TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 2. Government Aecession No. TX $-88 / 1186-2, ~ V o l . ~ I I ~$	3. Recipient's Catolog No.
4. Title and Subtitle Austin/San Antonio Origin-Destination Study Volume II: Technical Appendices	5. Report Date January 1988 6. Performing O 190 it
7. Author'st ${ }^{\text {Robert W. Stokes, Daniel E. Morris, and Gene Hawkins }}$	8. Performing Organization Report No. Research Report $1186-2$, Vol. II
9. Performing Orgonizotion Nome ond Address Texas Transportation Institute The Texas A\&M University System College Station, Texas 77843-3135	10. Work Unit No.
	11. Controct or Grant No. Study No. 2-10-87-1186
	13. Type of Report ond Pariod Covered
${ }^{12}$ Texas Sistateqn Mamánd Adoress of Highways and Public Transportation; Transportation Planning Division P. O. Box 5051 Austin, Texas 78763	$\text { Interim - September } 1986$
	14. Sponsoring Agency Code
15. Supplementary Notes Research performed for the State of Texas. Research Study Title: Origin- Destination Study Concepts: Austin/San Antonio	

16. Abstract

Current and projected growth in the I-35 corridor between Austin and San Antonio (Figure 1) are expected to result in traffic volumes that may cause severe congestion on existing transportation facilities in this corridor. As a result, the Texas State Department of Highways, and Public Transportation (SDHPT) is undertaking an analysis of alternative corridor improvements. Included in this analysis is a feasibility study of an alternative highway route between Austin and San Antonio. The possibility of an alternate route to the east of I-35 (Figure 1) has received considerable attention in recent months. However, other alternatives, such as an I-35 east by-pass around Austin and an alternate route to the west of I-35, have not been eliminated from consideration at this date.

This research project is intended to assist the SDHPT in assessing the need for an alternate route in the Austin-San Antonio corridor. The results of the study are presented in a two-volume report. The results of an originDestination ($0-D$) survey conducted to identify current travel patterns in the study corridor, and the use of that survey data to estimate the diversion potentials of a proposed alternate route (Figure 1) are summarized in Volume I (Summary Report) of the research report. This report (Volume II) describes the study design and data analysis phases of the study in detail and presents expanded listings of the data summarized in Volume I.

AUSTIN/SAN ANTONIO ORIGIN-DESTINATION STUDY VOLUME II: TECHNICAL APPENDICES

by
Robert W. Stokes
Assoçiate Research Planner
Daniel E. Morris
Research Associate
Gene Hawkins
Assistant Research Engineer
and
Wanda M. Hinshaw
Assistant Research Statistician
Research Report 1186-2 (II)
Origin-Destination Study Concepts: Austin/San Antonio Research Study No. 2-10-87-1186

Sponsored by

Texas State Department of Highways and Public Transportation

> Texas Transportation Institute
> The Texas A\&M University System
> College Station, Texas 77843

TABLE OF CONTENTS

Page
IMPLEMENTATION STATEMENT v
DISCLAIMER v
BACKGROUND 1
OBJECTIVES 1
SCOPE 3
ORGANIZATION OF THE APPENDICES 4
A. ORIGIN-DESTINATION SURVEY A-1
A. 1 Study Design A-1
A.1.1 Survey Method A-1
A.1.2 Survey Stations A- 7
A.1.3 Scheduling the Survey A-9
A.1. 4 Sample Sizes A-12
A. 2 Conducting the Survey A-17
A.2.1 Survey Schedule A-17
A.2.2 Survey Station Setup and Traffic Control A-17
A.2.3 Questionnaire Distribution and Data Collection A-20
A. 3 Data Processing and Analysis A-20
A. 4 Summary of the Survey Data A-26
A.4.1 Overview A-26
A.4.2 Traffic Characteristics A- 30
A. 5 Expanding the Survey Data A-33
A. 6 Results A-35
A.6.1 Daytime Travel Patterns A-35
A.6. 2 Nighttime Truck Travel Patterns A-37
A. 7 Data Summaries A-39
B. TRAFFIC DIVERSION METHODOLOGY B-111
B. 1 Introduction B-111
B. 2 Assumptions B-111
B. 3 Analysis Zones and Highway Network B-113

TABLE OF CONTENTS (Cont.)

Page
B. 4 Speed and Travel Time Determination B-115
B. 5 Application/Validation B-120
B. 6 Traffic Forecasting Procedures B-123
B. 7 Level-of-Service Analyses B-127
B. 8 Results B-131
B.8.1 Summary B-131
B.8.2 Discussion B-131
REFERENCES B-137

IMPLEMENTATION STATEMENT

The goal of Research Study 2-10-87-1186 is to assist the Texas State Department of Highways and Public Transportation (SDHPT) in estimating current and design year traffic that might divert from I-35 between Austin and San Antonio to an alternate route in the corridor. The results of this research should be useful to transportation planners in conducting a feasibility study for an alternate route between Austin and San Antonio. Additionally, the research procedures developed should be useful in similar studies which may be conducted in the future.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Texas State Department of Highways and Public Transportation. This report does not constitute a standard, specification, or regulation.

BACKGROUND

Current and projected growth in the I-35 corridor between Austin and San Antonio (Figure 1) are expected to result in traffic volumes that may cause severe congestion on existing transportation facilities in this corridor. As a result, the Texas State Department of Highways and Public Transportation (SDHPT) is undertaking an analysis of alternative corridor improvements. Included in this analysis is a feasibility study of an alternate highway route between Austin and San Antonio. The possibility of an alternate route to the east of I-35 (Figure 1) has received considerable attention in recent months. However, other alternatives, such as an I-35 east by-pass around Austin and an alternate route to the west of I-35, have not been eliminated from consideration at this date.

This research project is intended to assist the SDHPT in assessing the need for an alternate route in the Austin-San Antonio corridor. The results of the study are presented in a two-volume report. The results of an origindestination ($0-D$) survey conducted to identify current travel patterns in the study corridor, and the use of that survey data to estimate the diversion potentials of a proposed alternate route (Figure 1) are summarized in Volume I (Summary Report) of the research report. This report (Volume II) describes the study design and data analysis phases of the study in detail and presents expanded 1 istings of the data summarized in Volume I.

OBJECTIVES

The overall goal of this research effort is to assist the SDHPT in assessing the need for an alternate route between Austin and San Antonio. Specific study objectives were:

1) Conduct a review of 0-D survey methods and assess their potential applicability to the Austin-San Antonio corridor in terms of manpower needs, cost, time frame, and statistical reliability.
2) Review available data for the corridor as developed in previous SDHPT and Texas Transportation Institute (TTI) studies.

General Location of Proposed
Austin/San Antonio Alternate Route

Figure 1. Austin/San Antonio Study Corridor
3) Based on the review of current practice, develop a detailed study plan for the $0-D$ survey to address the following elements:
a) Identification of an origin-destination survey method, or methods (depending upon the number of roadways to be surveyed, more than one method may be appropriate);
b) Identification of the number and location of survey sites;
c) Estimation of sample size requirements for various levels of statistical reliability;
d) Manpower requirements;
e) Recommended survey schedule;
f) A proposed survey instrument; and
g) Estimated study costs.
4) Conduct the 0-D survey.
5) Based on the results of the survey, develop estimates of current and design year traffic which may divert from I-35 to a proposed alternate route in the corridor.

SCOPE

As indicated earlier, the SDHPT is considering a number of alternative improvements for the Austin-San Antonio corridor. This study, however is limited to assessing potential traffic volumes which may divert from I-35 to an alternate route located to the east of $1-35$ (see Figure l). The general alignment of this proposed alternate route was provided by SDHPT. The analyses use data on current travel patterns in the corridor (i.e., 0-D data) to estimate how the route selection process associated with these patterns might change as a result of an alternate route in the corridor. As a result,
the effects of the induced and latent travel demand components of current and future traffic are not explicitly addressed in the analyses.

ORGANIZATION OF THE APPENDICES

This report consists of the following two technical appendices.

Appendix A. Origin-Destination Survey. This appendix contains technical documentation for the $0-D$ survey that was conducted to identify current travel patterns in the study corridor. The 0-D survey study design, accuracy checks performed on the survey data, and the statistical methods employed in the analyses of the sample data are described in detail. Extensive summaries of the $0-D$ data are also presented.

Appendix B. Traffic Diversion Methodology. Appendix B describes the development, validation, and application of the methodology used to estimate current traffic that might divert from I-35 to the proposed alternate route. Appendix B also documents the analyses of corridor traffic and population data that were used to develop the procedure for forecasting future traffic on the proposed alternate route. The results of the analyses and a general discussion of the overall accuracy of the estimates of current and future traffic on the proposed alternate route are also presented.

A. ORIGIN-DESTINATION SURVEY

A. 1 STUDY DESIGN

A.1.1 Survey Method (1)

A number of traditional and "synthetic" $0-D$ survey methods were evaluated for possible use in the study corridor. These methods were evaluated in terms of cost, accuracy, and adaptability to the study corridor.

In the context of the current corridor study, synthetic $0-D$ estimation approaches are not suitable. The results generated by these methods will be questionable in the absence of an instrument to test for their accuracy. The present knowledge of trip-making behavior and processes is not sufficiently advanced to enable the conceptualization of a synthetic $0-D$ model that does not require at least accuracy checking against actual $0-D$ data before being applied to forecasting.

Table A-1 presents a summary of the traditional 0-D survey methods that were considered for use in the study corridor. The methods shown in Table A1 have been arranged in descending order in terms of cost and accuracy.

Neither the license-plate "trace" method nor the tag-on-vehicle/lightson surveys are applicable to a large intercity traffic corridor, such as the Austin/San Antonio corridor, due to the extreme difficulties in planning and implementing the survey. The manpower requirements to implement either one of these methods on corridor of this size would be unrealistic and the analysis of the field data would be extremely cumbersome.

The license-plate "mail-out" survey, which can be implemented without interrupting the flow of traffic, has a number of shortcomings if applied to this study. The most notable problem is that after the vehicles passing a station are selected and their license-plate numbers read, it is difficult to send questionnaires to drivers of trucks or out-of-state vehicles and it is almost impossible to reach drivers of leased vehicles. This survey method

Table A-1. Summary of 0-D Survey Methods

Survey Method	Advantages	Di sadvantages	Manpower Requi rements per Survey Station	Recommend Sample Si ze ${ }^{b}$	Typl cal Response Rates
1. Roadsi de Intervi ew	- Complete Information - High Response Rate - Better Sampling Control	- Relati vely expensive - Traffic delays - Hazardous	- 10-20 persons/ station ${ }^{\text {a }}$ - 2-4 police officers	20\%-50\%	100\%
2. Postcard Surveys	- Can be completed qui ckly - Less traffic delay - Relatively inexpensi ve - Good population coverage	- Possible blas due to better response by some drl vers - Low response by thru and out-of-state traffic - Requi res stopping traffic - No provision for followup of non-responses	- 5-9 persons/ station - 1-2 poll ce officers	60\%-80\%	25\%-35\%
3. License Plate Surveys					
a) "Trace: Method	- Simplicity of field organd zation - No Interference with traffic - Unbi ased Sample	- Data Analysis is difficult - Large number of stations requi red - Possible recording errors - Survey stations must operate simultaneously	- 2-3 persors/ station	35\%-50\%	$60 \%^{\text {c }}$
b) "Mai l-out"	- Similar to Method No. 2, except followup of non-responses is possible - Stations need not operate simultaneously	- Same as Method No. 2, except does not requi re stopping traffic - Requi res access to venicle registration piles	- 2-3 persons/ station	60\%-80\% ${ }^{\text {d }}$	20x-35x ${ }^{\text {d }}$
4. Tag-on-vehicle/ Lights-on Surveys	- Same as Method 3a, except may result in minor traffic delays	- Same as Method 3a, except less recording errors	- 2-3 persons/ station	100\%	-

a Number of intervi ewers varies with traffic volume but on the average is about 3-4 times the number of persons requi red to hand out postcards. The above estimate is for relatively low hourly traffic volumes.
b Sample sizes have been adjusted for typical response rates to insure at least 20% sample.
C Response rate is estimate of percentage of 11 cense plates which can be traced.
d Response rate can be increased by follow-up of non-responses.
would therefore result in non-coverage of many sub-groups within the population which could result in biases and errors in the survey that cannot be easily corrected for. This is a particularly serious problem if a substantial proportion of traffic in the corridor is made up of trucks, leased and out-of-state vehicles. Furthermore, in reading license-plate numbers in the field, reading/recording errors are likely to exist which reduces the size of the usable sample of vehicles.

The "controlled postcard survey" method, which utilizes vehicleownership or licensed-driver information, suffers the same shortcomings as the license-plate "mail-out" method in its inability to effectively survey trucks, leased and out-of-state vehicles. This method was therefore considered unsuitable for this study.

Given the importance of the current corridor study, the roadsideinterview and the postcard-distribution methods are both justified in terms of costs and accuracy. Indeed, both are very similar in providing good coverage of the vehicle population and in the amount of information that can be effectively sought from the drivers. In terms of costs and manpower requirements, the roadside interview method, on the average, requires 3-4 times more field personnel than the postcard-distribution method, and this estimate can be much higher for very high-volume facilities. A trained interviewer can complete about 30-40 interviews in an hour while postcards can be handed out to drivers every 4-5 seconds. The response rate of the roadside interview method, however, may be up to 3 times as high as that of the roadside-distribution postcard method. Despite its higher response rate, the interview crew would need to work at least as long as the postcarddistribution crew in order to obtain a sufficient number of responses. The lower response rate of the roadside-distribution postcard method can be compensated for by designing for a larger sample size.

In terms of adaptability, the postcard-distribution method is more desirable in terms of traffic delays, station set-up, traffic control plans, survey management, and safety to the survey crew and motorists. On a highvolume facility, such as Interstate 35 , it would not be practical to stop traffic to complete interviews with drivers on-site because traffic
congestion and delays could become excessive, even with a large interview crew. Furthermore, as the number of interviewers increases, so does the complexity of setting up the site and managing the survey in order to maintain safety and to minimize traffic delays and confusion. Previous TTI experiences with the roadside-distribution postcard method have shown that with a good traffic control plan, well-trained survey personnel, and the use of an appropriate vehicle selection technique, this survey method can be safely implemented without causing any substantial delays to traffic.

It had been suggested that a combination "roadside-distribution postcard survey and roadside interview survey" might be used. Past TTI experience suggests that such a combination would not enhance the amount of information obtainable; not would it improve the quality of the survey results. The suggested combination approach would involve distributing postcards to drivers during high-volume time periods and conducting on-site interviews during low-volume time periods. However, even during "low-volume" periods on Interstate 35 , the time required to conduct on-site interviews could cause considerable traffic delays, unless the interviews could be conducted off the roadway. If the on-site interviews were to be conducted on the roadway, it appears unlikely that a substantial percentage of the traffic could be sampled without causing excessive delays.

Based on these considerations, the roadside-distribution postcard survey method was selected for the study corridor. A sample of the postcard questionnaire used in the study is shown in Figure A-1. The survey form was designed to solicit information concerning vehicle type, trip purpose, trip origin and destination, vehicle occupancy and trip frequency. The survey form requested street address, city, and zip code of the trip origin and destination. This information made it possible to code origin-destination zones with sufficient detail to evaluate the range of improvements being considered for the corridor. The questionnaire portion of the form was printed on the back of a prepaid, preaddressed postcard. Also, each questionnaire was individually numbered to facilitate recording the time and location of distribution.

AUSTIN/SAN ANTONIO ORIGIN-DESTINATION STUOY

Dear Motorist

Your help is needed in a special study being conducted on roadways in the Austin and San Antonio areas to determine which improvements. if any, are the most feasible and most economical to implement

The study has the objective of providing the traveling public with a sater and more efficient transponation system. However, in order to develop a better transportation system, it is first necessary to gain information on existing travel patterns. The results of this study will have direct application to any improvements considered on roadways near Austin and San Antonio.

Your cooperation and tumely relurn of the completed questionnaire will be appreciated. Information provided by you will be kept confidential. Only a summary of the results will be avallable for review

The following questions concern the trip being made at the time you received this questionnaire. If you have received more than one questionnaire, please complete and return each questionnaire. Please accept our apology for any inconvenuence our survey may have caused you.

Survey Station:

Southbound US 281 Near San Antonio
№ 99059

1. Type of vehicle? Passenger Car $\square \quad$ Pickup $\square \quad$ Van $\square \quad$ Other Truck \square
2. Purpose of trip today? Work $\square \quad$ School $\square \quad$ Shopping $\square \quad$ Recreation $\square \quad$ Other \square
3. Where were you coming from when you received this questionnaire? Street Address (or nearest inersection) City
4. Where were you going when you received this questionnaire?

$$
\text { Sireel Address (or nearest mersection) City } \quad Z_{\text {ip Code }}
$$

5. How many people in vehicle (including driver)?

6. How many days per week do you make this trip?

$1 \square \quad 2 \square \quad$ more than $2 \square \quad$ Oiner (please specity) \qquad
7. Any additional intormation on your trip that you think might be helpful to us would be appreciated.

BUSINESS REPLY CARD
 firsi class peamit mo 148 college station, texas mbens

postage will be paid by addaessee
Texas Transportation Institule
System Planning Division
The Texas A\&M University System
College Station. Texas 77843-9990

Figure A-1. Sample Postcard Questionnaire

In addition to the general survey of traffic in the study corridor, SDHPT requested a special nighttime survey of truck traffic on I-35 between Austin and San Antonio. Given the relatively low volumes of nighttime truck traffic, and based on the assumption that the survey could be conducted at the I-35 weigh stations, the roadside interview method was selected as the most appropriate survey procedure. A sample of the interview form used is shown in Figure A-2.

AUSTIM/SAN ANTONIO ORIGIN-DESTIMATION SURVEY
 COFMERCIAL VEHICLE SURVEY FORM

$: 00-:$	0									
$: 30-: 59$	8	9	10	11	12	01	02	03	04	05
8	9	10	11	12	01	02	03	04	05	

1. Origin: \qquad
Stop in Austin? No \square Yes, where: \qquad
2. Destination: \qquad
Stop in San Antonio? No \square Yes, where: \qquad
3. Any intermediate stops? No \square Yes, where: \qquad
4. Trip frequency $\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ day/week/month Other: \qquad
5. Occupants: \qquad
6. Vehicle Classification: Single Unit \square

Single Unit With Trailer \square Tractor Only \square Tractor With Trailer \square Tractor With Double Trailer \square Placarded $\square \quad$ Tanker \square

Location: Southbound I-35
Carrier Name: \qquad

Figure A-2. Sample Truck Traffic Interview Form

A.1.2 Survey Stations

Based on discussions with SDHPT personnel, and a review of the objectives of the corridor study, the following survey station locations were identified (Figure A-3):

1. I-35, Between San Marcos and San Antonio, South of SH-46 (New Braunfels Station);
2. I-35, Between Austin and San Marcos (Kyle Station);
3. SH-123, Between I-35 and I-10 (Seguin Station);
4. US-183, Between SH-21 and I-10 (Lockhart Station);
5. US-281, North of San Antonio between FM 1604 and SH-46 (San Antonio Station); and
6. I-35, North of Georgetown (Georgetown Station).

