specific	M _R @	Percent	м _R ** @_	Percent	Stability Flow	Splitting Tensile Test @ 77°F**
Phase	Sample	Gravity	77°F x 10°	(UNC) (TIID)	77°F x 10° psi	(UNC) (THD)	pounds 0.01 in	Stress (psi) Strain (in/in) Modulus (psi)

111

109				M _R x 10	o ⁶ pst		Split	ting Tensile Test	@ 77°F	Rice [.] Specific	Percent Air
			<u>-13°F</u>	33°F	37 F	104°F	Stress (ps1)	Strain (in/in)	Modulus (psi)	Gravity	Voids
	7-4	2.366	2.112	1, 384	.259	.034	141.0	. 00597	23602.0	2.375	0.4
11	7-5	2.358	1.594	1.389	.214	.033	135.0	. 00418	32330.0	2.368	0.4
	7-6	2.352	2.121	1.517	.232	.037	148.0	.00598	24760.0	2.394	1.8
	7-13	2.382	2.554	1.962	. 350	. 046	142.0	.00537	26444.0	2.414	1.3
	AVG	2.365	2.095	1.563	. 264	.038	141.5	. 005 38	26784.0	2.388	1.0

Notes

M_{R} - Resilient Modulus

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

⁺ Data Not Available - Estimated Weights Used in Calculation of BSG.

Table 15. Test Sequence II for FM 2061 McAllen, modified design (Loop 374),

•		Bulk Specific	M _R 0,	anganagayan ing vigorag	Marshal	1 Test	Perc	ent	Penetration	ı, dına	Vis	cosity,	poises	Ring and Ball Softening
Phase	Sample	Gravity	$77^{\circ}F \times 10^{6}$	Stabili	ty (lbs)	Flow (0.01 in)			39.2°F	77°F	77°F	140°F	275°F	Point, "F
t	8-3 8-5 8-11	2.377 2.335 2.372	.513 .478 .675	2093 1125 1970		9 13 12	5.0	9	5	32	1.1x10 ⁷	6280	5.414	135
	AVG	2.361	. 555	1729		11	5.0)9	5	32	1.1x10 ⁷	6280	5.414	135
110			·	Hveem St Perce (UNC)	-	M _R *′	llveem St Per (UNC)	ability* cent (THD)	Marshall Stability pounds	Test* Flow 0.01 in		-	ng Tensile lest Strain (in/in)	
11	8-T 8-2 8-4 8-7 8-8 8-12	2.358 2.372 2.371 2.326 2.358 2.362	.264 .200 .432 .513 .293 .669	52.2 55.8 48.4 47.2 41.7 50.3	34.6 47.5 25.5 31.5 20.4 26.4	. 337 . 372 . 478 . 591 . 253 . 605	57.8 64.7 52.4 66.6 45.3 54.3	32.5 40.3 29.5 41.5 23.9 30.4	1460 1953 1252	19 14 19	122.0 117.0 109.0		.00418 .00418 .00659	29220.0 29760.0 16538.0
	AVG	2.358	. 395	49.3	31.0	. 439	56.9	33.0	1555	17	116.0	Ka HIIII	.00498	25172.7

Table 15. Test Sequence II for FM 2061 McAllen, modified design (Loop 374). (Continued)

	Bulk		Hveem Stability	•	lveem Stability**	Marshall Test**	
Phase Sample	Specific Gravity	M _R @ 77°F x 10 ⁶	Percent (UNC) (TIID)	M _R ** @ 77°F x 10 ⁶ psi	Percent (UNC) (THD)	Stability Flow pounds 0.01 in	Splitting Tensile Test @ 77°F** Stress (psi) Strain (in/in) Modulus (psi)
	K			The state of the same of the s			The state of the s

III

111				M _R x 1	0 ⁶ psi		Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
			<u>-13°F</u>	33°F	7 <u>7</u> °F	104°F	Stress (psi)	Strain (in/in)	Hodulus (psi)	Gravity	Voids
IV	8-6 8-9 8-10	2.330 2.367 2.366	2.604 2.396 2.401	2.352 1.540 1.791	.611 .417 .489	.139 .062 .071	208.0 139.0 172.0	.00238 .00416 .00298	87288.0 33374.0 57647.0	2.435 2.400 2.400	4.3 1.4 1.4
	AVG	2.354	2.467	1.894	.506	.091	173.0	.00317	59436.3	2.412	2.4

No te:

M_R - Resilient Modulus

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

Table 16. Test Sequence II results for U.S. 59, Shelby County pavement distress problem. Page 1

LEG	SAMPLE	UEICUT	BULK	MR	MARSHALL	MARSHALL		VISCOSITY		PENETR	ATION	RING &	PERCENT
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77°F	STABILITY	FLOW	@ 77°F	@ 140°F	@ 275°F	39,2°F	77°F	BALL	A SPHALT
I	2A 3A 4A	1.270 1.146 0.919	2.605 2.589 2.580										
	AVG.	1.112	2.594				6.0x10 ⁶	3693	3.554	22	55	130°	4.69

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	i .	EEM ILITY	M _R		EEM* ILITY	INDI	RECT TENS	I ON*	MARSHALL STABILITY	MARSHALL
NU.	NO.	ACIONI	GRAVITY	@ 77°F	(UNC)	(THD)	@ 77°F	(UNC)	(THD)	MODULUS	STRESS	STRAIN	STABILITY	FLOW
II	28 38 48	1.616 2,937 2.842	2.303 2.353 2.346	.087 .103 .093	36.2 35.0 24.4	22.2 47.5 35.0	.074 .094 .084	34.4 20.6 20.3	20.4 33.1 30.9	34561.0 26798.0	52.0 48.0	.00150	260	13
	AVG.	2.465	2.334	. 094	31.9	34.9	. 084	25.1	28.1	30679.5	50.0	.00165	260	13

LEG	SAMPLE	LUC YOUT	BULK	M _R	HVE STABI		M _R	HVE		INDIRE	CT TENSIO	N
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77°F	(UNC)	(THD)	@ 77°F	STABI (UNC)	(THD)	MODULUS	STRESS	STRAIN
111												
	AVG.											

Table 16. (Continued) Test Sequence II results for U.S. 59, Shelby County pavement distress problem. Page 2

į.i Ni		SAMPLE NO	NE LGH1	BULK SPECIFIC GRAVITY	M _R @ -13^F	м _R @ 33°F	M _R @ 77°F	M _R @ 104°F	HVEEM STABILITY	. M _R @77°F	IIVEEM STABILITY (UNC) (THD)	MARSHALL STABILITY	MARSHALL FLOW	INDIR Modulus	ECT TENS	ION STRAIN
11	γ .						4.0									· · · ·
١		AVG.					W							i		,

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	INDI	RECT TENSI	ON	RICE SPECIFIC	PERCENT
NO.	NU.	neroni	GRAVITY	@ 77°F	MODULUS	STRESS	STRAIN	GRAVITY	AIR VOIDS
	2A 3A	1.270 1.146	2.605 2.598					2.686	
V	4A	0.919	2.580					2.693	
							1 1		
	AVG.	1,112	2.594					2.690	3.4

NOTES:

- 1) 'A' samples are from 4 inch diameter cores testing item 340 surface material.
- 2) 'B' samples are from the same 4 inch diameter cores testing underlying item 292 materials.
- 3) '6' samples are testing item 292 materials from layers A, B, and C of θ inch cores.

^{*}Denotes test results following the accelerate Lottman (24 hour moisture treatment).

Table 16. (Continued) Test Sequence [] results for U.S. 59, Shelby County pavement distress problem. Page 3

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	MARSHALL STABILITY	MARSHALL Flow		Alzcozita		PENETRA	\TION	RING &	PERCENT ASPHALT
10.	140.	I II I I I I I I I I I I I I I I I I I	GRAVITY	@ 77°F	SINDICITI	I LOW	@ 77°F	@ 140°F	@ 275°F	39.2°F	77°F	DACE	MSPRIALI
I	6A 6B 6C						5.8x10 ⁶ 5.0x10 ⁶ 4.5x10 ⁶	4356 5301 4320	5.626 5.987 5.368	19 21 20	44 42 45	135 134 131	4.2 5.8 5.6
	ΛVG.						5.1x10 ⁶	4659	5.660	20	44	133	5.2

LEG	SAMPLE NO	HEIGHT	BULK	M _R	IIVEEM STARTLITY	M _R	HVEEM*	. INDII	RECT TENSI	(ON*	MARSHALL STABILLTY	MARSHALL FLOW
			GRAVITY	@ 77°F	JINDILITY	@ 77°F	STABLETT	MODULUS	STRESS	STRAIN		TEOM .
п							1					
ļ												
-	AVG.		VII. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			-						
	NO.	NO. NO.	NO. NO. HEIGHT	NO. NO. HEIGHT SPECIFIC GRAVITY	NO. NO. HEIGHT SPECIFIC R 77°F	NO. NO. HEIGHT SPECIFIC R 77°F STABILITY	NO. NO. HEIGHT SPECIFIC R 77°F STABILITY R 77°F	NO. HEIGHT SPECIFIC R STABILITY R 77°F STABILITY	NO. HEIGHT SPECIFIC RAVITY RODULUS II	NO. HEIGHT SPECIFIC GRAVITY RODULUS STRESS	NO. HEIGHT SPECIFIC GRAVITY RODULUS STRESS STRAIN	NO. HEIGHT SPECIFIC GRAVITY RODULUS STRESS STRAIN STABILITY III

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	HVEEN Stabil		M _R	HVE	INDIREC	T TENSION	
MU.	, MU.	HETORI	GRAVITY	@ 77°F	318016		@ 77°F	SINUL	 MODULUS	STRESS	STRAIN
111						ļ	I				ļ
									ļ		}
a management	AVG.				Ll.				 	L	

11

Table 16. (Continued) Test Sequence II results for U.S. 59, Shelby County pavement distress problem. Page 4

LEG NO.	SAMPLE NO	HE IGHT	BULK SPECIFIC	M _R	^М R 0 33°Г	M _R @ 77"F	M _R @ 104°F	HVFEM STARILI		M R 077^F	HVE STABI		MARSHALL STABILITY	MARSHALL FLOW	INDIR	ECT TENS	ION
			GRAVITY					· N TIM N M NOW MANAGEMENT (1988)				- -			MODULUS	STRESS	STRAIN
									:				· -	,			
				f				Ì									
114																	
				r							- 1	.					
1	Avc																
	AVG.			L		·											

LEG NO.	S'AMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	INDI	RECT TENSI	ON	RICE SPECIFIC	PERCENT
NO.	NU.	HEIGH	GRAVITY	@ 77°F	MODULUS	STRESS	STRAIN	GRAVITY	AIR VOIDS
v	3B	2.937	2.353					2.649	11.2
	AVG.	2.937	2.353					2.649	11.2

NOTES:

- 1) 'A' samples are from 4 inch diameter cores testing item 340 surface material.
- 2) 'B' samples are from the same 4 inch diameter cores testing underlying item 292 materials.
- 3) '6' samples are testing item 292 materials from layers A, B, and C of 6 inch cores.
 - *Denotes test results following the accelerate Lottman (24 hour moisture treatment).

Table 17A. Test Sequence II results for Item 340 Type "D" black cores on U.S. 290, Hempstead, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL FLOW	en de springen in Stragger e Mangarit	VISCOSITY		PENETR		RING A	PERCENT ASPHALT
		A 100	GRAVITY	0 /7"!	- man or the character of the contraction of the	The second of the second	@ 77°F	@ 140°F	@ 275°F	39.2°F	77°F		
]	1-68 1-7A 1-10B 1-118	1.404 1.379 1.499 1.884	2.277 2.321 2.297 2.224	. 494 . 846 . 557 . 463	1,318 2,242 904 468	4.5 6.0 5.5 5.5			·				
	AVG.	1.542	2.280	. 590	1,233	5.4	+	4	+	+	+	+	+

	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R		EEM ILITY	M _R		EEM* ILITY	INDII	RECT TENSI	ON*	MARSHALL * STABILITY	MARSHALL# FLOW
<u></u>				GRAVITY	@ 77°F	UNC	THD	0 77°F	UNC	THD	MODULUS	STRESS	STRAIN	SOUTETT	
16	II	1-5A 1-5B 1-9A 1-9B 1-10A 1-11A	1.538 1.239 1.901 1.209 2.009 1.999	2.312 2.278 2.310 2.288 2.322 2.288	.538 .695 .314 .482 .454 .382	56.4 43.6 37.0 57.0 32.1 33.2	40.9 22.0 28.8 34.9 26.0 27.0	. 356 . 201 . 281 . 254 . 376 . 255	42.4 58.9 34.5 60.2 30.2 34.6	26.9 37.5 26.3 38.1 24.1 28.4	32,392 34,524 18,571	51.0 69.0 59.0	.00157 .00200 .00318	1,209 640 1,081	8.0 8.5 9.0
	•	AVG.	1.649	2,300	. 478	43.2	29.9	. 287	43.5	30.2	28,496	59.7	.00225	977	8.5

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	HVE STABI		M _R	IIVI STAB		INDIREC	T TENSION	
NO.	NU.	NC10(1)	GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN
	,											
111												
							a/4000 Ta			***************************************		
	AVG.			Wagnessan A. W. Consumer over consumer addition for the consumer and consumer addition for the consumer and consumer addition for the consumer and consumer addition for the c								

Table 17A. (Continued) Test Sequence II results for Item 340 Type "D" black cores on U.S. 290, Hempstead, Texas.

I.EG NO.	SAMPLE	HEIGHT	BULK SPECIFIC GRAVITY	M _R 0 -13°F	M _R 0 33°F	^{II} R @ 77°F	M _R P 104°F	HVEE STABIL UNC	TTV	М*** 0 77°F	IIVEI STABIL UNC	ITY THD	INDIR MODULUS	ECT TENS	r	 *** MARSHALL FLOW
14	~		and in part of the second seco				er F							ri (2000) Turking meringan pangangan		
	AVG.	, in the second												- J. A. S. S		

11/

LEG NO.	SAMPLE NO.	HE IGHT	BULK SPECIFIC	M _R	M _R	M _R	MR	INDI	RECT TENS	ION	RICE SPECIFIC	PERCENT AIR
	,		GRAVITY	@ -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
V	1-6A 1-7B 1-8A 1-8B	1.974 1.354 1.896 1.314	2.319 2.273 2.397 2.268	2.524 2.537 2.377 2.428	2.047 2.737 1.845 2.123	.471 .529 .382 .677	.142 .275 .153 .186	54,895 71,633 64,826 53,451	218.0 170.0 206.0 148.0	.00397 .00237 .00318 .00277	2.413 2.421 2.415 2.414	3.9 6.1 4.5 6.0
	AVG.	1.635	2.292	2.467	2.188	.515	.189	61,201	185.5	.00307	2.416	5.1

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

 $^{{\}rm M}_{\rm R}$ Modulus of Résiliency.

Table 17B. Test Sequence II results for Item 340 Type "D" iron ore cores on U.S. 290, Hempstead, Texas.

- 1	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY		PENETRA	1110N	RING &	PERCENT ASPHALT
		NO.	116 TO 11	GRAVITY	@ 77°F	SIMBLE EFF	11,000	a 77°F	@ 140°F	@ 275^1	39.2℃	77°F	DML	ASTRALI
	1	1-2 1-18 1-20 1-21	1.050 1.477 1.350 1.518	2.372 2.377 2.388 2.418	.587 .705 .799 .715	4,925 5,240 5,461 5,796	11.0 10.5 11.0 10.0							
		AVG.	1.349	2.389	. 702	5,356	10.6	3.0x10 ⁷	82085	11.13	10	21	160°	4.46

	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ 77°F	HVE STABI UNC		M R @ 77°F		EEM* ILITY THD	IND1F MODULUS	STRESS	ON* STRAIN	MARSHALL STABILITY	MARSHALL Flow
0	11	1-1 1-4 1-16 1-19 1-23 1-24	.873 .945 1.541 1.578 1.227 1.334	2.376 2.374 2.422 2.404 2.318 2.350	.553 .537 .676 .775 .621 .425	85.0 77.4 54.9 59.4 73.8 60.2	56.2 50.0 39.5 44.7 52.1 40.6	. 301 . 265 . 567 . 600 . 370 . 368	86.4 + 55.2 61.3 68.0 62.3	57.6 + 33.8 46.6 46.3 42.7	67,823 31,590 33,936	161.0 100.0 108.0	.00237 .00317 .00318	4,170 + 5,463	14 † 16
	•	AVG.	1.250	2.374	. 598	68.5	47.2	.412	66.6	45.4	44,450	123.0	.00291	4,817	15

LEG	SAMPLE		BULK	M _R		EEM	MR	1	EEM	INDIRE	CT TENSIO	N
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN
III	1-3 1-17 1-22	.972 1.622 1.381	2.396 2.392 2.398	.619 .673 .621	83.7 57.7 61.3	56.9 43.9 42.7	.414 .612 .520	83.2 56.3 70.9	56.4 42.5 52.3	38,709 69,282 70,910	123.0 165.0 141.0	.00318 .00238 .00199
	AVG.	1.370	2.395	. 638	67.6	47.8	- 515	.70.1	50.4	59,634	143.0	. 00252

Table 17B. (Continued) Test Sequence 11 results for Item 340 Type "D" iru. re cores on U.S. 290, Hempstead, Texas.

