			·····	
1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalog No	
FHWA/TX-81/50+280-2F				
4. Title and Subtitle			5. Report Date June 1981 (Rev	ised May 198
Safety Treatment of Roadside Parallel-Drainage Structures		6. Performing Organization	n Code	
7. Author's)			8. Performing Organization	n Report No.
Hayes E. Ross, Jr., T. J.	Hirsch, and De	ean Sicking	Research Repor	t 280-2F
9. Performing Organization Name and Addre	955	<u>, apienet a constanta de la cons</u>	10. Work Unit No.	
Texas Transportation Inst The Texas A&M University College Station, Texas 7	titute System 7843		 Contract or Grant No. Study 2-8-79-280 Type of Report and Period Covered 	
^{12.} Sponsoring Agency Name and Address Texas State Department of Transportation: Trans P.O. Box 5051	Highways and I sportation Plan	Public ning Division	Final Report -	September 1 June 1981
Austin, Texas 78763				
15. Supplementary Notes				
Research performed in coo Research Title: Safe End	peration with [Treatment for	DOT, FHWA. Roadside Culve	erts	
16. Abstract	· · ·			· · · · · · · · · · · · · · · · · · ·
The purpose of the r parallel-drainage structu Guidelines or warrants fo Parallel-drainage culvert or median crossovers.	research was to wres that would or use of the en is are used to o	develop traff not appreciab nd treatments w convey water un	ic-safe end treat ly restrict water were also develop nder driveways, s	ments for flow. ed. ide roads,
The purpose of the r parallel-drainage structu Guidelines or warrants fo Parallel-drainage culvert or median crossovers. Preliminary designs and a full-scale test pro	research was to wres that would or use of the en ts are used to o were first eval ogram. From the	develop traff not appreciab nd treatments w convey water un luated using a ese studies, to	ic-safe end treat ly restrict water were also develop nder driveways, s computer simulat entative design p	ments for flow. ed. ide roads, ion program arameters
The purpose of the r parallel-drainage structu Guidelines or warrants fo Parallel-drainage culvert or median crossovers. Preliminary designs and a full-scale test pro were selected, including	research was to wres that would or use of the en ts are used to o were first eval ogram. From the the ditch and o	develop traff not appreciab nd treatments w convey water un luated using a ese studies, to driveway slopes	ic-safe end treat ly restrict water were also develop nder driveways, s computer simulat entative design p s and the grate s	ments for flow. ed. ide roads, ion program arameters pacing.
The purpose of the r parallel-drainage structu Guidelines or warrants for Parallel-drainage culvert or median crossovers. Preliminary designs and a full-scale test pro were selected, including The end treatment de to full-scale prototype to treatment on a 6.7 to 1 do treatment was subjected to A benefit/cost analysis we treatments.	research was to wres that would or use of the en- s are used to of were first eval ogram. From the the ditch and of eveloped in the cesting. These wriveway slope w to tests at 40 m as conducted to	develop traff not appreciab nd treatments w convey water un luated using a ese studies, te driveway slopes preliminary st tests involved with a subcompa nph (64.4 km/h) o determine way	ic-safe end treat ly restrict water were also develope nder driveways, s computer simulat entative design p s and the grate s tudies was then su l evaluation of the act automobile.) and 50 mph (96.1 rrants for the use	ments for flow. ed. ide roads, ion program arameters pacing. ubjected he end The end 5 km/h). e of the
The purpose of the r parallel-drainage structu Guidelines or warrants for Parallel-drainage culvert or median crossovers. Preliminary designs and a full-scale test pro were selected, including The end treatment de to full-scale prototype t treatment on a 6.7 to 1 d treatment was subjected t A benefit/cost analysis w treatments.	research was to wres that would or use of the en- ts are used to of were first eval ogram. From the the ditch and of eveloped in the testing. These with a sonducted to	develop traff not appreciab nd treatments w convey water un luated using a ese studies, to driveway slopes preliminary st tests involved with a subcompa nph (64.4 km/h) o determine way	ic-safe end treat ly restrict water were also develope nder driveways, s computer simulat entative design p s and the grate s tudies was then su d evaluation of t act automobile.) and 50 mph (96.5 rrants for the use	ments for flow. ed. ide roads, ion program arameters pacing. ubjected he end The end 5 km/h). e of the
The purpose of the r parallel-drainage structu Guidelines or warrants for Parallel-drainage culvert or median crossovers. Preliminary designs and a full-scale test pro were selected, including The end treatment de to full-scale prototype t treatment on a 6.7 to 1 d treatment was subjected t A benefit/cost analysis w treatments.	research was to wres that would or use of the en- ts are used to of were first eval ogram. From the the ditch and of eveloped in the testing. These wriveway slope w to tests at 40 m was conducted to	develop traff not appreciab nd treatments w convey water un luated using a ese studies, te driveway slopes preliminary st tests involved with a subcompa nph (64.4 km/h) o determine way	ic-safe end treat ly restrict water were also develope nder driveways, s computer simulat entative design p s and the grate s tudies was then su d evaluation of t act automobile.) and 50 mph (96.5 rrants for the use	ments for flow. ed. ide roads, ion program arameters pacing. ubjected he end The end 5 km/h). e of the
The purpose of the r parallel-drainage structu Guidelines or warrants for Parallel-drainage culvert or median crossovers. Preliminary designs and a full-scale test pro- were selected, including The end treatment de to full-scale prototype t treatment on a 6.7 to 1 d treatment was subjected t A benefit/cost analysis w treatments.	research was to ares that would or use of the en- ts are used to of were first eval ogram. From the the ditch and of eveloped in the testing. These ariveway slope w to tests at 40 m was conducted to	develop traff not appreciab nd treatments w convey water un luated using a ese studies, to driveway slopes preliminary st tests involved with a subcompa nph (64.4 km/h) o determine was	ic-safe end treat ly restrict water were also develope nder driveways, s computer simulat entative design p s and the grate s tudies was then su d evaluation of t act automobile.) and 50 mph (96.5 rrants for the use	ments for flow. ed. ide roads, ion program arameters pacing. ubjected he end The end 5 km/h). e of the
The purpose of the r parallel-drainage structu Guidelines or warrants for Parallel-drainage culvert or median crossovers. Preliminary designs and a full-scale test pro- were selected, including The end treatment de to full-scale prototype t treatment on a 6.7 to 1 d treatment was subjected t A benefit/cost analysis w treatments.	research was to ares that would or use of the en- ts are used to of were first eval ogram. From the the ditch and of eveloped in the testing. These ariveway slope w to tests at 40 m as conducted to	develop traff not appreciab nd treatments w convey water un luated using a ese studies, te driveway slopes preliminary st tests involved with a subcompa nph (64.4 km/h) o determine way	ic-safe end treat ly restrict water were also develope nder driveways, s computer simulat entative design p s and the grate s tudies was then su d evaluation of t act automobile.) and 50 mph (96. rrants for the use	ments for flow. ed. ide roads, ion program arameters pacing. ubjected he end The end 5 km/h). e of the
The purpose of the r parallel-drainage structu Guidelines or warrants for Parallel-drainage culvert or median crossovers. Preliminary designs and a full-scale test pro were selected, including The end treatment de to full-scale prototype t treatment on a 6.7 to 1 d treatment was subjected t A benefit/cost analysis w treatments.	research was to wres that would or use of the en- ts are used to of were first eval ogram. From the the ditch and of eveloped in the testing. These was conducted to	develop traff not appreciab nd treatments w convey water un luated using a ese studies, to driveway slopes preliminary st tests involved with a subcompa nph (64.4 km/h) o determine was	ic-safe end treat ly restrict water were also develope nder driveways, s computer simulat entative design p s and the grate s tudies was then su tudies was tudies was tudies was tudies was tudies was tudies was tudies was tudi	ments for flow. ed. ide roads, ion program arameters pacing. ubjected he end The end 5 km/h). e of the
The purpose of the r parallel-drainage structu Guidelines or warrants for Parallel-drainage culvert or median crossovers. Preliminary designs and a full-scale test pro- were selected, including The end treatment de to full-scale prototype to treatment on a 6.7 to 1 do treatment was subjected to A benefit/cost analysis we treatments.	research was to wres that would or use of the en- ts are used to d were first eval ogram. From the the ditch and d eveloped in the testing. These way slope w to tests at 40 m was conducted to	develop traff not appreciab nd treatments w convey water un luated using a ese studies, to driveway slopes preliminary st tests involved with a subcompa nph (64.4 km/h) o determine was 18. Distribution State No restrict available to National Teo Springfield	ic-safe end treat ly restrict water were also develope oder driveways, s computer simulat entative design part s and the grate s tudies was then su tudies the su tudies the su tudies tudies tudies the su tudies was tudies tu	ments for flow. ed. ide roads, ion program arameters pacing. ubjected he end The end 5 km/h). e of the ent is ugh the on Service,
The purpose of the r parallel-drainage structu Guidelines or warrants for Parallel-drainage culvert or median crossovers. Preliminary designs and a full-scale test pro- were selected, including The end treatment de to full-scale prototype t treatment on a 6.7 to 1 d treatment was subjected t A benefit/cost analysis w treatments. 17. Key Words Culvert(s), Drainage, Saf Test(s), Treatment, Drive	vesearch was to vires that would or use of the en- ts are used to of were first eval ogram. From the the ditch and of eveloped in the testing. These vise stores at 40 m vas conducted to fety, Roadside, eway 20. Security Class	develop traff not appreciab not appreciab not treatments we convey water un luated using a ese studies, te driveway slopes preliminary st tests involved with a subcompa nph (64.4 km/h) o determine way 18. Distribution State No restrict available to National Teo Springfield	ic-safe end treat ly restrict water were also developed oder driveways, s computer simulat entative design parts and the grate s tudies was then su d evaluation of the evaluation of the act automobile.) and 50 mph (96.1 crants for the use between the sub- crants for the use of the public throw chnical Information , Virginia 22161	ments for flow. ed. ide roads, ion program arameters pacing. ubjected he end The end 5 km/h). e of the ent is ugh the on Service, 22. Price

SAFETY TREATMENT OF ROADSIDE PARALLEL-DRAINAGE STRUCTURES

by

Hayes E. Ross, Jr. T. J. Hirsch Dean Sicking

Research Report 280-2F on Research Study No. 2-8-79-280 Safe End Treatment for Roadside Culverts

Sponsored by

Texas State Department of Highways and Public Transportation

in cooperation with

The U. S. Department of Transportation Federal Highway Administration

> June 1981 (Revised May 1982)

Texas Transportation Institute Texas A&M University College Station, Texas

33 -**Approximate Conversions from Metric Measures Approximate Conversions to Metric Measures** 22 Ξ To Find Symbol Symbol Symbol When You Know **Multiply by** To Find Symbol When You Know Multiply by 3 8 LENGTH LENGTH 8 6 inches in millimeters 0.04 in *2.5 centimeters cm mm inches inches in centimeters 0.4 ft 30 centimeters CITI cm feet feet ft 8 meters 3.3 m yd 0.9 meters m vards meters 1.1 vards yđ mi miles 1.6 kilometers km m miles mi 2 km kilometers 0.6 AREA ø AREA Ð in² 6.5 square centimeters cm² square inches ហ្ in² ft² m² cm² square centimeters 0.16 square inches 0.09 square meters square feet yd² square yards m² m² square meters 1.2 yd² 0.8 square meters square yards 14 mi² km² km² square kilometers 0.4 square miles mi² 2.6 square kilometers square miles hectares (10,000 m²) ha ha 2.5 acres 0.4 acres hectares 13 CT1 MASS (weight) MASS (weight) 12 Ξ 0.035 ounces οz 28 grams οz ounces grams a g kilograms 2.2 pounds 1b ib pounds 0.45 kilograms kg ka 0 tonnes (1000 kg) 0.9 1.1 short tons tonnes t t short tons (2000 lb) σ VOLUME VOLUME fl oz milliliters 0.03 fluid ounces ml Ħ pt liters pints 5 milliliters ml 2.1 ł tsp teaspoons qt milliliters ml liters 1.06 quarts Tbsp tablespoons 15 1. gallons gal 30 milliliters ml liters 0.26 1 floz fluid ounces ft3 cubic meters 35 cubic feet m 0.24 cups liters С yd³ H 1.3 cubic yards 0.47 liters m cubic meters pt pints 0.95 liters qt quarts **TEMPERATURE** (exact) 3.8 gal gailons liters ft3 0.03 m³ cubic feet cubic meters vd³ 0.76 m³ °F cubic meters °c cubic yards Fahrenheit Celsius 9/5 (then temperature add 32) temperature **TEMPERATURE** (exact) PP °F °c Celsius 5/9 (after Fahrenheit °F temperature temperature subtracting °F 212 32 98.6 32) 40 80 120 160 200 | -40

20

ò

-40

°c

-20

140

37

60

100

°c

80

METRIC CONVERSION FACTORS

*1 in = 2.54 (exactly). For other exact conversions and more detailed tables, see NBS Misc. Publ. 286, Units of Weights and Measures, Price \$2.25, SD Catalog No. C13.10:286.