These survey station locations were selected to obtain a comprehensive and representative sample of travel patterns in the study corridor. The I-35 stations between Austin and San Antonio, and the stations on SH-123 and US183 were chosen to provide samples of intercity and through-traffic, as well as traffic with origin-destinations at key intermediate points. These stations were considered to be particularly important in terms of assessing the potential feasibility of an alternate Austin/San Antonio route to the east of I-35.

The US-281 station was selected to sample potential traffic for an alternate route between Austin and San Antonio to the west of I-35. The I-35 station north of Georgetown was identified to obtain a sample of traffic that might use an I-35 Austin by-pass.

The following criteria were used to identify precise survey station locations.

(1) Location of Survey Stations

1. New Braunfels Station
2. Kyle Station
3. Segmis Station
4. Lockhart Station
5. San Aatenic Station
6. Georgetowa Station

Proposed Alternate Route
 Truck Weigh Station

Figure A-3. General Locations of Survey Stations

1) Sight-Distance. The primary consideration in selecting survey stations was safety. Survey stations were located on flat, straight roadway sections, which were clear of structures or other obstructions that could reduce sight-distances. Level and straight sections of highways with an unrestricted sight distance of 800 feet or more in each direction from the station were sought (2). Stations at or near intersections were avoided. Care was also taken to avoid possibilities of traffic bypassing the stations.
2) Roadway Cross-Section. Wherever possible, survey stations were located where roadway width was at its maximum. On I-35, survey stations were located on sections with inside and outside shoulders. By using the freeway shoulders it would be possible to set-up four-channel service areas for postcard distribution. On non-interstate roadways, survey stations were established on four-lane sections.
3) Traffic Catchment Area. Survey stations were located to intercept a representative sample of inter-city traffic. As a general guide, survey stations were located near the midpoints of the roadway links surveyed.

A.1.3 Scheduling the Survey

The following issues were considered in scheduling the $0-D$ survey.

1) Month and Day-of-Week Considerations. The choice of the month and day-of-week of the survey depended upon whether "typical" or "peak" 0-D data were desired. An examination of monthly, daily, and seasonal traffic volumes as a percent of average annual daily traffic (AADT) from several permanent traffic recorders in the corridor revealed that the summer months of JuneAugust generally account for the highest percentages of AADT (Table A-2). The fall months of September-November on the other hand, appear to be more representative of the AADT.

In terms of average variations in the AADT, Mondays-Thursdays appear to be "typical" days. Fridays, with their high percentages of "pre-weekend" traffic, tend to be higher-than-average traffic days.

Table A-2. Percent 1985 Average Annual Daily Traffic (AADT) by Month, Day and Season, Austin/San Antonio Corri dor

Month and Season	Percent AADT											
	1-35 (S. of Austin)			US 183 (S. of Austin)			US 281 (N. of San Antoni o)			SH 123 (N. of Seguin)		
	Sun-Sat	Mon-Thur	Mon-Fri									
Dec	98.9	96.9	100.0	96.1	98.9	101.2	98.3	108.1	110.5	99.4	89.1	93.7
Jan	79.4	81.2	85.3	84.3	89.1	92.5	83.4	93.5	97.4	72.2	69.1	74.4
Feb	87.5	89.9	91.4	92.0	98.6	99.1	95.7	109.0	109.1	79.1	72.6	77.4
(Winter)	(88.6)	(89.3)	(92.2)	(90.8)	(95.5)	(97.6)	(92.5)	(103.6)	(105.7)	(83.6)	(77.0)	(81.8)
Mar	100.4	96.8	101.1	101.6	103.6	106.2	102.6	114.4	115.7	104.4	89.2	97.9
April	102.0	97.8	102.8	104.9	106.2	110.0	104.8	117.3	117.8	100.1	84.1	93.9
May	102.6	97.3	102.4	105.9	107.0	111.3	103.9	114.8	116.9	109.6	94.6	104.2
(Spring)	(101.6)	(97.3)	(102.1)	(104.2)	(105.6)	(109.2)	(103.8)	(115.5)	(116.8)	(104.7)	(89.3)	(98.6)
June	105.8	101.1	106.0	105.4	107.0	111.2	103.8	115.9	117.9	112.4	93.9	104.1
July	107.4	103.1	106.9	104.3	107.3	110.5	99.8	112.2	113.1	117.1	99.7	108.4
Aug	110.7	105.7	110.6	105.4	108.3	111.9	102.8	115.7	117.2	117.9	99.8	109.9
(Summer)	(108.0)	(103.3)	(107.8)	(105.0)	(107.6)	(111.2)	(102.1)	(114.6)	(116.1)	(115.8)	(97.8)	(107.4)
Sept.	102.2	99.2	103.7	101.1	105.0	107.9	102.0	114.2	116.6	92.7	81.3	89.0
Oct.	100.6	98.1	103.2	102.0	104.7	107.2	103.2	116.3	118.3	95.8	80.3	90.0
Nov.	102.6	101.9	104.9	97.0	101.7	103.8	99.6	112.7	113.6	99.4	91.7	97.4
(Fall)	(101.8)	(99.7)	(103.9)	(100.0)	(103.8)	(106.3)	(101.6)	(114.4)	(116.2)	(96.0)	(84.4)	(92.1)
Total	100.0	97.4	101.5	100.0	103.1	106.1	100.0	112.0	113.7	100.0	87.1	95.0

Source: SDHPT

Based on these considerations, it was recommended that the Austin/San Antonio 0-D survey be conducted during the summer months (June-August) during the typical weekdays of Monday-Thursday.
2) Time-of-Day Considerations. The 0-D survey may be conducted over a 24-hour period, or more typically, during daylight hours. Given the hazards associated with nighttime operations, it was recommended that, with the exception of the special truck study, survey operations be restricted to daylight hours.
3) One-Directional vs. Two-Directional Station Operations. In scheduling the survey and estimating manpower needs, the issue of whether each direction of travel was to be surveyed separately or simultaneously needed to be resolved. The Federal Highway Administration's guidelines on conducting origin-destination surveys (2) state "... two-directional surveying is necessary if hourly data describing origins and destinations by direction are needed. It is generally assumed that although inbound traffic patterns are similar to outbound traffic patterns for a 24 -hour period, the differences are significant enough on an hourly basis to warrant two-directional surveys. Some serious problems could arise in the analysis of the data if twodirectional data are not available. Where sufficient personnel are available, it is desirable to survey traffic in both directions simultaneously".

Harmelink (3) suggests that one-directional surveys would produce larger errors than would two-directional surveys. Hajek (4) found from actual 0-D data that the errors for a 50% two-directional survey were very similar to the errors for a 100% one-directional surv- Hajek attributed this similarity in the errors to the daily variation in traffic which might have obscured the expected difference between the two-directional and the onedirectional surveys.

In 1952, Miller, et al. (5) conducted an O-D survey in Richmond, Indiana for the State Highway Commission of Indiana. The survey was operated for 16hours a day at most stations. Both directions of traffic were surveyed at any one location. The station arrangement was exactly the same as if both
directions would have been surveyed at the same time, except that the stop sign for the direction not being surveyed was covered during the 15 -minute periods when traffic could proceed without stopping.

Based on results of another survey at Lebanon, Indiana, Miller et al. (5) reported that the universe tabulation of origin-destination trip frequencies indicated that the inbound and the outbound frequencies were not exact mirror images of one another but that some differences between the two directions existed. The percent differences were found to be higher for small trip interchange volumes than for larger trip interchange volumes.

Based on these past studies, and to maximize the usefulness of the resulting $0-D$ data, it was recommended that two-directional surveys be conducted.

A.1.4 Sample Sizes

Sample design of an intercity origin-destination study consists of many tasks, including the following:

1) Defining the corridor of interest and the origin/destination points within the corridor.
2) Identification of survey stations in the corridor,
3) Selection of an appropriate survey method,
4) Design of sample sizes to ensure statistical validity and reliability of the results,
5) Selection of vehicles to be sampled, and
6) Independent checking of the accuracy of the survey results.

In origin-destination studies, there are two main sources of errors: sampling errors and non-sampling errors. In order to ensure the accuracy of
the results, sampling errors have to be minimized. To ensure that the survey results are representative of the corridor traffic, non-sampling errors also have to be minimized.

Sampling errors or sampling variance are measures of statistical accuracy of the $0-D$ estimates obtained from the survey. Sampling variance arises because it is highly unlikely that drivers of all vehicles in the corridor will be surveyed. Sampling variance can be controlled at the sample-design stage by planning for a sufficient number of vehicles to be included in the sample. As a rule, sampling variance decreases as the sample size is increased. Sampling variance is random in nature (i.e., it falls on either side of the estimates). As sample size increases, sampling variance becomes less and less of an issue and the problem of sample size is almost negligible for a sample of 10,000 cases or more. The number of vehicles (or the sample size) required at any one station is a function of the desired accuracy of the $0-D$ estimates, and the variability within the population studied. For an intercity origin-destination survey, such variability depends on the numbers of origin-destination pairs within the corridor for which travel estimates are needed and on the distribution of all travel among these origin-destination pairs.

Non-sampling errors are not likely to be random in occurrence and they do not usually decrease in magnitude with larger samples. Non-sampling errors are made-up of at least 2 components:

1) Biases due to non-coverage and non-response, and
2) Errors associated with data collection and data processing procedures.

Biases due to non-coverage and non-response can be minimized by selecting a survey method that will ensure (1) sufficient response rate and (2) as complete a coverage of all different subgroups of the population as possible. Errors associated with data collection and data processing procedures can be minimized with tight quality control and good management of the survey team.

Sample size determination for roadside interview, postcard distribution, and license-plate reading follows the same procedure. A minimum sample size required at a given survey station is the number of vehicles sampled at the station whose drivers successfully complete the postcards or the interview. A minimum sample size required for an origin-destination survey of vehicles passing through a survey station is usually expressed as a sampling rate (i.e., a ratio of the number of vehicles sampled to the total number of vehicles passing through). The sampling rate is a function of the following:
(a) p: proportion of traffic volume at the survey station with a particular 0-D,
(b) w: desired accuracy (\% error) of p,
(c) N: traffic volume at the survey station, and
(d) Z: normal variate which is associated with a specified level of confidence in estimating the $0-D$ interchange volume.

The sample size formula is given by (4):

$$
r=\left(z^{2} p q\right) /\left((N-1) w^{2}+z^{2} p q\right)
$$

where r is the required sampling rate, and q is (1-p).

To apply the sample size formula, some estimate of the traffic volume, N, at the survey station must be known. A desired accuracy of the proportion p must be specified; as must a level of confidence in estimating p. One other quantity that must be specified is p, the proportion of the traffic volume at the survey station with a particular $0-D$. This proportion is usually not known during sample size determination. What must be specified, instead, is a minimum $0-0$ trip interchange volume to be obtained from the survey with the desired accuracy level. In the context of this study, this minimum $0-D$ trip interchange volume was assumed to be in the range of 2 to 10 percent of the traffic volume at the survey station.

Table A-3 presents approximate sampling rates (r) for a range of ADT's (N) and accuracy levels (error rates) from $\pm 5 \%$ to $\pm 15 \%$. All calculations assume a 95% confidence interval. Lower confidence intervals will result in lower sampling rates for a given ADT and accuracy level. The sampling rates shown in Table A-3 assume a 100% response and must be adjusted for nonresponses as follows:

Number of Vehicles Sampled $=$ (sampling rate x traffic volume)/response rate

Table A-4 summarizes recommended sample sizes for each of the survey stations in the study corridor. The sample sizes are given in terms of the number of postcards to be distributed at each station. The sample sizes were estimated from rates given in Table A-3 and have been adjusted on the basis of an assumed postcard response rate of 30%. The recommended sample sizes are restricted by operational practicality that constrains the maximum number of postcard handouts to be within 60% of the traffic passing through each station for facilities with ADT over 8,000 vph in one direction. General remarks regarding the expected error limits of the $0-D$ estimates obtained from the samples are also given in the table.

Table A-3. Approximate Sampling Rates for Errors within $\pm 5 \%, \pm 10 \%$ and $\pm 15 \%$ at 95% Confidence Interval

N	$\mathrm{p}=0.03$			$p=0.05$			$p=.10$		
	$+5 \%$	$+10 \%$	$+15 \%$	$+5 \%$	$+10 \%$	$+15 \%$	$+5 \%$	$+10 \%$	$+15 \%$
3,000	.94	.81	.65	.91	.71	.52	.82	.54	.34
5,000	.91	.72	.53	.86	.59	.40	.74	.41	.24
10,000	.84	.56	.36	.75	.42	.25	.58	.26	.14
20,000	.71	.39	.22	.59	.27	.14	.41	.15	.07
30,000	.63	.30	.16	.50	.20	.10	.32	.11	.05
40,000	.56	.24	.12	.42	.16	.08	.26	.08	.04
50,000	.50	.20	.10	.37	.13	.06	.22	.07	.03
60,000	.45	.17	.09	.33	.11	.05	.19	.06	.02
70,000	.42	.16	-	.30	.10	-	.17	.05	-
100,000	.33	.11	-	.23	.07	-	.12	.04	-

Notes: $N=$ Traffic Volume at Survey Station; $P=M i n i m u m$ o-D trip interchange volume to be estimated from the survey with the desired accuracy level (expressed as proportion of N). Sampling rates assume 100% response and must be adjusted for non-responses as follows: Number of vehicles Sampled $=$ (Sampling Rate \times Traffic Volume)/Response Rate.

Table A-4. Recommended Sample Sizes for Austin/San Antonio 0-D Study

Survey Station and Di rection ${ }^{\text {a }}$	1985 ADT $^{\text {b }}$	$n^{\text {c }}$	Expected Error (approxi mate) ${ }^{\text {d }}$
1. I-35, South of SH-46 NB SB 2. I-35, Between Austin \& San Marcos NB SB 3. SH 123, Between I-35 \& I-10 NB SB 4. US 183, Between SH-21 \& I-10 NB SB 5. US 281, North of San Antoni o NB SB 6. I-35, North of Georgetown NB SB	$\begin{aligned} & 19,000 \\ & 19,000 \\ & \\ & 20,000 \\ & 20,000 \\ & \\ & 4,000 \\ & 4,000 \\ & \\ & 3,300 \\ & 3,300 \\ & \\ & 9,650 \\ & 9,650 \\ & \\ & 13,500 \\ & 13,500 \end{aligned}$	$\begin{aligned} & 9,500 \\ & 9,500 \\ & \\ & 10,000 \\ & 10,000 \\ & \\ & 4,000 \\ & 4,000 \\ & \\ & 3,300 \\ & 3,300 \\ & \\ & 5,800 \\ & 5,800 \\ & \\ & 8,100 \\ & 8,100 \end{aligned}$	$\pm 15 \%$ Error (95% confi dence), $p=0.05$ $\pm 15 \%$ Error (95% confidence), $p=0.05$ +15\% Error (95% confi dence), $p=0.05$ $\pm 15 \%$ Error (95% confidence), $p=0.05$ $\pm 15 \%$ Error (95% confi dence), $p=0.10$ $\pm 15 \%$ Error (95% confi dence), $p=0.10$ $\pm 15 \%$ Error (95% confi dence), $p=0.10$ $\pm 15 \%$ Error (95% confidence), $p=0.10$ $\pm 15 \%$ Error (95\% confj dence), $0.05<p<0.10$ $\pm 15 \%$ Error (95\% confidence), $0.05<p<0.10$ $\pm 15 \%$ Error (95% confi dence), $0.05<p<0.10$ $\pm 15 \%$ Error (95\% confi dence), $0.05<p<0.10$
Total	81,400		

[^0]
A. 2 CONDUCTING THE SURVEY

A.2.1 Survey Schedule

The daytime 0-D survey was conducted the week of July 13, 1987 as summarized below.

Day 1 (7/14): New Braunfels and Lockhart Stations
Day 2 (7/15): Kyle and San Antonio Stations
Day 3 (7/16): Seguin and Georgetown Stations

The daytime survey stations were in operation from 6:30 a.m. to 8:30 p.m. each day.

The roadside interviews of nighttime truck traffic were conducted on July 13-14 (6:30 p.m.-3:00 a.m.) for northbound traffic, and on August 12, 1987 (7:30 p.m.-10:30 p.m.) for southbound traffic. This schedule was due to the need to coordinate survey activities with the Department of Public Safety's schedule of I-35 truck station operations.

A.2.2 Survey Station Set-up and Traffic Control

With the high traffic volumes encountered on many of the roadways surveyed, great care was taken to insure that the surveys were conducted in a safe, efficient, and professional manner. The actual distribution of the postcard questionnaires did not result in any substantial delay to individual motorists. The overall efficiency of the survey stations, therefore, was determined by the vehicle entry and exit set-up at the survey station (i.e., the physical lay-out of the survey stations). Figures A-4 and A-5 show the basic setups used at the interstate and non-interstate survey stations, respectively. All survey stations had law enforcement officers on duty to insure safety and to enhance motorist cooperation.

As noted above, the survey stations were in operation from 6:30 a.m.8:30 p.m. each day. However, survey operations were occassionally suspended in order to minimize motorist delays. As a general rule, if traffic queues

Figure A-4. Austin/San Antonio 0-D Study: Interstate Highway Traffic Control Plan

Figure A-5. Austin/San Antonio 0-D Study: Non-Interstate Highway Traffic Control Plan
extended to the advance signing of the survey stations, survey operations were temporarily suspended until the queue was reduced.

The nighttime truck surveys were conducted at the two weigh-stations on I-35 and required no special traffic control measures.

A.2.3 Questionnaire Distribution and Data Collection

Four persons per interstate site and two persons per non-interstate site were required to distribute the postcard questionnaires. The questionnaire forms were bundled according to the 15 -minute time period during which they were to be distributed. The number of questionnaires per bundle was based on the sample sizes shown in Table A-4. Additionally, postcard questionnaire identification numbers were recorded at the beginning and end of each 15minute survey period to insure that the time and location of distribution could be identified when tabulating the survey responses.

