1. Report No .	2. Government Accession No.	3. Recipient's Cotolog No .
4. Title and Subtitle ELASTIC MODULI DETERMINATION FOR SIMPLE TWO-LAYER PAVEMENT STRUCTURES BASED ON SURFACE DEFLECTIONS		5. Report Date August, 1973
		6. Performing Orgonization Code
7. Author's) William M. Moore		8. Performing Organization Report No. Research Report No. 136-5
9. Performing Organization Name and Address Texas Transportation Institute Texas A\&M University College Station, Texas 77843		10. Work Unit No.
		11. Contract or Grant No. Research Study 2-8-69-136
12. Sponsoring Agency Name and Address Texas Highway Department 11th \& Brazos Austin, Texas 78701		$\begin{gathered} \text { Interim - September 1, } 1968 \\ \text { August, } 1973 \end{gathered}$
		14. Sponsoring Agency Code
15. Supplomentary Notes Research performied in cooperation with DOT, FHWA. Research Study Title: Design and Evaluation of Flexible Pavements.		

16. Abstract

This report gives the theoretical background and a description of a new computer program, which is capable of converting routine Dynaflect deflection measurements obtained on the surface of a two-layer highway pavement system, to give the elastic moduli of the pavement and subgrade layers.

A description of the program and several solutions to example problems are included with the report. The program has been designed to operate at less cost and to eliminate fitting problems encountered in similar existing programs.

17. Koy Words Deflection, Pavement Elastic Modulus, Nontesting.		18. Distribution Statement	
19. Security Classif. (of this roport) Unclassified	20. Security Classif. (of this poge) Unclassified	21. No. of Pages 74	22. Price

Form DOT F 1700.7 (8.69)

ELASTIC MODULI DETERMINATION
for
SIMPLE TWO-LAYER PAVEMENT STRUCTURES
BASED ON SURFACE DEFLECTIONS
by
William M. Moore

Research Report Number 136-5
Design and Evaluation of Flexible Pavements
Research Study 2-8-69-136

Sponsored by

The Texas Highway Department In Cooperation with the
U. S. Department of Transportation Federal Highway Administration

August, 1973

TEXAS TRANSPORTATION INSTITUTE
Texas A\&M University
College Station, Texas

Preface

This is the fifth report issued under Research Study 2-8-69-136, "Design and Evaluation of Flexible Pavements," being conducted at the Texas Transportation Institute as part of the cooperative research program with the Texas Highway Department and the Department of Transportation, Federal Highway Administration.

Previous reports from this study are as follows:
(1) "Seasonal Variations of Pavement Deflections in Texas," by Rudell Poehl and Frank H. Scrivner, Research Report 136-1, Texas Transportation Institute, January, 1971.
(2) "A Technique for Measuring the Displacement Vector throughout the Body of a Pavement Structure Subjected to Cyclic Loading," by William M. Moore and Gilbert Swift, Research Report 136-2, Texas Transportation Institute, August, 1971.
(3) "A Graphical Technique for Determining the Elastic Moduli of a Two-Layered Structure from Measured Surface Deflections," by Gilbert Swift, Research Report 136-3, Texas Transportation Institute, November, 1972.
(4) "An Empirical Equation for Calculating Deflections on the Surface of a Two-Layered Elastic System," by Gilbert Swift, Research Report 136-4, Texas Transportation Institute, November, 1972.

The author wishes to thank the many members of the Institute who contributed to this research. Special appreciation is expressed to Mr. Gerald Turman, who wrote the computer program and description in Appendix A, Mr. Danny Y. Lu, who wrote Subroutine FIBO, and Messrs. F. H. Scrivner, Gilbert Swift and C. H. Michalak who provided valuable advice and assistance in many phases of the research.

The support given by the Texas Highway Department is also appreciated, particularly that of Messrs. James L. Brown and L. J. Buttler who suggested the subject of this report.

The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification or regulation.

Abstract

This report gives the theoretical background and a description of a new computer program, which is capable of converting routine Dynaflect deflection measurements obtained on the surface of a two-layer highway pavement system, to give the elastic moduli of the pavement and subgrade layers.

A description of the program and several solutions to example problems are included with the report. The program has been designed to operate at less cost and to eliminate fitting problems encountered in similar existing programs.

Key Words: Deflection, Pavement Evaluation, Elastic Modulus, Nondestructive testing.

A technique is described for determining the elastic moduli for two-layer highway pavement structures from field deflection measurements. This technique is based upon the "best fit" of the entire measured deflection basin; therefore, the moduli are believed to be more representative of in-situ material properties than those obtained by other existing techniques.

Through an illustrative example, it is shown that the five deflection measurements conventionally made with the Dynaflect are not sufficient to determine a unique set of elastic moduli for some typical highway pavement structures. It is also shown that this ambiguity can be eliminated by taking one additional deflection measurement closer to the load wheels.

A computer program designed to compute moduli from routine deflection measurements is given in Appendix A.

Implementation Statement

A new computer program has been written to permit rapid inexpensive calculation of the elastic moduli of two-layer pavement structures from routine field-measured pavement deflections. These in-situ elastic modulus values are significant for pavement evaluation purposes and are expected to be required in future pavement design systems.
It is recommended that an observation be added to routine field deflection measurements in order to eliminate ambiguities found in the evaluation of some typical highway pavements.

Table of Contents

Page

1. Introduction
2. Method of Approach 2
3. Example Solutions 8
4. Implication of Results 19
5. Conclusions and Recommendations 22
6. References 23
Appendix A 24
List of Figures
Figure
$1 \quad B_{1}$ versus RMSE for Typical Pavement having Alternate Sets of Elastic Moduli 7
2 Relative Position of Dynaflect Loads and Sensors
Page
List of Tables
Table
1 Two Cases for Predicting Deflections 5
2a-2g Computer Print-outs for Flexible Pavements 9-15
3 Comparison between Elastic Modulus I, Elastic Modulus II and the New Program on Flexible Pavements 16
4 Calculated Moduli for Rigid Pavements 17
5 Comparison between Elastic Modulus II and the New Program on Rigid Pavements 18

1. Introduction

This report presents a technique for determining the elastic modulus for each layer in a simple two-layered pavement structure. The thickness of the top layer is known (or measured) and the thickness of the lower layer is assumed to be infinite. The basic concept is to determine the set of values E_{1} and E_{2} (elastic modulus of pavement subgrade, respectively) which will best predict a measured surface deflection basin in accordance with layered elastic theory.

The technique is somewhat similar to that developed previously by Scrivner, Michalak and Moore (1,2), the chief differences being that the present technique is more rapid and uses the "best fit" of the entire measured deflection basin rather than two arbitrarily selected points of the basin. It is more rapid because it employs the simple empirical equation developed by Swift (3) instead of a conventional, rigorous, mathematical technique for two elastic layers like that developed by Scrivner, et al. The two techniques are similar in that they both assume a point load on a two-layer elastic pavement structure for which the thickness of the top layer is known. Both determine the elastic moduli for the two layers and assume that the layers have a Poisson's ratio of 0.5 .

2. Method of Approach

Deflection predictions are based upon the empirical equation given below which was developed by Swift (3).

$$
\begin{equation*}
\hat{w}=\frac{3 P}{4 \pi E_{1}}\left[\frac{1}{r}+\left(\frac{E_{1}}{E_{2}}-1\right)\left(\frac{1}{x}+\frac{a^{2}}{2 x^{3}}+\frac{3 a^{4}}{2 x^{5}}\right)\right] \tag{1}
\end{equation*}
$$

in which $x=\sqrt{r^{2}+a^{2}}$
$a=2 h \sqrt[3]{\frac{1}{3}\left(2+E_{1} / E_{2}\right)}$
and
$P=$ magnitude of point load
$r=$ horizontal distance from loading point
$h=$ thickness of upper layer
$E_{1}, E_{2}=$ elastic modulus of upper and lower layers respectively
$\hat{w}=$ predicted surface deflection at r
Swift found this equation to closely approximate surface deflections computed using rigorous elastic theory with a Poisson's ratio of 0.5. In this equation deflection is expressed as a function of the following five independent variables: P, r, h, E_{1}, and E_{2}. When deflections of a simple pavement structure of known thickness are measured with the Dynaflect, the first three independent variables are known and the last two are unknown. Thus, if one finds the set of values of E_{1} and E_{2} that best predicts the measured deflections, w_{1}, these values can be assumed to represent the elastic moduli for the two layers. The criterion selected for determination of the "best fit" is that the root mean square error, RMSE, be minimized, i.e., RMSE $=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(w_{i}-\hat{w}_{i}\right)^{2}} \quad$ is minimum value.

Equation 1 can be written in the following generalized form.

$$
\begin{equation*}
\hat{w}=B_{0} \cdot f\left(r, h, B_{1}\right)+\varepsilon \tag{2}
\end{equation*}
$$

where $B_{0}=\frac{3 P}{4 \pi E_{1}}$

$$
\begin{aligned}
& \mathrm{B}_{1}=\mathrm{E}_{1} / E_{2} \text { and } \\
& \varepsilon \text { is a prediction error }(\mathrm{w}-\hat{\mathrm{w}})
\end{aligned}
$$

The RMSE is minimized by use of the following step-by-step procedure.

1. A trial value of B_{1} is selected.
2. Five values of the function, f, are computed, one for each of the five standard values of $r\left(r=10.0^{\prime \prime}, 15.6^{\prime \prime}, 26.0^{\prime \prime}, 37.4^{\prime \prime}\right.$ and 49.0") .
3. $\mathrm{B}_{\text {。 }}$ is computed using the following equation to obtain the least RMSE for the trial value of B_{1}.

$$
B_{0}=\sum_{i=1}^{5} w_{i} f_{i} / \sum_{i=1}^{5} f_{i}^{2}
$$

4. The RMSE is computed, using the value of B_{0} computed in step 3 . RMSE $=\sqrt{\frac{1}{5} \sum_{i=1}^{5}\left(w_{i}-\hat{w}_{i}\right)^{2}}$
5. Steps 1 through 4 are repeated using the search process described below until the values of B_{0} and B_{1} are found which result in minimizing the RMSE.
6. The elastic moduli for the individual layers are then computed using the following equations.

$$
\begin{aligned}
& \mathrm{E}_{1}=\frac{3000}{4 \pi \mathrm{~B}_{0}} \\
& \mathrm{E}_{2}=\frac{3000}{4 \pi \mathrm{~B}_{\circ} \mathrm{B}_{1}}
\end{aligned}
$$

The search process consists of calculating the values of RMSE for each of 21 logarithmically spaced trial values of B_{1}, which cover the entire range of reasonable values of the ratio, $\mathrm{E}_{1} / \mathrm{E}_{2}$. These values sufficiently define the RMSE versus B_{1} curve to determine the one or two ranges for B_{1} within which minima of RMSE occur. The location of the minimum within a range is found to an accuracy of 0.5 percent employing a Fibonacci search technique (4).

