technical report standard title page

Form DOT F 1700.7 (8-69)
Research Report
on
TRAPS II USER'S GUIDE: ANALYTICAL AND EXPERIMENTAL ASSESSMENT OF HIGHWAY IMPACT ON AIR QUALITY
by
J. A. Bullin
J. C. Polasek
Submitted to
File D-8 P
State Department of Highways and Public Transportation
Research Report 218-2
Research Study No. 2-8-75-218
Sponsored by
State Department of Highways and Public Transportation in cooperation with the
U. S. Department of Transportation Federal Highway Administration
CHEMICAL ENGINEERING DEPARTMENT
and
TEXAS TRANSPORTATION INSTITUTE College Station, Texas 77843

March 21, 1978

Implementation

A study of the dispersion of pollutants from roadways is under way. Early results in the model development portion of the project indicate that existing models should be used with caution. The TRAPS pollution dispersion model was developed from the data of previous experimental programs outside Texas. An improved version of that model, called TRAPS II, is presented here along with a computer program to implement it. The new version is approximately twice as fast as its predecessor and is at least 10 times faster than any model prior to the original TRAPS model.

Disclaimer

This work was sponsored by the Texas State Department of Highways and Public Transportation in cooperation with the United States Department of Transportation, Federal Highway Administration. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Please be advised that no warranty is made by the Texas State Department of Highways and Public Transportation, the Federal Highway Administration, or the Texas Transportation Institute as to the accuracy, completeness, reliability, usability, or suitability of the computer program and its associated data documentation. No responsibility is assumed by the above parties for incorrect results or damages resulting from the use of the program.

Summary

Data from essentially all previous experimental programs were used to develop and verify an improved roadway dispersion model. The development of the TRAPS series of models is given here, along with a computer program employing the latest, or TRAPS II, version. The program is written as a subroutine in order to allow maximum compatability with a large variety of computers. A listing of the subroutine and of a sample main program designed to use it are included. The subroutine itself performs no input/output functions, rather $\mathrm{all} \mathrm{I} / \mathrm{O}$ is handled by the main program. All required input values are 1 isted along with an explanation of each term. The output terms are likewise listed and explained. In addition, the error and warning codes returned by the program as a result of invalid input parameters are discussed.

Table of Contents

Section Page
Introduction 1
Theory of Operation 2
User's Guide 6
Compiler Support 11
Computer Listing of Subroutine Traps II 12
Computer Listing of Sample Main Program 19
Computer Listing of Sample Main Program for Interactive Minicomputer System 27
Bibliography 32

Introduction

The TRAPS series of highway dispersion models are used to predict the carbon monoxide concentration downwind of "at grade" roadways given the site's meteorology, geometry, and traffic conditions. The associated computer programs were verified using experimental data from Virginia (Carpenter, et al., 1975), North Carolina (No11, et a1., 1973), Tennessee (No11, et a1., 1975), and California (Ranzieri, 1975). Data collected in Texas for this project were not used in verifying either the original TRAPS model or the improved TRAPS II model presented here. The original model was improved by substituting a polynomial equation for an iterative step in the program. In addition, the virtual origin is now calculated by direct iteration rather the secant method used in the original TRAPS model. This greatly reduces the required computational time. The model is presented in subroutine form to increase its utility on the many different computer systems. A sample main program calling the subroutine is also included for convenience.

The subprogram is designed to have maximum compatibility with all Fortran compilers. It does no input/output operations. It calls only three very common library functions and no external user functions. All IF statements are arithmetic. All integers fit within 16 bits. The subprogram is protected against division by zero and exponent underflow. The verification was carried out on the WATFIV compiler of an AMDAHL $470 / V 6$ and cross checked for compatibility on a FORTRAN IV compiler of a META-4 and a Stand Alone NOVA 1200 for several cases. The subprogram is also flexible. It accepts values in either common English system units or in metric units or in a combination of both systems. It returns the most important intermediate values in English units and the carbon monoxide levels in parts per million by volume. It can calculate the concentrations for up to 100 downwind receptors.

Theory of Operation

The TRAPS series of models are somewhat unusual from a user point of view because they use a different version of the diffusion equation to calculate the dispersion downwind of a roadway as opposed to such models as Caline 2, Hiway, and Airpol 4. These other models all employ a Fickian solution to the anisotropic diffusion equation, imposing two highly restrictive boundary conditions on the system. First, the solution is based on a completely smooth site. Obstacles on the terrain must be ignored. Second, the wind shear due to velocity changes with altitude is assumed nonexistant.

The development of the TRAPS models is reported by Maldonado in his master's thesis (1976), and in papers by Maldonado and Bullin (1977), and Polasek and Bullin (1976). This series avoids these two major restrictions by using the non-Fickian solution to the diffusion equation proposed by Sutton (Pasquill, 1974).

$$
\begin{equation*}
\psi_{(X, Z)}=\frac{Q r}{u_{1} \Gamma(s)}\left[\frac{u_{1}}{r^{2} K_{1} X}\right]^{s} \exp \left[\frac{u_{1} z^{r}}{r^{2} K_{1} X}\right] \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
X & =\text { distance downind of source } \\
Z & =\text { vertical distance above source } \\
\psi(X, Z) & =\text { CO concentration at } X, Z \\
Q & =\text { source strength } \\
u_{1} & =\text { windspeed at } 1 \text { meter } \\
\mathrm{K}_{1} & =\text { diffusion constant } \\
r & =\alpha-\beta+2 \quad r>0 \\
s & =(\alpha+1) / r \\
\Gamma(s) & =\text { Gamma function of } s \\
\alpha & =\text { constant from the power } 1 \text { aw wind equation } 0<\alpha<1 \\
\beta & =\text { stability constant } 0.5<\beta<1.5
\end{aligned}
$$

Sensitivity analyses run on early versions of TRAPS prototypes showed that changes in the stability constant β had very little effect on the answers generated. This constant was then "fixed" at 1.0 to increase computational speed. This forces s and $\Gamma(s)$ to 1.0 as well, making the form used in the TRAPS models

$$
\begin{equation*}
\psi_{(X, Z)}=\frac{Q}{r_{1} X} \exp \left[\frac{u_{1} z^{r}}{r^{2} K_{1} X}\right] \tag{2}
\end{equation*}
$$

$$
\text { with } r=\alpha+1
$$

In order to use this equation, three meteorological parameters, u_{1}, K_{1}, α, must be calculated.

