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IMPLEMENTATION STATEMENT

This study has developed a methodology for evaluating the structural adequacy of

routes for permitting superheavy load moves. Researchers recommend that the Texas

Department of Transportation (TxDOT) implement the procedure. Texas Transportation

Institute (TTI) can assist in this implementation effort, particularly in training TxXDOT

engineers in the proper use of the structural evaluation procedure. The study has also

shown the need for additional research in the following areas to facilitate the evaluation of

failure potential under superheavy loads:

1)

2)

The accuracy of the structural evaluation depends strongly on the estimates of the
cohesion of the pavement materials at the time of the superheavy load move.
Methods do exist to estimate the cohesion of pavement materials through non-
destructive testing techniques such as ground penetrating radar, coupled with data
on the moisture-suction curves of the pavement materials in question. Indeed,
research efforts made in this project have led to the development of an alternative
method for estimating cohesion in the absence of triaxial test data. It is
recommended that additional research be conducted to test and calibrate the
method developed in this study using a more extensive database of material
strength parameters. This research should also investigate relationships between
cohesion and material stiffness.

The present study has shown that, of the three non-linear material parameters (K,
K,, and K;), the Mohr-Coulomb yield function is most significantly affected by K.
This factor varies not only with the material type but also with the prevailing
environmental conditions. It is recommended that further research be conducted to
investigate the possibility of determining K, through non-destructive testing such
as FWD testing.






DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the
facts and the accuracy of the data presented herein. The contents do not necessarily reflect
the official views or policies of the Texas Department of Transportation (TXDOT) or the
Federal Highway Administration (FHWA). This report does not constitute a standard,
specification, or regulation, nor is it intended for construction, bidding, or permit
purposes. The engineer in charge of the project was Dr. Emmanuel G. Fernando,

P.E. # 69614.
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SUMMARY

Recent years have seen an increasing number of superheavy load moves over the Texas
State Highway system. Prior to this research project, TxDOT did not have a procedure for
evaluating the damage potential under superheavy loads. The analysis of pavement
response under superheavy loads concerns the potential for rapid, load-induced failure
rather than long-term failure induced by fatigue. In this study, researchers developed a
procedure to evaluate the pavement response under superheavy loads and the potential for
pavement damage using the Mohr-Coulomb failure criterion.

Researchers developed a non-linear finite element model to study the sensitivity of the
Mohr-Coulomb yield function to changes in the non-linear material parameters K, K,, and
K, as well as to changes in the strength parameters. Of the non-linear parameters, K, was
found to have the most pronounced influence on the yield function. Of the strength
parameters, cohesion was found to have a consistent and pronounced effect on the yield
function. Two simplified response models were compared with the finite element model.
These models were a traditional linear layered elastic program and a non-linear layered
elastic version of the finite element program. The latter model was found to provide
reasonable comparisons with the more complex finite element model. The effects of
different load configurations on the yield function were studied using the non-linear
layered elastic program. It was found that simplified wheel load configurations lead to
yield function values that are very similar to more complex load configurations.

Based on the results of the above investigations, researchers developed a two-staged
procedure for routine evaluation of the potential for pavement damage under superheavy
loads. The first stage analysis makes use of charts that provide the user with the maximum
wheel load that can be sustained by a given pavement. The second stage analysis is more
accurate and makes use of a computer program in which more detailed information such as
backcalculated moduli can be used. This report documents the development of the

procedure for permitting superheavy load moves.






CHAPTER 1
INTRODUCTION

GENERAL

An increasing number of superheavy loads are being moved over the Texas State
Highway System. By definition, these loads have gross vehicle weights in excess of 1112
kN. In the past, loads in excess of 8900 kN have been moved. Most superheavy load
transport vehicles are equipped with multiple axies to increase load distribution. However,
the total load on a single axle is often close to or more than 500 kN.

The analysis of damage potential under superheavy loads differs from routine
pavement design methods, mainly in the way that failure is defined. To prevent structural
failure under normal loading conditions, the designer is primarily concerned with
preventing long term accumulated strains and fatigue, which manifest themselves in the
form of rutting and cracking (1,2,3). However, in the analysis of pavements under
superheavy loads, the concern is with the magnitude of the wheel loads rather than with the
number of load repetitions. Load repetitions in the case of superheavy load vehicles are
not likely to exceed 30 or 40, even when two vehicles are moved in short succession.
Thus, the expected mode of failure is a more rapid load-induced failure resulting from a
shear stress which exceeds the shear strength afforded by the material's internal frictional
resistance and cohesion (4). ‘

The problem of predicting the likelihood of failure under a superheavy load can be
solved by determining the maximum allowable wheel load that can be sustained by a given
pavement structure. To do this, the stresses invoked by the applied load as well as the
material strength parameters need to be known. Laboratory testing normally determines
material parameters, while a mechanistic model of the pavement stx;ucmre and the applied
load determines stresses (5,6,7,8). In order to compare the stress invoked by the applied
load to the material strength, a yield criterion, such as the well known Mohr-Coulomb
criterion, is typically used (9,10).



Apart from requiring a different method of analysis to determine failure potential,
superheavy load vehicles are equipped with multiple wheels. On some superheavy load
transport vehicles, 20 axles, each with as many as 12 wheels, are used. The three
distinguishing features of a superheavy load analysis can, therefore, be summarized as: (1)
a damage potential analysis method that differs from that used in routine pavement design;
(2) abnormally high axle loads; and (3) the need to account for complex load
configurations that make use of multiple wheel and axle assemblies, and specially designed
tires with tire pressures approaching 966 kPa.

PROBLEM STATEMENT

During the early to middle 1990s, the Texas Department of Transportation (TxDOT)
received between 75 to 100 superheavy load permit applications per year. Such an
application is typically accompanied by diagrams of the proposed route as well as of the
load configuration. Before a permit can be issued, TxXDOT needs to determine whether the
proposed route is structurally adequate to sustain the superheavy load. Prior to this
research project, TXDOT did not have a procedure for assessing the potential for pavement
damage prior to a superheavy load move. A definite need, therefore, existed to develop a
methodology which could determine the structural adequacy of proposed superheavy load
routes on a routine basis. '

It is immediately evident from the relatively large number of load permit applications
received every year that any procedure for analyzing the structural adequacy of superheavy
load routes has to be as simple and easy to implement as possible. This requirement of
simplicity and ease of implementation stands in direct contrast to the relatively complex
behavior of pavement materials and the unusual load conﬁgurationé imposed by superheavy
load vehicles. While pavement response can be modeled fairly accurately through the use
of finite element models that take account material non-linearity, such programs may be
difficult to implement owing to their relatively complex formulation (1,7,8). Despite its
shortcomings, the muitilayered elastic approach has been used with success in predicting
pavement response under normal traffic conditions (11,12,13). This approach has also
been implemented in conjunction with nondestructive testing apparatus to backcalculate
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pavement layer properties, a factor that makes it eminently suitable for routine applications
(14,15). However, the validity of linear layered elastic programs in predicting pavement
response under superheavy loads needs to be determined. Researchers hypothesize that the
effects of non-linear behavior are likely to be amplified under the heavy axle loads.

Should traditional linear layered elastic procedures prove to be inaccurate, then a different
methodology needs to be developed based on more accurate modeling procedures, such as
the finite element method.

A problem also exists in routinely predicting pavement response under multiple
wheel assemblies such as those used by superheavy load vehicles. Modeling multiple
wheel assemblies on a routine basis is likely to be a complex and time consuming process.
The possibility of simplifying complex load assemblies in the modeling process needs to be
investigated. The effect of such simplification on the predicted pavement response is not
known and needs to be determined.

RESEARCH OBJECTIVES
- The general objective of this research is to develop a methodology whereby
pavement engineers can assess potential damage prior to a superheavy load being moved
over a pavement. It is vital that the methodology utilize those resources that are already
available to the Texas Department of Transportation. Specific objeétives of the research
are as follows:
1)  to investigate the factors affecting the bearing capacity of pavement materials under
loading;
2)  to investigate the semsitivity of the chosen yield criterion to changes in the predicted
- stress state and material strength parameters;
3)  to investigate and compare different models used for evaluating the response of
pavement structures under loading;
4) to investigate the effect of different load configurations on the predicted pavement
response; and
5)  to develop an evaluation procedure whereby the adequacy of a given pavement
structure for sustaining a superheavy load can be determined prior to the move.
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SCOPE OF RESEARCH REPORT

The research conducted in this TxDOT project is documented in eight chapters.
Chapter I is the introductory chapter. Chapter II presents the research approach followed
in developing the pavement structural evaluation procedure for permtnng superheavy load
moves. Chapter III describes the development of the finite element response model and its
verification through the use of laboratory data. This finite element model was used in
subsequent analysis as a benchmark against which simpler response models were
compared. All important aspects of the finite element model are discussed, including the
stress dependent resilient modulus formulation and the stress dependent Poisson's ratio
formulation. Two different methods of modeling a stress dependent Poisson's ratio are
discussed. Laboratory resuits are presented and discussed together with resuits calculated
by means of the finite element response model. Comparisons are made between the
measured and calculated results.

Chapter IV documents the results of a sensitivity analysis of the Mohr-Coulomb
yield criterion. In this analysis, all the elements needed to predict ihe point of yield were
varied to determine the effect each has on the predicted yield point, and to determine which
stress and material parameters have the most pronounced effect on the predicted yield
point.

In Chapter V, three different response models are compared. Because the purpose of
this study is primarily concerned with the prediction of yield under superheavy loads, the
parameter used to compare and evaluate the different response models was the Mohr-
Coulomb yield function value. The three response models compared were: (1) the finite
element response model described in Chapter III; (2) a traditional linear layered elastic
model; and (3) a non-linear version of a layered elastic program developed specifically for
the purposes of this research.

Chapter VI documents the results of the analysis to determine the effect load
configuration has on predicted pavement response. As before, the parameter of interest
was the Mohr-Coulomb yield function value. The consequences of using a simplified load
configuration as opposed to a more complex and realistic load configuration are studied,
and the results are documented. Three different load configurations are compared, and the
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effect each has on different pavement structures are studied. An attempt is made to explain
the differences in the predicted yield function values by studying the stress tensor at a point
as predicted by each load configuration.

In Chapter VII, the findings of the sensitivity analyses are synthesized into a
methodology for assessing the structural adequacy of superheavy load routes on a routine
basis. This methodology is developed with due consideration to the practical guidelines
established for this study, identified in Chapter II. Alternative methods for determining
whether a proposed route can carry a given load are proposed. The methods differ with
respect to the quantity and quality of information required to perform the analysis and,
therefore, some methods are of necessity more conservative than others in their
predictions. Chapter VIII provides a summary with conclusions.

In addition to the eight chapters outlined above, there are six appendices. Appendix
A summarizes the results of a literature survey on different constitutive models and yield
criteria that are applicable for superheavy load analysis. The survey of constitutive models
focuses on the theoretical premises underlying each model and discusses the advantages
and disadvantages of each model. Appendix B provides a derivation of the relationship
between the Poisson's ratio and the stress state. Appendix C contains photographs of the
laboratory testing performed to verify the response model described in Chapter ITI, and
Appendix D documents some of the results of the sensitivity analysis discussed in Chapter
IV. Since the concept of stress is important to understanding yield criteria and the
application of the Mohr-Coulomb yield function to the problem of evaluating superheavy
load routes, a review of stress concepts is presented in Appendix E. Principal stresses and
stress invariants are explained to provide the necessary background for using the Mohr-
Coulomb yield criterion to establish the potential for pavement damage under superheavy
loads. Finally, a glossary of selected technical terms used in this report is presented in
Appendix F. Many of the technical terms are defined in sufficient detail to provide a
handy reference to users of the superheavy load analysis procedure documented in this

report.






CHAPTER I
RESEARCH APPROACH

RESEARCHERS' PERSPECTIVE OF THE PROBLEM

When viewed from a general perspective, the movement of a superheavy load is no
different from most geotechnical engineering problems in that it can be reduced to an
applied load as well as the response of the structure to that load. The load in this case is a
superheavy load moving vehicle, and the pavement response depends on the properties of
the pavement structure in question. Almost all geotechnical engineering problems require
a determination of the stresses and strains that develop under a given set of loading
conditions, as well as a prediction of the reaction of the structure to those stresses. Chen
and Baladi (16) point out that such a problem is typically one that requires a two stage
solution: first, the forces that act on the structure have to be defined, and second, the
reactions of the structure to the imposed loads have to be evaluated. In many engineering
applications, the suitability of a structure for operating under predetermined loading
conditions is based primarily on whether its response falls within an acceptable range.
Both steps noted above fall within the realm of continuum mechanics (16).

Typically, the determination of the force that acts on the structure will require a
consideration of the basic laws of mechanics, such as the conservation of mass, energy,
and momentum (17). However, it is clear that even structures with the same geometry to
which the same external forces are applied will respond differently if their internal
properties are not the same. Therefore, in addition to considering the laws of mechanics,
it is necessary to consider the internal properties of the materials used in the structure
before the response of that material to a given loading condition can be predicted.

The response of a material to a fixed loading condition is defined by the constitutive
equations, or laws, that apply to that material. Desai and Siriwardane (17) called
constitutive laws the relationship between cause and effect for a specific material.



Figure 2.1 illustrates the use of constitutive equations in continuum mechanics. It also

represents the researchers' perspective on how the analysis of supefheavy loads can be
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Figure 2.1. The Role of Constitutive Laws in Determining Material Response
(From (17)).

accomplished. The continuous body in the figure represents a given pavement which is
subjected to an external force (the superheavy load). The induced pavement response to
the external force will determine whether the given pavement structure is adequate to
sustain the imposed load. It is obvious, therefore, that a model for predicting pavement
response under superheavy loads is needed. In this regard, several models have been used
to predict the behavior of geotechnical materials. Appendix A presents a literature survey
of available constitutive models and yield criteria that may be used to predict pavement
response under vehicle loads. The interested reader is encouraged to go over the literature
survey for a detailed discussion of the applicable models. Some of the more important

observations from the literature review are:



The basic constitutive models such as the Cauchy linear elastic model and the more
complex non-linear elastic models differ in their ability to accurately model the
response of granular materials. While the more complex models offer greater
accuracy in terms of predicted response, they are difficult to implement owing to the
large number of constants needed in the constitutive model.

The response of a material to a load can be divided into two phases or domains,
namely an elastic and a plastic phase. The boundary between these zones is not
always clearly defined. This is particularly true in the case of loose granular
materials. A yield criterion can be used to predict when the response will be elastic
and when it is likely to become plastic. ‘

Several yield criteria have been proposed. The oldest and most well known of these
is the Mobr-Coulomb criterion. The other criteria reviewed are more suited to
applications where plastic response is important. However, all of these theories in
one way or another relate to the basic premise of the Mohr-Coulomb criterion that
resistance to failure depends on interparticle friction and internal cohesion.

In developing the superheavy load analysis procedure, the findings from the

literature review were considered in identifying and selecting the constitutive models and

yield criterion to use for evaluating pavement response under superheavy loads.

Additionally, researchers were guided by the following practical considerations:

1.

The structural evaluation procedure must accommodate the relatively large number
of permit requests received by TXDOT annually. In addition to the requirement for
accuracy in the response predictions, the procedure must be implementable to be
useful.

The objective in the permitting process is to prevent pavement damage. In those
cases where the structural assessment indicates potential pavement damage under a
specified superheavy load, alternative routes should be investigated, the vehicle
configuration modified, or temporary strengthening measures applied on the weak
portions of the proposed superheavy load route.



3. Where applicable, the structural evaluation procedure should utilize existing
capabilities within TxDOT.

For the first guideline noted above, researchers took the approach that an accurate
procedure for modeling the complex behavior of pavement materials is necessary during
the initial stage of development. This will provide a reference with which to evaluate
simpler models or to identify suitable simplifications that can be made based on the
sensitivity of predicted pavement response to the material input parameters of the reference
model.

The second guideline was used by researchers to define the scope of the pavement
response modeling. Since the objective of the permitting process is to prevent pavement
damage, the response modeling is limited to the elastic domain, and the primary concern is
to predict the occurrence of first yield, i.e., the stress level at which plastic deformations
will take place. From this standpoint, the response modeling is simplified since the post-
yield behavior is not of interest.

With respect to the third guideline, researchers developed a methodology which
accommodates the use of existing TxDOT capabilities in the structural evaluation
procedure. These include nondestructive testing using the Falling Weight Deflectometer
(FWD) to estimate insitu layer stiffnesses, and Ground Penetrating Radar (GPR) to
estimate layer thicknesses and moisture contents of the base and subgrade. In addition, the
Mohr-Coulomb yield criterion was selected for assessing the potential for pavement
damage during a given superheavy load move. This criterion is the basis of the Texas
Triaxial Class which TxXDOT engineers are familiar with. In fact, there is a standard test
method for determining the Mohr-Coulomb failure envelopes of granular and fine grained
soils from laboratory tests on molded soil specimens. Consequently, for reasons of
achieving consistency with current TxXDOT practice and its applicability to pavement
materials, the Mohr-Coulomb criterion has been implemented in the structural evaluation
procedure for superheavy loads.
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THE USE OF YIELD CRITERIA IN PAVEMENT ANALYSIS

The mechanistic design and analysis of pavements traditionally involves the
determination of a number of stress and strain parameters which are compared to some
empirically determined fatigue curve for the parameter under consideration (1,2). For the
asphalt layer, the strain at the bottom of the layer is used to predict the likelihood of
premature cracking or shallow rutting. This approach, widely referred to as the
"mechanistic-empirical” approach, is concerned with preventing excessive strains, which,
due to repeated loads over a long period of time, may lead to cracking and rutting. All of
the traditional methods are fatigue related and are used to design pavements on which
hundreds of thousands of standard axle loads are expected within the pavements' lifetime.
Ullidtz defines the bearing capacity of a pavement as (18): "The number of wheel
passages of a specified type that the pavement can support before it reaches an
unacceptable level of functional or structural distress."

The analysis of superheavy loads differs from conventional pavement analysis
methods in that a limited number of wheel loads are expected. Even when more than one
superheavy load is moved in short succession over the same pavement, the number of
wheel loads that are expected is unlikely to be more than forty. Table 2.1 shows some
statistics that were measured during the course of the study. In Table 2.1, the number of
units refer to the maximum number of units that were moved in short succession, i.e.,
within the space of one day.

It is evident, by looking at the total number of axle applications shown in Table 2.1,
that the analysis of superheavy loads does not involve long term fatigue, but rather a rapid
succession of higher than normal wheel loads. It should also be noted that, although some
of the maximum loads shown in Table 2.1 do not seem abnormally high, there can be as
many as twelve of these loads on any one axle.

It is thus clear that the analysis of superheavy loads is concerﬁed with a rapid load-
induced deformation rather than a long term settlement under repeated loads. As such, the
analysis of superheavy loads is related to the more traditional geotechnical analysis of yield
in granular media which involves a yield criterion. Applications of this approach to
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Table 2.1. Details of Ten Superheavy Loads Monitored During Study.

Date Moved Total Number
of Axles
12/08/92 Victoria, Texas 2 13 28.0
12/10/92 Victoria, Texas 1 18 33.0
02/21/93 Beaumont, Texas 2 23 38.1
03/14/93 Beaumont, Texas 2" 23 38.1
04/23/93 Beaumont, Texas 2 16 38.8
l 08/01/94 Freeport, Texas 2 22 47.4
" 08/22/94 Freeport, Texas 2 15 38.1
04/05/93 | Henderson, Texas 2 9 214
ﬂ 04/16/93 | Henderson, Texas 2" 9 27.0
04/21/93 | Henderson, Texas 2 15 28.1

* Tractor and trailer

the analysis of foundations and other geotechnical structures are easy to find in the
literature (see, for example (17), (19), (20), and (21)). The use of such yield criteria in
pavement analysis is less well reported due to the reasons stated above. The following
presents a survey of some of the cases where failure or yield criteria were used to predict

rapid deformation in pavement structures.

Previously Reported Uses of Failure Criteria in Pavement Analysis

Several researchers bave used some form of yield criteria to predict whether rapid
deformation of some pavement layers is likely to occur. Freeman and Carpenter (22) have
shown that situations exist where permanent deformation can occur in asphalt pavements
under a relatively small number of load repetitions. They used the ratio between the
octahedral shear stress and shear strength developed under loading to predict rapid
deformation in asphalt concrete layers. Ameri-Gaznon and Little (4,23) used the same
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criterion to predict rapidly developing permanent deformation in asphalt concrete
pavements.

The octahedral shear stress ratio, as used by Ameri-Gaznon and Little (4), is related
to the Mohr-Coulomb yield theory in that a shear stress is compared to a shear strength
which is dependent on the state of stress and the two material parameters, cohesion (c) and
angle of friction (¢). The octahedral shear stress can be expressed as (21):

c = |2 @Q.1)
3 2

where J, is the second deviatoric stress invariant, defined as:

1

J, = _6.[ (0,, = 0,,)* *+ (0,, - G,))° + (0,, - O ] + 0}, + 0o + O 2.2)
and o; are components of the stress tensor. The octahedral shear stress given by equation
2.1 is compared to the octahedral shear strength, which, for triaxial conditions (6, = 0,3),

is calculated as (4):

Toct-strength [‘5*‘_%%‘*@ [o,, sin(d) + ¢ cos($)] 2.3)
Where ¢ = angle of internal friction,
c =  cohesive strength, and
Toer = (1/3)(011 + Oxn + 033)

The ratio of octahedral shear strength to theoretical (predicted) shear stress is thus
used to predict whether rapid deformation of the asphalt layer is likely to take place. The
closer the ratio of octahedral shear strength to octahedral shear stress is to one, the more
likely the rapid development of plastic deformation. Perdomo and Button used the
octahedral strength/stress ratio to calculate the likelihood of plastic deformation taking
- place for different pavement types and different wheel configurations (24). By making
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contour plots of the octahedral shear strength to shear stress ratio, the critical stress points
within the asphalt surface were determined.

Based on their study, Perdomo and Button drew the following conclusion (24): for
all pavement and load conditions, there was a critical value of the resilient elastic modulus,
above which the shear stress ratio changed very little. This was attributed to the high
cohesive strength of the asphalt at higher moduli values. The likelihood of rapid plastic
deformations taking place was much higher for the cases where a low modulus value was

assigned to the asphalt.

Material Considerations

All of the researchers referred to above, in addition to invcsﬁgating the stresses that
develop under loading, concentrated a significant part of their research on determining
which material characteristics are conducive to sitations where rapid plastic deformations
develop under loading. Although all of this work was devoted to asphalt concrete
materials, it is important to note that, in many cases, the cause of failure (i.e., rapid plastic
deformations) can be attributed not to an excessive load but to material characteristics.
This observation also has significance with respect to the study of pavement response
under superheavy loads. It is conceivable that a pavement structure may seem adequate to
sustain a superheavy load if the material parameters used in the analysis are those which
are typical for a well designed and stable material. However, if one or more of the
pavement layer materials prove to be poorly designed or susceptible to rutting, then rapid
plastic deformations may occur. For this reason, the material parameters are vital
determinants in predicting the likelihood of failure under abnormal loading conditions.

Perdomo and Button noted that some of the situations which contribute substantially
to plastic deformations in asphalt concrete pavements are (24): excessive asphalt cement
content, excessive fine aggregate, and round shape and smooth texture in fine aggregate.
Clearly, these factors cannot be controlled when planning and analyzing the movement of a
superheavy load. However, it may be possible to investigate beforehand whether any of
these characteristics, which are substantial contributors to plastic deformation, are present
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in the pavement materials of the planned superheavy load route. The highway engineer
should then take this into account in the subsequent analysis.

SUMMARY AND CONCLUSIONS

In summary, the expected mode of failure under superheavy loads is a rapid, load-
induced shear failure as opposed to the long-term accumulation of permanent deformation
and fatigue due to repeated load applications. Thus, the evaluation of structural adequacy
under superbeavy loads is concerned with the potential for material yielding. Very little
work has been done in pavement engineering wherein yield criteria were used. Of the
studies reviewed, the Mohr-Coulomb yield criterion was used to predict the potential for
permanent deformation. In all cases, interest was centered around the asphalt concrete
layer.

Consequently, there is a need to conduct a broader investigation in developing a
procedure for permitting superbeavy load moves based on a yield criterion. This research
effort must accomplish the following:

1.  Evaluate the sensitivity of the predicted yield function to material parameters;

2. Evaluate different pavement response models and the effects of differences between
models on the predicted yield function;

3.  Establish the effects of different load configurations on the predicted yield function
considering the range in vehicle configurations used in superheavy load moves; and

4.  Integrate the research findings into a procedure for permitting superheavy load
moves that is both accurate and implementable.
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CHAPTER 11
DESCRIPTION AND VERIFICATION OF THE RESPONSE MODEL

BACKGROUND

The analysis and design of flexible pavements currently rely on two basic pavement
modeling techniques. The first is the layered elastic approach, which is a closed form
solution to the mathematical problem of determining a stress or displacement field within
an elastic half-space. Several computer programs such as BISAR (5) and WESLEA (6) are
popularly used by practitioners and researchers alike. The second approach is the finite
element technique, which is a numerical solution to the determination of a displacement
field within an elastic medium. The advantages and disadvantages associated with each
approach have been described by several researchers. Huang (1) made a fairly detailed
study of the results obtained by each method. In general, the layered elastic approach is an
extremely useful and easily implemented method of calculating the design parameters in a
pavement structure. The most important disadvantage of the layered elastic programs is
their inability to account for the effects of material non-linearity.

The finite element approach, by virtue of its formulation, is well suited to modeling
the nonlinear behavior of pavement materials. Several finite element programs, such as
ILLIPAVE (8) and MICHPAVE (25), are able to account for material nonlinearity. Not
many researchers have studied the effects the linearity assumption has on predictions of
pavement life, but it is generally assumed that the finite element solution is more accurate
in modeling pavémem behavior. Most finite element programs are not well suited for
routine applications and require knowledge of how to construct a finite element mesh,
which boundary conditions to use, and other criteria. ‘

The fundamental goal of this research is to develop a method by which road
authorities can routinely analyze superheavy load routes and predict whether permanent
deformation is likely to occur under the estimated load and material conditions. Naturally,
this methodology would peed to be easily implementable on a routine basis in field offices

17



with limited computer facilities. Recognizing that the finite element approach is more
accurate with respect to material characterization, but taking into account the difficulties
associated with its implementation, the following approach was adopted: first, a finite
element program was developed which was capable of accurately characterizing nonlinear
material behavior. The predictions made by using the finite elemeﬁt program were then
compared to those made by the simpler layered elastic approach. This comparison was
then used to investigate the effects that the assumption of linearity have on the calculated
yield function. Finally, these findings were used to construct a methodology by which
superheavy load moves can be analyzed on a routine basis. »

Chapter V describes the comparison of the different modeling procedures in detail.
In the following, a description of the finite element program developed for the purposes of
this study will be given. Also described here is the verification of the finite element model
by means of laboratory testing and simulation. Because the underlying theory of the finite
element method is well documented (19, 26, 27), it will not be reiterated here. Instead,
only those elements of the program that were specifically developed in the course of this
study will be described.