In fitting two-layer elastic systems to normal Dynaflect measurements, it is often difficult to distinguish between two alternate sets of elastic moduli which result in similar deflection basins. This problem occurs because there are many cases where two entirely different pairs of elastic moduli will provide nearly equal values of deflections in the range of the standard measurements (r values between 10 and 49 inches). In such cases both alternate sets are determined. A typical example of such a difficult distinction is shown in Table 1 . In this table, measured deflection values and sets of computed deflection values for two different pairs of elastic moduli are shown. Both computed sets reasonably predict the measured deflections and are almost alike in the normal measuring range ($\mathrm{r}=10$ to 49 inches). Figure 1 contains a log-log plot of RMSE versus the trial values of B_{1} obtained as described in steps 1 through 4 above. Two distinct minimums are apparent which represent the cases compared in Table 1.

Based upon the step-by-step procedure described previously, a new computer program was developed to determine the "best fit" set of values for the pavement and subgrade moduli. In cases like the example the two

Table 1: Comparison of two cases for predicting measured deflections

r		Case 1		Case 2	
	w	$\hat{\mathrm{W}}$	w-w	$\hat{\mathbf{w}}$	w- $\hat{\mathbf{w}}$
10.0	1.86	1.83	0.03	1.90	-0.04
15.6	1.35	1.43	-0.08	1.28	0.07
26.0	0.90	0.90	0.00	0.91	-0.01
37.4	0.63	0.60	0.03	0.66	-0.03
49.0	0.50	0.44	0.06	0.51	-0.01
RMSE		0.051		0.038	
E_{1}		195,600 psi		3,600 psi	
E_{2}		11,700 psi		9,400 psi	
h		7.5 in		7.5 in	

Note: $\quad \mathbf{r}=$ horizontal distance in inches
$\mathrm{w}=$ measured Dynaflect deflection in 0.001 inches
$\hat{w}=$ predicted deflection in 0.001 inches (from Equation 1)
alternate "best fit" sets of moduli are determined. The new program is somewhat similar to several other existing programs used to compute pavement layer stiffness parameters from routine Dynaflect data. Three such existing programs, (1) The Texas Highway Department stiffness coefficient program, (2) Elastic Modulus I and (3) Elastic Modulus II ($1,2,5$), evaluate the layer stiffness parameters required to precisely fit two points on the measured deflection basin. As might be expected, the calculated basins which result from those programs often have rather large prediction errors at locations removed from the fitted points. The "best fit" technique employed in the new program, "Two-Layer Elastic Moduli for Five Deflections," eliminates this problem and thus is believed to more nearly represent the true material properties within an existing pavement structure insofar as elasticity theory applies to such structures. In addition, the new program has been found to be about ten times faster than the Elastic Modulus programs. Appendix A contains a description and a computer listing of this program.

Figure 1: B_{1} versus RMSE for typical pavement having alternate possible sets of elastic moduli.
3. Example Solutions

Tables 2 a through 2 g are computer print-outs based upon the same data used in References 1 and 2. These tables can be compared directly with Tables 6 a through 6 g in Reference 1 and Tables 5 a through 5 g in Reference 2. Such a comparison is made in Table 3. Note in this table that six of the seven comparisons appear to have two possible "best fit" solutions based upon the new program.

Table 4 contains solutions based upon the new program for eleven test points taken on rigid pavements at the Houston Intercontinental Airport. These solutions are based upon the same data reported in Reference 2. A direct comparison with the results of Refereme 2 is made in Table 5.

DISTRICT 17 - DESIGN SECTION
DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI
THIS PROGRAM WAS RUN $-08 / 28 / 73$
DIST. COUNTY 17 BRAZOS

CONT.	SECT.	JOB	HIGHWAY	DATE	DYNAFLECT
1560	1	1	FM 1687	$5-21-68$	1

PAV. THICK. $=12.50$ INCHES
SEAL COAT 0.50 RED SANDY GRAVEL 12.00
GREY G BRWN SAND SUB 0.0

STATION	W 1	W2	W3	W4	W5	SCI	**	ES **	**	EP **	*	RMSF *
$1-A$	1.170	0.770	0.520	0.310	0.219	0.400		20000		28000.		0.0252
$1-B$	1. 140	0.770	0.510	0.310	0.213	0.370		20400.		32400.		0.0221
$2-A$	1. 290	0.84 C	0.490	0.300	0.204	0.450		18700.		18400.		0.0334
$2-B$	1. 200	0.840	0.490	0.300	0.201	0.360		19500.		27700.		0.0311
$3-A$	1.140	0.770	0.470	0.300	0.195	0.370		20700.		27100.		0.0214
$3-B$	1.110	0.770	0.460	0.300	0.201	0.340		21000.		30800.		0.0176
4-A	1.470	0.960	0.490	0.320	0.222	0.510		16500.		14100.		0.0546
$4-B$	1. 380	0.900	0.470	0.310	0.213	0.480		17600.		15200.		0.0458
$5-\mathrm{A}$	1.290	0.87 C	0.500	0.340	0.231	0.420		18300.		21900.		0.0202
$5-B$	1. 260	0.800	0.460	0.310	0.219	0.460		19200.		16900		0.0198
AVERAGES												
W:S,SCI	1. 245	0.82 .9	0.486	0.310	0.212	0.416						
POINTS	10	1 C	10	10	10	10		:				
STIFF ON	1 TCP	SOLUTIO	NS					19983.		27982.		
POINTS								6		6		
SOFT ON	TOP SO	OLUTICN						18000		16150.		
FCINTS								4		161		

W1 DEFLECTION AT GEOPHCNE 1
W2 DEFLECTION AT GEOPHONE 2
W3 DEFLECTION AT GEOPHONE 3
W4 DEFLECTION AT GEOPHONE 4
W5 DEFLECTION AT GEOPHONE 5
SCI SURFACE CURVATURE INDEX (WI MINUS W2)
ES ELASTIC MODULUS OF THE SUBGRADE FROM W1,W2,W3,W4, \& W5
EP ELASTIC MODULUS OF THE PAVEMENT FROM W1,W2,W3,W4, \& W5

[^0]DISTRICT 17 - DESIGN SECTION
oynaflect deflections and calculated elastic moduli
THIS PROGRAM WAS RUN - 08/28/73

		$\begin{gathered} \text { DIST } \\ 17 \end{gathered}$		COUNTY BRAZOS		
$\begin{aligned} & \text { CONT } \\ & 2824 \end{aligned}$	$\underset{2}{\text { SECT. }}$	JOB	$\begin{aligned} & \text { HIGHWAY } \\ & \text { FM } 2776 \end{aligned}$	$\begin{gathered} \text { DATE } \\ 5-21-68 \end{gathered}$	DYNAFL 1	
		PAV. THICK. $=8.00$ INCHES				
SEAL COAT			0.50	halt sta	gravel	7.50
GREY SANDY	Clay	JBG	0.0			

STATION	WI	H2	W3	W4	W5	SCI	**	ES **	** EP **	*	SE
$1-\mathrm{A}$	1.650	1.200	0.870	0.660	0.500	0.450		12000.	293100.		0.0702
	ALTERN	nate s	LUTION					9200.	2800.		0.0409
$1-8$	1.560	1.110	0.810	0.610	0.490	0.450		12900.	299900.		0.0761
	Altern	Nate s	Olution					9900.	3000.		0.0297
2-A	2.310	1.470	0.930	0.710	0.530	C. 840		9200.	5100.		0.0161
2-B	2.210	1.410	0.900	0.670	0.510	0.900		9700.	6300.		0.0270
$3-\mathrm{A}$	2.430	1.500	C. 930	0.670	0.490	0.930		9700.	8100.		0.0213
3-B	2.490	1.530	0.930	0.670	0.500	0.960		9600.	9000.		0.0254
4-A	2.490	1.470	C. 900	0.640	0.480	1.020		9900.	10200.		0.0497
4-B	2.430	1.410	0.840	0.610	0.470	1.020		10300.	11100.		0.0625
5-A	2.340	1.440	0.870	0.620	0.450	0.900		10400.	10900.		0.0250
5-B	2.430	1.470	C.	0.650	0.470	0.960		9800.	8800.		0.0331

AVERAGES

WיS,SCI	2.244	1.401	0.891	0.651	0.489	0.843
POINTS	10	10	10	10	10	10

STIFF ON TCP SOLUTIONS
POINTS
SOFT ON TOP SOLUTICNS
POINTS

11100	125040
5	5
9586	6157.
7	7

Table 2 b : Computer print-out for Section 4.