Calculation of $\mathrm{u}_{1}, \mathrm{~K}_{1}$, and α
It has been well documented that windspeed is not constant with height, (Project Prairie Grass, 1958). The shape of the windspeed profile with height is mainly dependent on the surface roughness. One of the best equations for predicting this profile is the log law equation:

$$
\begin{align*}
u_{Z} & =\frac{u_{*}}{K} \ln \left(\frac{Z}{Z_{o}}\right) \tag{3}\\
u_{Z} & =\text { windspeed at height } Z>Z_{o} \\
u_{*} & =\text { friction velocity } \\
K & =\text { von Karmon's Constant } \\
Z_{o} & =\text { roughness height (} 0.15 \text { times average obstacle height) }
\end{align*}
$$

Given a wind velocity at a particular height, and an estimate of Z_{o}, this equation can generate the value of u_{1} and u_{*}.

However, the nonFickian solution to the diffusion equation assumes that the wind follows a power law equation:

$$
\begin{align*}
& u_{z}=u_{1}\left(\frac{z}{z_{1}}\right)^{\alpha}=u_{1} z^{\alpha} \tag{4}\\
& \text { for } z_{1}=1.0
\end{align*}
$$

Accordingly, an α must be estimated which gives a profile closely matching that of the power law equation. This is best done by minimizing the squared error over a representative interval. In the case of the TRAPS models, the interval of 1 to 10 meters was chosen as the best interval to fit. Since both functions are continuous in this range, the squared error can be integrated over this interval. The " α of best fit" can then be calculated iteratively. However, the original TRAPS model was modified by eliminating this iterative step through the use of a fitted polynomial equation. Examination of Equations (3) and (4) reveals that α is solely a function of z_{0}. The α 's were then calculated for 150 different values of z_{o} and the results fitted to a fourth degree polynomial. This procedure reduces required computational time by approximately 50%.

Last, K_{1} is estimated from an equation given by Calder (1949) to be:

$$
\begin{equation*}
\mathrm{K}_{1}=0.4 \mathrm{u}_{*} \tag{5}
\end{equation*}
$$

Since the total source Q of a highway is not concentrated in a single thin line, but rather is diffused from a large area, the effect is the same as that of a line source at some distance upwind of the roadway. In order to match equation (2) to the real world, this distance must be estimated. The method used consists of independently calculating the concentration at the downwind edge of the roadway and then calculating the point in the plume that matches the concentration.

An empirical equation was used to calculate the roadedge concentration at a five foot height. This equation was obtained by dimensional analysis followed by a statistical analysis. It agrees with the form presented by Pasquill (1974). The final equation is

$$
\begin{aligned}
\mathrm{X}= & 3.44 \mathrm{Q} /\left(\mathrm{u}_{10} \mathrm{~W}\right) \\
\mathrm{X}= & C 0 \text { concentration at a } 5 \mathrm{ft} . \text { height and on the downwind } \\
& \text { edge of roadway } \\
\mathrm{u}_{10}= & 10 \text { meter windspeed } \\
\mathrm{W}= & \text { width of roadway (including median) }
\end{aligned}
$$

This equation provided a better "fit" to the data from North Carolina (No11, et al., 1975) than equations incorporating a wind direction parameter.

The result was then matched to the Gaussian plume by direct iteration. Maldonado (1976) originally used the secant method to determine the virtual origin distance. The convergence equation used is

$$
\begin{equation*}
x_{n+1}=\frac{Q}{r K} \exp \left[\frac{u_{1} z^{r}}{r^{2} K_{1} X_{n}}\right] \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& x_{n+1}=x \text { of the }(n+1)^{\text {th }} \text { trial } \\
& x_{n}=x \text { of the } n^{\text {th }} \text { trial }
\end{aligned}
$$

X_{1} is set at three times the highway width. Convergence to plus or minus one meter usually occurs on the third or fourth trial.

Once this point is known, any downwind concentration can be calculated directly by equation (2).

Users Guide

The subroutine TRAPS II is entered from another program via a standard Fortran CALL Statement. The argument list contains 6 floating point arguments, 3 integer arguments, 2 floating point vector arguments, and a floating point matrix argument. The matrix and one integer are used as outputs by the subprogram. All other arguments are used as inputs and are returned unaltered. The seven most important intermediate variables are calculated in a labeled common to make them available to the calling program if desired.

The program was set up to take English units as its default system, with metric units as an alternate system to save the user from conversion problems. The values returned by the subprogram are either English or systemless. In order to specify a value in its primary units, the user need only input it positive. In order to input a value in metric units, the user needs to input it as a negative value. The subprogram will change its sign and convert it to the appropriate units.

The argument list is given in the subprogram source listings. It is reproduced here with additional information on each argument, its limits and its meaning.

