
PROGRAM DOCUMENTATION MANUAL

for

THE TEXAS SMALL NETWORK PACKAGE

by

J. D. Benson
Assistan't Research Planner

Charles E. Bell
Data Processing Programmer

and

Vergil G. Stover
Study Supervisor

Research Report 167-3

Urban Travel Forecasting
Research Study Number 2-10~71-167

Sponsored by the
Texas Highway Department

in cooperation with
U. S. Department of Transportation

Federal Highway Administration

Texas Transportation Institute
Texas A&M University

College Station, Texas
April 1972

TschnloaiRepotts ce•
Texas Transpor11Uoi) tn§Ulut&

The opinions, findings, and conclusions expressed in this publication
~

are those of the authors and are not necessarily those of the Federal

Highway Administration.

TABLE OF CONTENTS

ABSTRACT. . .
SUMMARY •
IMPLEMENTATION STATEMENT.
INTRODUCTION.
ORGANIZATION OF PACKAGE

OVERLAY STRUCTURE •
LOGICAL DIVISION STRUCTURE.

LOGICAL DIVISION

.

INTRODUCTION. • • • • • • • • • • , • • • • •
LOGICAL DIVISIONS AND USER PROGRAM O!'·TION ..• • • •
DESCRIPTIONS OF LOGICAL DIVISIONS • • • • •

LOGICAL DIVISION 1 •
LOGICAL DIVISION 2 •
LOGICAL DIVISION 3 •
LOGICAL DIVISION 4 •
LOGICAL DIVISION 5 •
LOGICAL DIVISION 6 •
LOGICAL DIVISION 7 •

. .

. .

. . . .
LOGICAL DIVISION 8 •
LOGICAL DIVISION 9 •
LOGICAL DIVISION 10 ••••
LOGICAL DIVISION 11. •
LOGICAL DIVISION 12.

.

. .

LOGICAL DIVISION 13. • • • • .•
LOGICAL DIVISION 14. • • •
LOGICAL DIVISION 15 ••••••
LOGICAL DIVISION 16.
LOGICAL DIVISION 17 ••
LOGICAL DIVISION 18.

. .
. . .

LOGICAL DIVISION 19. • • • • • •
LOGICAL DIVISION 20.

. . .
. . . .

LOGICAL DIVISION 21. •
PROGRAM CROSS-REFERENCE .AND FLOWCHARTS

CROSS-REFERENCE OF PROGRAMS • • •
FLOWCHARTS • • • • • • • ALCP.,.

BLDNET •
CMPVH. • • •
CRD.
CRDINT •• . .

.
.

.

Page

i

ii

iv

1

I-1
l-1

Il-l
II-2
II-7
II-8

II-11
II-13
II-15
II-18
II-22
II-23
II-25
II-26
II-27
II-28
II-29
II-30
II-32
II-33
II-34
II-35
II-42
II-43
II-45
II-48

III-1
III-4
III-5
III-6

III-10
III-11
III-12

TABLE OF CONTENTS (Continued)

Page
E35. III-13
FASPTH • III-15

ENTER • . III-15
FMTLNE III-18
FRATAR • III-19
GETDAT III-21
GETRN. III-22
GETRNS III-23
GTLD ,. III-24
INITLI u • . . III-28
LNKLST III-29
LOAD • III-30
LOAD 2 III-37
MAIN III-42
MERG • III-46
MOORE. III-49
MRGREC • III-51
NEWNET III-58
OUTLLT III-67
OUTLNT • III-71
OUTNET III-72
OUTRIP III-74
OUTSLN • III-76
OUTS NT III-77
OUTTRE III-78
OUTWLT III-79
PATHCL III-82
PATHSP III-86
PRPBLD III-88
PRPCTV • III-91
PRPNET • III-94

ASMNET. III-94
REVNET. .. III-94

READVL • . III-95
RTPFL. III-96
RTPLT. 111~100

sc III-106
SELECT III-107
SLOAD. III-110
SUBFND • III-111
SUMEND • . '. III-112
SUMRY. III-113
TREE_. III-114

TREBLD. III-114
SELLD • III-114

TRN. . I III-115
TRNMV. III-118
TURNM. III-119
UPDTNT III-122
VREC • III-125
WGTLD. III-130
WTLNT. III-131

TABLE OF CONTENTS (Continued)

SIGNIFICANT VARIABLES AND ARRAYS
LABELED COMMON.
DESCRIPTIONS OF SIGNIFICANT VARIABLES AND ARRAYS.

ALCP •••
BLDNET •
CMPVH.
CRD.
CRDINT •
FASPTH •
FRATAR •
GTLD,.
LNKLST •
LOAD AND LOAD 2.
MRGREC.
NEWNET.
OUTLLT.
OUTNET.
OUTSLN.
OUTSNT.
OUTWLT.
PATHCL.
PATHSP.
PRPBLD.
PRPNET.
RTPFL AND RTPLT •
SELECT.
SLOAD •
SUMEND.
TREBLD.
TRN •
TURNM •
UPDTNT.
VREC.
WTLNT •

DATA SETS AND DATA SET FORMATS
DATA SETS •
DATA SET FORMATS.

TRIP VOLUMES DATA SET.
FLEXIBLE RECORD DATA SET •
SEPARATION MATRIX DATA SET •
SELECTED INTERCHANGES DATA SET •
NODE NAMES DATA SET.
ROUTE DATA SET •
SPIDER NETWORK DATA SET.
TRIP MATRIX DATA SET •
SCRATCH NODE NAMES DATA SET.
SCRATCH PACKED LINKS DATA SET.
SCRATCH MULTIPLE ASSIGNMENTS DATA SETS •

· OUTPUT SELECTED LINKS
SORTED SELECTED INTERCHANGES DATA SET.

Page

IV-1
IV-3
IV-4
IV-5
IV-6
IV-7

IV-10
IV-11
IV-13
IV-14
IV-17
IV-18
IV-20
IV-21
IV-23
IV-25
IV-26
IV-27
IV-28
IV-29
IV-31
IV-32
IV-33
IV-35
IV-37
IV-38
IV-39
IV-40
IV-41
IV-43
IV-46
IV-47
IV-48

V-1
V-1
V-5
V-6
V-9

V-10
V-13
V-14
V-16
V-19
V-20
v-21
V-23

V-26

TABLE OF CONTENTS (Continued)

Page
OTHER INFORMATION

PRINTED OUTPUT FROM $ASSIGN AND $ASSIGN SELF-
BALANCING. • • • • • • • • • • . . VI-1

TURNING MOVEMENTS • • • • VI-4

RECENT CHANGES AND MODIFICATIONS

ABSTRACT

The Texas Small Network Package ·is a collection of computer programs

designed to assign traffic to small transportation networks. The

purpose of this manual is to provide data processing personnel with a

link between the Operating Manual for the Texas Small Network Package

(Research Report 119-1) and the programs contained in the package.

The manual describes the operation of the package and provides flowcharts

of the programs in the package. Cross references for significant

variables and arrays used in the package and formats for all data sets

and data cards associated with the package are provided.

Keywords: traffic assignment computer programs, transportation planning
computer programs, Texas Small Network Package, computer
program descriptions, computer program flowcharts.

i

SUMMARY

Traffic assignment is a technique which has been developed to aid

transportation planning in the evaluation of future transportation

system alternatives. Due to the vast quantity of data and the tedious

computations involved, reliance upon computers and automated data processing

is almost imperative.

The Texas Small Network Package is a collection of computer programs

designed to assign traffic to small transportation networks. The package

has been prepared for use with both IBM 360 and IBM 370 computer systems.

Several special features are available in the Texas Small Network

Package in addition to the usual programs regarding the assignment of

traffic to minimum time paths, and the assignment of traffic to "spider"

networks connecting zone centroids. A self-balancing assignment program

is included which can improve the agreement of assigned volumes with

counted volumes. The self-balancing assignment program can also be used,

to induce a compliance of the assigned volumes with capacity limitations.

Corridor intercepts may be coded to obtain corridor analysis summaries;

travel routes may be coded to obtain volume profile comparisons and/or

plots; and,selected links may be indicated for a special analysis of all

traversing movements. Under normal operation, each assignment is preserved

and compared with previous assignments.

The Texas Small Network Package is comprised of eighty-one control

sections. The control sections perform the nineteen user program options

available under the package.

ii

The package basically operates in sequential mode. As each control

card specifying a user program option is encountered in the data card

input stream, the card is interpreted to determine the desired program

option and the appropriate program option is executed.

iii

IMPLEMENTATION STATEMENT

The Texas Small Network Package has been operational on the IBM 360

computer installation of the Texas Highway Department since January, 1968.

It has been used extensively by the Texas Highway Department since that time.

Numerous additions, revisions and improvements have been implemented

since the original transmittal. The cooperative research program between

the Texas Highway Department and the Texas Transportation Institute has

produced many research results which·have been converted to a useable form

through the preparation or modification of computer programs, and the

programs have then been inserted into the Texas Small Network Package.

Since research and development is dynamic in nature, this documentation

will become obsolete as continuing research efforts produce new results

to be implemented in the package.

iv

INTRODUCTION

The purpose of this manual is to provide data processing personnel

with a link between the operating manual for the Texas Small Network

Package and the programs contained in the package. This manual, therefore,

assumes the working knowledge and understanding of the operating manual,

and general familiarity with the terminology associated with both traffic

assignment and computer science. Both the operating manual and the programs

(with their own internal documentation) are each a form of documentation.

The objective of this manual, therefore, is to provide intermediate

levels of documentation between the operating manual and the actual

program listings, thereby providing a logical sequence of levels of

documentation through which one may proceed from the operating manual

to the particular program listing(s) of interest.

This documentation, contained in Sections I -VII of this manual,

is organized as follows:

• Section I, ORGANIZATION OF PACKAGE - This section explains the

organization of the programs. It includes a complete list of

the programs in the Small Package including the date of their

latest revision; a chart of the overlay structure for the package;

and a chart of the logical divisions into which the programs

may be subdivided.

• Section II, LOGICAL DIVISIONS - This portion of the manual describes

the functions and operations performed in each of the logical

divisions. It explains the general organization of the programs

1

within that division and gives a brief description of the

functions performed in each of the programs within that logical

division. It is felt that the program descriptions provided

for each of the logical divisions will be sufficient for the

programmer to identify the particular program or programs in

which he is interested while at the same time providing him with

an understanding of how it relates to other programs within the

package.

e Section III, PROGRAM CROSS-REFERENCE AND FLOWCHARTS - This section

contains a cross-reference of calling programs versus programs

called and the flowcharts (or program de.scriptions) associated

with each individual program in the Small Network Package.

The objective of the flowcharts is to provide the programmer with

an overview of the operation of each individual program within

the package. The level of detail contained in each individual

flowchart is felt to be minimal for an understanding of the

individual programs. It should also be noted that these flowcharts

are intended to be used in conjunction with information contained

in sections IV, V, and VI when reviewing or studying a particular

program listing.

• Section IV, SIGNIFICANT VARIABLES AND ARRAYS -This section

contains the significant variable, arrays, data structures and

control variables used by the various subroutines.

• Section V, DATA SET FORMATS -This section contains formats for

various intermediate data sets formed and/or used during the

operation of the Small Network Package.

2

• Section VI, OTHER INFORMATION - This section contains additional

information which is felt to be pertinent to the understanding

of the programs contained in the Small Network Package. For

example, this section presently contains an explanation of the

procedure used in saving turning movements during the assignment

process.

e Section VII, RECENT CHANGES AND MODIFICATIONS - This section is

provided for information relative to changes which have been

implemented since the original documentation, and therefore,

serves an "update" function for this manual.

3

0 R G A N I Z A T I 0 N 0 F P A C K A G E

OVERLAY STRUCTURE

LOGICAL DIVISION STRUCTURE

OVERLAY STRUCTURE

The Texas Small Network Package is comprised of eighty-one control

sections. These control sections are listed in Table 1 along with the

date of their latest revision. The diagram shown in Figure 1 illustrates

the overlay structure in which all but two of the control sections

operate. The two control sections (i.e., MAIN (Output Selected Links)

and E35) are used to perform the user program op,Fion $OUTPUT SELECTED

LINKS which, because of core storage requirements, is run as a separate

JOB.

LOGICAL DIVISION STRUCTURE

In order to explain the relationship between the control sections,

they have been grouped into twenty-one logical divisions as shown in

Figure 2 (note that Logical Division 21 contains the control sections

for $OUTPUT SELECTED LINKS). The function (or functions) performed by

each of the logical divisions is described in Section III of this manual.

In addition, the sequence in which the programs are executed along with

a brief description of each of the programs is included for each logical

division. As can be seen from Figure 2, nine of the logical divisions

contain only one control section and five of the divisions contain only

two or three control sections. These small logical divisions were

necessitated either by the highly specialized functions performed within

them which could not readily be related to any of the other logical

divisions or, in some instances because the logical division simply

contains all the control sections needed to perform one of the user program

I-1

-------------- ----

TABLE 1: CONTROL SECTIONS COMPRISING THE
TEXAS SMALL NETWORK PACKAGE

Program
Control Sections

ABEND
ALCP
BLDNET
BLOCK DATA
CLOSE
CLOSFT
CMPVH
COPYFT
CRD
CRDINT
E35
FASPTH
FMTLNE
FRATAR
GETDAT
GETRN
GETRNS
GETVOL
GTLD
INITLl
LOAD
LOAD2
LOPS
LNKLST
MAIN
MAIN (for Output

Selected Links)
MERG
MOORE
MRGREC
NEWNET
OPENFT
OUTLLT
OUTLNT
OUTNET
OUTRIP

Revision
Date

*
11/10/71

2/26/71
11/10/71

*
*

11/10/71
8/30/71
2/26/71
1/14/71

*
*
*

2/26/71

*
6/ 8/71

* 6/ 8/71
11/10/71

*
*

8/30/71
7/30/71
6/ 8/71
6/ 8/71

*
6/17/71

*
8/30/71
8/30/71

12/ 2/70
8/30/71
8/30/71
8/30/71
1/ 2/69

Program
Control Sections

OUTSLN
OUTS NT
OUTTRE
OUTWLT
PARAM
PATHCL
PATHSP
PRPBLD
PRPCTV
PRPNET
PTLNK
READVL
REG RES
RTPFL
RTPLT
sc
SELECT
SLOAD
SUBFND
SUMEND
SUMRY
TIME
TREBLD
TRN
TRNMV
TURNM
UPDTNT
VREC
VSORT
WGT
WGTA
WGTLD
WRT
WTLNT
Overlay Structure

Revision
Date

2/26/71
2/26/71

*
6/ 8/71

*
8/30/71
2/26/71
6/ 8/71
2/26/71
2/26/71

*
*
*

1/14/71
7/30/71
1/14/71

10/27/67

*
* 2/26/71

6/ 8/71

*
9/20/71
6/ 8/71

*
*

2/26/71
8/30/71

*
6/ 8/71
6/ 8/71
6/ 8/71
8/30/71
6/ 8/71
7/30/71

Labeled Common Control Sections: ALLIGN, CAPREP, CAPRES, CD, DELETE, FILES,
GROUP!, HEADR, OUTDCB, SDATE, STOP, VOLTP

Library Subroutines: AXIS, DSQRT, EXP, LINE, LOG, NUMBER, PLOTS, SIN,
SQRT, SYMBOL

*These programs have not been modified since the institution of the
revision date policy on individual subroutines.

I-2

H
I
w

Region 1

CRD
GETDAT
PARAM
SDATE

Region 2

Figure 1 : OVERLAY STRUCTURE FOR TEXAS SMALL NETWORK PACKAGE

MAIN
LOPS

- HEADR
TIME
CAP RES
FILES
STOP
OUTOCB
DELETE·
ALLIGN

WTLNT VSORT BLDNET UPDTN OUTSNT MERG ~OLTP OUT NET
OUTLWT SQRT LNKLST PRPCTV FMTLNE
WGT SUBFND
WGTA PRPNET SUMRY RTPLT PUTRIP
TRN SUMEND
GETRN PTLNK CD sc

AXIS
LINE
NUMBER
PLOTS

nGTLO SYMBOL
CMPVH ~TPFL EXP
REG RES LOG PATHCL

NEWNET MRGREC CRDINT SIN CLOSE
~LCP VREC COPYFT DSQRT

INITLl PRPBLD SELECT

LOAD
READVL

lWR-T -1ENFT lABEND

CAP REP FRATAR
TREBLD

~LOAD
MoORE

OUTLNT
· OUTLLT

TURNM
TRNMV

FASPTH GETRNS
OUTTRE GETVDL

.. OAD2

PAT
GRO

HSP
UPEl

OUTSLN

F (G U R E 2: L 0 G I C A L D I V IS I 0 N S F 0 R T EX A S SMA L L N E T W 0 ~ K PAC K A G E

REGION 1

---,
12 I
I c R D I
IGETDAT II
1PARAI'1
fSDATE I '(,_ _____ .J

~

f4 _____ P'R"Pm--,l
I PTLNK
I 1
I I
I MRGREC I ·I VREC COPYFT I
I I
L-------------J

REGION 2

r:----- ------------,
1
s suMRv 1

I c D I
I I
II WGTLD GTLD CMPVH RTPFL I

I
REGRES I

I
CRDINT I
A l c p . I

I DSQRT- I.
L------~----------~

~o-r-;~-fop ~;;-tAB~ ;;-l
I . I '--------·----------..J

*THESE PROGRAMS ARE NOT CONTAINED IN THE OVERLAY STRUCTURE

•"LJ.eRARY SUBROUTINES

--~----, 11 I 1'1 A I N
1 LoPs
I HEADR
1 T I 1'1 E
I CAPRES

I FIlES
STOP

· OUTDCB
DELETE

~lJ.!..~.J

nr---,
RTPLT I
s c I
AXIs- 1
liNE- 1
NUMBER,
PLOTS- 1
SYMBOL-I
EXP- 1
LOG- 1
sIN- I
___ . __ J

~------,
.121 I
I f1 A I N. I
I E3S• I

I I
I I L _____ J

---, ,13 I
lvoLTP 1 1
1

PRPCTV I

t
1 su~~J

-----, 114 I

[~
115 1
I suM END I
'-----'

---,
116 . 1
I I
I OUT NET I
IFMTLNE I
L----J

···-~ 1FRATAR r
L-----.J

r;:---
r19 .
I
I
I

I
I I I I
L---------.J

ff7____________ CAPREP--------,
I TREBLD I

~r~-------------~- ------ -------~ 17 A p A T H c l 17 B j .
OUTLNT •

CLOSE OUTLLT I

T u R r~ M I
i1 I N I T l 1 P R P B L D T P. ~l M ~ , •
5 GETRL ~
II GETV:~ I
g LOAD LOAD2 . I I READVL q

L"=".a-=--=,__-=-=--===-~-=~:.:----------J

options described in the operating manual. On the other hand, it may

be noted that logical division 17 contains eighteen control sections.

It is within this division that trees are built, the network is loaded,

and the loaded network is printed. For convenience, therefore, sixteen

of the eighteen control sections in logical division 17 have been grouped

into two logical subdivisions as seen in Figure 2.

It should also be noted that a number of the programs have multiple

entry points. To avoid possible confusion, these programs along with

the names of their other entry points are listed in Table 2.

I-5

PROGRAM

ABEND

FASPTH*

GETVOL*

LOAD2*

LOPS*

PRPNET

PTLNK*

TREBLD

WRT*

TABLE 2: PROGRAMS WITH MULTIPLE ENTRY POINTS

OTHER ENTRY POINTS

PLOAD

ENTER

WGT, WGTA

CLOSE, OPEN, WRITE, TRDCB, NBIN

LGRS, LGLS, LANA, LORA, LEX, LANAD, LANAL, LANAH

ASMNET, REVNET

GTLNK

TREE, SELLD

OPENFT, CLOSFT, OUTDCB

*Assembly language routines

I-6

L 0 G I C A L D I V I S I 0 N S

INTRODUCTION

LOGICAL DIVISIONS AND USER PROGRAM OPTIONS

DESCRIPTIONS OF LOGICAL DIVISIONS

INTRODUCTION

The eighty-one control sections comprising the Texas Small Network

Package have been grouped for the convenience of discussion, into twenty

one logical divisions. These logical divisions are not independent

entities but are functional units or simply convenient groupings. There

are three or more logical divisions associated with each of the program

options available to the user except the $OUTPUT SELECTED LINKS option.

The documentation functions served by this section are:

• To identify the logical divisions associated with each of the

user program options.

• To describe the relationship (i.e., calling sequence)
1
between

the logical divisions with regard to each of the user program

options.

• To describe the functions performed by each of thelogical

divisions.

• To provide the calling sequence of the subprograms within each

logical division.

• To provide sufficient information regarding the operation of

each of the subprograms within a logical division so that the

particular program(s) of interest may be identified.

After having identified the particular program(s) of interest, the

flowcharts (contained in Section IV) used in conjunction with the information

concerning significant variables and arrays (Section VI) should provide

the next level of documentation.

II-1

LOGICAL DIVISIONS AND USER

PROGRAM OPTIONS

A cross-reference of the logical divisions and the user program

options is provided by Table 3. As can be seen from this table, three

or more logical divisions are associated with each of the user program

options (except $OUTPUT SELECTED LINKS). It should likewise be noted

that many of the logical divisions are associated with more than one

of the user program options.

The relationships between each of the logical divisions under each

of the user program options are illustrated in the following diagrams:

$PREPARE NETWORK
$ASSEMBLE NETWORK

~ Logical Division 2

Logical Division 1 ~ 4 . __::r Logical Division 12
~ Logical Division ~ -

~ Logical Division 20

$REVISE NETWORK

~Logical Division 2

Logical Division 1

~Logical Division 4 --;;;;>~Logical Division 12

$OUTPUT NETWORK

1

~ Logical Division 2

Logical Division

~ Logical Division 16

II-2

H
H
I w

TABLE 3: CROSS-REFERENCE OF USER PROGRAM OPTIONS AND

LOGICAL DIVISIONS

LOGICAL DIVISIONS

USER PROGRAM OPTIONS 1 2 3 4 5 6 7 8 9 10 11 12 13
.

$PREPARE NETWORK X X X X

$ASSEMBLE NETWORK X X X X

$REVISE NETWORK X X X X

$OUTPUT IIETWORK X X

$DELETE ASSIGNMENTS X X X

$PREPARE TRIP VOLUMES X X X

$OUTPUT TRIP VOLUMES X X

$BUILD TREES X X

$ASSIGN X X X X

$ASSIGN SELECTED LINKS X X X X X X

$ASSIGN SELF-BALANCING X X X X

$OUTPUT SELECTED LINKS

$PLOT ROUTE PROFILES X X X X

$FRATAR FORECAST X X

$SUM TRIP ENDS X X

$MERGE X X X

$PREPARE SPIDER NETWORK X X X

$OUTPUT SPIDER NETWORK X X X

$ASSIGN SPIDER NETWORK X X

14 15 16 17 18 19 20 21

X

X

X

X

X

X

X X

X X

X X

X

X

X

X

I

$DELETE ASSIGNMENTS

~Logical Division 2

Logical Division 1

~Logical Division 7 ----;;:;>~ Logical Division 20

$PREPARE TRIP VOLUMES

Logical Division 2

Logical Division 1 ~
~ Logical Division 13

$OUTPUT TRIP VOLUMES

~ Logical Division 2

Logical Division 1

~ Logical Division 14

$BUILD TREES

1

/' Logical Division 2

Logical Division

~ Logical Division 17

$ASSIGN
$ASSIGN SELECTED LINKS

Logical Division 2

Logical Division 1 ~Logical Division 17---:;.. Logical Division 20

Logical Division 5 > Logical Division 12

II-4

$ASSIGN SELF-BALANCING

Logical Division 2 P Logical Division 17~ Logical Division 20

Logical Division 1~ Logical Division 5 >Logical Division 12

Logical Division 3 ~ Logical Division 20

Logical Division 8

$OUTPUT SELECTED LINKS

Logical Division 21

$PLOT ROUTE PROFILES

~Logical Division 2

Logical Division 1

~Logical Division 11 ~Logical Division 12

$FRATAR FORECAST

~ Logica~ Division 2

Logical Division 1

~Logical Division 18

$SUM TRIP ENDS

1

~Logical Division 2

Logical Division
~Logical Division 15

$MERGE

~ Logical Division 2

Logical Division 1

~ Logical Division 10

II-5

$PREPARE SPIDER NETWORK

1

/Logical Division 2

Logical Division

~ Logical Division 6

$OUTPUT SPIDER NETWORK

/Logical Division 2

Logical Division 1

~ Logical Division 9

$ASSIGN SPIDER NETWORK

/Logical Division 2

Logical Division 1

~Logical Division 19

II-6

DESCRIPTIONS OF LOGICAL DIVISIONS

The description of each of the logical divisions in the Texas

Small Network Package has been divided into three sections. These

sections describe the logical division's general function, the input/

output requirements, the control sections used, the sequence of subroutines

called,and provide a brief description of each of the subroutines

(or control sections).

The first section, entitled "General", briefly describes the functions

or operations performed by the logical division. It also lists the input

required, output produced, and the control sections used by the logical

division.

The second section, entitled "Sequence of Subroutines Called", provides

a diagram illustrating the sequence of subroutines called during the

execution of the logical division. This section not only provides a

convenient "trace back" capability but identifies those control sections

which are subroutines executed within the logical division. In addition,

when the given logical division calls another logical division, the diagram

identifies both the logical division and the subroutine called within that

logical division.

The third section is entitled "Descriptions of Individual Control

Sections". This section contains a brief description of the function of each

of the control sections contained in the logical division.

II-7

LOGICAL DIVISION 1

General

This division serves as the control program for the entire package.

It first issues a call to Logical Division 2 (Subroutine GETDAT) to

initialize the date. It also issues calls to Logical Division 2 (Sub-

routine CRD) to read and interpret control cards and unit control cards.

The appropriate Logical Divisions are then called to perform the actions

specified by the control cards. Because of the multiple usage of various

logical divisions in the ASSIGN SELF-BALANCING process, the program MAIN

also serves as the control program for this process. For convenience

and efficiency, this division also contains small subroutines and labeled

commons which are used by many of the other logical divisions.

Input: None

Ou~put: Prints the difference in time of day of when each program

specified by a Control card started and when it ended.

Control Sections: MAIN, TIME, CAPRES, FILES, HEADR, LOPS, ALLIGN, STOP,

OUTDCB, DELETE

Sequence of Subroutines Called:

MAIN

~Logical Division 2 (GETDAT)

~Logical Division 2 (CRD)

;..--"'3ila~ TIME

~(Other Logical Division neede)
to perform the functions
specified by control cards

II-8

Descriptions of Individual Control Sections

ALLIGN: This labeled common forces a half word array used by subroutine

MRGREC to a full word boundary.

DELETE: This labeled common contains one word used to sum the number of

errors in the programs PREPARE NETWORK, ASSEMBLE NETWORK, and REVISE NETWORK.

OUTDCB: This labeled common has two arrays where data control blocks are

built by subroutine OPENFT when this subroutine opens data sets.

STOP: This labeled common is not needed.

TIME:
1 ..

This subroutine returns the time of day in units of
100

of a second.

CAPRES: This is a labeled common which is used by ASSIGN SELF-BALANCING.

FILES: This is a labeled common in which the variable unit numbers

are stored.

HEADR: This is a labeled common used to store the date and the header

from the last $HEADR card read.

LOPS: This . is a control section which contains 9 function subroutines

which are used for bit manipulation for packed data by other ~ogical

divisions.

MAIN: This is the main program for the entire package. Initially it

issues calls to GETDAT (in Logical Division 2) and TIME to get the date

and time the program began execution. It then performs the following

steps iteratively (Until a $STOP control card is encountered or an end

of data set is encountered on unit 5):

II-9

• A call is issued to subroutine CRD (in Logical Division 2) to

read and interpret a control card.

• The appropriate subroutine(s) are called to execute the program

specified by the control card.

• A call is issued to subroutine TIME to get the time of day.

• The time used by the execution of the program is calculated and

printed.

II-10

LOGICAL DIVISION 2

General

This division is called by Logical Division 1. Although it contains

the routine used to initialize the date, its primary purpose is to read

and interpret control cards and unit control cards. When a unit control

card is read, the appropriate variable unit number in labeled common FILES

is changed. When a $HEADR card is encountered, the contents of columns

7 - 80 are placed in the array in the labeled common HEADR. If an invalid

control card or unit control card is read,an error message is printed

and the job is terminated. When a valid control card (other than a

$HEADER card) is read,this division returns an integer which identifies

the control card read.

INPUT: Control cards and unit control cards on Unit 5.

OUTPUT: Prints all valid and invalid control cards and unit control

cards. Variable unit numbers are printed if any were changed by a

unit control card.

Control Sections Used: CRD, PARAM, GETDAT, SDATE

Sequence of Subroutines Called

GETDAT

Logical Division 1

CRD ---i!!)311a~ PARAM

Descriptions of Individual Control Sections

CRD: This subroutine reads control cards and unit control cards and

sets an integer which is returned to the main program indicating the

II-11

control card encountered. When a unit control card is encountered,

the subroutine PARAM subroutine is called. After returning from PARAM,

another control card is read. When a $HEADR card is encountered, the

information in columns 7 - 80 is placed in the HEADR labeled common and

another control card is read. If an invalid control card or unit control

card is encountered, an error message is printed and the job is terminated.

PARAM: This subroutine interprets unit control cards read by CRD and

changes the variable unit numbers specified in the FILES labeled common.

GETDAT: This subroutine gets the date from the operating system with

a TIME macro and converts it to a twelve byte literal in the form:

where:

XXX YY, ZZZZ

XXX = abbreviation of the month (3 bytes)

YY = day of the month (2 bytes)

ZZZZ = year (4 bytes)

This subroutine is called by the program MAIN.

SDATE: This labeled common contains the date of the last modification

to the package and it is printed in a message after every control card

recognized by subroutine CRD.

II-12

LOGICAL DIVISION 3

General

This section calculates the weighted assignment and the loaded

network produced by combining the assignments from each iteration in

ASSIGN SELF-BALANCING. The weighted assignment is calculated by applying

the iteration weights (percentages) to their respective assigned volumes

from each iteration and summing. The resulting link volumes are rounded

by adding 50 and dividing by 100. The turn volumes are calculated before

they are rounded.

Input: Unit 3, unit NEWNET

Output: The loaded network produced by the weighted assignment is written

on unit 6 (the print data set)

Control Sections used: WTLNT, OUTWLT, WGT, WGTA, TRN, GETRN

Sequence of Subroutines Called

· WGT

WTLNT ~ WGTA

~ OUTWLT >'TRN -.....,.:;;...~ GETRN

Descriptions of Individual Control Sections

WTLNT: This subroutine reads the link volumes and turn volumes from the

individual iterations and calls subroutine WGT and WGTA to apply the

iteration weighting and sum the resulting volumes. The subroutine

OUTWLT is called to print the weighted loaded network.

WGT: This subroutine multiplies from 1 to 4000 volumes by an integer

percent and puts the result in another array.

II-13

WGTA: This subroutine multiplies from 1 to 4000 volumes by an integer

percent and sums the results into another array to form weighted volume

sums.

OUTWLT: This subroutine uses the weighted link volume sums and the

weighted turn volume sums to print a weighted loaded network. This

subroutine calls subroutine TRN for each node which is connected in the

network to get the weighted link volumes and calculate the weighted

turn volumes which were not saved.

TRN: This subroutine gets the weighted directional and nondirection

volumes and calculates the weighted turn volumes which were not saved.

It also flags the turn volumes to be printed.

GETRN: This subroutine places those weighted turn volumes which were

be saved in the turning movements matrix.

