PROGRAM DOCUMENTATION MANUAL
for

THE TEXAS SMALL NETWORK PACKAGE

by

J. D. Benson
Assistant Research Planner

Charles E. Bell
Data Processing Programmer

and

Vergil G. Stover
Study Supervisor

Research Report 167-3

Urban Travel Forecasting
Research Study Number 2-10~71-167

Sponsored by the
Texas Highway Department
in cooperation with
U. S. Department of Transportation
Federal Highway Administration

Texas Transportation Institute
Texas A&M University
College Station, Texas
April 1972

Technical Reports Camier
Texas Transportation Ipsthute

The opinions, findings, and conclusions expressed in this publication
. &
are those of the authors and are not necessarily those of the Federal

Highway Administration.

TABLE OF CONTENTS

Page

ABSTRACT: « + o o o o o o o o o o o o s s o o o o o o o o o s i

SUMMARY @ & ¢ o o o o s o o o s o o o o o o o s o o o o o o s ii

IMPLEMENTATION STATEMENT. « o« o o o o o o o o o o s o o o o « iv

INTRODUCTION: ¢ o o o o o o o o o o o o o s o o o o o o o o » 1
ORGANIZATION OF PACKAGE »

OVERLAY STRUCTURE & & 4 o o s « o o o o o o o o s o s o » I-1

LOGICAL DIVISTON STRUCTURE: &+ « v ¢ o o o o o o o o o o & I-1

LOGICAL DIVISION

INTRODUCTION. « 2 & o o 2 o o o o o o o 6 o ¢ s o » o o o II-1

LOGICAL DIVISIONS AND USER PROGRAMOPTION . . . v & & o o II-2

DESCRIPTIONS OF LOGICAL DIVISIONS & & o « o o o o o o o o I1-7

LOGICAL DIVISION 1 . . 4 & & « & II-8

LOGICAL DIVISION 2 + 4 & o o « & II-11

LOGICAL DIVISION 3 . v v v & & & II-13

LOGICAL DIVISION 4 « . . & « o« & II-15

LOGICAL DIVISION 5 « v & & o & & II-18

LOGICAL DIVISION 6 « v & o o o & I1I1-22

LOGICAL DIVISION 7 ¢ v ¢ « o « o I1-23

LOGICAL DIVISION 8 . v o v o o & II-25

LOGICAL DIVISION 9 v v v ¢ « + & II-26

LOGICAL DIVISION 10. v o o + o & 11-27

LOGICAL DIVISION 11, . . &« +« « & I11-28

LOGICAL DIVISION 12, . & o o o = II-29

LOGICAL DIVISION 13. 4 4 o« ¢ o & 11-30

LOGICAL DIVISION 14, . o o & + & II-32

LOGICAL DIVISION 15. & o o ¢ o« & I1-33

LOGICAL DIVISION 164 v o o o « o 11-34

LOGICAL DIVISION 17. v v & o o & I1-35

" LOGICAL DIVISION 18. v ¢ o & « II-42

LOGICAL DIVISION 19, + « « & « & 1I-43

LOGICAL DIVISION 20. v v o « o & II-45

LOGICAL DIVISION 21. & & o o o.. II-48

PROGRAM CROSS-REFERENCE AND FLOWCHARTS
CROS S"‘REFERENCE OF PROGRAMS e & o & & o & * o o o & e+ o o III_l
FI‘OWCHARTS . L] L] . ‘ L] . L] . L] L] . . L] L] L] . L] . L] . II I—4

A.LCPu s o & o e e e o ® & e 2 & 2 s & & 6 e o @ III—S
BLDNET e o e o s o o ® 8 ¢ 82 & & & ¢ s s e e III"‘6
MVHo @ % % &t s s s e e s e et 4 4 e e ¢ e 8 s e e o III"‘lO

CRD. * e e > e s ¢ e o o ® e.s e & s e o e o o III"ll
CR.DINT * 8 * e e o e e ¢ o . s e o o o » e LI] LI III—].Z

TABLE OF CONTENTS (Continued)

Page

E35. e & o o ° e s ° o 2 e s e e ® o & s e s s III"13
FASPTH o o ¢ o ¢ ¢« ¢ o o o o o o o o o o o o o s ITI-15
ENTER ¢ & ¢ o ¢ ¢ o o o o o o o o o o o s o o ITI-15
FMILNE ¢ o 4 ¢ o o ¢ s e 0 o o o o s o o o o o o« » III-18
FRATAR ¢ o ¢ ¢ o o o o o o o o o s s o s o o s o o ITI-19
GETIDAT . & & ¢ o o o o o o o o o o o o s o o s o III-21
GETRN. v & ¢ ¢ ¢ o ¢ ¢ o o o o o o o s o o o o o o III-22
GETRNS . & 4 o ¢ o ¢ o ¢ o o s o o o s ¢ ¢ o o o o ITI-23
GILD . ¢ &4 ¢ ¢ o o o o o e.s s o s o s s o o o s s II1-24
INITLL & & ve o o o ¢ o o o o o o o o o o o oo o III-28
LNKLST 4 & o o o e o o o ¢ s o o o o o o o s s o o ITI-29
LOAD . o v ¢ o ¢ o o o o o o s o o o s o s s o o » III-30
LOAD 2 & 4 v v o o o o o o o o o o o o o o o oo III-37
MAIN o ¢ ¢ 4 6 6 o o o o s o o o o o o o s a o o o ITII~-42
MERG ¢ ¢ ¢ o 4 o o o ¢ o s o s o o o o s o o o o o III-46
MOORE. . o‘ ® ® & o & o o & 6 ¢ o & 5 ¢ & s ° & e o 111—49
MRGREC « 4 & o ¢ o o ¢ o ¢ o o o o o o o o o o o o III-51
NEWNET o & o & ¢ o ¢ o ¢ o o o o o o o o o o o o o III-58
OUTLLT & & ¢ o o o o o o o o o o o o o o o s o o s IT1-67
OUTLNT ¢ s & & & @ 6 ¢ & o o o s e B ° e & s ¢ e o III-71
OUTINET ° e o’v. e o o & o o o s o & & s * 0 s s e I11-72
OUTRIP 4 4 ¢ ¢ o o o o o o o o o s o o o o s o o o III-74
OUTSIN ¢ v v o o o o o o o o o o o s o s o o o o« III-76
OUTSNT & & & o o o o o o o 5 o o o o o ¢ s o o o o I1I-77
OUTTRE « 4 & o ¢ o o o o o o o o o o o o o s o o o III-78
OUIWLT & o ¢ ¢ ¢ o o o s o o o o o o o o o o o o o I11I-79
PATHCL + v ¢ o o o o o o o o o o o o o o o « o o & III-82
PATHSP o o 4 o 4 o ¢ o o o o o ¢ o o o s o o s o o III-86
PRPBLD @ & & & s 6 o e+ s s e e e s * s s o s s . oo 111-88
PRPCTV 4 ¢ o ¢ ¢ o o o o o o o o a o o s o o s o o ITI-91
PRPNET . # * & & 6 e s e s e s e e s e e s s s s o III—94
ASMNET. & ¢ o o o o o o o o o s o o o o s o @ ITI-94
REVNET: ¢ « ¢ ¢ ¢ o ¢ o o o o o o o o o o o II1I-94
READVL ¢ o 4 o o o o o o o o o o s °¢ s o o o o s » III-95
RTPFL. ® e s e & 5 s e e 0 e e 6 o s e e e s s & . III"96
RTPLT:e o ¢ o o o o o o o o o s o s o o s o o o o« s II1-100
SC v v oo o v n v o III-106
SELECT « ¢ ¢ o o o o & e o o e e IIT-107
SLOAD. + ¢ ¢ ¢ o ¢ o o o & o o e e ITI-110
SUBFND & ¢ ¢ « & o & & o v e s ITI-111
SUMEND . & v ¢« ¢ o s o o & e e s e o o 6 0 s e e ITI-112
SUMRY: o o o o o ¢ o o o o o o o o s o o o o o o o III-113
TREE.. ¢ ¢ ¢ ¢ o o o o o o o o o 6 s o o o s o o s III-114
TREBLD. e & 5 6 o ¢ e e ¢ o s * & * & s s s o III"'llll
SELLD & 4 & 4 o o o o o o o o 5 o o s o o o III-114

TRNe o o o o o o o' o o o o o o o o o o o o « o o+ TIII-115
TRNMV. e ¢ & & & s ° & & 0+ & o e » 2 * & » s o o oo 111‘118
TURNM: & ¢ o ¢ o o o o o o o o o s o o o o s s o o III-119
UPDINT ¢ ¢ o ¢ o o o o o o o o o o o o s o o o o o I11-122
VREC & ¢ ¢ o o 4 ¢ o ¢ o s o o s o o ¢ o o o o o s III~125
WGTLDo ¢ & & e ® & o 4 & s 6 e & s O 2 @ o & o+ o = III"'lBO
WILNT: & o & o o ¢ o o o o o o o o o o o s o o o o III-131

TABLE OF CONTENTS (Continued)

SIGNIFICANT VARIABLES AND ARRAYS
LABELED COMMON. . ¢« « ¢« « .
DESCRIPTIONS OF SIGNIFICANT

ALCP ..

BLDNET v v o o « o « &
CMPVH. + o« o « o & &

CRD: v v v o o o o o
CRDINT v &« v o« o o «
FASPTH v v « o« v o «
FRATAR v + v « o« o o &
GTLD.. v v « o o o o «
INKLST « « o o o o« o «

LOAD AND LOAD 2, . . .
MRGREC. « « « o « « + .
NEWNET. « v ¢ « « o o
OUTLLT. . « . .
OUTNET. « ¢ « o = o o &
OUTSLN.,

OUTSNT. .

OUTWLT. & o v o « o o «
PATHCL. « ¢ « o « « o« &
PATHSP. v v v o o « o &
PRPBLD. & « « o « & « &
PRPNET. & « « « « o o
RTPFL AND RTPLT , . . .
SELECT. « « o« o o « + &
SLOAD v & v o v o « o &
SUMEND. « o o « o o o &
TREBLD. & « « o « o o+ &
.
TURNM ¢ o o « o o « « &
UPDINT. & « o« o ¢ o o+ &
VREC. & v v o o « + & &
WILNT o ¢ o o o o o o &

DATA SETS AND DATA SET FORMATS
DATA SETS « & o & « « &
DATA SET FORMATS. . . .
TRIP VOLUMES DATA

LI .

VARTABLES

e o o o o
.
.

e o o o @

s e o
e ® o e e @€ o ® © e o & © o o &

. .
. . e o * o o o e o

. ..
e @ & o ¢ » e o e o

. .

e e o o o
-
e e o o o

SET. .

FLEXIBLE RECORD DATA SET .
SEPARATION MATRIX DATA SET
SELECTED INTERCHANGES DATA
NODE NAMES DATA SET. . . .

ROUTE DATA SET ., .

¢« o o

SPIDER NETWORK DATA SET.

TRIP MATRIX DATA S

ET . .

.

.

L]

.

L]

L]

.

L]

L]

L]
L] L]
. L]
L) L]
. .
. L)
L L
L] .
. L]
. L]
L] .
L] L]
. .
o .
¢ e
. L]
. L]
L] L
L .
L)
L] L]
L] L]
Ll .
L] []
L] .
.
.
S
.
L] L)
L] .
. .

'SCRATCH NODE NAMES DATA SET.
SCRATCH PACKED LINKS DATA SET.
SCRATCH MULTIPLE ASSIGNMENTS DATA SETS

- OUTPUT SELECTED- LINKS

AND

ET

.
e e © e o e

e ® o © e e * o o

® & & ® s o

ARRAYS,

e o ® e e o o & o ° o o e o

e o o =

SORTED SELECTED INTERCHANGES DATA SET.

.

* e o o

e o ©® o e o

3 . o o

Page

Iv-1
IV-3
IV-4
IvV-5
IV-6
Iv-7
IV-10
Iv-11
Iv-13
Iv-14
IV-17
IV-18
IV-20
IV-21
IV-23
IV-25
IvV-26

IV=-27

Iv-28
IvV-29
IV-31
IV-32
IV-33
IV-35
IvV-37
Iv-38
Iv-39
IV-40
IV-41
IV-43
IV-46
IV-47
IV-48

V-1
V-1
V-5
V-6
V-9
V-10
V-13
V-14
V-16
V=19
V=20
V=21
vV-23

V-26

TABLE OF CONTENTS (Continued)
Page
OTHER INFORMATION
PRINTED OUTPUT FROM $ASSIGN AND $ASSIGN SELF-
BALANCING. e ¢ o & & 8 8 e e & 0+ e ¢ o o e+ ¢ " v s o VI“'l
TURNING MOVEMENTS & ® 6 e ® o & & & & ° & & s e o e = VI"A

RECENT CHANGES AND MODIFICATIONS

ABSTRACT

The Texas Small Network Package is a collection of computer programs
designed to assign traffic to small transportation networks. The
purpose of this manual is to provide data processing personnel with a

link between the Operating Manual for the Texas Small Network Package

(Research Report 119-1) and the programs contained in the package.

The manual describes the operation of the package and provides flowcharts
of the programs in the package. Cross references for significant
variables and arrays used in the package and formats for all data sets
and data cards associated with the package are provided.

Keywords: traffic‘assignment computer programs, transportaﬁion planning

computer programs, Texas Small Network Package, computer
program descriptions, computer program flowcharts.

SUMMARY

~

Traffic assignment is a technique which has been developed to aid
transportation planning in the evaluation of future transportation
system alternatives. Due to the vast quantity of data and the tedious
computations involved, reliance upon computers and automated data processing
is almost imperative.

The Texas Small Network Package is a collection of computer programs
designed to assign traffic to small transportation networks. The package
has been prepared for use with both IBM 360 and IBM 370 computer systems.

Several speciai features are available in the Texas Small Network
Package in addition to the usual programs regarding the assignment of
traffic to minimum time paths, and the assigmment of traffic to "spider"
networks connecting zone centroids. A éelf-balancing assignment program
is included which can improve the agreement of assigned volumes with
counted volumes. The self-balancing assignment program can also be used,
to induce a compliaﬁce of the assigned volumes with capacity limitations.
Corridor iﬁtercepts may be coded to obtain corridor analysis summaries;
travel routes may be coded to obtain volume profile comparisons and/or
plots; and, selected links may be indicated for a special analysis of all
traversing movements. Under normal operation, each assignment is preserved
and compared with previous assignments.

The Texas Small Network Package is comprised of eighty-one control
sections. The contrql sections perform the nineteen‘user program options

available under the package.

ii

The package basically operates in sequential mode. As each control
card specifying a user program option is encountered in the data card
input stream, the card is interpreted to determine the desired program

option and the appropriate program option is executed.

iii

IMPLEMENTATION STATEMENT

The Texas Small Network Package has been operational on the IBM 360
computer installation of the Texas Highway Department since January, 1968.
It has been used extensively by the Texas Highway Department since that time.

Numerous -additions, revisions and improvements have been implemented
since the original transmittal. The cooperative research prograﬁ between
the Texas Highway Department and the Texas Transportation Institute has
produced many research results which have been converted to a useable form
through the preparation or modification of computer programs, and the
programs have then been inserted into the Texas Small Network Package.
Since research and development is dynamic in nature, this documentation
will become obsolete as continuing research efforts produce new resulté

to be implemented in the package.

iv

INTRODUCTION

The purpose of this manual is to provide data processing personnel
with a link between the operating manual for the Texas Small Network
Package and the programs contained in the package. This manual, therefore,
assumes the Working knowledge and understanding of the operating manual,
and general familiarity with the terminology associated with both traffic
assignment and computer science. Both the operating manual and the programs
(with their own internal documentation) are each a form of documentation.
The objective of this manual, therefore, is to provide intermediate
levels of documentafion between the operating manual and the actual
program listings, thereby providing a logical sequence of levels of
documentation through which one may proceed from the operating manual
to the particular program listing(s) of interest.

‘This documentation, contained in Sections I - VII of this manual,
is organizedvas follows:

o Section I, ORGANIZATION OF PACKAGE - This section explains the

organization of the programs. It includes a complete list of

the programs in the Small Package including the date of their
latest revision; a chart of the overlay structure for the package;
and a chart of the logical divisions into which the programs

may be Subdivided. |

e Section II, LOGICAL DIVISIONS - This portion of the manual describes

the functions and operations performed in each of the logical

divisions. It explains the general organization of the programs

within that division and gives a brief description of the
functions performed in each of the programs within that logical
di&ision. It is felt that the program descriptions provided

for each of the logical divisions will be sufficient for the
programmer to identify the particular program or programs in
which he is interested while at the same time providing him with
an understanding of how it relates to other programs within the
package.

Section III, PROGRAM CROSS—REFERENCE AND FLOWCHARTS - This section

contains a cross-reference of calling programs versus programs
called and the flowcharts (or program descriptions) associated
with each individual program in the Small Network Package.

The objective of the flowcharts is to provide the programmer with
an overviéw_of the operation of each individual program within
the package. The level of detail contained in each individual
flowchart is felt to be minimal for an understanding of the
individual programs. It should also be noted that these flowcharts
are intended to be used in conjunction with information contained
in sections IV, V, and VI when reviewing or studying a particular
program listing.

Section IV, SIGNIFICANT VARIABLES AND ARRAYS - This section

contains the significant variable, arrays, data structures and

control variables used by the various subroutines.

Section V, DATA SET FORMATS - This section contains formats for

various intermediate data sets formed and/or used during the

operation of the Small Network Package.

Section VI, OTHER INFORMATION - This section contains additional

information which is felt to be pertinent to the understanding
of the programs contained in the Small Network Package. For
example, this section presently contains an explanation of the
procedure used in saving turning movements during the assignment
process.

Section VII, RECENT CHANGES AND MODIFICATIONS - This section is

provided for information relative to changes which have been
implemented since the original documentation, and therefore,

serves an ''update" function for this manual.

ORGANIZATION OF PACKAGE

OVERLAY STRUCTURE

LOGICAL DIVISION STRUCTURE

OVERLAY STRUCTURE

The Texas Small Network Package is comprised of eighty-one control
sections. These control sections are listed in Table 1 along with the
date of their 15test revision. The diagram shown in Figure 1 illustrates
the overlay structure in which all but two of the control sections
operate. The two control sections (i.e., MAIN (Output Selected Links)
and E35) are used to perform the user program option $OUTPUT SELECTED
LINKS which, because of core storage requirements, is run as a separate

JOB.
LOGICAL DIVISION STRUCTURE

In order to explain the relationship between the control sections,
they have been grouped into twenty-one logical divisions as shown in
Figure 2 (note that Logical Division 21 contains the control sections
for $OUTPUT SELECTED LINKS). The function (or functiéns) performed by
each of the logical divisions is described in Section III of this manual.
In addition, the sequence in which the programs are executed along with
a brief description of each of the programs is included’for each logical
" division. As can be seen from Figure 2, nine of the logical divisions
contain only one control section and five of the divisions contain only
two or three control sections. These small logical divisions were
necessitated either by the highly specialized functions performed within
them which could nptvreadily be related to any of the other logical
divisions or, in some instances because the logical division simply

contains all the control sections needed to perform one of the user program

Program Revision
Control Sections Date
ABEND *
ALCP '11/10/71
BLDNET 2/26/71
BLOCK DATA 11/10/71
CLOSE *
CLOSFT *
CMPVH 11/10/71
COPYFT 8/30/71
CRD 2/26/71
CRDINT 1/14/71
E35 *
FASPTH *
FMTLNE *
FRATAR 2/26/71
GETDAT *
GETRN 6/ 8/71
GETRNS *
GETVOL 6/ 8/71
GTLD 11/10/71
INITL1 x
LOAD *
LOAD2 8/30/71
LOPS 7/30/71
LNKLST 6/ 8/71
MAIN 6/ 8/71
MAIN -(for Output

Selected Links) *
MERG 6/17/71
MOORE *
MRGREC 8/30/71
NEWNET 8/30/71
OPENFT 12/ 2/70
OUTLLT 8/30/71
OUTLNT 8/30/71
OUTNET 8/30/71
OUTRIP 1/ 2/69

Labeled Common Control Sections:

Library Subroutines:

TABLE 1: CONTROL SECTIONS COMPRISING THE
TEXAS SMALL NETWORK PACKAGE

Program

Control Sections

OUTSLN
OUTSNT
OUTTRE
OUTWLT

. PARAM

PATHCL
PATHSP
PRPBLD
PRPCTV
PRPNET
PTLNK
READVL
REGRES
RTPFL
RTPLT
sc
SELECT
SLOAD
SUBFND
SUMEND
SUMRY
TIME
TREBLD
TRN
TRNMV
TURNM
UPDINT
VREC
VSORT
WGT
WGTA
WGTLD
WRT
WILNT
Overlay Structure

Revision
Date

2/26/71
2/26/71
%

6/ 8/71
*

8/30/71
2/26/71
6/ 8/71
2/26/71

2/26/71
*

%
*

1/14/71
7/30/71
1/14/71

10/27/67
%
*

2/26/71

6/ 8/7
* .

9/20/71

6/ 8/71
*
*

2/26/71
8/30/71
E3
6/ 8/71
6/ 8/71
6/ 8/71
8/30/71
6/ 8/71
7/30/71

ALLIGN, CAPREP, CAPRES, CD, DELETE, FILES,
GROUP1, HEADR, OUTDCB, SDATE, STOP, VOLTP

AXIS, DSQRT, EXP, LINE, LOG, NUMBER, PLOTS, SIN,
SQRT, SYMBOL

*These programs have not been modified since the institution of the
revision date policy on individual subroutines.

€-I

Figure 1: OVERLAY STRUCTURE FOR TEXAS SMALL NETWORK PACKAGE

Region 1 MAIN
LOPS
_ HEADR
TIME
CAPRES
FILES
STOP
0UTDCB
DELETE
ALLIGN
CRD WTLNT VSORT BLDNET |UPDTN QUTSNT |MERG [VOLTP OUTNET | CAPREP FRATAR | PATHSP
GETDAT |OUTLWT SQRT LNKLST ~ |PRPCTV |FMTLNE |TREBLD GROUPE1
PARAM WGT SUBFND
SDATE |¥&YA preneT SUMRY R s :
GETRN PTLNK cD SC :
! XIS -
FLOAD OUTSLN
LINE MoORE -_]
NUMBER ,
PLOTS ,
. , ~ |{sYMBOL
_IWGTLD |GTLD [cMPVH RTPFLJEXP :
REGRES | [LOG PATHCL OUTLNT
NEWNET MRGREC RDINT SIN CLOSE JouTLLT
VREC |COPYFT LCP TURNM
; DSQRT , - | TRNMY
INITLYPRPBLD |SELECT [FASPTH | GETRNS
OUTTRE . | GETVDL
[Conp 0AD2
READVL
Region 2
WRT PENFT ABEND

FI'GURE‘Z_:v LOGICAL DIVISIONS FOR TEXAS SMA'LL‘NETHORK éac_kAGE

REGION 1 i ‘!‘T‘""“"l
o WATN FMAH®
LOPS | p35e
HEADR
| TIME
"CAPRES |
FILES
STOP L——_———-
. S OUTDCB :
e R -~D'ELIETE H
- o (ALLIGN
9 r—_— L ﬂ] 1 | —' Pro— s e—
2 i 3 12 I !5 10 i 13 1 6 S T
. , !
CRD : NILAT VSORT | |BLDNET= UPDTNT [OUTSNT | MERG | ‘;g,&g';’v { }OUTNET { iFRATAR |
GETDAT OUTLWT SQRTe | | 1 L ! J FMTLNE L d
parAM. | IweT - - v SUBFND} 1 | —————
spATE | lueTta TN | L -
e i R } - - ——
& GETRN
S LNKLST 7 a—
i
ouTRIP |
e ————
15
4 pReNET 1 5 SUMRY 1] SUMEND |
PTLNK | cD RTPLT | LAl
: mise | 1
NEWNET |MRGREC | WGTLD |6TLD [CMPVH |RTPFL FLINE= | 1 %APREP
VREC COPYFT | REGRES NUMBER™ - REBLD
| CRDINT PLOTS™ | : _ N R
L | ALCP SYKBOL™ 17A S ATHCL ni7e
4 DSQRT | EXP™ | ‘ [louTLNT
T LI] cLose I
SIHK _} : . TRt
e - : FASPTH TRAMY
. |”“TLl |PRPBLD‘S»ELECT OUTTRE } GETRYS X
REGION 2 ~ jjGETVIC
: S [_L—OT%—D_—\lLOADZ ! '
o0 -~ -7 — 7 READVL :
120 {urt OPENFT | ABEND i 5
i : 1
[. (R p———— |

*THESE PROGRAMS ARE NOT CONTAINED IN THE OVERLAY S$TRUCTURE

*M_BRARY SUBROUTINES

options described in the operating manual. On the other hand, it may
be noted that logical division 17 contains eighteen control sections.
It is within this division that trees are built, the network is loaded,
and the loaded network is printed. For convenience, therefore, sixteen
of the eighteen control sections in logical division 17 have been grouped
into two logical subdivisions as seen in Figure 2.

It should also be noted that a number of the programs have multiple
entry points. To avoid possible confusion, these programs along with

the names of their other entry points are listed in Table 2.

TABLE 2: PROGRAMS WITH MULTIPLE ENTRY POINTS

PROGRAM OTHER ENTRY POINTS

ABEND PLOAD

FASPTH* ENTER

GETVOL* WGT, WGTA

LOAD2#* CLOSE, OPEN, WRITE, TRDCB, NBIN

LOPS#* LGRS, LGLS, LANA, LORA, LEX, LANAD, LANAL, LANAH
PRPNET ASMNET, REVNET

PTLNK#* GTLNK

TREBLD TREE, SELLD

WRT* OPENFT, CLOSFT, OUTDCB

*Assembly language routines

I-6

LOGICAL DIVISIONS

INTRODUCTION
LOGICAL DIVISIONS AND USER PROGRAM OPTIONS

DESCRIPTIONS OF LOGICAL DIVISIONS

INTRODUCTION

The eighty—ohe control sections comprising the Texas Small Network
Package have been grouped for the convenience of discussion, into twenty-
one logical divisions. These logical divisions are not independent
entities but are functional units or simply convenient groupings. There
are three or more logical divisions associated with each of the program
options available to the user except the $OUTPUT SELECTED LINKS option.

The documentation functions served by this section are:

e To identify the logical divisions associated with each of the
user program options.

e To describe the relationship (i.e., calling sequence) between
the logical divisions with regard to each of the user program
options.

e To describe the functions performed by each of the logical
divisions.

o To provide the calling sequence of the subprograms within each
logical division.

e To provide sufficient information regarding the operation of
each of the subprograms within a logical division so that the
particular program(s) of interest may be identified.

After having identified the particular program(s) of interest, the
flowcharts (contained in Section IV) used in conjunction with the information
concerning significant variables and arrays (Section VI) should provide

the next level of documentation.

II-1

LOGICAL DIVISIONS AND USER
PROGRAM OPTIONS

A cross-reference of the logical divisions and

options is provided by Table 3.

the user program

As can be seen from this table, three

or more logical divisions are associated with each of the user program

options (except $OUTPUT SELECTED LINKS). It should

likewise be noted

that many of the logical divisions are associated with more than one

of the user program options.

The relationships between each of the logical divisions under each

of the user program options are illustrated in the following diagrams:

$PREPARE NETWORK
$ASSEMBLE NETWORK

/ Logical Division
Logical Division l\\\\s\

Logical Division

SREVISE NETWORK

Logical Division

/ ‘
\Logical Division

Logical Division 1

$OUTPUT NETWORK

Logical Division
Logical Division 1

/\

Logical Division

I1-2

2
Logical Division 12
4_,,r$'

~ Logical Division 20

4 — >Togical Division 12

16

€-I1

TABLE 3: CROSS-REFERENCE OF USER PROGRAM OPTIONS AND

USER PROGRAM OPTIONS

LOGICAL DIVISIONS

LOGICAL DIVISIONS

1]2 s]6]718]9 ft0]uif12]13)14]15/16]17)18)19])20] 21
$PREPARE NETWORK x|x N X X
$ASSEMBLE NETWORK x| x | X X
$REVISE NETWORK x| x X
$SOUTPUT NETWORK x| x X
$DELETE ASSIGNMENTS x| x % X
$PREPARE TRIP VOLUMES x|x X
$OUTPUT TRIP VOLUMES x| x X
$BUILD TREES | x | x X
$ASSIGN X|x X X X X
SASSIGN SELECTED LINKS || 4 |4 % X X X X
SASSIGN SELF-BALANCING | x |x X X X X
$OUTPUT SELECTED LINKS %
$PLOT ROUTE PROFILES x | x x | x
SFRATAR FORECAST I <1« X
$SUM TRIP ENDS | % | x X |
SMERGE X |x X |
SPREPARE SPIDER NETWORK || y [y X
SOUTPUT SPIDER NETWORK < | x X X
$ASSIGN SPIDER NETWORK [4 |4

$DELETE ASSIGNMENTS

Logical Division

$PREPARE TRIP VOLUMES

Logical

~

Logical Division 1

. Logical

$OUTPUT TRIP VOLUMES

Logical

///ar
\ Logical

- Logical Division 1

$BUILD TREES

Logical
Logical Division 1

~

Logical

$ASSIGN
SASSIGN SELECTED LINKS

;///a’,Logical
Logical Division 1 Z——>» Logical

\\\ﬁﬁ‘Logical

I1-4

Division

Division

Division

Division

Division

Division

Division

Division

Division
Division
Division

7 ——=>> Logical Division 20

13

14

17

2
17 —> Logical Division 20
5 ——> Logical Division 12

$ASSIGN SELF-BALANCING

Logical Division 2
Logical Division 17 ——=» Logical Division 20
Logical Division 1oT——>» Logical Division 5 ——=» Logical Division 12

\:::::Iogical Division 3 —3» Logical Division 20

Logical Division 8

$OUTPUT SELECTED LINKS

Logical Division 21

$PLOT ROUTE PROFILES

Logical Division 2
Logical Division 1”//2'
\\\\s‘ Logical Division 11 —= Logical Division 12

$FRATAR FORECAST

Logical Division 2

Logical Division 1

/\

Logical Division 18

$SUM TRIP ENDS

’//)a,Logical Division
Logical Division 1

T~ 10gical Division 15

$MERGE

Logical Division 2

”,)3’
*g‘ Logical

Logical Division 1

Division 10

II-5

$PREPARE SPIDER NETWORK

Logical Division
Logical Division 1

Logical Division

$OUTPUT SPIDER NETWORK

’/;?,Logical Division
Logical Division 1

Logical Division

$ASSIGN SPIDER NETWORK

Logical Division
Logical Division 1

/\

Logical Division

II-6

19

DESCRIPTIONS OF LOGICAL DIVISIONS

The description of each of the’logical divisions in the Texas
Small Network Package has been divided into three sections. These
sections describe the logical division's general function, the input/
output requirements, the control sections used, the sequence of subroutines
called,and provide a brief description of each of the subroutines
(or control sectiomns).

The first section, entitled "General', briefly describesbthe functions
or operations performed by the logical division. It also iists the input
required, output produced, and the control sections used by the logical
division.

The second section, entitled "Sequence of Subroutines Called", provides
a diagram illustrating the sequence of subroutines called during the
execution of the logical division. This section not only provides a
convenient "trace back" capability but identifies those control sections
which are subroutines executed within the logical division. In addition,
when the given logical division calls another logical division, the diagram
identifies both the logical division and the subroutine called within that
logical division.

The third sectioﬁ is entitled '"Descriptions of Individual Control
Sections'". This section contains a brief description of the function of each

of the control sections contained in the logical division.

IT-7

LOGICAL DIVISION 1

General

This division serves as the control program for the entire package.
It first issues a call to Logical Division 2 (Subroutine GETDAT) to
initialize the date. It also issues calls to Logical Division 2 (Sub-
routine CRD) to read and interpret control cards and unit control cards.
The appropriate Logical Divisions are then called to perform the actions
specified by the control cards. Becéuée of the multiple usage of various
logical divisions in the ASSIGN SELF-BALANCING process, the program MAIN
also serves as the control program for this process. For convenience
and efficiency, this division also contains small subroutines and labeled
commons which are used by many of the other logical divisions.
Input: None
Output: Prints the difference in time of day of when each program
specified by a Control card started and when it ended.
Control Sections: MAIN, TIME, CAPRES, FILES, HEADR, LOPS, ALLIGN, STOP,

OUTDCB, DELETE

Sequence of Subroutines Called:

» Logical Division 2 (GETDAT)
;’ Logical Division 2 (CRD)
MAIN ZZ_=p TIME |

--‘i!n Other Logical Division needed
to perform the functions
specified by control cards

II-8

Descriptions of Individual Control Sections

ALLIGN: This labeled common forces a half word array used by subroutine

MRGREC to a full word boundary.

DELETE: This labeled common contains one word used to sum the number of

errors in the programs PREPARE NETWORK, ASSEMBLE NETWORK, and REVISE NETWORK.

OUTDCB: This labeled common has two arrays where data control blocks are

built by subroutine OPENFT when this subroutine opens data sets.
STOP: This labeled common is not needed.

TIME: This subfoutine returns the time of day in units ofi%afof a second.

CAPRES: This is a labeled common which is used by ASSIGN SELF-BALANCING.

FILES: This is a labeled common in which the variable unit numbers

are stored.

HEADR: This is a labeled common used to store the date and the header

from the last SHEADR card read.

LOPS: This is a control section which contains 9 function subroutines
which are used for bit manipulation for packed data by other logical

divisions.

MAIN: This is the main program for the entire package. Initially it
issues calls to GETDAT (in Logical Division 2) and TIME to get the date
and time the program began execution. It then performs the following -
steps iteratively (Until a $STOP control card is encountered or an end

of data set is encountered on unit 5):

I1-9

e A call is issued to subroutine CRD (in Logical Division 2) to
read and interpret a control card.

e The appropriate subroutine(s) are called to execute the program
specified by the control card.

e A call is issued to subroutine TIME to get the time of day.

e The time used by the execution of the program is calculated and

printed.

ITI-10

LOGICAL DIVISION 2

General

This division is called by Logical Division 1. Although it contains
the routine used to initialize the date, its primary purpose is to read
and interpret control cards and unit control cards. When a unit control
card is read, the appropriate variable unit number in labeled common FILES
is changed. When a $HEADR card is encountered, the contents of columns
7 - 80 are placed in the array in the labeled common HEADR. If an invalid
control card or unit control card is read, an error message is printed
and the job is terminated. When a valid control card (other than a
SHEADER card) is read, this division returns an integer which identifies

the control card read.

INPUT: Control cards and unit control cards on Unit 5.

OUTPUT: Prints all valid and invalid control cards and unit control
cards. Variable unit numbers are printed if any were changed by a
unit control card.

Control Sections Used: CRD, PARAM, GETDAT, SDATE

Sequence of Subroutines Called

‘ / GETDAT
Logical Division 1 \

CRD =~ PARAM

Descriptions of Individual Control Sections

CRD: This subroutine reads control cards and unit control cards and

sets an integer which is returned to the main program indicating the

II-11

control card encountered. When a unit control card is encountered,

the subroutine PARAM subroutine is called. After returning from PARAM,
another control card is read. When a $SHEADR card is encountered, the
information in columns 7 - 80 is placed in‘the HEADR labeled common and
another control card is read. If an invalid control card or unit control

card is encountered, an error message is printed and the job is terminated.

PARAM: This subroutine interprets unit control cards read by CRD and

changes the variable unit numbers specified in the FILES labeled common.

GETDAT: This subroutine gets the date from the operating system with
a TIME macro and converts it to a twelve byte literal in the form:

XXX YY, ZZ2ZZ

where:
XXX = abbreviation of the month (3 bytes)
YY = day of the month (2 bytes)
ZZZZ = year (4 bytes)

This subroutine is called by the program MAIN.

