TECHNICAL REPORT STANOARD TITLEPAGE

Form DOT F 1700.7 ($8-69$)
Interim Reporton
ANALYTICAL AND EXPERIMENTAL ASSESSMENT OFHIGHWAY IMPACT ON AIR QUALITY
byJ. A. BullinJ. C. Polasek
Submitted toFile D-8 PState Department of Highwaysand Public Transportation
Research Report 218-1
Research Study No. 2-8-75-218
Sponsored by
State Department of Highways and Pub1ic Transportationin cooperation with the
U. S. Department of TransportationFederal Highway Administration
CHEMICAL ENGINEERING DEPARTMENTand
TEXAS TRANSPORTATION INSTITUTE
College Station, Texas 77843
August 18, 1976

Implementation

A study of dispersion of pollutants from roadways is underway. Progress in the model development portion of the work indicates that existing models should be used with caution. An improved model based on data from previous experimental programs is presented. Extensive experimental data from the current project will soon be available for continued model improvement.

Disclaimer
The contents of this report reflect the views of the authors who are responsible for the facts and the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration, nor does this report constitute a standard, specification, or regulation.

Air quality measurements along Houston freeways have been made at an "at-grade" site and are to be started shortly at a "cut" site. These measurements are used to characterize carbon monoxide concentrations downwind from highway line sources. Measurements at each site consist of carbon monoxide concentrations at 10 locations, vehicle length, speed and count by lane, and detailed meteorological data from four stations between five and 101.5 feet. A11 of the instruments are interfaced to a Data General Nova 1200 computer which allows the data to be taken simultaneously and on a rapid time basis. The data from the experimental program will be used to verify line source dispersion models for Texas.

Experimental data from essentially all previous experimental programs have been assembled and used in developing and verifying an improved roadway dispersion model. The improved model along with the well known models of CALINE-2, AIRPOL-4 and HIWAY were compared to the data from the previous programs. Significantly improved results were obtained with the modified model. All of the models and all of the previous data are based on one hour average concepts. The data from the current experimental program have not been compared to the models at this time.

TABLE OF CONTENTS

CHAPTER PAGE

1. Introduction 1
2. Description of Field Monitoring Sites in Houston 3
Introduction 3
North Loop Site 3
Katy Freeway Site 7
3. Experimental Methods 10
Introduction 10
Data Collection System 10
Traffic Measurements 11
Meteorological Measurements 13
Atmospheric Temperature and Humidity 14
Solar Radiation 14
Carbon Monoxide Measurements 14
Hydrocarbons and Nitrogen Oxide Measurements 16
4. Data Handling 17
Introduction 17
Data Reduction Program 17
Format of Computed Averages 20
5. Diffusion Model Analysis and Development 23
Introduction 23
Discussion of Previous Experimental Data Collection Programs 23
Tennessee Data 23
North Carolina Data 25
Virginia Data 26
Illinois Data 27
California Data 27
Analysis of Instrument Error 28
Effect of Bag Sampler Material on the Accuracy of Measurement 30
Discussion of Previous Model Developement Programs 30
Caline-2 30
Hiway 32
Airpol-4 36
Emp-1 39
Model Validation 40
Development of Improved Model 41

TABLE OF CONTENTS continued

CHAPTER PAGE
6. Discussion of Results 47
Discussion of Experimental Data Collection Program 47
Discussion of Dispersion Model Analysis and Development 47
Summary
Literature Cited
Appendix A 79
Appendix B 90
Appendix C 97
The authors wish to thank all those individuals who contributed to this report by utilizing their energies and talents to facilitate gathering data and type the manuscript. Special appreciation is extended to Mr. Rod Moe, Mr. Gerry Biggs, and Mr. Larry Galloway, all of the State Department of Highways and Public Transportation. The success of this project has been largely a result of their contributions.
This work was sponsored by the Texas State Department of Highways and Public Transportation in cooperation with the United States Department of Transporation, Federal Highway Administration.

No. Title Page
Data Sampling Rate 4
Record Formats 18
Accuracy of Instruments Used in Data Acquisition 29
Summary of Regression Analysis of Roadside CO Concentrations 45
Data Locations 55
Five-minute Averages for Data Taken 56
from 14:55 to 16:00 4 May 76
Fifteen-minute Averages for Data Taken from 14:45 to 16:00 4 May 76 63
Hourly Averages for Data Taken from 15:00 to 16:00 4 May 76 66
Five-minute averages for Data Taken from 16:00 to 17:00 4 May 76 67
Fifteen-minute Averages for Data Taken from 16:00 to 17:00 4 May 76 73
Hourly Averages for Data Taken from 16:00 to 17:00 4 May 76 75

LIST OF FIGURES

No. Title Page
Aerial View of Instrument Configuration, 5
Loop 610 Site
Cross-Sectional View of Instrument 6 Configuration, Loop 610 Site
Aerial View of Instrument Configuration, Katy Freeway Site 8
Cross-Sectional View of Instrument Configuration, Katy Freeway Site 9
Virtual Origin Concept 43
Overhead View of At-grade Site as Seen by Hiway Model 34
Coordinate System Used by Hiway Model 35
Coordinate System Used by Airpol-4 37
Regression Lines of Models for Tennessee Data 50
Regression Lines of Models for North Carolina Data 51
Regression Lines of Models for Virginia Data 52
Regression Lines of Models for Illinois Data 53
Regression Lines of Models for California Data 54

Chapter I

Introduction

Project 2218, "Analytical and Experimental Assessment of Highway Impact on Air Quality", is being used to validate existing mathematical models for dispersion of air pollutants along a highway. This project will also improve on the accuracy of these models where feasible. Mathematical models are currently used to predict future levels of carbon monoxide along highways for various meteorology, topography, and highway conditions.

Currently, the Federal Highway Administration requires an estimate of the carbon monoxide concentrations along proposed new highways or where major improvements are proposed to existing highways. The carbon monoxide levels are predicted for the time when the highway is built and at intervals until 20 years afterward. These predictions are included in the Air Quality Reports which are reviewed by many governmental agencies including the Texas Air Control Board, the Federal Highway Administration, the Environmental Protection Agency and others.

Highways which would seriously degrade the air quality would probably not receive federal financing. The National Ambient Air Quality Standards are used as a basis of judging the air quality. The current work is particularly important since it will establish the validity of applying mathematical models, which were developed outside of Texas, to Texas.

There have been many models proposed to predict pollutant concentrations from roadways. However, there have been only a few experimental validation programs undertaken and these have met with varying degrees of success. The current validation program for Texas is designed for thorough data collection.

The measurements required for model validation work are vehicle numbers, speed and classification (car or truck), wind speed and direction, atmospheric stability and carbon monoxide concentrations at various distances from the roadway. The current validation project is set up to take all of the required measurements simultaneously by using a minicomputer to read the instruments and record the data on cassette magnetic tapes.

Two sites for data collection in Houston have been selected. The "at grade" site is at North Loop and Link Road in Houston while the "cut" or below grade site is at Katy Freeway and Reinermann Road. The current plans call for data collection in Houston this year and in Dallas, San Antonio, and El Paso next year.

Chapter II

Description of Field Monitoring Sites in Houston

Introduction

Field investigations were undertaken at two locations in Houston, Texas. These included an at grade site and a cut site. The locations were at 843 Link Road at Loop 610 and Katy Freeway at Reinermann Road. Due to the requirements of the site, very few locations in Houston are suitable.

North Loop Site

Measurements have been made at the North Loop Site during the period from May 1, 1976 to June 30, 1976. This site was chosen due to the large right of way width and suitability for erection of equipment. At this point the Freeway runs east-west and results in a good location since the prevailing wind is from the south.

The site is somewhat typical of the urban city in that trees and one story houses are located to the south as well as to the north. A diagram of the site is shown in Figure 1. (The symbols used in Figure 1 are defined in Table 1.) At this location the ground is essentially flat and the roughness is due to the trees and houses. The instrumentation at the Link Road Site include 12 Ecolyzers, 10 radars and 5 sets of meteorological instruments. Solar radiation is monitored by a global pyranometer. Ecolyzers are used to measure the carbon monoxide and are mounted in pairs in metal boxes. Each pair is located at a specific distance from the roadway as shown in Figure 2. This figure also shows the heights at which the various instruments are located as well. There are essentially four stations located on the down wind side of the freeway and one on the up wind side in order to obtain a background level. The lower Ecolyzers sample the ambient air at "breathing height" (1.5 meters), while the upper Ecolyzers analyze the air at 10 meter heights. In addition, two

TABLE 1

INSTRUMENT LIST

FIGURE 1
OVERHEAD VIEN AT GRADE SITE

FIGURE 2
INSTRUMENT LOCATIONS

LOOP 610 HOUSTON	(1) $=$ VAI. $5 \mathrm{M}, \mathrm{HAI} .5 \mathrm{M}$, TM $1.5 \mathrm{M}, \mathrm{WVI} .5 \mathrm{M}, \mathrm{RH} \mathrm{I} .5 \mathrm{M}$ (2) $=\mathrm{VA}$ IOM, HAIOM, TMPIOM, WVIOM (3) VA $20 \mathrm{M}, \mathrm{HA} 2 \mathrm{OM}$, TMP $20 \mathrm{M}, \mathrm{WV} 20 \mathrm{M}$ (4) $=$ TMP $30 \mathrm{M}, \mathrm{RH} 30 \mathrm{M}$ © $\operatorname{s}=$ VA 40 M, HA $40 \mathrm{M}, \mathrm{WV} 40 \mathrm{M}$

0

Ecolyzers analyze air samples at 20 meters and 40 meters up the tall tower.
The meteorological instruments are located on the tall tower at the locations shown on Figure 2. This tower was located 64 ft . from the roadway. The traffic monitoring radars were mounted on two sign bridges which were 500 ft . to the west and 1100 ft . to the east.

Katy Freeway Site

It was desired in the program to measure the carbon monoxide level from a section of roadway that was below grade which is also known as a cut site. The instrumentation and configuration are somewhat different at the cut site from the at grade site. The presence of a pedestrian overpass with a concrete pipe rack at the cut site greatly simplifies the installation of the equipment. It also provides easy access to service the equipment and for calibration. The site is located at 5200 Katy Freeway and Reinermann Road. At this point the freeway is about 22 ft . below grade. A diagram of the roadway is shown in Figure 3. Katy Freeway runs in an east-west direction and has very light traffic on the servíce roads. The surface roughness of the area is again trees and one story buildings. This combined with the wide right of way and the pedestrian walkway makes this site a very desirable one. At this location the shoulders of the road way are cut at approximately a 30 degree angle leading down to the pavement.

The instrumentation is deployed as shown in Figure 4. The availability of the pedestrian walkway allows a sample to be taken at the center median between the two directions of traffic. The meteorological equipment is mounted on the tall tower located on the north side of the freeway.

The equipment has been erected at this site and data collection is ready to begin.

FIGURE 3

FIGURE 4
INSTRUMENT LOCATIONS
IH 10 HOUSTON
(1) = VA $1.5 \mathrm{M}, \mathrm{HA} 1.5 \mathrm{M}$, TM 1.5 M, WVI.5M,RHI.5M
(2) = VA 10 M, HA $1 O \mathrm{M}$, TMPIOM, WVIOM
(3) = VA 2OM, HA 2OM, TMP 20 M, WV 2OM
(4) = TMP 3OM, RH 3OM
(5) $=\mathrm{VA} 40 \mathrm{M}, \mathrm{HA} 40 \mathrm{M}, \mathrm{WV} 40 \mathrm{M}$

ROADMAY

Chapter III
Experimental Methods

Introduction

An extensive program of experimental measurements is underway for this study. The measurements required for model validation work are traffic measurements, meteorological conditions and air pollution levels. The current program is set up to take all of the required measurements simultaneously by using a minicomputer to read the instruments and record the information on magnetic tapes. A11 of the instruments are tied to a Data General NOVA 1200 computer through an analog to digital interface. The details of the data handling procedure will be discussed in the next chapter. The systems used to make the experimental measurements will be discussed here.

Data Collection System

For this study, a NOVA 1200 mini-computer with 3 eassette tape drives, a teletype console and a Radian $A-D$ converter is used. The computer is used to read and record onto magnetic tape each instrument at a rate commensurate with the instrument response time and the rate of data fluctuation. Table 1 in page 4 gives each instrument's sampling rate, as well as its six-letter code which the computer uses to name each instrument. The required software program is quite sophisticated and was written by File D-19 of the State Department of Highways and Public Transportation in Austin. This software has been modified in minor ways by the project personnel.

The computer is a very valuable tool in data collection. It can read all instruments effectively simultaneously and can check each instrument reading against a maximum and minimum expected value. This expected value can be set by the operator and varies from instrument to instrument. If a value falls outside the expected range, the operator is so informed by the teletype and a special
record is entered on the cassette tape. The rate at which the data are collected for each individual instrument will be discussed in the following sections. (See Table 1, page 4.)

Traffic Measurements

Four traffic parameters must be determined for the purpose of this study. They are the vehicle age mix, heavy duty vehicle fraction, the vehicle count and the vehicle speed. The vehicle age mix must be approximated by using figures obtained from vehicle registrations in the area. The other three parameters were obtained by using a Stevenson Mark 5 Radar Unit mounted over each lane.

These units were obtained from the Department of Public Safety and had to be modified for use on the project. The units were originally designed for use inside of a vehicle and thus were modified by mounting them on 10 inch "C" clamps and providing a weather proof shelter for them.

These devices can give a very fast and accurate measurement of a vehicle speed while the vehicle is within the anit's field of view. The size of the field of view can be varied both in length and diameter by use of the range control adjustment on the unit. To obtain the traffic parameters needed, the units must be used in a special way. Each unit is located directly above a single traffic lane looking down at a 45° angle. The range control is turned down until the indicator needle on the unit just barely detects compact cars. This restricts the units field of view to an elliptical path approximately 15 ft long and 10 ft . wide at the pavement. This procedure has worked well but an analog integrator has been built which hopefully will give a more accurate reading of the observed length. Because of the angle at which the unit is mounted, the observed vehicle speed is only 71% of the actual value. However, this can be easily corrected by the computer.