II-14

LOGICAL DIVISION 4

General

This section basically performs the following functions:

• $PREPARE NETWORK

e $ASSEMBLE NETWORK

e $REVISE NETWORK

Input: Link data cards or link data revision cards from the INLNK data set

Output: New or revised Flexible Record Data Set on the NETWORK data set

Control Sections Used: PRPNET, PTLNK, NEWNET, VREC, MRGREC, and COPYFT

Sequence of Subroutines Called

$PREPARE NETWORK

PRPNET (entry point PRPNET)...:;.... NEWNET .._.. VREC

$ASSEMBLE NETWORK

PRPNET (entry point ASMNET) ~ NEWNET -=-- VREC

$REVISE NETWORK

PRPNET (entry point REVNET)._. NEWNET -.MRGREC ~ COPYFT

Descriptions of Individual Control Sections

PRPNET: This is the control program for this section and defines storage

for the arrays and variables to be shared by the other programs in this

section.

PTLNK (and GTLNK): Connnonly called "Put Link" or Get Link," this program

has two entry points (i.e., PTLNK and GTLNK). It is a utility program

which packs and unpacks the 22-byte records used to save the information

from link data cards. This is the format in which the one-way links

are sorted and are written on units 3 and 11.

II-15

NEWNET: Basically, this program inputs, sorts, and edits the link data

cards. Due to array limitations, this program will input and sort up

to approximately 2727 link data cards (recall that each link data card

produces 2 link records). This program will handle up to 3 groups of

approximately 2727 link data cards each with the first two sort groups

saved on disks and the last saved in core. These groups are later

merged by VREC. This program also outputs any node names on logical

unit 4. This program also performs some preliminary edit checks to

determine the validity of data. The preliminary edit checks include:

• Node number in range (i.e., 1 ~node number~ last Freeway

Node Number)

• Valid time or speed code (i.e., TorS)

• Valid directional code (i.e., 0, 1, +, -)

• Calculates either time or speed and determines if impedance is

less than or equal to 163.83 "minutes".

VREC: This program performs the following functions:

• If there are more than one set of sorted link data records

produced in NEWNET (i.e., more than approximately 2727 link data

cards), the links are then merged.

• Performs various edit checks which includes:

a. Check for duplicate links

b. Check to determine if each node appears to be properly connected

to network (Note: basically this only checks to see that

each link is connected to another node. It does not check

for network fragmentation since this can presumably be found

by building test trees).

II-16

• Prepares and outputs "Flexible Record Data Set".

• Also inputs and merges 22 byte link records with link records in

core if there were more than 2727 link data cards.

MRGREC: Essentially this is just a modified version of VREC for the

$REVISE NETWORK. It performs the same functions as VREC except it can

merge up to 4 data sets instead of 3 (the additional data set is the

old Flexible Record Data Set which is being revised).

COPYFT: Again, this program is only used in conjunction with $REVISE.

NETWORK. This program performs the following functions:

• Updates the field in the Flexible Record Data Set which contains

the number of one-way links.

• Copies the Flexible Record Data Set in VB instead of VBS

record format (note: FORTRAN unformatted WRITE requires either

VS or VBS).

II-17

LOGICAL DIVISION 5

General

This section reads the Flexible Record Data Set from the unit NEWNET

and produces the following tables:

• Cross Classification of V/C Frequencies
from Last Two Assignments

• Cross Classification of Link Counts by
V/C Ratio from Last Two Assignments

• Jurisdiction Summary

• Jurisdictional/Functional Cross
Classification of Assigned Volumes

• Jurisdictional/Functional Cross
Classification of Counted Volumes

• Jurisdictional/Functional Cross
Classification of Link Capacities

• Comparison of Assigned Volumes with
Counted Volumes

• Comparison of Assigned Volumes with
Link Capacities

• Comparison of Assigned Volumes (from
last assignment) with Assigned
Volumes (from assignment before last)

• Iteration Weighting-Multiple
Regression Analysis

• Link Volumes

• Iteration Weights Applied

• Corridor Intercept Tables

• Route Profiles

• List of Volumes and Impedances for
Updated Links

Some of these tables are printed only when certain conditions are met

(see section on OTHER INFORMATION).

II-18

Input: Unit NEWNET.

Output: The tables listed inthe general section above and Unit ROUTE.

Control Sections: SUMRY, CD, WGTLD, GTLD, CMPVH, REGRES, CRDINT, ALCP,

RTPFL

Sequence of Subroutines Called

$ASSIGN and

$ASSIGN SELECTED LINKS

SUMRY

GTLD

~ CMPVH _ __......,_... REGRES

~CRDINT
RTPFL

$ASSIGN SELF-BALANCING (iterations 1- 5,and the calculated weighted
assignment if "WGT" is specified on the *TURN
card)

GTLD

SUMR.Y ~ CMPVH

~ALCP
$ASSIGN SELF-BALANCING (Weighted assignment made from weighted

impedances if "WGT" is specified on the
*TURN card, otherwise calculated weighted
assignment)

GTLD

SUMRY ~ CMPVH --....i! ... -....REGRES

~CRDINT
RTPFL

$ASSIGN SELF-BALANCING (after last iteration)

Logical Division 1 --')!lr~ WGTLD

II-19

Descriptions of Individual Control Sections

SUMRY: This is the control program for the summaries produced after

an assignment. The:subroutines called by SUMRY are determined by three

logical variables. One of the logical variables, SUM, if true causes

GTLD to produce a weighted assignment on unit NETWORK and produce all

tables and comparisons from this weighted assignment. Subroutine ALCP

is only called if logical variable RES is true. If logical variable

RTP is false then the corridor intercept and route profile tables are

skipped.

GTLD: This subroutine prints the V/C cross classification table if there

are two or more assignments on unit NEWNET. It computes the summations

necessary for the tables printed by subroutine CMPVH and for the curve

fit printed by subroutine ALCP. It saves corridor intercept information

in core in labeled common CD. It writes route profile records on Unit

ROUTE. If logical variable SUM is true, GTLD calculates weighted

directional volumes and updates the flexible data record writing it on

unit NETWORK. All comparisons and tables are made from the weighted

directional volumes if SUM is true.

CMPVH: This subroutine prints the Jurisdiction Summary or the Jurisdictional/

FUNCTIONAL Cross Classification Tables and the three Comparison of Assigned

Volumes with link volumes, Counted volumes, and Capacities.

REGRES: This subroutine performs a linear regression analysis and prints

the results of this analysis.

CRDINT: This subroutine calls VSORT (which sorts the corridor intercept

records) and prints the corridor intercept tables.

II-20

ALCP: This subroutine performs a multiple regression analysis to determine

the iteration weighting for the ASSIGN SELF-BALANCING process and prints

the results of this analysis. Only the links with a non-zero count (or

capacity depending on which is specified) are considered and centroid

connectors are ignored. The count {or capacity) is the dependent

variable and the assigned directional volumes from each of the iterations

are the independent variables in the analysis.

RTPFL: This subroutine reads the route profiles from unit ROUTE and

prints the route profile tables.

CD: This is a labeled common area used to save the corridor intercept

records when GTLD is run until subroutine CRDINT runs.

II-21

LOGICAL DIVISION 6

General

This division is called by Logical Division 1 and performs the

$PREPARE SPIDER NETWORK program.

Input: Link data cards for a spider network from unit INLNK.

Output: Printed errors, index and link records on unit 1, node names

on unit 4, and a link speed frequency table

Control Sections used: BLDNET

Sequence of Subroutines Called

Logical Division 1 ----~a-.. BLDNET

Descriptions of Individual Control Sections

BLDNET: Subroutine BLDNET reads the link data cards and writes index

and link records on unit 1 and node names on unit 4. The link data are

edited and errors printed. The network speed is calculated and the link

speed frequency table is prepared and printed.

II-22

LOGICAL DIVISION 7

General

This division is called by Logical Division 1 and uses the WRT

subroutine in Logical Division 20. It basically performs the $DELETE

ASSIGNMENTS program. As may be recalled, the $DELETE ASSIGNMENTS

program can delete up to 20 assignments from the NETWORK data set and

can also replace the impedances to be used on the next assignment

with the impedances used on any previous assignment (even if the assignment

is being deleted), or it can modify the impedances according to the

impedance adjustment function. The WRT subroutine is used to output

the flexible record data set in the desired record format type (i.e.,

V or VB).

Input: Old flexible data record (unit 12), and DELETE ASSIGNMENTS

parameter cards from unit 5 (i.e., *IMPEDANCE, *ADJUST, *DELETE, and

*END cards) .

Output: Updated flexible data record (unit NETWORK).

Control Sections: UPDTNT

Sequence of Subroutines Called

UPDTNT ----~--~ WRT (Logical Division 20)

Descriptions of Individual Subroutines

UPDTNT: This subroutine basically performs the functions of the

$DELETE ASSIGNMENTS program. The specific functions performed are, of

course, determined by the parameter cards supplied by the user (i.e.,

the *IMPEDANCE, *ADJUST, *DELETE, and *END cards). It should be noted

II-23

that the last parameter card must be the *END card. It should further

be noted that if the *END card is the only parameter card provided

then the flexible record data set will simply be copied on unit NETWORK.

The WRT subroutine (in Logical Division 20) is used to write the

records (of the flexible record data set) on the unit NETWORK using the

record format type V or VB. The WRT subroutine changes the record

format type specified in the DCB parameter of the DD card for the unit

NETWORK as either VS or VBS to V or VB respectively. Effectively,

OPENFT removes the span parameter, S, from the DCB. This was implemented

to avoid problems caused by the FORTRAN Input/Output requirements of

certain versions of the Operating System.

II-24

LOGICAL DIVISION 8

General

This division prints the links which have non-zero count or capacity

fields (whichever has been specified) during the $ASSIGN SELF-BALANCING

program. The directional link volumes and the link impedance are listed

for each iteration and for the calculated weighted assignment and the

optional assignment made with the weighted impedances. The count or

capacity field is also listed.

Input: Flexible record data set on unit NEWNET.

Output: Printed list of links with link volumes and impedances for

which the link count or link capacity field, whichever was used, is

non-zero.

Control Sections Used: LNKLST.

Sequence of Subroutines Called

Logical Division 1 (MAIN)--~-..._.. LNKLST

Descriptions of Individual Control Sections

LNKLST: The function of this subroutine is listed in the general section

above.

II-25

LOGICAL DIVISION 9

General

This division is called by the program MAIN (in Logical Division 1)

and performs the $OUTPUT SPIDER NETWORK program.

Input: Unit 1.

Output: Printed spider network.

Control Sections Used: OUTSNT

Sequence of Subroutines Called

Logical Division 1 (MAIN) --....._o!i:Jia--. OUTSNT

Descriptions of Individual Control Sections

OUTSNT: This program reads a spider network from unit 1 and formats

it with from 1 to 8 links per line. The program also prints the network

speed. This program can not read a flexible data record.

II-26

LOGICAL DIVISION 10

General

This division is called by the program MAIN (in Logical Division 1)

and performs the $MERGE program. It can be used to merge from two to

six trip matrices.

Input: Units MERGIN(l) to MERGIN(N)
(where N is between 2 and 6)

Output: Unit MRGOUT

Control Sections Used: MERG

Sequence of Subroutines Called

Logical Division 1 {MAIN) --~:;..-..MERG

Descriptions of Individual Control Sections

MERG: This subroutine reads a merge parameter card which specifies the

number of data sets to merge. The MERGIN and MRGOUT units must have

previously been specified on a unit control card. The parameter records

f~om these data sets are examined and the first zone of each subnet must be

the same. If any are different an error message is printed and the

program stops. The largest last zone of each subnet is used for the

merged trip matrix which is written on MRGOUT. Then the trip matrices

are summed and written on unit MRGOUT.

II-27

LOGICAL DIVISION 11

General

This division is called by the program MAIN (in Logical Division 1)

for the $PLOT ROUTE PROFILES program. It prints the route profiles from

a previous run of ASSIGN, ASSIGN SELECTED LINKS, or ASSIGN SELF-BALANCING.

It also prepares calcomp plots of the routes with assignments, counts,

or link capacities specified.

Input: Unit ROUTE, parameter cards t.o ~pecify routes and assignments

Output: Printed route profiles of all routes and a calcomp plot tape.

Control Sections Used: RTPLT, SC, and calcomp subroutines.

Seguence of Subroutines Called

~ Logical Division 12 (VSORT)

RTPLT ~ SC

Calcomp Subroutines
(AXIS, LINE, NUMBER, PLOTS, SYMBOL)

Descriptions of Individual Control Sections

RTPLT: This subroutine reads the route parameter card specifying which

routes are to be plotted. It then reads the parameter card specifying

which assignments, counts or capacities are to be plotted. It then

reads the ROUTE data set and prints the route profiles and plots those

which have been specified.

SC: This subroutine is used to round the scaling factor.

II-28

LOGICAL DIVISION 12

General

This division contains the subroutine VSORT which performs an in-core

sort. It is used by Logical Divisions 4, 5, and 11.

Input: Unsorted data in core in records of from 1 to 256 bytes/record.

Output: Sorted records in core.

Control Sections Used: VSORT

Sequence of Subroutines Called

Logical Division (4, 5, or 11) ---3.,.._..VSORT

Descriptions of Individual Control Sections

VSORT: This subroutine sorts records in core. The first argument in

the calling sequence is the address of the array of records to be

sorted. The second argument is the number of records. The third argument

is the length of each record in bytes (must be between 1 and 256 bytes). The

fourth argument is the length of the sort key in bytes (must be between

1 and 256 bytes) which can not be longer than the record length. The

sort key starts at the first byte of the record. The sort key is treated

as an unsigned binary number and the records are sorted into ascending

order on the sort keys.

II-29

LOGICAL DIVISION 13

General

This division is called by the program MAIN (in Logical Division

1). It inputs the card trip volume records; checks to see that they are

in ascending order on origin and destination zones; and builds a

trip matrix which is outputted on unit CTVOUT.

Input: Parameter card on unit 5, card trip volume records on unit CTVIN.

Output: Trip matrix on unit CTVOUT. ·

Control Sections used: PRPCTV, SUBFND, VOLTP

Sequence of Subroutines Called

PRPCTV ----~~~SUBFND

Descriptions of Individual Control Sections

PRPCTV: This is the main part of the code for this logical division.

It reads the parameter card which specifies the volume field (of the

three available) to be used. This parameter card also specifies the

number of subnets and the first and last zone of each subnet.

After the parameter card is read, the trip volume records are read.

The program checks for records which are out of sort with regard to

the origin and destination zone numbers. It also checks to see that

both zones are in the zone ranges specified for the subnets by calling

subroutine SUBFND, and checks for duplicate origin and destination zone

numbers. It writes a trip matrix on unit CTVOUT of those trips for

which there were no errors.

II-30

SUBFND: This subroutine determines the subnet containing the origin

zone and the subnet containing the destination zone. It then verifies

that both the origin and destination zone numbers are within the zone

ranges specified on the parameter card.

VOLTP: This is a labeled common area used by subroutine PRPCTV.

II-31

LOGICAL DIVISION 14

General

This logical division is called by the program MAIN (in Logical

Division 1) and performs the $OUTPUT TRIP VOLUMES program. It essentially

prints the trip matrix contained on Unit CTVOUT.

Input: Unit CTVOUT.

Output: Printed trip matrix.

Control Sections used: OUTRIP

Sequence of Subroutines Called

Logical Division 1 CMAIN) --""'!i!)lll_. OUTRIP

Descriptions of Individual Control Sections

OUTRIP: This subroutine reads a trip matrix from unit CTVOUT and prints

it with each origin zone starting on a new page. It prints 10 destination

volumes per line. The zone numbers printed run from the first zone

number for a subnet to the last zone number for that subnet in groups

of 10. If a group of ten destination volumes are all zero they are not

printed. The origin zones are considered in sequential order.

II-32

LOGICAL DIVISION 15

General

This division is called by the program MAIN (in Logical Division 1)

and performs the $SUM TRIP ENDS program.

Input: Trip matrix on unit CTVOUT.

Output: A printed table.

Control Sections Used: SUMEND

Sequence of Subroutines Called

Logical Division 1 (MAIN) --.....ii!i, SUMEND

Descriptions of Individual Control Sections

SUMEND: This subroutine performs a summation of a trip matrix by rows

and columns exclusive of the diagonal elements (i.e., the intrazonal

volumes). The number of non-zero trip volumes are also counted. A

table is then printed containing a summary of the trip volume character

istics for each zone.

II-33

LOGICAL DIVISION 16

General

This division is called by the program MAIN .!'and performs the

$OUTPUT NETWORK program.

Input: Unit NETWORK.

Output: Printed network description.

Control Sections Used: OUTNET and FMTLNE.

Sequence of Subroutines Called

OUTNET --~>~FMTLNE

Descriptions of Individual Control Sections

OUTNET: This subroutine writes the page headings and calls subroutine

FMTLNE to format each line of the network. It reads the link records

from unit NETWORK and calls subroutine FMTLNE to format this data for

from 1 to 4 links per line. The subroutine prints 50 nodes per page. If

a whole page of node numbers to be printed are not included in the network

(i.e., they have no connecting nodes), the printing of the' page is

suppressed. The data for a link that is printed is ANODE, BNODE,

jurisdiction, shaft, arrow, link speed, link distance and link impedance.

The link impedance printed is the link impedance which will be used if

this flexible data record is used as unit NETWORK when the next assignment

or BUILD TREES is run.

FMTLNE: This subroutine formats the link data of from one to four links

with the same ANODE to be printed on one line. If a link is a dummy

one~ay link the literal ONE-WAY is printed for it along with its

BNODE and the other data for this link is not printed.

II-34

LOGICAL DIVISION 17

General

This division is comprised of a control program and two logical

subdivisions (17A and 17B). It basically performs the following functions.

• $BUILD TREES

• $ASSIGN

• $ASSIGN SELF-BALANCING

e $ASSIGN SELECTED LINKS

Logical subdivision 17A performs the build trees and load trips functions.

Logical subdivision 17B is used to print the loaded network and to

update the flexible record data set.

Input: The input required by programs in this division (depending upon

the function being performed) is as follows:

• Flexible Record Data Set

• Trip Table

• *TURN cards

• *TREE cards

e Parameter cards for ASSIGN SELECTED LINKS (if needed)

Output: The output from this division consists of one or more of the

following (depending upon the functions being performed):

• Selected trees are printed (as specified by the *TREE cards)

• The loaded network is printed (except for certain iterations

in the assigned self-balancing process)

• A new flexible data set is prepared (except when $BUILD

TREES is run)

II-35

• Selected link interchanges are output on a sequential data

set (under assign selected links option)

• A separation matrix is prepared.

Control Sections Used: CAPREP, TREBtD, PATHCL, CLOSE, IN!TLl, PRPBLD,

SELECT, FASPTH, OUTTRE, LOAD, READVL, LOAD2, OUTLNT, OUTLLT, TURNM,

TRNMV, GETRNS , GETVOL

Sequence of Subroutines Called

$ASSIGN:

PRPBLD

AINITLl

PATHCL ~ FASPTH

/ ~ ~::R-E---3>~. READVL

TREBLD·~·
,??TURNMV

OUTLNT ---->~ OUTLLT ---7 TURNM
~ GETRNS ~ TURNMV

$ASSIGN SELECTED LINKS:

II-36

~TURNMV

TURNM '"
~ GETRNS ~ TURNMV

$ASSIGN SELF-BALANCING:

PRPBLD
~INITLl

/

PATHCL ~>FASPTH
OUTTRE
LOAD ~ READVL

TREBLD
~ GETVOL
~ OUTLNT-? OUTLLT::::! _/f TRNMV

~ TURNM

$BUILD TREES:

PRPBLD

TREBLD --~>!Ito PATHCL ~INITLl
~.FASPTH

~OUTTRE

Descriptions of Individual Control Sections

~ GETRNS ~ TRNMV

TREBLD: This is the basic control program for Logical Division 17. It

contains three entry points; TREBLD, TREE, and SELLD. The TREBLD entry

point is used for $ASSIGN and for the various iterations in $ASSIGN

SELF-BALANCING. The TREE entry point is used for $BUILD TREES. The

SELLD entry point is used for $ASSIGN SELECTED LINKS.

Basically this control section sets 2 or 3 logical variables and

calls PATHCL (the control program for logical division 17A). After the

programs in logical division 17A have been executed, TREBLD then calls

OUTLNT (the control program for logical division 17B).

II-37

CAPRES: This is a labeled common used in the ASSIGN SELF-BALANCING process,

which is available to all programs in this division. It is used to save

the information from the *TURN and *TREE cards.

PATHCL: This subroutine controls the assignment process. It reads

the NETWORK data set and extracts the part of the network used for

building trees. It calls subroutines that build trees, load trips, and

output trees as needed to perform an assignment. It also reads the

*TURN and *TREE cards by calling PRP~LD. If an $ASSIGN SELECTED LINKS

is specified, it calls SELECT to read the selected link parameter cards

and mark the selected links. It also writes the sep~ration matrix. If

$BUILD TREES is specified, it simply builds the trees and skips the loading

of trips.

CLOSE: This subroutine closes data set SELTRP and releases its buffers.

OPEN: This subroutine is in control section CLOSE and it opens data

set SELTRP.

INITLl: This subroutine initializes the volumes assigned to the network

to zero and it builds the turn index array used by subroutine LOAD or

LOAD2 in the assignment and by subroutine OUTLLT in presenting

the loaded network. It also checks to see that there are less than

4000 nodes, 1200 centroids, 16000 one-way links, and 20,000 turning movements.

PRPBLD: This subroutine reads and examines the *TURN and *TREE cards

used in BUILD TREES, ASSIGN, ASSIGN SELECTED LINKS, and ASSIGN SELF

BALANCING. The centroid numbers to build trees for are put in two

arrays and a logical array is set to specify if the trees are to be

printed. II-38

SELECT: This subroutine reads the parameter cards (other than the *TURN

and *TREE cards) which are used by ASSIGN SELECTED LINKS. It examines

the cards for errors; prints the actions specified and sets flags

on the selected links; it writes parameter records for the selected links;

and, it also sets a logical variable to specify if the loaded network

should be printed.

FASPTH: This subroutine builds one minimum path tree from the origin

in its calling sequence for each call to it. It returns the path of the
·,

tree and the cumulative link impedances to reach each node or centroid

in the path.

OUTTRE: This subroutine prints the path and cumulative impedance to

reach each node and centroid in one minimum path tree for each call to

it.

LOAD: This subroutine is called once for each tree to load all trips

with an origin at the home zone of the path. This subroutine calls

subroutine READVL to read trip volume records. This subroutine must

be called once for each tree that is to be loaded.

READVL: This subroutine is called by subroutine LOAD to read trip volume

records and returns the trip volume record and a flag indicating whether

an end of data set has been reached on unit CTVOUT.

OUTLNT: This is the first level program in division 17B, it defines

arrays and calls subroutine OUTLLT.

II-39

OUTLLT: This is the basic control program in this division. If an

ASSIGN SELF-BALANCING program is being run in iterations 1 5 this

subroutine calls subroutine GETVOL to get directional link volumes as

full word integers and turning movements as full word integers and writes

these on Unit 3.

For all calls to this subroutine it also reads the flexible data

record from unit NETWORK and writes an updated flexible data record on

unit NEWNET in which the nondirectional assigned volumes and link

impedances forthe present assignment are added to the flexible data record.

If the present assignment is an ASSIGN SELF-BALANCING iteration 1

through 5 then the link impedance to be used on the next assignment is

updated if counts were specified and the link has a non-zero count or

if capacities are used and the directional link volume is greater than

the capacity and the capacity field is non-zero.

The program also prints the assignment (except for ASSIGN SELF

BALANCING iterations 2 - 5 and for ASSIGN SELECTED LINKS when no output

is specified).

TURNM: This subroutine gets the directional and nondirectional link volumes

for a node, gets the turning movements which were saved, and calculates

the turning movements which were not saved. It also marks which turn

volumes are to be printed.

TRNMV: This function adds the two indexes supplied to it to form a single

index to get the turn volume or directional link volume or index and

flag. If it gets an index this index is used to get the actual volume

from the overflow array.

II-40

GETRNS: This subroutine places the saved turn volumes in the turning

movements matrix.

GETVOL: This subroutine gets from 1 to 4000 link volumes or turning

movements and places them in a full word integer array.

II-41

LOGICAL DIVISION 18

General

This division is called by the program MAIN (in Logical Division 1)

and performs the $FRATAR FORECAST program.

Input: Parameter card and growth factor cards on unit 5 and trip

matrix on unit CTVOUT.

Output: Unit FRATAR. (Variable unit number CTVOUT is set equal to

unit FRATAR after the program is run.·) A table of iteration growth

factor frequencies is also printed for each iteration.

Control Sections Used: FRATAR

Sequence of Subroutines Called

Logical Division 1 (MAIN) --~>~ FRATAR

Descr·iptions of Individual Control Sections

FRATAR: This subroutine reads a deck of zonal growth factors and uses

Fratar's method of successive approximations to generate a forecasted

trip matrix. Each approximation constitutes one iteration; the number

of repetitions is governed by either an iteration limit or a deviation

limit.

II-42

LOGICAL DIVISION 19

General

This division is called by the program MAIN (in Logical Division 1).

It performs a spider network assignment and prints the loaded network.

Each node in the spider network may have up to 8 links and no turn

movements are printed in the loaded network output. Trees are built

through both nodes and centroids.

Input: Unit 1 (index records and link records) node names on unit 4,

trip matrixon unit CTVOUT.

Output: Printed loaded spider network.

Control Sections Used: PATHSP, GROUP!, SLOAD, MOORE, OUTSLN.

Sequence of Subroutines Called

~MOORE

PATHSP ~~ SLOAD

. ~ OUTSLN

Descriptions of Individual Control Sections

PATHSP: This subroutine reads the network from unit 1. It then builds

trees by calling subroutine MOORE for every zone which has trips with

that origin zone and it loads the trips read from unit CTVOUT on each

tree immediately after the tree is built. Subroutine OUTSLN is then

called to print the loaded network.

MOORE: This subroutine builds a minimum path tree from one origin centroid

each time it is called.

II-43

SLOAD: This subroutine loads the trips for one origin zone in the network.

It also reads the next trip record from unit CTVOUT and, if it has the

same origin, it loads it also. It continues to read trip records and

load the trips until it reaches an EOD on unit CTVOUT or a trip record

with a different origin zone is encountered. It sets a logical variable

EOF (EOF is set to true when an EOD has been reached on unit CTVOUT)

and returns control to the calling program.

OUTSLN: This subroutine prints the loaded network.

GROUP!: This labeled common is used to group two scratch half word arrays

of 3500 half words each used by subroutine MOORE to make a full word

array of 3500 words which is used by subroutine SLOAD. It also forces

the array used by SLOAD to a full word boundary.

II-44

LOGICAL DIVISION 20

General

This logical section contains the assembly language subroutines

used to write records in record format VB on FORTRAN units

which can be read with FORTRAN unformatted read statements. These

subroutines were necessary because of an error in version 18 of IBM 360/0S

which occasionally caused extra data to be read when data sets written

with record format VBS were read. These subroutines are probably faster

than FORTRAN write statements because they use the Queued Sequential

Access Method whereas Fortran uses Basic Sequential Access Method; and,

in addition, the assembly language subroutine WRT requires only one call

for each list whereas FORTRAN generates one call for each variable and

one call for each variable for each iteration in an implied DO loop.

This logical division also contains subroutine ABEND which is called

several places to write the message ERROR and a number where no error

in the program operation is normally expected.

Input: none

Output: One record for each call to subroutine WRT.

Control Sections Used: OPENFT, CLOSFT, ABEND, and WRT

Sequence of Subroutines Called

The subroutines in this division may be called from many points

in the package. The following, therefore, summarizes the subroutines

which may execute a call to the subroutines in this division:

• ABEND may be called by TRN and TURNM.

• CLOSFT may be called by GTLD, OUTLLT, UPDTNT, and VREC.

II-45

e OPENFT may be called by GTLD, OUTLLT, UPDTNT, and VREC.

e WRT may be called by GTLD, OUTLLT, UPDTNT, and VREC.

Descriptions of Individual Control Sections

OPENFT: This is an assembly language subroutine to open a FORTRAN type

DDname. The DCB is built in one of two areas (specified by either a 1

or a 2 as the first argument) in the control section OUTDCB. TheFORTRAN

unit number is specified by the second argument and the DDname used is

FTXXFOOl where the XX is the integer.from the second argument. The data

set is opened twice. The first time it is opened the DCB information

from the DD card is obtained and the data set is closed.

The spanned code is then removed from the DCB in core and the data set is

reopened. For this reason the RLSE subparameter should not be used in the

SPACE allocation parameter on data sets which are used as unit NETWORK,

unit NEWNET, or unit ROUTE because the primary extent is all released

except for 1 track when the first CLOSE macro is executed by subroutine

OPENFT.

CLOSFT: This subroutine closes the data set whose DCB is in the OUTDCB

CSECT. The DCB is indexed by either a 1 or a 2 which is the argument

in the call to CLOSFT.

WRT: This subroutine writes one logical record on the unit which is pointed

to by the "opened" DCB in CSECT OUTDCB. The DCB is indexed by either a

1 or a 2 as the first argument in the call to subroutine WRT. The logical

record written may be made up of one or more record segments. This

subroutine uses the PUT macro with the locate mode to get the address

of each new record segment. The rest of the calling sequence of subroutine

II-46

WRT is variable and is made up of a variable number of arguments which

are in groups of arguments that correspond to an implied DO loop in

a FORTRAN write. The first item of a group indicates by its sign whether

the variables are half words or full words. If the sign is minus the

arguments are half words. If the sign is positive they are full words.

The absolute value of the first item of each group is the number of

variables or array names in the group. The second item in the group is

the number of implied DO loop iterat~ons M that should be used to transmit

the array(s). The next I'NI arguments are the arrays or variables. Only

the array or variable items are transmitted. If M is greater than 1,

a loop is set up in which the addresses (from which data is being moved)

are incremented by a constant at the bottom of the loop. If N is

negative, the constant is set to 2; and if N is positiv~, the constant

is set to 4. The loop is executed M times. There may be as many groups

in the call as are necessary provided that the total number of arguments

in a call ~o subroutine WRT does not exceed the limits for the Fortran

compiler being used for the Fortran calling subroutine.

ABEND: The subroutine prints the message ERROR followed by the integer

identification code which is passed to it through the arguments.

II-47

LOGICAL DIVISION 21

General

This division prints the selected links output (i.e., the output

from $ASSIGN SELECTED LINKS). This division is unique in that it must

be a separate job (or at least 3 job steps) because it uses the IBM

sort program twice.

Input: Selected links data set SELTRP.

Scratch: First and second sorted data sets SORTOUT.

Output: Printed listing for each selected link of the zone pair trip

interchanges assigned to the selected link.

Programs used: The IBM Sort/MERGE program, the exit program E 35, and

a Fortran program to list the selected links and the trip interchanges

loaded through them (i.e., MAIN).

Sequence of Program Execution:

JOB
STEP 1

JOB
STEP 2

JOB
STEP 3

IBM SORT---------..:;:... IBM SORT _.., ____ -=> MAIN (List Selected Links)

" E 35

Summary of Individual Programs

IBM Sort/Merge Package: refer to the OS Sort/Merge Programmer's Guide,

sc 33-4007-1.

E 35: This subroutine is called during JOB STEP 1 by the IBM Sort program.

It combines the trip interchange records for each zone pair associated

II-48

with a given selected link thereby reducing the number of records to

be sorted during JOB STEP 2. The combined trip interchange record,

which is outputted for each zone pair interchanging trips through a

selected link, contains both the directional and non-directional zone

pair trips through the selected link. The total non-directional trip

volume assigned to a selected link is also computed and outputted as

a separate record. (During JOB STEP 2, the combined interchange records

are sorted using the two sort keys: selected link number and non

directional trip volume.)

MAIN (List Selected Links): This is a Fortran program which reads the

combined trip interchange records for the selected links (which were

sorted during JOB STEP 2 using the keys: Selected link index number

and non-directional ·zone pair volume) and prints the interchanges assigned

to each selected link (in,descending order of magnitude of the non

directional volumes) until either a limit parameter has been satisfied

or until all interchanges have been printed.