	SAMPLE NO.	BULK SPEC1FIC GRAVITY	M _R @ -13°F	M _R @ 33°F	M _R @ 77°F	M _R @ 104°F	HVEE STABIL UNC	M THD	M*** @ 77°F	HVEI STABII UNC	M*** 1TY THD	IND17		*** MARSHALL STABILITY	*** Marshall Flow
10															
	AVG.											N. 1042-00	er andrea v. dar (1-tan maganahana 1,460° anagana 1,6		

119

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	M _R	M _R	MR	INDI	RECT TENS	ION	RICE SPECIFIC	PERCENT AIR
""	"""	,	GRAVITY	@ -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
V	1-13 1-14 1-15	1. 337 1. 320 1. 452	2.386 2.392 2.398	2.015 2.059 2.304	1.256 1.248 1.409	.643 .608 .737	.271 .274 .272	97,558 104,135 67,259	155.0 165.0 160.0	.00159 .00158 .00238	2.540 2.532 2.568	6.1 5.5 6.6
	AVG.	1.370	2.392	2.126	1.304	. 663	.272	89,651	160.0	.00185	2.547	6.1

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

^{**} Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

M_R Modulus of Resiliency.

Table 18. Test Sequence II results for Item 340 Type "D" Asphadure" cores on U.S. 62 in Lubbock, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	и _R	MARSHALL STABILITY	MARSHALI. Flow		VISCOSITY		PENETR	AT LON	RING &	PERCENT ASPHALT
NO.	IW.	116 1 (111)	GRAVITY	@ /7°F	31/10/12/11	LEM	@ 77°F	₽ 140°F	@ 275"1	39.2°F	77°F	()/(L_C	ASITIAL)
1	7-6 7-9 7-10 7-14	1. 340 1. 433 1. 383 . 898	2.083 2.069 2.123 2.026	. 446 . 413 . 647 . 517	1,000 1,318 1,894 1,334	16.0 12.0 12.0 10.0							
	AVG.	1.264	2,075	. 506	1,387	12.5	4.75×10 ⁶	14.725	10.828	3	20	141°	6.94

	LEG ND.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	IVII	EEM LLITY	M *		EEM*	INDI	RECT TENS	ION*	MARSHALL* STABILITY	MARSHALL*
	MU.	110.	iir, jupi	GRAVITY	@ 77°F	UNC	THD	0 77°F	UNC	THD	MODULUS	STRESS	STRAIN	31M01[111	LOM
190	H	7-3 7-4 7-5 7-8 7-12 7-13	1.736 1.703 1.293 1.252 1.191 1.136	2.105 2.089 2.075 2.069 2.061 2.088	. 436 . 352 . 408 . 380 . 503 . 592	64.6 40.3 50.6 58.2 51.5 42.6	41.1 28.8 29.4 35.7 31.1 30.4	. 284 . 161 . 184 . 195 . 218 . 309	34.7 28.4 48.2 47.9 68.6 61.1	23.1 16.2 27.8 26.7 36.2 37.6	27,511 16,562 30,383	79.0 79.0 121.0	.00396	841 1,061 1,619	16.0 17.0 16.0
	,	AVG.	1.385	2.081	. 445	51.3	32.8	.225	48.2	27.9	24,819	103.0	.00424	1,174	16.3

LEG	SAMPLE	HETCHT	BULK SPECIFIC	M _R	HVE STABI		MR	HVI STAB		INDIREC	T TENSION	
NO.	NO.	HEIGHT	GRAVITY	@ 77°F	UNC	THD	0 77°F	UNC	THD	MODULUS	STRESS	STRAIN
Acr 14 14 14 14 14 14 14 14 14 14 14 14 14												
111												
-		ļ			*	t alphorococcy step! Asimb 14634/144441.34 . As	AND THE TAXABLE PROPERTY OF THE PROPERTY OF TH	yay eddyy physici sall Vitalahalda haa				.,
L	AVG.		Market Co. L. S. Land Co.		The state of the s	Appelluscons and Market State (1975)	-		<u> </u>			

Table 8. Test Sequence II results for IH 35, Waxahachie, Texas (Continued).

		Bulk Specific	M _R 0	Hveem St Perc		M _R ** @	-	ability** cent	Marshall Stability		Splitt	ing Tensile Test	@ 77°F**
<u>Phase</u>	Sample	Gravity	77°F x 10°	(UNC)	(TIID)	77°F x 10° psi	(UNC)	(TIID)	pounds	0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
	404 OS	2.390	1.048	89.0	59.6	. 492	78.0	48.7	2372	15			
111	399 OSWP	2.395	1.213	89.4	61.7	. 596	85.1	57.4	2363	13			
	399 OS	2.391	0.935	71.3	47.6	. 430	67.1	43.3	2389	15			
	404 BWP	2.366	1.132	80.0	52.1	. 315	63.6	35.6			30.5	0.00144	21236.0
	399 BWP	2.389	1.086	88.9	60.1	. 263	81.3	52.6			45.4	0.00345	13159.3
	402 05	2.315	0.863	85.0	54.5	. 074	72.0	41.6			24.2	0.00373	6472.7
	AVG	2.374	1.046	83.9	55.9	. 362	74.5	46.5	2375	14	33.3	0.00287	13622.7

				M _R x 1	0 ⁶ psi		Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
•			-13°F	33°F	68°F_	<u>104°F</u>	Stress (psi)	Strain (in/in)	Modulus (pst)	Gravity	<u>Voids</u>
IV	400-3 BWP 400-30 SWP 399 BWP	2.347 2.375 2.394	3.564	2.372 3.844 2.482	.816 1.538 1.460	. 835 . 541 . 804	120.0 207.1 177.5	.00086 .00056 .00077	138805.0 373169.0 230912.0	2.456 2.439 2.471	4.4 2.6 3.1
	AVG	2. 372	3. 269	2.899	1.271	. 727	168.2	.00073	247628.7	2.455	3.4

 $\mathbf{M}_{\mathbf{R}}$ - Resilient Modulus

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

 $[\]star\star$ Denotes test results after (18 cycle) Lottman moisture treatment procedure.

Table 9. Test Sequence II results for US 77, Kingsville, Texas.

		Bulk Specific	M _R 0	Marshal	1 Test	Percent	Penetrati	on, dom	Vis	cosity, poi	ses	Ring and Ball Softening
Phase	Sample	Gravity	77°F x 10 ⁶	Stability (lbs)	Flow (0.01 in)	<u>Asphalt</u>	39.2°F	77°F	<u>77°F</u>	140°F	2/5°F	Point, "F
1	5-1 5-2 5-19	2.194 2.199 2.192	. 442 . 470 . 575	+ + 2984	+ + 8	8.43	10	48	4.75x10 ⁶	2861	4.144	130
	VAC	2.195	. 496	2984	8	8.43	10	48	4.75×10 ⁶	2861	4.144	· 130

98					tability cent (THD)	M _R *′@ 77°F x 10 ⁶ ps1	Hveem St Per (UNC)	ability* cent (TIM)	Marshall Stability pounds	Test* Flow 0.01 in	Splitt Stress (psl)	ing Tensile lest Strain (in/in)	@ 7/°F* Modulus (psi)
11	5-3 5-8 5-9 5-10 5-13 5-15	2.217 2.207 2.180 2.185 2.211 2.219	.462 .362 .430 .400 .507	21.7 2.15 32.0 34.6 31.3 40.0	2.60 4.2 11.6 14.5 17.0 20.7	.106 .244 .244 .170 .378 .447	6.8 4.1 3.0 3.8 5.7	12.3 13.2 17.5 16.3 8.6 8.0	1250 1300 1636	18 19 17	43.0 58.0 38.0	.00417 .00444 .00418	10310.0 13049.0 9087.0
	AVG	2.203	. 423	30.2	11.8	. 265	5.8	12.7	1395	18	46.3	.00426	10815.3

A STATE STATEMENT AND STATEMEN		Bulk Specific	M _R @	Hveem St Perc	•	M _R ** @_		ability** cent	Marshall Stability		Splitt	ing Tensile Test	@ 77°F**
<u>Phase</u>	Sample	Gravity	77°F x 10 ⁶	(UNC)	(THD)	77°F x 10 ⁶ ps1	(UNC)	(THD)	pounds	0.01 in	Stress (psi)	Strain (in/in)	<u>Modulus (psi)</u>
	5-6	2.201	. 475	41.7	21.1	. 296	19.7	.7			95.0	.00297	31983
111	5-7	2.202	. 38 3	22.7	4.5	. 316	11.0	7.2			125.0	.00538	23247
	5-11	2.216	. 454	39.1	23.4	.259	15.8	.1			114.0	.00238	47930
	5-12	2.218	. 425	37.3	22.5	. 317	14.2	.6	1419	14			
	5-14	2.214	. 368	30.5	18.8	. 321	34.2	22.4	1421	18			
	5-16	2.218	.346	20.7	3.9	.286	11.7	5.7	1779	17			
	AVG	2.212	. 409	32.0	15.7	. 299	17.8	6.1	1540	16	111.3	.00358	34386.7

99

					M _R × 10 ⁶ psi		Split	ting Tensile Test	0 77°F	Rice Specific	Percent Air
				-13°F	33°F 68°F	104°F	Stress (psi)	Strain (in/in)	Modulus (psi)	Gravity	Voids
17	5-4 5-5 5-17 5-18	2.198 2.190 2.203 2.194	.471 .452 .319 .409	2.272 2.063 2.034 2.370	1.368 1.245 0.938 1.261	.117 .096 .065 .076	173.0 + 166.0	.00418 + .00716	41415 + 23170	2.266 2.256	
	AVG	2.196	.413	2.185	1.203	. 089	170.0	.00567	32293	2.261	3.0

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

 $[\]mathbf{M}_{\mathbf{R}}$ - Resilient Modulus

⁺ No Test Value Available.

Table 10 . Test Sequence II results for US 77, Sinton, Texas.

. 545

. 492

6-17

AVG.

2.191

2.212

29.1

32.6

16.8

19.4

		Bulk Specific	M _R @	Marsha	11 Test	Percent	Penetratio	n, dom	Vis	scosity,	poises	Ring and Ball Softening
Phase	5ample	Gravity	$77^{\circ}\Gamma \times 10^{6}$	Stability (1hs)	Flow (0.01 in)		39.2°F	77°Γ	77°F	140°!	F 275°F	Point, "F
	6-2 6-12	2.251 2.182	. 483 . 548	2667 2335	11 11							
1	6-16	2.189	.608	2832	9							
	AVC.	2.207.	.546	2611	10	6.51	10	55	4.95×10 ⁶	2712	4.078	128
100				Hveem Stability		Nveem Stability*	Marshall	Test*				
				Percent	M _R * @	Percent	Stability			•	ng Tensile Test	
				(UNC) (THD)	77°F x 10 ⁶ ps1	(UNC) (THD)	pounds	0.01 fr	Stress	(psi)	Strain (in/in)	Modulus (psi)
	6-5	2.246	.463	30.1 16.7	. 469	25.6 12.2				+	4	4
11	6-6	2.251	.450	30.2 19.4	. 405	31.9 21.0				8.0	.00361	18843.0
	6-7	2.250	. 478	29.3 19.1	.338	31.3 21.0	1251	10	7	71.0	.00419	16941.0
	6-13 6-15	2.154 2.179	. 416 . 602	46.7 23.1 30.2 19.4	.210 .251	42.6 18.9 34.9 24.1	1251 816	10 19				
	0-10	2.173	• DUZ	30.2 13.4	.231	34.3 24.1	010	19				

34.0

33.4

21.6

19.8

18 16

69.5

.00390

17892.0

1196

1088

. 367

Table 10. Test Sequence II results for US 77, Sinton, Texas (Continued).

		Bulk Specific	M _R @	Hveem St Perc		M _R ** @		ability** cent	Marshall Stability		Splitti	ing Tensile Test	@ 77°F^*
Phase	Sample	Gravity	77°F x 10 ^b	(UNC)	(OHT)	77°F x 10 ^b ps1	(UNC)	(वात)	pounds	0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
	6-1	2.224	. 330	35.2	20.8	.097	22.6	8.1			.00149	88.0	59076.0
111	6-4	2.216	. 448	34.7	16.5	.244	36.8	18.6			.00060	114.0	189772.0
	6-8	2.192	.611	37.5	22.1	. 096	35.8	20.4			.00089	49.0	54878.0
	6-10	2.183	.536	48.2	29.3	. 255	38.2	19.3	916	15			•
	6-11	2.204	. 456	34.7	18.9	.215	33.5	15.5	1321	15			
	6-14	2.170	. 476	42.0	24.0	.251	34.9	19.1	1136	11			
	AVG.	2.193	. 476	38. 7	21.9	. 193	33.6	16.8	1124	14	. 00099	83.7	101225.3

101					M _R x 10	0 ⁶ psi		Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
				-13°F	33°F	68°F	104°F	Stress (psi)	Strain (in/in)	Modulus (pst)	Gravity	<u>Voids</u>
īV	6-3 6-9 6-18	2.235 2.229 2.154	. 470 . 508 . 556	1.087 2.056 1.880	1.591 1.546 1.429		.083 .080 .148	222.0 240.0 236.0	.00418 .00417 .00658	53061.0 57514.0 65854.0	2.309 2.331 2.292	3.2 4.4 6.0
	AVG.	2.206	.511	2.008	1.522		.104	232.7	.00498	58809.7	2.311	4.5

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

 $^{{\}bf M_R}$ - Resilient Modulus

^{+ -} No Test Data Available.

Table 11. Test Sequence II results for IH 37, Oakville, Texas.

		Bulk Specific	M _R @	Marshal 1		Percent	Penetrati	on, dam	Viso	cosity, por	ises	Ring and Ball Softening
Phase	Sample	Gravity	77°F x 10 ⁶	Stability (lbs)	Flow (0.01 in)	Asphalt	39.2°F	77°F	71°F	140°F	275°F	Point, °F
	4-1	2.161	.412	2572	12				7			
ī	4-4	2.162	. 399	2340	18	5.59	10	33	1.30x10'	8776	5.837	140
	4-11	2.161	. 455	2323	16				normal and the company of the contract of the		and self-the recovery operating against the graphs.	
	AVG.	2.161	. 422	2412	15							

102	Hveem Stability		lveem Stability*	Marshall Test*	
	Percent (UNC) (TIID)	M _R *(A 77°F x 10 ⁶ ps1	Percent (UNC) (TIID)	Stability Flow pounds 0.01 in	Splitting Tensile Test 0 77°F* Stress (psi) Strain (in/in) Modulus (psi)

Table 11. Test Sequence II results for IH 37, Oakville, Texas (Continued).

		Bulk Specific	M _R 0	Hveem St Perc		M ₀ ** @	-	ability** cent	Marshall Stability		Splitt	ing Tensile Test	@ 77°F**
Phase	<u>Sample</u>	Gravity	77°F x 10 ⁶	(UNC)	(THD)	77°F x 10 ⁶ psi	(UNC)	(THD)	pounds	0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
	4-3	2.168	. 382	35.2	26.8	.283	32.1	23.7			112.0	.00089	125234
111	4-8	2.152	.379	38.7	28.5	.283	29.9	19.7			97.0	.00090	108008
111	4-9	2.158	. 397	44.8	30.2	. 29 0	35.8	21.1			120. 0	. 00060	200590
	4-10	2.153	. 406	40.0	35.8	.277	31.3	27.2	1494	28			
	4-12	2.161	. 428	41.3	33.3	. 307	27.7	19.7	1677	25			
	4-13	2, 155	, 386	38.1	31.3	.260	24.6	17.8	1323				·- ·
	AVG.	2.158	. 396	39.7	31.0	.283	30.2	21.5	1498	27	109.7	.00080	144611

03						•					ro *	ъ.	
					$M_{\rm R} \times 10$	D ⁿ psi		Sp1it	ting Tensile Test	@ 77°F	Rice Specific	Percent Air	
				<u>-13°F</u>	33°F	68°F	104°F	Stress (psi)	Strain (in/in)	Modulus (psi)	Gravity	Voids	
	4-2	2.157	. 402	1.768	1.020		.078						
IV	4-5	2.173	.432	2.039	1.133		.080	141.0	.00418	33728.0	2.306		
	4-6	2.150	. 373	1.647	1.083		. 070	135.0	.00419	32219.0			
	4-7	2.145	. 386	1.980	1.286		.077	143.0	.00417	34288.0	2.297		
	AVG.	2.156	. 398	1.859	1.131		.076	139.7	.00418	33411.7	2.302	6.3	

Notes

M_R - Resilient Modulus

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

 $[\]star\star$ Denotes test results after (18 cycle) Lottman moisture treatment procedure.

Table 12. Test Sequence II results for SH 71, Columbus, Texas.

