HIGHWAY ACCIDENT COSTS AND RATES IN TEXAS

ΒY

Dock Burke Assistant Research Economist

Research Report 144-1F

Research Study Number 2-10-69-144 Highway Accident Costs and Rates in Texas

Sponsored by The Texas Highway Department in Cooperation with the U. S. Department of Transportation Federal Highway Administration

December, 1970

TEXAS TRANSPORTATION INSTITUTE Texas A&M University College Station, Texas

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	iv
ABSTRACT	v
SUMMARY	vi
IMPLEMENTATION STATEMENT	viii
LIST OF TABLES	ix
INTRODUCTION	1
Basic Concepts and Definitions	3 5
RESEARCH METHOD	9
Costs - General	9 12 16 19 20 21
INVOLVEMENTS AND INVOLVEMENT COSTS	23
Direct Cost per Involvement	23 23 34 43 43
ACCIDENTS AND ACCIDENT COSTS	49
Truck Accidents	49 50 51
ACCIDENT RATES	67
APPENDIX A	72
APPENDIX B	74
APPENDIX C	75

APPENDIX	D	•	•	•	•	•	•	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	76	
APPENDIX	Ε	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	92	
REFERENCE	ΞS	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•		•	•	•	•	•	•	•	•	105	

ACKNOWLEDGMENT

The author wishes to thank those who helped conduct the study. Special thanks are offered to Mr. Charles M. Billingsley of the Federal Highway Administration and Mr. Bob Hamner of the Texas Highway Department for making available the data needed for the study.

At the Texas Transportation Institute, Dr. W. G. Adkins and Dr. Frank McFarland provided the initial study design, extensive effort during the early stages, and critical guidance throughout. Mrs. Beverly Serpa typed and prepared the report for publication.

Mr. Dale Schafer, TTI Systems Analyst, and his assistant, Mr. Raul Cantu, deserve unqualified and genuine thanks for their ingenious and highly skilled programming work. Also, Mr. Schafer contributed heavily to the overall study design and its implementation. Naturally, any errors properly belong to the author.

The opinions, findings, and conclusions expressed in this publication are those of the author and not necessarily those of the Texas Highway Department or the Federal Highway Administration.

iv

ABSTRACT

This study develops a method of estimating costs for selected Texas accidents using cost data developed for accident involvements in Massachusetts, Illinois, New Mexico and Utah. Given the number and type (car/truck) of vehicles involved and the number of fatally injured persons, accident costs can be derived using the direct cost per involvement and loss of future earnings estimates presented in the report.

Also, accident rates for selected highway designs and for various average daily traffic counts are presented and analyzed.

SUMMARY

This report develops and utilizes a method for estimating Texas accident costs utilizing involvement cost data from studies completed by the states of Massachusetts, Illinois, Utah, and New Mexico.

The data from these states are combined into a single data system employing a classificatory method which uses the following categories:

1. Accident severity

2. Accident type

- 3. Rural urban location
- 4. Vehicle type
- 5. Highway type
- 6. Highway system
- 7. Highway characteristics

For these classifications and selected cross-classifications, costs per involvement are derived and adjusted by price indices to yield comparable dollar results.

٢

The accident experience in Texas is determined by classifying the vehicles involved in accidents in 1969 according to the same categories used by the four states. The resulting frequencies of involvements are combined with frequencies of selected accident situations to generate a set of weights to be applied to the costs per involvement. This yields a set of accident cost estimates for accident situations defined by the following characteristics: severity, accident type, location, and vehicle-type combination.

For inclusion in the cost components of fatal accidents, estimates for the present value of expected future earnings are developed to represent the minimum dollar loss due to the occurrence of a traffic fatality. This indirect

vi

cost component is added to the direct cost of fatal accidents to give a more comprehensive estimate of the money damages caused by accidents.

Finally, an exploratory examination is made of accident rates on rural segments of Texas highways. These rates are computed using highway type, accident severity, and average daily traffic categories. The results are presented and discussed briefly.

IMPLEMENTATION STATEMENT

Accident cost data can be used as an input in cost-effectiveness and/or benefit-cost analyses of traffic safety programs, alternative highway designs, and spot improvement projects. The involvement and accident cost data developed in this report can serve a variety of needs.

First of all, the data are presented on the basis of accident severity. When the accident severity mix of a particular program or project cannot be determined, the set of estimates for all severities can be used.

Cost estimates are also provided for use when the location, type of accident, and vehicle-type combination are known.

Since involvement costs by highway type, highway system, and road characteristics have been estimated, the user who desires accident cost data for these categories can develop his own if he has data on the number and type of vehicles involved and, in the cases of fatalities, the number of persons fatally injured.

The data give the user the flexibility of including or excluding the loss of future earnings component in the case of fatal accidents.

LIST OF TABLES

ς.

	Table	Page
1	Direct Cost per Involvement, Passenger Cars, by Accident Type and Severity, Data-States	24
2	Direct Cost per Involvement, Passenger Cars, by Accident Type and Severity, Rural, Data-States	27
3	Direct Cost per Involvement, Passenger Cars, by Accident Type and Severity, Urban, Data-States	28
4	Direct Cost per Involvement, Passenger Cars, by Highway Type and Severity, Data-States (except Massachusetts)	29
5	Direct Cost per Involvement, Passenger Car, by Road Characteristics and Severity, Data-States (except New Mexico and Utah)	31
6	Direct Cost per Intersection Involvement, Passenger Cars, by Type of Traffic Control and Severity, Data-States	32
7	Direct Cost per Involvement, Passenger Cars, by Highway System and Severity, Data-States	33
8	Direct Cost per Involvement, Single-Unit and Combination Trucks by Accident Type and Severity, Data-States	35
9	Direct Cost per Involvement, Single-Unit and Combination Trucks, by Accident Type and Severity, Rural, Data-States	37
10	Direct Cost per Involvement, Single-Unit and Combination Trucks, by Accident Type and Severity, Urban, Data-States	38
11	Direct Cost Per Involvement, Single-Unit and Combination Trucks, by Highway Type and Severity, Data-States (except Massachusetts)	39
12	Direct Cost Per Involvement, Single-Unit and Combination Trucks, By Road Characteristics and Severity, Data-States (except New Mexico and Utah)	40
13	Direct Cost per Intersection Involvement, Single-Unit and Combination Trucks, by Type of Traffic Control and Severity, Data-States	41
14	Direct Cost Per Involvement, Single-Unit and Combination Trucks By Highway System and Severity, Data-States	42
15	Present Values of Net Future Earnings, by Age and Sex (discounted at 4% and 10%), and Number of Persons Killed in Texas in Motor Vehicle Traffic Accidents in 1969	45

Table

16	Weighted Averages of Present Values of Net Future Earnings,	
	Discounted at 4% and 10%, Persons Killed in Texas Accidents, 1969	48
17	Direct Cost Per Fatal Accident by Accident Type and Vehicle- Type Combination, Texas, 1969	53
18	Direct Cost per Fatal Accident, by Accident Type and Vehicle Type Combination, Rural, Texas, 1969	54
19	Direct Cost per Fatal Accident by Accident Type and Vehicle Type Combination, Urban, Texas, 1969	55
20	Direct Cost per Injury Accident by Accident Type and Vehicle Type Combination, Texas, 1969	56
21	Direct Cost per Injury Accident, by Accident Type and Vehicle Type Combination, Rural, Texas, 1969	57
22	Direct Cost per Injury Accident, by Accident Type and Vehicle Type Combination, Urban, Texas, 1969	58
23	Direct Cost Per Property Damage Only Accident, by Accident Type and Vehicle Type Combination, Texas, 1969	60
24	Direct Cost per Property Damage Only Accident by Accident Type and Vehicle Type Combination, Rural, Texas, 1969	61
25	Direct Cost per Property Damage Only Accident, by Accident Type and Vehicle Type Combination, Urban, Texas, 1969	62
26	Cost per Reported Accident, All Severities, by Accident Type and Vehicle Type Combination, Texas, 1969	63
27	Costpper Accident, All Severities, by Accident Type and Vehicle Type Combination, Rural, Texas, 1969	64
28	Cost per Reported Accident, All Severities, by Accident Type and Vehicle Type Combination, Urban, Texas, 1969	65
29	Rural Accident Rates, by Accident Severity and Highway Type, Texas, 1969	68
30	Rural Accident Rates, by Accident Severity and Annual Average Daily Traffic, Texas, 1969	70
D-1	Reported Involvements, Passenger Cars, By Accident Type and Severity, Texas, 1969	77

Page

Table

D- 2	Reported Involvements, Passenger Cars, by Accident Type and Severity, Rural, Texas, 1969	78
D-3	Reported Involvements, Passenger Cars, by Accident Type and Severity, Urban, Texas, 1969	79
D-4	Reported Involvements, Passenger Cars, by Road Characteristics and Severity, Texas, 1969	80
D - 5	Reported Involvements at Intersections Passenger Cars, by Type of Traffic Control and Severity, Texas, 1969	81
D- 6	Reported Involvements, Single-Unit Trucks, by Accident Type and Severity, Texas, 1969	82
D-7	Reported Involvements, Single-Unit Trucks, by Accident Type and Severity, Rural, Texas, 1969	83
D-8	Reported Involvements, Single-Unit Trucks, by Accident Type and Severity, Ugban, Texas, 1969	84
D-9	Reported Involvements, Single-Unit Truck, by Road Characteristics and Severity, Texas, 1969	85
D-10	Reported Involvements at Intersections, Single-Unit Trucks Type of Traffic Control and Severity, Texas, 1969	86
D-11	Reported Involvements, Truck Combinations, by Accident Type and Severity, Texas, 1969	87
D-12	Reported Involvements, Truck Combinations, by Accident Type and severity, Rural, Texas, 1969	88
D41 3	Report Involvements, Combination Truck, by Accident Type and Severity, Urban, Texas, 1969	89
D-14	Reported Involvements, Truck Combination, by Road Characteristics and Severity, Texas, 1969	90
D-15	Reported Involvements at Intersections, Truck Combination, by Type of Traffic Control and Severity, Texas, 1969	91
E-1	Reported Fatal Accidents by Accident Type, Vehicle Type Combination, Texas, 1969	93
E-2	Reported Fatal Accidents by Accident Type and Vehicle Type Combinations, Rural, Texas, 1969	94
E-3	Reported Fatal Accidents by Accident Type and Vehicle Type Combination Urban, Texas, 1969	

Page

Table

E-4	Reported Injury Accidents by Accident Type, Vehicle Type Combinations, Texas, 1969	96
E-5	Reported Injury Accidents by Accident Type, Vehicle Type Combinations, Rural, Texas, 1969	97
E-6	Reported Injury Accidents by Accident Type, Vehicle Type Combinations, Urban, Texas, 1969	98
E-7	Reported Property Damage Accidents by Accident Type, Vehicle Type Combinations, Texas, 1969	99
E-8	Reported Property Damage Accidents by Accident Type and Vehicle Type Combinations, Rural, Texas, 1969	100
E-9	Reported Property Damage Accidents by Accident Type, Vehicle Type Combinations, Urban, Texas, 1969	101
E-10	Reported Accidents, All severities, by Accident Type, Vehicle Type Combination, Texas 1969	102
E-11	Reported Accidents, All Severities, by Accident Type, Vehicle Type Combination, Rural, Texas, 1969	103
E-12	Reported Accidents, All Severities, by Accident Type, Vehicle Type, Vehicle Type Combination, Urban, Texas, 1969	104

Page

INTRODUCTION

Increasingly, decisions regarding outlays of funds for highway improvement projects and new construction are being based upon information that can be placed into a cost-benefit type of analytical framework. The types of cost to be included depend upon the nature of the project but can range from such clearly recognized items as cost of construction materials to the more complex item of, for example, social costs of dislocation of business firms and persons. The availability of such cost information for use as input into the decision-making process tends to be negatively associated with the difficulty in obtaining it. Thus. the existence of information on right-of-way costs, for example, reflects an established system of records containing cost elements. On the other hand, data showing the societal cost of relocation due to construction is difficult to obtain because of the conceptual problems of measurement and the lack of a developed system of gathering the requisite information. Perhaps this dichotomy offers useful insight into the paradox which exists with regard to accident information vis-a-vis accident cost information. In spite of the fact that a wealth of information has been collected on the occurrence of accidents, the corresponding accident cost data are relatively scarde. In an attempt to fill some of the existing gaps, the main objective of this report is to provide some usable cost estimates for accidents occurring on Texas highways. A secondary objective is the development of some accident rates for various type of Texas Highways.

Several comprehensive accident cost studies in the United States have been made during the past two decades. This development began with a 1949 publication by the Bureau of Public Roads which set up an operational framework to be used in the conduct of accident cost studies. With the aid of the Bureau, the State of Massachusetts undertook a comprehensive analysis of the costs involved in its 1953 accident experience. Since then Utah (1955-1957), New Mexico (1955-56), and Illinois (1958) have completed and published the results of their statewide studies. At least one other state highway department, Ohio, has conducted a similar study, and has just published the final results.¹ In addition to these statewide studies, an accident cost analysis has been conducted for the District of Columbia and its surrounding counties in Maryland and Virginia.

Each of these accident cost analyses was the product of an extensive questionnaire - interview process in which individuals involved in accidents were queried to determine the direct cost of their involvements. Included in the total cost per involvement were the following major cost components: (1) property damages to vehicles, vehicular cargo, and non-vehicular property; (2) medical costs to include **doctor** fees, hospital charges, drug, medicine, and appliance charges, and ambulance service charges; (30 legal and court costs; (4) value of work time lost due to non-fatal injuries; and (5) miscellaneous costs.

Each of these states made its raw data available to the Bureau of Public Roads, and in 1968 the Burearu completed its work of reorganizing the data to insure its mutual compatibility among the states. These

¹The Ohio Study, dated 1970, was received too late to be incorporated analytically into this report.

data were provided by the BPR for use in this study and serve as the basis for the cost estimates of Texas accidents.

The general nature of the study as reported herein is fairly straightforward: determine the average (mean) cost for an accident having stipulated characteristics² and adjust these costs for time and place differentials. The resulting cost figure is an estimate for a similar accident in Texas having those same characteristics. Thus, to estimate the cost of a Texas fatal accident occurring on a 2-lane road when two vehicles hit head-on, this procedure would entail the calculation of the costs of such an accident occurring in the 4 states and the adjustment of this cost for time and place differences. The apparent simplicity of such an exercise glosses over several difficulties which must be understood as a prerequisite to a proper interpretation of the study's results. The following section explores some of the basic concepts and assumptions under which the study was conducted.

Basic Concepts and Definitions

Ideally, the determination of accident costs would be made by using the individual traffic accident as the basic statistical unit over which a sample would be taken. Such a procedure is operationally difficult to implement when more than one vehicle is involved, since the cost calculations would depend upon obtaining information from (at least)each driver involved. Such a sampling procedure would be operationally difficult to implement to obtain estimates for the costs of accidents involving multiple vehicles, since the expense of

²A, B, C, D, might be, e.g., rural, passenger car, head-on, fatality.

locating the accident participants and obtaining usable information about the costs incurred by drivers, persons injured or killed, and other property owners involved in a multi-vehicle accident likely would be considered prohibitive. Consequently, an alternative procedure was developed using the involvement rather than the accident as the basic statistical unit. Therefore, a careful distinction must be made between the concepts of accident and involvement.

A traffic accident is any accident involving one or more vehicles in motion which occurs on a traffic-way and results in death, injury, and/or property damage. An involvement is that portion of an accident relating to a single vehicle and the death, injury, and/or property damage associated with that vehicle. By way of example, assume that two vehicles, a passenger car and a truck, collide head-on resulting in death, injury, and property damage in the car and property damage in the truck. Such an outcome produces one accident and two involvements--a passenger car involvement and a truck involvement. The necessity for making this distinction is implicit in the sampling and data collection techniques of the data-states.³

The sampling process used two basic sources of data: reported accident files and motor vehicle registration files. The reported accidents were sorted on a severity basis--fatal, injury, property damage only. Thus if a person was killed in a multi-vehicle collision, the accident and <u>all</u> of its component involvements would be classified in the fatality category. Interpretations of involvement data should be made keeping

3

Data-states hereafter will be used to refer to Illinois, Massachusetts, New Mexico and Utah.

in mind that the severity classification of the involvement was determined by the severity of the accident.⁴ Hence, a fatal (injury) involvement may or may not have included the fatality (injury) upon which the accident classification was based.

Since the data-states all used the involvement as the basic unit of study, the discussion of accident costs, for our purposes, necessitates the conversion of costs from an involvement to an accident basis.⁵ An explanation of this conversion (along with the inherent problems of doing it) is presented in the <u>Research Method</u> section later in this report. Cost Elements

The criteria for the selection of the elements to be included in the involvement cost estimates are based upon the distinction, first made by the Bureau, between direct and indirect costs.⁶

⁶BPR <u>Manual</u>, p. 9, <u>et. seq.</u>, the exposition of these and other cost concepts draws heavily from this document.