II-49

E 35

COMBIHI TWO DIRECTIONS
or TRIP l«)VF.KDTS
THRU SAMi LDIX AND WRiTE·
~RECORD

START PRINT SELECTED
LINKS JOB

RINT SILICTED LINKS
OUTPUT

II-50

P R 0 G R A M C R 0 S S - R E F E R E N C E

AND FLOWCHARTS

CROSS-REFERENCE OF PROGRAMS

FLOWCHARTS

CROSS-REFERENCE

OF PROGRAMS

A complete cross-reference of calling programs versus programs

called is provided in Table 4. This cross-reference serves both to

identify all programs used by a given calling program and to, conversely,

identify all calling programs which utilize a given program.

This cross-reference should prove especially useful when considering

the modification of a program. For example, if modification is desired

in OPENFT when used in conjunction with GTLD, a quick reference to Table

4 indicates that OPENFT is also called by OUTLLT, UPDTNT, and VREC.

Therefore, any modifications in OPENFT should be compatible with all four

calling programs.

III:-1

PROGRAMS ~ I ! I s a 1 a ~ ; ~ CALLED ~ B a rl u 1!!1

ABEND

ALCP

ALOGlO

AHAXl

ASMNET

BLDNET

CLOSE

CLOSFT X
CMPVH

COPYFT

C1tD

CRDINT

DSQRT X
FASPTH

FHTLNE

P'RATAR

FRXPI

FRXPR

GETDAT

GETRN

GETRIIS

GETVOL

GTLD

GTLNK

IBCCII l(X X X X X X l X
lNITLl

LANA X X X
LANAD X

LANAH

t.ANAL X X X
LGLS X X
U:li.S X X X X.
LIRE

LNKLST

LOAD

LOAD2

LORA X X X
'IAXO

MERG

MINO

MOORE

MRG'RI!C

NIIN

MEWNET X
IIJMBE'R

OPEII

OPIIII'T X

TABLE 4:

~ I I I I I

X

X

X

X
X

X

X

I

I

X

CROSS-REFERENCE OF
CALLING PROGRAMS VERSUS
PROGRAMS CALLED

I i i I I I ~ I I I I I I I I I &!

X X

X

X

X

X

X

X

X X X X X X I X X X ·X X X X X X X X X X
X

X X X X X

X X X

X

X X X X X

X X X X

X X X X X X X
X

X

X
X

X X X X
X

i I
X

X

X

X X

X

X

I;rl-:-2

=a <Ill. <Ill ~ I I i I ~ i I ~ ~ 2 ~
!i fa

X X

X

X X
:.{

X

X

X
X

.(

X

X X X X X X X X X

X X X x ·x X

X X X

X

X l X

X X

X X X X

X X X X X

I

X

X X

I'KtX:IlAMS
t:AI.I.ED

tler!.LT

OIITI.NT

tliiTNET

tlliTRJP

OIITSI.N

OliTSNT

tl!ITTRE

lll''I'Wl,T

I'ARAH

PATHCL

PWT

PLOTS

PRPBLD

PRI'CTV

PRPNET

PTLNlC

READVL

REG RES

Rf.VNET

RTPFI.

RTPLT

SELECT

SELLD

SLOAD

SORT

SUBFND

SUM END

SUMRY

SYMBOl.

TIME

TRt:BI.O

TRN

TRNMV

'lllRNM

liPnTNT

VREC

VSORT

wr.:r
1-K:TA

WRITE

WRT

W'TLNT

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

TABLE 4: (continued)

CALLING PROGRAM

X

X

.·

X X X

X

X

X

X

X

X

X

X

X X X

X

lx

X

X X X

X

X X)(

III-3

FLOWCHARTS

The following are the flowcharts associated with the significant

subroutines in the Small Network Package. For convenience, these flow

charts are in alphabetical order.

The objective ·of the flowcharts is to provide the programmer with

an overview of the operation of each individual program. The level

of detail contained in each flowchart is felt to be minimal for such

an understanding. It should also be noted that these flowcharts are

intended to be used in conjunction with information contained in sections

V and VI (and, in some instances; section VII) when reviewing or studying

a particular program listing.

III-4

SUBROUTINE

AL·CP

CALCULATE RBGUSSION
VALUES FOR A LINEAR CURVE
FIT OF THE ITERATION
ASSIGNMBNTS 1'0 liTHER
COUNT OR CAP.

PRINT RBSULTS
OF REGRBSSION

YES SET CONVERGBNCB ,
VARIABLE TO INDICATE THIS
IS THB LAST ITERATION

III-5

ALCP

BLDNET

BLDNET

+
i

REWIND UNITS 1
AND 4. FORMAT•
.FAL~I.

t
INITIALIZE ARRAY
FOR C00NT OP LINKS
FROM EACH NODE TO
ZEROES FOR .3500
NODES •

•
CLEAR LINKS ARRAY FOR
28,000 ONE WAY LINKS
TO ZEROS •

•
lNITIALIZB SUMMATION
VARWLES FOR TOTAL
NBTWOIUt MILEAGB AND
NUMBBll OP ZIRO TIMB
LIIIKS TO ZDOBS •

t
INITIALIZI ARRAY TO
SUM NUMBD OF LIRS
OF EACH SPIED IN ONE
MILl INCRIMBNTS TO
znos. NDP • 0

!
lV

III-6

lH.Au L!!IK DATA FORMAT
, :. \AM~ FtlllMAT AS POR
~~UAK~. NE'NORK.
Nl I !II(~ • 1

READ LINK DATA CARD
WITH OP TO 4 LINKS.
NLINKS • 4

CONVr:RT COLUMNS 3 - 6
TO AN INTEGER, BACKNI>

NDP * BACKND
WRITE THE NAME AND
BACKNI> ON UNTT 4.

J = 1

COST • TIME OR SPEED
FlELD/100.0

III-7

YES

NO

BlllNET

PRINT ERROR MJo:SSAt:E:
MISPUNCHED TIME AND/OR
SPEED FIELD XXXXX XXXX.

COST :DISTANCE *6.0/
SPr:ED + 0.005
(INCLUDES SGA!.IN(;)

PRINT ERROR MESSAGE:
ILLEGAL NODE DESIGNATIONS
ON THIS CARD XXXX XXXX
xx.xx

PRINT ~RROR MESSAGE
Sf.T COST • l0.23

PRINT ~:RitoR MESSAGE

PRINT ERROR MESSAGE

PRINT BUOR MESSAGE

PRINT ERROR MESSAGI!

D1TI!1l THE LIRIC IN THE
ICBTWORK

IF COST • 0.0,
IZLINK • IZLIRIC + 1.
ADD 1 TO SPEI!D IWIGE
IN WHICH THE LIRIC FALLS.
SUM MILEAGE

III-8

NO

ENTER THE 1.1 NK B NODE
TO BACKND IN THE
NEtwoRK

BLDNET

EOF • o TRUE o

FIND LAST NODE
NUMBER IH THE HB'rWORK

PACK OUT ZIROS IH
THE LINKS AUAY
AND BUILD THE LIHIC
INDEX· AUAY

PRINT THE NUMBER OF
ZERO LINICS IR THE
NETWORK, IZLIHICo

PRINT THE NETWORK
MILEAGE.

PRINT THE NON-ZERO
PART OF THE TABLE
OF THE NUMBER OF
LINKS AT EACH
SPEED.

WRITE THE PARAMETER
RECORD, INDEX .RBCOlUlS,
AND LINICS RECORDS ON
UNIT 1

END FILE i
REWIND 1

oTllUB.

BOD

III-9

READ A CARD FROM
UNIT 5

END FILE 4
REWIND 4

PRINT SOME OF
PARAMETERS

BLDNET

I .
CMPVH

INITIALIZE SUMMATION
VARIABLES TO ZERO

SUM UP THE VEHICLI!f
MILES FOR THE JURISDIC
TIONAL/FUNCTIONAL CROSS
CLASSll!'lCATIONS

CALCULATE AND PRINT
JURISDICTION SUMMAitY
BY LOCALS, ARTERIALS,
AND I!'REEWAYS

CALCULATE AND PRINT THE
"JURISDICTioNAL/FUNCTIONAL
CROSS CLASSll!'lCATlON
OF ASSIGNED VOLUMES"
SUMMAitY

CALCULATE AND PltlNT THE
"JURISDICTIONAL/FUNCTIONAL
CROSS CLASSIFICATION
OF COUNTED VOLUMES"
SUMMARY

III-10

CALCULATE AND PRINT tHE
"JURISDICTIONAL/FUNCTIONAL
CROSS CLASSIFICATION
OF CAPACITIES" SUMMARY

PRINT REGRESSION OF
ASSIGNED VOLUMES VERSUS
COUNTED VOLUMES BY ROUTE

PRINT REGRESSION OF
ASSIGNED VOLUMES
VERSUS LINK CAPACITIES
BY ROUTE

PRINT REGRESSION OF
ASSIGNED VOLUMES
VERSUS PR~IOUS
ASSIGNED VOLUMES BY
ROUTE

CMPVH

RETURN

END OP DATA SIT

PRINT PACKAGE DATE
AND NAME. SET I TO
INDEX OF CONTROL CARD
TYPE

PRINT INVALID CONTROL
CARD MESSAGE

YBS

NO

CRD

READ A UNIT CONTROL
CARD OR A CONTROL
CARD

CHANGE UNIT .NUMBBRS
SPECIFIED AND PRINT ALL
UNIT NUMBERS

PRINT · END OF FILE
ON S MESSAGE

us

III-11

CRD

SAVE HEADER

RETURN

CRDINT

IUD HJW)BR UCORDS
lOR ALL ASSIGNMJMTS
PROM FLEXIBLE DATA
RECORD AID PRINT.

SET UP rOIMATS FOR
lUMBER or ASSIGMMEMTS.
CALCULATE LENGTH or
RECORDS TO SORT.

PRINT CORRIDOR
INTERCEPTS BY
INTERCEPT NtJMBER
WITH PERCENTS AND
TOTAL BY CORRIDOR
INTERCEPT

III-12

CRDINT

*ASSEMBLY LANGUAGE

SUBROUTINE

E35 *

GI!T RECORD ADDRESSES

ADD DIRECTIONAL
VOLUMI! TO SUM.

SUM TWO DIRECTIONAL
VOLUMES AND PUT IN
PREVIOUS OUTPUT
REC. OR DIRECTION FLAGS •

III-13

E 3 5

HOVE VOLUME, FROM LARGE
WNF. NUMBER TO SMALL
ZON~: NUMBER, TO OTHER
D I RECTr ONAL VOLUME •

MOVE DIRF.t:TLONAL VOLUME
IN AS NON-DIRECTIONAL
VOLUME

ADD DIRICTIONAL
VOLUME TO SUM.

YES

PASS INPUT RECORD TO
OUTPUT. AHD RETURN,
RC • 0

YES. SIT I'LAG TO DEt.ETE OUTPUT
U:CORD SEQUENCE CHECK.

NO

YES

BUILD SUM RECORD, PUT
SUM IN SuM RECORD. SET
SUM • 0

III-14

REARRANGE SELECT RECORD.
SET INDBXP • LINK INDEX
OF SELECT RECORD

HOVE DIRECTIONAL
VOLUME IN AS NON
DIRECTIONAL VOLUME

E 3 5

*ASSfl\fRI.Y LANGUAGE

ENTRY

ENTER

S~:T ENTRY SWITCH
TO IIRANCH

SUBROUTINE

FASPTH•

SBT EITIY SWITCH to
NOP.

SAVE UGISTIIlS,
!STAII.ISH .A BASE
UGISTU. GET TUU
PENALTY Alllllo.Y

GBT 4* 1.Aft AllTDIAL

GET ADDIISS or UMIIDA
AltiAY; (C1MJJ.ATIVB BOD!
TIMIS).

GET ADDIISS or . INDEX
AltiAY (LI• INDIX ARRAY).

IHITULIZI LAMBDA
ARRAY LOCATIORS TO 224 -
1 IIUNDUDTIIS or MIHUTIS.

GET ADDUSSBS OF LINKS
AND SBQUiNCE AII.UY,
ISIQ.

INITIALIZE ISIQ ARRAY
OP 2048 HALF WORDS TO
ZERO.

III-15

INITIALIZE TO ST.U.T TREE
FROM. HOME · ZONE. SBT
LAMBDA (IIOMBND) • 0 PUT
HOHBND . IN SEQUENCE
TAIL!.

SET NUMBER OF ENTRIES
IN SEQUENCE TABLE TO
ZERO.

FASPTH
ENTE~

MAKE THE TABLE WARP
AROUND BY CALCULATING
EACH NEW INDEX MODULUS
2048.

I
i
I

NO

YES

GET NEXT EN'.t'RY FROM
SEQUENCE TABLE BY
SEARCH FROM LAST INDEX
UNTIL A NON-ZERO ENTRY
IS FOUND.

ZERO OUT THE SEQUENCE
TABLE ENTRY fOUID AND
CIWIGE SEQUDCB. EHTEUD
BIT STATE.

GET AUOW BIT OF WAY
TO THE RODE, GET INDEX
WREIE LINKS PROM THIS
RODE BEGINS.

INCIIMPT LINK INDEX TO
NEXT LINK.

GET LINK AND UNPACK B
MODE NUMBER, SHAPT ,
WOW, AND LINK TIME.

ADD LINK TIME, TURN
PINAL.TY AND TIME TO
A MODE

YES

III-16

SAVE NEW TIME TO B
NODE IN THE LAMBDA
AUAY

SAVE .NEW SHAFT BIT TO
THE B NODE. STORE B
NODE IN PATH AUAY.

CALCULATE I. •
MODULUS (NEW B NODE
TIME, 2048}. ADD ONE
TO NUMBER OF SEQ.
ENTRIES

STARTING AT I FIND
A ZERO ENTRY IN. THE
SEQ, TABLE AND PUT THE
B NODE IN IT, AT 2049
WRAP AROUND TO 1.

FASPTH
ENTER

RESTORE REGISTERS.
SET BACK NODE OF PATH
FROM. THE HOME ZOO TO
ZERO

GET.COUNT OF PARTITION
NODES

ENTER PARTITION TIMES
INTO LAMBDA ARRAY AND
PUT NODI NUMBERS IN
SEQ. ARRAY

ZERO PATH ENtRY FOR
BACH PARTION lfODE 1

SET ENTERED FLA.G, AND
SET SHAJT BITS TO 0.

III-17

FASPTH
ENTER

* ASSEMBLY LANGUA(;E

SUBIIOUTINE

FMTLNE •

SAVE itGISTERS. Gli:1
ADDUSSES OF ARGUME.NTS

GET ANODE AND NllKJiiR
OF LINKS TO PRINT ·oM
THIS LINE, NDS.

MOVE THE . RDIT PATTERN
iNTO THE OUTPUT LINE • ·

SET I ~ 1

CONVER'f THE ANODE . TO
PACKED DECIMAL AND
EDIT INTO THE OUTPUT
LINE

GET LINK I TO PRINT
ON THIS LINE

SEPARATE THE LINK INTO
SHAFT AND ARROW, LINit
TIME, AND 8 NODE

EDIT IN THE B NODE

III-18

EDIT IN TIM!. MOVE
EBCDIC SHAFT AND ARROW
IN

GET JURISDICTION,
DISTANCE, AND SPEED FOR
LINK I.

EDIT IN SPEED, EDIT
IN DISTANCE, MOVE IN
JUlliSDICTION.

I: I + 1

FILL THE REST OF THE
LINi WITH BLANKS

FMTLME

MOVE IN LITERAL
'(ONE WAY)'

PRINT MESSAGE:
1MPROPER GROWTH FACTOR
FIELD

NO

SUBROUTINE

FRATAR

INITIALIZE SUMMATION
VAlUABLES TO ZEllO,
INITIALIZE OTHEll
VAI!.IABLES.

READ PAlWIETER. CAlD AND
PRINT NUMBEll OF ITERA
TIONS SPECIFIED

PRINT GROWTH FACTOR
FIELD TYPE SPECIFIED ON
PARAMETEll CAlD

COPY TRIP MATRIX FROM
UNIT CTVOUT TO UNIT
FRATAR AND SUM TRIP
ENDS

READ B-DECK CAlDS AND
EXAMINE fOR EllRORS ,
CORRECTING THOSE WHICH
ARE CORR.ECTABLE AND
PRINT ERR.ORS

PRINT "B D!CK READ
COMPLETE"

III-19

FRATAR

STOP YES

EXAMINE GROWTH FACTORS
FOR ZEROS OR HISSING
GROWTH FACTORS AND
PRINT ERROR MESSAGES IF
ANY

.--------------------_ ____ _
~ i ~ GROWTH FACTOR
, FOR ZONE ,;

t; ;; EXISTING INTER-
. CHANGE BETWEEN

ZONE ,: AND.}.
m 2 NUMBER OF ZONES

READ LAST TRIP MATRIX
AND CALCULATE

m m
si • .t tiJgJ + t t .. 8J

J•l j•l J'!.

wi • ei/8 i
where:

m m
e. • E t .. + E t ..

1. j•l Jt J•l 'l.J

_____________________ _... ____ _
ALSO SUM

m
E,. • i. T .• + E T. ,

J•l .F jcl 7-J

READ LAST TRIP MATRIX
AND CALCULATE NEW
FORECASTED TRIPS

wi+w.i
Tij • til'i8/ 2)

AND WRITE NEW TRIP MATRIX

CALCULATE GROWTH FACTORS
FOR NEXT ITERATION BY:

g •• ~
t ei

GET DISTRIBUTION OF

~b ~~1 r:o a:i:r: 9

III-20

FRATAR

SUIIlOUTIIB

GETDAT*

SIT UP BR'l'RY POIIT
IWfB or DATI (lOa
IDOl TIACB CALl.S)
SAVE G!HUAL PUII'OSI.
UGX$TBU AliD It 13

uicuTB "TIMl" MAC110
TO GBT YIAI AIID Dlt or
'f1A1 noM SYSTBII.

l'UT Dl1'1 Ill n.r.•,
UITOUI13

ccimlT Til LAST TIO •
DlGI'l'S or 'rill YJAa PICII
PACIID DICDIAL TO &ICDIC

IIWI '1111 riiiD rut 01'
'1'111 MD '1111 oo, . 1m•
TO Til nur AIGUMIIr
or Ol'l'DA'I'

IIWI 'rill LAST TIO
. DIGITS or 'ftll YJAa TO
'ftll n rosuta. ol' Til

· DATI II Til AICMIIIIt WOil
AQA.

IIIITULID LOOl ''LBAP D"
IOit A LIAl' YJAa

DIVIDI 'ftll LAST TIO
DIGITS OP Til UAI IY 4

Pid MOlml or UAI.
II)VJ 3 CIIAIAC'I'IIt

· AIIUVIA'I'IOH or tam~
TO AIG. WOK AliA.

III-21

SUI'I'ItACT NUHBD or
DAYS BIPOitE lUIITII TO
GIT DAY or ti)I'I'H.

COitVU.T DAY TO IBCDIC
AIID ICWB TO AIG. WOIUt
AliA

CLIAa AIG. WOllt AltEA TO
BLAIQIS IIOVB IBCDIC YIAit
IftO COLUIIIS 1 AMD 2,
A 'I' liTO COLUMII 3,
COIIVIIT DAY or YBAa TO
IBCDIC AliD ICWB TO 4-6

GETDAT

*ASSBMBLY LANGUAGE

SUIROU'fiD

GET IN

PUT TUIIIltG IIWIIIII'rS
WICB IIAVI 1111 SAVID
roa THIS IIIDI Ill Til
TUIIDIG II)VIIIIft
lllftU

III-22

GETRN

SUBIDUTDII

GETRNS

PUT TUUIRG tlmMDITS
WICB IIAVB IIIII SlVID
1'0& THIS RODB U THI
TUUIRG IIWDIIIIT
MlftU

III-23

GETRNS

SUBROUTINE

GTLD

INITIALIZE SUMKATION
VAliA.BLES TO ZERO.
OPEN DATA SET ROUTE
FOR .OUTE PROFILE

READ· PARAMETER RECORD
FROM UNIT NETWOllK

READ HEADER RECORDS AND
WRITE THESE RECORDS ON
UNIT PLF ALSO ·SAVE
LAST '1\10 HEADER RECORDS

INITIALIZE MORE
SUMI'IATION VARIA.BLES
TO ZERO AND INITIALIZE
OTHER VARIABLES

III-24

GTLD

OPEN N~T UNIT FOR
OUTPUT

ADD ONE TO NUMBER
OF ASSIGNMENTS AND
WRITE PARAMETER RECORD
ON UNIT NETWORK

J<I:AI.l A LINK RECORD
WI Til NO ASSIGNMENTS

NO

NL 3 NUMBER OF
LINKS FROM THIS NODE
I = 0

READ A LINK RECORD
WITH NONDIRECTIONAL
ASSIGNED VOLUMES

CALCULATE WEIGHTED
IMPEDANCE AND WEIGHT
VOLUME FOR TillS LINK

WRITE NEW LINK RECORD
ON UNIT NEWNET WITH
WEIGHTED lMPLEANCE AND
VOLUME AS . NEXT
ASSIGNMENT

III-25

GET LINK GROUND COUNT
AND PUT IN NCC

MAKE SUMMATIONS FOR
CROSS CLASSIFICATIONS

GET LINK JURISDICTION,
SPEED, DISTANCE, TIME,
LAST ASSIGNED NON
DIRECTIONAL VOLUME, AND
ROUTE CODE

MAKE SUMMATIONS FOR
RgGRESSIONS OF
ASSIGNED VOLUME VERSUS
L 1 NK COUNTS BY ROUTE

GTLD

GET LINK CAPACITY AND
PUT lN NCC

I.'RlTE RECORD FOR THE
ROUTE PROFILE ON UNIT
Pl.F

YES

YES

HAI<.E . SUMMATIONS FOR
REGRESSION OF ASSIGNED
VOLUMES VERSUS LINK
CAPACITIES BY ROUTE

MAKE SUMMATIONS FOR
REGRESSION OF ASSIGNED
VOLUMES VERSUS PREVIOUS
ASSIGNED VOLUMES BY
ROUTE

HAI<.E SUMMATIONS FOR
VEHICLE HOURS -
VEHICLE MILES SUMMARY
CLASSIFIED BY JURIS
DICTION CODE VERSUS 3
LINK TYPES

MAKE SUMMATIONS FOR
VEHICLE HOURS, VEHICLE
MILES SUMMARY CLASSIFIED
BY JURISDICTION VERSUS
FUNCTIONAL CLASS {ALSO
FOR CAP • AND COUNT)

III-26

HAI<.E SUMMATIONS FOR
A REGRESSION. elF LINK
VOLUMES VERSUS NCC ,
COUNT OR CAPACITY.

SAVE CORRIDOR INTERCEPT
RECORD FOR THIS LINK
IN CORE, INCREMENT COUNTER
OF CORRIDOR INT. RECORDS

I • I + 1
(INCREMENT COUNT OF
LINK RECORDS FOR THIS
NODE RECORD)

RO

Ltlllt

COUNTS

PIIMT CROSS CLASSiriCATtOtl
OP LIB COUIITS BY. V/C
IATIO ntiC LAST TWO
ASSIGIMIRTS

CONVDT SUNMATIOliS OR
VIHICLB IDll$, VBIIICLI
MILls, AND IIB'l'WOB MILlS
TO COIUCT URITS
1'0& OUTPUT

CAJ.C:UU'tl Till 1U11BD
OfiYTISOPCOIRIDOa
tl'l'IICIPT YOIDS IR
COli.

PliNT V/C CROSS
CLASSifiCATION ntOI!l
LAST 'NO ASSICNMBNTS

CLOSI AHD IIWINO ALL
DATA SETS USID .

III-27

LINK

CAPACITIES

PlliMT CROSS CLASSIPlCATION
OF LINK CAPACITIES
BY V/C IATIO ROM LAST
TWO ASSIGNMENTS

STOP

PllDIT EUOil MESSAGE:
LSTCBM .GT. 1200, •
XXDX

PlliiT IUOR MBSIAGI:
.LS'l'VOL .GT. 16000, •
DDI

Pili NT EDOR HIS SAGE:
NUMBER OP TUIUC:tltG
VOLUMES .GT. 20000 •
xxxxx

SUBROUTINE

INITLl

ADD CDTilOID PLAG
TO TUUIIIQ IIJVIMDlT
CODIS 1'01 CIITIOIDS

IIMDVI ftiiWAY PLAG
Pial 'l'UUIIG II>VIDIBIT
CODIS 1'01 IODIS.

IRITULIZI Lnot
VOLUMIS TO ZDO.

SIT UP TUIUCING IIWEMBMT
DIDIX AJUIAY AJID FIND
IIUMID or TUIHING
MOVIIMBMTS TO SAVI.

III-28

PllDIT EllllOR MESSAGE:
NODES .GT. 4000, •
xxux

INITIALIZE TURNING
VOLUME AJUIAY TO ZlllO

IN IT ll

SVIIOIJTID

LNKLIT

U11I1D 11111'1' IDIIIT

WD PA1WIB'l'll UCOID
.... 1111!1 liiWRIT !'0
Gl'l' 'IIJ) • IIIIID
or ASSIGIICIII!.

WD A liODI UCOitJ).
1L • 11UN111 or- Lift
11C01D$ 101. THIS IODI
IICOID. ~ • 1

WD A LX. QCOJU),
SIT C • GIOVIlD COORT
01. CAPACitr • WHICH
lVII. VAS UIID

Rift WIGIIIIIIH PICit
'IUAIIIGir~
AID 1.111 DIPIDPCII.

III-29

LNKLST

100

SU8ROUTINE LOAD

LOAD *

!
SAVE GENERAL PURPOSE
REGISTERS AND SET UP
A NEW SAVE AREA.

l
MOVE UNSUBSCRIPTED
ARGUMENTS

~
MOVE ADDRESSES OF
ARRAYS , SET UP LIST
FOR CALL, SUBTRACT
8 FROM ARRAY ADDRESSES

!
SET UP BASE REGISTERS
FoR ARRAYS.

l
INITIALIZE LAMBDA ARRAY
TO ZERO

1
SET INDEX OF WHERE TO
ENTER NEXT ITEM IN
SEQ. TABLE, XIN • 1.

·~
SET INDEX. OF WHERE TO
GET NEXT NODE NUMBER
FROM SEQUENCE TABLE ,
XOUT • 1.

!
*ASSEMBLY LANGUAGE C:)

III-30

NO

YES

I • 1

GET 1 'TH INTERCHANGE
ITEM FROM LAST VOLUME
RECORD READ AND SEPARATE
INTO VOLUME AND DESTI
NATION CENTROID

SET SEQUENCE TAI!LE
ITEM XIN TO THE CENTROID
NUMBER

XIN " XIN + 1,
SET LAMBDA (CENTROID
NUMBER) • THE VOLUME,
I * 1 + 1

READ ANOTHER VOLUME
RECORD FROM THE
TRIP MATRIX DATA
SET

YES

III-31

INITIALIZE OTHER
BASE REGISTERS. SET
FLAG TO INDICATE LAST
TRIP MATRIX RECORD READ
HAS NOT BEEN USED.

LOAD

YES

YES

YES

GBT RODE RUM8Bil llf
LOCATIOI 'XOUT or
TR1 SBQUIRCE TABLE

CIT 'DIE VOLUMI LOADED
'10 THAT IIODE ftOH
'DIB LAN11DA TABLE
.A11D SIT THE LAMBDA
TABLE POS. '10 · ZDO

lOUT • MOD(IOUT,
2000) + 1

CIT THI lACK RODE,
D, Illl '1'111 PATH
PROM THE IIODI noM
Til SIQ. TABLE

III-32

FIRD LIIIK PROM NODI
TO XR. AND FIND lOUT
WHICH IS TRB NUMBEll.
OF LINKS IT IS ROM
TiiB riRST LIIIK FROM
NODE

IN NETWORIC

GET LINIC VOLUMI! FROM
VOL AlUtAY

ADD VOLUMB TO IIODB. TO
Lift VOLUME

ADD ORB '10 NUHBD or
YOLUMIS > 32767. SET
TRI IIIDIX AND FLAG 1111
THE VOL AllAY.

PUT '1'111 IBW Lift
VOLUMI II TRB OftULOW
AllAY BLIMBII'l' IIIDBXI!D
BY TD IIDIX PUT IN TRB
VOL .AUAY.

NOT IN NBTwoaK

SAVE THE NEW LfNK VOJ.UMF
.IN THE VOL ARRAY

YBS

YES

GET IHDEX BY ARDIIIG OUT
FLAG. GET LINK VOLUME
ROM OVDFLOW AllAY.

ADD THE VOLUME TO
TH1 IIODB TO THE LINK
VOLUME AND STOIB THI
USULT Ill THE OVDPLOW
TABLE,

GBT THB IIXT BACk liODB
IR THB PATH. In.

PIHD Lift COOIIT II OP
Lift XI. TO In PR(M
LINKS STAI.TIIIQ PR(M NODI
XI.

GIT 'rU111 CODE, liD •
fOI RODE D.

III-33

LOAf\

LOAD

10 26 21 23, 24 25

Ill ~ IDSPJ(IN, I OUT) ID • IDSP41(IN, IOUT) ID • IDSP42(IN,IOUT) ID • IDSP44 (lN, Wl'Tl

ABEND 101

ID • IDSP5(IN, IOUT)

ID INDiCATES WHETHER
TO SAVE THE TURNING
MOVgMENT FROM IPR - XR -
NODE AND IT IS ALSO
THE RELATIVE INDEX
OF WHERE TO SAVE IT

ABEND 102

ID • IDSP6 (IN, lOUT)

GET INDEX OF TURNING
MOVEMENT VOLUME BY
ADDING ID TO INDEX
OF FIRST TURNING
MOVEMENT FOR NODE XR

III-34

ID • IDSP43(1N, lOUT)

PUT RODE D IH
SIQ(J:IH) IH THE
SIQUIIICI TABLE

XIH • HOD(XIN. 2000)
+ 1

ADD THE HIW VOUJMB
PIDM D TO THE
PIIVIOUS VOLUME PROM
D AND STOll IH
LAMBDA (XI)

III-35

LOAD

SAVE THE NEW TURNING
VOLUME IN THE TURN
VOLUME ARRAY

GET TURNING MOVEMENT
VOLUME

ADD VOLUME TO NODE XR
TO TURNING MOVEMENT
VOLUME

ADD ONE TO NUMBER OF
VOLUMES > 32767. SET
THE INDEX AND FLAG IN
THE TURN VOLUME ARRAY.

PUT THE NEW TURNING
VOLUME IN THE OVERFLOW
ARRAY ELEMENT INDEXED
BY THE INDEX PUT IN THE
TURN VOL. ARRAY

III-36

GET INDEX BY ANDING
OUT FLAG. GET TURN
VOLUME FROM OVERFLOW
ARRAY

ADD THE VOLUME TO THE
XR NODE TO THE TURN
VOLUME AND STORE THE
RESULT IN THE OVERFLOW
TABLE.

LOADZ

SUBROUTINE

LOAD2 •

~

SAVE REGISTERS AND
ESTABLISH A NEW
SAVE AREA

~

MOVE UHSUBSCRIPTED
ARGUMENTS

!

MOVE ADDlBSS!S OF ARRAYS.
SUBTRACT 8 ROM ADDRESSES

I

SET UP BASE UGISTERS
FOR ARRAYS

l
SET READSW TO
INDICATE THE LAST TRIP
MATRIX RECORD READ
HAS BEER USED.

~

I • THE NUMBIR OF
ITIKS IH THIS VOLUMI
RECORD.

l
(vJ

III-37

*ASSIMBLY LAMGUAGE

AB~:Nil IIJ, lll!MI'

GET I 'TH !Nn:RCIIANG~:
ITEM !'RUM TRIP HA'I'kiX
R~:CORI> AND St:PARAn:
INTO VOLUME, VOLL,
AND D~:STINATION
NODE, START.

GET XR WHICH IS THE
NEXT NODE RACk IN
THE PATH I'ROM START

FIND LINK FROM XR
TO START AND COUNT
THE NUMBER 01" LINKS
IT IS ~'ROM THE FIRST
LINK FROM NODE XR AND
PUT lN lOUT

LINK FOUND

GET IPk WHICH IS THE
NEXT NOllE IIACK IN THI':
PATH PROM NODE XR.