A: 196		Bulk Specific	M _R 0 '	Ni nagang panggaman adi. Seriyah, Ali ini ini ini ini ini	Marshal	1 Test	Perc	ent	Penetration	n, dom	Vis	scosily,	poises	Ring and Ball Softening
Phase	Sample	Gravity	77°F x 10 ⁶	Stability	(1bs)	Flow (0.01 in)			39.2°F	77°F	_7/25	140°F	275°F	Point, "F
1	2-9 2-12 2-15	2.256 2.298 2.271	. 764 . 875 . 721	2380 4462 2890		12 11 11	5.41		3	20	1.6x10 ⁶	10,20	00 6.851	139
	AVG	2.275	. 787	3244		11	5.41		3	20	1.6x10 ⁶	10,20	00 6.851	139
104				Hveem Stab Percen	•	M _R *′ @ _	Neem Sta	ability* cent	Marshall Stability			Splittin	ng Tensile Test	@ 77°F*
					(100)	77"F x 10 ⁶ psi	(UNC)	(THD)	pounds	0.01 tn	Stress	(psi)	Strain (in/in)	Modulus (psi)
11	2-3 2-4 2-5 2-11 2-13 2-18	2.258 2.250 2.234 2.298 2.261 2.273	. 848 . 720 . 760 . 526 . 592 . 653	42.3 52.2 48.3 41.5	20.9 27.7 38.2 26.8 23.2 29.7	. 562 . 491 . 520 . 369 . 482 . 476	32.9 35.1 40.8 40.6 30.5 32.6	17.2 20.5 26.8 19.1 12.2 13.4	222 4 2250 1793	16 11 15	174.0 202.0 196.0		.00479 .00358 .00298	36349.0 56427.0 65817.0
	AVG	2,262	.683	46.6	27.8	. 483	35.4	18.2	2089	14	190.7		.00378	52864.3

Table 12. Test Sequence II results for SH 71, Columbus, Texas (Continued).

- <u></u>	1	Bulk Specific	M _R @	Hveem St Perc	-	M _R ** 0		ability** cent	Marshall Stability		Splitt	ing Tensile Test	@ 77°F**
Phase	Sample	Gravity	77°F x 10°	(UNC)	(TIID)	77°F x 10° psi	(UNC)	(THD)	pounds	0.01 In	Stress (ps1)	Strain (in/in)	<u>Modulus (psi)</u>
	2-2	2.254	. 740	40.2	24.1	. 694	41.5	25.4					
111	2-6	2.250	. 691	40.1	26.0	.666	42.5	28.5					
	2-8	2.247	.818	42.6	26.7	. 778	45.0	29.1					
	2-10	2.308	. 466	42.9	23.4	.415	37.0	17.6	1725	14	203.0	. 00358	56735.0
	2-14	2.274	.638	44.9	25.5	.561	39.9	20.6	2225	14	218.0	.00359	60732.0
	2-17	2.283	. 560	42.7	20.3	.524	44.0	21.6	2602	13	226.0	.00418	54027.0
	AVG	2.269	.652	42.2	24.3	. 606	41.7	23.8	2184	14	215.7	. 00378	57164.7

105				M _R x 10	o ⁶ psi		Splft	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
			<u>-13°F</u>	33°F	77°F	104°F	Stress (ps1)	Strain (in/in)	Modulus (psi)	Gravity	Voids
IA	2-1 2-7 2-16	2.250 2.281 2.259	2.803 2.286 2.304	2.137 1.659 2.001	. 795 . 727 . 6 87	.120 .086 · .089	284.0 277.0 259.0	.00030 .00030 .00060	952000.0 920562.0 433651.0	2.353 2.335 2.318	4.4 2.3 2.5
	AVG	2.263	2.464	1.932	. 736	.098	273.3	. 00040	771737.7	2.335	3.1

Notes

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

 $^{{\}rm M_{
m R}}$ - Resilient Modulus

Table 13. Test Sequence II for US 90A Colorado County, Texas.

		Bulk Specific	MR 6.	Marsha	ll Test	Percent	Penetratio	on, dom	V1:	scosily, poi	ses	Ring and Ball Softening
Phase	Sample	Gravity	77°F x 10 ⁶	Stability (lbs)	Flow (0.01 in		39.2°F	77°F	17°F	140°F	275°F	Point, "F
	3-2	2.234	.533	+	+							
I	3-3 3-10	2.232 2.204	. 477 . 492	1444 +	12 +	5.45	16	41	5.2x10 ⁶	6508	6.209	132
	AVG	2.223	. 501	1444	12	5.45	16	41	5.2x10 ⁶	6508	6.209	132
106				Nveem Stability		Hveem Stability*	Marshall	l Test*				
				Percent.	M _R */@	Percent	Stability	/ Flow		Splitting T		
				(UNC) (TIID)	77°F x 10 ⁶ ps1	(UNC) (TIID)	pounds	0.01 1	n Stress	(psi) Str	ain (in/in) Modulus (psi)

Table 13. Test Sequence II for US 90A Colorado County, Texas (Continued)

		Bulk Specific	M _R @	Hveem St Perc	•	M _R ** @_		ability** cent	Marshall Stability		Splitt	ing Tensile Test	@ 77°۲**
<u>Phase</u>	Sample	Gravity	77°F x 10°	(UNC)	(THD)	77°F x 10 ⁶ psi	(UNC)	(TIID)	pounds	0.01 in	Stress (psi)	Strain (in/in)	Modulus (psi)
	3-1	2.253	.507	50.8	36.5	. 455	51.3	37.0			160.0	.00299	53467.0
111	3-5	2.267	. 443	49.9	41.7	. 370	46.8	38.6			188.0	.00477	39453.0
	3-6	2.249	. 169	46.6	40.7	. 451	44.4	38.5			164.0	.00359	45677.0
	3-8	2.222	. 489	48.7	36.9	. 403	48.9	37.1	1620	15		•	
	3-9	2.209	. 456	43.4	33.8	. 306	41.2	31.6	1285	15			
	3-11	2.215	. 461	40.6	29.5	. 347	43.5	32.4	1373	18		•	
	AVG	2.236	. 471	46.7	36.5	. 389	46.0	35.9	1426	16	170.7	.00378	46199.0

107				М _R х 10	o ⁶ psi		Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
			<u>-13°F</u>	33°F	7 7°F	104°F_	Stress (psi)	Strain (in/in)	Modulus (psi)	Gravity	Volds
IV	3-4	2.226	1.723	1.155	.506	075	154.0	. 00060	258389.0	2.404	7.4
	3-7 3-12	2.232 2.224	2.147 2.468	1.506 1.316	. 481 . 469	.078 .075	136.0 137.0	. 00052 . 00030	260911.0 459487.0	2.387 2.309	6.5 3.7
	AVG	2.227	2.113	1.326	. 485	.076	142.3	.00047	326262.3	2.367	5.9

Note:

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

M_R - Resilient Modulus

⁺ No Data Available.

Table 14. Test Sequence II for FM 2061 McAllen, original design (Loop 374).

		Bulk	M _R O	Ma	rshall Test	Percent	Penetratio	on, dmn	Visco	sity, po	ises	Ring and Ball Softening
Phase	Sample	Specific Gravity	77°F × 10 ⁶	Stability (lbs) Flow (0.01 in		39.2°F	77°F	_ //°r	140°F	275°F_	Point, T
I	7-3 7-10 7-12	2.591 2.394 2.377	. 274 . 360 . 287	1169 1599 647	10 9 10	5.8	15	64	1.73x10 ⁶	2000	3.605	122
	AVG	2.454	. 307	1138	10	5.8	15	64	1.73x10 ⁶	2000	-3.605	122
108				Hveem Stabil Percent (UNC) (T	ity M _R **@ IID) 77°F x 10 ⁶ ps	· Hveem Stability Percent I (UNC) (THD)	Marshal Stability pounds	y Flow	•	_	Tensile Test rain (in/in)	@ 77°F* Modulus (psi)
I1	7-1 7-2 7-7 7-8 7-9 7-11	2.365 2.369 2.372 2.370 2.403 2.389	. 286 · . 283 . 227 . 226 . 355 . 211	29.3 15 19.3 10 20.2 12 24.9 16 52.0 30 62.1 47	. 3 . 301 . 4 . 289 . 3 . 297 . 2 . 416	28.2 14.1 18.6 9.6 19.8 12.0 14.8 6.1 55.3 33.5 64.4 39.3	1164 1636 1479	12 10 13	119.0 124.0 128.0	.0	00659 10716 10714	18069.0 17315.0 17930.0
	AVG	2.378	. 265	34.6 22	.0 .329	33.5 19.1	1426	12	123.7	.0	0696	17771.3

Table 14. Test Sequence II for FM 2061 McAllen, original design (Loop 374). (Continued)

» + ····		Bulk MR @ Specific MR @ Gravity 77°F x 1		Hygem Stability		lveem Stability**	Marshall Test**	
		Specific	" б	Percent	M _R ** 0	Percent	Stability Flow	Splitting Tensile Test @ 77°F**
<u>Phase</u>	Sample	Gravity	77°F x 10°	(UNC) (TIID)	77°F x 10° ps1	(UNC) (THD)	pounds 0.01 in	Stress (psi) Strain (in/in) Modulus (psi)

H

109				M _R x 10	o ⁶ psi		Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
			<u>-13°F</u>	33°F	77 F	_104°F	Stress (psi)	Strain (in/in)	Modulus (psi)	Gravity	Voids
	7-4	2.366	2.112	1. 384	. 259	. 034	141.0	. 00597	23602.0	2.375	0.4
17	7~5	2.358	1.594	1.389	.214	.033	135.0	.00418	32330.0	2.368	0.4
	7-6	2.352	2.121	1.517	. 232	.037	148.0	.00598	24760.0	2.394	1.8
•	7-13	2.382	2.554	1.962	. 350	.046	142.0	.00537	26444.0	2.414	1.3
	AVG	2. 365	2.095	1.563	. 264	. 038	141.5	. 005 38	26784.0	2.388	1.0

Notes

M_R - Resilient Modulus

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

⁺ Data Not Available - Estimated Weights Used in Calculation of BSG.

Table 15. Test Sequence 11 for FM 2061 McAllen, modified design (Loop 374),

	-	Bulk Specific	и _{к 6} , е	وسيست مستوسي	Marshal	Il Test	Perc	ont	Penetration	n, dum	Vis	cosity,	poises	Ring and Ball Softening
Phase	Sample	Gravity	77°F x 10 ⁶	Stabili	ty (165)	Flow (0.01 in			39.2°F	77°F	. 77°F	140°F	275°F	Point, "F
1	8-3 8-5 8-11	2.377 2.335 2.372	.513 .478 .675	2093 1125 1970		9 13 12	5.0	9	5	32	1.1x10 ⁷	6280	5.414	135
	AVG	2.361	. 555	1729		11	5.0	09	5	32	1.1x10 ⁷	6280	5.414	135
110				Nveem Sta	*	M _R *⊢0	Hveem St	ability* cent	Marshall Stability			Splittin	g Tensile Test	@ 77°F*
				(UNC)	(TIID)	77"F"x 10 ⁶ pst	(UNC)	(1110)	pounds	0.01 In	Stress	(psi)	Strain (in/in)	Modulus (psi)
11	8-1 8-2 8-4	2.358 2.372 2.371	. 264 . 200 . 432	52.2 55.8 48.4	34.6 47.5 25.5	. 337 . 372 . 478	57.8 64.7 52.4	32.5 40.3 29.5	1460	19	122.0 117.0		.00418 .00418	29220.0 29760.0
	8-7 8-8 8-12	2, 326 2, 358 2, 362	.513 .293 .669	47.2 41.7 50.3	31.5 20.4 26.4	.591 .253 .605	66.6 45.3 54.3	41.5 23.9 30.4	1953 1252	14 19	109.0	ı	. 00659	16538.0
	AVG	2, 358	. 395	19.3	31.0	.439	56.9	33.0	1555	17	116.0		.00498	25172.7

Table 15. Test Sequence II for FM 2061 McAllen, modified design (Loop 374). (Continued)

**** *********************************	Bulk		Hveem Stability		Neem Stability**	Harshall Test**	The second secon
Divisa Cample	Specific	M _R @ 77°F x 10 ⁶	Percent	M _R ** @ 77°F x 10 ⁶ psf	Percent (UNC) (TIID)	Stability Flow	Splitting fensile Test @ 77°F**
Phase Sample	Gravity	77 F X 10	(UNC) (THD)	77 F X 10 PS1	(UNC) (TIID)	pounds 0.01 in	Stress (psi) Strain (in/in) Modulus (psi)

F				M _R x 1	0 ⁶ pst		Split	ting Tensile Test	@ 77°F	Rice Specific	Percent Air
			-13°F	33°F	7 <u>7</u> °F	104°F	Stress (ps1)	Strain (in/in)	Modulus (pst)	Gravity	Voids
14	8-6 8-9 8-10	2.330 2.367 2.366	2.604 2.396 2.401	2.352 1.540 1.791	.611 .417 .489	.139 .062 .071	208.0 139.0 172.0	.00238 .00416 .00298	87288.0 33374.0 57647.0	2.435 2.400 2.400	4.3 1.4 1.4
	ÁVG	2.354	2.467	1.894	. 506	.091	173.0	.00317	59436.3	2.412	2.4

Notes

M_R - Resilient Modulus

^{*} Denotes test results after (24-hour) Lottman moisture treatment procedure.

^{**} Denotes test results after (18 cycle) Lottman moisture treatment procedure.

Table 16. Test Sequence II results for U.S. 59, Shelby County pavement distress problem. Page 1

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY		PENETR	ATION	RING &	PERCENT
NO.	no,	nerani	GRAVITY	@ 77°F	SIMPLETITI	PLUM	@ 77°F	@ 140°F	@ 275°F	39.2°F	77°F	BALL	ASPHALT
I	2A 3A 4A	1.270 1.146 0.919	2.605 2.589 2.580										
	AVG.	1.112	2.594				6.0x10 ⁶	3693	3.554	22	55	130°	4.69

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	1	EEM ILITY	M _R	1	EEM* ILITY	INDI	RECT TENS	(ON*	MARSHALL STABILITY	MARSHALL FLOW
no.	110.	ne rani	GRAVITY	@ 77°F	(UNC)	(THD)	@ 77°F	(UNC)	(THD)	MODULUS	STRESS	STRAIN	SIMBILLIT	FLUW
II	2B 3B 4B	1.616 2.937 2.842	2.303 2.353 2.346	.087 .103 .093	36.2 35.0 24.4	22.2 47.5 35.0	.074 .094 .084	34.4 20.6 20.3	20.4 33.1 30.9	34561.0 26798.0	52.0 48.0	.00150	260	13
	AVG.	2.465	2.334	. 094	31.9	34.9	. 084	25.1	28.1	30679.5	50.0	.00165	260	13

LEG NO.	SAMPLE	UE I CUT	BULK SPECIFIC	MR	HVE STABI		M _R	HVE STABI		INDIREC	CT TENSION	4
NU.	NO.	HEIGHT	GRAVITY	@ 77°F	(UNC)	(THD)	@ 77°F	(UNC)	(THD)	MODULUS	STRESS	STRAIN
111									,			

	AVG.						***************************************					

Table 16. (Continued) Test Sequence II results for U.S. 59, Shelby County pavement distress problem. Page 2

LEG NO.	SAMPLE NO	NETCHT	PRYALLA	M _R Ø -13°F	M _R a 33°F	M _R @ 77°F	M _R @ 104°F	IIVEEM . STABILITY	И _R @77"F	HVEEM STABILITY (UNC) (THD)		INDIR Modulus	1	STRAIN
14														
	AVG.												================================	and the same page of th

LEG	SAMPLE	NE LOUT	BULK	M _R	Indi	RECT TENSI	ON	RICE SPECIFIC	PERCENT AIR
NO.	NO.	HETGHT	SPECIFIC GRAVITY	@ 77"F	MODULUS	STRESS	STRAIN	GRAVITY	voids
	2A 3A	1.270	2.605 2.598					2.686	
٧	4A	0.919	2.580					2.693	
	!								
	AVG.	1., 112	2.594					2.690	3.4

NOTES:

- 1) 'A' samples are from 4 inch diameter cores testing item 340 surface material.
- 2) 'B' samples are from the same 4 inch diameter cores testing underlying item 292 materials.
- 3) '6' samples are testing item 292 materials from layers A, B, and C of 6 inch cores.

^{*}Denotes test results following the accelerate Lottman (24 hour moisture treatment).

Table 16. (Continued) Test Sequence II results for U.S. 59, Shelby County pavement distress problem. Page 3

LEG NO.	SAMPLE NO.	HE LGHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL Flow		AISCOSILA		PENETRA	ATION	RING &	PERCENT
10.	10.	, including	GRAVITY	@ 77°F	JIMBILITY	I LIOM	@ 77°F	@ 140°F	@ 275°F	39.2°F	77°F	BALL	ASPHALT
1	6A 6B 6C		,				5.8x106 5.0x106 4.5x106	4356 5301 4320	5.626 5.987 5.368	19 21 20	44 42 45	135 134 131	4.2 5.8 5.6
,	AVG.				and the second s		5.1x10 ⁶	4659	5.660	20	44	133	5.2

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	HVI		MR		EEM*	INDII	RECT TENSI	ON*	MARSHALL STABILITY	MARSHALL Flow
NO.	NO.	nerum	GRAVITY	@ 77°F	31/101		@ 77°F	JIAD	11.111	MODULUS	STRESS	STRAIN	214011111	LUM
11						1					J	ł		
														The second data and second states and
	AVG.]				•								ļ

LEG NO.	SAMPLE	HEIGHT	BULK SPECIFIC	MR	HVEEM STABILITY	M _R	HVEEM STABILITY	INDIRE	T TENSION	ł
NU.	NO.	HEIGHT	GRAVITY	@ 77°F)/////[[]	@ 77°F	SINDICITY	MODULUS	STRESS	STRAIN
								Ì		
ш										
}										
	AVG.									