In addition to distributing postcards, the survey crews al so conducted manual counts of traffic volumes, vehicle classifications, and vehicle occupancies. At the Kyle Station, a nighttime vehicle classification study was conducted. Survey crews also recorded samples of vehicle license plate numbers at each of the survey stations. At the Kyle Station, postcard survey form numbers were recorded along with the license plate numbers of a sample of the vehicles surveyed. Samples of the forms used to record these data are shown in Figures A-6 and A-7.

The volume counts were used to expand the sample data to represent the entire vehicle population for the corridor, and the license plate data were collected to evaluate the representativeness of the sample data. The use of these data is discussed in Sections A. 3 and A. 4 of this report.

A. 3 DATA PROCESSING AND ANALYSIS

To facilitate data analysis, the survey results and the volume/classification and license plate data were coded for computer processing. The data files were checked for coding errors and erroneous zip codes. Additionally,

Figure A-6. Vehicle Classification and Occupancy Report

Facility :
Direction :

Location : Weather : \qquad
\qquad

Time Period :
Date :
Recorder : \square Record Out of State Vehicles with an X

Figure A-7. License Plate Data Collection Form
vehicle registration information obtained from the license data was used to assess the representativeness of the sample data. Specifically, the Kyle Station (the high-volume station) was used as a "control" to perform the following accuracy checks on the survey data. The large sample size, and the results of the accuracy checks, indicate that a representative, reliable sample of travel patterns in the corridor was obtained.

1) "Key-Punch" Errors. Tight quality control procedures were established for the data processing phases of the study. However, given the enormous amount of data that needed to be processed, it was recognized that coding and input ("key-punching") errors would be unavoidable. In order to assess the magnitude and nature of these errors, approximately 1000 of the survey responses from the Kyle Station were processed a second time. These 1000 responses were manually checked to insure they had been input correctly. Once this data set was "clean", it was merged with the initial entries and any "mis-matches" were identified and evaluated. The results of this accuracy check indicated that the error in computer processing of the survey data was about 4\%. However, the majority of the errors were for information not directly related to the primary objectives of the study (e.g., errors/inconsistencies in categorizing and coding "comments" or trip frequency).
2) Zip Code Reporting Errors. A zip code atlas and street address information provided by the respondents were used to compare the actual and reported zip codes of origins and destinations for 10% of the responses received from the Kyle Station. Approximately 5% of the responses examined were found to have errors in the zip codes reported for the origins or destinations. However, the errors were predominantly in the last two digits of the zip code. Since the zip code data were aggregated into large zones in the final data tabulations, these reporting errors should have little effect on the overall accuracy of the results.
3) Geographic Distribution_of Responses. A comparison of the geographic areas (zip codes) of vehicle registrations for respondents and non-respondents was performed to identify any bias in the survey results due to the over- or under- representation of one or more geographic areas in the responses. This evaluation was performed using data from the Kyle Station,
where it was possible to identify respondents and non-respondents from the subset of vehicles whose license plate numbers had been matched with survey postcard numbers. The analyses revealed no significant geographic bias in the survey results.
4) Travel Patterns of Non-Respondents. In an effort to assess whether the travel patterns of the survey respondents represent the travel patterns of all travelers in the corridor, a follow-up survey of non-respondents was conducted. Approximately 80 non-respondents, as identified from the subset of vehicles at the Kyle Station, were interviewed in a telephone survey. The overall results of the telephone survey are summarized below.
Completed Interviews 79
Refusals:
Did not recall trip 19
Did not want to participate 18
Business firm 8
Disconnects (invalid phone number) 34
No Contact (no answer) 37
Other (survey form already mailed) 1
Total 196

At least 3 contact efforts were made for each working phone number. The interviews were conducted in Spanish when necessary (5 Spanish speaking individuals were contacted, 3 of these completed the interview). While the sample size was too small to draw any definite conclusions, the analyses indicate that there was no substantial differences in the travel patterns of respondents and non-respondents.

Following these accuracy checks, the origin and destination data were tabulated at three levels of detail; by zip code, by traffic analysis zone and by major origins/destinations. Figure A-8 shows the traffic analysis zones used in this study. Table A-5 shows the traffic analysis zones that were aggregated to form the larger, major $0-D$ zones. The individual zip codes included in the traffic analysis zones are given in the data listings at the end of this appendix.

Figure A-8. Austin/San Antonio Traffic Analysis Zones

Table A-5. Traffic and Major 0-D Zone Equi valencies

Major O-D Zone	Corresponding Traffic Zones ${ }^{a}$
San Antoni 0	S1-S5
Austin	$2,3,5, A 1-A 5$
New Braunfels/San Marcos	$4,6,1$
Seguin/Lockart	$7,9,11$
South of San Antoni o	8,10
North of Austin	12

${ }^{a}$ See figure A-8.

The results reported in this report are for the traffic analysis zones (Figure A-8) and the major 0-D pairs. The individual zip code data have been retained for any additional analyses or studies that might require this type of data.

A. 4 SUMMARY OF THE SAMPLE DATA

A.4.1 Overview

Table A-6 presents a summary of the daytime $0-D$ sample by survey station. As shown in Table A-6, nearly 83,000 survey forms were distributed during the three-day survey period. Over 28,000 (35%) of the postcard questionnaries were returned. This response rate represents over one-fourth of the total traffic observed during the survey period. That is, over one-in-four (29\%) of the vehicles observed responded to the survey. The aggregate summary in Table A-6 shows that roughly 90% of the vehicles observed were passenger vehicles. Trucks and other commercial vehicles accounted for the remaining 10%.

Tables A-7 through A-11 present additional aggregate summaries of the daytime survey responses. As shown in Table A-7, vehicles in the passenger auto, pickup, and van classifications accounted for over 90% of the survey responses, a rate comparable to that observed in the population sampled (Table A-6). Work trips accounted for nearly 56% of the trips reported; followed by "other" (19\%) and recreational (14\%) trips (Table A-8).

Table A-6. Summary of Austin/San Antonio 0-D Sample

SURVEY StATION	traffic volume (7:00 a.m. - 8:00 p.m.)						SURVEY DISTRIBUTION		SURVEY RESPOMSE		
	Passenger Vehicles	Commercial Vehicles				Total Vehicles	Number Distributed	X Traffic Surveyed	Number	Return Qate	X Tot. Veh Responding
		Single Unit	Combination	Iractor Only	Buses						
1. New Braunfels (I-35)											
MB	12322	612	1130	40	25	14129	12009	85\%	4152	35\%	29\%
SB	12335	704	1116	20°	18	14193	12484	88	4560	36	32
Total	24657	1316	2246	60	43	28322	24493	86	8712	36	31
2. Kyle (1-35)											
NB	12498	396	939	19	19	13871	12461	90	4128	33	30
SB	12931	566	1025	8	23	14553	12583	86	4119	33	28
Total	25429	962	1964	27	42	28424	25044	88	8247	33	29
3. Seguin (SH 123)											
NB	1933	108	81	3	2	2127	1914	90	698	36	33
SB	2098	116	97	4	1	2316	1919	83	638	33	28
Total	4031	224	178	7	3	4443	3833	86	1336	35	30
4. Lockhart (US 183)											
NB	2014	303	74	5	5	2401	2178	91	178	36	32
SB	2559	99	89	3	3	2753	1898	70	822	43	30
Iotal	4573	402	163	8	8	5154	4076	79	1600	39	31
5. San Antonio (US 281)											
NB	4485	207	59	1	3	4755	3858	81	1617	42	34
SB	4252	165	71	1	2	4491	3335	74	1481	44	33
Total	8737	372	130	2	5	9246	7193	70	3098	43	34
6. Georgetown (1-35)											
NB	8198	500	956	18	13	9685	9000	93	2510	28	26
So	8608	430	899	13	19	9969	9000	90	2561	28	26
Total	16806	930	1855	31	32	19654	18000	92	5071	28	26
TOTAL	84.233	4.206	6.536	135	133	95.243	82.639	87	28,064	34	29

Table A-7. Summary of Survey Responses by Venicle Type, All Stations

Vehicle Type	Number	Perœent
Passenger Auto	19163	68.3%
Pi ckup	5190	18.5
Van	1895	6.8
Truck	1777	6.3
Not Reported	39	0.1
Total	28,064	100.0%

Table A-8. Summary of Survey Responses by Trip Purpose, All Stations

Trip Purpose	Number	Percent
Work	15668	55.8%
Recreation	3937	14.0
Shopping	1546	5.5
School	1508	5.4
Other	5262	18.8
Not Reported	143	0.5
Total	28,064	100.0%

The most commonly reported trip frequency was "more than 2 times per week", accounting for nearly 41% of the responses (Table A-9). Interestingly, over one-third (36.0\%) of the respondents reported their trip frequency as "less than once per week" (Table A-9). The majority of the responses (61\%) were for single occupant vehicles (Table A-10).

Table A-9. Sumary of Survey Responses by Trip Frequency, All Stations

Trip Frequency	Number	Percent
More Than 2/Week	11531	41.1%
2/Week	2114	7.5
l/Week	3529	12.6
Less Than 1/Week	10092	36.0
Not Reported	798	2.8
Total	28,064	100.0%

Table A-10. Summary of Survey Responses by Vehi cle Occupancy, All Stations

Vehi cle Occupancy	Number	Percent
1	17053	60.8%
2	6902	24.6
3	2128	7.6
4	1151	4.1
5 or more	797	2.8
Not Reported	33	0.1
Total	28,064	100.0%

Although less than 10% of the respondents provided "Comments", nearly one-half of the comments received referred to the speed limit; e.g., confusion concerning the 65 MPH speed limit and the need for improved signing (Table A-11).

Table A-11. Summary of Survey Comments, All Stations

Comment Category	Number	Percent
Speed Limit	1443	49.4%
Need for Added Capaci ty	614	21.0
Traffic Congestion	217	7.4
Safety	183	6.3
Negati ve to Survey	155	5.3
Mass Transit	116	4.0
Posi ti ve to Survey	110	3.8
Truck Traffic	81	2.8
Total	2,919	100.0%

Table A-12 summarizes the nighttime truck traffic sample. As shown in Table A-12, over 20% of the northbound truck traffic was interviewed. Due to the shorter interview period for the southbound traffic, only 6% of these vehicles were sampled. However, since the roadside interview method was used in the survey, respondents could be questioned in detail to obtain precise 0 D information. As a result, the overall accuracy of the sample data should be comparable to the daytime survey results.

Table A-12. Summary of Ni ghtime I-35 Truck $0-\mathrm{D}$ Sample

Truck Type	Traffic Volume		No. Intervi ewed	
	NB	SB	NB	SB
Combination	$939(69 \%)$	$1025(64 \%)$	$234(25 \%)$	$78(8 \%)$
Single Unit	$396(29 \%)$	$566(35 \%)$	$10(3 \%)$	$10(2 \%)$
Tractor Only	$19(2 \%)$	$8(1 \%)$	$2(11 \%)$	$1(13 \%)$
Dual Trai ler	$-c$	-	$31(-)$	$11(-)$
Total	$1354(100 \%)$	$1599(100 \%)$	$277(21 \%)$	$100(6 \%)$

a Kyle Station (8:00 p.m.-7:00 a.m. July 14-15, 1987).
b NB interviews conducted July 13-14, 6:30 p.m.-3:00 am.; SB interviews conducted August 12, 7:30 p.m.-10:30 p.m.
c Counted as "combination" in nighttime venicle classification study.
d ($\mathrm{X} \times \%$) denotes percent of nightime traffic intervi ewed.

A.4.2 Traffic Characteristics

Figure A-9 shows plots of observed hourly traffic volumes for each of the survey stations within the corridor. Figure A-10 shows plots of observed hourly traffic volumes by vehicle type (passenger and commercial) for the Kyle Station (the only station for which 24-hour data are available). Detailed hourly listings by survey station and vehicle type are given in Section A-7.

The daytime volume plots (Figure A-9) show some interesting relationships in the hourly variations in traffic volumes. Traffic volumes at the interstate survey stations were fairly evenly distributed throughout the daylight hours of the survey. Traffic volumes at the US 281 and US 183 sites, on the other hand, exhibit definite peaks in the AM and PM periods. The proximity of these two sites to urban areas (San Antonio and Lockhart, respectively) is probably a contributing factor in the observed peaking.

The vehicle classification plots (Figure A-10) indicate that the hourly commercial vehicle volumes at the Kyle Station were nearly constant throughout the 24-hour study period. As shown in Figure A-10, commercial vehicle volumes were typically on the order of 100 to 125 vehicles per hour (vph) per direction.

a) Northbound

b) Southbound

Figure A-9. Observed Hourly Traffic Volumes, All Stations

a) Northbound

b) Southbound

Figure A-10. Observed 24-Hour Traffic Volumes by Vehicle Type, Kyle Station

A. 5 EXPANDING THE SAMPLE DATA

Once the $0-D$ survey data were tabulated, the sample results were expanded to obtain estimates of $0-D$ volumes for the entire vehicle population of the study corridor. The observed traffic volumes (see Section A.7) were used to expand the sample data.

The sample data were expanded by survey station and direction for each of the following three time periods: 1) morning (7:00 a.m.-11:00 a.m); 2) midday (11:00 a.m.-3:00 p.m.); and 3) afternoon (3:00 p.m.-8:00 p.m.). The data were expanded by time period to account for possible differences in travel patterns by time of day. Additional aggregate summaries of the estimates of $0-D$ volumes for the vehicle population were obtained by simply summing over site and direction of travel.

The basic formulas used to obtain the estimates of the population $0-D$ volumes, and their standard errors, are as follows.

$$
\begin{aligned}
& p=t / n \\
& T=p N \\
& S_{p}=[p(1-p) / n]^{\frac{1}{2}} \\
& S_{T}=N[p(1-p) / n]^{\frac{1}{2}}
\end{aligned}
$$

where:

```
p = proportion of the reported trips having a particular 0-D (for each
    site and direction);
t = Number of trips reported for a particular 0-D (for each site and
    direction);
n = Total number of trips reported for each site and direction;
T = Estimate of 0-D volumes for the entire vehicle population;
N = Observed traffic volume for each site and direction;
```

$S_{p}=$ Standard error of p; and
$S_{T}=$ Standard error of T.

The standard errors can be used to calculate confidence intervals for the estimated $0-\mathrm{D}$ volumes. A 95% confidence interval, for example, is given by: estimated $0-D$ volume $\pm 1.96 \times$ standard error. This formulation is based on the normal approximation, which is valid in this case due to the large sample size obtained.

The estimates of the population $0-D$ volumes were calculated by site and travel direction and summed to obtain various aggregate summaries. As a result of the "rounding-errors" incurred in this process, the marginal (row and column) totals of the individual, aggregate trip tables do not balance exactly.

A. 6 RESULTS

A.6.1 Day-Time Travel Patterns

Tables A-13 through A-15 summarize the estimated 1987 vehicle trip interchanges for the major $0-D$ zones in the corridor. The estimated interchange volumes are given for all vehicles (Table A-13), passenger vehicles (Table A-14), and commercial vehicles (Table A-15). Also shown in the Tables are the cell percentages and the standard errors of the estimates. With regards to the overall accuracy of Table A-13, the 95% confidence interval (1.96 x standard error) is within $\pm 1 \%$ of the estimate of total vehicle trips (95,245 trips).

As shown in Table A-13, the Austin, San Antonio, and San Marcos areas account for over 75% of the origins and destinations in the corridor. The relatively high percentage of $0-D$ s observed for the San Marcos area (23\%) is particularly significant in terms of the need for an alternate route in the corridor. Since nearly one-quarter of the trips in the corridor have origins and destinations on or north of I-35 between Austin and San Antonio, it seems unlikely that a substantial percentage of these trips would find an alternate route south of I-35 particularly attractive.

Tables A-14 and A-15 show the 1987 survey period vehicle trip interchanges for passenger and commercial vehicles, respectively. The passenger vehicle trip interchanges (Table A-14) are virtually identical to those of all vehicle types. The commercial vehicle travel patterns (Table A15), when compared with those of passenger vehicles, show a much lower percentage of $0-D s$ in the San Marcos/New Braunfels areas, and a much higher percentage of $0-D s$ to the north of Austin. These travel patterns indicate that much of the commercial vehicle travel in the corridor can be characterized as "through-traffic".

The diagonals of the trip tables represent round-trips in the corridor. Since the survey questionnaire (see Figure $A-1$) requested information concerning origins and destinations on a directional basis (i.e., one-way trip information), the information in the diagonals of the trip tables

Table A-13. Estimated 1987 Vehicle Trips by Major 0-D Zones (7:00 a.m.-8:00 p.m.): All Venicles

Table A-14. Estimated 1987 Vehicle Trips by Major 0-D Zones (7:00 am.-8:00 pm.): Passenger Vehicles

Table A-15. Estimated 1987 Vehicle Trips by Major 0-D Zones (7:00 am.-8:00 p.m.): Commercial Venicles

DESTINATIONS

probably stem from "reporting errors". However, the diagonal elements account for only about 6% of the total vehicle trips (Table A-13) and the resulting error is not considered to be substantial. Any bias resulting from the non-zero values in the diagonals would be in the form of slightly overestimating "long" trips. This possible over-estimation of long trips could slightly increase the attractiveness of an alternate route in the corridor.

Additional summaries of the 1987 trip tables are presented in Section A. 7 .

A.6.2 Nighttime Truck Travel Patterns

Table A-16 summarizes the estimated 1987 trip interchanges for the night time truck traffic in the corridor. As shown in Table $A-16$, origins and destinations north of Austin each account for over 40% of all origins and
destinations. Origins and destinations in San Antonio account for the next highest share of the origins and destinations, representing roughly $25 \%-30 \%$ of the estimated origins and destinations, respectively.

Trip origins and destinations in the New Braunfels/San Marcos and Seguin areas account for only $4 \%-5 \%$ of all destinations and origins, respectively. The general patterns shown in Table A-16 indicate that nighttime truck travel in the I-35 corridor between Austin and San Antonio is predominantly throughtraffic. Similar patterns were observed in the daytime commercial vehicle trip interchanges (see Table A-15).

Table A-16. Estimated 1987 Major Trip Interchanges for I-35 Nigttime Truck Survey (8:00 pmo7:00 a.m.)

DESTINATIONS

TRUCK (T) INTERCHANGE ZONES :
T1 = SAN ANTONIO
T2 = AUSTIN
T3 = NEW BRAUNFELS \& SAN MARCOS
T4 = SEGUIN
T5 - SDUTH OF SAN ANTONIO
T6 = NORTH OF AUSTIN

A. 7 DATA SUMMARIES

This section of the appendix contains the following data listings.