1. XHWID - The width of the highway excluding shoulders. Center medians up to 20 ft . wide may be included. Wider medians should be treated as two independent roadways and the results summed. Inputting a value of zero for this parameter results in immediate return to the calling program with an error message. Inputting a value of less than 20 ft . (the width of a two-lane roadway) results in a warning message, although execution continues. The primary units for this variable are feet and the alternate units are meters.
2. XREFH - The height of windspeed measurements. If actual windspeed data is available, this makes it unnecessary to manually calculate the 33-foot
windspeed. The subprogram can estimate it from the given data. Its primary units are feet and alternate units are meters.
3. XRUFH - The roughness height Z_{o}. This determines the shape of the wind profile. It is defined as 0.15 times the height of the average obstacle on the terrain. The correlations in the program which use this parameter are valid from 4 inches to 3 ft . It must also be less than XREFH for the wind velocity profile calculations to be valid. Failure to observe these limits results in an immediate return to the calling program with an error message. The primary units are feet and alternate units are meters.
4. XUBAR - The windspeed at XREFH. This parameter must be set such that the extrapolated windspeed at 33 ft . exceeds 1.2 miles per hour. The primary units are miles per hour and the alternate units are meters per second.
5. VPH - Vehicles per hour. The number of vehicles per hour which pass the site can be extrapolated from shorter time periods or taken from loop counters. No vehicles means no pollution and negative vehicles mean negative pollution levels. No alternate units are assumed.
6. EFACT - Average vehicle emission factor. The only units for this variable are grams of $C O$ per vehicle per mile traveled. No alternate units are available. Negative emission factors mean negative pollution levels.
7. NX - Number of downwind distances where carbon monoxide levels are desired. The number must be greater than zero and less than 11 . There are no units. Specification of $N X$ and $N Z$ (below) will result in the calculation of a concentration matrix containing $N X$ times $N Z$ concentration values.
8. NZ - Number of heights where carbon monoxide levels are desired. The number must be greater than zero and less than 11 . There are no units.
9. X - A real vector of length $N X$, containing the values of the downwind distances where the concentrations are to be calculated. Units can be mixed within the vector. Primary units are feet and alternate units are meters.
10. Z - A real vector of length $N Z$, containing the values of the heights where carbon monoxide concentrations are desired. A value of 0 causes an immediate return to the calling program with an error code. A value of less than 3 ft . causes a warning code to be returned, although execution continues. Units can be mixed within the vector. Primary units are feet and the alternate units are meters.
11. PPM - A real matrix of size NX by NZ containing the predicted carbon monoxide concentrations at the desired distances and heights. If a warning flag has been set in the error checking section, the sign is reversed on all values in this matrix, insuring that the user will be aware of the warning. If an error condition has been detected, the subprogram sets all values to -1000000. before returning to the caller. The first subscript gives the X coordinate, and the second gives the Z coordinate. (For example, PPM (1,2) is the concentration at $X(1), Z(2)$.$) The returned units are volume parts$ per million.
12. JBORT - The warning and error flag. The sign of this number tells whether the subprogram executed normally, executed with a warning, or returned on encountering an error. Its magnitude tells where the last warning or error was found. If a warning caused a later error, only the error code will be returned. The returned codes are:
$0 \rightarrow$ normal return
$-1 \rightarrow$ a value in the Z vector is less than 3 ft . The model has not been verified here.
$-2 \rightarrow$ XHWID is less than 29 ft . The model has not been verified here.
$1 \rightarrow$ A value in the Z vector is 0 . This would cause an exponent underflow if execution continued. Subprogram terminates immediately.
$2 \rightarrow$ XHWID is 0 . This would cause a division by 0 if execution continued. Subprogram terminates immediately.
$3 \rightarrow$ XRUFH out of range. Results would be worthless if execution continued. Subprogram terminates immediately.
$4 \rightarrow$ XREFH is less than XRUFH. The wind profile calculation cannot be carried out. Subprogram terminates immediately.
$5 \rightarrow$ Windspeed at 33 ft . is less than 1.2 mile per hour. The model is known to be wrong in this range. Subprogram terminates immediately.
$6 \rightarrow$ Convergence failure in virtual origin section. The Gaussian plume cannot be matched with the roadedge concentration. Usually this is caused by a combination of narrow roadway, low windspeed, and short roughness height.

It will be noted that all errors are positive and all warnings are negative. Thus a simple arithmetic IF in the calling program is sufficient to separate the three conditions.

For users who want or need the intermediate values generated in the subprogram seven important intermediates are calculated in a labeled common block named SCRTH. The calling program can have access to these variables simply by defining a labeled common with seven floating point values and the name SCRTH.

The variables in the common are:

1. USTAR - The roughness wind velocity in miles per hour.
2. VEL(1)- The wind velocity at 3 ft . in miles per hour.
3. VEL(2)- The wind velocity at 33 ft . in miles per hour.
4. DIFFY - Vertical eddy diffusivity in square meters per second.
5. ALPHA - Power law wind equation exponent. This is dimensionless.
6. CO - Predicted roadedge carbon monoxide concentration at the 5 foot height in volume parts per million.
7. XPRIM - Virtual origin distance of the Gaussian plume in feet. All distances in the program are measured relative to the downwind edge of the roadway. XHWID and XPRIM are measured as positive in the upwind direction. X is measured as positive in the downwind direction. All vertical distances are measured as positive up relative to ground level. The subprogram is valid on1y for "at grade" roadways.

Compiler Support

The subprogram uses several features which are not supported by all Fortran compilers. Small compilers and old compilers may lack one or more of the following features. A user should carefully note them, particularly if the subprogram is to be used on a minicomputer, microcomputer, or an old large machine system. Correcting any one or two of these problems would not be difficult, but correcting then all would sacrifice too much performance and flexibility to make the program useful in any system.

The required support features are:

1. Six character subprogram names.
2. Up to 12 arguments in the subprogram list.
3. Labeled Common Blocks.
4. Execution time dimensioning of subroutine argument arrays and lists.
5. Ability to call library functions from a subprogram.
6. Library functions:

ABS (X) floating point absolute value function.
IABS(I) integer absolute value function.
ALOG(X) natural logarithms function.
Most compilers support all these features. If yours does not, any one can be changed easily with the addition of a few cards and a corresponding drop in program flexibility.