Table 16. (Continued) Test Sequence II results for U.S. 59, Shelby County pavement distress problem. Page 4

	LEG NO.	SAMPLE NO	HE IGHT	RULK SPECIFIC	M _R	M _R @ 33"F	M _R @ 77"F	M _R	HVFEM STABILITY	M R 077"F	HVEFM STABILITY	MARSHALL STABILITY	MARSHALL FLOW	INDIR	ECT TENS	ION
				GRAVITY							·* ** * * * * * * * * * * * * * * * * *			MODULUS	STRESS	STRAIN
	IV															
									,]						
		******		-												
٠.		AVG.		F To manager Sections when supple country				na na tagaganaanaan (ng. 367700).								

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	INDI	RECT TENSI	ON	RICE SPECIFIC	PERCENT
NO.	NO.	neidil	GRAVITY	@ 77°F	MODULUS	STRESS	STRAIN	GRAVITY	AIR VOIDS
	38	2.937	2.353					2.649	11.2
V									
	AVG.	2.937	2.353					2.649	11.2

NOTES:

- 1) 'A' samples are from 4 inch diameter cores testing item 340 surface material.
- 2) 'B' samples are from the same 4 inch diameter cores testing underlying item 292 materials.
- 3) '6' samples are testing item 292 materials from layers A, B, and C of 6 inch cores.

^{*}Denotes test results following the accelerate Lottman (24 hour moisture treatment).

Table 17A. Test Sequence II results for Item 340 Type "D" black cores on U.S. 290, Hempstead, Texas.

LEG NO.	SAMPLE NO.	HELGHT	BULK SPECIFIC	M _R	MARSHALL STABILLTY	MARSHALL FLOW	The large segment of the large	VISCOSITY		PENETR	***	RING & BALL	PERCENT ASPHALT
			GRAVITY	0 77°F			Ø 77°F	@ 140°F	@ 275°F	39.2°F	7/°F	Drill.	7311AC1
I	1-68 1-7A 1-10B 1-11B	1.404 1.379 1.499 1.884	2:277 2:321 2:297 2:224	. 494 . 846 . 557 . 463	1,318 2,242 904 468	4.5 6.0 5.5 5.5							
	AVG.	1.542	2.280	. 590	1,233	5.4	+	A man commence and other and	+	+	+	+	+

	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	1	EEM ILITY	MR		EEM* ILITY	HOM	RECT TENS	ION*	MARSHALL * STABILITY	MARSHALI*
_			ne tuni	GRAVITY	@ 77°F	UNC	THD	0 77°F	UNC	THO	MODULUS	STRESS	STRAIN	JIMDILIII	FLUW
16	П	I-5A 1-5B 1-9A 1-9B I-10A	1.538 1.239 1.901 1.209 2.009	2.312 2.278 2.310 2.288 2.322	. 538 . 695 . 314 . 482 . 454	56.4 43.6 37.0 57.0 32.1	40.9 22.0 28.8 34.9 26.0	. 356 . 201 . 281 . 254 . 376	42.4 58.9 34.5 60.2 30.2	26.9 37.5 26.3 38.1 24.1	32,392 34,524	51.0 69.0	.00157	1,209 640 1,081	8.0 8.5 9.0
		1-11A AVG.	1.649	2.288	. 382	33. 2 43. 2	27.0	. 255	34.6 43.5	28.4 30.2	18,571 28,496	59.0 59.7	.00318	977	8.5

LEG	SAMPLE	UEICUT	BULK	MR	IIVE STABI		M _R		EEM	INDIREC	T TENSION	
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	0 77°F	UNC	THD	@ 77°F	UNC	ILITY THD	MODULUS	STRESS	STRAIN
111												
	AVG.											

Table 17A. (Continued) Test Sequence II results for Item 340 Type "D" black cores on U.S. 290, Hempstead, Texas.

LEG NO.	SAMPLE NO.	HE [GHT	BULK SPECIFIC GRAVITY	M _R @ -13°F	M _R @ 33°F	^M R በ 77″Γ	M _R @ 104°F	HVEE STABIL UNC	TTV	M*** @ 77°F	HVEI STABII UNC	THD	MODULUS	STRESS	r	*** MARSHALL STABILITY	*** MARSHALL FLOW
IV																	
	AVG.	g y . A Saday an aggrage a	and the same of th	and the second s	30 V (m == mma_m		1 - 12 - 13 - 14 - 14 - 14 - 14 - 14 - 14 - 14		***		Angly) may make you and		and the second		** 9		

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	M _R	M _R	M _R	INDI	RECT TENS	10N	RICE SPECIFIC	PERCENT AIR
			GRAVITY	@ -13°F	@ 33°F	0 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
v	1-6A 1-7B 1-8A 1-8B	1.974 1.354 1.896 1.314	2.319 2.273 2.307 2.268	2.524 2.537 2.377 2.428	2.047 2.737 1.845 2.123	.471 .529 .382 .677	.142 .275 .153 .186	54,895 71,633 64,826 53,451	218.0 170.0 206.0 148.0	.00397 .00237 .00318 .00277	2.413 2.421 2.415 2.414	3.9 6.1 4.5 6.0
	AVG.	1.635	2.292	2.467	2.188	. 515	.189	61,201	185.5	.00307	2.416	5.1

Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

M_R Modulus of Résiliency.

Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

Table 178. Test Sequence II results for Item 340 Type "D" iron ore cores on U.S. 290, Hempstead, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	MARSHALL SIABILITY	MARSHALL FLOW		VISCOSITY		PENETRA		RING &	PERCENT ASPHALT
NO.	nv.	, HE10H1	GRAVITY	@ 7 7 °F	SIMBICITY	1 (04	@ 77°F	@ 140°F	@ 275°I	39.2°F	77°F	BALL	V2LUVE I
ī	1-2 1-18 1-20 1-21	1.050 1.477 1.350 1.518	2.372 2.377 2.388 2.418	. 587 . 705 . 799 . 715	4,925 5,240 5,461 5,796	11.0 10.5 11.0 10.0							
	AVG.	1.349	2.389	. 702	5,356	10.6	3.0x10 ⁷	82085	11.13	10	21	160°	4.46

!	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R @ 77°F	HVI STABI	LITY	M R @ 77°F		EEM*		RECT TENS	r	MARSHALL STABILITY	MARSHALL FLOW
11				GRAVITY		UNC	THD		UNC	TIID	MODULUS	STRES5	STRAIN		
00	ΙΙ	1-1 1-4 1-16 1-19 1-23 1-24	.873 .945 1.541 1.578 1.227 1.334	2. 376 2. 374 2. 422 2. 404 2. 318 2. 350	.553 .537 .676 .775 .621 .425	85.0 77.4 54.9 59.4 73.8 60.2	56.2 50.0 39.5 44.7 52.1 40.6	. 301 . 265 . 567 . 600 . 370 . 368	86.4 + 55.2 61.3 68.0 62.3	57.6 + 33.8 46.6 46.3 42.7	67,823 31,590 33,936	161.0 100.0 108.0	.00237 .00317 .00318	4,170 + 5,463	14 + 16
		AVG.	1.250	2. 374	. 598	68.5	47.2	.412	66.6	45.4	44,450	123.0	.00291	4,817	15

LEG	SAMPLE	us rout	BULK	MR	1	EEM	M _R		EEM	INDIRE	CT TENSIO	i
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN
111	1-3 1-17 1-22	. 972 1.622 1.381	2.396 2.392 2.398	.619 .673 .621	83.7 57.7 61.3	56.9 43.9 42.7	. 414 .612 .520	83.2 56.3 70.9	56.4 42.5 52.3	38,709 69,282 70,910	123.0 165.0 141.0	.00318 .00238 .00199
	AVG.	1.370	2.395	.638	67.6	47.8	.515	.70.1	50.4	59,634	143.0	.00252

Table 17B. (Continued) Test Sequence II results for Item 340 Type "D" iro. re cores on U.S. 290, Hompstead, Texas.

LEG NO.	SAMPLE NO.	HE I GHT	BULK SPECIFIC GRAVITY	. M _R @ -13°F	M _R @ 33°F	M _R @ 77°F	M _R @ 104"F	HVEE STABII UNC		M*** @ 77°F	HVEI STABII UNC	EM*** LTTY THD	INDIF	STRESS	r	*** MARSHALL STABILITY	*** MARSHALL FLOW
īv					iki amun aka	as allowed and a second of a			and all the set of the second	and the second s		-aleksariya da quae diga yan		M. 1987 M. H. Charle S. Lands	CTORN F MICH OF A FEEDBAR MARKET NAMES		
	AVG.				y = 200330000 and 100			Man appear to the output .	anning the second of the secon	***************************************					and the second southers of	80 C COO CO	

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	M _R	M _R	M _R	IND	RECT TENS	SION	RICE SPECIFIC	PERCENT
"""	, NO.	l'ici divi	GRAVITY	0 −13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
v	1-13 1-14 1-15	1.337 1.320 1.452	2. 386 2. 392 2. 398	2.015 2.059 2.304	1.256 1.248 1.409	.643 .608 .737	.271 .274 .272	97,558 104,135 67,259	155.0 165.0 160.0	.00159 .00158 .00238	2.540 2.532 2.568	6.1 5.5 6.6
	AVG.	1.370	2.392	2.126	1. 304	.663	.272	89,651	160.0	.00185	2.547	6.1

Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

^{**} Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

 M_{R} Modulus of Resiliency.

Table 18. Test Sequence II results for Item 340 Type "D" Asphadure" cores on U.S. 62 in Lubbock, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ /7"F	MARSHALL STABILITY	MARSHALL FLOW	@ 77°F	VISCOSITY @ 140°F	@ 275°f	PENETR/	77°F	RING & BALL	PERCENT ASPHALT
1	7-6 7-9 7-10 7-14	1. 340 1. 433 1. 383 . 898	2.083 2.069 2.123 2.026	. 446 . 413 . 647 . 517	1,000 1,318 1,894 1,334	16.0 12.0 12.0 10.0		1,7 0,000					W
	AVG.	1.264	2.075	- 506	1,387	12.5	4.75x10 ⁶	14.725	10.828	3	20	141°	6.94

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ 77°F	1	EEM ILITY TIID	M * R @ 77°F		EEM* ILITY THO	. TNDJI Modulus	STRESS	ON*	MARSHALL* STABILITY	MARSHALL*
11	7-3 7-4 7-5 7-8 7-12 7-13	1.736 1.703 1.293 1.252 1.191 1.136	2.105 2.089 2.075 2.069 2.061 2.088	. 436 . 352 . 408 . 380 . 503 . 592	64.6 40.3 50.6 58.2 51.5 42.6	41.1 28.8 29.4 35.7 31.1 30.4	.284 .161 .184 .195 .218 .309	34.7 28.4 48.2 47.9 68.6 61.1	23.1 16.2 27.8 26.7 36.2 37.6	27,511 16,562 30,383	109.0 79.0 121.0	.00396	841 1,061 1,619	16.0 17.0 16.0
	AVG.	1.385	2.081	. 445	51.3	32.8	. 225	48.2	27.9	24,819	103.0	.00424	1,174	16.3

SAMPLE	UFICUT	BULK	$M_{ m R}$			M _R			INDIREC	T TENSION	•
NU.	ne i Gri	GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	TAD	MODULUS	STRESS	STRAIN
ΛVG.				,	constitution of the Anny Constitution of the	ng. 1 - procedure	An Committee Williams - 1999			n run scruite serve did itsiff	
	SAMPLE NO.	NO. HEIGHT	NO. HEIGHT SPECIFIC GRAVITY	NU. HEIGHT SPECIFIC @ 77°F	NO. HEIGHT SPECIFIC R STABI	NU. HEIGHT SPECIFIC @ 77°F UNC THD	NO. HEIGHT SPECIFIC 677°F UNC THD	NO. HEIGHT SPECIFIC GRAVITY 077°F UNC THD WNC	NO. HEIGHT SPECIFIC GRAVITY 077°F UNC THD WINC THD UNC THD	NO. HEIGHT SPECIFIC RAVITY ONC THD STABILITY UNC THD MODULUS	NO. HEIGHT SPECIFIC GRAVITY ONC THD STABILITY UNC THD WODULUS STRESS

Table 18. (Continued) Test Sequence II results for Item 340 Type "D" Asphadure" cores on U.S. 62 in Lubbock, Texas

LEG NO.	SAMPLE NO.	HETCHT	BULK SPECIFIC GRAVITY	M _R @ -13°F	^М R ө 33°F	# _R @ 77°F	M _R @ 104°F	HVEF STABIL UNC	ITV	M*** @ 77°F	HVE! STAB11 UNC	ITY THD	IND16 Modulus			*** MARSHALL STABILITY	*** MARSHALL FLOW
IV							,							1. Made more movery to major a major j	the dis sales and discussion of		
1	AVG.	ar s o var reason as regionaria, and) /A. (2. (2.)					Amagango companya a cocce to			,				

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	MR	M _R	M _R	INDI	RECT TENS	ION	RICE SPECIFIC	PERCENT AIR
			GRAVITY	@ -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
٧	7-1 7-2 7-7 7-11	1.430 1.635 1.363 1.359	2.091 2.113 2.080 2.085	2.079 2.073 1.945 2.798	1.679 1.527 1.483 1.821	. 485 . 419 . 406 . 581	.101 .087 .080 .110	44,204 47,866 41,223 63,002	140.0 152.0 131.0 150.0	.00317 .00318 .00318 .00238	2.269 2.242 2.254 2.257	7.8 5.8 7.7 7.6
	AVG.	1.447	2.092	2.224	1.628	. 473	. 095	49,074	143.3	.00291	2.256	7.3

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

^{**} Denotes Test Results Following the 7-day Soak Period.

^{***} Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

 M_R Modulus of Resiliency.

Table 19. Test Sequence II results for field cores of surface hot-mix Item 340 from U.S. 87 at 34th Street in Lubbook, Texas

IFG NO.	SAMPLE NO.	HETGHT	BULK SPECIFIC	M _R @ 77°F	MARSHALL STABILITY	MARSHALL ELOW	a > 30 × 74 (30 °)	VISCOSITY	1	PENETR/	1	RING & BALL	PERCENT ASPHALT
			GRAVITY				ิ ค 77^F	@ 140"F	0 275*1	39.2"[77°F	A A = 400	
1	6-10 6-15 6-16 6-17	1.011 1.187 1.171 1.021	2:257 2:317 2:259 2:268	.544 .274 .293 .212	3375 2085 2606 2375	11 21 14 14					:		
	AVG.	1.098	2.275	. 331	2610	15	6.4x10 ⁶	3434	4.85	10	37	130°	5.64

12	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	^M R ⊕ 77°F		EEM ILLTY THD	M R Q 77"F		EEM* ILITY Thd	INDII Modulus	SERESS	ON* STRAIN	MARSHALL STABILITY	MARSHALL FLOW
22	11	6-7 6-9 6-11 6-12 6-13 6-14	1.109 1.092 0.930 1.073 0.997 1.175	2.213 2.173 2.251 2.290 2.281 2.266	. 197 . 279 . 526 . 210 . 187 . 242	58.6 56.7 38.1 20.1 38.1 22.5	44.6 32.3 10.4 TLTC 11.8 TLTC	.215 .244 .277 .314 .283 .432	41.0 34.7 35.8 17.0 31.6 19.8	17.0 10.3 8.2 TLTC 5.3 TLTC	12,439.0 17,979.0 14,002.0	79.0 128.0 111.0	.00635	1479 2002 2050	16 18 19
		AVG.	1.063	2.246	. 274	40.7	24.8	.294	30.0	10.2	14,806.7	106.0	.00713	1844	18

LEG	SAMPLE	LUELOUT	BULK	M _R	BVI STAB		MR	1	EEM	INDIREC	T TENSION	
NO.	NO.	INETGHT	SPECIFIC GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN
111	6-1 6-3 6-8 6-18	1.198 1.033 1.182 1.080	2.267 2.247 2.206 2.267	. 395 . 209 . 227 . 236	59.5 56.8 13.7 34.4	37.2 34.2 TLTC 8.8	. 330 . 181 . 218 . 230	44.8 14.4 53.2 13.8	22.5 TLTC 30.6 TLTC	29,030.0 31,078.0 25,220.0 26,275.0	138.0 136.0 140.0 146.0	.00475 .00438 .00555 .00556
	AVG.	1.123	2.247	.267	41.1	26.7	.240	31.6	26.6	27,900.8	140.0	. 00506

Table 19. (Continued) Test Sequence II results for field cores of surface hot-mix Item 340 from U.S. 87 at 34th Street in Lubbock, Texas.

LEG NO.		HFIGHT	BULK SPECIFIC GRAVITY	M _R @ −13°F	^М R ө 33°F	11 _R 0 77°F	M _R @ 104°F	IIVEE STABIL UNC	174	И#** @ 77°F	IIVEI STABII UNC	H*** LTY TIID	ECT TENS		*** MARSHALL STABILITY	MARSHALL FLOW	
īv												:					
	AVG.	15. F Voltage last VIV	**************************************	W	THE SAME VIOLENCE STORE AND VE AND AND	antonio di Mandala di	some of a management of			yappangan mammada s	and the state of the		 	Parcellar (and say services). Acces	***************************************	, , , , , , , , , , , , , , , , , , ,	-

LEG NO.	SAMPLE NO.	HE LGHT	BULK SPECIFIC	1205	0 2205	A 779F	0 10461	TNDIF	RECT TENS	ION	RICE SPECIFIC	PERCENT AIR
			GRAVITY	@ -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
V	6-2 6-4 6-5 6-6	1.086 0.871 0.961 1.237	2.227 2.245 2.251 2.240	2.951 2.903 2.785 2.829	1.943 1.740 1.608 1.434	.310 .208 .282 .227	. 084 . 070 . 065 . 093	49,890.0 18,431.0 26,549.0 35,689.0	132.0 147.0	.00317 .00716 .00554 .00317	2.252 2.259 2.273 2.271	1.1 0.6 1.0 1.4
	AVG.	1.039	2.241	2.867	1.681	. 257	.078	32,639.8	137.5	.00476	2.264	1.0

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

^{**} Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

 M_{R} Modulus of Resiliency.