Data

Page

Observed Hourly Traffic Volumes by Vehicle Type A-40
Zip Code Equivalencies for Traffic Analysis Zones A-56
Daytime Person Trips by Major 0-D Zone and Vehicle Type A-80
Daytime Vehicle and Person Trips by Traffic Zone and Vehicle Type A- 87
Daytime Vehicle Trips by Survey Station and Vehicle Type A-105
Nighttime I-35 Truck Origins-Destinations by Direction A-106
Summary of Nighttime Commercial Vehicles Surveyed by Name of Carrier and Truck Type . A-110

FACILITY
DIRECIION DATE

IH 35
SOUTH OF KYLE
JULY 15, 1987

TIME	OF	DAY	PASSENGER VEHICLES	VEHICLES PERSONS	SINGLE VEHICLES	UNIT PERSONS	COMB IN VEHICLES	COMMERCIAL NATIONS PERSONS	TRACTOR VEHICLES	ONLY PERSONS	VEHICLES	\qquad	VEHICLES TOTAL	$\text { LPERSONS }^{2}$
7:00	-	8:00	$\begin{array}{r} 1080 \\ 90.76 \\ 7.28 \end{array}$	$\begin{array}{r} 1412 \\ 92.53 \\ 6.24 \end{array}$	$\begin{array}{r} 54 \\ 4.54 \\ 0.36 \end{array}$	$\begin{array}{r} 58 \\ 3.80 \\ 0.26 \end{array}$	$\begin{array}{r} 54 \\ 4.54 \\ 0.36 \end{array}$	$\begin{array}{r} 54 \\ 3.54 \\ 0.24 \end{array}$	$\begin{array}{r} 1 \\ 0.08 \\ 0.01 \end{array}$	$\begin{array}{r} 1 \\ 0.07 \\ 0.00 \end{array}$	$\begin{array}{r} 1 \\ 0.08 \\ 0.01 \end{array}$	$\begin{aligned} & 0.07 \\ & 0.07 \end{aligned}$	1190	1526
8:00	-	9:00	$\begin{array}{r} 772 \\ 89.66 \\ 5.21 \end{array}$	$\begin{array}{r} 1125 \\ 92.67 \\ 4.97 \end{array}$	$\begin{array}{r} 30 \\ 3.48 \\ 0.20 \end{array}$	$\begin{array}{r} 30 \\ 2.47 \\ 0.13 \end{array}$	$\begin{array}{r} 53 \\ 6.16 \\ 0.36 \end{array}$	$\begin{array}{r} 53 \\ 4.37 \\ 0.23 \end{array}$	$\begin{array}{r} 3 \\ 0.35 \\ 0.02 \end{array}$	$\begin{array}{r} 3 \\ 0.25 \\ 0.01 \end{array}$	$\begin{array}{r} 3 \\ 0.35 \\ 0.02 \end{array}$	$\begin{array}{r} 3 \\ 0.25 \\ 0.01 \end{array}$	861	1214
9:00	-	10:00	$\begin{array}{r} 918 \\ 89.39 \\ 6.19 \end{array}$	$\begin{array}{r} 1365 \\ 90.16 \\ 6.03 \end{array}$	$\begin{array}{r} 36 \\ 3.51 \\ 0.24 \end{array}$	$\begin{array}{r} 37 \\ 2.44 \\ 0.16 \end{array}$	$\begin{array}{r} 72 \\ 7.01 \\ 0.49 \end{array}$	$\begin{array}{r} 72 \\ 4.76 \\ 0.32 \end{array}$	-	-	$\begin{aligned} & 1 \\ & 0.10 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 40 \\ 2.64 \\ 0.18 \end{array}$	1027	1514
10:00	-	11:00	$\begin{array}{r} 799 \\ 88.38 \\ 5.39 \end{array}$	$\begin{array}{r} 1063 \\ 89.40 \\ 4.69 \end{array}$	$\begin{array}{r} 40 \\ 4.42 \\ 0.27 \end{array}$	$\begin{array}{r} 51 \\ 4.29 \\ 0.23 \end{array}$	$\begin{array}{r} 63 \\ 6.97 \\ 0.42 \end{array}$	$\begin{array}{r} 64 \\ 6.38 \\ 0.28 \end{array}$	- ${ }^{-}$		$\begin{aligned} & 0.22 \\ & 0.22 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 11 \\ 0.93 \\ 0.05 \end{array}$	904	1189
11:00	-	12:00	$\begin{array}{r} 889 \\ 87.24 \\ 5.99 \end{array}$	$\begin{array}{r} 1325 \\ 89.83 \\ 5.85 \end{array}$	$\begin{array}{r} 38 \\ 3.73 \\ 0.26 \end{array}$	$\begin{array}{r} 43 \\ 2.92 \\ 0.19 \end{array}$	$\begin{array}{r} 90 \\ 8.83 \\ 0.61 \end{array}$	$\begin{array}{r} 95 \\ 6.44 \\ 0.42 \end{array}$	$\begin{array}{lll} 0 \\ 0.10 \\ 0.01 \end{array}$	$\begin{array}{r} 2 \\ 0.14 \\ 0.01 \end{array}$	$\begin{array}{ll} 1 \\ 0.10 \\ 0.01 \end{array}$	$\begin{array}{r} 10 \\ 0.68 \\ 0.04 \end{array}$	1019	1475
12:00	-	13:00	$\begin{array}{r} 993 \\ 86.20 \\ 6.70 \end{array}$	$\begin{array}{r} 1511 \\ 89.41 \\ 6.67 \end{array}$	$\begin{array}{r} 61 \\ 5.30 \\ 0.41 \end{array}$	$\begin{array}{r} 72 \\ 4.26 \\ 0.32 \end{array}$	$\begin{array}{r} 96 \\ 8.33 \\ 0.65 \end{array}$	$\begin{array}{r} 96 \\ 5.68 \\ 0.42 \end{array}$	$\begin{array}{r} 1 \\ 0.09 \\ 0.01 \end{array}$	$\begin{aligned} & 1 \\ & 0.06 \\ & 0.00 \end{aligned}$	$\begin{array}{r} 1 \\ 0.09 \\ 0.01 \end{array}$	$\begin{array}{r} 10 \\ 0.59 \\ 0.04 \end{array}$	1152	1690
13:00	-	14:00	90.00 6.68	$\begin{array}{r} 1525 \\ 89.03 \\ 6.73 \end{array}$	$\begin{array}{r} 35 \\ 3.18 \\ 0.24 \end{array}$	$\begin{array}{r} 35 \\ 2.04 \\ 0.15 \end{array}$	$\begin{array}{r} 72 \\ 6.55 \\ 0.49 \end{array}$	$\begin{array}{r} 72 \\ 4.20 \\ 0.32 \end{array}$	$\begin{array}{r} 1 \\ 0.09 \\ 0.01 \end{array}$	$\begin{array}{r} 1 \\ 0.06 \\ 0.00 \end{array}$	$\begin{aligned} & 2 \\ & 0.18 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 80 \\ 4.67 \\ 0.35 \end{array}$	1100	1713
14:00	-	15:00	$\begin{array}{r} 967 \\ 92.18 \\ 6.52 \end{array}$	$\begin{array}{r} 1583 \\ 92.68 \\ 6.99 \end{array}$	$\begin{array}{r} 16 \\ 1.53 \\ 0.11 \end{array}$	$\begin{array}{r} 18 \\ 1.05 \\ 0.08 \end{array}$	$\begin{array}{r} 65 \\ 6.20 \\ 0.44 \end{array}$	$\begin{array}{r} 67 \\ 3.92 \\ 0.30 \end{array}$	-		$\begin{array}{ll} 1 \\ 0.10 \\ 0.0 & 1 \end{array}$	$\begin{array}{r} 40 \\ 2.34 \\ 0.18 \end{array}$	1049	1708
15:00	-	16:00	$\begin{array}{r} 1121 \\ 92.26 \\ 7.56 \end{array}$	$\begin{array}{r} 1728 \\ 90.66 \\ 7.63 \end{array}$	15 1.23 0.10	18 0.94 0.08	$\begin{array}{r} 77 \\ 6.34 \\ 0.52 \end{array}$	$\begin{array}{r} 80 \\ 4.20 \\ 0.35 \end{array}$	-	-	$\begin{array}{r} 2 \\ 0.16 \\ 0.01 \end{array}$	$\begin{array}{r} 80 \\ 4.20 \\ 0.35 \end{array}$	1215	1906
16:00	-	17:00	$\begin{array}{r} 1092 \\ 90.92 \\ 7.36 \end{array}$	$\begin{array}{r} 1842 \\ 93.50 \\ 8.13 \end{array}$	19 1.58 0.13	$\begin{array}{r} 19 \\ 0.96 \\ 0.08 \end{array}$	$\begin{array}{r} 87 \\ 7.24 \\ 0.59 \end{array}$	$\begin{array}{r} 87 \\ 4.42 \\ 0.38 \end{array}$	$\begin{array}{r} 2 \\ 0.17 \\ 0.01 \end{array}$	$\begin{aligned} & 0.2 \\ & 0.10^{2} \\ & 0.01 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.08 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 20 \\ 1.02 \\ 0.09 \end{array}$	1201	1970
17:00	-	18:00	$\begin{array}{r} 1223 \\ 92.16 \\ 8.25 \end{array}$	$\begin{array}{r} 2017 \\ 94.52 \\ 8.91 \end{array}$	$\begin{array}{r} 22 \\ 1.56 \\ 0.15 \end{array}$	$\begin{array}{r} 22 \\ 1.03 \\ 0.10 \end{array}$	$\begin{array}{r} 78 \\ 5.88 \\ 0.53 \end{array}$	$\begin{array}{r} 80 \\ 3.75 \\ 0.35 \end{array}$	$\begin{array}{r} 3 \\ 0.23 \\ 0.02 \end{array}$	$\begin{array}{r} 5 \\ 0.23 \\ 0.02 \end{array}$	$\begin{array}{r} 1 \\ 0.08 \\ 0.01 \end{array}$	$\begin{array}{r} 10 \\ 0.47 \\ 0.04 \end{array}$	1327	2134
18:00	-	19:00	$\begin{array}{r} 937 \\ 92.77 \\ 6.32 \end{array}$	$\begin{array}{r} 1622 \\ 92.00 \\ 7.16 \end{array}$	$\begin{array}{r} 12 \\ 1.19 \\ 0.08 \end{array}$	$\begin{array}{r} 12 \\ 0.68 \\ 0.05 \end{array}$	$\begin{array}{r} 68 \\ 5.74 \\ 0.39 \end{array}$	$\begin{array}{r} 58 \\ 3.29 \\ 0.26 \end{array}$	$\begin{array}{ll} 1 \\ 0.10 \\ 0.01 \end{array}$	$\begin{aligned} & 1 \\ & 0.06 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.20 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 70 \\ 3.97 \\ 0.31 \end{array}$	1010	1763
19:00	-	20:00	$\begin{array}{r} 717 \\ 87.87 \\ 4.83 \end{array}$	$\begin{array}{r} 1141 \\ 89.21 \\ 5.04 \end{array}$	18 2.21 0.12	$\begin{array}{r} 32 \\ 2.50 \\ 0.14 \end{array}$	$\begin{array}{r} 74 \\ 9.07 \\ 0.50 \end{array}$	$\begin{array}{r} 80 \\ 6.25 \\ 0.35 \end{array}$	$\begin{aligned} & 0.74 \\ & 0.74 \\ & 0.04 \end{aligned}$	$\begin{array}{r} 66 \\ 0.47 \\ 0.03 \end{array}$	0.11 0.01	$\begin{array}{r} 20 \\ 1.56 \\ 0.09 \end{array}$	816	1279

subtotal

12498	19259	396	447	939	958	19	22	19	395	13871
90.10	91.36	2.85	2.12	6.77	4.54	0.14	0.10	0.14	1.87	

 DATE

1H 35 SOUTH OF KYLE NORTHBOUND JULY 15. 1987

TIME OF DAY PASSENGER VEHICLES $1-\cdots \quad$ COMMERCIAL VEHICLES

			PERSONS VEHICLES	peasons vehicles	Persons vehicles	Persons vehicles persons	Vehicles persons
20:00	21:00	$\begin{array}{r} 302 \\ 86.29 \\ 2.04 \end{array}$	$\begin{array}{r} 14 \\ 4.00 \\ 0.09 \end{array}$	$\begin{array}{r} 29 \\ 8.29 \\ 0.20 \end{array}$	-	$\begin{array}{r} 5 \\ 1.43 \\ 0.03 \end{array}$	350
21:00	22:00	$\begin{array}{r} 447 \\ 88.51 \\ 19.58 \end{array}$	$\begin{array}{r} 11 \\ 2.18 \\ 0.48 \end{array}$	$\begin{aligned} & 47 \\ & 9.31 \\ & 2.06 \end{aligned}$	- -		505
22:00	23:00	315 79.35 13.80	12 3.02 0.53	$\begin{array}{r} 68 \\ 17.13 \\ 2.98 \end{array}$	2 0.50 0.09	-	397
23:00	24:00	$\begin{array}{r} 228 \\ 73.79 \\ 9.99 \end{array}$	$\begin{array}{r} 11 \\ 3.56 \\ 0.48 \end{array}$	$\begin{array}{r} 69 \\ 22.33 \\ 3.02 \end{array}$	- -	$\begin{aligned} & 0.31 \\ & 0.32 \\ & 0.04 \end{aligned}$	309
0:00	1:00	$\begin{array}{r} 133 \\ 63.64 \\ 5.83 \end{array}$	$\begin{array}{r} 9 \\ 4.31 \\ 0.39 \end{array}$	$\begin{array}{r} 66 \\ 31.58 \\ 2.89 \end{array}$	- ${ }^{-}$	$\begin{array}{r} 1 \\ 0.48 \\ 0.04 \end{array}$	209
1:00	2:00	$\begin{array}{r} 103 \\ 59.54 \\ 4.51 \end{array}$	2.31 0.18	62 35.84 2.72	$\begin{array}{r} 3 \\ 1.73 \\ 0.13 \end{array}$	$\begin{aligned} & 1 \\ & 0.58 \\ & 0.04 \end{aligned}$	173
2:00	3:00	$\begin{array}{r} 69 \\ 51.11 \\ 3.02 \end{array}$	5 3.70 0.22	56 41.48 2.45	$\begin{array}{r} 5 \\ 3.70 \\ 0.22 \end{array}$	-	135
3:00	4:00	$\begin{array}{r} 53 \\ 49.53 \\ 2.32 \end{array}$	10 9.35 0.44	43 40.19 1.88	- ${ }^{-}$	$\begin{array}{r} 1 \\ 0.93 \\ 0.04 \end{array}$	107
4:00	5:00	$\begin{array}{r} 62 \\ 47.69 \\ 2.72 \end{array}$	5 3.85 0.22	$\begin{array}{r} 59 \\ 45.38 \\ 2.58 \end{array}$	$\begin{array}{r} 4 \\ 3.08 \\ 0.18 \end{array}$	-	130
5:00	6:00	231 72.64 10.12	$\begin{array}{r} 19 \\ 5.97 \\ 0.83 \end{array}$	$\begin{array}{r} 20.13 \\ 2.80 \end{array}$	$\begin{aligned} & 03 \\ & 0.94 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.31 \\ & 0.04 \end{aligned}$	318
6:00	7:00	$\begin{array}{r} 526 \\ 86.37 \\ 3.55 \end{array}$	$\begin{array}{r} 31 \\ 5.09 \\ 0.21 \end{array}$	$\begin{array}{r} 49 \\ 8.05 \\ 0.33 \end{array}$	$\begin{array}{r} 2 \\ 0.33 \\ 0.01 \end{array}$	$\begin{aligned} & 1 \\ & 0.16 \\ & 0.01 \end{aligned}$	609
		$\begin{aligned} & 14967 \\ & 87.46 \end{aligned}$	$\begin{array}{r} 38 \\ 3.08 \end{array}$	$\begin{aligned} & 1551 \\ & 9.06 \end{aligned}$	$\begin{array}{r} 38 \\ 0.22 \end{array}$	$\begin{array}{r} 30 \\ 0.18 \end{array}$	17113

NOTE : PASSENGER VEHICLES INCLUDE AUTOS, PICKUPS, VANS AND MOTORCYCLES BUSES INCLUDE BOTH SCHOOL AND INTERCITY BUSES SINGLE UNITS INCLUDE COMMERCIAL PICKUPS. PANELS AND SINGLE UNITS VEHICLE OCCUPANCY NOT RECORDED FROM 8 P.M. TO 7 A.M.