SDATE: This labeled common contains the date of the last modification
to the package and it is printed in a message after every control card

recognized by subroutine CRD.

II-12

LOGICAL DIVISION 3

General

This section calculates the weighted assignment and the loaded
network produced‘by combining the assignments from each iterétion in -
| ASSIGN SELF-BALANCING. The weighted assignment is calculated by applying
the iteration weights (percentages) to their respective assigned volumes
from each iteration and summing. The resulting link volumes are rounded
by adding 50 and dividing by 100. The turn volumes are calculated beforé
they are rounded.
Input: Unit 3, unit NEWNET
Output: The loaded network produced by the weighted assignment is written
on unit 6 (the print data set)

Control Sections used: WILNT, OUTWLT, WGT, WGTA, TRN, GETRN

Sequence of Subroutines Called

» WGT
_—”’a"

WILNT 33 WGTA _
OUTWLT =——33w»TRN =——33m GETRN

Descriptions of Individual Control Sections

WILNT: This subroutine reads the link volumes and turn volumes from the
individual iterations and calls subroutine WGT and WGTA to apply the
iteration weighting and sum the resulting volumes. The subroutine

OUTWLT is called to print the weighted loaded network.

WGT: This subroutine multiplies from 1 to 4000 volumes by an integer

percent and puts the result in another array.

IT-13

WGTA: This subroutine multiplies from 1 to 4000 volumes by an integer
percent and sums the results into another array to form weighted volume

sums.

OUTIWLT: This subroutine uses the weighted link volume sums and the
weighted turn volume sums to print a weighted loaded network. This
subroutine calls subroutine TRN for each node which is connected in the
network to get the weighted link volumes and calculate the weighted

turn volumes which were not saved.

TRN: This subroutine gets the weighted directional and nondirection
volumes and calculates the weighted turn volumes which were not saved.

It also flags the turn volumes to be printed.

GETRN: This subroutine places those weighted turn volumes which were

be saved in the turning movements matrix.

II-14

LOGICAL DIVISION 4

General
This section basically performs the following funqtions:
e SPREPARE NETWORK
. $ASSEMBLE NETWORK
e SREVISE NETWORK
Input: Link daté cards or link data revision cards from the INLNK data set
Output: New or revised Flexible Record Data Set on the NETWORK data set

Control Sections Used: PRPNET, PTLNK, NEWNET, VREC, MRGREC, and COPYFT

Sequence_of Subroutines Called

SPREPARE NETWORK

PRPNET (entry point PRPNET) ~=p» NEWNET -3 VREC
SASSEMBLE NETWORK

PRPNET (entry point ASMNET) —=m= NEWNET ~3m= VREC
$REVISE NETWORK

PRPNET (entry point REVNET) <33 NEWNET —3a» MRGREC —= COPYFT

Descriptions of Individual Control Sections

PRPNET: This is the control program for this section and defines storage
for the arrays and variables to be shared by the other programs in this

section.

PTLNK (and GTLNK): ‘Commonly called "Put Link" or Get Lin ;" this program
has two entry points (i.e., PTLNK and GTLNK). It is a utility program
which packs and unpacks the 22~byte records used to save the information
from link data cards. This is the format in which the one-way links

are sorted and are written on units 3 and 11.

II-15

NEWNET: Basically, this program inputs, sorts, and edits the link data
cards. Due to array limitations, this program will input and sort up
to approximately 2727 link data cards (recall that each link data card
produces 2 link records). This program will handle up to 3 groups of
approximately 2727 link data cards each with the first two sort groups
saved on disks and the last saved in core. These grouﬁs are 1éter
merged by VREC., This program also outputs any node names on logical
unit 4. This program also performs some preliminary edit checks to
determine the validity of data. The‘preliminary edit checks include:

e Node number in range (i.e., 1 < node number < last Freeway

Node Number)

e Valid tiﬁe or Speed code (i.e., T or S)

‘e Valid directional code (i.e., 0, 1, +, =)

e Calculates either time or speed and determines if impedance is

less than or equal to 163.83 "minutes".

VREC: This program performs the following functions:
o If there are more than one set of sorted link data records
produced in NEWNET (i.e., more than approximately 2727 link data
cards), the links are then merged.
e Performs various edit checks which includes:
a. Check-for duplicate links
b. Check to determine if each node appears to be properly connected
to‘network (Note: basically this only checks to see that
each link is connected to another node. It does not check
for network fragmentation since this can presumably be found

by building test trees).

II-16

e Prepares and outputs "Flexible Record Data Set'.
e Also inputs and merges 22 byte link records with link records in

core if there were more than 2727 link data cards.

MRGREC: Egsentially this is just a modified wversion of VREC for the
$REVISE NETWORK. It performs the same functions as VREC except it can
merge up to 4 data sets instead of 3 (the additional data set is the

old Flexible Record Data Set which is being revised).

COPYFT: Again, this program is only used in conjunction with $REVISE.
NETWORK. This program performs the following functions:
e Updates the fieid in the Flexible Record Data Set which contains
the number of one-way links.
° Copiés the Flexible Record Data Set in VB insteadbof VBS

record format (note: FORTIRAN unformatted WRITE requires either

VS or VBS).

I1-17

LOGICAL DIVISION 5

General
This section reads the Flexible Record Data Set from the unit NEWNET
and produces the following tables:

° ‘Cross'Classification of V/C Frequencies
from Last Two Assignments

e Cross Classification of Link Counts by
V/C Ratio from Last Two Assignments

e Jurisdiction Summary

e Jurisdictional/Functional Cross
Classification of Assigned Volumes

e Jurisdictional/Functional Cross
Classification of Counted Volumes

e Jurisdictional/Functional Cross
Classification of Link Capacities

e Comparison of Assigned Volumes with
Counted Volumes

e Comparison of Assigned Volumes with
Link Capacities

e Comparison of Assigned Volumes (from
last assignment) with Assigned
Volumes (from assignment before last)

o

o Iteration Weighting-Multiple
Regression Analysis

e Link Volumes

e Iteration Weights Applied
e Corridor Intercept Tables
e Route Profiles

e List of Volumes and Impedances for
Updated Links

Some of these tables are printed only when certain conditions are met

(see section on OTHER INFORMATION).

I1-18

Input: Unit NEWNET,
Output: The tables listed inthe general section above and Unit ROUTE.

Control Sections: SUMRY, CD, WGTLD, GTLD, CMPVH, REGRES, CRDINT, ALCP,

RTPFL

Sequence of Subroutines Called

$ASSIGN and

$ASSIGN SELECTED LINKS

GTLD

SUMRY _4 CMPVH ~———3m REGRES

SASSIGN SELF-BALANCING (iterations 1 - 5, and the calculated weighted
assignment if "WGT" is specified on the *TURN
card)

' GTLD
‘_,,—ﬂ"

SUMRY =———3m CMPVH
ALCP
$ASSIGN SELF-BALANCING (Weighted assignment made from weighted
impedances if "WGT" is specified on the
- *TURN card, otherwise calculated weighted
assignment)
GTLD
____/; CMPVH ———————3me= REGRES

*\ CRDINT
’ RTPFL

SASSIGN SELF-BALANCING (after last iteration)

SUMRY

Logical Division 1 ~————73 WGTLD

I1-19

Descriptions of Individual Control Sections

SUMRY: This is the control program for the summaries produced aftei

an assignment., The .subroutines called by SUMRY are determined by three
logical variables. One of the logical variables, SUM, if true causes
GTLD to produce a weighted assignment on unit NETWORK and produce all
tables and comparisons from this weighted assignment.‘ Subroutine ALCP
is only called if logical variable RES is true. If logical variable
RTP is false then the corridor intercept and route profile tables are

skipped.

GTLD: This subroutiné prints the V/C cross classification table if there
are two or more assignments on unit NEWNET. It cdomputes the summations
necessary for the tables printed by subroutine CMPVH and for the curve
fit printed by subroutine ALCP. It saves corridor intercept information
in core in labeled common CD., It writes route profile records on Unit
ROUTE. If logical variable SUM is true, GTLD calculates weighted
directional volumes and updates the flexible data record writing it on
unit NETWORK. All comparisons and tables are made from the weiéhted

directional volumes if SUM is true.

CMPVH: This subroutine prints the Jurisdiction Summary or the Jurisdictional/
FUNCTIONAL Cross Classification Tables and the three Comparison of Assigned

Volumes with link volumes, Counted volumes, and Capacitiés.

REGRES: This subroutine performs a linear regression analysis and prints

the results of this analysis.

CRDINT: This subroutine calls VSORT (which sorts the corridor intercept

records) and prints the corridor intercept tables.

II-20

ALCP: This subroutine performs a multiple regression analysis to determine
the iteration weighting for the ASSIGN SELF-BALANCING process and prints
the results of this énalysis. Only the links with a non-zero count (or
capacity depending on which is specified) are considered and centroid
connectors are ignored. The count (or capacity) is the dependent

variable and the assigned directional volumes from each of the iterations

are the independent variables in the analysis.

RTPFL: This subroutine reads the route profiles from unit ROUTE and

prints the route profile tables.

CD: This is a labeled common area used to save the corridor intercept

records when GTLD is run until subroutine CRDINT runs.

II-21

LOGICAL DIVISION 6

General

This division is called by Logical Division 1 and performs the
SPREPARE SPiDER NETWORK program.
Input: Link data cards for a spider network from unit INLNK.
Output: Printed errors, index and link records on unit 1, node names
on unit 4, and a link speed frequency table

Control Sections used: BLDNET

Sequence of Subroutines Called

Logical Division 1 weee—33e» BLDNET

Descriptions of Individual Control Sections

BLDNET: Subroutine BLDNET reads the link data cards and writes index
and link records on unit 1 and node names on unit 4. The link data are
edited and errors printed. The network speed is calculated and the link

speed frequency table is prepared and printed.

I1-22

LOGICAL DIVISION 7

General

This division is called by Logical Division 1 and uses the WRT
subroutine in Logical Division 20. It basically performs the $DELETE
ASSIGNMENTS program. As may be recalled, the $DELETE ASSIGNMENTS
program can delete up to 20 assignments from the NETWORK data set and
can also replace the impedénces to be used on the next assignment
with the impedances used on any previous assignment (even if the assignment
is being deleted), or it can modify the impedances according to the
impedance adjustmeﬁt function. The WRT subroutine is used to output
the flexible record data set in the desired record format type (i.e.,
V or VB).
Input: O01d flexible data record (unit 12), and DELETE ASSIGNMENTS
parameter cards from unit 5 (i.e., *IMPEDANCE, *ADJUST, *DELETE, and
*END cards).
Output: Updated flexible data record (unit NETWORK).

Control Sections: UPDTNT

Sequence of Subroutines Called

UPDINT ———-3» WRT (Logical Division 20)

Descriptions of Individual Subroutines

UPDINT: This subroutine basically performs the functions of the
$DELETE ASSIGNMENTS program. The specific functions performed are, of
course, determined by the parameter cards supplied by the user (i.e.,

the *IMPEDANCE, *ADJUST, *DELETE, and *END cards). It should be noted

I1-23

that the last parameter card must be the *END card. It should further

be noted that if the *END card is the only parameter card provided

then the flexible record data set will simply be copied on unit NETWORK.
The WRT subroutine (in Logical Division 20) is used to write the

records (of the flexible record data set) on the unit NETWORK using the

record format type V or VB. The WRT subroutine changes the record

format type specified in the DCB parameter of the DD card for the unit

NETWORK as either VS or VBS to V or VB respectively. Effectively,

OPENFT removes the span parameter, S, from the DCB. This was implemented

to avoid problems caused by the FORTRAN Input/d&ﬁput requirements of

certain versions of the Operating System.

II-24

LOGICAL DIVISION 8

General

This division prints the links which have non-zero count or capacity
fields (whichever has been specified) during the $ASSIGN SELF-BALANCING
program. The directional link volumes and the link impedance are listed
fof each iteration and for the calculated weighted assignment and the
optional assignment made with the weighted impedances. The count or
capacity field is also listed.
Input: Flexible record data set on unit NEWNET.
Output: Printed list of links with link volumes énd impedances for
which the link count or link capacity field, whichever was used, is
non-zero.

Control Sections Used: LNKLST.

Sequence of Subroutines Called

Logical Division 1 (MAIN) —————gm LNKLST

Descriptions of Individual Control Sections

LNKLST: The function of this subroutine is listed in the general section

above.

I1-25

LOGICAL DIVISION 9

General
This division is called by the program MAIN (in Logical Division 1)
‘and performs the $OUTPUT SPIDER NETWORK program.
Input: Unit 1{
OQutput: Printed spider network.

Control Sections Used: OUTSNT

Sequence of Subroutines Called

Logical Division 1 (MAIN) a3 OUTSNT

Descriptions of Individual Control Sections

OUTSNT: This program reads a spider network from unit 1 and formats
it with from 1 to 8 links per line. The program also prints the network

speed. This program can not read a flexible data record.

II-26

LOGICAL DIVISION 10

General

This division is called by the program MAIN (in Logical Division 1)
and performs the $MERGE program. It can be used to merge from two to
six trip matrices.

Input: Units MERGIN(1l) to MERGIN(N)
(where N is between 2 and 6)

Output: Unit MRGOUT

Control Sections Used: MERG

Sequence of Subroutines Called

Logical Division 1 (MAIN) w——S3» MERG

Descriptions of Individual Control Sections

MERG: This subroutine reads a merge parameter card which specifies the
number of data sets to merge. The MERGIN and MRGOUT units must have
previously been specified on a unit control card. The parameter records
from these data sets are examined and the first zone of each subnet must be
the same. va any are different an error message is printed and the
program stops. The‘largest last zone of each subnet is used for the
merged trip matrix which is written on MRGOUT. Then the trip matrices

are summed and written on unit MRGOUT.

I1-27

LOGICAL DIVISION 11

General
This division is called by the program MAIN (in Logical Division 1)

for the $PLOT ROUTE PROFILES program. It prints the route profiles from

a previous run of ASSIGN, ASSIGN SELECTED LINKS, or ASSIGN SELF-BALANCING.

It also prepares calcomp plots of the routes with assignments, counts,
or link capacities specified.

Input: Unit ROUTE, parameter cards tovspecify routes and assignments
Output: Printed route profiles of all routes and a calcomp plot tape.

Control Sections Used: RTPLT, SC, and calcomp subroutines.

Sequence of Subroutines Called

”"’a,r Logical Division 12 (VSORT)

RTPLT S SC

~‘\‘ﬁ§..

Calcomp Subroutines
(AXIS, LINE, NUMBER, PLOTS, SYMBOL)

Descriptions of Individual Control Sections

RTPLT: This subroutine reads the route parametér card specifying which
routes are to be plotted. It then reads the parameter éard‘specifying
which assignments, counts or capacities are to be plotted. It then

reads the ROUTE data set and prints the route profiles and plots those

which have been specified.

SC: This subroutine is used ﬁo round the scaling factor.

II-28

LOGICAL DIVISION 12

General

This division contains the subroutine VSORT which performs an in-core
sort. It is used by Logical Divisions 4, 5, and 11.
Input: Unsorted data in core in records of from 1 to 256 bytes/record.
Output: Sorted records in core.

Control Sections Used: VSORT

Sequence of Subroutines Called

Logical Division (4, 5, or 11) === VSORT

Descriptions of Individual Control Sections

VSORT: This subroutine sorts records in core. The first argument in

the calling sequence is the address of the array of records to‘be

softed. The second argument is the number of records. The third argument

is the length of each record in bytes (must be between 1 and 256 bytes), The
fourth argument is the length of the sort key in bytes (must be between

1 and 256 bytes)kwhich can not be longer than the record length. The

sort key starts at the first byte of the record. The sort key is treated

as an unsigned binary number and the records are sorted into ascending

order on the sort keys.

I1-29

LOGICAL DIVISION 13

General

This division is called by the program MAIN (in Logical Division
1). It inputs the card trip volume records; checks to see that they are
in ascending order on origin and destination zoﬁes; and builds a
trip matrix which is outputted on unit CTVOUT.
Input: Parameter card on unit 5, card trip volume records on‘unit CTVIN.
Output: Trip matrix on unit CTVOUT.

Control Sections used: PRPCTV, SUBFND, VOLTP

Sequence of Subroutines Called

PRPCTV ~————3- SUBFND

Descriptions of Individual Control Sections-:

PRPCTV: This is the main part of the code for this logical division.
It reads the parameter card which specifies the volume field (of the
three available) to be used. This parameter card also specifies the
number of subnets and the first and last zone of each subnet.

After the barameter card is read, tﬁe trip volume records are read.
The program checks for records which are out of sort with regard to
the origin and destination zone numbers. It also checks to see that
both zones are in the zone ranges specified for the subnets By calling
subroutine SUBFND, and checks for duplicate origin and destination zone
numbers. It writes a trip matrix on unit CTVOUT of those trips for

which there were no errors.

II-30

SUBFND: This subroutine determines the subnet containing the origin
zone and the subnet containing the destination zone. It then verifies
that both the origin and destination zone numbers are within the zone

ranges specified on the parameter card.

VOLTP: This is a labeled common area used by subroutine PRPCTV.

II-31

LOGICAL DIVISION 14

General

This logical division is called by the program MAIN (in Logical
Division 1) and performs the $OUTPUT TRIP VOLUMES program. It essentially
prints the trip ﬁatrix contained on Unit CTVOUT.
Input: Unit CTVOUT.
Output: Printed trip matrix.

Control Sections used: OUTRIP

Sequence of Subroutines Called

Logical Division 1 (MAIN) =33 OUTRIP

Descriptions of Individual Control Sections

OUTRIP: This subroutine reads a trip matrix from unit CTVOUT and prints
it with each origin zone sﬁarting on a new page. It prints 10 destination
volumes per line. The zone numbers printed run from the first zone

number for a subnet to the last zone number for that subnet in groups

of 10. If a’group’of.ten destination volumes are all zero they are not

printed. The origin zones are considered in sequential order.

I1-32

LOGICAL DIVISION 15

General
This division is called by the program MAIN (in Logical Division 1)
and performs the $SUM TRIP ENDS program.
Input: Trip matrix on unit CTVOUT.
Output: A printeé table.

Control Sections Used: SUMEND

Sequence of Subroutines Called

Logical Division 1 (MAIN) =3 SUMEND

Descriptions of Ihdividual Control Sections

'SUMEND: This subroutine performs a summation of a trip matfix by rows
and columns exclusive of the diagonal elements (i.e., the intrazonal
volumes). The number of non-zero trip volumes are also counted. A
table is then pfinted containing a summary of the trip volume character-

istics for each zone.

I1-33

LOGICAL DIVISION 16

General
This division is called by the program MAIN and performs the
S$OUTPUT NETWORK program.
Input: Unit NETWORK.
Output: Printed network description.

Control Sections Used: OUTNET and FMTLNE.

Sequence of Subroutines Called
OUTNET —————=3p FMTLNE

Descriptions of Individual Control Sections

OUTNET: This subroutine writes the page headings and calls subroutine
FMTLNE to format each line éf the network. It reads the link records

from unit NETWORK and calls subroutine FMTLNE to format this data for

from 1 to 4 links per line. The subroutine prints 50 nodes per page. If
a whole page of node numbers to be printed are not included in the network
(i.e., they have no connecting nodes), the printing of the page is
suppressed. The data for a link that is printed is ANODE, BNODE,
jurisdiction, shaft; arrow, link speed, link distance and link impédance.
The link‘impedance pfinted is the link impedance which will be used if
this flexible data record is used as unit NETWORK when fhe néxt»assignment

or BUILD TREES is run.

FMTLNE: This subroutine formats the link data of from one to four links
with the same ANODE to be printed on one line. If a link is a dummy
one-way link the literal ONE-WAY is printed for it along with its

BNODE and the other data for this link is not printed.

I1-34

LOGICAL DIVISION 17

General
This division is comprised of a control program and two logical
subdivisions (17A and 17B). It basically performs the following functions.
e SBUILD TREES
e S$ASSIGN
e SASSIGN SELF~BALANCING
o $ASSIGN SELECTED LINKS
Logical subdivision 17A pgrforms the build trees and load trips functions.
Logical subdivision 17B is used to print-the loaded network and to
update the flexible record data set.
Input: The input required by programs in this division (depending upon
the function being performed) is as follows:
e Flexible Record Data Set
e Trip Table
e *TURN cards
e *TREE cards
e Parameter cards for ASSIGN SELECTED LINKS (if needed)
Output: The output from this division consists of one or more of the
following (dependingAupon the functions beiqg performed):
e Selected trees are printed (as specified by the *TREE cards)
e The loaded network is printed (except for certain.iterations
in the assigned self-balancing process)
e A new flexible data set is prepared (except when $BUILD

TREES is run)

II-35

e Selected link interchanges are output on a sequential data
set (under assign selected links option)b
® A separation matrix is prepared.
Control Sections Used: CAPREP, TREBLD, PATHCL, CLOSE, INITL1, PRPBLD,
SELECT, FASPTH, OUTTRE, LOAD, READVL, LOAD2, OUTLNT, OUTLLT, TURNM,

TRNMV, GETRNS, GETVOL

Sequence of Subroutines Called

ASSIGN:
PRPBLD
% INITL1
 PATHCL £———>> FASPTH

% OUTTRE

LOAD ———=> READVL

TREBLD
\ > TURNMY
OUTLNT === QUTLLT ~==> TURNM
X\ GETRNS —>> TURNMY

$ASSIGN SELECTED LINKS:

PRPBLD

OPEN
“‘:::Z:SELECT
- INITL1
PATHCL /—f> FASPTH
‘ > oUTmRE
LOAD2
CLOSE
__> TURNMY

TREBLD —-——-—> OUTLNT =—=» OUTLLT =——=> TURNM \
GETRNS —=» TURNMV

II-36

$ASSIGN SELF-BALANCING:

’/’,,537 PRPBLD
INITL1
PATHCL 4==:::§§:FASPTH
<=:::§§TOUTTRE

LOAD =—=> READVL

TREBLD
\\\\\‘§$; = GETVOL
OUTLNT—>> OUTLLT TRNMV
A yriy
X\ GETRNS —>> TRNMY

$BUILD TREES:

‘ff////;a’PRPBLD

TREBLD ————> PATHCL —————\—"} INITL1
FASPTH

| OUTTRE

Descriptions of Iﬁdividual Controleections
TREBLD: This is the basic control program for Logicai Division 17. It
contains three entry points; TREBLD, TREE, and’SELLD. The TREBLD entry
point is used for $ASSIGN and for the various iterationsvin SASSIGN
SELF-BALANCING. The TREE entry point is used for $BUILD TREES. The
SELLD entry point is used for $ASSIGN SELECTED LINKS.

Basically this control section sets 2 or 3 logical variables and
calls PATHCL (the control program for logical division 17A). After the
programs in logical division 17A have been executed, TREBLD then calls

OUTLNT (the control program for logical division 17B).

II-37

CAPRES: This is a labeled common used in the ASSIGN SELF-BALANCING process,
which is available to all programs in this division. It is used to save

the information from the *TURN and *TREE cards.

PATHCL: This éubroutine controls the assignment process. It reads
the‘NETWORK data set and extracts the part of the network used for

building trees. It calls subroutines that build trees, load trips, and
output trees as needed to perform an assignment. It also reads the

*TURN and *TREE cards by calling PRPBLD. If an $ASSIGN SELECTEb LINKS

is specified, it calls SELECT to read the selected link parameter cards

and mark‘the selected links. It also writes the separation matrix. If
$BUILD TREES is specified, it simply builds the trees and skips the loading

of trips.
CLOSE: This subroutine closes data set SELTRP and releases its buffers.

OPEN: This subroutine is in control section CLOSE and it opens data

set SELTRP.

INITL1: This subroutine initializes the volumeé assigned to the network
to zero and it builds the turn index array used by subroutine LOAD or
LOAD2 in the assignment and by subroutine OUTLLT in presenting

the loaded network. It also checks to see that there are less than

4000 nodes, 1200 centroids, 16000 one-way links, and 20,000 turning movements.

PRPBLD: This subroutine reads and examines the *TURN and *TREE cards
used in BUILD TREES, ASSIGN, ASSIGN SELECTED LINKS, and ASSIGN SELF-
BALANCING. The centroid numbers to build‘trees for are put in two
arrays and a logical array is set to specify if the trees are to be

printed. I1-38

SELECT: This subroutinebreads the parameter cards (other than the *TURN
and *TREE cards) which are used by ASSIGN SELECTED LINKS. It examines

the cards for errors; prints the actions specified and sets flags

on the selected links; it writes parameter records for the selected links;
and, it also sets a 1ogica1 variable to specify if the loaded network

should be printed.

FASPTH: This subroutine builds one minimum path tree from the origin
in its calling sequence for each call to it. It returns the path of the
tree and the cumulative link impedances to reach each node or centroid

in the path.

OUTTRE: This subroutine prints the path and cumulative impedance to
reach each node and centroid in one minimum path tree for each call to

it.

LOAD: This subroutine is called once for each tree to load all trips
with an origin at the home zone of the path. This subroutine calls
subroutine READVL to read trip volume records. This subroutine must

be called once for each tree that is to be loaded.

READVL: This subroutine is called'by subroutine LOAD to read trip volume
records and returns the trip volume record and a flag indicating whether

an end of data set has been reached on unit CTVOUT.

OUTLNT: This is the first level program in division 17B, it defines

arrays and calls subroutine OUTLLT.

II-39

OUTLLT: This is the basic control program in this division. If an
ASSIGN SELF-BALANCING program is being run in iterations 1 - 5 this
subroutine calls subroutine GETVOL to get directional link volumes as
full word integers and turning movements as full word integers and writes
these on Unit 3.

For all calls to this subroutine it also reads the flexible data
record from unit NETWORK and writes an updated flexible data record on
unit NEWNET in which the nondirectional assigned volumes and link
impedances forfhe present assignment are added to the flexible data record.
If the present assignment is an ASSIGN SELF-BALANCING iteration 1
through 5 then'the link impedance to be used on the next assignment is
updated if counts were specified and the link has a non-zero count or
if capacities are used and the directional link volume is greater than
the capacity and the capacity field is non-zero.

The progrém also prints the assignment (except for ASSIGN SELF-
BALANCING iterations 2 - 5 and for ASSIGN SELECTED LINKS whén no output

is specified).

TURNM: This subroutine gets the directional and nondirectional link volumes
for a node, gets the turning movements which were saved, and calculates
the turning movements which were not saved. It also marks which turn

volumes are to be printed.

TRNMV: This function adds the two indexes supplied to it to form a single
index to get the turn volume or directional link volume or index and
flag. If it gets an index this index is used to get the actual volume

from the overflow array.

II-40

GETRNS: This subroutine places the saved turn volumes in the turning

movements matrix.

GETVOL: This subroutine gets from 1 to 4000 link volumes or turning

’

movements and places them in a full word integer array.

IT-41

LOGICAL DIVISION 18

General

This division is called by the program MAIN (in Logical Division 1)
aﬁd performs the $FRATAR FORECAST program.
Input: Parameter card and growth factor cards on unit 5 énd trip
matrix on unit CTVOUT.
Output: Unit FRATAR. (Variable unit number CTVOUT is set equal to
unit FRATAR after the program is run.) A table of iteration growth
factor frequencies is also printed for each iteration.

Control Sections Used: FRATAR

Sequence of Subroutines Called

Logical Division 1 (MAIN) ————=> FRATAR

Descriptions of Individual Control Sections

FRATAR: This subroutine reads a deck of zonal growth factors and uses
Fratar's method of successive approximations to generate a~fore¢asted

trip matrix. Each approximation constitutes one iteration; the number
of repetitions is gqverned by either an iteration iimit or a deviation

limit.

I1-42

- LOGICAL DIVISION 19

General

This division is called by the program MAIN (in Logical Division 1).
It performs a spider network assignment and prints the loaded network.
Each node in the spider network may have up to 8 links and no turn
movements are printed in the loaded network output. Trees are built
through both nodes and centroids.
Input: Unit 1 (index records and link records) node names on unit 4,
trip matrix on unit CTVOUT.
Output: Printed loaded spider network.

Control Sections Used: PATHSP, GROUP1l, SLOAD, MOORE, OUTSLN.

Sequence of Subroutines Called

/7 MOORE
PATHSP <<———>> SLOAD

\ OUTSLN

Descriptions of Individual Control Sections

PATHSP: This subroutine reads the network frqm unit 1, It then builds
trees by calling subroutine MOORE for every zone which has trips with
that origin zone and it loads the trips read from unit CTVOUT on each
tree immediately after the tree is built. Subroutine OUTSLN is then

called to brint the loaded network.

MOORE: This subroutine builds a minimum path tfee from one origin centroid

each time it is called.

II-43

SLOAD: This subroutine loads the trips for one origin zone in the network.
It also reads the next trip record from unit CIVOUT and, if it has the
same drigin, it loads it also. It continues to read trip records and
loéd the trips until it reaches an EOD on unit CIVOUT or a trip record
with a different origin zone is encountered. It sets a logical variable
EOF (EOF is set to true when an EOD has been reached on unit CTVOUT)

and returns control to the calling program.
OUTSLN: This subroutine prints the loaded network.

GROUP1: This labeled common is used to group two scrétch half word arrays
of 3500 half words each used by subroutine MOORE to make a full word
array of 3500 words which is used by subroutine SLOAD. It also forces

the array used by SLOAD to a full word boundary.

I1-44

LOGICAL DIVISION 20

General

This logical section contains the assembly language subroutines
used to write records in record format VB on FORTRAN units
which can be reéd with FORTRAN unformatted read statements. These
subroutines were necessary because of an error in version 18 of IBM 360/0S
which oécasionally caused extra data to be read when déta sets written
with record format VBS were read. These subroutines are probably faster
than FORTRAN write statements because they use the Queued Sequential
Access Method whereas Fortran uses Basic Sequentiél Access Method; and,
in addition, the assembly language subroutine WRT requires only one call
for each 1ist whereas FORTRAN generates one call for each variable and
one call for each variable for each iteration in an implied DO loop.
This logical division also contains subroutine ABEND whicﬁ is called
several places to write the message ERROR and a number where no érror’
in the program operation is normally expected.
Input: nomne
Output: One record for each call to subroutine WRT.

Control Sections Used: OPENFT, CLOSFT, ABEND, and WRT

Sequence of Subroutines Called

The subroutines in this division may be called from many points
in the package. The following, therefore, summarizes the subroutines
which may execute a call to the subroutines in thié division:

e ABEND may be called by TRN and TURNM.

e CLOSFT may be called by GTLD, OUTLLT, UPDTNT, and VREC.

II-45

e OPENFT may be called by GTLD, OUTLLT, UPDINT, and VREC.

o WRT may be called by GTLD, OUTLLT, UPDINT, and VREC.

Descriptions of Individual Control Sections

OPENFT: This is an assembly language subroutine to open a FORTRAN type
DDname. The DCB is built in one of two areas (specified by either a 1

or a 2 as the first argument) in the control section OUTDCB. The FORTRAN
unit number‘is specified by the second argument and the DDname used is
-FTXXFQOO1l where the XX is the integer from the second;argument.‘ The data
set is opened twice. The first time it is opened the DCB information
from the DD card is obtained and the data set is closed.

The spanned code is then removed from the DCB in core and the data set is
reopened. For this reason the RLSE subparameter should not be used in the
SPACE allocation parameter on data sets which are used as unit NETWORK,
unit NEWNET, or unit ROUTE because the primary extent is all released
except for 1 track when the first CLOSE macro is executed by subroutine

OPENFT.

CLOSFT: This subroutine closes the data set whose DCB is in the OUTDCB
CSECT. The DCB is indexed by either a 1 or a 2 which is the argument

in the call to CLOSFT.

WRT: This subroutine.writes one logical record on the unit which is pointed
to by the "opened" DCB in CSECT OUTDCB. The DCB is indexed by either a

1 or a 2 as the first argument in the ca;l to subroutine WRT. The logical
record written may be made up of one or more record segments. This‘
subroutine uses the PUT macro with the locate mode to get the address

of each new record segment. The rest of the calling sequence of subroutine

IT-46

WRT is variable and is made up of a variable number of afguments which
are in groups of arguments that correspond to an implied DO loop in

a FORTRAN write. The first item of a group indicates by its sign whether
the variables are half words or fullvwords. If the sign is minus the
arguments are half words. If the sign is positive they are full words.
The absolute value of the first item of each group is the number of
variables or array names in the group. The second itgm in the group is
the number of implied DO loop iterations M that should be used to transmit
the array(s). The next [Nl arguments are the arrays or variables. Only
the array or variable items are transmitted. If M is greater than 1,

a loop is set up in which the addresses (from which data‘is being moved)
are incremented by a constant at the bottom of the loop. If N is
nggative, the constant ié set to 2; and if N is positiveikthe constant

is set to 4. The loop is executed M times. There may be as many groups
in the call as are necessary provided that the total number of arguments
in a call to subroutine WRT does not exceed the limits for the Fortran

compiler being used for the Fortran calling subroutine.

ABEND: The subroutine prints the message ERROR followed by the integer

identification code which is passed to it through the arguments.

II-47

LOGICAL DIVISION 21

General

This division prints the selected links output (i.e., the oufput
from SASSIGN SELECTED LINKS). This division is unique in that it must
be a separate job (or at least 3‘job steps) because it uses thekIBM
sort program twice,‘
Input: Selected links data set SELTRP.
Scratch: First and second sorted data sets SORTOUT.
Output: Printed listing for each selected link ofithe zone pair trip
interchanges assigned tobthe selected link.
Programs used: The IBM Sort/MERGE program, the exit program E 35, and
a Fortran program to list the selected links and the trip interchanges

loaded through them (i.e., MAIN).

Sequence of Program Execution:

JOB : JOB JOB

STEP 1 STEP 2 STEP 3

IBM SORT ~=w======p» IBM SORT —-«=—w—>» MAIN (List Selected Links)
E 35

Summary of Individual Programs

IBM Sort/Merge Packagé: refer to the 0S Sort/Merge Programmer's Guide,
| SC 33-4007-1.
E 35: This subroutine is called during JOB STEP 1 by the IBM Sort program.

It combines the trip interchange records for each zone pair associated

I1-48

with a given selected link thereby reducing the number of records to

be sorted during JOB STEP 2. The combined trip interchange record,
which is outputted for each zone pair interchanging trips through a
selected link, contains both the directional and non-directional zone
pair trips through the selected link. The total non-directional trip
volume assigned to a selected link is also computed and outputted as

a separate record. (During JOB STEP 2, the combined interchange fecords
are sorted using the two sort keys: selected link number and non-

directional trip volume.)

MAIN (List SelectedﬁLinks): This is a Fortran program which reads the
combined trip interchange records for the selected links (which were
sorted during JOB STEP 2 using the keys: Selecféd link indéx number

and non—directiona1 zone pair volume) and priﬁts the interchanges assigned
to each selected’iink (in.descending order of magnitude of the non-
directional volumes) until either a limit parémeter has‘been satisfied

or until all interchanges have been printed.

IT-49

START PRINT SELECTED °
LINKS JOB

COMBINE TWO DIRECTIONS
© OF TRIP MOVEMENTS
THRU SAME LINK AND WRITE
SUM RECORD

E 35

SORT
ON KEY

OF LINK
INDEX AND
NON-DIRECTIONAL
VOLUME

INTERMEDIATE
SORTED DATA
SET

PRINT SELECTED LINKS
OUTPUT

Jos

II-50

PROGRAM CROSS-REFERENCE

AND FLOWCHARTS

CROSS-REFERENCE OF PROGRAMS

FLOWCHARTS

CROSS-REFERENCE
OF PROGRAMS

A complete cross-reference of calling programs versus programs
called is providéd»in Table 4. This cross-reference serves both to
identify all programs used by a given calling progfam énd to, conversely,
identify all calliﬁg programs which utilize a given program.