DISTRICT 17 - DESIGN SECTION
DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI
THIS PROGRAM WAS RUN - 08/28/73

DIST.	CCUNTY
17	BURLESON

CONT.	SECT	JOB	HIGHWAY	DATE	DYNAFLECT
1399	1	1	FM 1361	$5-21-68$	1

PAV. THICK. $=12.00$ INCHES
SEAL COAT 0.50 LIME STAB. SANDSTUNE 11.50
TAN SANDY CLAY SUBGR 0.0

STATION	W 1	W2	W3	W4	W5	SCI	**	ES **	**	EP **	*	RMSE *
$1-\mathrm{A}$	1. 500	1.110	0.710	0.470	0.330	0.390		14600.		44600.		0.0096
$1-\mathrm{B}$	1. 560	1.230	0.780	0.480	0.330	0.330		13500.		50800.		0.0315
2-A	1.650	1.200	0.670	0.400	0.243	0.450		14100.		22800.		0.0641
$2-B$	1.440	1.050	0.640	0.380	0.246	0.390		15900.		32000.		0.0387
$3-A$	1. 500	1.050	0.600	0.370	0.267	0.450		15700.		22600.		0.0345
$3-B$	1.440	0.990	0.580	0.370	0.261	0.450		16400.		22900.		0.0242
4-A	1. 500	1.050	0.560	0.340	0.216	0.450		15900.		19900.		0.0607
4-B	1.380	0.990	0.540	0.330	0.213	0.390		17000.		25000.		0.0501
5-A	1.920	1.260	0.650	0.400	0.280	0.660		12700.		11500.		0.0787
$5-B$	1.800	1.14 C	0.630	0.420	0.310	0.660		13400.		11300.		0.0390
AVERAGES												
H'S.SCI	1. 569	1.107	0.636	0.396	0.270	0.462						
POINTS	10	10	10	10	10	10						
STIFF ON	TOP S	SOLUT I	JNS					15388.		30075.		
POINTS								8		8		
SOFT ON	TOP SOL	OUTI CN						13050.		11400		
POINTS								2		2		

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI
THIS PRGGRAM WAS RUN - 08/28/73
DIST.
COUNTY
17
WA SHINGTON

CONT.	SECT.	JOB	HIGHWAY	DATE	DYNAFLECT
186	5	1	SH 36	$5-21-68$	1

PAV. THICK. $=19.90$ INCHES

HOT MIX ASPH. CONC.	3.75	SANDSTONE	16.15
BLACK CLAY SUBGRADE	0.0		

AVERAGES
$\begin{array}{lrrrrrr}\text { W'S,SCI } & 1 . \epsilon 92 & 1.065 & 0.660 & 0.477 & 0.365 & 0.627 \\ \text { POINTS } & 10 & 10 & 10 & 10 & 10 & 10\end{array}$
STIFF ON TOP SOLUTIONS $10 \quad 10 \quad 10 \quad 10$
FOINTS
SOFT ON TCP SOLUTIONS
PCINTS

13740.	17960.
5	5
14300.	12520.
5	5

W1	DEFLECTION AT GEOPHCNE 1
W2	DEFLECTION AT GEOPHONE 2
W3	DEFLECTION AT GEOPHCNE 3
W4	DEFLECTION AT GEOPHONE 4
W5	DEFLECTION AT GEOPHONE 5
SCI	SURFACE CURVATURE INDEX
ES WI MINUS W2)	
EP	ELASTIC MODULUS OF THE SUBGRADE FROM W1,W $2, W 3, W 4, \varepsilon W 5$
	ELASTIC MODULUS OF THE PAVEMENT FRON W1,W $2, W 3, W 4, \varepsilon W 5$

DISTRICT 1.7 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULY
THI S PROGRAM WAS RUN - 08/28/73

DIST.	COUNTY
17	ROBERTSON

CONT.	SECT.	JOB	HIGHWAY	DATE	DYNAFLECT
49	8	1	US 190	$5-21-68$	1

PAV. THICK. $=15.20$ INCHES

HOT MIX ASPH. CONC. 1.25 CEM. STAB. LIMESTONF 13.95
REC SANDY CLAY SUBGR 0.0
STATION W1 W2 W3 W4 W5 SCI **ES ** ** EP ** * RMSE *

1 - A	0.680	0.590	0.490	0.390	0.310	0.090	18600.	347700.	0.0096
$1-B$	0.680	0.600	0.490	0.390	0.310	0.080	18600.	341600.	0.0070
2 - A	0.720	0.630	0.510	0.390	0.310	0.090	18500.	280900.	0.0060
$2-B$	0.700	0.620	0.490	0.390	0.310	0.080	18700.	302300.	0.0081
$2-A$	0.750	0.650	0.520	0.390	0.300	0.100	18700.	234300.	0.0044
$3-B$	0.760	0.650	0.510	0.390	0.300	0.110	18900.	222000.	0.0072
$4-A$	0.600	0.540	0.450	0.350	0.280	0.060	20300.	411100.	0.0030
$4-$ B	0.580	0.520	0.430	0.330	0.264	0.060	21600.	397000.	0.0032
$5-A$	0.620	0.550	0.450	0.350	0.273	0.070	20800.	351900.	0.0030
$5-B$	0.650	0.570	0.470	0.360	0.280	0.080	20100.	325400.	0.0047

AVERAGES

WIS,SCI 0.674	0.592	0.481	0.373	0.294	0.082			
POINTS	10	10	10	10	10	10		
STIFF ON TCP SOLUTIONS					19480	321420.		
FOINTS							10	10

NO SOFT ON TOP SOLUTIONS

Table 2e: Computer print-out for Section 15.

DISTRICT 17 - DESIGN SECTION
DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI
THIS PROGRAN WAS RUN - 08/28/73

DIST.	COUNTY
17	BRAZDS

CCNT.	SECT.	JOB	HIGHWAY	DATE	OYNAFLECT
1560	1	1	FM 1687	$5-21-68$	1

PAV. THICK. $=7.50$ INCHES

ASPHALT SURFACING	1.00	ASPH EMUL STAB GRAVL	6.50
BREWN CLAY SUBGRADE	0.0		

DISTRICT 17 - DESIGN SECTION
dynaflect deflections and calculated elastic moduli
THIS PROGRAM WAS RUN - 08/28/73

		$\begin{gathered} \text { OIST. } \\ 17 \end{gathered}$	CCUNTY PRAZCS		
CONT.	SECT.	JJB	HIGHWAY	DATE	DYnaflect
540	3	1	FM 974	5-21-68	-
			PAV. THI	. $=8.3$	INCHES

SEAL COAT	0.50	IRDN ORE GRAVEL	7.80
GREY SANDY CLAY SUBG	0.0		

STATION	W1 W2 W3 W4	W5	SCI	ES **	EP **	* RMSE *
$1-A$	$2.4001 .530 \quad 0.960 \quad 0.680$	0.500	0.870	0400.	6700.	0.0093
$1-\mathrm{B}$	$2.2501 .4400 .900 \quad 0.630$	0.480	0.810	10000.	7200.	0.0063
2	$1.7701 .17 \mathrm{C} 0.820 \quad 0.600$	0.480	0.600	13100.	114900.	0.0822
	ALTERNATE SOLUTION			10100.	3800.	0.019 ¢
2-B	$1.8001 .2000 .820 \quad 0.620$	0.490	0.600	12800.	112800.	0.0821
	alternate solution			9900.	3700.	0.0242
$3-A$	1.650 1.17C 0.8400 .640	0.510	0.480	12300.	237500.	0.079
	alternate solution			9500.	2900.	0.0463
3	$1.5901 .1700 .840 \quad 0.610$	0.510	0.420	12400.	270900.	0.0657
	ALTERNATE SOLUTICN			9600.	2900.	0.0618
A	$2.2501 .47 \mathrm{C} \quad 0.990 \quad 0.750$	0.600	0.780	10600.	67800.	0.1022
	ALTERNATE SOLUTION			8300.	3300 .	0.0222
4-B	2.3401 .59 C 1.050 C .790	$0.63 C$	0.750	9900.	82830.	0.0939
	ALTERNATE SOLUTION			7800.	3100.	0.0435
$5-\mathrm{A}$	2.2201 .47 C 0.9900 .710	0.550	0.750	8600.	3700.	0.0259
5-B	$2.1001 .41 \mathrm{C} 0.960 \quad 0.680$	0.530	0.690	11200.	83700.	0.0763
	alternate solution			8900.	3600.	0.032

AVERAGES
W'S,SCI 2.0371 .3620 .9170 .6710 .5280 .675 POINTS $10 \quad 10 \quad 10 \quad 10 \quad 10 \quad 10$ STIFF ON TCP SOLUTIONS POINTS
SOFT ON TOP SOLUTICNS
POINTS

11757.	138629.
7	7
0210	4090.
10	10

Table 2g: Computer print-out for Section 17.

Table 3: Comparison between Elastic Modulus I, Elastic Modulus II and the new program on flexible pavements.

*See Table 6 Reference 2.
**Alternate Solutions.

Table 4: Dynaflect deflections and calculated elastic moduli for test points on rigid pavements at the Houston Intercontinental Airport.

	Pvmt	Deflections					Calculated Moduli Values		
Test Point	Thick \qquad $\underline{ـ}$	W1	W2	W3	W4	W5	E2	El	RMSE
6	12.0	0.400	0.400	0.370	0.340	0.310	15,600	4,928,400	0.0035
10	12.0	0.500	0.470	0.440	0.380	0.330	16,300	2,389,400	0.0046
13	12.0	0.520	0.510	0.470	0.400	0.350	15,300	2,251,200	0.0053
25	12.0	0.400	0.390	0.360	0.330	0.290	17,400	4,052,300	0.0017
28	12.0	0.430	0.410	0.390	0.360	0.330	14,500	4,895,000	0.0041
32	12.0	0.410	0.390	0.360	0.320	0.280	18,900	3,247,900	0.0026
34	12.0	0.400	0.390	0.370	0.340	0.310	15,300	5,253,100	0.0011
49	12.0	0.410	0.400	0.370	0.350	0.350	12,200	8,191,900	0.0104
56	14.0	0.330	0.330	0.310	0.290	0.270	16,500	5,046,300	0.0025
63	12.0	0.390	0.380	0.350	0.320	0.290	17,300	4,451,100	0.0032
69	12.0	0.237	0.234	0.216	0.207	0.198	21,900	12,731,400	0.0039
AVERA							16,470	5,221,600	0.0039

Note: Deflection data from Figures 10a through 10k Reference 2.

Table 5: Comparison between Elastic Modulus II and the new program on rigid pavements.

4. Implication of Results

As pointed our previously, there are many instances where two entirely different sets of elastic moduli provide nearly equal values of deflections at the locations of the normal set of Dynaflect measurements (r values between 10 and 49 inches). Thus, two alternate sets of elastic moduli may appear to be equivalent solutions in a particular pavement evaluation problem. This phenomena does not imply that point load, two-layer, elastic deflection basins are not unique. In fact, Swift's "Two-Layer Elastic Deflection Chart" (6) clearly demonstrates that each possible twolayer elastic case has its own unique characteristic deflection basin. However, the phenomena does indicate that two alternate cases can become confused when the set of measurement points is not extensive enough.

The distinction between alternate cases could be greatly improved by extending the range of observations to include measurements at values of r that are less than 10 inches and/or greater than 49 inches. For example, at a radius of 5 inches from a point load, the calculated deflections for the two different cases, illustrated in Table 1 , would be 2.22 and 6.01 , respectively. Thus, a measured deflection at a 5 inch radius from a point load would clearlv distinguish between the two possible cases.