LEGEND : $\quad x \times x=$ VOLUME $\begin{aligned} x x x & =\text { VOLUME } \\ x x^{x} \cdot x x & =\text { ROW PERCENT }\end{aligned}$ $x x . x x=$ COLUMN PERCENT

	DIRECTION : NORTHBOUND					OBSERVED HoURLY traffic volumes : All stations									VEHICLESTALERSONS	
	TIME		DAY	passenger VEHICLES	VEHICLES PERSONS	SINGLE VEHICLES	UNIT PERSONS	COMB VEHICLE	COMMERCIAL INATIONS ES PERSONS	al vehicles thactor VEHICLES	ONLY PERSONS	VEHICL	SES PERSONS			
	1:00	-	8:00	$\begin{array}{r} 2880 \\ 83.92 \\ 6.13 \end{array}$	$\begin{array}{r} 3942 \\ 84.18 \\ 5.35 \end{array}$	$\begin{array}{r} 322 \\ 9.38 \\ 0.69 \end{array}$	$\begin{array}{r} 438 \\ 9.35 \\ 0.59 \end{array}$	$\begin{array}{r} 223 \\ 6.50 \\ 0.47 \end{array}$	$\begin{array}{r} 228 \\ 4.87 \\ 0.31 \end{array}$	$\begin{array}{r} 3 \\ 0.09 \\ 0.01 \end{array}$	$\begin{array}{r} 3 \\ 0.06 \\ 0.00 \end{array}$	$\begin{aligned} & 0.12 \\ & 0.121 \end{aligned}$	$\begin{array}{r} 72 \\ 1.54 \\ 0.10 \end{array}$		3432	4683
	8:00	-	9:00	$\begin{array}{r} 2834 \\ 86.67 \\ 6.03 \end{array}$	$\begin{array}{r} 4006 \\ 88.69 \\ 5.44 \end{array}$	$\begin{array}{r} 240 \\ 7.34 \\ 0.51 \end{array}$	$\begin{array}{r} 311 \\ 6.89 \\ 0.42 \end{array}$	$\begin{array}{r} 185 \\ 5.66 \\ 0.39 \end{array}$	$\begin{array}{r} 189 \\ 4.18 \\ 0.26 \end{array}$	$\begin{aligned} & 6 \\ & 0.18 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 8 \\ 0.13 \\ 0.01 \end{array}$	$\begin{array}{r} 5 \\ 0.15 \\ 0.01 \end{array}$	$\begin{aligned} & 5 \\ & 0.11 \\ & 0.01 \end{aligned}$		3270	4517
	9:00	-	10:00	$\begin{array}{r} 2865 \\ 86.79 \\ 6.10 \end{array}$	$\begin{array}{r} 4403 \\ 88.86 \\ 5.98 \end{array}$	$\begin{array}{r} 163 \\ 4.94 \\ 0.35 \end{array}$	$\begin{array}{r} 185 \\ 3.73 \\ 0.25 \end{array}$	$\begin{array}{r} 264 \\ 8.00 \\ 0.56 \end{array}$	$\begin{array}{r} 271 \\ 5.47 \\ 0.37 \end{array}$	$\begin{array}{r} 6 \\ 0.18 \\ 0.01 \end{array}$	$\begin{aligned} & 6 \\ & 0.12 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 3 \\ 0.09 \\ 0.01 \end{array}$	$\begin{array}{r} 90 \\ 1.82 \\ 0.12 \end{array}$		3301	4955
	10:00	-	11:00	$\begin{array}{r} 2639 \\ 85.21 \\ 5.62 \end{array}$	$\begin{array}{r} 4169 \\ 87.02 \\ 5.66 \end{array}$	$\begin{array}{r} 156 \\ 5.04 \\ 0.33 \end{array}$	$\begin{array}{r} 190 \\ 3.97 \\ 0.26 \end{array}$	$\begin{array}{r} 290 \\ 9.36 \\ 0.62 \end{array}$	$\begin{array}{r} 292 \\ 6.09 \\ 0.40 \end{array}$	$\begin{array}{r} 6 \\ 0.19 \\ 0.01 \end{array}$	$\begin{array}{r} 9 \\ 0.19 \\ 0.01 \end{array}$	$\begin{array}{r} 6 \\ 0.19 \\ 0.01 \end{array}$	$\begin{aligned} & 131 \\ & 2.73 \\ & 0.18 \end{aligned}$		3097	4791
	11:00		12:00	$\begin{array}{r} 2874 \\ 85.00 \\ 6.12 \end{array}$	$\begin{array}{r} 4863 \\ 89.03 \\ 6.60 \end{array}$	$\begin{array}{r} 182 \\ 5.38 \\ 0.39 \end{array}$	$\begin{array}{r} 221 \\ 4.05 \\ 0.30 \end{array}$	$\begin{array}{r} 311 \\ 9.20 \\ 0.66 \end{array}$	$\begin{array}{r} 316 \\ 5.79 \\ 0.43 \end{array}$	$\begin{array}{r} 9 \\ 0.27 \\ 0.02 \end{array}$	$\begin{aligned} & 10 \\ & 0.18 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 5 \\ 0.15 \\ 0.01 \end{array}$	$\begin{array}{r} 52 \\ 0.95 \\ 0.07 \end{array}$		3381	5462
	12:00		13:00	$\begin{array}{r} 2986 \\ 86.85 \\ 6.36 \end{array}$	$\begin{array}{r} 4929 \\ 89.52 \\ 6.69 \end{array}$	$\begin{array}{r} 152 \\ 4.42 \\ 0.32 \end{array}$	$\begin{array}{r} 179 \\ 3.25 \\ 0.24 \end{array}$	$\begin{array}{r} 289 \\ 8.41 \\ 0.62 \end{array}$	$\begin{array}{r} 292 \\ 5.30 \\ 0.40 \end{array}$	$\begin{array}{r} 6 \\ 0.17 \\ 0.01 \end{array}$	$\begin{aligned} & 6 \\ & 0.11 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 5 \\ 0.15 \\ 0.01 \end{array}$	$\begin{array}{r} 100 \\ 1.82 \\ 0.14 \end{array}$		3438	5506
	13:00		14:00	$\begin{array}{r} 3034 \\ 89.24 \\ 6.46 \end{array}$	$\begin{array}{r} 5142 \\ 91.36 \\ 6.98 \end{array}$	$\begin{array}{r} 108 \\ 3.18 \\ 0.23 \end{array}$	$\begin{array}{r} 123 \\ 2.19 \\ 0.17 \end{array}$	$\begin{array}{r} 250 \\ 7.35 \\ 0.53 \end{array}$	$\begin{array}{r} 259 \\ 4.60 \\ 0.35 \end{array}$	$\begin{aligned} & 4 \\ & 0.12 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 4 \\ & 0.12 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 100 \\ 1.78 \\ 0.14 \end{array}$		3400	5628
$\begin{aligned} & D \\ & 1 \\ & \hline 1 \end{aligned}$	14:00	-	15:00	$\begin{array}{r} 3252 \\ 88.95 \\ 6.92 \end{array}$	$\begin{array}{r} 5533 \\ 89.17 \\ 7.51 \end{array}$	$\begin{array}{r} 115 \\ 3.15 \\ 0.24 \end{array}$	$\begin{array}{r} 132 \\ 2.13 \\ 0.18 \end{array}$	$\begin{array}{r} 275 \\ 7.52 \\ 0.59 \end{array}$	$\begin{array}{r} 284 \\ 4.58 \\ 0.39 \end{array}$	$\begin{array}{r} 5 \\ 0.14 \\ 0.01 \end{array}$	$\begin{aligned} & 5 \\ & 0.08 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 9 \\ 0.25 \\ 0.02 \end{array}$	$\begin{array}{r} 251 \\ 4.05 \\ 0.34 \end{array}$		3656	6205
	15:00	-	16:00	$\begin{array}{r} 3572 \\ 88.66 \\ 7.61 \end{array}$	$\begin{array}{r} 5800 \\ 89.91 \\ 7.87 \end{array}$	$\begin{array}{r} 169 \\ 4.19 \\ 0.36 \end{array}$	$\begin{array}{r} 212 \\ 3.29 \\ 0.29 \end{array}$	$\begin{array}{r} 269 \\ 6.68 \\ 0.57 \end{array}$	$\begin{array}{r} 286 \\ 4.43 \\ 0.39 \end{array}$	$\begin{array}{r} 8 \\ 0.20 \\ 0.02 \end{array}$	9 0.14 0.01	11 0.27 0.02	$\begin{array}{r} 144 \\ 2.23 \\ 0.20 \end{array}$		4029	6451
	16:00	-	17:00	$\begin{array}{r} 4006 \\ 90.33 \\ 8.53 \end{array}$	$\begin{array}{r} 6495 \\ 92.17 \\ 8.82 \end{array}$	$\begin{array}{r} 184 \\ 4.15 \\ 0.39 \end{array}$	$\begin{array}{r} 247 \\ 3.51 \\ 0.34 \end{array}$	$\begin{array}{r} 235 \\ 5.30 \\ 0.60 \end{array}$	$\begin{array}{r} 245 \\ 3.48 \\ 0.33 \end{array}$	$\begin{array}{r} 7 \\ 0.16 \\ 0.01 \end{array}$	$\begin{array}{r} 10 \\ 0.14 \\ 0.01 \end{array}$	$\begin{array}{r} 3 \\ 0.07 \\ 0.01 \end{array}$	$\begin{array}{r} 50 \\ 0.71 \\ 0.07 \end{array}$		4435	7047
	17:00		18:00	$\begin{array}{r} 4340 \\ 90.93 \\ 9.24 \end{array}$	$\begin{array}{r} 6721 \\ 92.84 \\ 9.12 \end{array}$	$\begin{array}{r} 191 \\ 4.00 \\ 0.41 \end{array}$	$\begin{array}{r} 244 \\ 3.37 \\ 0.33 \end{array}$	$\begin{array}{r} 232 \\ 4.86 \\ 0.49 \end{array}$	$\begin{array}{r} 244 \\ 3.37 \\ 0.33 \end{array}$	$\begin{array}{r} 8 \\ 0.17 \\ 0.02 \end{array}$	$\begin{aligned} & 10 \\ & 0.14 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.04 \end{aligned}$	$\begin{array}{r} 20 \\ 0.28 \\ 0.03 \end{array}$		4773	7239
	18:00		19:00	$\begin{array}{r} 3651 \\ 92.57 \\ 7.77 \end{array}$	$\begin{array}{r} 6108 \\ 93.61 \\ 8.29 \end{array}$	$\begin{array}{r} 75 \\ 1.90 \\ 0.16 \end{array}$	$\begin{array}{r} 92 \\ 1.41 \\ 0.12 \end{array}$	$\begin{array}{r} 208 \\ 5.27 \\ 0.44 \end{array}$	$\begin{array}{r} 219 \\ 3.36 \\ 0.30 \end{array}$	$\begin{array}{r} 6 \\ 0.15 \\ 0.01 \end{array}$	$\begin{array}{r} 6 \\ 0.09 \\ 0.01 \end{array}$	$\begin{aligned} & 04 \\ & 0.10 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 100 \\ 1.53 \\ 0.14 \end{array}$		3944	6525
	19:00		20:00	$\begin{array}{r} 2517 \\ 89.51 \\ 5.36 \end{array}$	$\begin{array}{r} 4223 \\ 90.90 \\ 5.73 \end{array}$	$\begin{array}{r} 69 \\ 2.45 \\ 0.15 \end{array}$	$\begin{array}{r} 110 \\ 2.37 \\ 0.15 \end{array}$	$\begin{array}{r} 208 \\ 7.40 \\ 0.44 \end{array}$	$\begin{array}{r} 229 \\ 4.93 \\ 0.31 \end{array}$	$\begin{array}{r} 12 \\ 0.43 \\ 0.03 \end{array}$	$\begin{array}{r} 13 \\ 0.28 \\ 0.02 \end{array}$	$\begin{aligned} & 6 \\ & 0.21 \\ & 0.01 \end{aligned}$	$\begin{array}{r} 71 \\ 1.53 \\ 0.10 \end{array}$		2812	4646
		TAL		$\begin{array}{r} 41450 \\ 88.25 \end{array}$	$\begin{aligned} & 66334 \\ & 90.06 \end{aligned}$	$\begin{aligned} & 2126 \\ & 4.53 \end{aligned}$	$\begin{aligned} & 2684 \\ & 3.64 \end{aligned}$	$\begin{aligned} & 3239 \\ & 6.90 \end{aligned}$	$\begin{aligned} & 3354 \\ & 4.58 \end{aligned}$	$\begin{array}{r} 88 \\ 0.18 \end{array}$	$\begin{array}{r} 97 \\ 0.13 \end{array}$	$\begin{array}{r} 67 \\ 0.14 \end{array}$	$\begin{aligned} & 1186 \\ & 1.61 \end{aligned}$		46968	73655
	NOTE :		ASSENC USES INGLE	R VEHICLES CLUDE BOTH NITS INCLU	INCLUDE SCHOOL de Commer	AUTOS, PIC ND INTERCI CIAL PICKU	KUPS, VAN TY BUSES PS. PANEL		MOTORCYCLES SINGLE UNITS				LEGEND :	$\begin{aligned} & x x \\ & x \times \cdot x \\ & x x \cdot x \end{aligned}$	$\begin{aligned} & K X=\text { VOLUM } \\ & X X=\text { ROW } \\ & K X=C O L U M M \end{aligned}$	ERCENT N PERCENT

ZONE 1

ZIP CODE	POSTAL STATION NAME
76801	BROWNWOOD
76802	BROWNWCOD
76825	BRADY
76832	CHEROKEE
76844	GOLDTHWAITE
76858	MELVIN
76877	SAN SABA
76888	VOSS
76890	ZEPHYR
76901	SAN ANGELO
76904	San angelo
76906	SAN ANGELO
76950	SONORA
76954	TEXON
78004	BERGHEIM
78006	BOERNE
78013	COMFORT
78024	HUNT
78025	INGRAM
78027	kendalia
78028	KERRVILLE
78029	KERRVILLE
78070	SPRING ERANCH
78074	WARING
78163	bulverde
78601	ALBERT
78606	BLANCO
78607	bluffton
78609	BUCHANAN DAM
78624	FREDERICKSBURG
78631	HARPER
78635	HyE
78636	JOHNSON CITY
78639	Kingsiand
78643	llano
78646	LONE GROVE
78654	GRANITE SHOALS
78663	RCUND MOUNTAIN
78665	SANDY
78671	STONEWALL
78672	TOW
78675	WIllow City
79005	booker
79015	CANYON
79016	CANYON
79051	KERRICK
79064	OLTON
79100	AMARILLO
79101	AMARILLO
79109	AMARILLO
79:10	amarillo
79364	SLATON
79368	SOUTHLAND
79400	LUBBOCK
79413	LUBBOCK
79423	Lusbock
79501	ANSON
79521	HASKELL
79556	SWEETWATER
79600	abilene
79601	abilene
79605	abilene
79705	MIDLAND
79707	MIDLAND
79735	FORT STOCKTON
79763	ODESSA
79766	ODESSA
79772	PECOS

ZONE 2

	ZONE	7	(CONT .)	
ZIP CODE			POSTAL STATION	NAME
77707			BEAUMONT	
77708			BEAUMONT	
77710			BEAUMONT	
78616			DALE	
78622			FENTRESS	
78632			HARWOOD	
78644			LOCKHART	
78648			LULING	
78655			MARTINDALE	
78656			MAXWELL	
78661			PRAIRIE LEA	
78662			RED ROCK	
78670			STAPLES	
78934			COLUMBUS	
78942			GIDDINGS	
78945			LA GRANGE	
78952			PLUM	
78953			ROSANKY	
78954			ROUND TOP	
78956			SCHULENBURG	
78957			SMI THVILLE	
78959			WAELDER	
78961			WARRENTON	
78963			WEST POINT	
	ZONE	8		
ZIP CODE			POSTAL STATION N	NAME
78002			atascosa	
78003			BANDERA	
78010			CENTER POINT	
78014			COTULLA	
78016			DEVINE	
78017			DILLEY	
78023			Helotes	
78040			LAREDO	
78041			LAREDO	
78043			LAREDO	
78050			LEMING	
78052			LYTLE	
78054			MACDONA	
78056			MICO	
78057			MOORE	
78059			NATALIA	
78063			PIPE CREEK	
78066			RIOMEDINA	
78073			VON ORMY	
78801			UVALDE	
78802			UVALDE	
78827			ASHERTON	
78830			BIG WELLS	
78832			BRACKETTVILLE	
78833			CAMP WOOD	
78834			CARRIZO SPRINGS	
78838			CONCAN	
78839			CRYSTAL CITY	
78840			DEL RIO	
78841			DEL RIO	
78843			DEL RIO	
78850			DHANIS	
78852			EAGLE PASS	
78853			EAGLE PASS	
78861			HONDO	
78870			KNIPPA	
78872			LA PRYOR	
78873			LEAKEY	
78877			QUEMADO	
78879			RIO FRIO	
78881			SABINAL	
78882			SPOFFORD	
78884			UTOPIA	
78885			VANDERPOOL	

ZIP CODE			POSTAL STATION NAME	
78886			YANCEY	
79834			BIG BEND NATIONAL PARK	
79854			VALENTINE	
79900			EL PASO	
79901			EL PASO	
	ZONE	9		
ZIP CODE			POSTAL STATION NAME	
78115			GERONIMO	
78123			MC QUEENEY	
78124			MARION	
78155			SEGUIN	
78156			SEGUIN	
78638			KINGSBURY	
	ZONE	10		
ZIP CODE			POSTAL STATION	NAME
78001			ARTESIA WELLS	
78005			BIGFOOT	
78007			CALLIHAM	
78008			CAMPBELLTON	
78009			CASTROVILLE	
78011			CHARLOTTE	
78019			ENCINAL	
78020			FASHING	
78021			FOWLERTON	
78022			GEORGE WEST	
78026			JOURDANTON	
78053			MC COY	
78060			OAKVILLE	
78061			PEARSALL	
78062			PEGGY	
78064			PLEASANTON	
78065			POTEET	
78069			SOMERSET	
78071			THREE RIVERS	
78072			TILDEN	
78075			WHITSETT	
78076			ZAPATA	
78101			ADKINS	
78330			AGUA DULCE	
78332			ALICE	
78333			ALICE	
78339			BANQUETE	
78341			EENAVIDES	
78343			B I SHOP	
78351			DRISCOLL	
78353			ENCINO	
78355			FALFURRIAS	
78357			FREER	
78361			HEBBRONVILLE	
78363			KINGSVILLE	
78368			MATHIS	
78370			ODEM	
78372			ORANGE GROVE	
78375			PREMONT	
78376			REALITOS	
78379			RIVIERA	
78383			SANDIA	
78384			SAN DIEGO	
78391			TYNAN	
78500			MC ALLEN	
78501			MC ALLEN	
78502			MC ALLEN	
78503			MC ALLEN	
78504			MC ALLEN	
78516			ALAMO	
78520			BROWNSVILLE	
78521			BROWNSVILLE	

ZONE 10 (CONT.)

ZONE 11 (CONT.)