F lND LINK FROM XR
TO IPR AND COUNT TH~:

NUMBER OF LINKS lT
IS FROM THE FIRST LINK
~'ROM NODE XR AND PUT
THE NUMBER IN IN.

GE'f LINK ADDRESS OF
OPPOSITE ONE-WAY
SELECTED LINK.

PUT THE LINK INDEX
OF XR TO START AS A
HALF WORK INTEGER
IN LOCATIONS 0 AND 1
OF THE RECORD.

DISP. LENGTH
BYTES BYTES CON'fENTII
-2- -2- OR'i'GfNtF.NTROID

4 2 DESl'JNATION t:I!N.
6 4 VOI.lJH~:

10 4 O·
14 2 LO

III-38

LlNK

NOT lN

NE1'1¥>RK

LOAD2

ABEND 71, DUMP

DISP.
BYTP.S I. CON'n:NT~
-2- 2 DJ::'iri'INATION Q:N'J'I!Illfl

4 2 ORIGIN O:NTIWIII
, 4 z~:Ro

10 4 VOI.IJH~:

14 2 1

lliSP. LENGTH
BYTES BYTES CONTENTS
-2- -2- DiST'iii.TION

CEH'l'ROID
4 2 ORIGIN CBN.
b 4 ZERO

10 4 VOLUME
14 2 s

AT THIS POINT THE
SEI.ECTED LINK RECORD
IS BUII.T AND IN ITS
BUFFER.

PUT THE LINK INDEX
OF START TO XR AS A
HALF WORIC INTEGER ·IN
LOCATIONS 0 AND 1
OF THE RECORD.

DISP. LENGTH

~ES B~S g~~~BN.
4 2 DESTINATION

CENTROID
6 4 VOLUME

10 4 ZERO
14 2 2

GET LINK VOLUME OR
INDEX TO IT IN
OVERFLOW TABLE OF
LINK XR TO START

GET LINK VOLUME AND
ADD INTERCHANGE VOLUME
AND STORE IN VOL ARRAY
IF < 32767, OTHERWISE
STORE IN OVERFLOW ARRAY

GET IPR • THE PATH
NODE BACK FROM NODE XR

III-39

GET TURN CODE, IND,
FOR NODE XR

LOAD2

0 10 26 13, 17, 18,

22, 23

27

LOAD2

21 23, 24 25

ID • IDSP3(IN, lOUT) ID • IDSP41 (IN,IOUT) ID • IDSP42(IN, lOUT) IO • IDSP44 (IN, IOllT)

ABENI> 101

ID • IDSPS(IN,IOUT)

ID INDICATES WHETHER
TO SAVE THE TURNING
MOV!MENT PROM IPR.-
XR- STAR.T AND IT IS ALSO
THE RBLA.TIVE INDEX
OP WHEilE TO SAVE IT

ABEND 102

ID • IDSP6(IN,IOUT)

GET INDEX OP TURNING
MOV!MENT VOLUME BY
ADDING ID TO INDEX
OF FIRST 'ruRNING
MOV!MENT FOR NODE XR

ID • IDSP43 (IN ,lOUT)

GET TUiH VOLUME OR
DlDEX FROM TRNTB
ADD TRIP INTERCIWIGE
VOLUME

IF THE NEW TUBN VOLUME
< 32767 STORE IT BACK
IN THE TRNTB ARRAY
OTHERWISE STORE IN
OVERF AND BUit..D INDEX
AND STORE IN TRNTB IF
NEEDED

START • XI.

III-41

LOAD2

MAIN

INITIALIZE CUMUt.ATlVE
TIME TO 0 • GET
TODAY'S !>ATE POll TB8
HF.ADEll llBCOlD

GET TIME OP DAY AllD
PIND CUMIJ~TlVB TIM!
AND Rll'l'

III-42

MAIN

STill'

STOP 0

MAIN

III-43

M A I N

III-44

IMUI • 3
IMAX • 5
RES • .TRUE.
J • 1

SWITCH UNIT NUMBERS
OF UNITS NEWNET AIID
NETWORK, J a J + 1

NO

III-45

SWITCH UNIT NUMBERS
OF UNitS NEWNET AND
NETWORK.

WRITE UNIT NUMBER OF
WHICH THE FINAL UPDATED
FLEXIBLE DATA RECORD IS
WRITTEN

"1 A IN

NO

PR I liT BllROil MESSAGE:
UIVALID *UBL CARD,
EXECUTION DELETED.
ALSO PRINT THE *UEL
CARD.

PRINT ERROR MESSAGE
WITH IIIJMBER OF
SUBIIITS AND IIIJMBER
OF DATA SETS TO
MERGE.

SUIIOUTIIII

MERG

SIT CTVOUT TO UIIIT
Kllt(lOUT

IIIITIALIZB FLAGS TO
INDICATE THAT 110
!OD liAS 18111 IU.CIIID
AIID THAT THE LAST
IDI ZOIIB AND SUIIHET
AU 0 FOR 6 DATA SITS.

UAD THI KIIGI
PAUIIITil CARD PlCII
UIIIT 5.

10

III-46

llEAD p AR.AKITIIl
UCOJID FJ.(II. FUST
DATA SIT TO MERGE.
SET IOSUB • NUMID
OP SUIIIITS Otf THIS
DATA SIT.

1 • 2

IliAD l'TH HEIGl
DATA SITS PAIAKITBR
UCORD

J. 1

GIT MAXIHIJM LAST
CINTROlD lllKID FOR
SUIIIIT J AND SAVE Itf
LSTMD(J)

J. J + 1

!OD SET FLAG TO INDICATE
BOD REACHED ON I 'TH
MERGE DATA SET.

PlliNT ERROR KESSAGI!

I • I. + 1

MFRG

REWIND MRGOUT DATA
SET. WRITE THE
PARAMETER RECORD
FOR THE ·MRGOUT
!JATA SET.

GET THE LARGEST
NUMBER OF CENTROIDS
IN A SUBNET AND PUT
IN MAX.

ISUB = 1

IFST • FIRST CENTROID
FOR SUBNET !SUB.
LST • LAST CENTROID
FOR SUBNET ISUB

NODE = IFST

LSUB = 1

INITIALIZE VOLUME
SUMMING ARRAY TO
ZERO FOR MAX WORDS.

I= 1

SUM THE VOLUMES IN THIS
RECORD IN THE VOLUME
SUMMING ARRAY

I= I + 1

PACK THE SUMMED
VOLUMES AND WRITE THEM
IN ONF. OR MORE RECORDS
ON THE MRGOUT DATA
SET

LSU!l = LSUB + l

III-47

NO

READ ANOTHER RECORD
FROM MERGE DATA SET
I.

MERG

NODE • NODE + 1

!SUB • !SUB + 1

END FILE MlGOUT
IIWIND MJGOUT

IEWIND ALL HEIGl
DATA SITS.

III-48

SEt A FLAG TO INDICATE
THAN AN BOD HAS BIEN
IBACHED 011 MERGE DATA
SIT t

MERG

*ASSEMBLY LANGUAGE

SUBROUTINE

MOORE*

SAVE REGISTERS.
GET ARGUMENTS

INITIALIZE CUMULATIVE
TIME ARRAY TO
327.67 MINUTES

INITIALIZE 1024
LIST POINTERS TO
ZERO.

INITIALIZE LISTS
OF NODES FOR ASCENDING
TIME ORDER, FIRST,
AND DESCENDING TIME
ORDER, LAST.

INITIALIZE FOR HOME
CENTROID. SET I •
HOME CENTROID.

III-49

SAVE BACK NODE TO
NODE I.

GET INOMX '1'0 FIRST
LINK ~'ROM NODE I, J.

GET LINK .INDEXEl> BY
J. SEPARATE FIELDS
OF THE LINK. ALSO
GET B NODE OF THE LINK.

GET CUMULATIVE TIME
TO NODE I AND ADD
LINK TIME TO IT •.

REMOVE THE B NODE
FROM ITS OLD LOCATION
IN THE SEQUENCE TABLE

PUT B NODE IN SEQllENCE
TABLE

DELETE NODE FRat:
OLD TIME CHAIN AND
ADD TO NEW TIME CHAIN

GET NEXT NODE FR<It
THE SEQUENCE TABLE, I •

RESTORE REGISTERS

III-50

r.,ooRE

J .. J + 1

NO

I'K I NT MI•:SSAGE
IINIT 12 MlSSlN<:

STOP 12

I'H I ~T •H::>SAt;E
! II XI' Till 'lAX I MUM NOD~;

\lll'lllfo:K iS I·:Xt:l·:r:IJEil
I:<" " I·:KK + l

UNIT 12

MISSING

YES

SV BIWUTL N ~:

MRGREC

OL!lNET ·~· lL
NET - I!
KEWI Nil 12

MRG ~ LNKl.GT. 0
(ARE THERE ANY RI!:COI{I)S
ON UNIT J) MRG2 ;
LNK2.t:T.U (ARI; TllliKI•:
ANY RECORDS ON UN I'/' ll)

REWIND NET

CALCULATE NUMBER or·
LINKS IN NETWORK
~'ROM NUMBER OF 1.1 NKS
PROCESSED IN NEWNET
+ LINKS ON UNIT 12-2*

D~:LETES

SET NNLNK • 0,
TO SUM ACUTAL #
OF LINKS. WRITE
PARAMETER RECORD ON
UNIT 13.

IS THE
LAST NODE

NIJMilER · THE MAXIMUM
NODE NUMBER?

NO

WH lTE HEAD~:R RECORIJ
AND IJATE ON UNIT 1'1

SKIP FIRST HEADr.:R
RECORD ON UNIT U

l
III-51

MRGREC

ARE THEin:
ANY ASSI<;NMENTS

ON TilE OI.J)
FI.I!:XIBI.E !lATA

REC. (12)''

YES

COPY HEAlJJ•:k IU:CORDS
FROM PREVIOUS ASSIGN
MENTS FROM liN I 1' 12
TO UNIT t:l

I

SET INDEXES FOR NEXT
LlNKS IN CORE OR
RECORDS RF.AD FROM
UNITS 3 OR 11 TO
FIRST LlNK (SET TO 0)

sgT LINK IMPEDANCES
TO MAX. TIME, AND
PREVIOUS ASSIGNED
VOLUMES TO 0 ~'Oil

20 ASSIGNM"NTS FCJR
20 LINKS.

RllAD F l RST NODE
RECORD FI(()M UNIT I 2

<:ET A NODE, Cl-:'1
TURN CUll~:, <:ET 1:1NK
CLASS IF AVA I 1.;\ 111.1·:.
FORM A SORT K~;y i·OR
THt: A NOIW.

READ A 1.1 NK R~:co~ll

(WITH I.INK IMI'EDANn~s

ANIJ VOI.II~I·:S I'Rm1
I'H I·:V IIlliS A~;s H:NMENTS
n· ANY)

(;Jo:T OTIII-:K VAHIAIII.ES
F<lH TH~: 1.1 NK

NO

READ A RECORD t'ROH
UMt't 'J

RI-:AD II RECORD FR<J1
UNIT ll

SF.T SllR'I' KF.Y FOR
UNK t'IU ... UNIT l
Stl l't Wll.l. BE SKII'Pt:D.
SP.T ITS A NUDE Ttl 1638'3

St:T SORT kU FOR l.lNk
I'Rillol UN l'r 11 SO tT WII.L
lit: SKlPI't:D. SET ITS
A NODE Ttl 11>383.

III-52

. REWIND UNIT 4 (NODE,,
IWIBS . SBT NODE OF. I.AS1'
RECORD READ TO 0.

READ NEXT CARD FROM
LINK DATA INPUT.

SET COONT OF LINKS
FROM A NODE TO 0,
(L • 0). SBT. COUNT
OF LINXS TO DELETE TO
0, (LD • 0).

GET SMALLEST ANODE
PROM THE FOUR AVAJI.ABI.Jo:
SOURCES (AC:TUALI.Y 2 'I'CI
4 SOORCES)

n:s

SE1' NODE NUMBER OF
LAST NODt: RECORD

MRGREC

RF.AD TO 16383 1'0 SKTI'
READING NODF. REC.ORllS

Nil

I. ~ I. ., l

SAVE THE l.f NK
AT!ND"X J..

I NCREM!·:Nr Tt 1 ''El
'HE Nt·:X1 !.l!'K

liNI'ACK !lATA FROM
NEXT LINK IN CORE

LD~LD+l

SAVE THE 8 NODE OF
THIS LINK AT INDEX
LJJ

READ NEXT RECORD
FROM UNlt 3. SET
LOCATION TO GET NEXT
LINK TO 0.

NO.

L • L + l
SAVE THE LINK AT INDEX
L. -

LD•LD+l,
SAVE THE 8 NODE OF
THIS LINK AT INDEX
LD.

INCREMENT ·ro GET
THE NEXT LINK.

GTLNK

liNP,\CK DATA FROM
LINK FROM UNIT 3.

III-53

LaL+l.·
SAVE THIS LINK AT INDEX
L. SET ITS CARD COUNT
a -1. ALSO SAVE LINK
IMPEDANCE AND VOLUMES
FROM ASSIGNMENTS

READ A LINK RECORD
(WITH LINK IMPEDANCES
AND VOLUMES IF ANY)

UNPACK DATA FROM THE
RECORD. GET LINK

. CLASS IF AVAILABLE AND
FORM NEW SORT KEY •

NORMAl, Rr:AD

SAVE OJ.D NODE REC.
READ A NODE RECORD FROM
UNIT 12. GET A NOIJE AND
SET l.tNK COUNT TO 1.

EOD

SET SORT KF.Y TO
SKIP AND SET A NODE
TO 1638.1

NO

LD=LD+l,
SAVE THE B NODE OF
THIS LINK AT INDEX
LD.

L = I. + l
SAVE THE LINK A! l~:DIX

J ..

INCR&Mr:NT I'll c;g')'
NEXT liNK

RMD NEXT Rr:CORil
FROM UNIT 11. SI·:T
LOCATION TO GF.T NEXT
!.INK TO 0.

REWIND 3

REWIND NODE NAME
UNIT (4)

PRINT MESSAGE THAT
THE NUMBER OF LINKS
EXCEEDS THE MAXIMUM
ERR•ERR+l

PRINT MESSAGE
ABOUT MISSING
DD CARD FOR UNIT
NE"n«>RK

ERROR

END FILE 13
REWIND 13

REWIND NETWORK DATA
SET

III-54

MRGREC

ONE LINK FROM LINK
DATA, ONE FROM
UNIT 12. ADD THE
OLD ASSIGNMENTS
ONTO THE NEW LINK,
DELETE THE OLD LINK

EXAMINE NEXT LINKS

DELETE FIRST LINK
WITH THE SAME B NODE
FROM THIS LINK. IF
LINK NOT FOUND PRINT
ERROR MESSAGE,
ERR • ERR + 1 REPEAT
LD-1 TIMES

FIND LINKS WHICH HAVE
NOT BEEN DELETED •

SUM NUMBER OF LINKS
IN EACH LINK CLASS
AND TOTAL NUMBER OF.
LINKS L.

GET NEW TURN CODE
FROM NUMBF.R OF LINKS
IN F.:ACH LINK CLASS.

III-55

YES

NO

M~GREC

EITHER TWO LINKS FROM
LINK DATA OR TWO
LINKS FROM UNIT 12
WITH SAME A NODE AND
B NODE, PRINT DUPLICATE
LINK MESSAGE.
ERR =.ERR + 1

PRINT MESSAGE THAT
THE A NODE IS NOT
IN THE NETWORK.
ERR.,ERR+l

SET TURN TYPE CODE TO
28 AND ADD CENTROID
CODE

MOVE NEW NODE NAME
TO NODE RECORD AREA.
READ NEXT NODE NAME
RECORD.

GET COORDINATES
AND KEEP NON ZERO
SUB AREA CODE • READ
NEW A NODE RECORD

SET NODE NUMBER OF
A NODE RECORD • 16383

YES

NO

III-56

ADD CODE FOR FREEWAY
TO TURN CODE

ICEEP OLD NODE NAME

SET COORDINATES TO
ZERO

l1RGREC

GET OLD COORDINATES
IF THE NEW' ONES ARE
ZERO, GET OLD SUB
AREA CODE IF THE NEW
iJNE IS ZERO

PRINT ERROR MESSAGt:
THAT THERE ARE MORE
THAN 6 LINKS. ERR •
ERR + l

I'~ I ~;1 !1r;SSAG£:
! ·;<,lX! ED CENTROID
H.'· ~ '.i<K + 1

YES

WRITE NEW NODE RECORD
ON UNIT 13. SUM NUMBER
OF LINKS WRITTEN IN
NNLNK

I • 1

I • I + 1

NODE

YES

III-57

PRINT MESSAGE:
ISOLATED NODE.
ERR•ERR+l

NO

MRGREC

SET LINK IMPEDANCES
TO MAX. TIME, AND
PREVIOUS ASSIGNED
VOLUMES TO 0 FOR 20
ASSIGNMENTS FOR 20
LINKS

SUBROUTINE

NEW NET

!NIHALlZE NUMBER
'lF WORDS WRITTEN ON
UN IT 1 AND UNIT 11
1'0 ZERO. INITIALIZE
NUMBER OF LINK WORDS
IN CORE TO ZERO

INITIALIZE OTHER
VARIABLES REWIND 4
IL • -1 (# LINKS IN
CORE)

READ SUBNETWORK
PARAMETER CARD.
SET NUMBER OF SUBNETS
~ 1 AND SET SUBNET
OF PARAMETER CARD • 1.

SAVE FIRST NODE
NUMBER, LAST CENTROID
NUMBER, LAST ARTERIAL
NUMBER, AND LAST
FREEWAY NODE NUMBER
OF THIS SUBNET.

INITIALIZE VARIABLES
NOT ON OLD LINK DATA~
GROUND COUNT • 0,
CAPACITY • 0, FUNC
TIONAL CLASSIFICATION
R 0, ROUTE CODE • 0.

CORR lDOR INTERCEPT • 0 ,
SUBAREA CODE •
SUBNETWORK NUMB~:R

.FALSE.

(OLD LINK

DATA FOIU~AT)

YES

READ NUMBER OF SUBNETS
CARD INCLUDING FIELD
TO GET SPEED AND DISTANCE
FROM

PRINT NUMBER OF
SUBNETS MESSAGE

READ SUBNETWORK
PARAMETER CARD.
CALCULATE NUMBER .OF
NODES IN SUBNETWORK

PRINT INFORMATION
FROM SUBNETWORK
PARAMETER CARD ADD
1 TO EXPECTED SUB
NETWORK NUMBER

III-58

NEWNET

SET TO USE THE THIRD
SPEED AND DISTANCE
FIELDS ON THE LINK
DATA CARDS

PRINT MESSAGE,
INCORRECT SUBNET
NUMBER STOP 4

READ A LINK DATA
CARD IN OLD FORMAT.
ADD 1 TO CARD. COUNT

CONVERT COLUMNS 2-6
FROM EBCDIC TO INTEGER
F'OR A NODE NUMBER

CONVERT FUNCTIONAL
CLASS FIELD FROM
EBCDIC TO HEXADECIMAL

CONVERT JURISDICTION
FROM EBCDIC TO
HEXADEC IHAL

SET CHARACTER READ
FROM COLUMN 1 TO
CHARACTER READ FROM
COLUMN 4

SET DELETE CODE TO
1 TO INDICATE THIS
IS A DELETE CARD

SET FUNCTIONAL
CLASS TO ZERO

SET CHARACTER READ
:FROM COLUMN 1 TO
CHARACTER READ FROM
COLUMN 4

III-59

READ A LINK DATA CARD
IN THE NEW FORMAT

ROUND GROUND COUNT
TO UNITS OF 100
TRIPS. ROUND CAPACITY
TO UNITS OF 100 TRIPS.
ADD 1 TO CARD COUNT.

SET DELETE CODE • 0

SUM NUMBER OF
DELETE CARDS • SET
SPEED FOR SECOND LINK
TO THAT OF THE FIRST
LINK.

SET CODE TO INDICATE
SPEED FIELD

NEWNET

SU '11'!1 = fJ TO
KEEP THE XlLF.AGE
I~; THE 1.'EH JCLE
M! I.ES SL'MMARY

"!"l'I M ERROR MESSAGF
IIAf TH~:fU. J S 1\N

:-iVAl.ID NOllr: NUMIIER.
Jd<ilH ., VRROR + 1

SET NTH • 1
TO ELIM.INATE THE
MILEAGE OF THIS LINK
IN THE VEHICLE MILES
SUMMARY

LINK TIME c SPEED
OR TIME FIELD.
CALCULATE SPEED FROM
TIME AND DISTANCE.

SET SPEED • SPEED OR
TIME FIELD

III-60

CALCULATE LINK TIME
FROM SPEED AND DISTANCE

ISHAFT = -1

NEWNET

SET LINK TIME = MAX.
SET SPEED = 1 m.p.h.
SET DIST. = 9.99 MILES,
SET SHAFT = 0 , ARROW = 0

PRINT MESSAGE NO
TIME OR SPEED INDICATOR
ERROR = ERROR + 1

PRINT MESSAC;F. THAT
!.INK TIME EXCEEDS
MAXIMUM. ERROR = ERROl{
+ 1 SET I.INK TIME TO
MAX. LrNK TIME

I'RJNT MESSAGE INVALID
PART11'JON CARD.
ERROR ~ ERROR + 1

NO

READ A PARTITION CARD
OR AN ENDNET CARD.
CRDCNT • CRDCNT + 1

III-61

IL • IL + 2

LNK2 •IL+l
GET TIME OF DAY TO
TIME SORT.

GET TIME OF DAY.
CALCULATE SORT TIME
AND SUM IN ITJ.
REWIND LNKTMP

NEWNET

J SHAF'T ~ 0

J SHAFT s 1

PII.!NT t:II.ROR MESSAGE
THAT THE SHAf'T CODE
IS !NVALJJJ.
I SHAFT = 0

SET I ARROW TO
OPI'OS JTE OF I SHAFT

l C!,I\SS ~ 1
(TWO-WAY LINK)

l CLASS • l
(TWO-WAY LINK)

I ARROW • I SHAFT

JIET . LINK CLASS
I CLASS • 0 (ONE
WAY LINK TO B NODE)

III-62

INCREMENT COUNT OF
LINKS IN CORE (IL =
IL + 1)

NEWNET

WRITE A NODE NAME
RECORD ON UNIT 4.
SET LAST NODE WRITTEN
~ A NODE

SET LINK TIME TO
SECOND TIME OR SPEED
FIELD CALCULATE LINK
SPEED FROM TIME AND
DISTANCE

PRINT EUOR MESSAGE
THAT LINK TIME IS >
MAX. EUOR • ERROR
+ 1 SET LINK TIME TO
MAX.

PRINT AN ERROR MESSAGE,
INVALID TWO-WAY INDICA
TOlt, ERROR • EUOR + 1

IL•IL-1
(THIS I.BMOVES THE

. PREVIOUS ONE-WAY LINK)

SET SPEED • SECOND
TIME OR SPEED FIELD

IL • IL .+ 1
(ADD ONE TO THE
NUMBER OF LINKS IN
COI.I)

III-63

LNK2•IL+1•
NUMBER. OF LINKS IN
CORE, GET TIME OF
DAY TO TIME SORT.

GET TIME OF DAY AND
CALCULATE SORT TIME
AND SUM IN IT3. REWIND
LNKTMP

CALCULATE THE NUMBER
OF BLOCKS OF LINKS •
IL • IL + 2, NBLK •
(IL + 39)/40, (40
LINKS/RECORD).

NEWNET

IL • 3
(SET LINK CLASS TO
DUMMY ONE-WAY LINK)

LNKl=LNK2
LNK2•0

LNKTMP • -1

LNKTMP a 11

WRITE THE SORTED
LINKS IN CORE OR
LNKTMP IN BLOCKS
OF 40 LINKS/RECORD.

END FILE LNKTMP
REWIND LNKTMP

IL • -1
{SET FOR NO LINKS
IN CORE)

III-64

NEWNET

LNKl • LNK2
LNK2 • 0

LNKTMP • -1

LNKTMP • 11

LNK2 • LNK2 + 1
CALCULATE NllMBER OF
RECORDS TO WRITE
ON LNKTMP.

WRITE THE SORTED
LINKS IN CORE ON
LNKTMP IN BLOCKS
OF 40 LINKS/RECORD

END FILE LNKTHP
REWIND LNKTMP

IL ~ -1
(SET NUMBER OF
LINKS IN CORE TO
ZERO)

III-65

NEWNE1

PRINT SUHNET
NUMBER

PUNT SUBNI!:T NUMBER.
END Flt.E 4, REWIND
4 (NODE NAME DATA SET)

IL • IL + 1
GET TIME OF DAY TO
TIME SORT

GET TIME OF DAY,
CALCULATE SORT TIME
A!ID ADD TO IT3 AND
c·ONVERT ·TO MINU1'1!:S

PRINT LINK SORT TIME.

IL • 11. + 1

III-66

NEW NET

RES c .TRUE. IF
THIS IS AN ASSIGN
SELF-BALANCING RUN.
ITER • ITERATION NUM
BER, OUTN • A LOGICAL
VARIABLE TO KEEP THE
PRINTED OUTPUT.

SUBROUTINE

/

OUTLLT

PRINT • (.NOT. RES .OR.
IT&.EQ.l) .AND. OUTN

REWIND 3 WRITE A
PAI.AMETER RECORD ON
UNIT 3 OF THE NUMBER
OF NODES ONE-WAY
LINKS AND TURNING
MOVEMENTS

WRITE THE ONE-WAY LINK
VOLUMES IN I!'ULL WORD
INTEGERS IN RECORDS OF
4000 WORDS ON UNIT 3.

WRITE THE TURN VOLUMES
SAVED IN FULL WORD
INTEGERS IN RECORDS OF
4000 WORDS ON UNIT 3.

REWIND NETWORK

III-67

READ PARAMETER RECORD
FROM UNIT NETWORK, ADD
ONE TO NUMBER OF
ASSIGNMENTS

NLl • NUMBER Ot
ASSIGNMENTS FROM
UNIT NETWORK + 1 •

COPY NLl HEADER
RECORDS FROM NETWORK
TO NEWNET.

SET NLS • NUMBER OF
WORDS IN LINK RECORDS
ON UNIT NETWORK

I = 1

OUTLLT

SET INUM2 = THE
NUMBER OF LINKS FROM
~ODE !.

RMD NODE RECORD
FROM UNIT NETWORK FOR
NODE I.

J - 1

WRT-

WRITE THE NEW LINK
RECORD WITH ITS ITP
AND TWO-WAY LINK VOLUME
FOR THIS ASSIGNMENT

KEAD A LINK RECORD
!'KOM UNIT NETWORK

GET ITP = THE LINK
IMPEDANCE USED FOR
THlS ASSIGNMENT

GET C = GROUND COUNT
OR CAPACITY (WHICHEVER
IS SPECIFIED BY THE
*TURN CARD)

UPDATE LINK IMPEDANCE
TO USE ON THE NEXT
ASSIGNMENT

III-68

YES

YES

OUTLLT

SET THE NEW l.l NK
!MPI-:DANCF. TO 0.01

SET THE NEW LINK
IMPEDANCE TO 161. ~ l

SKIP ONE LINr: ON
THE PRINTED OUTPUT

GET B NODE NUMBERS
AND SET UP ONE-WAY
LITERAL FOR THESE LTNKS.

YES

FALSE

PlliNT PAGE IIBADEll
RECORD FOR THE LOADED
NETWORK

FIND THE NUMBER OF
LINKS FROM NODE I
WHICH ARE NOT DUMMY
LINKS (REVERSE OF
ONE-WAY LINKS)

GET THE B NODE NUMBERS
AND DIRECTIONAL VOLUMES
FOR THESE LINKS

III-69

INITIALIZE N • 1 FOR
ONE LINE OF OUTPUT FOR
DIRECTIONAL VOLUMES.

K • 1

BUILD FORMAT FOR
DIRECTIONAL VOLUMES

K"'K+1 SETTHE
NODE NAME TO BLANKS •

GET B NODE NUMBERS AND
NON-DIRECTIONAL VOLUMES
FOR THESE LINKS

OUTLLT

INITIALIZE N • 2 FOR TWO
LINES OF OUTPUT FOR
DIRECTIONAL VOLUMES

PRINT DIRECTIONAL
VOLUMES FOR NODE 1 WiTH
FORMAT BUILT ABOVE

INITIALIZE N • 2 FOR
TWO LINES OF OUTPUT FOR
NONDIRECTIONAL VOLUMES

PRINT NON-DIRECTIONAL
LINK VOLUMES FOR NODE
I

NO

INITIALIZE N • 1 FOR
ONE LINE OF OUTPUT FOR
NONDIRI!!CTIONAL VOLUMES ·

lC- 1

GET NODE NUMBERS AND
TURN VOLUMES ORGANIZED
TO PRINT AND COUNT
NUMBER OF TURN VOLS •

III-70

PRINT TURN VOLUMES
FOR NODE I.

I = I+ 1

REWIND THE NETWORK
DATA SET

OUTLLT

YES

SUBROUTINE

OUTLNT

REWIND 4
IFACT 1 • 0

IFACT2 • FillST NODB
NUMBER IN SUBHET
2 - 1.

REWIND 4

III-71

OUTLNT

SUBIDUTIIIE

OUT NET

REWIND UIIIT III1'WOU

· W Till PM.AMITU
UCOID ftCII UIIIT
KB'lY08

PRIIT Till IUIBD.
OP SIJUI'lWQUS AID
THB IIUNIII. OP 011!
WAT LIDS . Ill Til
NITYOII:

PRIIT IUMIII. 07 BODIS,
PIUT *'DI, LAST
FRDWAT 0 LAST CIIIDOIDo
LAST AI.TII.IAL • LAST
PUBWAT IIODI POll UCII
SUBNBT.

UAD TO IIIADIIl
UCOIDS 011 UIIT lll'ftfOU
IJI) PllliT lACK 011! •

IliAD A IIODI UCOID JIQM .
NITWOU. • SIT AIIODI •
TO TH1 lfODI IIUMBD.

lfA • 1

SIT 1W. • Till
lltiA1.I.D IIUMID or
lA + 4t OR Til LAST
JIODE IUIID or Till
RITWOU.

Rift P.AGI ~Ill.
sa IDIIIII. or LQIIS
raumm. LilliS • '·

Plllft HISSAGI:
XIQX 110 COIIIICTUIC
N(J)I

l.IDS • l.IDS + 1

III-72

OUTNET

JL • MINO (4, NLL)
WHERE NLL • THE · WMBElt
OF LINKS FROM ANODE

NLL • NLL- JL

I.EAD ,JL LIMitS FROM
UNIT NE!WORit

PRINT THE JL LINKS
ON ONE LINE.

OUT NET

READ THE NEXT NODE EOD
IECOID hOM UNIT NETWORK. 1--------~ ..

NA • NA + ~0

SKIP TO THE TOP
OF A NEW PAGE. REWIND
UNIT NE'l'WO'Rit.

III-73

SUBROUTINE

OUTRIP

REWIND UNIT CTVOUT

READ PARAMETER RECORD
PROM CTVOUT

GET NUMBER OF CENTROIDS
PER SUBMIT

ROUND NUMBER OF
CENTROIDS/SUBHET TO
NEXT HIGHER INCREMENT
OF 10 SO THAT OUTPUT
WILL BE CORRECT

PRINT HUMBER OF SUBNETS

PRINT FIRST AND LAST
CENTROID NUMBER FOR
EACH SUBNET

SET DISPLACEMENT OF
WHERE TO PUT '1iiE
VOLiiMES IN '1iiE NTAB
AltllAY FOR SUBNH ONE
TO o. (k(l} • 0}.

SIT DISPUCBMBNT OF
WBBRE TO PUT VOLUMES
FOR THE OTBD SUBNBTS
IX THE NTAB AltllAY •

READ A TRIP RECORD FROM
UNIT CTVOUT

CLEAR THE NTAB ARRAY
FOil 4050 WORDS TO ZERO,

PRINT PAGE HEADER WITH
ORIGIN CENTROID.