⁴The general rules for assigning an accident to a severity class are: fatality - an accident in which one (or more) person is killed; injury - an accident in which one (or more) person is injured, but not fatally; property damage - an accident in which no fatalities or injuries occur.

⁵Not processing their information in a cost-per-involvement manner, the data-states reported on total involvement costs. The recently published report of the Ohio study presented involvement costs both as averages and totals.

Generally, direct costs include the money value of damages and losses to persons and property which are the direct results of accidents and are composed of the following items:

- 1. Cost of damage to property
- 2. Cost of injuries to persons
- 3. Value of time lost
- 4. Cost of loss of use of vehicle
- 5. Legal and court costs
- 6. Damage awards in excess of costs
- 7. Miscellaneous costs

A brief explanation of each item will indicate the scope of the expenses which are included. (1) Damage to property includes costs of repairing or replacing damaged motor vehicles, cargo, property outside the vehicle, and highway furniture. (2) Injuries to persons is composed of costs for emergency ambulance service, hospitalization, physician and nursing services, other treatment, and ambulatory and prosthetic devices. These costs for fatally injured persons are calculated only up to the time of death. (3) Value of time lost is the measure of income foregone due to incapacitation. It is calculated only for those injured persons who are employed and not permanently and totally disabled. Additionally, expenses in the form of time lost of persons having vehicles repaired, making required court appearances, caring for injured persons, etc., are considered as direct costs. Finally, the problem of incapacitated housewives deserves attention since they are not included as part of the labor force. Consequently, any expenditures for a temporary housekeeper, nursemaid, etc., represent an imputation of the value of a

housewife's services and is properly included as a direct cost element. (4) Loss of use of vehicles, in the case of a private, non-commercial owner, covers the outlays for alternative transportation until the damaged vehicle is replaced or repaired. For a commercial vehicle owner, loss due to an out-of-service vehicle is the amount of net earnings of the vehicle during the period not in use.⁷ (5) Expenditures for lawyers, court costs, and other legal fees and excess damages awarded are also calculated as direct costs. Excess damages are a residual and arise when the court award exceeds the sum of the other direct costs. When the amount awarded by the court does not exceed the sum of the other direct cost elements, the category "excess damages" is not included. Finally, (6) miscellaneous expenses includes all other direct costs not previously accounted. Such things as transportation under a doctor's order of an injured person to and from hospitals and/or convalescent facilities would be a miscellaneous cost.

In summary then, direct costs include those expenses (primarily "out-of-pocket") which can be directly attributable to accident occurrences. Since the data-states relied exclusively on the direct cost components as their source of involvement cost estimates, little will be said about the other major cost category--indirect costs.⁸ There is, however, at least one indirect cost item that should be discussed if for no reason other than the magnitude of the dollar value it entails.

⁷For a more esoteric discussion, see <u>Ibid</u>., p. 16.

⁸For a full description of indirect cost items see <u>Manual</u>, pp. 21-31.

The loss of future earnings due to death or permanent and total disability represents the dollar amount of potential output of goods and services that is lost to society when one of its members dies or is rendered unemployable as a result of an accident. The introduction of such an item brings forth, at least implicitly, the notion of a measurement for the value of a human being and all its attendent philosophical and moral trappings. Given these difficult problems, the decision to include or exclude the loss of future earnings has a very significant impact on the estimated cost of fatal involvements.9 In reflecting only the direct costs, the costs for fatalities reported by the data-states might be interpreted best as representing some set of minimum values. To these minima could be added a loss of future The result would be a better estimate of the earnings estimate. costs of fatal involvements. At any rate, the quantitative difference brought about by the exclusion or inclusion of this item is large enough to warrant special consideration.¹⁰

10 See Research Method section following.

⁹ For example, the Ohio study shows \$4,236 as the average cost per fatal passenger car involvement and the Washington Area Study shows \$49,435. [See: Ohio Department of Highways, The Analysis of Motor Vehicle Accident Costs in the State of Ohio, (Columbus: The Ohio State University), 1970, p. 32, Table 4-1, hereafter referred to as the Ohio Study; and Wilbur Smith and Associates Motor Vehicle Accident Costs; Washington Metropolitan Area, (Washington: Wilbur Smith and Associates, 1966, p. 77, Table 48, hereafter referred to as the Washington Area Study.]

RESEARCH METHOD

Costs - General

The essential feature of the method used for determining accident costs for Texas is its reliance on the data collected in other states at different points in time. As indicated in the Introduction, the approach utilizes cost information gathered in the data-states to estimate the mean costs for various kinds of accidents occurring in Texas in 1969.

The theoretical argument which constitutes the foundation for usage of the method goes something like this: the magnitude of the direct cost for any given accident is dependent upon (a) the cost per unit of the relevant components (e.g., dollars per hospital day, dollars per wrecker mile, dollars per hour mechanical labor, etc.) and (b) the number of units involved (e.g., 20-day hospital stay, 50-mile wrecker tow, 3 hours labor in repair shop, etc). Thus a & b represent the more familiar pricequantity concepts used in economic analysis. Since the total direct cost of an accident is the sum of the various components, the set of prevailing prices for the relevant items is a very important element in the ultimate determination of accident costs.

On the other hand, the quantity (or number) of the items which result from an accident (i.e., number of hospital days, number of hours for automotive repair, number of cars needing replacement, etc.) is a function of the physical characteristics of the accident including, for example, number of vehicles, type or manner of collision, number and type of personal injuries, and speed.

Consequently, for an accident with a given set of physical characteristics, the direct cost will vary with changes in the set of prices. Obversely, for a given set of prices, the direct cost will vary with changes in the physical characteristics of the accident. Conceptually, it is a simple matter to estimate the costs of accidents occurring in one state from the (known) costs of similar accidents in another state. The problem is one of matching accidents having identical physical characteristics and adjusting the known costs to reflect any differences between the sets of prices for the two states. The effect is simply to transfer a known cost from one state to another adjusting the result for price differentials due to time and place displacement.

Operationally, however, the implementation is far from being the tidy procedure just described. The first difficulty arises when the question is asked: what exact price deflator appropriately reflects the price changes of those items which are components of direct cost? Need-less to say, none exists. Necessarily, then, any price deflator which is used will yield results which are somewhat distorted in the process of adjustment.¹ A more difficult problem is faced in determining the extent to which the physical characteristics of an accident in one state must correspond to the physical characteristics of an accident in another state before the two accidents can be considered the same for purposes of transferring the costs from one state to another. For example, suppose two accidents occur and are identical in every respect except that one happened at midnight, the other 3:00 a.m. Given that the only difference is one of a 3-hour lag in time of occurrence, the direct costs of the two

¹See Irving Fisher, <u>The Making of Index Numbers</u> (New York: A. M. Kelley, 1967).

accidents are probably the same. The extremity of this hypothetical example points toward thennecessity for placing accidents in like categories defined by arbitrarily selected physical characteristics, since the occurrence of accidents alike in every respect is probably a rarity. The focus of the method must shift toward the selection of those physical characteristics which will result in a categorization of accidents that tends to group accidents similar in cost.

In its purest form, such a categorization could result in a complete theory of accident costs in which the magnitude of the dependent variable, direct costs, is determined (assuming a given set of prices) by the independent variables, the physical characteristics. The method used here, however, does not propose such an encompassing treatment of the (physical) cause and dollar effect relation.

The characteristics obtained to systematize the cost data for presentation were chosen on the basis of: (1) their hypothesized importance in determining involvement costs; and (2) the type of information available from the data-states. For example, vehicle speed reasonably could be hypothesized as an important determinant of involvement costs, e.g., the higher the speed of an involved vehicle, the higher the involvement cost. Nevertheless, since vehicle speeds are not among the information provided by the data-states, direct classification of involvements according to speed is not possible. A less direct way of accounting for the influence of speed upon the resulting costs is possible by utilizing a rural-urban dichotomy, as rural travel implies higher speeds than urban travel.

As a result, the classification scheme which is used reflects the need to combine analytical categories with categories determined by data availability. This was accomplished with the additional consideration of developing results which could be utilized as input for cost-effectiveness and/or benefit-cost analyses.

Assumptions and Definitions

The most important characteristic of an involvement is probably its severity. Whether persons were killed, injured, or unharmed affects the magnitude of both the direct and indirect costs of the involvement. A classification of fatal, injury, or property damage would be expected to show increasing costs from the least (property damage) severe to the most (fatal) severe. Since the entire system of classification of involvements revolved around the severity category it is of some importance that cost-per-involvement for a given severity be approximately the same in each of the data-states. If this is so, then there is some empirical support for the critical assumption which is the foundation of this study, that the direct cost of an involvement having certain physical characteristics can be adequately estimated by the average cost of other like involvements.

To determine the similarity of the involvement costs for a given severity among the data-states an analysis of variance was made.² This test indicated that at the 5% level of confidence there was no significant difference in the mean cost among the data-states for the involvements which were tested. These results provided empirical justification for

 $^{^2}$ The formulation and results of this test are presented in Appendix A.

combining the data from the data-states and treating them as a single data system from which to estimate costs of Texas accidents.

A less rigorous indicator of the efficacy in using severity classes to analyze accident-involvement costs is the similarity among states with respect to the number of persons killed/injured in accidents. The following chart indicates this similarity:

Per Injury Accident										
State	Rural A	ccidents	Total A	ccidents						
State	Fatal	Injury	Fatal	Injury						
				. <u></u>						
Illinois	1.28	1.69	1.23	1.61						
Texas	1.29	1.78	1.21	1.79						
Massachusetts	-	-	1.30	1.90						
California	1.28	1.69	1.23	1.61						

Persons Killed Per Fatal Accident and Injured Per Injury Accident

Sources: Texas Department of Public Safety, Motor Vehicle Traffic Accidents 1969, (Austin, Texas: Texas Department of Public Safety, March 1970), p. 7; Robie Dunman, "Economic Cost of Traffic Accidents in Relation to the Human Element," <u>Economic Costs of Traffic Accidents</u>, Bulletin 263, (Washington: Highway Research Board, 1960). p. 41; and Richard N. Smith and Thomas N. Tamburri, <u>Direct Costs of California State Highway Accidents</u>, (Sacramento, Calif: California Division of Highways, 1967), p. 14.

Since the number of persons killed or injured greatly affects the size of the medical component of direct costs, the extent to which the number of persons killed (injured) per fatal (injury) accident are alike among different states is likely to effect a degree of similarity in the cost of these fatal and injury accidents. Interpreted thus, the data in the chart above provide additional empirical justification for the analysis of a single data system (i. e., the

combined input of the data-states) using the severity category to classify like involvements.³

Other classificatory characteristics, in addition to accident severity, were chosen to provide a framework for organizing and presenting the data. As with severity, these were selected according to three primary criteria: (1) the hypothesized relationship between costs and physical characteristics of involvements (i.e., a head-on, multi-vehicular collision has higher costs than a vehicle-animal collision); (2) the availability of data; and (3) the need for results that could be used as input for cost-effectiveness and benefit-cost analyses. The selected categories are: (1) accident type; (2) vehicle type; (3) type of area (urban-rural); (4) road characteristics; (5) road type; and (6) highway system. Each of these will be discussed separately.

Accident type refers essentially to the manner in which an accident occurred. To a large degree, it also indicates whether accidents involve single or multiple vehicles, although there is some ambiguity regarding this matter. Proceeding definitionally, there are 13 different types of accidents: head-on, sideswipe, rearend, and turning describe multiple motor-vehicle collisions; whereas collisions with pedestrians, bicycles, trains, animals, fixed objects and other

³In comparing the results of the accident cost studies of Utah and Massachusetts, it was noted that: "In spite of the dissimilarities of the two states...there is a remarkable consistency in the relative distribution of accidents when classified according to severity and type." see: J. Edward Johnston, "Economic Cost of Traffic Accidents in Relation to Highway Planning," <u>Economic Costs of Traffic Accidents</u>, Bulletin 263, (Washington: Highway Research Board, 1960), p. 53.

objects tend to involve single motor-vehicles only. The most ambiguous (with respect to the single or multi-vehicle criterion) accident type is that which categorizes all accidents not involving a collision, e.g., running off the roadway, and may involve one or more motor vehicles.

The type of vehicle is initially segregated on the basis of a passenger car-truck criterion with trucks further classified as singleunit (e.g., pick-up, bob-tail, etc.) or combination-unit (e.g., tractor-trailer).

The rural-urban category, although referred to herein as a population characteristic, is not strictly defined by population counts. The key criterion is whether or not an accident took place in an unincorporated locale. If so, the accident is reported as a rural accident; if the area in which an accident occurred was incorporated, it is an urban accident. Since unincorporated areas are likely to be sparsely populated, i.e. rural, the use of incorporated and unincorporated as surrogates in specifying the rural-urban dichotomy seems adequate.

The remaining categories-road type, road characteristics, and highway systems-were selected primarily to provide more finely detailed information that might be of use to highway analysts. In this attempt, involvements and costs are classified and presented using the following criteria to delimit road type: (1) number of traffic lanes; (2) traffic direction, one-way or two-way; and (3) traffic separation, divided or undivided. Traditionally, highway systems have been classed as Federalaid primary, Federal-aid secondary, and non-Federal-aid; and that grouping has been adopted in this study.

Completing the discussion of categories, the classification of involvements with respect to certain road characteristics represents an effort to specify costs resulting from the occurrence of accidents at prominent roadway features: intersections, curves, bridges, railroad crossings, interchanges, tunnels, and underpasses. Since these headings are not completely mutually exclusive, there exists some conceptual ambiguity, e.g., how to classify an accident occurring on a curve which contains an intersection. Although the extent to which this type of ambiguity is present in the data is unknown, its effects are assumed to be of negligible importance.

Briefly summarized, the basic approach consists of combining, via several classificatory characteristics, the accident data of the data-states into categories from which cost estimates can be made. The next section discusses the computational and statistical aspect of the research method.

To estimate the direct costs of vehicle involvements, the data are categorized on the basis of the criteria discussed above, adjusted for cost differentials due to inflation, and converted into weighted means. The resulting data-base is designed to assure its compatibility with the sampling procedures used by the data-states in collecting the raw information.

The Data-Base

In generating the original data, each of the data-states used a sampling procedure designed to adequately represent its total accident experience. Generally, this procedure entailed two phases: (1) a sampling of reported accident files primarly to insure adequate coverage of fatal and injury accidents; and (2) a sampling of motor

vehicle registration files primarily to yield adequate coverage of property damage accidents, particularly those of a relatively "mild" nature that tend to be unreported or under reported. Two sets of these samples were obtained in each state, one for passenger cars and the other for trucks.⁴

For purposes of the present study, the most important comparable feature in the sampling procedures of the data-states is that severity categories were used to define the strata for subsequent differential sampling. Thus, for reported accidents, accident report files were separated according to the fatal, injury, and property damage criterion. Each of these strata was then sampled using a sampling rate which yielded a desired level of statistical accuracy.⁵

To treat the information from the data-states as a single database, it is necessary to combine the data in a manner that is compatible with the sampling procedures used by those states. To this end, the statistical treatment of the resulting data-base is somewhat constrained. Such constraint that exists is manifested in the following ways: involvements are first segregated into severity classes before further classification is accomplished; and, inversly, severity classes are not combined in the process of deriving cost estimates.

⁵See Appendix B for a list of sampling rates used by the data-states.

⁴For a more detailed discussion see C. M. Billingsley and D. P. Jorgenson, "Direct Costs and Frequencies of 1958 Illinois Motor-Vehicle Accidents," <u>Highway Economics</u>, Highway Research Record No. 12, (Washington: Highway Research Board, 1963) pp. 49-52; and Illinois Department of Public Works and Buildings, Division of Highways, <u>Cost of Motor-Vehicle Accidents to</u> <u>Illinois Motorists</u>, 1958, (Springfield: Illinois Division of Highways, 1962), Technical Appendix, pp. 131-159.

This procedure is used because, in the context of a combined data-base, the sampling rates of the individual data-states cannot be utilized in determining mean involvement costs. These rates were determined by the characteristics of the accident population of the respective states and along with the resulting expansion factors (used to expand state samples into state totals), have quantitative meaning only with respect to the individual state.

On the other hand, when the involvements of the data-states are grouped by severity, the implicit assumption is that these involvements are from populations which include only involvements of like severity. Thus, a fatal involvement in Illinois and a fatal involvement in Utah are viewed as equivalent observations from the population of fatal involvements.

The most important aspect of this treatment is the limitation which it places on the interpretation of the resulting mean cost estimates. While it is possible to determine the mean cost of selected involvements of like severity, it is not possible to derive the mean cost of selected involvements of differing severities. In the former case, the involvements are equally weighted; in the latter, no weights can be assigned since the exact nature of the quantitative relationship (in the combined data system) among the severity categories cannot be specified due to the different sampling rates selected for the original studies.