H

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

KEY WORDS

Culvert(s), Drainage, Safety, Roadside, Test(s), Treatment, Driveway

ACKNOWLEDGMENTS

This research study was conducted under a cooperative program between the Texas Transportation Institute, the Texas State Department of Highways and Public Transportation, and the Federal Highway Administration. Harold Cooner, John Nixon, and Samuel Fox of the SDHPT and C. P. Damon of the FHWA worked closely with the researchers, and their comments and suggestions were appreciated.

iii

ABSTRACT

The purpose of the research was to develop traffic-safe end treatments for parallel-drainage structures that would not appreciably restrict water flow. Guidelines or warrants for use of the end treatments were also developed. Parallel-drainage culverts are used to convey water under driveways, side roads, or median crossovers.

Preliminary designs were first evaluated using a computer simulation program and a full-scale test program. From these studies, tentative design parameters were selected, including the ditch and driveway slopes and the grate spacing.

The end treatment developed in the preliminary studies was then subjected to full-scale prototype testing. These tests involved evaluation of the end treatment on a 6.7 to 1 driveway slope with a subcompact automobile. The end treatment was subjected to tests at 40 mph (64.4 km/h) and 50 mph (96.5 km/h). A benefit/cost analysis was conducted to determine warrants for the use of the treatments.

To achieve a traffic-safe driveway/culvert design the following conditions should be met:

- 1. The roadway sideslope (or ditch slope) should be 6 to 1 or flatter.
- 2. The driveway slope should be 6 to 1 or flatter.
- The transition area between the roadway sideslope and the driveway slope should be rounded or smoothed as opposed to an abrupt transition.
- 4. Safety treatment of the culvert opening should include an end section cut to match the driveway slope with cross members (grates) spaced approximately every 2 ft (0.61 m) perpendicular to the

iv

direction of water flow. The cross members should be designed to support a concentrated wheel load of approximately 10,000 lb (44,480 N) ap- plied at midspan.

Guidelines for use of safety treatments were developed through a benefit/cost analysis. Assumptions made in the analysis were: (1) the roadway side slope was 6 to 1, (2) the roadway had a 12 ft (3.66 m) shoulder, and (3) the centerline of the driveway culvert was 25 ft (7.62 m) from the edge of the travelway.

Three driveway/culvert options were evaluated:

- I. Untreated condition (1-1/2 to 1 driveway slope and no culvert end treatment).
- II. Driveway slope of 6 to 1 with culvert end cut to match slope with no safety grates.
- III. Same as II but with safety grates on culvert.

Based on the benefit/cost analysis, guidelines were developed that identify conditions (traffic volume and culvert size) that warrant safety treatment of parallel drainge culverts on rural high-speed highways. These warrants are presented in Figure 19 of the report.

IMPLEMENTATION STATEMENT

Results of this study have been implemented by the Texas State Department of Highways and Public Transportation. The Highway Design Division has issued policy statements on driveways and parallel drainage structures for new construction projects. Revisions have been made in the SDHPT design manual. The Safety and Maintenance Operations Division has issued guidelines for access driveways and driveway culverts. The study has also been well received and implemented by a large number of other states.

TABLE OF CONTENTS

	Page
I. INTRODUCTION	1
II. EVALUATION CRITERIA	2
III. VEHICLE SIMULATION AND SLOPE EVALUATION	3
IV. FULL-SCALE TESTS	7
IV-1. Slope Tests	7
IV-2. Tests of Culvert Safety Treatments	12
IV-3. Full-Scale Prototype Tests	24
V. WARRANTS FOR SAFETY TREATMENT OF PARALLEL DRAINAGE STRUCTURES	30
VI. CONCLUSIONS	38
APPENDIX A. HVOSM PARAMETER STUDY	40
APPENDIX B. FULL-SCALE TESTS	52
REFERENCES	162

.

LIST OF FIGURES

<u>Figure No</u> .		Page
1	Definition Sketch	4
2	Berm Dimensions for Tests 1-1 through 1-4	9
3	Photos of Earth Berm, Tests 1-1 through 1-4	10
4	Sequential Photos, Test 1-4	11
5	Berm and Culvert Details, Tests 5-1 through 7-6	13
6	Sequential Photos, Test 5-1	17
7	Test Installation before Test 7-1	18
8	Sequential Photos, Test 7-1	19
9	Culvert Installation before Test 7-2	20
10	Test Vehicle and Installation before Test 7-4	21
11	Test Vehicle and Installation before Test 7-6	22
12	Sequential Photos, Test 7-6	23
13	Test Site Conditions, Tests 9-1 and 9-2	25
14	Test Site, Tests 9-1 and 9-2	26
15	Sequential Photos, Test 9-2	27
16	Vehicle after Test 9-2	28
17	Benefit/Cost Ratio to Upgrade from Option I to Option II	34
18	Benefit/Cost Ratio to Upgrade from Option II to Option III	35
19	Warrants for Safety Treatment of Parallel Drainage Culverts	37
B-1	Dimensions of Test Vehicle	54
B-2	Test Vehicle before Test 1-1	57
B-3	Sequential Photos, Test 1-1	58
B-4	Sequential Photos, Test 1-1	59
B-5	Vehicle Longitudinal Acceleration, Test 1-1	60

<u>Figure No</u> .		Page
B-6	Vehicle Transverse Acceleration, Test 1-1	61
B -7	Vehicle Vertical Acceleration, Test 1-1	62
B-8	Vehicle Roll, Test 1-1	63
B-9	Sequential Photos, Test 1-2	65
B-10	Sequential Photos, Test 1-2	66
B-11	Test Vehicle after Test 1-2	67
B-12	Vehicle Longitudinal Acceleration, Test 1-2	68
B -1 3	Vehicle Transverse Acceleration, Test 1-2	69
B-14	Vehicle Vertical Acceleration, Test 1-2	70
B-15	Vehicle Roll, Test 1-2	71
B-16	Test Vehicle before Test 1-3	73
B-17	Sequential Photos, Test 1-3	74
B-18	Sequential Photos, Test 1-3	75
B-19	Test Vehicle after Test 1-3	76
B-20	Vehicle Longitudinal Acceleration, Test 1-3	77
B-21	Vehicle Transverse Acceleration, Test 1-3	78
B-22	Vehicle Vertical Acceleration, Test 1-3	79
B-23	Vehicle Roll, Test 1-3	80
B-24	Sequential Photos, Test 1-4	82
B-25	Test Vehicle after Test 1-4	83
B-26	Vehicle Longitudinal Acceleration, Test 1-4	84
B-27	Vehicle Transverse Acceleration, Test 1-4	85
B-28	Vehicle Vertical Acceleration, Test 1-4	86
B-29	Vehicle Roll, Test 1-4	87

<u>Figure No</u> .		Page
B-30	6:1 Slope Test Installation, Test 5-1	89
B-31	Test Vehicle before Test 5-1	90
B-32	Sequential Photos, Test 5-1	91
B-33	Test Vehicle after Test 5-1	92
B-34	Vehicle Vertical Acceleration, Test 5-1	93
B-35	Vehicle Transverse Acceleration, Test 5-1	94
B-36	Vehicle Longitudinal Acceleration, Test 5-1	95
B-37	Vehicle Roll, Test 5-1	96
B-38	Test Vehicle and Installation before Test 7-1	100
B-39	Sequential Photos, Test 7-1	101
B-40	Test Vehicle and Installation after Test 7-1	103
B-41	Vehicle Longitudinal Acceleration, Test 7-1	104
B-42	Vehicle Transverse Acceleration, Test 7-1	105
B-43	Vehicle Vertical Acceleration, Test 7-1	106
B-44	Vehicle Roll, Test 7-1	107
B-45	Sequential Photos, Test 7-2	109
B-46	Sequential Photos, Test 7-2	110
B-47	Test Vehicle and Installation after Test 7-2	111
B-48	Vehicle Longitudinal Acceleration, Test 7-2	112
B-49	Vehicle Transverse Acceleration, Test 7-2	113
B-50	Vehicle Vertical Acceleration, Test 7-2	114
B-51	Vehicle Roll, Test 7-2	115
B-52	Sequential Photos, Test 7-4	117
B-53	Sequential Photos, Test 7-4	118

	· · · · · · · · · · · · · · · · · · ·	
Figure No.		Page
B-54	Test Vehicle and Installation after Test 7-4	119
B-55	Vehicle Longitudinal Acceleration, Test 7-4	120
B-56	Vehicle Transverse Acceleration, Test 7-4	121
B-57	Vehicle Vertical Acceleration, Test 7-4	122
B-58	Vehicle Roll, Test 7-4	123
B-59	Test Vehicle and Installation before Test 7-5	125
B-60	Sequential Photos, Test 7-5	126
B-61	Sequential Photos, Test 7-5	127
B-62	Test Vehicle and Installation after Test 7-5	128
B-63	Vehicle Longitudinal Acceleration, Test 7-5	129
B-64	Vehicle Transverse Acceleration, Test 7-5	130
B-65	Vehicle Vertical Acceleration, Test 7-5	131
B-66	Vehicle Roll, Test 7-5	132
B-67	Sequential Photos, Test 7-6	134
B-68	Test Vehicle and Installation after Test 7-6	135
B-69	Vehicle Longitudinal Acceleration, Test 7-6	136
B-70	Vehicle Transverse Acceleration, Test 7-6	137
B -71	Vehicle Vertical Acceleration, Test 7-6	138
B-72	Vehicle Roll, Test 7-6	139
B-73	Test Vehicle and Installation before Test 9-1	143
B -74	Sequential Photos, Test 9-1; Pan Shot	144
B-75	Sequential Photos, Test 9-1; End View	145
B-76	Sequential Photos, Test 9-1; Side View	146
B -77	Test Vehicle and Installation after Test 9-1	148

xi

Figure No.		Page
B-78	Vehicle Longitudinal Acceleration, Test 9-1	149
B-79	Vehicle Transverse Acceleration, Test 9-1	150
B-80	Vehicle Vertical Acceleration, Test 9-1	151
B-81	Vehicle Roll, Test 9-1	152
B-82	Test Vehicle and Installation before Test 9-2	154
B-83	Sequential Photos, Test 9-2; End View	155
B-84	Sequential Photos, Test 9-2; Side View	156
B-83	Vehicle Longitudinal Acceleration, Test 9-2	158
B-86	Vehicle Transverse Acceleration, Test 9-2	159
B-87	Vehicle Vertical Acceleration, Test 9-2	160
B-88	Vehicle Roll, Test 9-2	161

LIST OF TABLES

<u>Table No</u> .		Page
1	Summary of Full-Scale Test Conditions	8
2	Summary of Full-Scale Test Results	29
3	Assumed Severity Indices	32
4	Incremental Cost of Treatments	33
A-1	HVOSM Results, 3 ft Ditch	42
A-2	HVOSM Results, 2 ft Ditch	44
A-3	HVOSM Input, Small Car	46
A-4	HVOSM Input, Large Car	49
B-1	Summary of Slope Test Results	56
B-2	Summary of Culvert Grating Test Results	98
B-3	Summary of Prototype Tests	141

I. INTRODUCTION

Drainage ditches parallel almost all modern highways. Driveways, side roads, and median crossings commonly incorporate pipe culverts to accommodate the surface runoff carried by these ditches. Recent field reviews of drainage culverts revealed that improvements and some modification of design details could improve both drainage and safety (1). Many of the safety grates used in the past to cover the open ends of culverts have small openings and the grates are easily clogged with debris. This causes water to back up and flow over the roadway, the ditch crossing, or adjacent property. In some cases safety grates do not possess enough strength to be effective or they are used on small pipe culverts which need no safety treatment.