III-74

OUTRIP

EOD

UIPACK TRIP VOLUIIIS
PROM LAST TRIP
IICoaD IliAD AID PUT
Ilf COIUC'l' PLACB Ilf
NTAI AllAY.

SlVI ORIGIII CliTROID,
IIOMIID, Ilf ICOK.I

READ A TRIP UCOID
JOD PROM UIIIT CTVOUT.

SET IKifBIID • OliGIIf
CBifTIOID OF THIS UCOID.

SET COUIIT or LIDS
PliiiTID JOl ICOK TO
zao.

LIST THB VOLUMBS Ill Till
ITAI AllAY Ilf GROUPS or
10/Lllll WITH DESTIIIATIOif lfODI
IUMIIIS, DOII'T PIIIT LIIfiS
POl WHICH ALL TBif VOLUICIS
AU ZDO. RIIIT A MBW PAGI
HL\DIIG IVDY .50 LiliES

YBS

III-75

RIP 'l'O TRI TOP
or A 11W PAGB 01
nnrnD OUUU'l'

OUTRIP

UTUIN

R!CA!J A NODE NAME
FROM 4

EOD

-.;r-; FI.Al· THAT EOD ON
'''.;I I I, HAS BEEN RF.ACHED.
·;J. i J..\ST NODI' NAME NUMHI·:R

1· : ~l()DE + I .

"~' •V L lli.ANY.'l TU THI· 'MilE
~i,\'1t OCTPI.'T AHEA.

SUBROUTINE

OUTSLN

REWIND 4, SET FLAGS

MOVE THE NODE NAME TO THE
OUTPUT AREA •

GET N LINKS, THE NUMBER
OF LINKS ,FROM NODE N,

III-76

GET DIRECTIONAL AND
NON-DIRECTIONAL LINK
VOLUMES FOR NODE N,

PRINT THE DIRECTIONAL
AND NON-DIRECTIONAL
VOLUMES FROM NODE N,

N • N + 1

RETURN

OUTSLN

PRINT PAGE HEADING,
SET LINES FOR THIS PAGE
TO ZERO.

ADO ONE TO THE NUMBER
OF UNBALANCED NODES

PRINT AN ERROR MESSA(;E
WITH THE NUMBER OF
UNBALANCED NODES.

PRINT ERROR MESSAGE:
WARNING, THIS NETWORK
WAS NOT PREPARED BY
$PREPARE SP rDER 'NETWORK

SUBROUTINE

OUTS NT

REWIND 1

READ THE . PARAMETER
RECORD FROM UNIT 1

READ SECOND PARAMETER
RECORD FROM UNIT 1.

READ INDEX tlECOlUIS FROM
UNIT 1.

READ LINKS FROM UNIT
1.

REWIND 1
REWIND 4

N 1 • 1

PRINT PAGE HEADER
RECORD

N 2 • MINIMUM OF
N 1 + 49, AND LASt
NODE NIJMBER.

N • N 1

IF THE LAST NODE NAME
READ FROM UNIT 4 IS

III-77

< N READ ANOTHER NODE
NAME FROM 4 IF AN
EOD HAS NOT BEEN READ •

PRINT THE NODES
CONNECTED TO .N WITH
LINK IMPEDANCES AND
THE NODE NAME IF
AVAILABLE

NO

N 1 • N 1 + 50

REWIND 4

PRINT NODE NUMBER
N AND NO CONNECT IN(;
NODE MESSAGE .

OUTSNT

SUBROUTINE

OUTTRE

PRINT TREE WITH DESTINA
TION NODE AND ADJACENT
NODES AND TIME TO EACH NODE
WHICH WAS REACHED

III-78

o u ·· r r: E

SUBROUTINE

OUTWLT

REWIND NETWORK.
READ THE PARAMETER
RECORD ·FROM UNIT
NETWORK

NL1 • NUMBER OF
ASSIGNMENTS FROM
UNIT NETWORK + 1.

SKIP NLl RECORDS ON
UNIT NETWORK

I a 1

SET INUM2 ,;, THE
NUMBER OF LINKS FROM
NODE I

READ NODE RECORD
FROM UNIT NETWORK

-TO GET NODE NAME FOR
NODE I.

SKIP INUM2 LINK
RECORDS ON UNit NETWORK
FOR NODE I:

PRINT PAGE HEADER
RECORD FOR THE
LOADED NETWORK.

SKIP ONE LINE ON THE
PRINTED OUTPUT

FIND THE NUMBER OF
LINKS FROM NODE I
WHICH ARE NOT DUMMY
LINKS (REVERSE OF
ONE-WAY LINKS)

DIVIDE DIRECTIONAL
LINK VOLUMES, NON
DIRECTIONAL LINK
VOLUMES AND TURN VOLUMES
BY 100 AND ROUND.

GET THE BNODE NUMBERS
AND DlRECTTONAL VOLUMES
FOR THESE LINKS.

III-79

OUTWLT

YES

GET B NODE NUMBBRS
AND SET UP ONE-WAY
LITERAL FOR THESE
LUiKS.

I :6!llAL~ZE !(• 2
FOil. :riiO LINES OF

I OUTPUT FOR. DIRECTIONAL
VOLUMES.

NO

INITIALIZE N· • 1 FOR
O~E LINE OF OUTPUT FOR
DIRECTIONAL VOLUMES

K • 1

BUILD FORMAT FOR
DIRECTIONAL VOLUMES

PRINT DIRECTIONAL
VOLUMES FOR NODE I
WITH FORMAT BUILT ABOVE,
WHEN K • l PRINT NODE
NAME

K • K + 1, SET THE
NODE NAME FOR NODE I TO
BLANKS

III-80

GET THE B NODE NUMBERS
AND NON-DllmCTIONAL
LINK VOLUMES FOR THE
LINKS FROM NODE I

INITIALIZE N • l FOR
ONE LINE OF OUTPUT FOR
NON-DIRECTIONAL LINK
VOLUMES

K • 1

PRINT NON-DIRECTIONAL
LINK VOLUMES FOR NODE
I

K • K + l

GET NODE NUMBERS AND
TUaN VOLUMES ORGANIZED
TO PRINT AND COUNT
NUMBER OF TURN VOLUMES

NO

INITIALIZE N = 2 FOR
TWO LINES OF OUTPUT
FOR NON-DIRECTIONAL
LINK VOLUMES.

0 IJ 1 ~~ L

PRINT TURN VOLUMES
FOR NODE I.

I • I + 1

REWIND UNil' NETWORX

III-81

DUTWLT

REWIND TRIP DATA SET

PRPBLD

KEAD *TURN AND
•TREE CARDS

SUBROUTINE

PATHCL

INITlALIZE SUMMATION
lOB. TB.EE BUILD AND LOAD
TIMB TO 0 • B.EWIND
NETWOB.K.

READ PARAMETER. B.ECOID
nOM METWOB.K

FIND MAXIMUM CENTROID
WMBD. READ FROM
*TUE CARD • SET !COUNT
• MAX. CENTB.OID.

WR.ITi .PARAMBTEB. B.ECOID
FOB. SEPAB.ATION MATRIX

III-82

SiC.IP HEADER RECORDS ON
UNIT NE'l'WO'RK

READ NODE AND LINKS
UCOID AND FORM
PACUD LINKS ARRAY IN
CORE

B.EWIND NETWORK

READ PARAMETER RECORD
FROM TRIP DATA SET

SELECT

READ SELECT CARDS ,
MARK SELECTED LINKS
AND WRITE SELECT RECORDS
ON SEL.

READ FIRST TRIP RECORO.
SET READSW • • FALSE.
EOFSW • • FALSE.

PATHCL

J. 1

GET FIRST CEJITR.OID
IN RANGE J, LS AIID
LAST CEIITB.OID IN
RANGE J, JJ • LS

GET TIME OF DAY

GET TIME OF DAY AIID
SUM TREE BUILD TIMI

WRITE SEPARATION Mt.TR.IX
RECORD FOR CEJITR.OID JJ

III-83

READ THE .NEXT TRIP
R.ECOR.D FROM THE TIHP
MATRIX. READSW = TRUE

GET TIME OF DAY

PATHCL

LOAD2

LOAD THE TRIP RECORD
ON THE TREE AND WRITE
SELECTED LINK TRIP
INTERCHANGES ON SEL

GET TIME OF DAY AND
SUM LOAD TIME

EOFSW • TRUE

III-84

JJ - JJ + 1

J- J + 1

END FILE SEPARATION
MATRIX. REWIND SEPARA
TION MATRIX

PRINT TREE BUILD TIME
AND LOAD TIME ,

PATHCL

PATHCL

li.EWIHD TRIP. MATRIX

CLOSE

III-85

PRINT ERROR MESSAGE

SUBB.OUTINE

PATHSP·

EOF • .FALSE.
REWIND UNIT 1

IliAD PAllAMETU
RECOliD Fll<»l UNIT 1

PRINT NETWORK SPIED.

READ SECOND PARAMETER
RECOliD FllOH UNIT 1.

READ THE NE'l'WORK
INTO ARRAYS INDEX 1
AND LINKS 1.

III-86

INITIALIZE ASSIGNED
LINK VOLUMES TO 0.

REWIND UNIT CTVOUT.
READ PARAMEtER RECORD
FROM CTVOUT

READ A TRIP RECORD
FROM UNIT CTVOUT.

INITIALIZE TREE BUILD
TIM!i:, TSUM • 0.
INITIALIZE LOAD TIME,
LSUM • 0.

INITIALIZE ~YS
USED BY THE TREE BUILD
PROGRAM TO ZEROS

PATHSP

TStlM • TSUM + I 2
- I 1

LSUM • LSUM + I 3 -
I 2

III-87

PATHSP

PRINT TREE BUILD AND
LOAD TIMES

W • .TRUE. (SET
W TO PRODUCE SECOND
WEIGHTED ASSIGNMENT)

PRINT MESSAGE:
INVALID TURN PENALTY
OR TREE CARD READ ;
ERR • ERR + 1

CAPC • .TRUE. (SET
CAPC TO USE CAPACITY

, FIELD INSTEAD OF GROUND
COUNTS)

SUBROUTINE

PRPBLD

READ TURN PENALTY
CARD. CAPC • • FALSE •
W • FALSE

PRINT CARD READ AS
TURN PENALTY CARD

SET nJRN PENALTY
ARRAY WITH TURN
PENALTY AND ZEROS.

SET I • 1

III-88

READ *TREE CARD FOR
SUBNET I

PRINT *TREE CARD READ

PUT A COMMA IN LAST
SiJBFIELD B {COLUMN 73)

(INITIALIZE PAIR
INCLUSIVE VARIABLE)
!SKIP .. 0 (INITIALIZE
FIELD COUNT VARIABLE)
KOUNT • 0 .

M • 1

PRPBLD

PRINT MESSAGE: INVALID
TURN PENALTY OR TREE
CARD READ. ERR =
ERR+ 1

PRINT MESSAGE : THE
FIRST FIELD OF THE
TREE CARD IS BLANK.
ERR•ERR+l

SEl SKIP H.AG TO
PROCESS NEXT SUBFIELD

KOUNT • KOUNT + 1
SET FLAG fOR NO OUTPUT
FOR THE TREE ~'ROM

THE CENTRO !D OF THE
SU8FIE!.D A

KOUliT • KOUliT + 1
SET FLAG FOR OUTPUT
FOR THE TREE FROM
THE CENTROID OF THE
SUBFIELD A

PUT THE SUBFIELD A
AS THE FIRST .AND I.AST
CENTROID OF A IWIGE OF
TREES TO BUILD,

KOUNT • KOUNT + 1
PUT K SUBFIELD A AS
FIRST CENTROID OF A
RANGE OF CENTROIDS

SET THE LAST CENTROID
OF THE RANGE AS THE
M + 1 SUBFIELD A. SET
FLAG TO SKIP M + 1 SUB
FIELD A

SET FLAG FOR NO OUTPUT
FROM THE KOUNT RANGE
OF CENTROID IN THE
I'TH SUBNET

III-89

PRPBLD

PRINT ERROR MESSAGE:
ILLEGAL FIELD.
SEPARATION CHARACTER
IN TREE CARD.
IERR = IERR + 1

SET THE LAST CENTROID
OF THE RANGE TO THE M
SUBFIELD A. SET FLAG
FOR NO TREE OUTPUT.

SET FLAG FOR OUTPUT
FROM THE KOUNT RANGE
OF CENTROIDS IN THE
I'TH SUBNET

THIS IS AN INFIN !TE
LOOP, BUT IT W IT.L
ABEND BECAUSE IT WILL
STORE OUTSIDE OF AN
ARRAY!

SAVE NUMBER OF RANGES
OF CENTROIDS , KOUNT,
FOR. SUBNET I

I • I+ 1

PRINT THE TUltll
PENALTY Alii) THE RANGES
OF TUBS TO BUILD
AND WHICH AU TO BE
OUTPUTED

IF THIS AM ASSIGN
SELF-BAI.ARCI~ R.UN THEN
PIIHT WHBTBER CAPACITIES
OR. COUNTS WILL BE USED

ALSO PRINT A MESSAGE
IF THIS IS AN ASSIGN
SELF-BALANCING AND
A SECOND WEIGHTED
ASSIGNMENT IS TO BE USED.

PRINT NUMBER OF ERRORS
DETECTED IN *TUR.H AND
*TUB CAII)S ,

III-90

PRPBLD

RETURN

I I

IRD ~. 1

IRU ~ 2

IRD c l

SUBROUTINE

PRPCTV

REWIND UNIT CTVOUT

RIW> THE PARAMETER
CARD. SET IRD • 0

IRD = 1 PRINT A
MESSAGE THAT 24 HR
FIELD USED.

SET NUMBER OF SUBNETS,
NDSUB : 1 • SET
FIRST CENTROID OF SUBNET
1 a 1. SET LAST
CENTROID OF SUBNET 1 • 7.

III-91

READ A TRIP VOLUME
RECORD FROM UNIT INCTV •

BUILD ONE WORD OF TRIP
RECORD. SET ORIGIN
IORG. SET SUBNET OF
DESTINATIONS 2 ISUB2

SET COUNT OF DESTINATIONS
IN THE TRIP RECORD, KNT c 1 •

PRPCTV

PRINT ERROR MESSAGE:
NONE VALID ORIGIN
XXXXX OR DESTINATION
xxxxx

SEI A fLAG TO INDICATE
TH!IT THE EOD ON UNIT
!NCTV HilS BEEN REACHED

PK I NT I;RROR MESSAGE:
NoNg VALID ORIGIN XXXXX
Oil nESTTNATlON XXXXX

WK l TE THE TRIP KECORD
W l TH KNT DESTINATIONS
ON liN I'!' CTVOUT

KNT = 0

PRINT ERROR MESSAGE:
DUPLICATE SET OF DATA
ENCOUNTERED

EOD RF.AD A TRIP VOLUME
RECORD FROM UNIT
INCTV.

l~I-92

KNT = KNT + 1
PUT THE NE'W DESTINATION
CENTROID AND VOLUME IN
THE RECORD

'WlliTE A TRIP RECORD
'WITH KNT DESTINATIONS
ON UNIT CTVOUT

KNT = 0

l'R I NT ERROR MESSAGE.:
VOLVME DATA OUT OF SORT

PRPCTV

END FILE UNIT CTVOUT,
REWINDUNITCTVOUT

III-93

NO

WRITE A TRIP RECORD
.WI'rH KNT DESTINATIONS
ON UNIT CTVOUT

PRPCTV

ENTRY

ASMNET

FK1' •.TRUE.
REV • .FALSE.

MERGE SORTED LUHCS
AID CHECK FOR COMifBC
TION ERROR.

SUBROUTINE

PRPNET

FK1' • .FALSE.
REV • .FALSE.

UAD DTWOII. PAJWCETER
CAID. UAD LINK DATA,
EDIT AID SORT. '

RETURN

III-94

ENTRY

REVNET

FK1' • • TRUE.
REV • .TRUE.

MERGE SORTED LINKS
AND OLD FLEXIBLE
DATA RECORD DELETE
OR CHANGE SPEC I FlED
LINKS.

COPY THE INTERMEDIATI'
FLEXIBLE RECORD 1'0
CORRECT THE NUMBER OF
LINKS PARAMETER AND
REMOVE SPANNr:ll CODE

PRPNET
AS'-P-lFT
REV"'FT

YES

SUBROUTINE

READVL

IUWl A TRIP MATRIX
RECORD

llETUllN

III-95

END OF

FILE

SIT END OF FILE
SWITCH

READVL

REWIND ROUTE DATA
SET.

SUBROUTtNE

RTPFL

INITIALIZE WORD COUNTERS
FOR ROUTES 1 - 31 TO
ZERO AND SET FLAGS
TO SKIP RECORDS

INITIALIZE WORD COUNTERS
FOR FIRST H) ROUTES
TO SAVE IN CORE, TO ZERO.
SET FLAGS FOR PIRST TEN
ROUTES TO SAVE THE
RECORDS IN CORE

REWIND THE ROUTE DATA
SET. lEAD NUMBER OF
ASSIGNMENTS FROM FIRST
RECORD

SKIP HEADING RECORDS
ON ROUTE DATA SET

REWIND ROUTE DATA
SET. READ NUMBER OF
ASSIGNMENTS

READ HEADER RECORDS
AND PlllNT.

CALCULATE LENGTH
OF EACH ROUTE RECORD
IN WORDS AND INITIALIZE
VARIABLES TO READ IN
ROUTE RECORDS INTO AN
ARRAY

III-96

INCREMENT COUNT
OF WORDS FOR THIS
ROUTE

RTPFL

READ A ROUTE RECORD
INTO THE NEXT LOCATIONS
IN THE ARRAY

INCREMENT COUNT OF WORDS
FOR THIS ROUTE RECORD.
INCREMENT TOTAL NUMBER
OF WORDS IN CORE.

INCREMENT THE NUMBER
OF RECORDS AND INCREMENT
THE INDEXES OF WHERE
THE NEXT RECORD IS TO
BE READ

MOVE THE WORil COUNT FOR
ROUTES 1 - 10 SAVED
IN CORE TO THE WORD
COUNT FOR THESE ROU'fg~:.

SET FLAGS ON ROUTES
1 - 10 SO THESE RECORDS
ARE NOT SAVED

RESET THE INDEXES so
THAT THE NEXT RECOHIJ
WILL BE RF.AD INTO
THE FIRST LOCATION Ot'
THE ARRAY.

SET THE NUMBER OF
RECORDS SAVED IN CORE
TO ZERO. SET A FLAG

· TO. SKIP THE SORT.

EOD

RIWIID lOUTI DATA SIT

Cft lOUD CODB OF
rUST BOJ.TID lOUTI
IICOID AID .A. lfODB AID
I IODI 0~ TBB Lta

IIITL\LIZB &OUTB
OIDDDC AII.A.YS "I 1'·'
AJID "I 2" 'l'O ZIIOS

SAY& TBB LIB 1Y l'UT'l'DC TBB
I ICDB ti I 1 (BODI) AID All
IIDII 'l'O Till LIB UCOID II
II 1 (AJIODI) tr I 1 (BODI)
IS ZIIO OR OTIIIIIIISI IY l'UT'l'IRa
Til IIODI IUIIIII, . II I 2 (ARODI)
AID All IIDII TO Til Lta D
IIX 2 (AIODB) IF I 2 (AJIODB) IS
ZDO OR OTIIIIUfiSI WIITI All IIIOR
IIBSSAGI AID SUP Till Lta.

SAVI Til LIB I8 Til Ol'l'OSm Dta•
ICTIOH IY PU'l'IIIC THB .AIICDI 1M I i
(IIIODB) AID All liDBX TO THB Lta
18 IJ. 1 (IIIODB) U I 1 (IIIODI) IS
ZIIO 01 O'l'IIDWlSI IY l'UT'l'IIIC Til
AIODI II I 2 .(IICDB) AID All IIDII •
'l'O Til LIB II 11X 2 (11001) IF
I 2 (IIIODB) IS ZBIO 01
O!RDVISB WIITI All llllOil
MISUGI AID SEIJi Til LIB

SIT END • • TIUJI.

III-97

GET THE lOOT! NUMBER
OF THE I1IXT LIB RECORD
AJID ITS AIIODB AND INOD!

YES

! .

RTPFL

S'IOP 8

SAVE A POINTD. TO 'l'HE
NEXT i.DIK UCOID TO
ROCESS

RITZ .U IDOl. IIISSAGI
THAT TD IOUTI BAS .0
BIIDS,

TBI ~YS I 1 AID I 2 IIIOW JOJK A
lmiiiCTIOJW. LIST SDUCTUIB or
LIBS WITH TB1 DATA IIDIIID BY
AUAYS HI .l AID HI 2, TBI LDIK
UCOBDS All IIIOW LISTID IH TD
OIDIIl Ill WHICH THIY All COIIIIBCTID
AID TBI LIST STIUCTUII IS DISTROYID
AS llCil LI& IS PI.IIITID BY SITTIRG
IITIIEI TBI B l (I) Ql I 2 (t) ·
ILIMI1IT WBICB WAS USID TO IBACH
ILBMIIT I TO ZBI.O to PUVDT TBI
PROGIAM ftCII GOIHG 'TIIIOUGB TBI
LIST !IOU TIWI OIICJ,

SIT TBI IOUTI CODE TO
THAT or TBI RDT IOUTI
SAVID IH COU

III-98

RTPFL

10

PIID BOW IWft' MOil
IOOTB CODBS CAll II UA.D
DITO COli AT TBB SAMB
TDG AID SIT FLAGS POl.
TRIM.

RIP TBI IIBADII
IICOIDS Cit TBB I.OUTB
DATA SIT. SIT BID
• .PALSB.

IIAD A aouTI LIB
UCOID

Ia2IKIIIT LOCATIOII
'1'0 rvr llllT LIIIt IICOID

III-99

RTPFL

SIT PI.T AllAY TO
PLOT ALL ROUTBS. PI.IIIT
HESSAGI: ALL ROUTIS WILL
II PLOTTID.

SUIIlOIJTID

RTPLT

IUD IWUTI PLOT CAID
n£111 UIIIT 5.

iRIIIT lOUD PLOT CAID.

IIAIIID CAD COLUIIIS
AID SIT ftT AllAY 'fO
PLOT COU.S WIICB AU
1011-I'LAR ALSO PU1IT
WIIICR AU TO II PLOTTID

liT 1D • .FALSI.

Dll'fiALIU 80ID
COU1ITIIS roa ICUTU
1 • 31 '1'0 ZIIO AID SIT
PLAG8 '1'0 RIP UCOID8
101 Dill IOUTIS

III-100

IHITW.IZE WORD COUHTEllS
POll PIIlST 10 IWUTBS TO
SAVE II COllE, TO
ZERO. SIT FLAGS TO
SAVE ltECOIJ)S Pll<ll
PIIST 10 llOUTBS IN COllE.

ilEWIHD THE ROUT!
DATA SET. llBAD
HUMID OP ASSIGRMEIITS
IILD nOM THE PIIST
llBCORD.

IUD THE ASSIGNMENT
PLOT CAID l'llOH S.

ftlliT THE ASSIGIIIBRT
PLOT CAID.

SIT lUGS TO PLOT THE
ASSICIMBNTS, COUII'l'S, Oil
CAPACITIBS SPBCIPIID,
ALSO fti1IT WHICH AilE TO
II PLOTTID.

PLOT IIIADD llBCOIDS
WI'1'B IDIRTIJICATIOII OF
ASSICIIGT IUHID,
COUlft', Oil CAPACITY WITH
S'IIDOL TO IB PLOTTED
POa IT.

ALSO Pllllft' ALL IIIADD
UCOIDS PROM Til IOUTI
DATA SIT.

PlliiiT MESSAGE: ALL
ASSIGHMEIITS, LINK COUNTS,
AID LINK CAPACITIES WlLL
·al PLOTTID. SET ~'LAGS 1'0
PLOT THE ABOVE.

RTPLT

INCRBHENT COURT OF
WOltDS FOR THIS BOUTB

INCIIMIIIT TBI IIUMIII
OF UCOIDS AID IRCIIICIHT
TH1 IIDBX OF WHIII
TH1 llllT UCOIJ) IS TO
Bl lEAD

SIT TH1 IUMIU. OF
UCOIDS SAYID II COU
TO ZU.O. SIT A PLAO TO
SliP THI SOilT.

SKIP 14, 2 INCHES DOWN
THE PLOT TO SKIP THE
HEADERS.

CALCULATE LENGTH OF
BOUTB UCOltDS IN
WORDS AND INITIALIZE
VAlllULES TO READ THE
BOUTB UCOltDS INTO AN
ARRAY.

READ A llOUTE UCOltD INTO
THE NEXT WORDS IN THE
AllAY.

IlcuMBNT COUNT OF
WOlDS FOR TBIS ROUTE
Ill COU. IICIBMENT
TOTAL NUHBD OF. WOltDS
IN THE ABRAY.

II)VB THE WORD COURT FOR
IOUTIS 1 - 10 SAVID Ill
COU TO THI WOlD COURT
1!01 THOSE IOUTBS, SIT
PUGS 011 IOU'1'IS 1 - 10
80 THAT THBSI UCOitDS
Alll ROT SAVID.

IBSIT TB1 IIDBX SO THAT
Til 1BXT UCOID WILL
BB 11&\D liTO TBI FIRST
LOCATION OF THI AllAY

-III-101

EOD

REWn1D ROUTE DATA
SIT.

GET ROUTE CODE. OF THE
FIRST SORTED RECORD
IN CORE.

RTPLT

END • .TRUE.

INITIALIZE ROUTE
ORDDING ARRAYS
B 1 AND B 2 TO ZEROS.

SAVE THE LINK BY PUTTING THE BNODE
IN B 1 (BRODE) AND AN INDEX TO THE
LINK RECORD IN NX 1(ANODE) IF
B 1 (ANODE) IS ZERO OR OTHERWISE
BY PUTTING THE B NODE NUMBER IN
B 2 (ANODE) AND AN INDEX TO THE
LINK IN NX 2 (ANODE) IF B 2 (ANODE)
IS ZERO OR OTHERWISE WitTE AN
ElUlOR. MESSAGE AND SKIP THE LINK

SAVE THE LINK IN THE OPPOSITE DIREC
TION BY PUTTING THE ANODE IN B 1
(BRODE) AND AN INDEX TO. THE LINK
IN NX 1 (BNODE) IF B 1 (BRODE) IS
ZERO OR OTHERWISE BY PUTTING THE
ANODE IN B 2 (BNODE) AND AN INDEX
TO THE LINK IN NX 2 (BNODE) IF
B 2 (BRODE) IS ZERO OR OTHERWISE
WitTE AN ElUlOR MESSAGE AND SKIP
THE LINK.

GET THE lOUTE NUMBER
OP THE NEXT LINK RECORD
AND ITS ANODE AND BNODE

III-102

YES

R f P L T

STOP 8

SAVE THE POINTER TO
THE NEXT ROUTE RECORD
IN CORE TO PROCESS •

PRINT AN ElUtOR MESSAGE
THAT THE ROUTE HAS
NO ENDS

THE ARRAYS B 1 AND B 2 NOW FORM A
BIDIRECTIONAL LIST STRUCTURE OF
LINKS WITH THE DATA INDEXED BY ARRAYS
NX 1 AND NX 2, THE LINK RECORDS
ARE NOW LISTED IN THE ORDER IN
WHICH THEY ARE CONNECTED AND THE
LIST STRUCTURE IS DESTROYED AS
EACH LINK· IS PRINTED BY SETTING
EITHER B 1 (I) OR B 2 (I) ELEMENT
WHICH WAS USED TO REACH ELEMENT
I TO ZERO TO PREVENT THE PROGRAM
FROM GOING THROUGH THE LIST MORE
THAN ONCE, THE INDEXES TO THE
LINKS LISTED ARE SAVED IN ARRAY
NX 2 SO THAT THE ROUTE CAN BE PLOTTED.

GET THE MAXIMUM VOLUME
TO BE PLOTTED FOR THIS
ROUTE, MAX

III-103

RTPLT

DRAW NUMBERS FOR THE
TIC MAIU(S ON THE Y
AXIS.

DRAW NODE NUMBERS ALONG
THE X AXIS IN ASCENDING
ORDER OF DISTANCE WITH
CONNECTING LINES

IC•NLD+2
IQt - 1

YES

PLOT THE VOLUMES
CORRESPONDING TO lCK
IN AN ORDER WHICH IS
ASCENDING FOR THE X
AXIS VALUES.

III-104

lCK • 1, CORRESPONDS TO
GROUND COUNTS lCK • 2,
CORRESPONDS TO CAPACITIES
lCK > 2, CORRESPONDS TO
ASSIGNMENT KK - 2

RTP.LT

PLOT THE VOLUMES
CORRESPONDING TO KK
IN AN ORDER WHICH IS
DESCENDING FOR THE X
AXIS VALUES.

KK=KK+l

III-105

SET THE ROUTE CODE
TO THAT OF THE NEXT
ROUTE SAVED IN CORE

FIND HOW MANY MORE
ROUTES CAN BE READ INTO

'CORE AT THE SAME TIME AND
SET FLAGS FOR THFM TO
BE READ IN.

SKIP THE HEADER RECORDS
ON THE ROUTE DATA SET.
SET END = . FALSE.

READ A ROUTE LINK RECORD

EOD

~TPLT

RETURN

INCREMENT LOCATION TO
READ NEXT LINK RECORD
INTO.

THIS EFFECTIVELY
ROUNDS DXS TO THE
NEXT LA.iCEST NUMBD OF
THE TYPE a*O • .5 WHilE
a lS AN lNTEGQ

ROUND 2*DXS TO THE
NEXT LAllGEST Ilft'IGBll
AND PUT IN IX.

SC • (FLOAT (IX) /2.0)
*FlO

l'UNCTIOH

sc

BRIAK NUMBD TO 81 SCALED
INTO TWO P.UTS DIS , A
NUMBD BBTWBEN·l. 0 AHD
10.0 AND P 10 A MULTIPLIER
WHICH IS A POWD OP 10

ROUND DXS UP TO THE
NEXT L.uGBST Ilft'IGill, IX

SC • IX*P 10

III-106

s c

PRliiT 11101. 11188ACI1
SILIC1'ID WIIU OUTPIJf
OPTIOI IIIVALID 0 OftlOI
UAD • •XIXX aull Dll.ftiD

110

SVIIOU!lll

SELECT

SIT I'UC SO 'liiAT LOADID
III'NOil WILL II
1'IDITID

IliAD CliiTl'UT SPICIFICATIOH
CAlli

liT TUIIIIIIC IIOVIIDT
CODII 'fO IIAVI IDIII AID
OUTM

SIT lLAC 'fO IUPPIIIS
PRIIITliiC or LOADID
IIITVOII.

III-107

'liS

YIS

'liS VllTI RIAHa AIID DATI
01 IILTIP DATA SIT

SELECT

PRINT ERROR MESSAGE:
SEU:CTF:n L lNK XXXXX
XXXXX NOT IN NETWORK,
CARD IGNORED

NOT IN

NETWORK

READ A *SELECT OR AN
*END CARD.

IF THE ANODE > BNODE
EXCHANGE THE ANODE AND
BNODE NUMBERS •

FIND THE LINK INDEX OF
THE LINK ANODE, BNODE •

SELECTED LINK FOUND

FLAG ONE-WAY LINK ~'ROM

ANODE TO BNODE IN THE
NETWORK AS A SELECTED
LINK.