The decision to keep involvements homogeneous with respect to severity obviates the need for assigning differential weights to reported involvements. However, when non-reported involvements are included, it becomes necessary to make adjustments to account for the disparate rates of occurrence of reported and non-reported involvements within a given severity category. This is so because the non-reported involvements in the original studies were sampled (from the registration files of vehicles) without regard to severity classes. Consequently, in building the data system for the present study, non-reported involvements have been assigned weights to yield a more accurate mix of reported and non-reported involvements than is presented by the data in raw, unweighted form.⁶ The effect of this weighting mechanism is most apparent in the property damage only severity class since unreported involvements seldom entail more than property damage.⁷

Involvement and Accident Costs

In determining the average cost of involvements, the direct cost components must be adjusted via a price index in order to convert costs into comparable magnitudes. Since price indices are not constructed

⁶The weights chosen are based on the expansion factors used by the data-states and are determined by the following ratio: <u>Expansion Factor of Unreported Involvement</u> Expansion Factor of Reported Involvement See Appendix B for a listing of the weights used.

⁷For example, the percentage of non-reported passenger-car involvements accounted for by property damage only involvements is: Illinois-94%; New Mexico-95%; and Utah-82%. Massachusetts sampled all property damage involvements at the same rate with the result that the nonreported involvements could not be separately identified. Also, for a complete description of the quantitative relationship between reported and non-reported involvements in Illinois see: Billingsley and Jorgenson, <u>op. cit.</u>, Table 2, p. 52.

on an individual state basis, adjustments for relative cost differentials among the states cannot be made. To adjust for price differences due to time differentials, two price indices are used - the overall Consumer Price Index (CPI) and the medical cost component of the CPI.⁸

The direct cost items containing medical, hospital, physician, and nursing fees were adjusted by the medical cost component of the CPI. All other direct costs were adjusted by the overall CPI.

After the direct costs are adjusted for price level changes, the mean cost of the involvements (as defined by the relevant characteristics) is calculated. The resulting average is the estimate of the mean cost of the population of involvements having those defining characteristics. Further, to indicate the degree of variability in the data, the standard error of the mean is calculated.⁹ This standard error is an imput which can be used to establish confidence intervals for the estimates. It is also used to calculate the measure of relative error (ratio of the standard error to the mean multiplied by 100) which is useful in making relative comparisons of data variability. Both of these measures reflect the statistical reliability of the estimates and, as such, can be important to users of the cost estimates developed herein.

Loss of Future Earnings

To derive a measure for loss of future earnings for fatally injured persons, estimates are made using data developed by Weisbrod in his analysis of the economic costs of diseases.¹⁰

⁸See Appendix C for a list of the weighting factors used for these adjustments.

 $^{^9}$ See Appendix A for standard formula used in these calculations.

¹⁰Burton A. Weisbrod, <u>Economics of Public Health</u>, (Philadelphia: University of Pennsylvania Press, 1961), Table 3, pp.60-61.

Weisbrod's present values of net future earnings (discounted value of expected future earnings minus expected consumption) are adjusted by the overall CPI to bring them up to date.¹¹ To account for the age and sex composition of those persons killed in Texas accidents in 1969, a weighted-average is calculated. This weighted-average represents the loss, in money terms, attributable to a highway fatality.

While the price index adjustment is assumed to be correct for increases in earnings (including inflationary and productivity changes), two other factors are present which probably cause the resulting fatality cost to be undervalued. The first of these is due to changes in life expectancies. Weidbrod's calculations employed actuarial data obtained in 1961. In the ensuing years, life expectancies have lengthened, and estimates based on his data are probably undervalued. Secondly, in subtracting consumption expenditures from earnings, Weisbrod chose to ignore the value to a deceased person of his own consumption activities. Another method would be to use the present value of gross future earnings, which is philosophically different from and yields quantitatively larger results than the method used herein. At any rate, the net effect of these two factors is to generate values for losses due to fatalities that are lower than they might and/or should be.

Accident Costs

Given direct cost per involvement and cost per fatality as calculated above, the costs of selected Texas accidents can be determined by combining the involvement costs and fatality costs in proportions indicated by information describing the 1969 Texas accident, involvement, and fatality

¹¹See Appendix C.

experience. This latter information is obtained from two sources: (1) the 1969 accident tape provided by the Texas Highway Department which includes all accidents reported to the Texas Department of Public Safety in 1969; and (2) the annual accident summary published by the Department of Public Safety.

Texas involvements are coded to match the defining characteristics of the involvements from the data-states.¹² Additionally, selected accident frequencies have been determined using severity, accident type, rural-urban, and vehicles involved as the defining characteristics,

To determine cost per accident, the number and type of involvements (e.g., one car and one truck in a car-truck accident) are multiplied by their respective average direct costs per involvement and then added together. The result is the estimate for the direct cost of that accident category.¹³ If the accident is also defined as fatal, another cost component, loss of future earnings, will be added. This amount is equal to the cost per fatality multiplied by the number of fatalities.

¹³Variations of this technique are used in the Ohio and California studies, but neither included a subsequent component for the loss of future earnings resulting in fatal accidents.

 $^{^{12}}$ The correspondence between Texas and the data-states' involvements is not complete, however. Two defining characteristics - road type and highway system - are not coded on the Texas accident tape. Another tape, RI-2, contains information on road type and highway system for Texas highways. RI-2 was made available for use in the present study, but due to the expense involved in matching all the accidents (on the accident tape) with the road type/highway system (on RI-2), usage of the RI-2 is confined to the accident rate portion of this study.

INVOLVEMENTS AND INVOLVEMENT COSTS

The data in this section are of two kinds: (1) direct cost per involvement as determined via the method outlined in the preceding section; and (2) involvement frequencies in Texas during 1969. In tabular form, the mean costs and the respective standard errors of the estimates of the mean are presented for the various sets of characteristics which have been used to group the data for purposes of estimation.

In general, the highlights of the data are pointed out. But, since the scope of the work does not include a comprehensive explanation of the physical cause and dollar effect, detailed explication is not attempted. The data are presented in the following order:

> Passenger car costs (Tables 1-7) Truck costs (Tables 8-14) Passenger car involvements - Texas (Tables D1-D5). Truck Involvements - Texas (Tables D6-D15).

Direct Costs per Involvement

<u>Passenger Cars</u>: The data shown in Table 1 are the "highest-level" aggregates which have been computed for passenger cars. Only accidenttype and severity were defining characteristics; consequently, the resulting estimates are based upon the greatest number of observations obtainable from the data-states' information. Given the relatively large number of involvements per cell, the results in Table 1 tend to be the most reliable of the passenger car cost estimates.¹⁴ As the

¹⁴In fact, the totals in Table 1 yield relative errors of 5.3 (fatal), 3.5 (injury), and 1.4 (property damage) which compare quite favorably with the 7.0 relative error established in the <u>Washington Area Study</u>, p. 220.

Table l

		Severity	
Accident Type	Fatal	Injury	P.D.O.
Multi-Vehicle:	40 500	Á1 F10	600F
Head-on	\$8,593	\$1,518	\$235 \$ 11
Std. Error (S.E.)	\$1,469	\$ 223	\$ 11
Rear-End	6,482	1,000	161
S.E.	1,432	62	4
			100
Angle	6,505	950	198
S.E.	644	42	5
Sideswipe	6,946	594	131
S.E.	2,299	80	9
	-		
Turning	5,232	945	169
S.E.	1,439	87	6
Parking	-	485	66
S.E.	_	95	3
Other	7,731	862	123
S.E.	4,523	161	6
Single-Vehicle:			
Pedestrian	5,395	1,441	28
S.E.	329	206	5
Train	6,846	1,834	439
S.E.	986	733	163
Bicycle	4,518	1,006	61
S.E.	678	402	13
Animal	3,066	1,878	308
S.E.	1,650	424	23
Fixed-Object	3,057	1,934	273
S.E.	308	278	19
Other-Object	5,578	1,139	91
S.E.	4,262	164	2
Non-Collision	3,909	1,681	219
S.E.	508	118	12
₩	500	110	
ALL	\$5 , 574	\$1,137	\$165
S.E.	\$ 295	\$ 40	\$2

Direct Cost per Involvement, Passenger Cars, by Accident Type and Severity, Data-States

data are disaggregated, the standard errors increase, reflecting the reduction in the number of observations utilized for estimates of the disaggregated data.¹⁵

The average costs of passenger car involvement are (from Table 1): \$5574-fatal; \$1137-injury; and \$165 property damage only. For fatal involvements, the most costly is that resulting from a multi-vehicular, head-on accident. The least costly is from a single-vehicle, fixedobject collision. As might be expected, the multi-vehicular fatal involvements tend to be more costly than the single-vehicular fatal involvements. For P.D.O. involvements, the standard errors are quite small. This probably indicates a clustering of observations at relatively low dollar values. If the accident is severe enough to cause much property damage, it is probably severe enough to inflict injuries with the result that high-dollar property damages end up as components in injury and/or fatal involvement costs, Finally, for each accident type, costs per involvement increase as the severity becomes greater.

	Vehicle Type			
		Truck		
Category	Pass. Car	Single Unit	Combination	
Accident Type - All	19,021	9,195	1,653	
Accident Type - Rural	4,868	2,514	656	
Accident Type - Urban	13,848	6,602	963	
Highway Type	13,182	6,163	990	
Road Characteristics	8,734	2,062	678	
Traffic Control - (Intersections)	3,332	1,113	370	
Highway System	18,517	9,105	1,616	

Data Base Involvement Frequencies, by Classificatory Category and Vehicle Type, Data-States

¹⁵As the data base is disaggregated, the usable frequencies for calculating estimates also decline. The following table shows the numbers of frequencies which were used in estimating the involvement costs reported in tabular form in this section:

Table 2 shows average costs of involvements for passenger cars in rural accidents. The costs of rural involvements - \$5668 (fatal), \$1749 (injury), and \$211 (P.D.O.) - are higher than the corresponding costs shown in Table 1. This is, at least partly, a result of higher travelling speeds in rural areas which tend to create more severe and, hence, more costly accidents. Within Table 2, the effect of disaggregation (from "rural and urban" in Table 1 to "rural only" in Table 2) is seen manifested in larger values of the standard error. Some of the increase is due to the smaller number of observations available for "rural only" calculations.

In Table 3, estimates of urban passenger car involvements indicate that the costs of single-vehicle fatal involvements tend to exceed the costs of similar involvements in rural areas (Table 2). In comparing rural and urban injury involvements, there is a sizeable difference between the involvement costs for all accident types (\$1749 for rural and \$970 for urban). This result is apparently due to the less costly nature of urban multi-vehicular involvements, since rural singlevehicular involvements are not unambiguously more costly than the urban equivalents.

When the data are classified by highway type, the results (Table 4) show that the most costly involvements seem to happen on undivided, two-lane roads. The costs of fatal and injury involvements on divided, four-lane roads, while not the lowest, are considerably below similar involvement costs in the undivided, two-lane category. This difference is partly due to the occurrence of a relatively larger number of highcost, head-on accidents. The highest cost P.D.O. involvements occur on divided roads of six-or-more lanes.

Table	2
-------	---

	Severity				
Accident Type	Fatal	Injury	P.D.O.		
Multi-Vehicle:					
Head-on	\$ 9 , 578	\$2,703	\$271		
			\$ 20		
Std. Error (S.E.)	\$ 2,011	\$ 568	ş 20		
Rear-End	7,165	1,638	289		
S.E.	2,078	213	21		
	_,				
Angle	6,216	1,314	183		
S.E.	995	171	15		
Sideswipe	7,007	1,054	132		
S.E.	2,803	274	15		
•					
Turning	6,248	1,369	309		
S.E.	1,999	233	30		
Parking	-	772	155		
S.E.	-	463	264		
0than	10 0/0	1 615	111		
Other	10,849	1,615	111		
S.E.	8,679	678	17		
Single-Vehicle:					
Pedestrian	3,854	1,407	11		
S.E.	^ 540	380	1		
• •					
Train	6,670	1,889	172		
S.E.	1,401	831	103		
	·				
Bicycle	3,613	510	-		
S.E.	759	230	-		
Animal		2 160	312		
	-	2,169			
S.E.	-	499	25		
Fixed-Object	2,559	1,714	377		
S.E.	307	223	41		
	507	<i>tu tu J</i>	71		
Other Object	-	1,650	93		
S.E.	-	462	2		
Non-Collison	3,963	1,838	226		
S.E.	515	136	13		
ALL	\$ 5,668	•	\$211		
S.E.	\$ 516	\$ 112	\$6		

Direct Cost per Involvement, Passenger Cars, by Accident Type and Severity, Rural, Data-States

	Severity				
Accident Type	Fatal	Injury	P.D.O.		
Multi-Vehilce:					
Head-on	\$6,066	\$ 890	\$204		
Std. Error (S.E.)	\$1,031	\$ 151	\$ 11		
bta. Hitor (b.l.)	φ 1 ,001	Ş 191	Υ		
Rear-End	5,039	863	141		
S.E.	1,159	60	4		
Angle	6,684	908	201		
S.E.	869	42	5		
	6 702	1.1.2	107		
Sideswipe	6,793	442 53	$\begin{array}{c} 127\\11\end{array}$		
S.E.	4,415	55	ΤT		
Turning	3,073	743	145		
S.E.	1,321	65	5		
	-,				
Parking	-	494	64		
S.E.	-	9 9	3		
Other	4,266	750	124		
S.E.	2,193	155	6		
Single-Vehicle:					
Pedestrian	5,875	1,439	32		
S.E.	388	216	6		
	500	210	Ū		
Train	7,065	1,820	706		
S.E.	1,448	912	247		
Bicycle	5,121	1,040	61		
S _• E _•	999	430	13		
Animal	3,173	1,548	268		
Animal S.E.	2,849	741	85		
0, E,	2,049	741	05		
Fixed-Object	3,562	2,049	219		
S.E.	52 4	410	19		
	2				
Other Object	-	951	86		
S.E.	-	141	6		
		.			
Non-Collision	3,674	1,191	205		
S.E.	1,653	226	28		
ATT	65 400	\$ 970	\$1 5 0		
ALL	\$5,480 279	\$970 \$39	\$1 5 0 \$2		
S.E.	219	لاد د	γZ		

Direct Cost per Involvement, Passenger Cars, by Accident Type and Severity, Urban, Data-States

		<u></u>		
Highway Type	Fatal	Severity Injury	P.D.O	
One-Way; One-Lane	-	\$ 341	\$86	
Std. Error (S.E.)		\$ 102	\$9	
One-Way; Two Lanes	\$5,017	513	122	
S.E.	1,856	205	21	
One-Way; 3+ Lanes	-	1,770	127	
S.E.		1,009	13	
Undivided; Two-Lanes	5,921	1,539	177	
S.E.	651	77	4	
Undivided; Three-Lanes	2,750	713	114	
S.E.	1,568	135	16	
Undivided; 4+ Lanes	5,271	1,185	173	
S.E.	1,002	95	5	
Divided; 4-Lanes	3,101	1,122	168	
S.E.	713	157	12	
Divided; 6+ Lanes	\$4,638	\$1,601	\$265	
S.E.	\$2,412	\$ 352	\$ 29	

Direct Cost per Involvement, Passenger Cars, by Highway Type and Severity, Data-States (except Massachusetts)

With Tables 5 and 6, the effects of disaggregation are more pronounced. The smaller number of observations yield larger standard errors relative to the means; consequently, the reliability of the mean costs estimates is lessened. In Table 5, for fatal involvements at intersections and on straight sections of roads, the costs tend to be higher than for the average fatal involvement (Table 1). The cost of involvements at railroads includes those involvements (from Table 1) of singlevehicles with train as well as any other accident occurring at a crossing whether a train was involved or not.

The data in Table 6 are presented to give a more finely detailed profile of accidents occurring at intersections. Although the size of the standard errors make some comparisons difficult, involvements at intersections controlled by stop-signs seem to be more costly than those involvements occurring at intersections having stop-go lights. Involvements (injury and P.D.O.) at intersections policed by a traffic officer are among the least costly of the categories.

When categorized by highway system, involvement cost data yield an interesting comparison. In Table 7, note that the costs (for all severities) of involvements on Federal-aid primary tend to be the same as those costs for involvements on the non-Federal aid system. Also the costs for involvements on the Federal-aid secondary system are similar to those for involvements occurring on local roads. Finally, the costs in the first combination (Federal-aid primary and non-Federal aid) are higher than the costs in the latter combination (Federal-aid secondary and local roads). Except for the fatal and injury involvements, the relative errors of all the means in Table 7 are less then 10%.