With the current configuration of the Dynaflect, 10 inches is the smallest radius that can be used on the symmetry axis (See Figure 2). However, it is possible to obtain measurements closer than 10 inches by employing the principle of superposition. For example, a deflection measured at location number 6, Figure 2 , would be the sum of the deflection due to one 500 -pound load at a 5 inch radius and another deflection due to a 500 pound load at

Fisury 2: Rulative position of Dynaflect loads and sensors. Vertical arrows represent load whecls. Points numbered 1 through 5 indicate location of sensors for standard test. point 6 indicates the location of a desired additional measurement.
a 15 -inch radius. The calculated value of deflection at this point for each of the two cases which were compared above, would be 1.85 and 3.66 , respectively. Although this distinction is not as great as the previous comparison for r equal to 5 inches, it is significant enough to clearly distinguish between the two possible cases.
5. Conclusions \& Recommendations

1. Because the presented technique for determining elastic moduli for simple two-layer pavement structures fits the entire measured deflection basin, it is believed to be more representative of the true material properties, insofar as elasticity theory applies to such structures, than any other technique known to the author.
2. The five Dynaflect deflection measurements normally made in field testing are not sufficient to determine a unique set of elastic moduli for some two-layer highway pavements.
3. The apparent two alternate solutions for many existing flexible pavement structures could be resolved by making an additional deflection measurement closer to the loading point. It is recommended that the mechanics of accomplishing such a measurement be given immediate consideration for use in future deflection based pavement evaluations.

5. References

1. Scrivner, F. H.; Michalak, C. H.; and Moore, W. M. "Calculation of the Elastic Moduli of a Two Layer Pavement System from Measured Surface Deflections, " Research Report No. 123-6, Texas Transportation Institute, Texas A\&M University, College Station, Texas, March 1971.
2. Scrivner, F. H.; Michalak, C. H.; and Moore, W. M. "Calculation of the Elastic Moduli of a Two Layer Pavement System from Measured Surface Deflections, Part II," Research Report No. 123-6A, Texas Transportation Institute, Texas A\&M University, College Station, Texas, December, 1971.
3. Swift, Gilbert. "An Empirical Equation for Calculating Deflections on the Surface of a Two-Layered Elastic System, "Research Report No. 136-4, Texas Transportation Institute, November, 1972.
4. Pierre, Donald A., Optimization Theory with Application's, John Wiley and Sons, Inc., New York, March 1969, pp. 280-283.
5. "Texas Highway Department Pavement Design System, Part I, Flexible Pavement Designer's Manual," Highway Design Division, Texas Highway Department, Austin, Texas, 1970.
6. Swift, Gilbert. "A Graphical Technique for Determining the Elastic Moduli of a Two-Layered Structure from Measured Surface Deflections," Research Report No. 136-3, Texas Transportation Institute, November, 1972.

APPENDIX A

This Appendix contains a description of a computer program, "TwoLayer Elastic Moduli for Five Deflections," which determines the pavement and subgrade moduli for simple two-layer pavement structures based on surface deflections.
SUBJECT PAGE
Description of Main Program A-1
Main Program Variables A-4
Main Program Flow Chart A-8
Description of EMPI Subroutine A-19
Subroutine EMPI Variables A-21
Subroutine EMPI Flow Chart A-23
Subroutine VARI A-25
Subroutine SIGNIF A-26
Subroutine FIBO A-27
Program Listing A-28

The data input format for the main computer program is the same as that used by several previously written computer programs that compute pavement strength properties from Dynaflect data, namely the Texas Highway Department stiffness coefficient program, ELASTIC MODULUS I, and ELASTIC MODULUS II. Each input data card is read into a storage area and the subroutine CORE is used to select the read statement and data format to read each data card. Subroutine CORE allows a FORTRAN program to read under format control from a storage area which contains alphabetic character codes of a card image. Each data card has a code punched in the first three columns that designate the card type.

100 - Card that indicates the beginning of data cards for each job and contains control information about the job, location, date and total pavement thickness.

200 - Card contains word descriptions and thicknesses of the first three layers of the pavement.

300 - Card contains word descriptions and thicknesses of layers 4, 5 and 6 (if present).

400 or blank - Card contains station number and geophone deflection headings and multipliers for each observation. Two digit numbers in columns 75 and 76 of this card denotes end of data.

The deflections at each radial distance are calculated from the geophone deflection readings and multipliers on each 400 or blank card. The Surface Curvature Index (SCI) is also calculated, SCI=W1-W2. If any W (deflection) is equal to zero, or if any W is greater than its preceding W, the cases are flagged to denote data errors and are not
used for further calculations. If the W's are valid observations they are converted to inches and passed to subroutine EMPI along with the total pavement thickness for the elastic modulus and RMSE calculations. EMPI returns to the main program two alternate solutions for pavement and subgrade elastic moduli with their corresponding RMSE's. In cases where only one solution exists, the variables for its alternate solution contain the flag number 99999. The pavement and subgrade moduli are then rounded to the nearest 100 psi. The counter N (the number of valid sets of observations) is incremented and the program reads the next data card to continue the process until all stations in a section are read. When all the data cards for a section have been read, the program prints output headings and initializes the variables used in calculating section averages.

A loop is set up to print the station numbers, deflections, SCI's, subgrade moduli, pavement moduli and RMSE's of all valid data observations. Messages for the following situations are printed for which a data observation is not used in the calculations:

1. Data observation computes a negative SCI in which case the message 'NEGATIVE SCI OTHER CALCULATIONS OMITTED' is printed.
2. Date observation where any W is equal to zero. 'ERROR IN DATA' is printed.
3. Data observation where both alternate pavement and subgrade solutions are "soft on top" (pavement modulus is less than subgrade modulus) or where both solutions are "stiff on top" (pavement modulus is greater than subgrade modulus). The message printed for this occurrence is 'NO SOLUTION'.

For all data observations other than the three mentioned above, elastic moduli for the soft and stiff on top solutions are summed separately. For all observations which have two alternate solutions for pavement and subgrade elastic moduli, the RMSE's of the stiff and soft for each solution are stored in separate arrays for a variance analysis calculation to denote significant differences.

After all data and any error messages for a section are printed, the average deflections, SCI's, subgrade moduli, pavement moduli and RMSE are calculated. If more than two observations in a section have alternate solutions, the program calls Subroutine VARI to calculate an analysis of variance between the RMSE's of the stiff on top solutions and the soft on top solutions to determine if these values are significantly different at the 10% level.

The averages are then printed along with the number of points used in calculating each average. These averages are divided into two groups: the average and points of the stiff on top solutions and the average and points of the soft on top solutions.

Definitions of the heading abbreviations are given next in footnote form. An additional footnote occurs when the variance analysis has been run, denoting whether or not the RMSE's of the alternate pavement and subgrade modulus are significantly different.

The program then returns to its beginning to read data for another section or terminates execution normally when all data have been read.

A - Dumm array used with subroutine core to select the correct input
format for each card read.
AAP 2 - Sum of pavement moduli
AAS2 - Sum of subgrade moduli
AAP 2V - Average pavement modulus
AAS 2V - Average subgrade modulus
ALRMS - Stiff on top alternate solution RMSE array
AP2 - Elastic modulus of the pavement rounded to nearest 100 psi
AS2 - Elastic modulus of the subgrade rounded to nearest 100 psi
ASCI - Sum of (W1 - W2), WI - W2 = surface curvature index
ASCIV - Average surface curvature index
AW1 - Sum of geophone 1 deflections
AW2 - Sum of geophone 2 deflections
AW3 - Sum of geophone 3 deflections
AW4 - Sum of geophone 4 deflections
AW5 - Sum of geophone 5 deflections
AW1V - Average geophone 1 deflections
AW2V - Average geophone 2 deflections
AW3V - Average geophone 3 deflections
AW4V - Average geophone 4 deflections
AW5V - Average geophone 5 deflections
BLRMS - Soft on top alternate solution RMSE array
CNT - Number of soft on top solutions
CORE - Subroutine to re-read a card under format control
CO1, CO2, C03, CO4 - County name

D1 - Geophone 1 reading

D2 - Geophone 1 multiplier

D3 - Geophone 2 reading

D4 - Geophone 2 multiplier
D5 - Geophone 3 reading
D6 - Geophone 3 multiplier
D7 - Geophone 4 reading
D8 - Geophone 4 multiplier
D9 - Geophone 5 reading
D10 - Geophone 5 multiplier

DAP - Pavement elastic modulus (unrounded) as calculated in subroutine EMPI
DAS - Subgrade elastic modulus (unrounded) as calculated in subroutine EMPI
DATE - An IBM subroutine that returns the current month, day, and year
DP - Total pavement thickness
E11 - Alternate pavement elastic modulus rounded to nearest 100 psi
E21 - Alternate subgrade elastic modulus rounded to nearest 100 psi
EMPI - Subroutine to calculate pavement and subgrade moduli, RMSE, and alternate
if it exists.

HWY1, HWY2 - Highway name and number

I - Pointer for data read into storage
ICK - Switch to indicate last data card

ICONT - Contract number for the highway
IDAY - Day the deflections were taken
IDIST - District number
IDYNA - Dynaflect number
IJOB - THD job number

ISECT - THD section number for the highway
ISW - Switch to indicate whether the two RMSE arrays are significant and to control the footnotes to be printed.

```
IXDATE - Return arguments from subroutine date (month, day, year)
IYEAR - Year the deflections were taken
JNT, LNT - Number of RMSE's in the two arrays to be tested for
    significance
KNT - Number of stiff on top solutions
LAl - Description of materials in layer 1
LA2 - Description of materials in layer 2
LA3 - Description of materials in layer 3
LA4 - Description of materials in layer 4
LA5 - Description of materials in layer 5
LA6 - Description of materials in layer 6
LO - Number of both data errors and no solutions
M - Month the deflections were taken
MNT - Number of solutions printed
N - Counter for number of error free data cards read
NCARD - Denotes card type
    100 - Project identification card
    200 - Existing pavement description card (layers 1, 2, & 3)
    300 - Existing pavement description card (layers 4, 5, & 6)
    400 - Data card (geophone readings and multipliers)
RATIO - Ratio of AP2/AS2
RATIO1 - Ratio of Ell/E21
ROUND - Statement function to round a given value of El or E2 to the
    nearest 100 psi
SCI - Surface curvature index, W1-W2 in mils
STA - Station number
T1 - Layer 1 thickness
T2 - Layer 2 thickness
```

T3 - Layer 3 thickness
T4 - Layer 4 thickness
T5 - Layer 5 thickness
T6 - Layer 6 thickness
W1 - Deflection at geophone number 1
W2 - Deflection at geophone number 2
W3 - Deflection at geophone number 3

W4 - Deflection at geophone number 4
W5 - Deflection at geophone number 5
XLANE - Traffic lane and direction

$$
A-10
$$

DESCRIPTION OF EMPI SUBROUTINE

This subroutine uses the five deflections and the pavement thickness and calculates pavement and subgrade moduli solutions from the empirical equation along with the corresponding RMSE (Root Mean Squares of the Errors). Due to the nature of data, two solutions for pavement and subgrade moduli sometimes exist.