Table 20A. Test Sequence II results for field cores of surface hot-mix Item 340 from Loop 287 in Lufkin, Texas

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY	A commence of the same commenc	PENETR	ATION	RING &	PERCENT ASPHALT
NO.			GRAVITY	@ 77^F	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	r Lon	@ 77°F	@ 140°F	@ 275"	39.2°F	77°F	DVLC	ASPIINET
I	4-10 4-12 4-14 4-15	.610 .708 .680 .840	2.363 2.371 2.367 2.344	. 152 . 124 . 202 . 136	1251 1390 1390 1807	10 10 12 12							
	AVG.	. 710	2.361	. 154	1460	11	3. 15×10 ⁶	3427	5.638	17	52	128°	5.59

	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	MR		EEM LLTTY	M _R		EEM*	INDI	RECT TENSI	ON*	MARSHALL STABILITY	MARSHALL FLOW
12			11610111	GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN	SINDICITI	1 204
4	H	4-1 4-2 4-4 4-6 4-7 4-13	. 973 . 948 . 877 . 822 . 710 . 776	2.361 2.359 2.370 2.360 2.367 2.369	.074 .077 .118 .130 .143 .187	63.4 64.4 70.3 68.1 78.0 68.1	36.6 37.1 41.6 38.3 46.0 37.4	.295 .233 .312 .270 .308 ,272	71.3 45.9 74.9 79.0 72.5 76.4	44.6 18.6 46.2 49.2 40.5 45.6	17,197.0 19,527.0 18,423.0	109.0 108.0 117.0	.00634 .00553 .00635	2224 2641 1946	18 18 15
		AVG.	. 851	2.364	, 122	68.7	39.5	. 282	70.0	40.8	18,382.3	111.3	.00607	2270	17

LEG	SAMPLE	DETAUT	BULK	M _R	HVE STABI		MR		EEM (LITY	INDIRE	CT TENSIO	1
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	TIID	MODULUS	STRESS	STRAIN
III	4-5 4-9 4-11 4-18	. 779 . 678 . 735 . 926	2.362 2.360 2.347 2.363	.113 .162 .127 .143	84.0 87.2 82.9 76.7	53.3 54.5 51.4 49.0	. 260 . 282 . 245 . 487	73.3 80.2 80.2 58.4	42.6 47.5 48.6 30.7	18,030.0 32,822.0 24,959.0 23,525.0	129.0 143.0 139.0 131.0	.00715 .00436 .00557 .00557
	AVG.	. 780	2.358	. 136	82.7	52,1	. 319	73.0	42.4	24,834.0	135.5	. 00566

Table 20A. (Continued) lest Sequence II results for field cores of surface hot-mix Item 340 from Loop 287 in-Lyfkin, lexas.

1EG NO.	SAMPLE NO.	HELGHT	BULK SPECIFIC	MR	MR	II _R	M _R	IIVEE	. ***	M***	IIVEE	[//*** TY	INDIR	ECT TENS		*** MARSHALL	*** MARSHALL
	.,		GRAVITY	0 -13°F	0 33°F	() 77°F	@ 104°F	UNC	THD	0 77°F	UNC	THD	MODULUS		STRAIN	STABILITY	FLOW
17																	
						•											
	AVG.												p. 40-44-40-40-4	Lange Committee of the State of			

125

LEG NO.	SAMPLE NO.	HELGHT	BULK SPECIFIC					INDI	RECT TENS	ON	RICE SPECIFIC	PERCENT AIR
mo.	110.	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	GRAVITY	(∂ -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
v	4-3 4-8 4-16 4-17	. 775 . 758 . 917 . 774	2.366 2.350 2.362 2.361	3. 921 3. 762 3. 267 3. 295	1.689 1.375 1.646 1.590	.092 .125 .156 .136	. 067 . 058 . 055 . 052	35,214.0 19,855.0 28,448.0 19,260.0	126.0 113.0	.00398 .00635 .00397 .00556	2.427 2.398 2.389 2.423	2.5 2.0 1.1 2.6
	AVG.	. 806	2.360	3.561	1.575	. 127	. 058	25,694.3	121.5	.00497	2.409	2.0

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

 M_{R} Modulus of Resiliency.

^{**} Denotes Test Results Following the 7-day Soak Period.

^{***} Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

Table 20B. Test Sequence II results for field cores from second layer of hot-mixed material from Loop 287 in Lufkin, Texas.

LEG NO.	SAMPLE	HETGHT	BULK SPECIFIC	MR	MARSHALL STABILITY	MARSHALL FLOW		VISCOSITY		PENETRA	TION	RING &	PERCENT ASPHALT
NU.	NO.	HEIGHT	GRAVITY	@ 77°F	31/01[117	FI,Un	@ 77"F	@ 140°F	@ 275°I	39.2°F	77°F	DAIL	Walawei
1	4-1A 4-2A 4-11A 4-18A	1,122 1,046 1,106 0,929	2.314 2.366 2.354 2.360	.093 .125 .110 .081	1138 1625 1547 1279	12.5 14.0 13.0 11.0							
	AVG.	1.051	2.349	, 102	1397	12.6	3. 1x10 ⁶	3938	5.624	15	43	129°	5.68

	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	M _R	HVI	EEM [L]TY	M _R		EEM* ILITY	IIONI	RECT TENSI	ON*	MARSHALL STABILITY	MARSHALL Flow
_	NO.	NO.	,,erom	GRAVITY	@ 77°F	UNC	THO	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN		,,,,,
36	11	4-3A 4-4A 4-7A 4-12A 4-13A 4-14A	1.082 0.973 1.073 1.098 1.224 1.250	2.366 2.397 2.388 2.367 2.382 2.363	. 109 . 125 . 079 . 073 . 093 . 068	66.0 74.4 55.2 54.2 44.9 54.1	41.4 47.6 30.4 29.9 23.1 32.8	.265 .292 .144 .123 .141	55.8 70.4 61.1 47.5 45.4 42.9	31.2 43.6 36.3 23.3 23.6 21.8	19,332.0 10,964.0 16,393.0	123.0 87.0 104.0	.00636 .00794 .00634	2000 1800 1444	12 14 14
	_	AVG.	1.117	2.377	.091	58.1	34.2	.190	53.9	30.0	15,563.0	104.7	.00688	1748	13

FEG	SAMPLE	1	BULK	M _R	HIVE		M _R		EEM	INDIREC	CT TENSIO	1
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77°F	STAB1	_THO	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN
111	4-5A 4-9A 4-10A 4-16A	1.249 1.253 1.088 1.152	2.386 2.354 2.359 2.347	.090 .079 .105 .115	51.6 51.6 52.8 58.0	30.4 30.5 28.3 34.8	. 154 . 125 . 138 . 148	30.3 32.4 51.0 48.4	9.0 11.2 26.5 25.2	15,188.0 16,013.0 13,412.0 16,449.0	133.0 127.0 117.0 117.0	.00876 .00793 .00872 .00711
	AVG.	1.186	2.362	. 097	53.5	31.0	. 141	40.5	18.0	15,265.5	123.5	.00813

Table 208. (Continued) Test Sequence II results for field cores from second layer of hot-mixed material from Loop 287 in Eufkin, Texas

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ −13°F	^M R ⋒ 33°F	^በ R ቡ 77°ር	M _R @ 104°F	IIVEF STABIL UNC	1 74	И <u>*</u> ** @ 77°F	IIVEF STABIL UNC	M*** ITY THD	 STRESS	r	*** Marshall Flow
IV															Committee Value Value
a one considerable de	AVG.								\\\\\\\\\\\.						

. 27	,	·									*	
LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC					INDI	RECT TENS	10N	RICE SPECIFIC	PERCENT AIR
			GRAVITY	0 -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
٧	4-6A 4-8A 4-15A 4-17A	1.055 1.102 1.072 1.273	2. 387 2. 384 2. 315 2. 354	3.188 3.348 2.417 2.721	1.409 1.580 1.412 1.214	.083 .078 .111 .095	.025 .032 .040 .035	17,119.0 14,365.0 17,315.0 18,916.0	103.0 110.0	.00637 .00717 .00635 .00555	2.391 2.427 2.429 2.449	0.2 1.8 4.7 3.9
	AVG.	1.126	2.360	2.919	1.404	. 092	.033	16,928.8	106.8	. 00636	2.424	2,7

Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

^{**} Oenotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Oenotes No Test Values Available.

 M_{R} Modulus of Resiliency.

Table 21A. Test Sequence II results for field cores of surface hot-mix Item 340 from U.S. 59 north of Lufkin, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPEC1FIC	M _R	MARSHALL STABILITY	MARSHALL Flow		VISCOSITY		PENETRA	ATION	RING &	PERCENT
			GRAVITY	@ 77°F	JINDICITI	LON	@ 77°F	@ 140°F	@ 275°I	39.2°F	77°F	BALL	ASPHALT
I	5-9 5-10B 5-13 5-16	0.876 0.997 0.953 0.996	2.371 2.356 2.372 2.365	. 193 . 222 . 179 . 168	2085 2780 2085 2641	11 9 10 9							
	AVG.	0.956	2.366	. 191	2398	10	1.5x10 ⁶	3685	8.17	18	50	131°	6.14

	LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC GRAVITY	M _R @ 77°F		EEM Ility Thd	M R @ 77°F	HVE Stabi Unc	EM* LITY THD	INUT MODULUS	RECT TENSI	ON* STRAIN	MARSHALL STABILITY	MARSHALL Flow
128	П	5-2B 5-3B 5-8 5-14 5-17 5-18	0.772 0.812 0.855 1.067 1.052 1.050	2.363 2.372 2.372 2.372 2.348 2.347 2.362	.213 .174 .190 .147 .144	72.2 64.5 60.0 33.9 36.8 42.6	41.4 34.5 30.8 9.0 11.6 17.3	. 350 . 312 . 274 . 286 . 266 . 317	59.3 67.8 56.7 44.8 37.9 48.4	28.4 37.8 27.5 19.8 12.7 23.2	19,168.0 17,915.0 18,387.0	122.0 114.0 131.0	.00636 .00636 .00712	1946 2300 2125	14 14 17
	'	AVG.	0.935	2.361	.172	51.7	24,1	. 301	51.6	24.9	18,490.0	1223	.00662	2124	15

LEG	SAMPLE	UFICUT	BULK	MR	HVE		M _R		EEM	INDIRE	CT TENSIO	V .
NO.	NO.	HEIGHT	SPECIFIC GRAVITY	@ 77°F	UNC	TIID	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN
Ш	5-18 5-6 5-7 5-15	0.695 0.980 0.798 1.059	2.373 2.368 2.375 2.364	. 205 . 190 . 165 . 169	72.7 50.8 68.1 43.9	40.4 24.1 37.8 18.8	.194 .130 .153 .133	79.4 56.5 73.8 47.3	47.1 29.9 43.5 22.2	18,404.0 39,924.0 15,157.0 29,229.0	117.0 127.0 96.0 185.0	.00636 .00318 .00633 .00633
	AVG.	.883	2.370	. 182	58.9	30.3	. 153	64.3	35.7	25,678.5	131.3	. 00555

Table 21A. (Continued) Test Sequence II results for field cores of surface hot-mix Item 340 from U.S. 59 north of Lufkin, Texas.

LEG NO.	SAMPLE NO.	BULK SPECIFIC GRAVITY	M _R ⊕ -13°F	M _R @ 33"F	™ _R ⊕ 77″F	M _R @ 104°F	HVEE STABIL Unc	* ***	M*** @ 77°F	HVE STABIL UNC	M*** TUD	1NOTE Modulus		*** MARSHALL STABILITY	*** MARSHALL FLOW
īv															
	AVG.					<u> </u>		:			4		 		

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC				0 10405	INDII	RECT TENS	STON	RICE SPECIFIC	PERCENT AIR
			GRAVITY	@ -13°F	@ 33°F	@ 77°F	@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY	VOIDS
V	5-4B 5-5B 5-11 5-12	0.802 0.999 1.020 0.847	2.342 2.363 2.359 2.356	2.700 2.742 2.905 2.835	1.583 1.499 1.345 1.493	.201 .186 .169 .160	.051 .050 .042 .060	17,515.0 24,105.0 20,657.0 15,268.0		.00794 .00556 .00644 .00714	2.398 2.375 2.366 2.379	2.3 0.5 0.3 1.0
	AVG.	0.917	2.355	2.796	1.480	.179	.051	19,386	128.3	.00677	2.380	1.1

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

 $\mathbf{M}_{\mathbf{R}}$ Modulus of Resiliency.

Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

Denotes No Test Values Available.

Table 21B. Test sequence II results for field cores from bottom layer of hot-mixed material from U.S. 59 north of Lufkin, Texas.

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	H _R	MARSHALL STABILITY	MARSHALL FLOW	Transaction from Principles State - 18, State - 19,	VISCOSITY		PENETR	NT 10N	RING & BALL	PERCENT ASPHALT
			GRAVITY	P //"I			@ 77°F	@ 140°F	@ 275°1	39.2°F	77°F	DALL	YZLIMET
I	5-9 5-12 5-13 5-18	1.011 .929 1.058 .888	2.198 2.231 2.189 2.216	.196 .130 .163 .142	925 612 900 556	10 12 9 9							
	AVG.	. 972	2.209	.158	748	10	3.7x10 ⁶	5100	8.509	12	42	126°	6.79

	LEG NO.	SAMPLE NO.	HE IGHT	BULK SPECIFIC	MR	HVI		MR		EEM*	. INDIR	RECT TENSI	ON*	MARSHALL STABILLLY	MARSHALL FLOW
_				GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRES S	STRAIN		
30	II	5-38 5-58 5-7 5-8 5-15	.842 1.010 1.071 1.030 1.170	2.240 2.178 2.230 2.239 2.161	.121 .158 .083 .139 .169	78.5 80.5 67.8 76.5 61.5	48.5 54.3 37.5 47.4 36.4	.095 .084 .101 .079 .097	75.7 68.5 59.0 61.2 53.8	45.7 42.2 28.7 32.1 28.8	25,772.0 12,203.0 14,778.0	82.0 73.0 59.0	.00318 .00598 .00399	1112 612	12 11
		AVG.	1.025	2.210	, 134	73.0	44.8	. 091	62.0	35.5	17,584.3	71.3	. 004 38	862	12

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	. M _R	HVE		M _R		EEM ILITY	INDIRE	CT TENSTO	1
NO.	No.	lictorii	GRAVITY	@ 77°F	UNC	THD	@ 77°F	UNC	THD	MODULUS	STRESS	STRAIN
111	5-28 5-48 5-118 5-17	.901 .980 1.017 1.194	2.218 2.203 2.160 2.175	.117 .168 .154 .138	85.5 71.4 70.3 56.5	54.7 41.2 44.5 31.3	.108 .112 .102 .082	74.2 61.0 62.0 53.3	45.9 34.3 36.1 31.0	22,092.0 25,018.0 21,638.0 20,217.0	70.0 99.0 69.0 80.0	.00317 .00396 .00319 .00396
	AVG.	1.023	2.189	.144	70,9	42.9	, 101	62.6	36.8	22,241.3	79.5	. 00357

Table 21B. (Continued) Test Sequence II results for field cores from bottom layer of hot-mixed material from U.S. 59 north of Lufkin, Texas.

LEG NO.	SAMPLE NO.	HELGHT	BULK SPECIFIC GRAVITY	M _R @ -13°F	M _R @ 33°F	M _R ብ 77°F	M _R @ 104°F	HVEF STABIL UNC	117	M*** @ 77°F	IIVEI Stabii Unc	M*** THD	MODULUS		r	*** Marshall Flow
10)		All Property and P		,
	AVG.			* ***********************************	*	a roger des sons							·	·	***************************************	

LEG NO.	SAMPLE NO.	HEIGHT	BULK SPECIFIC	. 1005	@ 33°F	@ 77°F	9 104°E	INDIRECT TENSION			RICE SPECIFIC	PERCENT ALR
			GRAVITY	0 -13°F			@ 104°F	MODULUS	STRESS	STRAIN	GRAVITY VOIDS	
٧	5-18 5-10 5-14 5-16	.802 .846 .960 1.018	2.242 2.199 2.182 2.199	3.155 2.631 2.904 3.889	1.154 0.909 1.084 1.419	.144 .115 .164 .134	.038 .033 .041 .035	12,914.0 10,951.0 21,600.0 18,015.0	_	.00712 .00712 .00477 .00794	2.397 2.375 2.354 2.368	6.5 7.4 7.3 7.1
	AVG.	. 907	2.206	3.145	1.142	. 139	.037	15,870	104.0	.00674	2.374	7.1

^{*} Denotes Test Results Following the Accelerated (24 hour) Lottman Moisture Treatment Procedure.

 $M_{\mbox{\scriptsize R}}$ Modulus of Resiliency.

Denotes Test Results Following the 7-day Soak Period.

Denotes Test Results Following the (18 cycle) Lottman Moisture Treatment Procedure.

⁺ Denotes No Test Values Available.

Table 22. Summary of roadway pavements with Item 340 layers evaluated under Project 2-9-80-285.