The objective of this study was to develop guidelines for safety treatment of driveway, side road, and median crossover culverts that (1) can be safely traversed by an errant vehicle and (2) will exhibit desirable hydraulic behavior.

An errant vehicle must be able to safely negotiate the culvert and adjoining slopes of the ditch and ditch crossing. This study investigated these two basic areas by use of a computer simulation program and full-scale crash tests to determine both the slope combinations and the grating with the fewest cross members that can be safely negotiated by an errant vehicle. No hydraulic analysis was attempted. For this study it was assumed that the grate with the fewest members was the best grate from a hydraulic standpoint.

II. EVALUATION CRITERIA

A review of the literature showed that there are no nationally recognized safety performance standards for roadside drainage structures. Deceleration and stability of a vehicle during impact are the two primary measures of performance for safety appurtenances such as guardrails, crash cushions, etc. Desirably, the appurtenance will satisfy both criteria. Previous research (2,6), showed that a very flat ditch slope, a very flat driveway slope, and a very long culvert would be necessary to satisfy these criteria for the present problem. In view of the economic and hydraulic implications of such a design it was concluded that tradeoffs would be necessary to achieve an acceptable balance between the controlling elements. Performance was therefore judged acceptable if the vehicle smoothly traversed the slopes and did not roll over or pitch over at speeds up through 50 mph (80.5 km/h).

III. VEHICLE SIMULATION AND SLOPE EVALUATION

Design of a traffic-safe parallel drainage structure not only involves the culvert itself but adjoining slopes as well. In fact, the slopes can in many cases be a greater hazard than the culvert structure. Studies of median cross-over geometry pointed to the need for relatively flat slopes to minimize errant vehicle rollover $(2, \underline{6})$. The computer program, Highway-Vehicle-Object-Simulation-Model (HVOSM) (<u>3</u>), was used to examine the behavior of a vehicle traversing various driveway conditions. Parameters investigated included departure angle, departure speed, and the path of vehicle encroachment; the side slopes of both the ditch and the driveway; the type of transition zone between the two slopes; depth of the ditch; and vehicle size. These parameters are illustrated in the definition sketch of Figure 1.

Following is the range of each parameter evaluated:

DEPARTURE ANGLE: 15° and head-on

DEPARTURE SPEED: 30 mph (48.3 km/h), 40 mph (64.4 km/h), 50 mph (80.5 km/h), and 60 mph (96.6 km/h)

<u>PATH</u>: 15^o angled path across transition (path 1), 15^o angled path across ditch bottom (path 2), and head-on path into driveway slope (path 3)

ROADSIDE SLOPE: 4:1 and 6:1

DRIVEWAY SLOPE: 4:1, 5:1, and 6:1

TRANSITION TYPE: Abrupt and Rounded

DITCH DEPTH: 2 ft (0.61 m) and 3 ft (0.92 m)

VEHICLE SIZE: 2250 lb (1022 kg) and 4500 lb (2044 kg)

A total of 68 computer runs were made to evaluate the various parameters. Further details and results of these runs are given in Appendix A.

Figure 1. Definition Sketch.

Figure 1. Definition Sketch. (continued)

Tentative conclusions reached as a result of the 68 computer runs were as follows:

- Curved transitions between the ditch and driveway slopes significantly reduce the potential for rollover when the errant vehicle crosses the transition area.
- 2. Rollover will occur at speeds between 40 mph (64.4 km/h) and 50 mph (80.5 km/h) for 4:1 ditch and driveway slopes and ditch depths of 2 ft (0.61 m) and 3 ft (0.92 m), rgardless of the type of transition used.
- 3. Rollover will occur at speeds between 40 mph (64.4 km/h) and 50 mph (80.5 km/h) for 6:1 ditch and driveway slopes and a ditch depth of 2 ft (0.61 m), regardless of the type of transition used.
- 4. Rollover will occur at speeds between 50 mph (80.5 km/h) and 60 mph (96.5 km/h) for 6:1 ditch and driveway slopes and a ditch depth of 3 ft (0.92 m), regardless of the type of transition used.
- 5. The 4500 lb (2043 kg) automobile did not appear to be more stable than the 2250 lb (1022 kg) automobile.

IV. FULL-SCALE TESTS

A series of full-scale tests were conducted to verify the HVOSM results and to evaluate impact performance of the safety treatments. The test vehicles were 1974 and 1975 Chevrolet Vegas weighing approximately 2250 lb (1022 kg). Further details of the test vehicles are given in Appendix B-2. In each test the vehicle was towed to the test site along a guidance cable, released, and then allowed to traverse the test area in a free-wheel (no steer input), no-braking mode. A summary of the 12 full-scale tests is given in Table 1. Further details are presented in the following sections.

IV-1. Slope Tests

As has been previously discussed, the impact behavior of a vehicle leaving the roadway in the area of a driveway is highly dependent on the slopes of the ditch and driveway. The initial phase of the test program was therefore designed to evaluate the relative hazard of the driveway slope. An earth berm was constructed to simulate the driveway. A sketch of the berm as constructed for tests 1-1 through 1-4 is shown in Figure 2, and photos of the berm are shown in Figure 3. Note that the slope on the approach side of the berm was 3.8 to 1, slightly steeper than the intended slope of 4 to 1.

Tests 1-1 through 1-4 were conducted to determine an approximate maximum speed at which a driveway with a slope of approximately 4 to 1 could be traversed without attendant vehicle rollover. In each test the vehicle's speed was increased over that of the previous test. This process was continued until rollover occurred in test 1-4. Sequential photos of test 1-4 are shown in Figure 4. From these four tests it was determined that an automobile, approaching a driveway with a 4 to 1 slope from a head-on path (path 3 of Figure 1), would roll over (actually pitch over) at a speed somewhere between 40 mph (64.4 km/h) and 50 mph (80.5 km/h).

TEST NO.	VEHICLE SPEED (mph)	VEHICLE PATH (See Fig. 1)	DRIVEWAY SLOPE	DITCH SLOPE	CULVERT CONFIGURATION
1-1	30	3	3.8:1	N/A	No Culvert
1-2	35	3	3.8:1	N/A	No Culvert
1-3	40	3	3.8:1	N/A	No Culvert
1-4	50	3	3.8:1	N/A	No Culvert
5-1	50	3	6.7:1	N/A	No Culvert
7-1	50	3	6.7:1	N/A	(See Fig. 5)
7-2	50	3	6.7:1	N/A	(See Fig. 5)
7-4	20	3	6.7:1	N/A	(See Fig. 5)
7-5	50	3	6.7:1	N/A	(See Fig. 5)
7-6	50	3	6.7:1	N/A	(See Fig. 5)
9-1	40	2	6.5:1	6.8:1	(See Fig. 12)
9-2	50	2	6.5:1	6.8:1	(See Fig. 12)

TABLE 1. SUMMARY OF FULL-SCALE TEST CONDITIONS

Metric Conversions: 1 mph = 1.609 km/h

Figure 2. Berm Dimensions for Tests 1-1 through 1-4.

Side View

View Looking in Direction of Vehicle Travel

Figure 3. Photos of Earth Berm, Tests 1-1 through 1-4.

Figure 4. Sequential Photos, Test 1-4.

After test 1-4 the berm slopes were flattened to the dimensions shown on the first page of Figure 5. In this case the slope on the approach side was 6.7 to 1, slightly flatter than the intended 6 to 1 slope. It was obvious from test 1-3 that an automobile could traverse the 6 to 1 slope at speeds in excess of 40 mph (64.4 km/h) without rolling over. Hence, test 5-1 was conducted at 50 mph (80.5 km/h) with the automobile approaching from a head-on path. Although the vehicle was airborne for approximately 75 ft (22.9 m) it remained upright with no appreciable pitching. Sequential photos of the test are shown in Figure 6.

As a result of the slope tests, it was concluded that the driveway slope must be 6 to 1 or flatter if rollover was to be avoided for speeds up through 50 mph (80.5 km/h). Further details of the slope tests are given in Appendix B-3.

IV-2. Tests of Culvert Safety Treatments

The next series of tests (7-1 through 7-6) were conducted to determine if safety treatment of the culvert end was needed in addition to the sloped end treatment. The 6.7 to 1 driveway slope was used in each test. It was assumed that a head-on path into the driveway culvert would be as critical, or more critical, than any other path regarding the culvert itself. Based on this assumption, a 24 in. (61.0 cm) diameter corrugated steel pipe culvert with a sloped end was installed in the earth berm as shown on the first page of Figure 5. This culvert size was selected since the diameter of most driveway culverts in Texas are equal to or less than 24 in. (61.0 cm). Vehicle impact point for this series of tests was selected such that the right side wheels of the test vehicle traversed the center of the culvert end.

Figure 5. Berm and Culvert Details, Tests 5-1 through 7-6. (continued)

Details of the culvert configuration for each of the culvert tests are given in Figure 5. The first test, 7-1, was conducted at 50 mph with an open culvert, i.e., no grate members. Photos of the installation are given in Figure 7 and sequential photos of the test are given in Figure 8. Large pitch and roll rates occurred after impact with the culvert, and the vehicle rolled over. In the next test, 7-2, a single grate member was placed across the culvert as shown in details 3 and 4 of Figure 5 and the photos of Figure 9. Very little improvement in vehicle behavior occurred and rollover again occurred.

Analysis of test 7-2 showed that grates spaced approximately on 2 ft (0.61 m) centers was needed to avoid excessive wheel hop and wheel snagging. The next treatment therefore incorporated this feature as shown in details 5 and 6 of Figure 5. Photos of the grate and vehicle before test 7-4 are shown in Figure 10. Grate members consisted of 2 lb/ft (2.98 kg/m) steel flanged channel sections. The channel section was chosen since it is widely used as a delineator post by TSDHPT and would therefore be readily available. The first test on this treatment, test 7-4, was conducted at 20 mph (32.2 km/h) and the results were acceptable. Test 7-5 was conducted at 50 mph (80.5 km/h) and rollover occurred due to structural failure of the grates. Photos of the culvert before and after test 7-4 are shown in Figure 10.

In test 7-6, a 2-1/2 (6.35 cm) I.D. standard steel pipe (schedule 40) was used as a grate member. Details 7 through 10 of Figure 5 show how the pipe was attached to the culvert. Photos of the test vehicle and culvert before the test are shown in Figure 11 and sequential photos of the test are shown in Figure 12. Although the vehicle was airborne approximately 65 ft (19.8 m) it remained upright and the test was deemed acceptable. The culvert was only slightly damaged.

Further details of the culvert tests are given in Appendix B-4.

Figure 7. Test Installation Before Test 7-1.

Figure 9. Culvert Installation Before Test 7-2.

Figure 11. Test Vehicle and Installation Before Test 7-6.

0.220

0.423

0.867

Figure 12. Sequential Photos, Test 7-6. 23

Analysis of the crash tests and the computer simulations showed that the dynamic wheel load on a grate member is about 10,000 lb (44,480 N) when impacted by a 4500 lb (2043 kg) automobile at 50 mph (80.5 km/h), assuming the culvert is on a 6 to 1 slope. It is therefore suggested that a 10,000 lb (44,480 N) concentrated load applied at midspan be used in designing a cross member, its attachment to the culvert and/or riprap, and any reinforcing that may be necessary to the culvert and/or riprap.

It is noted that the 2-1/2 in. (96.4 cm) schedule 40 steel pipe used in the test program, while structurally adequate for a 2250 lb (1022 kg) automobile and a 24 in. (61.0 cm) diameter culvert, would probably not have supported a 4500 lb (2043 kg) automobile. Calculations show that a 3 in. (7.6 cm) I.D., schedule 40 pipe would have been needed for the larger auto. IV-3. Full-Scale Prototype Tests

The final two tests, 9-1 and 9-2, were selected to verify the tentative conclusions reached as a result of the simulation work and the full-scale slope and culvert testing. A full-scale prototype of a ditch-driveway configuration was therefore constructed as shown in Figure 13 and the photos of Figure 14. Test 9-1 was conducted at 40 mph (64.4 km/h) and the approach path into the driveway was as shown in Figure 13. The path was such that the left side wheels crossed the culvert. No adverse vehicle behavior occurred during the test, and the results were considered acceptable.

Test 9-2 was identical to test 9-1 except the speed was increased to 50 mph (80.5 km/h). Sequential photos of the test are shown in Figure 15. The vehicle remained upright and sustained only minor damage. Photos of the vehicle and the culvert after the test are shown in Figure 16.