This cross-reference should prove especially usefﬁl when considering
the modification of a program. For example, if modification is desired
in OPENFT when usediin conjunction with GTLD, a Quick/reference to Table
4 indicates that OPENFT is also called by OUTLLT, UPDINT, and VREC.
Therefore, any modifications in OPENFT should be compatible with all four

calling programs.

ITI-1

TABLE 4: CROSS—REFERENCE OF
CALLING PROGRAMS VERSUS
PROGRAMS CALLED

CALLING PROGRAM

PROGRAMS
CALLED

ALCP
ASMNET.
OUTLLT
OUTRIP
OUTHLY
PATHCL.
PATHSP
RTPLT

SELECT
SELLD
SLOAD
SUMRY
UPDTNT

ABEND

ALCP

»

ALOG10

AMAX1

ASMNET X

BLDNET x

CLOSE X

CLOSFT . X) X

CMPVH

COPYFT X

CRD 'Y

CRDINT

DSQRT X b 4

PASPTH X

FMTLNE i X

FRATAR - Tx

FRXPI X

FREPR . !] X

GETDAT X

GETRN

GETRNS

GETVOL . .. X

GTLD

GTLNK ’ | X

IBCOM gixlxixlx x|x|x xixlxlxlx|xix|xix}xixixix]xix]x x|x x]x

INITLL K ! X

LANA X X|X M EIRIES X} X

LANAD X - X x|x

LANAH i I

LANAL i X x! Ix xfx] I=x x{x

LGLS X

td
»
¢ |
td

LGRS X x]xix} ‘x}x]xjx X X X

LINE . : . X

LNKLST] - X

LOADZ : X

MAXO i . X

MERG 5 X

KINO . X

“HOORE i p X

MRGREC]) X

NBIN

NEWNET x : 1x X

WUMBER ‘ X

OPEN

——tte el -
OPENFT X . X

ITI-2

TABLE 4: (continued)

CALLING PROGRAM

PROGRAMS
CALLED

ALCP
ASMNET
BLDNET
CMPYH
CRD
CRDINT
FRATAR
GETRNS
GTLD
INITL1
LNKLST
LOAD
MAIN
MERG
MRGREC
NEWNET
OUTLLT
“OUTRIP
OUTSLN
OUTSNT
OUTTRE
OUTWLT
PATHCL
PATHSP
PRPBLD
PRECTV
PRPNET
READVL
REGRES
REVNET
RTPFL
RTPLT
sC
SELECT
SELLD
SLOAD
SUMEND
SUMRY
TREBLD
TREE
TRN
TRNMY
TURNM
CPDTNT
VREC |
WGTLD
WTLNT

GLLT . X

GUTLNT 1. X X

OUTNET X

OUTR P X

OUTSLN j X

OUTSNT I x

OUTTRE

OUTWLT

PARAN X

PATRCL

PATHSP

PLOT

PLOTS

PRPBLD

PRPCTV

PRPNET . X

PTLNK X

READVL . X

REGRES X

REVNET X

RTPFL

RTPLT {x

sc X

SELECY

SELLD : . X

SLOAD . : M

SORT X i]

SUBFND

SUMEND

SUMRY » X

SYMBOL,

TIME X X 1 s

TREBLD 1 X

TREE] X

TRN

TRNMV

TURNM X

UPDTNT x

VREC X X

VSORT o x X x| x

wr

WGTA

WOTLD . : X

WRITE

WRYT . i X X ‘ ‘ a LY B

WILNT 1x

III-3

FLOWCHARTS

The following ére the flowcharts associated with the significant
subfoutines in the Small Network Package. For convenience, these flow-
-charts are in alphabetical order. '

The objective of the flowcharts is to provide the programmer with
an overview of'the‘operation of each individual program. The level
of detail contained in each flowchart is felt to be minimal for such
an understanding. It should also be noted that these flowcharts are
intended to be uséd‘in conjunction with information confained in sections
V and VI (énd, in some instancés,‘section VII) when reviewing or studying

a particular program listing.

ITI-4

SUBROUTINE

ALCP

CALCULATE REGRESSION
VALUES FOR A LINEAR CURVE
FIT OF THE ITERATION
ASSIGNMENTS TO EITHER
COUNT OR CAP.

SET CONVERGENCE
VARIABLE TO INDICATE THIS
IS THE LAST ITERATION

PRINT RESULTS
OF REGRESSION

III-5

ALCP:

BLDNET

i
. REWIND UNITS 1
AND 4. FORMAT =
\FALSE.

INITIALIZE ARRAY
FOR COUNT OF LINKS
FROM EACH NODE TO
ZEROES FOR 3500
NODES. .

CLEAR LINKS ARRAY FOR
28,000 ONE WAY LINKS
TO ZEROS.

INITIALIZE SUMMATION
VARTABLES FOR TOTAL
NETWORK MILEAGE AND
NUMBER OF ZERO TIME
"LINKS TO ZEROES.

INITIALIZE ARRAY T0
SUM NUMBER OF LINKS
OF EACH SPEED IN ONE
MILE INCREMENTS TO
ZEROS. NDP = 0

ITI-6

BLDNET

L e

kkAL LINK DATA FORMAT
it %AME FORMAT AS FOR

w
~

100

Eob

vrErARE NETWORK.
NIINKS = L

READ LINK DATA CARD
WiTH UP TO 4 LINKS.
NLINKS = 4

- NORMAL READ

82

YES IS IT AN

ENDLNK OR AN L
CARD?

NO

CONVERT COLUMNS 3 - 6
TO AN INTEGER, BACKND

.NOT. PORMAT
.UR. BACKND < NDP

—

i NDP = BACKND
WRITE THE NAME AND
BACKND ON UNTT 4.

1S THE
B NODE OF THE

J'TH LINK ON THIS
THIS CARD = 0?7

IS THE LINK
TIME OR SPEED
INDICATOR A
"t oR MgHe

YES

BLDNET

" PRINT ERROR MESSACE:
MISPUNCHED TIME AND/OR
SPEED FIELD XXXXX XXXX.

COST = TIME OR SPEED
FIELD/100.0

IS THE J'TH
TIME OR.SPEED
FIELD = "§"?

COST = DISTANCE %6.0/
SPEED + 0.005
(INCLUDES SCALING)

ARE THE
BACKND AND THE
B NODE FOR J BOTH
IN THE RANGE
1 TO 35007

II1-7

)

PRINT ERROR MESSAGE:
TLLEGAL NODE DESLIGNATIONS
ON THIS CARD XXXX XXXX
XX.XX

PRINT ERROR

1S THE
COST > 10.23

SET COST = 10.23

MINUTES?

YES

WILL THIS
LINK MAKE MORE

PRINT ERROR

PRINT KRROR

THAN 8 LINKS
FROM BACKND

IS THIS
A DUPLICATE
LINK?

IF COST = 0.0,

IZLINK = IZLINK + 1.
ADD 1 TO SPEED RANGE

IN WHICH THE LINK FALLS.
SUM MILEAGE

PRINT BRROR MESSAGE

YES

18 THE
LINK FROM B NODE
TO BACKND A
DUPLICATE LINK?

WILL THIS

PRINT ERROR

III-8

NO

BLDNET

ENTER THE LINK B NODE
TO BACKND IN THE
NETWORK

J=J + 1

EOF = .TRUE.

Y

FIND LAST NODE
NUMBER IN. THE NETWORK

PACK OUT ZEROS IN
THE LINKS ARRAY
AND BUILD THE LINK
INDEX - ARRAY

PRINT THE NUMBER OF
ZERO LINKS IN THE
NETWORK, IZLINK.

PRINT THE NETWORK
MILEAGE.

PRINT THE NON-ZERO
PART OF THE TABLE
OF THE NUMBER OF
LINKS AT EACH
SPEED. .~

WRITE THE PARAMETER
RECORD, INDEX RECORDS,
AND LINKS RECORDS ON
UNIT 1

END FILE 1
REWIND 1

READ A CARD FROM

UNIT 5

END FILE 4

III-9

REWIND 4

PRINT SOME OF
PARAMETERS

RETURN

BLDNET

CMPVH

INITIALIZE SUMMATION
VARIABLES TO ZERO

SUM UP THE VEHICLE
MILES FOR THE JURISDIC-
TIONAL/FUNCTIONAL CROSS
CLASSIFICATIONS

ARE THERE
ANY LINK COUNT
OR LINK VOLUME
FIELDS?

CALCULATE AND PRINT
JURISDICTION SUMMARY
BY LOCALS, ARTERIALS,
AND FREEWAYS

DO LESS
THAN 5%
. OF THE LINKS HAVE
ZERO FUNCTIONAL
CLASS CODES?

CALCULATE AND PRINT THE
" JURISDICTIONAL/FUNCTTONAL

CROSS CLASSIFICATION
OF ASSIGNED VOLUMES"
SUMMARY ' .

ARE THERE
ANY LINK
COUNT FIELDS?

CALCULATE AND PRINT THE
"JURISDICTIONAL/FUNCTIONAL
CROSS CLASSIFICATION

OF COUNTED VOLUMES"
SUMMARY

. |

IS THE

VEHICLE MILES
SUM FOR

CAPACITIES = 0?

CALCULATE AND PRINT THE
"JURISDICTIONAL/FUNCTIONAL
CROSS CLASSIFICATION

OF CAPACITIES" SUMMARY

III-10

ARE THERE
ANY LINK
COUNT FIELDS?

NO

PRINT REGRESSION OF
ASSIGNED VOLUMES VERSUS
COUNTED VOLUMES BY ROUTE

ARE THERE
ANY NON-ZERO LINK
CAPACITY FIELDS?

PRINT REGRESSION OF
ASSIGNED VOLUMES
VERSUS LINK CAPACITIES
BY ROUTE

1S THERE
A PREVIOUS
ASSIGNMENT ON THE
NETWORK DATA SET?

PRINT REGRESSION OF
ASSIGNED VOLUMES
VERSUS PREVIOUS

ASSIGNED VOLUMES BY
ROUTE

CMPVH

CRD

END OF DATA SET READ A UNIT CONTROL

CARD OR A CONTROL -
CARD

PRINT PACKAGE DATE
AND NAME. SET I TO
INDEX OF CONTROL CARD
TYPE

RETURN

IS THIS

PRINT INVALID CONTROL A UNIT
CARD MESSAGE CONTROL CARD?
Y
STOP 9999

CHANGE UNIT NUMBERS

SAVE HEADER

'

SPECIFIED AND PRINT ALL
UNIT NUMBERS

- PRINT END OF FILE

ON 5 MESSAGE

STOP O

III-11

CRD

CRDINT

RETURN

READ HEADER RECORDS
FOR ALL ASSIGNMENTS
FROM FLEXIBLE DATA
RECORD AND PRINT.

!

SET UP FORMATS FOR

WUMBER OF ASSIGNMENTS.

™

VSORT S !

SORT CORRIDOR
INTERCEPT RECORDS,

IN CORE, ON THE .
CORRIDOR INTERCEPT

PRINT CORRIDOR
INTERCEPTS BY
INTERCEPT NUMBER
WITH PERCENTS AND
TOTAL BY CORRIDOR
INTERCEPT

1

-)

ITI-12

CRDINT

SUBROUTLNE

E35

GET RECORD ADDRESSES

DOES IT HAVE
THE SAME LINK INDEX
AND ZONE PAIRS AS
THE PREVIOUS
RECORD

ADD DIRECTIONAL
VOLUME TO SUIM.

SUM TWO DIRECTIONAL
VOLUMES AND PUT IN
PREVIOUS OUTPUT

REC. OR DIRECTION FLAGS.

DELETE INPUT RECORD
AND RETURN RC = 4

*ASSEMBLY LANGUAGE

III-13

E 35

£ 35

SET FLAG TO DELETE OUTPUT
RECORD SEQUEMCE CHECK.

ADD DIRECTIONAL
VOLUME TO SUM.’

MOVE VOLUME, FROM LARGE
ZONF. NUMBER TO SMALL
ZONF, NUMBER, TO OTHER
DIRECTIONAL VOLUME,

DOES THIS
RECORD HAVE
A VOLUME FROM THE
SMALL ZOKE TO THE
LARGE ZONE

YES

CONT |

PASS INPUT RECORD TO
‘QUTPUT. AND RETURN,
RC = 0

MOVE DIRECTIONAL VOLUME
IN AS NON-DIRECTIONAL
VOLUME

L

YES

DOES THE
OUTPUT RECORD
HAVE A NON-
DIRECTIONAL -

VOLUME?

REARRANGE SELECT RECORD.
SET INDEXP = LINK INDEX
OF SELECT RECORD

i

OUTPUT SELECT RECORD,
RETURN, RC = 0

' MOVE DIRECTIONAL
VOLUME IN AS NON-
DIRECTIONAL VOLUME

DOES THE
OUTPUT RECORD
HAVE A NON-
DIRECTIONAL
VOLUME?

RETURN LAST TIME, END
SORT, RC = 8 -

SUM = 0

BUILD SUM RECORD, PUT
SUM IN SUM RECORD.

INSERT SUM RECORD IN
RETURN

OUTPUT AND
RC = 12

ITI-14

ENTRY

ENTER

SUBROUTINE

FASPTH"

SET ENTRY SWITCH
T4 BRANCH

SET ENTRY SWITCH 10
NOP.

HOW 1S

ENTRY SWITCH
"SET?

*ASSEMBLY LANCUAGE

SAVE REGISTERS,
ESTABLISH A BASE
REGISTRR. GET TURR
PENALTY ARRAY

INITIALIZE TO START TREE
FROM HOME ZONE. SET
LAMBDA (HOMEND) = 0 PUT
HOMEND . IN SEQUENCE
TABLE. '

GET 4% LAST ARTERIAL

SET NUMBER OF ENTRIES
IN SEQUENCE TABLE TO
ZERO. ’

GEY ADDRESS OF LANBDA
ARRAY, (CUMULATIVE HODE
. TIMES).

GET ADDRESS OF INDEX
ARRAY (LINK INDEX ABRAY).

INITIALIZE LAMBDA
ARRAY LOCATIONS TO 224 -
1 HUNDREDTHS OF MINUTES.

GET ADDRESSES OF LINKS
AND SEQUENCE ARRAY,
15EQ.

INITIALIZE ISEQ ARRAY
OF 2048 HALF WOBDS TO

III-15

BACK

FASPTH
ENTER

ENTER X

OUT F

‘SUBTRACT ONE’
" FROM THE NUMBER

OF ENTRIES IN
SEQ. TABLE
1s IT > 07

MAKE THE TABLE WARP
AROUND BY CALCULATING
EACH NEW INDEX MODULUS
2048. '

GET NEXT ENTRY FROM
SEQUENCE TABLE BY
SEARCH FROM LAST INDEX
UNTIL A NON-ZERO ENTRY

|
|
|
!

LKLOOP

1S FOUND.

ZERO OUT THE SEQUENCE
TABLE ENTRY FOUND AND
CHANGE SEQUENCE ENTERED
BIT STATE.

GET ARROW BIT OF WAY
TO THE NODE, GET INDEX
WHERE LINKS FROM THIS
NODE 'BEGINS.

YES

HAS THE
LAST LINK

FROM THIS NODE
BEEN PROCESSED?

INCREMENT LINK INDEX TO
NEXT LINK.

GET LINK AND UNPACK B .
NODE NUMBER, SHAPT, o
ARROW, AND LINK TIME.

ADD LINK TIME, TURN
PENALTY AND TIME TO
A NODE

COMPARE NEW
TIME TO B NODE:
OLD TIME TO B NODE.

1S THE
B NODE A .
FREEWAY NODE?

IS THE
LINK TO GET
TO THE B NODE

A ZERO TIME
LINK?

SAVE NEW TIME TO B
NODE IN THE LAMBDA
ARRAY

SAVE NEW SHAFT BIT TO
THE B NODE. STORE B
NODE IN PATH ARRAY.

IS THE
B NODE A
CENTROID OR 1S
IT IN THE SEQ.
TABLE?

CALCULATE I =
MODULUS (NEW B NODE
TIME, 2048). " ADD ONE
TO NUMBER OF SEQ.
ENTRIES

III-16

STARTING AT I FIND

A ZERO ENTRY IN THE
SEQ. TABLE AND PUT THE
B NODE IN IT. AT 2049
WRAP AROUND TO 1.

FASPTH
ENTER

OUTF

RESTORE REGISTERS.
SET BACK NODE OF PATH
FROM THE HOME ZONE TO
ZERO

RETURN

ENTERX

GET COUNT OF PARTITION
NODES

ENTER PARTITION TIMES
INTO LAMBDA ARRAY AND
PUT NODE NUMBERS IN
SEQ. ARRAY

" ZERO PATH ENTRY FOR

EACH PARTION NODE,
SET ENTERED FLAG, AND

SET SHAFT BITS 10 0.

III-17

FASPTH
ENTER

* ASSEMBLY LANGUAGE

SUBROUTINE

FMTLNE*

SAVE REGISTERS. GET
ADDRESSES OF ARGUMENTS

. GET ANODE AND NUMBER
OF LINKS TO PRINT ON
THIS LINE, NDS.

MOVE THE.EDIT PATTERN
INTO THE OUTPUT LINE.-

SET I =1

CONVERT THE ANODE'TO
PACKED DECIMAL AND
EDIT INTO THE OUTPUT
LINE

GET LINK [TO PRINT
ON THIS LINE

SEPARATE THE LINK INTO
SHAFT AND ARROW, LINK
TIME, AND B NODE

EDIT IN THE B NODE

|

IS IT A
ONE-WAY LINK IN
THE OPPOSITE
DIRECTION?

FMTLNE

MOVE IN LITERAL
'(ONE WAY)"®

EDIT IN TIME. MOVE
EBCDIC SHAFT AND ARROW
IN

GET JURISDICTION,
DISTANCE, AND SPEED FOR
LINK I.

.

EDIT IN SPEED, EDIT
IN DISTANCE, MOVE IN
JURISDICTION.

I=I+1 -

FILL THE REST OF THE
LINE WITH BLANKS

RETURN

I1I-18

SUBROUTINE

FRATAR

INITIALIZE SUMMATION
VARTABLES TO ZERO.
INITIALIZE OTHER
VARIABLES.

READ PARAMETER CARD AND
PRINT NUMBER OF ITERA~
TIONS SPECIFIED

PRINT MESSAGE:

IMPROPER GROWTH FACTOR

F1ELD

IS B-DECK
FIELD SPECIFIED
VALID?

RETURN

PRINT GROWTH FACTOR
FIELD TYPE SPECIFIED ON
PARAMETER CARD

COPY TRIP MATRIX FROM
UNIT CTVOUT TO UNIT
FRATAR AND SUM TRIP
ENDS

READ B-DECK CARDS AND
EXAMINE FOR ERRORS,
CORRECTING THOSE WHICH
ARE CORRECTABLE AND
PRINT ERRORS

PRINT "B DECK READ
COMPLETE" |

III-19

FRATAR

STOP

EXAMINE GROWTH FACTORS
FOR ZEROS OR MISSING
GROWTH FACTORS AND .
PRINT ERROR MESSAGES IF
ANY

wji = GROWLH FACTOR
FOR ZONE
EXISTING INTER-
CHANGE BETWEEN
ZONE 7 AND .

m = NUMBER OF ZONES

ALSO SUM
m n

E; =) To+I T,
J=1 7t jel1 J

ARE THERE
ANY ZERO

GROWTH FACTORS?

READ LAST TRIP MATRIX
AND CALCULATE
m m
Si=f t, g . +Lt,.g
e W FeNiar)

w, /8,
T " er./'z

where:

e. =% t,.+ Ie,,
togm It gu1 G

READ LAST TRIP MATRIX
AND CALCULATE NEW
FORECASTED TRIPS
Wt
- . (=i
Ty t,;j“z“,i(7+
AND WRITE NEW TRIP MATRIX

CALCULATE GROWTH FACTORS
FOR NEXT ITERATION BY:
. 1

1 e

GET DISTRIBUTION OF
g; IN THE RANGE .9
16 1.1 AND PRINT.

L

FRATAR

HAVE THE
MAXIMUM NUMBER
OF ITERATIONS
BEEN RUN?

DO THE
NEW GROWTH
FACTORS SATISFY
THE -CONVERGENCE

" TEST

I8 THE
OUTPUT OF THE
LAST ' ITERATION
ON UNIT FRATAR?

III-20

SUBROUTINE"

GETDAT*

REGISTERS AND R 13

EXECUTE "TIME" MACRO
TO GET YEAR AND DAY OF
YEAR FROM SYSTEM.

PUT DATE IN “TD@",
KESTORE R 13

COMVERT THE LAST TWO |
DIGITS OF THE YRAR YROM
PACKED DECIMAL TO EBCDIC

MOVE THE FIXED PART OF
THE DATE "8t DD, 197Y'
RST ARGUMENT

INITIALIZE LOOP "LEAP WR"
FOR A LEAP YRAR

DIVIDE THE LAST TWO
DIGITS OF THE YEAR BY &

, INITIALIZE LOOP
Y “SLEAPYR" FOR A NOW
LEAP YEAR

- 18 THE
L DAY NUMBER
> 3667

¥o

PIRD MONTH OF YRAR.
MOVE 3 CHARACTER
~ABBREVIATION OF MONTH
TO ARG. WORK AREA.

GETDAT

®ASSEMBLY LANGUAGE

I1I-22

GETRN

SUBROUTIN®

GETRNS

¥y

PUT TURNING MOVEMENTS
WHICH HAVE BEEN SAVED

II1-23

GETRNS

SUBROUT INE

GTLD

INITIALIZE SUMMATION
VARIABLES TO ZERO.
OPEN DATA SET ROUTE
FOR ROUTE PROFILE

GTLD

IS A
WELIGHTED

ASSIGNMENT
TO BE CALCULATED?

OPEN NEWNET UNIT FOR
OUTPUT

READ PARAMETER RECORD

PROM UNIT NETWORK

IS A
WEIGHTED ASSIGNMENT

TO BE CALCULATED?

ADD ONE TO NUMBER

OF ASSIGNMENTS. AND
WRITE PARAMETER RECORD
ON UNIT NETWORK

READ HEADER RECORDS AND .
WRITE THESE RECORDS ON -

UNIT PLF ALSO-SAVE
LAST TWO HEADER RECORDS

INITIALIZE MORE
SUMMATION VARIABLES

TO ZERO AND INITIALIZE
OTHER VARIABLES

I1I-24

READ A
NODE RECORD
FROM UNIT NETWORK,
1S THIS EOD?

NL = NUMBER OF
LINKS FROM THIS NODE
I1=0

READ A LINK RECORD
WITH NO ASSIGNMENTS

ARE THERE
ANY ASSIGNMENTS
ON THIS
FLEXIBLE RECORD

READ A LINK RECORD
WITH NONDIRECTIONAL
ASSIGNED VOLUMES

1S A
WELGHTED
ASSTGNMENT TO
BE CALCULATED?

CALCULATE WEIGHTED
TMPEDANCE AND WEIGHT
VOLUME FOR ‘THIS LINK

WRITE NEW LINK RECORD
ON UNIT NEWNET WITH
WELGHTED IMPLEANCE AND
VOLUME AS NEXT
ASSIGNMENT

ARE GROUND
COUNTS OR
CAPACITIES TO
BE USED?.

GROUND | COUNTS

GET LINK GROUND COUNT
AND PUT IN NCC

GTLD

CAPACITIES

GET LINK CAPACITY AND
PUT IN NCC

ARE THE

NO NUMBER OF
ASSIGNMENTS » 1
AND IS NCC > O

YES

MAKE SUMMATIONS FOR
CROSS CLASSIFICATIONS

& GET LINK JURISDICTION,
SPEED, DISTANCE, TIME,
LAST ASSIGNED NON-
DIRECTIONAL VOLUME, AND
ROUTE CODE

1S EITHER
NODE IN THIS
LINK A

CENTROID?

IS THE
LINK COUNT
FIELD ZERO?

YES

MAKE SUMMATIONS FOR
REGRESSIONS OF

ASSIGNED VOLUME VERSUS
LINK COUNTS BY ROUTE

II1-25

YES

1S THE
CAPACITY FIELD
OF THIS LINK

ZERO?

MAKE . SUMMATIONS FOR
REGRESS10N OF ASSIGNED
VOLUMES VERSUS LINK
CAPACITIES BY ROUTE

IS THE
NUMBER OF
ASSIGNMENTS = 17

MAKE SUMMATIONS FOR
REGRESSION OF ASSIGNED
VOLUMES VERSUS PREVIOUS
ASSIGNED VOLUMES BY
ROUTE

WRITE RECORD FOR THE
ROUTE PROFILE ON UNIT
PLF

MAKE SUMMATIONS FOR
VEHICLE HOURS -
VEHICLE MILES SUMMARY
CLASSIFIED BY JURIS-
DICTION CODE VERSUS 3
LINK TYPES .

MAKE SUMMATIONS FOR
VEHICLE HOURS, VEHICLE
MILES SUMMARY CLASSIFIED
BY JURISDICTION VERSUS
FUNCTIONAL CLASS (ALSO
FOR CAP. AND COUNT)

1S THE

ROUTE > 07
AND A NODE <
B NODE?

ITI-26

IS EITHER
NODE OF THE
LINK A CENTROID?
OR IS NCC = 07

MAKE SUMMATIONS FOR

A REGRESSION OF LINK
VOLUMES VERSUS NCC,

COUNT OR CAPACITY.

IS THE

CORRIDOR
INTERCEPT = 0 OR
A NODE <-B NODE?

SAVE CORRIDOR INTERCEPT
\ RECORD FOR THIS LINK

IN CORE, INCREMENT COUNTER
OF CORRIDOR INT. RECORDS

I=1+1

(INCREMENT COUNT OF
LINK RECORDS FOR THIS
NODE RECORD)

CONVERT SUMMATIONS ON

CALCULATE THE NUMBER

PRINT V/C CROSS
CLASSIFICATION FROM
LAST TWO ASSIGRMENTS

PRINT CROSS CLASSIFICATION
OP LINK COUNTS BY V/C
RATIO FROM LAST TWO
ASSIGNMENTS

CAPACITIES

PRINT CROSS CLASSIFICATION

“OF LINK CAPACITIES

BY V/C RATIO FROM LAST
TWO ASSIGNMENTS

CLOSE AND REWIND ALL
DATA SETS USED

III-27

PRINT ERROR MESSAGE:
LSTCEN .GT. 1200, =
XRXXX

STOP

PRINT ERROR MESSAGE:
LSTVOL .GT. 16000, =
XXXXX .

STOP

PRINT ERROR MESSAGE:
NUMBER OF TURNING
VOLUMES .GT. 20000 =
AXXXX

SUBROUTINE

INITLY

ADD CENTROID FLAG
TO TURNING MOVEMENT
CODES POR CENTROIDS

PRINT ERROR MESSAGE:
NODES .GT. 4000, =
XXXXX :

(INITIALIZE LINK
‘VOLUMES TO ZERO.

SET UP TURNING MOVEMENT

YES

1S THE
NUMBER OF
TURNING MOVEMENTS
TO SAVE > 200007

III-28

" sTOP .

INITIALIZE TURNING
VOLUME ARRAY TO ZERO

INITLY

LNKLST

SUBROUTINE

LNKLST

REWIND UNIT NEWNET

REWIND UNIT NETWORK

READ A LINK RECORD. (:)
SET C = GROUND COUNT

OR CAPACITY, WHICH i

] " PRINT ASSIGMNEWTS FROM
TEE ASSIGN SELP-BALANCING
AMD LINK DPEDANCES.

Tewl+l

III-29

*ASSEMBLY LANGUAGE -

SUBROUTINE

LOAD *

SAVE GENERAL PURPOSE
REGISTERS AND SET UP
A NEW SAVE AREA.

MOVE UNSUBSCRIPTED
ARGUMENTS

MOVE ADDRESSES OF
ARBAYS, SET UP LIST
FOR CALL, SUBTRACT

8 FROM ARRAY ADDRESSES

SET UP BASE REGISTERS
FOR ARRAYS.

INITIALIZE LAMBDA ARRAY

TO ZERO

SET INDEX OF WHERE TO
ENTER NEXT ITEM IN
SEQ. TABLE, XIN = 1,

SET INDEX OF WHERE TO
GET NEXT NODE NUMBER

FROM SEQUENCE TABLE,

XOUT = 1.

IIT-30

LOAD

GET 1'TH INTERCHANGE
ITEM FROM LAST VOLUME
REGORD READ AND SEPARATE
INTO VOLUME AND DESTI-
NATION CENTROID

SET SEQUENCE TABLE
ITEM XIN TO THE CENTROID
NUMBER

XIN = XIN + 1,

SET LAMBDA (CENTROID
NUMBER) = THE VOLUME,
IT+=1+41

1S T » THE
NUMBER OF ITEMS
IN THIS VOLUME
RECCRD?

HAS AN END
AT FILE BEEN

YES
REACHED ON THE

TRIP MATRIX DATA
SET?

[

READ ANOTHER VOLUME
RECORD FROM THE
TRIP MATRIX DATA
SET

DOES THIS
VOLUME RECORD
HAVE TRE
SAME ZONE
NUMBER?

INITIALIZE OTHER

BASE REGISTERS. SET
FLAG TO INDICATE LAST
TRIP MATRIX RECORD READ
HAS NOT BEEN USED.

ITII-31

LOAD

RETURN

- XIN = XOUT?

GET NODE NUMBER IN
LOCATION ' XOUT OF
THE SEQUENCE TABLE

XOUT = MOD(XOUT,
2000) + 1

GET THE BACK NODE,
XR, IN THE PATH
FROM THE NODE FROM
THE SEQ. TABLE

PIND LINK FROM NODE
TO XR AND FIND IOUT
WHICH IS THE NUMBER .
OF LINKS IT IS FROM
THB FIRST LINK FROM
NODE

IN KETWORK
) 4

GET LINK VOLUME FROM
VOL ARRAY

ADD VOLUME TO NODE TO
LINK VOLUME

IS THE
NEW LINK
VOLUME < 327677

NOT IN NETWORK

SAVE THE NEW LINK VOLUME
JIN THE VOL ARRAY

ADD ONE TO NUMBER OF
VOLUMES > 32767, SET
THE INDEX AND FLAG IN
THE VOL ARRAY.

PUT THE NEW LINK
VOLUME IN THE OVERFLOW
ARRAY ELEMENT INDEXED
BY THE INDEX PUT IN THE
VOL ARRAY.

L4

LOAD

L3

GET INDEX BY ANDING OUT
FLAG. GET LINK VOLUME
FROM OVERFLOW ARRAY.

ADD THE VOLUME TO

THE NODE TO THE LINK
VOLUME AND STORE THE
RESULT IN THE OVERFLOW
TABLE,

GET THE NEXT BACK NODE
IN THE PATH, IPR.

Is

L2 IR = 07

FIND LINK COUNT IN OF
LINK XR TO IPR FROM -
LINKS STARTING FROM NODE
XR

GET TURN CODE, IND,
FOR NODE XR.

18
Ls N > 287

III-33

LOAD

LOAD

1-9, | ii-12, 10 26 13, 17,{18 27 21 23
14-16, 2 19, and 28) 22: 23' ! 1 25
\ L
1D = IDSP3(IN, IOUT)
.) ID = IDSP41(IN, IOUT) ID = IDSP42(IN,IOUT) 1D = 1DSP44(IN, IOUT)
A
D = 1DSP5(IN, IOUT) ID = IDSP6(IN, IOUT) ID = IDSP43(iN, 1OUT)

I D D R

ID INDLCATES WHETHER

TO SAVE THE TURNING
MOVEMENT FROM IPR - XR -~
L5 NODE AND IT IS ALSO
THE RELATIVE INDEX
OF WHERE TO ‘SAVE IT

ABEND 101

ABEND 102

GET INDEX OF TURNING
MOVEMENT VOLUME BY
ADDING ID TO INDEX
OF FIRST TURNING
MOVEMENT FOR NODE XR

I1I-34

IS THERE
A VOLUME FROM
NODE XR IN LAMBDA?

PUT non:'n IN
SEQ(XIN) IN THE
SEQUENCE TABLE

XIN = MOD(XIN, 2000)
+1

ADD THE NEW VOLUME
FROM XR TO THE
PREVIOUS VOLUME FROM
XR AND STORE IN
LAMBEDA (XR)

L2

III-35

LOAD

GET TURNING MOVEMENT
VOLUME

GET INDEX BY ANDING
OUT FLAG. GET TURN
VOLUME FROM OVERFLOW
ARRAY

ADD VOLUME TO NODE XR
TO TURNING MOVEMENT
VOLUME

ADD THE VOLUME TO THE
XR NODE TO THE TURN
VOLUME ‘AND STORE THE
RESULT IN THE OVERFLOW
TABLE,

SAVE THE NEW TURNING
VOLUME IN THE TURN
VOLUME ARRAY

IS THE

NEW TURNING
MOVEMENT VOLUME
> 327677

ADD ONE TO NUMBER OF

VOLUMES > 32767. SET
THE INDEX AND FLAG IN
THE TURN VOLUME ARRAY.

PUT THE NEW TURNING
VOLUME IN THE OVERFLOW
ARRAY ELEMENT INDEXED
BY THE INDEX PUT IN THE
TURN VOL. ARRAY

III-36

L0AD

LORDZ

SUBROUTINE

LOAD2"

SAVE REGISTERS AND
ESTABLISH A NEW
SAVE AREA

MOVE UNSUBSCRIPTED
ARGUMENTS

MOVE ADDRESSES OF ARRAYS,
SUBTRACT 8 FROM ADDRESSES

SET UP BASE REGISTERS
FOR ARRAYS

SET READSW TO

INDICATE THE LAST TRIP
MATRIX RECORD READ
HAS BEEN USED.

1 = THE NUMBER OF
ITEMS IN THIS VOLUME
RECORD.

Dol

ITI-37

*ASSEMBLY LANGUAGE

pol

GET 1'"TH INTERCHANGE
ITEM FROM TRIP MATRIX
RECORD 'AND SEPARATE
INTO VOLUME, VOLL,
AND DESTINATION
NODE, START.

GET XR WHICH L5 THE
NEXT NODE BACK IN
THE PATH FROM START

ABEND 70, DuMpP

FIND LINK FROM XR
TO START AND COUNT
THE NUMBER OF LINKS
IT IS FROM THE FIRST

LINK LINK FROM NODE XR AND
NOT IN PUT IN LOUT
NETWORK
LINK |- FOUND

GET [PR WHICH IS THE
NEXT NODE BACK IN THF
PATH FROM NODE XR.

FIND LINK FROM XR

'TO IPR AND COUNT THE
NUMBER OF LINKS IT

IS FROM THE FIRST LINK
FROM NODE XR AND PUT
THE NUMBER IN IN.

1S THE
LINK FROM XR
TO START A

" SELECTED LINK?

/ PUT (MACRO) \

GET ADDRESS OF BUFFER
T0 BUILD SELECTED LINK
RECORD IN.

GET LINK ADDRESS OF
OPPOSITE ONE-WAY
SELECTED LINK.

WHICH 1S
THE SMALLEST
ONE -WAY SELECTED
LINK INDEX?

LINK XR
TO START

START TO XR

PUT THE LINK LINDEX
OF XR TO START AS A
HALF WORK INTEGER
IN LOCATIONS O AND 1
OF THE RECORD.

IS THE
ORIGIN CENTROID
OF THE TRIP
INTERCRANGE >
DESTINATION
CENTROID

DISP. LENGTH

BYTES BVTES CONTENTE
2 2 ORIGIN CENTROID
4 2 DESTINATION CEN.
6 4 VOLUME

10 4 1]

14 2 10

RST

LOAD2

LINK
NOT 1IN

ABEND 71, DUMP
NETWORK

REV

DISP.
BYTES L CONTENTS
2 DESTINATION CENTROID

2
| 4. 2 ORIGIN CENTROID
b 4 ZERO
10 4 VOLUME

14 214

III-38

DISP. LENGTH
BYTES BYTES CONTENTS
2 2 DESTINATION
CENTROID
4 2 ORIGIN CEN.
6 4 Z2ERO
10 4 VOLUME
14 2 5

REV

LOAD2

PUT THE LINK INDEX
OF START TO XR AS A
HALF WORK INTEGER IN
LOCATIONS 0 AND 1

OF THE RECORD.