	Direc	t Cost pe	r Invol	vement.	Passe	nger Car,
by	Road	Character	istics	and Sev	verity,	Data-States
-		(except	New Me	exico an	nd Utah)

	Severity			
Road Characteristic	Fatal	Injury	P.D.O.	
Intersection	\$6,152	\$ 954	\$142	
Std. Error (S.E.)	\$ 430	\$ 67	\$ 4	
Straight*	6,177	1,042	112	
S.E.	679	115	3	
Curve*	5,366	1,133	130	
S.E.	859	204	16	
Bridge	3,753	963	311	
S.E.	1,013	154	59	
Underpass S.E.	-	2,167 737	-	
Interchange	-	474	100	
S.E.		431	34	
Tunnel S.E.		227 32	-	
Railroad	\$7,418	\$ 768	\$ 78	
S.E.	\$ 964	\$ 261	\$ 15	

*To avoid ambiguity, these characteristics were coded at a lower priority than the others. Thus, for example, an involvement occurring at a bridge on a straight road was considered a "bridge" involvement. "Straight" and "curve" were coded when no other characteristic existed at the location.

Та	Ъ	1e	6
----	---	----	---

Type of Control	Severity			
	Fatal	Injury	P.D.O.	
Stop-Go Light Std. Error (S.E.)	\$ 4794 \$ 767	\$ 953 \$ 67	\$160 \$5	
SEC. EITOI $(S_{\bullet}E_{\bullet})$	Ş /0/	φ 07	Υ J	
Officer	14,579*	704	163	
S.E.	14,121*	155	28	
Flashing Light	7930	908	181	
S.E.	3172	291	31	
Stop Sign	6067	1126	179	
SEE.	728	79	7	
Yield Sign	-	1067	303	
S.E.	-	459	55	
Warning Sign	5468	1224	182	
S.E.	1148	306	33	
Other	10,960	1037	227	
S.E.	3178	176	34	
No Control	\$ 5466	\$1016	\$187	
S.E.	\$ 382	\$ 102	\$ 6	

Direct Cost per Intersection Involvement, Passenger Cars, by Type of Traffic Control and Severity, Data-States

*These are based on only two involvements - one a very low cost and the other a very high cost involvement.

Table	7
-------	---

Highway System	Severity				
	Fatal	Injury	P.D.O.		
Federal Aid Primary	\$6097	\$1364	\$189		
Std. Error (S.E.)	\$549	\$ 82	\$ 4		
Federal Aid Secondary	4982	1126	183		
S.E.	548	90	9		
Non-Federal Aid	5990	1288	173		
S.E.	1198	180	9		
Local Road	\$4998	\$ 924	\$142		
S.E.	\$ 300	\$ 46	\$ 3		

Direct Cost per Involvement, Passenger Cars, by Highway System and Severity, Data-States <u>Trucks</u>: An important feature to be emphasized concerning the truck involvement costs is the relative small-sized samples from which the following estimates have been made (see Footnote 15, above section). This is particularly necessary for the combination-truck involvements where, at the highest level of aggregation, only 1,653 observations are available. The data are presented in tabular form (Tables 8-14) in the same manner as the previous passenger car data. Again, some of the highlights of the data are pointed out, but no attempt has been made to provide an exhaustive explanation of the data.

As might be expected, a general feature of truck involvement costs is that the larger, heavier combination-trucks experience higher involvement costs than do the single-unit trucks. For all types of accidents, Table 8 shows the costs for combination trucks to be greater for each severity than the corresponding costs of single-unit truck involvements. Where a head-on fatal involvement was the most costly for passenger cars, combination-trucks experience their most costly fatal involvements in collisions with fixed-objects and non-collision accidents. This suggests the importance of the loss and/or destruction of cargo as an element in the costs of truck involvements. Additional evidence of the probable importance of cargo loss in truck involvement costs is suggested by the relatively high cost of P.D.O. involvements for combination trucks, particularly when involved in collisions with fixed-objects and non-collision accidents. For single- unit trucks, the costs per involvement for all types of accidents are roughly the same as the corresponding costs for passenger cars (see last row, Table 1). This perhaps reflects the presence of a relatively large number of pickup trucks in this category.

Accident Type			Severity	by Truck Ty		
•		ngle-Uni	t		Combinati	
	Fatal	Injury	P.D.O.	Fatal	Injury	P.O.D.
Multi-Vehicle: Head-On Std. Error	\$ 5897	\$1567	\$ 425	\$ 6705	\$ 5313	\$ 1273
(S.E.)	\$ 1887	\$ 204	\$ 72	\$ 1542	\$ 1966	\$ 496
Rear-End	4372	561	113	6076	796	190
S.E.	1399	58	11	3281	271	46
Angle	7269	728	164	6689	1659	386
S.E.	1149	55	9	2876	846	93
Sideswipe S.E.	3199 2847	933 336	$\begin{array}{c} 101\\11\end{array}$	-	477 143	83 24
Turning	5068	735	120	3761	1818	102
S.E.	1977	96	7	1128	1145	35
Parking S.E.	-	306 150	66 16		665 638	145 74
Other	1017	751	111	1134	239	384
S.E.	417	188	18	703	124	200
Single-Vehicle: Pedestrian S.E.	4685 571	1370 219	-	4615 1154	1625 358	- -
Train S.E.	12,524 3 342	3017 1177	1206 482	-	8056 2256	$\begin{array}{c} 1670 \\ 685 \end{array}$
Bicycle	3978	761	41	3000	285	-
S.E.	1273	297	11	897	121	-
Animal	1738	2018	348	-	6891	1529
S.E.	1234	747	45	-	5651	902
Fixed-Object	7469	1908	545	15,706	7671	2198
S.E.	1568	248	55	5497	3989	769
Other Object	-	752	75	-	311	105
S.E.		271	15	-	146	22
Non-Collision	3310	2212	847	12,184	6488	2924
S.E.	596	288	93	2071	1038	673
A11	\$ 5274	\$ 951	\$ 193	\$ 6698	\$ 2073	\$695
S.E.	\$ 411	\$ 43	\$ 8	\$ 918	\$ 332	\$97

Direct Cost per Involvement, Single-Unit and Combination Trucks, by Accident Type and Severity, Data-States

The data in Tables 9 and 10 show that for all types of truck involvements, those in rural areas tend to be more costly than those in urban areas. This is true particularly for combination truck involvements. As with passenger cars, the costs for truck involvements tend to increase with the severity of the accident, the notable exceptions being combination trucks involved in rural, fixed-object accidents (Table 9) and in urban, head-on accidents (Table 10).

The primary feature of the data in Table 11 is the comparison of the costs of involvements occurring on two of the most common types of highways - undivided, two-lanes and divided, four-lanes. For each type of truck and for all severities, involvements on undivided, two-lane roads are more costly than involvements which occur on divided, fourlane roads. In fact, except for the costs of fatal involvements on undivided roads with four or more lanes, the undivided, two-lane roads generate the most costly involvements when all highway types are considered.

When truck involvement costs are calculated with respect to road characteristics, the standard errors of the mean estimates become relatively large due to two factors: (1) the reduction in the number of observations caused by the "sifting-out" process of cross-classification (disaggregation); and (2) the absence of these data from two of the data-states. In fact, the relative error is less than ten percent in only one of the cells in Table 12--single-unit trucks involved in intersection accidents which yield only property damage. For Table 13, all the data-states contributed observations, but restriction to intersection involvements reduces the size of the sample (see footnote 15, p. 25).

Accident	ci	ngle-Uni		rity by Truck T	ype Combinat	ion
	Fatal	Injury	P.D.O.	Fatal	Injury	P.O.D.
Multi-Vehicle: Head-On Std. Error (S.E.)		\$ 1 , 824	\$ 561 \$ 112	\$ 7,351 \$ 1,764	\$ 4,728 \$ 1,466	\$ 1,498 \$ 659
Rear-End	4,937	1,180	208	6,831	1,343	404
S.E.	1,728	212	52	3,620	686	129
Angle	8,619	1,127	189	8,771	4,185	977
S.E.	1,724	169	18	3,947	2,595	303
Sideswipe	4,333	1,276	200	-	649	150
S.E.	3,987	561	40		266	55
Turning	6,362	1,121	193	4,137	1,620	167
S.E.	2,481	179	18	1,514	583	87
Parking S.E.	-	-	155 68	-	- -	- -
Other	1,758	1,697	324	1,134	187	1,250
S.E.	781	543	78	703	140	650
Single-Vehicle: Pedestrian S.E.	2,107 1,075	833 238	- -	5,503 2,256	-	-
Train	16,987	4,558	1,809	-	-	-
S.E.	1,206	2,188	868	-	-	
Bicycle S.E.	2,805 982	1,771 1,008	- -	-	- -	-
Animal	1,738	2,018	368		6,891	1,529
S.E.	1,234	747	52		5,651	902
Fixed-Object	6,359	2,164	650	15,706	1,873	4,770
S.E.	1,781	325	85	5,466	1,236	2,099
Other-Object S.E.	-	900 347	82 10	-	- -	67 24
Non-Collision	3,325	2,538	941	10,175	7,089	3,215
S.E.	632	330	113	2,646	1,134	781
A11	\$ 5,406	\$1,632	\$ 405	\$ 7,632	\$ 3,314	
S.E.	\$ 573	\$101	\$ 28	\$ 1,206	\$ 683	

Direct Cost per Involvement, Single-Unit and Combination Trucks, by Accident Type and Severity, Rural, Data-States

Accident		-1. Thit	Seve	erity by Truck Ty	ty by Truck Type Combination			
	Fatal	ingle-Unit Injury F	P.D.O.		Fatal Injury P.O.D.			
	Falai	Injury F	•D.0.	Fatal	Injury	P.0.D.		
Multi-Vehicle: Head-On Std. Error (S.E.)	\$ 2,038 s 1,039	\$ 960 \$ \$ 346 \$		\$ 3,480 \$ 1,044	\$ 5,938 \$ 3,860	\$ 660 \$ 416		
Rear-End	2,306	412	92	-	481	88		
S.E.	1,176	49	7		139	29		
Angle	5,042	654	160	1,482	487	192		
S.E.	1,109	57	10	667	122	63		
Sideswipe *	366	773	68	-	347	47		
S.E.	190	425	6		153	23		
Turning	1,185	470	99	2,759	1,895	88		
S.E.	687	63	8	1,264	1,573	38		
Parking S.E.		320 157	61 16	-	665 632	16 8		
Other	424	395	87	-	260	21		
S.E.	229	142	17		164	-		
Single-Vehicle: Predestrian S.E.	5,545 627	1,410 234	- -	3 ,854 1 , 156	1,475 531	-		
Train	9,848	1,476	605	-	8,056	1,670		
S.E.	5,515	457	224		2,256	685		
Bicycle	5,348	638	38	3,004	293	-		
S.E.	2,567	306	8	901	148			
Animal S.E.	- -	- -	180 86	-	-	- -		
Fixed-Object	10,982	1,423	456	-	1,622	966		
S.E.	2,921	356	73		713	396		
Other Object S.E.	-	-	66 32	- -	215 189	145 35		
Non-Collision	3,148	1,013	465	16,872	1,266	1,651		
S.E.	1,262	63	18	3,872	354	299		
A11	\$5,040	\$ 670	\$ 123	\$ 4,343	\$ 1,131	\$ 207		
S.E.	\$ 514	\$ 42	\$ 5	\$ 970	\$ 311	\$ 37		

Direct Cost per Involvement, Single-Unit and Combination Trucks, by Accident Type and Severity, Urban, Data-States

*The reversal of the relative magnitudes of fatal and injury costs is probably due to the lack of adequate sample data for this category.

Direct Cos	Per Involvement, Single-Unit and Combinatic	m				
Trucks,	by Highway Type and Severity, Data-States					
(except Massachusetts)						

· · · · · · · · · · · · · · · · · · ·	<u> </u>	Se	verity by	Truck Ty	ype	
	S	ingle-Uni	t		ombination	n
Highway Type	Fatal	Injury	P.D.O.	Fatal	Injury	P.D.0.
One-Way; One-Lane Std. Error (S.E.)	-	\$ 643 \$ 469	\$ 201 \$ 139	-	-	-
One-Way; Two-Lanes S.E.	-	147 107	54 44	-	-	-
One-Way; 3+ Lanes S.E.	-	300 76	79 16	-	-	27 16
Undivided; Two-Lanes S.E.	4,512 586	1,473 10	285 17	6,378 1,212	4,962 1,091	1,192 179
Undivided; Three-Lanes S.E.	1,650 594	311 255	74 36	_	-	_
Undivided; 4+ Lanes S.E.	1,547 464	698 112	126 8	7,781 4,046	1,187 309	730 321
Divided; Four-Lanes S.E.	4,406 2,379	855 197	137 14	3,834 2,760		330 162
Divided; 6+ Lanes S.E.	2,477 1,908	25 15	144 56	-	63 37	-

Direct	Cost	Per	Involveme	ent,	Single	e-Unit	and	Combination	Trucks,
	By Ro	bad (Character	istic	cs and	Sever	ity,	Data-States	
			(except	New	Mexico	and 1	Utah))	

		Severity by Truck Type						
Road	S	ingle-Unit		C	ombination	l		
<u>Characteristic</u>	Fata1	Injury	P.D.O.	Fatal	Injury	P.D.O.		
Intersection Std. Error (S.E.)	\$6,738 \$1,213	\$ 742 \$ 82	\$ 98 \$ 10	\$4,822 \$1,254	\$ 725 \$ 138	\$ 131 \$ 34		
Straight* S.E.	5,505 1,156	978 147	123 16	7,510 2,629	2,455 859	275 94		
Curve* S.E.	4,868 2,239	1,191 345	231 72	6,547 1,505	2,558 1,458	568 261		
Bridge S.E.	4,040 2,748	1,006 362	182 56	18,949 7,390	14,695 8,082	4,508 4,192		
Railroad S.E.	11,140 3,453	2,448 1,020	610 409	-	4,515 2,077	92 54		
Underpass S.E.	-	-	-	-	-	466 219		
Interchange S.E.	_	-	-	-	-	-		
Tunnel S.E.	-	-	-	-	-	-		

* To avoid ambiguity, these characteristics were coded at a lower priority than the others. Thus, for example, an involvement occurring at a bridge on a straight road was considered a "bridge" involvement. "Straight" and "curve" were coded when no other characteristic existed at the location.

		·····	Sever	ity		
		Single-Uni	Lt.	Co	ombinatio	n
Type of Control	Fatal	Injury	P.D.O.	Fatal	Injury	P.D.O.
Stop-Go Light	\$ 5,748	\$ 536	\$ 92	\$ 2,086	\$ 676	\$139
Std. Error (S.E.)		\$ 54	\$ 6	\$ 647	\$ 176	\$ 33
Officer	14,613	836	139	12,481	1,152	564
S.E.	10,667	251	17	10,484	806	288
Flashing Light	11,356	445	79	-	2,339	174
S.E.	1,140	111	13	-	1,403	111
Stop Sign	6,774	990	201	6,191	2,684	129
S.E.	156	129	22	1,795	-	43
Yield Sign S.E.	-	1,850 11	-	-	-	-
Warning Sign	3,050	837	148	-	1,600	113
S.E.	1,952	184	15	-	688	57
Other	-	3,495	237	-	-	618
S.E.	-	1,503	97	-	-	587
No Control	5,607	872	175	6,197	672	474
S.E.	1,458	148	16	3,160	269	213

Direct Cost per Intersection Involvement, Single-Unit and Combination Trucks, by Type of Traffic Control and Severity, Data-States

Direct Cost Per Involvement, Single-Unit and Combination Trucks, By Highway System and Severity, Data-States

		Se	verity by	Truck T	уре		
	<u> </u>	Single-Unit			Combination		
Highway System	Fatal	Injury	P.D.O.	Fatal	Injury	P.D.O.	
Federal Aid Primary	\$4,857	\$1,184	\$ 246	\$6 , 194	\$2 , 917	\$ 959	
Std. Error (S.E.)	\$ 631	\$ 71	\$ 1 5	\$1,053	\$ 583	\$153	
Federal Aid Secondary	4,776	1,327	208	8,079	1,508	894	
S.E.	1,337	12	19	5,090	729	384	
Non-Federal Aid	7,513	922	103	2,186	830	354	
S.E.	1,728	203	22	700	2 7 4	181	
Local Road	6,025	• 643	119	9,212	569	163	
S.E.	663	58	7	2,119	137	41	

Classified by highway system, average costs for truck involvements are given in Table 14. Unlike the similar data for passenger cars, the mean costs of truck involvements do not seem to vary systematically with respect to the highway system classification.

Texas Involvement Frequencies

The data in Appendix D are the frequencies of reported involvements in Texas during 1969. The data have been classified to conform to the categories established by the data-states. The data are presented in the following order: (1) passenger cars (Tables D1-D5); (2) singleunit trucks (Table D6-D10); and (3) combination trucks (Tables D11-D15).