ZIP CODE	POSTAL STATION NAME
75032	FATE
75034	FRISCO
75038	IRVING
75039	IRVING
75040	GARLAND
75041	GARLAND
75042	GARLAND
75043	GARLAND
75046	GARLAND
75050	GRAND PRAIRIE
75051	GRAND PRAIRIE
75052	GRAND PRAIRIE
75053	GRAND PRAIRIE
75056	LEWISVILLE
75060	IRVING
75061	IRVING
75062	IRVING
75063	IRVING
75065	Lake dallas
75067	LEWISVILLE
75068	LITTLE ELM
75069	MC KINNEY
75071	MELISSA
75074	PLANO
75075	PLANO
75078	PROSPER
75080	RICHARDSON
75081	RICHARDSON
75083	RICHARDSON
75087	ROCKWALL
75088	ROWLETT
75089	ROYSE CITY
75090	SHERMAN
75098	WYLIE
75101	BARDWELL
75102	BARRY
75103	CANTON
75104	CEDAR HILL
75110	CORSICANA
75115	DE SOTO
75116	DUNCANVILLE
75119	ENNIS
75124	EUSTACE
75125	FERRIS
75126	FORNEY
75134	LANCASTER
75137	DUNCANVILLE
75140	GRAND SALINE
75142	KAUFMAN
75143	SEVEN POINTS
75144	KERENS
75146	LANCASTER
75147	MABANK
75148	MALAKOFF
75149	MESQUITE
75150	MESQUITE
75151	NAVARRO
75154	RED OAK
75159	SEAGOVILLE
75160	TERRELL
75163	TRINIDAD
75165	WAXAHACHIE
75169	WILLS POINT
75172	WI LMER
75180	mesouite
75182	MESQUITE
75200	DALLAS
75201	DALLAS
75202	DALLAS
75203	DALLAS
75204	dallas
75205	DALLAS
75206	DALLAS

ZIP CODE	POSTAL STATION NAME	
75207	DALLAS	
75208	DALLAS	
75209	DALLAS	
75210	DALLAS	-
75211	DALLAS	
75212	DALLAS	
75213	DALLAS	
75214	DALLAS	*
75215	DALLAS	
75216	DALLAS	
75217	DALLAS	
75218	DALLAS	
75219	DALLAS	
75220	DALLAS	
75221	DALLAS	
75222	DALLAS	
75223	DALLAS	
75224	DALLAS	
75225	DALLAS	
75226	OALLAS	
75227	DALLAS	
75228	DALLAS	
75229	DALLAS	
75230	DALLAS	
75234	DALLAS	
75232	DALLAS	
75233	DALLAS	
75234	OALLAS	
75235	DALLAS	
75236	DALLAS	
75237	DALLAS	
75238	DALLAS	
75239	DALLAS	
75240	DALLAS	
75243	DALLAS	
75244	DALLAS	
75246	DALLAS	
75247	DALLAS	
75248	DALLAS	
75249	DALLAS	
75252	DALLAS	
75254	DALLAS	
75258	DALLAS	
75261	DALLAS	
75275	DALLAS	
75284	DALLAS	
75374	DALLAS	
75400	GREENVILLE*	
75401	GREENVILLE	
75410	ALBA	
75418	BONHAM	
75426	CLARKSVILLE	
75428	COMMERCE	
75432	COOPER	
75453	LONE OAK	
75455	MOUNT PLEASANT	
75460	PARIS	
75469	PECAN GAP	
75472	POINT	
75474	QUINLAN	
75476	RAVENNA	
75479	SAVOY	
75482	SULPHUR SPRINGS	
75487	TALCO	
75491	WHI TEWRIGHT	
75494	WINNSBORO	
75497	YANTIS	
75501	TEXARKANA	
75503	TEXARKANA	
7555	ATLANTA	
75559	DE KALB	
75561	HOOKS	
75563	LINDEN	

ZONE 12 (CONT.)

ZIP CODE	POSTAL STATION NAME
75569	NASH
75570	NEW BOSTON
75571	OMAHA
75601	LONGVIEW
75602	LONGVIEW
75603	LONGVIEW
75604	LONGVIEW
75605	LONGVIEW
75608	LONGVIEW
75630	AVINGER
75633	CARTHAGE
75638	DAINGERFIELD
75644	GILMER
75647	GLADEWATER
75652	HENDERSON
75656	HUGHES SPRINGS
75660	JUDSON
75662	KILGORE
75667	LANEVILLE
75668	LONE STAR
75669	LONG BRANCH
75670	MARSHALL
75671	MARSHALL
75681	MOUNT ENTERPRISE
75684	OVERTON
75700	TYLER
75701	TYLER
75702	TYLER
75703	TYLER
75704	TYLER
75706	TYLER
75707	TYLER
75710	TYLER
75751	ATHENS
75754	BEN WHEELER
75755	BIG SANDY
75758	CHANDLER
75762	FLINT
75765	HAWKINS
75766	Jacksonville
75771	LINDALE
75773	MINEOLA
75778	MURCHISON
75783	QUI TMAN
75785	RUSK
75789	TROUP
75790	VAN
75791	WHITEHOUSE
75800	PALESTINE
75801	PALESTINE
75831	BUFFALO
75835	CROCKETT
75840	FAIRFIELO
75844	GRAPELAND
75846	JEWETT
75850	LEONA
75851	LOVELADY
75860	teague
75901	LUFKIN
75903	LUFKIN
75935	CENTER
75951	JASPER
75955	KIRBYVILLE
75961	NACOGDOCHES
75972	SAN AUGUSTINE
76006	ARLINGTON
76008	ALEDO
76009	ALVARADO
76010	ARLINGTON
76011	ARLINGTON
76012	ARLINGTON
76013	ARLINGTON
76014	ARLINGTON

ZIP CODE	POSTAL STATION NAME	
75015	ARLINGTON	
76016	ARLINGTON	
76017	ARLINGTON	
76018	ARLINGTON	
76020	AZLE	
76021	BEDFORD	
76022	BEDFORD	
76023	BOYD	
76024	BRECKENRIDGE	
76026	BRIDGEPORT	
76028	BURLESON	
76029	CADDO	
76031	CLEBURNE	
76033	CLEBURNE	
76034	COLLEYVILLE	
76036	CROWLEY	
76039	EULESS	
76040	EULESS	
76043	GLEN ROSE	
76045	GRAFORD	
76048	GRANBURY	
76050	GRANDVIEW	
76051	GRAPEVINE	
76053	HURST	
76054	HURST	
76055	ITASCA	
76059	KEENE	
76063	MANSFIELD	
76065	MIDLOTHIAN	
76067	MINERAL WELLS	
76071	NEWARK	
76075	PERRIN	
76082	SPRINGTOWN	
76084	VENUS	
76086	WEATHERFORD	
76092	GRAPEVINE	
76100	FORT WORTH	
76101	FORT WORTH	
76102	FORT WORTH	
76103	FORT WORTH	
76104	FORT WORTH	
76106	FORT WORTH	
76107	FORT WORTH	
76108	FORT WORTH	
76109	FORT WORTH	
76110	FORT WORTH	
76111	FORT WORTH	
76112	FORT WORTH	
76114	FORT WORTH	
76115	FORT WORTH	
76116	FORT WORTH	
76117	FORT WORTH	
76118	FORT WORTH	
76119	FORT WORTH	
76123	FORT WORTH	
76125	FORT WORTH	
76126	FORT WORTH	
76127	FORT WORTH	
76129	FORT WORTH	
76130	FORT WORTH	
76131	FORT WORTH	
76132	FORT WORTH	
76133	FORT WORTH	
76134	FORT WORTH	
76135	FORT WORTH	
76137	FORT WORTH	
76140	FORT WORTH	
76148	FORT WORTH	
76150	FORT WORTH	
76155	FORT WORTH	
76179	FORT WORTH	
76180	FORT WORTH	
76184	FORT WORTH	

ZONE 12 (CONT.)

ZIP CODE	postal station name
76200	denton
76201	DENTON
76202	DENTON
76203	DENTON
76205	DENTON
76206	DENTON
76226	ARGYLE
76227	AUBREY
76230	BOWIE
76234	decatur
76239	FORESTBURG
76240	GAINESVILLE
76248	kELLER
76252	MUENSTER
76255	NOCONA
76258	PILOT POINT
76259	PONDER
76262	ROANOKE
76266	SANGER
76273	WHI TESBORO
76301	WICHITA FALLS
76302	WICHITA FALLS
76305	WICHITA Falls
76306	WICHITA FALLS
76308	WICHITA FALLS
76309	WICHITA FALLS
76310	WICHITA FALLS
76354	BURKBURNETT
76365	HENRIETTA
76367	IOWA PARK
76374	OLNEY
76384	VERNON
76401	Stephenville
76430	Aldbany
76436	CARLTON
76442	COMANCHE
76444	de Ledn
76445	desdemona
76446	OUBLIN
76448	eastland
76472	SANTO
76500	TEMPLE
76501	TEMPLE
76502	TEMPLE
76503	TEMPLE
76504	TEMPLE
76508	TEMPLE
76511	bartlett
76513	belton
76517	ben arnold
76518	BUCKHOLTS
76519	BURLINGTON
76522	copperas cove
76524	EDDY
76527	florence
76528	gatesville
76530	GRANGER
76531	hamilton
76533	HEIDENHEIMER
76534	holland
76537	UARRELL
76538	Jonessoro
76539	KEMPNER
76540	killeen
76541	KILLEEN
76542	Killeen
76543	Killeen
76544	Killeen
76545	killeen
76546	Killeen
76550	LAMPASAS
76552	LEON JUNCTION
76554	LITTLE RIVER

ZONE 12 (CONT.)

ZIP CODE	postal station name
76557	MOODY
76559	NOLANVILLE
76561	OGLESBY
76564	PENDLETON
76569	ROGERS
76571	Salado
76573	SCHWERTNER
76579	troy
76599	gatesville
76621	ABBOTT
76622	AQUILLA
76627	BLUM
76629	BREMOND
76630	bruceville
76632	CHILTON
76633	CHINA SPRING
76634	CLIFTON
76636	covingiton
76637	CRANFILLS GAP
76638	CRAWFORD
76640	ELM MOTT
76641	FROST
76642	GROESbECK
76643	HEWITT
76645	HILLSBORO
76648	HUBBARD
76652	KOPPERL
76654	LEROY
76655	Lorena
76656	LOTT
76657	MC GREGOR
76660	malone
76661	MARLIN
76664	MART
76665	MERIDIAN
76666	MERTENS
76667	MEXIA
76675	OTTO
76680	reagan
76682	RIESEL
76685	SATIN
76689	valley mills
76690	WALNUT SPRINGS
76691	WEST
76692	Whitney
76693	WORTHAM
76700	WACO
76701	WACO
76702	WACO
76703	WACO
76704	WACO
76705	WACO
76706	WACO
76707	WACO
76708	WACO
76710	WACO
76711	WACO
76714	WACO
76718	WACO
76723	WACO
76727	WACO
76741	WACO
76758	WACD
76770	waco
76798	WACO
76799	waco
78673	WALBURG
78674	WEIR

ZIP CODE
78284
78285
78286
78287
78288
78290
78291
78292
78293
78294
78295
78296
78297
78298
78299

POSTAL STATION NAME

SAN ANTONIO PO
SAN ANTONIO PO
SAN ANTONIO PO
SAN ANTONIO PO
SOUTH TEXAS MED CTR AREA 2
SAN ANTONIO PO
AUSTIN

ZIP CODE
78613
78617
78651
78652
78700
78701
78702
78703
78704
78705
78710
78711
78712
78713
78716
78717
78718
78719
78720
78721
78722
78723
78724
78725
78726
78727
78728
78729
78730
78731
78732
78733
78734
78735
78736
78737
78738
78739
78741
78742
78743
78744
78745
78746
78747
78748
78749
78750
78751
78752
78753
78754
78755

POSTAL STATION NAME
CEDAR PARK
DEL VALLE
MC NEIL
MANCHACA/SAN LEANNA
AUSTIN PO
AUSTIN PO
EAST AUSTIN
WEST AUSTIN
SOUTH AUSTIN
NORTH AUSTIN AREA 2
AUSTIN PO
AUSTIN PO
NORTH AUSTIN AREA 2
NORTH AUSTIN AREA 2
AUSTIN PO
BRUSHY CREEK
AUSTIN PO
BERGSTROM A F B
BALCONES
EAST AUSTIN AREA 2
EAST AUSTIN AREA 3
NORTHEAST AREA 2
NORTHEAST AREA 3
NORTHEAST AREA 4
BALCONES AREA 2 KINGS VILLAGE
MC NEIL
JOLLYVILLE
ChimNEy CORNERS
NORTHWEST AREA 2
NORTHWEST AREA 3
bEE CAVES
LAKEWAY
CAK HILL
SOUTH AUSTIN AREA 4 SOUTH AUSTIN AREA 5
LAKEWAY
WEST LAKE
SOUTHEAST AREA 2
SOUTHEAST AREA 3
BERGSTROM A F 8
SOUTHEAST
SOUTHEAST AREA 5
SOUTH AUSTIN AREA 6
CREEDMOOR
MANCHACA/SAN LEANNA SOUTH AUSTIN AREA 7 NORTHWEST AREA 4 NORTH AUSTIN
NORTHEAST AREA 1
NORTHEAST
NORTHEAST AREA 6
BALCONES

AUSTIN (CONT.)

ZIP CODE	postal station name
78756	NORTH AUSTIN AREA 3
78757	NORTHWEST AREA 1
78758	NORTHWEST AREA 5
78759	BALCONES
78760	SOUTHEAST
78761	NORTHEAST
78762	EAST AUSTIN
78763	WEST AUSTIN
78764	SOUTH AUSTIN
78765	NORTH AUSTIN
78766	NORTHWEST AREA 5
78767	AUSTIN PO
78768	AUSTIN PO
78769	AUSTIN PO
78772	SOUTHEAST AREA 2
78773	NORTH AUSTIN
78774	AUSTIN PO
78776	AUSTIN PO
78777	AUSTIN PO
78778	AUSTIN PO
78780	AUSTIN PO
78781	AUSTIN PO
78782	SOUTHEAST AREA 2
78786	AUSTIN PO
78787	NORTHEAST
78788	SOUTHEAST AREA 2
78789	AUSTIN PO
out of state	
2IP CODE	postal station name
1845	NORTH ANDOVER, MASSACHUSETTS
2026	DEDHAM, MASSACHUSETTS
2100	BOSTON, MASSACHUSETTS
4751	LIMESTONE, MAINE
6000	CONNECTICUT
7008	Carteret, NEW Jersey
7755	OAKHURST. NEW JERSEY
8069	PENNS GROVE, NEW UERSEY
8226	OCEAN CITY, NEW JERSEY
10956	NEW CITY, NEW YORK
10965	PEARL RIVER, NEW YORK
11710	BELLMORE, NEW YORK
11789	SOUND BEACH, NEW YORK
12114	LEBANON SPRINGS. NEW YORK
12901	Plattsburgh. NEW york
13501	UTICA. NEW YORK
13676	POTSDAM, NEW YORK
14201	Buffalo, NEW YORK
14301	NIAGARA FAL! $\mathrm{S}^{\text {S, }}$, NEW YORK
14432	CLIFTON SPRINGS, NEW YORK
14519	ONTARIO, NEW YORK
14601	ROCHESTER, NEW YORK
14901	ELMIRA, NEW YORK
15219	Pittsburgh, pennsylvania
15419	CALIFORNIA, PENNSYLVANIA
15461	MASONTOWN, PENNSYLVANIA
15728	Clymer, pennsylvania
16248	RIMERSBURG. PENNSYLVANIA
16314	COCHRANTON, PENNSYLVANIA
16950	WESTFIELD, PENNSYLVANIA
17315	DOVER, PENNSYLVANIA
18102	ALLENTOWN, PENNSYLVANIA
18234	LATtimer mines, pennsylvania
19020	BENSALEM, PENNSYLVANIA
19087	WAYNE, PENNSYLVANIA
19330	cochranville, pennsylvania
19803	WILMINGTON, DElaware
19901	dover, delaware
20000	WASHINGTON, DC
20001	WASHINGTON, DC
20418	WASHINGTON. DC

postal station name

21270
21502
22003
22032
22060
22070
22071
22102
22193
22207
22417
23201
24200
24301
24401
24554
25000
25130
25201
25301
25507
25880
26062
27330
27403
28130
28139
28214
28217
28240
28260
29072
32301
33000
33040
33069
33476
33570
33950
37000
37072
37200
37201
37401
37548
37601
37654
37738
37801
37901
38017
38081
38101
38112
38116
38127
38134
38138
38242
38372
38375
38478
38501
38701
39000
39042
39180
39208
39211
39440
40100
40130
40206

BALTIMORE, MARYLAND
Cumberland, maryland
ANNANDALE, VIRGINIA
FAIRFAX, VIRGINIA
FORT BELVOIR, VIRGINIA
HERNDON, VIRGINIA
herndon, VIRGINIA
MC LEAN, VIRGINIA
WOODBRIDGE, VIRGINIA.
ARLINGTON, VIRGINIA
VIRGINIA
RICHMOND, VIRGINIA
VIRGINIA
pulaski, virginia
STAUNTON, VIRGINIA
gladys, virginia
WEST VIRGINIA
MADISON, WEST VIRGINIA
TAD, WEST VIRGINIA
CHARLESTON, WEST VIRGINIA
CEREDO, WEST VIRGINIA
MOUNT HOPE, WEST VIRGINIA
WEIRTON, WEST VIRGINIA
SANFORD, NORTH CAROLINA
greensboro, north carolina
PAW CREEK. NORTH CAROLINA
RUTHERFORDTON, NORTH CAROLINA
CHARLOTTE, NORTH CAROLINA
CHARLOTTE, NORTH CAROLINA
NORTH CAROLINA
CHARLOTTE, NORTH CAROLINA
LEXINGTON, SOUTH CAROLINA
TALLAHASSEE, FLORIDA
florida
KEY WEST, FLORIDA
POMPANO BEACH, FLORIDA
PAHOKEE, FLORIDA
RUSKIN, FLORIDA
PUNTA GORDA, FLORIDA
TENNESSEE
goodlettsville, tennessee
NaShVILLE. TENNESSEE
NASHVILLE, TENNESSEE
Chattanooga, tennessee
TENNESSEE
JOHNSON CITY, TENNESSEE
tennessee
GATLINBURG, TENNESSEE
MARYVILLE, TENNESSEE
KNOXVILLE, TENNESSEE
collierville, tennessee
TENNESSEE
MEMPHIS, TENNESSEE
MEMPHIS, TENNESSEE
MEMPHIS, TENNESSEE
MEMPHIS, TENNESSEE
MEMPHIS, TENNESSEE
MEMPHIS, TENNESSEE
PARIS, TENNESSEE
savannah, tennessee
selmer, tennessee
pulaski, tennessee
cookeville, tennessee
GREENVILLE, MISSISSIPPI
MISSISSIPPI
BRANDON, MISSISSIPPI
VICKSBURG, MISSISSIPPI
JACKSON, MISSISSIPPI
JACKSON. MISSISSIPPI
LAUREL, MISSISSIPPI
KENTUCKY
KENTUCKY
LOUISVILLE, KENTUCKY