IS THE
ORIGIN CENTROID
OF THE TRIP
INTERCHANGE > DES-
TINATION CENTROID

DISP. LENGTH

BYTES BYTES CONTENTS
2 T2 ORIGIN CEN.
4 2 DESTINATION

AT THIS POINT THE
SELECTED LINK RECORD
1S BUILT AND.IN ITS

BUFFER.

CENTROID
6 4 VOLUME
10 4 ZERO
— 14 2 2
i

RST &>

BS5 »

L

GET LINK VOLUME OR
INDEX TO IT IN
QVERFLOW TABLE OF
LINK KR TO START

GET LINK VOLUME AND

ADD INTERCHANGE VOLUME
AND STORE IN VOL ARBAY
IF < 32767, OTHERWISE
STORE IN OVERFLOW ARRAY

GET IPR = THE PATH
NODE BACK FROM NODE XR

ITI-39

18

IPR = 07 ES

Al

GET TURN CODE, IND,
FOR NODE XR

A9000

1-9, |12,
1416, & 19 AND 28

A6

10 26

13, 17,
22, 23

18, 27

21

23,) 24

28

LOAD?2

ID = IDSP3(IN, IOUT)

ID = IDSP41 (IN,IOUT)

ID = IDSP42(IN, IOUT)

ID = IDSP44 (IN, IOUT)

A9000

1D = IDSP5(IN,IOUT)

. ID = IDSP6(IN,IOUT)

ID = IDSP43 (IN,IOUT)

ID INDICATES WHETHER
TO SAVE THE TURNING
MOVEMENT FROM IPR-

XR- START AND IT IS ALSO
THE. RELATIVE INDEX

OF WHERE TO SAVE IT

ABEND 101

ABEND 102

Is
ID = X'FO'?

GET INDEX OF TURNING
MOVEMENT VOLUME BY
ADDING ID TO INDEX
OF FIRST TURNING
MOVEMENT FOR NODE XR

III-40

A6

GET TURN VOLUME OR

" INDEX FROM TRNTB
ADD TRIP INTERCHANGE
VOLUME ’

IF THE NEW TURN VOLUME
< 32767 STORE IT BACK
IN THE TRNTB ARRAY
OTHERWISE STORE IN
OVERF AND BUILD INDEX
AND STORE IN TRNTB IF
NEEDED

START = XR

Al

Iel-~1

RETURN

III-41

YES

| DO1

LOAD2

PROGRAM

MAIN

INITIALIZE CUMULATIVE
TIME TO 0, GET
TODAY'S DATE FOR THE
HEADER RECORD

GET TIME OF DAY AND
PIND CUMULATIVE TIME
AND PRINT

READ LINK DATA IN

REVSET ENTRY POINT,

MAIN

A20
1
cap
" READ AND INTERPRET
STOP 0 A CONTROL CARD OR UNIT
RETURN
OTHER ‘ CONTROL J CARDS 1
PREPARE § NETWORK REVISE NETWORK .
I PRENET PRPUET \

OLD FORMAT, EDIT FOR
ERRORS, SORT AND CHECK
CONNECTION ERRORS AND
PRODUCE FLEXIBLE DATA
RECORD

ASMNET ENTRY POINT.
READ LINK DATA IN NEW
FORMAT, EDIT FOR
ERRORS, SORT AND CHECK
CONNECTION ERRORS
AND PRODUCE FLEXIALE
DATA RECORD

READ LINK DATA IN NEW
FORNAT FOR CHANGES,

EDIT POR ERRORS, MERGE
WITK OLD FLEXIBLE DATA
RECORD AND CHECK
CONNECTION KRRORS

FLEXIBLE
DATA RECORD

(UNIT NETWORK)

READ FLEXIBLE DATA

RECORD AND PRINT NETWORK
DATA QF ANODE, BNODE, F,

8, D, TIME, SHAFT AMD
ARROW

ASSIGNMENTS

UPDTNT \

CARDS AND COPY FLEXIBLE
DATA RECORD WITH CHANGES

OLD FLEXIBLE
DATA RECORD
(UNIT 12)

ITI-42

STOP

STOP ¢

MAIN
PREPARE TRIPVOLUMES QUTPUT TRIPJVOLUMES SUM TR1P|ENDS MERGE FRATAR| FORECAST
) 4
/ PRPCTV \ [OUTRLP [SUMEND \ [MERG \ FRATAR) \

READ TRIP MATRIX IN
EBCDIC RECORD FURM,
CHECK FOR CORRECT
SEQUENCE AND ZONE RANGE
AND WRITE TRIP MATRIX

READ TRIP MATRIX AND

PRINT

>\

TRIP MATRIX
(UNIT. CTVOUT)

SUM TRIP MATRIX BY
ROWS AND COLUMNS
EXCLUSIVE OF THE
DIAGONAL ELEMENTS AND
COUNT NON-ZERO ELEMENTS
AND PRINT

DO A MATRIX ADDITION OF
FROM 2 TO 6 TRIP '
MATRICES AND WRITE OUT
SUMMED TRIP MATRIX

[

TRIP MATRIX
(UNIT
MERGIN(1))

TRIP MATRIX
(UNIT MERGIN

m)

TREP MATRIX
(UNIT MERGOUT)

READ GROWTH FACTORS
AND PERFORM MULT1PLE
FRATAR 1TERATIONS

ON TRIP MATRIX AND
WRITE NEW TRIP MATRIX

TRIP MATRIX
(UNIT FRATAR)
CHANGE UNLT
CTVOUT T
FRATAR

A2

NETWORK

PREPARE SPIDER

BLDNET

[

A\

READ I.LNK DATA CARDS
IN SI'IDER NETWORK

FOKMAT AND OUTPUT LINK

ARRAY AND NODE NAMES

—

OUTPUT snnmlnmzonx

ASSIGN SPIDER

QUTSNT

NETWORK

[

PATHSP

\

[

PLOT ROUTEY

PROF1LES

RTPLT

\

A 20

LINK ARRAY
(UNIT 1)

PRINT SPIDER NETWORK
WITH NODE NAMES

NODE NAMES
(UNIT 4)

BUILD SPIDER TREES,
LOAD VOLUMES, ON
TREES, AND PRINT

LOADED NETWORK (WITH

NO TURN MOVEMENTS)

ITI-43

ROUTE LINKS
(UNIT ROUTE)

READ PARAMETER CARDS
TO DETERMINE WHICH
ROUTE NUMBER AND
WHICH ASSIGNMENTS AND

PLOT.

MATN

A3
BUILD TREES |{ ASSIGN ASSIGN- SELECTED @ LINKS
/ TREBLD \ [TREBLD \ SELECTED LINKS [TREBLD \
(UNIT SELTRP) USE SELLD ENTRY.
BUILD TREES AND PRINT e re. AT MABK SELECTED LINKS
y HEN
RITE 3‘35\55%?1:“ LOADED NETWORK gxgﬁgsﬁim
OTues FUR TEE TREES AND UPDATE FLEXIBLE WRITING TRIP INTER-
VECTORS : RECORD WITH ASSIGNED CHANGES D ooTon
WHICH ARE BUILT. VoLouEs GES D 00
TRIP MATRIX
(UNIT CTVOUT) \
SMRY SUMRY \

CALCULATE SUMMARIES
AND COMPARISONS FOR
THE ASSIGNMENT AND

PRINT, .

CALCULATE SUMMARIES
AND COMPARISONS FOR
THE ASSIGNMENT AND y
PRINT.

ROUTE LINKS
(UNIT ROUTE)

FLEXIBLE DATA '
SEPARATION FLEXIDLE DATA } [¥CORD (UNIT A2 | - A 20
MATRIX NEWNET) ‘

III-44

N

A4

ASSIGN Y SELP-~BALANCING

IMIN = 3
IMAX = §
RES = .TRUE.
J=1

TREBLD \

BUILD TREES AND LOAD
TRIPS. PRINT LOADED
NETWORK ONLY WHEN

J = 1. UPDATE
FLEXIBLE RECORD WITH
VOL. AND NEW IMPEDANCE

SUMRY \

OUTPUT "ALL SUMMARIES
AND COMPARISONS OF
THE ASSIGNMENT EXCEPT
ROUTE PROFILES AND .
CORRIDOR INT.

SEPARATION
MATRIX

SWITCH UNIT NUMBERS
OF UNITS NEWNET AND
NETWORK,J = J +:1

FLEXIBLE DATA
RECORD (UNIT
NETWORK)

1S THE
T VALUE OF THE
LAST ASSIGNED
VOLUMEB < 1.967

FLEXIBLE DATA
RECORD (UNIT

ROUTE LINKS
(UNIT ROUTE)

MALN

SWITCH UNIT NUMBERS
OF UNITS NEWNET AND
NETWORK.

1

[WGTLD k \

CONVERT REGRESSION
CONSTANTS OF C VERSUS
V'S INTO PERCENTS TO
LOAD

CALCULATE AND PRINT
WEIGHTED LOADED NETWORK

L
SUMRY \

PRODUCE FLEXIBLE -
DATA RECORD WITH

WEIGHTED ASSIGNMENTS [)
AND TABLE. ALSO
ROUTE PROFILE

IF NOT WT

WAS THE
OPTION "“WGT"
SPECIFIED?

RES = .FALSE.
J=J+1

1

TREBLD -\

BUILD TREES AND LOAD
TRIPS USING WEIGHTED y
IMPEDANCES, UPDATE ’
FLEXTBLE DATA RECORD
AND PRINT LOADED NET. \

11

A SUMRY 3\

OUTPUT ALL SUMMARIES
AND COMPARISONS : .
INCLUDING ROUTE PROFILES .

AND CORRIDOR INT.

WRITE UNIT NUMBER OF .
WHICK THE FINAL UPDATED

FLEXIBLE DATA RECORD IS
WRITTEN

SUBROUTINE

MERG

SET CTVOUT TO UNIT
MERGOUT

INITIALIZE FLAGS TO
INDICATE THAT NO

BOD HAS BEEN REACHED
AND THAT THE LAST
HOME ZONE AND SUBNET
ARE 0 FOR 6 DATA SETS.

PRINT ERROR MESSAGE:
INVALID *REEL CARD,
EXECUTION DELETED.
ALSO PRINT THE #*REEL
CARD.

STOP 998

PRINT ERROR MESSAGE
WITH MUMBER OF
SUBNETS AND NUMBER
OF DATA SETS TO
MERGE .

STOP 997

OF SUBNETS ON THIS
DATA SET.

MERG

READ 1'TH MERCE
DATA SETS METER

RECORD

SET PLAG TO INDICATE
EOD REACHED ON I'TH
MERGE DATA SET.

III-46

PRINT ERROR MESSAGE

GET MAXIMUM LAST
CENTROID NUMBER FOR
SUBNET J AND SAVE IN
LSTND(J)

JeaJ4+1

STOP 996

I=3+1

is
1 > THE NUMBER
OF DATA SETS TO
MERGE

MERG

REWIND MRGOUT DATA
SET. WRITE THE
PARAMETER RECORD
FOR THE ‘MRGOUT
DATA SET.

GET THE LARGEST
NUMBER OF CENTRO1DS
IN A SUBNET AND PUT
IN MAX.

ISUB = 1

IFST = FIRST CENTROID
FOR SUBNET ISUB.

LST = LAST CENTROID
FOR SUBNET 1SUB

COMPARE
CENTROID NUMBER
READ LAST FROM

DATA SET I:
NODE

HAS AN
EOD BEEN
REACHED ON MERGE
DATA SET 17

IS THE
SUBNET NUMBER
OF THE RECORD

READ ANOTHER RECORD
FROM MERGE DATA SET
1.

FROM DATA-SET 1
= LSUB

NODE = IFST

SUM THE VOLUMES IN THIS
RECORD IN THE VOLUME

SUMMING ARRAY

MR 6

LSUB =1

I=1+1 -

INITIALIZE VOLUME
SUMMING ARRAY TO
ZERO FOR MAX WORDS.

isI1>

NO
THE NUMBER

OF DATA SETS
TO MERGE

PACK THE SUMMED
VOLUMES AND WRITE THEM
IN ONE OR MORE RECORDS
ON THE MRGOUT DATA

SET

LSUB = LSUB + 1

15
LSUB > NOSUB?

III-47

YES

NODE = NODE + 1

18
NODE > LST

ISUB = ISUB + 1

I8
ISUB > NOSUB?

END PILE MRGOUT
REWIND MRGOUT

REWIND ALL MERGE
DATA SETS.

|

III-48

SET A FLAG TO INDICATE
THAN AN EOD HAS BEEN
REACHED ON MERGE DATA
SET I

MR 7

MERG

*ASSEMBLY LANGUAGE

SUBROUTINE

MOORE *

SAVE REGISTERS.
GET ARGUMENTS

INITIALIZE CUMULATIVE
TIME ARRAY TO
327.67 MINUTES

INITIALIZE 1024
LIST POINTERS TO
ZERO,

INITIALIZE LISTS
OF NODES FOR ASCENDING
TIME ORDER, FIRST,
AND DESCENDING TTME
ORDER, LAST.

INITIALIZE FOR HOME
CENTROID. SET I =
HOME CENTROID.

M1l

III-49

MODRF

M1

SAVE BACK NODE TO
NODE I.

GET INDEX TO FIRST
LINK FROM NODE I, J.

GET LINK INDEXED BY
J. SEPARATE FIELDS
OF THE LINK. ALSO
GET B NODE OF THE LINK.

IF THIS
LINK IS USED
WILL IT MAKE
A U-TURN

GET CUMULATIVE TIME
TO NODE I AND ADD
LINK TIME TO IT.

IS THIS
A SHORTER
TIME TO THE
B NODE?

18 THIS
THE FIRST PATH
TO THE B NODE?

REMOVE THE B NODE
FROM ITS OLD LOCATION
IN THE SEQUENCE TABLE

PUT B NODE IN SEQUENCE
TABLE

DELETE NODE FROM
OLD TIME CHAIN AND
ADD TO NEW TIME CHAIN

MOORE

J=J+1

GET NEXT NODE FROM
THE SEQUENCE TABLE, I.

WAS THE
SEQUENCE TABLE
EMPTY?

RESTORE REGISTERS

RETURN

III-50

SUBROUTINE

MRGREC

MRGREC

GNMENTS -
E OLD
FLEXTBLE DATA
REC. (12)?

OLDNET = 12
NE 3

REWIND 12
COPY HEADER RECORDS
FROM. PREV IDUS "ASSTGN-
MENTS FROM UNIT 12
TO UNIT 13
MRG = LNK1.GT.0 4

(ARE THERE ANY RECORDS
ON UNTT 3) MRG2 = :
LNK2.GT.0 (ARE THEREK —
ANY RECORDS ON UNIT 11)

SET INDEXES FOR NEXT
LINKS IN CORE OR
RECORDS RFAD FROM
UNITS 3 OR 11 TO
FIRST LINK (SET TO 0)

KEWIND NET
1
[SET LINK IMPEDANCES
- TO MAX. TIME, AND
I . PREVIOUS ASSIGNED
CALCULATE NUMBER OF VOLUMES T0 0 FOR
o LINKS IN NETWORK 20 ASSIGNMENTS FOR
PRINT MESSAGE UNTT 12 FROM NUMBER OF L.INKS 20 LINKS.
INET 12 MESSING O ISeING PROCESSED IN NEWNET
oe + LINKS ON UNIT 12-2%
DELETES
Y
0K -
1 [

READ FIRST NODE
STOP 12 SET NNLNK = 0, RECORD FROM UNIT 12

TO SUM ACUTAL #)
OF LINKS. WRITE
PARAMETER RECORD ON
UNIT 13.

1 GET A NOD¥, G

TURN CODE, GET 1LINK
CLASS IF AVATILABLE.
FORM A SORT KEY FOR
THE A NODE.

1S -THE
LAST NODE
NUMBER » THE MAXIMUM
NODE NUMBER?

PRAINT MIESSAGE

THAT THE MAXIMUM NODE
NIMBER 15 FXCEEDED
Ui s BRR 4+)

READ A LINK RECORD
{(WITH LINK IMPEDANCES
AND VOLUMES FROM
PREVIOUS ASSTGNMENTS
LK ANY)

Y. WR1TE HEADER RECORD
AND DATE ON UNIT 173

GET OTHER VARLABLES
FOR THE LINK

SKIP FIRST HEADER
RECORD ON UNIT 12

II1-51

READ A RECORD FROM
UNIT 3

ARE THERE
ANY RECORDS
ON UNIT 3?

READ A RECORD FROM
UNIT 1t

ARE THERE
ANY RECORDS
ON UNIT 112

[GTLNK \

UNPACK DATA FROM FIRST
LINK FROM UNIT 3

UMPACK DATA FROM
FPIRST LINK IN CORE

\
e < =

~——

GTLNK

—
|

UNPACK DATA FROM
PIRST LINK FROM UNIT
n

SET SORT KEY POR
LINK FROM UNIT 3
S0 1T WILL BE SKIPPED.
SET 118 A NODE TO 16383

ARE THERE
ANY RECORDS
ON UNIT 3?

SET SORT KEY FOR LINK
FROM UNIT 11 SO 1T WILL
BE SKIPPED. SET ITS

A NODE To 16383,

ARE THERE
ANY RECORDS
ON UNIT 11?

1

ITII-52

. REWIND UNIT & (NODE),
NAMES ‘SET NODE OF LAST
RECORD READ TO 0.

READ NEXT CARD FROM
LINK DATA INPUT.

MRGREC

- IS IT
AN N OR AN
ENDNET CARD?

. YES

SET NODE NUMBER OF
LAST NODE RECORD
READ TO 16383 T0 SKTP
READING NODE RECORDS

SET COUNT OF LINKS
FROM A NODE TO 0,

(L = 0). SET COUNT
OF LINKS TO DELETE TO
0, (LD = 0).

GET SMALLEST ANODE
PROM THE FOUR AVAILABLE
SOURCES (ACTUALLY 2 TO
4 SOURCES)

IS THE
ANODE = 163837

M4

CORE

MRGREC

UNIT 3

WHICH: SORT
KEY IS
SMALLEST?

OLD FLEXIBLE RECORD
UNIT 12

UNLT 11

15 THE ANODE
OF THIS LINK =
A NODE?

18 THIS
" A DELETF
1INK?

LD=1iD+1

SAVE THE B NODE OF
THIS LINK AT INDEX

L -

L= 1L+ 4
SAVE THI LINK

LINK = A NODE?

IS THE
ANODE OF THIS

1S THE

ANODE OF
THIS LINK
* A NODE?

IS THIS
A DELETE
LINK?

YES

L=1+1.-
SAVE THIS LINK AT INDEX
L. SET ITS CARD COUNT
= -1. ALSO SAVE LINK
IMPEDANCE AND VOLUMES °
FROM ASSIGNMENTS

L=L+1
SAVE THE LINK AT INDEX
L. .

1S THE
ANODE OF THIS
LINK = A NODE?

IS VHIS
A DELETK

‘LD = LD+ 1,

SAVE THE B NODE OF
THIS LINK AT INDEX
1D.

LD = LD+ 1,
SAVE THE B NODE OF

ARE THERE
ANY MORE LINKS
FROM THIS NODE?

L
S

AT INDEX 1. . THIS LINK AT INDEX
LD.
! \ ™1
INCREMENY TO GE
THE NEXT LINK [
INCREMENT TO GET |

GTLNK

READ A LINK RECORD
(WITH LINK IMPEDANCES
AND VOLUMES IF ANY)

L.

=L+]

AVE THE LINK Al INDEX

THE NEXT LINK.

!

UNPACK DATA FROM
NEXT LINK IN CORE

IS THE

UNPACK DATA FROM THE
RECORD. GET LINK

. CLASS IF AVAILABLE AND
FORM NEW SORT KEY.

INCREMENT T GET
NEXT 1.{NK ‘

NEXT LINK IN
THE LAST RECORD
READ?

l NORMAL READ

READ NEXT RECORD
FROM UNLT 3. SET
LOCATION TO GET NEX
LINK TO 0. .

SAVE OLD NODE REC.

READ A NODE RECORD FROM
UNIT 12, GET A NODE AND
SET LINK COUNT TO 1.

1S THE
NEXT LINK IN
THE LAST RECORD
READ?

FROM UN

ysw

LINK TO

[

GTLNK

gt

UNPACK DATA FROM

SET SORT KEY 10
SKIP AND SET A NODE
TO 16383

. READ NEXT RECORD

LOCATION TO GET NEXT

IT 13, SET

0.

—

GTLNK \

LINK FROM UNIT 3.

UNPAGCK DATA FROM LINK
FROM UNLT 11

ITI1-53

M4

END FILE 13
REWIND 13

REWIND 3

REWIND NODE NAME
UNIT (4)

PRINT MESSAGE THAT
THE NUMBER OF LINKS
EXCEEDS THE MAXIMUM
ERR = ERR + 1

REWIND NETWORK DATA
SET

Y

PRINT MESSAGE
ABOUT MISSING

DD CARD FOR UNIT

NETWORK

[/ COPYFT \

COPY THE FLEXIBLE

ERROR | RECORD DATA SET FROM
UNIT 13 TO UNIT
NETWORK REPLACING #
OF LINKS.

STOP 13

COPY | COMPLETED
9

=

ITI1-54

MRGREC

IS LD = 0?
(ARE THERE ANY

MRGREC

LINKS TO DELETE?)

DELETE FIRST LINK
WITH THE SAME B NODE
FROM THIS LINK. IF
LINK NOT FOUND PRINT
ERROR MESSAGE,

ERR = ERR + 1 REPEAT
LD-~1 TIMES

ONE LINK FROM LINK
DATA, ONE FROM
UNIT 12, ADD THE
' OLD ASSIGNMENTS
ONTO THE NEW LINK,

DELETE THE OLD LINK

-

YES
REPLACE

ARE THERE
ANY DUPLICATE
LINKS NOW?

YES

DUPLICATE

EITHER TWO LINKS FROM
LINK DATA OR TWO
LINKS FROM UNIT 12
WITH SAME A NODE AND

B NODE, PRINT DUPLICATE
LINK MESSAGE.

ERR = ERR + 1

g {

EXAMINE NEXT LINKS

HAVE ALL
LINKS FROM
THIS A NODE

BEEN EXAMINED

FIND LINKS WHICH HAVE

NOT BEEN DELETED. i

SUM NUMBER OF LINKS
IN EACH LINK CLASS

AND TOTAL NUMBER OF,
LINKS L.

IS L = 0?
(ARE THERE ANY

NO

LINKS LEFT?)

GET NEW TURN CODE
FROM NUMBER OF LINKS

IN EACH LINK CLASS.

III-55

. PRINT MESSAGE THAT
THE A- NODE IS NOT
IN THE NETWORK.
ERR = ERR + 1

SET TURN TYPE CODE TO
28 AND ADD CENTROID
CODE

IS THE
NODE 'IN
THE NETWORK?

WHAT TYPE
OF NODE
IS IT?

ADD CODE FOR FREEWAY
TO TURN CODE

MOVE NEW NODE NAME
TO NODE RECORD AREA.
READ NEXT NODE NAME
RECORD .

". IS THERE
A.NODE NAME
RECORD FOR
THIS A NODE?

NO

KEEP OLD NODE NAME

GET COORDINATES

AND KEEP NON ZERO
SUB AREA CODE. READ
NEW A NODE RECORD

IS THE
NEW RECORD
AN ENDNET OR
N CARD?

NO

IS THERE
AN A NODE RECORD
FOR THIS
A NODE?

SET COORDINATES TO
ZERC

SET NODE NUMBER OF
A NODE RECORD = 16383

M8

IT1-56

MRAREC

MRGREC

GET OLD COORDINATES

IF THE NEW'ONES ARE

ZERO. GET OLD SUB

AREA CODE IF THE NEW
- UNE IS ZERO

IS THERE
AN OLD NODE
RECORD FOR
THIS ANODE

WRITE NEW NODE RECORD
ON UNIT 13. SUM NUMBER

OF LINKS WRITTEN IN
NNLNK

PRINT ERROR MESSAGE
THAT THERE ARE MORE
‘THAN 6 LINKS. ERR =
ERR + |

ARE THERE
MORE THAN 6 LINKS
FOR THIS NODE?

* CENTROID I8 THIS NODE

1S THERE AT
LEAST ONE-WAY TO
THE (ENTROID AND
ONE-WAY FROM IT?

ANODE ‘A CENTROID?

- IS THERE
ONE-WAY TO THE -
NODE AND ANOTHER
LINK OUT?

YES o YES

PEINT MESSAGE:
i%01ATED CENTROID
ERi = KRR 4 1

Y
PRINT MESSAGE:
ISOLATED NODE.
ERR = ERR + 1
Y
1=1

WRITE A LINK RECORD
FOR SAVED LINK NX(I)

I=1+1

IT1-57

) Sf-."]' LINK IMPEDANCES

TO MAX. TIME, AND
PREVIOUS ASSIGNED
VOLUMES TO O FOR 20
ASSIGNMENTS FOR 20
LINKS

SUBROUTINE

- - NEWNET
NEWNET

INITIALIZE NUMBER
OF WORDS WRITTEN ON
UNIT 3 AND UNIT 11
10 ZERO., INITIALIZE
NUMBER OF LINK WORDS
IN CORE TO ZERO

INITIALIZE OTHER .
VARIABLES REWIND 4 !
IL = -1 (# LINKS IN
CORE)

READ NUMBER OF SUBNETS
CARD INCLUDING FIELD

TO GET SPEED AND DISTANCE
FROM

JFALSE.

(OLD LINK
DATA FORMAT)

(NEW LINK DATA FORMAT)

SET TO USE THE THIRD
SPEED AND DISTANCE

IS THE FIELD

READ SUBNETWORK
FOR SPEED AND

PARAMETER CARD. -

SET NUMBER OF SUBNETS DISTANCE FIELDS ON THE LINK
= 1 AND SET SUBNET SPECIFIED = 0 ° DATA CARDS
OF PARAMETER CARD = 1.

SAVE FIRST NODE

NUMBER, LAST CENTROID

NUMBER, LAST ARTERIAL i PRINT NUMBER OF

NUMBER, AND LAST i SUBNETS MESSAGE

FREEWAY NODE NUMBER

OF THIS SUBNET.

\ \]

INITIALIZE VARIABLES y

NOT ON OLD LINK DATA. E READ SUBNETWORK

GROUND COUNT = 0, PARAMETER CARD.

CAPACITY = 0, FUNC- . CALCULATE NUMBER OF N 16
TIONAL CLASSIFICATION 4 NODES IN SUBNETWORK

= 0, ROUTE CODE = 0.

1
PRINT INFORMATION

CORRIDOR INTERCEPT = O, ' FROM SUBNETWORK

SUBAREA CODE = PARAMETER CARD ADD

SUBNETWORK NUMBER 1 TO EXPECTED SUB~

NETWORK NUMBER

PRINT MESSACE,
INCORRECT SUBNET
NUMBER .

IS THIS
CORRECT
SUBNETWORK?

I11-58

READ A LINK DATA
CARD IN OLD FORMAT.
ADD 1 TO CARD. COUNT

ARE COLUMNS
1 - 3 EQUAL
END"?

CONVERT COLUMNS 2-6
FROM EBCDIC TO INTEGER
FOR A NODE NUMBER

FALSE
(OLD LINK DATA

FMT?
(WHAT TYPE
OF LINK DATA?)

FORMAT) FORMAT)

SET CHARACTER READ
FROM COLUMN 1 TO
CHARACTER READ FROM
COLUMN 4

CONVERT FUNCTIONAL
CLASS FIELD FROM
EBCDIC TO HEXADECIMAL

DOES THE
FUNCTIONAL CLASS FIELD
CONTAIN A CODE D-9 y
OR A-F?

YES

NO.

SET DELETE CODE TO
1 TO INDICATE THIS
IS A DELETE CARD

L__,‘

TRUE
(NEW LINK DATA

READ A LINK DATA CARD
IN THE NEW FORMAT

ROUND GROUND COUNT

TO UNITS OF 100

. TRIPS. ROUND CAPACITY
; TO UNITS OF 100 TRIPS.
, ADD 1 TO CARD COUNT.

SET DELETE CODE = 0

SUM NUMBER OF
DELETE CARDS. SET

SET FUNCTIONAL
CLASS TO ZERO

CONVERT JURISDICTION
FROM EBCDIC TO
HEXADECIMAL

SPEED FOR SECOND LINK

LINK.

TO THAT OF THE FIRST

SET CODE TO INDICATE

SPEED FIELD
SET CHARACTER READ ARE
FROM COLUMN 1 TO YES COLUMNS 1-3
CHARACTER READ FROM EQUAL TO
COLUMN 4 YEND"?
| _Jvo
\
N2

ITI-59

NEWNET

SET NTM = © TO
KEEP THE MILEAGE
IN THE VEHICLE
MILES SUMMARY

1S THE
DUPLICATE MILEAGE
ELIMINATOR = 1?

SET NTM = 2

TO ELIMINATE THE
MILEAGE OF THIS LINK
IN THE VEHICLE MILES
SUMMARY

IS COLUMN

1 (OR 4)

EQUAL TO
wpe

18
THE BNODE
< THE LAST NODE
"OF THIS
SUBNET

Pt

s

THE ANODE

< THE LAST NODE OF

THIS SUBNET
?

1S THE
B NODE > THE
FIRST NODE OF
THIS SUBNET?

"
HAT THERE 18 AN
INVALID NODE NUMBER.
ERROR = FRROR + 1

'NT AN ERROR MESSAGH

IS THE
A NODE > THE
FIRST NODE OF
THIS SUBNET?

SOR 1

NTM = 17
(IS THE DELETE
MILEAGE ELIMINATOR
=1?)

WHAT IS
THE TIME SPEED
FLAG = ?
S, 1,2

LINK TIME = SPEED
OR TIME FIELD.
CALCULATE SPEED FROM
TIME AND DISTANCE.

III-60

SET SPEED = SPEED OR
TIME FIELD

CALCULATE LINK TIME
FROM SPEED AND DISTANCE

IS LINK
TIME > MAX-
IMUM LINK

TIME?

ISHAFT = -1

NEWNET

SET LINK TIME = MAX.
SET SPEED = | m.p.h.
SET DIST. = 9,99 MILES,
SET SHAFT = 0, ARRCW = 0

PRINT MESSAGE NO
TIME OR SPEED INDICATOR
ERROR = ERROR + 1

PRINT MESSAGE THAT
LINK TIME EXCEEDS
MAXIMUM. ERROR = ERROR
+ 1 SET LINK TIME. TO
MAX. LINK TIME

N3 NEWNET

<

\

PTLNK \

PUT A LINK IN CORE WITH

THE LEFT PARTITION

NODE, RIGHT PART.

NODES LINK DIST. = O,

| SPEED = 33.3 MPH, TIME
=0

[~

PUT A LINK IN CORE
WITH THE RIGHT
PARTITION NODE,
LEFT PART. NODE,
LINK DIST. = 0,
SPEED = 33.3,

TIME = 0, LINK C = 2

HAS THE
LAST SUBNET
. LINK DATA
BEEN PROCESSED?

N 13

1 READ A PARTITION CARD IL = IL + 2
OR AN ENDNET CARD.
CRDCNT = CRDCNT + 1

Is IL
> THE MAX.
NUMBER OF LINKS
> 0 SAVED IN
CORE?

NO

LNK2 = IL + 1
GET TIME OF DAY TO
TIME SORT.

PRINT MESSAGE INVALID
PARTITION CARD.
ERROR = ERROR + 1

I8 IT
A TURN
PROHIBIT CARD?

A
VSORT

I~
|

SORT 22 BYTE LINK
RECORDS IN CORE ON
THE KEY OF A NODE,
LINK CLASS, CARD
COUNT

18 IT
A PARTITION
CARD?

GET TIME OF DAY.
CALCULATE SORT TIME
AND ‘SUM IN IT3,
REWIND LNKTMP

LEFT PAR-
TITION NODE

> 0 AND RIGHT
PARTITION NODE
> 0?

RIGHT
PARTITION NODE YES -

> LEFT PARTITION
NODE?

ITI-61

INCREMENT COUNT OF
LINKS IN CORE (IL = NENNET
L+ 1)

1 SHAFT = 0

/ PTLNK \

PACK THE LINK
INFORMATION INTO
A 22 BYTE RECORD +
PUT IN LINUS (IL)

L

| SHAFT = 1

YES 1S THIS

A DELETE
LINK?

PRINT ERRUR MESSAGE
THAT THE SHAFT CODE
IS [NVALID.

I SHAFT = 0

IS THE

WRITE A NODE NAME

A NODE OF
THIS LINK > THE RECORD ON UNIT 4.
LAST NODE -NAME SET LAST NODE WRITTEN
RECORD? = A NODE)
N]
1 ARROW = [SHAFT

FMT AND
TWO-WAY

INDICATOR
.NE. 17

IS THE
ARROW CODE
EQUAL 1 OR -?

SET 1 ARROW TO
OPPQSITE OF 1 SHAFT

PMT
AND TWO-WAY
INDICATOR

\EQ.1?

_SET.LINK CLASS
N6 I CLASS = 0 (ONE-
WAY LINK TO B NODE)

is
THE TWO-WAY

INDICATOR
BLANK?

PMT
AND TWO-WAY

INDICATOR - .NE.
17

L CLASS = 1
(TWO-WAY LINK)

Is
THE TWO-WAY

IND1CATOR
A T

NOT. FMT
AND TWO-WAY
INDICATOR NOT
BLANK

L CLASS = 1 TRUE

(TWO-WAY LINK)

1s

THE TWO-WAY
INDICATOR

A "s"2

ITI-62

SET LINK TIME TO
SECOND TIME OR SPEED
FIELD CALCULATE LINK
SPEED FROM TIME AND
DISTANCE

YES

. Is
THE TWO-WAY
INDICATOR = 1?

1s
‘THE TWO-WAY
INDICATOR = 27

PRINT AN ERROR MESSAGE,
INVALID TWO-WAY INDICA-
TOR, ERROR = ERROR + 1

IL = IL ~ 1
(THIS REMOVES THE
_ PREVIOUS ONE-WAY LINK)

SET SPEED = SECOND
TIME OR SPEED FIELD

PRINT ERROR MESSAGE
THAT LINK TIME IS >
MAX., ERROR = ERROR
+ 1 SET LINK TIME TO
MAX.

1S THE
LINK TIME
> THE MAX.
LINK TIME?

N7

IL = IL+1
(ADD ONE TO THE

NUMBER OF LINKS IN
CORR)

III-63

WAS THE
LINK CLASS IN
THE OTHER
DIRECTION ONE
WAY?

NEWNET

IL =3
(SET LINK CLASS TO
DUMMY ONE-WAY LINK)

o

PACK THE LINK INFOR- -
MATION INTO A 22 BYIE
RECORD AND PUT IN
LINKS (IL)

i

"

LNK2 = IL + 1 =
NUMBER OF LINKS IN
CORE. GET TIME OF
DAY TO TIME SORT.

A

VSORT

SORT 22 BYTE LINK
RECORDS IN CORE ON
THE KEY OF A NODE,
LINK CLASS, CARD COUNT

GET TIME OF DAY AND
CALCULATE SORT TIME
AND SUM IN IT3. REWIND
LNKTMP

Y

oy

PTLNK

-\

ADD A TRAILER LINK
WITH AN A NODE OF
16383 TO MARK THE
END OF THE LINKS.

CALCULATE THE NUMBER
OF BLOCKS OF LINKS.
IL = IL + 2, NBLK =
(IL + 39)/40, (40
LINKS/RECORD) .