The radar units have both an indicator needle and a 0 to 10 volts recorder output. Since a car moving at 60 miles per hour spends only $1 / 2$ of a second in
the unit's field of view, the indicator needle does not have time to respond before the car is out of the field. However, due to its speed the computer can obtain the full response from the unit. The radar unit sends a voltage pulse to the computer for each vehicle passage. The height of the pulse is proportional to the vehicle's speed and the number of pulses is equal to the number of vehicles resulting in an accurate vehicle count. These pulses can yield yet another item of useful information. The area under the pulse is proportional to the length of the vehicle. This allows the cars to be separated from trucks, giving an accurate breakdown of the heavy duty vehicle fraction. To obtain the area under the pulse the computer is required to do a numerical integration. Since most pulses coming from the radars are less than $1 / 2$ second long, the radars are monitored at a very high rate of speed. A sampling rate of 100 samples per second was selected as the highest practical rate. At this rate, the NOVA computer is idle only 5% of the time. 94% of the time the computer is processing the radar units. 1% of the time is sufficient to handle all other samples, compute averages, and to run the cassette units and teletype. The numerical integration method used is the fastest in terms of computer time available. The readings are simply summed for the duration of the pulse and then divided by a calibration factor after the pulse is over. The result is then compared to the five length catagories selected by the programmer and the appropriate counter is incremented by one. The speed is also summed with the appropriate vehicle speed accumulator. At the end of each one minute interval the vehicle speed count and length information are averaged and written to the cassette tape.

The five vehicle categories were chosen as category 1-cars, category 2-pick-ups and vans, category 3-1ight trucks, category 4-heavy trucks, and category 5-calibration. The radar units have an internal calibrate capability and
thus can be calibrated periodically.
Several problems arose in the application of the radar units to the project. At the North Loop Site it was discovered that there was a large amount of 60 cycle noise in the lines. Low pass filters were added as a temporary measure and shielded cable was later added to correct the problem. At the North Loop Site the shielded cable completely corrected the problem on the west sign bridge but had no effect on the noise from the east sign bridge. This is currently being investigated and the low pass filter will continue to be used until it is corrected. A second difficulty arose in the range control on the radar units. The $3 / 4$ turn potentiometers used to adjust the range control in the original units was a very course adjustment. The potentiometers were replaced with 10 turn pots which have worked very well.

Meteorological Measurements

Horizontal Windspeed and Direction:
Horizontal windspeed and direction were measured continuously with 6 cup anemometers and windvanes manufactured by Texas Electronics. The starting threshold for the anemometers is 0.75 MPH and 1.0 MPH for the windvanes. The accuracy of the wind speed is $\pm 1 \%$ of $f u l l$ scale and $\pm 0.5 \%$ for the wind direction. The anemometers use the light chopper technique while the wind direction vanes consist of potentiometers in a one volt curcuit.

A Gill propeller anemometer (Model No. 27100) is used to determine the vertical wind speeds. This instrument has a starting threshold of less than . 5 MPH and an accuracy of $\pm 1 \%$ of full scale.

In order to obtain a good description of the wind profile, stations containing horizontal windspeed and direction and vertical windspeed are located at heights of 5, 26,52 , and 102 ft . This equipment has been very trouble free. The only
problem has been the replacement of the light emitting diode at the top location on the tall tower. Lightning is believed to be the culprit here.

Atmospheric Temperature and Humidity

To obtain information on atmospheric stability, temperature is recorded at 4 different heights. Temperature measurements are made with a Texas Electronics Model No. 2015 Thermistor. These units have an accuracy of $\pm 0.5 \%$ of full seale. One sensor is located at each of the heights 5, 29, 42 and 82 ft . as shown in Figure 1. With such detailed wind speeds and temperature, it is hoped that Richardson numbers may be reasonably aecurately calculated.

The relative humidity is measured at two heights of 5 and 82 ft . and with a Texas Electronics Model No. 2013 relative humidity system. The accuracy of the instrument is better than $\pm 3 \%$ relative humidity. The psychrometer measures relative humidity by utilizing the fact that a fiber, such as a hair, will change length in proportion to the amount of water vapor present. As the fiber length changes it causes an inductance change in a coil.

Solar Radiation

The incoming solar radiation is measured with an Eppley pyranometer Model No. 8-48. Due to the low voltage output from this instrument an amplifier had to be constructed for the signal to feed the analog to digital interface. This instrument has worked very trouble free.

Carbon Monoxide Measurements

The concentration of the carbon monoxide levels from the road is measured by model 2600 Ecolyzers. The analyzer uses an acid electrochemical sensor to determine the quantity of carbon monoxide in parts per million, with an accuracy of $\pm 0.5 \mathrm{ppm}$. These analyzers are easy to operate, but span and zero drift require
very frequent calibrations of the instrument. The accuracy of the instrument is affected by the pH value of the acid in the cell. Thus as the cell ages the accuracy tends to decrease. In addition, under the current operating conditions the instruments exhibit some fluctuations due to internally generated noise. With careful attention and frequent calibration these instruments have provided carbon monoxide levels with a error of no greater than 1 part per million of carbon monoxide.

As shown in Figure 2, carbon monoxide levels are measured at heights of 5 and 35 ft . above the ground and at distances from the road way of $15,36,79$, and 165 ft . An upwind station at 130 ft . from the road way was also used. The carbon monoxide levels at 47 and 101.5 ft , above ground are also measured at the station located at 56 ft . from the road. The measurements at the elevated sites are made by pulling a sample of air from the elevation down to ground level with a small vacuum cleaner. The Ecolyzers are connected upstream of the vacuum cleaner.

The Ecolyzers are calibrated by attaching bags of calibration gas to the instrument. The normal calibration interval is 2 hours. When the Ecolyzers analyzing samples from the elevated height are calibrated, a manometer is used to insure the flow to the instrument remains the same during calibration as when in actual operation. The samples are drawn from the elevated point through black 1 inch polyethylene thin wall tubing. In all cases the tubing was allowed to sit on the pole for several days before actual use.

A11 Ecolyzers are read by the computer at the rate of once every 30 seconds. The measured response time of the instrument was about 25 seconds.

A second sampling system consisting of sequential bag samplers is also used. Each bag sampler is composed of a container that holds 24 PVC bags, a pump for each bag, 6 volt dry cell batteries for power and the necessary circuitry for
control. During the period of operation, a bag sampler energizes each pump sequentially allowing each one 15 minutes of running time for a total of 6 hours of operation. Thus each bag will yield a carbon monoxide concentration that will be Fery close to the 15 -minute average calculated by the computer for the Ecolyzers. The pumps were set to deliver 60 milliliters per minute, which yields a sample volume of about 900 milliliters. When the bag sampler has cycled through all the pumps, the timer shuts it down. The bags can then be analyzed by an Ecolyzer, non-dispersive infrared instrument or other device.

The bag samplers have proven to be quite troublesome from an operational point of view. The timer sometimes skips over several bags; often the check valves remained open and the sample is lost; and the output of the pumps is rather unstable. In addition there are up to 240 bags to be analyzed which can require $2-1 / 2$ to 3 hours. Finally, once all the bags have been analyzed they must be emptied by hand to remove any residual samples to prepare them for the next sequence.

Hydrocarbons and Nitrogen Oxide Measurements

The instruments to analyze for hydrocarbons and nitrogen oxides are currently being delivered. After a short check out time these instruments will also be used.

Chapter IV

Data Handiing

Introduction

As a result of the desire to obtain a dynamic response, data collection in the project occurs at a prodigious rate. Over 15,000 numbers per hour are recorded on cassette tape. A printout of the original data for an eight-hour day would be over an inch thick with twenty numbers per line, thirty lines per page. In its original form, the data are thus nearly worthless. The sheer volume prevents any trends from being noticed. For preliminary data reduction and analysis, the researcher must turn to the computer.

The computer cannot reach conclusions by itself. However, it can manipulate the data in such a way that it becomes useful.

Data Reduction Program

The objective of the data reduction program is to reduce the amount of data from one hundred thousand numbers per day to possibly as few as one thousand. Regrettably, some of the fine detail of the original data is lost, but it suddenly becomes possible to see the whole picture and some pattern to the data.

The data originally resides on a one track cassette in sixteen bit word variable length record blocks. This means each number contains sixteen bits, the collections of numbers (records) are not all the same length, and that a large number of records are output to tape at once in a block, All data are in binary form. Integers are represented directly and character data are represented in ASCII code, two letters per sixteen bit number (word). Record formats can be found in Table 2. The length of type $0,5,11, \ldots 17$ records is determined by the amount of computer memory available after the program is set up. Sizes of up to 120 numbers/record have been used, but with the addition of more instruments, the size will have to

	Type \varnothing, 5	Type 1
	Length	Length
	Type	Type
	Time high	Time high
	Time low	Time low
	ASCII code	Channel
$\vec{\infty}$.	Sample Interval data type
	-	max expected value min expected value calibration factor zero adjustment factor
		ASCII code
	ASCII code	ASCLI code
		ASCII code

Record Formats

Type 2,3,6,7	Type 4	Type 10	Type 11,, 17
Length	Length	Length	Length
Type	Type	Type	Type
Time high	Time high	Time high	Time high
Time low	Time low	Time low	Time low
Channel	Channel	Channel	Channel
	bad time high	sample interval	Interval
	bad time low	min expected value	Lost data count
	bad value	max expected value	min expected value
		begin time high	max expected value
		begin time low	sample value
		end time high	sample value
		end time low	
		veh 1 count	-
		veh 1 spd high	
		veh 2 count	
		veh 2 spd high	*
		veh 2 spd low	sample value

Veh 5 count
veh 5 spd high
veh 5 spd low
be dropped to 40 numbers/record until an additional 8 K of memory arrives.
Data in this form are easily handled by NOVA computers. However, the AMDAHL 470 V6 used at Texas A\&M cannot read cassette tape. For this computer to reduce the data it is first necessary to have them transferred from cassette onto nine track computer tape which the AMDAHL can access.

This transfer is done by a direct copy method. No changes or checks are made by the transferring program. Thus, the nine track tape obtained still contains the data in its original recorded form. This form is incompatible with IBM (and AMDAHL) standard conventions, and as a result, the standard software for unpacking the blocks into individual records and for breaking the records into individual numbers cannot be used. The records must be broken down by programmer written software and then repacked in the standard conventions. The program to do this has been labeled Set A and a copy can be found in Appendix A.

This makes it very easy for the Set B program to get to the individual records. Set B has two functions to perform. It converts all the integers to more useful forms and it sorts the data, getting together all records dealing with a particular channel. The conversion comes in two parts. First all character data must be converted from ASCII to EBCDIC, which is used by the AMDAHL to store characters. Secondly, all instrument readings are more useful in floating point numbers than as raw integers: 2.5 ppm is easier to comprehend than $100 \mathrm{~A} / \mathrm{D}$ counts. The data is thus restructured and then temporarily stored on a serateh disk.

The sorting is then handled by a standard IBM OS Sort/Merge Utility. This packaged program can very rapidly sort as much data as there is external scratch space. It pulls the stored data from disk and sorts them first by date, by channel, by record type and by time in that order. It then outputs the result to standard nine track tape.

In this form, the data are ready for the third part of the data reduction called Set C. An example of Set C can be found in Appendix C. In the same appendix is a sample of the results of this program. This is the real data reduction program. It takes the modified and sorted data and uses them to calculate total traffic counts and speeds and instrument means and standard deviations for every instrument for a given time period. Five-, fifteen-, and sixty-minute intervals were chosen as representative, but those can be changed as desired.

Format of Computed Averages

The data printout as shown in Table 5 (page 56.) contains a somewhat graphic picture of where the instruments are located. Titles were omitted in order to achieve two averages per page of printout and cut down on the high cost of computer printing. The center of the average contains the traffic counts of the ten radars and the observed average speeds. The eleventh column on the right contains the total vehicle count for each type of vehicle along with the average speed for each type. The rows represent the vehicle types aforementioned. The sixth row is the total by lane count of all vehicles with their average speed. The three numbers below the table are the count and speed in each direction and the grand total count and average speed. It can be noted in passing that the 55 mph speed 1 imit was being observed only in the exit lanes and during traffic jams. The upper right hand corner contains all meterological data. The columns are from left to right: Vertical windspeed in tenths of a mile per hour, horizontal windspeed in miles per hour, wind direction in degrees, temperature in degrees Fahrenheit, and radiation in watts per square meter and relative humidity in per cent in the last column. The vertical arrangement of the numbers represents the arrangement of the instruments except that the higher relative humidity readings should be level with the top thermometer reading.

The third section of the average is the lower right and the lower left. These readings represent the carbon monoxide levels in parts per million. The background instruments are separated from the rest of the instruments by the traffic table, and the arrangement of the entries on the right hand side is identical to the arrangement of the instruments at the site.

It should be noted that each entry for the meteorological instruments and carbon monoxide monitors is double. The upper number of each pair is the mean instrument value for the time interval, and the lower number is the standard deviation of all the values. It should be noted that the Ecolyzers require some special handling in this program. Since their zero and span tend to drift, they were calibrated at approximate two-hour intervals. The procedure followed was to issue a Begin Calibrate record (Type 2), ground the A/D input for the channel, rezero the instrument, attach a bag of gas of known CO concentration, reattach the instrument to the A / D, wait 30 seconds, reground the A / D input, wait one minute, reattach the instrument to the A / D and issue an End Calibrate record (Type 3) for the channel. An attempt was made to also read the zero drift before rezeroing the instrument, but study showed that zero drifts were sudden and drastic, although small enough to be completely masked by the minute-to-minute fluctuations in the CO level. However, at very low CO levels, the zero drift can approach 30% of the instrument reading. Thus, no correction could be applied and the obtained value was worthless. Span drift, however is smooth and gradual as far as is known. Thus, a linear correction factor was applied. These corrections were fairly small ($\approx 10 \%$). If during any averaging period, more than one fourth of the data is missing for an instrument, the average is dropped and is replaced in the output with stars.

Due to the averaging of the results, much of the fine detail is lost. However, by using the results of the averaging program, better methods can be found for analyzing the data at a later date. At present, the averaging program is sufficient for the project needs and provides an adequate data base for preliminary conclusions.

Chapter V
 Diffusion Model Analysis and Development

Introduction

In attempting to comply with the laws requiring environmental statements for construction and modification of roadways, several research programs have been undertaken. These programs have met with varying degrees of success. Many people have attempted to develop models to predict pollutant concentrations from roadways with no experimental verification whatsoever. Essentially all of the experimental data collection programs which have been undertaken are discussed here. All of the major dispersion models are also reviewed. All work to date excluding the present experimental work is based on the concept of one-hour samples and averages. This is the largest data base on dispersion from roadways ever assembled and the first extensive comparison of previous models.