Involvement frequencies are used as inputs in determining accident costs, and will not be discussed at this point. They are presented in detailed tabular form, however, in the event that readers of this study might have select purposes for which involvement frequencies could be used.

Value of the Loss of Future Earnings

As mentioned previously, the direct cost components of accident costs largely are representative of "out of pocket" expenses incurred. One of the direct costs which is not "out of pocket," however, is the measure of income lost due to occurrence of injuries which cause loss of work time.

An extension of this measure of loss of earnings can be made to include the present value of expected future incomes for those persons fatally injured in accidents. The inclusion of this loss of future earnings leads, naturally, to higher costs for fatal accidents. However, since the measure does not purport to quantify the "value of life" (which certainly would be higher than the present value of expected future earnings), the resulting estimates are not considered to be "too high."

The data in Table 15 are the basis for the weighted averages (by age and sex) of the value of expected future earnings for persons killed in Texas in 1969. Two discount rates, 10% (Cols. 2 and 6) and 4% (Cols. 3 and 7) are used in making the estimates which follow. Further, the negative values which exist in the late years are the result of using a "net" rather than a "gross" earnings concept. In computing the average loss of future earnings, the present study does not include the negative amounts obtained by Weisbrod and arbitrarily assigns a value of zero for those ages for which discounted future earnings are negative.¹

The results of averaging the data in Table 15 are shown in Table 16. Rows 1 and 2 of Table 15 are weighted by the age composition of the fatalities in the respective sexes. Row 3 is weighted further by the sex composition of the total number of fatalities.

Utilizing the cost estimates developed in this chapter, the task of the next chapter is to derive cost estimates for selected types of accidents.

44

ţ

¹This procedure was used also in the <u>Washington Area</u> <u>Study</u> when negative values were obtained. See <u>Washington Area Study</u>, p. 210.

	Males				Fem	ales
Number Killed	10% Discount	4% Discount	Age	Number Killed	10% Discount	4% Discount
(1)	(2)	(3)	(4)	(5)	(6)	(7)
1	\$ -63 5	\$ - 672	100	_	\$ - 635	\$ -672
-	-1,155	÷1,292	97	1	-1,155	-1,292
_	-1,576	-1,865	92	2	-1,576	-1,865
21	-1,911	-2,391	87	6	-1,911	-2,391
38	-2,368	-3,344	82	20	-2,368	-3,314
58 51	-2,610	-4,083	77	19	-2,610	-4,083
13	-2,812	-4,378	74	16	-2,868	-4,841
17	-2,926	-4,560	73	10	-2,867	-4,917
13	-2,923	-4,647	72	8	-2,710	-4,820
13	=2,925 =2,747	-4,536	71	16	-2,440	-4,590
20	-2,289	-4,119	70	13	-2,116	-4,289
20 17	-1,491	-3,323	69	8	-1,620	-3,792
26	-391	-2,173	68	9	-1,020	-3,073
20 16	936	-2,175	67	12	-94	-2,160
16	2,408	913	66	8	836	-1,114
25	3,988	2,742	65	7	1,839	52
21	5,594	4,663	64	.13	2,853	1,272
27	7,244	6,697	63	12	3,912	2,582
21	8,866	8,769	62	13	4,980	3,949
24	10,450	10,860	61	21	6,079	5,387
24	12,005	12,982	60	17	7,209	6,902
24	13,844	15,077	59	13	8,354	8,476
18	14,898	17,153	58	9	9,523	10,114
22	•		57	19	9,525 10,713	11,821
<i>L L</i>	16,212	19,199	10	13	10,713	11,021

Present Values of Net Future Earnings per Person, by Age and Sex (at 4 and 10 Percent Discount Rates), and Number of Persons Killed in Texas in Motor Vehicle Traffic Accidents in 1969

	Males				Females		
Number	10%	4%	Age	Number	10%	4%	
Killed	Discount	Discount		Killed	Discount	Discount	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
27	\$17,486	¢01 106	56	13	611 00F	010 E/0	
30		\$21,186	55	11	\$11,885	\$13,548	
30 37	18,737	23,216			13,026	15,285	
	19,973	25,255	54	15	14,130	17,019	
25	21,210	27,337	53	13	15,226	18,780	
29	22,406	29,401	52	9	16,311	20,560	
36	23,624	31,523	51	14	17,369	22,344	
34	24,861	33,695	50	11	32,057	24,148	
39	26,162	35,963	49	20	19,524	26,035	
29	27,533	38,336	48	8	20,731	28,056	
29	28,965	40,809	47	7	21,994	30,170	
34	30,373	43,296	46	16	23,291	32,353	
28	31,732	45,769	45	9	24,560	34,545	
28	33,024	48,207	44	14	25,798	36,740	
28	34,240	50,596	43	10	26,977	38,902	
30	35,375	52,928	42	10	28,088	41,026	
32	36,478	55,244	41	15	29,125	43,097	
27	37,508	57,502	40	12	30,090	45,108	
33	38,447	59,675	39	13	30,981	47,058	
28	39,287	61,758	38	9	31,779	48,921	
26	40,012	63,720	37	13	32,472	50,683	
24	40,567	65,504	36	8	33,010	52,279	
33	40,821	66,962	35	10	33,241	53,548	
20	40,955	68,266	34	8	33,332	54,649	
34	41,008	69,452	33	19	33,326	55,615	
25	40,988	70,522	32	6	33,271	56,497	
29	40,910	71,489	31	6	33,200	57,321	
28	40,768	72,357	30	9	33,107	58,090	
36	40,567	73,110	29	11	32,989	58,789	
30	40,265	73,711	29	13	32,840	59,424	

Present Values of Net Future Earnings per Person, by Age and Sex (at 4 and 10 Percent Discount Rates), and Number of Persons Killed in Texas in Motor Vehicle Traffic Accidents in 1969

	Males	;			Fem	ales
Number	10%	4%	Age	Number	10%	4%
Killed	Discount	Discount		Killed	Discount	Discount
(1)	(2)	(3)	(4)	(5)	(6)	(7)
32	39,912	74,216	27	11	32,703	60,034
37	39,348	74,433	26	8	32,604	60,034 60,646
49	38,491	74,296	25	19	32,537	61,261
55	37,296	73,731	24	15	32,429	61,802
58	35,807	72,776	23	17	32,242	62,232
79	34,071	71,466	22	18	31,868	62,232
72	32,125	69,828	21	23	31,204	62,457
91	30,000	67,898	20	27	29,733	61,274
96	27g742	65,694	19	20	27,892	59,772
108	25,267	63,153	18	35	25,728	57,828
87	22,789	60,406	17	27	23,279	55,460
73	20,180	57,550	16	25	20,636	52,761
54	17,684	54,612	15	$\overline{21}$	18,061	49,990
42	15,388	51,768	14	19	15,724	47,336
22	13,356	49,094	13	15	13,665	443849
17	11,569	46,590	12	12	11,853	42,525
13	10,000	44,244	11	10	10,265	40,350
17	8,640	42,054	10	8	8,878	38,319
11	7,451	40,000	9	7	7,670	36,421
10	422 و	38,074	8	5	6,621	34,641
15	5,522	36,263	7	8	5,705	32,970
15	4,733	34,548	6	11	4,900	31,391
19	4,039	32,91 9	5	15	4,191	29,892
13	3,429	31,374	4	17	3,567	28,473
19	2,890	29,900	3	14	3,016	27,118
11	2,414	28,491	2	12	2,528	25,828
14	1,994	26,580	1	11	2,098	24,578
22	1,569	25,021	0	26	1,672	22,827

Present Values of Net Future Earnings per Person, by Age and Sex (at 4 and 10 Percent Discount Rates), and Number of Persons Killed in Texas in Motor Vehicle Traffic Accidents in 1969

Source: Cols. 2, 3, 6 and 7 are data based on Weisbrod, <u>op</u>. <u>cit</u>., pp. 60-61. Weisbrod's estimates have been adjusted by the ratio of the 1969 CPI: 1950 CPI. Cols. 1 and 5 are tabulated from Texas Department of Public Safety, <u>Motor</u> <u>Vehicle Traffic Accidents 1969</u>, p. 12.

Weighted Averages of Present Values of Net Future Earnings, Discounted at 4% and 10%, Persons Killed in Texas Accidents, 1969

		(rounded to nearest hundred dol	lars)
Persons Killed		Present Value - 10%	Present Value - 4%
			19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19.
(1)	Male	\$23,200	\$45,200
(2)	Female	16,900	33,300
(7)	A 3 1	21 700	41 600
(3)	A11	21,300	41,600

ACCIDENTS AND ACCIDENT COSTS

Utilizing the involvement cost data developed in the previous sections, a set of accident cost estimates can be derived for selected accident categories. Limitations of involvement cost data restrict the discussion of accident costs to three types of vehicle combinations: passenger cars only (single and multi-vehicular accidents), trucks only (single and multi-vehicular accidents), and car-truck multi-vehicular accidents.

The development of these accident cost estimates is, briefly, the result of combining the direct and indirect involvement costs into a weighted average cost - the weights having been determined from the accident experience in Texas in 1969. The procedures used to develop theddata in Tables 17-28 are discussed below.

<u>Truck accidents</u>: Since truck involvement and involvement cost data are available for single-unit and combination trucks, the direct cost estimates for <u>all</u> truck involvements are weighted averages of the direct costs of single-unit and combination-truck involvements. The weights used in deriving these weighted averages are based on the relative proportions of the two types of trucks involved in accidents in Texas. Thus, for example, the direct cost of a truck/pedestrian fatal accident would be the sum of the cost of a single-unit truck/pedestrian involvement multiplied by the percentage that single-unit involvements are of total truck involvements and the cost of a combination-truck/pedestrian involvement multiplied by the percentage that combination-truck involvements are of total truck involvements.

In the case of single-vehicle accidents, there is no difference between involvement costs and accident costs. For multi-vehicular accidents, the estimated accident costs are some multiple of the involvement costs. In the case of truck only accidents, it is assumed that two trucks are involved per multi-vehicular accident. This assumption gives a downward bias to the estimates of this kind of accident since some truck accidents undoubtedly involve more than two trucks. However, in the absence of the precise data, the assumption of two trucks per multi-vehicular truck accident is used.¹

<u>Passenger Car Accidents</u>: As in the case of trucks, a singlevehicle passenger car accident is equivalent to an involvement. Thus, accident costs for single-car accidents are the same as the involvement costs. For multi-vehicular accidents involving passenger cars, costs are determined by: (1) assuming the involvement of one passenger car per car/truck and car/other accidents; (2) subtracting from total passenger car involvements (of a given severity, accident type, and rural-urban) the number of cars involved in car/truck and car/other accidents; and (3) dividing the residual determined in (2) by the number of passenger car only accidents (by accident type) to determine the average number of passenger cars involved in the respective types of multi-vehicular

¹A comparison of the involvement and accident frequencies for trucks suggests this to be a plausible assumption.

accidents. For example, there were 731 passenger cars involved in fatal, head-on accidents. There were 176 car/truck, 10 car/other, and 258 car-only fatal, head-on accidents. Assuming one car involved per car/truck and car/other accidents, there were 545 cars involved in the 258 car-only accidents. This results in an average of 2.11 cars per fatal, head-on accident .

The accident costs for the car-only accidents, then, are obtained by multiplying the average number of cars involved in accidents (of given severity, accident type, rural and/or urban) by the costs per car involvement in those accidents.

<u>Car/Truck Accidents</u>: The accident cost of a car/truck accident is the sum of the cost per truck involvement and cost per car involvement, since it is assumed that only one car and one truck are involved. As is the case of truck-only, multi-vehicular accidents, this assumption gives a downward bias to the cost per car/truck accident since there probably are some of these accidents involving two or more cars or trucks.

Since no appropriate involvement cost estimates were available from the data-states, no accident cost estimates have been derived for those accidents (2% of all Texas accidents) involving vehicles other than cars-only, trucks-only, and cars-trucks. But, frequency data for all vehicular accidents are presented in the Texas accident frequency tables in Appendix E.

In computing weighted averages for accident costs including loss of future earnings (Tables 26-28), the following assumptions are used: (1) in pedestrian and bicycle fatal accidents, only one fatality occurs per accident; and (2) for all other accident type, the number of fatalities which occur per accident are 1.15 in urban accidents, 1.31 in rural

accidents, and 1.26 in all accidents.¹

In presenting the accident cost data, some of the highlights and more general comparisons are mentioned. The direct costs per fatal accident are presented in Tables 17-19. For all accidents, Table 17 shows that head-on accidents are the most costly while collisions with animals yield the least costly accidents. Multi-vehicular accidents involving passenger cars only are more costly than either car/truck or truck-only multi-vehicular accidents. Single-vehicular accidents involving trains are the most costly type of single-vehicle accidents.

Tables 18 and 19 present the direct costs of fatal accidents further classified by rural (Table 18) and urban Table 19 location. In general, rural, multi-vehicular accidents have higher costs than multi-vehicle accidents occurring in urban areas. Just the opposite is the case, however, for single-vehicle accidents where those in urban areas are more costly than similar accidents in rural areas. For all accidents of all vehicle type combinations, those with higher costs occur in rural areas.

For injury accidents, the data in Table 20 indicate that head-on and parking accidents are the most and least costly types of multivehicular accidents, respectively. In regard to vehicle-type combination, multi-vehicular accidents involving only passenger cars produce higher costs than either car/truck or multi-truck accidents. In comparing injury accident costs between urban and rural locations, the data in Tables 21 and 22 show that for multi-vehicular accidents of all types

¹These averages are obtained by pro-rating the fatality data in Texas Department of Public Safety, <u>op</u>. <u>cit.</u>, p. 7, having allowed for the occurrence of one fatality per pedestrian and bicycle accident.

Accident		Vehicle-Type C		
Туре	Car	Car-Truck	Truck	A11
ulti-Vehicle				
Head-On	\$18 , 152	\$14,809	\$12,432	\$16 ,5 10
Rear End	14,229	11,516	10,068	12,093
Angle	13,219	13,591	14 , 172	13,413
Sideswipe	14,760	10,145	6,398	12,799
Turning	10,584	9,891	9,318	10,242
Parking	-	2	-	-
Other	7,731	-	2,104	6,392
11 Multi-Vehic	le\$14,635	\$13,198	\$10 , 775	\$13 , 78
ingle-Vehicle				
Pedestrian	\$ 5 ,3 95		\$ 4,674	\$ 5,279
Train	6,846		12,524	8,119
Bicycle	4,518		3,000	4,28
Animal	3,173		1,738	2,44
Fixed Object	3,057		8,842	4,108
Other Object	5,578		-	—
on-Collision	3,909		5,402	4,28
11	\$ 7 , 780	\$13,198	\$ 7,478	\$ 8,62

Direct Cost Per Fatal Accident by Accident Type and Vehicle-Type Combination, Texas, 1969

Accident	Vehicle Type Combination				
Туре	Car Only	Car-Truck	Truck Only	<u>A11</u>	
Multi-Vehicle					
Head-On	\$20,163	\$16,315	\$13,474	\$18,119	
Rear End	15,404	12,831	11,332	13,152	
Angle	12,545	14,879	17,326	14,710	
Sideswipe	14,792	11,340	8,666	13,116	
Turning	12,800	11,934	11,372	12,392	
Parking	· _	_	-	-	
Other	10,849	-	3,204	8,665	
All Multi-Vehicle	\$17 , 034	\$14,898	\$12,292	\$15 , 672	
Single-Vehicle					
Pedestrian	\$3,854		\$3,239	\$3,758	
Train	6,670		16,987	10,109	
Bicycle	3,613		2,805	3,371	
Animal	-		1,738	1,738	
Fixed Object	2,559		7,855	3,807	
Other Object	5,578		- ·		
Non-Collision	\$3,963		\$4 , 785	\$4,177	
ALL	\$8,030	\$14,898	\$7,903	\$9 , 236	

Direct Cost per Fatal Accident, by Accident Type and Vehicle Type Combination, Rural, Texas, 1969

Table	19
-------	----

Accident	Vehicle Type Combination			
Туре	Car Only	Car-Truck	Truck Only	<u>A11</u>
Multi-Vehicle				
Head-On	\$12 , 899	\$8 , 559	\$4,986	\$11 , 204
Rear End	11,277	7,345	4,612	8,500
Angle	13,611	10,537	7,710	12,284
Sideswipe	14,556	7,159	732	12,197
Turning	6,146	4,769	3,392	5,530
Parking	-	-	-	-
Other	4,266	-	808	3,371
All Multi-Vehicle	\$11 , 704	\$8,643	\$5 , 025	\$10 , 280
Single-Vehicle				
Pedestrian	\$5,875		\$5 , 339	\$5 , 788
Train	7,065		9,848	7,590
Bicycle	5,121		5,348	5,142
Animal	3,173		-	3,173
Fixed Object	3,562		10,982	4,615
Other Object	-		, <u> </u>	-
Non-Collision	\$3 , 674		\$7,070	\$4,441
ALL	\$7 , 155	\$8,643	\$7,162	\$7 , 363