NEWNET

WRITE THE SORTED
LINKS IN CORE OR
LNKTMP IN BLOCKS
OF 40 LINKS/RECORD.

END FILE LNKTMP
REWIND LNKTMP

LNK 1 = LNK 2
INK 2 =0

LNKTMP = -1

LNKTMP = 11

o= -1
(SET FOR NO LINKS
IN CORE)

ITI-64

NEWNET

L PTLNK j

ADD A TRAILER. LINK
WITH AN ANODE .

OF 16383 TO MARK
THE END OF THE
LINKS

LNK2 = LNK2 + 1 .
CALCULATE NUMBER OF .
RECORDS TO WRITE |
ON LNKTMP.

WRITE THE SORTED
LINKS IN CORE ON
LNKTMP IN -BLOCKS
OF 40 LINKS/RECORD

END FILE LNKTMP
REWIND LNKTMP

LNK1 = LNK2 YES

=

LNK2 = 0
NO
NO

LNKTMP = -1 .
YES 1s
LNKTMP = 11 LNKTMP = 3
L NO

I = -1
(SET NUMBER OF -
LINKS IN CORE TO N3
ZERO)

III-65

PRINT SUBNET
NUMBER

HAVE
ALL SUBNETS
BEEN PROCESSED?

PRINT SUBNET NUMBER. !
END FILE 4, REWIND

NEWNET

4 (NODE NAME DATA SET) i

IL = IL + 1

GET TIME OF DAY TO
TIME SORT

[VSORT

SORT 22 BYTE LINK
RECORDS IN CORE ON
THE KEY OF ANODE,
LINK CLASS, CARD COUNT

o~

GET TIME OF DAY,

CALCULATE SORT TIME
AND ADD TO. IT3 AND
CONVERT ‘TO MINUTES

PRINT LINK SORT TIME.

i’

[PTLNK \

ADD A TRAILER LINK
WITR AN ANODE OF
16383 TO MARK THE
END OF THE LINKS

IL = 11 +1

RETURN

IT1-66

SUBROUTINE

/

OUTLLT

RES = .TRUE. IF

THIS IS AN ASSIGN
SELF-BALANCING RUN.
ITER = ITERATION NUM-

BER. OUTN = A LOGICAL. .

VARIABLE TO KEEP THE
PRINTED OUTPUT.

PRINT = (.NOT. RES .OR.
ITER.EQ.1) .AND. OUTN

FALSE

NO

ITER = 1?

REWIND 3 WRITE A
PARAMETER RECORD ON
UNIT 3 OF THE NUMBER
OF NODES ONE-WAY
LINKS AND TURNING
MOVEMENTS

WRITE THE ONE-WAY LINK
VOLUMES IN FULL WORD
INTEGERS IN RECORDS OF
4000 WORDS ON UNIT 3.

WRITE THE TURN VOLUMES
SAVED IN FULL WORD
INTEGERS IN RECORDS OF
4000 WORDS ON UNIT 3.

REWIND NETWORK

I11-67

OPENFT \

OPEN DATA SET NEWNET
WITH REFERENCE 1

READ PARAMETER RECORD
FROM UNIT NETWORK, ADD
ONE TO. NUMBER OF
ASSIGNMENTS'

NL1 = NUMBER OF
ASSIGNMENTS FROM
UNIT NETWORK + 1.

I~

WRT - \

WRITE NEW PARAMETER
RECORD 'ON UNIT NEWNET

COPY NL1 HEADER
RECORDS FROM NETWORK
TO NEWNET.

WRITE HEADER RECORD
FOR THIS ASSIGNMENT.

SET NL5 = NUMBER OF
WORDS IN LINK RECORDS
ON UNIT NETWORK

QUTLLT

SET INUM2 = THE
NUMBER OF LINKS FROM
NODE 1.

GET ONE-WAY AND TWO-
WAY LINK VOLUMES.
CALCULATE TURN VOLUMES
AND FLAG WHICH TO PRINT

READ NODE RECORD
FROM UNLIT NETWORK FOR
NODE I.

WRITE NODE RECORD FOR
NODE T ON UNIT NEWNET.

A WRT .

1\

WRITE THE NEW LINK
RECORD WITH ITS ITP

FOR THIS ASSIGNMENT

AND TWO-WAY LINK VOLUME

NO

18

READ A LINK RECORD

QUTLLT

FROM .UNIT NETWORK

GET ITP = THE LINK
IMPEDANCE USED FOR
THIS ASSIGNMENT

GET ¢ = GROUND COUNT
OR CAPACITY (WHICHEVER
1S SPECIFIED BY THE
*TURN CARD)

IS THIS
NOT AN
ASSIGN SELF-
BALANCING .OR.

c=0

YES

IS IT
A CAPACITY

FIELD AND LINK
VOLUME < C?

UPDATE LINK IMPEDANCE
TO USE ON THE NEXT
ASSTGNMENT

IS THE
NEW LINK
IMPEDANCE = 0
AND ‘ITP % 07

SET THE NEW LINK
IMPEDANCE TO 0.01

y

IS THE
NEW LINK
IMPEDANCE
> 163.83?

SET THE NEW LINK
IMPEDANCE TO 163.83

y

4> INUM2?

YES

ITI-68

WILL THE
OUTPUT FROM
THIS NODE
FIT ON THIS
. 'PAGE?

PRINT PAGE HEADER
RECORD FOR THE LOADED
NETWORK

SKIP ONE LINE ON
THE PRINTED QUTPUT

PRINT?

FALSE

FIND THE NUMBER OF
LINKS FROM NODE I
WHICH ARE NOT DUMMY
LINKS (REVERSE OF
ONE-WAY LINKS)

GET THE B NODE NUMBERS
AND DIRECTIONAL VOLUMES
FOR THESE LINKS

GET B NODE NUMBERS
AND SET UP ONE-WAY
LITERAL FOR THESE LINKS.

1S NODE

I CONNECTED
TO MORE THAN
4 NODES?

QUTLLT

INITIALIZE N = 2 FOR TWO
LINES OF OUTPUT FOR
DIRECTIONAL VOLUMES

INITIALIZE N = 1 FOR
ONE LINE OF OUTPUT FOR *
DIRECTIONAL VOLUMES.

BUILD FORMAT FOR
DIRECTIONAL VOLUMES

PRINT DIRECTIONAL
VOLUMES FOR NODE 1 WiTH
FORMAT BUILT ABOVE

K=K+ 1 SET THE
NODE NAME TO BLANKS.

GET B NODE NUMBERS AND
NON-DIRECTIONAL VOLUMES
FOR THESE LINKS

I1I-69

INITIALIZE N = 2 FOR
TWO LINES OF OUTPUT FOR
NONDIRECTIONAL VOLUMES

IS NODE

I CONNECTED
TO MORE THAN
4 NODES?

INITIALIZE N = 1 FOR

ONE LINE OF OUTPUT FOR

NONDIRECTIONAL VOLUMES -
i

PRINT NON-DIRECTIONAL
LINK VOLUMES FOR NODE
I

K=K+1

GET NODE NUMBERS AND
TURN VOLUMES ORGANIZED
TO PRINT AND COUNT
NUMBER OF TURN VOLS.

oOUTLLT

PRINT TURN VOLUMES

FOR NODE I.
- 02
\
I=1+1
18
1> THE 01
LAST NODE
NUMBER?

/ CLOSFT \

CLOSE THE NEWNET
DATA SET AND RELEASE
ITS BUFFERS

III-70

REWIND THE NETWORK
DATA SET

RETURN

OUTLNT

SUBROUTINE

OUTLNT

REWIND 4
IPACT 1 = 0 |

/ PRINTL \

PRINT LOADED
NETWORK FOR SUBNET
1.

IS THE
NUMBER OF
SUBNEYS = 17

YES

IFACT2 = FIRST NODE
NUMBER IN SUBNET
2 -1.

/ OUTLLT \

PRINT LOADED NETWORK
IN SUBNET 2.

hagt REWIND 4

III-71

SUBROUTINE

OUTNET

REWIND UNIT NETWORK

WAY LINKS IN THE
NETWORK

PRINT WUMBER OF MODES,
FIRST NODE, LAST
FREEWAY, LAST CENTROID,
LAST ARTERIAL, LAST -
FREEVAY NODE FOR EACH
SUBNET.

READ THE HEADER
RECORDS ON UNIT WETWORK
AND PRINT EACH ONE.

READ A NODE RRCORD WROM .
NETWORK, SET ANODE =
TO THE NODE WUMBER.

PRINT PAGE HEADER.
SET NUMBER OF LINES
PRINTED, LINES = §.

IA = R

PRINT MESSAGE:
XXXXX MO COMNECTING
NODE '

LINES = LINES + 1

III-72

NT 5

CQUTNET

DUTNET

NT 2)
READ THE NEXT NODE EOD
RECORD FROM UNIT NETWORK.

JL = MINO (4, NLL)
WHERE NLL = THE NUMBER

OF LINKS FROM ANODE ’ “

IA=IA+1

4

KT 3

NLL = NLL - JL

NA = NA + 50 - NT 1 >

READ JL LINKS FROM
UNIT NETWORK

FORMAT THE JL
LINKS FOR PRINTING

SKIP TO THE TOP
¥ _ OF A NEW PAGE. REWIND fus

UNIT NETWORK.

PRINT THE JL LINKS

ON ONE LINE. . i

RETURN

III-73

SUBROUTINE

OUTRIP

SET DISPLACEMENT OF
WHERE TO PUT THE
VOLUMES IN THE NTAB
ARRAY FOR SUBNET ONE
70 0, (K(1) = 0).

REWIND UNIT CTVOUT

READ PARAMETER RECORD
FROM CTVOUT

SET DISPLACEMENT OF
WHERE TO PUT VOLUMES
FOR THE OTHER SUBNETS
IN THE NTAB ARRAY.

GET NUMBER OF CENTROIDS
PER SUBNET

READ A TRIP RECORD FROM
URIT CTVOUT

EOD

ROUND NUMBER OF
CENTROIDS/SUBNET TO
NEXT HIGHER INCREMENT
OF 10 SO THAT OUTPUT
WILL BE CORRECT:

CLEAR THE NTAB ARRAY
FOR 4050 WORDS TO ZERO,

PRINT NUMBER OF SUBNETS

PRINT PAGE HEADER WITH
ORIGIN CENTROID.

PRINT FIRST AND LAST
CENTROID NUMBER FOR
 EACH SUBNET

III-74

CUTRIP

OUTRIP

oT 2

UNPACK TRIP VOLUMES
FROM LAST TRIP
RECORD READ AMD PUT i
IN CORRECT PLACE IN o
NTAB ARRAY.

SAVE ORIGIN CENTROID,
HOMEND, IN ICOM.!

READ A TRIP RECORD
r‘_lﬂ'; FROM UMIT CTVOUT.

- SET HOMEMD = ORIGIN
CENTROID OF THIS RECORD.

o SET COUNT OF LIMES
> PRINTED FOR ICOM TO
. ZERO.

LIST THE VOLUMES IN THE
NTAB ARRAY IN GROUPS OF _
10/LINE WITH DESTINATION NoDE
WUMBERS, DON'T PRINT LINKS '
¥OR WHICH ALL TEN VOLUMES

ARE ZERO. PRINT A NEW PAGE
HEADING EVERY S0 LINES

READ A NODE NAME
FROM 4

EOD ‘

. SUBROUTINE

OUTSLN

REWIND 4, SET FLAGS

1S THE
NODE NAME > N
AND NO EOD
REACHED ON 47

SFTOFLAG THAT EOD ON

PNED 4 HAS BEEN REACHED.
AST NODF NAME NUMBER
{ONODE + 1.

MUVE BLANKS TG THIL NODE
NAME QUTPUT ARFA .

1S THE
NODE NAME
NUMBER = N?

MOVE THE NODE NAME TO THE
OUTPUT AREA.

GET N LINKS, THE NUMBER

YES

185,

OUTSLN

NLINKS = 07

‘WILL
THE LINES PRINTED
FOR NODE N EXCEED
50 LINES FOR
THIS PAGE?

PRINT PAGE HEADING.
SET LINES FOR THIS PAGE
TO ZERO.

GET DIRECTIONAL AND

NON-DIRECTIONAL LINK B
VOLUMES FOR NODE N.

ARE THE
VOLUMES TO THE
NODE = THE
VOLUMES FROM IT AND
IT 1S NOT A
CENTROID

ADD ONE TO THE NUMBER
OF UNBALANCED NODES

PRINT THE DIRECTIONAL
AND NON-DIRECTIONAL -

VOLUMES FROM NODE N.

N=N+1 i

OF LINKS FROM NODE N,

IS
N - THAN-
THE LAST

NODE NUMBER?

ARE THERE
ANY UNBALANCED
NODES?

PRINT AN ERROR MESSAGE
WITH THE NUMBER OF
UNBALANCED NODES.

RETURN j

III-76

SUBROUTINE

OUTSNT

REWIND 1

READ THE PARAMETER
RECORD FROM UNIT 1

PRINT ERROR MESSAGE:
WARNING, THIS NETWORK
WAS NOT PREPARED BY
SPREPARE SPIDER NETWORK

1

WAS THIS
NETWORK BUILT
BY PREPARE
SPIDER NETWORK?

YES

" READ SECOND PARAMETER
RECORD FROM UNIT 1.

QUTSNT

Ni1=N1+50

PRINT PAGE HEADER
RECORD

N 2 = MINIMUM OF
N 1+ 49, AND LAST
NODE NUMBER.

1s
N 1 > LAST
NODE NUMBER?

REWIND &

N=N1

IF THE LAST NODE NAME
READ FROM UNIT 4 IS

< N READ ANOTHER NODE
NAME FROM 4 IF AN

EOD HAS NOT BEEN READ.

RETURN

READ INDEX RECORDS FROM
UNIT 1.

READ LINKS FROM UNIT
1.

ARE THERE
ANY NODES
CONNECTED TO
NODE N?

PRINT NODE NUMBER
N AND NO CONNECTING
NODE MESSAGE.

PRINT THE NODES
CONNECTED TO N WITH
LINK IMPEDANCES AND
THE NODE NAME IF
AVAILABLE

REWIND 1
BREWIND 4

N=N+1

Nl=1

s
N>N2?

YES

I11-77

SUBROUTINE

OUTTRE

PRINT TREE WITH DESTINA-
TION NODE AND ADJACENT
NODES AND TIME TO EACH NODE
WHICH WAS REACHED

RETURN

ITII-78

Ut IR

SUBROUTINE

OUTWLT

REWIND NETWORK.
READ THE PARAMETER
RECORD ‘FROM UNIT
NETWORK

NL1 = NUMBER OF
ASSIGNMENTS FROM
UNIT NETWORK + 1.

SKIP NL1 RECORDS ON
UNIT NETWORK

YES

SET INUM2 = THE
NUMBER OF LINKS FROM
NODE 1

TRN

\

GET ONE-WAY AND
TWO-WAY LINK VOLUMES,
CALCULATE TURN
VOLUMES AND FLAG
WHICH TO PRINT

READ NODE RECORD
FROM UNIT NETWORK
“TO GET NODE NAME FOR
NODE 1I.

SKIP INUMZ LINK
RECORDS ON UNIT NETWORK
A © FOR NODE T.

WILL
THE OUTPUT FROM
THIS NODE FIT
ON THIS PAGE?

PRINT PAGE HEADER
RECORD FOR THE
LOADED NETWORK.

SKIP ONE LINE ON THE
PRINTED OUTPUT

QUTWLT

=Y

FIND THE NUMBER OF
LINKS FROM NODE I
WHICH ARE NOT DUMMY
LINKS (REVERSE OF
ONE~WAY LINKS)

DIVIDE DIRECTIONAL

LINK VOLUMES, NON-
DIRECTIONAL LINK
VOLUMES AND TURN VOLUMES
BY 100 AND ROUND.

GET THE BNODE NUMBERS
AND DIRECTTONAL VOLUMES
FOR THESE LINKS.

I11-79

GET B NODE NUMBERS
AND SET UP ONE-WAY
LITERAL FOR THESE
LINKS.

| IBITIALIZE X = 2

FOR T@G LINES OF
:DLTPUT FOR DIRECTIONAL
VOLUMES .

I8
NODE I
CONNECTED TO MORE
THAN 4 NODES?

YES

INITIALIZE N = 1 FOR
ONE LINE OF OUTPUT FOR
DIRECTIONAL VOLUMES

BUILD FORMAT FOR

DIRECTIONAL VOLUMES

PRINT DIRECTIONAL
VOLUMES FOR NODE I

WITH FORMAT BUILT ABOVE,
WHEN K = 1 PRINT NODE
NAME

K = K + 1, SET THE
NODE NAME FOR NODE I TO
BLANKS

ITIT-80

GET THE B NODE NUMBERS
AND NON-DIRECTIONAL
LINK VOLUMES FOR THE
LINKS FROM NODE I

IS NODE
I CONNECTED TO

MORE ‘THAN
4 LINKS?

oUTwLT

INITIALIZE N = 2 FOR
TWO LINES OF OUTPUT
FOR NON-DIRECTIONAL
LINK VOLUMES.

INITIALIZE N = 1 FOR
ONE LINE OF OUTPUT FOR
NON-DIRECTIONAL LINK
VOLUMES

PRINT NON-DIRECTIONAL
LINK VOLUMES FOR NODE
I

K=K+1

GET NODE NUMBERS AND
TURN VOLUMES ORGANIZED
TO PRINT AND COUNT
NUMBER OF TURN VOLUMES

PRINT TURN VOLUMES
FOR NODE I.

w2

L]

REWIND UNIT NETWORK

RETURN

III-81

OUTWLT

REWIND TRIP DATA SET

SUBROUTINE

* PATHCL

INITIALIZE SUMMATION
FOR TREE BUILD AND LOAD
TIME TO 0. REWIND
NETWORK.

FALSE

TREES?

TRUE

PRPBLD

READ *TURN AND
#TREE CARDS

L

READ PARAMETER RECORD
FROM NETWORK

18 THIS
THE FIRST
ITERATION?

FIND MAXIMUM CENTROID
NUMBER READ FROM
*TREE CARD, SET KOUNT
= MAX. CENTROID.

READ PARAMETER RECCRD
FROM TRIP DATA SET

SKIP HEADER RECORDS ON
UNIT NETWORK

READ NODE AND LINKS
RECORD AND FORM
PACKED LINKS ARRAY IN
CORE

WRITE PARAMETER RECORD
FOR SEPARATION MATRIX

.NOT. TREES
.AND. SEL

FALSE L

L

|~

SELECT

TRUE

READ SELECT CARDS,
MARK SELECTED LINKS

AND WRITE SELECT RECORDS

ON SEL.

Y

1
INITLL

r

INITIALIZE ARRAYS
- AND CHECK MAX. LINKS,
MAX. NODE AND MAX. TURNS.

TREES?

TRUE

*_A .

PATHCL

FALSE

READ FIRST TRIP RECORD.
SET READSW = .FALSE.
EOFSW = ,FALSE.

REWIND NETWORK

P8

-

OUTTRE A

P 6

GET FIRST CENTROID -
IN RANGE J, LS AND
LAST CENTROID IN
BANGE J, JJ = LS

GET TIME OF DAY

[rasem T\

BUILD MINIMUM PATH
TREE FOR CENTROID JJ

"GET TIME OF DAY AND
SUM TREE BUILD TIME

WRITE SEPARATION MATRIX
RECORD FOR CENTROID JJ

PRINT TREE

v

WAS
PRINTED OUTPUT
FOR THIS TREE
SPECIFIED?

HAS AN
END OF DATA

SET BEEN ENCOUN-
TERED ON TRIP
MATRIX

IS THE
HOME ZONE OF
THE TRIP RECORD
IN CORE < JJ?

. HAS THE
TRIP RECORD 'IN
| CORE BEEN

PROCESSED (IS
READSW =" FALSE)?

i READ THE NEXT TRIP
RECORD FROM THE TRIP
MATRIX. READSW = TRUE

EOD

HOME
ZONE OF TRIP
RECORD: JJ

GET TIME OF DAY

ITI-83

PATHCL

LOAD2 A

LOAD THE TRIP RECORD
ON THE TREE AND WRITE
SELECTED LINK TRIP
INTERCHANGES ON SEL

PATHCL

P3

LoAD \

LOAD THE TRIP RECORD
ON THE TREE AND ALSO
LOAD ANY MORE TRIP RECORDS
WITH HOME ZONE JJ J}

GET TIME OF DAY AND
SUM LOAD TIME

EOFSW = TRUE

ARE THERE YES

JI =33 +1

P8
T=34+1
1s
J>K
(THE NUMBER P>
OF RANGES)?

END FILE SEPARATION
MATRIX. REWIND SEPARA~

ANY MORE TREES
TO PRINT

- III-84

TION MATRIX

PRINT TREE BUILD TIME
AND LOAD TIME.

PATHCL

REWIND TRIP MATRIX

CLOSE

CLOSE SEL DATA SET

ITI-85

SUBROUTINE

PATHSP

’ EOF = .FALSE.
" REWIND UNIT 1

READ PARAMETER
RECORD FROM UNIT 1 .

PRINT ERROR MESSAGE

. WAS THIS

'NETWORK PREPARED

BY PREPARE SPIDER
NETWORK? - *

YES

. PRINT NETWORK SPEED.

READ SECOND PARAMETER
RECORD FROM UNIT 1.

READ THE NETWORK
INTO ARRAYS INDEX 1
AND LINKS 1.

INLTIALIZE ASSIGNED
LINK VOLUMES TO O.

REWIND UNIT CTVOUT.
READ PARAMETER RECORD
FROM CTVOUT

READ A TRIP RECORD
FROM UNIT CTVOUT.

INITIALIZE TREE BUILD
TIME, TSUM = 0.)
INITIALIZE LOAD TIME,
LSUM = 0.

INITIALIZE ARRAYS
USED BY THE TREE BUILD
PROGRAM TO ZEROS

III-86

PATHSP

HAS AN

PATHSP

EOD BEEN PRINT TREE BUILD AND
REACHED ON LOAD TIMES
UNIT CTVOUT?
. 1
I TIME \ OUTSLN

GET TIME OF DAY IN
Il

PRINT THE SPIDER
" LOADED NETWORK

i

MOORE

BUILD TREE FOR HOME
Z0NE OF LAST IRIP
RECORD READ.

RETURN

\

TIME

GET TIME OF DAY IN
12

(
-

)
!

TSUM = TSUM + I 2
~-I1

SLOAD

1\

LOAD THE TRIPS FROM

USING THE LAST TREE
BUILT.

R

THE LAST TRIP RECORD

TIME

o

[

GET TIME OF DAY IN
13

LSUM = LSUM + I 3 -
12

I11-87

W = .TRUE. (SET
W TO PRODUCE SECOND
WEIGHTED ASSIGNMENT)

SUBROUTINE

PRPBLD

READ *TREE CARD FOR
SUBNET I

READ TURN PENALTY
CARD, CAPC = .FALSE.
W = FALSE

PRINT MESSAGE:
{NVALID TURN PENALTY
OR TREE CARD READ.
ERR = ERR + 1

t

NO

PRINT *TREE CARD READ

PUT A COMMA IN LAST
SUBFIELD B (COLUMN 73)

PRINT CARD READ AS
TURN PENALTY CARD

ARE COLUMNS
1 -4 OF THE
*TURN CARD
- '*m'?

YES

CAPC = .TRUE. (SET
.CAPC TO USE CAPACITY
FIELD INSTEAD OF GROUND
COUNTS)

ARE COLUMNS
1 -4 = "®RE'?

PRPBLD

B3

PRINT MESSAGE: INVALID

. TURN PENALTY OR TREE

CARD READ. ERR =

ERR + 1

(INITIALIZE PAIR
INCLUSIVE VARIABLE)
ISKIP = 0 (INITTIALIZE
FIELD COUNT VARIABLE)
KOUNT = 0

SET TURN PENALTY
ARRAY WITH TURN
PENALTY AND ZEROS.

ARE COLUMNS

IS THE
CENTROID' NUMBER
OF THE FIRST
SUBFIELD = 07

NO

PRINT MESSAGE: THE
FIRST FIELD OF THE
TREE CARD IS BLANK.
ERR = ERR + 1

¥

»

SET 1 =1

PRPBLD

PRINT ERROR MESSAGE:
ILLEGAL FIELD
SEPARATION CHARACTER

IN TREE CARD.
IERR = IERR + 1

1S THE
M SUBFIELD
B A BLANK?

18 THE
M SUBFIELD
A <0

KOUNT = KOUNT + 1

PUT M SUBFIELD A AS
FIRST CENTROID OF A -
RANGE OF CENTROIDS

HAS THE
M'TH SUBFIELD
A ALREADY BEEN
USED IN AN
INCLUSIVE PAIR?

SET SKIP FLAG TO
e PRUCESS NEXT SUBFIELD
(A

KOUNT = KOUNT + 1

SET FLAG FOR NO OUTPUT
FOR THE TREE FROM

THE CENTROID OF THE
SUBFIELD A

SET THE LAST CENTRO1D
OF THE RANGE TO THE M
SUBFIELD A. SET FLAG
FOR RO TREE OUTPUT.

1S THE
M + 1 SUBFIELD
A=0

IS THE
M SUBFIELD
B A PERIOD?

SET THE LAST CENTROID
OF THE RANGE AS THE

M +) SUBFIELD A, SET
FLAG TO SKIP M + 1 SUB-
FIELD A

EOUNT = KOUNT + 1
SET FLAG FOR OUTPUT
POR THE TREE FROM
THE CENTROID OF THE
SUBPIELD A

IS THE
M + 1 SUBFIELD
B A COMMA?

i YES

PUT THE SUBFIELD A

AS THE FIRST AND LAST
o CENTROID OF A RANGE OF
TREES TO BUILD.

IS THE
M + 1 SUBFIELD
B A PERIOD?

SET FLAG FOR OUTPUT
FROM THE KOUNT RANGE
OF CENTROIDS IN THE
1'TH SUBNET

- M=M+1
4
IS THE
M + 1 SUBFIELD
B A BLANK?
NO
THIS IS AN INFINITE
LOOP, BUT IT WILL
ABEND BECAUSE 1T WILL
. STORE OUTSIDE OF AN
YES SET FLAG FOR NO OUTPUT ARRAY!
FROM THE KOUNT RANGE
OF CENTRCID IN THE

I'TH SUBNET g

IIT-89

SAVE NUMBER OF RANGES
OF CENTROIDS, KOUNT,
FOR SUBNET 1

I=I+1

PRINT THE TURN
PENALTY AND THE RANGES
OF TREES TO BUILD

AND WHICH ARE TO BE

OUTPUTED

‘,

IF THIS AN ASSIGN
SELP-BALANCING RUN THEN
PRINT WHETHER CAPACITIES
OR COUNTS WILL BE USED

ALSO PRINT A MESSAGE

IF THIS IS AN ASSIGN
SELF-BALANCING AND

A SECOND WEIGHTED
ASSIGNMENT IS TO BE USED.

IERR = 0?

PRINT NUMBER OF ERRORS
DETECTED IN *TURN AND
*TREE CARDS.

STOP

ITI-90

RETURN

PRPBLD

PRPCTV

SUBROUTINE

PRPCTV - -

Y READ A TRIP VOLUME "EOD
RECORD FROM UNIT INCTV. PR 1

REWIND UNIT CTVOUT

FIND WHAT SUBNET THE
ORIGIN AND DESTINATION
CENTROIDS ARE IN.

READ THE PARAMETER
CARD. SET IRD = 0

ARE BOTH PRINT ERROR MESSAGE:
THE ORIGIN AND NONE VALID ORIGIN
DESTINATION IN XXXXX OR DESTINATION -
THE NETWORK? XXXXX
ARE
IRD = 1 COLUMNS 1 ~'5
= %24 HR
BUILD ONE WORD OF TRIP
RECORD. SET ORIGIN
A IORG. SET SUBNET OF
DESTINATIONS = ISUB2
ARE
IRD = 2 | COLUMNS 1 - 5
= *AMPK
\
SET COUNT OF DESTINATIONS
IN THE TRIP RECORD, KNT = 1.
IRD = 3
\
PR 2

IRD = 1 PRINT A
MESSAGE THAT 24 HR
FIELD USED.

SET NUMBER OF SUBNETS,
NDSUB- = 1. SET

FIRST CENTROID OF SUBNET
1 = 1. SET LAST
CENTROID OF SUBNET 1 = 7.

III-91 =

PR 2
SEJ A FLAG TO INDICATE EOD READ A TRIP VOLUME
THAT THE EOD ON UNIT RECORD FROM UNIT

INCTV HAS BEEN REACHED

PRINT ERROR MESSAGE:
NONE VALID -ORLGIN XXXXX
ESTINATION XXXXX

WRITE THE TRIP RECORD
WITH KNT DESTINATIONS
ON UNIT CTVOUT

KNT = 0

J INCTV.

IS THE
FIRST CHARACTER
OF THIS RECORD
= 'y'?

FIND WHAT SUBNET THE
ORIGIN AND DESTINATION
CENTROIDS ARE IN,

ARE
THEY BOTH
IN THE NETWORK?

COMPARE SUBNET
OF ORIGIN OF THE PREV.
RECORD TO SUBNET OF
ORIGIN OF THE
LAST RECORD

THE SUBNET
OF THE PREVIOUS
DESTINATION TO THE

SUBNET OF THE
LAST DESTINATION,

COMPARE PREVIOUS
ORIGIN CENTROID

KNT = KNT +°1

PUT THE NEW DESTINATION
CENTROID AND VOLUME ‘IN
THE RECORD

WRITE A TRIP RECORD
WITH KNT DESTINATIONS
ON UNIT CTVOUT

- . KNT = 0

\ PRINT ERROR MESSAGE:

' TO PRESENT
ORIGIN CENTROID?

PRINT ERROR MESSAGE:
DUPLICATE SET OF DATA
ENCOUNTERED

COMPARE PREVIOUS
DESTINATION TO
PRESENT DESTINATION?

1I1-92

VOLUME DATA OUT OF SORT

PRPCTV

PRPCTV

WRITE A TRIP RECORD
WITH KNT DESTINATIONS
ON UNIT CTVOUT

HAS AN
EOD. BEEN
REACHED ON
UNIT INCTV?

END FILE UNIT CIVOUT,
REWIRD UNIT CTVOUT PR 1

D

II1-93

PRPNET
ASMNET.
REVNET

ENTRY . = SUBROUTINE ENTRY

ASMNET | | , PRPNET ' REVNET

PMT =.TRUE. PMT = .FALSE.) FMT = ,TRUE.

REV = .FALSE. REV = .FALSE. REV = .TRUE. .
L -— -— il

[\
/

|

READ NETWORK PARAMETER
CARD. READ LINK DATA,
EDIT AND SORT.

/J SORTED LINKS NODE NAMES

(UNIT 4)
igk:m: 12..11!2"7(3 OLD FLEXIBLE
UNIT 3 DATA RECORD
(UNIT 12)

L MRGREC

MERGE SORTED LINKS
AND OLD FLEXIBLE
DATA RECORD DELETE
OR CHANGE SPECIFIED
LINKS.

MERGE SORTED LINKS
AND CHECK FOR CONNEC-
TION ERROR.

COPYFT-

L~

COPY THE INTERMEDIATE
FLEXIBLE RECORD TO
CORRECT THE NUMBER OF
LINKS PARAMETER AND
REMOVE SPANNED CODE

RETURN

8

ITI-94

SUBROUTINE

READVL

HAS AN
END OF FILE
ON THE TRIP
MATRIX BEEN
REACHED?

READ A TRIP MATRIX END OF | SET END OF PILE.
RECORD PILE SWITCH
NORMAL | READ
Y |
1
RETURN

III-95

READVL

SUBROUTINE

RTPFL

READ A ROUTE RECORD
INTO THE NEXT LOCATIONS

RTPFL

* ZERO AND SET FLAGS

INITIALIZE WORD COUNTERS
POR ROUTES 1 - 31 TO

TO SKIP RECORDS

A

INITIALIZE WORD COUNTERS
FOR FIRST 10 ROUTES

TO SAVE IN CORE, TO ZERO.
SET FLAGS FOR FIRST TEN
ROUTES TO SAVE THE
RECORDS IN CORE

REWIND THE ROUTE DATA
SET. READ NUMBER OF
ASSIGNMENTS FROM FIRST
"RECORD

SKIP HEADING RECORDS
ON ROUTE DATA SET

IN THE ARRAY

EOD

INCREMENT COUNT
OF WORDS FOR THIS
ROUTE

18 THIS
A ROUTE RECORD
TO SAVE IN

CORE?

INCREMENT COUNT OF WORDS
FOR THIS ROUTE RECORD.
INCREMENT TOTAL NUMBER
OF WORDS IN CORE.

WILL THE
NEXT ROUTE
RECORD EXCEED THE
CAPACITY OF THE
ARRAY?

YES

INCREMENT THE NUMBER
. OF RECORDS AND LNCREMENT
THE INDEXES OF WHERE

REWIND ROUTE DATA
SET.

RETURN

CHECK TO
SEE IF THERE
ARE ANY ROUTE
RECORDS?

* REWIND ROUTE DATA
SET. READ NUMBER OF
ASSIGNMENTS

READ HEADER RECORDS
AND PRINT.

THE NEXT RECORD IS TO
BE READ

MOVE THE WORD COUNT FOR
ROUTES 1 - 10 SAVED

IN CORE TO THE WORD
COUNT FOR THESE ROUTES.
SET FLAGS ON ROUTES

1 = 10 SO THESE RECORDS
ARE NOT SAVED

RESET THE INDEXES S0
THAT THE NEXT RECORD
WILL. BE READ INTO
THE FIRST LOCATION OF
THE ARRAY.

SET THE NUMBER OF

" OF EACH ROUTE RECORD

CALCULATE LENGTH

IN WORDS AND INITIALIZE
VARIABLES TO READ IN .
ROUTE RECORDS INTO AN
ARRAY

IIT-96

RECORDS SAVED IN CORE
TO ZERO. SET A FLAG
- TO SKIP THE SORT.

RTPFL

R1

REWIND ROUTE DATA SET .] *

SET END = .TRUE.

ROUTE NUMBER.
NEXT LINK RECORD
ITS ANODE AND BNODE

5;%

IS THE

ROUTE NUMBER
OF THIS LINK THE
~ SAME AS THE
LAST LINK?

‘R2

INITIALIZE ROUTE

e ORDERING ARRAYS "B 1"
AND "B 2" TO ZEROS

]

I11-97

R2

SAVE A POINTER TO THE
NEXT LINK RECORD TO
PROCESS

WRITE AN ERROR MESSAGE
THAT THE ROUTE HAS WO 1
ENDS .

CHOOSE AS
A STARTING POINT
THE PIRST

Bl(I)eoO

BL(I) A O

- LIST MORE THAN ONCE.

THE ARRAYS B 1 AND B 2 NOW FORM A

EITHER THE B 1 (I) OR B 2 (I)’
ELEMENT WHICH WAS USED TO REACH
ELEMENT I TO ZERO TO PREVENT THE
PROGRAM FROM GOING THROUGH THE

III-98

RTPFL

RTPFL

R3

PIND HOW MANY MORE
ROUTE CODES CAN BE READ
INTO CORE AT THE SAME
TIME AND SET FLAGS FOR
" THEM,

READ A ROUTE LINK ' EOD
RECORD g

INCREMENT LOCATION
TO PUT MEXT LINK RECORD

ITI-99

SUBROUTINE

RTPLY

[e\

OPEN PLOTTAPE
(CALCOMP OUTPUT)

READ ROUTE PLOT CARD
FROM UNIT 5.

hmmmm.

SET PRT ARRAY TO

PLOT ALL ROUTES. PRINT
MESSAGE: ALL ROUTES WILL
BE PLOTTED.

SET END = .PALSE.