-	Laboratory Test Data Table Number*	Highway Number**	Control- Section Number	District Number	County	Location or Limits of T Roadway Section	Laboratory est Sequence Number	Comments
	la - Ig (1-7)	US 82 (4)	132-1	25	Dickens	From 4.9 miles east of SN 70 to 15.0 miles east in westbound traveled lane; R.	ſ	Joint 285/287 Studies. Seven different subsections having different asphalt cements.
-	2a - 2g (8-14)	US 287 (4)	66-4	4	Noore	From approximately 4.5 miles north of Dumas to several miles north in nort bound traveled lane, L.	l h-	Joint 285/287 Studies. Seven different subsections having different asphalt cements
133	3A - 3G (15-21)	US 82 (4)	132-1	25	Dickens	Same as above US 82 roadway.	11	Joint 285/287 Studies. Seven different subsections having different asphalt cements.
_	4A - 4G (22-28)	US 287 (4)	66-4	4	Moore	Same ás above US 287 roadway.	11	Joint 285/287 Studies. Seven different subsections having different asphalt cements.
	5 (29)	IH 45 (4)	675-4	17	Madison	L northbound traveled lane, Mile Post 144.2, Madisonville.	11	18-core section.
-	6 (30)	1H 45 (4)	675-4	17	Madison	L north bound traveled lame, Mile Post 143.7, Madisonville.	II	12-core section

Table 22. (Continued) Summary of roadway pavements with Item 340 layers evaluated under Project 2-9-80-285.

	Laboratory Test Data Table Number*	Highway Number**	Control- Section Number	District Number	County	Location or Limits of T Roadway Section	Laboratory est Sequence Number	Comments
•	7 (31)	IH 45 (4)	675-6	17	Walker	R southbound traveled lane, Mile Post 117.4, Huntsville	Ĭſ	
	(32)	III 35 (4)	48-4	18	Ellis	Approximately MP 397 to 407, southbound and north-bound traveled lanes.	11	Cores taken and furnised by district.
	9 (33)	US 77 Bypass (4)	371-4	16	Kleberg	R southbound traveled lane, 0.4 mile south of FM Road 1356, Kingsville, Texas.	11	
ယ _်	10 (34)	US 77 Bypass (4)	102-4	16	San Patricio	L. northbound traveled lane 0.5 mile south of JCT with north end of US 77 Business Route, Sinton, Texas.	11	
•	11 (35)	IH 37 (4)	74-1	16	Live Oak	L northbound traveled lane, Mile Post 66.8, north of George West.	[]	
gave e	12 (36)	SH 71 Business (2)	266-3	13	Colorado	Southbound lane, 0.3 mile south of north JCT with SH 71 in Columbus, Texas.	II	,
ad	13 (37)	US 90A (2)	466-3	13	Colorado	Eastbound lane, 0.2 mile west of Colorado River Bridg	II ge.	
	14 (38)	Loop 374/ FM 2061 (4)	39-3	21	Hida 1go	R, westbound traveled lane, in McAllen.	11	Surface layer of original design.

Table 22. (Continued) Summary of roadway pavements with Item 340 layers evaluated under Project 2-9-80-285.

Ta	Laboratory Test Data able Number*	Highway Number**	Control- Section Number	District Number	County	Location or Limits of Roadway Section	Laboratory Test Sequence Number	Comments
	15 (39)	Loop 374/ FM 2061 (4)	39-3	21	Hida Igo	R, westbound traveled lane, in McAllen	11	Surface after modifica- tion of design.
	16 (40)	US 59 (4)	63-6 & 175-4	11	Shelby	Tenaha, Texas	II	Cores taken and furnished by district. Testing limited.
134	17A (41)	US 290/ SH 6 (4)	50-5	12	Waller	R, southbound traveled lane, O.l mile north of intersection of US 290 with FM Road 159 in Hempstead.	II	Black cores.
	17B (42)	US 290/ SH 6 (4)	50 -5	12	Waller	Same location as 17a above.	II	Iron ore hot-mix cores
	18 (43)	US 62 (4)	130-5	5	Lubbock	Intersection of US 62 with US 84 in Lubbock.	II	Hot-mix containing "Asphadure"
	19 (44)	US 87 (4)	68-1	5	Lubbock	Intersection of US 87 with 34th Street in Lubbock.	II	
	20A (45)	Loop 287 (4)	2553-1	11	Angelina	L, northbound traveled lane, 1.0 mile south of FM Road 1271 in Lufkin.	II	Surface layer of hot-mixed material.

Table 22. (Continued) Summary of roadway pavements with Item 340 layers evaluated under Project 2-9-80-285.

Laboratory Test Data Table Number*	Highway Number**	Control- Section Number	District Number	County	Location or Limits of Roadway Section	Laboratory Test Sequence Number	Connents
20B (46)	Loop 287 (4)	2553-1	11	Angelina	Same location as 20A above.	II	Second layer of hot- mixed material.
21A (47)	US 59 (4)	176-1	11	Angelina	L northbound traveled lane, 1.0 mile north of FM 2021.	11	Hot-mixed surface layer.
21B (48)	US 59 (4)	176-1	11	Angelina	Same location as 21A above.	11	Second or bottom layer of hot-mixed material.

 $^{^{\}star}$ Numbers in () indicate Data Code numbers.

^{**}Numbers in () indicate number of lames.

Table 23. PRS scores and average rut depth measurements for Study 285 roadway sites.

Data* Code Number	Highway Number	PRS Score	Average Rut Depth, mm
1- 7	US 82	100**	0**
8-14	US 287	100**	0**
15-21	U\$ 82	98-100***	0-1***
22-28	US 287		
29	IH 45	89	9
30	IH 45	94	7
31	IH 45	95	1
32	IH 35		12 est.
33	US 77 Bypass	92	5
34	US 77 Bypass	100	Ż
35	IH 37	100	5
36	SH 71 Business	97	1
37	US 90A	100	0
38	Loop 374	76	10
39	Loop 374	98	3
40	US 59		12 est.
41	US 290/SH 6	67	6
42	US 290/SH 6	(Same)	(Same)
43	US 62	96	2
44	US 87	88	23
45	Loop 287	90	12
46	L oop 287	(Same)	(Same)
47	US 59		9
48	US 59	(Same)	(Same)

^{*}See Table 22.

^{**} Assumed at time Item 340 hot-mix layers were placed.

^{***} Evaluation one year after placement.

⁻⁻ Data not taken.

Table 23A. Breakdown of US 82 and 287 roadway section subsites by asphalt supplier, type and grade.

Data Code Number	Highway Number	Test Table Number	Asphalt Supplier	Asphalt Type and Grade
1	US 82]a*	MacMillan	AC-10
2	US 82	1 b	Dorchester	AC-20
3	US 82	1 c	Exxon	ĄC-20
4	US 82	1 d	Shamrock	AC-20
5	US 82	1e	Shamrock	AC-10
6	US 82	· 1f	Cosden	AC-20
7	US 82	1g	Cosden	AC-10
8	US 287	2a*	MacMillan	AC-10
9	US 287	2Б	Dorchester	AC-10
10	US 287	2c	Exxon	AC-10
11	US 287	2d	Shamrock	AC-20
12	US 287	2e	Shamrock	AC-10
13	US 287	2f	Cosden	AC-20
14	US 287	2g	Cosden	AC-10
15	US 82	3A **	MacMillan	AC-10
16	US 82	3B	Dorchester	AC-20
17	US 82	3C	Exxon	AC-20
18	US 82	3D	Shamrock	AC-20
19	US 82	3E	Shamrock	AC-10
20	US 82	3F	Cosden	AC-20
21	US 82	3G	Cosden	AC-10
22	US 287	4A**	MacMillan	AC-10
23	US 287	4B	Dorchester	AC-10
24	US 287	4C	Exxon	AC-10
25	US 287	4D	Shamrock	AC-20
26	US 287	4E	Shamrock	AC-10
27	US 287	4F	Cosden	AC-20
28	US 287	4G	Cosden	AC-10

 $^{^{\}star}$ In 1 and 2 series tables, field laboratory compacted specimens were tested.

^{**}In 3 and 4 series tables, roadway cores were tested from same sections.

Table 24. Summary of test results on extracted asphalts from Study 285 roadway sites.

Data Code Number	Extracted Viscosity at 140 ⁰ F, poise	Extracted Viscosity at 275 ⁰ F, centipoise	Penetration at 39.2 ⁰ F, dmm	Penetration at 77 ⁰ F, dmm	Ring & Ball Point, OF	Percent Asphalt by weight	Test Sample Age, Years
1	11,250	8.3	20	38	138	5.7	0.0
2	11,355	8.7	21	32	144	5.7	0.0
3	8,668	6.1	8	21	136	5.2	0.0
4	9,564	11.0	14	29	141	4.9	0.0
5	2,000	5.9	21	62	122	5.1	0.0
6	4,750	4.5	9	29	132	5.2	0.0
7	4,322	4.2	8	28	132	4.5	0.0
8	1,360	3.5	57	107	112	5.3	0.0
9	1,989	4.0	26	66	122	5.7	0.0
10	2,995	3.9	7	45	126	5.7	0.0
11	2,984	7.1	12	51	125	5.4	0.0
12	1,723	5.2	20	75	121	6.2	0.0
13	2,374	3.4	12	41	125	5.6	0.0
14	1,943	3.1	12	47	122	5.8	0.0
15	9,787	5.7	3	17	143	6.0	1.0
· 16	8,670	5.8	2	20	140	5.0	1.0
17	5,523	8.1	5	25	143	5.9	1.0
18	12,300	11.8	8	37	137	6.2	1.0
19	12,439	7.3	15	37	140		1.0
20	15,466	7.4	0	18	142	5.3	1.0
21	23,155	9.7	10	21	141	4.2	1.0
22	1,453	3.6	30	90	116	4.0	0.7
23	1,930	4.0	26	71	123	5.0	0.7
24			90 to 140		****		0.7
25	4,468	8.4	10	41	130	5.0	0.7
26	2,263	4.8	15	57	123	6.0	0.7
27	2,453	5.8	8	43	126	5.2	0.7
28	4,492	4.4	8	28	130	5.3	0.7
29	8,300	5.2	4	22	135	4.1	0.7

Table 24. (Continued) Summary of test results on extracted asphalts from Study 285 roadway sites.

Data Code Number	Extracted Viscosity at 140 ⁰ F poise	Extracted Viscosity at 275 ⁰ F centipoise	Penetration at 39.2 ⁰ F, dmm	Penetration at 77 ⁰ F, dmm	Ring & Ball Point, OF	Percent Asphalt by weight	Test Sample Age, Years
30	4,303	4.7	7	32	129	4.2	
31	3,583	3.8	29	52	128	4.2	
32	22,920	8.4	14	39	135	5.1	
33	2,861	4.1	10 .	48	130	8.4	
34	2,712	4.1	10	55	128	6.5	
35	8.776	5.8	10	33	140	5.6	
36	10,200	6.9	3	20	139	5.4	
37	6,508	6.2	16	41	132	5.5	
38	2,000	3.6	15	64	122	5.8	
39	6,280	5.4	5	32	135	5.1	
40	3,693	3.5	22	55	130	4.7	
41							
42	82,085	11.1	10	21	160	4.5	
43	14,725	10.8	3	20	141	6.9	
44	3,434	4.9	10	37	130	5.6	
45	3,427	5.6	17	52	128	5.6	
46	3,938	5.6	15	43	129	5.7	
47	3.685	8.2	18	50	131	6.1	
48	5,100	8.5	12	42	126	6.8	

⁻⁻⁻ Samples were lost or data is missing.

Table 25. Summary of resilient modulus, $\mathbf{M}_{R}\text{, results for Study 285 roadway sites.}$

Data Code	M _R @ -13 ⁰ F, x 10 ⁶ psi	M _R 0 33 ⁰ F, x 10 ⁶ psi	M _R 0 68 ⁰ F, x 10 ⁶ psi	M _R @ 77 ⁰ F, x 10 ⁶ psi	M _R 0 104 ⁰ F, x 10 ⁶ psi	Average Percent
Number	x 10 ps1	X 10 ps1	X 10 PS1	X 10 PS1	X 10 ps1	Air Voids
1	1.875	1.172	0.575		0.100	5.8
2	2.239	1.335	0.652		0.117	4.7
3	2.294	1.662	1.026		0.128	6.3
4	2.267	1.764	0.809		0.123	5.5
5	2.389	1.586	0.630		0.053	4.1
6	2.162	1.626	0.901		0.130	6.7
7	1.974	1.447	0.794		0.092	5.1
8	2.015	1.657	0.363		0.080	8.5
9	1.791	1.257	0.450		0.099	7.5
10	2.206	1.350	0.586		0.122	10.7
11	1.931	1.459	0.555		0.138	6.6
12	1.810	1.363	0.391		0.072	5.5
13	1.930	1.287	0.685		0.148	8.6
14	1.872	1.676	0.640		0.141	6.1
15	2.325	1.313		0.340	0.064	9.9
16	1.872	1.248		0.308	0.062	14.1
17	2.129	1.203		0.217	0.044	9.9
18	1.734	0.970		0.257	0.048	10.0
19	1.302	0.804		0.223	0.076	14.3
20	2.534	1.428		0.394	0.056	11.8
21	1.472	0.686		0.127	0.034	14.5
22	1.543	0.811		0.129	0.027	13.7
23	1.826	1.053		0.319	0.097	12.2
24	1.320	0.918	-	0.168	0.039	15.3
25	1.725	1.124		0.366	0.086	11.6
26	1.596	0.958		0.153	0.033	6.2
27	1.676	1.290		0.373	0.084	10.5
28	1.772	1.231		0.422	0.087	13.8

(Continued) 140 Table 25. (Continued) Summary of resilient modulus, M_R, results for Study 285 roadway sites.

Data Code Number	M _R @ -13 ⁰ F, x 10 ⁶ psi	M _R @ 33 ^o F, x 10 ⁶ psi	M _R @ 68 ⁰ F, x 10 ⁶ psi	M _R @ 77 ⁰ F, x 10 ⁶ psi	M _R @ 104 ⁰ F, x 10 ⁶ psi	Average Percent Air Voids
29	2.691	2.506		0.733	0.147	3.4
30	3.029	2.766		0.655*	0.076	3.0
31	2.240	1.441	0.555		0.250	5.0
32	3.269	2.899	1.271		0.727	3.4
33	2.185	1.203		0.428*	0.089	3.0
34	2.008	1.522		0.499*	0.104	4.5
35	1.859	1.131		0.403*	0.076	6.3
36	2.464	1.932		0.736	0.098	3.1
37	2.113	1.326		0.485	0.076	5.9
38	2.096	1.563		0.264	0.038	1.0
39	2.467	1.894		0.506	0.091	2.4
40				0.094		11.2
41	2.467	2.188		0,515	0.189	5.1
42	2.126	1.304		0.663	0.273	6.1
43	2.224	1.628		0.473	0.095	7.3
44	2.867	1.681		0.257	0.078	1.0
45	3.561	1,575		0.127	0.058	2.0
46	2.919	1.404		0.092	0.033	2.7
47	2.796	1.480		0.179	0.051	1.1
48	3.145	1.142		0.139	0.037	7.1

⁻⁻⁻ Test not run or data not available.

* Overall M for -: Overall M_R for all of test sequence samples. Note: 10^6 psi = 6.895 x 10^9 pascals (Pa)

Table 26. Summary of indirect tension, $\sigma_{\mbox{\scriptsize T}},$ test results for Study 285 roadway sites.

Data Code Number	^o TD Dry Splitting Tensile Stress, PSi	^σ T24 After 24-Hour Lottman, psi	oT18C After 18 cycle Lottman, psi	σT7D After 7-day Soak, psi	Average Air Voids, Percent
1	102	73	92		5.8
2	122	112	112		4.7
3	159	165	166		6.3
4	117	116	121	~	5.5
5	86	70	84		4.1
6	140	120	90		6.7
7	131	101	116		5.1
8	73	49	32	WANT THE SEC	8.5
9	86	41	28	Water dates asset	7.5
10	104	47	19	*	10.7
11	100	60	52	Alle and tone	6.6
12	63	106	67		5.5
13	140	80	42		8.6
14	126	84	52		6.1
15	107	21	12	48	9.9
16	94	17	11	32	14.1
17	83	33	17	57	9.9
18	51	35	35	41	10.0
19	76	18	7	25	14.3
20	129	45	67	55	11.8
21	54	15		11	14.5
22	50	77	17	24	13.7
23	77 .	18		23	12.2
24	70	0	38		15.3
25	86	38	000 MM 486	35	11.6
26	75	31	one with two	49	6.2
27	93	64		57	10.5
28	107	64	**** **** ****	40	13.8

Table 26. (Continued) Summary of indirect tension, σ_T , test results for Study 285 roadway sites.

	σTD	285 roadway σT24			
Data Code Number	Dry Splitting Tensile Stress, psi	After 24-Hour Lottman, psi	on 180 After 18 cycle Lottman, psi	^o T7D After 7-day Soak, psi	Average Air Voids, Percent
29	231	138	227		3.4
30	165		181		3.0
31	109	47	22		5.0
32	168	68	33		3.4
33	170	46	111		3.0
34	233	70	84	***	4.5
35	140	, 	110		6.3
36	273	190	216		3.1
37	142		170		5.9
38	142	124		mine west dies	1.0
39	173	116			2.4
40		50			11.2
41	186	60	=	with term	5.1
42	160	123		143	6.1
43	143	103			7.3
44	138	106		140	1.0
45	122	111		136	2.0
46	107	105		123	2.7
47	128	122		131	1.1
48	104	71		80	7.1

Note: 1 psi = 6.895×10^3 pascals (Pa).