The program used in this study is a modified version of the program described by
Owen and Hinton (19). The program utilizes an axisymmetric formulation and makes use
of 8-node serendipity quadrilateral elements which assume a quadratic variation of the
displacement field within the element. The program described by Owen and Hinton was
modified to account for the material nonlinearity by making use of stress dependent moduli
and Poisson's ratios. The load is applied in an incremental fashion. For each load
increment and each element, the stress dependent moduli and Poisson's ratios are
calculated iteratively until convergence is achieved. This methodology is similar to that
used by researchers such as Uzan and Scullion (28).
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MODELING OF STRESS DEPENDENT RESILIENT MODULI1

If a standard load is applied to a well designed pavement, the resulting strain should
be nearly completely recoverable and proportional to the applied load. Although there is
some plastic deformation involved in each load application, this strain is normally small
and causes only long term deterioration of the pavement structure. Figure 3.1 shows the
typical stress-strain pattern that results from a repeated load test. The resilient modulus
(often denoted by M, or E,) is defined as the ratio of the repeated deviatoric stress to the
recoverable part of the axial strain (1).

Strain,

-~ -
g

-

Strain

- - -
S
-
-
-
-

A 4

Number of Load Applications
Figure 3.1. Typical Strains Resulting from a Repeated Load Test.

In response models that consider non-linear material behavior, the resilient modulus
has often been expressed as a function of the state of stress (29,30,31,32). Hicks and
Monismith (33) reported the resilient modulus - stress relationship to be of the following

form:
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E =k ()" 3.1)

Where Er is the resilient modulus; I, is the first stress invariant; and k; and k, are material
constants. The ILLIPAVE (8) and MICHPAVE (25) programs are examples of finite
element programs that include resilient moduli - stress relationship expressed by equation
3.1. Values for k; range between 1600 and 9000, while those of k, vary approximately
between 0.3 and 0.6 (1,29,34,35).

A more complete description of the stress dependency of the resilient modulus is
expressed by the following (32,36,37):

k k
)5t |5
E, = (k, Pa) (-——Pl ] ( I:"‘] | 3-2)
a a

Where I, is the first stress invariant, T, is the octahedral shear stress, k; to k; are material

constants, and Pa is the atmospheric pressure which is used to express the results in a
nondimensionalized form. The relationship expressed by equation 3.2 is often referred to
as the Universal Soil Model because it can be used to express the resilient characteristics of
both fine and coarse grained materials. Because of its generality, and because of the
relationship that it bears to the stress dependent Poisson's ratio, equation 3.2 was adopted
to describe the stress dependent resilient modulus in the response model described here.

MODELING OF STRESS DEPENDENT POISSON'S RATIO -

Analytical and Numerical Solutions for the Stress Condition - Poisson's Ratio
Relationship

For an elastic isotropic material, the relationship between stress and strain can be
described completely in terms of two independent constants, the elastic modulus and the
Poisson's ratio. In the case of pavement materials, the laboratory determined stress

dependent resilient modulus is normally used as an elastic modulus in modeling (1).
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Until recently, only the elastic modulus was considered to be stress dependent, with a
constant value being used for the Poisson's ratio. Various researchers have reported the
stress dependent nature of the Poisson's ratio of particulate materials (38,39,40). The
stress dependent nature of the Poisson's ratio can easily be surmised from Figure 3.2.
Figure 3.2 shows that the volume change with increasing strain or stress will depend on
the density of the material. The density or state of packing of the material will clearly be
dependent on the volumetric stress component, or overall confinement. Figure 3.2 also
shows that dense granular materials may also start to dilate at certain levels of stress or
strain.

Because of the assumption of an isotropic, homogeneous material, traditional layered
elastic programs can only accommodate materials with a Poisson's ratio below 0.5. For
most granular pavement materials, a fixed value for Poisson's ratio is normally used. This
value typically lies within the range of 0.30 to 0.40 (1). However, when a material
dilates, Poisson's ratios can be as high as 1.2 or higher (38,39). This tendency to dilate is
caused by the motion of particles that tend to roll over one another when a shearing stress
is applied to the material.

In the past, the Poisson's ratio and the dilational behavior of dense granular materials
has often been linked to the ratio of the major to minor principal stresses, also referred to
as the principal stress ratio (28,38). Most researchers agree that dense granular materials
start to dilate when the principal stress ratio exceeds a certain value. Frydman (40) has
shown that dense sands start to dilate at a constant principal stress ratio of 3.5. Most of
the relationships used to express the stress dependency of the Poisson's ratio are empirical
in nature. Allen (34) expressed the relationship between the Poisson’s ratio and the stress
state in terms of the principal stress ratio, which was used in a polynomiat form. In
Allen's study, various Poisson's ratio-principal stress ratio relationships were derived for
different qualities of granular materials. Figure 3.3 shows a plot of some of the
relationships derived by Allen (34).
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In recent years, some researchers have tried to determine a more theoretical basis for
relating the Poisson's ratio to the stress state. Chen and Saleeb (41), and Lade and Nelson
(42) derived a relationship between the Poisson's ratio and the resilient modulus based on a
thermodynamic constraint. Uzan (39) used a relationship between the resilient modulus
expression given by equation 3.2 and the thermodynamic constraints to derive an
expression that relates the stress state and the rate of change of the Poisson's ratio with a
changing stress state, to the Poisson's ratio. The derivation of this equation is based on the
principle of the conservation of energy and the path independence of the energy density
function, W. This procedure is described in some detail by Liu (43) and is repeated in
Appendix B for completeness. Based on the above mentioned energy considerations, the
following relationship between the Poisson's ratio and the stress state can be derived:

/ /

k k k.

20v 1 _ 125 5,158 5 (3.3)
3 a5, I, 4 3J, 3,
Where: v =  Poisson's ratio
k' = k2
k. .k, .k, =  material constants (the same as those used in equation 3.2)
I =  normalized first stress invariant

normalized second invariant of the deviatoric stress tensor

o
i

Equation 3.3 is a quasi-linear partial differential equation of the first order which can be
reduced to the solution of the following system of differential equations (39,44):

a @, 2
7 /
1l 2 kE, o2k E, 1k 3.4)
I! 3 \Y ——2~ + ——] o+ _..2.. R —
I 3J, I 3J,

The solutions of the above system of equations were obtained by Uzan (39). Two general

solutions are:
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Where B,(X,y) is the incomplete beta function, with v = 1 - 3],/

There are actually an infinite number of solutions for the system of equations given by
equation 3.4. Based on experimental resuits, Uzan (39) showed that u, and u, can be
related by means of two additional material constants k, and k;:

u, = k(u)* 3.7

The values of k, and ks need to be determined experimentally. Once k, and ks have been
determined, the Poisson's ratio can be determined in terms of the stress state and the
material constants, k, to k;, by using equations 3.5 to 3.7.

The stress dependent Poisson's ratio determination described above has been
successfully applied to a finite element program by Liu (43). However, it was found that
the analytical solution described in the above can be indeterminate for certain combinations
of I, to J,. It was, therefore, decided to include a numerical solution to the stress
dependent Poisson's ratio relationship given by the partial differential equation (3.3) in the
response model. The numerical solution would also eliminate the need for determining the
two additional matenal constants k, and ks, provided that the user can supply suitable
boundary conditions at the start of the solution process. The numerical solution to
equation 3.3 is determined by simple substitution of the backward difference formula
(45,46):

v YTV 3.9

aJ, k
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av _ v - vl (3.9)

oI, l
Where Lk = step sizes for increasing I, and J,, respectively, and
i,j = counter for I, and J, respectively

Where Vv, - v, denotes the difference between the Poisson's ratio for J, at j and j - 1
for a fixed value of I, represented by i. By setting equations 3.8 and 3.9 into equation 3.3
and after some algebraic manipulation, the iterative formula for determining the Poisson's

ratio for a given stress condition can be written as:

LA . (3.10)
2 1 5 k;
3k 1 x 1 3, g

Equation 3.10 is solved by choosing a step size for increasing I, and J, and then increasing
I, and J, from a fixed boundary condition for which the Poisson's ratio is known.

Sensitivity of the Numerical Solution to Different Boundary Conditions

The apalytical solution given by equations 3.5 through 3.7 includes the boundary
conditions needed for solving the partial differential equation 3.3. However, the numerical
solution of equation 3.3 proceeds from a given boundary condition. Although this requires
the user to estimate boundary conditions, it does provide some flexibility in choosing
suitable boundary conditions for different applications. In the following, an analysis is
described in which the purpose was to determine the sensitivity of the Poisson's ratio for
different boundary conditions.

As a way of verifying the response model described in this chapter, laboratory tests
were conducted on samples of crushed limestone and a uniformly graded sand. The test
procedure was similar to that of a normal triaxial test, but the tests were conducted in an
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air pressure chamber. Three axial and three lateral deformation measurements were taken
at 120° offsets while the load on the sample was monotonically increased. For each
material type, three tests were run, each at a different confining pressure. Confining
pressures of 13.8, 34.5, and 69 kPa (2, 5, and 10 psi) were used.

By making use of the lateral and axial strains measured in the laboratory, the
Poisson's ratio at different levels of stress could be determined. Figures 3.4 through 3.7
show the laboratory measured Poisson's ratio plotted versus the I, and J, (based on the
stresses applied to the laboratory sample) for the different material types. It should be
noted that some fluctuation of the Poisson’s ratio was originally noted at the beginning of
each test. At this stage of the loading procedure, the measured strains are very small
compared to the strains measured at higher load levels. This means that a small variation
in strain coupled with the error inherent in laboratory measuring procedures can lead to
large fluctuations in the measured Poisson's ratio at low stress levels. These fluctuations,
which were clearly visible in the measured data (especially in the case of the crushed
limestone), are not considered to be representative of actual field conditions. For this
reason, the first few data points were removed from the measured data. Naturally, this
complicates any attempt to gain insight into the behavior of the Poisson's ratio at low stress
levels, which could otherwise have provided a clear indication of boundary conditions.
However, valuable insight can still be gained from the consideration of the nature of the
relationship between stress and Poisson's ratio. For instance, Figures 3.5 and 3.7 clearly
show that the Poisson's ratio tends to increase from an initial low value as J, increases.
Figure 3.5 also shows that the Poisson's ratio tends to increase more rapidly at lower
levels of confinement. This is expected since higher confining pressures would naturally
tend to restrain lateral deformations. However, this was not observed in the case of the
crushed limestone where somewhat erratic trends were observed, namely that the highest
level of confinement showed a higher Poisson's ratio. The reason for this is not clear. A
possible explanation may be that some particle rearrangement had taken place when the
confining pressure was applied.
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The large particle size of crushed limestone makes accurate point measurements
somewhat difficult. It may be that a very different lateral deformation would be measured
at points that are closely situated on the laboratory sample, which makes it difficult to
generalize the behavior of the sample as a whole. This may be caused by slipping of the
sensors attached to the sample or by movement of the particles themselves. Perhaps the
trends observed in the case of the more finely grained sand material are more revealing in
this regard. Figures 3.4 and 3.5 show that the Poisson's ratio at a low level of stress tends
to assume low values between 0.0 and 0.2. Figure 3.5 shows that this initial Poisson's
ratio tends to be lower for higher levels of confinement. The Poisson's ratio then increases
as the shear component of the stress tensor (characterized by J,) increases. The rate at
which the Poisson's ratio tends to increase is dependent on the volumetric component of
the stress state (characterized by I,).

Figures 3.8 and 3.9 show the results of a simulation of the laboratory test conducted
on sand as described above. In this simulation, the mumerical solution procedure described
by equation 3.10 was used for solving equation 3.3. The boundary conditions used were
similar to those observed for sand, and are tabulated in Table 3.1.

The predicted Poisson's ratio is not only dependent on the stress state, but also on
the material constants. The non-linearity constants (k, to k;) for the sand have to be
estimated and, as a result, there should be some differences between the absolute values of
the Poisson's ratios shown in Figures 3.4 and 3.5, and those shown in Figures 3.8 and 3.9.
However, it is clear from Figures 3.8 and 3.9 that the observed relationship between stress
and the Poisson's ratio is captured reasonably well by equation 3.3.

The boundary conditions needed for the numerical solution should be supplied in a
form similar to that shown in Table 3.1. That is, a minimum Poisson's ratio at an initial
stress state needs to be supplied. As seen from Figures 3.4 through 3.7, the Poisson's
ratio is normally small (below 0.3) in the low stress range. The Poisson's ratio then
increases as J, increases. It can easily be visualized that the Poisson's ratio will be close to

zero as long as the deviatoric component of the stress state is also close to zero. For
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Table 3.1. Boundary Conditions Used in Simulated Laboratory Test.

Confining Pressure Initial Poisson's Ratio Initial Stress Condition

(kPa)

13.8 0.15 I, J, = 34.5

34.5 0.10 I, J, = 103.5 "
69.0 0.01 1,1, = 1725 ﬂ

applications in the analysis of pavement structures, therefore, a low initial Poisson's ratio
can be expected in the absence of loads.

The sensitivity of the Poisson's ratio to various boundary conditions is shown in
Figure 3.10. Figure 3.10 was obtained by using typical stress values that would result
from the application of a 44.5 kN single wheel load to a medium thick pavement structure.
Two sets of material coefficients, k, and k,, were used to represent a coarse and fine
grained material. Different boundary values for the Poisson's ratio were then assumed,
and the corresponding Poisson's ratios were then determined by using the numerical
solution procedure described by equation 3.10. The boundary conditions 1 to 3 referred to
in Figure 3.10 are given in Table 3.2. Figure 3.10 shows that the predicted Poisson's ratio
is fairly insensitive to changes in the initial condition, meaning that the Poisson's ratio does
not fluctuate much with small changes in the boundary conditions. ‘This was true for both
the fine-grained and coarse-grained material coefficients.

Comparison Between Analytical and Numerical Solutions for the Poisson's Ratio
Equation

In order to validate the more direct numerical approach to thé solution of equation
3.3, a comparison between the analytical and mumerical solution procedures was
undertaken. In order to accomplish this comparison, a data base of 67 randomly
generated values of I, and J,, and their normalized values was developed. Values for k,
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and ks, as well as for the boundary conditions, were then chosen. The values for k, and k,
were chosen to represent a coarse granular material. The numerical solution procedure
described by equation 3.10 was then used to determine the Poisson's ratio corresponding to
each of the generated values for I, and J,.

The determination of the analytical solution values proceeded as follows: first the
incomplete beta function values were calculated corresponding to the arguments dependent
on k; and k,, as shown in equation 3.6. Then, values for u; were determined from
equation 3.5 using the data base of I, and J, values. The k, and ks values that correspond
to the chosen set of boundary conditions were then determined. To do this, the first 20 of
the 67 data points were used together with their numerical solutions for the Poisson's ratio.
Using the numerically predicted Poisson's ratios, u, values corresponding to each of the 20
data points were determined. The u, and -u, values of these 20 points were then used in a
log-log regression to determine the values of k, and ks (-u, and u, are related by equation
3.7). Once the k, and k; values were determined, the -u, values of the remaining points
were used to predict u, values for each of the remaining points in the data base. The u,
values were then used together with the normalized values of I;, J,, ks, and k, in equation
3.6, which was then rearranged to solve for the Poisson's ratio. »

Once the analytical Poisson's ratios for each of the remaining data points were
calculated, a graphical comparison was made between the numerical and analytical
predictions for the Poisson's ratio. Figure 3.11 shows the numerically predicted Poisson's
ratios plotted versus the analytical predictions for the Poisson's ratio. Figure 3.12 shows
the data points and regression line that were used to determine k, and k;. Figure 3.11
shows a good correlation between the analytical and numerical solutions for the Poisson's
ratio. There is a slight loss in accuracy for the numerical procedure at higher values of the
Poisson's ratio. However, for the range of Poisson's ratios that can be expected under
most conditions (i.e., 0.3 to 1.0), the comparison seems acceptable.

The above procedure was repeated for a different set of boundary conditions, with

the same set of I, and J, values being used. This was done in order to ascertain whether
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the choice of boundary conditions has an effect on the correlation between the numerical
and analytical Poisson's ratio predictions. The new boundary conditions were again used
to find k, and k values that are compatible with the chosen boundafy conditions. Table
3.3 summarizes the initial Poisson's ratio values as well as the k, and ks values found for
the two boundary conditions used. In Table 3.3, boundary condition 1 refers to the
boundary conditions used in obtaining Figures 3.11 and 3.12, while boundary condition 2
refers to the boundary condition used to obtain Figure 3.13.

Figure 3.13 indicates that the change in boundary conditions had a very small effect
on the correlation between the apalytical and numerical procedures, A very small change
in R? values was observed with a change in boundary conditions. The comparison between
the methods is still reasonably good. Table 3.3 shows that the change in boundary
conditions had a relatively small effect on the regressed k, and k, values. This seems to
support the earlier observation that the chosen boundary condition has a relatively small

influence on the predicted Poisson's ratio.

Modeling of Resilient Dilation in Granular Materials

Perhaps the most significant example of material behavior that cannot be modeled by
standard layered elastic programs is the dilation observed in particulate media in a dense
state of packing. This effect is considered to be significant because not only layered elastic
programs, but also non-linear finite element programs, frequently predict high tensile
stresses at the bottom of granular layers on soft subgrades (1).

While it is conceivable that tensile stresses develop in cohesive materials, most
granular materials, due to their low apparent cohesion, cannot develop high tensile stresses
without failure or decompaction taking place. Furthermore, since the yield function is
| dependent on the shear stress that develops under loading, which in turn is related to the
difference between the major and minor principal stresses, a compressive major principal
stress acting together with a tensile minor principal stress results ina high shear stress.
This results in the prediction of an overly conservative estimate of the potential for failure.
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Table 3.3. Boundary Conditions Used in Comparison of Numerical and Analytical
Procedures.
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Figure 3.13. Comparison of Poisson's Ratio Predictions by ‘Analytical and
Numerical Methods (Second Boundary Condition).
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Many researchers have addressed this problem by assuming a confining pressure of
zero whenever tensile stresses are encountered in granular layers (1). While generally
considered to be conservative, this procedure does not attempt to model the behavior of
dense materials that tend to dilate. Also, it was suggested by Heulekom and Klomp that
granular bases can sustain small tensile stresses without failing (47). However, the tensile
stresses tend to cause local decompaction and a loss in resilient modulus value. For
instance, Hicks found that an untreated granular material in an unconfined condition can
have a minimum vertical modulus of 34,500 kPa or more (29). Neither the setting of the
confining pressures to zero nor the use of a2 minimum or failure modulus takes account of
actual dilation. This is because layered elastic theory is based on the assumption of a
homogeneous, isotropic material for which a maximum Poisson’s ratio of 0.5 has to be
used.

Very little literature exists that describes dilational behavior of dense granular
materials. However, most researchers agree that these types of materials start dilating
when the principal stress ratio exceeds a certain value (28). The solutions for equation 3.3
suggest that the Poisson's ratio increases as J, increases. The rate at which it will increase
depends on the volumetric stress component, I;, and the material properties characterized
by k; to k;. The effect that dilatancy has on the stress state is not clear. Most researchers
agree that the tendency to dilate results in the material experiencing confining stresses in
addition to those induced by the load (28,48). The following statements will illustrate the
point. Uzan and Scullion (28) stated:

"The Witczak, Uzan study (32) indicated that granular material in flexible pavements
are in general subjected to stress states with large major to minor stress ratios.
Under these conditions, the material may dilate and develop additional confining

pressures, (in addition to the pressure induced by compaction).”

Billam (48), commenting on the effects of crushing on the properties of gramular materials,
stated: ’
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“The principal effective stress ratio at failure decreases with increasing confining
pressure due to the suppression of dilatancy, but it does tend towards a lower

constant value.”

However, the question remains as to how much confining pressure is generated by
the tendency to dilate and what factors control the material behavior during the dilating
phase. Uzan and Scullion (28) have used the concept of the initial strain method of
Zienkiewicz (26) to describe the dilation phenomenon in granular layers. In this method,
the strain resulting from load application is decomposed into two parts. Thus,

1
= - A1
€ == [oz (0 + @) (0, + O )] (3.11)
or similarly
1 4 .
€, = E[oz - 1 (0, + O )] - €, (3.12)
With ¢ =% +0 (3.13)
z0 E( r 9)
Where € =  the initial strain resulting from dilation or excess of
strain; '
€, =  total vertical strain;
G,,0,, Og =  vertical, radial, and tangential stresses, respectively;
n = Poisson's ratio (a constant value);
o =  factor to describe the additional deformation; and
E =  Modulus of Elasticity.

In equation 3.11, the factor (4 + o) represents the total Poisson's ratio. This consists of a
constant part (u) and a dilatory part (¢). The value of the latter part depends on the
amount of dilation that takes place.
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Uzan and Scullion have applied this approach to the finite element method with
success (28). However, this procedure requires that the actual Poisson's ratio be estimated
with a high degree of accuracy. An analysis of the sensitivity of the above procedure to
small changes in the overall Poisson's ratio (1 + ) has shown that, under typical stress
conditions, using a Poisson's ratio of 0.6 instead of (say) 0.5 can lead to a large increase in
the predicted confining pressure. Figure 3.14 shows a number of predicted versus
measured Poisson's ratios (from reference 39). It is clear from the figure that, although
the overall comparison between actual and predicted Poisson's ratios is very good, errors
of 0.2 or larger may easily occur. This error may not have a significant effect on the
predicted stress state when the applied load is small. However, in the case of superheavy
loads where high stresses prevail, a small error in the predicted Poisson's ratio may lead to
a significant over or underestimation of the confining stresses. While underpredicting the

confining stresses will lead to a conservative estimate of the yield point, overestimating the
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Figure 3.14. Measured and Predicted Poisson's Ratios (From (39)).
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confining stresses may lead to a significant overestimation of the material's resistance to
shear. The success of the above procedure will, therefore, be largely dependent on the
ability of the response model to accurately predict the Poisson's ratio, especially when
Poisson's ratios larger than 0.5 are predicted.

The above procedure for predicting stress states under resilient dilation was initially
included in the response model. However, an attempt to verify the predicted radial strains
by using laboratory data was unsuccessful (the following section discusses this verification
procedure in detail). The large stresses predicted by the larger Poisson's ratios also caused
severe fluctuations in the stress dependent moduli to take place, which, in turn, led to
problems with the convergence of the iterative procedures used to determine stress
sensitive moduli and Poisson's ratios. For these reasons, it was decided not to allow any
Poisson's ratio larger than 0.48 to be included in the final response model. This means
that in its final form, the response model will include a stress sensitive moduli and a stress
sensitive Poisson's ratio, but only for Poisson's ratio values below 0.48. This
simplification of actual material behavior is conservative, and will not lead to an

overestimation of material strength.

VERIFICATION OF THE RESPONSE MODEL

In this section, the results of several laboratory tests will be shown together with the
results predicted by the response model. The laboratory tests consisted of triaxial type
tests which were conducted in an air pressure chamber. Details of the experimental set-up
are shown in Appendix C. Two material types were used, a crushed limestone and a
uniformly graded sand. All samples were compacted at optimum moisture content. For
each material type, three tests were performed at different confining stress levels. Lateral
and axial displacements were measured throughout the test until a significant loss in
material strength was observed. A series of triaxial tests were also performed on the same
materials at the same levels of compaction and moisture content. The purpose of these

tests was to find the material strength parameters (cohesion and angle of friction) which are
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needed to compute the yield function. Details of these tests and their results can be found
in reference 49. The material strength parameters used to predict the yield point were:
for crushed limestone: cohesion = 48.0 kPa, friction angle = 52.5°

for sand: cohesion = 10.35 kPa, friction angle = 39.5°

After the laboratory tests were completed, a finite element mesh was constructed to
simulate the geometry of the laboratory samples. The finite element response model was
then run several times for each material type using different material coefficients to find a
set of material constants that would allow the laboratory results to be predicted as
accurately as possible by the response model. The stresses predicted by the finite element
program were used to predict the strains according to equations 3.11 and 3.12. The total
Poisson's ratio (¢ + a) used was that predicted by the stress state and material constants at
each load increment. However, in this procedure, no stress correction was made for
Poisson's ratios greater than 0.5. This means that the stresses predicted by the elastic
System (with no Poisson's ratios larger than 0.5) were used with thé actual predicted
Poisson's ratios to predict the strains that would develop under the given conditions of
stress and Poisson's ratio. This approach was used because the actual confining pressures
were fixed and did not rise or fall with material dilation and compression. The
backcalculated material constants were as follows:

for crushed limestone: k1 = 700, k2 = 0.8, k3 = -0.3

for sand: k1 = 190, k2 = 0.8,k3 = 0.9
These results were for a single load application that was monotonically increased until
failure. The backcalculated material constants from this test can therefore be expected to
differ somewhat from those found by means of repeated load tests. .

Figures 3.15 through 3.26 show the axial (vertical) and radial strains plotted versus
the vertical pressure at different confining pressures and for different material types. The
figures show that the axial stress-strain behavior was captured quite well by the response
model. It should be noted that for each material type only one set of material constants
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were used. The figures, therefore, clearly show the model's ability to account for the
effect that the increase in confinement has on the stiffness of each material.

Unfortunately, the radial strain predictions compared less well with the measured strains.
This was especially the case for the limestone material. A somewhat better agreement
between the measured and calculated results was obtained in the case of the sand. The
figures show that although the predicted radial strains follow the same general trend as the
measured strains, there can be a significant over or underestimation of the radial strains.
Figure 3.20, for instance, shows that the predicted strains at 400 kPa are nearly half of the
measured strains.

Also shown in the figures are the points at which the Mohr-Coulomb criteria
predicted yield. From this point onward, the response model assmﬁed no further stress
increase (corresponding to an elastic-perfectly plastic idealization). Most figures show that
the predicted yield point was more conservative than the measured yield point. This means
that the response model predicted that yield would occur at a lower stress than was actually
the case. An exception to this was the sand at low confining pressures (Figures 3.21 and
3.22). It should be noted that the exact point of yield is not easily determined for soils
with low confining pressures. It is quite possible for the material to yield and then
experience some hardening in the plastic region.

As noted in the previous section, overestimation of the radial strains when the
material is dilating can lead to the prediction of fairly large confining pressures even for
small radial strains, which may be unconservative. This inability of the response model to
accurately match the radial strains resulted in the exclusion of the dilation modeling
procedure from the response model. It should, however, be noted that the inclusion of the
stress sensitive Poisson's ratio did allow Poisson's ratios above 0.5 to be used and,
therefore, resulted in a significantly better prediction of radial strains as compared to the
normal elastic theory.
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SUMMARY AND CONCLUSIONS

In this chapter, a finite element response model that includes procedures to model
non-linear elastic moduli and Poisson's ratios has been described. Analytical and
numerical procedures for obtaining stress sensitive Poisson's ratios were described. A
comparison between the results obtained by each method was made. For the numerical
procedure, an investigation into the relevancy of different boundary conditions was made
based on the results obtained with the response model as well as the results obtained by
laboratory testing. Laboratory testing consisted of triaxial type tests on sand and crushed
limestone.