III-100

INITIALIZE WORD COUNTERS
FOR PIRST 10 ROUTES TO
SAVE IN CORE, TO

ZERD, SET FLAGS TO
SAVE RECORDS FROM

FIRST 10 ROUTES IN CORE.

REVIND THE ROUTE
DATA SET. READ
NUMBER OF ASSIGNMENTS
NLD FROM THE FIRST
RECORD.

DO
COLUMNS 1 - &
CONTAIN *ALL?

PRINT MESSAGE: ALL
ASSIGRMENTS, LINK COUNTS,
AND LINK CAPACITIES WiLL

'BE PLOTTED. SET FLAGS T0O |

PLOT THE ABOVE.

SET FLAGS TO PLOT THE
ASSIGMMENTS, COUNTS, OR
CAPACITIES SPECIFIED,
ALSO PRINT WHICH ARE TO
BE PLOTTED.

PLOT HEADER RECORDS
WITH IDENTIPICATION OF
ASSIGNMENT WUMBER,
COUNT, OR CAPACITY WITH

RTPLT

RP 1

SKIP 14.2 INCHES DOWN
THE PLOT TO SKIP THE
HEADERS .

REWIND ROUTE DATA
‘SET.

CALCULATE LENGTH OF
ROUTE RECORDS IN
WORDS AND INITIALIZE
VARIABLES TO READ THE
ROUTE RECORDS INTO AN
ARRAY.

READ A ROUTE RECORD INTO
THE NEXT WORDS IN THE
ARRAY. -

INCREMENT COUNT OF

WORDS FOR THIS ROUTE

INCREMENT COUNT OF -
WORDS FOR THIS ROUTE
IN CORE. INCREMENT
TOTAL NUMBER OF WORDS
IN THE ARRAY,

INCREMENT THE NUMBER
OF RECORDS AND INCREMENT
THE INDEX OF WHERX

_THE NEXT RECORD IS TO
BE READ

MOVE THE WORD COUNT FOR
ROUTES 1 - 10 SAVED IN
CORE TO THE WORD COUNT
FOR THOSE ROUTES. SET
FLAGS ON ROUTES 1 ~ 10
80 THAT THESE RECORDS

ARE NOT SAVED.

SET THE NUMBER OF
RECORDS SAVED IX CORE
T0 ZERO. SET A FLAG TO
SKIP THE SORT.

RESET THE IMNDEX SO THAT
THE NEXT RECORD WILL
BE READ INTO THE FIRST
LOCATION OF THE ARRAY

TII-101

/ " VSORT

SORT THE ROUTE RECORDS
IN CORE ON THE ROUTE
CODE. '

GET ROUTE CODE OF THE
FIRST SORTED RECORD
IN CORE.

RP- 3

RP 11

RTPLT

RP 3

INITIALIZE ROUTE
ORDERING ARRAYS
B 1 AND B 2 TO ZEROS.

SAVE THE LINK BY PUTTING THE BNODE
IN B 1 (BNODE) AND AN INDEX TO THE
LINK RECORD IN NX 1(ANODE) IF

B 1 (ANODE) IS ZERO OR OTHERWISE
BY PUTTING THE B NODE NUMBER IN

B 2 (ANODE) AND AN INDEX TO THE
LINK IN NX 2 (ANODE) IF B 2 (ANODE)
IS ZERO OR OTHERWISE WRITE AN
ERROR MESSAGE AND SKIP THE LINK

Y

SAVE THE LINK IN THE OPPOSITE DIREC-
TION BY PUTTING THE ANODE IN B 1
(BNODE) AND AN INDEX TO. THE LINK

IN NX 1 (BNODE) IF B 1 (BNODE) IS
ZERO OR OTHERWISE BY PUTTING THE
ANODE IN B 2 (BNODE) AND AN INDEX
TO THE LINK IN NX 2 (BNODE) IF

B 2 (BNODE) IS ZERO OR OTHERWISE
WRITE AN ERROR MESSAGE AND SKIP

THE LINK.

END = .TRUE.

IS THERE
ANOTHER SORTED

LINK RECORD
IN CORE?

GET THE ROUTE NUMBER
OF THE NEXT LINK RECORD
AND ITS ANODE AND BNODE

1S THE
ROUTE NUMBER OF
THIS LINK THE
SAME AS THE
LAST LINK?

III-102

RIPLT

RP 4
RTPLT

SAVE THE POINTER TO
THE NEXT ROUTE RECORD
IN CORE TO PROCESS.

FIND AN END
OF THE ROUTE IN
ARRAYS B 1 AND B 2 BY
FINDING AN I SUCH THAT
B 1(I) # 0 AND
B2(I) =0

END FOUND

PRINT AN ERROR MESSAGE
THAT THE ROUTE HAS
NO ENDS

CHOOSE AS
* A STARTING
POINT THE FIRST
B1(I) 2 0

B1(I) # 0

L]

THE ARRAYS B 1 AND B 2 NOW FORM A
BIDIRECTIONAL LIST STRUCTURE OF
LINKS WITH THE DATA INDEXED BY ARRAYS
NX 1 AND NX 2. THE LINK RECORDS

ARE NOW LISTED IN THE ORDER ‘IN

WHICH THEY ARE CONNECTED AND THE

LIST STRUCTURE IS DESTROYED AS

EACH LINK IS PRINTED BY SETTING
BITHER B 1 (I) OR B 2 (I) ELEMENT
WHICH WAS USED TO REACH ELEMENT

I TO ZERO TO PREVENT THE PROGRAM
FROM GOING THROUGH THE LIST MORE
THAN ONCE. THE INDEXES TO THE

LINKS LISTED ARE SAVED IN ARRAY

NX 2 SO THAT THE ROUTE CAN BE PLOTTED.

!

GET THE MAXIMUM VOLUME
T0 BE PLOTTED FOR THIS
ROUTE, MAX

A sc \

SCALE THE Y AXIS TO PLOT
MAX IN 9 INCHES.

ITII-103

Y
[LINE

|~

DRAW THE Y AXIS WITH
TIC MARKS AT 1 INCH
INTERVALS

_

SYMBOL \
PUT THE WORD 'VOLUME' :
ON THE Y AXIS I\

DRAW NUMBERS FOR THE
TIC MARKS ON THE Y
AXIS.

y

/ sc . \

SCALE THE X AXIS FOR
AN AVERAGE OF 3
NODE NUMBER PER INCH.

DRAW NODE NUMBERS ALONG
THE X AXIS IN ASCENDING
ORDER OF DISTANCE WITH
CONNECTING LINES

)
LINE \

DRAW X AXIS FROM
LARGEST X VALUE TO THE
ORIGIN

DRAW LABEL FOR THE
GRAPH 'ROUTE XX'

K = NLD + 2
KK =1

KK = 1, CORRESPONDS TO
GROUND COUNTS KK = 2,
CORRESPONDS TO CAPACITIES
KX > 2, CORRESPONDS TO
ASSIGNMENT KK - 2

ARE -THE
VOLUMES
CORRESPONDING TO
THIS KK TO BE
PLOTTED?

ARE THERE
ANY GROUND
COUNTS FOR THIS
ROUTE?

RK = KK + 1

ARE THERE
ANY LINK
CAPACITIES FOR
THIS ROUTE?

PLOT THE VOLUMES
CORRESPONDING TO KK
IN AN ORDER WHICH IS
ASCENDING FOR THE X
AXIS VALUES.

KK = KK +1

III-104

RTPLT

PN ‘ © RTPLT

/ PLOT \

3 SKIP PAST THE PLOTS
FOR THIS ROUTE

SET THE ROUTE CODE
TO THAT OF THE NEXT
ROUTE SAVED IN CORE

ARE THE
VOLUMES CORRES-
PONDING TO THIS
KK TO BE
PLOTTED?

KK = KK + 1

ARFE. THERE

ANY GROUND
COUNTS FOR THIS
ROUTE?
1 .
FIND HOW MANY MORE
ROUTES CAN BE READ INTO -
ARE 'CORE AT THE SAME TIME AND RP 2
THERE ANY SET FLAGS FOR THEM TO
4 LINK CAPACITIES BE READ IN.
' FOR THIS ROUTE?
y
HAVE ALL
PLOT THE VOLUMES ROUTES BEEN
CORRESPONDING TO KK PROCESSED?
IN AN ORDER WHICH IS
DESCENDING FOR THE X A
AXIS VALUES.
'
SKIP THE HEADER RECORDS
ON THE ROUTE DATA SET.
SET END = .FALSE.
KK= RK + 1
0D o
RP 11
READ A ROUTE LINK RECORD
. YES
N
RP 8 A iﬁuﬁgxi"o INCREMENT LOCATION To
SAVE TN CORE READ NEXT LINK RECORD |

III-105

FUNCTION

sC

THIS EFPECTIVELY
ROUNDS DXS TO THE
NEXT LARGEST NUMBER OF
THE TYPE a*0.5 WHERE
n 15 AN INTEGER

BREAK NUMBER TO BE SCALED
INTO TWO PARTS DXS, A
NUMBER BETWEEN 1.0 AND
10.0 AND P 10 A MULTIPLIER
WHICH IS A POWER OF 10

ROUND 2#DXS TO THE
NEXT LARGEST INTEGER
AND PUT IN IX.

1s
DXS < 4.07

SC = (FLOAT (IX) /2.0)
710 .

ROUND DXS UP TO THE
NEXT LARGEST INTEGER, IX

SC = IX*F 10 -

III-106

SC

SELECT

SUBROUTINE

SELECY

L opex A\

OPEN SELTRP DATA SET
FOR OUTPUT.

READ OUTPUT SPECIFICATION
m .

SET TURNING MOVEMENT
CODES TO SAVE NONE AND
OUTPUT MONE. ’

I8
THE QUTPUT YES
SPECIFICATION CARD
*LINKS?

SET FLAG TO SUPPRESS
PRINTING OF LOADED
NETWORK .

PRINT ERROR MESSAGE:
SELECTRD LINKS OUTPUT
OPTION IMVALID, OPTION
READ = #XXXX RUN DELETED

WRITE READER AND DATE
ON SELTRP DATA SET

III-107

READ A *SELECT OR AN

*END CARD.

IS TRIS
AN *SELECT
CARD?

IS THE
PERCENT FIELD
= 0 OR
> 1007

SELECT

RETURN

SET PERCENT FIELD
TOO 100%

IS THE
ZONE PAIRS
FIELD = 0?

SET NUMBER OF ZONE
PAIRS TO PRINT =
32767

IF THE ANODE > BNODE
EXCHANGE THE ANODE AND
BNODE NUMBERS.

PRINT ERROR MESSAGE:
SELECTED LINK XXXXX
XXXXX NOT IN NETWORK,
CARD IGNORED

NOT IN-

FIND THE LINK INDEX OF

NETWORK

THE LINK ANODE, BNODE.

SELECTED [LINK FOUND
|

FLAG ONE-WAY LINK FROM
ANODE TO BNODE IN THE
NETWORK AS A SELECTED
LINK.

III-108

PRINT ERROR MESSAGE:
SELECTED LINK XJ000X
XXXXX NOT IN NETWORK,
CARD IGNORED

NOT IN

s 2

FIND THE ONE-WAY LINK
INDEX OF THE LINK
BNODE, ANODE

SELECTED § LINK FOUND

FLAG ONE-WAY LINK FROM
BNODE TO ANODE IN THE

NETWORK AS A SELECTED

LINK.

/ WRITE \

WRITE A RECORD OF
CUT-OFF PARAMETERS AND
LINK INDEX ON SELTRP

PRINT CUT-OFF
PARAMETERS FOR THIS
SELECTED LINK

II1I-109

SELECT

SUBROUTINE

SLOAD

"INITIALIZE ARRAY TO
HOLD VOLUMES WHILE THEY
ARE BEING LOADED, TEMP,
TO ZERO FOR NUMBER OF
NODES . :

READ THE NEXT TRIP RECORD
FROM UNIT CTVOUT

IS THE

SUBNET OF THE

LAST TRIP RECORD
READ = 17°

THE LAST TRIP
RECORD THE SAME
AS THAT OF THE TREE.

MOVE THE VOLUMES IN THE
TRIP RECORD INTO ARRAY
TEMP USING THE DESTINA-
TION ZONES AS INDEXES.

EOF = ,TRUE.

SET THE ORIGIN CENTROID
TO 9999 FOR THE LAST TRIP
RECORD READ.

GET POINTER TO LIST

OF ALL NODE NUMBERS IN
THE TREE IN DESCENDING
TIME ORDER.

GET NEXT NODE NUMBER OF
THE LIST. GET VOLUME

LOADED TO THIS NODE

IS THE
VOLUME = 0?

GET BACK LINK. IN THE
PATH FROM THE NODE AND
LOAD THE VOLUME ON IT.

USING THE NODE NUMBER

AT THE OTHER END OF THE

LINK AS AN INDEX SUM
THE VOLUME INTO TEMP.

RETURN

SUM THE VOLUMES IN THE
TRIP RECORD AND PRINT
AN ERROR MESSAGE AND THE

SUM.

ITI-110

SLOAD

SUBFND

SUBROUTINE

SUBFND

SET A CODE TO INDICATE NoT I |y wmar susker me
IT IS WOT IN THE NETWORK. § NETWORK ORIGIN CENTROID IS IN.

=)

~_NOT IN FIND WHAT SUBNET THE
prom— gsgunou CENTROID

1

)

III-111

SUBROUTINE

SUMEND

REWIND UNIT CTVOUT

READ PARAMETER RECORD
FROM UNIT CTVOUT.

SUM NUMBER OF CENTROIDS,
NZONES. SET THE DISPLACE-
MENT FOR EACH SUBNET

OF WHERE TO SUM ITEMS.

INITIALIZE ARRAYS FOR
NUMBER OF ORIGINS,
DESTINATIONS, VOLUMES
IN, VOLUMES OUT, AND
INTRAZONAL VOLUME TO
ZEROS

READ A TRIP RECORD FROM
UNIT CTVOUT

EOD

PRINT THE SUMMATIONS
MADE BY ORIGIN FOR

ALL CENTROIDS IN SEQUEN-
TIAL ORDER BY CENTROIDS

PRINT TOTALS FOR ALL OF
ABOVE ITEMS, SKIP TO THE
TOP OF A NEW PAGE

REWIND UNIT CTVOUT

A]

MAKE SUMMATIONS OF

- NUMBER OF ORIGINS, DESTI-
NATIONS, VOLUMES IN,
VOLUMES OUT, AND
INTRAZONAL VOLUMES BY
CENTROID. FOR THIS TRIP
RECORD

oo ey

III-112

SUMEND

SUBROUTINE

SUMRY

Y

/ ~ GTLD \

PRODUCE CROSS
CLASSIFICATION BY J AND
FC AND ALSO SUMMATIONS
FOR REGRESSIONS

[o \

PRINT VEHICLE HOUR
AND MILE SUMMARIES
AND REGRESSIONS

ARE
THE CORRIDOR

INTERCEPT AND
ROUTE PROFILES
DESIRED?

CRDINT j

PRINT CORRIDOR
INTERCEPT TABLE
Yy

1

RTPFL

< PRINT ROUTE PROFILES

(=~)

o

III-113

SUMRY

SUBROUTINE

TREE

SUBROUTINE

TREBLD

TREE

TREBLD

SELLD
SUBROUTINE

TREES = ,TRUE.

SELLD

TREES = .FALSE.

TREES = ,FALSE.

SEL = .PALSE. L = .TRUE.
OUIN = .TRUE. SE TRUE
)
PATHCL

BUILD TREES AND LOAD
IF TREES 1S FALSE

OUTLNT

|

PRINT LOADED
NETWORK

)

III-114

SUBROUTINE

TRN

INITIALIZE FLAGS TO IN-
DICATE OUTPUT FOR ALL
POSSIBLE TURN VOLUMES
ALSO SET ALL TURN VOLUMES
T0 ~1 TO INDICATE ALL ARE
UNKNOWNS

SET FLAGS FOR NO OUTPUT

OF U-TURNS AND SET
VALUES OF THESE TO
ZEROES

GET IND = THE TURN
CODE FOR THE NODE

PRINT MESSAGE:

TRMV ERROR
GET N = THE NUMBER
OF LINKS FROM
NODE 1
PRINT MESSAGE:
ERROR X
|

ZERO OUT TURN VOLUMES
WHICH ARE KNOWN TO BE
ZERO BECAUSE OF ONE-
WAY LINKS AND FLAG
FOR NO OUTPUT

R1

ITII-115

TRN

13, 17,18, 21 23, 24 25] 26 27 10 -9, [11-16, |28
20 22 19 y
R 2
|] y
{ GETRN \ [GETRN \ [GETRN \ [GETRN \
GET TURNING GET TURNING GET TURNING" GET TURNING
MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH
WERE SAVED WERE SAVED WERE SAVED WERE SAVED
1 \ 1
[GETRN \ [GETRN -\ / GETRN \
GET TURNING GET TURNING GET TURNING
MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH
WERE SAVED WERE SAVED WERE SAVED
1
MARK TURNS WHICH
ARE ZERO BECAUSE
- OF ONE-WAY LINKS
FOR NO PRINTED
OUTPUT
| \ 1 4
ufg YES PRINT MESSAGE:
2 ERROR X
NO
R3

ITI-116

TRN

GET DIRECTIONAL VOLUMES

FOR BOTH DIRECT10NS AND SET FLAGS S0 THAT
SUM FOR NON-DIRECTIONAL NO TURNING MOVEMENTS

LINK VOLUMES WILL BE PRINTED

CHECK EACH COLUMN
OF THE TURNING
MOVEMENT MATRIX AND

IF ONE HAS A SINGLE
UNKNOWN, CALCULATE
IT

- CHECK EACH ROW OF THE
TURNING MOVEMENT MATRIX
AND IF ONE HAS A SINGLE
UNKNOWN, CALCULATE IT

WERE
ANY TURNING
MOVEMENTS CAL~
CULATED FOR
THIS ITER.

I=I+1

NO YES PRINT MESSAGE:
ERROR X

III-117

TRNMY

FUNCTION

TRNMV

GET INDEX +
DISPLACEMENT ~1

USE THE SECOND
INDEX TO GET THE
VOLUME FROM THE
OVERFLOW ARRAY

.(;m}f

ITI-118

SUBROUTINE

TURNM

INITIALIZE FLAGS TO IN-
DICATE OUTPUT FOR ALL
POSSIBLE TURNING MOVE-
MENTS, ALSO SET ALL TO
-1 TO INDICATE UNKNOWNS

SET FLAGS FOR NO OUT-
PUT OF U-TURNS AND
SET VALUES OF THESE
TO ZEROES

GET IND = THE TURN
CODE FOR THE NODE

GET N = THE NUMBER
OF LINKS FROM THE
NODE

PRINT MESSAGE:
'TRNMV ERR'

PRINT MESSAGE:
ERROR X

|

ZERO OUT TURN VOLUMES

WHICH ARE KNOWN TO BE
ZERO BECAUSE OF ONE-
WAY LINKS AND FLAG
FOR NO OUTPUT

T1

ITI-119

TURNM

TURNM

13, 17,)18, 21 23, 27 10
20, { 22
Y] \
GETRNS \ [GETRNS \ [GETRNS \ [GETRNS
GET TURNING GET TURNING GET TURNING GET TURNING
MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH
WERE SAVED WERE SAVED WERE SAVED WERE SAVED
1 Y
[GETRNS \ I GETRNS \ GETRNS -\

GET TURNING GET TURNING GET TURNING

MOVEMENTS WHIGH MOVEMENTS WHICH MOVEMENTS WHICH

WERE SAVED WERE SAVED

WERE SAVED

MARK TURNS WHICH ARE
ZERO BECAUSE OF ONE-
WAY LINKS FOR NO
PRINTED OUTPUT.

1-9, | 11-16, |28

PRINT MESSAGE:
ERROR X

T3

III-120

GET DIRECTIONAL
VOLUMES FOR BOTH
DIRECTIONS AND SUM
FOR NON-DIRECTIONAL
LINK VOLUMES

[5

SET FLAGE S0 THAT
NO_TURNING. MOVEMENYS
WILL BE PRINTED

NO

CHECK EACH COLUMN OF
THE TURNING MOVEMENT
MATRIX AND TF ONE HAS
A SINGLE UNKNOWN,
CALCULATE 1T

CHECK EACH ROW OF THE
TURNING MOVEMENT MATRIX

AND IF ONE HAS A SINGLE -

UNKNOWN, CALCULATE IT

WERE
ANY TURNING
MOVEMENTS CALCULATED
FOR THLS ITER.

1=1+1

III-121

YES

PRINT MESSACGE:
ERROR X

TURNM

SUBROUTINE

UPDTNT

DLT = ,FALSE.
(NO ERRORS DETECTED
IN PARAMETER CARDS)

SET ITR(I) = I FOR
I=1, 20. THIS
SPECIFIES NO ASSIGN-
MENTS ARE DELETED

REWIND 12

e,

OPENFT

OPEN UNIT
NETWORK FOR
OUTPUT

“READ THE PARAMETER
RECORD FROM UNIT 12
OF THE OLD FLEXIBLE
RECORD

IMPD » ,FALSE,

(THE LINK IMPEDANCE
OF AN OLD ASSIGNMENT
IS NOT TO BE USED)

" SLF = ,FALSE,

(THE LINK IMPEDANCES
ARE NOT T0 BE CALCU-
LATED BY THE LINK

IMPEDANCE FUNCTION)

III1-122

UPDTNT

T

1s
THE ASSIGNMENT
T USE [N THE IMPEDANCE
UPDATE FUNCTION IN
‘THE RANGE OF 1 TO
THE LAST ASSIGN=-
MENT
?

READ A PARAMETER
CARD FROM UNIT 5

PRINT MESSAGE:

ASSIGNMENT X IS INVALID,

EXECUTION WILL END WITH
A STOP 3. DLT = ,TRUE.

UPDINT

PRINT THE PARAMETER

CARD

SLF = ,TRUE.
NMPD = NTR

18
IT AN *ADJUST
CARD?

PRINT ERROR
MESSAGE: INVALID
DELETE ASSIGNMENT
PARAMETER CARD
DLT = ,TRUE.

PRINT ERROR MESSAGE:
*IMPEDANCE AND *ADJUST
PARAMETER CARDS MUTUALLY
EXCLUSIVE

DLT = ,TRUE

IS
THE FIRST COLUMN
OF THIS CARD =
g7

I8

THE ASSIGNMENT

SPECIFIED IN THE

RANGE OF 1 TO THE

LAST ASSIGNMENT
?

1s

THE ASSIGNMENT

TO USE THE OLD IMPEDANCE

FROM TN THE RANGE OF

L TO THE LAST

ASSIGNMENT
?.

NTR = Tk
TO DELYTE.
YTR(NTR) = 0

ALSTCNMENY

IMPD = TR,
NMPD = NTR

III1-123

STOP 3

PRINT MESSAGE: SELF-
DIVERTING IMPEDANCES
CALCULATED FROM
ASSIGNMENT XX

TRUE

FALSE

[#RT \

- WRITE THE PARAMETER
RECORD WITH THE
CORRECT # ASSIGNMENTS
ON NETWORK

READ THE FIRST HEADER
RECORD FROM UNIT 12

WRITE THE HEADER
RECORD ON UNIT NETWORK

READ THE OTHER PARAMETER
RECORD FROM UNIT 12
COPYING THE ONES FOR A
ASSIGNMENTS WHICH ARE
NOT- TO BE DELETED TO
UNIT NETWORK.

PACK THE NON ZERO
ITEMS IN ARRAY ITR.

m
! FALSE

PRINT MESSAGE: NEW
IMPEDANCES TAKEN FROM
ASSIGNMENT XX

UE
TRUE

FALSE

ITI-124

UPDTNT

[

CLOSFT

—\

o) READ A NODE RECORD FROM -] EOD

UNIT 12

CLOSE UNIT NETWORK

[~

WRITE THE NODE RECORD
ON UNIT NETWORK

REWIND 12

RECORD .

NL = NUMBER OF LINK
RECORDS FOR THIS NODE

RETURN

1=1

UNIT 12

READ A LINK RECORD FROM. |

UPDATE THE LINK
IMPEDANCE IF SPEGIFIED
BY SLF OR IMPD.

DELETE ASSIGNMENT
SPECIFIED BY THE
ITR ARRAY.

I=1+1

/[

WRT \

WRITE THE UPDATED LINK
RECORD ON UNIT NETWORK

SUBROUTINE

VREC

MRG = LNK 1. GT. 0

(ARE' THERE RECORDS ON
UNLT 3)

MRG 2 = LNK 2. GT. 0
(ARE RECORDS ON UNIT 11)

/ OPENFT

OPEN UNIT NETWORK
AS OUTPUT (REWIND
IT)

_CALCULATE TOTAL NUMBER
OF ONE-WAY LINKS

PRINT MESSAGE THAT
THE NUMBER OF LINKS
E. THE MAXIMUM,

1S THE
TOTAL NUMBER OF
LINKS > THAN

THE MAX.?

WRITE PARAMETER RECORD
ON" UNIT NETWORK

PRINT MESSAGE THAT THE
MAX[MUM NODE NUMBER IS
EXCEEDED .

ERR = ERR + 1

WRITE HEADER RECORD
AND DATE ON UNIT NETWORK

SET INDEXES FOR NEXT
LINK FROM LINKS IN
CORE OR FROM RECORDS READ

ARE THERE
RECORDS ON
UNIT 3?

VREC

READ A RECCRD FROM
UNIT 3

ARE THERE
RECORDS ON
UNIT 11?

RO

READ A RECORD FROM
UNIT 11

A
/ | GILNK \
UNPACK DATA FROM FIRST
LINK FROM UNIT 3
GTLNK

UNPACK DATA FROM
FIRST LINK IN CORE

,,—’”N\,*

\//

1

[GTLNK

o

UNPACK DATA FROM
FIRST LINK FROM
UNIT 11

ARE THERE
RECORDS ON
UNIT 3?

SET SORT KEY FOR

LINK FROM UNIT 3 SO
IT WILL BE SKIPPFD.
SET ANODE = 16383

ARE TRHERE
RECORDS ON
UNIT 117

YES

SET SORT KEY FOR THI
FIRST.LINK FROM UNIT
L1 SO THAT IT WILL BE
SKIPPED. SET ANODE =
16383

REWIND UNIT 4 (NODE
NAMES)

FROM UNITS 3 OR 11 TO
FIRST LINK

III-125

KEAD NEXT CARD FROM
LINK DATA INPUT

1S IT
AN N OR AN
ENDNET CARD?

SET NODE NUMBER
OF LAST NODE RECORD

READ TO 16383

SET COUNT OF LINKS FROM
ANODE TO 0. (L = 0).

PUT NEXT SMALLEST
ANODE IN ANODE

IS THE
ANODE OF
THIS LINK =
ANODE?

Lo, + 1, SAVE

THIS LINK AT LEDEX L.
INCREMENT TO GET NEXT
LINK

1S THE

NEXT LINK IN
THE LAST

RECORD READ?

UNIT 3

IS THE
ANODE = 163837

VREC

WHICH
SORT KEY IS
SMALLEST?

CORE

IS THE
ANODE OF THIS
LINK = ANODE?

= L + 1 SAVE THIS
LINK AT INDEX L.
INCREMENT TO GET
NEXT LINK

- UNIT 3.

READ NEXT RECORD FROM

SET LOCATION

TO GET NEXT LINK TO 0

[GTLNK \

UNPACK DATA FROM NEXT
LINK FROM UNIT 3

=L+1
SAVE THIS LINK AT INDEX
L. INCREMENT TO GET
NEXT LINK

YES READ NEXT RECORD
FROM UNIT 11. SET
LOCATION TO GET NEXT
LINK FROM TO 0
y
/ GTLNK \

UNPACK DATA FROM NEXT
LINK FROM UNIT 11.

L GTLNK j

UNPACK DATA FROM NEXT
LINK FROM CORE

ITI-126

CONVERT NUMBER OF
LINKS IN EACH LINK
CLASS TO THE TURN
MOVEMENT TYPE CODE

PRINT MESSAGE THAT THB
ANODE IS NOT IN THE
NETWORK

ERR = ERR + 1

SET TURN TYPE CODE TO
28 AND ADD CENTROID
CODE

ADD CODE FOR FREEWAY
TO TURN CODE

MOVE NODE NAME 10
AREA POR THIS ANODE.
READ NEXT NODE NAME
RECORD .

MOVE ‘BLANKS TO THE
NODE NAME FOR THIS
NODE

GET COORDINATES AND
KEEP NON ZERO SUB AREA
CODE. READ NEW ANODE
RECORD

SET COORDINATES TO
ZERO

PRINT AN ERROR MESSAGE
FOR EACH DUPLICATE LINK
AND ADD NUMBER OF
DUPLICATIONS INTO ERR

VREC

VREC

PRINT ERROR MESSACE
THAT THERE ARE
MORE THAN SIX LINKS.
EBR = ERR + 1

L

PRINT MESSAGE: . PRINT MESSAGE:
ISOLATED CENTROID. o) ISOLATED NODE.
ERR = ERR + 1 : ERR = ERR + 1
 J
I=1

eI+l

III-128

CLOSE NETWORK DATA
SET

REVIND MODE NAME DATA
SET (UNXT 4)

REWIND 11

III-129

VREC

SUBROUTINE

WGTLD

SUM CONSTANTS FROM
CURVE FIT

FIND SMALLEST “T"
VALUE FOR WHOSE
PERCENTAGE 1S >
100 - N8

100-M8 : 0

FIND THE LARGEST "T"
VALUE

ADD 100 - N8 TO
THE PERCENTAGE
FOUND ABOVE

CALCULATE THE WEIGHT
FOR EACH ITERATION
BY DIVIDING THE
PERCENTAGE BY 100.0

-

ADD 100 - NS TO THE .
PERCENTAGE CORRESPONDING
TO THE LARGEST "T"
VALUE

PRINT THE PERCENTAGE
WEIGRTS TO LOAD

III-130

WGTLD

SUBROUTINE

WTLNT

END FILE 3
REWIND 3
REWIND NETWORK

READ PARAMETER RECORD
FROM NETWORK

SKIP HEADER RECORDS
ON UNIT NETWORK

INITIALIZE LINK INDEX
AND TURN INDEX ARRAYS
TO ZERO, INITIALIZE
TURN CODES TO 28

READ NETWORK T0 GET
B NODES OF THE LINKS
AND NUMBER OF LINKS
FOR EACH NODE AND
TURN CODES

BUILD LINK INDEXES
FROM NUMBER OF LINKS
FROM EACH NODE AND
BUILD TURN INDEXES
FROM TURN CODES

SET IWT = THE PERCENT
OF THE FIRST ASSIGNMENT
TO USE . .

READ THE LINK VOLUMES
FROM UNIT 3 FOR THE
FIRST ITERATION, MULTI-
PLY BY IWT AND PLACE
THE RESULT IN THE
LINK VOLUMES IN CORE

READ THE TURN VOLUMES
FROM UNIT 3 FOR THE
FIRST ITERATION,
MULTIPLY BY IWT AND
PLACE THE RESULT IN
THE TURN VOLUMES IN
CORE

SET IWT TO THE PERCENT
TO LOAD FOR ITERATION L

READ THE LINK VOLUMES
FROM UNIT 3 FOR ITERATION
L, MULTIPLY BY IWT

AND SUM INTO THE LINK
VOLUMES IN CORE

READ THE TURN VOLUMES
FROM UNIT 3 FOR
ITERATION L, MULTIPLY
BY IWT AND SUM INTO THE
TURN VOLUMES IN CORE

L=L+1

IS L
> THAN THE
NUMBER OF

ITERATIONS RUN?

WTLNT

WTLNT

()

/
OUTWLT \

™

PRINT THE WRIGHTED
ASSIGNMENT

REWIND 3

REWIND NETWORK

=D

ITI-132

SITGNIFICANT VARIABLES

AND ARRAYS

LABELED COMMON

DESCRIPTIONS OF SIGNIFICANT
VARTABLES AND ARRAYS

LABELED COMMON

Twelve labéled common control sections are contained in the Texas
Small Network Package. These labeled commons serve several important
functions. Their primary function is, of course, to provide a convenient
media for passing various variables and arrays between sﬁbroutines.

They are also used to save certain variables and arrays as various
subroutines are Qverlayed. They have also been used in a few instances
to allign half-word arrays on full-word boundaries. Table 5 provides

a cross reference of the labeled common control sections énd the program

control sections with which they are associated.

Iv-1

TABLE 5: CROSS REFERENCE OF LABELED COMMON CONTROL
SECTIONS AND PROGRAM CONTROL SECTIONS

LABELED COMMON

PROGRAMS

Cb

SDATE -
STOP
VOLTP

ALLIGN
< | CAPRES
CAPREP
DELETE
FILES
GROUP1
< | HEADR
OUTDCB

ALCP

BLDNET

< P

BLOCK DATA

o
<

p<

CLOSFT X
CRD v

CRDINT X

osha

FRATAR

GTLD

LNKLST

MAIN

MERG

MRGREC X X

b

5 1414
2l zlial ol sl sl sl sl
a3 I

NEWNET X

OPENFT J _ » <

OUTLLT X

pd

OUTLNT X

OUTNET

P< P

OUTRIP

OUTSLN

OUTSNT

OUTTRE

OUTWLT

NﬁXNNNNN

PATHCL X | x

pd P4 P

PATHSP

PRPBLD X

PRPCTV

READVL

RTPFL

sBalalal

RTPLT

SELECT <

SLOAD

P

SUBFND

SUMEND ' X - X

SUMRY X X

TREBLD ~ X

UPDTNT X X

VREC X X X

WGTLD X X

WRT X

WILNT X

V-2

DESCRIPTIONS OF
VARIABLES AND ARRAYS

The purpose of the section is to provide information concerning
the significant variables and arrays used in the package. For convenience,
this information has been summarized in tables by subroutine. The
programmer may, therefore, when reviewing the flowcharts and program
listings of a given subroutine, refer to the table(s) summarizing the
significant variables and/or arrays used in the subroutine. The tébles
summarizing the.significant variables and arrays used in various
subroutines, arranged in alphabetical order by the subroutine name,

are as follows:

Iv-3

SUBROUTINE ALCP

In the following description the C field will be used to represent
either the link COUNT field when it is used or the link CAPACITY field

when it is used in ASSIGN SELF-BALANCING.

Variable Contents
FN The number of links used in the curve fit (the number of

links with a nonzero C field which are not centroied
- connectors).

M The number of iterations run in the ASSIGN SELF-BALANCING
run at this point.

SY The sum of the C fields except for centroid connectors.

SYY The sum of the C fields squared except for the centroid

connectors,

Control Variable Value Meaning
CNVRG , False The ASSIGN SELF-BALANCING run should continue
unless it has run the maximum number of
iterations.
CNVRG True The ASSIGN SELF-BALANCING run should not

run another iteration if it has run the
minimum iterations.

Array Contents
sX _ The sum of the non-directional assigned link volumes for

links with nonzero C fields except for centroid connectors
for iterations 1 through M,

XY The sum of the products of the non-directional assigned
link volumes with the C fields except for centroid
connectors for iterations 1 through M.

XX The sum of the non-directional assigned link volumes

squared for the links with nonzero C fields except for
centroid connectors for iterations 1 through M.

V-4

SUBROUTINE BLDNET

Control Variables Value Meaning

FORMAT False Use the link card format written in the
manual with from 1 to 4 nondirectional
links per card.

FORMAT True Use the link card format that is used for
PREPARE NETWORK.

EOF False An end of data set has not been reached
on unit INLNK,

EOF True An end of data set has been reached on
unit INLNK.
Variable Contents
MILAGE The sum of the milage of all the link data cards in units

of 0.01 miles.

IZLINK The number of nondirectional links with a zero link
impedance in the network,

Array : Contents
SPEEDS The number of nondirectional liﬁks with link speeds
' between O mph and 100 mph in increments of 1 mph.
KOUNT (I) The nuﬁber of links from node I in array LINKS.
IﬁDEX(I) The index in array LINKS where the links from node I are

stored (or where they will be stored if there are any).