Computer Listing
of
Subroutine Traps II

	SUBROUTINE TRAPS2 (XHUID,XREFH,XRUFH, XUBAR,UPH,EFACT,NX,NZ, X, Z, PPM >, JBORT)	MTRAPS 1 TRAPS2
C		TRAPS3
C		TRAPS4
C		TRAPS5
C		TRAPS6
c.		TRAPS7
C	INTRODUCTION.	TRAPS8
c.		TRAPS9
c	TRAPS2 IS A SUBROUTINE VERSION OF THE TRAPS ROADUAY AIR POLLUTION	TRAPS10
${ }^{\text {c }}$	PRDGRAM developed at texas a in university's chenical engineering	TRAPS11
C	DEPARTMENT BY CESAR MALDONADO AND DR. J. A. BULLIN IN 1975. THE	TRAPS 12
C	ORIGINAL TRAPS MODEL RELIED HEAUILY ON WORK done by 0. G, SUTTON,	TRAPS 13
C	D. B. TURNER, AND F. PASQUILL. SOME MODIFICATIONS TO THE MODEL	TRAPS 14
c	BY JOhn POLASEK AND DR. J. A. BULLIN RESULTED IN A FASTER,	$\text { TRAPS } 15$
c	shaller version named traps il, which was used as the basis of	TRAPS16
c	THIS SUBRDUTINE.	TRAPS17
C		TRAPS18
C		TRAPS19
c	all developmental york for this subroutine was carried out	TRAPS20
c	ON AN AMDAHL 470 V/6 COMPUTER, AND CROSS CHECKED ON A META-4	TRAPS21
C	computer to test multi máchine compatibility.	TRAPS22
c.		. TRAPS23
c		TRAPS24
C		TRAPS25
C		TRAPS26
C.		TRAPS27

	相.......	TRAPS70
C	DIAENSTION UARIABLES FOR SUBRDUTINE.	TRAPS71
C... TRAPS72
	DIMENSION X(NX), Z(NZ), PPM(NX,NZ), XDIST(10), ZDIST (10)	TRAPS73
	COHMON /SCRTH/ USTAR, UEL (2), DIFFY,ALPHA,CO,XPRIM	TRAPS74
	HITE $=1.524$	TRAPS75
	USTAR $=0.0$	TRAPS 76
	VEL (1) $=0.0$	TRAPS77
	$\operatorname{VEL}(2)=0.0$	TRAPS78
	DIFFY $=0.0$	TRAFS79
	$A L P H A=0.0$	TRAPS80
	$C 0=0.0$	TRAPS81
	XPRIM $=0.0$	TRAPS82
		. TRAPS83
C		TRAPS84
C		TRAPS85
C		TRAPS86
c		TRAPS87
	TRAPS88
${ }^{\text {c }}$	CONUERT INPUT PARAMETERS AS NECESSARY TO get to het	TRAPS89
c.	TRAPS90
	JBORT $=2$	TRAPS91
	HWID $=-$ XHHID	TRAPS92
	IF (HWID) $10,240,20$	TRAPS93
10	HUID $=$ XHUID*0.3048	TRAPS94
20	HHID $=$ HWID+6.096	TRAPS95
	REFHT $=-X$ REFH	TRAPS96
	IF (REFHT) $30,40,40$	TRAFS97
30	REFHT $=X$ REFH $* 0.3048$	TRAPS98
40	RUFHT $=-$ XRUFH	TRAPS99
	IF (RUFHT) $50,60,60$	TRAPS 100
50	RUFHT $=$ XRUFH*O. 3048	TRAPS101
60	UBAR $=-X U B A R$	TRAPS102
	IF (UBAR) $70,80,80$	TRAPS103
70	UBAR $=$ XUBAR $* 0.44704$	TRAPS 104
80	CONTINUE	TRAPS 105
	$00 \quad 100 \quad I=1, N X$	TRAPS106
	$\operatorname{XDIST}(I)=-X(I)$	TRAPS 107
	IF (XDIST(I)) $90,100,100$	TRAPS 108
90	XDIST(I) $=\mathrm{X}(\mathrm{I}) * .3048$	TRAPS 109
100	CONTINUE	TRAPS 110
	JBORT=1	TRAPS111
	D0 $140 \mathrm{I}=1, \mathrm{NZ}$	TRAPS112
	ZDIST(I) $=-\mathrm{Z}(\mathrm{I}$)	TRAPS 113

IF (ZDIST(I)) $110,240,120$ TRAPS114
110 ZDIST(I) $=2(1) * 0.3048$ TRAPS115
120 CONTINUE TRAPS 116
If (2DIST(1)-1.) $130,130,140$ TRAFS117
130 JBORT=-1 TRAPS118
140 CONTINUE TRAPS119
C TRAPS120
c TRAPS121
C TRAPS 122
C TRAPS 123
C TRAPS 124
C TRAPS 125
C CHECK INPUT PARAMETERS FOR VALIDITY. TRAPS 126
C TRAPS127
IF (HWID-15.) $150,160,160$ TRAPS 128
150 JBORT=-2 TRAPS129
160 CONTINUE TRAPS130
IF (RUFHT-0.1) $180,170,170$ TRAPS131
170 CONTINUE TRAPS132
IF (RUFHT-0.8) $190,180,180$ TRAPS133
180 JBORT=3 TRAPS 134
190 continue TRAPS135
IF (REFHT-RUFHT) 200,200,210 TRAPS136
200 JBORT=4 TRAFS137
210 CONTINUE TRAPS138
IF (JBORT - 1) 220,220,240 TRAPS 139
c. TRAPS 140
C TRAPS141
C TRAPS142
C TRAPS143
TRAPS144
C TRAPS145
C GENERATE METEROLOGICAL PARAMETERS. TRAPS146
c. TRAPS147
220 CONTINUE TRAPS148
USTAR $=$ UBAR*O.4/ALOG(REFHT/RUFHT) TRAPS149
DIFFY=0.4*USTAR TRAPS150
VEL(1) $=(U S T A R / 0.4) * A L O G(1.0 / R U F H T)$ TRAPS151
$\operatorname{UEL}(2)=(U S T A R / 0.4) * A L O G(10.0 / R U F H T)$ TRAPS152
IF (VEL(2)-0.536) $230,260,260$ TRAPS 153
c. TRAPS154
C TRAPS155
C TRAPS156
C TRAPS 157
TRAPS158