A procedure for modeling the resilient dilation observed in granular materials was
also presented. Finally, a comparison between the predictions made by the response model
with corresponding measurements from laboratory tests were conducted. Based on these
investigations, the following conclusions are drawn:

1.  The Poisson's ratio tends to increase from a fixed initial value as the load is
increased. The rate at which this increase will take place depends on the
material properties (as characterized by the constants k; to k), the rate at
which the second invariant of the deviatoric stress tensor, J,, increases, and the
value of the first stress invariant, I,. Generally, the rate at which the Poisson's
ratio increases with increasing J, will be lower at higher values of I;.

2. For the sand, it was found that the initial Poisson's ratio depends on I,. The
higher the value of I, at the start of the loading procedure, the lower the initial
Poisson's ratio. For the crushed limestone, the changes in Poisson's ratio
seemed to be more erratic, although the Poisson's ratio was still observed to
increase with increasing J,.

3. It was found that small changes in the boundary conditions needed for the
numerical Poisson's ratio prediction procedure did not have a significant effect
on the predicted Poisson's ratio.
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The comparison between the analytical and numerical procedures for
predicting the Poisson's ratio as a function of the stress state showed that
results obtained with the numerical procedure compared well with the resuits
obtained with the analytical procedure. At higher values of the Poisson's
ratio, a slightly reduced correlation between the two procedures was observed.
A comparison between laboratory results and predictions made by the response
model showed that the response model could predict the vertical strains that
develop in a laboratory sample under triaxial loading conditions. The response
model also predicted the observed trends in the lateral strains when the
material was in a state of dilation. However, the absolute values of the lateral
strains could not be predicted with accuracy. Because the proposed resilient
dilation modeling procedure is sensitive to changes in the predicted Poisson's
ratio (and thus lateral strains), more calibration of the Poisson's ratio
prediction model would be needed before a resilient dilation procedure could
be included in the response model. It was decided to include the stress
sensitive Poisson's ratio procedure in the response model for Poisson's ratios
that fall within the 0.0 to0 0.48 range.
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CHAPTER IV
SENSITIVITY ANALYSIS OF MOHR-COULOMB YIELD CRITERIA

INTRODUCTION

In order to make an accurate estimate of the yield point of a material under stress,
several parameters need to be estimated. These parameters can generally be classified as
either stress parameters or material parameters. In the case of the Mohr-Coulomb failure
criterion, the stress parameters are those stresses that are required to calculate the first

stress invariant as well as the second and third deviatoric stress invariants, as shown by the

equation (16):

I ;3 W n
= L §j + i —] + X2 —1 si - =
f 3 sin(¢) ‘/stm(a + 3) - cos(@ + 3) sin(p) - ¢ cos(Pp) = 0

4.1
where the Lode Angle, 9, is defined by (16):
J
0 = (1/3) cos™! }-—[3— —3 ' 4.2)
2 @t

and I, is the first stress invariant, and J, and J, are the second and third deviatoric stress
invariants, respectively. These stresses are modeled stresses and depend on the type of
constitutive model used to predict them.

Equations 4.1 and 4.2 are reprinted from Appendix A, which gives a more detailed
discussion of the Mohr-Coulomb yield criterion. Equation 4.1 is the invariant form of the
Mohr-Coulomb yield criterion. In addition to knowing the state of stress, two other
parameters are needed to predict failure. They are the cohesion (c) and the internal angle
of friction (¢). Both these parameters can be determined through conventional triaxial
laboratory testing. ‘

The material parameters are independent of the chosen constitutive model. Both the
stress and material parameters are estimates of the actual values that occur in the field.
The accuracy of the yield point determination will depend on the degree to which the stress
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and material parameters match the actual field values. However, not all parameters have
an equal effect on the yield function. Some parameters, because of their magnitude or
typical variation in the field, affect the yield criterion to a larger extent than others.

This chapter describes an analysis in which the purpose is to determine the
sensitivity of the Mohr-Coulomb yield criterion to each of the different stress and material
parameters. In this analysis, typical parameter values are assumed, after which individual
parameters are varied one at a time, and the influence of this variation on the yield
function is then studied. This chapter is divided into two main sections. The first section
reports studies concerning the sensitivity of the yield function to the stress parameters and
the parameters used in the constitutive model. The second section shows evaluation of the
sensitivity of the yield function to the strength parameters.

YIELD FUNCTION VARIATION WITHIN PAVEMENT LAYERS
General

Before the sensitivity analysis of the Mohr-Coulomb yield function was undertaken,
an analysis of the expected variation of the yield function values within different pavement
layers was conducted. It was hoped that this investigation would assist in identifying those
positions at which critical yield function values could be expected. In order to obtain yield
function values, typical stress values were first generated by modeling the response of a
pavement structure to a 35.6 kN load distributed over a 127 mm load radius. Figure 4.1
shows a schematic representation of the pavement structure, load, and material strength
parameters used for this analysis. The modeling was completed using a non-linear version
of the BISAR (5) layered elastic program. This program, which is described in more
detail in Chapter V, incorporates stress dependent resilient moduli and Poisson's ratios,
thereby allowing non-linear material behavior to be included in the response model. The
reason for using this program instead of the more accurate finite element model was that
the layered elastic approach allows more flexibility in choosing points at which to evaluate

stresses.
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Figure 4.1. Load and Pavement Model Used to Investigate Yield Function Variation
within Pavement Layers.

Asphalt Surfacing

Figure 4.2 shows the typical variation of Mohr-Coulomb yield function values within
the asphalt layer of the structure shown in Figure 4.1. This figure shows that the yield
function increases (i.c., becomes more critical) with increasing depth. However, it should
be noted that, typically, high tensile stresses prevail in the lower part of the asphalt layer.
This is shown in Figure 4.3 which shows the bulk stress values at various depths. As can
be seen from Figure 4,3, the bulk stress becomes positive slightly below midpoint of the
layer (positive stresses denote tension). This positive bulk stress indicates the material is in
a state of tension, and frictional resistance is no longer mobilized. This means the material
is now being pulled apart and the shearing strength of the asphalt is totally dependent on
the cohesive strength of the material. Because of this, it was decided that for evaluation
positions such as the bottom of the asphalt where the bulk stress is positive, a friction
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angle of zero would be used. In effect, this means that a Tresca criterion is used to
evaluate the failure potential of asphalt that is in tension. Since the lower part of the
asphalt layer is the critical part, stresses will be evaluated in the lower part of the layer to
calculate yield function values.

Base and Subgrade

Figures 4.4 and 4.5 show the expected variation of the Mohr-Coulomb yield function
within the base layer and upper part of the subgrade. Figures 4.6 and 4.7 show the
expected variation of the bulk stress within each of these layers. The variation of the yield
function within the base follows a similar pattern as that of the asphalt layer. However, in
the case of the base layer, a negative bulk stress is maintained throughout the entire layer
(Figure 4.6), even though small tensile stresses may exist at the bottom of the base. The
low bulk stress values at the lower part of the base indicate that only a small part of the
frictional resistance is mobilized and the cobesive properties of the material play a
significant role. For the purposes of this investigation, it was decided to monitor the yield
function values at the bottom of the base layer.

Figure 4.5 clearly indicates that the yield function is most critical at the top of the
subgrade. This is to be expected since the vertical stress component reduces with
increasing depth while the horizontal stress components remain virtually unchanged.
Therefore, the evaluation positions for the subgrade were chosen to be at the top of this
layer. For all layers, evaluations were made at both the center and edge of the load.

SENSITIVITY OF THE MOHR-COULOMB YIELD FUNCTION TO STRESS
PARAMETERS

As noted in the literature survey, choosing an appropriate constitutive model is vital
to accurately model the stress and strain conditions that develop under loading.
Furthermore, the effectiveness of a constitutive model depends on the accuracy of its
coefficients. Even when these coefficients are accurately estimated by means of sampling
- and laboratory testing, the natural variation in the thickness, stiffness, and consistency of
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pavement layers may lead to a loss of accuracy in the prediction of the stresses and strains
that develop under loading. Several researchers have studied the sensitivity of stresses and
strains to variations in layer thickness, resilient modulus, and Poisson's ratio (1,2,18).
However, all of these studies were aimed at investigating the sensitivity of those
parameters which are involved in predicting long term fatigue life, such as horizontal strain
at the bottom of the asphalt layer, and vertical strain at the top of the subgrade. In this
study, the effects of variations in the constitutive model parameters on the Mohr-Coulomb
yield function are studied.

The sensitivity of the Mohr-Coulomb yield function to the stress parameters was
studied using the finite element program described in Chapter IIl. Two different pavement
types were used in this analysis, which are shown schematically in Figures 4.8 and 4.9. A
single load of 31.1 kN was applied over a circular area with a radius of 100 mm, which
corresponds to a surface pressure of 989 kPa. This load was chosen because it is similar
to the load magnitudes that were encountered on a single wheel of a superheavy load
moving vehicle (50). For each pavement type, the yield function was evaluated close to
the centerline as well as close to the edge of the load, as shown in Figures 4.8 and 4.9. In
the analysis, the sensitivity of the yield function to variations in the constants which

determine the resilient modulus and Poisson's ratio was studied.

Variation of Resilient Modulus and Poisson's Ratio Coefficients

The three coefficients which determine the value of the resilient modulus and the
Poisson's ratio were varied in this part of the analysis. The relationships between the
stress condition and resilient modulus as well as Poisson's ratio were discussed in some

detail in Chapter III, but are repeated here for completeness. For resilient modulus:

)4 %"
E =k p) (_) @3)
P,
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Figure 4.8. Thin Pavement Structure Used in Sensitivity Analysis.
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Where: E = resilient modulus

p. =  atmospheric pressure

©® = first stress invariant

Tow = octahedral shear stress

k, = material constants (to be varied)

For the Poisson's ratio:

/ I
k k k k
20v 1ov_ 1258 B 116 & @.4)
3.8, I I 3J, 1 3,

Where: v =  Poisson's ratio
k; =  the same material constants noted in equation 4.3.
I = the first stress invariant, and
1, = the second invariant of the deviatoric stress tensor

The general approach was to assume average values for each of the material
coefficients k;. The yield function was then calculated at each of the evaluation points
shown in Figures 4.8 and 4.9. These calculated values for the yield function were then
assumed to be the average yield function values. After these values were calculated, the k,
to k; values for each layer were varied thirty percent up and down. Only one parameter
was changed at a time. All other parameters were kept constant so the influence of that
parameter with respect to the yield function could be established. The average values
assumed for each of the k; values for each layer are noted in Table 4.1. The typical k,
value used for the asphalt surfacing was zero, as was the k, value for the subgrade
material, based on typical results and were not varied in the analysis. During the analysis,
the cohesion and angle of friction values were kept constant. The values used for angle of
friction and cohesion were average values for layer material types. Details of how these
values were determined are given in a later section. However, for the sake of
completeness, the cohesion and angle of friction values used for each of the layer types are
summarized in Table 4.2.



Table 4.1. Average Coefficients Used in Sensitivity Analysis.

' Layer k, k, k;
Asphalt Surface 50,000.0 0.1 0.0
Crushed Stone Base 700.0 0.6 | -0.3
Clay Subgrade 400.0 m(_l_.:() -0.3 a

Table 4.2. Values Used for Cohesion and Angle of Friction.

[
[
I

Cohesion Friction Angle |
(kPa) (degrees) |
Asphalt Surface 1720 0° or 24°
Crushed Stone Base 68.9 50°

ﬂ Clay Subgrade 89.6 _ 30 |

A friction angle of 0° was used only where the material was in a state of tension.

For other cases a friction angle of 24° was used.
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Discussion of Results: Variation in Resilient Modulus and Poisson's Ratio Coefficients

The results from the variation in the resilient modulus and Poisson's ratio
coefficients are shown graphically in Figures D.1 to D.12 in Appendix D. These graphs
illustrate, in compact form, the general magnitude and direction of fluctuations in the yield
function due to changes in the k, to k; coefficients. The main observations drawn from
Figures D.1 to D.12 are noted in the following. The reader may wish to verify these
observations by referring to the figures.

a)  Thin Pavement

For both evaluation positions (i.e., center and edge of the load), the greatest change
in yield function was brought about by changes in the k, factor. The greatest overall
change in yield function was calculated in the base, along the edge of the load. This
change was brought about by changing the k, factor for the base itself.

In almost all cases, the variations of the yield function value calculated in the asphalt
surface and the base were far greater than that calculated in the subgrade. An exception to
this was when the k, and k; factors for the subgrade itself were changed. However, when
these factors were changed, the resulting changes in the yield function were still greater in
the base than in the subgrade.

In general, the greatest fluctuations in the yield function were calculated in the base.
This was observed even when the k, to k; factors of the surface and subgrade were
changed. As already poted, the factors which relate to the nonlinearity of the material
(i.e., k, and k;) had smaller effect on the yield function than did the k, factor. The base
was the only layer in which all three factors were greater than zero. For the base, k, had a
greater impact on the yield function than did ks, although this observation may simply be

ascribed to the larger average value chosen for k,.
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b)  Thick Pavement

The changes in the yield function which were calculated in the thicker pavement
generally showed the same trends as the thin structure. However, in the case of the thicker
pavement, changes in the k, to k, factors had a far lesser effect on the calculated yield
function than was the case for the thin pavement. In the case of the thin structure, yield
function variations in excess of 200 percent were noted. In the case of the thick structure,
the greatest change in yield function was slightly higher than 25 percent. As before, the
calculated yield function generally showed the most sensitivity to changes in the k, factor.
An exception to this was the calculated yield function in the base (edge and center of load
evaluation position). For this case, the yield function seemed to be more sensitive to
changes in the k, than the k, factor.

As with the thin structure, the yield function values calculated in the base generally
showed the most sensitivity to changes in the k, to k, parameters. There were, however,
some exceptions to this observation, such as when the k, factor in the surface was varied.
In this case, the yield function calculated in the surface showed the greatest fluctuation.

As before, the yield function calculated in the subgrade showed a low sensitivity to
changes in most of the k, to k, factors. However, it did show a greater sensitivity to
changes in the k; factor of the surface than did the yield function calculated in the base.
This was observed at both the edge and center of load evaluation positions.

¢)  Observations Regarding Tendencies in the Yield Function

Although this analysis is concerned with the sensitivity of the yield function and not
with the actually calculated yield function values, several tendencies were noted in the
sensitivity analysis which warrant some discussion. These tendencies will briefly be
outlined in the following. '

For the chosen pavement configuration and load situation, no positive yield function
was calculated in the case of the thick pavement at either the edge or the centerline of the
load positions. This indicates that none of the layers of the thicker pavement would have
experienced plastic deformation. However, for the thin pavement, a positive yield function
was calculated in several instances. For both the thin and thick pa\}ement, the most critical
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(i.e., most positive) yield function was generally calculated in the base. For the base, the
edge-of-the-load evaluation position proved to be more critical than the center-of-the-load
position. In no case was plastic deformation predicted in the subgrade.

A tendency that may seem inconsistent with experience or intuition was that, for
some cases, a higher modulus (as brought about by increasing the k; factor, for example)
resulted in a more positive yield function being calculated for that layer. This seems to
indicate that a stiffer layer will be more likely to fail than a softer layer. For instance, in
the case of the changes in the k, factor for the asphalt surface, the yield function calculated
at the higher k, value was much higher than that calculated in the case of the lower k;,
value. However, it should be borne in mind that the material parameters (cohesion and
angle of friction) were kept constant throughout this apalysis. In practice, an increase in
the resilient modulus would normally be accompanied by an increase in either the cohesion
or the angle of friction of the material, or both. This would increase the strength of the
material and, thus, reduce the yield function an effect that was specifically not taken into
account in the above analysis. Perdomo and Button (24), for instance, have found that
there was a critical modulus value above which the octahedral shear stress to octahedral
shear strength ratio showed very little change. They ascribed this observation to the high
cohesion of the material at higher moduli values.

It may, therefore, be more illuminating to study the effect that changes in the k, to k,
factors for one layer have on the yield function calculated in the other pavement layers. In
general, the tendencies observed in this manner are similar to those encountered in typical
mechanistic design of flexible pavements. For instance, increasing the modulus in the base
reduces the potential for failure in the surface. Similarly, stiffening the subgrade reduces
the potential for failure in the base and surface (caused by a reduced bending effect).



Observations Regarding Typical Stress Components Calculated ‘Under High Wheel
Loads

Table 4.3 provides a summary of the typical stress values. The stresses noted are
those which were calculated when the average values for the k, to k; parameters were used
(Table 4.1). In total, six stress tensors are considered for each pavement type (three
layers, two evaluation points per layer). The stress components are given in terms of an
axisymmetric coordinate system. In Table 4.3, a positive sign denotes compression. This
summary is provided as a reference and because it can assist in explaining many of the
tendencies that are to be expected in the Mohr-Coulomb yield function.

Several observations can be made from Table 4.3. As expected, the vertical stress
calculated in the base and subgrade is much higher than the two horizontal stress
components. This was especially true of the center-of-the load evaluation position. The
situation is reversed in the case of the asphalt surface, where high tensile forces prevail at
the bottom of the layer. As expected, the shear stress at the edge of the load is much
higher than at the center of the load. With respect to the base and subgrade, the high ratio
between the vertical and horizontal stress components is seen as important, as it indicates
that the vertical stress is a major determinant in the yield function. For instance, due to
the relative magnitudes of the vertical and horizontal stresses, it can be expected that a
certain percentage of change (or error) in the vertical stress will have a higher influence on
the yield function than will a similar percentage of change in the horizontal stress
components. This observation is considered to be of some importance, as the vertical
stress is the one stress parameter that can often be predicted consistently by different
constitutive models (1,18). This may indicate that, due to the overwhelming influence of
the vertical stress component, the yield function is not very sensitive to the type of
constitutive model used to predict vertical stresses. This matter is bursued in detail in
Chapter V.
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Table 4.3 Summary of Calculated Stresses: Thin Pavement Structure’

Stress Pavement SURFACE BASE COURSE SUBGRADE

- Component Structure™ Evaluation at - Evaluation at - Evaluation at
Center Edge Center Edge Center Edge
Vertical. Thin 884.6 98.6 336.8 170.5 182.7 141.7
Thick 333.2 134.6 64.2 52.4 53.4 48.0

Radial Thin -2207.5 -165.4 7.2 23.0 3.1 9.4
Thick 992.3 -531.6 5.3 5.0 -3.5 2.0

Tangential Thin -2220.8 -1244.0 6.3 -4.4 2.78 -3.3
Thick -995.5 -763.9 52 7.3 -3.6 -3.8

Shear Thin 24.4 502.6 17.6 9.3 6.6 47.2
Thick 51.6 306.4 2.4 13.7 1.2 10.6

*

All Stresses in kPa

Pavement Structures refer to Figures 4.8 and 4.9
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SENSITIVITY OF MOHR-COULOMB YIELD FUNCTION TO CHANGES IN THE
MATERIAL PARAMETERS

As discussed in the literature study given in Appendix A, the shear strength of a
particulate material such as soil or crushed stone consists of two main components, namely
the cohesive and the frictional component. These two components contribute to the shear
strength of the material in different ways for different materials. A wet clay, for instance,
has low or zero frictional resistance, as the clay particles tend to slide over one another.

In such a case, almost all of the shear strength is due to the cohesion that exists between
individual particles. In the case of a coarse granular material under compression, almost
all the shear strength is derived from the frictional component. This friction is brought
about by the resistance that exists between particles which tend to slide or roll over one
another when under loading.

Cohesive strength in the case of granular materials and clays is related to the
moisture content of the material. In the case of asphaltic materials, cohesive strength is
dependent on the properties of the mixture and temperature (37). The friction angle is
dependent on the surface roughness, angularity, and degree of particle packing (51). The
moisture content and density can vary considerably within a pavement layer over time and
distance. It can, therefore, be expected that the cobesion and angle of friction, which are
determined through sampling and testing at discrete locations along a pavement, may not
accurately describe the shear strength of the pavement material over the entire length of the
roadway. In the following, the sensitivity of the yield function to changes in the estimated
cohesion and angle of friction will be studied. As in the preceding analysis, the approach
was to assume average values for all variables in the yield function. The variable of
interest (cohesion or angle of friction) was then varied, and the effect of this variation on
the yield function was analyzed. The stresses which were used for this part of the analysis
were those calculated for the average k; to k, values. For each material type, two different

stress conditions were considered, one for each of the evaluation positions.
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In this analysis, extensive use was made of the results from tests conducted by Titus-
Glover and Fernando (49). These tests consisted of a series of Teias Triaxial Class tests
(52) which were conducted on various base and subgrade type materials. The tests were
also conducted at different moisture contents. Tables 4.4 and 4.5 note typical values for
cohesion and angle of friction for typical subgrade and base course material types. For
asphalt materials, the results reported by Lytton et al. (37) were used. These values are
summarized in Table 4.6. In Table 4.4, a distinction was made between sandy and clayey
subgrade materials when calculating averages.

The results of the yield function variations for different values of cohesion and angle
of friction are shown in Figures D.13 to D.24 in Appendix D. In these figures, the same
vertical axis scale was used for a specific material type so the influence of cohesion and
angle of friction on the yield function for a given layer could be compared.

Discussion of Results: Thin Pavement

For all layers, the cohesion had a direct linear relationship with the yield function.
This can, in fact, also be observed from the mathematical relationship between the
cohesion and the yield function. The effect of changing the cohesion was the same for
both the edge and center of the load stress conditions. In the case of the asphalt concrete
surface and the subgrade, the cohesion had a more pronounced effect on the yield function
than the angle of friction (Figures D.13 and D.14, and Figures D.17 and D.18). However,
in the case of the base, the angle of friction had a major effect on the calculated yield
function when the stresses were evaluated close to the centerline of the load. If the stresses
used to calculate the yield function are those calculated at the edge of the load, then the
effect of the angle of friction diminishes, and the yield function is more sensitive to
changes in cohesion (Figures D.15 and D.16).

It should be noted that, in the case of the base course, the edge of the load is the
most critical for almost the entire range of the angle of friction used. However, there is a
specific angle of friction at which the critical evaluation point shifts from the edge of

68



Table 4.4. Typical Cohesion and Angle of Friction Values for Subgrade Materials (49).

——— .

Material Cobesion at moisture content Angle of Friction at moisture
Type (kPa) content
(Degrees)
at opt. below opt. at opt.
Sand
Sandy 24.8 15.8 21.4 29 48 39
Gravel
ﬂ Lean Clay 108.9 113.0 51.7 44 38 38
" Fat Clay 137.1 119.9 434 18 0 0 H
| Silt 324 33.1 28.9 43 42 43 |
' Averages for
| Sandy 16.5 13.1 13.1 36 44 40
Materials ,
| Standard 12.2 3.89 11.7 9.9 5.7 1.41 }
| Deviation | |
| for Sandy 3
‘ Material |
% Averages for
| Clayey 92.8 88.7 41.3 35 27 27 f
|  Materials |
Standard 54.2 48.3 11.5 14.7 1 232 23.5
Deviation
for Clayey
Materials
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Table 4.5. Typical Cohesion and Angle of Friction Values for Base Materials (49).

| Material Type Cohesion at moisture content Angle of Friction

| (Pa) (Degrees)

é below opt. | atopt. | above opt. below atopt. | above

| ' opt. opt. !
Caliche 90.8 71.3 46.9 43 48 49
Iron Ore 68.3 73.3 59.3 47 48 48
Gravel

|

Shell Base 74.4 68.2 59.9 51 51 53

29.5 48.9 54.4 55 53 52

Table 4.6. Typical Cobesion and Angle of Friction Values for Asphalt Concrete (37).

Angle of Friction at

Cohesion at g

(kPa) (Degrees)
4°C 20°C | 39°C
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the load to the center of the load position. The same observation can be made in the case
of the subgrade.

As expected, the difference between the predicted yield function at the edge and
center of the load evaluation positions diminishes with depth. This can clearly be seen in
Figures D.17 and D.18, where the cohesion and angle of friction were varied for the
subgrade. These figures show that almost identical yield function values were calculated

over the entire range of cohesion and angle of friction values.

Discussion of Results: Thick Pavement
The results obtained by using the stresses calculated for the thick pavement generally
show the same trends as those of the thin structure. In all cases, cohesion was found to
have a slightly greater effect on the yield function than did the angle of friction. As before,
the difference in yield function calculated at the center and the edge of the load diminished
with depth, and virtually the same yield function values were calculated at both these
positions in the case of the subgrade. i
An observation that seems somewhat inconsistent with the geheral theory of shear
strength is that the yield function becomes more positive (i.e., predicts a higher potential
for failure) as the angle of friction increases. Normally, an increased angle of friction
would mean an increased resistance to shear (as was found to be the case for the center of
the load evaluation position in the base of the thin structure). This inconsistency can be
explained by considering the different terms which constitute the Mohr-Coulomb yield
function in three dimensions. If the material is in compression (assuming compression is
negative), the first term in equation 4.1 would become more negative as the angle of
friction increases. The second term is independent of the angle of friction and would,
therefore, remain unchanged. The third term would tend to become more positive, as J, is
always a positive quantity. The fourth term (the cohesion term) would diminish as the
angle of friction increases, and, since this term is subtracted from the other terms, it would
mean that as the angle of friction increases, the effect of the fourth term would be to make
. the yield function more positive.
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The first term is, therefore, the only term that accounts for the increase in shear
strength as the angle of friction increases. However, if the quantitjr I, in this term is small
relative to the cohesion (c) and the second deviatoric stress invariant (J,), then the overall
effect of an increased angle of friction would be to increase the value of the yield function
towards the positive side. Thus, it can be seen that when the material is in a state of
tension, (as is the case at the bottom of the asphalt layer), or when the material is in a
relatively low state of confinement (as is the case in the deeper layers of thicker
pavements), the cohesive properties of the material exert a higher influence on the yield
function than does the angle of friction.

SUMMARY AND CONCLUSIONS

In this chapter, an analysis was discussed in which the purpose was to study the
sensitivity of the Mohr-Coulomb yield function to changes in the response parameters, k;
to k;, and material strength parameters, ¢ and ¢. Based on the results of this analysis, the
following observations are made.

For the k; to k; factors:

1.  The yield function is most sensitive to changes in the k, factor. This was
found to be the case for both the thin and thick pavements. The base layer was
the only layer in which both k, and k; were assigned absolute values greater
than zero. For this layer, k, was found to have a greater influence in the yield
function than k. ‘

2. In general, the greatest fluctuations in yield function were calculated in the
base. This was found to be true even in cases where the material parameters
of the other layers were varied.

3.  The subgrade generally showed the least sensitivity to changes in the k, to k;
parameters. |

4.  Changes in the material parameters were found to have a far lesser influence
on the yield function in the case of the thick pavement than it did in the case of
the thin pavement. In the case of the thick pavement, a 30 percent change
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in the material parameters affected the yield function by a maximum of 25
percent. In the case of the thin pavement, changes in excess of 200 percent

were noted in some instances.

For the material strength parameters:

5.

In all cases studied, cohesion was found to have a linear effect on the yield
function. Cohesion greatly affects the yield function vélue, and it is,
therefore, vital to estimate this parameter as accurately as possible. Cohesion
was especially found to have a pronounced effect on the yield function values
calculated in the asphalt and subgrade.