EMPI calculates both solutions according to the following procedure.

1. An array of $\log _{10}$ numbers from -2.5 to 7.0 with 0.5 intervals is built. The anti-log of each number is then used as the ratio of E_{1} / E_{2} to calculate an array of RMSE's.
2. This array of RMSE's is searched and the three lowest values are found along with their corresponding locations in the array.

RMSE Location
lowest TEMP1 ISUB1 2nd lowest TEMP2 ISUB2 3rd lowest TEMP3 ISUB3
3. The locations of these three RMSE's are then checked to determine whether or not there are one or two significant minimums.

If only one significant minimum exists all three locations of RMSE will be consecutive.

If two significant minimums exist one of the locations of RMSE will be separated from the other two.
4. The vicinity of each distinct minimum is searched using a Fibonacci search subroutine. This search will find the minimum value of a unimodal function between two points on its curve. It should be noted that the RMSE versus El/E2 curve is not a unimodal function in its
entirety; however, it has been found to be unimodal between any three consecutive points in the stored array in the vicinity of a minimum. The subroutine returns to the program the minimum RMSE value and the corresponding value of the ratio E_{1} / E_{2}.
5. Next the ratio $\left(\mathrm{E}_{1} \mathrm{E}_{2}\right)$ that corresponds to the minimum RMSE is sent to a subroutine ANA. ANS calculates the pavement (El) and subgrade (E2) moduli using this value for the ratio ($E_{1} E_{2}$).
6. Two sets of pavement and subgrade moduli along with their respective RMSE's are alswys sent back to the main program in the following form.

1st Solution E1 - Pavement modulus
E2 - Subgrade modulus
RMSE - Root mean square of the errors
*2nd Solution E11 - Pavement modulus
E21 - Subgrade modulus
RMSE1 - Root mean square of the errors
*If only one distinct minimum exists, values for E11, E21 and RMSE1 will be 99999.

B - Sum of the XW's divided by sum of the X's squared (See equation) DLTA - Intervals on $\log _{10}$ scale

E1 - Pavement elastic modulus
E2 - Subgrade elastic modulus
Ell - Alternate pavement elastic modulus
E21 - Alternate subgrade elastic modulus
$E(I)$ - Errors between recorded deflections and calculated deflections
EX - X (See equation)
EXSQ - X^{2} (See equation)
H - Total pavement thickness
ISUB1 - Location of lowest RMSE in array
ISUB2 - Location of second lowest RMSE in array
ISUB3 - Location of third lowest RMSE in array
K - Number of RMSE's in array to find three lowest
MSE - Mean square of the errors
N - Number of deflections in each case
NOI - Number of points to be tested in Fibonacci search.
RATIO - Ratio of El/E2
R(I) - Distances from the point at which load is applied
RLDG - Array of $\log _{10}$ numbers to be searched
RMSE - Root mean square of the errors
SMESQ - Sum of the errors squared
SMXSQ - Sum of the X's squared
SMXW - Sum of the X's times the W's

TEMP - Minimum RMSE of the Fibonacci search.
TEMP1 - Lowest RMSE in array
TEMP2 - Second lowest RMSE in array
TEMP3 - Third lowest RMSE in array
TEMPO - Minimum RMSE of the alternate solution of the Fibonacci search
TX1, TX2, TX3 - Location of RMSE that is the left boundary in the
Fibonacci search

TX11, TX21, TX31 - Location of RMSE that is the right boundary in the Fibonacci search

W(I) - Vertical deflections
$X(I)-\frac{I}{r}+($ RATIO -1$) * X T W O \quad$ (See equation)
$X L-L$ (See equation)
XL3 $-L^{3}$ (See equation)
$X L 5-L^{5}$ (See equation)
XTWO $-\frac{1}{L}+\frac{X^{2}}{2 L^{3}}+\frac{3 X^{4}}{2 L^{5}}$

- (See eqquation)

VARI is a variance analysis subroutine to determine whether or not there is a significant difference between the array of soft on top alternate RMSE's and the array of stiff on top alternate RMSE's at a 10% level of significance.

SUBROUTINE VARI VARIABLES
AMSBS - Mean square between sets
AMSWS - Mean square within sets
CNT - Number of soft on top solutions
F - Ratio of AMSBS over AMSWS

IDFBS - Degrees of freedom between sets
IDFWS - Degrees of freedom within sets
KNT - Number of stiff on top solutions
N - Total number of RMSE!s tested
RMSE - Array of stiff on top alternate RMSE's
RMSE1 - Array of soft on top alternate RMSE's
SSBS - Sums of squares between sets
SSQ(1) - Sum of all stiff on top alternate RMSE's squared
SSQ(2) - Sum of all soft on top alternate RMSE's squared
SSWS - Sums of squares within sets
SUM(1) - Sum of all stiff on top alternate RMSE's
SUM(2) - Sum of all soft on top alternate RMSE's
TSSQ - Total sum of alternate RMSE's squared
TSUM - Total sum of alternate RMSE's

SUBROUTINE SIGNIF

This is an F-distribution table for a 10% level of significance with the numerator at 1 since there will always be only two sets.

SUBROUTINE SIGNIF VARIABLES

```
F - Ratio of AMSBS over AMSWS (See VARI variables)
IDFWS - Degrees of freedom within sets (Denominator)
ISW - Pointer as to significance
    ISW = 0 - Not significant at 10%.
    ISW = 1 - Is significant at 10%.
```

This subroutine is a Fibonacci search which is used to determine the minimal value of a unimodal function. A subroutine FUNC (X, Y) is called to obtain the Y value of the unimodal function, $Y=F(X)$.

SUBROUTINE FIBO VARIABLES

N - Number of search desired, Max $=20$
Xl - Lower limit of X value
X 2 - Upper limit of X value
X - Location of optimal Y
Y - Optimal Y value

C	TWO LAYER ELASTIC MODULI FOR five deflections	TTI	
	DIMENSION STA (200), W(200,5$)$, D(10), AW(5), AWV(5), RATIO(200$)$,	TTI	10
	* AP2(200),LA1(5),LA2(5).LA3(5),LA4(5),LA5(5), LA6) 5),	Tri	20
	*RATIO1(200), AS 2(200), Al 20), SCI (200),	TTI	30
	*E11(200), E21(200), RMSE1(200),	TTI	40
	* IXDATE (3), COMM(7), REM (4), RMSE(200), BLRMS(200), ALRMS(200)	TTI	40 50
	INTEGER CNT	TTI	50 60
	REAL * 8 STA,DAS, DAP, DBLE,E11,E21,RMSE1,RMSE, BLRMS,ALRMS	TTI	70
$\begin{aligned} & \mathrm{C} \\ & \mathrm{CCC} \\ & \mathrm{C} \end{aligned}$		TTI	30
	Statement function to round 'x' ro nearest ieven'	TrI	90
		TTI	100
		TTI	110
C 10		TTI	120
	Continue	TTI	130
	READ $5,1, E N D=10001$ NCARD, (A(I), $1=1,20$	TTI	140
	F FORMATI I3, 19A4, Al,	TTI	50
	CALL CORE ($A, 80$;	TTI	0
	IF(NCARD.EQ. 1001 GO TO 11	TrI	170
	IF(NCARD.EQ. 2001 GO TO 12	TTI	180
	IF (NCARD.EQ.300) GO TO 13	TTI	190
	$4 \mathrm{I}=\mathrm{N}+1$	TTI	200
		TTI	210
		TTI	220
	FRERMJ, $=1$ \% 4 , ICK	TT	230
	6 FORMAT ${ }^{\text {PRI }}$ [4,412,AT, 3X, 5(F2.1,F3.2), 8X,4A4, [2)	TTI	240
c	PRINT OUTPUT COLUMN HEADINGS	TTI	250
$\begin{aligned} & \mathbf{C} \end{aligned}$		TTI	260
	CALCULATE DEFLECTIONS \& SCI 1 DEFLECTIONS IN MILS $L=1$	TTI	270
	OO $4 \mathrm{~J}=1,5$	TTI	280
	$W(I . d)=0(L) * D(L+1)$	TTI	290
	$W=1+2(L) * D(L)$	TTI	300
	L = L + ${ }^{2}$	TTI	310
	4 Continue	TTI	320
	SCIII) $=W(1,1)-W(1,2)$	TTI	330
$\begin{aligned} & \mathrm{C} \\ & \mathrm{c} \end{aligned}$		TTI	340
	TEST FOR W1 OR W2 = 0, AND W1 LESS THAN W2	TTI	350
		TTI	360
	DO $5 \mathrm{~J}=1,5$	TTI	370
	IF(W(I,J) .EQ. 0.0) GO TO 21	TTI	380
	5 CONTINUE	TTI	390
	DO $7 \mathrm{~J}=1,4$	TTI	400
	[F(W(I,J) -LT. W(I,J+l)) GO TO 22	TTI	410
7	continue	TTI	420
	DO $8 \mathrm{~J}=1,5$	TTI	430
	W(lijl $=W(1, J) / 1000$.	TII	440
	CONTINUE	TrI	450
c		TTI	460
C	PASS THE WIS \& TOTAL PAVEMENT THICKNESS TO EMPI,	TTI	470
C	EMPI RETURNS UNROUNDED VALUES OF PAVEMENT \& SUBGRADE AND RMSE	TTI	480
C		TTI	490