Table 27. Summary of Hveem stability test results for Study 285 roadway sites.

Data Code Number	Overall Dry Hveem Percent	Hveem After 24-Hour Lottman Percent	Hveem After 18-cycle Lottman Percent	Hveem After 7-day Soak Percent	Average Percent Air Voids
1	41.2	25.8	34.1		5.8
2	39.8	31.4	28.7		4.7
3	40.2	33.8	31.3		6.3
4	38.6	32.6	39.5	New Yorks man	5.5
5	38.7	26.1	40.6		4.1
6	39.7	36.0	43.8	## ## ***	6.7
7	39.1	36.4	42.9		5.1
8	46.8	21.7	17.3		8.5
9	46.3	6.9	4.4		7.5
10	45.4	24.5	23.6		10.7
11	45.5	7.7	8.6	****	6.6
12	39.8	8.8	10.2		5.5
13	47.3	11.9	11.5	*** ***	8.6
14	45.8	11.7	20.9		6.1
15	23.0	25.2	17.2	30.7	9.9
16	26.9	28.0	16.3	33.4	14.1
17	25.9	27.7	24.6	34.4	9.9
18	25.8	20.2	26.1	34.6	10.0
19	24.2	19.9	16.3	22.3	14.3
20	27.0	21.7	25.9	34.3	11.8
21	21.2	24.3		17.1	14.5
22	34.5	17.8	23.8	~ = -	13.7
23	38.0	23.1		23.4	12.2
24	28.3	==-	19.9	23.4	15.3
25	30.5	22.7		21.5	11.6
26	25.5	20.0		23.2	6.2
27	32.7	28.1		32.6	10.5
28	30.1	20.5		19.7	13.8

Table 27. (Continued) Summary of Hveem stability test results for Study 285 roadway sites.

Data Code Number	Overall Dry Hveem Percent	Hveem After 24-Hour Lottman Percent	Hveem After 18,cycle Lottman Percent	Hveem After 7-day Soak Percent	Average Percent Air Voids
29	30.3	18.4	27.6		3.4
30	39.7		31.8		3.0
31	47.8	34.7	33.9		5.0
32	55.7	36.2	46.5		3.4
33	13.7	12.7	6.1	same today	3.0
34	20.5	19.8	16.8		4.5
35	31.0	pers 400 case	21.5	MAR 1000 -000+	6.3
36	26.0	18.2	23.8	HOOK ARREST 1000A	3.1
37	36.5		35.9	** ··· -	5.9
38	22.0	19.1			1.0
39	31.0	33.0			2.4
40	34.9	28.1			11.2
41	29.9	30.2	-	900 total 000	5.1
42	47.4	45.4		50.4	6.1
43	32.8	27.9			7.3
44	25.6 (17.9)	10,2 (6.8)		26.6 (13.3)	1.0
45	44.5	40.8		42.4	2.0
46	32.9	30.0		18.0	2.7
47	26.6	24.9		35.7	1.1
48	44.0	35.5		36.8	7.1

Table 28. Summary of Marshall stability test results for Study 285 roadway sites.

Data Code Number	Overall Dry Marshall Strength, lbs	Marshall Strength After 24- Hour Lottman, lbs	Marshall Strength After 18 cycle Lottman, lbs	Dry Marshall Flow, 0.01 in	24-Hour Lottman Marshall Flow, 0.01 in	18 cycle Lottman Marshall Flow, 0.01 in
1	1,553	1,258		18	23	
2	2,072	1,559	1,393	16	22	27
3	2,023	1,841	1,827	17	20	18
4	1,578			17		
5	1,305			14		
6	1,567			21		
7	1,591			15		
8	2,528	1,069	876	18	26	28
9	1,600	591	802	15	21	26
10	1,720	375	223	15	19	19
11	1,867	982	1,172	16	26	25
12	1,440	1,233	1,224	15	24	22
13	1,971	891	796	16	23	22
14	1,701	941	1,098	16	25	23
15	1,068		93	11	=-	12
16	941		77	14		15
17	1,093		93	11		15
18	934		445	14		16 .
19	1,121		105	11		14
20	1,220		711	10		21
21	1,012			13		
22	1,019		135	12		8
23	1,409	•= -		10		
24	966		142	11		15
25	1,024			13		
26	1,099			14		
27	615			10		
28	1,024			11		

Table 28. (Continued) Summary of Marshall stability test results for Study 285 roadway sités.

Data Code Number	Overall Dry Marshall Strength, lbs	Marshall Strength After 24- Hour Lottman, lbs	Marshall Strength After 18 cycle Lottman, lbs	Dry Marshall Flow, 0.01 in	24-Hour Lottman Marshall Flow, 0.01 in	18 cycle Lottman Marshall Flow, 0.01 in
29	1,265	752	791	8	13	13
30	1,298		864	6		12
31	1,954	491	1,570	7	13	12
32	2,613	2,458	2,375	8	15	14
33	2,984	1,395	1,540	8	18	16
34	2,611	1,088	1,124	10	16	14
35	2,412		1,498	15		27
36	3,244	2,089	2,184	11	14	14
37	1,444		1,426	12		16
38	1,138	1,426		10	12	
39	1,729	1,555		11	17	
. 40		260			13	
41	1,233	977		5	9	
42	5,356	4,817		11	15	
43	1,387	1,174		13	16	
44	2,610	1,844		15	18	
45	1,460	2,270		11	17	
46	1,397	1,748		13	13	
47	2,398	2,124		10	15	
48	748	862		10	12	

Note: 1 1b = 0.454 kg 1 in = 25.4 mm

Table 29. Characteristics of extracted aggregate grading curves from Study 285 roadway sites.

Data Code Number	Percent Plus No. 10 Sieve	Percent Minus No. 200 Sieve	Percent Hump Above No. 30 Sieve of Continous Grading Curve	Percent Retained Between No. 10 and No. 40 Sieves	Assigned Performance Rating
1-14					AND DATE.
15	66	4	None	20	
16	62	3	none	23	
17	57	5	None	26	***
18	58	4	None	26	***
19					
20					
21	59	4	None	23	Man. Manr
22	60	3	None	22	
23	60	4	None	20	
24			***		nino male
25	60	4	None	20	enc sub
26	67	0	None	16	
27	61	3	None	21	
28	62	4	None	18	-ma map
29	62	3	6	17	F
30	50	3	8	27	Р
31	61	6	2	15	G
32	62	3	3	14	Р
33	57	3	12	10	F
34	67	4	1	8	G
35	59	3	10	10	F
36	64	4	0	11	G
37	56	7	4	19	G
38	61	3	4	14	Р
39	77	6	None	6	G
40	41	2	25	13	Р
41	48	2	14	19	F

Table 29. (Continued) Characteristics of extracted aggregate grading curves from Study 285 roadway sites.

Data Code Number	Percent Plus No. 10 Sieve	Percent Minus No. 200 Sieve	Percent Hump Above No. 30 Sieve of Continuous Grading Curve	Percent Retained Between No. 10 and No. 40 Sieves	Assigned [*] Performance Rating
42	52	9	20	6	F
43	60	5	6	10	G
44	62	7	3	12	Р
45	55	6	13	12	Р
46	55	7	13	11	Р
47	54	5	10	12	Р
48	37	6	31	9	Р

^{*} G = Good F = Fair P = Poor

Table 30. Texas freeze-thaw pedestal test results for US 287 and US 82 roadway subsections.

US 287

Data Code Number	Number of Cycles to Failure
8	6
9	. 8
10	6
11	12
12	7
13	9
14	10

US 82

Data Code Number	Number of Cycles to Failure
1	
2	
3	
4	
5	
6	
7	

⁻⁻⁻ Data not available

Table 31. Part I, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	Date Pavement Placed	Age,* Years	Accumlated Traffic per Tested Lane x 10 ⁶ *	Average Percent Trucks	Accumulated Equivalent 18- Kip Single Axle Loads
1	6/82	0	N/A	N/A	N/A
2	6/82	0	N/A	N/A	N/A
3	6/82	0	N/A	N/A	N/A
4	6/82	0	N/A	N/A	N/A
5	6/82	0	N/A	N/A	N/A
6	6/82	0	N/A	N/A	N/A
7	6/82	0	N/A	N/A	N/A
8	9/82	0	N/A	N/A	N/A
9	9/82	0	N/A	N/A	N/A
10	9/82	0	N/A	N/A	N/A
11	9/82	0	N/A	N/A	N/A
12	9/82	0	N/A	N/A	N/A
13	9/82	0	N/A	N/A	N/A
14	9/82	0	N/A	N/A	N/A
15	6/82	1.0			
16	6/82	1.0			
17	6/82	1.0			
18	6/82	1.0		•	
19	6/82	1.0			
20	6/82	1.0			
21	6/82	1.0			
22	9/82	0.7			
23	9/82	0.7			
24	9/82 .	0.7			
25	9/82	0.7			
26	9/82	0.7			
27	9/82	0.7			
28	9/82	0.7			

Table 31. (Continued) Part I, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	Date Pavement Placed	Age,* Years	Accumlated Traffic per Tested Lane x 10 ⁶ *	Average Percent Trucks	Accumulated Equivalent 18- Kip Single Axle Loads
29					
30					
31	11/67	15.1			
32					
33	4/78	5.1			
34	5/80	3.0			
35	1/81	2.3			٠
36	7/80	2.8			
37	9/82	0.7			
38	3/74	9.3			
39	5/74	9.2			
40					
41	9/78	4.7			
42	3/79	4.2			
43					
44					
45	4-27-78	4.7			
46	4-17-78	4.7			
47	3-06-81	1.8			
48	1 - 27-81	1.9			

Age = Date pavement cored minus date pavement layer placed.

4

Table 32. Part IIA, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	Asphalt Source & Grade	SDHPT Design Percent Asphalt	SDHPT Extracted Asphalt, Percent	TTI Extracted Asphalt, Percent	SDHPT Laboratory Density	Overall SDHPT Project Laboratory Density	SDHPT Field Density
1	*	5.5		5.7			
2	*	5.5		5.7			
3	*	5.5		5.2			
4	*	5.5		4.9			
5	*	5.5		5.1			
6	*	5.5		5.2			
7	*	5.5		4.5			
8	*	6.2		5.3			
9	*	6.2		5.7			
10	*	6.2		5.7			
11	*	6.2		5.4			
12	*	6.2		6.2			
13	*	6.2		5.6			
14	*	6.2		5.8			
15	*	5.5		6.0			
16	*	5.5		5.0			
17	*	5.5		6.2			
18	*	5.5		5.9			
19	*	5.5					
20	*	5.5		5.3			

Table 32. Part IIA, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	Asphalt Source & Grade	SDHPT Design Percent Asphalt	SDHPT Extracted Asphalt, Percent	TTI Extracted Asphalt, Percent	SDHPT Laboratory Density	Overall SDHPT Project Laboratory Density	SDHPT Field Density
21	*	5.5		4.2			
22	*	6.2		4.0			
23	*	6.2		5.0			
24	*	6.2					
25	*	6.2		5.0			
26	*	6.2		6.0			
27	*	6.2		5.2			
28	*	6.2		5.3			
29				4.1			
30				4.2			
31		4.0	4.1	4.2			
32				5.1			
33		6.0	5.9	8.4			
34		6.2	6.2	6.5			
35		6.2	6.6	5.6			
36		5.5	5.5	5.4			
37		5.0	4.8	5.5			
38		5.5	5.5	5.8			
39		4.5	5.7	5.1			
40							

Table 32. Part 11A, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	Asphalt Source & Grade	SDHPT Design Percent Asphalt	SDHPT Extracted Asphalt, Percent	TTI Extracted Asphalt, Percent	SDHPT Laboratory Density	Overall SDHPT Project Laboratory Density	SDHPT Field Density
41		4.8	4.6				
42		4.9	4.4	4.5			
43				6.9			
44				5.6	,		
45	Texaco AC-20	5.5	5.8	5.6	98.1	98.0	
46	Texaco AC-20	5.2	5.2	5.7	98.2	98.4	=
47	Texaco AC-20	6.0	6.0	6.1	97.7	97.2	
48	Texaco AC-20	6.5	6.7	6.8	92.7	93.3	

⁻⁻⁻⁻ Data not available

^{*} See Table 23A

Table 32. Part IIB, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	SDHPT Overall Project Hveem	SDHPT Hveem for Cored Area	SDHPT Design Hveem Values	Aggregate Combinations
1				
2				
3		,		
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15			150	

Table 32. (Continued) Part IIB, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	SDHPT Overall Project Hveem	SDHPT Hveem for Cored Area	SDHPT Design Hveem Values	Aggregate Combinations
16				
17			·	
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30			157	

Table 32. (Continued) Part IIB, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	SDHPT Overall Project Hveem	SDHPT Hveem for Cored Area	SDHPT Design Hveem Values	Aggregate Combinations
31	-			
32				
33				
34				
35				
36				
37				
38				
39				
40				
42				
43				
44				
45 46	30 19	35 27	40 39	62% Gifford-Hill rhyolite; 19% Butler coarse sand; 19% Tremble fine sand. 62% Gifford-Hill, perch-Hill, limestone; 18% Butler coarse sand; 18% Tremble fine sand.

Table 32. (Continued) Part IIB, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	SDHPT Overall Project Hveem	SDHPT Hveem for Cored Area	SDHPT Design Hveem Values	Aggregate Combinations
47				55% Gifford-Hill rhyolite; 15% Gifford-Hill limestone screenings; 15% Dickerson coarse
48				sand; 15% Dickerson fine sand. 20.0% Holsey pea gravel; 15.0% Gifford-Hill, Perch Hill, crushed limestone; 15% Gifford- Hill, screenings; 50% Dickerson fine sand.

Table 32. Part IIC, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	Type of Hot-Mix Plant	Type of Break- down Rolling	Temperature of Mix at Plant	Temperature of Hot-Mix on Road	Thickness of Hot-Mix	Weather and Temperature at Laydown
1	drum- dryer					
2	drum- dryer					
3	drum- dryer					
4	drum- dryer					
5	drum- dryer					
6	drum- dryer					
7	drum- dryer					
8	drum- dryer					
9	drum- dryer					
10	drum- dryer					
11	drum- dryer					
12	drum- dryer					
13	drum- dryer					
14	drum- dryer					
15	drum- dryer					
16	drum- dryer					
17	drum- dryer					
18	drum- dryer					

Table 32. (Continued) Part IIC, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	Type of Hot-Mix Plant	Type of Break- down Rolling	Temperature of Mix at Plant	Temperature of Hot-Mix on Road	Thickness of Hot-Mix	Weather and Temperature at Laydown
19	drum- dryer			· · · · · · · · · · · · · · · · · · ·		
20	drum- dryer					
21	drum- dryer					
22	drum- dryer					
23	drum- dryer					
24	drum- dryer					
25	drum- dryer					
26	drum- dryer					
27	drum- dryer					
28	drum- dryer					
29				,		
30						
31						
32		_				
33						
34						
35						
36						

Table 32. (Continued) Part IIC, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	Type of Hot-Mix Plant	Type of Break down Rolling	Temperature of Mix at Plant	Temperature of Hot-Mix on Road	Thickness of Hot-Mix	Weather and Temperature at Laydown
37			• • •			
38						
39						
40						
41						
42						
43						
44						
45	Weigh- Batch		260-280°F	260-280°F	ן "	Clear & mild, 43 to 73°F.
46	Weigh- Batch		260°F	250°F	1-1/2"	Cloudy & mild. 62 - 73°F.
47	Drum- Dryer		2 9 0°F	2 9 0°F	1"	Clear & mild, 47 to 62°F.
48	Drum- Dryer		295°F	295°F] "	Foggy, cloudy and mild 54 - 66°F.

Table 33. Part III, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Data Code Number	SDHPT Design Percent Plus No. 10 Sieve	SDHPT Extracted Percent Plus No. 10 Sieve	SDHPT Design Minus No. 200 Sieve, Percent	SDHPT Extracted Minus No. 200 Sieve, Percent
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1				
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	2				
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	3				
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	4				
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	5				
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	6				
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7				
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	8				
11 12 13 14 15 16 17 18 19 20 21 22 23 24	9				
12 13 14 15 16 17 18 19 20 21 22 23 24	10				
13 14 15 16 17 18 19 20 21 22 23 24	11				
14 15 16 17 18 19 20 21 22 23 24	12				
15 16 17 18 19 20 21 22 23 24	13				
16 17 18 19 20 21 22 23 24	14				
17 18 19 20 21 22 23 24	15				
18 19 20 21 22 23 24	16				
19 20 21 22 23 24	17				
20 21 22 23 24	18				
21 22 23 24	19				
22 23 24	20	•			
23 24	21				
24	22				
	23				
25	24				
	25				
26	26				
27	27				
28	28				

Table 33. (Continued) Part III, design and construction records data for pavement sections covered by Data Code Numbers 1-48.

Data Code Number	SDHPT Design Percent Plus No. 10 Sieve	SDHPT Extracted Percent Plus No. 10 Sieve	SDHPT Design Minus Minus Sieve, Percent	SDHPT Extracted Minus Minus Sieve, Percent
29				
30				
31				
32				
33				
34				
35				
36				
37				
3 8				
39				
40			•	
41				
42				
43				
44				
45	58.3	52.5	2.4	4.7
46	59.5	56.9	1.6	6.6
47	52.7	53.8	3.5	5.9
48	37.4	36.8	4.5	3.6

Table 34. Asphalt properties for roadway sections ranked in order of decreasing rut depths.