In the case of the base, the angle of friction was found to have a major effect
on the calculated yield function. This influence was most pronounced at the
center of the load and diminished toward the edge of the load.

The above observations prompt the following conclusions:

1.

An accurate estimate of the material parameters, k; to ks, is vital if an accurate
assessment of the potential for failure needs to be made. The k, parameter,
which defines the general stiffness of the material, plays the most important
role. The parameters related to the non-linearity of the material (k, and k) are
also important but play a lesser role. This is especially applicable in the case
of thick pavements. Currently, the material parameters, k, to k;, are
determined through laboratory testing. The possibility should be investigated
of determining k, by means of a simpler procedure such as through calibration
of moduli determined through FWD testing.

Both of the material strength parameters play an important role in determining
resisiance to shear failure. The results indicate that for asphalt and subgrade
materials, cohesion is the most important parameter to estimate. While the
friction angle was also shown to have an influence on the predicted yield
function value (especially in the case of the base), this parameter is not
expected to vary as much as cohesion with changes in moisture content and

73



other seasonal influences. This can clearly be seen from Tables 4.4 through
4.6 which show that, for a given material, cohesion vaﬁes more than the angle
of friction with changes in moisture content or temperature. Because of this,
cohesion is likely to be site specific and, under ideal conditions, would have to
be determined shortly in advance of a superheavy load move. In the case of
subgrade and base materials, cohesion can be estimated by making use of
suction and moisture content information. This procedure requires that the
moisture content of the soil as well as the moisture content versus suction
curve be known.

Most of the results indicate that the yield function is most likely to be critical
in the base. The cohesion of the base is not likely to be as sensitive to
seasonal variations as the subgrade. Accelerated deterioration, potholes that
seemed to have originated in the base, pumping, and unsealed cracks in the
surface accompanied by rainfall are all indicators that moisture may be trapped
in the base. Visual indicators such as these should prompt a further
investigation, possibly accompanied by laboratory tests.
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CHAPTER V
COMPARISON OF DIFFERENT RESPONSE MODELS

INTRODUCTION

The pavement response model described in Chapter III is based on a non-linear finite
element model that has the capability of using stress dependent moduli and Poisson's |
ratios. It was noted that this model would be used as a benchmark against which other,
less accurate, models are to be evaluated. The reason for wanting to make use of less
complex response models is related to the difficulties associated with the finite element
method in geperal. The accuracy of the finite element method depends to a large extent on
how well the mesh itself is constructed. Constructing a proper mesh requires some
experience in the use of finite elements. Furthermore, modeling multiple wheel loads
requires a mesh that is relatively large which may pose problems with the availability of
computing power. Also, the positions at which stresses can be evaluated depends on the
geometry of the mesh and cannot be chosen at will by the user.

Most of the problems noted above can be avoided when the layered elastic approach
is used instead of the finite element method. However, this less coﬁq;lex approach is also
less accurate in its characterization of material behavior. However, there are instances
when this loss in accuracy may be tolerable, or, in some cases, even negligible. Huang (1)
conducted a fairly detailed comparison of the results predicted by the different types of
response models. However, Huang's analysis was restricted to comparisons between the
traditional design parameters such as strain at the bottom of the asphalt layer and strain at
the top of the subgrade.

This chapter compares three different types of response models. Because this
research is concerned with the prediction of yield rather than long term deformation, the
parameter chosen for comparison is the predicted yield function value. In addition to the
comparison of the yield function values predicted by different types of response models, a
comparison between the predicted stresses at different offsets from the load center is also
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conducted. Finally, the three models are compared in a case study involving in situ field

measurements.
RESPONSE MODELS AND PAVEMENT TYPES USED

Response Models Used

The response models considered in this comparison are the following:

a)  non-linear finite element model with stress dependent moduli and Poisson's

ratios (maximum Poisson's ratio allowed is 0.48);
b)  traditional linear layered elastic model;
c) layered elastic model adapted to include stress dependent moduli and Poisson's
ratios (maximum Poisson's ratio allowed is 0.48).

The finite element model is discussed in detail in Chapter III and will, therefore, not
be discussed here. The linear layered elastic program used here is BISAR (5), which is a
proven and easy to use program. The non-linear version of the layered elastic program is
exactly the same as the original BISAR program. However, a driver program was
developed so the main program can be run in an iterative fashion. After each iteration, the
stresses are used to compute moduli and Poisson's ratios that are compatible with the state
of stress. These new moduli and Poisson's ratios are then written to the (new) input file
and the calculation is repeated. This procedure is repeated until the moduli converge
(convergence is based on a user specified allowable error). This program requires that in
addition to the layer thicknesses and elasticity constants, the material constants k; to k; also
be provided at the start of the computation. With this program, each layer is also
subdivided into several sublayers. The non-linear layered elastic program and the
traditional layered elastic program (BISAR, in this case) use the same formulation and
would calculate the same results given that the same number of sub}ayers and the same
material parameters are used in the normal BISAR program.
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Pavement Structures, Material Constants and Load Types Used

For this analysis, the same two pavement structures assumed in the sensitivity
analysis (Chapter IV) are used. Figures 4.8 and 4.9 show schemaﬁc representations of
these two pavement structures. The material parameters used for this analysis are given in
Tables 5.1 and 5.2.

For the comparison of the stress states predicted by the different models, a single
44.5 kN load with a 127 mm load radius was used. For the comparison of the calculated
yield functions, three load magnitudes were used, 22.3 kN, 33.4 kN, and 44.5 kN. A 127

mm load radius was used for all loads.

Table 5.1. Coefficients Used in Sensitivity Analysis.

Asphalt Surface
Crushed Stone Base
Clay Subgrade

Cohesion Friction Angle
(kPa) _

Crushed Stone Base
Clay Subgrade

89.6 30
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COMPARISON OF PREDICTED STRESSES

If, in the non-linear layered elastic (N.L.E.) program, a pavement structure is
modeled with the same number of sublayers as that of the finite element (F.E.) mesh, then
the resulting moduli and Poisson's ratios close to the load center can be expected to be
comparable to those of the finite element mesh. However, by virtue of its formulation, the
non-linear layered elastic approach does not allow the elastic constants to be varied within
a layer. This means that the modulus and Poisson's ratios can only be varied in the
vertical direction. The finite element formulation allows the modulus values to be varied
in both the radial and vertical directions. The purpose of this section is to study the effect
this limitation has on the stresses predicted by the non-linear layered elastic program.

Also, the traditional linear layered elastic approach is compared to the non-linear layered
elastic and finite element programs in order to study the effect sublayering has on the
predicted stress state. '

In the finite element and non-linear layered elastic approach, the moduli and
Poisson's ratio values are dependent on the state of stress. In the traditional linear layered
elastic (L.L.E.) approach, the elastic constants are supplied by the user. Naturally, the
stresses predicted by the linear layered elastic program will differ from those predicted by
the non-linear layered elastic and finite element programs if the elastic constants of these
programs are not at least similar. In order to provide elastic constants to the linear layered
elastic program that are similar to those used by the two non-linear programs, the averages
of the modulus values of the nonlinear layered elastic program were used. Figures 5.1
through 5.3 illustrate this concept. Figures 5.1 and 5.2 illustrate how the modulus and
Poisson's ratio values were distributed in the thick pavement structﬁre after a 44.5 kN load
was applied to the surface. Each block in Figure 5.1 represents an element in the finite
element mesh. Each block contains two numbers. The upper number represents the
modulus in MPa, while the lower number represents the Poisson's ratio. Figure 5.3 shows
the structure used in the traditional linear layered elastic approach. In Figure 5.3, the
modulus and Poisson's ratio values used are the averages of the sublayers used in the non-

linear layered elastic pavement model.
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Figure 5.1. Pavement Structure Predicted by the Finite Element Model (Resilient

Modulus Values are in MPa).
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Figure 5.2. Pavement Structure Predicted by Non-Linear Layered Elastic Model
(Resilient Modulus Values are in MPa).
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Figure 5.3. Pavement Structure Used in Linear Layered Elastic Model (Resilient
Modulus Values are in MPa).

(It should be noted that not all the sublayers used in the non-linear layered elastic program
are shown in Figure 5.2.)

Figures 5.1 through 5.3 highlight some of the fundamental differences between the
different types of response models. These figures also provide useful insight into the way
the different response models account (or neglect to account) for known material behavior.
Figure 5.1 shows that the finite element characterization of the pavement incorporates most
of the trends currently known to exist in pavement structures. For example, Figure 5.1
shows that the base, which is modeled as a stress-stiffening material, has a higher stiffness
at the top of the layer. The stiffness of this layer then decreases as the confining stresses
decrease and the octahedral shear stress increases towards the bottom of the layer. This
same trend is observed in the case of the surface. Figure 5.1 shows that although the
surface is modeled only as a slightly non-linear material (k, = 0.1, k; = 0.0), a significant
decrease in modulus occurred towards the bottom of the layer. This can be explained by
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the relatively high compressive stresses that exist close to the load. The Poisson's ratios in
the surface layer also conform to expected trends. Close to the load, where the first stress
invariant (I,) has a high value compared to the second invariant of the deviatoric stress
tensor (J,), the Poisson's ratio did not increase much from the boundary condition but was
suppressed by the high I, value. Towards the bottom of the layer, the Poisson's ratio did
increase somewhat, although this increase was slight owing to the low k, and k; values
assigned to this material type.

The Poisson's ratios in the base have all increased significantly so the maximum
allowable Poisson's ratio of 0.48 was assigned to most elements in the base. The
uppermost element in the base, at the extreme left in Figure 5.1, however, does show that
the Poisson's ratio decreases at larger distances away from the load. As expected, the
modulus values for the base also decrease at larger radial offsets from the center of the
load. However, this decrease is not as pronounced as that which occurs in the vertical
direction. Figure 5.1 shows that the subgrade, which is modeled as a stress-softening
material, has an increased modulus at larger distances from the point of load application.
The Poisson's ratio of the subgrade decreased with increasing offset from the load
centerline.

Figure 5.2 shows that the non-linear layered elastic program also captured the stress-
stiffening behavior of the surface and base as well as the stress-softening behavior of the
subgrade. However, in the case of the non-linear layered elastic program, the elasticity
constants could be varied only in the vertical direction. This limitation increases the beam-
effect which leads to stresses that tend towards tension in the bottom part of each sublayer.
These stresses, in turn, lead to a lower state of confinement which explains why the
modulus values shown in Figure 5.2 are all lower than the modulus values in the
corresponding sublayer in Figure 5.1. The ability of the finite element program to vary
the modulus and Poisson's ratio values not only in the vertical but also in the horizontal
direction diminishes the beam effect to a large extent. This is also a reason why the
layered elastic programs frequently predict tensile stresses at the bottom of the base layers,
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while the finite element program with the variable Poisson's ratios seldom predicts tension
in any layer except the surface.

Figure 5.3 shows the pavement model used in the linear layered elastic program. As
can be seen from Figure 5.3, the pavement structure used here consisted of only three
layers without any sublayers. Each layer was characterized by a single set of elasticity
constants, which means there was no variation in the modulus and Poisson’s ratios within a
given layer. In effect, this means the pavement structure is modeled somewhat like a beam
on an elastic foundation. The increased beam-effect, in the case of the layered elastic
response model, may lead to increased tension at the bottom of some of the pavement
layers.

It can be gathered from the preceding discussion that each response model bases its
computations on a different model of the pavement structure. The finite element model
characterizes the pavement as distinct blocks, each with elasticity coefficients which are
compatible with the state of stress that exists in that region. The two layered elastic
programs characterize each layer (or sublayer) as a continuous medium with no change in
properties in the horizontal direction. Figures 5.4 through 5.11 illustrate the effects these
different structures have on the stress state. Figures 5.4 through 5.11 show the principal
stresses at different depths and offsets from the load center. For each program, the
stresses were calculated at three different depths: at the top of the base, at the bottom of
the base, and at the top of the subgrade. Each figure shows iwo sets of three lines. The
uppermost set represents the major principal stress, while the bottom set of lines represent
the minor principal stresses calculated by each program. In the figures, a negative stress
denotes compression, while a positive stress denotes tension. The minor principal stress
acts approximately in the vertical direction, while the major princiﬁal stress (i.e., the least
negative stress) acts approximately in the horizontal direction.

In the case of the thick pavement, all three programs predicted large tensile stresses
at the edge of the load (lower part of the asphalt surface, Figure 5.4). While all three
programs predicted a similar pattern of stress, it is obvious that the stresses attenuate
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much faster in the case of the finite element program. Close to the center of the load, the
linear layered elastic program predicted higher tensile stresses than the other two
programs. The minor principal stresses predicted by the three programs were nearly
identical, but the two layered elastic programs predicted higher major principal stresses
than the finite element program. For the thick pavement, top of the base evaluation
position (Figure 5.5), none of the three programs predicted tensile étresses. The linear
layered elastic program predicted the most compressive (i.e., most negative) major
principal stress. This can probably be attributed to the bending effect that is most
pronounced in the case of the linear layered elastic program.

At the bottom of the base (Figure 5.6), the two layered elastic programs predicted
tensile stresses, while the finite element program predicted only small tensile stresses at the
larger offset positions. The non-linear layered elastic program predicted smaller tensile
stresses than the conventional linear layered elastic program. This can probably be
attributed to both the effect of sublayering and the smaller modulus of the sublayer at the
bottom of the base. The evaluation close to the top of the subgrade (Figure 5.7) showed
that all three programs predicted similar stresses. As before, the linear layered elastic
program predicted the highest tensile stresses.

The same basic trends were observed for the thin pavement (Figures 5.8 through
5.11) as was observed for the thick pavement, although the differences in the predicted
stress states were higher in the case of the thin pavement. It should be noted that the finite
element method does not have the same accuracy at all points within a mesh. The stresses
calculated close to the applied load will not be as accurate as those calculated some
distance away from the load. Therefore, in the case of 'the extremely thin surfacing used
for the thin pavement, the differences between the predictions shown in Figure 5.8 are
possibly also due to a loss in accuracy of the finite element program. For the asphalt
surfacing and top of the base evaluation position (Figures 5.8 and 5.9), all three programs
predicted a tensile major principal stress. However, the effect of shear is incorporated in
the principal stresses. Therefore the tensile stresses observed in the case of the thin
pavement, top of the base evaluation position, are largely brought about by the high shear
stresses that exist at the load edge. '
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The advantage of using a non-linear program that makes use of sublayers can
clearly be seen in the case of Figure 5.10 which shows the results for the thin pavement,
bottom of the base evaluation position. Here, the linear layered elastic program predicted
a significantly higher tensile stress than the other two programs. The non-linear layered
elastic and finite element programs predicted very similar major principal stresses. The
finite element program predicted a higher minor principal stress. Similar trends are
observed for the evaluation close to the top of the subgrade. Once again, the linear layered
elastic program predicted slightly higher tensile stresses than the other two programs.

A trend that can be observed in all the figures is that the stresses predicted by the
different programs tend to approach one another as the offset from the load axis increases.
This is most likely due to the fact that the stresses, in general, tend to decrease away from
the point of load application. This attenuation of stresses away from the load also seems to

be more pronounced in the case of the finite element program.

COMPARISON OF PREDICTED YIELD FUNCTIONS

In the preceding section, the impacts the different response models have on the
predicted stress state were discussed. In the following, the impacts these differences in the
predicted stress state have on the yield function will be discussed. For this analysis, the
same set of material constants and pavement structures as before are used. However, two
other load levels are analyzed in addition to the 44.5 kN load used before. Tables 5.1 and
5.2 summarize the material constants used in this analysis. For each response model and
pavement type, the yield function was calculated at the top and bottom of the base as well
as at the top of the subgrade. This evaluation was done close to the load centerline as well
as close to the edge of the load.

Figures 5.12 through 5.17 show the yield function predictions for each of the
response models at different evaluation positions. The numbers on the abscissa indicate
the evaluation position and are explained in Table 5.3. In these figures, a negative yield
function value indicates that the stress state is such that failure is not expected. A positive
yield function value indicates incipient failure. The trends observed in the yield
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Table 5.3.  Key to Evaluation Position Numbers Used in Figures 5.12 through
5.17.

Description of Evaluation Position

Top of base, close to load center
Bottom of base, close to load center Aﬂ

Top of subgrade, close to load center

Top of base, close to load edge

Bottom of base, close to load edge
Top of subgrade, close to load edge

1
2
3
4
5
6

function values calculated in the asphalt closely approximated those calculated in the base.
However, these yield function values were less critical than any of those observed in the
base. Furthermore, the large negative yield function values calculated in the asphalt layer
tend to distort the scale and diminish patterns noted in yield function values calculated at
other positions. For these reasons, the yield function values calculated in the surface are
not shown in Figures 5.12 through 5.17.

Most of the trends observed in Figures 5.12 through 5.17 can be anticipated based
on the comparison of stresses discussed in the preceding section. For instance, Figure
5.12 shows that, at the top of the base evaluation position, the linear layered elastic
program predicted the most negative (i.e., least conservative) yield function value. This is
due to the higher confining pressures predicted by the linear layered elastic program.
Conversely, at the bottom of the base, the linear layered elastic program predicts higher
tensile stresses than the other two programs and, therefore, also larger yield function
values. A trend that can be observed in all the figures is that the non-linear layered elastic
program seems to be a compromise between the finite element and conventional linear
layered elastic program. In the case of the thick pavement, none of the response models
predicted failure (i.e., all yield function values were negative).

The results for the thin pavement show the same trends as the thicker pavement.
However, as before, the differences between the predictions are gréater in the case of the
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thin pavement. Also, at all load levels, there were some evaluation positions at which
failure was predicted. The changes in yield function values with increasing loads were all
as expected. That is, the yield function values all became larger as the load increased. An
exception to this was the yield function value predicted by the linear layered elastic model,
for the evaluation positions at the top of the base, center of the load (position 1). In this
instance, the yield function decreased with increasing load. This can probably be
attributed to the increased bending at higher loads which leads to higher confining
pressures at the top of the base.

One case was observed where the linear layered elastic program predicted failure
but the other two programs did not. However, there were two instances where the linear
layered elastic program did not predict failure while the other two programs did. This
seems to indicate that the linear layered elastic program can be unconservative, in some
cases.

In all but one instance, the non-linear and finite element programs predicted the
same outcome (i.e., failure versus no failure). The only instance where these two
programs did not predict the same outcome was in the case of the thin pavement, 22.5 kN
load, evaluation position number 4. In this case, the non-linear elastic program predicted
failure while the finite element program did not, which indicates the non-linear layered
elastic program is conservative. However, a closer inspection of the same evaluation
position at higher stress levels will indicate that the finite element I;rogram also predicted
failure at a higher stress. This indicates that the two programs do predict the same trends,
but some difference in the magnitude of the predicted yield function does exist due to the

differences in formulation of the two programs.
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CASE STUDY
During 1993, three superheavy loads were moved over a relatively thin pavement

section in Rusk County, Texas. As part of the research effort of this project, multidepth
deflectometers (MDDs) (53,54) were installed at various depths in the pavement structure.
The pavement response was then measured under several falling weight deflectometer
(FWD) drops, as well as under some of the superheavy loads themselves. Figure 5.18
shows the pavement structure and MDD evaluation positions. An attempt was made to
backcalculate the pavement moduli by using two different approaches. The first approach
involved a conventional backcalculation (14,15) of elastic properties using surface
deflections measured under the FWD and the MODULUS (55) backcalculation program.
The second approach involved a backcalculation of non-linear material parameters using
the finite element response model and the in-situ displacement measurements from the
MDD positions. This approach is similar to that used by Uzan and Scullion (28), and De
Beer et al. (56).

After the backcalculation of material parameters was compléted, an attempt was
made to predict the MDD displacements measured under different FWD drop beights by
making use of the three response models. The backcalculated non-linear material constants
were used in the two non-linear models, and the backcalculated linear moduli were used in
the linear response model. Figures 5.19 through 5.21 show the measured and predicted
displacements at the different FWD drop heights for each response model. These figures
show that all three response models predicted the MDD displacements reasonably well.
The pavement structure used in the linear layered elastic program was backcalculated from
surface displacements measured under a single FWD drop height, while the two non-linear
programs made use of MDD displacements to backcalculate material parameters. It
follows that the predictions made by the linear layered elastic program required
considerably less time and effort to obtain. The larger average error associated with these
predictions (i.e., 12 percent as opposed to approximately 6 percent) is not considered to be
significant when compared to typical errors encountered when performing backcalculation
of layer moduli. Based on the above discussion, it would appear that all three programs
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predicted pavement response with reasonable accuracy. However, significant differences
were observed when the same response models and material coefficients were used to
calculate the yield function value. The maximum load applied to the pavement during the
series of superheavy load vehicle passes was a 60.08 kN single wheel load. When this
load was used to calculate the yield function value at different evaluation positions, the
same trends highlighted in the preceding section were observed. Figure 5.22 shows the
yield function values predicted by each of the response models at the edge of the load and
at three different depths (for the chosen material strength parameters, the edge of the load
evaluation position was found to be the most critical). Figure 5.22 seems to indicate that
the different response models may, under certain circumstances, predict different yield
functions even when the same programs predict very similar vertical displacements. This
may indicate that vertical displacement alone is not an encompassing measure of the
response model's ability to accurately model pavement behavior. It should also be noted
that the predicted yield function values from the finite element and non-linear layered
elastic program are consistent with the observation that no visible damage resulted from the
superheavy load moves evaluated in this case study. |

SUMMARY AND CONCLUSIONS

In this chapter, an analysis was described in which the results of three different
response models were compared. The three models used were a ﬁﬁite element model, a
non-linear version of a layered elastic program, and a conventional linear layered elastic
program. The stresses and predicted yield function values calculated by each program
were compared with one another. In this comparison, the finite element model was
considered to be the most accurate with respect to its ability to model actual pavement
behavior. The results of the finite element program were, therefore, used as a benchmark
against which the two simplified response models were evaluated. The following

observations can be made:
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All three response models show the same basic patterns of stresses within a
pavement. Differences in the magnitudes of predicted stresses are the results of
failure of the simplified models to account for certain aspects of material behavior.
Due to the pronounced bending effect that exists in the case of the linear elastic
program, compressive stresses calculated at the top of the layer and tensile stresses
calculated at the bottom of the layer tend to be higher than those calculated by the
finite element program.

The effect of sublayering and using stress-dependent moduli and Poisson's ratios
can greatly reduce the tensile stresses calculated for the bottom of the base layer.
This can most probably be attributed to the reduction of the bending effect brought
about by sublayering.
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3. Stresses predicted by the three programs tend to approach one another as the offset
from the load increases. While this may merely be due to the attenuation of
stresses with increasing distance from the load, it does suggest that the inability of
the non-linear layered elastic approach to vary moduli and Poisson's ratios in a
lateral direction does not greatly affect the accuracy of predictions.

4, In the case of the thick pavement, the differences in the predicted yield functions
were generally small. All three programs predicted that failure was not likely to
occur in any layer. As expected, the differences in predicted yield function values
tended to increase as the load increased. In the case of the thin pavement, the
differences in predicted yield function values were more pronounced. Several
instances were noted where one of the three programs predicted failure while the
other two programs did not. The non-linear layered elastic program and the finite
element program generally predicted very similar yield funcﬁon values. Only in
one instance did these two programs not predict the same outcome (i.e., failure or
no failure).

Based on the above observations, it can be concluded that the effects of non-linear
material behavior play an important role in predicting pavement response under heavy
loads. Even in cases where displacements can be predicted with reasonable accuracy,
failure to take material non-linearity into account can lead to significant errors in predicted
stresses and yield function values. However, it should be noted that in the absence of
information on non-linear material constants, the conventional linear layered elastic
approach may still be used with some confidence. This will be especially applicable to
thicker pavements.

The non-linear layered elastic program offered a convenient compromise between
the linear layered elastic program and the more accurate, but more time consuming, finite
element program. The inability of the non-linear layered elastic program to vary the
elastic constants in the lateral direction did not seem to have a serious effect on the
predicted stress state or yield function values.
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CHAPTER VI
ANALYSIS OF THE EFFECTS OF DIFFERENT LOAD
CONFIGURATIONS ON THE PREDICTED STRESS STATE

INTRODUCTION

The two main characteristics that differentiate superheavy load vehicles from more
typical heavy traffic are the abnormally large gross vehicle weight of superheavy load
vehicles and the use of multiple axles and wheels to distribute this load over a larger
number of wheels. In routine pavement design, a standard 80 kN ﬁxle load having dual
wheels is normally modeled with only one side of the axle being included in the modeling
process (i.e., one dual wheel load with 20 kN per wheel is used). In the case of
superheavy load vehicles, a variety of load configurations are possible. A large number of
axles are used, and a variety of wheel spacings can be encounteréd, depending on the type
of vehicle used. It is obvious that an attempt to include all wheels and axles of a
superheavy load vehicle in a response model would be a time consuming endeavor.
Undoubtedly, the most accurate representation of the actual load and pavement interaction
will be obtained when all loads are included as they are encountered in the field. However,
an earlier investigation (57) has indicated that stresses and strains attenuate fairly rapidly at
increasing offsets from the load center. This indicates that there may be a limited
advantage offered by the inclusion of more loads in an analysis if such loads lie relatively
far from the point at which stresses are to be evaluated.

In the following, an analysis of the influence of different load configurations on the
predicted stress state is described. The general approach was to use a relatively complex
load configuration that was representative of load configurations typically encountered in
the field. Two simplified variations of this load configuration were then chosen, and the
effect of these simplifications on the stress state was studied.
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RESULTS FROM PREVIOUS INVESTIGATIONS
A preliminary investigation of the effect that different load configurations have on

the stress state was conducted by Jooste and Fernando (57). Although the approach

followed in this earlier investigation was slightly different from the one adopted here,
several of the findings of this investigation are of interest and are summarized. In the
investigation conducted by Jooste and Fernando (57), the behavior of different types of

pavements were modeled under a single wheel load. Two pavement types were used, a

thin, weak pavement with soft layers and a thicker pavement with relatively stiff layers.

Two load magnitudes were also used. Figure 6.1 and Table 6.1 summarize the two

pavement structures used in the analysis.

Displacements and strains were calculated at different depths and offsets from the
load center, and all observations were noted. Some of the more significant observations of
this investigation are summarized below:

1.  The strains were found to diminish to less than two percent of the maximum strains
(i.e., those measured under the load center) at a distance of 0.61 m in the case of the
thin pavement. In the case of the thick pavement, this distance was 1.22 m.

2.  Displacements were found to attenuate over a much larger distance than the strains.
For the thin pavement, the vertical displacement at the top of the subgrade
diminished to 5 percent of the maximum vertical displacement at offsets of between
2.74mand 5.79 m, depending on the depth at which the evaluation was performed.
For the thicker pavement, the corresponding distance was found to be between 6.4 m
and 10.79 m.