Further details of the prototype tests are given in Appendix B-5. A summary of the results of the 12 crash tests is given in Table 2.

Figure 14. Test Site, Tests 9-1 and 9-2.

Figure 15. Sequential Photos, Test 9-2. 27

TABLE 2. SUMMARY OF FULL-SCALE TEST RESULTS

TEST NO.	VEHICLE SPEED (mph)	VEHICLE PATH (See Fig. 1)	DRIVEWAY SLOPE	DITCH SLOPE	CULVERT CONFIGURATION	RESULTS
]_]	30	3	3.8:1	N/A	No Culvert	Satisfactory - no rollover
1-2	35	3	3.8:1	N/A	No Culvert	Satisfactory - no rollover
1-3	40	3	3.8:1	N/A	No Culvert	Satisfactory - no rollover
1-4	50	3	3.8:1	N/A	No Culvert	Unsatisfactory - vehicle pitched over
5-1	50	3	6.7:1	N/A	No Culvert	Satisfactory - no rollover
7-1	50	3	6.7:1	N/A	(See Fig. 5)	Unsatisfactory - vehicle rolled over
7-2	50	3	6.7:1	N/A	(See Fig. 5)	Unsatisfactory - vehicle rolled over
7-4	20	3	6.7:1	N/A	(See Fig. 5)	Satisfactory - no rollover
7-5	50	3	6.7:1	N/A	(See Fig. 5)	Unsatisfactory - vehicle rolled over
7-6	50	3	6.7:1	N/A	(See Fig. 5)	Satisfactory - no rollover
9-1	40	2	6.5:1	6.8:1	(See Fig. 12)	Satisfactory - no rollover
9-2	50	2	6.5:1	6.8:1	(See Fig. 12)	Satisfactory - no rollover

Metric Conversions: 1 mph = 1.609 km/h

11:

V. WARRANTS FOR SAFETY TREATMENT

OF PARALLEL DRAINAGE STRUCTURES

A benefit/cost (B/C) analysis was made to develop warrants for safety treatment of parallel drainage structures and adjoining roadside slopes. According to SDHPT policy, one of three options will normally be selected to install a driveway or median crossover.

- I. Driveway or median crossover slope will be approximately 1-1/2 to 1 and the culvert end will have no safety treatment. This is considered the baseline or untreated condition.
- II. Driveway or median crossover slope will be approximately 6 to 1 and the culvert end will be cut to match the 6 to 1 slope. There will be no safety grates on the culvert.
- III. Option 3 is the same as 2 except the culvert end will have a safety grate treatment per the recommendations presented elsewhere in this report.

As per SDHPT recommendations, the analysis was conducted assuming (1) the roadway side slope was 6 to 1, (2) the roadway had a 12 ft (3.66 m) shoulder, and (3) the centerline of the driveway culvert was 25 ft (7.62 m) from the edge of the travelway. Four culvert sizes (diameters) were evaluated for each option; 18 in. (45.7 cm), 24 in. (61.0 cm), 36 in. (91.4 cm), and 48 in. (122 cm).

With the above three options and the assumed roadside geometry, an analysis was conducted to determine which option had the largest B/C ratio for a given set of conditions. A description of the B/C analysis procedure used is given in Chapter VII of reference 7 and in reference 8 and will not

be repeated here. Input required to perform the analysis includes cost of treatment, accident or societal cost, traffic volume, hazard size and location, discount rate, and the severity index of the hazard being evaluated.

Four severity indices were required for each of the four culvert sizes. Reference should be made to Table VII-C-1 of reference 7 for an interpretation of severity index values. Listed in Table 3 are the severity indices used in the analysis. They were determined through the combined judgment of SDHPT and TTI engineers, taking into consideration the crash test reported elsewhere in this report. It was assumed that a 1-1/2 to 1 driveway slope was equal in severity to an untreated culvert end regardless of the culvert size. Also note it was assumed that the severity index of a safety grated culvert on a 6 to 1 slope was equal to the severity index of the 6 to 1 slope.

An incremental B/C analysis was performed to evaluate the three options. Listed in Table 4 are estimated costs to upgrade option I to option II and option II to option III, as provided by SDHPT. Accident or societal costs were obtained from reference 9. Incremental benefits were defined as the difference in societal costs of any two options and incremental costs were the difference in SDHPT direct costs of the two options.

Plotted in Figures 17 and 18 are the B/C versus traffic volume for upgrading option I to II and option II to III, respectively. The "kink" in the curves at an ADT of approximately 3000 is caused by the vehicle encroachment data used in the analysis procedure (see Figure VII-C-1 of reference 7). From Figure 17 it can be seen that option II when compared with option I has a B/C greater than one for all but the very low traffic volumes. For 36 in. (91.4 cm) diameter and smaller culverts the breakpoint occurs at an ADT of approximately 100. For the 48 in. (121.9 cm) diameter

			SE	VERITY INDEX	
CULVERT DIAMETER _(in.)	DRIVEWAY SLOPE	DRIVEWAY SLOPE	UNTREATED CULVERT END	SLOPED CULVERT END WITH NO GRATES	SLOPED CULVERT END WITH GRATES
18	1-1/2 to 1	7.2	7.2	N/A	N/A
18	6 to 1	5.2	N/A	5.8	5.2
24	1-1/2 to 1	7.2	7.2	N/A	N/A
24	6 to 1	5.2	N/A	6.0	5.2
36	1-1/2 to 1	7.2	7.2	N/A	N/A
36	6 to 1	5.2	N/A	6.6	5.2
48	1-1/2 to 1	7.2	7.2	N/A	N/A
48	6 to 1	5.2	N/A	7.2	5.2

TABLE 3. ASSUMED SEVERITY INDICES

N/A - Not Applicable

CULVERT	COST TO UPGRADE FROM	COST TO OPTION	UPGRADE FROM II_TO_III
DIAMETER (in.)	<u>OPTION I TO II (\$)</u>	CONSTRUCTION (\$)	MAINTENANCE (\$/YEAR)
18	375	225	150
24	378	300	150
36	475	600	150
48	835	900	150

TABLE 4. INCREMENTAL COST OF TREATMENTS

FIGURE 17. BENEFIT/COST RATIO TO UPGRADE FROM OPTION I TO OPTION II.

culvert the breakpoint occurs at an ADT near 500. Note that relatively large benefits can be gained in option II for the smaller culverts whereas relatively small increases in benefits are gained in option II for the larger culvert. This is due to two factors. First, the severity index of the larger culvert in option II was estimated to be the same as that in option I. Second, for large culverts the culvert hazard itself is a significant part of the overall driveway/culvert hazard envelope.

Figure 18 shows the incremental B/C ratio for upgrading from option II to III. These results indicate the addition of safety grates for 24 in. (61.0 cm) diameter or smaller culverts is probably not cost beneficial for ADT's of approximately 13,000 or less. However, safety grates appear warranted on culverts with diameters 36 in. (91.9 cm) or greater for an ADT above approximately 500.

Table 5 summarizes the findings of the B/C analysis.

Shown in Figure 19 is a set of warrants derived from Figures 17 and 18 for safety treatment of parallel drainage structures. Basically, these warrants indicate options that provide the greatest benefits consistent with the given constraints and inherent assumptions. Some tradeoffs were made in deriving these warrants in the interest of conciseness and simplicity.

Since the warrants of Figure 19 were based in part on judgment they should not be treated as absolutes. Discretion must be used in their application, especially when existing conditions and/or costs differ from those employed in the analysis.

FIGURE 19. WARRANTS FOR SAFETY TREATMENT OF PARALLEL DRAINAGE CULVERTS

VI. CONCLUSIONS

There are no nationally recognized safety performance standards for roadside drainage structures. The following performance standard was there-fore adopted for this study: "An errant automobile should be able to smoothly traverse a ditch-driveway-culvert configuration without rollover for speeds up through 50 mph (80.5 km/h)." To meet this standard it has been shown that the following conditions should be met:

- 1. The roadway sideslope (or ditch slope) should be 6 to 1 or flatter.
- 2. The driveway slope should be 6 to 1 or flatter.
- The transition area between the roadway sideslope and the driveway slope should be rounded or smoothed as opposed to an abrupt transition.
- 4. Safety treatment of the culvert opening should include an end section cut to match the driveway slope with cross members (grates) spaced approximately every 2 ft (0.61 m) perpendicular to the direction of flow. The cross members should be designed to support a concentrated wheel load of approximtely 10,000 lb (44,480 N) applied at midspan.

Guidelines for use of safety treatments were developed through a benefit/cost analysis. Assumptions made in the analysis were: (1) the roadway side slope was 6 to 1, (2) the roadway had a 12 ft (3.66 m) shoulder, and (3) the centerline of the driveway culvert was 25 ft (7.62 m) from the edge of the travelway.

Three driveway/culvert options were evaluated:

I. Untreated condition (1-1/2 to 1 driveway slope and no culvert end treatment).

- II. Driveway slope of 6 to 1 with culvert end cut to match slope with no safety grates.
- III. Same as II but with safety grates on culvert.

Based on the benefit/cost analysis, guidelines were developed that identify conditions (traffic volume and culvert size) that warrant safety treatment of parallel drainage culverts on rural high-speed highways. These warrants are presented in Figure 19 of the report.

APPENDIX A. HVOSM PARAMETER STUDY

.

A. HVOSM PARAMETRIC STUDY

A series of computer simulations were conducted to gain insight regarding the hazard of ditch-driveway problems. Three encroachment parameters, four ditch-driveway parameters, and one automobile parameter were investigated with the Highway-Vehicle-Object-Simulation-Model (HVOSM) ($\underline{3}$). The parameters and the ranges of each are given in Chapter III. A total of 68 sets or combinations of the eight parameters were evaluated, and the results are given in Tables A-1 and A-2.

Data for the two automobiles simulated are given in Tables A-3 and A-4. The subcompact car data were obtained from reference 5, and the full-size car data were obtained from reference 6.

TABLE A-1. HVOSM RESULTS, 3 FT DITCH.

		VEHICLE	DATA		RO/	ΓA	SIMULATION RESULTS									
	ļ							MAX.	MAX.	DIST.		VEH	ICLE ACCE	LERATIONS (G'	s)	
RUN	WEIGHT	SPEED	ANGLE	РАТН ^а	OF	DRIVEWAY SLOPF ^a	SIDE SLOPF ^a	ROLL	PITCH	VEHICLE		PEAK		50	ms AVG.	
NO.	(1ь)	(mph)	(deg)		TRANSITION	$(a_d:b_d)$	(a _s :b _s)	(deg)	(deg)	(ft)	LONGITUDINAL	LATERAL	VERTICAL	LONGITUDINAL	LATERAL	VERTICAL
1	2250	40	15	1	Abrupt	4:1	4:1	17	22	62	7.3	2.9	16.5	4.9	2.0	6.8
2	2250	40	15	1	Curved	4:1	4:1	13	14	62	2.7	2.8	24.9	1.4	1.3	17
3	2250	40	15	2	N/A	4:1	4:1	2	14	. 72	0.5	2.3	32.0	0.3	1.4	20.5
4	2250	40	0	3	N/A	4:1	4:1	0	17	75	6.5	0	31.9	3.9	0	9.2
5	2250	40	15	1	Curved	4:1	5:1	27	24	66	1.7	4.6	20.7	0.7	2.8	13.4
6	2250	40	15	1	Abrupt	6:1	5:1	70	8	56	1.0	1.8	13.8	0.7	1.0	8.7
7	2250	40	15	1	Abrupt	6:1	6:1	17	12	64	2.9	3.2	14.8	1.7	1.9	9.7
8	2250	40	15	2	N/A	6:1	6:1	19	14	54	2.6	2.5	10.6	1.8	1.5	6.7
9	2250	50	15	1	Abrupt	4:1	4:1	360	14	94	3.6	1.7	28.2	3.0	1.2	20.1
10	2250	50	15	1	Curved	4:1	4:1	190	24	86	5.1	3.0	27.5	4.6	1.3	18.8
111	2250	50	15	2	N/A	4:1	4:1	30	28	110	9.6	8.1	24.4	6.3	4.9	9.9
12	2250	50	0	3	N/A	4:1	4:1	0	21	77	6.2	0	30.5	6.2	0	12.5
13	4500	50	15	1	Abrupt	4:1	4:1	52	22	70	2.2	11.9	7.8	1.7	8.8	4.3
14	4500	50	15	2	N/A	4:1	4:1	33	23	98	2.6	2.6	22.1	1.9	1.6	15.5
15	4500	50	0	3	N/A	4:1	4:1	0	22	98	6.7	0.1	27.0	3.7	0.1	21.4
16	2250	50	15	1	Curved	4:1	5:1	360	17	98	2.6	46.9	9.7	2.1	16.7	7.7
17	2250	50	15	2	N/A	4:1	5:1	360	32	110	9.6	76.6	11.6	2.9	20.4	5.9
18	2250	50	15	1	Abrupt	6:1	5:1	39	6	83	2.2	6.8	14.0	1.3	5.4	7.1
19	2250	50	15	2	N/A	6:1	5:1	27	14	85	4.4	6.9	18.2	2.9	4.0	6.9

^aSee Figure 1.