C	FATAL ERROR HANDLER.	TRAPS160
$\begin{aligned} & 230 \\ & 240 \end{aligned}$	JBORT $=5$	TRAPS162
	CONTINUE	TRAFS163
	JBORT = IABS (JBORT)	TRAPS164
	DO $250 \mathrm{I}=1, N X$	TRAPS 165
	D0 $250 \mathrm{~J}=1, \mathrm{NZ}$	TRAPS166
	PPM $(1, J)=-1000000$.	TRAPS167
250	CONTINUE	TRAPS168 TRAPS169
	60 T0 380	
TRAP 5170		
C		TRAPS171
C		TRAPS172
C		TRAPS173
C		TRAPS174
C.		- TRAPS 175
C	CALCULATE THE ROADEDGE CONCENTRATION.	TRAPS 176
C.		. TRAFS177
260	CONTINUE	TRAPS178
	$C O=(2.3753 E-06 * U P H * E F A C T) /($ UEL (2) *HWID)	TRAPS179
	TRAPS180	
C		TRAPS181
C		TRAPS182
C		TRAPS183
C		TRAPS184
		.TRAPS185
C	CALCULATE THE VIRTUAL ORIGIN DISTANCE.	TRAPS186
	ALPHA $=((3.426858 *$ RUFHT -3.828798$)$:RUFHT +2.03853$)$ *RUFHT +11283	TRAPS188
	$\mathrm{R}=\mathrm{ALPHA}+1.0$	TRAPS189
	VAR1 $=$ UPH*EFACT*1.73E-07*R/VEL (1)	TRAPS190
	VAR2=VEL $(1) /(R * R * D I F F Y)$	TRAFS191
	XPRIM $=3.5 *$ HUID	TRAPS192
270	CONTINUE	TRAPS193
	EXPRG=HITE**R*VAR2/XPRIK	TRAPS194
	IF (EXPRG - 50.) 280,280,290	TRAPS195
280	XPRHN=VAR1*UAR2/(CO*2.7183:**EXPRG)	TRAPS196
	$\text { XPRHD }=A B S \text { (XPRIK-XPRMN) }$	TRAPS197
	$X P R I H=X P R K N$	TRAPS 198
	IF (0.5-XPRND) 270,270,300	TRAPS 199 TRAPS200
290	JBORT $=6$	
	6010240	TRAFS201
C TRAPS203		
C		TRAPS204
c		TRAPS205
C		TRAPS206

TRAPS207
C CALCULATE THE CONCENTRATIONS AT THE DOUNWIND RECEPTORS. TRAPS208
C. TRAPS209
300 CONTINUE TRAPS210
JBORT = JBORT -1 TRAPS211
DO $360 \mathrm{IZ}=1$, NX TRAPS212
XDIST(IZ) x XDIST(IZ) + XPRIM - 3.048 TRAPS213
IF (XDIST(IZ) - XPRIN) $310,310,320$ TRAPS214
310 XDIST(IZ)=XPRIH TRAPS215
320 CONTINUE TRAPS216
10 360 IP =1,NZ TRAPS217
EXPRG=2DIST(IP)**R*VAR2/XOIST(IZ) TRAPS218
IF (EXPRG - 150.) 330,330,350 TRAPS219
$330 \mathrm{PPN}(12, I P)=V A R 1 * V A R 2 * 875 . /(X D I S T(I Z) * 2.7183 *: * E X P R G)$ TRAPS220
IF (JBORT) $340,360,240$ TRAPS221
$340 \mathrm{PPH}(I Z, I P)=-P P H(1 Z, I P)$ TRAPS222
6010360 TRAPS223
$350 \mathrm{PPH}(I Z, I P)=0.0$ TRAPS224
360 CONTINUE TRAPS225
C. TRAPS226
C TRAPS227
C TRAPS228
C TRAPS229
C TRAPS230
C TRAPS231
C CONUERT SCRATCH Parameters to ENGLISH UNITS. TRAPS233
C TRAPS234
IF (JBORT) 370,380,380 TRAPS235
370 JBORT=JBORT+1 TRAPS236
380 COMTINUE TRAPS237
USTAR $=$ USTAR $/ 0.44704$ TRAFS238
VEL (1) $=$ VEL (1)/0.44704 TRAPS239
$\operatorname{VEL}(2)=\operatorname{VEL}(2) / 0.44704$ TRAPS240
$C O=C 0 * 875.0$ TRAPS241
XPRIM $=$ XPRIM/0.3048-10. TRAPS242
C. TRAPS2 43
C TRAPS244
c TRAPS245
C TRAPS246
[..... TRAPS247
C TRAPS248
C RETURN TO MAIN TRAPS250c.
RETURN RETURN TRAPS251
END TRAPS252

Computer Listing of Sample Main Program

This program is a simple example using the 'TRAPS II subroutine in a system with a card reader and line printer. The program accepts data in the following order:

Card \#	Format	Columns	Name
1.	Alphabetic	1-80	Site Identification
2.	Floating Point	1-5	Reference Height (ft. or -m)
2.	Floating Point	6-10	Obstacle Height (ft. or -m)
2.	Floating Point	11-15	Background CO (PPM)
2.	Floating Point	16-20	Highway Width (ft. or -m)
2.	Integer	21-25	Number of X^{\prime} s
2.	Integer	26-30	Number of Z's
3.	Floating Point	F 5.0	all X^{\prime} s followed by all Z 's (ft. or
4.	Alphabetic	1-80	Case Identifier
5.	Floating Point	1-5	Windspeed (mile/hr or -meter/sec)
5.	Floating Point	6-15	Vehicles per Hour
5.	Floating Point	16-20	Emission Factor (gm/veh-mi)
6.	Integer	1-2	Flag
If Flag is positive, the program solves the case and then expects cards			
through 6 to be repeated with different case information. If Flag is			
ero, the program solves the case and expects a new set of cards 1 through 6			
ith different site information. If Flag is negative, the program solves			
he case	stops. Each suc	cessive	ears on a separate page.

```
    DIMENSION X(10),Z(10),PPM(100), TITLE (20),CASE(20),MSG(10,6) NAIN1
    DATA PPM/100*O.0/,MSG/'BAD ','HEIG`, 'HT V','ALUE'`' DET`,'ECTE', HAIN2
A'D ',3*' ','HIGH',WAY','WIDT','H OU','T OF',' RAN','GE ' MAIN3
B,3*' ','ROUG','HNES','S HE','IGHT',' OUT',' OF'*, M
C'RANG', "E ',2*' ','ROUG`,'HNES','S HE','IGHT",'GRE'` MAINS
D,'ATER'," THA','N RE','FERE`,'NCE ',TTEN ",'METE','R WI', MAIN6
E'NDSP','EED','TOO','LON',3*'`','CONU','ERGA`,'NCE``',
F,'FAIL','URE ',IN V','IRTU','AL O*,'RGI',NN */ NAINB
    COMKON /SCRTH/ USTAR,UEL(2),DIFFY,AL_PHA,COR,XPRIME NAINO
    II=5 HAIN1O
    IO=6 NAIN11
I CONTINUE MAIN12
    READ (II,100) TITLE HAIN13
    READ (II,110) REFHT,OBST,BKGND,HWID,HX,NZ. MAIN14
    RUFHT=OBST*0.15 MAIN1S
    READ (II,120) (X(I),I=1,NX),(Z(J),J=1,NZ) KAIN16
2 CONTINUE
    READ (II,100) CASE
    MAIN17
    READ (II,130) UBAR,UPH,EFACT NAIN19
    URITE (10,210) TITLE, CASE MAIN2O
    NT=NX*NZ NAIN21
    CALL TRAFS2 (HUID,REFHT,RUFHT,UBAR,UPH,EFACT,NX,NZ,X,Z,PPH,IBORT) MAIN22
    IF (IBORT) 3,5,8 NAIN23
3 CONTINUE MAIN24
    IBORT=-IBORT HAIN25
    URITE (IO,200) (HSG(IX,IBORT),IX:=1,10) MAIN26
    DO }4\mathrm{ IX=1,NT NAIN27
    PPK(IX)=-PPH(IX) KAIN28
4 \text { CONTINUE MAIN29}
5 \text { CONTINUE M}
    COR=COR+BKGND HAIN31
    URITE (10,220)UBAR,REFHT,OBST,BKGND,HHID,UPH,EFACT,COR MAIN32
    URITE (IO,230)}\mathrm{ HAIN33
    DO 6 I=1,NT NAIN34
    PPK(I)=PPH(I)+BKGND MAIN35
```



```
    007 J=1,NZ HAIN37
    JD=NZ+1-J NAIN38
    JF=NT-NX+1 -
    WRITE (IO,240) Z(JD),(PPM(IX),IX=JP,NT) MAIN4O
    NT=NT-NX MAINA1
```

7 CONTINUE MAIN42
Units (10,250) ($X(I X), 1 X=1, N X)$ HAIN43
wite (10,260) MAIN44
60 T0 9 NAIM4S
8 continue MAIM46
URITE (10,270) (MSG(IX,1BORT),IX=1,10) MALN47

- CONTINUE MAIN48
READ (II,140) IX MAIN49
IF (IX) $10,1,2$ MAIMSO
10 CONTINUE MAINSI
URITE $(10,280)$ MAIME2
STOP MAIN53
100 FORKAT (20 A4) HAINS 4
110 FORHAT (4F5.0,215) MAINS5
120 FORMAT (20 F5.0) MAINS6
130 FORMAT (F5.0,F10.0,F5.0) HAIN57
140 FORHAT (I2) MAIN58
200 FORHAT (' ***WARNING*** ', 10A4) MAIN59
210 FORHAT ('1 SITE: , 20A4, /,' CASE: , 20A4, $1 /$,' IF THE DISPLAYE'MAIM6O
A, 'D VALUE IS NEGATIVE, IT IS IN MINUS THE PARENTHESISED UNITS.',/) MAINSI
220 FORHAT (" THIS CASE ASSUMES A UIND OF ',F5.1, HAIM62
A' MILES PER HOUR(HETERS PER SECOND) AT', /,' A HEIGHT OF MAIN63
B,F5.0,' FEET(METERS) OUER TERRAIN HITH OBSTACLES AVERAGING', MAIN64
CF5.1,1, FEET(HETERS) TALL. THE BACKGROUND IN THIS AREA IS MAIN6S
B,F4.1,' PPM. A ROADUAY ',F5.0,1,' FEET(METERS) HIDE WILL CARR' MAIN66
E,'Y ',F6.0,' VEHICLES PER HOUR, EMITTING 'F4.1,' GRAMS CO PER',/, MAIN67
F^{\prime} UEHICLE MILE TRAUELED. THE RESULTING ROADEDGE CO CONCENTRATION MAInG8
G,' IS ',F5.1,' PPM.') MAIN69
230 FDRKAT (/,4X,'HEIGHT-FEET(METER)', 8X, DOUNHIND CONCENTRATION--PPM')MAIM70
240 FORHAT (10X,F5.0,9X,'1',10F5.1) MAIN71
250 FORHAT $(1,25 \mathrm{X}, 10 \mathrm{~F} 5.0)$ MAIN72
260 FORMAT (30X,'DOUNHIND DISTANCE-FEET(METER)') MAIN73
270 PORMAT (' t*EERROR*** ',10A4) MIN74
200 Format ('1') MAIN75
EN HAIN76


```
    CASE: 利D MOWMTME
```



```
    HETGHT\cdotsFETGMETEFS DOWWWTMD COMCENTRATTOM
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 99. & 1 & 20 & 2.0 & 2.0 & 20 & 20 \\
\hline W1. & 1 & 2. 2 & 22 & 2.3 & 23 & 2.3 \\
\hline 33. & & 2.7 & 3 B & 2.7 & \%. & 2 \\
\hline 5. & & 4.4 & 4.1 & \(3 \%\) & 3.7 & 3 \\
\hline
\end{tabular}
    ## %% %%, 7%, %%,
```