3.  For calculated displacements, the zone of influence was found to be significantly
reduced in cases where the subgrade was underlain by a shallow bedrock. However,
with respect to strains, the presence of a shallow rigid layer was found to have a
negligible influence on the variation of predicted strains with distance from a given
wheel load.
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Figure 6.1. Pavement Structure Used in the Study by Jooste and Fernando (57).

Table 6.1. Pavement Layer Moduli and Thicknesses Assumed for Weak and Strong
Pavements in Study by Jooste and Fernando (57).
k Parameter Weak Pavement Strong Pavement
E, MPa) 1725 6900
E, MPa) 103.5 414
E; (MPa) 34.5 138
h, (mm) 50 150
hg (mm) _ 100 300
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Based on the above observations, it can be concluded that the number of wheel loads
that need to be included in any investigation will depend on the parameter of interest.
Strains attenuate much faster than displacements with increasing distance from the load
axis. The attenuation of stresses with increasing distance from the load axis can be
expected to follow the same trends as strains. Figures 5.4 through 5.9 in Chapter V also
seem to indicate that stresses attenuate relatively rapidly as the distance from the load axis

is increased. This is particularly evident in Figure 5.9.

TYPICAL LOAD CONFIGURATIONS USED ON SUPERHEAVY LOAD
VEHICLES

During the course of this study, researchers monitored a number of superheavy load
moves. They observed that there are three basic configurations used by superheavy load
haulers. The first configuration makes use of conventional truck and trailer combinations.
Figure 6.2 shows an example of this arrangement, normally used on superheavy loads
close to the limits for being classified as superheavy (i.e., 1112 kN). Another arrangement
is a tractor-trailer combination shown in Figure 6.3. In this case, a specialized tractor is
used with a trailer that can have up to 12 wheels per axle and as many as 20 axles. This
configuration has been encountered on most of the heavier superheavy load moves, such as
those having more than 8000 kN gross vehicle weight. The third configuration is a
specialized vehicle such as the self-propelled multiple axle trailer shown in Figure 6.4.

A study of the load configurations encountered during the course of this study
indicated that a variety of axle and wheel spacings are possible on the same type of load
moving vehicle. Based on this information, an attempt was made to surnmarize the axle
and wheel spacings encountered on each type of load moving vehicle. Figure 6.5 and
Table 6.2 summarize some of the load arrangements encountered during the course of this
investigation. Figure 6.5 and Table 6.2 indicate that the highest variation in wheel spacing
is typically encountered in the case of specialized tractor-trailer combinations. Axle

spacing is fairly constant for most of the other vehicle types. Also, in the case of
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Figure 6.3, Example of a Specialized Tractor-Trailer Combination.
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Figure 6.4. Example of a Self-Propelled Multiple AXle Trailer.
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Figure 6.5. Typical Load Configurations Used on Superheavy Load Vehicles.
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Table 6.2. Approximate Axle and Wheel Spacings Used on Superheavy Load Vehicles.

Vehicle Type

Approximate Axle

Approximate Wheel Spacing

Approximate

Spacing (mm) Wheel Load
Reference | Spacing (mm) (kN)
|}
Conventional truck and trailer 1220 a 1830 33.4
1 (rear) b 320 to 330
Conventional truck and trailer N/A a 1960 to 2060 32.0
(steering)
Specialized Trailer 1370 to 1520 a 380 to 1020
b 1120 to 1220 18.7 to 31.7
c 270 to 325
'! Specialized Tractor 1830° a 2130 34.7
e e —
Self-Propelled Multiple Axle 1400 620
Trailer b 860 40.0
IL c 620
W

Spacing refers to rear tandem axle of tractor




the tractor-trailer combinations, a general pattern seems to be that two wheels are spaced
close together as in a conventional dual wheel axle.

These groups of two wheels are then spaced at intervals of approximately 380 to
1220 mm. These trailers can normally be connected in a lateral direction so a wider load
can be accommodated, if necessary. The typical wheel loads shown in Table 6.2 are only
approximate and are based on the wheel loads encountered on superheavy load moves
monitored during the course of this study. The wheel loads shown for the conventional

truck and trailer combination are based on the maximum equipment limit.

ANALYSIS OF THE EFFECT OF DIFFERENT LOAD CONFIGURATIONS

To study the effects different load configurations have on the predicted stress state
and yield function, a typical superheavy load configuration was chosen. The load
configuration chosen was approximately that of the special trailer as well as that of the
self-propelled multiple axle trailer. Three different models of this load configuration were
used to model pavement response. The schematic illustrations of the three load models are
shown in Figures 6.6 through 6.8. Figure 6.6 is deemed the most accurate load
representation and was used as the standard against which the aocufacy of the more
simplified load models were evaluated. The numbered dots in the figures represent
positions at which the stresses and yield functions were evaluated. The loads shown as
dotted ellipses in Figures 6.7 and 6.8 were not included and are shown only to illustrate
the relationship between the simplified load configuration and the three-axle configuration
shown in Figure 6.6.

The responses of two different pavement types to each of the load configurations
were calculated using the non-linear layered elastic program described in Chapter V. This
program requires that a single point be chosen within a layer at which stresses are
evaluated and stress dependent moduli calculated. For this analysis, point 4 shown in
Figure 6.6 was chosen. This point was chosen because it was deemed to be the most
representative of the general stress state under the multiple wheels loads. This was deemed
to be the case for all three chosen load configurations. For each layer, the depth
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at which stress dependent moduli and Poisson's ratios were calculated was in the middle of
the layer.

The two pavement types chosen were once again a thin and a thick pavement with
typical material properties. Figures 6.9 and 6.10 show the two pavement structures used.
For each pavement and load configuration, the stresses and yield functions were evaluated
at the numbered positions shown in Figures 6.6 through 6.8. The yield functions were
evaluated at the bottom of the asphalt layer, at the top and bottom of the base, and at the
top of the subgrade. Figures 6.11 through 6.18 show the resulting yield function values.
The numbered positions on the abscissa of these figures refer to the evaluation positions
shown in Figures 6.6 through 6.8. The material strength parameters used to calculate the
yield function are shown in Table 6.3. These values are deemed to be typical values for
the material types assumed in this analysis (37,49).

An immediate observation that can be made from the figures is that similar yield
function values are predicted for the three load configurations. In most cases, all three
load configurations predict the most critical yield function at similar positions. For
instance, in the case of the thick pavement, top of the base position, all three load
configurations resulted in the most positive yield function being calculated at position 1
(i.e., the outside edge of the outer wheel). Another general observation is that the
differences between the responses under the three load configurations are greater in the
case of the thick pavement. In the case of the thin pavement, only minimal changes in the
predicted yield functions were noted. This is to be expected, as the zone of influence of a
given wheel load extends outward and increases with depth. This finding also corresponds
with the earlier study by Jooste and Fernando (57). |

Another observation that follows from the figures is that the triple axle load
configuration predicts a more negative yield function in the majority of cases. This means
that the two simplified load configurations generally result in more conservative
predictions. The reason for this seemingly unreasonable result becomes apparent when the
stress tensors predicted by each of the load configurations are studied in more detail.
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LU

100 mm ASPHALT K1 = 50 000
CONCRETE K2 = 0.1
K3 = 0.0
Kt = 1500
m CRUSHED K2 = 0.61
K3 = -0.30
CLAY SUBGRADE K1 = 600
(1.47 m TO EQUIVALENT STIFF K2 = 0.0
LAYER) K3 =03

Figure 6.9. Thick Pavement Used in Analysis.

40.0 kN LOAD OVER 127 mm RADIUS

U

K1 = 50000, K2 = 0.1
25 mm ASPHALT CONCRETE K3 =00
150 mm CRUSHED K1 = 1500
STONE K2 = 0.61
K3 = 0.30
CLAY SUBGRADE K1 = 600
(147 m TO EQUIVALENT STIFF K2 = 0.0
LAYER) K = 03

Figure 6.10. Thin Pavement Used in Analysis.
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Table 6.3. Material Strength Parameters Used in Determining Yield Function
Values.

Layer and Material Type Cohesion (kPa) Angle of Friction |

Asphalt Surfacing

Crushed Stone Base
Clay Subgrade

An angle of friction of 0° was used for the bottom of the asphalt evaluation position.

Table 6.4 summarizes the stress states and elastic constants predicted by each of the three
load configurations. The stresses shown in Table 6.4 are the principal stresses. o, and o,
act approximately in the radial and tangential directions, and o, acts approximately in the
vertical direction. Negative stresses denote compression.

Table 6.4 shows that, for the two evaluation positions shown, the stress states
predicted for the different load configurations are very similar. This is especially true of
the vertical stress component (0,). In the case of the two horizontal stress components, it
can be seen that the three axle model predicts larger compressive stresses. The effect this
has on the yield function value can be seen from resulting values of the first stress
invariant (I,) and the second invariant of the deviatoric stress tensor (J,). In this respect, it
should be noted that, due to the relatively high angle of friction of granular materials, a
higher state of compression would lead to a higher resistance to shear. Conversely, a
higher J, value is indicative of a stress state in which the deviatoric.componem is high,
which means that high shear stresses exist. Table 6.4 shows that in the case of the three-
axle load configuration, the magnitude of I, is higher than in the case of the other two load
configurations. Furthermore, the effect of the two axles adjacent to the central axle is to
increase the compressive stresses in the horizontal directions. This results in a lower J,
value, which in turn results in a more negative yield function value being calculated in the
case of the three-axle load configuration.
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Table 6.4. Stress States and Yield Functions Predicted by Different Load Configurations.

(kPa) | (kPa) | (kPa) Modulus Ratio Funct.
o . . : (MPa) S Value

| Three Axles | 24.7 | 13.3 | -84.7 | -46.7 | 3619.8 197.8 477 -12.63 |
Bottom of Base | Single Axle | 33.4 | 12.4 | -84.0 | -38.2 | 3916.1 178.0 478 -5.0
Dual Wheel | 30.0 | 14.6 | -83.6 | -38.9 | 3801.0 173.7 - 478 -8.0
| Three Axles | -1.7 -5.8 | -84.1 ] -91.6 | 2158.0 84.1 ~.308 -51.1
Top of Subgrade | Single Axle 5.6 -43 | -83.2 | -81.9 | 2369.0 82.5 304 -45.6
Dual Wheel 6.1 -1.4 | -82.7 | -78.0 | 2426.6 82.3 294 -45.3

*

All evaluations were done at the center of the outer wheel (i.e., position 2 in Figures 6.6 through 6.8).



It would, therefore, seem that simplifying a multiple axle load configuration into a
single axle or even a dual wheel load leads to a more conservative yield function
prediction. Of the three load configurations analyzed, the single axle generally resulted in
the most conservative prediction of failure potential. In those instances where the triple
axle or dual wheel loads resulted in a more conservative prediction, the differences
between the three predicted yield functions were small. Furthermore, there does not seem
to be any advantage to modeling all wheels on an axle as opposed t0 modeling only the two
wheels that are closest together. However, it is conceivable that situations may exist
where wheel spacing is so close that this may not be the case. For wheel spacings similar
to those shown in Figures 6.6 through 6.9, it seems that the simpler dual wheel offers a
very close approximation to the more complex single axle (4 loads). This becomes
especially evident when one examines how small the differences are in the I, and J, values
predicted by these two load configurations.

It is also interesting to note the differences in the elastic parameters predicted by the
different load configurations. As expected, the three-axie load configuration, because of
its higher confinement, results in higher modulus values being calculated. Although the
differences in calculated Poisson's ratios are small, they do confonﬁ to expected behavior.
Table 6.4 shows that, in the case of the stress-stiffening granular base, the higher
confinement of the three axle model resulted in a slightly lower Poisson's ratio. For the
stress-softening subgrade material, the opposite is observed.

SUMMARY AND CONCLUSIONS

In this chapter, a comparison was made between the stress states predicted by
different types of load configurations. Three versions of a load configuration deemed to be
fairly representative of the types of load configurations typically encountered on
superheavy load moving vehicles were modeled, and the resulting stress states and yield
function values were analyzed. Some of the more significant observations made are as

follows:
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1. The two simplified load configurations generally predicted stress states and yield
function values very similar to those of the more complex three axle assembly. The
three load configurations generally predicted the same trends and, in the majority of
cases, also predicted critical yield functions at the same positions.

2. The differences noted in the yield function values predicted by the different load
configurations were greatest in the case of the thick pavement. These differences
also seemed to be greater at greater depths. However, the yiéld function values
seem to become less critical as depth increases.

3. In the majority of cases, the two simplified load configurations predicted stress states
that were more critical with respect to failure potential. An analysis of the stress
states indicated that the three axle assembly predicted higher confinement and lower
deviatoric stress components. This results in less critical yield function values being
calculated. Thus, the two simplified load configurations generally seem to predict
more conservative yield function values.

Based on these observations, it is concluded that, for the load and pavement
configurations analyzed, a dual wheel load can be used to satisfactorily simulate the stress
conditions under a multiple axle load assembly. This simplified approach is preferred
since it will greatly simplify the modeling process and make the modeling of pavement
response under superheavy loads easier to perform on a routine basis.
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CHAPTER VII
A SUPERHEAVY LOAD ANALYSIS PROCEDURE

OUTLINE OF PROCEDURE

In this chapter, an analysis procedure is presented that will enable engineers to assess
the structural adequacy of a pavement prior to a superheavy load being moved over the
pavement. It is realized that, due to the relatively large numbers of superheavy load
permit applications received by TxDOT every year, the analysis procedure should be as
simple and easy to implement as possible. However, this requirement of simplicity stands
in direct opposition to the relatively complex behavior of pavements. Therefore, any
simplified procedure should of necessity be somewhat conservative in nature.
Unfortunately, the adoption of very conservative material parameters can in some instances
lead to inaccurate and unrealistic results.

In order to address both the requirements of simplicity and accuracy, a two-stage
analysis procedure was developed. This procedure enables engineers to perform an initial
analysis with the minimum information and at minimal expenditure of effort, time, and
funds. In the first stage procedure, the structural adequacy of the superheavy load route is
evaluated by means of charts. In the majority of cases, no testing is required at this stage,
and layer properties such as thickness and stiffness are estimated from historical data and
from information gained from previous investigations. However, the procedure is
structured such that if FWD data and backcalculated moduli are available, it can also be
used in the first stage analysis. The availability of FWD data dramatically improves the
accuracy of this pavement analysis, and any analysis conducted without the benefit of
FWD data is immediately more approximate and open to error. |

Figure 7.1 illustrates the methodology adopted in the two-stage analysis procedure.
Most of the material parameters assumed in the development of the charts which form the
basis of the first stage analysis procedure represent a worst case scenario. Because of this
conservative approach, the first stage analysis procedure should be considered a trigger
| analysis rather than a final analysis. This means the charts used in the first
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Figure 7.1. Schematic Representation of Superheavy Load Analysis Procedure.
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stage analysis procedure are only used to indicate whether further analysis is needed.
Should the first stage procedure indicate that the structure is adequate to accommodate the
proposed load, then no further analysis is needed. However, should the charts indicate
that the structure is inadequate to accommodate the load, then a more detailed investigation
should be undertaken.

The second stage analysis requires that FWD data be available. Layer thicknesses
can be obtained from historical data. However, cores and/or Ground Penetrating Radar
(GPR) measurements are preferred since they provide a more accurate and current record
of layer thicknesses. The results from these nondestructive tests are then used in the non-
linear version of the BISAR (5) layered elastic program. By making use of an approximate
procedure, this program enables the analyst to perform a nonlinear analysis through the use
of backcalculated moduli and estimated layer thicknesses. The methodology followed in
this program was described in Chapter V and is also outlined in a later section of this
chapter. For the second stage procedure, material strength parameters (cohesion and angle
of friction) can be obtained from laboratory tests or can be based on typical results from
previous testing (49).

If the second stage analysis also indicates that a potential for failure exists, several
options are available. The first, and possibly the easiest, is to re-route the load over a
stronger pavement structure. Naturally, this requires that a second analysis be undertaken
for the new route. If re-routing is not possible, then the possibility of increasing the
vehicle's load spreading capabilities by increasing the number of axles should be
investigated. Normally this can be achieved by the addition of another trailer unit. If
neither of these options are possible, then a strengthening of the pavement through the use
of laminated wood sheets or similar devices can be considered. Finally, a more detailed
determination of the material strength parameters can be undertaken by sampling and
conducting laboratory tests (49).
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FIRST STAGE ANALYSIS PROCEDURE

General
The charts used in the first stage analysis procedure were developed through

repetitive runs of the non-linear version of the BISAR layered elastic program described in

Chapter V. The analysis and synthesis conducted in order to produce the charts were done

with due consideration to the results of previous chapters. These considerations included

the following:

1. A non-linear layered elastic program that utilizes a multiple-layered structure can
closely approximate the results of a more complex finite element model. Any loss in
accuracy that results from the use of the more approximate layered elastic theory is
likely to result in more conservative estimations of load carrying capability (results
from Chapter V).

2. A large majority of multiple wheel load configurations can be modeled with
sufficient accuracy if only the two closest wheels are included in the analysis (results
from Chapter VI).

For all the pavement structures used, the sublayered system shown in Figure 7.2 was
used. Figure 7.2 shows that the asphalt surface was divided into two sublayers while the
base and subgrade were divided into three and four sublayers, respectively. For all
pavement structures, an equivalent depth to stiff layer of 2.9 m was used. While this depth
was chosen to conform more or less with previously observed results, it is recognized that
substantial variations in the depth to apparent stiff layer can occur in the field (58).
However, as noted in a previous chapter, the depth to apparent stiff layer has a negligible
influence in predicted stresses and strains (this is not the case with displacements) (57).

A dual wheel load with a spacing of 380 mm was used for all evaluations. Although
this wheel spacing is slightly larger than that used on conventional trailers such as those
shown in Figure 6.1, it is considered an acceptable compromise between the closer spacing
used on conventional dual-wheel configurations and the larger spacing found on
superheavy load trailers such as those shown in Figures 6.2 and 6.3. A tire pressure of
830 kPa was used in all cases. This tire pressure is considered to be representative of
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those typically used in the field (57). For all pavements, stresses were evaluated at the
bottom of the asphalt and base layers, and at the top of the subgrade. For each layer,
evaluations were performed at the outside and inside edge of the wheel as well as at the
load center and midway between the two loads.

For each sublayer, stress dependent moduli were evaluated at the mid-depth of the
sublayer. All evaluations were performed along the centerline of one of the two loads.
This choice of evaluation positions corresponds to the findings of previous researchers who

have used layered elastic programs in a non-linear analysis (1,59).
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Figure 7.2. Typical Pavement Structure and Load Configuration Used to Develop
First Stage Procedure Charts.
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Layer Moduli and Strength Parameters Used

In order to accommodate as large a range of pavement situations as possible,
different material types and combinations were assumed in developing the charts.
However, no distinction was made between different types of materials. Instead, reference
is made to the moduli and strength characteristics of each layer. The nomenclature used to
distinguish between material types, therefore, consist of rather loose terms such as stiff,
weak, or stabilized. Table 7.1 summarizes the material parameters used for each material
type. A non-linear formulation was used to obtain the charts. Therefore, the moduli of
each layer was not fixed but depended on the load magnitude and the position at which the
stress-dependent moduli were evaluated within the layer. In Table 7.1, both the non-
linearity constants (k; to k;) and the resulting moduli for the load range are reported. A

brief description of the assumptions made with regard to each material follows.

a) Asphalt Surface

As a worst case scenario, the asphalt surface was considered to be soft with low
cobesion. As shown in Table 7.1, the asphalt stiffness varied from approximately 830
MPa to 2070 MPa, which is considered to be at the low end of the normal range of moduli
for asphalt layers. Although the non-linearity constants for the asphalt were chosen to
represent only a slightly non-linear material, the modulus varied significantly over the
thickness of the layer due to the relatively large stress state variations.

The cohesion of asphalt material can vary significantly with differences in
temperature (1,37). Figure 7.3 shows test results reported by Lytton et al. (37). Also
shown in Figure 7.3 is a regression line and equation that was ﬁtteé to obtain a
relationship between asphalt cohesion and temperature. Table 7.2 was obtained from a
study by Perdomo and Button (24) and shows the expected temperature distribution in a
100 mm thick asphalt layer that is divided into 25 mm sublayers. Table 7.2 shows that the
lower part of the asphalt, which is considered to be the critical part of the layer, can be
expected to have a temperature of above 39°C only 7 percent of the time. Similar
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Table 7.1. Material Parameters Used to Derive Charts.

Layer Non-linear Material Resulting Cohesion Angle of
Description Constants Range of (kPa) Friction
k, k, ks Moduli
(MPa)
Asphalt 10000 | 0.1 | 0.0 | 790to 2070 938.0
Surface to
15000
ﬂ Weak Base 1000 06 | 03 62 to 235 49.0
H Stabilized 20000 | 0.1 | 0.0 | 1500 to 3200 621.0
Base to
25000
Weak 300 0.0 | 03 48 to 62 41.0
Subgrade
Stiff 900 0.0 | 03 90 to 138 103.0
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Figure 7.3. Asphalt Cohesion Related to Temperature (Based on Results Reported by
Lytton et al. (37)).

Table 7.2. Temperature Distribution in a 100 mm Asphalt Overlay,
Dallas Area (From (24)).

Temperature (°C ) Temperature of Sublayer (°C)

1 2 3 4

ﬂ 411046 43 41 38 36 | 1215 ﬂ
4110 52 48 44 42 39 6.83
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results indicate that for a 75 mm asphalt layer, the temperature in the lower 25 mm of the
layer can be expected to be above 39°C for approximately 19 percent of the time.

Using the preceding information as a guideline, it was decided to use the cohesion
estimated at 32°C. By using the relationship shown in Figure 7.3, a cohesion of 938 kPa
was calculated and subsequently adopted for evaluation purposes. As explained in Chapter
I, the lower part of the asphalt layer is almost always in a state of tension. This means
that very little of the interparticle friction is mobilized. Therefore, a friction angle of 0.0°
was adopted for the asphalt.

b)  Weak Base

The condition described as "weak base™ was chosen to represent an unstabilized
granular base with a moisture content that is wetter than optimum. This base may consist
of crushed limestone, iron ore gravel, shell, or Caliche. The non-linear material constants
were chosen such that the modulus of this type of material ranged from 193 MPa for high
stresses in the upper sublayer to 67 MPa in the lower sublayer where small tensile stresses
may exist. Based on the relationship between Texas Triaxial Class.and modulus value, the
"weak base" is considered to represent a material with an approximate Texas Triaxial class
oumber of 3.5 to 4.0 and a California Bearing Capacity Ratio (CBR) of between 60 and 15
(1,60).

The cohesion values used for the "weak base" were based on the results of Titus-
Glover and Fernando (49). The cohesion value used of 49 kPa was the average cohesion
measured for a range of base course materials that were compacted and tested at a moisture
content above optimum. A friction angle of 50° was used for this material, which was
consistent with results obtained from laboratory testing (49).

¢)  Stabilized Base

This material was considered to be a good quality material that had been stabilized
with lime or cement. The stiffness and cohesion of stabilized materials can vary
. considerably, depending on the amount of stabilizer used, curing time, and material quality
(61,62,63). A relatively low modulus that ranged between approximately 3200 and 1500
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MPa was chosen to represent the stabilized base material. While significantly higher
modulus values can be encountered in the field, the modulus values used to derive the
charts are considered to represent a worst case scenario, such as where the stabilized
material has already been broken down by traffic and environmental influences.

By making use of empirical relationships, both the cohesion and the modulus of
stabilized material can be related to the Unconfined Compression Strength (UCS) of the
material (61,63). Depending on the material type, TXDOT currently specifies a minimum
UCS value between 5170 and 3450 kPa for materials stabilized with 3 to 9 percent cement
(64). Figure 7.4 shows empirically derived relationships between UCS and cohesion for
cement and lime stabilized material, based on the relationships reported by Little et al.
(61,63). The cohesion value chosen for evaluation of stabilized materials corresponds
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Figure 7.4. Empirical Relationship Between Stabilized Material Cohesion and
Unconfined Compression Strength (61,63).
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approximately to the minimum specified UCS value of 2760 kPa. While this value is lower
than the minimum specified UCS strength, it is deemed to be representative of aged
stabilized materials that have experienced some degradation through environmental and
traffic effects.

d) Weak Subgrade

The weak subgrade was considered to be a soft, stress softening material that offered
poor support to the overlying structure. The non-linear coefficients were chosen so that
the modulus under typical stress conditions varied between 48 and 62 MPa. The weak
subgrade condition can, therefore, be used to represent a wet clay, a poorly compacted
sand, or any other material with high plasticity and relatively high moisture content. The
cohesion value used in the evaluation of this material was also based on the results reported
by Titus-Glover and Fernando (495 and is typical of clayey materials at a moisture
condition wetter than optimum.

e)  Stiff Subgrade

The stiff subgrade represents a material that is fairly stiff (modulus values varied
between 90 and 138 MPa) and well compacted. The stiff subgrade condition can also
represent a lightly stabilized poor quality material. The cohesion value used in the
evaluation of this material corresponds to that of a dry clay (49).

Discussion of Results

The charts derived for the conditions noted in the preceding sections are shown in
Figures 7.5 through 7.8. These charts can be used to determine the allowable wheel load
for a given subgrade support (i.e., weak or stiff), base thickness, and asphalt thickness.
Several trends of note were observed in the process of developing the charts. These will
be briefly discussed in the following.
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In almost all instances, the critical evaluation position was situated in the
base. For thin asphalt thicknesses, the outer load edge was the most critical position.
However, the most critical position gradually shifted to the inner edge of the load, then to
the center of the two loads as the thickness of the asphalt layer increased.

The stiffness of the subgrade had a significant effect on the predicted maximum
allowable load. This may be somewhat encouraging, since the stiffness of the subgrade is
one of the easier elements to determine in most backcalculation exercises. Thus, even if
some uncertainty exists regarding the moduli values of the thinner overlying material, a
significant benefit can be derived from FWD data if the subgrade modulus can be
estimated. With this information, the analyst can immediately ascertain which charts to
use. Based on the assumed moduli values shown in Table 7.1, any subgrade with an

estimated modulus in excess of 75 MPa can be classified as a stiff subgrade material.

SECOND STAGE ANALYSIS PROCEDURE

As shown in Figure 7.1, if the charts used in the first stage analysis indicate a
potential for failure exists, then a more detailed investigation is warranted. This
investigation makes use of the same analysis tools used to derive the charts in the first
stage procedure. However, the second stage procedure requires that more detailed
information be available. This information can be obtained through FWD testing and
backcalculation (14,15). If there is any uncertainty about layer thicknesses and moisture
conditions within the pavement structure, then GPR measurements and/or cores may also
be needed.

Once this information becomes available, the analyst can proceed to run the non-
linear layered elastic program, PALS, that was specifically developed for superheavy load
analysis. PALS is an acronym for Program to Analyze Loads Superheavy. Input to this
program simply requires that the non-linear material constants, material strength
parameters, and the maximum expected wheel load be entered into an ASCII input file. A

menu-based user interface is incorporated with the program to facilitate data input.
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Estimates of material parameters can be found in the study reported by Titus-Glover
and Fernando (49) who performed a detailed study to determine typical non-linear and
material strength parameters for pavement materials. This study developed relationships
for estimating the resilient and strength parameters of base and subgrade materials from
results of simple laboratory tests such as those used to determine gradation, Atterberg
limits, moisture content, and soil suction. These relationships have been incorporated into
the superheavy load analysis program as user options in the absence of test data from
actual resilient modulus and triaxial tests.