Direct Cost per Fatal Accident by Accident Type and Vehicle Type Combination, Urban, Texas, 1969

Accident	Vehicle-Type Combination			
Туре	Car	Car-Truck	Truck	<u>A11</u>
Multi-Vehicle				
Head-On	\$3,091	\$3 , 744	\$4 , 452	\$3.341
Rear End	2,071	1,596	1,192	1,932
Angle	1,915	1,759	1,618	1,873
Sideswipe	1,227	1,398	1,608	1,302
Turning	1,901	1,821	1,752	1,875
Parking	967	828	668	923
Other	1,755	1,137	1,428	1,722
All Multi-Vehicle	\$1 , 994	\$1 , 856	\$1 , 745	\$1 , 955
Single-Vehicle				
Pedestrian	\$1 , 441		\$1 , 381	\$1,433
Train	1,834		4,127	2,242
Bicycle	1,006		755	974
Animal	1,878		2,684	2,031
Fixed-Object	1,934		1,948	1,942
Other-Object	1,139		21.5	1,072
Non-Collision	1,681		2,952	1,839
ALL	\$1 , 879	\$1,856	\$2 , 393	\$1,917

Direct Cost per Injury Accident by Accident Type and Vehicle Type Combination, Texas, 1969

Accident	Vehicle Type Combination			
Туре	Car Only	Car-Truck	Truck Only	A11
Multi-Vehicle				
Head-On	\$5,406	\$5 , 227	\$5 , 048	\$5 , 310
Rear End	3,388	2,865	2,454	3,139
Angle	2,663	2,864	3,110	2,769
Sideswipe	2,210	2,056	2,004	2,129
Turning	5,050	2,569	2,400	3,897
Parking	. – ·	-	-	
Other	1,665	-	2,690	1,896
All Multi-Vehicle	\$3,806	\$3,254	\$3,148	\$3 , 559
Single-Vehicle				
Pedestrian	\$1,407		\$833	\$1 , 290
Train	1,889		4,558	2,685
Bicycle	510		1,771	749
Animal	2,169		2,664	2,277
Fixed Object	1,714		2,097	1,778
Other Object	1,650		-	1,650
Non-Collision	\$1,838		\$3,417	\$2 , 242
ALL	\$2,441	\$3 , 254	\$3,009	\$2 , 676

Direct Cost per Injury Accident, by Accident Type and Vehicle Type Combination, Rural, Texas, 1969

Accident	Vehicle Type Combination			
Туре	Car Only	Car-Truck	Truck Only	A11
Multi-Vehicle				
Head-On	\$1,814	\$2 , 357	\$2 , 934	\$1,968
Rear End	1,788	1,283	840	1,653
Angle	1,830	1,549	1,282	1,760
Sideswipe	911	1,110	1,336	991
Turning	1,493	1,385	1,284	1,463
Parking	988	828	668	944
Other	784	1,137	774	788
All Multi-Vehicle	\$1,659	\$1,457	\$1,103	\$1 , 602
Single-Vehicle				
Pedestrian	\$1 , 439		\$1,412	\$1,428
Train	1,820		2,886	1,983
Bicycle	1,040		633	989
Animal	1,548		, ee	1,548
Fixed Object	2,049		1,446	1,986
Other Object	951		215	876
Non-Collision	\$1,191		\$1,045	\$1,166
ALL	\$1 , 584	\$1,457	\$1,219	\$1 , 545

Direct Cost per Injury Accident, by Accident Type and Vehicle Type Combination, Urban, Texas, 1969

rural accidents produce higher costs than urban accidents. In both areas, head-on accidents are still the most costly. The single vehicle accidents, only pedestrian, bicycle, and fixed object collisions are more costly in urban than rural areas. Overall, truck accidents seem to be more costly than car accidents in rural areas, while the opposite holds for accidents in urban areas.

The costs of property damage only accidents (Tables 23-25) show that in this severity class, head-on truck accidents are the most costly of all multi-vehicle accidents. However, the highest cost accident of all types (both multi- and single-vehicle) occurs when trucks over-turn and/or leave the roadway without collision. The rural-urban classification indicates that the more costly multi-vehicular accidents occur in rural areas.

The final set of accident cost estimates (Tables 26-28) combines all severities and includes the loss of future earnings due to fatalities. Under these conditions, accidents involving trains are the most costly of all types of accidents (Table 26). Pedestrian and head-on accidents are the next two highest cost accident types. A comparison of accidents by vehicle-type combination shows that truck-only accidents are twice as costly as car-only accidents. The data in Tables 27 and 28 show that rural accidents are generally much more costly than urban accidents particularly for head-on, train, and pedestrian collisions. Among rural accidents, a truck/train collision has the highest cost; whereas, in urban areas, truck/pedestrian collisions are the most costly.

Accident	···· ···· ····	Vehicle-Type C		
Туре	Car	Car-Truck	Truck	A11
Multi-Vehicle Head-On	\$470	\$766	\$1,062	\$595
Rear End	320	282	242	310
Angle	416	375	354	405
Sideswipe	258	229	196	246
Turning	338	287	236	321
Parking	132	135	139	133
Other	135	236	226	152
All Multi-Vehicle	\$316	\$331	\$ 287	\$318
Single-Vehicle				
Pedestrian	-		-	-
Train	\$439		\$1,367	\$685
Bicycle	61		38	58
Animal	308		607	373
Fixed Object	273		1,018	381
Other Object	91		82	89
Non-Collision	219		1,487	499
ALL	\$305	\$331	\$ 679	\$334

Direct Cost Per Property Damage Only Accident, by Accident Type and Vehicle Type Combination, Texa§, 1969

Table 24

Accident	V	ehicle Type Comb	ination	
Туре	Car Only	Car-Truck	Truck	<u>A11</u>
Multi-Vehicle				
Head-On	\$542	\$1005	\$1468	\$961
Rear End	578	536	494	538
Angle	368	455	544	410
Sideswipe	264	316	368	293
Turning	618	498	. 378	551
Parking	310	310	310	310
Other	121	613	1004	289
All Multi-Vehicle	\$483	\$554	\$ 692	\$525
Single Vehicle				
Pedestrian	_		~	-
Train	\$172		\$1809	\$697
Bicycle	-		-	
Animal	312		618	380
Fixed Object	377		1872	653
Other Object	93		76	89
Non-Collision	\$226		\$1669	\$806
ALL	\$364	\$554	\$1108	\$515

Direct Cost per Property Damage Only Accident by Accident Type and Vehicle Type Combination, Rural, Texas, 1969

Accident		Vehicle Type Co	ombination	
Туре	Car Only	Car-Truck	Truck Only	A11
Multi-Vehicle				
Head-On	\$408	\$444	\$480	\$422
Rear End	282	233	184	270
Angle	402	363	324	392
Sideswipe	254	191	128	230
Turning	290	243	195	276
Parking	128	109	90	123
Other	136	204	160	142
All Multi-Vehicle	\$298	\$278	\$201	\$290
Single-Vehicle				
Pedestrian	-		-	-
Train	\$ 706		\$966	ş773
Bicycle	61		38	58
Animal	268		180	250
Fixed Object	219		600	270
Other Object	86		78	85
Non-Collision	\$205		\$806	\$308
ALL	\$286	\$278	\$342	\$287

Direct Cost per Property Damage Only Accident, by Accident Type and Vehicle Type Combination, Urban, Texas, 1969

Table 25

Table 26

Accident	·	Vehicle Type		
Туре	Car Only	Car-Truck	Truck Only	A11
Multi-Vehicle				
Head On	\$3,100	\$4,000	\$4,500	\$3,500
Rear End	600	700	1,200	700
Angle	900	1,000	1,200	900
Sideswipe	400	400	500	400
Turning	700	800	900	700
Parking	200	200	200	200
Other	400	300	400	400
All Multi-Vehicle	\$ 800	\$1,000	\$ 600	\$ 800
Single Vehicle Pedestrian	\$5,000		\$5,800	\$5,100 0
Train	6,000		8,500	6,600
Bicycle	2,100		2,100	2,100
Animal	500		1,000	600
Fixed Object	1,500		2,500	1,600
Other Object	400		200	400
Non-Collision	1,800		3,300	2,100
A11	\$1,000	\$1,000	\$2,000	\$1,100

Cost per Reported Accident, All Severities, by Accident Type and Vehicle Type Combination, Texas, 1969*(rounded to nearest \$100)

*Loss of future earnings discounted at 4%.

Accident	V	ehicle Type Com	bination	
Туре	Car Only	Car-Truck	Truck Only	<u>A11</u>
Multi-Vehicle				
Head-On	\$8,900	\$9,300	\$7,400	\$8,900
Rear End	4,900	2,600	4,100	4,200
Angle	2,200	3,700	2,600	2,700
Sideswipe	1,300	1,200	1,200	1,300
Turning	2,600	1,900	1,900	2,300
Parking	400	300	300	400
Other	1,400	600	2,200	1,600
All Multi-Vehicle	\$4,000	\$3,700	\$3,400	\$3 , 800
Single-Vehicle				
Pedestrian	\$14,100		\$10,800	\$12 , 100
Train	12,200		16,900	13,700
Bicycle	6,000		10,900	6,900
Animal	500		1,100	600
Fixed Object	2,100		3,800	2,500
Other Object	500		600	500
Non-Collision	\$2 , 500		\$3,900	\$2,800
ALL	\$2,800	\$3,700	\$3,600	\$3,100

Cost per Accident, All Severities, by Accident Type and Vehicle Type Combination, Rural, Texas, 1969* (Rounded to nearest \$100)

Table 27

* Loss of future earnings discounted at 4%.

Table 28

Accident		Vehicle Type	Combination	
Туре	Car Only	Car Truck	Truck Only	A11
Multi-Vehicle				
Head On	\$1 , 500	\$2,200	\$1,500	\$1 , 700
Rear End	500	600	500	500
Angle	700	900	900	700
Sideswipe	300	300	400	300
Turning	500	500	500	500
Parking	200	100	100	200
Other	200	200	300	200
All Multi-Vehicle	\$ 500	\$ 700	\$ 500	\$ 600
Single-Vehicle				
Pedestrian	\$4,300		\$5,100	\$4 , 400
Train	4,800		4,700	4,800
Bicycle	1,900		1,200	1,800
Animal	500		200	500
Fixed Object	1,300		900	1,200
Ø th er Object	200		100	200
Non-Collision	\$1,000		1,600	1,100
A11	\$ 700	\$ 700	\$ 900	\$ 700

Cost* per Reported Accident, All Severities, by Accident Type and Vehicle Type Combination, Urban, Texas, 1969*(rounded to nearest \$100)

*Loss of future earnings discounted at 4%.

In summary, the data in this section are the result of the implementation of the study design outlined in the section on Research Method. The fatal accident costs in Tables 17-19 do not include estimates for loss of future earnings since fatality data by accident type and vehicle-type combination were not obtained. Users of those tables can easily include the loss of future earnings component by multiplying the number of persons killed per accident by an appropriately selected value from Table 16. The result will be a more comprehensive estimate than those given in Tables 17-19.

ACCIDENT RATES

The accident rate portion of this study is preliminary and exploratory in its nature. The approach is based on the three-year study by Kihlberg and Tharp.¹ The data utilized are those accidents which occurred in rural areas in Texas in 1969.²

The accidents, vehicle miles, and resulting accident rates are classified by accident severity according to highway type and average daily traffic (ADT) classes.

Although no statistical analysis was conducted, the data appear to yield some conclusions which are in accordance with the more intensive study by Kihlberg and Therp.

Some of the effects of highway design on accident rates are illustrated by the data in Table 29. An overall comparison of highway types suggests that for all accident severities, undivided highways tend to generate higher accident rates than do divided highways. Among undivided highways, those with more than four lanes have much higher accident rates (for fatal and property damage accidents) than any of the other three types of undivided highways. For accidents of all severities, undivided four-lane highways have higher accident rates than undivided two-lane highways.

¹J. K. Kihlberg and K. J. Tharp, <u>Accident Rates as Related to Design</u> <u>Elements of Rural Highway</u>, NCHRP Report No. 47, (Washington:Highway Research Board, 1968)

²These data were made available for this study by Division 18 of the Texas Highway Department.

Table 29

		Acciden	t Severity	
Highway Type	Fatal	Injury	P.D.O.	All Severities
Undivided: *				
Two-Lanes	5.93	52.63	137.11	195.67
Three-Lanes	2.98	48.61	169.63	221.22
Four-Lanes	5.98	73.78	264.61	344.36
4+ Lanes	18.23	54.68	729.13	802.04
Divided:				
Partial-Access Control				
Four-Lanes	3.57	31.00	70.25	104.82
4+ Lanes	-	-	155.28	155.28
Full-Access Control				
Four-Lanes	3.33	25.93	67.18	96.45
4+ Lanes	3.18	21.20	74.21	98.59
All Others	3.54	63.68	193.17	260.40
TOTAL	5.33	47.72	127.33	180.38

Rural Accident Rates, by Accident Severity and Highway Type, Texas, 1969 (accidents per 100 million vehicle miles)

*The discrepancy between the fatal rates on two-lanes and four-lanes, on the one hand, and three-lanes and more-than-four-lanes, on the other hand, is probably due to the inadequate size of the sample of three-lane and more-than-four-lane accidents. Specifically, there were three fatal accidents on three-lane roads and only one fatal accident on roads of more-than-four-lanes. In contrast, there were 1,026 and 38 fatal accidents on two-lane and four-lane roads, respectively.

• 68

The effects of access control are indicated by a comparison among types of divided highways. Divided highways with full access control have lower accident rates than divided highways with partial access control. Although the accident rate for all severities is somewhat higher for fully-controlled access highways of more than four-lanes (when compared to fully-controlled access highways of four-lanes), the rates of fatality and injury producing accidents are lower on highways of more than four lanes.

When accident rates are classified by severity and A.D.T. classes, no strongly systematic relationship appears to be present. As the data in Table 30 show, however, some general inferences may be made. First of all, the lowest accident rates in each of the severity categories appear to occur in the highest A.D.T. classes. For fatal accidents and injury, the lowest accident rates appear in highway segments with A.D.T. counts above 7,000. In the case of property damage accidents, the lowest rates occur at A.D.T. levels greater than 8,000.

The determination of those A.D.T. levels generating the highest accident rates is indicated by a clustering effect within severity categories. Thus, for fatal accidents the highest rates tend to cluster between A.D.T. counts of 600 and 4,000. In property damage accidents, two groupings of A.D.T. counts tend to contain the highest accident rates: 400-900 A.D.T. and 2,000-8,000 A.D.T. The highest accident rates for injury accidents lie between the 500 and 1,000 A.D.T. levels.

Although additional data were compiled for accident rates according to severity and further cross-classified by A.D.T. levels and highway

Table 30

			cident Severi	
<u>A. D. T. C</u>	lass Fat	al Injury	7 P.D.O.	All Severities
0-	99 4.	.24 52.56	5 134.79	191.58
100- 1	199 5.	.50 42.27	114.27	162.04
200- 2	299 6.	.73 52.82	2 115.53	175.08
300- 3	399 4.	.40 48.07	118.77	171.24
400- 4	499 6.	.40 50.90) 133.31	190.60
500- !	599 4.	.66 56.96	5 131.88	193.50
600- 6	699 7.	.51 59.73	3 133.55	200.80
700-	799 6.	.86 56.00	122.48	185.35
800- 8	899 7.	.89 54.29	9 130.14	192.32
900- 9	999 4.	.69 55.50	5 125.20	185.45
1,000- 1,4	499 6.	.26 51.54	4 125.99	183.70
1,500- 1,9	999 5.	.19 50.03	3 123.66	178.88
2,000- 2,9	999 5.	.74 52.88	3 140.05	198.67
3,000- 3,9	999 5	.78 51.40	145.60	202.78
4,000- 4,9	999 4	.74 48.72	2 143.61	197.08
5,000- 5,9	999 5	.43 47.04	4 141.20	193.67
6,000- 6,9	999 4	.64 48.3	L 152.22	205.17
7,000- 7,9	999 4	.13 43.70	5 129.35	177.24
8,000- 8,9	999 3	.88 36.1	9 108.58	148.65
9,000- 9.9	999 5	.63 35.4	102.74	143.77
10,000-14,	999 3	.74 24.5	6 78.98	107.27
15,000-19,	999 3	.34 40.7	7 117.29	161.40
20,000-29,	999 2	.50 27.5	5 92.41	122.47
30,000 +	. •	-	-	-
All Clas	ses 5	.33 47.7	2 127.33	180.38

Rural Accident Rates, by Accident Severity and Annual Average Daily Traffic, Texas, 1969 (accidents per 100 million vehicle miles)

types, the effects of disaggregating the data yielded specious results. This is due primarily to the spareseness of data afforded by only a single year's accident experience. Further efforts at more finely cross-classified data could best be made by utilizing accident rate data for a mutli-year (perhaps five) period.