Metric Conversions:

 $1 \, \text{ft} = 0.305 \, \text{m}$

		VEHICLE	DATA		ROADSIDE DATA						SI	ULATION	RESULTS			
								MAX.	MAX.	DIST.		VEH	ICLE ACCE	LERATIONS (G'	s)	
RUN	WEIGHT	DEPARTURE SPEED	DEPARTURE ANGL F	ратна	TYPE OF	DRIVEWAY SLOPF ^a	SIDE SLOPF ^a	ROLL	PITCH		1	PEAK		50 r	ns AVG.	
NO.	(16)	(mph)	(deg)		TRANSITION	$(a_d:b_d)$	(a _s :b _s)	(deg)	(deg)	(ft)	LONGITUDINAL	LATERAL	VERTICAL	LONGITUDINAL	LATERAL	VERTICAL
20	2250	50	15	1	Abrupt	6:1	6:1	194	14	95	5.4	11.2	4.5	3.9	6.4	1.5
21	2250	50	15	1	Curved	6:1	6:1	11	8	87	1.5	2.8	19.6	1.0	1.5	13.1
22	2250	50	15	2	N/A	6:1	6:1	37	14	85	4.3	7.1	21.2	2.7	3.3	9.5
23	2250	50	0	3	N/A	6:1	6:1	0	16	90	6.0	0	25.3	3.9	0	11.9
24	4500	50	15	רן	Abrupt	6:1	6:1	54	13	76	2.5	12.1	7.1	2.0	9.39	5.4
25	4500	50	15	2	N/A	6:1	6:1	59	14	83	2.9	15.6	22.6	2.6	12.0	7.6
26	2250	60	15	2	N/A	4:1	4:1	206	22	123	6.4	16.2	10.3	6.4	11.6	3.6
27	2250	60	0.	1	N/A	4:1	4:1	0	180	152	40.2	0	12.1	29.2	0	11.0
28	4500	60	15	1	Abrupt	4:1	4:1	187	8	103	2.3	24.5	11.9	2.3	16.9	9.0
29	4500	60	15	2	N/A	4:1	4:1	13	38	128	7.1	1.0	48.0	3.9	0.7	20.6
. 30	4500	60	0	3	N/A	4:1	4:1	0	21	143	4.0	0	54.0	2.0	0	28.9
31	2250	60	15	1	Abrupt	6:1	5:1	183	11	118	3.6	9.5	18.2	3.3	5.0	13.1
32	2250	60	15	2	N/A	. 6:1	5:1	209	17	123	7.2	12.6	2.9	5.4	8.7	0.7
33	2250	60	15	1	Abrupt	6:1	6:1	195	28	133	6.5	1.7	10.8	5.7	0.7	7.5
34	2250	60	15	1	Curved	6:1	6:1	47	11	121	5.0	11.0	17.7	3.4	6.9	6.4
35	2250	60	15	2	N/A	6:1	6:1	197	15	154	10.1	54.4	8.9	5.0	16.8	2.9
36	2250	60	0	3	N/A	6:1	6:1	0	26	130	14.0	0	24.6	7.6	0	10.6
37	4500	60	15	1	Abrupt	6:1	6:1	192	12	105	2.1	5.2	24.6	1.9	2.6	12.2
38	4500	60	15	2	N/A	6:1	6:1	188	14	115	3.5	31.7	16.0	2.8	19.2	7.7
39	4500	60	0	3	N/A	6:1	6:1	0	-22	124	10.2	0	28.9	7.1	0	12.3

TABLE A-1. HVOSM RESULTS, 3 FT DITCH. (continued)

^aSee Figure 1.

Metric Conversions:

		VEHICLE	DATA		RO	ADSIDE DAT	ГА				ŚII	MULATION	RESULTS			
		050405005						MAX.	MAX.	DIST.		VEH	ICLE ACCE	LERATIONS (G'	s)	
RUN	WEIGHT	SPEED	ANGLE	PATH ^a	OF	DRIVEWAY SLOPE ^a	SIDE SLOPF ^a	ROLL ANGLE	PITCH ANGLE	VEHICLE	1	PEAK		50 (ms AVG.	
NO.	(1b)	(mph)	(deg)		TRANSITION	(a _d : b _d)	(a _s :b _s)	(deg)	(deg)	(ft)	LONGITUDINAL	LATERAL	VERTICAL	LONGITUDINAL	LATERAL	VERTICAL
1	2250	30	15	1	Abrupt	6:1	6:1	14	16	33	2.6	2.0	4.4	1.6	1.2	2.4
2	2250	40	15	2	N/A	4:1	4:1	38	19	74	1.6	13.0	20.7	0.8	7.7	11.3
3	2250	40	0	3	N/A	4:1	4:1	0	18	77	4.6	0	26.9	4.6	0	13.4
4	2250	40	15	1	Curved	4:1	5:1	63	11	52	1.7	9.1	10.6	1.7	7.4	4.6
5	2250	40	15	2	N/A	4:1	· 5:1	32	12	75	0.7	8.7	18.0	0.5	5.8	8.1
6	2250	40	15	1	Curved	6:1	5:1	182	11	46	3.5	9.4	4.3	2.3	4.5	2.4
7	2250	40	15	1	Abrupt	6:1	6:1	181	12	47	3.7	8.4	1.9	3.3	6.2	1.6
8	2250	40	15	1	Curved	6:1	6:1	53	8	53	2.5	7.2	6.6	1.8	3.6	2.5
9	2250	40	15	2	N/A	6:1	6:1	29	14	58	2.7	3.9	11.0	1.8	1.8	6.5
10	4500	40	15	1	Abrupt	6:1	6:1	32	8	43	1.7	2.8	9.3	1.3	1.6	4.9
11	4500	40	15	2	N/A	6:1	6:1	37	7	56	2.0	4.2	9.6	1.6	2.8	3.2
12	2250	50	15	1	Curved	4:1	4:1	42	31	66	7.3	6.3	5.0	4.5	3.4	2.8
13	2250	50	15	2	N/A	4:1	4:1	185	15	109	5.4	3.4	32.9	4.4	2.1	19.3
14	2250	50	0	3	N/A	4:1	4:1	0	180	111	27.4	0	13.1	23.3	0	10.5
15	2250	50	15	1	Curved	4:1	5:1	118	150	70	8.8	8.0	4.1	8.0	7.2	2.8
16	2250	50	15	2	N/A	4:1	5:1	588	70	113	4.5	64.3	11.9	2.4	19.7	6.5
17	2250	50	15	1	Curved	6:1	5:1	230	49	61	6.0	7.2	2.7	5.0	5.3	1.7
18	2250	50	15	2	N/A	6:1	5:1	182	21	88	5.9	6.4	18.5	3.4	3.0	6.3
19	2250	50	15	1	Abrupt	6:1	6:1	223	52	81	9.6	2.1	5.9	6.6	2.0	3.6

TABLE A-2. HVOSM RESULTS, 2 FT DITCH.

^aSee Figure 1.

Metric Conversions:

g		VEHICLE	DATA		RO	ADSIDE DAT	A				SI	MULATION	RESULTS			
			DEDADTUDE		TVAC			MAX.	MAX.	DIST.		VEH	ICLE ACCE	LERATIONS (G'	s)	
RUN	WEIGHT	SPEED	ANGLE	PATH ^a	OF	SLOPE ^a	SIDE SLOPE ^a	ANGLE	ANGLE	AIRBORNE		PEAK		50 i	ms AVG.	
NO.	(1b)	(mph)	(deg)		TRANSITION	(a _d : b _d)	(a _s :b _s)	(deg)	(deg)	(ft)	LONGITUDINAL	LATERAL	VERTICAL	LONGITUDINAL	LATERAL	VERTICAL
20	2250	50	15	1	Curved	6:1	6:1	40	25	71	5.5	5.4	5.0	3.6	2.6	2.7
21	2250	50	15	2	N/A	6:1	6:1	78	15	87	6.0	13.2	4.7	3.7	6.2	2.3
22	4500	50	15	1	Abrupt	6:1	6:1	42	12	56	2.6	4.5	5.6	2.0	3.4	3.1
23	4500	50	15	2	N/A	6:1	6:1	185	9	77	3.0	22.1	13.3	2.8	9.5	3.8
24	2250	60	15	1	Curved	4:1	4:1	240	60	93	11.7	4.3	6.6	8.8	3.1	4.9
25	2250	60	15	2	N/A	6:1	5:1	62	13	125	6.6	16.4	13.3	4.6	9.1	5.7
26	2250	60	15	1	Curved	6:1	6:1	29	35	75	6.3	5.4	13.8	3.5	3.4	4.3
27	2250	60	0	3	N/A	6:1	6:1	0	30	125	15.7	0	17.6	9.0	0	8.6
28	4500	60	15	1	Abrupt	6:1	6:1	68	21	73	3.3	5.6	2.8	3.3	5.6	2.7
29	4500	60	0	3	N/A	6:1	6:1	0	35	103	14.9	·0	14.3	10.4	. 0	9.0
								-								
													•			
1	1						1								1	

TABLE A-2. HVOSM RESULTS, 2 FT DITCH. (continued)

^aSee Figure 1.

Metric Conversions:

1 1b = 0.454 kg 1 mph = 1.609 km/h 1 ft = 0.305 m

TABLE A-3. HVOSM INPUT, SMALL CAR.