2IP CODE	postal station name
40222	LOUISVILLE, KENTUCKY
40353	MOUNT STERLING, KENTUCKY
40475	RICHMOND, KENTUCKY
40501	LEXINGTON, KENTUCKY
40502	LEXINGTON. KENTUCKY
41000	KENTUCKY
41858	WHITESBURG, KENTUCKY
42001	PADUCAH, KENTUCKY
42420	HENDERSON, KENTUCKY
42743	GREENSBURG, KENTUCKY
43130	LANCASTER, OHIO
43201	columbus, Ohio
43210	COLUMBUS, OHIO
43302	MARION, OHIO
43616	toledo, ohio
44000	OHIO
44054	LORAIN, OHIO
44077	PAINESVILLE, OHIO
44101	CLEVELAND, OHIO
44133	CLEVELAND, OHIO
44145	Cleveland, ohio
44473	VIENNA, OHIO
44481	WARREN, OHIO
44483	WARREN, OHIO
44720	CANTON, Ohio
44805	ASHLAND, OHIO
44901	MANSFIELD, OHIO
45201	CINCINNATI, OHIO
45318	COVINGTON, OHIO
45324	FAIRBORN, OHIO
45401	DAYTON, DHIO
45431	DAYTON, OHIO
45817	bluffton, ohio
45833	DELPHOS, OHIO
45869	NEW BREMEN. OHIO
46200	INDIANAPOLIS, INDIANA
46201	INDIANAPOLIS, INDIANA
46219	INDIANAPOLIS, INDIANA
46400	GARY, INDIANA
46543	MILLERSBURG, INDIANA
46619	SOUTH BEND, INDIANA
46643	INDIANA
46701	ALBION, INDIANA
46706	AUBURN, INDIANA
46794	WAWAKA, INDIANA
46801	FORT WAYNE, INDIANA
46901	KOKOMO, INDIANA
47353	LIBERTY. INDIANA
47567	PETERSBURG. INDIANA
47715	EVANSVILLE, indiana
47866	PIMENTO, INDIANA
48048	New haven, michigan
48053	PONTIAC, MICHIGAN
48054	PONTIAC, MICHIGAN
48100	MICHIGAN
48150	LIVONIA, Michigan
48170	Plymouth, michigan
48501	FLINT, MICHIGAN
48901	LANSING, MICHIGAN
49047	dowagiac. Michigan
49423	HOLLAND. MICHIGAN
49449	PENTWATER, MICHIGAN
49700	MICHIGAN
49801	IRDN MOUNTAIN, MICHIGAN
49938	IRONWOOD. MICHIGAN
50000	IOWA
50010	AMES, IOWA
50022	ATLANTIC, IOWA
50036	BOONE, IOWA
50125	INDIANOLA, IDWA
50273	WINTERSET, IOWA
50428	CLEAR LAKE, IOWA
50484	WODEN, IOWA

postal station name

50501
50604
50638
50707
51003
51101
51102
51106
51510
51537
51640
52040
52057
52240
52241
52404
52627
52722
52754
52761
53006
53089
53132
53201
53209
53504
53545
53597
53701
54401
54601
54701
54759
54840
54880
54956
55008
55019
55082
55101
55116
55351
55401
55407
55435
55720
55981
56097
56187
56264
56601
57026
57067
57101
57105
57106
58027
58102
58110
58249
58501
53801
60030
60037
60045
60050
60056
60101
60137
60148
60188
60190
60201

FORT DODGE, IOWA
APLINGTON, IOWA
GRUNDY CENTER, IOWA
WATERLOO, IOWA
ALTON, IOWA
SIOUX CITY. IOWA
SIOUX CITY, IOWA
SIOUX CITY. IOWA
OMAHA, IOWA
harlan, iOWA
hamburg. Iowa
DYERSVILLE, IOWA
MANCHESTER, IOWA
IOWA CITY. IOWA
IOWA CITY, IOWA
CEDAR RAPIDS, IOWA
FORT MADISON, IOWA
BETTENDORF, IOWA
letts, iowa
MUSCATINE, IOWA
BROWNSVILLE, WISCONSIN
SUSSEX, WISCONSIN
hales corners, Wisconsin
MILWAUKEE, WISCONSIN
MILWAUKEE, WISCONSIN
ARGYLE, WISCONSIN
JANESVILLE, WISCONSIN
WAUNAKEE, WISCONSIN
MADISON, WISCONSIN
WAUSAU, WISCONSIN
LA CROSSE, WISCONSIN
EAU CLAIRE, WISCONSIN PEPIN, WISCONSIN
GRANTSBURG, WISCONSIN
SUPERIOR, WISCONSIN
NEENAH, WISCONSIN
CAMBRIDGE, MINNESOTA
DUNDAS, MINNESOTA
STILLWATER, MINNESOTA
SAINT PAUL, MINNESOTA
SAINT PAUL, MINNESOTA
MINNESOTA
MINNEAPOLIS.. MINNESOTA
MINNEAPOLIS, MINNESOTA
MINNEAPOLIS, MINNESOTA
CLOQUET, MINNESOTA
wabasha, minnesota
wells. Minnesota
WORTHINGTON, MINNESOTA
minneota, minnesota
bemidui, minnesota
ELKTON, SOUTH DAKOTA
UTICA, SOUTH DAKOTA
SIOUX FALLS, SOUTH DAKOTA
SIOUX FALLS, SOUTH DAKOTA
SIOUX FALLS. SOUTH DAKOTA
ENDERLIN, NORTH DAKOTA
FARGO. NORTH DAKOTA
NORTH DAKOTA
LANGDON, NORTH DAKOTA
BISMARCK, NORTH DAKOTA
MISSOULA, MONTANA
grayslake, illinois
HIGHLAND PARK, ILLINOIS
LAKE FOREST. ILLINOIS
MC HENRY, ILLINOIS
MOUNT PROSPECT, ILLINOIS
ADOISON, ILLINOIS
GLEN ELLYN, ILLINOIS
LOMBARD, ILLINOIS
WHEATON, ILLINDIS
WINFIELD. ILLINOIS
evanston, illinois

ZIP CODE	postal station name
60411	CHICAGO HEIGHTS, ILLINOIS
60448	MOKENA, ILLINOIS
60521	Hinsdale, illinois
60601	CHICAGO, ILLINOIS
60605	CHICAGO, ILLINOIS
60617	CHICAGO, illinois
60634	CHICAGO, IlLINOIS
60914	BOURBONNAIS, ILLINOIS
61020	DAVIS JUNCTION, ILLINOIS
61261	LYNDON, ILLINOIS
61443	KEWANEE, ILLINOIS
61542	LEWISTOWN, ILIINOIS
61568	TREmONT, Illindois
61613	PEORIA, ILLINOIS
61701	BLOOMINGTON, ILLINOIS
61866	RANTOUL, ILLINOIS
61868	rantoul, illinais
62040	granite city, illinois
62208	East saint louis, illinois
62225	belleville, illinois
62401	EFFINGHAM, ILLINOIS
62526	decatur, illinois
62618	BEARDSTOWN, ILLINOIS
62814	BLUFORD, ILLINOIS
62864	MOUNT VERNON, ILLINOIS
62901	CARBONDALE, ILLINOIS
63010	ARNOLD, MISSOURI
63025	EUREKA, MISSOURI
6.3069	PACIFIC, MISSOURI
63074	SAINT ANN, MISSOURI
63101	SAINT LOUIS, MISSOURI
63105	SAINT LOUIS, MISSOURI
63122	SAINT LOUIS, MISSOURI
63123	SAINT LOUIS. MISSOURI
63124	SAINT LOUIS, MISSOURI
63701	CAPE GIRARDEAU, MISSOURI
63736	BENTON, MISSOURI
63775	PERRYVILLE, MISSOURI
63801	SIKESTON, MISSOURI
63834	CHARLESTON, MISSOURI
63873	portageville, missouri
63901	POPLAR BLUFF, MISSOURI
63935	DONIPHAN, MISSOURI
64030	GRANDVIEW, MISSOURI
64056	INDEPENDENCE, MISSOURI
64063	LEES SUMMIT, MISSOURI
64080	PLEASANT HILL, MISSOURI
64093	WARRENSBURG, MISSOURI
64100	Kansas city, missouri
64101	Kansas City, Missouri
64145	KANSAS CITY. MISSOURI
64152	KANSAS CITY. MISSOURI
64400	MI SSOURI
64485	SAVANNAH, MISSOURI
64502	SAINT JOSEPH, MISSOURI
64640	gallatin, missouri
64701	HARRISONVILLE, MISSOURI
64759	LAMAR, MISSOURI
64801	JOPLIN, MISSOURI
64836	CARTHAGE, MISSOURI
65200	MISSOURI
65201	COLUMEIA, MISSOURI
65324	CLIMAX SPRINGS, MISSOURI
65711	MOUNTAIN GROVE, MISSOURI
65793	WILLOW SPRINGS, MISSOURI
65801	SPRINGFIELD, MISSOURI
65803	SPRINGFIELD, MISSOURI
66027	LEAVENWORTH, KANSAS
66044	Lawrence, kansas
66064	olathe, kansas
66215	SHAWNEE MISSION, KANSAS
66502	MANHATTAN, KANSAS
66514	MILFORD, KANSAS

ZIP CODE	postal station name
66524	OVERBROOK, KANSAS
66534	Sabetha, kansas
66605	topeka, kansas
66701	FORT SCOTT, KANSAS
66725	COLUMBUS, KANSAS
66800	KANSAS
66801	EmPORIA, KANSAS
66861	MARION, KANSAS
67010	augusta, kansas
67012	BEAUMONT, KANSAS
67042	El DORADO. Kansas
67072	LATHAM, KANSAS
67135	SEDGWICK, KANSAS
67201	WICHITA, KANSAS
67203	WICHITA, KANSAS
67204	WICHITA, KANSAS
67212	WICHITA, KANSAS
67213	WICHITA, KANSAS
67214	WICHITA, KANSAS
67219	WICHITA, KANSAS
67336	CHETOPA, KANSAS
67401	SALINA, KANSAS
67404	KANSAS
67431	CHAPMAN, KANSAS
67432	Clay center, kansas
67454	KANOPOLIS, KANSAS
67601	hays, Kansas
67648	lucas, kansas
67806	KANSAS
67846	GARDEN CITY, KANSAS
68025	FREMONT, NEBRASKA
68100	OMAHA, NEBRASKA
68101	OMAHA, NEBRASKA
68106	OMAHA, NEBRASKA
68123	OMAHA, NEBRASKA
68134	OMAHA, NEBRASKA
68434	SEWARD, NEBRASKA
68501	LINCOLN, NEBRASKA
68512	LINCOLN, NEBRASKA
69022	Cambridge, Nebraska
70068	LA Place, louisiana
70204	LOUISIANA
70500	Louisiana
70526	CROWLEY, LOUISIANA
70669	WESTLAKE, LOUISIANA
70705	LOUISIANA
70808	baton rouge, louisiana
71075	SPRINGHILL, LOUISIANA
71101	SHREVEPORT, LOUISIANA
71103	SHREVEPORT, LOUISIANA
71105	SHREVEPORT, LOUISIANA
71107	SHREVEPORT, LOUISIANA
71108	SHREVEPORT, LOUISIANA
$71: 11$	BOSSIER CITY, LOUISIANA
71112	bOSSIER CITY, LOUISIANA
71118	SHREVEPORT, LOUISIANA
71129	SHREVEPORT, LOUISIANA
71233	delta, louisiana
71241	farmerville, louisiana
71261	mer rouge, louisiana
71270	RUSTON, LOUISIANA
71295	WINNSBORO, LOUISIANA
71350	mansura, louisiana
71378	WISNER, LOUISIANA
71426	FISHER, LOUISIANA
71701	CAMDEN, ARKANSAS
71730	El Dorado, arkansas
71753	magnolia, arkansas
71801	HOPE, ARKANSAS
71822	ASHDOWN. ARKANSAS
71830	ARKANSAS
71831	Columbus, ARKANSAS
71863	ARKANSAS

71901
71909
71913
71923
71953
71957
72000
72021
72023
72031
72032
72042
72045
72076

72116

72130
72143
72200
72201

72204

72205
72209
72211
72218
72244
72315

72400

72401
72501
72543

72560

72601

72619

72703
72714
72756
72761
72764
72801
72901
72903
73000
73008
73010
73018
73059
73065
73069
73071
73072
73080
73083
73084
73089
73096
73099
73100
73101
73107
73109
73110
73112
73115
73116
$73+18$
73120
73122
73125
73127
73131
73132
73135
73139
postal station name
HOT SPRINGS NATIONAL PARK, ARKANSAS
HOT SPRINGS NATIONAL PARK, ARKANSAS
HOT SPRINGS NATIONAL PARK, ARKANSAS
ARKADELPHIA, ARKANSAS
MENA, ARKANSAS
MOUNT IDA, ARKANSAS
ARKANSAS
BRINKLEY, ARKANSAS
CABOT, ARKANSAS
CLINTON, ARKANSAS
CONWAY, ARKANSAS
DE WITT, ARKANSAS
EL PASO, ARKANSAS
JACKSONVILLE, ARKANSAS
NORTH LITTLE ROCK, ARKANSAS
PRIM, ARKANSAS
SEARCY, ARKANSAS
LITTLE ROCK, ARKANSAS
ARKANSAS
ARKANSAS
BLYTHEVILLE, ARKANSAS
ARKANSAS
UONESBORO, ARKANSAS
BATESVILLE, ARKANSAS
HEBER SPRINGS, ARKANSAS
MOUNTAIN VIEW, ARKANSAS
HARRISON, ARKANSAS
BULL SHOALS, ARKANSAS
FAYETTEVILLE, ARKANSAS
BENTONVILLE, ARKANSAS
ROGERS, ARKANSAS
SILOAM SPRINGS, ARKANSAS
SPRINGDALE, ARKANSAS
RUSSELLVILLE, ARKANSAS
FORT SMITH, ARKANSAS
FORT SMITH, ARKANSAS
OKLAHOMA
BETHANY, OKLAHOMA
BLANCHARD, OKLAHOMA
CHICKASHA, OKLAHOMA
MINCO, OKLAHOMA
NEWCASTLE. OKLAHOMA
NORMAN, OKLAHOMA
NORMAN. OKLAHOMA
NORMAN, OKLAHOMA
DURCELL, OKLAHOMA
EDMOND, OKLAHOMA
SPENCER, OKLAHOMA
TUTTLE, OKLAHOMA
WEATHERFORD, OKLAHOMA
YUKON, OKLAHOMA
OKLAHOMA CITY, OKLAHOMA
OKLAHOMA CITY, OKLAHOMA
OKLAHOMA CITY, OKLAHOMA
OKLAHOMA CITY, OKLAHOMA
OKLAHOMA CITY. OKLAHOMA
OKLAHOMA CITY, OKLAHOMA
OKLAHOMA CITY. OKLAHOMA
OKLAHOMA CITY, OKLAHOMA
OKLAHOMA CITY. OKLAHOMA
OKLAHOMA CITY, OKLAHOMA
postal station name

73145
73159
73165
73170
73215
73301
73401
73439
73448
73500
73501
73503
73505
73521
73533
73701
73702
73763
73772
73773
74003
74006
74011
74012
74016
74017
74023
74053
74101
74105
74112
74119
74135
74145
74156
74166
7428
74359
74360
74365
74403
74428
74447 74501
74525
74601
74631
74637
74701 74704 74705 74710 74726 74729 74801 74820 74827 74873 74881 74955 80100 80124 80217 80901 80908 80919 81230 83001 84126 85201 85614 87666 88101
oklahoma city, oklamoma OKLAHOMA CITY. OKLAHOMA OKlahoma city. oklahoma OKLAHOMA CITY, OKLAHOMA OKLAHOMA
aUstin. oklahoma
ardmore, oklahoma
KINGSTON, OKLAHOMA
MARIETTA, OKLAHOMA
OKLAHOMA
LAWTON, OKLAHOMA
LAWTON, OKLAHOMA
LAWTON, OKLAHOMA
altus, oklahoma
DUNCAN, OKLAHOMA
ENID, OKLAHOMA
ENID, OKLAHOMA
OKEENE, OKLAHOMA
WATONGA, OKLAHOMA
WAUKOMIS, OKLAHOMA
BARTLESVILLE, OKLAHOMA
bartlesville, oklahoma
BROKEN ARROW. OKLAHOMA
bROKEN ARROW. OKLAHOMA
CHELSEA. OKLAHOMA
claremore, oklahoma
CUSHING, OKLAHOMA
oologah, oklahoma
TULSA, OKLAHOMA
OKLAHOMA
OKLAHOMA
OAKS, OKLAHOMA
PICHER, OKLAHOMA
SALINA, OKLAHOMA MUSKOGEE, OKLAHOMA COUNCIL HILL, OKLAHOMA OKMULGEE, OKLAHOMA mC alester, oklahoma aTOKA, OKLAHOMA PONCA CITY, OKLAHOMA blackwell. oklahoma fairfax. oklahoma DURANT, OKLAHOMA
OKLAHOMA
oklahoma
OKLAHOMA
BOKCHITO. OKLAHOMA
CADDO, OKLAHOMA
SHAWNEE, OKLAHOMA
aDA, OKlahoma
ATWOOD, OKLAHOMA
tecumseh, oklahoma
WELLSTON. OKLAHOMA
SALLISAW, OKLAHOMA
colorado
littleton, colorado
DENVER, COLORADO
COLORADO SPRINGS, COLORADO
COLORADO SPRINGS. COLORADO
COLORADO SPRINGS. COLORADO
GUNNI SON, COLORADO
JACKSON, WYOMING
SALT LAKE CITY, UTAH
MESA, ARIZONA
green valley, arizona
NEW MEXICO
CLOVIS, NEW MEXICO

OUT OF STATE (CONT.)	
ZIP CODE	
	POSTAL STATION NAME
90001	
90363	LOS ANGELES, CALIFORNIA
92032	CALIFORNIA
92227	IMPERIAL BEACH, CALIFORNIA
95682	BRAWLEY, CALIFORNIA
95932	SHINGLE SPRINGS, CALIFORNIA
98037	COLUSA, CALIFDRNIA
98133	LYNNWOOD, WASHINGTON
99501	SEATTLE, WASHINGTON
99701	ANCHORAGE, ALASKA
	FAIRBANKS, ALASKA

DESTINATIONS

AUSTIN/SAN ANTONIO ORIGINS/DESTINATIONS BY MAJOR TRAFFIC ZONES : PASSENGER VEHICLES (PERSON TRIPS) DESTINATIONS

ORIGINS	M 1	M2	M3	M4	M5	M6	TOTAL
M 1	970 0.7	11564 8.2	15399 10.9	926 0.7	145 0.9	5899 4.2	34902 24.6
M2	12891 9.1	3196 2.3	7555 5.3	5928 4.2	1402 1.0	8070 5.7	$\begin{array}{r} 39 C 41 \\ 27.5 \end{array}$
M3	16197 11.4	7354 5.2	3530 2.5	1950 1.4	496 0.4	1274 0.9	30802 21.7
M4	1022 0.7	5248 3.7	2070 1.5	848 0.6	79 0.1	1921 1.4	11189 7.9
M5	116 0.1	1268 0.9	383 0.3	30 0.0	78 0.1	2045 1.4	3921 2.8
M6	6888 4.9	8906	1873 1.3	2120 1.5	1873 1.3	221 0.2	21882 15.4
TOTAL	38085 26.9	37536 26.5	30809 21.7	11803 8.3	4074 2.9	19430 13.7	$\begin{array}{r} 141736 \\ 100.0 \end{array}$
MAJOR (M) $M_{1}=$	INTERC SAN ANT	HANGE 2 ONIO	NES		LEGEND	$x \times x$ $\times x \times x$	VOLUMES
$M 2=$	SAUSTIN	ONIO				XX. x	CELL PERCENT
$\begin{aligned} & \text { M3 }= \\ & \text { M4 }= \end{aligned}$	NEW BR SEGUIN	JNFELS/ OCKHAR	AN MAR				
M4 $=$ M5	SEUTH	SAN A	TONIO				
M6 =	NORTH	AUSTI					