III-108

SELECT

RETURN

SET PERCENT FIELD
TOO 100%

SET NUMBER OF ZONE
PAIRS TO PRINT =
32767

PRINT BIIOR MESSAGE:
SBLECTID LIR XXXIX
XXXXX liiOT IN HETWOIUC,
CARD IGNORID

NOT IN
NB'lWOIUC

FIND THE ONE-WAY LIR
INDEX OF THE LIB
BRODE, ANODE

SELECTED LIB FOUND

FLAG ONE-WAY LINK PROM
BNODE TO AliODE IN THE
NE'l'WOIUC AS A SELECTED
LINIC,

PRINT CUT-QFF
P.AlWCETERS FOR THIS
SELECTED LINIC

III-109

SELECT

READ THE NEXT TRIP RECORD
FROM UNIT CTVOUT

BOD

BOP • .TRUE.
SET TR1 OI.IGIII CENTROID
TO 9999 FOR THE LAST TRIP
RECORD READ,

SUBROUTINE

SLOAD

INITIALIZE AUAY TO
HOLD VOLUMES WHILE THEY
ARB BEING LOADED • TEMP,
TO ZERO 1'01. NUMBER OF
NODIS,

HOVE THE VOLUMES IN THE
TRIP RECORD INTO ARRAY
TEMP USING THE DESTINA
TION ZONES AS INDEXES.

SUM THE VOLUMES IN THE
TRIP RECORD AND PRINT
AN ERROR MESSAGE AND. THE
SUM.

III-110

RETURN

GEt POINTER TO t.ist
OF At.t NODE Nt.IMBERS IN
THE TREE IN DESCENDING
TIME ORDER.

GET NExT NODE NUMaBR OP
THE LIST, GET VOLUME
LOADED TO THIS NODE

GET BACK LINK IN THE
PATH FROM THE NODE AND
LOAD THE VOLUME ON IT.

USING THE NODE NUMBER
AT THE OTHER END OF THE
LINK AS AN INDEX SUM
THE VOLUME INTO TEMP.

SLOAD

SUBFND

SUBROUTINE

SU8FND

~

SIT A COOl TO INDICATE
NOT Ill

PDID WHAT SUBNET THB
IT IS WOT Ill '1'111 li!1WOU. ~ HI1WOU OIIGIR CIRTIIOID IS Ill.

~ ~
IITUIH

NOT IN FIJID WHAT SUJHET TRI

HITWOill DISTIIIATIOR CDTIOm
IS IR.

~
R.BTUlN

III-111

SUM END

SUBilOUTINE

' SUMEND PiliNT THE SUMMATIONS
MADE IY ORIGiN FOR
ALL CENTROIDS IN SEQUEN-

~·
TIAL ORDER BY CENTROIDS

.~
REWIND UNIT CTVOUT

PRINT TOTALS FOR ALL ·oF
ABOVE ITDIS. SIC.IP TO THE
TOP OF A NEW PAGE

• ~
READ PAIWI!TER RECORD
FR<»t UNIT CTVOUT.

lliiUND UNIT CTVOUT

-~ I

SUM NUMBER OF. CENTROIDS • ' NZONES. SET THE DISPLACE-
MINT FOil EACH SUBNET RETU1lN.

OF WHERE TO SUM ITEMS •

' INITIALIZE ARRAYS FOR
NUMBER OF ORIGINS •
DESTINATIONS • VOLUMES
IN, VOLUMES OUT • AND
INTRAZONAL VOLUME TO
ZEROS

~·

READ A TII.IP RECORD FROM EOD
UNIT CTVOUT

~
HAlC.E SUMMATIONS OF
NUMBBR. OF ORIGINS • DESTI-

I

NATIONS, VOLUMES IN,
VOLUMES OUT • AND
INTRAZONAL VOLUMES BY
CENTROID FOR THIS TRIP
RECORD

III-112

SUM R Y

SUBROUTINE

SUMRY

III-113

SUBROUTINE

TREE

TREES = . TRUE.

SUBROUTINE

TREBLD

TREES = .FALSE.
SEL • .FALSE.
OUTN • .TRUE.

BUILD TREES AND LOAD
IF TREES IS FALSE

.FALSE.

OUTLNT

PRINT LOADED
NETWORK

RETURN

III-114

TREE
TREBLD

SELLD

SUBROUTINE

SELLD

TREES = .FALSE.
SEL = ~TRUE.

SUBR0111'INE

TRN

INITIALIZE FLAGS TO IN
DICATE OUTP111' FOR ALL
POSSIBLE TURN VOLUMES
ALSO SET ALL TURN VOLUMES
TO -1 TO INDICATE ALL ARE
UHDOWNS

SET FLAGS POll NO OUTPUT
OF u-TURNS AND SET
VALUES OF 'l'HESE TO
ZEROES

GET IND • . THE TURN
CODE FOR '1'HE NODE

GET N • 'l'HE NUMBER
OF LllClS FROM
NODE I

ZERO 0111' TURN VOLUMES
WHICH ARE ICNOWN TO BE
ZERO BECAUSE OP ONE
WAY LINKS AND FLAG
FOR NO OUTP111'

TRN

YES PRINT MESSAGE:
TlOlV Ell\Oit

YES PIINT MESSAGE:
ERJIOit X

III-115

13, 17. 18,

20 22

GETRN

GET TURNING
MOVEMENTS WHICH
WERE SAVED

21

GETRN

GET TUBNING
K>VEHENTS WHICH
WEll SAVED

23, 24

GBTRN

GET TURNING
lllVEMENTS WHICH
WERE SAVED

GETRN

GBT TURNING
lllVEKENTS WHiCH
WERE SAVED

GETRN

GET TURNING .
lllVEMENTS WHICH
WERE SAVED

III-116

27

GETRN

GET TUBNING
MOVEMENTS WHICH
WERE SAVED

MARK TURNS WHICH
ARE ZERO BECAUSE
OF ONE-WAY LINKS
FOR NO PRINTED
OUTPUT

PRINT MESSAGE:
BlUlOR X

10

GETRN

GET TURNING
MOVEMENTS WHICH
WERE SAVED

1-9,
19

T R N

NO

GET DIRECTIONAL VOLUMES
FOR BOTH I>IRECTlONS AND
SUM FOR NON-DIRECTIONAL
LINK VOLUMES

I • 1

CHECK EACH· COLUMN
OF niE TURNING
MOVEMENT MATRIX AND
IP ONE HAS A SINGLE
UNKNOWN, CALCULATE
IT

CHECK EACH ROW OF THE
TURNING MOVEMENT MATRIX
AND IF ONE HAS A SINGLE
UNKNOWN, CALCULATE IT

I • I + 1

YES

YES

III-117

SET FLAGS SO THAT
NO TURNING MOVEMENTS
WILL BE PRINTED

RETURN

PRINT MESSAGt::
ERROR X

TRN

P'UHCTION

TRNMV

GET INDEX+
DISPLACEMENT -1

GET VOLUME OR
INDEX PlOt HALF
WOlD AUAY

USE THE SECOND
INDEX TO GET THE
VOLUME FROM THE
OVERPLOW AllRAY

YES

III-118

TRNMV

SUBROUTINE

TURNM

INitiALIZE FLAGS TO IN
DICATE OUTPUT FOR ALL
POSSIBLE TURNING l«)VE
MENTS, ALSO SET ALL TO
-1 TO INDICATE UNICNOWNS

SET FLAGS FOil NO OUT
PUT OF u-TURNS AND
SET VALUES OF THESE
TO ZEIIDES

GET IND • THE TURN
CODE FOR THE NODE

GET N • THE NUMBER
OF LINKS FROM THE
NODE

ZERO OUT TURN VOLUMES
WHICH ARE l<NOWN TO BE
ZERO BECAUSE OF ONE
WAY LINKS AND FLAG
FOil MO OUTPUT

TURN M

YES PRINT MESSAG.E:
I TRNMV ElUl'

YES PRINT MESSAGE:
ERIIDR X

III-119

13, 17, 18,
20, 22

GETRNS

GET TURNING
MOVEMENTS WHiat
WERE SAVED

21

GETBNS

GET TURNING
!I>VEMBNTS WHiat
WERE SAVED

23, 24

GETINS

GET TUIDIIHG
IIJ'VIMBII'lS WHICH
WEll SAVED

25

GETBNS

GBT TURNING
!IJVIM!Hrs WHiat
WBIB SAYED

III-120

27

-GETBNS

GET TURNING
MOVEMENTS WHICH
WERE SAVED

GETRHS

GET TURNING
l«)VEMENTS WHICH
WEllE SAVED

MARK TURNS WHICH ARE
ZERO BECAUSE OF ONE
WAY LINIC.S FOR NO
PRINTED OUTPUT.

PRINT MESSAGE:
EIUIOR X

10

GETRNS

GET TURNING
MOVEMENTS WHICH
WERE SAVED

1-9,
19

TURNM

NU

r:l-:'1' 1.11 KECTlONAI,
V(lLUHY.S Flllt llOTII
IH RECT IONS AND SUM
POll NON-DlRI·:c:TIONAl,
LINK VIILUMt:~;

l - l

C:HF.CK EACll (X)LUMN OF
THE TURN UiG l«lVEMENT
MATRIX AND JF ONE HAS
A SINGLE UNXN<MI,
CALCULATE I't

CIIECK EACH ROW OF THE
TURNlNG MOVBMBNT MATRIX
AND IF ONE HAS A SINGLE
UNKNOWN, CALCUl.A'l'l'. IT

n:s

n:s

III-121

SV.'l' l't,!\(:S ~;n 'l'IIA'I'
NO TIIRNlNt~ HCIVt:Mt:N'I'S
Wlt.l. lit: I'IIIN'I'IW

RETURN

I'RINT HF.SSAm::
ERROR X

TURNM

SUBIWUTINE

UPDTNT

DLT • .FALSE.
(NO BUOBS DETECTED
IN PARAMETER CARDS)

SET ITR(I) • I FOR
I • 1, 20. TillS
SPECIFIES NO ASSIGN
MENTS ARE DELETED

REWIND 12.

'-RJW) TilE PAIWIETEll
RECOBD FltOM tiHIT 12
OF TilE OLD PLEXIBLE
RECOBD

IMPD • .FALSI.
(THE LINK IMPBDANCE
OF AN OLD ASSIGNMENT
IS NOT TO BE USED)

SLF • .FALSE.
(THE LINIC. IMPEDANCES
UE NOT TO BE CALCU
LATED BY THE LINK
IMPEDANCE FUNCTION)

III-122

UPDTNT

SL •• • .TRUK.
NMPD • NTR

PRINT ERROR MESSAGE:
*IMPEDANCE AND *ADJUST
I'AIAMETER C'.ARDS MUTUALLY
EXCLUSIVK
DLT • .TRUF.

READ A PARAMlTER
CARD. FROM UNIT 5

PRINT THE PARAMETER
CARD

PRINT I!RIIOR
MP.SSA(;Jh INVALID
DEl.ETE ASSIGIIMENT
PAitAMETER CARD
DLT • .TRUE.

NO

III-123

PRINT MESSAGE:
ASSIGNMENT X IS liiVALlD,
EXECUTION WILL END W£TII
A STOP 3. DLT • .11tU.:.

N'tR = Till•: .\:::; IC:NHI•:NT
Tn u•:I.I'TI-:.
JTR(NTR) = u

IHI'Il" .TRill·,
NHI'IJ ·" NTII

ll P n 1 NT

STOP 3

PRlNT MESSAGE: SELF
DIVERTING IMPEDANCES
CALCULATED FROM
ASSIGNMENT XX

PRINT MESSAGE: NEW
IMPEDANCES TAKEN FROM
ASSIGNMENT XX

READ THE FIRST HEADER
RECORD FROM UNIT 12

READ THE OTHER PARAMETER
RECORD PROM UNIT 12
COPYING THE ONES lOR A
ASSIGNMENTS WHICH ARE
NOT TO BE DELETED TO
UNIT NETWORK.

PACK THE NON ZERO
ITEMS IN ARRAY ITR.

III-124

READ A NODE RECORD FROM
UNIT 12

NL • NtiHBER OF LINK
RECORDS FOR THIS NODE
RECORD. I • 1

READ A LINK RECORD FROM
UNIT 12

UPDATE THE LINK
IMPEDANCE IF SPECIFIED
BY SLF OR IMPD.

DELETE ASSIGNMENT
SPECIFIED BY THE
ITR ARRAY • I = I + 1

UPDTNT

CLOSFT

CLOSE UNIT NETWORK

REWIND 12

PRINT MESSAG~: THAT
rm; NUMB!lR OF LINKS
EXCEEDS THE MAXIMUM.
ERK = liRR + l

PRINT MESSA<;E THAT THE
MAXIMUM NODr: NUMBER IS
EXCEEDED.
ERR t r:RK + I

SUBROUTINE

VREC

MRG • i.NK 1. GT. 0
(ARE THERE RECORDS ON
UNIT 3)
MRG 2 • LNK 2. GT, 0
(ARE RE~ORDS ON UNIT 11)

t:ALCULATE TOTAL NUMBER
OF ONE-WAY LINKS

SET INDEXES FQR NEXT
LINK FROM LINKS IN
CORE OR FROM RECORDS READ
FROM UNITS 3 OR 11 TO
FIRST LINK

III-125

REWIND UNIT 4 (NODE
NAMES)

READ A RECORD FROM
UNIT 3

READ A RECORD FROM
UNIT 11

VREC

SET SORT KEY FOR
LINK FROM UNIT 3 SO
IT WILL BE SK IPPEIJ.
SET ANODE s !6381

SET S.ORT KEY FOR THE
FIRST. LINK FROM UNIT
11 SO THAT IT WIJ.L liE
SKIPPED. SET ANODE =

16"!81

kEAD NEXT CARD FROM
LINK DATA INPUT

SET Nom: NUMBER
OF LAST NODE RECORD
READ TO 16383

!. ,. L + 1, SAVE
rHI!> LINY. AT iNDEX L.
l !\CREMENT TO GET NEXT
LJNK

YES

NO

READ NEXT RECORD FROM
UNIT 3, SET LOCATION
TO GET NEXT LINK TO 0

SET COUNT OF LINKS FROM
ANODE TO 0. (L = 0).
PUT NEXT SMALLEST
ANODJi! IN ANODE

NO

L = L + l SAVE THIS
LINK AT INDEX L.
INCREMENT TO GET
NEXT LINK

YES

III-126

READ NEXT RECORD
FROM UNIT 11. SET
LOCATION TO· GET NEXT
LINK FROM TO 0

L=L+l
SAVE THIS LINK AT INDEX
L. INCREMENT TO GET
NEXT LINK

UNPACK DATA FROM Nt:XT
L l NK FROM CORE

VREC

PRINT MESSAGE THAT THB
ANODE IS NOT IN THE
NETWORK
ERR • Ellll + 1

SET TURN TYPE CODE TO
28 AND ADD CENTROID
CODE

MOVE lODE KAME 1.'0
AREA JOB. THIS ANODE.
READ NEXT NODE KAME
RECORD.

GET COORDINATES ANI)
KEEP NON ZERO SUB AllBA
CODE, READ RIW ANODE
RECORD

PB.IIIT AN IUOI. MISSAGI
POl. BACH DUPLICATI LIB
AND ADD NUHBD 01
DUPLICATIONS I!l'l'O BIUl

YIS

COHVERT NliHBEB. OP'
LitlkS IN EACH LIIIIC
CLASS TO THB TUIN
!IIVIMEN'.l' TYPE CODE

NO

ADD CODE lOll FREEWAY
TO TU1N CODE

MOVE BLANitS TO THE
MODE NAME FOR THIS
NODE

SET COORDINATES TO
ZERO

V R E C

PRINT BUOK MESSACI
THAT TIIBlB AU .
II>U TIWf SIX LIRS .•
IIUl • BU.+ 1

PRIIT MISSACB:
ISOLATID CBHTKOID.
ll&•llll+l

I • 1

WRT

BID A LIB IICOU
fOR SAYID LIB l

III-128

PRINT MISSACI:
ISOLA.TID BODI.
JUoiJn+l

VREC

IIWDID 3

IIWIID 11

IIWIID Ji'ODB JWCB DAtA
SIT (UR1t 4)

III-129

VREC

niD SMAI.LIST ''T"
VALUI JOa VIIOSI
PUCIIITAGI IS ~
100 ~ 18 -

ADD 100- 18 '1'0
THI PIIICIII'DG&
fOUID AIOVI

SUBI.OUTINI

WGTLD

SUM COilSTAITS ftCII
CUI.VI FIT

SCALI COIISTAIITS TO
100 PIICDT AIID
COIIVIRT IA.CH '1'0 IITIGD
AID SUM 18 • TOrAL
PIICDT

CALCULATI Til VIIGBT
JOa UCII ITIIATIOR
IY DIVIDI11.1 Til
PDCII'l'AGI IY 100.0

ram Til PIICIITAGB
VIIQBTS TO LOAD

III-130

niD TBI LAICBST "T"
VALUE

ADD 100 -liS TO THE
PBICDTAGI COIUSPOMDIRG
'1'0 TBI LA.RGIST ''T"
JALUI

WGTLD

WTLNT

SUBROUTINE l
WTLNT READ THE LINK VOLUMES

li.OM UNIT 3 FOR THE

•
FIRST ITERATION, MULTI-
PLY BY IwT AND PLACE
THE RESULT IN THE

~
LINK VOLUMES IN COllE

DID FILE 3 J
UWIND 3
UWIND NETWOJUt llEAD THE TURN VOLUMES

li.OM UNIT 3 FOR THE
FillST ITERATION,
MULTIPLY BY IWT AND

~
PLACE THE RESULT IN
THE TUllN VOLUMES IN
COllE

READ PAJWIETER RECORD ~
FROM NE'IWORK

L • 2

+
SKIP HEADER RECORDS ~
ON UNIT NE'lWRK

SET IWT TO THE PERCENT f4--

~
TO LOAD FOR ITERATION L

INITIALIZE LIHl INDEX ~ AND TIJRN INDEX AlllAYS
TO ZERO. INITIALIZE
TUllN CODES TO 28

llEAD THE LINK VOLUMES
FROM UNIT 3 FOR ITERATION
L 0 MULTIPLY BY IWT

·~ AND SUM INTO THE LINK
VOLUMES IN CORE

READ NETWOU: TO GET l B NODES OF THE LINKS
AND NUMBER . OF LINKS
FOR EACH NODE AND
TURN CODES

READ THE TURN VOLUMES
FROM UNIT 3 FOR

+
ITERATION !., MULTIPLY

• BY IWT AND SUM INTO THE
TURN VOLUMES IN CORE

BUILD LINK INDEXES
FROM NUMBER OF LINKS .l FROM EACH NODE AND
BUILD TUllN INDEXES
FROM TURN CODES

~ L • L + 1

SET IWT • THE PERCENT

~
OF THE FIRST ASSIGNMENT r----
TO USE

YES NO
NUMBER OF

ITERATIONS RUN?

~
III-131

WTLNT

REWIND 3

REWIND NETWORK

III-132

S I G N I F I C A N T V A R I A B L E S

AND ARRAYS

LABELED COMMON

DESCRIPTIONS OF SIGNIFICANT
VARIABLES AND ARRAYS

LABELED COMMON

Twelve labeled common control sections are contained in the Texas

Small Network Package. These labeled commons serve several important

functions. Their primary function is, of course, to provide a convenient

media for passing various variables and arrays between subroutines.

They are also used to save certain variables and arrays as various

subroutines are overlayed. They have also been used in a few instances

to allign half-word arrays on full-word boundaries. Table 5 provides

a cross reference of the labeled common control sections and the program

control sections with which they are associated.

IV-1

PROGRAMS

ALCP
BLDNET

TABLE 5: CROSS REFERENCE OF LABELED COMMON CONTROL

SECTIONS AND PROGRAM CONTROL SECTIONS

LABELED COMMON
z Cll ll-4 ~ ...-4 ~
t-' ~ ~ E-4 Cll ll-4 ~ u
H ~ ~ ~ 5 ~ ~ .-:I ~ ~ .-:I .-:I

~ ~ ~ H ~ 0
u u u ~ J%.4 t-' ::r::: 0

X X
X

BLOCK DATA X X X
CLOSFT X
CRD X X
CRDINT X X X
FRATAR X
GTLD X X X X
LNKLST X X X
MAIN X X X
MERG X
MRGREC X X X X
NEWNET X X
OPENFT X
OUTLLT X X X
OUTLNT X X.
OUTNET X X
OUTRIP X X
OUTSLN X
OUTS NT X
OUTTRE X
OUTWLT X X
PATHCL X X X
PATHSP X X
PRPBLD X
PRPCTV y

READVL y

RTPFL X
RTPLT X
SELECT X
SLOAD X
SUBFND
SUMEND X X
SUMRY X X
TREBLD X
UPDTNT X X
VREC X X X
WGTLD X X
WRT X
WTLNT y

IV-2

~ ll-4
E-4 ll-4 E-4
< 0 .-:I
~ E-t 0
Cll Cll t>

X

X

X

X

X

X

X

DESCRIPTIONS OF

VARIABLES AND ARRAYS

The purpose of the section is to provide information concerning

the significant variables and arrays used in the package. For convenience,

this information has been summarized in tables by subroutine. The

programmer may, therefore, when reviewing the flowcharts and program

listings of a given subroutine, refer to the table(s) summarizing the

significant variables and/or arrays used in the subroutine. The tables

summarizing the significant variables and arrays used in various

subroutines, arranged in alphabetical order by the subroutine name,

are as follows:

IV-3

SUBROUTINE ALCP

In the following description the C field will be used to represent

either the link COUNT field when it is used or the link CAPACITY field

when it is used in ASSIGN SELF-BALANCING.

Variable

FN

M

SY

SYY

Control Variable

CNVRG

CNVRG

sx

XY

XX

Contents

The number of links used in the curve fit (the number of
links with a nonzero C field which are not centroied
connectors).

The number of iterations run in the ASSIGN SELF-BALANCING
run at this point.

The sum of

The sum of
connectors.

Value

False

True

the

the

c fields except for centroid connectors.

c fields squared except for the centroid

Meaning

The ASSIGN SELF-BALANCING run should continue
unless it has run the maximum number of
iterations.

The ASSIGN SELF-BALANCING run should not
run another iteration if it has run the
minimum iterations.

Contents

The sum of the non-directional assigned link volumes for
links with nonzero C fields except for centroid connectors
for iterations 1 through M.

The sum of the products of the non-directional assigned
link volumes with the C fields except for centroid
connectors for iterations 1 through M.

The sum of the non-directional assigned link volumes
squared for the links with nonzero C fields except for
centroid connectors for iterations 1 through M.

IV-4

SUBROUTINE BLDNET

Control Variables Value Meaning

FORMAT

FORMAT

EOF

EOF

Variable

MILAGE

IZLINK

Array

SPEEDS

KOUNT(I)

INDEX(I)

LINKS

False

True

False

True

Use the link card format written in the
manual with from 1 to 4 nondirectional
links per card.

Use the link card format that is used for
PREPARE NETWORK.

An end of data set has not been reached
on unit INLNK.

An end of data set has been reached on
unit INLNK.

Contents

The sum of the milage of all the link data cards in units
of 0.01 miles.

The number of nondirectional links with a zero link
impedance in the network.

Contents

The number of nondirectional links with link speeds
between 0 mph and 100 mph in increments of 1 mph.

The number of links from node I in array LINKS.

The index in array LINKS where the links from node I are
stored (or where they will be stored if there are any).

Each element of this array is a structure of data items
called a link.

Structure of an Element in array LINKS

Displacement Bits

0

1

20

Length Bits Contents

1 Last link code (0 if not last links, 1
if last link from the A node).

19 Link impedance in 0.01 minute units.

12 B node of the link.

IV-5

SUBROUTINE CMPVH

Variable Contents

LSTJ The largest jurisdiction number in the network.

NLD The number of assignments on unit NEWNET.

Control Variable Value Meaning

NLD

NLD

Array

VMI (J ,L)

VHR (J, L)

MI (J, L)

VM (J, F)

M (J, F)

VMC (J, F)

MC (J, F)

VMCC (J, F)

MCC (J, F)

1

2 or
greater

Don't print the comparison of the last two
assignments.

Print the comparison of the last two
assignments.

Contents

Vehicle miles cross classified by jurisdiction + 1 used
as the first index and three link classes second index.
The three link classes are centroid connectors, arterials,
and freeway links.

Vehicle hours cross classified the same as VMI.

Network miles cross classified the same as VMI.

Vehicle miles cross classified by jurisdiction + 1 used as
the first index and functional class + 1 used as the second
index.

Network miles cross classified the same as VM.

Vehicle miles for links with a nonzero count field cross
classified the same as VM.

Network miles for the links with a nonzero count field cross
classified the same as VM.

Vehicle miles for links with a nonzero capacity field cross
classified the same as VM.

Network miles for the links with a nonzero capacity field
cross classified the same as VM.

IV-6

Array

FC (F)

FN (R, J)

SY (R, J)

SYY (R, J)

sx (R, J)

sxx (R, J)

SXY (R, J)

Hl

H2

HN

Contents

The number of links with functional class + 1 used as
index F in the network.

J = 1:
J = 2:
J = 3:

J = 1:
J = 2:
J = 3:

J = 1:
J = 2:
J = 3:

J = 1:

J 2:

J = 3:

J = 1:

J = 2:

J = 3:

J = 1:

J = 2:

J = 3:

Number of links with nonzero link counts by route;
Number of links with nonzero link capacities by route;
Number of links in the network by route.

Sum of link counts by route code;
Sum of link capacities by route code;
Sum of nondirectional link volume from the previous
assignment by route.

Sum of link counts squared by route code;
Sum of link capacities squared by route code;
Sum of nondirectional link volumes from the previous
assignment squared by route code.

Sum of nondirectional link volumes for this assign
ment for those links which have a nonzero count by
route;
Sum of nondirectional link volumes for this assign
ment for those links which have a nonzero link
capacity by route;
Sum of-non.direetional link volumes for this assign-
ment by route.

Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
count ·by route;
Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
link capacity by route;
Sum of nondirectional link volumes squared for this
assignment by route code.

Sum of nondirectional link volumes from this assign
ment multiplied by link count by route;
Sum of nondirectional link volumes from this assign
ment multiplied by link capacity by routes;
Sum of nondirectional link volumes from this assign
ment multiplied by nondirectional link volumes from
the previous assignment by route.

The header record and date from the previous assignment.

The header record and date from the last assignment.

The header record and date of when the network was built.

IV-7

Control Variable

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Variable

INLNK

INCTV

!VOL

I FRAT

MR. GOUT

NET

NNET

MSEP

IRTPFL

Value

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

SUBROUTINE CRD

Meaning

$PREPARE NETWORK control card read.

$OUTPUT NETWORK control card read.

$PREPARE TRIP VOLUMES control card read.

$OUTPUT TRIP VOLUMES control card read.

$SUM TRIP ENDS control card read.

$ASSIGN control card read.

$BUILD TREES control card read.

$STOP control card read.

$ASSIGN SELECTED LINKS control card read.

$FRATAR FORECAST control card read.

$MERGE control card read.

$PREPARE SPIDER NETWORK control card read.

$OUTPUT SPIDER NETWORK control card read.

$ASSIGN SPIDER NETWORK control card read.

$ASSEMBLE NETWORK control card read.

$REVISE NETWORK control card read.

$ASSIGN SELF-DIVERTING or $ASSIGN SELF
BALANCING control card read.

$DELETE ASSIGNMENTS control card read.

$PLOT ROUTE PROFILES control card read.

Contents

Variable unit number INLNK

Variable unit number CTVIN

Variable unit number CTVOUT

Variable unit number FRATAR

Variable unit number MRGOUT

Variable unit number NETWORK

Variable unit number NEWNET

Variable unit number SEPARAT

Variable unit number ROUTE

IV-8

Array

MERGIN

HEADER

DATE

RNAME

Contents

Variable unit numbers for the six MERGIN units.

The header which is printed on output.

The date that the program started executing.

The 19 control card names.

IV-9

SUBROUTINE CRDINT

Control Variable Value Meaning

SUM

SUM

Variable

NLD

Array

LINK

LK

False Print header records from unit NETWORK.

True Print header records from unit NEWNET.

Contents

The number of assignments which are on unit NETWORK if SUM
is false or on unit NEWNET if SUM is true.

Contents

A structure with a length of 16 + 4NLD bytes per record,
the records are corridor intercept links.

The same array as LINK except.this is in half words.

Corridor Intercept Record

Bytes
Displacement

0

2

4

6

8

10

12

14

16

12+4NLD

Bytes
Length

2

2

2

2

2

2

2

2

4

4

Contents

Corridor intercept

Anode of the link

Bnode of the link

Route code of the link

Functional class code of the link

Link speed

Count field of the link in units of 100 trips.

Capacity field of the link in units of 100 trips.

Nondirectional assigned volume for the first
assignment.

Nondirectional assigned volume for the last
assignment.

IV-10

SUBROUTINE FASPTH

Variable Contents

NONDS The number of nodes in the network.

LSART4 The last arterial node number times 4.

Array Contents

TRNPTY Turn penalty array, contains 0, TP, TP, 0 where TP is the
turn penalty in units of 0.01 minutes.

INDEX (I) This array contains the Fortran type index indicating the
location where the links from node I begin in array LINKS.

LINKS This array contains a link in each word, the links are
structures which contain 5 data items.

LAMBDA (I) This array contains the cummulative times to reach node I in
units of 0.01 minutes.

!PATH (I) This array is a structure, element I contains the next node in
the path back from node I, the turn code, and a flag which
indicates whether the node is in the sequence table or is a
centroid.

!SEQ This is the sequence table, it contains all of the node numbers
of the active sites of where the tree is 'being built.

Links Structure

Displacement Bits Length

0 1

1 1

2 1

3 3

6 14

20 12

Bits Contents

Last link flag (0 if not last link, 1
if last link or dummy one-way link).

Shaft code

Arrow code

Unused

Link impedance in units of 0.01 minutes.

Bnode of the link

IV-11

!PATH array structure

Displacement Bits Length Bits

0 1

1 7

8 24

Contents

Sequence entered flag (0 if not entered
and if not a centroid, 1 if entered in
the sequence table or a centroid).

Turn code

Path node

IV-12

Variable

ITER

Al

A2

AO

NOSUB

Array

TSUM (I,J)

ESUM (I ,J)

G:FAC (I,J)

LFAC (I,J)

I TEST

VOL

FCEN

LCEN

SUBROUTINE FRATAR

Contents

Number of Fratar iterations that have been run

Input trip matrix unit number

Output trip matrix unit number (Al and A2 are switched at
the end of each iteration)

Unit CTVOUT

Number of subnets

Contents

I = subnet number, J = the relative zone in the subnet,
T sum is the trip generations or the production volume
plus the attraction volume for each zone for the input
trip matrix.

TSUM (I,J)* GFAC (I,J)/100 = the expected production +
attraction volume.

Growth factor, the factor multiplied by the trip generations
which is the desired future trip generations.

Is the trip generations produced by the last growth factors.

Growth factor frequency table for the last iteration run.

Used to read the trip volumes from the input trip matrix
and write them on the output trip matrix.

First centroid in each subnet.

Last centroid in each subnet.

IV-13

SUBROUTINE GTLD

Control Variable Value Meaning

SUM

SUM

Variable

NLD

ITER

JMAX

Arrai

VMI (J, L)

VHR (J, L)

MI (J, L)

VM (J, F)

M (J, F)

VMC (J, F)

MC (J, F)

VMCC (J, F)

MCC (J, F)

False

True

Don't produce a weighted assignment.

Produce a weighted assignment from weighted
impedances and write a new flexible record
data set for it.

Contents

The number of assignments which are on unit NETWORK.

The number of iterations run for ASSIGN SELF-BALANCING.

The maximum jurisdiction number in the network.

Contents

Vehicle miles cross classified by jurisdiction + 1 used
as the first index and three link classes second index.
The three link classes are centroid connectors, arterials,
and freeway links.

Vehicle hours cross classified the same as VMI.

Network miles cross classified the same as VMI.

Vehicle miles cross classified by jurisdiction + 1 used
as the first index and functional class + 1 used as the
second index.

Network miles cross classified the same as VM.

Vehicle miles for links with a nonzero count field cross
classified the same as VM.·

Network miles for the links with a nonzero count field cross
classified the same as VM.

Vehicle miles for links with a nonzero capacity field
cross classified the same as VM.

Network miles for the l{nks with a nonzero capacity field
cross classified the same as VM.