LINKS Each element of this array is a structure of data items
called a link.

Structure of an Element in array LINKS

Displacement Bits Length Bits Contents
0 | 1 Last link code (0 if not last links, 1
if last link from the A node).
1 19 Link impedance in 0.0l minute units.
20 12 B node of the link.

IV-5

SUBROUTINE CMPVH

Variable Contents

LSTJ The largest jurisdiction number in the network.

NLD The number of assignments on unit NEWNET,

Control Variable Value Meaning

NLD 1 Don't print the comparison of the last two
assignments,
NLD 2 or Print the comparison of the last two
greater assignments,

Array Contents

- VMI (J,L) Vehicle miles cross classified by jurisdiction + 1 used
as the first index and three link classes second index.
The three link classes are centroid connectors, arterials,
and freeway links,

VHR (J, L) Vehicle hours cross classified the same as VMI,

MI (J, L) Network miles cross classified the same as VMI.

W (J, F) Vehicle miles cross classified by jurisdiction + 1 used as
the first index and functional class + 1 used as the second
index,

M (J, F) Network miles cross classified the same as VM.

WMC (J, F) Vehicle miles for links with a nonzero count field cross
classified the same as VM,

MC (J, F) Network miles for the links with a nonzero count field cross
classified the same as VM,

VMCC (J, F) Vehicle miles for links with a nonzero capacity field cross
classified the same as VM,

Mcc (J, F) Network miles for the links with a nonzero capacity field

cross classified the same as VM,

V-6

Array

FC (F)

FN (R, J)

SY (R, J)

SYY (R, J)
SX (R, 1)

SXX (R, J)

SXY (R, J)

H1

H2

HN

Contents

The

number of links with functional class + 1 used as

index F in the network.

J
J
J

R
[/ |

[R
tnn

The

The

Number of links with nonzero link counts by route;
Number of links with nonzero link capacities by route;
Number of links in the network by route,

WM
es oo oo

1l: Sum of link counts by route code;

2: Sum of link capacities by route code;

3: Sum of nondirectional link volume from the previous
assignment by route,

1: Sum of link counts squared by route code;

2: Sum of link capacities squared by route code;

3: Sum of nondirectional link volumes from the previous
assignment squared by route code,

1: Sum of nondirectional link volumes for this assign-
ment for those links which have a nonzero count by
route;

2: Sum of nondirectional link volumes for this assign-
ment for those links which have a nonzero link
capacity by route;

3: Sum of nondirectional link volumes for this assign-
ment by route,

1: Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
count by route;

2: Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
link capacity by route;

3: Sum of nondirectional link volumes squared for thlS
assignment by route code,

l: Sum of nondirectional link volumes from this assign-
ment multiplied by link count by route;

2: Sum of nondirectional link volumes from this assign-
ment multiplied by link capacity by routes;

3: Sum of nondirectional link volumes from this assign-
ment multiplied by nondirectional link volumes from
the previous assignment by route,

header record and date from the previous assignment.
header record and date from the last assignment.

header record and date of when the network was built.

-7

Control Variable

- H H H H H H OH A A H H e H

=~

Variable

INLNK
INCTV
IVOL
IFRAT
MRGOUT
NET
NNET
MSEP
IRTPFL

SUBROUTINE CRD

Value Meaning
1 $PREPARE NETWORK control card read,
2 $OUTPUT NETWORK control card read.
3 SPREPARE TRIP VOLUMES control card read.
4 $OUTPUT TRIP VOLUMES control card read.
5 $§SUM TRIP ENDS control card read.
6 SASSIGN control card read.
7 $BUILD TREES control card read.
8 $STOP control card read.
9 $ASSIGN SELECTED LINKS control card read.
10 $FRATAR FORECAST control card read.
11 $MERGE control card read.
12 $PREPARE SPIDER NETWORK control card read.
13 SOUTPUT SPIDER NETWORK control card read.
14 $ASSIGN S?IDER NETWORK control card read.
15 $SASSEMBLE NETIWORK control card read.
16 $SREVISE NETWORK control card read.
17 $ASSIGN SELF~DIVERTING or $SASSIGN SELF-
BALANCING control card read.
18 $DELETE ASSIGNMENTS control card read.
19 $PLOT ROUTE PROFILES control card read.
Cbntents
Variable unit number INLNK
Variable unit number CTVIN
Variable unit number CTVOUT
Variable unit number FRATAR
Variable unit number MRGOUT
Variable unit number NETWORK
Variable unit number NEWNET
Variable unit number SEPARAT
Variable unit number ROUTE

Iv-8

Array

MERGIN
HEADER
DATE
RNAME

Contents

Variable unit numbers for the six MERGIN units.
The header which is printed on output.

The date that the program started executing.

The 19 control card names.

Iv-9

Control Variable

SUBROUTINE CRDINT

Meaning

SUM

SUM

Variable

NLD

Array

LINK

LK

Print header records from unit NETWORK,

Print header records from unit NEWNET,

Contents

The number of assignments which are on unit NETWORK if SUM
is false or on unit NEWNET if SUM is true,

Contents

A structure with a length of 16 + 4NLD bytes per record,
the records are corridor intercept links,

The same array as LINK except this is in half words.

Corridor Intercept Record -

Bytes Bytes
Displacement = Length Contents
0 2 Corridor intercept
2 2 Anode of the link
4 2 Bnode of the link
6 2 Route code of the link
8 2 Functional class code of the link
10 2 Link speed
12 2 Count field of the link in units of 100 trips.
14 2 Capacity field of the link in units of 100 trips.
16 4 Nondirectional assigned volume for the first
assignment.,
12+-4NLD 4 Nondirectional assigned volume for the last

assignment,

IV-10

Variable
NONDS

LSART4

Array

TRNPTY
INDEX (I)
LINKS
LAMBDA (I)

IPATH (I)

ISEQ

SUBROUTINE FASPTH

Contents

The number of nodes in the network,

The last arterial node number times 4,

Contents

Turn penalty array, contains 0, TP, TP, O where TP is the
turn penalty in units of 0.0l minutes.

This array contains the Fortran type index indicating the
location where the links from node I begin in array LINKS.

This array contains a link in each word, the links are
structures which contain 5 data items.

This array contains the cummulative times to reach node I in
units of 0.0l minutes.

This array is a structure, element I contains the next node in
the path back from node I, the turn code, and a flag which
indicates whether the node is in the sequence table or is a
centroid.

This is the sequence table, it contains all of the node numbers
of the active sites of where the tree is being built,

Links Structure

Displacement Bits Length Bits Contents
0 1 Last link flag (0 if not‘last link, 1
if last link or dummy one-way link).

1 1 Shaft code-

2 1 Arrow code

3 3 Unused

6 14 Link impedance in units of 0,01 minutes.
20 12 Bnode of the link

Iv-11

IPATH array structure

Displacement Bits Length Bits Contents

0 1 Sequence entered flag (0 if not entered
and if not a centroid, 1 if entered in
the sequence table or a centroid).

1 7 Turn code

8 24 Path node

Iv-12

Variable

ITER
Al
A2

A0
NOSUB

Array

TSUM (I,J)

ESUM (I,J)
GFAC (I,J)

LFAC (I1,J)
ITEST

VOL

FCEN

LCEN

SUBROUTINE FRATAR

Contents

Number of Fratar iterations that have been run
Input trip matrix unit number

Output trip matrix unit number (Al and A2 are switched at
the end of each iteration)

Unit CTVOUT

Number of subnets

Contents

I = subnet number, J = the relative zone in the subnet,
T sum is the trip generations or the production volume
plus the attraction volume for each zone for the input
trip matrix.

TSUM (I,J)* GFAC (I,J)/100 = the expected production +
attraction volume.

Growth factor, the factor multiplied by the trip generations
which is the desired future trip generations.

Is the trip generations produced by the last growth factors.
Growth factor frequency table for the last iteration run.

Used to read the trip volumes from the input trip matrix
and write them on the output trip matrix.

First centroid in each subnet.

Last centroid in each subnet.

IV-13

SUBROUTINE GTILD

Control Variable Value Meaning
SUM False Don't produce a weighted assignment.
SUM True Produce a weighted assignment from weighted

impedances and write a new flexible record
data set for it.

Variable . Contents

NLD The number of assignments which are on unit NETWORK.

ITER Thé number of iterations run for ASSIGN SELF-BALANCING.
JMAX The maximumvjurisdiction number in the network,

-Array | Contéﬁzs

VMI (J, L) Vehicle miles cross classified by jurisdiction + 1 used

as the first index and three link classes second index.
The three link classes are centroid connectors, arterials,
and freeway links. ’

VHR (J, L) Vehicle hours cross classified the same as VMI.
MI (J, L) Network miles cross classified the same as VMI.
VM (J, F) Vehicle miles cross classified by jurisdiction + 1 used

as the first index and functional class + 1 used as the
second index.

M (J, F) Network miles cross classified the same as VM.

wC (J, F) Vehicle miles for links with a nonzero count field cross
classified the same as VM.

MC (J, F) Network miles for the links with a nonzero count field cross
classified the same as VM.

vMCC (J, F) Vehicle miles for links with a nonzero capacity field
cross classified the same as VM.

MCC (J, F) Network miles for the links with a nonzero capacity field
cross classified the same as VM.

IvV-14

Array Contents

FC (F) The number of links with functional class + 1 used as
index F in the network.

FN (R, J) Number of links with nonzero link counts by route;
Number of links with nonzero link capacities by route;

J
J
J Number of links in the network by route.

nnun
wWN =

sY (R, J) Sum of link counts by route code;
Sum of link capacities by route code;
Sum of nondirectional link volume from the previous

assignment by route.

(= 2
nnn
w N =

SYY (R, J) Sum of link counts squared by route code;
Sum of link capacities squared by route code;
Sum of nondirectional link volumes from the

previous assignment squared by route code.

s se

S S
ionon
R Oy

sX (R, J) J

]

Sum of nondirectional link volumes for this
assignment for those links which have a nonzero
count by route;

J = 2: Sum of nondirectional link volumes for this assign-
ment for those links which have a nonzero link
capacity by route;

J = 3: Sum of nondirectional link volumes for this assign-

ment by route.

SXX (R, J) J = 1: Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
count by route;

J = 2: Sum of nondirectional link volumes squared for
this assignment for those links which have a
nonzero link capacity by route;

J =3: Sum of nondirectional link volumes squared for
this assignment by route code.

SXY (R, J) J =1: Sum of nondirectional link volumes from this
assignment multiplied by link count by route;
J = 2: Sum of nondirectional link volumes from this
assignment multiplied by link capacity by routes;
J = 3¢ Sum of nondirectional link volumes from this assign-
ment multiplied by nondirectional link volumes from
the previous assignment by route.

H1 : The header record and date from the previous assignment.
H2 The header record and date from the last assignment.
HN The header record and date of when the network was built.

WGT (J) This array contains the weights in percentages to use
on each iteration when SUM is true.

IV-15

The following arrays and variables are summed for links with a
nonzero count (or capacity) field. The *TURN card is used to specify
whether the count or capacity field is used. It should also be noted

that the following arrays and variables are not summed for centroid

connectors.

Array Contents

S§X2(J) Sum .of the nondirectional link volumes for iteratiom J.

XY (J) Sum of the nondirectional link volumes multiplied by the
count (or capacity) field for iteration J.

XX(J, K) Sum of the nondirectional liﬁk volume for iteration J
multiplied by the nondirectional link volume for iteration K.

Variable Contents

sY2 The sum 6f the count (or capacity) fields.

SYY2 The sum of the count (or capacity) fields squared.

FN2 The number of nonzero count (or capacity) fields for

links which are not centroid connectors.

IV-16

Variable

NA

NET

SUBROUTINE LNKLST

Contents

The number of iterations run in an ASSIGN SELF-BALANCING
run plus one if a weighted assignment has been produced.

The Fortran unit on which the last assigned Flexible
Record is written.

Iv-17

Control

SUBROUTINES LOAD AND LOAD2

Variables Value Meaning
READSW False The last record of trip volumes read has been
loaded.
READSW True The last record of trip volumes read has not
been loaded.
EOFSW False An end of data set has not been reached on unit
' CIVOUT,
EOFSW True An end of data set has been reached on unit CIVOUT.
Variable Contents
v Number of volume items in the last trip record read.
IFACT First zone number minus 1,
LHOM Origin zone of the last trip record read.
LNET Origin subnet of LHOM (should be 1 for the Small Network
‘ Package).
NODES *° Last node number of the network,
Array Contents
INDEX (I) This array contains the Fortran type index for node I of
where the links from node I start in array links,
LINKS The same as array LINKS in subroutine FASPTH,
BUF This array i1s a structure where each word of the array is

an item containing the trip movement volume in the first
18 bits as an unsigned binary integer, and the destination
zone number in the last 14 bits as an unsigned binary integer.

*This is the variable NODES1 in subroutine LOAD2

Iv-18

Array

VOL (I)

TRNTB (I)

XRTRN (J)

PATH

OVERF

Contents

This is a half word array which has the same dimension as
array LINKS and element I contains either the assigned
directional link volume for link LINKS (I) or the index of
where it is in array OVERF, The first bit of a VOL element
is a flag bit, if it is zero, then the next 15 bits are on
unsigned binary integer which is a link volume., If the flag
bit is 1, then the next 15 bits are an unsigned binary
integer which is an index into array OVERF where the link
volume is stored.

This is a half word array which is either used to store
turn volumes or indexes to where they are stored, The
flag bit is the same as for array VOL and the next 15 bits
are also treated the same as for array VOL.

This is a half word array which contains unsigned 16 bit
integers which are indexes into array TRNTB where the turn
volumes for node J are stored.

This array is the same as array IPATH in subroutine FASPTH.

This is a full word array used to store link volumes greater
than 32767 and turn volumes greater tha 32767,

Iv-19

SUBROUTINE MRGREC

Variable - Contents

IL This is the number of link records in array LINKS.

NX This is the number of links written on unit 3.

LNK2 . This is the number of links written on unit 1l.

MAXTIM This the maximum link time in 0.0l minute units.

MAXLNK This is the maximum number of one~way links for a network.

MAXNDS This is the maximum number of nodes for a network.

NOSUB This is the number of subnets the network is in.
Arrays

Array Length Contents Contents

FSTN 4 First node of each subnet.

LSTC , 4 Last centroid of each subnet.

LSTF 4 Last freeway of each subnet.

LSTA 4 Last arterial node of each subnet.

ARRAY 30004 Contains the sorted packed links array

described in NEWNET.

IvV-20

Control

Variables

FMT

FMT

LNKIMP

LNKTMP

LNKTMP

ERROR

Array LINKS

SUBROUTINE NEWNET

Value

False

True

11

Number of
Error detected
in subroutines
NEWNET, VREC,
and MRGREC

Action Implied

Use old link data
format

Use new link data
format

Write first sorted
links on unit 3

Write second sorted
links on unit 11

If the sorted links
area 1s filled up
three times there
are too many links
and an attempt to
write on unit -1
will be made

Location Where Set

PRPNET, ASMNET, or
REVNET

PRPNET, ASMNET, or
REVNET

Initialization of NEWNET
Set to 11 after sorted
links are written on 3
Set to -1 after sorted

links are written on
unit 11

Array LINKS is the array in which oneway internal link records are

accumulated and sorted. These records are 22 bytes long and are stored

by subroutine PTLNK and referenced by subroutine GTLNK. The format

for these 22 byte records is as follows:

Iv-21

Displacement Length

Bytes Bits Bytes Bits Contents
bytes bits 1 Jytes Dits
0 0 0 14 Anode number
1 6 0 2 Link class code

0 = two-way
1 = one-way out
2&3 = dummy link

2 0 0 15 Link data card count
3 7 0 1 Not mileage code
0 = Use in Vehicle Mile Summary
1 = Do not use in Vehicle Mile
Summary
14 Bnode number
14 Count field in units of 100 trips

Jurisdiction code in hexadecimal

o N »n S
o & O O
o O O O

Functional class code in
hexadecimal

[0}
~

Subarea code

14 Link Capacity in units of 100 trips
11 1 0 7 Speed in units of tenths of -
a mile per hour
12 0 0 10 Link distance in units of—l—
. 100
of a mile
13 2 0 7 Corridor intersect code
14 1 0 5 Route number
14 6 0 1 Shaft code, 0 = one direction
. 1 = other direction
14 7 0 1 Arrow code, 0 = one direction
1 = other direction
15 0 1 0 Unused
16 0 0) Link Impedance field, in units
1 ‘
of iﬁﬁ-minutes
16 6 v 0 1 Link delete code
0 = keep link
1 = delete link from updated
Flexible Data Record
16 7 4 1 Unused

IvV-22

SUBROUTINE OUTLLT

Control Variable Contents Meaning
PRINT False Don't print the loaded network,
PRINT . True Print the loaded network,
OUTN | False Don't print the loaded network,
OUTN True Print the loaded network if wvariable

RES is false or ITR is equal to 1.

RES False This is not an ASSIGN SELF-BALANCING
iteration.

RES True This is an ASSIGN SELF-BALANCING
iteration,

CAP False The COUNT field is used in an ASSIGN

SELF-BALANCING RUN.

CAP . True The Capacity field is used in an ASSIGN
SELF-BALANCING run,

Yariable . Contents

IOVER This is a full word array used tokstore link volumes
greater than 32767 and turn volumes greater than 32767.

IPATH(I) This array is a structure, element I contains the next node
in the path back from node I, the turn code, and a flag
which indicates whether the node is in the sequence
table or is a centroid.

INDEX(I) This array contains the Fortran type index indicating
the location where the links from node I begin in array
LINKS.

NODE This array contains a link in each word, the links are

structures which contain 5 data items.

ITR(I) This is a half word array which is either used to store
turn volumes or indexes to where they are stored. The
flag bit is the same as for array VOL and the next 15
bits are also treated the same as for array VOL.

IXR(J) This is a half word array which contains unsigned 16 bit

integers which are indexes into array ITR where the turn
volumes for node J are stored. -

Iv-23

Arra Contents
aArray

VOL(I) This is a half word array which has the same length as
array LINKS and element I contains either the assigned
directional link volume for link LINKS(I) or the index
-of ‘where it 1is in array OVERF. The first bit of a VOL
element 1is a flag bit, if it is zero, then the next 15
bits are on unsigned binary integer which is a link volume.
If the flag bit is 1, then the next 15 bits are an unsigned
binary integer which is an index into array OVERF where
the link volume is stored.

IV-24

Variable

L

LINES

SUBROUTINE OUTNET

Contents

The Fortran unit number of the Flexible Data Record
unit NETWORK, ’

The number of lines printed on the page being printed.

IvV-25

SUBROUTINE OUTSLN

Control
Variable Contents Meaning
EOF False An end of data set has not been reached on
~ unit 4.
EOF True An end of data set has been reached on unit 4,
FLG False All nodes which were not centroids had the
same number of trips entering the node and
leaving the node. '
FLG True One or more nodes which were not centroids
had a different number of trips entering than
leaving the node.
Array ‘ Contents
INDEX This array contains the Fortran type index of where the
links from node I start in array LINKS.
VOL(I) This is a half word array which has the same dimension
as array LINKS and element I contains either the assigned
directional link volume for link LINKS(I) or the index of
where it is in array OVERF. The first bit of a VOL element
is a flag bit, if it is zero, then the next 15 bits are
an unsigned binary integer which is a link volume. If the
flag bit is 1, then the next 15 bits are an unsigned binary
~ integer which is an index into array OVERF where the link
volume is stored.
OVERF This is a full word array used to store link volumes
greater than 32767 and turn volumes greater than 32767.
LINKS Each element of this array is a structure of data items

called a link.

Structure of an Element in array LINKS

Displacement in Bits Length in Bits Contents
0 ‘ 1 Last link code (0 if not last
link; 1 4if last link from the
Anode).
1 19 Link impedance in 0.0l minute
units.

20 12 Bnode of the link.
IvV-26

, SUBROUTINE OUTSNT
Control

Variable Contents) Meaning
EQOF False An end of data set has not been reached on
unit 4,
EOF True An end of data set has been reached on unit 4.
SPIDER 'SPDR' The data set on unit 1 was prepared by the
PREPARE SPIDER NETWORK program,
Ar ray : Contents
INDEX This array contains the Fortran type index of where the
links from node I start in array LINKS.
LINKS Each element of this array is structure of data items

called a link.

Structure of an Element in LINKS Array

Displacement in Bits Length in Bits Contents
0 1 Last link code (0 if not last
link; 1 if last link from
A node)
1 19 Link impedance in hundredths

of a minute ‘

20 12 B node of the link.

Iv-27

SUBROUTINE OUTWLT

Variable B ~ Contents

NONDS Last nbde number

IFACT " First centroid number minus 1.

NET | Is the Fortran unit number which contains a Flexible

Record data set,

Array , Contents
INDEX(I) This array contains the Fortran type index indicating the

location where the links from node I start in array NODE.

NODE(I) Each element of this array is a link. The first bit of
each half word is the last link flag. If this bit is a
1, then this link is either the last link from the Anode
or a dummy oneway link., The next 15 bits contain the Bnode
of the link.

IPATH(I) The Ith element of this array contains the turn code for
node I as a half word integer.

VOL{I) The Ith element of this array contains the directional
weighted link volume multiplied by 100 for link NODE(I).

ITR(I) Each element of ITR contains a directional weighted turn
volume multiplied by 100. The turn volumes for node J
begin at the index of IXR(J) and the number of turn
volumes for node J are determined by the turn code IPATH(J).

IXR(J) This is a half word array which contain unsigned 16 bit

integers which are indices into array ITR where the turn
volumes for node J are stored.

Iv-28

SUBROUTINE PATHCL

Variable ~ Contents

VOLF Unit CTVOUT number.

NETD Unit NETWORK number.

Control Variable Contents Meaning

READSW False The last record of trip volumes read has

been loaded.

READSW True The last record of trip volumes read has
not been loaded.

EOFSW False An end of data set has not been reached
on unit CTVOUT.

EOFSW : True An end of data set has been reached on
unit CTVOUT.

Array Contents -

LAMBD1 (I) Used as the cumulative time to node I in subroutine FASPTH

and OUTTRE and as a scratch array in subroutine LOAD.

SEQ Used as a scratch array in subroutines FASPTH, LOAD, and
LOAD2 (not used in PATHCL).

TRNTB1(I) This is a half word array which is either used to store
turn volumes or indexes to where they are stored. The
flag bit is the same as for array VOL and the next 15 bits
are also treated the same as for array VOL.

XR1TRN(J) This is a half word array which contains unsigned 16 bit
integers which are indexes into array TRNTBl where the turn
volumes for node J are stored.

OVERF This is a full word array used to store link volumes greater
than 32767 and turn volumes greater than 32767.

VOL1(I) This is a half word array which has the same dimension as

array LINKS1 and element I contains either the assigned
directional link volume for link LINKS1(I) or the index of

Iv-29

Array Contents

VOL1(I) cont. where it is in array OVERF. The first bit of a VOL1
element is a flag bit, if it is zero, then the next 15
bits are an unsigned binary integer which is a link volume.
If the flag bit is 1, then the next 15 bits are an unsigned
binary integer which is an index into array OVERF where
the link volume is stored.

INDEX1(I) This array contains the Fortran type index indicating the
location where the links from node I begin in array LINKSI.

LINKS1 This array contains a link in each word, the links are
structures which contain 5 data items.

PATHL(I) This array is a structure, element I contains the next node
in the path back from node I, the turn code, and a flag
which indicates whether the node is in the sequence table
or is a centroid. '

Links Structure

Displacement Bits v Length Bits Contents
0 1 Last link flag (0 if not last link;
1 if last link or dummy oneway link).
1 | 1 Shaft code |
2 1 Arrow code
3 3 Unused
6 14 ‘ Link impedance in units of 0.0l minutes.

20 12 Bnode of the link

IV-30

SUBROUTINE PATHSP

Control Variable Contents

VOLF Univ CTVOUT Unit CTVOUT number.

Array Contents

INDEX1(I) This array contains the Fortran type index for node I of

where the links from node I start in array links.

BACK(I) This array contains the path of the last tree built.
For node I the contents of BACK(I) contain the previous
node in the path from the origin node to node I.

LAMBDA(I) This is a scratch array used by subroutines MOORE and SLOAD.
succ This is a scratch array used by subroutine MOORE.
OVERF This is a full word array used to store link volumes

greater than 32767 and turn volumes greater than 32767.

PRED A list of nodes in descending cumulative time order in
which the nodes were reached in the last tree built.

VOL(TI) This is a half word array which has the same dimension
’ as array LINKS1 and element I contains either the assigned

directional link volume for link LINKS1(I) or the index
of where it is in array OVERF., The first bit of a VOL
element is a flag bit, if it is zero, then the next 15
bits are an unsigned binary integer which is a link volume.
If the flag bit is 1, then the next 15 bits are an unsigned
binary integer which is an index into array OVERF where
the link volume is stored.

LINKS1 Each element of this array is a structure of data items
called a link.

Structure of an Element in array LINKS1

Displacement in Bits Length in Bits Contents

0 1 Last link code (0 if not last
link; 1 if last link from
the A node).

1 19 Link impedance in 0.0l minute
units.
20 12 " B node of the link.

IV-31

SUBROUTINE PRPBLD

Control

Variable Contents Meaning

RES False This is not an ASSIGN SELF-BALANCING run.

RES True This is an ASSIGN SELF-BALANCING run.

CAPC False The count field is to be used by ASSIGN SELF-
BALANCING.

CAPC True The capacity field is to be used by ASSIGN
SELF-BALANCING,

W False An assignment using weighted impedances
is not to be made.

W True An assignment using weighted impedances is
to be made in ASSIGN SELF~BALANCING.

ouT (1,J) False Don't print the trees with origins between
INDX1 (I,J) and INDX2 (I,J).

ouT (1,J) True Print the trees with origins between
INDX1 (I,J) and INDX2 (I,J).

Variable Contents

NOSUB The number of subnetworks.

COUNT (I) The number of ranges of trees to build in subnet I,

INDX1 (I,J) The beginning of a range of trees to build in subnet I,

INDX2 (I,J) The end of a range of trees to build in subnet I.

Iv-32

Logical Variables

Variable Name Set
FMT False
REV False

Maximum Value Variables

Variable Name Value
MAXIK2 5455
MAXNDS 4000
MAXINK 16000
MAXTIM 16383
Arrays

Name Length
FSTN 4
LSTC 4
LSTF 4
LSTA 4
ARRAY 3004

SUBROUTINE PRPNET

Action Implied Where Tested
Use old link data format NEWNET, VREC
This is not a REVISE PRPNET
NETWORK run
Meaning

This is the maximum number of oneway links
in core.

This is the maximum last node number.

This is the maximum number of oneway links
for the network.

This is the maximum link time in hundredths
of a minute (i.e., 163,83 minutes).

Contains

First node of each subnet

Last centroid of each subnet

Last freeway node of each subnet
Last arterial node of each subnet

Contains the packed links array described as
array LINKS in subroutine NEWNET,

IV-33

-

When entry point ASMNET is used, the logical variables FMT and REV are

set as follows:

Variable Value
Name Set Action Implied Where Tested
FMT True Use new link data format NEWNET, VREC
REV False This is not a REVISE PRPNET

NETWORK run

When entry point REVNET is used, the logical variables FMT and REV

are set as follows:

Variable Value
Name Set Action Implied Where Tested
FMT True Use new link data format NEWNET, MRGREC
REV True This is a REVISE NETWORK PRPNET

run

IV-34

. SUBROUTINES RTPFL AND RTPLT

Control Variable Contents Meaning

END False There was enough room in array F for
the first 10 routes.

END : True There was not enough room in array F
for the first 10 routes.

RTS (I) False Don't save the records read for route I
in array F.

RTS (I) True Save the records read for route I in.
array F.
Variable Contents
NRD The number of words in array F used by one route record.
NWORDS The length of aryay F in words.
NLD The number of assignments on the NEWNET data set.
Array : Contents
Bl (I) If Bl (I) is not zero, then there is a link for route

RT2 between node I and node Bl (I).

B2 (I) If B2 (I) is not zero, then there is a link for route
RT2 between node I and node B2 (I).

NX1 (1) NX1 (I) is the index into array F of where the record
for the link represented by Bl (I) is stored.

NX2 (I) NX2 (I) is the index into array F of where the record
for the link represented by B2 (I) is stored.

F (I) This is a full word array used to store a group of words
' and half words which are a single record for a link.

H (I) .This is a half word array equivalenced to array F.

IV-35

Array Contents

RIT (I) Contains either the number of route records for route I
or zero if the records are in array F or have been printed.

RT10 (1) Contains the number of route records for route I for the
‘first ten routes.

A route record has the following order of items and is stored in

array F in the same order:

Displacement Length
in bytes in bytes Contents
0 2 ~ Route code
2 2 Anode number
4 2 Bnode number
6 2 ' link functional classification
8 2 link distance in 1/100 miles
10 2 link speed in tenths of a mile/hour
12 2 link count/100
14 2 link capacity/100
16 4 ' link non&irectional assigned volume
for first assignment
; 4
12+4NLD 4 link nondirectional assigned volume

for the last assignment

IV-36

SUBROUTINE SELECT

Control Variable Contents Meaning
ouT True no errors found in SELECT cards.
ouT False errors found in SELECT cards.
Array Contents
INDEX (I) - This array contains the Fortran type index indicating

the location where the links from node I begin in
array LINKS,

LINKS This array contains a link #n each word, the links
' are structures which contain 5 data items.

Links Structure

Displacement Bits Length Bits ‘ Contents

0 1 Last link flag (0 if not last
link, 1 if last link or dummy
one-way link).

1 1 Shaft code

2 1 Arrow code

3 1 Selected link code (1 if selected
1link)

4 2 Unused

6 14 Link impedance in units of 0.01
minutes.

20 12 ~ Bnode of the link

Iv-37

Control Variable

EOF

EOF

Variable

NODES
LHOM
COUNT

IOVR

Array
INDEX
LINKS
VOL

PRED

OVERF

BACK (I)

SUBROUTINE SLOAD

Contents Meaning

False The end of data set on unit CTVOUT
has not been reached.

True The end of data set on unit CTVOUT
has been reached.

Contents
Last node number.
Origin node of last trip record read.
Number of trip items in last trip record read.

Number of words used in the OVERF array, (number
of directional volume greater than 32767).

Contents

The same as array INDEX in subroutine BLDNET.

The same as array LINKS in subroutine BLDNET.

The same as array VOL in subroutine LOAD.

A list of nodes in descending cumulative time order
in which the nodes were reached in the last tree
built,

The same as array OVERF in subroutine TLOAD.

This array contains the path of the last tree built.
For node I the contents of BACK (I) contain the

previous node in the path from the origin node to
node I,

IVf38

Array
I0ORG (I)

IDEST (I)

IIN (I)
IOUT (I)
INTRA (I)
ISUB (I)
IFSTND (I)

LSTND (I)

Variable

NOSUB

SUBROUTINE SUMEND

Contents

The sum of all trip volumes with the origin I except for
the intrazonal volume for I.

' The sum of all trip volumes with the destination I

except for the intrazonal volume for I.

The number of nonzero trip volumes with destination I.
The number of nonzero trip volumes with origin I.
Intrazonal volume for zone I,

Number of zones in subnet I.

The first zone in subnet I.

Last zone in subnet I,

Contents

Number of subnets

Iv-39

Control Variable

TREES

TREES

SEL

SEL

OUTN

Subroutine

Entry Point
TREBLD -

TREE

SELLD

SUBROUTINE TREBLD

Contents Meaning

True Build trees, but don't load the
network or print the loaded network.

False Build trees and load trips.

False Don't read select cards and don't
write the selected links data set,

True Read select cards and write unit -
SELTRP,

True Print the loaded network.

_TREES SEL OUTN

False False True

True False -
True -

False

IV-40

Control Array

TL (I,J)
TL (I,J)

™ (I,J)
™ (I1,J)
Variable
NODE

IND

Array

™ (I,J)
NDIR (I)

IDIR (I)

CH (I)

LINKS (I)

TRNTB

SUBROUTINE TRN

Contents Meaning

False Don't print turn movement TM (I,J).

.True Print turn movement TM (I,J)

-1 The turning movement TM (I,J) is
unknown.

>0 ™ (I,J) is a turning movement volume.
Contents

Node number to get directional volumes for and calculate
turn movements for.

Turn code for NODE (the turn codes are explained in the
Other Information section).

Number of nodes connected to NODE,

Contents

Turn movement between the Ith node and the Jth node
connected to NODE.

Nondirectional link volumes for the links connected to
NODE.

Directional link volumes for the links connected to NODE.
)

Directional link volumes for the links going in the

direction of the nodes connected to NODE to NODE,

This array contains links which contain the Bnode in bits
1 thru 15 of the half word and a last link or dummy link
indicator in bit O,

This array contains the turn volumes saved, they are indexed
by array XRTRN.

IV-41

Array Contents

TRNCD (I) TRNCD (I) contains the turn code for node I.
VOL (I) VOL (I) contains the directional link volumes for LINKS (I).
KC (IND) A table indexed by the turn code which has the number of

one-way links out from NODE.

KR (IND) A table indexed by the turn code which has the number of
one-way links into NODE,

INDEX (I) This array contains the Fortran type index indicating the
: location where the links from node I begin in array LINKS.

XRTRN (J) This is a half word array which contains unsized 16 bit
integers which are indices into array TRNTB where the turn
volumes for node J are stored.

-The following arrays are used to place the turning movements which
have been saved in ARRAY TM before the other turning movements are
calculated. When a location in the following tables is not negative, the
following action is taken: TM (I,J) = TRNTB (XRTRN (NODE) + IDSPXX (I,J)).
If the IDSPXX (I,J) position is negative, a zero is placed in T™M (I,J).

The XX part of the IDSPXX array above varies,

Array Used for turn code
IDSP3 10

IDSP41 13, 17, 18, 20, 22
IDSP42 21

IDSP43 23, 24

IDSP44 25

IDSP5 26

IDSP6 27

Iv-42

Control Array

TL (I,J)
TL (I,J)

™ (I,J)
™ (1,J)
Variable
NODE

IND

Array

™ (I,J)
NDIR (I)

IDIR (I)

CH (1)
KC (IND)
KR (IND)

IPATH (I)

SUBROUTINE TURNM

Contents Meaning
False Don't print turn movement TM (I,J).
True Print turn movement TM (I,J).
-1 The turning movement TM (I,J) is
unknown,
>0 ™ (1I,J) is a turning movement volume,
Contents

Node number to get directional volumes for and calculate
turn movements for,

Turn code for NODE (the turn codes are explained in the
Other Information section).

Number of nodes connected to NODE,

Contents

Turn movement between the Ith node and the Jth node
connected to NODE.

Nondirectional link volumes for the links connected to
NODE.

Directional link volumes for the links connected to NODE.

Directional link volumes for the links going in the
direction of the nodes connected to NODE to NODE,

A table indexed by the turn code which has the number of
one-way links out from NODE.

A table indexed by the turn code which has the number of
one~way links into NODE.

This array is a structure, element I contains the next
node in the path back from node I, the turn code, and a
flag which indicates whether the node is in the sequence
table or is a centroid.

IV-43

Array

INDEX (I)

LINKS

voL (1)

TRNTB (I)

XRTRN (J)

OVERF

Contents

This array contains the Fortran type index indicating

- the location where the links from node I begin in array

LINKS.

This array contains a link in each word, the links are
structures which contain 5 data items.

This is a half word array which has the same dimension
as array LINKS and element I contains either the assigned
directional link volumes for link LINKS (I) or the index

of where it is in array OVERF. The first bit of a VOL

element is a flag bit, if it is zero, then the next 15
bits are on unsigned binary integer which is a link
volume, If the flag bit is 1, then the next 15 bits are

" an unsigned binary integer which is an index into array

OVERF where the link volume is stored.