DSN= V1540041

PROJECT #2280--DRIVEWAY PARAMETRIC STUDY 1972 VEGA-15 DEGREE APPROACH AT 40 MPH/NO TRANSITION

1						
1	INERTIAL DATA	an a	IMENS IONS	n an the second state of the se A second state and the second state of the second state of the second state of the second state of the second st	SUSPENS ION	DATA
MS = MUF = MUR =	5.83 10 LBSEC.** 0.42 40 ** 0.5750 ** 2000 -0 LBSEC.**	$\begin{array}{cccc} 12/1N & A & = 4\\ B & = 5\\ TF & = 5\\ TF & = 5\\ TR & = 5\\ k2-1N & ZF & = 1\end{array}$	3.8700 INCHES 3.1300 ** 5.1000 ** 4.1000 **	$\begin{array}{rcl} KF &=& 96,000\\ KR &=& 121,000\\ CF^* &=& 37,000\\ CR^* &=& 58,000\\ FPS IL ONF =& 0,001 \end{array}$	LB./IN. LAMBDAF LB./IN. LAMBDAR LBS. DMEGAF LBS. OMEGAR IN./SEC. TS	= 0.500 = 0.500 = 0.0 INCHES = 0.0 INCHES = 36.000 INCHES
IY = IZ = IXZ =- IR =	12000.0 15600.0 -100.000 250.00	ZR = RHQ = RW = 1	7.2100 1.3100 1.8300	EPSILONR = 0.001 CF = 2.000 CR = 2.000	IN./SEC. RR LB-SEC/IN RF LB-SEC/IN KRS	= 11690.0 LB-IN/RAD = 0.0 LB-IN/RAD = -0.010 ROLL STEER COEFF.
G ==		za za za serie na se Kana ana gundana a cara ya na serie na s	an a	AKFC = 300.000 AKFCP = 2.000 DMEGFC= -2.200 AKFE = 300.000 AKFEP = 2.000	LB/IN AKRC LB/IN3 AKRCP IN OMEGRC LB/IN AKRE LB/IN3 AKREP	$\begin{array}{rcl} = & 300.000 \text{ LB/IN} \\ = & 2.000 \text{ LB/IN3} \\ = & -2.200 \text{ IN} \\ = & 300.000 \text{ LB/IN} \\ = & 2.000 \text{ LB/IN3} \end{array}$
· Å	a Antonio antonio antonio antonio antonio Antonio antonio antonio antonio antonio	มา 1 เห็นของ เพราะ และ 1 เห็น เป็นหนึ่ง เป็นหนึ่ง เป็นเห็นที่ เห็น ได้เพื่อเป็นเป็น	an an ann an Anna ann an A Anna an Anna an Anna anna a	DMEGFE= 3.840	IN OMEGRE	= 4.850 IN
		INITIA	L CONDITIONS	and a second		ACCELEROMETER POSITIONS
PHI0 = THETA0= PS10 = PHIR0 = PSIF10=	= 0.0 DEGREES = 0.0 •• = 15.000 •• = 0.0 •• = 0.0 ••	XCO = 43CO.0001NC YCO = 880.000 ZCO = -19.700 DELTA1= 0.0 DELTA2= 0.0 DELTA3= 0.0	HES PO = RO = D(PHIR)/DT= D(PSIF)/DT=	0.0 DEG/SEC UC 0.0	$\begin{array}{rcl} &=& 705.600 \text{ IN/SEC} \\ &=& 0.0 & \bullet \\ &=& 0.0 & \bullet \\ 1/DT =& 0.0 & \bullet \\ 2)/DT =& 0.0 & \bullet \\ 31/DT =& 0.0 & \bullet \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	a a a Tana a sa	an a	DR IV	ER CONTROL TABLES	anda an	a a chairtean ann an tha ann an th
L SLC	PS IF TOF DEG LB/FT	TOR T PS LB/FT SEC D	IF TOF EG LB/FT LE	TOR T PSIF BZFT SEC DEG	TOF TOR T LB/FT LB/FT SEC	PSIF TOF TOR DEG L8/FT L8/FT
0.0	0.0 0.0	0+0	•			
ί τι	IRE DATA	TERRAIN TABLE ARGU	MENTS	PROGRAM CONTR	ROL DATA	and a second
KT SIGMAT LAMBDAT AQ A1 A2	$\begin{array}{rrrr} 124 0.000 \text{ L} \text{B}/\text{IN} \\ = & 6.000 \\ \text{I} = & 10.000 \\ = & 362 5.000 \\ = & 7.711 \\ = & 234 4.000 \end{array}$	SOIL DAMPING= 0.00 SOIL FRICT. = 0.25 SSTIFF = 4000.	5 EI 1 SPI PF 50 Th LB/IN UV	TART TIME ND TIME NCR FOR INTEGRATION RINT INTERVAL HETA MAX (TO SWITCH) VWMIN(STUP)	= 0.0 SEC = 5.000 = 0.0050 ** = 0.010 ** = 70.000 DEG = 0.0	en e
A3 A4 AMU (DMEG T	= 1.550 = 550 0.000 = 0.500 = 0.750	NO.X TEMPS. = 6 NO.Y TEMPS. = 7 NO. VAR AMU = 0 TABLES		ARMIN(STOP) NDCRB DDE DF INTEGRATION TCMP1	= 0.0 = -1 (=0.NO CURB.=1 CU = 1 (=0 VAR.ADAMS-MOU = 1. (=1.0 SUPPLY INIT (=0.0 CAR RESTS D	RB*=-1 STEER DEG.OF FREEDOM LT.+=1 RUNGE-KUTTA.=2FIX.AM JAL POSITION) N TERRAIN)
COEF F.	OF TIRE FRICTION	n an	n an	า 2		an a
(SPE ED	AND LOAD) DATA 0.0 1/(LB-	-мрн)	a and a second	an a	n an	n a sun a companya a companya da sa

TABLE A-3. HVOSM INPUT, SMALL CAR. (continued)

n v	EHICLE MO	NITOR POIN	ITS	
	X (1 N•) (IN_)	Z (1N+)	
POINT POINT POINT POINT	1 79.10 2 79.10 3 -96.30 4 -96.30	0 32.700 0 -32.700 0 32.700 0 -32.700	4.800 4.800 6.500 6.500	
		n na	an a	
1	an an an an Angar An an an Angar An an Angar		gan na na sina na sina Na Angalan na sina na si	
~*	арал ултан ала	the the sequences of a second s	و و ویر از این این میشود به ایم ور این این این و	
	• • • • • •	t i	na congress en actuare and constants a constants a constants	
		, to a new opporter water water	na na na Malana ana ina na na na mana ana ana T	
1848 + 1 ⁹ 1 + 1		a das filos), o ocor o diference e das filos), o ocor o diference	n a consequences consecutives of a second	
and a state of the state of the state of the state of the state of the state of the	· · · · · · · · · · · · · · · · · · ·			
анан (т. т. т	· · · · · · · · · · · · · · · · · · ·			

TABLE A-3. HVOSM INPUT, SMALL CAR. (continued)

	() FF	INT !!	HEE	CAMB	ER	···. • • • • • • • • • • • • • • • • • •	1999 - 1999 - 1997 1	ровола в колост и продел С	د. موجعة المقديد المحادث	nt ont succession and see	••••••••••••••••••••••••••••••••••••••		دادی هموم اوردر دارمهر د	- - ,-,-,-			ter to ge		1.1.1.1.1.1		n an tha an an an the standard states in space of	. · · · · · · · ·
	sus	SPEN S	ION	DEFLEC	TION																	
٢.		DEL T	AF	PHIC DEGREI	ES.	alayer e S		an a	, s s s	in in an		Najednatel ser a	n jan geronen en k				- x - 1	¹				
		-4. 0	00	-4.7	50																	
F		-3.0	00 00 00	-3.0	80 50 30			ng n	inter kalogi jalantu 	,	, and the second s	 	re e gelande e n	• • • • • • • • •							ranger - rysterri - fr	
		0.0	00	0.0	өл			ti indanari ina	. The process of the second states of	ويويدونهمه مرد مقاصدين	المعروب فأدفعا أتأقوره	مردهده وأراعمتهم								nganan - ng anasas	н самен он тех уранала со у	nance entry
		2.0	00	0.6	50 80					1.0			·									
m		4.0	00	0.48	30			و چېږې او دستانه د د	ey a card caugud ae		وسيد وفسيشفيه بتغفقه	هوده والإطاء والملو					 A state of the sta		ي در معريد بيرومين را ر		an sana ay an	والمرد المراجع المراجع والمراجع
	CL	JRB 1	MPAC	T DATA									SPRUNG	MAS	SS-BAR	RIER	IMPACI	DATA				
VC1+			÷.	0.0	INCHE	s'	and an entry of the	BA VYRI	RRIER	DIMEN	SIONS		KV	an a	* 0	- 0	TRZ IN		BARR IER	LUAD	DEFLECT.	
YC2 • 2C2 •				0.0	++ ++	INT CO	TAKED A	DELY	U =	0.0			SET		= 0	•0	DEFL .F	RATIO	SIGMAR SIGMAR		0.0	
PHIC	1		-	0.0	DEGRE	15	INCRO	VEH XVF	nclē	DIMENS	IONS INCH	ËŚ	EPSIL	ON B	- 0 = 0	.0	IN/SEC	.	SIGMAR SIGMAR		0.0	na (par 1946) ar (p. 1946)
MUC	n angan an a			0+0		oo ahaa ahaa kaab	ne an tre in ham, sur hite		*	0.0	••		DELTE		≖ U	•U	(INTEC	. INCR)	SIGMAR		0.0	
CPSI OMEG	A PS	1	= 1 =	300.00 000.00 0.61	O LB-SE O LB-IN 4 RAD	C## 2~-I	N	ZVD ZVD INDE		0+0 0+0 (=1 R	IGID B	ARRIER	. FINI	TE V	ERT.	DIM-1	алын Р		SIGMAR SIGMAR SIGMAR 1		0.0	
EPSI	LON		**	0.01	* LB-IN 0 RAD/S	PRAD			an a sanagan ya sa	=2 =3 0	EFORM	PARRIE	R.FINI	TE					n dan sering tengen sering sering ten sering ten sering sering sering sering sering sering sering sering sering	en y nyangi alam	and a supplication of the photoest of	
TRAI	L,FR	JNT (P	1)=	1.50	0 INCHE	5				=4		•• 5		RAL	HARDP	OINTS	RELAT	IVE TO	C. G. STIFFNES	5		
	~ • •				 If the up the present 					والمحمد والم	an a	P	DINT	1 2	0.0		ICHES)	0.0	LB/IN 0.0))	alaan oo oo aan oo ahaa ahaa ahaa ahaa aha	, parat, starta
g			ст н	· •• · · · · · · · · · ·	•••••••••••••••••	- Section of the sect	na an na n	una naj i sen majer sen	an anna shanaran 1979) An an	ر. مديني ميشو مشيني في			UINI		U • U	, .	•••	VeV			anadodenin un en en en en dariere	ومودو بر المام م
												1										
						54 - 15 - 17 - 45 Apr		an a			na kaominina amin'ny fisiana Jeografia							na na anna a'rir na	 Provide provide the second state of the paper. 		and an	
						a y se	an san ba	1.5. 100. 10. 10. 10. 10. 10. 10. 10. 10. 1		ar muritantantan	** • •** 2-400.0010.0010.0010.0010.0010.001	an a		transport of the s	er en egenderer	e e contra constana	••. ••.		a ana ana ana ang ang ang ang ang ang an	و بر این ایک	an	
• •				•							ant i the											

TABLE A-4. HVOSM INPUT, LARGE CAR.

TABLE A-4. HVOSM INPUT, LARGE CAR. (continued)

XKVTHE 0.0	17 MPH	
XKL= 0.0	IZLB	
SUCCESSION OF ARTIST	TOO DOLLATE	
ACTIZCES PERVI	IDK POINTS	
x	Y Z	
(IN.)	(1N.) (1N.)	
		a har sha shaa ee aa faan ah bada waxaa ka har ka har ka maaraa ah a
PUINT 1 87.000	39.500 10.000	
POINT 2 07+000	-39+500 10+000	
POINT 4-121.000	-39.500 9.500	
المستريد فترجع مراجع		
	A CONTRACTOR AND AND A CONTRACTOR AND A CO	
and the second	والمحاج بهرافية وتنزع ومادر فستحقص والمعاد المعراف المرواد	
an a	we way with strategic data, we can paging without gradient gas in with the s	
a star in the star	a share a share a share a	n an
فكالمش فالمتعديات المتقص الفرقه	entatemperature estation providente entration en provide estat.	
and the second second second second second	18. Salah dalah kara dari dari karing dalah kara dari karing dalah kara dari karing dalah kara dari karing dala Tang dalah kara dalah ka	
ارین ا <mark>ماریس</mark> در این رود <mark>ورد اورد</mark> در این اورد از در این اورد این	an an ann an an ann an ann an an an an a	
an a	n an	
an ta ang ang ang ang ang ang ang ang ang an	ار این از میلی این این این این این این این این این ای	
an to see you a company of a system way. A a second se	an a	
	و از این	
	د و از از این میشود میروند و بیر از این این این و این این این این این این این این این این این	

)

TABLE A-4. HVOSM INPUT, LARGE CAR. (continued)