[^0]


```
    HEMGTMFEETMETEF\
```



```
        DOWMWTMD DTETANCEMFEET(METEF\
```

 \&ATE ANTEWMOM

[^1]
Computer Listing of Sample Main Program for an Interactive Minicpmputer System

This program is an interactive version designed for a Nova 1200. When run, the program prompts the user on the system console (unit 10), informing the user what parameter is next expected. The values are fed directly into the subroutine and printed directly as they come from it. Thus the units are as given in the Users Guide Section.

DIMENSION X $(16), Z(10), \operatorname{PPM}(160)$, NAME(32)
COMMON /SCRTH/ USTAR, VEL (2), DIFFY, ALPHA, COR, XPRME
$10=10$
WRITE (IO) 'ENTER io DEVICES.'
$11=11$
READ (ii) il,io
CONTINUE
WRITE (IO) 'SITE ILENTIFIER: •
READ (ii, 160) NAME(1)
WRITE (IO) 'NO OFXS:
READ (II) I
WRITE (IO) AND THEY ARE: •
$\operatorname{READ}(11)$ (X(J),J=1,1)
URITE (IO) 'NO OFZS: •
READ (II) J
WRITE (IO) 'AND THEY ARE: •
READ (II) (Z (K), $K=1, J$)
WRITE (IO) REEFEENCE HEIGHT:
READ (II) REFHT
URITE (IO) 'ROUGHNESS HEIGHT:
READ (II) RUFHT
WRITE (IO) 'HI GMWAY WI DTK:
READ (II) HWID
CONTINUE
WRITE (IO) ENTER WINDSPEED, UEHICLES PER HOUP, ANU EMISSION DATA READ (II) UBAR, VFH, EFACT
CALL TRAPSE (HWI L, REFYT, RUFHT, USAR, UFH, EFACT, I, J, X, Z, PPM, IBORT)
WPITE (10,100) NAME (1)
1 F (IBORT) 3,4,7
3 CONTINUE
WRITE (I \varnothing) "**********WARNING: ', iEORT,' $* * * * * * * * * * * '$
CONTINUE
$\mathrm{NT}=\mathrm{I} * \mathrm{~J}$
IF (IO - NE 10) UPITE (IO, CQQ) PEFHT, RUFHT, HWIL, UBAP, UDH, EFACT
URITE (10,210) USTAP, COR, XPRME
DO 5 IL $=1, J$
$J D=J+1-1 L$
$J P=N T-i+1$
URITE (i0,220) Z(JL), (PPM(iX), IX=JP,NT)
$\mathrm{NT}=\mathrm{NT}-\mathrm{I}$

```
    5 CONTINUE
        VRITE (I0,238) (X(IX),IX=1,1)
        FRITE (I0,246)
        PEAD (11) 1K
        iF (IX) 1,2,8
        continue
        WRITE (10.250) IBORT
        READ (II) IX
        IF (IK) 1, 2,8
        CONTINUE
        STOP
        FORMAT (S64)
        FODMAT (' REFERENCE HEI GHT: ', F5.1,/, ' ROUGHESSHLIGGT: ',
        > F5.2,/,' HI GHVAY UIDTH: ',F6.6./,' WINLSPEEL: , F6. 2,%,
    > ' VEHICLES PER HOUR: ',FS.0,/,' EMISSION FACTOR: ', F3.G)
    210 FORMAT (. ROUGHNESS VELOCITY: ',F7.3.%,
    >' ROADEDGE CO CONCENTRATION: ',FS.1./,' VIPTUAL OPIGIN: ',
    >F7.0,1,/,1,9X,'Z',10X,'CO IN PPM')
    220 FOPMAT( 5X,F600,10F6.1)
    230 FORMAT (5K, 'KS--->',10F6.6)
    240 FORMAT (/,/,' ENTER -I FOR NEW SITE 0 FOR NEW RUN, I FOR END.')
    250 FORMAT <'**********ERROR', 12,'*****************',/,
        >' ENTER -1 FOR NEW SITE, Q FOP NEW RUN, 1 FOR END.')
        END
```

```
    ENTER IO DEUICES.
    11,10
    SITE I DENTIFIER:
    LOOP 610 AT LINK ROAD, HOUSTON TEXAS; MAY 6,1976.
NO OF XS:
5
    AND THEY ARE:
    15,36,73,79,165
NO OF ZS:
4
AND THEY ARE:
5,33,51,99
REFERENCE HEI GHT:
35
ROUGHNESS HEIGHT:
2
HIGHWAY WIDTM:
160
ENTER WINDSPEED, VEHICLES PER HOUR, AND EMISSION LATA
6.15,5270,35
LOOP 619 AT LINK ROAD, HOUSTON TEXAS; MAY 6,1976.
ROUGGNESS VELOCITY: 0.859
ROADEDGE CO CONCENTRATION: 2.6
VIRTUAL ORIGIN: 117.
\begin{tabular}{rlllll}
2 & & \(C O\) IN PPM & & \\
99. & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
51. & 0.2 & 9.2 & 0.3 & 0.3 & 0.3 \\
33. & 0.7 & 6.7 & 0.7 & 0.7 & 0.7 \\
5. & 2.5 & 2.2 & 1.9 & 1.7 & 1.2 \\
KS--7 & 15. & 36. & 73. & 79. & 165.
\end{tabular}
ENTER - 1 FOR NEU SITE, \(\theta\) FOR NEW RLN, 1 FOR END. 6
```