Discussion of Previous Experimental Data Collection Programs

Tennessee Data
The data obtained by Noll, Millex, Rainey, and May (1975) were taken at Gallatin Road in north Nashville, Tennessee. The road used was a five-lane at-grade highway with a total width, including shoulders, of 80 feet. The area around the highway is essentially a flat, open field.

Traffic counts were taken continuously with pneumatic counters. This device counts each vehicle axle crossing the detector. In order to assure good data, no more than two lanes of traffic were monitored with one pneumatic counter. Fifteenminute averages of double axles were recorded and used to obtain values for the traffic flow in vehicles per hour. Vehicle speed was monitored with radar units and with a clocking method. This clocking method consisted of timing vehicles over a known distance and calculating the speed from the time obtained. The radar unit was not considered to give good representative route speeds; therefore,
the clocking method was preferred. A course length greater than 500 feet and a stop watch were used in providing the route speed. The heavy duty vehicle mix was obtained by manual counts.

The wind speed and direction were continuously monitored with mechanical wind instruments at a height of 10 meters. The data were recorded onto strip chart paper. The wind instruments were checked for calibration twice daily. Three different methods were used in obtaining CO samples.

1) on-1ine continuous sampling
2) intermittent sequential sampling (ISS)
3) fifteen-minute integrated sample

The on-line sampling was used to obtain data at a single point with the results being recorded on to strip chart paper. The ISS method involved several sampling points connected to a common manifold. This allowed all the sampling to be done with one analyzer. The integrated samples were obtained with bag samplers. The samples were later collected and analyzed.

The type of bag used was an aluminized polyester (Scotchpak) bag. As discussed in a succeeding section, this type of bag was found to be the best suited to hold carbon monoxide.

In analyzing for carbon monoxide, two instruments were used, a Beckman Model 315-BL non-dispersive infrared (NDIR) absorption instrument, and an Energetics Science Ecolyzer coulometric titration instrument. The error of the NDIR can be considered to be 1 percent of full scale, which translates to $\pm 1 \mathrm{ppm}$. The span drift of an Ecolyzer is ± 1.0 percent of full scale, which translates to an error of $\pm 1 \mathrm{ppm}$. The zero drift of the Ecolyzer is ± 0.5 percent of full scale which translates to $\pm 0.5 \mathrm{ppm}$. In addition, the instrument accuracy is $\pm 1 \mathrm{ppm}$. It should be noted that the above figures are for an Ecolyzer which has a new electrochemical sensor and is calibrated frequently (approximately every two hours).

The instruments used were calibrated after each peak traffic hour's sampling runs with a certified 38 ppm carbon monoxide span gas. From the above discussion, an estimated accuracy of $\pm 1.5 \mathrm{ppm}$ for instrument readings was obtained.

North Carolina Data

The data presented by Noll (1973) were taken at the First Street - Hawthorne exit of Interstate 40 in Winston-Salem, North Carolina. This is a four-lane, at-grade highway with a total width of 56 feet.

Traffic volume data were taken with two electrical traffic counters, one in each directional lane group. Fifteen minute averages of the double axles were recorded and used in obtaining an hourly traffic volume. The average route speed was determined using the "floating car" technique, and the heavy duty vehicle mix was determined by manual count.

The wind speed and direction were continuously monitored with mechanical wind instruments at a height of 12 feet (3.66 meters) and recorded onto strip chart paper.

Similar to the previous data set, three different procedures were used in obtaining carbon monoxide samples. These were

1) Gontinuous on-1ine sampling
2) Short period cycle sampling
3) Fifteen minute integrated sample

Here again, on-line sampling was performed to obtain data at a single point. The short period sampling involved several sampling points connected to a common manifold, which allowed the sampling to be done with one instrument. Bag samples were taken every 15 minutes and later analyzed. As in the previous data set, aluminized polyester (Scotchpak) bags were used. The same type of instruments were used here as were used in the previous data set. Calibration of the
instruments was performed at least three times a day with a two point certified zero span gas and upscale span gas. The accuracy of these data sets was estimated to be $\pm 1.5 \mathrm{ppm}$.

Virginia Data

The data given by Carpenter, Clemena, and Lunglhofer (1975) were taken at several sites in Virginia. The locations of interest are

1) Interstate 495 near Telegraph Road in Fairfax County Virginia
2) Interstate 64 near Hampton Boulevard in Norfolk, Virginia
3) Interstate 64 near Norview Avenue in Norfolk, Virginia

The first is an at-grade, six-lane, dual-divided highway with a 37 -foot median. One side of the highway is open while the other side contains scattered single family housing. The second site is an at-grade, six-lane, dual-divided highway with a 60-foot median. The land use in this area is primarily agricultural. The third site is an at-grade, six-lane, dual-divided highway with a 60 -foot median. Both sides of the roadway contain single story houses.

Traffic counts were taken manually for each test period. A radar unit was used in determining vehicle speed, and the resulting data were recorded onto strip charts. Calibration of the radar units was done every two hours of continuous use.

Wind speed and direction were continu@usly monitored at a height of 10 meters during each test period. This was done with mechanical wind instruments.

Bag samplers equipped with aluminized polyester (Scotchpak) bags, were used in obtaining samples for carbon monoxide analysis. The one hour integrated samples were simultaneously collected at the sampling points of a roadway site. The samples were collected and analyzed at the end of each day with a gas chromatograph. Calibration of the chromatograph was done daily using a certified span gas. Since the zero and span drift of a gas chromatograph are negligible, the instrument was considered to be very accurate. The estimated accuracy of the gas chromatograph was
estimated at 1 percent of scale, which translates to $\pm 0.1 \mathrm{ppm}$.

Illinois Data::

The data given by Habbeger, et al. (1974) were taken on Interstate 55 near Cicero Avenue in Chicago, Illinois. This is an at-grade, six-lane highway with a 61-foot median. One side of the roadway is an open field and the other had some residential and commercial buildings.

Traffic counts were performed manually for two 5-minute intervals, evenly spaced, every hour. These values were then used in determining the hourly traffic flow. The route speed was determined by clocking vehicles over a predetermined distance. Heavy duty vehicle counts were done manually.

Wind speed and direction data were obtained with a mechanical weather station at a height of about nine feet.

Carbon monoxide samples were obtained with a bag sampler equipped with aluminized polyester bags. The 60 minute integrated samples were analyzed with an Ecolyzer. The instrument was calibrated daily with a span gas and also tested for calibration against a gas chromatograph. Since the Ecolyzer was calibrated only once daily, the accuracy associated with this instrument may range from ± 1 ppm to as much as $\pm 3 \mathrm{ppm}$. As previously noted, an Ecolyzer needs frequent calibration in order for its accuracy to remain in the range of $\pm 1 \mathrm{ppm}$. Hence the accuracy of this data set was estimated to be $\pm 2.5 \mathrm{ppm}$.

California Data

The data given by Ranzieri, Bemis, and Shirley (1975) were for the San Diego Freeway at Weigh Station in Los Angeles, California. This is an at-grade, 8-lane highway with a total width of 138 feet. The highway is surrounded by an open grassy field on one side and a golf course on the other.

The traffic data for this site were obtained from yearly traffic census pads located approximately one-quarter of a mile from the site. The route speed was determined by the "floating car" technique. This was done during peak and offpeak traffic hours.

The wind speed and direction data were monitored with a mechanical weather station at a height of 10 meters and recorded onto strip chart paper.

Carbon monoxide samples were obtained with bag samplers equipped with alumini ad polyester (Scotchpak) bags and analyzed with a Beckman model 315BL nondispersive infrared (NDIR) analyzer. The analyzer was calibrated once daily with a zero and 90 ppm span gas. Because of the tendency of an NDIR to remain within its design zero and span drift limits, the lack of frequent calibration did not present a serious problem. The accuracy obtained by this instrument was estimated to be 1 percent of full scale which translates to $\pm 1 \mathrm{ppm}$.

Analysis of Instrument Error:

In arriving at a valid estimation for the error of measurement, the accuracy of the above instruments was considered.

The design specifications of the instruments used are listed in Table 3. From the accuracies given in this table, an error of $\pm 1 \mathrm{ppm}$ seems appropriate for all the readings.

It should be noted that the zero and span drift on the Ecolyzer are a function of the age of the electrochemical sensor used in the instrument. The sensors used have a shelf life of 120 days and must be replaced at the end of this period to ensure accurate results. Using 10 month old sensors and a certified span gas, it was found that the zero drift was 1.5 ppm and the span drift was $2-3 \mathrm{ppm}$ in an eight-hour period. Hence, the accuracy indicated in Table 8 may be overestimated for the case of old sensors.

TABLE 3. Accuracy of Instruments Used in Data Acquisition

Instrument	Zero Drift per 24 hours	Span Drift per 24 hours	Accuracy	Scale Used
Beckman Model 315BL NDIR	1 percent full scale	$1 \underset{\text { scale }}{\text { percent full }}$	± 1 percent full scale	$0-100 \mathrm{ppm}$
Energetics Science Ecolyzer Model 2400	0.5 percent full scale	1 percent full	± 1 percent full scale	$0-50 \mathrm{ppm}$
Gas Chromatograph	1 percent full scale	$\begin{aligned} & 1 \text { percent full } \\ & \text { scale } \end{aligned}$	± 1 percent full scale	0-10 ppm

Effect of Bag Sampler Materials on the Accuracy of Measurement:
The bag materials used in the bag samplers may greatly affect the validity of the data obtained. In a special study, Ranzieri, Beamis, and Shirley (1975) tested several bag materials. The materials tested were aluminized polyester (Scotchpak), clear Mylar, and opaque Mylar. Tests showed the Mylar bags yielded consistently higher carbon monoxide (sometimes more than double) readings than the Scotchpak bags when collecting the same ambient sample. Thus, the aluminized polyester bags were found to be made suitable for carbon monoxide sampling. It was also found that there is no decay in $C O$ concentration when the sample is held (for up to 92.5 hours) in a bag made of Scotchpak. The aluminized polyester bags have also been tested and accepted by the California Air and Industrial Hygiene Laboratory in Berkeley, California, Since all the bags used in obtaining the data presented were made of Scotchpak, it is assumed that the carbon monoxide concentrations were not altered by the bags. Discussion of Previous Model Development Programs

CALINE-2
This model is based on the work of Turner (1970), and Ranzieri, et al. (1975). CALINE-2 employs a fixed box model together with a Gaussian dispersion model. The box model is used to simulate the inftial dispersion of pollutants caused by the mechanical turbulence from the moving vehicles. The box model assumes the emissions are uniformly distributed over the roadway and up to a fixed height termed a "mixing lid". The height of this 1 gd was empirically derived from an experimental program known as "Project Smoke" performed by the California Division of Highways (1972). The mixing height was determined to be about 12 feet. The width of the box is determined by adding the width of all the traffic lanes, plus the median and an extra distance equal to about 10 feet on each side of the highway.

The concentrations at a downwind distance from the roadway are predicted through the use of both the continuous line source equation and the continuous point source equation. The assumption made in obtaining the solutions to these equations are
1.) Gaussian distribution in both horizontal and vertical planes
2.) Dispersion coefficients are a function of downwind distance
3.) The wind speed is constant with height.
4.) Dispersion is independent of site topography.

The equations used in the model are for crosswind line sources:

$$
\begin{align*}
\Psi_{c}=\frac{Q_{1} F_{1}}{\sqrt{2 \pi} \sigma_{z} u}\{ & \exp \left[-\frac{1}{2}\left(\frac{z+H}{\sigma_{z}}\right)^{2}\right] \tag{1}\\
& \left.+\exp \left[-\frac{1}{2}\left(\frac{z-H}{\sigma_{z}}\right)\right]\right\}
\end{align*}
$$

where

$$
\begin{aligned}
Q_{1} & =\text { VPH x } \mathrm{EF} \\
\mathrm{VPH} & =\text { vehicles per hour } \\
\mathrm{EF} & =\text { emission factor } \\
H & =\text { height of pavement above ground surface } \\
\mathrm{F} & =\text { conversion factor }
\end{aligned}
$$

For parallel wind line sources:

$$
\begin{equation*}
\Psi_{p}=\sum_{i=1}^{\infty} \frac{Q_{2} F_{2}}{2 \pi \sigma_{y_{i}} \sigma_{i}}\left\{\exp \left[-\frac{1}{2}\left(\frac{y}{\sigma_{y}}\right)^{2}\right]\right\} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q_{2}=Q_{1} \times W \\
& W=\text { highway width }
\end{aligned}
$$

The assumption is made that a highway with a parallel wind can be approximated by the summation of a series of square area sources, each having the same source strength but at a different distance from the recepter. The area sources are, in turn, approximated by virtual point sources.

For oblique winds (0 deg $<$ angle $<90 \mathrm{deg}$), the downwind concentration is calculated through the use of the trignometric identity, $\cos ^{2} \theta+\sin ^{2} \theta=1$. The concentration is assumed equal to

$$
\begin{equation*}
\Psi_{0}=\Psi_{c} \sin ^{2} \theta+\Psi_{p} \cos ^{2} \theta \tag{3}
\end{equation*}
$$

A preliminary verification study reportedly supports this assumption.

Hiway:

This model developed by Zimmerman and Thompson (1974) and based on Turner's (1970) work is the Environmental Protection Agency's model. The calculational procedure is centered around a numerical integration of the Gaussian plume point source equation for a finite length.