Data Code Number	Decreasing Rut Depths,	Viscosity at 140 ⁰ F poise	Viscosity at 275 ⁰ F centi- poise	Penetration at 39.2 ⁰ F dmm	Penetration at 77 ⁰ F dmm	Ring & Ball Temp- ature ^O F
44	23	3,434	4.9	10	37	130
45	12	3,427	5.6	17	52	128
46	12	3,938	5.6	15	43	129
32	12 est.	22,920	8.4	14	39	135
40	12 est.	3,693	3.5	22	55	130
38	10	2,000	3.6	15	64	122
30	9	4,303	4.7	7	32	129
47	9	3,685	8.2	18	50	131
48	9	5,100	8.5	12	42	126
29	7	8,300	5.2	4	· 22	135
41	6	+	+	+	+	+
42	6	82,085	11.1	. 10	21	160
33	5	2,861	4.1	10	48	130
35	5	8,776	5.8	10	33	140
39	3	6,280	5.4	5	32	135
34	2	2,712	4.1	10	55	128
43	2	14,725	10.8	3	20	141
31	1	3,583	3.8	29	52	128
36	1	10,200	6.9	3	20	139
37	0	6,508	6.2	16	41	132

⁺ Data was misplaced and is not available.

Table 35. Air void and resilient modulus, $\mathbf{M}_{\rm R}$, values for roadway sections ranked in order of decreasing rut depths.

Data Code Number	Decreasing Rut Depths mm	Percent Air Voids	M _R at -13 ^o F x 10 ⁶ psi	M _R at 33 ⁰ F x 10 ⁶ psi	M _R at 77 ⁰ F x 10 ⁶ psi	M _R at 104 ⁰ F x 10 ⁶ psi
44	23	1.0	2.867	1.681	0.257	0.078
45	12	2.0	3.561	1.575	0.127	0.058
46	12	2.7	2.796	1.480	0.179	0.051
32	12 est.	3.4	3.269	2.899	1.271	0.727
40	12 est.	11.2		-	0.094	
38	10	1.0	2.096	1.563	0.264	0.038
30	9	3.0	3.029	2.166	0.655	0.076
47	9	1.1	2.796	1.480	0.179	0.051
48	9	7.1	3.145	1.142	0.139	0.037
29	7	3.4	2.691	2.506	0.733	0.147
41	6	5.1	2.467	2.188	0.515	0.189
42	6	6.1	2.126	1.304	0.663	0.273
33	5	3.0	2.185	1.203	0.428*	0.089
35	5	6.3	1.859	1.131	0.403	0.076
39	3	2.4	2.467	1.894	0.506	0.091
34	2	4.5	2.087	1.522	0.499*	0.104
43	2	7.3	2.224	1.628	0.473	0.095
31	1	5.0	2.240	1.441	0.555*	0.250
36	1	3.1	2.464	1.932	0.736	0.098
37	0	5.9	2.113	1.326	0.485	0.076

⁻⁻⁻ Data not available 10^6 psi = 6.895×10^9 pascals (Pa)

Table 36. Differences between resilient modulus, ${\rm M}_{\rm R},$ values at different temperatures for roadway sections ranked in order of decreasing rut depths.

_	ΔM _R	ΔM _R	Δ ^M R	$^{\Delta M}_{R}$	$^{\DeltaM}R_{Q}$
Data	-13 ⁰ F to	33 ⁰ F to	77 ⁰ F to	-13 ⁰ F to	-13 ⁰ F to
Code	33 ⁰ F	77 ⁰ F	104 ⁰ F	77 ⁰ F	104 ⁰ F
Number	x 10 ⁶ psi				
44	1.186	1.424	0.179	2.610	2.789
45	1.986	1.448	0.069	3.434	3.503
46	1.316	1.301	0.128	2.617	2.745
32	0.370	1.628	0.544	1.998	2.542
40		Not their Asia			
38	0.533	1.299	0.226	1.832	2.058
30	0.863	1.511	0.579	2.374	2.953
47	1.316	1.301	0.128	2.617	2.745
48	2.003	1.003	0.102	3.006	3.108
29	0.185	1.773	0.586	1.958	2.544
41	0.279	1.673	0.326	1.952	2.278
42	0.822	0.641	0.390	1.463	1.853
33	0.982	0.775	0.339	1.757	2.096
35	0.728	0.728	0.327	1.456	1.783
39	0.573	1.388	0.415	1.961	2.376
34	0.566	1.023	0.395	1.588	1.983
43	0.596	1.155	0.378	1.751	2.129
31	0.799	0.886	0.305	1.685	1.990
36	0.532	1.196	0.638	1.728	2.366
37	0.787	0.841	0.409	1.628	2.037

--- Data not available Note: 10^6 psi = 6.895 x 10^9 pascals (Pa)

Table 37. Indirect tensile strength results for roadway sections ranked in order of decreasing rut depths.

Data Code Number	Decreasing Rut Depths,	Percent Air Voids	σ TD Dry Split- ting Tensile strength, psi	σ T24 After 24-Hour Lottman, psi	σ T18C After 18 Cycle Lottman, psi
44	23	1.0	138	106	
45	12	2.0	122	111	
46	12	2.7	107	105	
32	12 est.	3.4	168	68	33
40	12 est.	11.2	~~~	50	
38	10	1.0	142	124	
30	9	3.0	165		181
47	9	1.1	128	122	
48	9	7.1	104	71	
29	7	3.4	231	138	227
41	6	5.1	186	60	
42	6	6.1	160	123	n
33	5	3.0	170	46 .	111
35	5	6.3	140		110
39	3	2.4	173	116	
34	2	4.5	233	70	84
43	2	7.3	143	103	
31	1	5.0	109	47	22
36	1	3.1	273	190	216
37	0	5.9	142		170

⁻⁻⁻ Data not available.
est. = estimated
1 psi = 6.895 x 10³ pascals (Pa)

Table 38. Hveem stability results for roadway sections ranked in order of decreasing rut depths

Data Code Numbers	Decreasing Rut Depths, mm	Percent Air Voids	Dry Hveem Stability, Percent	Hveem Stability After 24- Hour Lottman, Percent	Hveem Stability After 18- Cycle Lott- man, Percent
44	23	1.0	25.6	10.2	26.6*
45	12	2.0	44.5	40.8	42.4*
46	12	2.7	32.9	30.0	18.0*
32	12 est.	3.4	55.7	36.2	
40	12 est.	11.2	34.9	28.1	
38	10	1.0	22.0	19.1	
30	9	3.0	39.7		
47	9	1.1	26.6	24.9	35.7*
48	9	7.1	44.0	35.5	36.8*
29	7	3.4	30.3	18.4	
41	6	5.1	29.9	30.2	
42	6	6.1	47.4	45.4	50.4*
33	5	3.0	13.7	12.7	6.1
35	5	6.3	31.0		21.5
39	3	2.4	31.0	33.0	
34	2	4.5	20.5	19.8	16.8
43	2	7.3	32.8	27.9	
31	1	5.0	47.8	34.7	33.9
36	1	3.1	26.0	18.2	23.8
37	0	5.9	36.5	*	35.9

est. = estimated.

^{* = 7-}day soak test.

⁻⁻⁻ Data not available

Table 39. Marshall stability results for roadway sections ranked in order of decreasing rut depths.

Data Code Number	Decreasing Rut Depths, mm	Percent Air Voids	Dry Marshall Stability, lbs	Marshall Stability After 24-Hour Lottman, 1bs	Marshall Stability After 18- Cycle Lottman, lbs
44	23	1.0	2,610	1,844	
45	12	2.0	1,460	2,270	
46	12	2.7	1,397	1,748	
32	12 est.	3.4	2,613	2,458	2,375
40	12 est.	11.2		260	
38	10	1.0	1,138	1,426	
30	9	3.0	1,298	~~~	864
47	9	1.1	2,398	2,124	
48	9	7.1	748	862	
29	7	3.4	1,265	752	791
41	6	5.1	1,233	977	
42	6	6.1	5,356	4,817	
33	5	3.0	2,948	1,395	1,540
35	5	6.3	2,412		1,498
39	3	2.4	1,729	1,555	
34	2	4.5	2,611	1,088	1,124
43	2 .	7.3	1,387	1,174	
31	1	5.0	1,954	491	1,570
36	1	3.1	3,244	2,089	2,184
37	0	5.9	1,444		1,426

est. = estimated.

^{= 7-}day soak test.

⁻⁻⁻ Data not available

^{1 1}b = 0.454 kg

Marshall stability flow results for roadway sections ranked in order of decreasing rut depths. Table 39A.

Data Code Number	Decreasing Rut Depths, mm	Percent Air Voids	Dry Marshall Flow, .Ol in	Marshall Flow After 24-Hour Lottman, .01 in	Marshall Flow After 18-Cycle Lottman, .01 in
44	23	1.0	15	18	
45	12	2.0	11	17	
46	12	2.7	13	13	
32	12 est.	3.4	18	15	14
40	12 est.	11.2		13	
38	10	1.0	10	12	
30	9	3.0	6		12
47	9	1.1	10	15	
48	9	7.1	10	12	
29	7	3.4	8	13	13
41	6	5.1	5	9	
42	6	6.1	11	15	
33	5	3.0	8	18	16
35	5	6.3	15		27
39	3	2.4	11		
34	2	4.5	10	16	14
43	2	7.3	13	16	
31	1	5.0	7	13	12
36	1	3.1	11	14	14
37	0	5.9	12	Obs. Nati	16

⁻⁻ Data not available l in = 25.4 mm

Table 40. Extracted aggregate grading characteristics for Study 285 roadway sections ranked in order of decreasing rut depths.

Data Code Number	Percent Plus No. 10 Sieve	Percent Minus No. 200 Sieve	Percent Hump Above No. 30 Sieve of Continuous Grading Curve	Percent Retained between No. 10 and 40 Sieves	Assigned Performance Rating
44	62	7	3	12	Р
45	55	6	13	12	P
46	55	7	13	11	Р
32	62	3 .	3	14	Р
40	41	2	25	13	Р
38	61	3	4	14	P
30	50	3	8	27	Р
47	54	5	10	12	P
48	37	6	31	9	P
29	62	3	6	17	F
41	48	2	14	19	F
42	52	9	20	_ 6	F
33	57	3	12	10	F
35	59	3	10	10	F
39	77	6	Below line	6	G
34	67	4	1	8	G
43	60	5	6	10	G
31	61	6	2	15	G
36	64	4	0	11	G
37	56	7	4	19	G

Figure 1. Laboratory Stability SequenceI: field mixed-field lab compacted test specimens placed under Project 2287 in 1982.

Figure 2. Laboratory Stability Sequence II: cores of field mixed-roadway compacted hot-mix from 28 pavement sections of Project 2287 and 20 pavement sections chosen from districts under Project 2285.

Extracted aggregate grading curve

— — Continuous grading curve

Figure 3. Extracted aggregate gradation curve for US 82. MacMillan AC-10 subsection, Data Code Number 15.

----- Extracted aggregate grading curve

—— — Continuous grading curve

Figure 4. Extracted aggregate gradation curve for US 82, Dorchester AC-20 subsection, Data Code Number 16.

___ _ Continuous grading curve

Figure 5. Extracted aggregate gradation curve for US 82, Exxon AC-20 subsection, Data Code Number 17.

___ _ Continuous grading curve

Figure 6. Extracted aggregate gradation curve for US 82, Shamrock AC-20 subsection, Data Code Number 18.

Figure 7. Extracted aggregate gradation curve for US 82, Cosden AC-10 subsection, Data Code Number 21.

Figure 8. Extracted aggregate gradation curve for US 287, MacMillan AC-10 subsection, Data Code Number 22.

--- Continuous grading curve

Figure 9. Extracted aggregate gradation curve for US 287, Dorchester AC-10 subsection, Data Code Number 23.

Figure 10. Extracted aggregate gradation curve for US 287, Exxon AC-10 subsection, Data Code Number 24.

Figure 11. Extracted aggregate gradation curve for US 287, Shamrock AC-10 subsection, Data Code Number 26.

___ _ Continuous grading curve

Figure 12. Extracted aggregate gradation curve for US 287, Cosden AC-20, Data Code Number 27.

Figure 13. Extracted aggregate gradation curve for US 287, Cosden AC-10 subsection, Data Code Number 28.

Figure 14. Extracted aggregate gradation curve for IH 45, Madison County, 18-core section (Table 5), Data Code Number 29.

Figure 15. Extracted aggregate gradation curve for IH 45, Madison County, 12-core section (Table 6), Data Code Number 30.

Figure 16. Extracted aggregate gradation curve for IH 45, Walker County, Data Code Number 31.

1-1/2"

3/8ⁿ

3/4ⁿ

...40

Extracted aggregate gradation curve for IH 35, Ellis County, Data Code Number 32. Figure 17.

Sieve Number

Figure 18. Extracted aggregate gradation curve for US 77 Bypass, Kingsville, Texas, Data Code Number 33.

Figure 19. Extracted aggregate gradation curve for US 77 Bypass, Sinton, Texas, Data Code 34.

Extracted aggregate grading curve

Continuous grading curve

Percent hump above No. 30 sieve of continuous curve

Figure 20. Extracted aggregate gradation curve for IH 37, Oakville, Texas, Data Code Number 35.

Figure 21. Extracted aggregate gradation curve for SH 71 Business, Columbus, Texas, Data Code Number 36.

Figure 22. Extracted aggregate gradation curve for US 90A, west of Colorado River, Data Code Number 37.

Extracted aggregate grading curve

Continuous grading curve

Percent hump above No. 30 sieve of continuous curve

Figure 23. Extracted aggregate gradation curve for Loop 374 (FM 2061), original design section in McAllen, Data Code Number 38.

Figure 24. Extracted aggregate gradation curve for Loop 374 (FM 2061), modified design section in McAllen, Data Code Number 39.

Figure 25. Extracted aggregate gradation curve for US 59, Shelby County, Data Code Number 40.

Figure 26. Extracted aggregate gradation curve for US 290/SH 6, black cores in Hempstead, Texas, Data Code Number 41.

Figure 27. Extracted aggregate gradation curve for US 290/SH 6, iron-ore cores in Hempstead, Texas, Data Code Number 42.

Figure 28. Extracted aggregate gradation curve for "Asphadure" cores on US 62 in Lubbock, Data Code Number 43.

Figure 29. Extracted aggregate gradation curve for US 87 at 34th Street in Lubbock, Data Code Number 44.

Figure 30. Extracted aggregate gradation curve for Loop 287 (top layer) in Lufkin, Texas, Data Code Number 45.

Figure 31. Extracted aggregate gradation curve for Loop 287 (second layer) in Lufkin, Texas, Data Code Number 46.

Figure 32. Extracted aggregate gradation curve for US 59 (top layer) north of Lufkin, Texas, Data Code Number 47.

Figure 33. Extracted aggregate gradation curve for US 59 (bottom layer) north of Lufkin, Texas, Data Code Number 48.

Figure 34. Overall Hyeem stability versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-23.

Figure 35. Hyeem stability after 24-hour Lottman test versus percent air voids for US 82 and 287 roadway sections. Data Code numbers 1-28.

Figure 36. Overall Hyeem stability versus percent air voids for roadway sections covered by Data Code Numbers 29-48.

Figure 37. Hveem stability after 24-hour Lottman test versus percent air voids for roadway sections covered by Data Code Numbers 29-48.

Figure 38. Marshall stability versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28.

Figure 39. Marshall stability versus percent air voids for roadway sections covered by Data Code Numbers 29-48.

Figure 40. Marshall stability after 24-hour Lottman test versus percent air voids for roadway sections covered by Data Code Numbers 29-48.

Figure 41. Overall resilient modulus M_R at 77°F versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28.

Figure 42. Resilient modulus M_R at 77°F after 24-hour Lottman test versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28.

Figure 43. Resilient modulus M_R at 77°F after 18-cycle Lottman test versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28.

Figure 44. Overall resilient modulus M_R at 77°F versus percent air voids for roadway sections covered by Data Code Numbers 29-48.

Figure 45. Resilient modulus M_R at 77°F after 24-hour Lottman test versus percent air voids for roadway sections covered by Data Code Numbers 29-48.

Figure 46. Resilient modulus M_R at 77°F after 18-cycle Lottman test versus percent air voids for roadway sections covered by Data Code Numbers 29-48.

Figure 47. Resilient modulus M_R at 104°F versus percent air voids for roadway sections covered by Data Code Numbers 29-48.

Figure 48. Splitting tensile strength, σ_{TD} , versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28.

Figure 49. Splitting tensile strength after 24-hour Lottman test, σ_{T24H} , versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28.

Figure 50. Splitting tensile strength after 18-cycle Lottman, σ_{T18c} , versus percent air voids for US 82 and 287 roadway sections, Data Code Numbers 1-28.

Figure 51. Splitting tensile strength, σ_{TD} , versus percent air voids for roadway sections covered by Data Code Numbers 29-48.

Figure 52. Splitting tensile strength, after 24-hour Lottman test, σ_{T24H} , versus percent air voids for roadway sections covered by Data Code Numbers 29-48.

Figure 53. Splitting tensile strength after 18-cycle Lottman test, σ_{T18c} , versus percent air voids for roadway sections covered by Data Code Numbers 29-48.