-51		алан аралан алан алан алан алан алан ала	ang	DSN=F1550961	PROJI FULL-SIZI	ECT #2280 ED VEHICL	E-15 DE	GREE APP	ETRIC ROACH	STUDY AT 50	MPHNO TR		na sa ka	· · · · · · · · · · · · · · · · · · ·
1 1		FRONT WHE	EL CAMBER		Contraction and a second s	en novel film a sprophysic spage	endependicipitation in a para service.	- 1990 - 5 900 - 1993 - 1997	n 1 - Arganis Angelan 1 - Angelan 1 - Angelan		n a ser e _n en el composition de la compositi	and a second		· · · · · · · · · · · · · · · · · · ·
		DEL TAF	PHIC	n Lanna 1997 - Shan Shang, an an ann an an an ann ann an an an 1997 - Shan Shang, ann an Ann an Ann an Ann an Ann an Ann	n an	operate formalisticate and a	a design a statur a	n nataratan si adi ani -	na granden skrive som		an an an an an an an	• • • • • • • • • • • • • • • • • • •	a ana ang ana ana ang	
	.	-5.000	-5.700		ak na sili na antara kanalaha kanaka matu	Non an Tren an Anna an Anna an A	anaraga / minisiak ni hanna en	gant a cycle gyne org cycles	to tak tinak ing	11 - 14 5	an an an an a	an a		· · · · · · · · · · · · · · · · · · ·
	2 1	-3.000 -2.000 -1.000	-2.450	n na na na na na mana atro como sera sera sera de sera dan a	a serveran internet state and the server of the server	Des ale segue de la construcción de	وردوه دروی در از	analysing gibbs in any second of the		/*		· · · · · · · · · · · · · · ·	y. managa kuta katan sa kata	**** *
51	£	1 • 000 2 • 000 3 • 000	0+600 0+600 0+650 0+300		a and second and a	ala di seta T	estrate features 	se war ar fiss	•			· ·		3
•		4 • 000 5 • 000	-0.400 -1.300	n ngan di ngan nin siste si di ana ang minin kananggan ninanang Ang mining ngan nin siste si di ang mining ngan ninanggan ninanggan ninanggan ninanggan ninanggan ninanggan nin	an bernepi name ayan ibi sebenggangan panan ang Sana ay ibi sa	n om to de la pipe production de la production de la pipe de la pip La pipe de la	a na ang ang ang ang ang ang ang ang ang	gin allandar ar porto de againte de a	1999 - 1999 - 1999 - 1999 - 1999 1999 - 1999 - 1999 - 1999 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999	· · · · · · · · · · · · · · · · · · ·		an a	- x () (x () () () () () () () () () () () () ()	. Ş
	YC1*	CURB IMP	ACT DATA = 0.0	INCHES	BARRIER (YB*)0 = DELY8* =	D IMENSIC 0+0 1		SPRUNG KV SET	MA55-8.	ARRIER	IMPACT DATA	BARRIER LOA SIGMAR 0 = SIGMAR 1 =	DEFLECT.	
ł	ZC2 DELTC PHIC1 PHIC2		≠ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0	SEC (INTEG. INCR.) DEGREES	ZBT* = ZBB* = VEHICLE (XVF =	0.0 0.0 DIMENSION 0.0 1	IS INCHES	CONS MUB EPSILO EPSILO	= N V= N B=	0.0 0.0 0.0 0.0	ENERGY RATIO	SIGMAR 2 = SIGMAR 3 = SIGMAR 4 = SIGMAR 5 =)
	IPSI CPSI	· · · · · · · · · · · · · · · · · · ·	= 0+0 = 300+000 =1000+000	LB-SEC**2-IN LB-IN	XVR = YV = ZVT = ZVB =	0 = 0 0 = 0 0 = 0 0 = 0		DELTE		0.0	SEC (INTEG.INCR)	SIGMAR 6 = SIGMAR 7 = SIGMAR 8 = SIGMAR 9 =		
	OMEGA KPSI EPSIL TRAIL	PSI = UN PSI = FRUNT(PT)=	= 0.523 =******** = 0.010 = 1.500	RAD LB-IN/RAD RAD/SEC INCHES	INDB = 0	(=) RIGI =2 =3 DEFO =4	D BARRI	INFINIT INFINIT IER.FINIT INFINIT	E VERT E E	DIM.) An one of the second	SIGMAR10 #	0+0	.
					ng (11.6 mm - Astronomical Astronomical Astronomical Astronomical Astronomical Astronomical Astronomical Astronomical Astronomical Astronomical Astronomical Astronomical Astronomical Astronomical Astronomical Astronomical Astronomical Astronom		unguy ayan na an a	STRUCTUR	AL HAR	001NT	S RELATIVE TO Y Z NCHES) 0.0 0.0	C. G. STIFFNESS LB/IN 0.0	с (1994 — Андлондск ад Монсонско, унирежини)	
	¥	. ,		na na serie e na serie na serie da serie de ser En la serie de serie En la serie de serie d				POINT POINT	2 0.	5	0.0 0.0 0.0 0.0	0.0	energian - constant managéri (constant) (constant	ta non status general
	‡1 - 112 12		a in the second s	na se se se se ser ser se		a linda quina ana ann ann ann ann ann ann ann ann		a a an	e Artigene en la stran en la s	n Line e e e e e e e e e e e e e e e e e e	an analan 12 alam an si si nanar si anan sinana	n en engelegen og nær i hende sog og sog n i i	nogelening - terapolis, in hag - trassociene the	ne statistica statistica S
	2	a in second and an	uter i sette en	n an	en al contra contra a contra Contra a contra a cont	991	a ser en anter a se En anter a ser en anter a ser En anter a ser en a ser en anter a ser en anter a se en anter a ser en anter a ser en anter a ser en ante	and all in the set of the second second	ringende og vede	s 1. 14 fer ent rock des	n Ngghanig paga ng an mananana ay anan Angghanig paga ng angga ng ang	nan ya shinara gana ayaa shagada ah waa	an in single frankrige som en som	na ka na pangana kang
	Д			a a construction and a construction of the con	in General Control of State State States General States States States States	an a	ne tijet up de mense	n organa myklastar pytek saytek	angang san	e natolic, na carpo	ta ang mang tingga tang a sa a sa sa sa sa	n 1. International against ministration	en en en angele in en anderen. T	e e nodina como com
				en e	n in grande withy yong what	This Line of charge stur server bits but	100000 100000 2000 20000 20000 2	ontology theory of the opening in the second	an a			· · ·	· ·	
	2					5 NE 670. (* 1								1

APPENDIX B. FULL-SCALE TESTS

B-1. Introduction

This section provides details of 12 crash tests conducted during this study. For convenience, the tests are divided into three groups, namely, slope tests, culvert tests, and prototype tests. The slope tests were conducted to determine an acceptable slope for a driveway or ditch crossing. The culvert tests were conducted to determine what, if any, safety treatment was needed for the end of the culvert. The prototype tests were conducted on a typical ditch-driveway installation to determine if the final design was acceptable.

Data collection and data reduction procedures for all tests were in accordance with recognized guidelines (4). Test results consist of data derived from the accelerometer readings, photos of the impact phase, and photos of damage to the test vehicles and installations. Four plots are presented for each test. These plots are the longitudinal, transverse, and vertical accelerations versus time, and the roll angle versus time. The accelerometers were placed at the approximate center of gravity of the test vehicles.

B-2. Test Vehicles

Test vehicles consisted of 1974-75 Chevrolet Vegas weighing approximately 2250 lb (1022 kg). Figure B-1 shows dimensions of a typical 1974-75 Vega. Design differences between the Vegas tested were very minor.

Before-test and after-test photos of the vehicle are presented in subsequent sections of the Appendix. In some cases the same vehicle was used in two or more tests. This was done only if the previous test caused minor damage to the vehicle.

ELEVATION

B-3. Slope Tests

Following is a description of the tests conducted to evaluate the hazard of driveway slope. A summary of the results of these tests is shown in Table B-1. As shown in this table the steepest slope that can be safely traversed by an errant vehicle at 50 mph (80.5 km/h) is 6 to 1. A discussion of these results and the conclusions drawn therefrom can be found in Section IV-1.

The first four tests were conducted on the earth berm shown in Figures 2 and 3. The final test in this series was conducted on the earth berm illustrated in Figure 5. The impact point for all tests was the center of the berm, and the vehicle path was perpendicular to the face of the berm.

B-3-1. Test No. 1-1

Figure B-2 shows the test vehicle prior to impact with the 4 to 1 slope. The test speed was 30 mph (48.3 km/h). Figures B-3 and B-4 contain sequential photos taken during impact. As shown, the vehicle was launched a short distance and came down on the back of the earth berm. Vehicle damage was minor.

Figures B-5, B-6, and B-7 contain longitudinal, transverse, and vertical acceleration versus time plots. Figure B-8 shows the roll angle versus time.

TABLE B-1. SUMMARY OF SLOPE TEST RESULTS

TEST NO.	TEST SPEED (mph)	SLOPE	DISTANCE VEHICLE AIRBORNE (ft)	VEHICLE E CLASSIFIC TAD	OAMAGE CATION SAE	PEAK 50 MS AVG. ACCELERATION (g's)	DID VEHICLE PITCH OVER?
1-1	30	4:1	18.5	No noticeable damage		6.4	No
1-2	35	4:1	43	RFQ-2 12	2FREW2	9.9	No
1-3	40	4:1	53	RFQ-3 12	2FREW3	11.3	No
1-4	50	4:1	106	R&T-6 12	FRAW8	17.2	Yes
5-1	50	6:1	75.5	F0-1 12	2FDLW1	13.4	No

Metric Conversions:

l mph = 1.609 km/h l ft = 0.305 m

Figure B-2. Test Vehicle Before Test 1-1

Figure B-3. Sequential Photos, Test 1-1.

0.00

0.515

0.151

Figure B-4. Sequential Photos, Test 1-1.

Figure B-5. Vehicle Longitudinal Acceleration, Test 1-1.

Figure B-6. Vehicle Transverse Acceleration, Test 1-1.

Figure B-7. Vehicle Vertical Acceleration, Test 1-1.

Figure B-8. Vehicle Roll, Test 1-1.

B-3-2. Test No. 1-2

Test 1-2 was the same as 1-1 except the vehicle speed was increased to 35 mph (56.3 km/h). The vehicle used in test 1-1 was also used in test 1-2. Figures B-9 and B-10 contain sequential photos taken during impact. The test vehicle launched over the earth berm and rolled approximately 15 degrees before hitting the ground. This caused some damage to the vehicle as shown in Figure B-11.

Figures B-12, B-13, and B-14 contain plots of the longitudinal, transverse, and vertical accelerations versus time. Figure B-15 is a plot of roll angle versus time.

Figure B-10. Sequential Photos, Test 1-2.

Figure B-11. Test Vehicle After Test 1-2.

Figure B-12. Vehicle Longitudinal Acceleration, Test 1-2.

Figure B-13. Vehicle Transverse Acceleration, Test 1-2.

6.9

Figure B-14. Vehicle Vertical Acceleration, Test 1-2.

ΖO

Figure B-15. Vehicle Roll, Test 1-2.

B-3-3. Test No. 1-3

Test 1-3 was a repeat of test 1-2 except the speed was increased to 40 mph (64.4 km/h). The same vehicle was used in both tests. Figure B-16 contains a photo of the test vehicle before impact. Figures B-17 and B-18 contain sequential photos taken during impact. The vehicle was launched well over the earth berm and again rolled about 20 degrees while airborne. Vehicle damage was significant as shown in Figure B-19, and the vehicle was not used again.

Plots of longitudinal, tranverse, and vertical accelerations versus time are found in Figures B-20, B-21, and B-22. Figure B-23 contains a plot of roll angle versus time.

Figure B-16. Test Vehicle Before Test 1-3.

0.00

0.070

0.382

Figure B-18. Sequential Photos, Test 1-3.

Figure B-19. Test Vehicle After Test 1-3.

Figure B-20. Vehicle Longitudinal Acceleration, Test 1-3.

Figure B-21. Vehicle Transverse Acceleration, Test 1-3.

Figure B-22. Vehicle Vertical Acceleration, Test 1-3.

Figure B-23. Vehicle Roll, Test 1-3.

B-3-4. Test No. 1-4

Test 1-4 was the same as 1-3 except the speed was increased to 50 mph (80.5 km/h). A different car was also used.

Figures 4 and B-24 contain sequential photos taken during impact. The vehicle was launched well over the berm and, although it rolled over only 40 degrees, the vehicle pitched over. This test was therefore a failure, and the damage was accordingly very severe. The damaged vehicle is shown in Figure B-25.

Plots of longitudinal, transverse, and vertical accelerations versus time are contained in Figures B-26, B-27, and B-28. A plot of roll angle versus time is found in Figure B-29.

Figure B-25. Test Vehicle After Test 1-4.

Figure B-26. Vehicle Longitudinal Acceleration, Test 1-4.

Figure B-27. Vehicle Transverse Acceleration, Test 1-4.

 $\sim - \infty$

Figure B-28. Vehicle Vertical Acceleration, Test 1-4.

Figure B-29. Vehicle Roll, Test 1-4.

B-3-5. Test No. 5-1

For test 5-1 the earth berm was flattened to a 6 to 1 slope as shown in Figure B-30. The test speed was 50 mph (80.5 km/h). A photo of the test vehicle before impact is contained in Figure B-31. Figures 6 and B-32 contain sequential photos taken during the event. The vehicle was launched beyond the berm but landed at a low pitch angle, and the maximum roll angle was only 7 degrees. Vehicle damage was not severe, as shown in Figure B-33.