The predictive equation used by Zimmerman and Thompson for stable conditions is expressed in the form

$$
\begin{equation*}
\Psi_{H}=u \Psi_{p} \tag{4}
\end{equation*}
$$

For the unstable or neutral cases, if σ is greater than 1.6 times the mixing height, L, the concentration below the mixing height is independent of height and is given by

$$
\begin{equation*}
\Psi_{H}=\frac{1}{(2 \pi)^{1 / 2} \sigma_{y} L} \quad \exp \left[-\frac{1}{2}\left(\frac{y}{\sigma_{y}}\right)^{2}\right] \tag{5}
\end{equation*}
$$

For other unstable or neutral conditions, Hiway uses a form suggested by Bierly and Hewson (1962) which accounts for plume trapping

$$
\begin{align*}
\Psi_{H} & =\frac{1}{2 \sigma_{y} \sigma_{z}} \exp \left[-\frac{1}{2}\left(\frac{y}{\sigma_{y}^{2}}\right)^{2}\right]\left(\operatorname { e x p } \left[-\frac{1}{2}\left(\frac{z-h}{\sigma_{z}}\right)^{2}\right.\right. \\
+ & \exp \left[-\frac{1}{2}\left(\frac{z+h}{\sigma_{z}}\right)^{2}\right]+\sum_{n=1}^{j}\left(\exp \left[-\frac{1}{2}\left(\frac{z-h-2 n^{L}}{\sigma_{z}}\right)^{2}\right]\right. \\
+ & \exp \left[-\frac{1}{2}\left(\frac{z+h+2 n^{L}}{\sigma_{z}}\right)^{2}\right]+\exp \left[-\frac{1}{2}\left(\frac{z-h+2 n^{L}}{\sigma_{z}}\right)^{2}\right] \\
& \left.\left.+\exp \left[-\frac{1}{2}\left(\frac{z+h+2 n^{L}}{\sigma_{z}}\right)\right]\right)\right) \quad j=1,4 \tag{6}
\end{align*}
$$

Figure 6 shows an overhead view of the geometry of an at-grade section of roadway as seen by the model. The line sources are shown as dashed lines in each lane with the source length specified by $\left(R_{1}, S_{1}\right)$ and $\left(R_{2}, S_{2}\right)$ and a receptor location designated by (R_{K}, S_{K}). As can be concluded by Figure 7 , for a given receptor at (R_{K}, S_{K}) and a point (R, S), x downwind distance, and y croswind distance are given by

$$
\begin{align*}
& x=\left(S-S_{K}\right) \cos \theta+\left(R-R_{K}\right) \sin \theta \tag{7}\\
& y=\left(S-S_{K}\right) \sin \theta+\left(R-R_{K}\right) \cos \theta \tag{8}
\end{align*}
$$

respectively.
Noting that x and y are implicit functions of ℓ, where ℓ is the source path, the concentration can be found by integration

$$
\begin{equation*}
\Psi=\frac{Q^{\prime}}{u} \int_{0}^{\overline{\mathrm{AB}}} \Psi_{H} \mathrm{~d} \ell \tag{9}
\end{equation*}
$$

FIGURE 7. COORDINATE SYSTEM USED BY HIWAY MODEL (from Zimmerman and Thompson (1974)).
where the upper limit of integration is the source length (see Figure 7). This model employs a trapezoidal approximation for the numerical integration.

The dispersion coefficients used in this model are obtained from PasquillGifford curves. To obtain estimates for the dispersion coefficients where a downward distance is less than 0.1 kilometers, an extrapolation of the existing curves is used.

Airpol-4:
This model, developed by Carpenter and Clemena (1975), also uses a Gaussian type of formulation. Although this model predicts both upwind and downwind concentrations, only the latter will be considered here.

Airpol-4 is unique in that it uses two Euclidean coordinate systems, the receptor and roadway coordinate systems. These are illustrated in Figure 8. The method employed calls for the mapping of the roadway coordinate system onto the receptor coordinate system. The transformation

$$
\begin{equation*}
\mathrm{T}:(0, x, h) \longrightarrow \text { roadway }(p, d i s t, z) \tag{10}
\end{equation*}
$$

is performed by the use of

$$
\begin{align*}
p & =-d(\cos \theta)+r(\cos \theta) \\
\text { dist } & =d(\sin \theta)+r(\cos \theta) \tag{11}\\
z & =h
\end{align*}
$$

The authors of this model point out that this transformation is advantageous since it allows the equation to be integrated over all roadway points contributing to the pollution at a particular point.

$$
\begin{gather*}
\Psi(x, y, z, h)=\frac{Q}{2 \pi \sigma_{y} \sigma_{z} u} \exp \left[-\frac{1}{2}\left(\frac{y}{\sigma_{y}}\right)^{2}\right] \\
\left(\exp \left[-\frac{1}{2}\left(\frac{z-h}{\sigma_{z}}\right)^{2}\right]+\exp \left[-\frac{1}{2}\left(\frac{z+h}{\sigma_{z}}\right)^{2}\right]\right) \tag{12}
\end{gather*}
$$

FIGURE 8. COORDINATE SYSTEM USED BY AIRPOL-4 (from Carpenter and Clemena (1975)).

Since the Pasquill-Gifford σ_{y} are based on sampling times of 3 to 10 minutes, the effect of horizontal micro-wind variations are ignored. Following Turner's (1970) suggestions, the authors of Airpo1-4 developed a method to adjust the Pasquill-Gifford σ_{y} values. This was done through the use of a power law relationship

$$
\begin{align*}
& \frac{\left(\sigma_{y}\right) t 2}{\left(\sigma_{y}\right) t 1}=\left(\frac{t_{2}}{t_{1}}\right) p \tag{13}\\
& t=\text { time }
\end{align*}
$$

where the exponent p is a function of stability.
Carpenter and Clemena (1975) also solve the mathematical difficulty presented when a dispersion function is expressed as

$$
\begin{equation*}
\Psi \propto 1 / u \tag{14}
\end{equation*}
$$

It is clear that as the wind speed approaches $0, \Psi$ approaches infinity. Airpol-4 uses

$$
\begin{equation*}
\Psi \propto 1 /(u+1.29 \cdot \exp (-0.22 \cdot u)) \tag{15}
\end{equation*}
$$

which is bound by finite limits and therefore is not subject to the difficulty presented above.

Now, using the above information, the problem of predicting the concentration is reduced to evaluating

$$
\begin{equation*}
\Psi=\frac{Q^{\prime}}{2 \pi u} \int_{M}^{U L}\left\{\frac{\exp \left[-\frac{1}{2}\left(\frac{y}{\sigma_{y}}\right)^{2}\right]}{\sigma_{y}}\right. \tag{16}
\end{equation*}
$$

where (note: see Figure 8)

$$
\begin{aligned}
\mathrm{UL}= & \text { the distance roadway extends in a straight line upwind from the } \\
& \text { point }(0,0, \mathrm{~h}) \text { roadway } \\
\mathrm{DL}= & \text { the distance the roadway extends, in a nearly straight line, } \\
& \text { downwind from the point }(0,0, \mathrm{~h}) \text { roadway } \\
M^{\prime}= & \text { distance between intersections of } R \text { and } P \text { axes and }(0,0, h) \text { roadway } \\
M= & \max \left(M^{\prime},-D L\right)
\end{aligned}
$$

Since numerical integration of the above equation with a digital computer is costly, a mathematical technique is used in evaluating the integrand. The authors of Airpol-4 found that, in the neighborhood of $\theta \approx 90^{\circ}$, the integrand behaves much 1ike

$$
\begin{equation*}
g(r)=a e^{-(a r)^{2}} \tag{17}
\end{equation*}
$$

where r is defined in Figure 8, and

$$
\begin{equation*}
a \approx\left(\sigma_{y}+\sigma_{z}\right) \tag{18}
\end{equation*}
$$

In the neighborhood of $\theta \approx 0$; the integrand behaves much like

$$
\begin{equation*}
h(x)=\frac{e^{-\left(\frac{a}{r}\right)^{2}}}{x} \tag{19}
\end{equation*}
$$

By using the above reproductive models of the integrand, the computation time is greatly reduced.

EMP-1:
This is an empirical model developed by Noll, Miller, Raney, and May (1975). This model was derived through a dimensional analysis of the form

$$
\begin{equation*}
\Psi \propto \frac{k \theta}{u^{\prime}(x / \sin \theta)^{2}} \tag{20}
\end{equation*}
$$

where

$$
\begin{aligned}
x= & \text { downwind distance } \\
k \& a= & \text { empirical coefficients } \\
u^{\prime}= & \text { component of mean wind velocity normal to } \\
& \text { road }
\end{aligned}
$$

By performing a regression analysis on $\ln \left(\Psi u^{\prime} / Q\right)$ versus $\ln (x / \sin \theta)$ Noll obtained values for the constants in the above equation. The calibrated equation is

$$
\begin{equation*}
\psi=\frac{8.18 Q^{\prime}}{u^{\prime}(x / \sin \theta)^{1.106}} \tag{21}
\end{equation*}
$$

Model Validation:

The above models were all initially calibrated by their developers, with limited data. This calibration was performed through the use of a calibration coefficient in the predictive equation or by calibrating the dispersion coefficients. With the calibration performed, these models were tested for accuracy against the same data that were used in the calibration. In doing this, one may expect good results because the same data were used to "fit" the model as were used to validate it. A test of these models with independent data sets is needed before the validity of each model may be determined.

Upon reviewing the above models, it is apparent that many assumptions concerning micrometeorological parameters have been made. Furthermore, it seems that the validation of these models is inconclusive. In view of this, a model which takes into account meteorological phenomena and is also validated with several independent sets of data is presented.

As can be seen from a review of the attempts to model pollutant dispersion from roadways discussed in the previous section, the major assumptions in the models are:
1.) Gaussion distribution of pollutants in both horizontal and vertical planes.
2.) Both horizontal and vertical dispersions are functions of stability and downwind distance traveled from the source and not a function of height.
3). Diffusion is independent of site topography.
4). Wind speed is constant with height.

The main difference in the models discussed in the previous section is in the methods used to obtain values for the dispersion coefficients. These assumptions result in diffusion equations which are easily solved and require simple input information. Table 4 summarizes the dispersion coefficants used by each model.

To remove the last three of the above restrictions which are known to be in error, a more general solution to the diffusion equation was found, i.e.

$$
\begin{equation*}
\Psi\left(X_{0}, Z\right)=\frac{Q^{\prime} r}{u_{1} T^{\prime}(s)}\left(\frac{u_{1}}{r^{2} K_{1} D_{D}}\right) \quad 2 \quad \exp \left[\frac{-u_{2} Z^{r}}{r^{2} K_{1} K_{0}}\right] \tag{22}
\end{equation*}
$$

where

$$
\begin{aligned}
r & =\alpha-\beta+2>0 \\
s & =(\alpha+1) / r \\
\alpha & =\text { function of wind profile } \\
\beta & =\text { function of stability } \\
\Gamma(s) & =\text { Gamma function of } s \\
x_{0} & =x+x_{1} .
\end{aligned}
$$

$K_{1}=$ eddy diffusivity at reference height of 1 m
$u_{1}=$ reference wind velocity at 1 m
$x_{0}=$ downwind distance from virtual origin
$Z_{1}=$ reference height $=1 \mathrm{~m}$
This equation as used here is valid only. for the reference height $Z_{1}=1 \mathrm{~m}$. The virtual origin concept is used when an initial dispersion of pollutants is assumed and is shown in Figure 5. The virtual origin is a hypothetical source that would produce a plume having a width equal to that of the source at its location.

Thus equation 22 allows for 1) the variation of the mean wind speed in the vertical direction, and 2) variations in surface roughness and variations in atmospheric stability. However, sensitivity analysis run on the model showed that variation in atmospheric stability had negligible effect on the predicted concentrations. Therefore, the stability variation was dropped from the model.

The well known logarithmic velocity profile

$$
\begin{equation*}
u(z)=\frac{u_{*}}{k} \quad \ln \left(z / z_{o}\right) \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
u_{*} & =\text { friction velocity } \\
z_{o} & =\text { surface roughness parameter } \\
k & =\text { von Karmons constant }
\end{aligned}
$$

was used to describe the velocity in the model. The surface roughness parameter can be calculated from

$$
\mathrm{z}_{\mathrm{o}}=0.15 \mathrm{~h} \mathrm{c}
$$

$$
h_{c}=\text { mean height of actual surface roughness elements }
$$

The friction velocity may be calculated from a measurement of the actual
wind velocity at a one meter height for a particular site

$$
\begin{equation*}
u_{*}=\frac{0.4 u_{1}}{\ln \left(z_{1} / z_{0}\right)} \tag{25}
\end{equation*}
$$

Figure 5, Virtual Origin Concept
where u_{1} is the measured velocity at height z_{1}. In the calculational procedure for the model, the virtual origin distance is found by minimizing the function

$$
\begin{equation*}
G\left(x^{\prime}\right)=\sum_{i=1}^{4}\left(\Psi_{i}-x_{i}\right)^{2} \tag{26}
\end{equation*}
$$

where

$$
\begin{aligned}
\Psi & =\text { concentration calculated by equation } 24 \\
X & =\text { concentration at downwind edge of roadway } \\
x^{\prime} & =\text { distance of virtual origin from downwind roadway edge. }
\end{aligned}
$$

The summation is performed over the profile at the edge of the road (at heights of $5,10,15$, and 20 feet). Since the 5 -foot concentration is of more interest, the minimization at the 5 -foot level is weighted more heavily than the others.

A predictive equation for the concentrations at the downwind edge of the roadway was found in much the same manner as Noll, Miller, Rainey, and May (1975) found EMP-1. By performing a dimensional analysis on the independent variables involved, the following equation was obtained,

$$
\begin{equation*}
x=\frac{\Lambda Q^{\prime}}{u \cdot \sin \theta \cdot 0.5 \mathrm{w}} \tag{27}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Lambda=\text { empirical calibration coefficient } \\
& w=\text { width of roadway }
\end{aligned}
$$

Calder (1973) has shown that the pollutant concentrations at any given point perpendicular to the roadway are virtually independent of the wind angle. Hence equation (27) reduces to

$$
\begin{equation*}
\mathrm{x}=\frac{\Lambda Q^{\prime}}{\mathrm{u} \cdot 0.5 \mathrm{w}} \tag{28}
\end{equation*}
$$

which agrees with the form presented by Pasquill (1974) for the algebraic integration for an area source.

Using carbon monoxide data provided by Miller (Dr. Terry Miller, Enviromeasure Inc., Knoxville, Tennessee), regression analyses were performed. This was done with SAS, a computerized library of statistical subroutines designed by Barr and Goodnight (1972). The analysis was performed on both

$$
\begin{equation*}
x \text { versus } \frac{2 \theta^{\prime}}{u \cdot s i n \theta \cdot w} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
x \text { versus } \frac{20^{\prime}}{4 \cdot w} \tag{30}
\end{equation*}
$$

where

$$
\chi=\text { roadside concentration at } 5 \text {-foot height }
$$

TABLE 4. Summary of Regression Analysis of Roadside CO Concentrations

Regression Performed	Wind Speed	Cofinient of Determination	Constants
X vs. $\frac{2 Q^{\prime}}{u \cdot \sin \theta \cdot w}$	$>.54 \mathrm{~m} / \mathrm{s}$	0.13	0.44
$\chi \operatorname{vs} \frac{2 Q^{\prime}}{u \cdot w}$	$>.54 \mathrm{~m} / \mathrm{s}$	0.85	6.87

Through a preliminary graphical analysis of the concentration profiles at the edge of the roadway, the profile was found to be an exponential function of height, name1y

$$
\begin{equation*}
x(z)=x_{*} \exp \left(a_{0}+a_{1} z\right) \tag{31}
\end{equation*}
$$

where

$$
\begin{align*}
x_{*}= & \text { concentration at } 5 \text { foot level calculated with } \\
& \text { equation (} 28 \text {) } \tag{28}\\
a_{0}, a_{1}= & \text { empirical constants }
\end{align*}
$$

Performing a regression analysis on $\ln \left(\frac{\chi(z)}{\chi}\right)$ versus z yielded values of 0.1478 and -0.1211 for a_{0} and a_{1}, respectively. For this regression a coefficient of determination of 0.17 was obtained. This low value was obtained because of the large scatter in the data. It should also be noted that this regression was performed with limited data. The minimization of equation (26) is now readily performed and a value for x^{\prime} obtained.