Finally, a thorough study of accident rates probably should incorporate some of the refinements made by Kihlberg and Tharp in Phase II of their work. At a minimum this would include an analytical schema which eliminated the effect upon accident rates caused by variation in the lengths of highway segments.

Appendix A

An analysis of variance was conducted for four involvement situations to test the hypothesis that no significant difference exists among mean involvement costs for similar involvements occurring in four different states. The involvements selected for testing were:

A. Single - Vehicle, pedestrian, fatal

B. Multi - Vehicle, head-on, injury

C. Multi - Vehicle, rear-end, injury

D. Multi - Vehicle, angle, property damage

The F - values were calculated using:

$$F = \frac{Vm}{Vc}$$
 where

 $V_m^{=}$ variance based on mean cost of involvement in each state. $V_c^{=}$ variance based on variance of mean cost of involvement in each state. The resulting F values were compared to the 5% critical value of F (for the relevant degrees of freedom) and the results are presented below:

Involvement	F-Value	5% F-Value	Accept/Reject Hypothesis
A	1.688	2.605	Accept
В	.642	2.605	Accept
С	1.685	2.605	Accept
D	.510	2.605	Accept

On the basis of these results, it was concluded that the data from the four states were sufficiently similar that they could be combined into a single data-system. Budgetary limitations prevented the analysis from being extended to examine each involvement situation. For each involvement situation cost,

the mean cost and standard error of the mean were estimated. The standard error was calculated using: $\frac{SD}{\sqrt{N}}$, where S.D.= standard deviation of sample

N= size of sample.

		STATE		
Severity	Illinois	Massachusetts	New Mexico	Utah
Fatal	1:4.7	1:1	1:1	1:1
Injury	1:54.4	1:30	1:2	1:4
P.D.O.	1:260.2	-	1:11	1:19
Non-reported	1:1981.4	1:181	1:54	1:40

Appendix B Sampling: Population Ratios for Data-States

Appendix	С	
----------	---	--

Price Indices¹ Used to Adjust Cost Data

Year	Consumer Price Index	Meidcal Cost Index
1950	83.8	-
1953	93.2	83.9
1954	93.6	86.6
1955	93.3	88.6
1956	94.7	91.8
1957	98.0	95.5
1958	100.7	100.1
1968	121.2	145.2
1969	127.7	155.0

¹ U. S. Congress, <u>Economic Report of the President-1970</u>, (Washington:Government Printing Office), 1970, Table C-45, p. 229.

Appendix D

This appendix presents, in tabular form, involvement frequencies for Texas. These data are compiled from the 1969 Texas accident data tape supplied by The Texas Highway Department for use in this study.

In conjunction with the data in Appendix E, these involvement data have been used to determine the weights to be used in deriving average accident cost estimates.

			Severity	
Accident Type	Fatal	Injury	P.D.O.	All Severities
Multi-Vehicle				
Head-On	731	4,802	16,170	21,703
Rear-End	160	23,975	119,911	144,046
Angle	612	31,782	129,351	161,745
Sideswipe	41	2,131	29,504	31,676
Turning	246	11,759	66,034	78,039
Parking	2	349	11,567	11,918
Other	32	2,855	28,506	31,393
Single-Vehicle				
Pedestrian	338	3,989	-	4,327
Train	65	273	410	748
Bicycle	27	1,035	31	1,093
Animal	9	417	4,229	4,655
Fixed-Object	431	8,543	21,492	30,466
Other Object	8	241	1,074	1,323
Non-Collision	421	7,166	13,468	21,055
Total	3,123	99,317	441,747	544,187

Reported Involvements, Passenger Cars, By Accident Type and Severity, Texas, 1969

Table D-1

	Severity					
Accident Type	Fatal	Injury	P.D.O.	All Severities		
Multi-Vehicle			·			
Head-On	498	1,639	3,012	5,149		
Rear-End	86	2,445	7,003	9,534		
Angle	180	2,281	5,661	8,122		
Sideswipe	25	312	1,857	2,194		
Turning	121	1,838	5,744	7,703		
Parking	-	2	35	37		
Other	10	133	614	757		
Single-Vehicle						
Pedestrian	82	199	-	281		
Train	22	40	58	120		
Bicycle	7	47	3	57		
Animal	8	309	3,601	3,918		
Fixed-Object	172	1,800	4,602	6,574		
Other Object	8	75	242	325		
Non-Collision	322	4,056	6,783	11,161		
Total	1,541	15,176	39,215	55,932		

Reported Involvements, Passenger Cars, by Accident Type and Severity, Rural, Texas, 1969

Table D-2

		S	everity	
Accident Type	Fatal	Injury	P.D.O.	All Severities
Multi-Vehicle				
Head-On	233	3,163	13,158	16,554
Rear-End	74	21,530	112,908	134,512
Angle	432	29,501	123,690	153,623
Sideswipe	16	1,819	27,647	29,482
Turning	125	9,921	60,290	70,336
Parking	2	347	11,532	11,881
Other	22	2,722	27,892	30,636
Single-Vehicle				
Pedestrian	256	3,790	-	4,046
Train	43	233	352	628
Bicycle	20	988	28	1,036
Animal	1	108	628	737
Fixed-Object	259	6,743	16,890	23,892
Other Object	0	166	832	998
Non-Collision	99	3,110	6,685	9,894
Total	1,582	84,141	402,532	488,255

Reported Involvements, Passenger Cars, by Accident Type and Severity, Urban, Texas, 1969

Table D-3

Road		S	Severity	······································
Characteristic	Fatal	Injury	P.D.O.	All Severities
Intersection	883	52,173	227,327	280,383
Straight	1,680	39,843	194,878	236,401
Curve	415	6,136	17,561	24,112
Bridge	71	742	1,313	2,126
Railroad	66	305	449	820
Underpass	8	92	115	215
Interchange	-	-		-
Tunnel	_	-	-	-
Total	3,123	99,291	441,643	544,057

Reported Involvements, Passenger Cars, by Road Characteristics and Severity, Texas, 1969