The program runs on a microcomputer under DOS. Program output simply shows
whether the pavement evaluated is adequate for the prescribed superheavy load based on
the yield function value. If this value is less than zero, failure is not likely to occur. If the
yield function value is larger than zero, a possibility for failure exists, and measures for
strengthening the route, increasing the load spreading capabilities of the superheavy load
vehicle, or re-routing the superheavy load move need to be considered. More detailed
testing to determine the angle of friction and cohesion may also be considered. Such
testing may show that the cohesion and angle of friction values previously used were too
conservative, and a new analysis may show that failure is not likely to occur.

It should be noted that, as shown in Chapter IV, the material strength parameters
play a vital role in determining the Mohr-Coulomb yield function value. Reference is
made to the study by Titus-Glover and Fernando (49) in this regard. It should be noted
that higher moduli values will lead to higher stresses, and yield will invariably be predicted
if the cohesion value used in the analysis is that of a wet, soft material instead of an intact,
stiff material. This tendency of the material to have an increased cobesion corresponding
to increased moduli can be observed from Figures 7.9 and 7.10 which show cohesion
values plotted with the k, parameter, which is directly related to the material stiffness.
Although Figures 7.9 and 7.10 show a definite relationship between cohesion and resilient
modulus, this relationship clearly differs for different materials. The authors recommend

a more detailed study of the relationship between modulus and cohesion to provide a
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more accurate basis of estimating cohesion changes with changes in layer moduli.
Furthermore, research has shown that cohesion can be estimated if the soil suction and
moisture content of the soil is known (49,65,66). The moisture content may be estimated
non-destructively using GPR or measured from a simple laboratory. test conducted on soil
samples taken from the proposed superheavy load route. Soil suction, in turn, can be
determined if the moisture content versus soil suction relationship for the given material is
known. These relationships bave been investigated by Titus-Glover and Fernando (49) for
a number of base and subgrade materials found in Texas. The data obtained have been
used to develop a prediction equation for cohesion that is a function of soil suction and
other variables that are determined from simple laboratory tests. This prediction equation
provides an alternative method of characterizing cohesion for the structural evaluation of

superheavy load routes.

SUMMARY

In this chapter, an analysis procedure was presented for determining the likelihood of
failure prior to a superheavy load being moved over a pavement structure. The procedure
consists of two stages. In the first stage procedure, use is made of charts. Material
parameters used in these charts are conservative and based on previous results from tests
performed on pavement materials (37,49). If the charts indicate that the pavement
structure can safely accommodate the superheavy load, then no further analysis is needed.
However, if the charts indicate that a possibility for failure does exist, then a more detailed
analysis is warranted. The second stage procedure uses the same analysis techniques as the
first stage procedure. However, in the second stage procedure, use is made of more
detailed and site specific information. It is noted that the resilient and strength parameters,
in particular k;, and the cohesion value have a significant influence on the Mohr-Coulomb
yield function value. These parameters can vary considerably due to seasonal and moisture

condition changes. Because of the variability in material conditions that may exist on a
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given route, it becomes important to get accurate and site-specific estimates for these
material parameters that are important determinants of the yield function value.
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CHAPTER VIII
CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

This study addresses the modeling of flexible pavement response under superheavy
load vehicles. In the analysis of superheavy load vehicles, the design parameter is a yield
function value which is determined by the stress state and the strength parameters of the
material in question. The analysis of pavement response under superheavy load vehicles
differs from routine pavement design in that it is the load magnimdé rather than the
number of loads that are of importance. In this study, an attempt was made to address the
major factors that pertain to the modeling of flexible pavement response under abnormally
high wheel loads. Several modeling procedures were evaluated and compared. Of these
procedures, the finite element model was considered to be the most accurate in its
characterization of pavement behavior. A large part of the researcﬁ effort was devoted to
determining the effect of using simplified procedures to model pavement response and
predict the likelihood of failure. The following conclusions can be drawn based on this
study:

1.  The finite element model, which uses stress dependent moduli and Poisson's ratios,
provided results that compared well with results measured in the laboratory. Of the
two responses monitored in the laboratory, the best comparison between measured
and calculated results was obtained for axial strain. While the finite element model
correctly predicted trends in radial strain (including dilation), there was a loss in
accuracy in predicting absolute values.

2. Instudying the sensitivity of the Mohr-Coulomb yield function value to changes in
the non-linear constants k;, to k,, changes in k, were found to have the greatest effect
on the yield function. Changes in non-linear material parameters had the greatest
effect on the yield function calculated in the base. This was found to be the case
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even when parameters of adjacent layers were varied. Yield function values
calculated in the subgrade fluctuated very little with changes in the non-linear
material parameters.

Cobesion was found to be a major determinant in estimating the point of yield for
stress conditions that typically exist in pavement layers. The effects of changes in
cohesion were found to be most pronounced in the case of the subgrade and the
asphalt. The influence of cohesion on the yield function value calculated in the base
is still high. However, in this layer, material strength is also highly influenced by
the angle of friction.

In the majority of cases, the most critical yield function value was calculated in the
base. However, because of the yield function's sensitivity to changes in cohesion,
situations may exist where the asphalt surface or the subgrade may become the most
critical layer. The yield function should, therefore, be calculated in all layers and
evaluated by making use of site-specific cohesion values.

A comparison of results obtained by a finite element model, a conventional layered
elastic model, and a version of the layered elastic model that was adopted to
accommodate non-linear material behavior showed that all three models predicted the
same trends in stresses and yield function values. Differences in magnitudes of
predicted stresses are due to the failure of the simpler models to fully take account of
material non-linearity. The version of the layered elastic model that was modified to
account for material non-linearity was found to provide a good compromise between
traditional layered elastic theory and the more accurate finite element model. This
was especially found to be true in the case of thicker pavements. Differences
between yield function values predicted by the three response models were greater in
the case of thinner pavements.

The comparison of response models showed that non-linear material bebhavior plays
an important role in predicting pavement response under heavy loads. Even in cases
where displacements can be predicted with reasonable accuracy, failure to take
account of material non-linearity and the effects of changing modulus within
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pavement layers can lead to significant errors in predicting stresses and yield
function values.

7. A comparison of stress states and yield function values calculated under different
load configurations showed that a simplified load assembly can predict pavement
response with reasonable accuracy. A complex load assembly, where more loads are
included, leads to increased vertical stress. However, the larger number of loads
also leads to increased confinement, thereby reducing the effect of the larger vertical
stress. As a result, the simplified load configurations predicted stress states that
were more critical with respect to failure potential. The differences in yield function
values predicted under the different load configurations were greatest in the case of
thicker pavements. A similar effect can be expected in the case of more rigid
pavements. However, in such cases, the yield function values calculated at greater
depths, or under more rigid pavements tend to be less critical, and therefore, the

differences between yield function values are generally not significant.

RECOMMENDATIONS

This study has developed a methodology for evaluating the structural adequacy of
routes for permitting superheavy load moves. Researchers recommend that TxDOT
implement the procedure developed for structural evaluation of superheavy load routes.
TTI researchers can assist in this implementation effort, particularly in training TxDOT
engineers in the use of the procedure developed. The study also has shown the need for

additional research in the following areas to facilitate the evaluation of failure potential

under superheavy loads:

1.  The accuracy of the estimation of the failure potential in pavements under high wheel
loads depends on the estimate of the cohesion of the pavement materials at the time
the load is moved. Methods do exist whereby the cohesion of pavement materials
can be estimated through non-destructive testing techniques such as ground

penetrating radar, coupled with information on the moisture-suction curve of the
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material in question. Indeed, research efforts made in this TxDOT project have led
to the development of an alternative method of estimating cohesion in the absence of
triaxial test data (49). It is recommended that additional research be conducted to
test and calibrate the method developed in this companion study using a more
extensive and up-to-date data base of material strength parameters. This research
should also investigate relationships between cohesion and material stiffness.

The present research has shown that of the three non-linear material parameters (k,
to k,), the yield function value is most significantly affected by k,. Laboratory tests
on various pavement materials have shown that this is also the factor that is the most
susceptible to changes in moisture. The k, factor seems to be site-specific and varies
not only depending on the material type, but also on the prevailing environmental
conditions. It is recommended that further research be conducted to investigate the

possibility of determining k, through routine nondestructive testing such as FWD

testing.
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MODELS BASED ON ELASTICITY

LINEAR ELASTICITY AND THE CAUCHY ELASTIC MODEL

Linear elasticity is the oldest and most often used way of modeling material
behavior. It assumes that the state of stress at every point of the response is uniquely
related to the state of strain (67). Linear elasticity is embodied in Hooke's law, which was
based on Hooke's experiments with elastic bodies. In his 1678 paper "Lectures De
Potentia Restitutiva” (68), Hooke published the results of his experiments with elastic
bodies. Wolfskill (69) quoted Hooke's observations as follows:

"...It is very evident that the Rule or Law of Nature in every springing body is, that
the force or power thereof to restore itself to its natural position is always
proportionate to the distance or space it is removed therefrom..."

"... Nor is it observable in these bodies only, but in all other springy bodies
whatsoever, whether metal, wood, stones, baked earth, hair, horns, silk, bones,
sinews, glass and the like..."

Thus linear elasticity assumes a direct relationship between stress and strain. It also
assumes that the material returns to its initial state upon removal of the load (17). For
three dimensional bodies, the generalized Hooke's law can be expressed as (17):

0; = Ciu€u | (A.1)
Where o; =  the stress tensor,
€y = the strain tensor,
Cju =  afourth order tensor which provides the cqnnecting relationship
between stress and strain, and
i,j,k,] =  indices ranging from 1 to 3.
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The tensor Cy, in equation (A.1) consists of 36 components. However, if the material is
considered as isotropic, then the relationship between stress and strain can be described
completely by means of two constants, namely Young's Modulus (E), and Poisson's Ratio
() (16) as follows:

o =L ¢ 4 L € & (A.2)
Vol+p Vo 0+ -2p) *Y

Where 1,j, and k ranges from 1 to 3, and
&; = the Kronecker Delta.

Because of the assumption of complete recovery, linear elasticity has a limited range
of application for granular materials (67). However, Chen and Baladi (16) note that soil
behavior in the linear elastic range is well understood, and that predictions of acceptable
accuracy can be found in many applications. One of the greatest disadvantages of the
linear elastic approach is that it assumes a linear relationship between stress and strain.
Many granular materials exhibit nonlinear behavior within the elastic range, as illustrated
in Figure A.1. One of the ways in which nonlinearity can be accounted for is by replacing
the constants C;5, in equation A.1 by functions of the stress or strain. Materials
characterized in this manner are referred to as Cauchy elastic materials. In the Cauchy
elastic model, stress is assumed to be a function of strain only.

Thus:

o; = Fiew (A.3)

Where F; is the elastic response function of the material (16). It should be noted that in its
lowest form, the Cauchy elastic law is the same as the generalized Hooke's law (17).
However, in order to account for the nonlinear relationship between stress and strain, some
modifications have been made to the Cauchy function. The simplest of these modifications
is to replace the constants F; with functions of the stress or strain invariants. These
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functions are often termed secant moduli. Approaches that use secant moduli together with
the Cauchy formulation have been applied with some success to the modeling of soil
behavior and have the advantage of being simple to model. However, they bave the
limitations of path independence and reversibility, which assume that stresses are uniquely
determined by the current state of strain (or vice versa), which is an idealization of actual
soil behavior. Furthermore, the Cauchy elastic models may generate energy on certain
loading-unloading cycles, which is a violation of the laws of thermodynamics (16).

/N

Stress Noniinear Response

Linear Response

%

Strain
Figure A.1. Linear and Non-Linear Material Behavior.
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HYPERELASTIC MODEL
In order to overcome the disadvantages associated with the Cauchy formulation, an

alternative method for modeling nonlinear soil behavior, called hyperelastic modeling, was
adopted. This model is also known as the Green formulation (67). As in the modifications
of the Cauchy formulation, hyperelastic formulations make use of secant moduli.

However, the hyperelastic formulation satisfies the first law of thermodynamics and the
law of kinetic energy, in that it assumes the existence of a Strain Energy Function, W(e;),
such that (67):

o = ' (A4)

4 de,

The strain energy function, W, is a function of any three independent invariants of the
strain tensor. If we choose the invariants:

I'=¢ | (A.53)
12' = (1/2)ei]€p (A.Sb)
13' = (1/3)eij€jk€ki ' (A.SC)

Then equation (A.4) can be rewritten as:

or’ or, or!

’ GW; . 3": e a”i 3 (A.62)
o] %€, ar %; g1 o€

7

With Ay, (A.6b)
ae,.j
7
o9 e, (A.6¢)
ae,}_
H
.gf%. “ey e, (A.6d)
€.

Y
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Equation (A.6a) becomes:

; = ..az & + _Qz €. + .aﬁ €, €, (A’])
i / /) /
ol

Equation A.7 has the same form as the Cauchy formulation except the response
coefficients in the Cauchy formulation are independent, while those of equation A.7 are
dependent on each other under a certain set of integrability conditions, which are given
completely in reference 67. Thus, the Green formulation can be seen as a special case of
the Cauchy formulation. An example of a third-order hyperelastic formulation is given in
reference 43, together with comparisons between model predictions and measured results.
An expression similar to equation A.7 can be derived to express strains in terms of stresses
by making use of the Energy Density function Q(c;).

The hyperelastic model can be accurate for soils under proportional loading (67). It
also satisfies the theoretical requirements for stability, uniqueness, continuity, and energy
considerations that are required by continuum mechanics. A significant advantage afforded
by the hyperelastic model is that it can account for soil behavior that is generally difficult
to model, such as dilation, stress induced anisotropy, and strain softening (67).

A disadvantage associated with the hyperelastic model is that it is still a path
independent formulation. Furthermore, even when initial isotropy is assumed, the
hyperelastic model can contain a large number of response parameters. This requires that
a large number of laboratory tests be performed before a particular soil can be modeled
with accuracy. The model is also confined to small areas of application (67).

HYPOELASTIC MODEL

All of the models discussed previously can be described as total stress or strain
formulations. An improvement on these was obtained through the hypoelastic model,
which is an incremental formulation. This model has the advantage that it can model soil
behavior that is path-dependent (67). This means that, for the hyp(;elastic formulation, a
different stress or strain will be obtained for different stress paths, whereas for the
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previous formulations, the stress path followed would have no influence on the state of
stress at any particular point along the load cycle.

In the hypoelastic formulation, the stress is represented by a material response that is
a function of the current state of stress, as well as the current rate of strain. Thus, the
general form of the hypoelastic formulation is (67):

8, =F, (0, &) (A.8)

Where the dot indicates a rate of stress or strain. For isotropic, time-independent
materials, it can be shown (67) that:

do, = C,(0, ) de, (A.9)

Where Cy, is called the tangential stiffness tensor. In its most general form, the tangential
stiffness tensor contains 12 material coefficients that all depend only on the invariants of
the stress tensor.

From equation A.9 we can see that the stress-strain relationship for a single
increment is reversible. The term Aypoelastic (meaning "lower"”, or "minimum" elastic)
arises because the reversibility requirement applies only in the incremental sense. An

integration of equation A.9 yields:

0
o, = fcw(om) de, + O, (A.10)

uy

Where o, is the initial stress state. Equation A.10 shows that the hypoelastic model
assures a path-dependent process. It should be noted that, for the linear case in which Cyy
is constant, the hypoelastic model reduces to the Cauchy model. For the hypoelastic

model, failure of the material occurs when:

det|Cypu(0m)| = 0 ‘ (A.11)
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Equation A.11 leads to an eigenvalue problem for which the eigenvectors span a failure
surface in stress space (17,67).

The two main problems associated with the hypoelastic formulation are that, for
muitiaxial stress conditions, it is not always clear whether the material is being loaded or
unloaded. Thus, it is conceivable that the shear stress may increase while the normal
stress may decrease. Additional assumptions are, therefore, needed in order to define
loading and unloading (16,67). Secondly, in the non-linear range, the hypoelastic model
exhibits stress-induced anisotropy. Thus, the principal stress and principal strain axes do
not coincide. This introduces a coupling effect between normal and shear strains which
results in having to define 21 different material constants at every point of the loading
path. Thus, the hypoelastic model can be difficult to implement in practice (67).

One of the simplest applications of the hypoelastic formulation uses the incremental
stress-strain equations as a simple extension of the isotropic linear elastic model, where the
constants of elasticity are replaced by tangential moduli that are functions of the stress or
strain invariants. This type of model has been applied to finite element programs that have
yielded successful results (67). As with the hyperelastic formulation, the hypoelastic
model is often limited by the relatively large amount of tests required to determine the

response parameters.
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ELASTO-PLASTIC MODELS

All the models discussed thus far have presupposed that the material will return to its
initial state upon load removal. However, if a material is loaded beyond a certain level of
stress, irrecoverable deformation will take place in many materials. Thus, beyond this
point of loading, not all strains will be elastic. A material in such a state is said to behave
elasto-plastically. In the elasto-plastic formulation, the total strain increment that develops
during a load increment is assumed to be the sum of the elastic and plastic strain
increments (67):

de; = de;° + def (A.12)

Where de;° is the elastic portion of the strain increment, and de;? is the plastic part of the
total strain increment. |

The elastic strain increment is assumed to be described totally by Hooke's law (67).
In this elastic formulation, the constants can be either constant (leading to a linear-elasto-
plastic formulation), or they can be functions of the stress or strain invariants (leading to a
nonlinear-elasto-plastic formulation). Plasticity models are generally more complex than
elasticity models, but they have been shown to accurately model complex soil behavior
such as dilatancy, dependence of strength on stress or strain history, and nonlinear
hysteretic behavior (67).

There are two basic approaches that can be used to model the plastic part of the total
strain increment. The first is known as the Incremental Theory of Plasticity. The second
is known as the Flow Theory of Plasticity. The incremental theory of plasticity, although
easier to model, does not satisfy rigorous theoretical requirements such as continuity (67).
The flow theory is regarded as being more theoretically sound and is commonly used in
finite element applications (67).

The flow theory of plasticity is based on two fundamental assumptions (67):
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1)  there exists a yield surface that delineates the onset of plastic behavior; and
2)  the stress-strain relationship in the plastic domain is described by a flow rule.
These two assumptions will briefly be discussed in the following.

THE YIELD SURFACE

In order to separate the zone where purely elastic behavior takes place from the zone
where elasto-plastic bebavior takes place, yield criteria are needed. Furthermore, in the
elasto-plastic range, yield criteria can be used to define the stress conditions under which
plastic deformation will take place (67). The point at which the material starts to yield can
easily be visualized for a uniaxial loading condition, where the yield point can be
determined by means of methods such as the tangent, or off-set method (67,70). However,
for more general three dimensional tests, the yield "point” needs to be described by a
surface in three dimensional stress space. The general form of the yield criterion is (67):

floy) =£. =0 (A.13a)
For any state of stress, 0y, the value of the yield function can be calculated as (67):
f = f(o;) (A.13b)

When f equals zero, we also have f = {, and the material will be in a state of yield.
For all values of o; such that f < 0, the material will bebave elastically. The yield
function can also be used to define loading or unloading. For example, if df > 0, the
material is normally said to be loading, and vice versa. The yield function is a
mathematical relationship which describes a surface in stress space. A distinction needs to
be made between the yield function and the yield criteria. A yield criterion is a condition,
which is or is not satisfied by the yield function. Most yield criteria and yield functions
are set up as described above, that is, the criterion for yield is satisfied when f = 0.
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Different yield functions are used for different materials. Well known yield
functions are those proposed by Tresca, Von Mises, and (for soil and rocks), Mohr-
Coulomb (16,17,67). Some of these functions form the main subject of this study and will
be discussed in detail in a later section. |

THE FLOW RULE

For a material at a state of stress such that yielding has occurred (i.e., f, = 0), the
flow rule provides a mathematical relationship between the present state of stress and the
next increment of plastic strain, €;7. The flow rule has the following form (67):

g = ap & (A.14)

Where g is a function known as the plastic potential, or plastic potential function, and dA is
a positive scalar of proportionality. Equation A.14 indicates that the plastic strain is
normal to the plastic potential surface, as shown in Figure A.2 (67).

Some flow rules assume that the plastic potential, g, and the yield function, f,
coincide. Such a flow rule is kmown as an associative flow rule. Flow rules for which f
and g do not coincide are called non-associative flow rules. It has been found that non-
associative flow rules are more suited to modeling the behavior of geological materials
such as soil, rock, and concrete (17,67).

An important aspect of plasticity theory is the assumptions made regarding the post-
yield behavior of the material. Post yield behavior is generally assumed to be either
elastic-perfectly plastic or elastic-work hardening (16,67). The difference between these
types of plasticity is illustrated schematically in Figures A.3a and A.3b.

In the case of an elastic-perfectly plastic material, the initial yield criterion, £, is
assumed to remain fixed and unchanged for all stress increments, do;, beyond the point of
yield. Figure A.4 shows this situation. For a state of stress such that f(o;) = £, plastic
deformation will occur for any increment of stress, doy;, unless f(cg) <f.. Aslong as
f(o,)is not less than £, any stress point, o, will move along the boundary of the yield
surface for any increment of stress, thereby causing further plastic deformation to take
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Yield function

Figure A.2. Schematic Representation of the Flow Rule (From (67)).

place. Perfect plasticity, however, assumes that the stress state cannot move outside of the
yield surface, thus the condition f(o;) > f. is not possible, so that (67):

I/ S (A.13)

If, however, any stress increment leads to a new state of stress such that f(g;) < f, the
material will behave elastically, and no further plastic deformation will take place.
Although the perfectly plastic model has been used successfully in predicting the
collapse or limit state of geological materials (67), it fails to take into account the possible
increase in the strength of soils with increasing effective normal stress. In order to model
the post yield behavior of most soil types, a work hardening theory of plasticity is needed.
. This modification to the plasticity model allows the material to harden or soften after
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Figure A.3b. Work Hardening Plasticity.
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(Neutral)
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Figure A.4. Elastic-Perfectly Plastic Material Response (From (67)).

initial yielding (67). Figure A.S shows the work hardening behavior in a schematic form.
For work hardening behavior, a subsequent yield surface (also called a loading surface) is
assumed to exist beyond the initial yield surface described by f.. Physically, this means
the material can offer resistance beyond the point of initial yield, that is more or less than
the resistance offered at yield. Thus, the loading function is not fixed after yielding. The
loading function is generally expressed in terms of (67):

1.  the state of stress;

2.  the plastic strain developed; and

3.  ahardening parameter, k.

Thus, the loading function has the form (67):

fioating = (03, €7, K)
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Figure A.5. Work Hardening Material Behavior (From (67)).

Figure A.5 shows that for any stress increment, o, the yield surface (now called the
loading function) will move beyond its present boundary, so that (67):

& A o, (A.16)

do,}. 80‘.}.

In order to describe the shape of the subsequent yield surfaces, a hardening rule
needs to be defined. At the point of initial yielding, the loading surface and the yield
surface coincides. Upon further loading, the yield function will change value and/or form.
The hardening rule describes the way this function changes. The three types of hardening
rules identified by Chen and Mizuno (67), are:

1.  Isotropic hardening, which assumes the subsequent yield function expands or
contracts uniformly from its initial position without any distortion;

2.  Kinematic hardening, which assumes that the loading surface translates in stress
space without any rotation or change in size; and

"~ 3. Mixed bardening, which is a combination of the isotropic and kinematic hardening

rules.
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Chen and Mizuno (67) stated that the mixed hardening rule is specifically well suited to
modeling the behavior of soils under cyclic and reversed types of loading. An example of
this type of hardening can be found in the nested surface models of Mroz (71) and Iwan

(72).
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YIELD CRITERIA

BACKGROUND AND INTRODUCTION

In the previous section, it was noted that the onset of plastic deformations can be
predicted by evaluating a yield function, or yield criterion, which depends on the state of
stress and certain material parameters. Different yield criteria have been developed to
predict the onset of plastic deformations in different types of materials. Some of the
earliest yield criteria were used to predict failure in metals. Most of these criteria date
back to the previous century. One of the first criterion was proposed by Tresca in 1868
(70). This theory is widely known as the maximum shear stress théory and may have been
formulated by Coulomb as early as 1773 (70). The Tresca criterion has been applied with
success to ductile material such as metals. The Tresca criterion can also be used to
construct a surface in three dimensional stress space. A schematic representation of the
Tresca criterion is shown in two and three dimensions in Figures A.6a and A.6b. Figure
A.6a shows that the Tresca criterion compares the maximum shear stress developed during
loading to a predetermnined and constant value, which is known as the yield strength.

A second yield theory that has often been applied to metals is the maximum
distortion energy theory, also known as the Von Mises criterion (16). This criterion is
often used in plasticity applications due to its smooth and continuous shape, which reduces
computational difficulties. The Von Mises criterion was originally proposed by M.T.
Huber in 1904 and subsequently developed by R. Von Mises and H. Hencky (70). Figure
A.7 is a schematical representation of the Von Mises yield surface in three-dimensional
stress space. Figures A.6a, A.6b, and A.7 show that both the Tresca and Von Mises
criteria represent a hexagonal or cylindrical shape of uniform diameter in stress space.

Both the Tresca and Von Mises criteria assume the material has the same strength in
tension and compression. This is clearly not the case with many materials, and in 1885
Dugeut attempted to adapt the maximum stress theory of Tresca to improve the correlation
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Figure A.6a. Tresca Criterion in Two Dimensional Stress Space.
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Figure A.6b. Tresca Yield Surface in Principal Stress Space. -
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Figure A.7. Von Mises Failure Surface in Three Dimensional Stress Space.

between measured and predicted point of failure (70,73). A.A Griffith refined Dugeut's
explanations by introducing the idea of microscopic cracks (70,74). Griffith's approach
was later expanded and improved by Irwin (75) and was subsequently applied with success
to prediction of failure in concrete specimens of different strengths (76,77).

A further limitation of the Tresca and Von Mises criteria is their failure to take into
account the effect that stress magnitude has on material strength. In continuum mechanics,
the total stress tensor is often decomposed into a deviatoric and a volumetric component.
This can be represented by the following equation (67): '

o
N nn A.17
o, =8, + 5, (A.17)
Where o; = the total stress tensor,
Op = the hydrostatic, or volumetric stress tensor,
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= the deviatoric stress tensor, and
= the Kronecker delta.

By definition, the volumetric stress component will always act along the hydrostatic axis.
The deviatoric stress component will always act in a plane that is perpendicular to the
hydrostatic axis. This plane is normally known as the n-plane. Figure A.8 shows the
hydrostatic and volumetric components in principal stress space.