Figures B-34, B-35, and B-36 contain plots of longitudinal, transverse, and vertical accelerations, respectively. Figure B-37 contains a plot of roll angle versus time.

Figure B-30. 6:1 Slope Test Installation, Test 5-1.

Figure B-31. Test Vehicle Before Test 5-1.

Figure B-33. Test Vehicle After Test 5-1.

Figure B-34. Vehicle Vertical Acceleration, Test 5-1.

Figure B-35. Vehicle Transverse Acceleration, Test 5-1.

Figure B-36. Vehicle Longitudinal Acceleration, Test 5-1.

ż

<u>1</u>0

Figure B-37. Vehicle Roll, Test 5-1.

B-4. Culvert Tests

This section describes the tests conducted to determine the grate spacing required to enable an errant vehicle to safely traverse a driveway culvert. Table B-2 contains a summary of the results of these tests. A discussion of these results and the conclusions drawn therefrom can be found in Section IV-2.

All of these tests were conducted on the earth berm used in test 5-1 and described in Figure 5. A culvert was installed in the berm and the impact point was placed such that the right front wheel of the test vehicle rolled down the centerline of the culvert. The impact angle was again 0 degrees and the test speed for all of these tests except test 7-4 was 50 mph (80.5 km/h). The test speed for test 7-4 was 20 mph (32.2 km/h).

TEST NO.	TEST SPEED (mph)	NO. OF CROSSMEMBERS	CROSSMEMBER SPACING (in.)	TYPE OF CROSSMEMBER	DISTANCE VEHICLE AIRBORNE (ft)	VEHICLE CLASSIFI TAD	DAMAGE CATION SAE	PEAK 50 MS AVG. ACCELERATION (g's)	DID VEHICLE PITCH OVER?
7-1	50	0	-	-	48.5	FL-4;BL-3	00LFM03	9.0	Yes
7-2	50	1	84	2.5 in. 0.D Standard Steel Pipe	43.5	FL-4;BR-3	12FLEW4	8.2	Yes
7-4	20	4	21	2 lb/ft Billet Steel Delineator Post	0	No Damage		0.9	No
7-5	50	4	21	2 lb/ft Billet Steel Delineator Post	66.0	FL-5;B0-2	12FLAW6	14.8	Yes
7-6	50	4	24	2.5 in. O.D. Standard Steel Pipe	64.0	RFQ-3	12FLEW2	10.2	No

TABLE B-2. SUMMARY OF CULVERT GRATING TEST RESULTS

Metric Conversions:

l mph = 1.609 km/h l ft = 0.305 m l in. = 2.54 cm

B-4-1. Test No. 7-1

The initial test involved a culvert end with no grating as shown in Figures 7 and B-38. Figures 8 and B-39 contain sequential photos of the event. The test vehicle began to roll when the right rear wheel impacted the top of the culvert. When the car hit the ground it had already rolled approximately 60 degrees and continued to roll completely over. Figure B-40 contains photos of the damage done to the culvert installation and the test vehicle.

Figures B-41, B-42, and B-43 contain plots of the longitudinal, transverse, and vertical accelerations versus time. Figure B-44 contains a plot of the roll angle versus time.

Figure B-38. Test Vehicle and Installation Before Test 7-1.

Figure B-39. Sequential Photos, Test 7-1.

Figure B-40. Test Vehicle and Installation After Test 7-1.

Figure B-41. Vehicle Longitudinal Acceleration, Test 7-1.

Figure B-42. Vehicle Transverse Acceleration, Test 7-1.

Figure B-43. Vehicle Vertical Acceleration, Test 7-1.

Figure B-44. Vehicle Roll, Test 7-1.

B-4-2. Test No. 7-2

For this test a single crossmember grate was installed as shown in Figure 9. Figures B-45 and B-46 contain sequential photos of the impact. The vehicle began to roll when the rear wheel impacted the top of the culvert. The vehicle subsequently rolled over. Figure B-47 contains photos of the damage to the vehicle as well as the culvert.

Plots of the longitudinal, transverse, and vertical accelerations versus time are contained in Figures B-48, B-49, and B-50. Figure B-51 contains a plot of the roll angle versus time.

0.036

Figure B-46. Sequential Photos, Test 7-2.

Figure B-47. Test Vehicle and Installation After Test 7-2.

Figure B-48. Vehicle Longitudinal Acceleration, Test 7-2.

Figure B-49. Vehicle Transverse Acceleration, Test 7-2.

Figure B-50. Vehicle Vertical Acceleration, Test 7-2.

B-4-3. Test No. 7-4

Figure 10 contains photos of the vehicle and installation used in test 7-4. Four 2 lb/ft (2.98 kg/m) billet steel delineator posts were used for crossmembers. Figures B-52 and B-53 contain sequential photographs taken during impact. Due to the low impact speed of 20 mph (32.2 km/h) there was no damage to the car and little damage to the test installation. Figure B-54 shows the test vehicle and the installation after the test.

Figures B-55, B-56, and B-57 show plots of the longitudinal, transverse, and vertical accelerations versus time. Figure B-58 contains a plot of the roll angle versus time.

Figure B-52. Sequential Photos, Test 7-4.

0.086

0.200

J.

0.905

Figure B-53. Sequential Photos, Test 7-4.

Figure B-54. Test Vehicle and Installation After Test 7-4.

TIME (SECONDS)

TIME (SECONDS)

Figure B-58. Vehicle Roll, Test 7-4.

B-4-4. Test No. 7-5

Figure B-59 contains photos of the vehicle and installation before test 7-5. The same test installation and vehicle were used for test 7-5 as were used for test 7-4. Sequential photos taken during impact are shown in Figures B-60 and B-61. Two of the four crossmembers failed during this test, causing the vehicle to begin to roll when the rear tire impacted the final crossmember. The car eventually rolled completely over. Both the test vehicle and the test installation sustained significant damage as shown in Figure B-62.

Figures B-63, B-64, and B-65 contain plots of the longitudinal, transverse, and vertical accelerations versus time. Figure B-66 contains a plot of the roll angle versus time.

Figure B-60. Sequential Photos, Test 7-5.

Figure B-62. Test Vehicle and Installation After Test 7-5.

Figure B-63. Vehicle Longitudinal Acceleration, Test 7-5.

Figure B-64. Vehicle Transverse Acceleration, Test 7-5.

Figure B-65. Vehicle Vertical Acceleration, Test 7-5.

Figure B-66. Vehicle Roll, Test 7-5.

• B-4-5. Test No. 7-6

In this test the culvert grating consisted of four 2.5 in. (6.35 cm) I.D. schedule 40 steel pipe spaced 24 in. (61 cm) apart. Figure 10 contains photos of the test vehicle and test installation before impact. Further details of this treatment are given in Figure 5. Figures 11 and B-67 contain sequential photos taken during the event. The car traversed the culvert and landed without rollover. It did, however, attain a roll angle of 40 degrees while the vehicle was airborne. Figure B-68 shows the damage done to the test vehicle as well as the test installation.

Figures B-69, B-70, and B-71 contain plots of the longitudinal, transverse, and vertical accelerations versus time. Figure B-72 shows a plot of the roll angle versus time.

The second s

Figure B-69. Vehicle Longitudinal Acceleration, Test 7-6.

Figure B-70. Vehicle Transverse Acceleration, Test 7-6.

Figure B-71. Vehicle Vertical Acceleration, Test 7-6.

Figure B-72. Vehicle Roll, Test 7-6.

B-5. Prototype Tests

This section describes two tests conducted to verify results of the slope tests and the grating tests. Table B-3 summarizes the results of these tests. A discussion of these results and the conclusions drawn there-from can be found in Section IV-3.

The test installation for these tests consisted of a driveway constructed across a drainage ditch. The ditch and driveway slopes were near 6 to 1. The culvert and grating tested in test 7-6 were installed in the driveway. Details of th ditch-driveway geometry are given in Figure 12. The encroachment angle was 15 degrees, measured from the centerline of the ditch. The impact point is shown in Figure 12.

TEST NO.	TEST SPEED (mph)	DITCH SLOPE	DRIVEWAY SLOPE	CROSSMEMBER SPACING (in.)	VEHICL CLASSI TAD	E DAMAGE FICATION SAE	PEAK 50 MS AVG. ACCELERATION (g's)	DID VEHICLE ROLL OVER?
9-1	40	7:1	6.5:1	24	FD-1	12VDXW1	8.0	No
9-2	50	7:1	6.5:1	24	FD-3	12VDSW2	7.4	No

TABLE B-3. SUMMARY OF PROTOTYPE TESTS

Metric Conversions:

1 mph = 1.609 km/h 1 in. = 2.54 cm

,

B-5-1. Test No. 9-1

Figure B-73 contains photos of the test vehicle and installation before impact. Figures B-74, B-75, and B-76 contain sequential photos during the event. The test vehicle was airborne for only a short distance and landed without rolling over. Neither the car nor the test installation sustained major damage as shown in Figure B-77. Both were reused for test 9-2.

Figures B-78, B-79, and B-80 contain plots of longitudinal, transverse, and vertical accelerations versus time. Figure B-81 contains a plot of the roll angle versus time.

Figure B-73. Test Vehicle and Installation Before Test 9-1.

Figure B-74. Sequential Photos, Test 9-1; Pan Shot.

Figure B-76. Sequential Photos, Test 9-1; Side View.

0.241

0.333

0.395

0.518

Figure B-78. Vehicle Longitudinal Acceleration, Test 9-1.

Figure B-79. Vehicle Transverse Acceleration, Test 9-1.

Figure B-80. Vehicle Vertical Acceleration, Test 9-1.

Figure B-81. Vehicle Roll, Test 9-1.

B-5-2. Test No. 9-2

Figure B-82 shows the test vehicle and installation before impact. Sequential photos of the impact are contained in Figures 14, B-83, and B-84. The vehicle traversed the driveway without rolling over. Damage to the vehicle and to the test installation was slightly more than in test 9-2 but, as shown in Figure 15, the test installation required no maintenance and the vehicle was repairable.

Figures B-85, B-86, and B-87 contain plots of the longitudinal, transverse, and vertical accelerations versus time. Figure B-88 contains a plot of the roll angle as a function of time.

Figure B-83. Sequential Photos, Test 9-2; End View.

0.185

0.296

Figure B-84. Sequential Photos, Test 9-2; Side View.

0.000

0.065

Figure B-85. Vehicle Longitudinal Acceleration, Test 9-2.

Figure B-86. Vehicle Transverse Acceleration, Test 9-2.

Figure B-87. Vehicle Vertical Acceleration, Test 9-2.

Figure B-88. Vehicle Roll, Test 9-2.
REFERENCES

- "Improving Safety of Drainage Facilities", Administrative Circular No. 8-79, Texas State Department of Highways and Public Transportation, January 1979.
- Ross, Hayes E. Jr., and Post, Edward R., "Criteria for the Design of Safe Sloping Culvert Grates", Research Report No. 140-3, Texas Transportation Institute, Texas A&M University, August 1971.
- 3. James, Mike E., Jr., and Ross, Hayes E. Jr., "HVOSM User's Manual", Research Report No. 140-9, Texas Transportation Institute, Texas A&M University, August 1974.
- "Recommended Procedures for Vehicle Crash Testing of Highway Appurtenances", Transportation Research Circular No. 191, Transportation Research Board, February 1978.
- DeLeys, N. J., and Segal, D. J., "Vehicle Redirection Effectiveness of Median Berms and Curbs", Report No. HF-5095-V-2, Calspan Corporation, May 1973.
- 6. DeLeys, N. J., "Safety Aspects of Roadside Cross Section Design", Report No. FHWA-RD-75-41, Calspan Corporation, February 1975.
- 7. "1977 AASHTO Guide for Selecting, Locating and Designing Traffic Barriers", American Association of State Highway and Transportation Offficials.
- 8. Kohutek, T. L. and Ross, H. E. Jr., "Safety Treatment of Roadside Culverts on Low Volume Roads", Research Report 225-1, Study 2-8-77-225, Texas Transportation Institute, March 1978.
- 9. "A Supplement to A Guide for Selecting, Designing and Locating Traffic Barriers", Texas Transportation Institute, March 1980, pp. 24.