The lowest wind velocity in the data used to calibrate the model was 0.54 meters per second. Thus, the minimum wind speed the model will accept is 0.54 meters per second. By setting this limit the model will not be applied beyond the range for which it is known to be valid. This limit also eliminates the problem of the asymptotic infinite behavior of equation (28) at very small wind speeds.

Once the virtual orgin has been located, the profiles downwind of the roadway are calculated from equation (22).

The current model was called "TRAPS" for Texas Roadway Air Pollution Simu1ator.

Chapter 6
Discussion of Results

The results presented here are of an interim : nature and are not complete. They primarily represent the work progress as of August 1 , 1976. The discussion will be divided into two sections consisting of the experimental data collection program and the model analysis and development.

Discussion of Experimental Data Collection Program

Experimental data have been collected for eight days at the North Loop Site in Houston. The data in their original are stored on nine track magnetic tape which is compatible with most computers. The data are collected on an almost continuous basis. A computer program has been developed which will assemble the data into averages of any desired length. A sample of the results are shown in Tables $6,7,8,9,10$ and 11 . These represent 5 minute, 15 -minute and one hour averages for two one hour intervals.

The first one hour interval shown in Tables 6, 7, and 8 is typical of the usually good dispersion of the pollutants from the roadway. However, the second one hour interval shown in Tables 9,10 , and 11 is representative of an unusual condition. At approximately 16:15 hours on May 4,1976 , the wind profile "inverted". As can be seen in the tables, the highest windspeed was at ground level. This wind inversion lasted less than ten minutes, but during this period the carbon monoxide levels increased by 50 percent. The carbon monoxide concentration was stil1 increasing when the inversion "broke".

This inverted wind condition has not been considered in any dispersion model to date. Furthermore, this condition also exemplifies the problem involved in
using models that work on one hour averaged data. In ten minutes, a condition occurred from start to finish and the carbon monoxide response was not proportional to the condition change. The averaging models are all based on the assumption that the change in carbon monoxide concentration is proportional to the change in any parameter, assuming that the others hold constant. These data unfortunately show that this assumption is not always true and that dispersion from roadways is a very complex process.

The data collection equipment is currently set up at the Katy Freeway site and is ready to begin data collection. Present plans are to move back to the North Loop site by the first part of September, 1976 and then to Dallas and San Antonio. The original proposal called for data collection in Austin. However, no suitable site to set up the equipment could be found. It is also planned to move the equipment to El Paso in the spring or summer of 1977.

Discussion of Dispersion Model Analysis and Development

In determining the validity of any dispersion model, the accuracy of the data being used must be considered. Five sets of data were used in the analysis. These data sets were Noll, Miller, Rainey, and May (1975), Noll (1973), Carpenter, Clemena, and Lunglhofer (1975), Habegger et a1. (1974) and Ranzieri (1975). These sets were discussed in Chapter 5. The current model along with CALINE -2, HIWAY and AIRPOL -4 which were discussed in Chapter 5 , were compared to the data. As mentioned previously, both these models and the data are based on one hour averages.

The overall results of the comparison of these models to each data set are shown in Figures 9 through 13. These comparisons are for all of the data from a particular site and are summary comparisons. These results show that with the
modifications used in the present model greatly improved results are obtained. Detailed comparisons of the results can be found in Maldonado's (1976) work and will be included in the final project report.

Model improvement work is continuing. The data from the current research program can be used for development of models based on other than one hour averages. Comparison of the various models with the experimental data from the current program is underway and has not been sufficiently completed to include in this report.

Summary

The experimental data collection program is well underway and several days data has been collected at the North Loop site in Houston. The equipment is also ready to begin data collection... at the Katy Freeway Site in Houston. In addition, dispersion model analysis and development is well underway and greatly improved results have already been obtained.

figure 9. regression lines of models for TENNESSEE DATA.

FIGURE IO．REGRESSION LINES OF MODELS FOR NORTH CAROLINA DATA．

FIGURE 1I. REGRESSION LINES OF MODELS FOR VIRGINIA DATA.

FIGURE 12. REGRESSION LINES OF MODELS FOR ILLINOIS DATA.

FIGURE 13 REGRESSION LINES OF MODELS FOR CALIFORNIA DATA

Data Locations

G	CAL			C04H											
	TOTAL				C04L										
C06H		TOTAL	EASTBO	JND				TOTAL	WESTBO			C01H	C02H	C03H	C05H
C06L					GRA	ND TOTA						C01L	C02L	C03L	C05L

TABLE 6

			0^{5}	MinUte	AVERAGE AT		15:0		FILE:		AY 4 ,	ATGRADE				
	21	43		39			65	10	33	0	215	-3.24*	******	220,25	74,92	736.4
	$68.5{ }^{\circ}$	61.3	0.0	53.3	29.0	44.9	53.2	53.2	52.7	0.0	53.9	24.087*	******	90870	ワ.7こ2	34.6554
	14	: 1	0	3	0	1	a	2	5	0	44	-7.56	14.25	171.45	76.26	
-	74.0	61.4	0.0	57.7	0.0	51.5	61.9	$53 \cdot 3$	54.6	0.0	63.9	14.842	2.990	24.9:5	0.754	
	3	3	0	0	0	1	2	1	0	0	13	0.82	12.97	839.12	75.50	39.39
	69.8	58.3	0.0	$0 \cdot 0$	0.0	52.9	55: 0	58.4	0.0	0.0	60.7	12.641	3.715	15.963	0.834	0.307
	2	4	0	2	0	1	10	0	1	\bigcirc	20	-2.98	9.78	291:01	79.72	37.36
	70.1	60.1	0.0	59.8	0.0	55. 4	62.7	0.0	54.6	0.0	61.8	6.595	3.363	31.027	0.829	0.353
	0	0	0	0	0	0	0	0	0	0	0			1.84		
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$0=0$	0.0	0.0	0.0			0.4211		
	40	61	0	44	19	9	55	13	35	0				i. 82		
	70.7	61.1	0.0	53.9	29.0	47.7	55.8	53.6	$53 * 0$	0.0				0.3105		
*******			164					126				0.85	0.44	0.48	0.43	
*******			57.8					54.1				0.3306	0.5463	0. 3939	0.2447.	
0.06						90						2.49	2.01	2010	1.60	
0.2551												0.6614	0.9915	0.8475	0.5982	

TABLE 6 (continued)

	5			minute average a			$\begin{gathered} 15: 5 \\ 48 \end{gathered}$		File:		AY 4,1	ATGRADE				
	34	64	0	72	21	3			33	0	284	0.52*	*******	21:085	74.14	7アコ.4
	71.3	60.9	0.0	54.8	26.7	52.7	54.2.	52.4	52.4	0.0	$5.5 \cdot 6$	14.908*	*******	27.355	0. 736	25.6:25
	21	15	0	11	0	5	7	6	5	0	70	-3.13	13.32	259.71	75.34	
	72.0	60.6	0.0	60.1	0.0	57.3	61.2	54.2	53.9	0.0	62.8	17.330	1.994	25.844	0.534	
	6	6	0	1	1	2	10	1	2	0	29	2.26	12.31	129.44	75.91	33.55
	70.4	59.8	0.0	58.2	38.6	58,4	63.5	57.0	47.7	0.0	61.5	13.072	2.519	23:573	0.265	C.348
	3	9	0	1	3	6	6	0	5	0	33.	0.49	10.01	278.16	79.39	36. 22 $^{\text {2 }}$
	78.4	62.0	0.0	47.5	47.2	61.3	66.9	0.0	59.2	0.0	62.0	6.346	3.558	32.660	0.743	0.375
		0	0	0	0	1	0	0	0	0	1			1.83		
	0.0	0.0	0.0	0.0	0.0	61.7	0.0	0.0	0.0	0.0	62.7			0.4705		
	64	94	0	85	25	15	71	16	45	0				1.98		
-	71.8	60.9	0.0	$55 \cdot 4$	29.6	58.0	57.3	53.4	53.1	0.0						
*******			268	.				148				0.89	0.79	0.88	0.48	
*******			58.8					55.7				0.3253	0.7752	0.5440	0.3596	
0.16						6						3.21	$2 \cdot 77$	2. 50	2.23	
0.5019												1.2203	1.6120	1.1080	1.0334	

TABLE 6 (continued)

TABLE 6 (continued)

TABLE 6 (continued)

)															
	5			minute average at			$\begin{gathered} 15: 35 \\ 58 \end{gathered}$		FILE: MAY 4,			ATGRADE				
	28	74	0	60	23	16		8	37	0	310	0.51*******		225.89	74.45	715.8
	69.6	59.5	0.0	53.4	27.4	44.9	52.8	54.8	52.6	C. 0	53.3	14*351*******		15.370	0.843	29.9792
	26	18	0	4	5	7	7	10	7	0	84	-1.14	11.61	177.03	75.94	
	70.9	58,5	0.0	57.6	37•4	52.1	61.2	51.8	54.4	0.0	59.6	14.725	4.185	16.973	0.835	
	1	5	0	1	1	1	4	4	6	0	23	-0.70	9.53	243078	76.12	40.50
	67.1	60.9	0.0	55.3	41.3	55.6	61.7	54.4	51.6	0.0	56.4	12.633	2.911	23.276	0.553	0.165
	8	11	0	3	3	6	15	1	10	0	57	0.33	7.62	284.30	79.55	37.93
	70.7	61.6	0.0	49.4	41.9	57.9	62.7	58.7	54.5	000	59.8	5.497	2.993	31.464	0.329	0.244
	0		0	0	0	1	1	0	0	0	2			2.68		
	0.0	0.0	0.0	0.0	0.0	59.9	60.3	0.0	0.0	c.0	80.1			1. 5154		
	63	10.3	0	68	38	30	84	23	60	0				1857		
	$70 \cdot 3$	59.6	0.0	53.5	30.2	49.5	55.7	53.6	53.0	0.0				0.5357		
*******			277					197				1.46	-0.92	6.48 *	*****	
*******			56.5					53.7		.		1.7127	1,7308	0.5992*	******	
. 0.00						74						2.37	3.95	5.08*	******	
0. 1903												2.6746	2.1948	8. $7138 *$	水****	

TABLE 6 (continued)

TABLE 6 (continued)

******* ******* **\#れ末** *******

TABLE 7

TABLE 7 (continued)

옹

TABLE 7 (continued)

		15	MINUTE	AVER	AGE AT	15:0				AY 4.	ATGRADE				
131	241	0	2:4	77	34	24 6	52	120	0	1015	-1.88*	*****	213.62	75,05	659.8
69.6	59.5	0.0	53.8	29.3	$45 \cdot 6$	53.1	53.6	51.2	0.0	54.6	12.394	******	:4.772	0.947	50.4911
66	47	0	12	4	7	29	59	28	0	252	-3.99	10.12	151.31	76.07	
70.4	61.3	0.0	60.8	41.1	52,	57.6	56.2	50.3	0.0	60.3	12.967	2. 776	28.269	0.871	
10	12	0	2	2	3	14	14	14	0	72	-0.39	9.92	230.17	76.40	40. 52
70.8	62.0	0.0	58.7	46.2	50.6	$62 \cdot 3$	53.3	55.0	0.0	59.2	12.734	2. 665	19.331	0.710	0.330
25	28	0	6	8	22	46	6	24	0	165	0.15	8.52	274.36	79.59	37.86
72.3	64.7	0.0	60.2	46.8	58.7	61.5	53.9	54.5	c.0	61.3	5.664	2. 304	22. 228	c. 518	0.737
0	0	0	0	0	5	1	0	0	0	- 6			2.48		
0.0	0.0	0.0	0.0	0.0	58.0	57.6	0.0	0.0	c. 0	57.6			0.7323		
232	328	0	234	91	66	235	131	186	0				1.92		
70.2	60.3	0.0	54.4.	31.7	50.9	55.8	54:8	51.7	0.0				0.5135		
		885					618				1.50	******	0.78	0.36	
		58.4					53.8				0.7590	******	0.6838	0.2483	
			1503								4.04	3.55	2. 52	2:13	
			56.5								1.2490	1. 2948	c. 9264	0.7808	

TABLE 8

			60	MINUTE 755	AVERAGE AT 16: I					$E:$	AY 4.1976	ATGRADE				
	426	858	1		307	144	667	148	470	1	3777	- - $37 *$	******	216.14	74.54	7C2.
	69.5	59.8	46.5	54.0	28.1	45.6	53.3	53.5	51.3	56.7	54.2	14.682*	******	15.858	0.85.7	$\therefore 6.4295$
	225	170	0	49	28	33	128	140	101	0	874	-2.85	11.17	167.07	75.78	
	70.2	60.9	c. 0	59.3	39.6	54.1	59.6	55.3	51.7	0.0	60.1	14.520	3.123	28.384	$0,78!$	
	40	50	0	13	12	16	55	39	Э9	0	264	-9.00	10.37	134050	76.20	40.00
	70.2	61.5	0.0	58.8	$43 \cdot 3$	55. 5	61.0	54.1	52.8	0.0	59.0	12.297	2. 897	22.927	0.573	$0.88 ?$
	76	92	0	19	31	67	132	1.5	91	1	524	0.27	8.76	281.39	$79 \cdot 63$	37.51
	72.9	63.2	0.0	56.9	44.8	57.9	53.2	52.9	55.5	58.7	61.0	5.776	2.798	29.823	0.730	3. 645
	2	0	c	0	0	12	5	0	1	0	20			2.01	*	
	76.9	0.0	c. 0	0.0	0.0	60.3	64.5	0.0	48.4	0.0	62.4			0.8394		
	767	1170	1	836	378	260	980	342	701	2				1.79		
	70.1	60.3	46.5	54.5	30.8	50.5	55.9	54.3	51.9	57.7				0.5353		
*******			3152					2287	.			1.19	******	1,33	0.38	
*******			57.6					53.8				0.8130	******	3. 5399	0.2751	
0.11						39					-	3.37	3.21	2.80	2.02	
0.3413						- 0						1.7050	1.6380	2.7462	0.6783	