Ť	ab	1	е	D-	5
-	~~~		~	~	-

Reported Involvements at Intersections Passenger Cars, by Type of Traffic Control and Severity, Texas, 1969

		S	everity	
Type of Control	Fatal	Injury	P.D.O.	All Severities
Stop-Go Light	161	18,434	83,622	102,217
Officer	7	314	1,238	1,559
Flashing Light	23	747	1,901	2,671
Stop Sign	345	15,967	64,147	80,459
Yield Sign	61	2,572	11,887	14,520
Warning Sign	64	727	2,022	2,813
Other & No Control	222	13,412	62,510	76,144
Total	883	52,173	227,327	280,383

	Severity					
Accident Type	Fatal	Injury	P.D.O.	All Severities		
Multi-Vehicle						
Head-On	145	915	3,711	4,771		
Rear-End	74	·3 , 470	15,968	19,512		
Angle	141	4,539	18,698	23,378		
Sideswipe	5	408	6,039	6,452		
Turning	57	1,946	11,516	13,519		
Parking	-	49	1,719	1,768		
Other	. 7	306	5,171	5,484		
Single-Vehicle						
Pedestrian	55	558	-	613		
Train	18	46	96	160		
Bicycle	5	151	4	160		
Animal	4	82	913	9 99		
Fixed-Object	75	1,058	2,598	3,731		
Other Object	-	34	165	199		
Non-Collision	107	1,689	2,631	4,427		
Total	693	15,251	69,229	85,173		

Reported Involvements, Single-Unit Trucks, by Accident Type and Severity, Texas, 1969

بي

Reported Involvements, Single-Unit Trucks, by Accident Type and Severity, Rural, Texas, 1969

		,	•	
Accident Type	Fatal	Injury	Severity P.D.O.	All Severities
Multi-Vehicle				
Head-On	106	447	991	1,544
Rear End	48	, 565	1,439	2,052
Angle	59	673	1,592	2,324
Sideswipe	4	71	499	574
Turning	.32	546	1,917	2,495
Parking			10	10
Other	3	23	193	219
Single-Vehicle			•	
Pedestrian	10	46		56
Train	8	13	16	37
Bicycle	3	11	-	14
Animal	3	72	790	865
Fixed-Object	42	370	728	1,140
Other Object	-	18	42	60
Non-Collision	87	1,120	1,646	2,853
Total	405	3,975	9,863	14,243

	• •						
Accident Type	Fatal	Injury	Severity P.D.O.	All Severities			
Multi-Vehicle							
Head							
Head-On	39	468	2,720	3,227			
Rear-End	26	2,905	14,529	17,460			
Angle	82	3,866	17,106	21,054			
Sideswipe	1	337	5,540	5,878			
Turning	25	1,400	9,599	11,024			
Parking		49	1,709	1,758			
Other	4	, 283	4,978	5,265			
Single-Vehicle							
Pedestrian	45	512	-	557			
Train	10	33	80	123			
Bicycle	2	140	4	146			
Animal	1	10	123	134			
Fixed-Object	3 3	688	1,870	2,591			
Other Object	_	16	123	139			
Non-Collision	20	569	985	1,574			
Total	288	11,276	59,366	70,930			

Reported Involvements, Single-Unit Trucks, By Accident Type and Severity, Urban, Texas, 1969

Reported Involvements, Single-Unit Truck, by Road Characteristics and Severity, Texas, 1969

		Se	everity	
Road Characteristic	- Fatal	Injury	P.D.O.	All Severities
Intersection	211	7,341	32,791	40,343
Straight	366	6,594	33,114	40,074
Curve	76	1,097	2,942	4,115
Bridge	21	144	211	376
Railroad	19	49	111	179
Underpass	_	24	37	61
Interchange	_	-	-	-
Tunnel	-	-	-	. <u>-</u>
Total	693	15 , 249	69,206	85,148

Table D-10	Tab1	е	D-10	
------------	------	---	------	--

		·		
	·		Severity	
Type of Control	Fatal	Injury	P.D.O.	All Severities
Stop-Go Light	33	2,352	11,490	13,875
Officer	6	56	255	317
Flashing Light	6	105	314	425
Stop Sign	89	2,219	8,732	11,040
Yield Sign	12	384	1,617	2,013
Warning	17	140	361	518
Other & No Control	48	2,085	10,022	12,155
Total	211	7,341	32,791	40,343

L

Reported Involvements at Intersections, Single-Unit Trucks Type of Traffic Control and Severity, Texas, 1969

Reported	Involvements,	Truck	Combinations,	by	Accident
	Type and S	everity	, Texas, 1969		

	Severity						
Accident Type	Fatal	Injury	P.D.O.	All Severities			
Multi-Vehicle							
Head-On	94	195	618	907			
Rear-End	47	614	1,860	2,521			
Angle	65	429	1,188	1,682			
Sideswipe	8	159	1,358	1,525			
Turning	26	296	1,620	1,942			
Parking		2	47	49			
Other	3	24	622	649			
Single-Vehicle							
Pedestrian	10	24	- .	34			
Train	3	13	51	. 67			
Bicycle	_	2	-	2			
Animal	3	13	256	272			
Fixed-Object	15	200	1,040	1,255			
Other Object	1	6	53	60			
Ň							
Non-Collision	33	351	1,172	1,556			
Total	308	2,328	9, 885	12,521			

			Séverity	
Accident Type	Fatal.	Injury	P.D.O.	All Severities
Multi-Vehicle				
Head-On	76	142	225	443
Rear-End	30	226	363	619
Angle	24	108	187	319
Sideswipe	6	55	235	296
Turning	14	104	303	421
Parking	-	· -	2	2
Other	1	7	46	54
SingleVehicle				
Pedestrian	5	5	. _	10
Train	3	4	10	17
Bicycle		-	-	- -
Animal	3	11	217	231
Fixed-Object	8	110	307	425
Other Object	1	4	30	35
Non-Collision	25	268	775	1,068
Total	196	1,044	2,700	3,940

Reported Involvements, Truck Combinations, by Accident Type and Severity, Rural, Texas, 1969

•			•	
Accident Type	·Fatal	S [.] S. S. S	everity P.D.O.	All Severities
Multi-Vehicle:				
Head-On	18	53	393	464
Rear End	17	388	1,497	1,902
Angle	41	321	1,001	1,363
Sideswipe	2	104	1,123	1,229
Turning	12	192	1,317	1,521
Parking	-	, 2	45	47
Other	2	17	576	595
Single-Vehicle:				
Pedestrian	5	19	-	24
Train	-	9	41	50
Bicycle	-	2	-	2
Animal	-	2	39	41
Fixed Object	7	90	733	- 830
Other Object	-	2	23	25
Non-Collision	8	83	397	488
Total	112	1,284	7,185	8,581

•Report Involvements, Combination Truck, by Accident Type and Severity, Urban, Texas, 1969

Table D-13

Reported Involvements, Truck Combination, by Road Characteristics and Severity, Texas, 1969

		Ser	verity	
Road Characteristics	Fatal	Injury	P.D.O.	All Severities
Intersection	77	817	3,804	4,698
Straight	186	1,212	5,083	6,481
Curve	35	237	782	1,054
Bridge	7	36	72	115
Railroad	3	14	53	70
Underpass	-	12	85	97
Interchange	-	· · -	-	-
Tunnel	-	-	-	
Total	308	2,328	9,879	12,515

			Severity	
Type of Control	Fatal	Injury	P.D.O.	All Severities
Stop-Go Light	10	299	1,609	1,918
Officer	3	18	60	81
Flashing Light	5	27	47	79
Stop Sign	31	199	687	917
Yield Sign	8	39	158	205
Warning Sign	4.	37	131	172
Other & No Control	16	198	1,112	1,326
Total	77	817	3,804	4,698

Table D-15

Reported Involvements at Intersections, Truck Combination, by Type of Traffic Control and Severity, Texas, 1969

Appendix E

This appendix presents, in tabular form, accident frequency data for Texas. The data are compiled from the 1969 Texas accident data tape supplied by The Texas Highway Department for use in this study.

In conjunction with the data in Appendix D, these accident data have been used to determine the weights to be used in deriving average accident cost estimates.

Accident			Vehicle Typ	e Combination	<u></u>	······································	
Туре	Car Only	Car-Truck	Truck Only	Car-Other	Truck-Other	Other	Total
Multi-Vehicle							
Head On	258	176	29	10	3	_	476
Rear End	41	64	25	6	7		143
Angle	218	154	21	15	7		415
Sideswipe	16	7	2		-	-	25
Turning	86	57	10	15	6	_	174
Parking	1	-		-		_	1
Other	32		10	-	-	2	44
Sub-Total	652	458	97	46	23	2	1,278
Single-Vehicle							
Pedestrian	333	-	64	-	-	9	406
Train	65	-	21		-	_	86
Bicycle	27	-	5		— 1	-	32
Animal	8	-	7		-	_	15
Fixed Object	401	-	89	-	-	13	503
Other Object	3	-	1	-	-	1	5
Non-Collision	412	-	139	-	_	19	570
ALL	1,901	458	423	46	23	44	2,895

Reported Fatal Accidents by Accident Type, Vehicle Type Combination, Texas, 1969

Table E-1

Accident			Vehicle Type	Combinations			
Туре	Car Only	Car-Truck	Truck Only	Car-Other	Truck-Other	Other	Total
Multi-Vehicle							
Head On	171	132	24	6	2	-	335
Rear End	20	38	18	5	4	_	85
Angle	55	67	7	2	2	-	133
Sideswipe	9	6	1	-	-	-	16
Turning	41	29	7	8	3		88
Parking	-	-	— 1. 1	-	-	-	-
Other	10	-	4	-	-	_	14
Sub-Total	306	272	61	21	11	-	671
Single-Vehicle							
Pedestrian	81		15	-	-	2	98
Train	22	-	11	-	-	-	33
Bicycle	7		3	-	-	-	10
Animal	7	-	6		-		13
Fixed Object	159		49	-	_	5	213
Other Object	3	-	1	-		1	5
Non-Collision	316	-	111	-	-	15	442
ALL	901	272	257	21	11	23	1,485

Reported Fatal Accidents by Accident Type and Vehicle Type Combinations, Rural, Texas, 1969

Reported Fatal Accidents By Accident Type and Vehicle Type Combination, Urban, Texas, 1969

Accident	Vehicle Type Combinations								
Туре	Car Only	Car-Truck	Truck Only	Car-Other	Truck-Other	<u>Other</u>	Total		
Multi-Vehicle									
Head On	87	44	5	4	1		141		
Rear End	21	26	7	1	3	_	58		
Angle	163	87	14	13	5		282		
Sideswipe	7	1	1	-		-	9		
Turning	45	28	3	7	3	_	86		
Parking	1	_	-	_	_	-	1		
Other	22		6	_	_	2	30		
Sub-Total	346	186	36	25	12	2	607		
Single-Vehicle									
Pedestrian	252		49	-	· _	7	308		
Train	43		10	-	-	_	53		
Bicycle	20	_	2	-	_		22		
Animal	1	-	1	_	-		2		
Fixed Object	242	-	40	-	-	8	290		
Other Object	-	-	-	-	-	-	-		
Non-Collision	96	-	28	· •••	-	4	128		
ALL	1,000	186	166	25	12	21	1,410		

Table E-4	
-----------	--

Accident	Vehicle Type Combinations								
Туре	Car Only	Car-Truck	Truck Only	Car-Other	Truck-Other	Other	Total		
Multi-Vehicle									
Head On	1,923	799	141	86	21	4	2,974		
Rear End	9,879	3,140	411	367	73	30	13,900		
Angle	13,257	3,974	405	1,085	166	10	18,897		
Sideswipe	784	426	56	86	22	13	1,387		
Turning	4,574	1,666	211	891	140	24	7,515		
Parking	143	36	7	28	1	-	215		
Other	2,683	38	282	15	3	91	3,112		
Sub-Total	33,243	10,079	1,513	2,558	435	172	48,000		
Single-Vehicle									
Pedestrian	3,986	-	582	-	_	98	4,666		
Train	272	-	59	-	-	3	334		
Bicycle	1,035	-	153	-	-	32	1,220		
Animal	406		95	-	-	38	539		
Fixed Object	8,364	-	1,250	-	-	315	9,929		
Other Ojbect	321	-	40		-	14	285		
Non-Collision	7,130	-	2,038	_	-	633	9,801		
ALL	54,667	10,079	5,730	2,558	435	1,314	74,774		

Reported Injury Accidents by Accident Type, Vehicle Type Combinations, Texas, 1969

Accident			Vehicle Type C	ombinations			
Туре	Car Only	Car-Truck	Truck Only	Car-Other	Truck-Other	Other	Total
Multi-Vehicle							
Head On	606	379	100	28	8 ·	1	1,122
Rear End	917	506	130	42	16	5	1,616
Angle	825	548	105	61	20	2	1,561
Sideswipe	103	90	14	6	7	_	220
Turning	643	457	89	77	14	5	1,285
Parking	1		-	-	-		1
Other	129	-	29		-	2	160
Sub-Total	3,224	1,980	467	214	65	15	5,965
Single-Vehicle							
Pedestrian	199	-	51	-	-	1	251
Train	40	-	17			_	57
Bicycle	47	-	11		-	3	61
Animal	299		83			15	397
Fixed Object	1,767	-	475		-	42	2,284
Other Object	72	-	22	_	-	9	103
Non-Collision	4,034		1,387	-	-	158	5,579
ALL	9,682	1,980	2,513	214	65	243	14,697

Reported Injury Accidents by Accident Type, Vehicle Type Combinations, Rural, Texas, 1969

Table E-5

Accident			Vehicle Type C	ombination			
Туре	Car Only	Car-Truck	Truck Only	Car-Other	Truck-Other	Other	Total
Mulit-Vehicle							
Head On	1,317	420	41	58	13	3	1,852
Rear End	8,962	2,634	281	325	57	25	12,284
Angle	12,432	3,426	300	1,024	146	8	17,336
Sideswipe	681	336	42	80	15	13	1,167
Turning	3,931	1,209	122	814	135	19	6,230
Parking	142	36	7	28	1	-	214
Other	2,554	38	253	15	3	89	2,952
Sub-Total	30,019	8,099	1,046	2,344	370	157	42,035
Single Vehicle							
Pedestrian	3,787	-	531	-	-	97	4,415
Train	232	-	42	_	-	3	277
Bicycle	988	-	142		-	29	1,159
Animal	107	_	12			23	142
Fixed Object	6,597	-	775	-		273	7,645
Other Object	159	-	18	-	-	5	182
Non-Collision	3,096	-	651	-		475	4,222
ALL	44,985	8,099	3,217	2,344	370	1,062	60,077

Reported Injury Accidents by Accident Type, Vehicle Type, Combinations, Urban, Texas, 1969

Accident			Vehicle Type	Combinations			
Туре	Car Only	Car-Truck	Truck Only	Car-Other	Truck-Other	Other	Total
Multi-Vehicle							
Head On	6,451	3,326	498	162	34	-	10,471
Rear End	52,755	14,479	1,660	641	97	21	69,653
Angle	56,361	16,249	1,781	916	117	7	75,431
Sideswipe	11,768	6,041	677	256	49	5	18,796
Turning	27,490	10,548	1,258	745	104	9	40,154
Parking	4,995	1,553	102	64	13	-	6,727
Other	25,054	965	4,725	45	8	221	30,988
Sub-Total	184,844	53,161	10,701	2,829	422	263	252,220
Single-Vehicle							
Pedestrian	-	-		-	 ·	-	-
Train	407	-	147	-	-	4	558
Bicycle	31	-	4	-	_	1	36
Animal	4,219		1,169	-	-	20	5,408
Fixed Object	21,461	-	3,363	-	-	102	25,200
Other Object	1,073	-	218	-	. —	10	1,301
Non-Collision	13,440	-	3,801	_ *	-	123	17 , 364
ALL	225,475	53,161	19,677	2,289	422	523	302,087

Reported Property Damage Accidents by Accident Type, Vehicle Type Combinations, Texas, 1969

Accident				e Combination			
Туре	Car Only	Car-Truck	Truck Only	Car-Other	Truck-Other	Other	Total
Multi-Vehicle:							
Head On	1,107	801	204	35	14	-	2,161
Rear End	2,855	1,281	255	57	17	3	4,468
Angle	2,186	1,230	268	68	16	-	3,768
Sideswipe	660	544	93	20	8	-	1,325
Turning	2,070	1,553	326	58	15	-	4,022
Parking	12	10	1	1	-	-	24
Other	538	26	206	2	-	7	779
Sub-Total	9,428	5,445	1,353	241	70	10	16,547
Single-Vehicle:							
Pedestrian	-	-	-	-	-	-	-
Train	55	-	26	-	-	1	82
Bicycle	3	-	-	-	-	-	3
Animal	3,591	-	1,007	-	-	14	4,612
Fixed Object	4,579	-	1,035	-	-	12	5,626
Other Object	242	-	72	-	-	2	316
Non-Collision:	6,763	-	2,420	yes 📷	-	28	9,211
ALL	24,661	5,445	5,913	241	70	67	36,397

Reported Property Damage Accidents by Accident Type and Vehicle Type Combinations, Rural, Texas, 1969

Table E-8

Accident			Vehicle Typ	e Combination	S		
Туре	Car Only	Car-Truck	Truck Only	Car-Other	Truck-Other	Other	Total
Multi-Vehicle:							
Head - On	5,344	2,525	294	127	20		8,310
Rear End	49,900	13,198	1,405	584	80	18	65,185
Angle	54,175	15,019	1,513	848	101	7	71,663
Sideswipe	11,108	5,497	584	236	41	5	17,471
Turning	25,420	8,995	932	687	89	9	36,132
Parking	4,983	1,543	101	63	13	 •	6,703
Other	24,486	939	4,519	43	8	214	30,209
Sub-Total	175,416	47,716	9,348	2,348	352	253	235,673
Single-Vehicle:							
Pedestrian	-	-	-	-	-	-	-
Train	352		121	-	-	3	476
Bicycle	28	-	4	-	-	1	33
Animal	628	-	162	-	-	6	796
Fixed-Object	16,882	-	2,602	-	-	90	19,574
Other-Object	831	-	146	. –	-	8	985
Non-Collision	6,677	-	1,381	-	-	95	8,153
ALL	200,814	47,716	13,764	2,588	352	456	265,690

Reported Property Damage Accidents by Accident Type, Vehicle Type Combinations, Urban, Texas, 1969

Accident			Vehicle Ty	pe Combinatio	ns		
Туре	Car Only	Car-Truck	Truck Only	Car-Other	Truck-Other	Other	Total
Multi-Vehicle:							
Head On	8,632	4,301	668	258	58	4	13,921
Rear End	62,675	17,683	2,096	1,014	177	51	83,696
Angle	69,836	20,377	2,207	2,016	290	17	94,743
Sideswipe	12,568	6,474	735	342	71	18	20, 208
Turning	32,150	12,271	1,479	1,651	259	33	47,843
Parking	5,139	1,589	109	92	14	4 4	6,943
Other	27,739	1,003	5,017	60	11	314	34,144
All Multi-Vehicle	218,739	63,698	12,311	5,433	880	437	301,498
Single-Vehicle							
Pedestrian	4,319	-	646	-	-	116	5,081
Train	744		227	-	-	7	978
Bicycle	1,093	-	162	-	-	33	1,288
Animal	4,633	-	1,271	-	-	58	5,962
Fixed-Object	30,226	_	4,976	-		430	35,632
Other-Object	1,307	-	259	-	-	25	1,591
Non-Collision	20,982	-	5,978	-	-	775	27,735
ALL	282,043	63,701	25,827	5,433	880	1,881	379,765

Reported Accidents, ALL severities, by Accident Type, Vehicle Type Combination, Texas, 1969

Accident			Vehicle Typ	e Combination	Ļ		
Туре	Car Only	Car-Truck	Truck Only	Car-Other	Truck-Other	Other	Total
Multi-Vehicle:							
Head On	1,884	1,312	328	69	24	1	3,618
Rear End	3,792	1,825	403	104	37	8	6,169
Angle	3,066	1,845	380	131	38	2	5,462
Sideswipe	772	640	108	26	15	-	1,561
Turning	2,754	2,039	422	143	3 2	5	5,395
Parking	13	10	1	1	-	-	25
Other	677	26	239	2	-	9	953
All Multi-Vehicle	12,958	7,697	1,881	476	146	25	23,183
Single-Vehicle:			x				
Pedestrian	280	-	66	-	-	12	358
Train	117	-	54	-	-	1	172
Bicycle	57	-	14	-	-	3	74
Animal	3,897	-	1,096	-	-	29	5,022
Fixed-Object	6,505	-	1,559	-	-	59	8,123
Other-Object	317	-	95	-	-	12	424
Non-Collision	11,113	-	3,918		-	201	15,232
ALL	35,244	7,697	8,683	146	146	342	52,588

Reported Accidents, All Severities, by Accident Type, Vehicle Type Combination, Rural, Texas, 1969

Accident	<u> </u>		Vehicle Tv	pe Combinatio	'n	····	
Туре	Car Only	Car-Truck	Truck Only	Car Other	Truck Other	Other	Total
Multi-Vehicle:							
Head-On	6,748	2,989	340	189	34	3	10,303
Rear End	58,883	15,858	1,693	910	140	43	77,527
Angle	66,770	18,532	1,827	1,885	252	15	89,281
Sideswipe	11,796	5,834	627	316	56	18	18,647
Turning	29,396	10,232	1,057	1,508	227	28	42,448
Parking	5,126	1,579	108	91	14	-	6,918
Other	27,062	977	4,778	58	11	305	33,191
All Multi-Vehicle	205,781	56,001	10,430	4,957	734	412	278,315
Single-Vehicle:							
Pedestrian	4,039	-	578	-	-	104	4,723
Train	627	-	173	-	-	6	806
Bicycle	1,036	-	148	-		30	1,214
Animal	736	-	175	-	-	29	940
Fixed Object	23,721	-	3,417	-	-	371	27,509
Other Object	990	-	164	-	-	13	1,167
Non-Collision	9,869	-	2,060	-	. –	574	12,503
ALL	246,799	56,001	17,147	4,957	734	1,539	327,177

Reported Accidents, All Severities, by Accident Type, Vehicle Type Combination, Urban, Texas,1969

REFERENCES

- Billingsley, C. M. and Jorgenson, D. P. "Direct Costs and Frequencies of 1958 Illinois Motor-Vehicle Accidents," <u>Highway Economics</u>, Highway Research Record No. 12, Washington: Highway Research Board, 1963.
- Blindauer, H. H., and Michael, H. L. "An Analysis of High Accident Rates," <u>Traffic</u> <u>Safety</u>, December, 1959.
- Bowman, Mary Jean. "Principles in the Valuation of Human Capital," <u>Review of Income and Wealth</u>, September, 1968.
- Conard, Alfred F., <u>et al</u>. <u>Automobile Accident Costs and Payments</u>. Ann Arbor: University of Michigan Press, 1964.
- Dawson, R. F. F. <u>Cost of Road Accidents in Great Britain</u>. Crowthorne: Road Research Laboratory, 1967.
- Drake, Gerald L., and Kraft, Merwyn A. "Motor Vehicle Accident Costs in the Washington Metropolitan Area," <u>Highway Research Record</u> No. 188, Washington: Highway Research Board, 1967.
- Dunman, Robie. "Economic Cost of Traffic Accidents in Relation to the Human Element," <u>Economic Costs of Traffic Accidents</u>, Bulletin 263, Washington: Highway Research Board, 1960.
- Dunman, Robie. "Economic Costs of Motor Vehicle Accidents," <u>Traffic</u> <u>Accident Studies</u> - <u>1958</u>, Bulletin 208, Washington: Highway Research Board, 1959.
- Feldt, Kjell-Olof. "The Cost of Road Accidents in Sweden," <u>International</u> <u>Road Traffic Safety Review</u>, VII, No. 3, 1959.
- Fisher, Irving. The Making of Index Numbers. New York: Augustus M. Kelley, 1967.
- Hoel, Paul G. <u>Elementary Statistics</u>. New Mork: John Wiley and Sons, Inc., 1966.
- Holmes, R. A. "On the Economic Welfare of Victims of Automobile Accidents," <u>American Economic Review</u>, LX, No. 2, 1970.
- Illinois Department of Public Works and Buildings, Division of Highways. <u>Cost of Motor Vehicle Accidents to Illinois Motorists</u>, <u>1958</u>. Springfield: Illinois Division of Highways, 1962.
- Johnston, J. Edward. "Economic Cost of Traffic Accidents in Relation to Highway Planning," <u>Economic Costs of Traffic Accidents</u>, Bulletin 263, Washington: Highway Research Board, 1960.

- Jones-Lee, Michael. "Valuation of Reduction in Probability of Death by Road Accident," Journal of Transport Economics and Policy, III, No. 1, 1969.
- Kane, Edward J. <u>Economic Statistics and Econometrics</u>. New York: Harper and Row, Publishers, 1968.
- Kihlberg, J. K. and Tharp, K. J. <u>Accident Rates as Related to Design</u> <u>Elements of Rural Highways</u>. NCHRP Report No. 47, Washington: Highway Research Board, 1968.
- Matteson, James H.; Hall, Jerome W.; and Sawhill, Roy B. <u>Accident</u> <u>Rates and Costs on Urban Arterials and Freeways</u>. Research Report No. 14B, Seattle: University of Washington, 1970.
- New Mexico State Highway Department. <u>The Economic Costs of Motor-</u> <u>Vehicle Accidents.</u> Santa Fe: New Mexico State Highway Department, N.D.
- Ohio Department of Highways. <u>The Analysis of Motor Vehicle Accident</u> <u>Costs in the State of Ohio</u>. Columbus, Ohio: The Ohio State University, 1970.
- Reynolds, D. J. "The Cost of Road Accidents," <u>Journal of the Royal</u> <u>Statistical Society</u>, CXIX, No. 4, 1956.
- Rice, Dorothy P., and Cooper, Baxbara S. "The Economic Value of Human Life," American Journal of Public Health, LVII, 1967.
- Smith, Richard N. and Tamburri. <u>Direct Costs of California State</u> <u>Highway Accidents</u>. Sacramento: California Division of Highways, 1967.
- Smith, Wilbur and Associates. <u>Motor Vehicle Accident Costs:</u> <u>Washington Metropolitan Area</u>. Washington: Wilbur Smith and Associates, 1966.
- Texas Department of Public Safety. <u>Motor Vehicle Traffic Accidents</u> <u>1969</u>. Austin: Texas Department of Public Safety, 1970.
- U. S. Congress. <u>Economic Report of the President 1970</u>. Washington: Government Printing Office, 1970.
- U. S. Department of Commerce. <u>A Proposed Study for the Determination</u> of the <u>Cost of Motor Vehicle Accidents</u>. Washington: Bureau of Public Roads, 1949.
- U. S. Department of Transportation. <u>Economic Consequences of Automobile</u> <u>Accident Injuries</u>. Washington: Government Printing Office, 1970.

Utah State Department of Highways. <u>Economic Cost of Motor Vehicle</u> <u>Accidents</u>. Salt Lake City: Utah State Department of Highways, N.D.

Weisbrod, Burton A. "The Valuation of Human Capital," <u>Journal of Political</u> <u>Economy</u>, LXIX, No. 5, 1961.

Weisbrod, Burton A. <u>Economics of Public Health</u>. Philadelphia: University of Pennsylvania Press, 1961.