C

TTI 500 DO $9 \mathrm{~J}=1,5$ W(I,J) $=W(I, J) * 1000$.
9 CONTINUE $\operatorname{RMSE}(I)=\operatorname{RMSF}(I) * 1000$. RMSEI(I) = RMSE1(I) * 1000 . DAS = ROUND (DAS, 100.) DAP = ROUNDI DAP, 100.) AS2(I) = DAS $A P 2(1)=$ DAP IF(Ell(I).EQ. 99999) GO TO 23 E11(I) $=\operatorname{ROUND}(E 11(1), 100.1$ E21(I) = ROUND(E21(1),100.)
23 CONTINUE
$N=N+1$
IFIICK.EQ. OI GO TO 10 GO TO 80
11 READ 5,2$)$ IOIST, CO1, CO2, CO3, CO4, ICONT, ISECT, IJOB, HWY1, * HWY2, XLANE, DP, M, IDAY, IYEAR, IDYNA, (COMM (I), I=1, 7)

TTI 510
TTI 520
TTI 530
TTI 540
TTI 550
TTI 560
TTI 570
TTI 580
TTI 590
TTI 600
TTI 610
TTI 620
TTI 630
TTI 640
TTI 650
TTI 660
TTI 670
TTI 680
TTI 690

2 FORMAT: $12,3 A 4, A 2, I 4,212, A 4, A 3, A 3, F 5.2,412,7 A 41$ ITI 720
PRINT 51
51 FORMAT ('1'
PRINT 52
52 FORMAT(35X; 'TEXAS HIGHWAY DEPARTMENT* /1 PRINT 53,IDIST
53 FORMAT (33X, ${ }^{\circ}$ DISTRICT $1, I 2,{ }^{\circ}$ - DESIGN SECTION' $/ 1$ PRINT 54

TTI 730
TTI 740
TTI 750
TTI 760
TTI 770
TII 780
TTI 790
54 FORMAT (21X, 'DYNAFLECT DEFLFCTIONS AND CALCULATED ', * 'elastic moduli f 1

CALL OATE (IXDATE(1), IXDATE(2), IXDATE(3)) PRINT 55,IXDATE

TTI 800
TTI 810
TTI 820
TTI 830
55 FORMAT (32X,'THIS PROGRAM WAS RUN - ', 2A3,A2 / 1 PRINT 56, IOIST, CO1, CO2, CO3, CC4

TTI 840
PRINT 57, ICONT, ISECT, IJOB, HWY1, HWY2, M, IDAY, IYEAR, IDYNA PRINT 58,(COMM(I), $I=1,7)$, DP
58 FORMAT (10X,7A4,2X,'PAV. THICK. $=$, F5.2,' INCHES' $/$) $\mathrm{N}=\mathrm{O}$

TTI 850
TTI 860
TTI 870
TTI 880
DO $15 \mathrm{~J}=1,5$
$A W(J)=0.0$
TTI 890
TTI 900
15 CONTINUE
ASCI=0.
TrI

AAS2=0.
$A A P 2=0$.
BAS2 $=0$.
$B A P 2=0$.
TTI 920
TTI 930
TTI 940
TTI 950
TTI 960
GO TO 10
TTI 970
READ \& PRINT INFORMATION ON OATA CARD 2
TTI 980
C

```
    12 READ(5,3) (LA1(I),I=1,5),T1,(LA2(1),I=1,5),T2,
        * {LA3(I),I=1,5), T3
        3 FORMAT: 5A4,F4,2,5A4,F4.2,5A4,F4.2)
        PRINT 59,(LAL(I),I=1,5),Tl,(LA2(I),I=1,5),T2
        PRINT 59, ( LA3(I), I=1,5), T3.
        59 FORMATIl6X, 544, lX, F5.2, 5X, 5A4, lX, F5.21)
        go TO 10
    READ & PRINT INFORMATION ON DATA CARD 3, IF PRESENT
    13 REAO(5,3) (LA4(I),I=1,5),T4,(LA5(I),I=1,5),T5,
    * (lag(I), I=1,5), TG
        PRINT 59,(LA4(I),I=1,5),T4,(LASII),I=1,5),T5
        PRINT 59,( LAG(I), I=1,5), T6
    GO TO 10
22 continue
    AS2(I) = 7777777
    AP2(I) = 7777777
    IFIICK .EQ. OJ GO TO 10
    GO TO }8
21 CONTINUE
    AS2(I) = 888888
    AP2(I) = 888888
    IF(ICK .EQ. O) GO TO 10
    GO TO }8
    80 CONTINUE
    PRINT 6l
```



```
        CNT = 0
        KNT = 0
        MNT = 0
        JNT =0
        LNT = O
        LO=0
        DO 50 1=1.N
        IFIAS2(I) .EQ. 7777777) GO TO 24
        IF(AS2(I).EEQ. 888888) GO TO 25
        RATIO(I)= AP2(I)/AS2(I)
        IF(EII(I) .EQ. 99999) GD TO 26
        RATIOL(I) = ELINII/E?IIII
        IF(RATIO(I) .LT. 1.0) GC TO 27
        IF(RATIOI(I) .LT. 1.0) GO TO 28
C BOTH ALTERNATES HARD ON TOP
    PRINT 62,STAII),(W(I,J),J=1,5),SCI(I)
    62 FORMAT(7X,A7,1X,6(FG.31,1OX, NO SOLUTION:)
    MNT = MNT + 1
    LO=LO + L
    GO TO 50
    27 IF(RATIOIII) .GT. L.0) GO TO 29
    BOTH ALTERNATES ARE SOFT ON TOP
    PRINT 62,STA(I),(WII,J),J=1,6),SCI(I)
```

```
    MNT = MNT + 1
    LO = LO + 1
    GO TD }5
28 PRINT 63,STA(I),(W(I,J),J=1,5),SCI(I),AS2(II,AP2(I),RMSE(I)
63 FORMAT (7X,A7,1X,6(F6.3),2F10.0;2X,F8.41
    PRINT 64,E2l(I),E11(I),RMSEI(I)
64 FORMATIT17,'ALTERNATE SOLUTION',T52,2F10.0, 2X,F8.41
    BAS2 = BAS2 + E2l\I)
    BAP2 = BAP2 + E11|I)
    AAS2 = AAS2 + AS2III
    AAP2 = AAP2 + AF2II)
    JNT = JNT + 1
    BLRMS(JNT) = RMSEI(I)
    LNT = LNT + 1
    ALRMS(LNT) = RMSE(I)
    CNT = CNT + 1
    KNT = KNT + 1
    MNT = MNT + 2
    GO TO 40
29 PRINT 63,STA(I),(W{I,J),j=1,5),SCI(I),E21(I),ELI(I),RMSEI(I)
    PRINT 64,AS2(I),AP2(I),RMSE(1)
    BAS2 = BAS2 + AS2(I)
    BAP2= BAP2 + AP2(I)
    AAS2 = AAS2 + E21(I)
    AAP2 = AAP2 + Ell(I)
    JNT = JNT + 1
    BLRMS(JNT) = RMSE(I)
    LNT = LNT +1
    ALRMS(LNT) = RMSE1(I)
    CNT = CNT + 1
    KNT = KNT + 1
    MNT = MNT + 2
    GO TO 40
26 cONTINUE
    IFIRATIO(I) .LT. 1.0) GO TO 30
    PRINT 63,STA(I),(WII,J),J=1,5),SCI(I),AS2(I),AP2(I),RMSE(I)
    AAS2 = AAS2 + AS2(I)
    AAP2 = AAP2 + AP2(I)
    KNT = KNT + 1
    MNT = MNT + 1
    GO TO 40
30 PRINT 63,STA(I),(W(I,J),J=1,5),SCI(I),AS2(I),AP2(I),RMSE(I)
    BAS2 = BAS2 + AS2(1)
    BAP2 = BAP2 + AP2(I)
    CNT = CNT + 1
    MNT = MNT + 1
4 0 ~ C O N T I N U E ~
    DO 16 M=1,5
16 AW(M) = AW(M) +W(I,M)
    ASCI = ASCI + SCI(I)
```