IV-14

Array

FC (F)

FN (R, J)

SY (R, J)

SYY {R, J)

SX (R, J)

SXX (R, J)

SXY (R, J)

Hl

H2

HN

WGT{J)

Contents

The number of links with functional class + 1 used as
index F in the network.

J = 1:
J = 2:
J = 3:

J = 1:
J = 2:
J = 3:

J = 1:
J = 2:
J = 3:

J = 1:

J = 2:

Number of links with nonzero link counts by route;
Number of links with nonzero link capacities by route;
Number of links in the network by route.

Sum of link counts by route code;
Sum of link capacities by route code;
Sum of nondirectional link volume from the previous
assignment by route.

Sum of link counts squared by route code;
Sum of link capacities squared by route code;
Sum of nondirectional link volumes from the
previous assignment squared by route code.

Sum of nondirectional link volumes for this
assignment for those links which have a nonzero
count by route;
Sum of nondirectional link volumes for this assign
ment forvthose links which have a nonzero link
capacity by route;

J = 3: Sum of nondirectional link volumes for this assign-
ment by route.

J = 1: , Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
count by route;

J = 2: Sum of nondirectional link volumes squared for
this assignment for those links which have a
nonzero link capacity by route;

J = 3: Sum of nondirectional link volumes squared for
this assignment by route code.

J = 1: Sum of nondirectional link volumes from this
assignment multiplied by link count by route;

J = 2: Sum of nondirectional link volumes from this
assignment multiplied by link capacity by routes;

J = 3: Sum of nondirectional link volumes from this assign
ment multiplied by nondirectional link volumes from
the previous assignment by route.

The header record and date from the previous assignment.

The header record and date from the last assignment.

The header record and date of when the network was built.

This array contains the weights in percentages to use
on each iteration when SUM is true.

IV-15

The following arrays and variables are summed for links with a

nonzero count (or capacity) field. The *TURN card is used to specify

whether the count or capacity field is used. It should also be noted

that the following arrays and variables are not summed for centroid

connectors.

Array

SX2{J)

XY(J)

XX(J, K)

Variable

SY2

SYY2

FN2

Contents

Sum of the nondirectional link volumes for iteration J.

Sum of the nondirectional link volumes multiplied by the
count (or capacity) field for iteration J.

Sum of the nondirectional link volume for iteration J
multiplied by the nondirectional link volume for iteration K.

Contents

The sum of the count (or capacity) fields.

The sum of the count (or capacity) fields squared.

The number of nonzero count (or capacity) fields for
links which are not centroid connectors.

IV-16

Variable

NA

NET

SUBROUTINE LNKLST

Contents

The number of iterations run in an ASSIGN SELF-BALANCING
run plus one if a weighted assignment has been produced.

The Fortran unit on which the last assigned Flexible
Record is written.

IV-17

Control
Variables

READSW

READSW

EOFSW

EOFSW

Variable

IV

IFACT

LHOM

LNET

NODES*.

Array

INDEX (I)

LINKS

BUF

Value

False

True

False

True

SUBROUTINES LOAD AND LOAD2

Meaning

The last record of trip volumes read has been
loaded.

The last record of trip volumes read has not
been loaded.

An end of data set has not been reached on unit
CTVOUT.

An end of data set has been reached on unit CTVOUT.

Contents

Number of volume items in the last trip record read.

First zone number minus 1.

Origin zone of the last trip record read.

Origin subnet of LHOM (should be 1 for the Small Network
Package).

Last node number of the network.

Contents

This array contains the Fortran type index for node I of
where the links from node I start in array links.

The same as array LINKS in subroutine FASPTH.

This array is a structure where each word of the array is
an item containing the trip movement volume in the first
18 bits as an unsigned binary integer, and the destination
zone number in the last 14 bits as an unsigned binary integer.

*This is the variable NODES! in subroutine LOAD2

IV-18

Array

VOL (I)

TRNTB (I)

XRTRN (J)

PATH

OVERF

Contents

This is a half word array which has the same dimension as
array LINKS and element I contains either the assigned
directional link volume for link LINKS (I) or the index of
where it is in array OVERF. The first bit of a VOL element
is a flag bit, if it is zero, then the next 15 bits are on
unsigned binary integer which is a link volume. If the flag
bit is 1, then the next 15 bits are an unsigned binary
integer which is an index into array OVERF where the link
volume is stored.

This is a half word array which is either used to store
turn volumes or indexes to where they are stored. The
flag bit is the same as for array VOL and the next 15 bits
are also treated the same as for array VOL.

This is a half word array which contains unsigned 16 bit
integers which are indexes into array TRNTB where the turn
volumes for node J are stored.

This array is the same as array !PATH in subroutine FASPTH.

This is a full word array used to store link volumes greater
than 32767 and turn volumes greater tha 32767.

IV-19

Variable

IL

NX

LNK2

MAXTIM

MAXLNK

MAXNDS

NO SUB

Array

FSTN

LSTC

LSTF

LSTA

ARRAY

SUBROUTINE MRGREC

Contents

This is the number of link records in array LINKS.

This is the number of links written on unit 3.

This is the number of links written on unit 11.

This the maximum link time in 0.01 minute units.

This is the maximum number of one~way links for a network.

This is the maximum number of nodes for a network.

This is the number of subnets the network is in.

Arrays

Length Contents Contents

4

4

4.

4

30004

First node of each subnet.

Last centroid of each subnet.

Last freeway of each subnet.

Last arterial node of each subnet.

Contains the sorted packed links array
described in NEWNET.

IV-20

Control
Variables

FMT

FMT

LNKTMP

LNKTMP

LNKTMP

ERROR

Array LINKS

SUBROUTINE NEWNET

Value

False

True

3

11

-1

Number of
Error detected
in subroutines
NEWNET, VREC ,
and MRGREC

Action Implied

Use old link data
format

Use new link data
format

Write first sorted
links on unit 3

Write second sorted
links on unit 11

If the sorted links
area is filled up
three times there
are too many links
and an attempt to
write on unit -1
will be made

Location Where Set

PRPNET, ASMNET, or
REVNET

PRPNET, ASMNET, or
REVNET

Initialization of NEWNET

Set to 11 after sorted
links are written on 3

Set to -1 after sorted
links are written on
unit 11

Array LINKS is the array in which oneway internal link records are

accumulated and sorted. These records are 22 bytes long and are stored

by subroutine PTLNK and referenced by subroutine GTLNK. The format

for these 22 byte records is as follows:

IV-21

Displacement
Bytes Bits

0

1

2

3

4

5

7

8

8

9

11

12

13

14

14

14

15

16

16

16

0

6

0

7

0

6

4

0

3

3

1

0

2

1

6

7

0

0

6

7

Length
Bytes Bits

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

4

IV-22

14

2

15

1

14

14

4

4

7

14

7

10

7

5

1

1

0

·6

1

1

Contents

Anode number

Link class code
0 = two-way
1 = one-way out
2&3 = dummy link

Link data card count

Not mileage code
0 = Use in Vehicle Mile Summary
1 = Do not use in Vehicle Mile

Summary

Bnode number

Count field in units of 100 trips

Jurisdiction code in hexadecimal

Functional class code in
hexadecimal

Subarea code

Link Capacity in units of 100 trips

Speed in units of tenths of
a mile per hour

L. k d. . . f 1
1n :stance 1n un1ts o 100 of a m1le

Corridor intersect code

Route number

Shaft code, 0 =
1

Arrow code , 0 =
1 =

Unused

one direction
other direction

one direction
other direction

Link Impedance field, in units

f
1 . . o 100 m1nutes

Link delete code
0 = keep link
1 = delete link from updated

Flexible Data Record

Unused

Control Variable

PRINT

PRINT

OUTN

OUTN

RES

RES

CAP

CAP

Variable

!OVER

IPATH(I)

INDEX(!)

NODE

ITR(I)

IXR(J)

SUBROUTINE OUTLLT

Contents

False

True

False

True

False

True

False

True

Meaning

Don't print the loaded network.

Print the loaded network.

Don't print the loaded network.

Print the loaded network if variable
RES is false or ITR is equal to 1.

This is not an ASSIGN SELF-BALANCING
iteration.

This is an ASSIGN SELF-BALANCING
iteration.

The COUNT field is used in an ASSIGN
SELF-BALANCING RUN.

The Capacity field is used in an ASSIGN
SELF-BALANCING run.

Contents

This is a full word array used to store link volumes
greater than 32767 and turn volumes greater than 32767.

This array is a structure, element I contains the next node
in the path back from node I, the turn code, and a flag
which indicates whether the node is in the sequence
table or is a centroid.

This array contains the Fortran type index indicating
the location where the links from node I begin in array
LINKS.

This array contains a link in each word, the links are
structures which contain 5 data items.

This is a half word array which is either used to store
turn volumes or indexes to where they are stored. The
flag bit is the same as for array VOL and the next 15.
bits are also treated the same as for array VOL.

This is a half word array which contains unsigned 16 bit
integers which are indexes into array ITR where the turn
volumes for node J are stored.

IV-23

Array

VOL{!)

Contents

This is a half word array which has the same length as
array LINKS and element I contains either the assigned
directional link volume for link LINKS(!) or the index
of where it is in array OVERF. The first bit of a VOL
element is a flag bit, if it is zero, then the next 15
bits are on unsigned binary integer which is a link volume.
If the flag bit is 1, then the next 15 bits are an unsigned
binary integer which is an index into array OVERF where
the link volume is stored.

IV-24

Variable

L

LINES

SUBROUTINE OUTNET

Contents

The Fortran unit number of the Flexible Data Record
unit NETWORK.

The number of lines printed on the page being printed.

IV-25

Control
Variable

EOF

EOF

FLG

FLG

Array

INDEX

VOL(!)

OVERF

LINKS

Contents

False

True

False

True

SUBROUTINE OUTSLN

Meaning

An end of data set has not been reached on
unit 4.

An end of data set has been reached on unit 4.

All nodes which were not centroids had the
same number of trips entering the node and
leaving the node.

One or more nodes which were not centroids
had a different number of trips entering than
leaving the node.

Contents

This array contains the Fortran type index of where the
links from node I start in array LINKS.

This is a half word array which has the same dimension
as array LINKS and element I contains either the assigned
directional link volume for link LINKS(!) or the index of
where it is in array OVERF. The first bit of a VOL element
is a flag bit, if it is zero, then the next 15 bits are
an unsigned binary integer which is a link volume. If the
flag bit is 1, then the next 15 bits are an unsigned binary
integer which is an index into array OVERF where the link
volume is stored.

This is a full word array used to store link volumes
greater than 32767 and turn volumes greater than 32767.

Each element of this array is a structure of data items
called a link.

Structure of an Element in array LINKS

Displacement in Bits

0

1

20

Length in Bits

1

19

12

IV-26

Contents

Last link code (0 if not last
link; 1 if last link from the
Anode).

Link impedance in 0.01 minute
units.

Bnode of the link.

Cont;rol
Variable

EOF

EOF

SPIDER

Array

INDEX

LINKS

Contents

False

True

'SPDR'

SUBROUTINE OUTSNT

Reaming

An end of data set has not been reached on
unit 4.

An end of data set has been reached on unit 4.

The data set on unit 1 was prepared by the
PREP ARE SPIDER NETWORK program.

Contents

This array contains the Fortran type index of where the
links from node I start in array LINKS.

Each element of this array is structure of data items
called a link.

Structure of an Element in LINKS Array

Displacement in Bits Length in Bits

0 1

1 19

20 12

IV-27

Contents

Last link code (0 if not last
link; 1 if last link from
A node)

Link impedance in hundredths
of a minute

B node of the link.

----------- --···--····· ··--------------------------------------

Variable

NONDS

IFACT

NET

Array

INDEX(!)

NODE(I)

IPATH(I)

VOL{I)

ITR(I)

IXR(J)

SUBROUTINE OUTWLT

Contents

Last node number

First centroid number minus 1.

Is the Fortran unit number which contains a Flexible
Record data set.

Contents

This array contains the Fortran type index indicating the
location where the links from node I start in array NODE.

Each element of this array is a link. The first bit of
each half word is the last link flag. If this bit is a
1, then this link is either the last link from the Anode
or a dummy oneway link. The next 15 bits contain the Bnode
of the link.

The Ith element of this array contains the turn code for
node I as a half word integer.

The Ith element of this array contains the directional
weighted link volume multiplied by 100 for link NODE(I).

Each element of ITR contains a directional weighted turn
volume multiplied by 100. The turn volumes for node J
begin at the index of IXR(J) and the number of turn
volumes for node J are determined by the turn code IPATH(J).

This is a half word array which contain unsigned 16 bit
integers which are indices into array ITR where the turn
volumes for node J are stored.

IV-28

SUBROUTINE PATHCL

Variable Contents

VOLF Unit CTVOUT number.

NETD Unit NETWORK number.

Control Variable Contents Meaning

READSW

READSW

EOFSW

EOFSW

Array

LAMBDl(I)

SEQ

TRNTBl(I)

XRlTRN(J)

OVERF

VOLl(I)

False

True

False

True

The last record of trip volumes read has
been loaded.

The last record of trip volumes read has
not been loaded.

An end of data set has not been reached
on unit CTVOUT.

An end of data set has been reached on
unit CTVOUT.

Contents

Used as the cumulative time to node I in subroutine FASPTH
and OUTTRE and as a scratch array in subroutine LOAD.

Used as a scratch array in subroutines FASPTH, LOAD, and
LOAD2 (not used in PATHCL).

This is a half word array which is either used to store
turn volumes or indexes to where they are stored. The
flag bit is the same as for array VOL and the next 15 bits
are also treated the same as for array VOL.

This is a half word array which contains unsigned 16 bit
integers which are indexes into array TRNTBl where the turn
volumes for node J are stored.

This is a full word array used to store link volumes greater
than 32767 and turn volumes greater than 32767.

This is a half word array which has the same dimension as
array LINKS! and element I contains either the assigned
directional link volume for link LINKS!(!) or the index of

IV-29

Array Contents

VOLl(I) cont. where it is in array OVERF. The first bit of a VOL!
element is a flag bit, if it is zero, then the next 15
bits are an unsigned binary integer which is a link volume.
If the flag bit is 1, then the next 15 bits are an unsigned
binary integer which is an index into array OVERF where
the link volume is stored.

INDEX!(!) This array contains the Fortran type index indicating the
location where the links from node I begin in array LINKS!.

LINKS! This array contains a link in each word, the links are
structures which contain 5 data items.

PATHl(I) This array is a structure, element I contains the next node
in the path back from node I, the turn code, and a flag
which indicates whether the node is in the sequence table
or is a centroid.

Links Structure

Displacement Bits Length Bits Contents

0 1 Last link flag (G if not last link,
1 if last link or dummy oneway link).

1 1 Shaft code

2 1 Arrow code

3 3 Unused

6 14 Link impedance in units of 0.01 minutes.

20 12 Bnode of the link

IV-30

SUBROUTINE PATHSP

Control Variable Contents

VOLF

Array

INDEXl(I)

BACK(!)

LAMBDA(!)

succ

OVERF

PRED

VOL(!)

LINKSl

Univ CTVOUT Unit CTVOUT number.

Contents

This array contains the Fortran type index for node I of
where the links from node I start in array links.

This array contains the path of the last tree built.
For node I the contents of BACK(!) contain the previous
node in the path from the origin node to node I.

This is a scratch array used by subroutines MOORE and SLOAD.

This is a scratch array used by subroutine MOORE.

This is a full word array used to store link volumes
greater than 32767 and turn volumes greater than 32767.

A list of nodes indescending cumulative time order in
which the nodes were reached in. the last tree built.

This is a half word array which has the same dimension
as array LINKS! and element I contains either the assigned
directional link volume for link LINKSl(I) or the index
of where it is in array OVERF. The first bit of a VOL
element is a flag bit, if it is zero, then the next 15
bits are an unsigned binary integer which is a link volume.
If the flag bit is 1, then the next 15 bits are an unsigned
binary integer which is an index into array OVERF where
the link volume is stored.

Each element of this array is a structure of data items
called a link.

Structure of an Element in array LINKSl

Displacement in Bits

0

1

20

Length in Bits

1

19

12

IV-31

Contents

Last link code (0 if not last
link; 1 if last link from
the A node).

Link impedance in 0.01 minute
units.

B node of the link.

Control
Variable

RES

RES

CAPC

CAPC

w

w

OUT (I,J)

OUT (I ,J)

Variable

NOSUB

COUNT (I)

INDXl (I,J)

INDX2 (I , J)

Contents

False

True

False

True

False

True

False

True

SUBROUTINE PRPBLD

Meaning

This is not an ASSIGN SELF-BALANCING run.

This is an ASSIGN SELF-BALANCING run.

The count field is to be used by ASSIGN SELF
BALANCING.

The capacity field is to be used by ASSIGN
SELF-BALANCING.

An assignment using weighted impedances
is not to be made.

An assignment using weighted impedances is
to be made in ASSIGN SELF-BALANCING.

Don't print the trees with origins between
INDXl (I,J} and INDX2 (I,J).

Print the trees with origins between
INDXl (I,J) and INDX2 (I,J).

Contents

The number of subnetworks.

The number of ranges of trees to build in subnet I.

The beginning of a range of trees to build in subnet I.

The end of a range of trees to build in subnet I.

IV-32

Logical Variables

Variable Name Set

FMT False

REV False

Maximum Value Variables

Variable Name Value

MAXLK2 5455

MAXNDS 4000

MAXLNK 16000

MAXTIM 16383

Arrays

Name Length

FSTN 4

LSTC 4

LSTF 4

LSTA 4

ARRAY 3004

SUBROUTINE PRPNET

Action Implied

Use old link data format

This is not a REVISE
NETWORK run

Meaning

Where Tested

NEWNET, VREC

PRPNET

This is the maximum number of oneway links
in core.

This is the maximum last node number.

This is the maximum number of oneway links
for the network.

This is the maximum link time in hundredths
of a minute (i.e., 163~83 minutes).

Contains

First node of each subnet

Last centroid of each subnet

Last freeway node of each subnet

Last arterial node of each subnet

Contains the packed links array described as
array LINKS in subroutine NEWNET.

IV-33

When entry point ASMNET is used, the logical variables FMT and REV are

set as follows:

Variable
Name

FMT

REV

Value
Set

True

False

Action Implied

Use new link data format

This is not a REVISE
NETWORK run

Where Tested

NEWNET, VREC

PRPNET

When entry point REVNET is used, the logical variables FMT and REV

are set as follows:

Variable
Name

FMT

REV

Value
Set

True

True

Action implied

Use new link data format

This is a REVISE NETWORK
run

IV-34

Where Tested

NEWNET, MRGREC

PRPNET

Control Variable

END

END

RTS (I)

RTS (I)

Variable

NRD

NWORDS

NLD

Array

Bl (I)

B2 (I)

NXl (I)

NX2 (I)

F (I)

H (I)

SUBROUTINES RTPFL AND RTPLT

Contents

False

True

False

True

Meaning

There was enough room in array F for
the first 10 routes.

There was not enough room in array F
for the first 10 routes.

Don't save the records read for route I
in array F.

Save the records read for route I in
array F.

Contents

The number of words in array F used by one route record.

The length of ar{ay F in words.

The number of assignments on the NEWNET data set.

Contents

If Bl (I) is not zero, then there is a link for route
RT2 between node I and node Bl (I).

If B2 (I) is not zero, then there is a link for route
RT2 between node I and node B2 (I).

NXl (I) is the index into array F of where the record
for the link represented by Bl (I) is stored.

NX2 (I) is the index into array F of where the record
for the link represented by B2 (I) is stored.

This is a full word array used to store a group of words
and ,half words which are a single record for a link.

This is a half word array equivalenced to array F.

IV-35

Array

RTT (I)

RTlO (I)

Contents

Contains either the number of route records for route I
or zero if the records are in array F or have been printed.

Contains the number of route records for route I for the
first ten routes.

A route record has the following order of items and is stored in

array F in the same order:

Displacement
in bytes

0

2

4

6

8

10

12

14

16

12+4NLD

Length
in bytes

2

2

2

2

2

2

2

2

4

4

4

Contents

Route code

Anode number

Bnode number

link functional classification

link distance in 1/100 miles

link speed in tenths of a mile/hour

link count/100

link capacity/100

link nondirectional assigned volume
for first assignment

link nondirectional assigned volume
for the last assignment

IV-36

Control Variable

OUT

OUT

Array

INDEX (I)

LINKS

Links Structure

Displacement Bits

0

1

2

3

4

6

20

SUBROUTINE SELECT

Contents Meaning

True no errors found in SELECT cards.

False errors found in SELECT cards.

Contents

This array contains the Fortran type index indicating
the location where the links from node I begin in
array LINKS.

This array contains a link in each word, the links
are structures which contain 5 data items.

Length Bits

1

1

1

1

2

14

12

IV-37

Contents

Last link flag {0 if not last
link, 1 if last link or dummy
one-way link).

Shaft code

Arrow code

Selected link code (1 if selected
link)

Unused

Link impedance in units of 0.01
minutes.

Bnode of the link

Control Variable

EOF

EOF

Variable

NODES

LHOM

COUNT

IOVR

Array

INDEX

LINKS

VOL

PRED

OVERF

BACK (I)

SUBROUTINE SLOAD

Contents

False

True

Meaning

The end of data set on unit CTVOUT
has not been reached.

The end of data set on unit CTVOUT
has been reached.

Contents

Last node number.

Origin node of last trip record read.

Number of trip items in last trip record read.

Number of words used in the OVERF array, (number
of directional volume greater than 32767).

Contents

The same as array INDEX in subroutine BLDNET.

The same as array LINKS in subroutine BLDNET.

The same as array VOL in subroutine LOAD.

A list of nodes in.descending cumulativetime order
in which the nodes were reached in the last tree
built.

The same as array OVERF in subroutine LOAD.

This array contains the path of the last tree built.
For node I the contents of BACK (I) contain the
previous node in the path from the origin node to
node I.

IV-38

Array

IORG (I)

IDEST (I)

liN (I)

lOUT (I)

INTRA (I)

ISUB (I)

IFSTND (I)

LSTND (I)

Variable

NO SUB

SUBROUTINE SUMEND

Contents

The sum of all trip volumes with the origin I except for
the intrazonal volume for I.

The sum of all trip volumes with the destination I
except for the intrazonal volume for I.

The number of nonzero trip volumes with destination I.

The number of nonzero trip volumes with origin I.

Intrazonal volume for zone I.

Number of zones in subnet I.

The first zone in subnet I.

Last zone in subnet I.

Contents

Number of subnets

IV-39

Control Variable

TREES

TREES

SEL

SEL

OUTN

Subroutine
Entry Point

TREBLD

TREE

SELLD

SUBROUTINE TREBLD

Contents

True

False

False

True

True

TREES

False

True

False

Meaning

Build trees, but don't load the
network or print the loaded network.

Build trees and load trips.

Don't read select cards and don't
write the selected links data set.

Read select cards and write unit
SELTRP.

Print the loaded network.

SEL OUTN

False True

False

True

IV-40

Control Array

TL (I,J)

TL (I,J)

TM (I,J)

TM (I,J)

Variable

NODE

IND

N

Array

TM (I,J)

NDIR (I)

IDIR (I)

CH (I)

LINKS (I)

TRNTB

SUBROUTINE TRN

Contents Meaning

False Don't print turn movement TM (I,J).

True Print turn movement TM (I,J)

-1 The turning movement TM (I,J) is
unknown.

>0 TM (I,J) is a turning movement volume.

Contents

Node number to get directional volumes for and calculate
turn movements for.

Turn code for NODE (the turn codes are explained in the
Other Information section).

Number of nodes connected to NODE.

Contents

Turn movement between the Ith node and the Jth node
connected to NODE.

Nondirectional link volumes for the links connected to
NODE.

Directional link volumes for the links connected to NODE.
)

Directional link volumes for the links going in the
direction of the nodes connected to NODE to NODE.

This array contains links which contain the Bnode in bits
1 thru 15 of the half word and a last link or dummy link
indicator in bit 0.

This array contains the turn volumes saved, they are indexed
by array XRTRN.

IV-41

Array

TRNCD (I)

VOL (I)

KC (IND)

KR (IND)

INDEX (I)

XRTRN (J)

Contents

TRNCD (I) contains the turn code for node I.

VOL (I) contains the directional link volumes for LINKS (I).

A table indexed by the turn code which has the number of
one-way links out from NODE.

A table indexed by the turn code which has the number of
one-way links into NODE.

This array contains the Fortran type index indicating the
location where the links from node I begin in array LINKS.

This is a half word array which contains unsized 16 bit
integers which are indices into array TRNTB where the turn
volumes for node J are stored.

The following arrays are used to place the turning movements which

have been saved in ARRAY TM before the other turning movements are

calculated. When a location in the following tables is not negative, the

following action is taken: TM (I,J) = TRNTB (XRTRN (NODE)+ IDSPXX (I,J)).

If the IDSPXX (I,J) position is negative, a zero is placed in TM (I,J).

The XX part of the IDSPXX array above varies.

Array Used for turn code

IDSP3 10

IDSP41 13, 17, 18, 20, 22

IDSP42 21

IDSP43 23, 24

IDSP44 25

IDSP5 26

IDSP6 27

IV-42

Control Array

TL (I,J)

TL (I,J)

TM (I,J)

TM (I,J)

Variable

NODE

IND

N

Array

TM (I,J)

NDIR (I)

IDIR .(I)

CH {I)

KC (IND)

KR (IND)

!PATH (I)

SUBROUTINE TURNM

Contents

False

True

-1

>0

Meaning

Don't print turn movement TM (I,J).

Print turn movement TM (I,J).

The turning movement TM (I,J) is
unknown.

TM (I,J) is a turning movement volume.

Contents

Node number to get directional volumes for and calculate
turn movements for.

Turn code for NODE (the turn codes are explained in the
Other Information section).

Number of nodes connected to NODE.

Contents

Turn movement between the Ith node and the Jth node
connected to NODE.

Nondirectional link volumes for the links connected to
NODE.

Directional link volumes for the links connected to NODE.

Directional link volumes for the links going in the
direction of the nodes connected to NODE to NODE.

A table indexed by the turn code which has the number of
one-way links out from NODE.

A table indexed by the turn code which has the number of
one-way links into NODE.

This array is a structure, element I contains the next
node in the path back from node I, the turn code, and a
flag which indicates whether the node is in the sequence
table or is a centroid.

IV-43

Array

INDEX (I)

LINKS

VOL (I)

TRNTB (I)

XRTRN (J)

OVERF

Contents

This array contains the Fortran type index indicating
the location where the links from node I begin in array
LINKS.

This array contains a link in each word, the links are
structures which contain 5 data items.

This is a half word array which has the same dimension
as array LINKS and element I contains either the assigned
directional link volumes for link LINKS (I) or the index
of where it is in array OVERF. The first bit of a VOL
element is a flag bit, if it is zero, then the next 15
bits are on unsigned binary integer which is a link
volume. If the flag bit is 1, then the next 15 bits are
an unsigned binary integer which is an index into array
OVERF where the link volume is stored.

This is a half word array which is either used to store
turn volumes or indexes to where they are stored. The
flag bit is the same as for array VOL and the next 15 bits
are also treated the same as for array VOL.

This is a half word array which contains unsigned 16 bit
integers which are indexes into array TRNTB where the
turn volumes for node J are stored.

This is a full word array used to store link volumes
greater than 32767 and turn volumes greater than 32767.

IPATH array structure

Displacement Bits Length Bits

0 1

1 7

8 24

IV-44

Contents

Sequence entered flag (0 if not
entered and if not a centroid, 1 if
entered in the sequence table or a
centroid).

Turn code

Path node

Links Structure

Displacement Bits Length

0 1

1 1

2 1

3 3

6 14

20 12

Bits Contents

Last link flag (0 if not last link,
1 if last link or dummy one-way link).

Shaft code

Arrow code

Unused

Link impedance in units of 0.01
minutes.

Bnode of the link

The following arrays are used to place the turning movements which

have been saved in array TM before the .other turning movements are

calculated. When a location in the following table is not negative, the

following action is taken: TM (I,J) = TRNTB (XRTRN(NODE) + IDSPXX(I,J)).

If the half word from TRNTB is negative, then the lower 15 bits are used

as an index into the OVERF array to get the turn volume. If the IDSPXX(I,J)

position is negative, a zero is placed in TM (I,J). The XX part of the

IDSPXX array above varies.

SUBROUTINE UPDTNT

Control Variable Contents Meaning

DLT

DLT

IMPD

IMPD

SLF

SLF

Variable

NMPD

False

True

False

True

False

True

There are no errors in the parameter
cards read.

There are one or more errors in the
parameter cards read for DELETE
ASSIGNMENTS. The program will continue
reading control cards but it will end
execution with a STOP 3 when the next
card with a $ character is column 1 or
and *END card is read.

An *IMPEDANCE parameter card has not
been read.

An *IMPEDANCE parameter card has been
read.

An *ADJUST parameter card has not been
read.

An *ADJUST parameter card has been read.

Contents

The assignment number of the assignment which is to be the
new link impedance if IMPD is true or from which the
impedance update function using the count field is to be
used to calculate a new set of link impedances.

IV-46

Variable

IL

LNKl

LNK2

MAXTIM

MAXLNK

MAXNDS

NO SUB

ERR

Array

FSTND

LSTCEN

LSTFWY

LSTART

LINKS

ARRAY

ARRAY2

SUBROUTINE VREC

Contents

This is the number of link records in array LINKS.

This is the number of links written on unit 3.

This is the number of links written on unit 11.

This is the maximum link time in 0.01 minute units.

This is the maximum number of one-way links for a
network.

This is the maximum number of nodes for a network.

This is the number of subnets the network is in.

This is the number of errors found in processing
the link data

Arrays

Length Contents

4

4

4

4

30004

220

220

First node of each subnet.

Last centroid of each subnet.

Last freeway of each subnet.

Last arterial node of each subnet.

Contains the sorted packed links array
described in NEWNET.

Contains one record from unit 3 of 40 packed
links.

Contains one record from unit 11 of 40
packed links.

IV-47

Variable

ITER

Array

INDEX (I)

BNODE (I)

TRNCD (I)

VOL (I)

TRN (I)

XRTRN(J)

SUBROUTINE WTLNT

Contents

Number of iterations run for ASSIGN SELF-BALANCING

Contents

This array contains the Fortran type index of where the
links from node I start in array BNODE.

Each element of this array is a link. The first bit of each
half word is the last link flag. If this bit is a 1, then
this link is either the last link from the Anode or a dummy
one-way link. The next 15 bits contain the Bnode of the link • ..
TRNCD (I) contains the turn code for node I as a half word
integer.

The element of VOL (I) contains the directional weighted
link volume multiplied by 100 for link BNODE (I).

Each element of TRN contains a directional weighted turn
volume multiplied by 100. The turn volumes for node J
begin at the index of XRTRN (J) and the number of turn
volumes for node J are determined by the turn code TRNCD (J).

This is a half word array which contains unsigned 16 bit
integers which are indices into array TRN where the turn
volumes for node J are stored.

IV-48

D A T A S E T S A N D

DATA SET FORMATS

DATA SETS

DATA SET FORMATS

OUTPUT SELECTED LINKS

DATA SETS

Two categories of data sets are associated with the Texas Small

Network Package: relocatable data sets and fixed data sets. The unit

numbers associated with relocatable data sets may be changed either by

the use of unit control cards or, in some instances, by the execution

of some programs such as ASSIGN SELF-BALANCING. A cross reference of

the data sets with associated programs is given in Table 6 •

DATA SET FORMATS

There are twelve·basic formats associated with data sets used by

the package. These twelve format types are:

FORMAT
TYPE

Trip Volumes Data Set

Flexible Record Data Set

Separation Matrix Data Set

Selected Interchanges Data Set

Node Names Data Set

Calcomp Plot Tape

Route Data Set

Spider Network Data Set

Trip Matrix Data Set

Scratch Node Names Data Set

Scratch Packed Links Data Set

Scratch Multiple Assignments Data Set

FORMAT
TYPE CODE

B

F

I

L

N

p

R

s
T

X

y

z

The format type codes (indicated above) are used in the cross reference

contained in Table 7 to indicate the format types used with each data set

V-1

TABLE 6: CROSS REFERENCE OF DATA SETS WITH ASSOCIATED PROGRAMS

Relocatable Data Sets Fixed Data Sets

Data Set
Identification

(npf::a.ult:) Unit: Numb~r

PREP ARE NETWORK

ASSEMBLE NETWORK

REVISE NETWORK

OUTPUT NETWORK

DELETE ASSIGNMENTS

PREPARE TRIP VOLUMES

OUTPUT TRIP VOLUMES

BUILD TREES

ASSIGN

ASSIGN SELF-BALANCING

ASSIGN SELECTED LINKS

PLOT ROUTE PROFILES

FRATAR FORECAST****

SUM TRIP ENDS

MERGE

PREPARE SPIDER NETWORK

OUTPUT SPIDER NETWORK

ASSIGN SPIDER NETWORK

I • Input Data Set

0 • Output Data Set

~

5

I

I

I

I

~ s ~
::;:, z z
~

..... 0 ~
~ ~ ~ ~ I!