If we apply the concepts of deviatoric and volumetric stress components to the
Tresca and Von Mises criteria, it becomes clear that the point of failure is purely
dependent on the deviatoric component. That is, due to the constant diameter of the
hexagonal and cylindrical shapes of the Tresca and Von Mises criteria, the point at

C1=Cp=y
T

Pi- plane

A4

 Sigma 2
Volumetric Stress Component

Sigma 1

Figure A.8. Deviatoric and Volumetric Stress Components.
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which failure will be predicted is independent of the magnitude of the volumetric

component.

Experiments by Bridgeman (78) have shown that the influence of the hydrostatic
stress component was negligible for many materials. Also, theoretical and experimental
work performed by Hill pointed out that the yield criterion for metals depends only on the
deviatoric stress (79). This means the yield function can be expressed solely in terms of

the deviatoric stress component. For instance, the Von Mises criterion is given by

(17,67):

L-k=0 (A.18)
Where 1,
k? = a yield strength determined through testing.

il

the second deviatoric stress invariant, and

Thus, the Von Mises criterion states that the material will behave elastic as long as the left
hand side of equation A.18 is less than zero.

Experience gained from strength tests conducted on soils and. other granular
materials shows that the point at which yield will start in granular media is dependent not
only on the deviatoric stress component, but also the hydrostatic stress component (17).
This is because of the frictional nature of granular media. When a hydrostatic stress is
applied to soil, the particles, which are angular, are pressed together, and the number of
contact points as well as the intensity of contact is increased. This leads to increased
friction which offers more resistance to sliding of particles over one another. Thus, in
soils and rocks, the strength of the material is dependent on the hydrostatic component of
stress (17).

The Mohr-Coulomb failure theory takes account of the volumetric stress component
and is one of the most widely applied and successful theories used to predict failure in
frictional media (16,17). Figure A.9 shows a comparison of the Mohr-Coulomb and
Tresca criteria. Figure A.9 shows that the Mohr-Coulomb failure surface opens up as the
hydrostatic stress component is increased. Effectively, this means that, for the same
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material, the Tresca criterion will predict failure at higher volumetric stresses, whereas the
Mohr-Coulomb criterion will still indicate that the material is behaving elastically.

In recent years, a number of yield criteria were developed which are in some way or
another based on the Mohr-Coulomb yield criterion. In the following, the Mohr-Coulomb
criterion will be discussed together with three of the more recently developed yield
criteria. All of these criteria have been used to predict yield in geological media, but all
differ with respect to complexity and in the types of parameters required to characterize the
yield function.

Mohr-Coulomb
A Sigma 3 / '

Tresca

Sigma 1

Figure A.9. Mohr-Coulomb and Tresca Yield Criteria.
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THE MOHR-COULOMB YIELD CRITERION

The Mohr-Coulomb failure theory is a generalization of the failure theory proposed
by Coulomb in 1773 (67). According to the Coulomb friction law, the magnitude of
shearing stress (1) is a function of the normal stress {0,), the cohesion (c), and the internal
angle of friction (¢) of the material (17):

t=c + 0, tan (A.19)

This failure law can easily be visualized by means of a Mohr circle representation, as
shown in Figure A.10. The straight line shown in Figure A.10 represents equation A.19
and is a limiting function, or failure envelope, in that all states of stress for which the
Mohr circle plots below this line are elastic. Failure will occur when the Mohr circle
touches the envelope.

By using the Mohr circle construction, the Mohr-Coulomb failure criterion can be
written in terms of the principal stresses (17):
01

= % ; 03) sin(¢) - ( ; 03) + ¢ cos($) (A.20)

Where 0, = major principal stress,
0, = minor principal stress,
¢ = internal angle of friction, and

¢ = cohesion.

Equation A.20 represents an irregular hexagonal pyramid in stress space (Figure A.11).
The irregularity of the hexagonal pyramid can be attributed to the fact that materials which
obey the Mohr-Coulomb failure law generally have a much lower tensile strength than
compressive strength.

Equation A.20 shows that the Mohr-Coulomb failure criterion is independent of the
intermediate principal stress. Therefore, there is some difficulty involved in expressing
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Figure A.10. Mohr-Coulomb Failure Envelope.
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Figure A.11. Mohr-Coulomb Failure Surface on the ®-Plane.
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the failure criterion in terms of a general three-dimensional stress state. For this reason,
an alternative set of invariants are used, which make use of the quantity known as the Lode
Angle (8), defined by (16):

J.
8 = (1/3) cos™ 33 _ 5 (A.21)
2 (JZ)BJ"Z)

Where: J, and J, are the second and third deviatoric stress invariants,

respectively.

By making further use of the first stress invariant I,, the Mohr-Coulomb criterion in three
dimensional stress space can be expressed by (16):

I J.
/= 2 sin($) + @sm[g + ..313) + J—:- cos(e + -—;-E-) sin($) - c cos(p) = 0

3 4 (A.22)

It is interesting to note that for ¢ = 0, equation A.22 reduces to the Tresca criterion.
Equation A.22 indicates that, in addition to knowing the state of stress, two other
parameters are needed in order to predict failure. They are the cohesion (¢) and the
internal angle of friction (¢). Both these parameters can be determined through
conventional triaxial laboratory testing.

DEFICIENCIES IN THE MOHR-COULOMB CRITERION A

The Mohr-Coulomb yield theory, as traditionally applied to bearing capacity
problems, assumes that the soil behaves as a purely elastic medium until a stress state is
reached such that yield function attains a value of zero. It is assumed that plastic
deformation will take place only after this point. While this may be the case with highly
compacted geological media such as densely compacted pavement layers, this simplified
view of soil behavior does not apply to more loosely packed soils in which plastic
deformations take place from an early stage in the loading process. As such, the material
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passes through a number of successive yield points until it reaches an uitimate yield point.
This ultimate yield point is considered to lie on the ultimate yield surface (17). As the
material passes through the series of successive yield points, it hardens, so that the yield
surface is changed after each successive yield.

Although the Mohr-Coulomb criterion does make use of the hydrostatic stress
component to determine the resistance to yielding, the volumetric component in itself is not
assumed to affect yielding. That is, the Mohr-Coulomb criterion will not predict failure as
long as the deviatoric component is close to zero, regardless of the size of the volumetric
stress component. However, experience shows that soils often experience plastic
deformations under a purely hydrostatic stress condition (17). Thus, there should also be a
restriction placed on the magnitude of the hydrostatic stress component.

In effect, this means that the Mohr-Coulomb criterion should not be open-ended, as
shown in Figure A.10, but should have a boundary, or cap, on the end. This is a
deficiency in the Mohr-Coulomb criterion which has led to the subsequent development of
"Cap-Models" for which most of the pioneering work was done at Cambridge University
under Roscoe (80,20), Schofield (21), and Di Maggio and Sandler (81). The concept of
the Cap model is illustrated in Figure A.12.

In the Cap model as applied by Di Maggio and Sandler (81), the conventional yield
surface is assumed to be fixed and defined by the Drucker-Prager criterion, which was
smoothed into the Von Mises criterion for higher stresses (17). Tlns part of the total yield
function stays fixed. The cap portion is called a yield cap and does not stay fixed but
moves as the material passes through successive stages of yielding. The position of this
yield cap was assumed to depend on the volumetric plastic strain.

A third disadvantage associated with the Mohr-Coulomb criterion is the existence of
corners at certain points of the yield surface (Figure A.11). In order for the plastic strains
to be determined, there is a need to obtain the derivative of the yield function (as shown in
equations A.14 and A.15). This places a limitation on the Mohr-Coulomb surface, which,
due to its angular shape, can lead to singularities and computational difficulties when
calculating the derivative of the yield function. For this reason, many of the more
advanced yield criteria use smoothed approximations of the Mohr-Coulomb yield function.
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Figure A.12. Yield Surface with End Cap.

To summarize, it can be seen that the traditional application of the Mohr-Coulomb
criterion is deficient in two respects:

1.  The traditional Mohr-Coulomb yield surface is fixed. Thus, it does not take
into account any transition that may exist between states of purely elastic and
purely plastic behavior. This simplified approach cannot be used to predict the
behavior of loose materials under loading. |

2.  The Mohr-Coulomb criterion does not take into account that there may be a
limiting point at which the volumetric stress component alone can lead to
plastic strains taking place.

It should be noted that these deficiencies do not render the Mohr-Coulomb criterion
obsolete. In fact, almost all of the modern yield criteria are in some way derived from the
Mohr-Coulomb criterion and make use of the basic principles expressed by the Mohr-
Coulomb yield theory, i.e., that of dependence of shear strength on the hydrostatic stress
component and different yield strengths in tension and compression. In the following

.sections, three of these more recently developed yield criteria applied to the prediction of
yield in geological media will be discussed.
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LADE YIELD CRITERION

During 1973, Lade and Duncan performed a series of cubical triaxial tests on
Monterey No. O sand (82). Some of the results from these tests are shown in Figure A.13.
This figure also shows the Mohr-Coulomb failure surfaces that correspond to the yield
strengths from triaxial tests. It is clear that although the comparisoh between the Mohr-
Coulomb failure surface and the experimental results are good, the experimentally obtained
failure surfaces have a smoother shape than the angular Mohr-Coulomb surface.

Subsequent to this study, Lade and Duncan proposed a failure criterion in 1973 that

can be expressed as a simple combination of stress invariants (83).

(A.23)

Where I, and I; are the first and third stress invariants, respectively, and «x, is a value of
stress level at failure which depends on the density of the sand.

Lade and Duncan also developed an isotropic elasto-plastic work hardening model
(83). In this model, the form of the failure surface is the same as that of equation A.23.
The loading surfaces have an identical form, but the constant, x,, is replaced by K, which
is dependent on the current level of stress. Figure A.14 shows the loading surfaces to lie
within the ultimate yield surface. Thus, when K takes on a value of x,, the loading surface
and the ultimate yield surface will coincide. Lade at a later stage modified this failure
criterion to include curved yield and loading surfaces, instead of having straight meridian
lines (84). The modified criterion also included a cap type of yield surface, which is
controlled by the plastic collapse strains which occur during isotropic compression (17,84).

In order to make use of a curved yield surface, the angle of friction was assumed to
decrease as the hydrostatic pressure increases. This modification led to the following yield

criterion (17):
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Figure A.13. Tests Results Reported by Lade (From (82)).
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Figure A.14. Lade-Duncan Yield Surfaces (From (83)).
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N 7, |" (A.24)
& [3? 27] ( ?] |

Where f; has a value of 1, at failure. P, is the atmospheric pressure. The values of 1, and
m in equation A.24 are obtained by plotting (I,*/1; - 27) versus P,/I, at failure on a log-log
diagram (17). The value of m controls the curvature of the failure surface. Form = 0,
the failure surface becomes identical to the Lade-Duncan criterion defined by equation
A.23. The cap type of yield surface is defined by (17,84):

fc _ Ilz - 212 (A.ZS)

The cap surface is defined to expand isotropically as f, increases. Figure A.15 illustrates
the conical yield surface and the spherical yield cap in the triaxial plane (67). A flow rule
was also set up using the above yield surfaces. A detailed description of these yield
surfaces can be found in references 17 and 84, and they will not be described in detail
here.

The Lade criterion has been examined by Lade for the prediction of soil and pore
pressure behavior in saturated triaxial compression tests (17,85). The model has the
advantages of having smooth, curved surfaces, being simple in application, and applying to
a relatively wide range of pressures (17).

DESAI YIELD CRITERION
Desai and Siriwardane have stated that a general form for yield surfaces can be

expressed by the following (17):

N

f = f(o;,€,?,WP) (A.26)

Where 0; is the stress state,
€;® is the plastic strain, and
WP is the plastic work.
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Figure A.15. Conical Yield Surface and Yield Cap (From (67)).

Desai (86), Desai and Siriwardane (87), and Baker and Desai (88) have studied a number
of special forms of equation A.26. Desai studied a special case of equation A.26 in which
f is expressed in terms of I, J,, and I, as (17):

f=dhyral, -BpL 5" -y - & (A.27)

Where «, 8, v and k are material parameters. The factor, k, is a measure of cohesion, and
B is the hardening function (17). Figure A.16 shows plots of the Desai criterion for
different values of . Figure A.17 shows a schematic representation of the Desai criterion
in the n-plane. As can be seen from Figure A.16, the Desai criterion combines the
ultimate yield and cap functions, a significant simplification over conventional cap models.
The values of the parameters «, B, y, and k are calculated from the ultimate yield envelope
that can be obtained from laboratory test data (17).
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MODIFIED VERMEER YIELD CRITERION

The Vermeer Failure Law is one of the more recent developments in the field of
limit analysis and has been used with success in a number of plasticity applications. The
Vermeer model makes use of the failure criterion developed by Matsuoka and Nakai
(43,89,90). The Matsuoka-Nakai failure law can be expressed in terms of the first,

second, and third stress invariants as (43):

f= L - ?.;fz‘_‘i_z_("fz_). I | (A.28)
cos (d)p)
Where ¢, is the peak friction angle and I;, I, and I, are the first, second, and third stress
invariants, respectively. Compression is considered to be negative. Comparisons between
the Matsuoka-Nakai failure law and the stress measured at failure for Toyova sand showed
that measured and predicted values compared quite well (91).

The failure surface described by equation A.28 is the limiting position of an
expanding yield surface. In order to obtain the loading functions that will eventually lead
to the limiting yield function, the peak friction angle ¢, in equation A.28 is replaced by the
mobilized friction angle, ¢,. The mobilized friction angle is dependent on the plastic
distortion and the level of stress. 4

The appearance of the Matsuoka-Nakai failure surface in three dimensional stress
space is similar to that of the Lade and Desai criteria (Figure A.17). As such, it can be
described as a smooth hexagonal curve circumscribing the hexagonal Mohr-Coulomb yield
surface. Vermeer derived a relation between the plastic distortional strain and stress which
is expressed through a factor known as the normalized plastic distoftion which is used to
define the hardening behavior of the material. The validity of this hardening law was
checked by Vermeer (43,91).

The Vermeer model was intended for use with cohesionless materials only. In order
to include the influence of cohesion (particularly important in asphalt and clay materials),
the yield surface developed for cohesionless materials is adapted for cohesive materials by
translating the principal stress along the hydrostatic axis by addition of a constant stress to
the normal stress. This modification can be expressed as (43):
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o, =0, - c cot($) 8, (A.29)

Where ¢'; =  the transformed stress tensor,
0; =  the actal stress tensor,
c =  cohesion, and
6; =  the Kronecker delta.

This translation is applied only to stresses used in conjunction with yield and the plastic
potential surfaces (43).

SUITABILITY OF MOHR-COULOMB YIELD CRITERION F‘OR USE IN
PAVEMENT ANALYSIS

In an earlier discussion, the deficiencies in the Mohr-Coulomb yield criteria were
noted as (1) having a fixed yield surface; and (2) not placing a cap on the volumetric stress
component. In the analysis of pavement response under superheavy load vehicles, the
purpose of the analysis is to prevent yield (and, therefore, plastic deformations). The first
deficiency in the Mohr-Coulomb yield criteria noted above is not considered to apply to
this study, where the purpose is to analyze stresses invoked when the material is still in an
elastic state.

The second deficiency noted above is also not considered to be critical in the case of
this study. Researchers conducted a comparison between the Mohr-Coulomb yield
criterion and the three more recently developed criteria discussed in the preceding sections.
This analysis showed that, for the stress levels typically induced in pavements, failure
occurs due to excessive shear in the low stress range where cohesion is a critical
component of the overall shear strength. This indicates that, for pavements, the likelihood
of failure due to excessive volumetric stresses is very small. Also, the results of analyses
reported in this study support this observation.

A major advantage of the Mohr-Coulomb yield criterion is its relative simplicity.
Engineers are well acquainted with the terms cohesion and angle of friction. Also, most
engineers are acquainted with the tests required to determine cohesion and angle of
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friction. This is considered to be a critical factor in the choice of a failure criterion to be
used in this study, since it is important that the analysis methodology developed makes use
of test methods currently employed by the Texas Department of Transportation. For these
reasons, the Mohr-Coulomb yield criterion was chosen to be used in the evaluation of the

potential for pavement damage under superheavy loads.
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APPENDIX B
DERIVATION OF RELATIONSHIP BETWEEN POISSON'S
RATIO AND STRESS STATE
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The following derivation was obtained from the dissertation of Liu (43). Further
discussions of the relationship between the resilient modulus and Poisson's ratio under
thermodynamic constraints can be found in Chen et al. (41) and Lade et al. (42).

Figure B.1 shows a schematic representation of the loading and unloading path followed
when a material is subjected to a state of stress. The stress at a given point is initially at
point A. For a loading that follows path ACB, the elastic work per unit volume can be

expressed as:

= fmdw = fm(o)f(de) (B.1)

Equation B.1 can be written in terms of the stress invariants as:

——-dI + 2 3.2
W ica ACB 9K ! )

‘Where I, is the first stress invariant and J, is the second invariant of the deviatoric stress
tensor. K and G are the bulk and shear moduli, respectively. The total elastic work along
the stress path ACBDA is:

I ddJ.
W+ W= f (=1dI, + —2) B.3)
ACH BbA acspa 9K 2G

Assuming that K and G can be expressed as a function of I, and J,:
K =K(I,J,) B.4

G = G(I,,J,) ®B.5)

The law of energy conservation requires that the total work along the cycle ACBDA must
be zero. The integral in equation B.3 will be zero provided it can be written in the
following form:
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Figure B.1. Stress Path Diagram.

fpax + gdy) = [ f G —) | (B.6)

where P = OW/ox,Q0 = OW/0y . Equation B.6 states that if P and Q can be derived from
a potential function, W, then the line integral vanishes and no net work is done on the

closed stress path. If the work is path independent, then the quantity, dW, can be written
in the following form:

I, dJ.
aw = a1 + —= = aWdII + aWsz ®.7)
9K 26 9, oJ,

2

Equation B.7 shows that the following identities are satisfied:
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4L _om | (B.3)
oK dI,

1 ow
1w 9
26 o) ®.9

The potential function can be expressed as:

W _ oW (B.10)
L@, Al

Substituting equations B.8 and B.9 into equation B.10 results in the following constraint on
the expression for K and G:

Il oK N 1 0G (B.ll)

9K20J, 2G*al

Since
X = E (B.12)
3(1-2v)
and,
G = —Z (B.13)
2(1+42v)

equation B.11 can be rewritten as:

29y, 19y _ _(1-2v) dnE _ (1+v) 3lnE
34, ' '

: (B.14
1,9l 3, I )
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By making use of the stress dependent resilient modulus equation developed by Uzan (36),

the resilient modulus can be written as:

I T
E, = (k,.p,) (=) (=)
P, P,
Where: P. =  atmospheric pressure
Tout =  octahedral shear stress
k; =  material constants (i = 1,2,3)

Equation B.15 can be rewritten in terms of I, and J, as:

InE = lnk, + klnl, + kjlnJ,

where:
Icl/ = Icl.pal_k‘-k".(z)?
3
and,
k] = %

Finally, substitution of equation B.16 into equation B.14 yields:

k] Ok

ov 2
— =y L p—
T ) + (

wiN

zov 1
3, I
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APPENDIX C
PHOTOGRAPHS OF LABORATORY TESTS
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Figure C.1. Test Apparatus with Mounted Air Pressure Chamber.
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Test Sample in Place.

with

Figure C.2. Air Pressure Chamber
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Figure C.3. Details of Test Sample Showing Positions of Sensors Used for
Measurement of Axial and Radial Deformations.
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Figure C.4. Failed Specimen with Marked Failure Plane (Crushed Limestone at
34.5 kPa Confining Pressure).
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Failed Specimen with Marked Failure Plane (Crushed Limestone at

Figure C.5.

0 kPa Confining Pressure).

69
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APPENDIX D
RESULTS OF SENSITIVITY ANALYSIS
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Figures D.1 through D.12 contain the results of the analysis 6f the sensitivity of the
Mohr-Coulomb yield function to changes in the resilient modulus and Poisson's ratio
parameters. Due to the large amount of output data that was obtained from this analysis,
the graphs are presented in compact form and, thus, a large amount of information is
contained in each graph. ‘

Each graph documents the percentage change in the yield function that was
calculated in each different layer when one of the k, to k; parameters for a single layer was
varied. In the graphs, the boxed text states the layer and the parameter that was varied.
Other text which accompanies the bars state in which layer the yield function was
evaluated. For each evaluation position, there are two bars. The bar on the left hand side
(filled with light crosshatching) represents the percentage change in the yield function
when the given parameter was varied to 30 percent below its assumed average value. The
bar on the right hand side (filled with dark crosshatching) represents the change in the
yield function value when the given parameter was changed to 30 percent above its
assumed average. The average values assumed for each coefficient and each layer are
discussed in detail in Chapter IV.

As an example, in Figure D.1, the left-most bar indicates that changing the k; value
for the surface layer to 30 percent below its assumed average resulted in approximately a
190 percent drop in the yield function value. The darkly crosshatched bar second from the
left indicates that, when the k, value for the asphalt was raised to 30 percent above its
assumed average, the yield function calculated in the surface was raised by about 170
percent. The same change (i.e., increasing k; for the surface by 30 percent) resulted in a
drop of approximately 26 percent in the yield function calculated for the base while the
yield function calculated in the subgrade remained virtually unchanged.
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Figures D.13 through D.24 contain the results of the analysis of the sensitivity of the
Mohr-Coulomb yield function to changes in the cohesion and angle of friction of the
different pavement materials. Details of the averages assumed, and the method in which
the graphs were derived can be found in Chapter IV. For each case, the stresses were kept
constant while only the cohesion and angle of friction were varied. The stresses are those
stresses which were calculated using the assumed average values for the k; to k,
parameters. The cohesion and angle of friction values were changed to thirty percent
above and below the assumed average value for the type of material under consideration.
The yield function values are those calculated within the layer under consideration.

As an example, Figure D.13 documents the changes that can be expected in the yield
function which is calculated in the asphalt surface if the asphalt cohesion is varied by thirty
percent. For each layer, the stresses calculated at the edge and at the center of the load
were used so the influence of the change in cohesion or angle of friction could be
calculated at each of these evaluation positions. |
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INTRODUCTION

While the word, stress, is commonly used in engineering disciplines, it is often
forgotten that the word refers to an abstract concept. Stress is a quantity that cannot be
measured directly, but is calculated from knowledge of two physical parameters, force and
geometry, that are directly measurable. Thus, stress is a mathematical rather than a
physical quantity (92). However, it is a very useful engineering quantity in explaining
how bodies subjected to external forces will respond or behave, principally because it is
usually the distribution of an applied or induced force, i.e., the forée intensity over a unit
area, that directly influences the material response.

The concept of stress is explained in simplistic terms with the aid of Figure E.1,
which shows a prismatic bar subjected to an applied force, P, at the ends. Due to these
applied forces, an internal force distribution will develop at any cross-section, I/, of the bar
in opposition to the applied external force, according to Newton's third law of motion. It
is the intensity of the induced internal forces, i.e., the force per unit area, that is referred
to as stress. For the example shown in Figure E.1, the internal forces are uniformly
distributed over any cross-section, //, and the intensity of the force distribution is obtained
by simply dividing the applied load, P, by the cross-sectional area, A, at /.

In the general case, the stress distribution is non-uniform and may be oriented in
any direction. If a very small area, 84, is cut-out at a given point in a material, and if the
resultant force acting on this area is, 8P, then the stress, p, acting at the point is calculated
as:

P = 62130 [ %} ED

Thus, the stress at a point may be viewed as the limiting value of, 6P/0A4, as the
elemental area, 64, is continuously contracted, i.e., 64 - 0. In general, the unit stress, p,
need not be perpendicular to the plane on which it acts. However, any force or stress, can
be decomposed into two perpendicular components, one acting normal to the plane of

227



K SR T2 2 T T e

induced stress

Figure E.1. Prismatic Bar Subjected To End Forces.

reference, and the other acting parallel to the plane, i.e., the shear component. This is
illustrated in Figure E.2. The normal component of stress is usually designated with the
symbol, o, while the shear component is designated with the symbeol, T.

To completely establish the state of stress at a point, it is necessary to specify
components on three orthogonal planes passing through the point. Let these three
orthogonal planes be the planes perpendicular to the x, y, and z coordinate axes. If we take
a very small cubic element at a point, the stresses acting on the sides of the cubic element
are as illustrated in Figure E.3. The subscript used in conjunction with a normal
component of stress denotes the direction of the stress. Thus, o,, denotes the normal stress
acting in the direction of the x-axis. For shear stresses, two subscripts are used. The first
subscript denotes the direction of the normal to the plane on which the stress acts, while
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Figure E.2. Horizontal (t) and Normal (0) Components of Stress, p.
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Figure E.3. Components of the Stress Matrix (from 93).
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the second subscript denotes the direction of the stress (94). Consider, for example, the
shear stress component, t,,. The first subscript says that this shear stress acts on the plane
whose normal is in the x-direction. Further, the second subscript shows that the shear
stress acts in the y-direction. It is noted that double subscripts have also been used with
normal stresses. Thus, the symbol, o,,, has been used to denote the normal stress
component acting in the x-direction on the plane whose normal is also in the x-direction.
However, for this discussion, we drop one of the subscripts and denote this normal stress
simply as, 0,. Similarly, we denote the normal stresses acting in the y- and z-directions as
o,, and o,, respectively.

The stresses illustrated in Figure E.3 are all positive. Herein, a normal stress is
positive if it produces tension and negative when it produces compression. For a shear
stress component acting on a face of the cubic element, the positive direction is taken as
the positive direction of the coordinate axis if a tensile stress on the same face would have
the positive direction of the corresponding axis. If the tensile stress has a direction
opposite to the positive, the positive direction of the shear stress component is reversed
©3). |

It is seen from Figure E.3 that the stress at a point is completely specified by nine
quantities which can be represented in an array as:

[s] = Tyx Oy ‘r:ﬁ (E,Z)

In most cases, surface and body couples are not significant and may be ignored.
Consequently, by equilibrium, <,, = 1, T,, = T,,, and T, = T, and the number of
independent stress components reduces from nine to six.
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PRINCIPAL STRESSES AND STRESS INVARIANTS

If the six independent components of stress at a point are known, the stresses acting
on any inclined plane through the point can be evaluated by static equilibrium. Consider
the infinitesimal tetrahedron, OABC, illustrated in Figure E.4a, that is formed by the
intersection of the coordinate planes with a plane inclined at an arbitrary angle. (This
tetrahedron may also be viewed as the intersection of an inclined plane within the cubical
element shown in Figure E.3.) It is assumed that the stresses acting on the coordinate
planes in Figure E.4a are known. To remain in equilibrium, there must be a resultant
force acting on the surface, ABC, of the tetrahedron that counteracts the stresses on the
coordinate planes. This resultant force, denoted as S in Figure E.4b, will in general be
inclined at a certain angle from the surface, ABC. The resuitant fofce, S, can be
decomposed into normal, S,, and shear, S,, components. Clearly, the magnitude of the
resultant force on the surface, ABC, will vary depending on the inclination of the surface.
Further, as the resultant force varies, the magnitudes of the normal and shear components
will also vary. If we imagine the surface, ABC, in Figure E.4a as being hinged at B, and
assume that the stresses on the coordinate planes remain constant, we can swing the
surface, ABC, in such a way that the normal force component, S,, increases, while the
shear component, S, decreases. Eventually, we will reach a position wherein the shear
component vanishes and only the normal component remains. When this happens, the
resultant force, S, equals the normal component, S,. The stress determined when S is
divided by the area of the surface, ABC, is referred to as the principal stress, and the plane
on which it acts is called the principal plane (92). The orientation of this plane is specified
by the direction of the normal to the plane relative to the coordinate axes.