TABLE 9 (continued)

TABLE 9 (continued)

******* *******
 0.03
 0.3200

		5	MINUT	AVERAGE AT		16:30		FILE: 0		MAY 4,1976	ATGRADE			
47	76	0	76	31	9	5:	15			349	-3.31*	*****	73.30	587.
70.7	60.8	0.0	53.6	28.9	46.3	$52 \cdot 2$	56.2	51.2	C. 0	54.7	12.525*	******	0.697	1989499
17	22	0	1	2	0	9	E1	9	0	81.	-0.25	10.46	75.49	
70.9	61.2	0.0	63.0	37.9	0.0	62.7	55.3	47.9	0.0	59.3	12.812	4.490	0.582	
5	3	0	0	4	4	4	4	2	0	26	1.78	8.87	75.94	420.7
69.4	$63 \cdot 6$	0.0	0.0	42.8	53.7	60.9	53.7	47.2	0.0	56.8	1:.977	3. 261	0.320	0.341
0	7	0	1	2	3	3	1	6	0	23	1.08	8.02	79.74	38.15
0.0	67.1	0.0	65.5	45.8	58.7	60.3	65.2	53.6	0.0	59.6	4.534	2. 300	0.240	0.449
0	0	0	0	0	0	0	0	1	0	1				
0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	47.6	0.0	47.6				
69	108	0	78	39	16	67	41	61	0					
70.6	62.3	0.0	53.9	31.7	50.5	54.05	55.7	50.8	0.0					
		294					185				1.55*	******	0.47	
		57.6					53.2				0.8024*	******	. 2965	
					79						3.05	2. 71	2.06	
											0.9071	. 9262	0.5268	

TABLE 9 (continued)

TABLE 9 (continued)

TABLE 9 (continued)

TABLE 10
FILE: MAY 4.1976 ATGRADE

1.69981 .78651 .35980 .5561

TABLE 11

LITERATURE CITED

Barr, Anthony and James Goodnight, "SAS (Statistical Analysis System) Computer Library Subroutines," Department of Statistics, North Carolina State University, Student Supply Stores, NCSU, Raleigh, N.C. (1972).

Beaton, John L., Andrew J. Ranzieri, and John B. Skog, "Air Quality Manual: Vol. I. Meteorology and its Highway Line Sources." California Division of Highways Report No. CA-HWY-MR6570825(1)-72-11, Sacramento, California (1972).

Beaton, James L., Andrew J. Ranzieri and John B. Skog, "Air Quality Manual: Vol. IV. Mathematical Approach to estimating Highway Impace on Air Quality." California Division of Highways Report No. CA-HWY-MR6570825(4)-72-08, Scramento, California (1972).

Calder, K. L., "Eddy Diffusion and Evaporation in Flow over Aerodynamically Smooth and Rough Suraces: A Treatment Based on Laboratory Laws of Turbulent Flow with Special Reference to Conditions in the Lower Atmosphere," Quart. Journal Mech. and Applied Math., II, 153 (1949).

Calder, Kenneth L., "On Estimating Air Pollution Concentration From a Highway in an Oblique Wind," Atmospheric Environment, 7, 863 (1973).

California Division of Highways, Material and Research Department, "Project Smoke", an unpublished study on atmospheric diffusion, Scramento, California (1972).

Carpenter, William A., and Gerardo G. Clemena, "The Theory and Mathematical Development of Airpol-4," Virginia Highway and Transportation Research Council, Report No. VHTRC75-R49, Charlottesville, Virginia (1975).

Carpenter, William A., Gerardo G. Clemena, and W. Richard Lunglhofer, "Supportive Data and Methods for the Evaluation of Airpol-4," Virginia Highway and Transportation Research Council, Report No. UHTRC75-R57, Charlottesville, Virginia (1975).

Habegger, L. J., et al., "Dispersion Simulation Techniques for Assessing the Air Pollution Impacts of Ground Transportation Systems," Report for Argonne National Laboratory, Argonne, Illinois (1974).

No11, K. E., "Air Quality Report: Interstate 40 Modification Between Stratford Road and Peters's Creek Parkway in Forsyth County, North Carolina, " Report for Harland Bartholomew and Associates, Raleigh, N.C. (1973).

No11, K. E., T. L. Miller, R. H. Raniney, and R. C. May, "Final Report on the Air Monitoring Program to Determine the Impact of Highways on Ambient Air Quality," Department of Civil Engineering, University of Tennessee, Knoxville, Tennessee (1975).

Pasquil, F., Atmosperic Diffusion, D. Van Nostrand Company, Ltd., London (1962).
Passquil, F., Atmospheric Diffusion, 2nd Edition, E11is Horwood Ltd., Sussex (1974).

Ranzieri, Andrew J., et al., "Advanced Air Quality Analysis," California Division of Transportation Training Manual, Sacramento, California (1975).

Ranzieri, Andrew J., Gerald R. Bemis and Earl C. Shirley, "Air Pollution and Roadway Location, Design, and Operation," California Division of Transportation Report No. A-DOT-TL-7080-75-15, Sacramento, California (1975).

Turner, D. Bruce, "Workbook of Atmospheric Dispersion Estimates," U.S. Department of health, Education and Welfare, Washington, D. C. (1970).
U.S. Environmental Protection Agency, AP-42, "Compilation of Air Pollutant Emission Factors, Supplement No. 5," Office of Air Programs, Research Triangle Park, North Carolina (1975).

Zimmerman, John L., and Roger S. Thompson, "Hiway: A Highway Air Pollution Model," National Environmental Research Center, Research Triangle Park, North Carolina (1974).

Appendix A


```
**
IND INTEGER*Q VARIABLE. THE VALUE PASSED BACK TO
        THE CALLER INDICATES THE FOLLOWING
m NOT MORF THAN ONF DATA SET CAN AE OPENED AT
        THE SAME TIME AY PUTP
-2 DATA SET COULD.NOT RE OPENED SUCCESSFULLY.
        PROGARLY MEANS THAT DONAME DID NOT CORRESPOND
        TO DDNAME FROM DD CARD
-1 NDT USFO
    O NO ERRORS WERE DETECTED
>C
AN ERRDR HAS OCCURRED. THF VALUE PASSED BACK
FJFCT
PUTQ
P%!
115
PUTR.DIS
15ING PUT
```

* CALL ENDQ(DONAME.IND,ODTION)
* CALL ENOQLDONAME.IND,ODTINN)
* QSIO1897
* CALL ENOQLDONAME.IND,ODTINN)
* QSIO1898
* CALL ENOQLDONAME.IND,ODTINN)
* (01899
* osro1900
* CALL ENOQLDONAME.IND,ODTINN)
* 0SIO1901
* CALL ENOQLDONAME.IND,ODTINN)
EJFCT
USING
EN
E\#1
-k
X'4,,CL5'ENDO1
STM R14,R12,12(213)
LROP R12,LODNT
DROP R15
USING OSIO,RI2
PAL OF,INIT
USING IHADCS,R5
La OS,DUTDCE
CLC OCDNAME.M(R1)
OF E*?
LA RE,GETDCB
CIC GDONAME,O(P1)
GODNAME,O(R1)
BNE ER\#R
EC SCROFL
O(F,R3)=C*OEWIND.
-*4
CFOSE
c*
((D5),LEAVE)
ExIT
CLOSF EX(R5),RFREAD)
E*4
INItIALIZE - SAVE AQEA CHAIN ETC.

``` * QSI0189
* OSIO1899 * \(\quad\) SSIO1900
* 05101901
* ostoigoz
* 05101903
* asio1904
* OS101905
* Qs 101006
- 0sID1907 - QSIO1907 - asioloce
- 05101909
* OSIO1910
* QSIO1911
* QSi01912
* QSIn1913
* 35101914
- 5 siniol4
* 25101915
* 0sI01916
* QSIO1917
* asiola18
* QSIO1919
- asin1920
* OSIO1921
asiol921 osinio22 QSIO1923 QSIT1924 QSIO1930 QSIT1940 05101950 QSIO1960 05101970 QSIC1980 2SIn1990 asinig90
asin200 QSIO2
QSIO20 2SIO2020 QSIO2030 05102040 QSI02050 05102060 QSIn2070 QSIO2070
05102090 \(Q 5102090\)
05102090 asin2100 osin2110 asin2120
\(\stackrel{\infty}{\omega}\)

putdes

\section*{EROOT=ACC}

DCS \(D S O R G=D S, D E V D=D A, S Y N A D=E R Q X, M A C R F=(P M)\)
EJFCT
DCBD DSORG=(QS). DEVD=(DA)
05102520

1* FND
//STEO? EXFC FORTGCLG
//FORT.SYSIN OD *
DOUPLE PRECISION DTNM(50)
INTEGER*2 CATA(2000)
\(\mathrm{I}=1\)
IED=C.
\(18 \mathrm{LK}=0\)
READ (5,500) NFILE
READ (5,501) (DDNM (J), J=1,NFILF)
1 CONTINUE
\(I B L K=I B L K+1\)
CALL GETP(DDNM(I), ITST, DATA, ILVG)
IF (ITST) 2,4, 3
2 IF (ITST FO.- - 1 ) GO TO 5
WOITF (G.GCO) ITST.JONN(I)
STOD
\(=1 \mathrm{~F}(I E D . G T .2)\) GO TO 1
\(I E \cap=18 O+1\)
IBLK=IRLK-1
BACKSDACE 1
WRITF (6.5C1) 19U, DDNM(I)
GRTH!
4 ILEILNG/?
15-
- JL=DATA(JS)

JOM=OATA (JS+1)
\(J F=J S+J L-1\)
IF (JF •GT.IL) GO TO
IF (JDM.EO.O.DR.JOM.EQ.5) CALL LIST(DATA.JSH4,JE)
IF (JL.GT. 120) GC TO 7
IF (DATA(JS+1) LLT.? .MP. DATA(JS+1).GT.2)) GOTM 7
WPITE \((2,2 n N)(O A T A(N), N=J 3 \cdot J E)\)
IF (JF •EQ.IL) GO TO 1
\(\mathrm{JS}=\mathrm{JE}+\frac{1}{5}\)
\(G O T O\)
© CALL FNDQ(DDNM(I). ITST, 'LEAVE,
IELK=
\(\mathrm{I}=\mathrm{I}+\mathrm{I}\)
IF (I GT. NFILE) STOD
GOT?
7 WFITF \((6,6 C \supset)\) IGLK, VFILE
Gก Tn 1

500 FORMAT（I5）
501 FOPMAT（8（A8．2X））
5CO FORNAT ：RETRY：I2，FILE：． 48 I
5П1 FORMAT（：READ ERROP：，I5．FILE：FAB）

FND
SUAROUTINE LIST（I：JU，KU）
INTEGER＊2L（ 128 ）／0，1，2，3， \(5,5,45,46,47,22,5,37,11,12,13,14,15.16,17\),
\(>18,18,60,61,50,38,24,25,63,39,34,34,53,53,54,90,127,123,91,108\)
\(>8 \mathrm{P}, 125,77,93,92,78,107,96,75,97,240,241,242,243,244,245,246,247\),
\(>248,249,122,94,75,126,110,111,124,193,194,195,195,197,198,199\),
\(>206,201,200,210,211,212,213,214,215,216,217,225,227,228,229,230\).
\(>231,232,233,192,0,208,0,0,121,27 * 0,251,0,204,7 /\)
INTEGER +2 1（2009）．C（2），IB（55）
CALL CNVRT（ITM．I（JU－2） \(1(J J=1)\)
\(I E(2)=I(J U=3)\)
\(J=4\)
\(I A=K(I-J U+5\)
\(I H=I T M / 360000\)
\(I N=I T M / f O O C-I H * 52\)
Dr 19 II＝JU，KU
\(J=J+1\)
CALI D－口AK（I（I1），C）
IF（C（1）GE． 128 ．OK．C（？）．GE． 12 （A）GD TO 4
\(\operatorname{IP}(J)=256 * 1(C(1)+1)+(C(2)+1)\)
IF（C（1）．NF．13）GOTO 16
If（J）＝？
1与 IF（C（2）．NE．13）G7 T？ 17
\(1 \mathrm{E}(J)=\mathrm{L}(\mathrm{C}(1)+1) * ? 56\)
GO Tn 19
17 CONTINUF
1a CONTINUE
\(1 \ni\) IF \((J \cdot G T \cdot I A) J=I A\)
IF（J．GT．5へ）\(J=5\) ？
\(J D=J=4\)
IF（ITM EEQ．？） 2 ET （ION
WRITE（F，5こ C）IP（2），IH，Im，（IQ（＜），K＝5，J）

4 PETUFN
END
SUEPTUTINE CNVQT（I，IH，IL）
INTEGFR＊？IH，IL
\(I=I L\)
IF（I \(\cdot \mathrm{LT} \cdot \mathrm{O}) \mathrm{I}=\mathrm{I}+6553 \mathrm{~F}\)
\(I=I+6.5536 * 1 \mathrm{H}\)
RETURN
END
SUEOCUTINE DEPAK（I，J）
```

 NTEGER*2 I, J(2),K(2)
 OGICAL*1 A(4)
 EQUIVALENCE (K,A)
 k(1)=I
 k(2)=0
 A(4)=A(1)
 A(1)=A(3)
 J(1)=K(1)
 J(2)=K(2)
 QETURN
 FND
 //go.Dummy Do dummy
(/FTOIFOO: OD UNIT=TAPEQ,VOL=SER=273893.DISO=(OLD.KEEP) .
// L\triangleEFL=11,NANEN)DC日=(LRFC
//FTM\&FCO2 DO UNIT=TADEO,VOL
// OISO=(OLD,KEEE),VALESNRZZ3392,
//FTOIFON3 DO UNTT=TAPEO,LABEL=(?,N-GOIN),DCB=(*,FTOIFOO1)
// NOMIT=TAPEQ,V7L=SFR=Z73993,
OISP=(JL D,KEED),LABEL=(3,NL,.IN),DCB=(*.FTOIFOO1)
,IFOK4 DD UVIT=TADEQ,VOL=SER=ZZ3タ93.
OIGO=(DLD,KEEO),LABEL=(4.NH,,IN),DCB=(*.FTO1FAO1)
\prime/FTM1FONS DN UNIT=TADEO,VOL=SFR=Z77タQ*,
//FTMIFMNISP=(DLD,KEEP),ABEL=(5,NL,,TN),DCB=(**FTO1FOO1)
/ノFTNIFCOG NO UNIT=TADEG,VOL=SED=7Z3QG3,

```