ENTER WINDSPEEL, VEHICLES PER HOUR, AND EIISSION DATA 7.65,4836,35 LOOP 610 AT LINK ROAD, HOUSTON TEXAS; MAY 6, 1976. ROUGHNESS UELOCITY: 1.069
ROADEDGE CO CONCENTRATION: 1.9 UKRTUAL ORIGIN: 117.

Z	CO IN PPM				
99.	0.0	0.0	0.0	0.0	0.0
51.	0.1	0.1	0.2	0.2	6.2
33.	0.5	0.5	0.5	0.5	0.5
5.	1.9	1.6	1.3	1.3	0.9
$\times S--2$	15.	36.	73.	79.	165.

```
ENTER - I FOR NEW SITE, }\triangle\mathrm{ FOR NEW RUN, 1 FOR END.
0
ENTER HINDSPEED, VEKICLES PER HOUR, AND EMISSION LATA
6.54,4770,36
LOOP 610 GT LINK ROAD, HOUSTON TEXAS; MAY 6,1976.
ROUGHNESS VELOCITY: 0.914
POADEDGE CO CONCENTRATION: 1.9
    VIRTUAL ORIGIN: 117.
```

2		$C O I N$	$P P M$		
99.	0.0	0.0	0.0	0.0	0.0
51.	0.1	0.1	0.2	0.2	0.2
33.	0.5	0.5	0.5	0.5	0.5
5.	1.8	1.6	1.3	1.3	0.9
$\times S \rightarrow->$	15.	36.	73.	79.	165.

0											
ENTER WINDSPEED, VEHICLES PER:HOUR, ANL EMI SSION DATA6.81,558, 30											
LOOP 610 AT LINK ROAD, HOUSTON TEXAS; MAY 6, 1976. ROUGHNESS VELOCIT: O.952											
ROADEDGE CO CONCENTPATION: 2.1											
VIRTUAL ORIGIN: 117.											

Z		$C O I N$	$P P M$		
99.	0.0	0.0	0.0	0.0	0.0
51.	0.1	0.2	0.2	0.2	0.3
33.	0.6	0.6	0.6	0.6	0.5
5.	2.1	1.8	1.5	1.4	1.0
$\times S--\infty$	15.	36.	73.	79.	165.

```
ENTER - I FOR NEW SITE, O FOR NEW RUN, I FOR END.
1
STOD
```


Literature Cited

Barad, M. L., "Project Prairie Grass, A Field Program in Diffusion," Vol. II, Geophysical Research Papers, No. 59, (1958).

Calder, K. L., "Eddy Diffusion and Evaporation in Flow over Aerodynamically Smooth and Rough Surfaces: A Treatment based on Laboratory Laws of Turbulent Flow with Special. References to Conditions in the Lower Atmosphere," Quart. Journal Mech. and Applied Math., II, 153 (1949).

Carpenter, William A., G. G. C1emena, and W. R. Lunglhafer, "Supportive Data and Methods for the Evaluation of Airpol-4," Virginia Highway and Transportation Research Council, Report No. UHTRC75-R57, Charlottesville, Virginia (1975).

Bullin, J. A. and Cesar Maldanado, "Modeling Carbon Monoxide Dispersion from Roadways," Enviromental Science and Technology, Vol. II, No. 12, (1977).

Maldanado, Cesar, "Computer Simulation of the Dispersion of Carbon Monoxide from Roadways," MS Thesis, Texas A\&M University, College Station, Texas, (1976) .

No11, K. E., "Air Quality Report: Interstate 40 Modification Between Stratford Road and Peter's Creek Parkway in Forsyth County, North Carolina," Report for Harland Bartholomew and Associates, Raleigh, N. C., (1973).

Noll, K. E., T. L. Miller, R. H. Rainey, and R. C. May, "Final Report on the Air Monitoring Program to Determine the Impact of Highways on Air Quality," Department of Civil Engineering, University of Tennessee, Knoxville, Tennessee (1975).

Pasquil, F., Atmosphesic Diffusion, 2nd Edition, E1lis Norwood Ltd., Sussex, (1974).

Polasek, J. C. and Bullin, J. A., "Analytical and Experimental Assessment of Highway Impact on Air Quality," Interim Report to Texas State Department of Highways and Pub1ic Transportation, (1976).

Ranzieri, A. J., G. R. Bemis and E. C. Shirley, "Air Pollution and Roadway Location Design, and Operation," California Division of Transportation Report No. A-DOT-TL-7080-75-15, Sacramento, California, (1975).

[^0]:
 $\begin{array}{ll}20 & 2 \\ 2 & 2 \\ 2 & 2 \\ 3 & 2 \\ 3 & 2\end{array}$
 5. 56.73 .79 .16 . 7

 DOWMWMD DTSTADCEFEETBETED

[^1]: DOWNUTM COMCEITRATTOMFWM
 $\begin{array}{lllll}2.0 & 20 & 20 & 20 & 20 \\ 2.0 & 2 & 2.2 & 2 & 2 \\ 2.6 & 2 & 2.0 & 2 & 2 \\ 4.0 & 3 & 3 & 3 & 3 \\ 3.0\end{array}$
 15.30 .73 .79 .165