TTI 1500
TTI 1510
TTI 1520
TTI 1530
TII 1540
TTI 1550
TTI 1560
TTI 1570
TTI 1580
TTI 1590
TTI 1600
TT 1610
TTI 1620
TTI 1630
TII 1640
TTI 1650
TTI 1660
TTI 1670
TTI 1680
TTI 1690
TTI 1700
TTI 1710
TTI 1720
TTI 1730
TTI 1740
TTI 1750
TTI 1760
TTI 1770
TTI 1780
TTI 1790
TTI 1800
TTI 1810
TTI 1820
TTI 1830
TTI 1840
TTI 1850
TTI 1860
TTI 1870
TTI 1880
TTI 1890
TTI 1900
TTI 1910
TTI 1920
TTI 1930
TTI 1940
TTI 1950
TII 1960
TTI 1970
TTI 1980
TTI 1990

```
    IF(MNT .EQ. 20) GO TO 31
        GO TO 50
31 PRINT 51
    PRINT 56, IOIST, CO1, CO2, CO3, CO4
    56 FORMAT( T35,'DIST. COUNTY'/ T36, [2,9X, 3A4,A2 /1
        PRINT 57, ICONT, ISECT,IJOB,HWYI,HWY2,M,IOAY,IYEAR,IDYNA
    57 FORMATI TIG, 'CONT. SECT. JOB HIGHWAY DATE',
    "' DYNAFLECT'/ T19,14,2I7,4X,A4,A3,14,21'-1,121,19/1
        PRINT 6l
    MNT =0
    GO TO 50
    24 PRINT 65,STAII)
65 FORMAT(7X,AT,3X,'NEGATIVE SCI OTHER CALCULATIONS OMMITTED')
    MNT = MNT + 1
    GO TO 50
25 PRINT 66,STA(I)
66 FORMATI7X,A7;3X,'ERROR IN DATA'I
    MNT = MNT + I
50 CONTINUE
    calculate averages
    N=N-LO
    DO 17 M=1,5
17 AWV(M) = AW(M)/N
    ASCIV = ASCI/N
    IF(KNT .EQ. O) GO TO 32
    AAS2V = AAS2/KNT
    AAP2V = AAPZ/KNT
32 CONTINUE
    IFICNT EEQ. O\ GO TO }3
    BAS2V = BAS2/CNT
    BAP2V = BAP2/CNT
    IFIKNT EEQ. OI GO TO }3
    IF{JNT -LT. 3 .AND. LNT .LT. 31 GO TO }3
CALL VARI(ALRMS,BLRMS,JNT,LNT,ISH)
    IFIISW.EQ. OI ISW = 2
    GO TO }3
3 3 \text { CONTINUE}
    ISW=3
34 CONTINUE
PRINT 81,(AWV(J),J=1,5),ASCIV
81 FORMAT(/7X,'AVERAGES',1,8X,7HW'S,SCI,6(F6.31)
PRINT 82,N,N,N,N,N,N
82 FORMAT (8X,'POINTS',T19,13,3X,13,3X,13,3X,13,3X,13,3X,13)
    IFIKNT .EQ. O) GO TO }3
    IFICNT .NE. O) GO TO 36
    PRINT 83,AAS2V,AAP2V
83 FORMATI8X,'STIFF ON TOP SOLUTIONS',T52,2F10.01
    PRINT 84,KNT,KNT
84 FORMAT(8X,'POINTS',T58,I3,T68,I3)
    PRINT }8
TTI 2000
    31 PRINT 50
TTI 2020
TTI 2030
TTI 2050
TTI 2060
TTI 2070
TTI 2080
TTI }209
TTI 2100
C
TTI 2110
TTI 2120
ITI 2130
TTI 2140
TTI 2150
TTI 2160
TTI 2170
TTI 2180
TTI 2190
TTI 2200
TTI 2210
TTI }222
TTI 2230
TII 2240
TTI 2250
TTI 2260
TTI 2260
TTI 2280
TTI 2290
TTI 2300
TTI 2310
TT1 }232
TTI 2330
TTI 2340
TT1 }236
TTI 2370
TII }238
TTI 2390
TTI 2400
TTI 2410
TTI 2420
TTI 2430
TTI }244
TTI 2450
TTI 2460
TTI 2470
TTI 2480
```

```
    85 FORMAT(8X,'NO SOFT ON TOP SOLUTIONS') TTI 2500
    GO TO 90 TTI 2510
    36. CONTINUE
        PRINT 83,AAS2V,AAP2V
        PRINT 84,KNT,KNT
        PRINT 86,BAS2V,BAP2V
    86 FORMAT (8X,'SOFT ON TOP
        PRINT 87,CNT,CNT
    87 FORMAT (8X,1POINTS, 158,13,T6
        GO TO 90 TTI 2590
35 CONTINUE
        PRINT }8
88 FORMAT{8X, 'NO STIFF ON TOP SOLUTIONS')
    PRINT 86,BAS2V,BAP2V
    PRINT 87,CNT,CNT
90 CONTINUE
    PRINT 91
91 FORMAT(/10X,"WI DEFLECTION AT GEOPHONE 1")
    PRINT }9
9 2 \text { FORMAT( 10X,W2 DEFLECTION AT GEOPHONE 2')}
    DEFLECTION AT GEOPHONE 2')
    PRINT }9
93 FORMAT\ 10X,'W3 DEFLECTION AT GEOPHONE 3!')
    PRINT }9
94 FORMAT (10X.'H4 DEFLECTION AT GEOPHONE 4') TTI 2730
    PRINT }9
95 FORMAT 10X,W5 DEFLECTION AT GEOPHONE 5!)
SURFACE GURVATURE INDEX| W1 MIN^
    *)
    * 'US W2): )
        PRINT }9
    ELASTIC MODULUS OF THE SUBGRADE FRO', TTI 2800
    * 'M W1,W2,W3,W4,& W5'1 TTI 2810
    PRINT 98,WH,W4,a WS!
98 FORMATI 1OX,'EP ELASTIC MODULUS DF THE PAVEMENT FRD', TTI 2830
    * 'M W1,W2,W3,W4,& W5'J
        GO TO (100,200,300) , ISW
100 PRINT }9
100 PRINT 99 TTI 2860
    99 FORMAT (10x,'****** IN CASES WITH ALTERNATES, RMSES OF THE SOFT AND TTI 2870
        *STIFF ON TOP',/,16X,'SOLUTIONS ARE DIFFERENT AT A 10 PERCENT LEVELTTI 2880
        * OF SIGNIFICANCE') TTI }289
        GO TO 300 TTI 2900
200 PRINT 101 TTI 2910
101 FORMAT(10X,'***** IN CASES WITH ALTERNATES,RMSES ARE NOT SIGNIFICATTI 2920
    *NTLY DIFFERENT') TTI 2930
300 CONTINUE TTI 2940
    GO TO 10 TTI 2950
1000 CONTINUE TTI 2960
    END TTI 2970
TTI 2970
```

```
    SUBROUTINE EMPI(W1,W2,W3,W4,W5,H,E1,E2,TEMP,E1L,E21,TEMPO) FMPI 10
    IMPLICIT REAL*B(A-H,O-Z)
    OIMENSION RLOG(30),RATIO(30),X(201,RMSE(30),E{20) EMPI 30
    DIMENSION RAT1(30),RAT2(30), RAT3(30)
    DIMENSION R(5),W(5)
    COMMON /A/ R,W
    REAL*8 MSE,LRMSE
    N=5
    R(1) = 10.0
    R(2) = 15.620499
    R(3) = 26.0
    R(4) = 37.363083
    R(5) = 49.030603
    W(1)=W1
    W(2)=W2
    W(3)=W3
    W(4)=W4
    W(5)=W5
    DLTA = . 5
    RLOG(1)= -2.5
    00 1 K=2,21
1 RLOG(K) = RLOG(K-1) + DLTA
    DO 2 J=1,21
    RATIO(J) = 10**(RLOG(J))
    RATIOL = RATIO(J)
    DO 3 I=1,N
    EX=2.*H*((|2.+RATIO1)/3.)**0.33333333)
    EXSQ=EX*EX
    XL=DSQRT(R(I)*R(I)+EXSQ)
    XL3=XL*XL*XL
    XL5=XL*XL*XL*XL*XL
    XTWO=(1./XLJ+(EXSQ/(2.*XL3))+((3.*EXSQ*EXSQ)/(2.*XL5))
3 X(I)=(1./R(I))+(RATIOI-1.)*XTWO
    SMXW=0.0
    SMXSQ=0.0
    SME SQ=0.0
    DO 4 I=1,N
    SMXW=SMXW+X(I)*W(I)
4 SMXSQ=SMXSQ+X(I)*X(I)
    B=SMXW/SMXSQ
    DO 5 1=1,N
    E(I)=W(I)-(B*X(I)
5 SMESQ=SMESQ+E\I)*EII|
    MSE=SMESQ/N
    RMSE(J)=DSORT(MSE)
    LRMSE = DLOG1O(RMSE(J))
2 continue
    K=20
    TEMP1 = RMSE(1)
    TEMP2 = RMSE(1)
```

```
    TEMP3 = RMSE{1) EMPI 510
    I SUB1 = 1
    1 SUB2 = 1
    1 SUB3 = 1
    DO 8 L=2,K
    IF(RMSE(L).GT. TEMP1I GO TO 6
    TEMP3 = TEMP2
    ISUB3 = ISUB2
    TEMP2 = TEMP1
    ISUB2 = ISUB1
    TEMP1 = RMSE(L)
    ISUBL = L
    GO TO 8
    6 \text { CONTINUE}
    IF(RMSE(L) .GT. TEMPZI GO TO 7
    TEMP3 = TEMP2
    ISU83 = ISUB2
    TEMP2 = RMSE(L)
    ISU82 = L
    GO TO 8
7 Continue
    IF (RMSE(L) .GT. TEMP3) GO TO 8
    TEMP3 = RMSE(L)
    ISUB3 = L
    8 CONTINUE
    TX1 = RLOGIISUBI - 1)
    TX2 = RLOG{ISUB2 - 1)
    TX3=RLOG(1 SUB 3-1)
    TX11 = TX1 + 1.0
    TX21 = TX2 + 1.0
    TX31 = TX3 + 1.0
    TEST FOR MINIMUN AT TX2
    JRI = ISUB2 - ISUBI
    JR = IABS(JR1)
    IF(JR .EQ. 1) GO TO 99
    FIND MINIMUNS FOR TXI & TX2
    NOI = 11
    CALL FIBO(NOI,TX1,TX11,RLOG1,RMLOG,H)
    NOI = 11
    CALL FIBO(NOI,TX2,TX21,RLOGO,RMLOGO,H)
    TEMP = 10**RMLOG
    TEMPO = 10**RMLOGO
    CALL ANS(RLOGI,E1,E2,H)
    CALL ANS(RLOGO,E1l,E2l,H)
    GO TO 70
    99 CONTINUE
    NO MINIMUN AT ISUBZ
    TEST FOR MINIMUN AT ISUB3
    JW1 = ISUB3 - ISUB1
    JW = IABS(JHI)
```

EMPI 510
EMPI 520
EMP I 530
EMPI 540
EMPI 550
EMPI 560
EMP $1-570$
EMPI 580
EMPI 590
EMPI 600
EMPI 610
EMPI 620
EMPI 630
EMPI 640
EMPI 650
EMPI 660
EMPI 670
EMPI 680
EMPI 690
EMPI 700
EMPI 710
EMPI 720
EMPI 730
EMPI 740
EMPI 750
EMPI 760
EMPI 770
EMPI 780
EMPI 790
EMPI 800
EMPI 810
EMP 1820
EMPI 830
EMPI 840
EMPI 850
EMPI 860
EMPI 870
EMPI 880
EMPI 890
EMP I 900
EMPI 910
EMPI 920
EMPI 930
EMPI 940
EMPI 950
EMPI 960
EMPI 970
EMPI 980
EMPI 990
EMPI 1000

	JWT1 $=$ ISUB3 - ISUB2	EMPI 1010
	JWT = IABS(JWTI)	EMP11020
	IFIJW.EQ. 11 GO TO 98	EMPI 1030
	IFIJWT .EQ. 1) GO ro 98	EMP I1040
C	MINIMUN AT ISUBI AND ISUB3	EMP I 1050
	NOI $=11$	EMPI 1060
	CALL FIBO(NOT, TX1, TX11,RLOGI,RMLOG, H)	EMP I 1070
	NO1 = 11	EMPI 1080
	CALL FIBOINOI, TX3, TX 31,RLOGO,RMLOGO, H)	EMP I 1090
	TEMP $=10 * *$ RMLOG	EMPI 1100
	TEMPO $=10 * *$ RMLOGO	EMPIII 10
	CALL ANS (RLOG1,E1, E2, H)	EMPI1120
	CALL ANS (RLOGO,E11,E21,H)	EMPI 1130
	GO TO 70	EMP I 1140
98	continue	EMPI 1150
C	O LY ONE distinct minimun	EMPI 1160
	NOI $=11$	EMPI 1170
	CALL FIBO(NOI, TXI, TXII,RLOG1,RMLOG,H)	EMPI1180
	TEMP = 10**RMLOG	EMP I 1190
	CALL ANS(RLOGI,E1,E2,H)	EMP 11200
	E11 $=99999$	EMPI1210
	E21 $=99999$	EMPI 1220
	TEMPO $=99999$	EMPI 1230
70	continue	EMPI 1240
	RETURN	EMPI 1250
	END	EMP 11260