```

\prime/FT\capIFSO7 DD UNIT=TADEG,VOL=SER=Z7MQ93,
/FTM1FOOISD=(DLD,KEEP),LABFL=(7,N_,,IN),DCB=(*,FTO1FOO1)
IFMAQ DI UNTT=TAPFG;VOL=SER=273393.
OISO=(DLD,KEEP),LAGEL=(B.NL,.IN),NCB=(*.FTC1FOO1)
NTFOMG DO UNIT=TASEO,VOL=SFD=773393.
MFTN1FO, NISP=(OLD,KE=P),LABFL=(\exists,NN,INN),DCY=(*,FTC1FOO1)
FFTMIFO:? DO UNIT=TAPEG.VOL=SFQ=2738G3,
\prime\primeFTMIFC1 DISP=(JLD,KEEP),LABEL=(1O,VL,OIN),DCB=(*.FTO1=001)
//FTM1FC1:DO UNIT=TADEG,VOL=SER=ZZ3393.
//FISO=(OLD,KEEP), LABEL=(11,V1,MN),DE\exists=(*.FTO1=001)

```


```

//FT^IFC!3 DO UNIT=TADEO,VDL=SFR=ZZ3多系,
//FTM,GISP=(DLD,KEED), LABEL=(13,NL.,IN),DCB=(**FTOIFOO1)
//FTMIFN14 DO UNIT=TADFO,VOL=SER=273A93,
//FTMIFC15ISR=(OLD,KEEP),LABEL=(14,NL.,IN),DCE=(*.FTO1F0O1)
/FTCIFC15 DO UNTT=TADEG,VOL=SEP=Z7399%,
DISP=(OLD,KEEP),LABEL=(15,VL, IN),DCB=(**FTO1=001)
//FTO1FO16 DO UNIT=TADEO,VOL=SFR=2Z3933.
// OISN=(TLD,KEED),LABEL=(16.VL,OIN),DCF=(*.FTO1=001)
//FT^1FCIT NO UNIT=TADFQ.VOL=SFF=Z72993.

```

```

\primeFTNIFOI\& DO UNTY=TAPFQ,VOL =SER=ZZ3FOB3,
/
OISP=(OLD,KFEO),LAEFL=(:9,VL,,IN),DCB=(*.FTO1F001)
/GO.SYSIN DN*

```

FTOIF FTOIFONO
FTCIFCI 7
/*
/*END

FTOIF002 FTOIFO10 FTOIFOls

FT01F003
FTO1F003 FTOLFO11
FTO1FO19
FTOIFONA
FTglFoiz
FTOIFO22

FTC1F005
FTOIFO13
FTO: \(=006\)
FTO1=014
FTOIFO22
T01F007 FTDIFO2l

FTOLF009 TO1FO16 TOIFOZa

Appendix B
//STEPI EXEC WATFIV REGION=256K
//FTOIFOO1 DD UNIT=TAPE \(9, V O L=S E R=O O O 123, D S N=R A W D A T A L . ~\)
// OTOIFON2 SP= (OLD,KEEP), LABEL=(1,SL, IN)
\(/ / F T O L F O 2 Z\) DO UNTT=TAPEG,VOL = SER=000123, DSN=RAWOATAZ.
//FTOIFODISP=(OLD,KEEP),LABEL=(2,SL, IN)



SOACE=(CYL. \((30.6)), D S N=S E M I S O R T\)
//5YSIN DD DATA (FECFM=VB, LRECL=3700.BLKSIZE=13003)
//SYSIN DO DATA
//\$OOTIONS

\(>18,18,60,61,50,39,24,25,63,39,34,34,53,53,54,90,127,123,91,108\),
\(>248,249,122,94,75,126,110,11,97,240,241,242,243,244,245,246,247\),
\(>200,201,209,210,211,2,110,111,124,193,194,195,195,197,198,199\),
\(>200,201,209,210,211,212,213,214,215,216,217,225,227,228,229,230\),
\(>231,232,233,192,0,208,0,0,121,27+0,250,0,204,71\)
INTEGER IN(64),IT(64), MN(64), MX(64),UN(54), OF (54),
\(>15(11,64,28) / 19712 \times 0 /, 1(15)\)
INTEGER*2 SPC.SD1, SO2/O/, (2), VM (3.64), 1.3(150)
1NTEGFR* NTO(50)
DFAL O(150)
\(I P O=\) ?
READ (5.502) (NTO(I), \(I=1,50)\)
IF=1
SD1=:
READ \((5,500) \mathrm{N}\)
1 SEAD (5, EO1, END=3) I,IN(I),IT(I),MN(I),MX(I),UV(I), OF(I), (NM(J, 1) : J \(=1,3\) ) DAR \(2 \quad J=1,3\)
CALL DEPAK (NM \((J, 1), C)\)
\(2 N M(J, I)=256 * L(C(1)+1)+L(C(2)+1)\) GO TO 1
\(3 \quad D O 21 \quad I=1, N\)
4 READ \((1,10 \cap, E N O=20) I A,(I B(J), J=2, I A)\) CALL CNVFT(ITM, IS (3), IR(4))
IF \((\operatorname{IR}(2)-1), 15.12 .5\)
5 IF (IE(2)-1C) \(10,9,6\)
5 IF (IA BLT:IC) 60 TO
\(I E(5)=I 8(5)+1\)
IN \((\operatorname{IP}(5))=I \theta(5)\)
DR \(7, J=16.14\)
\(K=J\) -
\(\rightarrow\) IF (UN(IB(5)) EO.O) UN(IB(5))=32000
7 O(K) \(=F L C A T(I R(J)+O F(I B(5))) / F L O A T(U N(I S(5)))\)
\(I F(1), I Q(5), I F)=I F(11, I B(5), T F)+1\)
IF (11, IR (5), IF) =IF (11, IB(5), IF)+1
WRITE \((2,2 C \cap) \operatorname{SPI}, I B(2), I Q(5), I T M, K,(O(j), j=1, K)\)
－ CO TO 4
8 CALL CNVPT（ITM，IB（10），IB（11））
\(\operatorname{IB}(5)=\operatorname{IE}(5)+1\)
DO \(9, j=1,5\)
\(I n=11+3 * J\)
\(I C(J)=I P(I D)\)
CALL CNVRT（IDD，IA（ID＋1），IA（ID＋2））
O\｛Jう＝0．
IF（IC（J）．GT．O）O（J）＝FLOAT（IPD）／FLOAT（IC（J）＊UN（IB（5）））
WFITE \((?, 2 C 1\)（？SPI，IP（2），IB（5），ITM，（IC（J），O（J），J＝1，5） \(\operatorname{IE}(1 G, I B(5) \cdot[F)=I E(10, I B(5), I F)+1\)
GO TO 4
\(1 ?\) IF \((18(2)-5) 11,15,11\)
\(1!\quad I B(5)=I 8(5)+1\)
WRITE（2．20C）SPI，IB（2），IB（5）．ITM
\(I E(I G(2), I P(5), I F)=I E(I A(2), I R(5), I F)+1\)
GOTO 4
\(12 \quad \square D=5\)
13 IF（ID．GE．IA）GO TO 4
\(I B(I \cap)=1 马(10)+1\)
\(I N(I B(10))=I B(10+1)\)
\(\operatorname{IT}(I G(10))=1-10(10+2)\)
\(M N(1 G(I D))=19(10+3)\)
\(M \times(I P(I D)=I B(1 D+4)\)
\(\operatorname{UN}(19(10))=I 3(10+5)\)
\(A(13(10))=13(10+6)\) ．
คc \(14 \mathrm{~J}=1.3\)
al DEDAK（IP（In＋1＋6）．C1
\(14 \mathrm{AM}(\mathrm{J} \cdot \mathrm{I} H(\mathrm{ID})=255+L(C(1)+1)+L(\) C（2）＋1）
\(J=I P(I D)\)
\(1 D=10+10\)
GO TO 13
\(150019 \mathrm{~J}=5.1 \mathrm{~A}\)
CALL DEPAK（IB（s），C

\(I B(J)=256+1(C(1)+1)+L(c(2)+1)\)
IF（C（1）NE．13）Gत tn 16
\(I 己(J)=?\)
GחT？ 19
15 IF（C（2）．NE．13）GOTO 17
\(\mathrm{LE}(\mathrm{J})=L(C(1)+1) * 256\)
GO 1019
17 CONTINUE
1 Q CONTINUE
10 IF（J．GT．IA）\(J=I A\)
\(I F(J \cdot G T \cdot 5 n) \quad j=5 ?\)
\(J D=j-4\)
IF（ITM．EO．O）GO Tח 4

IF (IB (2) EEQ.0) CALL DMRTN(IB(2),NTO.IPO)
IF (IB(2).NE.O) GO TO 197
no \(195 \mathrm{~m}=1.64\)
\(I E(1, M, I F)=I E(1, M, I F)+1\)
WRITF \((2,204) S P 1, S P 2, M, S P_{1}, I N(M), I T(M), M N(M), M X(M), J N(M), O F(M)\), 195 (NM(K,M),K=1,3)
197 CONTINUE
IF (IB(2).EQ.O) SPO \(=S P O+2\)
SPI = SPR +1
IF (IR(?).EQ.O) IF \(\mathrm{IF} I \mathrm{IF}+1\)
IF (IB(2) EQ. 0) WRITE \((6,601)\)
WRITE \((6,600)\) IB(2), ITM, (IB(K),K=5, 1)
WRITE (2,2C2) SOO.IG(2),SP2.ITM,JO, (IB(K),K=5.J)
\(I E(5,1, I F)=I E(5,1, I F)+1\)
GOTO 4
1 CONTINUE
\(11=5 P O+1\)
\(\mathrm{M}=5 \mathrm{Sor} / 2+1\)
on \(22 \mathrm{~J}=1, \mathrm{~F} 4\)
\(\operatorname{IE}(1, J, M)=I E(1, J, M)+1\)
WRITE \((2,2 \cap 4) I 1, S O 2, J, S E 1\). IN(J), IT(J), MN(J), M×(J),UN(J),OF(J),
\(>(N M(K, J), K=1,3)\)
2? CONTINUE
WRITE \((2,203)\) SP2,SP2,SP2,SP2. ( (IE (J,K,1),J=1,11),K=1, 54)
กO \(23 \quad 1=2\), SPO. 2
\(11=I+1\)
\(\mathrm{M}=1 / 2+\)

WRITE \((E, 502)(1,1 \in(J, K, M), J=1,11), K=1,64)\)
23
IOO FORMAT (200(1015))
20. FORNAT (315.115,15,2(250F10.2))

201 FORMAT (315, 115,7(15,F5.1))
202 FORMAT (315, I15.I5.102A2)
20~ FORMAT (315, 115. 65(1115))
204 FORMAT (315.115.5I10.3A2)
SOC FORMAT (15)
501 FOPNAT (1018)
50? FOPMAT (5011)

601 FORMAT (///)
6O2 FORMAT (///.64(20x.1115./))
STOD
FND
SUPFOUTINF CNVOT (I, IH, IL)
INTEGFQ*2 IH, IL
\(\mathrm{I}=\mathrm{IL}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 25 & 6000 & 14 & 921 & 1791 & 13 & -512 & 19796 & & \\
\hline & 26 & 6000 & 14 & 921 & 1791 & 13 & -512 & 19796 & 12880
13135 & 19760 \\
\hline & 27 & 6000 & 15 & 0 & 2047 & 20 & -512 & 19796
18514 & 13135
11825 & 19760 \\
\hline & 28 & 5000 & 15 & 0 & 2047 & 20 & 0 & 18514 & 11825
13088 & 19765 \\
\hline & 29 & 6000 & 16 & 0 & 1500 & 1 & 0 & 22864 & 1672 ? & 19760
8270 \\
\hline & 30 & 3000 & 17 & 0 & 2047 & 41 & 0 & 8224 & & 8270 \\
\hline & 31 & 3000 & 17 & 0 & 2047 & 41 & 0 & 8224 & 20291 & 18481 \\
\hline & 32 & 3000 & 17 & \(0 \cdot\) & 2047 & 41 & 0 & 8224 & 20291 & 19505 \\
\hline & 33 & 3000. & 17 & 0 & 2047 & 41 & 0 & 8224 & 20291 & 18482 \\
\hline & 34 & 3000 & 17 & 0 & 2047 & 41 & 0 & 8224 & 20291 & 19506 \\
\hline & 35 & 3000 & 17 & 0 & 2047 & 41 & 0 & 8224 & 20291 & 18483 \\
\hline & 36 & 3000 & 17 & 0 & 2047 & 41 & 0 & 82 & 202 & 19507 \\
\hline & 37 & 3000 & 17 & 0 & 3047 & 41 & 0 & 9224 & 20291 & 18484 \\
\hline & 38 & 3000 & 1.7 & \(\bigcirc\) & 2047 & 41 & 0 & 82 & 20291 & 19508 \\
\hline & 39 & 3000 & 17 & 0 & 2047 & 41 & & 82 & 20291 & 18485 \\
\hline & 40 & 3000 & 17 & 0 & \(2 \cap 47\) & & O & 8224 & 20291 & 19509 \\
\hline & 41 & 3002 & 17 & - & \(\underset{2047}{ }\) & 41 & 0 & 8224 & 20291 & 18486 \\
\hline & 42 & 0 & 0 & & 2047 & 41 & 0 & 8224 & 20291 & 19510 \\
\hline & 43 & \(\bigcirc\) & 0 & n & \(?\) & 2 & 0 & 0 & - & 0 \\
\hline & 44 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 45 & 7 & 0 & \(n\) & 0 & 0 & 0 & \(\bigcirc\) & 0 & 0 \\
\hline & 46 & \(\bigcirc\) & 5 & 3 & \(?\) & c & 2 & 0 & 0 & 0 \\
\hline & 47 & & & & 0 & \(n\) & 0 & 0 & 0 & 0 \\
\hline & 48 & & & & & & & & & \\
\hline & 49 & & & & & & & & & \\
\hline & 50 & & & & & & & & & \\
\hline \(\bigcirc\) & 51 & & & & & & & & & \\
\hline & 52 & & & & & & & & & \\
\hline & 53 & & & & & & & & & \\
\hline & 54 & & & & & & & & & \\
\hline & 55 & & & & & & & & & \\
\hline & 56 & & & & & & & & & \\
\hline & 57 & & & & & & & & & \\
\hline & 58 & & & & & & & & & \\
\hline & 59 & & & & & & & & & \\
\hline & 60 & & & & & & & & & \\
\hline & 61 & & & & & & & & & \\
\hline & 52 & & & & & & & & & \\
\hline & 53 & & & & & & & & & \\
\hline & 64 & & & & & & & & & , \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|c|}{//STEPZ EXEC SORTO} \\
\hline \multicolumn{11}{|c|}{//SORTIN DD UNIT=SYSDA,VПL = SER=WORK33, DSN=SEMISORT, DI SP= (SHR, KFEO)} \\
\hline \multicolumn{11}{|c|}{//SORTWKO 1 DD UNIT=SYSOA, VOL=SER=WORK33. DI SP= (VEW, DELETE),} \\
\hline \multicolumn{11}{|c|}{// SPACE= (CYL, \((30,3)\), CONTIG)} \\
\hline \multicolumn{11}{|c|}{//SORTKKO 2 D} \\
\hline \multicolumn{11}{|c|}{\multirow[b]{2}{*}{//SПRTWKOZ DD UNIT=SYSDA,VOL=SER=WOPK 33. DISP=(NFW, DELETE)}} \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|c|}{\(1 /\) SDACE= (CYL, 30.3\(),\) CONTIG)} \\
\hline
\end{tabular}
/ SORTOUT OD UNIT=TAPES, VIL=SER=900102, OISP=(NEW,PASS), LABEL=(1.SL).OSN=CHDATA1.FO50476.LO52576.LEV
/ SVYSIN DCB=(LQECL=3700. BLKSIZE=22000, RECFMEVB)
SORT FDD *
SECTFIELDS \(=(5,5, \mathrm{CH}, \mathrm{A}, 15,5, \mathrm{CH}, \mathrm{A}, 10,5, \mathrm{CH}, \mathrm{A}, 20,15, \mathrm{CH}, \mathrm{A}), F I L S Z=E 35000\)
RECRPD TYFE \(=V, L E N G T H=(3700,3700.3700,, 110)\)
Exn
/
/*ENO

Appendix C