This is a half word array which is either used to store
turn volumes or indexes to where they are stored., The
flag bit is the same as for array VOL and the next 15 bits
are also treated the same as for array VOL.

This is a half word array which contains unsigned 16 bit
integers which are indexes into array TRNTB where the
turn volumes for node J are stored.

This is a full word array used to store link volumes
greater than 32767 and turn volumes greater than 32767,

IPATH array structure

Displacement Bits ‘ Length Bits Contents

0

1 Sequence entered flag (0 if not
entered and if not a centroid, 1 if
entered in the sequence table or a
centroid).

7 Turn code

24 Path node

IV-44

Links Structure

Displacement Bits Length Bits Contents
0 1 Last link flag (0 if not last link,
1 if last link or dummy one-way link).
1 1 Shaft code
2 1 Arrow code
3 3 Unused
6 14 Link impedance in units of 0.01
minutes,
20 12 Bnode of the link

The following arrays are used to place the turning movements which
have been saved in array TM before the other turning movements are
calculated. Wﬁen a location in the following table is not negative, the
following action is taken: TM (I,J) = TRNTB (XRTRN(NODE) + IDSPXX(I,J)).
If the half word from TRNTB is negative, then the lower 15 bité are used
as an index into the OVERF array to get the turn volume. If the IDSPXX(I,J)
posifion is negative, a zero is placed in ™ (I,J). The XX part 6f the

IDSPXX array above varies.

Array Used for turn codes
IDSP3 10

IDSP41 13, 17, 18, 20, 22
IDSP42 | 21

IDSP43 | 23, 24

IDSP44 25

IDSP5 26

IDSP6 27

IV-45

Control Variable

Variable

NMPD

DLT

DLT

IMPD

IMPD

SLF

SLF

SUBROUTINE UPDTINT

Contents Meaning

False There are no errors in the parameter
cards read,

True There are one or more errors in the
parameter cards read for DELETE
ASSIGNMENTS, The program will continue
reading control cards but it will end
execution with a STOP 3 when the next
card with a $§ character is column 1 or
and *END card is read.

False An *IMPEDANCE parameter card has not
been read.

True An *IMPEDANCE parameter card has been
read.

False An *ADJUST parameter card has not been
read, '

True An *ADJUST parameter card has been read.

Contents

The assignment number of the assignment which is to be the
new link impedance if IMPD is true or from which the
impedance update function using the count field is to be
used to calculate a new set of link impedances.

IV-46

Variable

IL
LNK1
LNK2
MAXTIM

MAXLNK

MAXNDS
NOSUB

ERR

Array
FSTND

LSTCEN
LSTFWY
LSTART

LINKS

ARRAY

ARRAY2

SUBROUTINE VREC

Contents

This is the
This is the
This is the
This is the

This is the
network,

This is the
This is the

This is the

number of link records in array LINKS,
number of links written on unit 3,
number of links written on unit 11,
maximum link time in 0,01 minute units.

maximum number of one-way links for a

maximum number of nodes for a network,
number of subnets the network is in.

number of errors found in processing

the link data

Arrays
Length Contents
4 First node of each subnet,
4 Last centroid of each subnet.
4 Last freeway of each subnet.
4 Last arterial node of each subnet,
30004 Contains the sorted packed links array
dgscribed in NEWNET,
220 Contains one record from unit 3 of 40 packed
links,
220 Contains one record from unit 11 of 40

packed links,

IV-47

Variable

ITER

Array

INDEX (I)

BNODE (I)

TRNCDF(I)
VOL (I)

TRN (I)

XRTRN(J)

SUBROUTINE WTLNT

Contents

Number of iterations run for ASSIGN SELF-BALANCING

Contents

This array contains the Fortran type index of where the
links from node I start in array BNODE.

Each element of this array is a link. The first bit of each
half word is the last link flag., If this bit is a 1, then
this link is either the last link from the Anode or a dummy
one-way link. The nex} 15 bits contain the Bnode of the link,

TRNCD (I) contains the turn code for node I as a half word
integer. ‘

The element of VOL (I) contains the directional weighted
link volume multiplied by 100 for link BNODE (I).

Each element of TRN contains a directional weighted turn
volume multiplied by 100, The turn volumes for node J

begin at the index of XRTRN (J) and the number of turn
volumes for node J are determined by the turn code TRNCD (J).

This is a half word array which contains unsigned 16 bit
integers which are indices into array TRN where the turn
volumes for node J are stored.

Iv-48

DATA SETS AND

DATA SET FORMATS

DATA SETS
DATA SET FORMATS

OUTPUT SELECTED LINKS

DATA SETS

Two categories of data sets are associated with the Texas Small
Network Package: relocatable data sets and fixed data sets. The unit
numbers associated with relocatable data sets may be changed either by
the use of unit control cards or, in some instances, by the execution
of some programs su;h as ASSIGN SELF-BALANCING. A cross reference of

the data sets with associated programs is given in Table 6.

DATA SET FORMATS

There are twelve ‘basic formats associated with data sets used by
the package. These twelve format types are:

FORMAT FORMAT
TYPE TYPE CODE
Trip Volumes Data Set
Flexible Record Data Set
Separation Matrix Data Set
Selected Interchanges Data Set

Node Names Data Set

Calcomp Plot Tape

Route Data Set

Spider Network Data Set

Trip Matrix Data Set

Scratch Node Names Data Set
Scratch Packed Links Data Set

N < XK 3 »nn ® 9" =2 0 H = =

Scratch Multiple Assignments Data Set
The format type codes (indicated above) are used in the cross reference

contained in Table 7 to indicate the format types used with each data set

V-1

TABLE 6: CROSS REFERENCE OF DATA SETS WITH ASSOCIATED PROGRAMS

Relocatable Data Sets Fixed Data Sets
-

?:::ti:;cation g z g g g &z_‘ § E ;‘:3 g —g g g g 'ié g E ?_4'

JEEEEEHHHE EHEHEBEEE
(Default) Unit Number | 510] 8116 [ex|x#]| 1125] 9 3| 4117111112113 [xiees o
PREPARE NETWORK 1 0 1/0/1/0| |1/0
ASSEMBLE NETWORK 1 0 10ft/0| [/o
REVISE NETWORK I 0 10{1/0 1/0| 1 |1/0
OUTPUT NETWORK I
DELETE ASSIGNMENTS 0 1
PREPARE TRIP VOLUMES 1
OUTPUT TRIP VOLUMES 1
BUILD TREES : I of
ASSIGN I I{tpjofo]
ASSIGN SELF-BALANCING I 1/0[1011/0/0 fr/0
ASSIGN SELECTED LINKS 1| I /000 0
PLOT ROUTE PROFILES ~ I , 0
FRATAR FORECAST**¥* 1 |1/ 1T wo| | || |]
SUM TRIP ENDS R »
MERGE ol1 | | 7
PREPARE SPIDER NETWORK | I o Tol 111 1101
OUTPUT SPIDER NETWORK 1* 1
ASSIGN SPIDER NETWORK I I* I

I = Input Data Set
0 = Output Data Set
* For these programs this data set is fixed to unit 1.

% No default option exists for the MERGE program. Appropriate Unit Desig-~
nation Cards must be provided by the user, v

*%%x Agsembly language program reference.
k*k%% The FRATAR FORECAST program sets the CTVOUT unit to the same unit as FRATAR.

Note: Some of the output data sets may be suppressed by use of the DD DUMMY
option in the JCL,

V=2

TABLE 7:

INDICATING THE DATA SET FORMAT TYPES

CROSS REFERENCE OF DATA SETS WITH ASSOCIATED PROGRAMS

Relocatable=Data. Sets

- Fixed Data Sets

Data Set
Identification

CTVIN

FRATAR
ROUTE

MERGOUT

MERGIN

' SEPARAT

Scratch
Scratch
Network
Scratch
SELTRP
PLOTTAPE

(Default) Unit Number

10

® | CTVOUT
=
o
*
*
*
*
)
v
© | NEWNET

Rk

¥
*

[y
N
=
=
=
N
[
w

PREPARE NETWORK

g

ASSEMBLE NETWORK

]

REVISE NETWORK

<= < Jw]| Scratch

M [™ |~} Scratch

<
i
|

OUTPUT NETWORK

DELETE ASSIGNMENTS

/| | | | | = | NETWORK

PREPARE TRIP VOLUMES

. OUTPUT TRIP VOLUMES

BUILD TREES

ASSIGN

ASSIGN SELF-BALANCING

ASSIGN SELECTED LINKS

o= T - I S I R |

[I e O o B]

PLOT ROUTE PROFILES

bl Rl I

FRATAR FORECAST#**%%

SUM TRIP ENDS

MERGE

PREPARE SPIDER NETWORK!

S*

OUTPUT SPIDER NETWORK

S*

ASSIGN SPIDER NETWORK

S%

* For these programs this data set is fixed to unit 1.

k%

kkk

Kk ek
as FRATAR.

Note:

Assembly language program reference.
The FRATAR FORECAST program sets the CTVOUT unit to the same unit

DUMMY option in the JCL.

No default option exists for the MERGE program.
Designation Cards must be provided by the user.

Appropriate Unit

Some.of the output data sets may be suppressed by use of the DD

‘ and its associated programs. As can be seen from Table 7, some of the
data sets have two different formats associated with them depending on
the user program option being executed. Likewise, several of the data
sets may have the same format as in the case of the trip matrix data set
format. In order to determine the format for a given data set, the
programmer should:

e Reference Table 7 to determine which of the twelve formats

1s assoclated with the data set of interest.

e Refer to the detailed description of the format.

The detailed descriptions of eleven* of the twelve formats are as

follows:

*The format for the Calcomp plot tape (format type code: P) has not
been included.

TRIP VOLUMES DATA SET
(Format Type Code: B)

Trip Volume Record

Displacement Bytes Length Bytes Contents
0 6 Zone of Origin
6 ‘ 6 . Zone of Destination
12 6 24-hour volume
18 6 AM-peak volume
24 6 PM-peak volume

Each field in the record is in EBCDIC and these records must be
sorted into ascending order on a key of the first 12 bytes. The records
should be in Fixed length or Fixed Blocked format. The minimum length
of the records isvl8 bytes if the 24~hour volume is used, 24 bytes if the.

AM-peak volume is used, or 30 bytes if the PM-peak volume is used.

End of Data Set Indicator Record

Displacement Bytes Length Bytes Contents
0 1 "v"
1 N-1 blanks

N is the minimum length for a trip volume record. This record is
only required if this data set is on cards and is read from unit 5 and

it must follow the last Trip Volume record.

V-5

FLEXIBLE RECORD DATA SET
(Format Type Code: F)

Parameter Record (One record)

Bytes Displacement Length Contents

0 4 Number of Subnetworks
in the Network

4 4 Number of Assignments

8 _ 4 Number of directional
links in the Network

12 4 First Centroid in
Subnetwork 1

16 4 Last Centroid in
Subnetwork 1

20 4 " Last Arterial node in
Subnetwork 1

24 4 Last Freeway'node in
' Subnetwork 1

(The last four items are repeated once for each subnetwork)

Heading record (One from network preparation and one from each assignment)

Bytes Displacement | Length Contents
0 80 Heading record in EBCDIC
80 12 Processing date

V-6

Anode record (One for each Anode; the records are in sorted order on the

Anode number; each Anode record is followed by the Link records

which are connected to it.)

Displacement Length
Bytes Bits Bytes Bits
0 0 2 0
2 0 2 0
4 0 0 1
4 1 0 1
4 2 0 6
5 0] 3 0
8 0 2 0
10 0 2 0
12 0 2 0
14 0 20 0

Contents

Anode number

Number of links connected
to this node

Centroid flag (One if it
is a centroid)

Freeway flag (One if it
is a Freeway)

Turning movement type
code

Not used

X coordinate of Anode
Y coordinate of Anode
Subarea code of Anode

Anode name in EBCDIC

Link Record (There is one link record for each link connected to a node;

the link records follow the Anode to which they are connected)

Displacement Length
Bytes _ Bits Bytes Bits
0 0 0 1
0 1 0 1

V-7

Contents
Last Link from Anode flag
Shaft flag

0 = one direction
1 = other direction

Displacement Length

Bytes Bits Bytes Bits Contents
0 2 0 1 Arrow flag

0 = one direction
1 = other direction

0 3. 0 1 Not used
0 4 0 14 Link time in hundredths
' of a minute
0 18 0 14 Bnode of Link
4 0 0 4 Jurisdiction code of
, Anode

4 4 0 14 Distance of Link in
hundredths of a mile

4 18 0 14 Speed in tenths of a
mile/hour

8 0 2 0 Functional class

(Codes 0 thru 15)

10 0/ 2 0 Route number
(Codes 0 thru 99)

12 0 2 0 Corridor intercept

14 0 2 0 Duplicate Mileage

Eliminator flag
(One if link is to be
eliminated from mileage

summaries)
16 0 2 0 ' Link Volume
18 0 2 0 Link Capacity
20 0 4 0 Link impedance used on

first assignment

24 0 4 0 Nondirectional Link
volume from first assignment

(The last two items are repeated for each assignment, the above two
are not present on a Flexible Record with no assignments)

V-8

SEPARATION MATRIX DATA SET
(Format Type Code: 1I)

Parameter Record

Byte Displacement Length in Bytes Contents
0 ‘ 4 Number of zones
4 4 Zero

4 (number of zones)-4 : 4 Zero

Separation Record

Bytes Displacement Length in Bytes Contents
0 4 Time to Zone 1
4 4 Time to Zone 2
4 (number of zones)-4 4 Time to the last zone

The time is in hundredths of a minute. If a zone is not reached, its
time field will be 16,777,215 hundredths of a minute. The separation

records will be in the same order as the trees that are built.

SELECTED INTERCHANGES DATA SET
(Format Type Code: L)

Header Records

Bytes Displacement Length in Bytes Contents
0 2 Zeros
2 2 2T + 1
4 | 8 Columns 8I + 1 to

8I 4+ 7 of the Header Line

There are 12 header records (I = 0, 11); each header record has eight
bytes of the header line except the last record which has four bytes

of the header line.

Select Record

Bytes Displacement v Length in Bytes Contents
0 2 Link Index of the Selected
Link*
2 2 Zeros
4 2 Percent of Trip Volumes
to Print for this Selected
s Link
6 2 Smallest Node of Selected Link
8 2 Largest Node of Selected Link
10 2 Cut of Volume for Printing
12 2 Number of Trip Interchanges
to print

*This is the index of the directional link from the smallest node
of this selected link to the largest node of this selected link.

V-10

Interchange Record

Bytes Displacement

0

2

10

14

Trip Direction Code

10

Interchange Record

Bytes Displacement

0

2

10

14

Length in Bytes

2

2

Direction of
Interchange

First Zone to
Second Zone

First Zone to
Second Zone

Length of Bytes

2

2

V-11

Contents

Link Index of Selected Link#*
First Zone of the Interchange
Second Zone of the Interchange

Number of Trips in the
Interchange

Zeros
Trip Direction Code

Direction of Trip
Through Selected Link

Small Node number to Large
Node number ;

Large Node number to Small
Node number

Contents

Link Index of Selected Link*
First Zone of the Interchange
Second Zone of the Interchange
Zeros

Number of Trips in the
Interchange

Trip Direction Code

Direction of
Trip Direction Code Interchange

1 Second Zone to
First Zone

5 Second Zone to
First Zone

Direction of Trip
Selected Link

Through

Small Node number
Node number

Large Node number
Small Node number

*These records are written fixed blocked 18 bytes long. They are

18 bytes long so that they can be sorted.

V-12

to Large

to

NODE NAMES DATA SET*
" (Format Type Code: N)

Node Name Records

Column Displacement Length in Columns Contents
0 ; 20 Node Name
20 4 Node Number (4 byte integer)

. There is one Node Name Record for each different node name found in
the Link Data Cards. The Link Data Cards should be in ascending

order on the first node number.

*This data set uses FORTRAN formatted I/O;

V-13

Parameter Record

Displacement Bytes

0

4

Header Records

Displacement Bytes

0

4
16

ROUTE DATA SET
(Format Type Code:

Length Bytes

4

4% (NLS + 3)

Length Bytes

4

12

4% NLS

Contents

NLS = the Number of Assignments

Unused

Contents

Sort Key = 100% (Assignment
number + 1) + J

Twelve bytes of the header

Unused

There are 8 of the Header records for each Header that is on a

Flexible Record.

The J in the Sort Key of the above records is 1, 4, 7,

10, 13, 16, 19, 22 and is the index of where the three words should be

read into the header array in core when they are read. The record where

J = 22 contains only two words of the header.

The location that would

be the third word is filled by 4 bytes of a 0 integer. The assignment

number for the header record when the Flexible Record was built is set to

0. The above records are repeated for each assignment.

V-14

Route Records

Displacement Bytes

0

2

10

12

14

16

12 + NLS*4

Length Bytes

2

2

Contents

Route Code

Anode bf the Link
Bnode of the Link
Functional Class Code

Distance of the link in
0.01 mile units.

Speed of the link in 0.1
mile/hour units

Count field in units of
100 trips

Capacity in units of 100
trips

Nondirectional Assigned volume
for the first assignment

Nondirectional Assigned volume
for the NLS assignment

One Route record is written for each link that has a routé code

where the Anode is less than the Bnode.

V-15

SPIDER NETWORK DATA SET
(Format Type Code: S)

Subnet Record

Byte Displacement Length in Bytes Contents
0 4 Number of Subnets (Set to 1).
4 : 4 ; Network Speed in miles/hour
8 4 Literal 'SPDR'

Network Parameter Record

Byte Displacement Length in Bytes Contents

0 ’ - 4 Subnet Number (Set to 1)
4 4 Number of Nodes
8 4 First Node (Set to 1)

12 : 4 1

16 4 Last Node

20 4 Last Node

24 ' 4 0

28 : 4 0

32 - 4 Number of oneway links

Index Record

Byte Displacement Length in Bytes Contents
0 2 Link index of node N
2 2 Link index of node N + 1
398 2 Link index of node N + 199

V-16

There are 200 indices in each record except the last one. The

last record contains the number of indices which is the number of

nodes taken modulus 200 plus one.

N starts at 1 for the first record and

is incremented by 200 for each additional record necessary.

Time Link Records

Byte Displacement

0

se s P~

796

Length in Bytes

4

es s P~

Fo

The format of a Oneway Link is:

Bit Displacement

0

20

Length in Bits

1

14

14

V-17

Contents
Oneway Link

Oneway Link

.

Oneway Link

Contents

Last Link Flag (Contains

1 if it is either the last
link from the Anode or if it
is indicating a dummy Link
to Anode.)

Shaft flag
0 = one direction (could

be East-West)

1 = the other direction
(could be North-South)
Arrow Elag

Not used

Link Time in hundredths
of a minute

Bnode of Link

The Anode of the Link must be used as an index into the Index array to
get the index where the links from the Anode start in the Time Link
Array. If an Anode has no links comnected to it then INDEX(ANODE) =
INDEX(ANODE + 1). The last Time Link Record may be less than 200 words
since it will contain only the remaining links in the network. The Links
from one Anode are in the follewding.order: oneway out, twoway, and dummy
oﬁeway in. Within each class of oneway links, the links are in the 6rder

of the link data cards. -

Turn Type Records

Byte Displacement Length in Bytes Contents

0 4 For node N, the first two bits
are zero, the next six bits
contain the turn type code for
the node which is set to 28,
and tthe next 24 bits contain
zZeros.

4 4 For node N + 1 with the above
information types.

796 4 For node N + 199 with the above
information types.

There is a turn type word for each node from node 1 to the last node in
the network. All turn type codes are 28 which indicate no turns are to

be saved. This array is broken up into 200 word records as shown above.

v-18

TRIP MATRIX DATA SET
(Format Type Code: T)

Header Record

Displacement Length : Contents
0 4 | Number of Subnetworks
4 4 : First centroid in Subnet I
8 4 Last €entroid in Bubnet I

The last two items are repeated for the number of subnets where I = 1,N.

Trip Record

Displacement Length Contents

0 4 Origin zone of all interchanges
in this record

Subnet of the origin zone

4 N-Number of interchanges in

this record (from 1 to 100)
%2 % znterchange item
8+4N 4 Iﬁterchange item

The interchange item is an 18 bit interchange volume followed by a 14—~
bit destination zone number.

The trip records are in sort on the origin zone and the interchange items
for each origin are in sort on the destination 2zones.

V-19

SCRATCH NODE NAMES DATA SET
(Format Type Code: X)

Node Name Record

Displacement Bytes Length Bytes Contents
0 4 Anode number as a 4 byte
integer
4 20 Node name

The node name records are written in ascending order of node numbers.

V-20

SCRATCH PACKED LINKS DATA SET
(Format Type Code: Y)

This data set is made up of records which contain 40 link records.
Thses 40 link records are in the 22 byte format used in the LINKS array
in Logical Division 1, The link records are sorted on the key of Anode,
Link class, and Link data card count in ascending order for both Unit 3
and Unit 11 separately. The format for the 22 byte link records is

as follows:

- Displacement Length
‘Bytes ~ Bits ‘Bytes ' Bits - Contents
0 0 0 14 Anode number
1 6 0 2 Link class code
0 = twoway
1 = oneway out -
2 & 3 = dummy link
2 0 0 15 Link data card count
3 7 0 1 Mileage code
' 0 = Use in Vehicle Mileage Summary
1 = Do not use in Vehicle Mileage
Summary
4 0 0 14 Bnode number
5 6 0 14 Count field in units of 100 trips
7 4 0 4 Jurisdiction code in hexadecimal
8 0 0 4 Functional class code in hexadecimal
8 4 0 7 Subarea code
9 3 0 14 Link Capacity in units of 100 trips
11 1 0 7 Speed in units of tenths of a mile
per hour

v-21

Link Record Format (continued)

Displacement o 'Length .
Bytes ~ Bits " Bytes 'Bits Contents
12 0 0 10 Link distance in units of —l—-of a
100
mile
13 2 0 7 Corridor intersect code
14 1 0 5 Route number
14 6 0 1 Shaft code, 0 = one direction
: 1 = other direction
14 7 0 1 © Arrow code, 0 = one direction
1 = other direction
15 0 1 0 Unused
16 0 0 6 Link Impedance field, in units of
"—&;-min tes
100 ™™
16 6 0 1 Link delete code
0 = keep link
1 = delete link from updated
Flexible Data Record
16 7 4 1 Unused

V-22

SCRATCH MULTIPLE ASSIGNMENTS DATA SET

Header Record

Displacement Bytes

0
4
8.

Links Record

Displacement Bytes

(Format Type Code:

Length Bytes

4
4

Length Bytes

4

Contents
Last node number
Number of one-way links

Number of Turning Movements
saved

Contents
Link Volume I

Link Volume I + 1

Link Volume K

The link records contain from 1 to 4000 directional link volumes

each and the link volumes are written out in order of ascending link index.

Turn Volume Records

Displacement Bytes

0
4

4K - 4

Length Bytes

4
4

vV-23

Contents

Turn Volume I

Turn Volume I + 1

Turn Volume K

The turn volume records contain from 1 to 4000 turn volumes and
are written in order of ascending turn volume indexes.
The link volume records and turn volume records are repeated for

other iterations of an Assign Self-Balancing run.

V=24

OUTPUT SELECTED LINKS

The OUTPUT SELECTED LINKS program must be run as a separate job
(or as separate job steps). It uses the SELTRP data set built by
ASSIGN SELECTED LINKS as input. The program performs two sorts and,

thereby, produces two data sets. Both data sets have the same format.

The format for these data sets is as follows:

V-25

'SORTED SELECTED INTERCHANGES DATA SET

This is the data set which comes from the first sort in the OUTPUT
SELECTED LINKS job as it is modified by the E 35 exit in the IBM sort
using the E 35 assembly language subroutine. It is also the format
of the data set which results from the second sort performed in the

4

OUTPUT SELECTED LINKS job.

Header Records

Bytes Displacement Length in Bytes Contents
0 _ 2 Zeros
2 2 | 21 + 1
4 : 8 Columns 81 + 1 to

81 + 7 of the Header Line
There are 12 header records (I = 0, 11); each header record has
eight bytes of the header line except the last record which has four bytes

of the header line.
Select.Record

Bytes Displacement Length in Bytes Contents

0 2 Link Index of Selected Link#*
2 2 Smallest node number of the

selected link

4 ‘ 2 Largest node number of the
selected :1link

6 2 ‘ 32767
8 | 2 Percent of Trip Volumes
to print for this selected Link
10 2 Cut of Volume for Printing
12 2 ~ Number of Trip Interchanges
to print

*This i1s the index of the directional link from the smallest node of this
selected link to the largest node of this selected link.

V-26

Sum Record

Displacement Bytes

0

2

10

Interchange Record

Displacement Bytes

0

2

10

14

Length in Bytes

2

4

Length in Bytes

2

-2

V=27

Contents

Link Index of Selected Link
Zero

32766

-1

Sum of Trip interchange

loaded through the Selected
Link

Contents

Link Index of Selected Link
First Zone of the Interchange
Second Zone of the Interchange
Nondirectional link volume
between the origin and
destination zones

Directional link volume
(direction specified by

Trip Direction Code)

Trip Direction Code
(see table on next page)

First Zone to Second Zone

Second Zone to First Zone

Trip Direction Interchaqge v . Interchange
Code Direction of trip Direction of trip
through link is small through link is
‘ node number to large small node number
Decimal | Binary Present node number Present | to large node number
1 0001 No - Yes Yes
2 0010 Yes Yes No -
3 0011 Yes Yes Yes Yes
5 0101 No - Yes ‘No
7 0111 Yes Yes Yes No
10 1010 Yes No No -
11 1011 Yes No Yes ‘Yes
15. 1111 Yes No Yes No !

v-28

OTHER INFORMATION

PRINTED OUTPUT FROM $ASSIGN AND
$ASSIGN SELF-BALANCING

TURNING MOVEMENTS

PRINTED OUTPUT FROM $ASSIGN AND
$ASSIGN SELF-BALANCING

Nineteen different types of tables may be produced during the
execution of $ASSIGN SELF-BALANCING and sixteen different types during the
execution of $ASSIGN. However, many of these tables are produced only
under certain conditions. In addition, during the $ASSIGN SELF-BALANCING
process, many of these tables are produced multiple times: some after
each iteration, some after certain iterations, and some only after the
last iteration. The following two tables, therefore, provide a summary of

the output produced by these two programs under the various conditions:

VIi-1

SUMMARY OF OUTPUT FOR $ASSIGN SELF-BALANCING AND $ASSIGN

$ASSIGN SELF-BALANCING $ASSIGN
0
o
0 oo
" Qu
s BE maw
N o Qg
& g (S
o o [=J] 238
oH @ o 9 g
g g g)s g5 e
c o ¢ 6 & oo
o~ o [o] o o~ T w
Is) Ie] o4 0 Yy n 9 o<
© o] 4+ 2] [) =
H N 8 <Yy <SS~ AW
d 0 M . @ = B 0
& 4 [] o N o o S!U
= - & [ONN:] 9 U 1
-l o= &=z 0
In] = S0 < L] oo
1] (] - 80 O [=] QU
H 8 § 3% Rkpb B
OUTPUT BH O W BO EBEBWw O«
1. Selected Tables and Summaries* X X X X X X
2. Iteration Weighting-Multiple
Regression Analysis X X X
3. Link Volumes X X X X
4, Iteration Weights Applied X
5. Corridor Intercept Tables X X
6. Route Profiles X X
7. List of Volumes and
Impedances for Updated Links X

*gee table titled 'Tables and Summaries Produced with Each Assignment” on next
page. ‘

VI-2

TABLES AND SUMMARIES PRODUCED WITH EACH ASSIGNMENT

CONDITIONS UNDER WHICH
TABLE OR SUMMARY IS PRODUCED
P -
=i
H u o
0 o o0 —
W W ox o
wE g
v w O n o 0.C
WX "X TWH WD @
Sg 8§ o B =
3 - OH O w0
N e - A
) w AR N
- PR o o
Mo ®WO KW O WM
i - £E0 ®©Oo A
Ve L = B
I n oo ® T
Ye Fe S8 98 &%
§2 5§58 2°F 84 %8
T e T - a
+] NG NO O
g8 €9 gfo &u oW
Tables and Summaries ;38 53 2 8 2 & Siﬁ
1. Cross Classification of V/C Frequencies
from Last Two Assignments X
2. Cross Classification of Link Counts by
V/C Ratio from Last Two Assignments X X
3. Jurisdiction Summary ; X
4. Jurisdictional/Functional Cross Classi-~
fication of Assigned Volumes X
5. Jurisdictional/Functional Cross Classi-
fication of Counted Volumes X X
6. Jurisidctional/Functional Cross Classi-
fication of Link Capacities X : X
7. Comparison of Assigned Volumes with
Counted Volumes X
8. Comparison of Assigned Volumes with
Link Capacities : X
9. Comparison of Assigned Volumes (from
last assignment) with Assigned
Volumes (from assignment before last) X

VI-3

TURNING MOVEMENTS

Turning movements are directional volumes which are loaded through

a specific triplet of nodes. Turning movements are logically associated

with the intersection node. For a node connected to three other nodes

the following equations can be written:

1,1t T2t ,30

To1 ¥ Ty 2% T 3=D

T3, ¥ T3, + T3 3 = D4

TpatT 1t}

T1,2% T2t 3 9= Ry

T1,3 1 Ty,31 703,53 =R,

Where Ri = the directional link volume from the intersection
node to the node of the ish link.

Where Dj = the directional link volume from the node of the
jl:--!-1 1ink to the intersection node.

Where Tij' the turning movement between the node in the iEh

link and the node in the th-link which are connected

to the intersection node.

These equations can also be represented by a matrix with two vectors:

T, T2 T | Dy
Ta,1 Ta,0 T3 D,
3,0 3,2 T3 Ps
R Ry Ry

Vi-4

Because of the way in which trees are built and in which paths are
represented in the Texas Small Network Package the turning movements on
the diagonal of the matrix which are U-turns are all zero. Also the
turning movements in some rows and columns will be zero because of the
one-way links. - To limit the possible number of cases with one-way
links, the links which are connected to each node are conﬁected in the
following order: one-way links into the node, two-way links, one-way.
links out from node.

Putting in zeros for the diagonal elements for a case of three

two-way links there are six equations with six unknowns:

0 T2 T3l D
To,p O Ta,3 | D2
T30 T3, O Dy
R, R, R

Each equation has two variables in it and one constant. Six equations
with six unknowns can be solved if the equations are independent, however
these equations are not. If any one of the six turning movements is known
the other five can be calculated. The known turning movement will make
two equations with only one uﬁknown each which can be calculafed and the
turning movements which are calculated from these equations will allow

other turning movements to be calculated.

VI-5

The following method is used in calculating turning movements:
(1) All locations in the turning movements matrix are set to -1 to
represent unknowns; (2) The diagonal elements are set to zeros; (3) If
there are any one-way links into the node then the corresponding row
of the matrix is set to zero; (4) If there are any one-way links out
the corresponding column of the matrix is set to zero; (5) Turning
movements which have been saved are placed in the matrix; (6) The directional
link volumes are found and become two vectors of constants; (7) The
matrix is searched by rows and if a row has only one unknown it is
calculated; (9) ' If there are any unknown turning movements left then
steps 7 and 8 are repeated for up to N times where N is the number of
nodes connected to the intersection node.

The process for calculating unknown tu;ning movements can be used for
a node connected to any number of nodes but the number of turning movements
to save if all links are two-way goes up rapidly with the nﬁmber of links
to which a node is connected. Also the number of combinations of one-
way links out, two-way links and one-way links in goes up rapidly with
the number of links even when these links are sorted into the three link
classes and arranged in the above order. For N, the number of nodes to
which an intersection node is connected, where the links are all two-way

M= N2 - 3N+ 1 for N > 2 where M is the number of turning movements to

save. If U-turns were allowed then M = N2 - 2N + 1.
In the Texas Small Network Package turn codes are set up for all

combinations of two-way and one-way links for a node connected to either

three or four nodes. Also there is a turn code for a node connected to

VI-6

either five or six nodes. These turn codes are set up in either the
Prepare Network, Assembly Network, or the Revise Network program and they
are written on the Flexible Data Record data set. The turn code are
described in a table. The turn codes for a node connected to five or
six nodes cause enough turning movements to be saved to calculate the
other turning movements when all of the ;inks are two-way. This is also
more than enough for the cases with one or more one-way links.

The turn codes and their meaning have been defined for the Texas
Small Network Package since 1967 but a method for determining which turning
movements to save énd which to:calculate will be outlined here. The
easiest way to work with this problem is to represent the turning movements
in a matrix form as was done earlier for the case of a node connected
to three other nddes. It is convenient to let the row and column positions
within the matrix represent the links which contain the node numbers instead
of writing subscripts on the variables. Also a "s" will be written if
the turning movement is saved, a ''¢'" will be written if it is calculated
and a zero will be written in the matrix position if the turning movement
is known to be zero either because it is a U-turn or because of a one-way
link. Also the two vectors which represent directional link volumes
will not be written since these are always saved. To identify each case
three one digit integers will be written over each matrix which are the
number of two-way links, the number of one-way links in and the number
of one-way links out which are. connected to the intersection node.
The following examples are all of the cases for a node connected to

four other nodes for which one or more turning movements must be saved:

VI-7

VI-8

TURN CODES

Total Number of
Turn Number Turning Move-
Code of Links T I 0 ments to Save Turn Movements to Save*
1 3 0 0 3 0
2 3 0 1 2 0
3 3 0 2 1 0
4 3 0 3 0 0
5 3 1 0 2 0
6 3 1 1 1 0
7 3 1 2 0 0
8 3 2 0 1 0
9 3 2 1 0 0
10 3 3 0 0 1 3-1
11 4 0 0 4 0 |
12 4 0 1 3 0
13 4 0 2 2 1 4-1
14 4 0 3 1 0
15 4 0 4 0 0
16 4 1 0 3 0
17 4 1 1 2 1 4-1
18 4 1 2 1 1 4-1
19 4 1 3 0 0
20 4 2 0 2 1 4-1
21 4 2 1 1 2 4-1,3-2
22 4 2 2 0 1 4-1
23 4 3 0 1 3 4-1,4-2,3-1
24 4 3 1 0 3 4-1,4-2,3-1
25 4 4 0 0 5 4-1,4-2,3-1,3-2,2-3
26 5 - - - 11 5-1,5-2,5-3,4~-1,4-2 ,4-3,
3-1,3-2,3-4,2-3,2-4
27 6 - - - 19 6-1,6-2,6-3,6-4,5~1,5-2,
5-3,5-4,5-1,4-2,4-3,4-5,
3-1,3-2,3-4,3-5,2-3,2-5,
1-4
28 - - - - 0 #%
T = number of two-way links connected to the intersection node
I = number of one-way links connected into the intersection node
0 = number of one-way links connected out from the intersection node

*The turning movements to save are listed by the subscript pair in the form i-j which
indicate the position of the turning movement in the turning movement matrix.
**Save no turning movements for this node (or centroid) and print no turning movements.

vi-9

RECENT CHANGES

AND MODIFICATIONS

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -0.67, -1.16 Width 37.44 Height 793.50 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 -0.6685 -1.1623 37.4354 793.4966

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 1
 293
 292
 293

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -1.34, -1.16 Width 614.68 Height 3.68 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 -1.337 -1.1623 614.6758 3.6767

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 1
 293
 292
 293

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -1.00, 789.99 Width 614.34 Height 2.67 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 -1.0027 789.9946 614.3415 2.674

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 1
 293
 292
 293

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 608.99, -1.16 Width 4.35 Height 793.83 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 608.9937 -1.1623 4.3452 793.8309

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 2
 293
 292
 293

 1

 HistoryList_V1
 qi2base