		FIBO	10
IMPLICIT REAL*8(A-H, $\mathrm{O}-\mathrm{Z})$ DIMENSION FIB(20)		FIBC	20
		FIBO	30
		FIBO	40
		Fibo	50
*2584.000,4181.000,6765.000,10946.000)		FIBO	60
DX $=(\times 2-X 1) / F I B(N)$		FIBO	70
XL $=\mathrm{XI}_{1}$		FIBO	80
$X R=X 2$		FIBD	90
$N=N-1$		FIBO	100
	$X=X L+F I B(N) * D X$	FIBO	110
CALL FUNC ($X, V \mathrm{R}, \mathrm{H}$)		FIBO	120
1	$\mathrm{N}=\mathrm{N}-1$	FIBO	130
	$X=X L+F I B(N) * D X$	FIBO	140
	CALL FUNC (X,VL, H)	FIBO	150
	IF(N.EQ.1) GO TO 4	FIBO	160
	IF(VL.GT.VR) GO TO 3	FIBO	170
	$X R=X R-F I B(N) * D X ~$	Fibo	180
	$V R=V L$	FIBO	190
	GO TO 1	Fibo	200
	$X_{L}=X L T+F I B(N) * D X$ $V L=V R$	FIBO	210
	$V L=V R$	FIBO	20
	$\mathrm{N}=\mathrm{N}-1$	FIBO	230
	$\mathrm{X}=\mathrm{XR}-\mathrm{FIB}(N): * D \mathrm{D}$	F1B0	240
	CALL FUNC (X,VR,H)	F180	250
	GO TO 2	FIBO	260
	[F(VL.GT.VR) GO TO 7	FIBO	270
	[F\{XL.EQ.X1) GO TO 6	F180	280
	$X=X L+D X$ $Y=V i$	FIBO	290
	$Y=V L$ RETURN	FIBO	300
	RETURN	FIBO	310
	CALL FUNC(XI,V,H)	FI80	320
	IF (V.GT.VL) GO TO 5	Fi80	330
	$x=\mathrm{X} 1$	FIBO	340
	$Y=V$	FIBO	350
	RETURN	FIBO	360
	IF(XR.EQ.X2) GO TO 9	FIBO	370
	$X=X R-D X$ $Y=V R$	FIBO	380
	$Y=V R$	FIBO	390
	RETURN	FIBO	400
	CALL FUNC(X2,V,H)	Fibo	410
	IF(V.GT.VR) GO TO 8	FI80	420
	$x=X 2$	FIBO	430
	$Y=V$	FIBO	440
	RETURN	FIBO	450
	END	FIBO	

```
    SUBROUTINE FUNC(PLOGI,RMLOG,H)
    IMPLICIT REAL*8(A-H,O-Z)
    REAL*8 MSE
    DIMENSION WHAT(20),E(20),X(20),R(5),W(5)
    COMMON /A/ R,H
    N=5
    RATIOI=10**(RLOGI)
    DO 3 I=1,N
    EX=2.*H*(((2.+RATIO1)/3.)***0.33333333)
    EXSQ=EX*EX
    XL=DSORT(R(I)*R(II)+EXSQ)
    XL3=XL*XL*XL
    XL5=XL*XL*XL*XL**XL
    XTWO=(1./XL)+(EXSQ/(2.*XL3))+((3.*EXSQ*EXSQ)/(2.*X(5))
3 X(I)=(1./R(I))+(RATIOI-1.)*XTWO
    SMXW=0.0
    SMXSQ=0.0
    SMESQ=0.0
    DO 4 I = 1,N
    SMXW=SMXH+X(I)*W(I)
SMXSQ=SMXSQ+X(1)*X(1)
    B=SMXH/SMXSQ
    DO }5\textrm{I}=1,
    E(I)=W(I)-(B*X(I))
5 SMESQ=SMESQ+E(I)*EII)
MSE=SMESQ/N
RMSE = OSQRT(MSE)
RMLIGG = DLOGIO(RMSE)
RETURN
END
```

FUNC 10
FUNC 20
FUNC 30
FUNC 40
FUNC 50
FUNC 60
FUNC 70
FUNC 80
FUNC 90
FUNC 100
FUNC 110
FUNC 120
FUNC 130
FUNC 140
FUNC 150
FUNC 160
FUNC 170
FUNC 180
FUNC 190
FUNC 200
FUNC 210
FUNC 220
FUNC 230
FUNC 240
FUNC 250
FUNC 260
FUNC 270
FUNC 280
FUNC 290
FUNC 300

```
    SUBROUTINE ANS(RLOG1,E1,E2,H) ANSI 10
    IMPLICIT REAL*8(A-H,O-Z)
    DIMENSION RAT1(30),WHAT(20),E(20),X(20) ANSI 30
    DIMENSION R(5),W(5) ANSI
    COMMON /A/ R,W
    N = 5
    ANSI 50
    DO 27 [=1,N
    ANS! }6
    NAT ANSI }7
    RATIO1 = 10**RLOG1
    ANSI
    EX=2**H*({(2.+RATIO1)/3.)**0.3333333) ANS{ 90
    EXSQ = EX*EX
    XL = DSQRT(R(I)*R(I)+EXSQ)
    XL3 =XL*XL*XL
    XL5=XL*XL*XL*XL*XL
    XTWO={1./XL)+(EXSQ/(2.*XL3))+((3.*EXSQ*EXSQ)/(2.*XL5))
27 X(I)=(1./R(I))+(RATIO1 -1.)*XTWO
    SMXW=0.0
    SMXSQ=0.0
    SMESQ=0.0
    DO 28 I=1,N
    SMXiN=SMXW+X(I)*W(I)
28 SMXSQ=SMXSQ+X(I)*X(I)
    B=SMXW/SMXSQ
    DO 29 I=1,N
    WHAT(I)= 8*X(I)
29 E(II=W(I)-WHAT(I)
    E1=238.73241 *(1./B)
    E2 = E1/RATIO1
    RETURN
    END
    ANSI 100
    ANSI }11
    ANS! }12
    ANSI }13
    ANSI 140
    ANS: }15
    ANSI }16
    ANSS 170
    ANS( }18
    ANS! }19
    ANS( }20
    ANS! 210
    ANS! 220
    ANSI 230
    ANSI 240
    ANSI 250
    ANSI 270
ANS! 280
ANS! 290
```

```
    SUBROUTINE VARI(RMSE,RMSEI,CNT,KNT,ISWI VARI 10
    IMPLICIT REAL*8(A-H,O-Z) VAR
    OIMENSION SUM(50),SSQ(50),RMSE(200),RMSEI(200) VARI 30
    INTEGER CNT
    VARI }4
    SSO(L)=0.0
1 SUM(L) = 0.0
    KSET = 1
    OO 11 I=1,KNT
    VARI }5
    VARI }6
    VARI }7
    M, (SUMSET) + RMSE(I)
    SUM(KSET) = SUM(KSET) + RMSE(I) VARI 100
    SSQ(KSET) = SSQ(KSET) + (RMSE(I)**2) VARI 110
11 CONTINUE
    KSET = KSET + 1
    DO 2 I=1,CNT
    SUM(KSET) = SUM(KSET) + RMSEI(Id
    SSQ(KSET) = SSO(KSET) + (RMSEL(I)**2)
2 CONTINUE
    TSUM = SUM(1) + SUM(2)
    TSSQ = SSQ(1) + SSQ(2)
    N = KNTT + CNT
    TSS = TSSQ - ((TSUM**2.)/N)
    SSQSET =((SUM(1)**2.)/KNT)+((SUM(2)**2.1/CNT)
    SSBS = SSQSET - ((TSUM**2.1/N)
    SSWS = TSS - SSBS
    IDFWS = N - KSET
    IDFBS = KSET - 1
    AMSBS = SSBS/IDFBS
    AMSWS = SSWS/IOFWS
    F = AMSBS/AMSWS
    CALL SIGNIF(F,IDFWS,ISW)
    RETURN
    END
VARI }31
VARI 320
```

```
        SUBROUTINE SIGNIF(F,IDFWS,ISW) SIGN 10
        IMPLICIT REAL*8(A-H,D-Z) SIGN 2O
        DIMENSION FDIST{30)
        SIGN }3
        DATA FDIST/39.86400,8.526300,5.538300,4.544800,4.060400, SIGN 40
        *3.7760DO,3.5894D0,3.457900,3.360300,3.2850D0,3.2252D0,3.176500, SIGN 50
        *3.1362D0,3.102200,3.0732D0,3.048100,3.026200,3.00700,2.989900, SIGN 60
        *2.974700,2.960900,2.948600,2.9374D0,2.9271D0,2.917700.2.9091DO, SIGN 70
        *2.9012DO,2.893900,2.887100,2.8807D0/ SIGN 80
        ISW = 0
        SIGN 90
IF(IDFWS .GE.31) GO TO 2
IF(F .GE. FDIST(IDFWS)) ISW = 1
        RETURN
2 IF(IDFWS .GE. 40) GO TO 3
IF(F .GE. 2.8807) ISW = 1
    RETURN
3 IF(IDFWS.GE.60) GOTO 4
    IF(F .GE. 2.8354) ISW = 1
RETURN
4 IF(IDFWS .GE. 120) GO TO 5
IF(F.GE. 2.7914) ISW = 1
    RETURN
5 IF(F.GE. 2.7478) ISW = 1
RETURN
END
SIGN }10
SIGN }12
SIGN }13
SIGN 140
SIGN }15
SIGN 150
SIGN }17
SIGN 180
SIGN }19
SIGN 200
SIGN 210
SIGN 220
SIGN }23
SIGN 240
```


[^0]: Table 2a: Computer print-out for Section 3 :