```

C this pead reads the a table telling mow many of each type frcoro
C ARE IN THIS DAYS CATA.
REAO (1.1000.END=5BO)(IA,I=1,4).(i(IB{I,J).I=1.1:1),J=2,64)
CALL ITIM(IH,IXOIS.IATS
IF (IX.EQ. O).IX=60
14=0
00 7 I=1.64
00 5 2=1.12
SG(:.J)=10.**30.
Av(1.j)=10.*\#30.
IA=IB(J.I)+1A
co 5 k=1,t
1F (I \&\&T, i2) SCT(I,K,j)=0.0
IF (I \<. 12) ITC(I.K,J)=0
5 CCNTINUE
DO 7 J=12,120
Av(I,J)=10.*-30
SG{I.J)=1C.**30.
DO 7 K=1.6.
IF (I - LT. 12) SCT(I,K,J)=0.0
cono71co
IF (I -LT..12) ITC(I,K,J)=0
7 CENTINUE
IF (IA EC.O) GC TC 2
12=IA
IF (IAT EO.O) GOTC S78
WFITE (6.EOIO)
IF (IE(5.1) EO. O) GO TO 20
IA={B(5.1)
C
C NOE THE LOG IS READ IN AND IMMEDIATLY PRINTED OUT.
DO 10 1=1. IA
REAE(I,IOIO) (IC, J=1,4), IL, (IN(J), J=1,IL)
CALL :TIM(IH.IN,IS.IC)
WRITE(\sigma, 6000) IH, IM, (IN(J), J=1, IL)
CCNTINUE
ECNTINUE
IS(5,1)=0
C
C THE FIAST TEN CMANNELS ARE PADAR CHANNELS AND AS A RESULT MUST EE
C HANCLES SEPERATLY. TMIS SECTION HANDLES TrEM.
DO 130 1=1, 10
FEAD (1.1020) (IC,IKK=1,4).INC.ITY,MIN
IA=I`(2.I)
IBTT=13T
IETT=IST+IAT
K=1 -
-00 30 J=3.9
IA=:A+IB(J.I)
3 0

```

00005200 00055302 co 005400 60005500 00005500
00005700 00005800 00025900
c OCOS000 co00610n \(00 n c 5200\) 00306300 00006400 0.0000500 0.0006500 20005500 00006700 00205800 \(0000 \leqslant 900\) Corc 7000 \(\operatorname{con} 07100\)

00：07300 200．07400 c0007560 00207500 50004400 20007700 20007700
30007800 20007800
-0007900 00008000 coco3100 0.0005230 －9003300 \(\operatorname{ccocs} 4 \mathrm{Co}\) 0．209E0． 0 0 Joesoo COCOSTCO
00003800 00ココロョの0 00059750
00005060 \(9000=100\) CODCF20っ 00003300 00055450 60009500 00305000 C0055700
00029305 00．j2ccon 0001：000 ว0ゴ10：100
20010200
0．031930n
```

00010700
00010500
00010600
00710760
0กク1：38くの
$0.710=50$
$0001: 300$
00011100
$0051: 260$
20．011300
00う11400
－0う11500
2001：500
20911700
00011300
00011900
00312005
00012100
00012200
02212320
－ロロン2
COS：二厶C？
00212500
00012609
00212703
90912800
CCJ1く300
00013000
c．0013100
00213200
000：3300
JCO1340）
c．01350．）
ncci 360：
con13790
00013900
00213700
（C）1二ち゚
COn：410？
0．クロ1420つ
0？～1430）
0.014400
Cこつ145C5
00014500
0201470.
00014800
00014909
OCJ：こうO～
900：5：00

```

If (ICC(M) \(L\) LT. ICE(M-1)) M=M+1
```

 215 CLNTINuE
 L=L+1
 IF (L .LE. IL) GO TO 205
 L=1
 220 centinue
 IF {ITO(L) <E IETTJ GO TO 230
 IF (ITCN).GE. IETT') GO TO 250
 Iz=1z+1
 If (10.E0. 13) G0 r'0 240
 SLY=SUN+D(L)
 SUMSG=SUMSG+E(L)**2
 centinue
 L=L+1
 IF (L .GT. IL) GO TO 280
 GO TO 220
 c
C HEQE IS THE wIND VANE HANCLING SECTION.
240 CCNT:MJE
CCI=C(L)*3.1415526/180.
cE=S:N(DO:1
EC:=CCS(OL:)
SUM=SUM+DO
SL`i=SUM1+DO1
sumsc=3umso+CO**2
Surso:= SUMSO1+001=001
G0 TO 239
250 ccutinue
IF (Iz .LT. 2) GO TO 280
Av(:.K)=Sum,12
AG(I:K)=SUM/IZ
IF (10.NE. 13) GO TO 260
AV(I,K)=(180/3.1415926)*ATAN2(AV(I.K), SUM1/IIZ)
IF (AV(I,K) OLT. O.! AV(I,K)=AV(I,K)+3\in0.
SG(I.K)=SGET((SG(i.K)**E)+((SUMSQ1-(SUM1**2/Iz))/(Iz-1)!)*57.16
centinue
IF (IZ OGT. 3*^NGR/4) GO TO 270
Av(I,K)=10.**30.
SG(: *K)=10.**30.
270 CCNTINUE
k=k+1
IBTT=IETT
IETT=IETTT+IAT
IF (IETT.GT. IET) GO TO 29O
SUM=0.
SUM1=0.
SuMs0=0.
SUMSal=0.
I 2=0
GOTO 220

```

CO2203co －002C4CO 0COZこ500 00520500 00020700 2002280 ： 20020700 20021000 00021100 00021200 20021300 00021400 00021500 20021500 \(\approx 0021700\) 00021300 coo21900 0 CO22C00 \(00: 22: 00\) 50：22200
00022300
\(\operatorname{cog} 22400\) ecoz250． ocn22sfo occez？0n 00.22300 09022300 00023000 00023100 OCO23200 20うこ3300 C0うころ400 \(0002=50.9\) 00025600 0002370 C 00023460 00023900 con24000 Onn2410C 0 O 024200 20024300 20024400 \(n C 024500\) 10.024600 00.224700 00224300 COO24300 00025000 coo25100 30125200 00025300



```

 NCNT=0
 K=1
 LL=1
 IETTミIFT
 -IETT=IZT+IAT
 DO S30 J=1. NDAT
 IF (ITO(J) \bulletLT. IETT') GO TO 530
 IF (ITO(J) GT. IETT) GC TC 520
 510
 cCNTINUE
 if (COD(J):LT.-50.) GC TO \leqslant30
 CODO=CCD(N), (COD(J):-50.) GE TO \leq30
 CODC=CCD(J) :'
 00039500
 00n39660
 00035700
 00039500
 0003570.5
 0003570.3
 00040000
 00040202
 C004C30J
 00040400
 003405:0
 O(FLOAT(IAC(L+I)-ITC(J))/FLOAT(IAC(L+1)-IAC(L))J:*CF(LI) ONO4DEOS
 C25407C0
SLM=SU4+COOD 9, 0004:002
SUMSO=SUMSG+CCOO**2
00041100
NCNT=NCNT +1
00041200
IF (ITD(J) GT.IAC(L+1))L=L+1 2004130%
IF (ITD(J).GT. IET) GO TO 540 000414C0
0.00041500
E20 GONTINUE
00241509
20041500
AV(:.*)=10.**30.
SG(I.K)=10***30.
000418000
IF (NSNT.GT. (J\#NMEF/4, HAV(I,X)=SUM/NCNT (004190?
IF (NCNT GT. (3*NMBR/4)) SG(I,K)=SQRT(SSUMSG-(SUM**2/NGNT)12N042000
1/(NCNT-1) : . JUN42120
K=K+1 t J004<200
K=K+1
00042360
IBTT=IETT 00042360
IETT=IETT+IAT 00042400
NCNT=0
SLM=0.
SUMSO=0.
GCTO E10 * 0 0 % 0642300
lo0442500
00042500
09042700
530 CCNTINUE
00042905
00042905
S40 C.CNTINUE , 20043500
IBTT=FGT-IAT* , N0043100
NAVG=(IET-IBTIAIAT . . . 004320.2
IDAG=1
0004320.3
00043300
00.4.44C0
c
C
C THIS IS THE RSPORT WRITING SECTICN
DO 570 J=: NAVG
ITTL(3.J)=C
ITTL(2.J)=0
ITTL(2.J)=0
00.4.34C5
00043500
00043500
00n43T00
COJ43.300
00043900
00044000
0024410.5
09344109
n0044200
?924432.2
00044400
00044E0?
00.04460?

```
\(\operatorname{TSP}(1, J)=0\). 00044700 \(T S P(2 . J)=0\) ．0244970OC \(54 \leq 1=1,6\)C00449．90Scr（1i．1．J）\(=0\) 。ค0 4500ITCI：1．：」 」 \(=0\)へ00450～0
00.145920CENTINUE
DO 560 I \(=1,11\)0 03452：0
IF (1. EO. 1i) GO TO 546
00045400

    SCTC 5 , \(1=\) SCT ! 1
546

    ccytinue
    00.945500
    CyTINUE
    IFYI E2. 111 GC Tic 548
    ITC(1I. K, J)=ITC(II, K, J)+ITC(I.K, J)
    SCT(11. K. JJ)=SCT(11. K. J) +SCT(I.K. J)
    cCNTINUE

550
    covtinue
560 CCNTINUE
    TTL(3.J) = 1 TC(11.6.J)
    SD(3.1) \(=5 C T(11,6,1)\)
    DC \(5 \in 5 i=1\). 5
    \(12=1+5\)
    ITTL(1.J)=!TTL(1.j)+iTC(1.6.J)
    ITTL(2.J) =iTTL(2, J) +iTC(12,5,J)
    TSP(1.J)=TSP(i, J)+SCT(1,6.J)
    cว (2, 1)=-SP(2, 1\()+S C T(12,501) *\)
    (2.J)+SCT(12.5.J) *ITC(IZ.E.J)
    CENTINUE


    IF (IPAG EQ. 1) WRITE(6, SOIC)
    IF (IDAG EO. 2) IPAG=0
    \(1 P A G=I P A G+1\)
    CALL ITIM(IH.IM.IS. (IBT+IAT*J)
    WRITE (E.GOAOIIX.IH.IM.CATE
    WRITE (E.EO4O:IX.IH.IM.CATE
WFITE\{S.SO20) (ITC(I,I,J).I=1.11), \(4 V(14 . J), ~ A V(I B, J), ~ A V(22, J), ~\)


    00048400


    4).(SCT(I,3,J), \(1=1,11),(S G(1, J), I=12,28,4),(1 T C(1, A, J), 1=1,11)\)


    1 SG(3E,J).(ITC(I.6.J).I=1,:J).AV(37.J).(SCT(I.5.J).I=1.10). 230435C0




    e(SG(I.J).I=3i.35.2). SG(39.J) C0.4.49300
\(c\)
\(c\)
\(c\)
\(c\)
\(c\)
\(c\)
CO \(57 \equiv j=42.64\)
12＝12＋IE（1，J）
575 CONTINUE
0.049502

57E CCNTINUE
NC040800
．06．945900
CALL OMRD（12）
con5030n 0n？ 50100
595 CENTINUE
REDIND 1 0ी： 50100

5s0 Centinue WRITE（6．6010）

00051200
THESE AFE THE FOFNATS RESFCNSIBLE FOR THE READS A 0 wRITES．OOGS：3LS
    100n FQFMAT (315.115.65(1115)) - 0005:a00
    1012 FCRMAT (315.115.15.100A2) 00051502

    1030 FCRMAT (315.115)
    104C FCFMAT (3i5.115.7(I5.F5.1))
    con5:-0.
    c0251300

    S000-FCGथAT (3:10) 00ク5ここ0?
    SOLG FCEVAT (15)
5020 FORM4T (A2O)











    >420)
        stor
Dersこックロ
00053500
00053600
    SLBROLTINE OMRCCI)
    IE (I.EQ.CI AETURN
    DO \(1 \mathrm{~J}=1.1\)
    REAO \{1.100) K
    1 CCNTINUE
00053700
00053300
0C05390?
1 CCNTINUE
100 FOAMAT (15)
00C54200
100 FQAMAT (15)
00054200
    RETUFN
```