'10 8 16 •• **

I 0

I

I

I

I

I I/0

I

0 I

I

~ ~
.c: -5 ~ CJ

~
~ fa:~ .u .u

~ ! t1S t1S
~

,... ,...

= il
~ CJ CJ

z en en tf.)

1 125 9 ,20 3 4

0 'ri./0 I/0

0 I~ ~/0

0 I,(> I/0

I

0

I 0

I I,() 0 0

I/0 IIJ ~0 0 ~/0

I I/0 0 0

I

--·-.
0* 0

I* I·

I* I

* For these programs this data set is fixed to unit 1.

-5 -5 ~ -5 ,...
~ .u .u ~ 4J

t1S t1S t1S E-4 ,... ... 4J ... ~
CJ CJ cu CJ ~

tf.) en z tf.) Ul

117 11 12 13 *til

I/0

tr/O
I/0 I I/0

I

0

-- ----- ---- --
I/0
--
~---- ··--·-

f-- f-- . -~·- --- -·-'

- --- -- - ~---

~
~
8
~

~·-"

I

0 -·-

** No default option exists for the MERGE program. Appropri.qte Unit Desig
nation Cards must be provided by the user.

*** Assembly language program reference.
**** The FRATAR FORECAST program sets the CTVOUT unit to the same unit as I•'RATAR.

Note: Some of the output data sets may be suppressed by use of the DO DUMMY
option in the JCL.

V-2

TABLE 7: CROSS REFERENCE OF DATA SETS WITH ASSOCIATED PROGRAMS
INDICATING THE DATA SET FORMAT TYPES

Relocatabl~ata,·,sets ·' Fixed Data Sets

Data Set
E-1

~
E-1 .c ,.d ,.d ,.d ~ ,.d

Identification E-1 ~ ~ z

I -~
(J CJ (J (J J-1 C)

~ z ~ 8 1-1 r::l ,f.J +J ,f.J ,f.J

~
,f.J

1-1 0

~ ~
E-1 ctS ~ ctS ctS t1j E-1

~ ~ ~
~ .P-4 ,... J-1 J-1 +J J-1:!

r::l ~ r::l C) C) C) C) <1) C) r::l
u u rx.. z C(;l t'l.l Ul t'l.l t'l.l z Ul t'l.l

(Default) Unit Number 10 8 16 ** ** 1 25 9 20 3 4 17 11 12 13 *"'*

PREPARE NETWORK F y X y

ASSEMBLE NETWORK F y X y

REVISE NETWORK F y X y F F

OUTPUT NETWORK F

DELETE ASSIGNMENTS F F

PREPARE TRIP VOLUMES B T
OUTPUT TRIP VOLUMES T
BUILD TREES F I
ASSIGN T F R F I
ASSIGN SELF-BALANCING T F R F I z
ASSIGN SELECTED LINKS T F R F I L
PLOT ROUTE PROFILES R
FRATAR FORECAST**** T T T
SUM TRIP ENDS T
MERGE T T
PREPARE SPIDER NEI'WORK S* N
OUTPUT SPIDER NETWORK S* N
ASSIGN SPIDER NETWORK T S* N

* For these programs this data set is fixed to unit 1.

r::l

~
E-1
0
.....:!
P-4

p

** No default option exists for the MERGE program. Appropriate Unit
Designation Cards must be provided by the user.

*** Assembly language program reference.

**** The FRATAR FORECAST program sets the CTVOUT unit to the same unit
as FRATAR.

Note: Some of the output data sets may be suppressed by use of the DD
DUMMY option in the JCL.

V-3

and its associated programs. As can be seen from Table 7, some of the

data sets have two different formats associated with them depending on

the user program option being executed. Likewise, several of the data

sets may have the same format as in the case of the trip matrix data set

format. In order to determine the format for a given data set, the

programmer should:

• Reference Table 7 to determine which of the twelve formats

is associated with the data set of interest.

• Refer to the detailed description of the format.

The detailed descriptions of eleven* of the twelve formats are as

follows:

*The format for the Calcomp plot tape (format type code: P) has not
been included.

V-4

Trip Volume Record

Displacement Bytes

0

6

12

18

24

TRIP VOLUMES DATA SET

(Format Type Code: B)

Length Bytes

6

6

6

6

6

Contents

Zone of Origin

Zone of Destination

24-hour volume

AM-peak volume

PM-peak volume

Each field in the record is in EBCDIC and these records must be

sorted into ascending order on a key of the first 12 bytes. The records

should be in Fixed length or Fixed Blocked format. The minimum length

of the records is 18 bytes if the 24-hour volume is used, 24 bytes if the

AM-peak volume is used, or 30 bytes if the PM-peak volume is used.

End of Data Set Indicator Record

DisElacement Bxtes Length Bytes Contents

0 1 "V"

1 N- 1 blanks

N is the minimum length for a trip volume record. This record is

only required if this data set is on cards and is read from unit 5 and

it must follow the last Trip Volume record.

V-5

FLEXIBLE RECORD DATA SET

(Format Type Code: F)

Parameter Record (One record)

Bytes Displacement Length

0 4

4 4

8 4

12 4

16 4

20 4

24 4

Contents

Number of Subnetworks
in the Network

Number of Assignments

Number of directional
links in the Network

First Centroid in
Subnetwork 1

Last Centroid in
Subnetwork 1

Last Arterial node in
Subnetwork 1

Last Freeway node in
Subnetwork 1

(The last four items are repeated once for each subnetwork)

Heading record (One from network preparation and one from each assignment)

Bytes Displacement Length Contents

0 80 Heading record in EBCDIC

80 12 Processing date

V-6

Anode record (One for each Anode; the records are in sorted order on the

Anode number; each Anode record is followed by the Link records

which are connected to it.)

Displacement Length
Bytes Bits Bytes Bits Contents

0 0 2 0 Anode number

2 0 2 0 Number of links connected
to this node

4 0 0 1 Centroid flag (One if it
is a centroid)

4 1 0 1 Freeway flag {One if it
is a Freeway)

4 2 0 6 Turning movement type
code

5 0 3 0 Not used

8 0 2 0 X coordinate of Anode

10 0 2 0 y coordinate of Anode

12 0 2 0 Subarea code of Anode

14 0 20 0 Anode name in EBCDIC

Link Record (There is one link record for each link connected to a node;

the link records follow the Anode to which they are connected)

·· Displacement Length
Bytes Bits Bytes Bits Contents

0 0 0 1 Last Link from Anode flag

0 1 0 1 Shaft flag
0 = one direction
1 = other direction

V-7

Displacement
Bytes Bits

0 2

0 3

0 4

0 18

4 0

4 4

4 18

8 0

10 0

12 0

14 0

16 0

18 0

20 0

24 0

Length
Bytes Bits

0 1

0 1

0 14

0 14

0 4

0 14

0 14

2 0

2 0

2 0

2 0

2 0

2 0

4 0

4 0

Contents

Arrow flag
0 = one direction
1 = other direction

Not used

Link time in hundredths
of a minute

Bnode of Link

Jurisdiction code of
Anode

Distance of Link in
hundredths of a mile

Speed in tenths of a
mile/hour

Functional class
(Codes 0 thru 15)

Route number
(Codes 0 thru 99)

Corridor intercept

Duplicate Mileage
Eliminator flag
(One if link is to be
eliminated from mileage
summaries)

Link Volume

Link Capacity

Link impedance used on
first assignment

Nondirectional Link
volume from first assignment

(The last two items are repeated for each assignment, the above two
are not present on a Flexible Record with no assignments)

V-8

Parameter Record

Byte Displacement

0

4

SEPARATION MATRIX DATA SET

(Format Type Code: I)

Length in Bytes

4

4

4 (number of zones)-4 4

Separation Record

Bytes Displacement

0

4

4 (number of zones)-4

Length in Bytes

4

4

4

Contents

Number of zones

Zero

Zero

Contents

Time to Zone 1

Time to Zone 2

Time to the last zone

The time is in hundredths of a minute. If a zone is not reached, its

time field will be 16,777,215 hundredths of a minute. The separation

records will be in the same order as the trees that are built.

V-9

Header Records

Bytes Displacement

0

2

4

SELECTED INTERCHANGES DATA SET

(Format Type Code: L)

Length in Bytes Contents

2 Zeros

2 2I + 1

8 Columns 8I + 1 to
8I + 7 of the Header Line

There are 12 header records (I= 0, 11); each header record has eight

bytes of the header line except the last record which has four bytes

of the header line.

Select Record

Bytes Displacement

0

2

4

6

8

10

12

Length in Bytes

2

2

2

2

2

2

2

Contents

Link Index of the Selected
Link*

Zeros

Percent of Trip Volumes
to Print for this Selected
Link

Smallest Node of Selected Link

Largest Node of Selected Link

Cut of Volume for Printing

Number of Trip Interchanges
to print

*This is the index of the directional link from the smallest node
of this selected link to the largest node of this selected link.

V-10

Interchange Record

Bytes Displacement

0

2

4

6

10

14

Trip Direction Code

10

2

Interchange Record

Bytes Displacement

0

2

4

6

10

14

Length in Bytes

2

2

2

4

4

2

Direction of
Interchange

First Zone to
Second Zone

First Zone to
Second Zone

Length of Bytes

2

2

2

4

4

2

V-11

Contents

Link Index of Selected Link*

First Zone of the Interchange

Second Zone of the Interchange

Number of Trips in the
Interchange

Zeros

Trip Direction Code

Direction of Trip
Through Selected Link

Small Node number to Large
Node number

Large Node number to Small
Node number

Contents

Link Index of Selected Link*

First Zone of the Interchange

Second Zone of the Interchange

Zeros

Number of Trips in the
Interchange

Trip Direction Code

Direction of r Direction of Trip
Trip Direction Code Interchange Selected Link

1 Second Zone to Small Node number
First Zone Node number

5 Second Zone to Large Node number
First Zone Small Node number

*These records are written fixed blocked 18 bytes long. They are
18 bytes long so that they can be sorted.

V-12

Through

to Large

to

Node Name Records

Column Displacement

0

20

NODE NAMES DATA SET*

, ,~ (Format. Type Code: N)

Length in Columns

20

4

Contents

Node Name

Node Number (4 byte integer)

There is one Node Name Record for each different node name found in

the Link Data Cards. The Link Data Cards should be in ascending

order on the first node number.

*This data set uses FORTRAN formatted I/0.

V-13

Parameter Record

Displacement Bytes

0

4

Header Records

Displacement Bytes

0

4

16

ROUTE DATA SET

(Format Type Code: R)

Length Bytes

4

4* (NLS + 3)

Length Bytes

4

12

4* NLS

Contents

NLS = the Number of Assignments

Unused

Contents

Sort Key = 100* (Assignment
number + 1) + J

Twelve bytes of the header

Unused

There are 8 of the Header records for each Header that is on a

Flexible Record. The J in the Sort Key of the above records is 1, 4, 7,

10, 13, 16, 19, 22 and is the index of where the three words should be

read into the header array in core when they are read. The record where

J = 22 contains only two words of the header. The location that would

be the third word is filled by 4 bytes of a 0 integer. The assignment

number for the header record when the Flexible Record was built is set to

0. The above records are repeated for each assignment.

V-14

Route Records

Displacement Bytes Length Bytes

0 2

2 2

4 2

6 2

8 2

10 2

12 2

14 2

16 4

4

12 + NLS*4 4

Contents

Route Code

Anode of the Link

Bnode of the Link

Functional Class Code

Distance of the link in
0.01 mile units.

Speed of the link in 0.1
mile/hour units

Count field in units of
100 trips

Capacity in units of 100
trips

Nondirectional Assigned volume
for the first assignment

Nondirectional Assigned volume
for the NLS assignment

One Route record is written for each link that has a route code

where the Anode is less than the Bnode.

V-15

Subnet Record

Byte Displacement

0

4

8

SPIDER NETWORK DATA SET

(Format Type Code: S)

Length in Bytes

4

4

4

Network Parameter Record

Byte Displacement

0

4

8

12

16

20

24

28

32

Index Record

Byte Displacement

0

2

398

Length in Bytes

~ 4

4

4

4

4

4

4

4

4

Length in Bytes

2

2

2

V-16

Contents

Number of Subnets (Set to 1)

Network Speed in miles/hour

Literal 'SPDR'

Contents

Subnet Number (Set to 1)

Number of Nodes

First Node (Set to 1)

1

Last Node

Last Node

0

0

Number of oneway links

Contents

Link index of node N

Link index of node N + 1

Link index of node N + 199

There are 200 indices in each record except the last one. The

last record contains the number of indices which is the number of

nodes taken modulus 200 plus one. N starts at 1 for the first record and

is incremented by 200 for each additional record necessary.

Time Link Records

Byte Displacement Length in Bytes Contents

0 4 Oneway Link

4 4 Oneway Link

796 4 Oneway Link

The format of a Oneway Link is:

Bit DisElacement Length in Bits Contents

0 1 Last Link Flag (Contains
1 if it is either the last
link from the Anode or if it
is indicating a dummy Link
to Anode.)

1 1 Shaft flag
0 = one direction (could
be East-West)
1 = the other direction
(could be North-South)

2 1 Arrow Flag

3 3 Not used

4 14 Link Time in hundredths
of a minute

20 14 Bnode of
/'

Link

V-17

The Anode of the Link must be used as an index into the Index array to

get the index where the links from the Anode start in the Time Link

Array. If an Anode has no links connected to it then INDEX(ANODE) =

INDEX(ANODE + 1). The last Time Link Record may be less than 200 words

since· it will contain only the remaining links in the network. The Links

from one Anode are in t·he fol1a.'\'9.ag. o.rder :. oneway out, twoway, and dummy

onewa.y in. Within ·each class of oneway links, the links are in the order

of the link data cards.

Turn Type Records

Byte Displacement

0

4

796

Length in Bytes

4

4

4

Contents

For node N, the first two bits
are zero, the next six bits
contain the turn type code for
the node which is set to 28,
·ana tthe next 24 bits contain
zeros.

For node N + 1 with the above
information types.

For node N + 199 with the above
information types.

There is a turn type word for each node from node 1 to the last node in

the network. All turn type codes are 28 which indicate no turns are to

be saved. This array is broken up into 200 word records as shown above.

V-18

,_,.

Header Record

Displacement

0

4

8

TRIP MATRIX DATA SET

(Format Type Code:. T)

Length Contents

4 Number of Subnetworks

4 First centroid in Subnet I

4 Last Bentroid in Subnet I

The last two items are repeaued for the number of subnets where I = l,N.

Trip Record

Displacement

0

4

8

12

8+4N
The interchange
bit destination

Length

4

4

4

4 ..• .
•
4

item is an 18 bit
zone number.

Contents

Origin zone of all interchanges
in this record

Subnet of the origin zone

N-Number of interchanges in
this record (from 1 to 100)

Interchange item .
Interchange item

interchange volume followed by a 14-

The trip records are in sort on the origin zone and the interchange items
for each origin are in sort on the destination zone!i.

V-19

Node Name Record

Displacement Bytes

0

4

SCRATCH NODE NAMES DATA SET

(Format Type Code: X)

Length Bytes

4

20

Contents

Anode number as a 4 byte
integer

Node name

The node name records are written in ascending order of node numbers.

V-20

SCRATCH PACKED LINKS DATA SET

(Format Type Code: Y)

This data set is made up of records which contain 40 link records.

Thses 40 link records are in the 22 byte format used in the LINKS array

in Logical Division 1. The link records are sorted on the key of Anode,

Link class, and Link data card count in ascending order for both Unit 3

and Unit 11 separately. The format for the 22 byte link records is

as follows:

Displacement
Bytes · 'Bits

0 0

1 6

2 0

3 7

4 0

5 6

7 4

8 0

8 4

9 3

11 1

Length
·Bytes· 'Bits

0 14

0 2

0 15

0 1

0 14

0 14

0 4

0 4

0 7

0 14

0 7

V-21

·contents

Anode number

Link class code
0 = twoway
1 = oneway out
2 & 3 = dummy link

Link data card count

Mileage code
0 = Use in Vehicle Mileage Summary
1 = Do not use in Vehicle Mileage

Summary

Bnode number

Count field in units of 100 trips

Jurisdiction code in hexadecimal

Functional class code in hexadecimal

Subarea code

Link Capacity in units of 100 trips

Speed in units of tenths of a mile
per hour

Link Record Format (continued)

Displacement
Bytes· · ·Bits

12 0

13 2

14 1

14 6

14 7

15 0

16 0

16 6

16 7

·r.ength
Bytes· ·Bits

0 10

0 7

0 5

0 1

0 1

1 0

0 6

0 1

4 1

V-22

Contents

1 Link distance in units of 100 of a
mile

Corridor intersect code

Route number

Shaft code, 0 = one direction
1 = other direction

Arrow code, 0 = one direction
1 = other direction

Unused

Link Impedance field, in units of
... 1

TOo minutes

Link delete code
0 = keep link
1 = delete link from updated

Flexible Data Record

Unused

SCRATCH MULTIPLE ASSIGNMENTS DATA SET

(Format Type Code: Z)

Header Record

Displacement Bytes

0

4

8

Links Record

Displacement Bytes

0

4

4K - 4

Length Bytes

4

4

4

Length Bytes

4

4

4

Contents

Last node number

Number of one-way links

Number of Turning Movements
saved

Contents

Link Volume I

Link Volume I + 1

Link Volume K

The link records contain from 1 to 4000 directional link volumes

each and the link volumes are written out in order of ascending link index.

Turn Volume Records

Displacement Bytes Length Bytes Contents

0 4 Turn Volume I

4 4 Turn Volume I + 1

4K- 4 4 Turn Volume K

V-23

The turn volume records contain from 1 to 4000 turn volumes and

are written in order of ascending turn volume indexes.

The link volume records and turn volume records are repeated. for

other iterations of an Assign Self-Balancing run.

V-24

OUTPUT SELECTED LINKS

The OUTPUT SELECTED LINKS program must be run as a separate job

(or as separate job steps). It uses the SELTRP data set built by

ASSIGN SELECTED LINKS as input. Th~ program performs two sorts and,

thereby, produces two data sets. Both data sets have the same format.

The format for these data sets is as follows:

V-25

SORTED SELECTED INTERCHANGES DATA SET

This is the data set which comes from the first sort in the OUTPUT

SELECTED LINKS job as it is modified by the E 35 exit in the IBM sort

using the E 35 assembly language subroutine. It is also the format

of the data set which results from the second sort performed in the

OUTPUT SELECTED LINKS job.

Header Records

Bytes Displacement Length in Bytes Contents

0 2 Zeros

2 2 2I + 1

4 8 Columns 8I + 1 to
8I + 7 of the Header Line

There are 12 header rec·ords (I = 0, 11) ; each header record has

eight bytes of the header line except the last record which has four bytes

of the header line.

Select Record

Bytes Displacement

0

2

4

6

8

10

12

Length in Bytes

2

2

2

2

2

2

2

Contents

Link Index of Selected Link*

Smallest node number of the
selected link

Largest node number of the
selected:~ink

32767

Percent of Trip Volumes
to print for this selected Link

Cut of Volume for Printing

Number of Trip +nterchanges
to print

*This is the index of the directional link from the smallest node of this
selected link to the largest node of this selected link.

V-26

Sum Record

Displacement Bytes Length in Bytes

0 2

2 4

6 2

8 2

10 4

Interchange Record

Displacement Bytes Length in Bytes

0 2

2 2

4 2

6 4

10 4

14 2

V-27

Contents

Link Index of Selected Link

Zero

32766

-1

Sum of Trip interchange
loaded through the Selected
Link

Contents

Link Index of Selected Link

First Zone of the Interchange

Second Zone of the Interchange

Nondirectional link volume
between the origin and
destination zones

Directional link volume
(direction specified by
Trip Direction Code)

Trip Direction Code
(see table on next page)

First Zone to Second Zone Second Zone to First Zone

Trip Direction Interchange Interchange

Code Dtreetion of trip Direction of trip
through·link is small through link is
node number to large small node number

Decimal Binary Present node·number Pres~nt to large node number _ _
1 0001 No - Yes Yes

2 0010 Yes Yes No -

3 0011 Yes Yes Yes Yes

5 0101 No - Yes No

7 0111 Yes Yes Yes No

10 1010 Yes No No -

11 1011 Yes No Yes Yes

15 1111 Yes No Yes No I

V-28

0 T H E R I N F 0 R M A T I 0 N

PRINTED OUTPUT FROM $ASSIGN AND
$ASSIGN SELF-BALANCING

TURNING MOVEMENTS

PRINTED OUTPUT FROM $ASSIGN AND

$ASSIGN SELF-BALANCING

Nineteen different types of tables may be produced during the

execution of $ASSIGN SELF-BALANCING and sixteen different types during the

execution of $ASSIGN. However, many of these tables are produced only

under certain conditions. In addition, during the $ASSIGN SELF-BALANCING

process, many of these tables are produced multiple times: some after

each iteration, some after certain iterations, and some only after the

last iteration. The following two tables, therefore, provide a summary of

the output produced by these two programs under the various conditions:

VI-1

SUMMARY OF OUTPUT FOR $ASSIGN SELF-BALANCING AND $ASSIGN

$ASSIGN SELF-BALANCING $ASSIGN

Cll
r::
0 Q) Cll

"T"'' "'0 Q)
..a

m
CJ

tO r:: "'0~
1-1 tO Q) r::

..a Q) ~"'0 CJ Q)
r::~ r:: Q) ::I s
WH Q) 0.. "'0 1=1

Cll is ~~ 0 00
r:: r:: 1-1"1""1
0 0 r:: 00 P-t Cll

"T"'' •r-1 0 "T"'' 1-1 "T"''"'' Cll
..a oi-J "T"'' Clll.l-l Cll Q) ~<
tO tO ..a Cll Cll~ ::I
1-1 1-1 tO <"'0 <;.C:.-. o...a
Q) Q) 1-1 Q) OOr-1 ~ Cll
..a ~ Q) "'..a "'0 •r-1 tO 8j H H +J Q) tO Q) ~ r:: H +J.-4 +J 0
+J 1-1 ..c: :::1 ..c: •r-1 1-1 1-1
Cll ~ +J bOCJ 00 ,r:: +J Q) Q)
1-1 Cl) -rl.-4 •r-1 +J 0.. ..c:~

OUTPUT "T"'' +J tO Q) tO ~-;~ ..a I.!-!
~ 0 H ~u o<

1. Selected Tables and Summaries* X X X X X X

2. Iteration Weighting-Multiple
Regression Analysis X X X

3. Link Volumes X X X X

4. Iteration Weights Applied X

5. Corridor Intercept Tables X X

6. Route Profiles X X

7. List of Volumes and
Impedances for Updated Links X

*see table titled "Tables and Summaries Produced with Each Assignment" on next
page.

VI-2

TABLES AND SUMMARIES PRODUCED WITH EACH ASSIGNMENT

Tables and Summaries

1. Cross Classification of V/C Frequencies
from Last Two Assignments

2. Cross Classification of Link Counts by
V/C Ratio from Last Two Assignments

3. Jurisdiction Summary

4. Jurisdictional/Functional Cross Classi
fication of Assigned Volumes

5. Jurisdictional/Functional Cross Classi
fication of Counted Volumes

6. Jurisidctional/Functional Cross Classi
fication of Link Capacities

7. Comparison of Assigned Volumes with
Counted Volumes

8. Comparison of Assigned Volumes with
Link Capacities

9. Comparison of Assigned Volumes (from
last assignment) with Assigned
Volumes (from assignment before last)

VI-3

CONDITIONS UNDER WHICH
TABLE OR SUMMARY IS PRODUCED

X

X X

X

X

X X

X X

X

X

X

TURNING MOVEMENTS

Turning movements are directional volumes which are loaded through

a specific triplet of nodes. Turning movements are logically associated

with the intersection node. For a node connected to three other nodes

the following equations can be written:

Tl,l + Tl,2 + Tl,3 = Dl

T2,1 + T2,2 + T2,3 = D2

T3,1 + T3,2 + T3,3 = D3

Where Ri = the directional link volume from the intersection

node to the node of the fth link.

Where Dj ~ the directional link volume from the node of the

th j-- link to the intersection node.

Where Tij• the turning movement between the node in the ith

th link and the node in the j-- link which are connected

to the intersection node.

These equations can also be represented by a matrix with two vectors:

Tl,l T1,2 1'1,3 Dl

T2,1 T2,2 T2,3 D2

T3 ,1 T3,2 T3,3 D3

Rl R2 R3

VI-4

Because of the way in which trees are built and in which paths are

represented in the Texas Small Network Package the turning movements on

the diagonal of the matrix which are U-turns are all zero. Also the

turning movements in some rows and columns will be zero because of the

one-way links. To limit the possible number of cases with one-way

links, the links which are connected to each node are connected in the

following order: one-way links into the node, two-way links, one-way

links out from node.

Putting in zeros for the diagonal elements for a case of three

two-way links there are six equations with six unknowns:

0 Tl,2 Tl,3 Dl

T2,1 0 T2,3 D2

T3,1 T3,2 0 D3

Rl R2 R3

Each equation has two variables in it and one constant. Six equations

with six unknowns can be solved if the equations are independent, however

these equations are not. If any one of the six turning movements is known

the other five can be calculated. The known turning movement will make

two equations with only one unknown each which can be calculated and the

turning movements which are calculated from these equations will allow

other turning movements to be calculated.

VI-5

The following method is used in calculating turning movements:

(1) All locations in the turning movements matrix are set to -1 to

represent unknowns; (2) The diagonal elements are set to zeros; (3) If

there are any one•way links into the node then the corresponding row

of the matrix is set to zero; (4) If there are any one-way links out

the corresponding column of the matrix is set to zero; (5) Turning

movements which have been saved are placed in the matrix; (6) The directional

link volumes are found and become two vectors of constants; (7) The

matrix is searched by rows and if a row has only one unknown it is

calculated; (9) If there are any unknown turning movements left then

steps 7 and 8 are repeated for up to N times where N is the number of

nodes connected to the intersection node.

The process for calculating unknown turning movements can be used for

a node connected to any number of nodes but the number of turning movements

to save if all links are two-way goes up rapidly with the number of links

to which a node is connected. Also the number of combinations of one-

way links out, two-way links and one-way links in goes up rapidly with

the number of links even when these links are sorted into the three link

classes and arranged in the above order. For N, the number of nodes to

which an intersection node is connected, where the links are all two-way

M = N2 - 3N + 1 for N > 2 where M is the number of turning movements to

save. If U-turns were allowed then M = N2 - 2N + 1.

In the Texas Small Network Package turn codes are set up for all

combinations of two-way and one-way links for a node connected to either

three or four nodes. Also there is a turn code for a node connected to

VI-6

either five or six nodes. These turn codes are set up in either the

Prepare Network, Assembly Network, or the Revise Network program and they

are written on the Flexible Data Record data set. The turn code are

described in a table. The turn codes for a node connected to five or

six nodes cause enough turning movements to be saved to calculate the

other turning movements when all of the links are two-way. This is also

more than enough for the cases with one or mote one-way links.

The turn codes and their meaning have been defined for the Texas

Small Network Package since 1967 but a method for determining which turning

movements to save and which to,calculate will be outlined here. The

easiest way to work with this problem is to represent the turning movements

in a matrix form as was done earlier for the case of a node connected

to three other nodes. It is convenient to let the row and column positions

within the matrix represent the links which contain the node numbers instead

of writing subscripts on the variables. Also a "s" will be written if

the turning movement is saved, a "c" will be written if it is calculated

and a zero will be written in the matrix position if the turning movement

is known to be zero either because it is a U-turn or because of a one-way

link. Also the two vectors which represent directional link volumes

will not be written since these are always saved. To identify each case

three one digit integers will be written over each matrix which are the

number of two-way links, the number of one-way links in and the number

of one-way links out which are.connected to the intersection node.

The following exampl.es are all of the cases for a node connected to

four other nodes for which one or more turning movements must be saved:

VI-7

0 2 2 1 1 2 1 2 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 c 0 0 0

c c 0 0 c c 0 0 c c 0 0

8 c 0 0 8 c c 0 8 c 0 0 .

2 0 2 2 1 1 2 2 0

0 0 0 0 0 0 0 0 0 c 0 0

0 0 0 0 c 0 c 0 c 0 0 0

c c 0 c c 8 0 0 c c 0 0

8 c c 0 8 c c 0 s c 0 0

3 1 0 3 0 1 4 0 0

0 c c 0 0 0 0 0 0 c c c

c 0 c 0 c 0 c c c 0 8 c

8 c 0 0 8 c 0 c s s 0 c

8 8 c 0 8 s c 0 s s c 0

VI-8

TURN CODES

Total Number of
Turn Number Turning Move-
Code of Links T I 0 ments to Save Turn Movements to Save*

1 3 0 0 3 0

2 3 0 1 2 0

3 3 0 2 1 0

4 3 0 3 0 0

5 3 1 0 2 0

6 3 1 1 1 0

7 3 1 2 0 0

8 3 2 0 1 0

9 3 2 1 0 0

10 3 3 0 0 1 3-1

11 4 0 0 4 0

12 4 0 1 3 0

13 4 0 2 2 1 4-1

14 4 0 3 1 0

15 4 0 4 0 0

16 4 1 0 3 0

17 4 1 1 ,2 1 4-1

18 4 1 2 1 1 4-1

19 4 1 3 0 0

20 4 2 0 2 1 4-1

21 4 2 1 1 2 4-1,3-2

22 4 2 2 0 1 4-1

23 4 3 0 1 3 4-1,4-2,3-1

24 4 3 1 0 3 4-1,4-2,3-1

25 4 4 0 0 5 4-1,4-2,3-1,3-2,2-3

26 5 - - - 11 5-1,5-2,5-3,4-1,4-2,4-3,
3-1,3-2,3-4,2-3,2-4

27 6 - - - 19 6-1,6-2,6-3,6-4,5-1,5-2,
5-3,5-4,5-1,4-2,4-3,4-5,
3-1,3-2,3-4,3-5,2-3,2-5,
1-4

28 - - - - 0 **

T = number of two-way links connected to the intersection node
I = number of one-way links connected into the intersection node
0 = number of one-way links connected out from the intersection node

*The turning movements to save are listed by the subscript pair in the form i-j which
indicate the position of the turning movement in the turning movement matrix.

**Save no turning movements for this node (or centroid) and print no turning movements.
VI-9

R E C E N T C H A N G E S

A N D M 0 D I F I C A T I 0 N S

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -0.67, -1.16 Width 37.44 Height 793.50 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 -0.6685 -1.1623 37.4354 793.4966

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 1
 293
 292
 293

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -1.34, -1.16 Width 614.68 Height 3.68 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 -1.337 -1.1623 614.6758 3.6767

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 1
 293
 292
 293

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -1.00, 789.99 Width 614.34 Height 2.67 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 -1.0027 789.9946 614.3415 2.674

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 1
 293
 292
 293

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 608.99, -1.16 Width 4.35 Height 793.83 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 608.9937 -1.1623 4.3452 793.8309

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 2
 293
 292
 293

 1

 HistoryList_V1
 qi2base