The resultant force, S, in Figure E.4b can also be decomposed into components, S,,
S,, and S,, relative to the x, y, and z coordinate axes. Considering the equilibrium of
forces along the x-direction for the infinitesimal tetrahedron shown in Figure E.4a and
E.4b, the magnitude of S,, is determined as:
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Figure E.4. Forces on an Infinitesimal Tetrahedron (from 94).
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S, =04, + 1,4, + 14, (E.3)

where,
A, = area of the face, BOC, on which the stress, G,, acts
A, = area of the face, BOA, on which the stress, T,;, acts
A, = area of the face, OAC, on which the stress, T, acts

If we let A,, be the area of the face, ABC, of the tetrahedron, relationships between A, and
the areas of the other faces may be determined by equivalence of the volume of the
tetrahedron. Thus,

A,OD =A,04
A, 0D = 4,0C
A, OD = A, OB

where,
OD is the length of the normal to side, ABC
OA is the length of the normal to side, BOC
OC is the length of the normal to side, BOA
OB is the length of the normal to side, OAC

From the above expressions, we get the ratios of the areas as:

é:%:l
4, 04
4, ocC
4, oD _
— T ——
4 OB
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where, [, m, and n are referred to as the direction cosines of the normal to the side, ABC.
If we divide both sides of Eq. E.3 by, 4,,, we get the following expression for the stress,
s,, acting on side, ABC:

s=06l+T,m+1,n E.4
Similarly,

s =15l +om+1,n (E.5)

s, =T l+t,m+o,n ‘ (E.6)

If the side, ABC, is a principal plane, the shear force component of the resultant
force, S, in Figure E.4b is zero, so that the resultant force is equal to the normal force, S,.
In this case, the components, S,, S,, and S,, are given by the equatibns:

S, =1S E&.7)
S, = mS E.8)
S, = nS (E.9)

If we designate the resultant principal stress on side, ABC, with a lower case, s, Egs. E.4

to E.6 can be written as:

lo,-s) + mi; +nt, =0 , (E.10)
Ity + m(o,-5) +nt,, =0 (E.11)
It,, + mt, + n(c,-5) =0 (E.12)

The above are three homogeneous linear equations in /, m, and n. Solutions different from
zero can be obtained only if the determinant of these equations is zero. Expanding the
determinant gives the following cubic equation for, s (94):
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$-I8-Ls-L=0 (E.13)

where,
Iy =0,+0, +0, (E.14)
I, = v, + ¥, + v - (0,0, + 0,0, + 0,06, E.15)
I; = 0,0,0, + 21,1,T, - (6,7, + 0,7, + 0,1%,) (E.16)

Solving for the roots of Eq. E.13 gives the three principal stresses, 6,, 0,, and 0,. Now,
the stresses, O,, 0y, 0,, Ty, T,,, and T, in Egs. E.14 to E.16 may be given in any
coordinate system. However, Eq. E.13 must always give the same roots, no matter what
coordinate system is used. This means that the coefficients, I,, L, and L, must remain
constant and independent of the coordinate system used. For this reason, [;, I,, and I;, are
called stress invariants, and are referred to respectively, as the first, second, and third
stress invariants (93). Also, since Eq. E.13 must always give the same roots, the principal
stresses are also invariant. .

Egs. E.14 to E.16 may also be specified in terms of the principal stresses. In this

case, the stress invariants reduce to:

I, =0, + 0, + 0, (E-17)
L = (06,0, + 0,0; + 0,0,) ‘ (E.18)
I; = 0,0,0; (E.19)

Whether Egs. E.14 to E.16 or Egs. E.17 to E.19 are used to compute the stress invariants,
the values determined will be the same.

OCTAHEDRAL STRESSES

If the normal stresses acting on sides, BOC, BOA, and OAC in Figure E.4a are
assumed to be principal stresses, the stresses, s,, s,, and s,, are simply determined as:
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s;=0,1l=0,1

S, =0,m=0,m

S, =0, N = 03N
from Egs. E.4 to E.6. The normal stress, s,, on side, ABC, will then be:

S, = Is, + ms, + ns, = Po, + mo, + n’c, (E.20)
and the shear stress, s, is determined from the relation:

f=f+& =5 +5+5 (E.21)
where, s, is the resultant shear stress on side, ABC. Solving for the shear stress, we get:

s =s5-5, =04 F+ o,m + o4, - (Po,.+ mPo, + n*o,) (E.22)
If the plane, ABC, in Figure E.4b is oriented such that O4 = OB = OC, the normal to the

plane will make equal angles with the coordinate axes. In this case the direction cosines

are given by:
l=m=n =20 (E.23)

Substituting the values of the direction cosines in Egs. E.20 and E.22, we get the following
expressions for the normal stress, s,, and the shear stress, s, on side, ABC:

1 _ E.249)
s =;—(01+02+03)-c

n »m
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5

2 1 2 2 2 1
s, =7 (0] + 0, +0) ~ — (0, + 0, + c,)’ (E.25)
5]

The normal stress, s,, in Eq. E.24 is an average of the three principal stresses, and is also
referred to as the mean stress, o,. The expression for shear stress in Eq. E.25 is
simplified further as follows:

H
5¢ 7 % [(Gl = 0" (0, - ) + (0, — 0) F (E.26)

Referring again to Figure E.4a, the tetrahedron with plane, ABC, as one side, can
be constructed in each of the four quadrants above the xy plane, and in each of the four
quadrants below this plane. For each tetrahedron, the direction cosines will be as given in
Eq. E.23, although the signs attached to /, m, and n, will differ among the eight tetrahedra
which, together, form an octahedron. On the faces of this octahedron, the normal and
shear stresses will be as given by Egs. E.24 and E.26, respectively. These stresses acting
on the faces of the octahedron are referred to as the octahedral normal stress, and the
octahedral shear stress, and the planes where these stresses act are called the octahedral
planes (94). The octahedral normal stress is, thus, equal to the mean stress, o,. From
Egs. E.24 and E.17, it is seen that the octahedral normal stress is one-third of the first
stress invariant. The octahedral shear stress is also designated in the literature as, T, and
can be expressed in terms of the stress invariants as (94): '

1
2

2
T = -‘;-—-» (I} +3L) E27)

oct

From the preceding, it is obvious that the octahedral normal stress, and the octahedral
shear stress are also invariant or independent of the coordinate system used to determine

the stresses.
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DEVIATORIC STRESSES

The stress matrix can be decomposed into a hydrostatic and a deviatoric
component. The hydrostatic component, [A], is associated with the mean stress, 0., and is
defined as (94):

o, 0
[ =0 o, 0 (E.28)
0 0 o,

Note that o, is invariant, i.e., its magnitude is constant irrespective of orientation. Thus,
the term, Aydrostatic. The deviatoric component is determined by deducting the
hydrostatic component, [k], from the total stress, [s], given by Eq. E.2:

g T_ 7T 4] 0 0

x xy Cxz m
[s] - [r] =1d] = Tyx o, Tyz -0 o, 0
o, T, O 0 0 o,

Carrying out the matrix subtraction, we get:

(©, -0) T T

xy xz
[d] = T (o, - 0,) T, (E.29)
sz sz (Uz - Om)
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Physically, the hydrostatic component is responsible for volume change in a material.
Experiments have shown that this component has negligible effect on yielding and plastic
flow. On the other hand, the deviatoric component is responsible for dimensional change
and consequently, for plastic flow (92,94). It plays a significant role in plasticity theory.
Just as there are invariants associated with the total stress matrix, invariants

corresponding to the deviatoric stress matrix may be determined. To do this, we note that
the total stress is made up of a deviatoric component, d, and a hydrostatic component that
is equal to 1,/3. Thus, we simply replace, s, in Eq. E.13, by (d + I,/3), to get (94):

& -Jd-Jd-Jy=0 (E.30)
where,

J,=0 (E.31)

J, = ff,' d; +3 1) (E.32)

J, = 3-1-5- Q@I +9I, I, +271) (E.33)

The deviatoric stress invariants, J, and J;, can also be expressed in terms of principal

stresses (94):

J, = % (o, - 0)? + (0, - 0 + (o, - 0] | (E.34)

J, =(06, - 0,) (0, -0) (0, -0,) (E.35)
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The second deviatoric stress invariant, J,, is also related to the octahedral shear stress, T,
through the relation (94):

N
]

oW
A

oct (E.36)

Finally, the deviatoric stress invariants may be expressed in terms of the principal stress
deviators, d,, d,, and d,, through the equations (94):

I, = «dd, + dd, + dydy) E.37)
Iy = didd, E.38)
where,
d =g0-a, | (E.39)
d,=o,-0, (E.40)
dy = 03 - Oy (E4D



APPENDIX F
GLOSSARY OF SELECTED TECHNICAL TERMS
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Axial Strain

When a state of stress (6, > 6, = 0;) in a cylindrical sample is considered, the axial strain is
the change in length in the direction of o, expressed as a percentage of the original sample
length. The radial strain is the corresponding change in length in the lateral direction.

Behavior

The manner in which a particular material responds under loading, as determined from its
stress-strain curve, is referred to as material behavior for the applied loading conditions. If
there is a straight line relationship between stress and strain, the material is said to exhibit
linear behavior for the range of loads considered. Otherwise, if the relationship is a curve,

the behavior is referred to as nonlinear.

Boundary Conditions
In the solution of differential equations, the given conditions which are to be satisfied by the
particular solution are called the boundary conditions (95).

Constitutive Equation

Chen and Mizuno (67) define a constitutive equation as the stress-strain relationship for a
material under general loading and environmental conditions. A number of mathematical
models relating stress and strain have been used to predict the behavior of materials under
load. These models vary in complexity, the simplest being Hooke’s law, which assumes
linear elastic behavior, i.e., materials are assumed to return to their original undeformed
condition upon removal of load. The constitutive equation for a particular material is
typically determined experimentally to quantify the coefficients in the mathematical model.
For many pavement materials, the constitutive equation depends on many factors that include
homogeneity, isotropy, rate and magnitude of loading, temperature, stress history, and other

factors.

243



Dilation

Dilation denotes a volume change characterized by expansion of a material under loading.
The tendency of dense granular materials to dilate under loading has been observed
experimentally (see, for example, Figure 3.2 in this report). This is attributed to the motion
of particles that tend to roll over one another under the action of shear stresses induced in the

material by applied loads.

Elastic Half-Space

An elastic half-space is a semi-infinite elastic body with a surface boundary. The surface
boundary is typically taken as the xy plane and is infinite in the lateral direction. The z-axis
is typically assumed to be positive toward the interior of the half-space which has infinite
depth from the surface boundary.

Elastic Modulus

When a cylindrical specimen is loaded monotonically in uniaxial tension or compression,
axial strain increases with increase in load. The ratio of stress, g, to strain, €, is a measure of
the material stiffness and is referred to as the elastic modulus (assuming that the material
response is still within the elastic range). In Figure F.1a, the stress-strain curve is linear for
the range of the applied loads. In this case, the elastic modulus is a constant equal to the
slope of the line. In Figure F.1b, the slope of the stress-strain relation varies with the applied
load, i.e., it is nonlinear. In this case, there are two ways of determining the elastic modulus
for a given point on the stress-strain curve. For example, if the elastic modulus is desired at
point C, the slope of the tangent to the curve at C may be used. This is referred to as the
tangent modulus. The other way is to determine the slope of the line connecting the point C
with the origin, O. This slope is referred to as the secanr modulus.
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Figure F.1.  Elastic Modulus for (a) Linear Stress-Strain Relation; and (b) Nonlinear
Stress-Strain Curve.

Isotropic
A material is characterized as isotropic if its physical properties at a given point are the same
in all directions.

Lode Angle

A vector of stress state can be decomposed into hydrostatic and deviatoric components as
illustrated in Figure F.2. In this figure, the stress state is given in the principal stress
coordinate system. The hydrostatic axis is the diagonal from the origin, O, of the coordinate
system where 0, = 0, = 0;. The segment OB along this diagonal represents the hydrostatic
component of vector O4, while the segment B4 perpendicular to the hydrostatic axis
represents the deviatoric component. The deviatoric component lies on a plane perpendicular
to the hydrostatic axis, called the deviatoric or the octahedral plane. The angle between the

. deviatoric component and the projection of the largest principal stress axis onto the deviatoric
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A c Hydrostatic axis

o - O3

o,

Figure F.2. Stress State in Principal Stress Coordinate System (from 67).

plane is referred to as the lode angle, 0, in Figure F.2 (67). This angle varies from 0 to 60
degrees. In Figure F.2, it is assumed that 6, > 0, >0, so that the lode angle is referred to the
projection of the ¢, axis onto the deviatoric plane, represented by BCin the figure. If the
stress state is such that 6, > g, > ¢,, the lode angle must then be measured from the projection
of the o, axis onto the deviatoric plane. Other stress conditions are handled in a similar
fashion. From Figure F.2, it is seen that the lode angle helps to locate a stress point in the
principal stress space. In the example shown, the location of point 4 is determined by the
distance along the hydrostatic axis OB, the lode angle 0, and the distance B4. From
mechanics, these quantities are determined from the following relations (67):

0B} =

Ly
V3

B4 = 27, =BT
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JZ
where,
|OB| = the magnitude of the hydrostatic component of stress vector, 04
I, = the first stress invariant
A = the second deviatoric stress invariant
A = the third deviatoric stress invariant A
|BA] = the magnitude of the deviatoric component of stress vector, 04
Tow = the octahedral shear stress

It is thus seen from the above expressions that the hydrostatic component of stress is related
to the first stress invariant, while the deviatoric component is related to the second deviatoric

stress invariant or to the octahedral shear stress.

Multi-Depth Deflectometer (MDD)

The Multi-Depth Deflectometer is an assembly of linear variable differential transducers
(LVDTs) installed inside a cylindrical vertical cavity within the pavement to measure vertical
displacements at selected depths under moving wheel loads. Both recoverable and
permanent displacements can be measured with the MDD.

Poisson’s Ratio

When a material specimen is subjected to uniaxial tension or compression, the axial strain in
the direction of the applied load is accompanied by a lateral strain in the transverse direction.
The ratio of the lateral strain to the axial strain is referred to as the Poisson’s ratio, v.
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Resilient Modulus

When a cylindrical sample of a pavement material is tested under repeated loading in the
laboratory, the total deformation at a given number of load applications is observed to consist
of a resilient or recoverable component, and a non-recoverable component (see Figure 3.1).
From the test data, the resilient modulus of the material is calculated as the ratio of the
repeated deviatoric stress to the recoverable axial strain (/). Since the stiffness of pavement
materials are dependent on the rate of loading and applied stress, laboratory tests are usually
conducted at a range of frequencies and deviatoric stresses that correspond to the expected
traffic loadings in the field. A number of models have been proposed to characterize the
stress-dependency of the resilient modulus of pavement materials, in particular, granular and
fine-grained soils. For the superheavy load evaluation procedure, the Universal Soil Model
(32,36,37) is used in evaluating the structural capacity of superheavy-load routes. This model

is given by:
Il K ?ocx 5
oen 4] 3

where,

I, = first stress invariant

Toa = octahedral shear stress

Pa = atmospheric pressure

E, = resilient modulus

The coefficients, k,, k,, and %, are determined from resilient modulus tests. Since the
calculated stresses are normalized with respect to the atmospheric pressure, these coefficients
are dimensionless. From results of sensitivity analyses, the coefficient &, was found to have
the most influence on the predicted resilient modulus. In general, the higher the k;, the higher
the predicted resilient modulus. This is illustrated in Figure F.3 which shows predicted
resilient moduli for a granular base material at three different values of k. The data shown
were calculated assuming a pavement with a 100-mm thick asphalt concrete surface layer and
.a 200-mm thick granular base layer. Values of 0.6 and -0.3 were assumed for the parameters
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Figure F.3.  Variation in Resilient Modulus With Parameter, k,.

k, and k;, respectively, for the base layer. For a given curve, it is observed that the resilient
modulus increases with increasing wheel load, illustrating the hardening effect of increasing

confinement on the predicted resilient modulus. This hardening effect is associated with the

I E
k2 term = | —-
Pa

k, term,

As the wheel load increases, the confining pressures also increase resulting in higher
predicted values for the resilient modulus. It is noted that the octahedral shear stress also

increases with increasing wheel load, which will tend to decrease the resilient modulus.
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However, for the pavement and range of wheel loads considered in Figure F.3, the increase in
confinement with higher wheel loads more than compensates for the softening effect of the
octahedral shear stress. Thus, the resilient modulus is predicted to increase with higher wheel
loads in the figure shown. However, the opposite trend may be obtained for other pavements
(such as thin pavements), where the softening effect of the octahedral shear stress may be
more pronounced. The hardening effect of higher confinement and the softening effect of

higher octahedral shear stress can be discerned from Figure F.4. The £, term in the figure is
equal to,

Note that, as the wheel load increases, the £, term increases because of higher confinement.
However, the octahedral shear stress also increases so that the k; term diminishes with higher
wheel loads. Consequently, while the effect of higher £, is generally to increase the predicted
resilient modulus, the effects of &, and %, depend on the interactions between these
coefficients, the applied loads, and the pavement geometry. The tendency of a material to
stiffen with increasing confinement (/) is related to k,. However, this tendency is
counteracted by the softening effect under increasing shear, as controlled by the coefficient
ky. The greater the tendency of a material to stiffen under increasing confinement, the higher
the effect of k,. Similarly, the greater the tendency of a material to soften under shear, the
higher the effect of k;. The effects of these coefficients on the resilient modulus are also
affected by the applied loads and pavement geometry due to the effects of these latter factors
on the induced stresses. The coefficients k;, k,, and k; are also used in evaluating the stress-

dependency of the Poisson's ratio based on the relationship developed by Uzan (39) [see Eq.
3.3 and Appendix B].

Response Model
The model for predicting the induced displacements, strains and stresses under loading is

referred to as the respornse model.
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Stress Invariant

Stress parameters (e.g, /,, /,, I;) which are independent of the choice of coordinate axes are
known as stress invariants. Stress invanants are scalar quantities, examples of which include
the principal stresses, the mean stress, o, the octahedral shear stress, t.,, the invariants
associated with the total stress tensor, designated as /,, [,, and /;, and the deviatoric stress
invariants, J, and J;. Obviously, quantities that are determined by combining any number of
these stress invariants will also be invariant. Definitions of stress invariants used in various

failure criteria are given in the following.
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Principal Stresses .

The normal stresses acting on a planes where the shear stresses are zero are called the
principal stresses. The set of three orthogonal planes on which the principal stresses act are
referred to as the principal plares.

First Stress Invariant
The sum of the three principal stresses, designated as 1, is the first stress invariant (94):

l=01+02+03

where o, = the major principal stress,
o, = the intermediate principal stress, and
O, = the minor principal stress.

The first stress invariant is associated with the hydrostatic component of the stress tensor
which is responsible for volume change in a material subjected to loading. Specifically, the
hydrostatic component is defined by /,/3, which is also known as the mean stress, o,

Octahedral Shear Stress

The shear stress acting on a plane whose normal makes equal angles with the principal stress
directions is called the octahedral shear stress, T, In terms of principd stresses, the
octahedral shear stress is given by (94):

1

T _ = [(01 - a) + (0, - 0) + (g, - 0)° P

oct

w[._»

The plane on which the octahedral shear stress acts is called the octakedral plane. By
definition, this plane is perpendicular to the hydrostatic axis, defined by the line where o, =
0, = 0,, in the principal stress coordinate system. The octahedral plane that passes through
the origin of this coordinate system is called the & plane. The normal stress acting on the
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octahedral plane is called the octahedral normal stress, also known as the mean stress, O,,.
The octahedral shear stress is related to the second deviatoric stress invariant, J,, by the

relation (16):

oot

The octahedral shear stress (and the second deviatoric stress invariant) is responsible for
distortion of a material under loading.

Second Deviatoric Stress Invariant

In terms of principal stresses, the second deviatoric stress invariant, .J,, is given by (94):

J, = = [(6, - 0, + (9, - 0)* + (0, - 0)%]

N |-

From mechanics, J, can also be interpreted as twice the value of the mean square of the
principal shear stresses. Just as there are planes where shear stresses are at a minimum (the
principal planes), there exist planes where the shear stresses are at a maximum, referred to as

the principal shear stresses. These stresses are given by:

1
tl = :b'z-— (02 - 03)
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T, = = (0, - 0,)

1
T, & i; (01 - 02)

It can be shown that the above maximum shear stresses act on planes that bisect each pair of

principal planes. Using the above relations, the expression for, J,, can be re-written as:

which shows that, J,, is twice the mean square of the three principal shear stresses. Because
of this link with the principal shear stresses, the second deviatoric stress invariant is

associated with distortion or dimensional changes in a material under loading.

Third Deviatoric Stress Invariant

In terms of principal stresses, the third deviatoric stress invariant, J;, is given by (94):

JB = (01 - cn) (02 - Gu) (03 - Un)

The third deviatoric stress invariant is used in determining the lode angle, 0, to locate a stress
point on the octahedral plane.
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Stress Path

A stress path is a plot of a theoretical or experimental relationship between two stress
parameters. Both total stress and effective stress paths can be plotted. Most pavement
materials exhibit path-dependency, i.e., the response depends on the load history or the stress
path followed.

Yield Function

When a material is stressed beyond the elastic limit, permanent deformation or yielding takes
place. The function that is used to determine the onset of yielding or inelastic deformations
is referred to as the yield function, which is a mathematical relationship that is typically
expressed in terms of the principal stresses; the stress invariants, [, J, (or T.), and J;; the
lode angle, 0; or combinations of these invariants. The yield function value that corresponds
to the onset of yielding or inelastic deformations is called the yield criterion. Note that the
yield criterion may, or may not, be satisfied by the yield function. When the yield criterion
for a given material is plotted, the yield surface is obtained. Thus, the yield surface is the
graphical representation of the yield criterion. Generally, a yield surface is founded by
experimental observations which are used to formulate the mathematical expression (/7). In
plasticity theory, a material undergoes yielding or permanent deformations when the stress
state is on the yield surface. After initial yielding, subsequent yield surfaces develop for a
work-hardening material. These may develop by expansion of the initial yield surface, by
translation of the initial surface, or by a combination of expansion and translation. For an
elastic-perfectly plastic material, subsequent yield surfaces all approach the initial yield
surface and coincide with it (96). A number of yield criteria are used to evaluate the

inelastic or plastic behavior of pavement materials. Some of these criteria are defined in the

following.
Tresca Yield Surface

The Tresca yield surface is based on the premise that yielding of a material begins when the

maximum shearing stress at a point reaches a critical value, Y, determined from a simple
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tension test for a ductile material, or a compression test for a brittie material.

Mathematically, the yield criterion may be written as (96):

1 1 1
max ( -2— lo, = G, ; o, - o, -5 lo, - g/l ) = YP
where, Y, corresponds to the shear strength of the material. The Tresca yield criterion may

also be expressed in terms of stress invariants as follows (96):

ﬂJ2,6)=ﬁsin(6+—;E) -7, =0

Note that the effect of hydrostatic pressure is not considered in this criterion. The Tresca
yield surface is a cylinder with a hexagonal cross-section (see Figure A.6b). Because the
yield criterion does not consider the hydrostatic component of stress, the cross-sectional area
of the cylindrical surface is a constant that does not vary with distance along the hydrostatic

axis. Also, the cross-section of a deviatoric or octahedral plane is a regular hexagon.

Mohr-Coulomb Yield Criterion

Experience gained from strength tests conducted on soils and other granular materials shows
that the point at which yield will start in granular media is dependent not only on the
deviatoric stress component, but also on the hydrostatic stress component (/7). This is
because of the frictional nature of granular media. When a hydrostaﬁc stress is applied to
soil, the particles, which are angular, are pressed together, and the number of contact points
as well as the intensity of contact are increased. This leads to increased friction which offers
more resistance to sliding of particles over one another. Thus, in soils and rocks, the strength
of the material is dependent on the hydrostatic component of stress (/7). The Mohr-Coulomb

yield criterion is given by the following equation:

I .
£= % ity 5 sl 0+ ) - _{/_;. cor © + Z) sinc) - ¢ cout) = 0
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where ¢ and ¢ are the cohesion and friction angle of the material, respectively. The Mohr-
Coulomb yield surface is illustrated in Figure A.9. The shape of the deviatoric or octahedral
plane is an irregular hexagonal pyramid. Because of the dependence on the hydrostatic stress
component represented by the mean stress, /,/3, in the above equation, the cross-sectional
area of the yield surface increases with increasing distance along the hydrostatic axis,
reflecting the contribution of the hydrostatic stress component to the strength of the material.
It is also observed that if the friction angle, ¢, is zero, the Mohr-Coulomb yield criterion
reduces to the Tresca criterion, with the cohesion, ¢, corresponding to the shear strength of

the material, ¥,

Lade-Duncan Yield Surface

This yield surface is based on triaxial test data for cohesionless soils (sands) by Lade and
Duncan, and is expressed in terms of the first (/;) and third (7)) stress invariants. The general
shape of the yield surface is conical with the apex of the cone at the origin of the principal
stress axes (67). The mathematical form of the yield criterion is given by:

f=L -%x 1 =0

The Lade-Duncan model consists of nested yield surfaces and an ultimate failure surface as
illustrated in Figure A.14. The failure surface is defined by a particular value of the
parameter, k,, which is the stress level at failure that depends on the density of sand. The
yield surface has a smooth cross-section unlike the Tresca and Mohr-Coulomb yield criteria.
Similar to the Mohr-Coulomb yield criterion, the yield surface expaxids about the hydrostatic
axis with increasing hydrostatic pressures. The subsequent yield surfaces and the ultimate
failure surface of the Lade-Duncan model all have the same form of the yield function except
that, for the subsequent yield surfaces enclosed by the failure surface, the parameter, x,, is
replaced by x, whose value depends on the current stress level. As x approaches x;, the yield
surface approaches the failure surface. The Lade-Duncan model accounts for factors such as
hydrostatic pressure sensitivity, effect of the intermediate priﬁcipal stress, shear dilatancy
effects, and stress-path effects.
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Desai Yield Criterion

The Desai yield criterion is given by the equation:

f=dyval, +BLL" -yI -k*=0

where ¢, B, v, and %, are material parameters determined from laboratory tests. The factor &
is a measure of cohesion, and B is the hardening function (/7). Figure A.16 shows plots of
the Desai criterion for different values of B. Figure A.17 shows a schematic representation of
the Desai criterion on the = plane. The cross-section of the yield surfaces have smooth edges
like the Lade-Duncan model. The nested yield surfaces correspond to different values of /.
'Higher values of 1, lead to yield surfaces of larger cross-sections, implying higher strength
with greater confinement or hydrostatic pressures.
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