AUSTIN/SAN ANTONIO ORIGINS/DESTINATIONS BY MAJOR TRAFFIC ZONES : COMMERCIAL VEHICLES (PERSON TRIPS) DESTINATIONS

austin/san antonio origins/destinations by traffic zone : all vehicles (vehicle trips)

ORIGINS	1	21	3	4	5	6	7	8	91	1101	DEST	${ }_{12}$	S1	152	53	54	55	41	A2	${ }^{4}$	A4	451	1 total
1	144 0.2	- ${ }^{3}$	- 0.0	27 0.0	0	43 0.0	25 0.0	7 0.0	0.0	26 0.0	30 0.0	214 0.2	1592 1.7	120 0.1	41 0.0	423 0.4	593 0.6	- ${ }^{5}$	- 12	16 0.0	14 0.0	53 0.1	3425 3.6
2	5 0.0	7 0.0	$\begin{array}{r}32 \\ 0.0 \\ \hline-1\end{array}$	20 0	- 0	17 0.0	15 0.0	- 0	7 0.0	- ${ }^{6}$	14 0.0	113 0.1	34 0.0	18 0.0	- 0	13 0.0	29 0.0	0.0	0.0	- 0	- 0	$\begin{array}{r}\text { 4 } \\ 0.0 \\ \hline .\end{array}$	334 0.4
3	- ${ }^{12}$	- 16	768 0.8	117 0.1	- ${ }^{\circ}$	$\begin{array}{r}40 \\ 0.0 \\ \hline\end{array}$	$\begin{array}{r}40 \\ 0.0 \\ \hline\end{array}$	$\begin{array}{r}16 \\ 0.0 \\ \hline\end{array}$	35 0.0	$\begin{array}{r}43 \\ 0.0 \\ \hline\end{array}$	$\begin{array}{r}51 \\ 0.1 \\ \hline\end{array}$	$\begin{array}{r}1038 \\ 1.1 \\ \hline\end{array}$	151 0.2	$\begin{array}{r}33 \\ 0.0 \\ \hline\end{array}$	$\begin{array}{r}8 \\ 0.0 \\ \hline\end{array}$	70 0.1	220 0.2	$\begin{array}{r}63 \\ 0.1 \\ \hline\end{array}$	$\begin{array}{r}24 \\ 0.0 \\ \hline\end{array}$	$\begin{array}{r}32 \\ 0.0 \\ \hline\end{array}$	211 0.2	169 0.2 -2.	3157 3.3
4	$\begin{array}{r}23 \\ 0.0 \\ \hline-\end{array}$	-11	112 0.1	1803 1.9	$\begin{array}{r}15 \\ 0.0 \\ \hline\end{array}$	75 0.1	113 0.1	0. 57	819 0.9	87 0.1	153 0.2	304 0.3	740 0.8	322 0.3	38 0.0	265 0.3	423 0.4	236 0.2	558 0.6	1167 1.2	618 0.6	1766 1.9	9705 10.2
5	7 0.0	- 0	0. ${ }^{5}$	22 0.0	- ${ }^{\circ}$	0.4	21 0.0	0.80	18 0.0	0.4	0.0	28 0.0	94 0.1	19 0.0	0.0	33 0.0	81 0.1	0	0.4	- 0	- 0.0	0.0	367 0.4
6	41 0.0 .	19 0.0	43 0.0	112 0.1	- 20	0.1	31 0.0	42 0.0	124 0.1	50 0.1	57 0.1	242 0.3	3275 3.4	1063 1.1	128 0.1	746 0.8	1614 1.7	50 0.1	114 0.1	164	158 0.2	462 0.5	8646 9.1
7	10 0.0	- 0.0	51 0.1	104 0.1	- 28	18 0.0	160 0.2	10 0.0	28 0.0	17 0.0	- 0	101	56 0.1	15 0.0	0.4	19 0.0	83 0.1	0.17	379 0.4	366 0.4	304 0.3	690 0.7	2543 2.7
8	4.9 0.1	6 0.0	27 0.0	-50	$\begin{array}{r}30 \\ 0.0 \\ \hline\end{array}$	44 0.0	$\begin{array}{r}8 \\ 0.0 \\ \hline-8\end{array}$	4 0	0. ${ }^{4}$	- ${ }^{7}$	0.0	362 0.4	15 0.0	0	-0.0	0.0	0. ${ }^{6}$	0.0	22 0.0	0.0	43 0.0	117 0.1	8.73 0.9
9	- 0.0	4 0.0	37 0.0	940 1.0	- ${ }^{5}$	108 0.1	39 0.0	0. ${ }^{7}$	278 0.3	81 0.0	- 0	159 0.2	${ }^{258}$	29 0.0	- ${ }^{3}$	59 0.1	76 0.1	19 0.0	73 0.1	169 0.2	122	328 0.3	2752 $\mathbf{2 . 9}$
10	13 0.0	$\begin{array}{r}5 \\ 0.0 \\ \hline\end{array}$	$\begin{array}{r}38 \\ 0.0 \\ \hline\end{array}$	$\begin{array}{r}37 \\ 0.0 \\ \hline\end{array}$	0.0	37 0.0	0.4	0.91	- 0.0	0.7	- ${ }^{4}$	 601 0.6	- $\begin{array}{r}20 \\ 0.0\end{array}$	0.0	-0.08	0	0.0	0.8	53 0.1	40 0.0	71 0.1	168 0.2	166 1.2
11	75 0.1	10 0.0	46 0.0	132 0.1	- ${ }^{5}$	28	0.11	0.7	0.0	0.4	24 0.0	678 0.7	31 0.0	0.11	-0	- ${ }^{8}$	-24	61 0.1	107	152 0.2	193 0.2	400 0.4	2008 2.1
12	282 0.3	78 0.1 -2	$\begin{array}{r}1143 \\ 1.2 \\ \hline-2 .\end{array}$	381 0.4	24 0.0	298 0.3	114 0.1	414 0.4	188 0.2	559 0.6	781 0.8	189 0.2	1134 1.2	349	71 0.1	638 07	1667 1.7	345	732	543 0.6	1882 1.2	1836 1.9	12948 13.6
51	1447 15	60 0.1	171 0.2	768 0.8	${ }_{0}^{98}$	3288 3.5	89 0.1	- 0.0	258 0.3	0.0	14 0.0	1208 1.3	158 0.2	29 0.0	0.0	- 01	43 0.0	257 0.3	0. 0	612 0.6	702 0.7	1442 1.5	10725 11.3
S2	138 0.1	$0{ }^{7}$	47 0.0	326 0.3	24 0.0	1127 1.2	0.0.\|	0. 0	44 0.0	- 0	-13	363 0.4	0.0	023	- 0	- 12	35 0.0	75 0.1	943 1.0	163	99 0.1	331 0.3	3815 4.0
S3	61 0.1	- ${ }^{6}$	- 10	68 0.1	- ${ }^{3}$	134 0.1	0.8	0.0	- 0	\bigcirc	0	105 0.1	0.0	0.4	0.0	0.11	0.4	0	0.0	48 0.1	29 0.0	$\begin{gathered} 855 \\ 0.1 \end{gathered}$	589 0.6
54	373 0.4	13 0.0	${ }_{0}^{48}$	326 0.3	42 0.0	892 0.9	32 0.0	4 0.0	85 0.1	-9	$0{ }^{9}$	595 0.6	38 0.0	0.4	0.0	26 0.0	26 0.0	113 0.1	0.0	231 0.2	333 0.3	526 0.6	3728 3.9
55	519 0.5	022	143 0.2	28.1 0.3	-67	1030 1.1	82 0.1	0.0	40 0.0	0.11	20 0.0	1215 1.3	35 0.0	- 0.0	-0	18 0.0	37 0.0	102	0.0	250 0.3	327 0.3	1264 1.3	5495 5.8
${ }^{1}$	11 0.0	- 0	5	183 0.2	- 0	88 0.1	124 0.1	36 0.0	68 0.1	36 0.0	84 0.1	418 0.4	218 0.2	61 0.1	-8	85 0.1	148 0.2	\bigcirc	- 0	- 0	0.0	0.8	1642 1.7
A2	- ${ }^{14}$	0.0	34 0.0	652 0.7	- ${ }^{4}$	135 0.1	555 0.6	59 0.1	96 0.1	0.0	121 0.1	610 0.6	330 0.3	100 0.1	-47	189 0.2	195 0.2	0.0	99 0.1	0.0	15 0.0	17 0.0	3301 3.5
${ }^{4}$	$\begin{array}{r}32 \\ 0.0 \\ \hline\end{array}$	- 0	33 0.0	1312	0	226 0.2	404 0.4	59 0.1	127 0.1	55 0.1	157 0.2	630	640 0.7	198 0.2	69 0.1	239 0.3	424 0.4	- 0	-0	11 0.0	24 0.0	37 0.0	4680 4.9
A4	25 0.0	0	263 0.3	783 0.8	- ${ }^{4}$	215 0.2	323 0.3	61 0.1	135	0.9	268 0.3	1227 1.3	749 0.8	$\begin{aligned} & 180 \\ & 0.2 \end{aligned}$	0.0	287 0.3	539 0.6	- 0	0.0	0. ${ }^{5}$	52 0.1	25 0.0	5277 5.5
A5	$\begin{array}{r}45 \\ 0.0 \\ \hline\end{array}$	13 0.0 -1	175 0.2	1264 1.3	0.0	393 0.4	560 0.6	114 0.1	219 0.2	160 0.2	334 0.4	1489 1.6	1000 1.0	200 0.2	76 0.1	488 0.5	1506 1.6	0.0	- 0	0.4	34 0.0	38	8131 8.5
totals	3343 3.5	292 0.3	3309 3.5	9708 10.2	376 0.4	83.8	2767 2.8	948 1.0	2596 2.7	1233 1.3	2163 2.3	$\left\|\begin{array}{r}18888 \\ 12.5\end{array}\right\|$	10590 11.1	2801 2.0	558 0.6	3682 3.9	7795 8.2	${ }^{1452} 1$	3120 3.3	4000	4538 4.8	9777 10.3	95277

austin/san antonio drigins/destinations by traffic zone : passenger vehicles (vehicle trips)

austin/san antonio origins/destinations ar traffic zone commercial vehicles (vehicle trips)
origins
1

\qquad

\qquad

	-	10.6	0.0	0^{16}	0.0	\bigcirc	\bigcirc	0.1	\bigcirc	0.0		-5	0.0	0.0		\bigcirc		\bigcirc			
		0	${ }^{66}$	0.5	0	${ }_{04}^{44}$	\bigcirc	17	$0_{0,1}^{76}$	${ }^{145}$	${ }_{2}^{212}$	0.4		${ }_{0}^{06}$	${ }_{0}^{15}$	$0{ }^{93}$	5\%	$0^{27} 2$	${ }^{88}$	${ }^{5}$	125
	\% 5	10	2.2	0.5	0	- ${ }^{320}$	$\bigcirc \bigcirc$	\bigcirc	${ }^{2} 21$	0.01	0.0	${ }_{2}^{228}$	${ }^{22}$	-. 0	0.01	0.1	o?	${ }_{0}^{28}$	108	0301	${ }^{\circ}{ }^{2} 3$
	\bigcirc	\bigcirc	0^{11}	\bigcirc	0%	${ }^{88}$	$0 . ?$	0.0	0.	0.0	$10 ?$	$0 \cdot 1$	0.	0.0	0.0	0.0	$0 \cdot 1$	${ }^{1} .6$		\bigcirc	$0 \cdot 1$
	\bigcirc	18	\bigcirc	\bigcirc	\bigcirc	$0 \cdot$	\bigcirc	0	10.0	0.0	0.	o.	\bigcirc	0.0	0.0	0.0	10.0	0.0		-1:	-
	${ }^{20}$	-	\bigcirc	0	\bigcirc	${ }^{28}$	-	-	\bigcirc	0.	10.0	106	-. 0	0.0	\bigcirc	0.0	-:	01	1	${ }^{30}$	$0^{19} 10{ }^{19}$
	0	0	0	${ }^{38}$	-	108	${ }^{30}$	-1	0	\bigcirc	10	${ }^{330}$	0 ?	0.0	-.	0.0	${ }^{22}$	\| ${ }^{2} 21$	\|0.01	${ }^{48} 4$	${ }^{-464} 160$
	\%	10%	\bigcirc	$10^{\prime \prime}$	0.0	\bigcirc	0.0	0.0	0.\%	0.0	0^{121}	22	0.48	0.1	-\%	13	33	0.01	10.01		0.010
	\bigcirc	0.	-\%	0.5	0.0	0	${ }^{22}$	0.	0.8	0	\bigcirc	${ }^{7}$	${ }^{17}$	0^{17}	\bigcirc		$1{ }^{12}$				
	- 0	0	0	\square^{82}	0.0	\bigcirc	\bigcirc	$0 \cdot 1$	0	0.0	${ }^{19}$	${ }^{59}$	${ }^{6} 6$	$1{ }^{23}$	$0 \cdot 1$	${ }^{12}$	${ }^{68}$	0.01	101	0.8	\bigcirc
	0.01	\bigcirc	\bigcirc	${ }^{66}$	\bigcirc	0.1	0.1	- 22	- 0^{12}	0.1	${ }_{0}^{32}$	0%	0.7	0.2	0.	0.0	\% 85	0.0	.o'	\bigcirc	0.0
	\bigcirc	\bigcirc	${ }^{\circ}$	1.2	\bigcirc	${ }^{23}$	0.5	0.2	0.2	0.1	0.4	1.8	8.8	04	0.1	${ }_{0}{ }^{34} 1$		\bigcirc		-	0.0
	$\underset{\substack{2.25 \\ 2.2}}{ }$						24,	${ }^{\text {a }}$ 283	225	-		${ }^{2120}$	800	-							

austin/san antonio drigins/destinations by traffic zone : all vehicles (person trips)

austin/san antonio origins/destinations by traffic zone : commercial vehicles (person trips)

aUSTIN/SAN ANTONIO ORIGINS/DESTINATIONS By TRAFFIC ZONE : PASSENGER VEHICLES (PERSON TRIPS)

	1	229 0.2	- 0	38 0.0	54 0.0	-	50	34 0.0	- 4	19 0.0	39 0.0	25 0.0	346 0.2	2352	181 0.1	50	559	1109 0.8	18 0.0	11 0.0	0. ${ }^{14}$	$\begin{array}{r} 17 \\ 0.0 \end{array}$	58 0.0	5217 3.7
	2	4 0.0	$\begin{array}{r}7 \\ 0.0 \\ \hline\end{array}$	$\begin{array}{r}49 \\ 0.0 \\ \hline\end{array}$	$\begin{array}{r}30 \\ 0.0 \\ \hline\end{array}$	-	18 0.0	$\begin{array}{r}29 \\ 0.0 \\ \hline\end{array}$	-	14 0.0	6 0.0	26 0.0	200 0.1	$\begin{array}{r}57 \\ 0.0 \\ \hline\end{array}$	26 0.0		$\begin{array}{r}21 \\ 0.0 \\ \hline\end{array}$	73 0.1				-	$\begin{array}{r}6 \\ 0.0 \\ \hline\end{array}$	568 0.4
	3	29 0.0	19 0.0	962 0.7	219 0.2	-	107 0.1	48 0.0	32 0.0	72 0.1	31 0.0	148 0.1	1423 1.0	225 0.2	59 0.0	0.7	104 0.1	375 0.3	103 0.1	49 0.0	45 0.0	295 0.2	209 0.1 .-	4561 3.2
	4	33 0.0	10 0.0	158 0.1	2686 1.9	17 0.0	139 0.1	165 0.1	87 0.1	1080 0.8	165 0.1	304 0.2	522 0.4	1065 0.8	368 0.3	41 0.0	323 0.2	642 0.5	283 0.2	738 0.5	1392 1.0	744 0.5	2382 1.7	13356 9.4
	5	11 0.0	-	$\begin{array}{r}5 \\ 0.0 \\ \hline\end{array}$	$\begin{array}{r}27 \\ 0.0 \\ \hline\end{array}$	-	7 0.0	$\begin{array}{r}20 \\ 0.0 \\ \hline\end{array}$	$\begin{array}{r}10 \\ 0.0 \\ \hline\end{array}$	55 0.0	3 0.0	4 0.0	$\begin{array}{r}41 \\ 0.0 \\ \hline\end{array}$	145 0.1 .	$\begin{array}{r}30 \\ 0.0 \\ \hline\end{array}$	0.0	$\begin{array}{r}44 \\ 0.0 \\ \hline\end{array}$	152 0.1	-	3 0.0	-	-	13 0.0	572 0.4
	6	$\begin{array}{r}56 \\ 0.0 \\ \hline\end{array}$	32 0.0	$\begin{array}{r}67 \\ 0.0 \\ \hline\end{array}$	143 0.4	7 0.0	140 0.1	28 0.0	111 0.1	183 0.1	90 0.1	111 0.1	406 0.3	4451 3.4	1425 1.0	191 0.1	1007 0.7	2363 1.7	76 0.1	150 0.1	277 0.2	223 0.2	623 0.4	$\begin{array}{r} 12159 \\ 8.6 \end{array}$
	7	17 0.0	10 0.0	83 0.1	168 0.1	29 0.0	51 0.0	254 0.2	- 9	50 0.0	18 0.0	18 0.0	173 0.1	105 0.1	13 0.0	3 0.0	37 0.0	180 0.1	81 0.1	504 0.4	462 0.3	383 0.3	1044 0.7	3694 2.6
	8	54 0.0	0.1	30 0.0	69 0.0	76 0.1	- 58	7 0.0	0.0	0.0	13 0.0	-	738 0.5	19 0.0	-	-	-	- 0	29 0.0	25 0.0	42 0.0	74 0.1	219 0.2	1482 1.0
	9	19 0.0	7 0.0	56 0.0	1292 0.9	7 0.0	156 0.1	55 0.0	- 0.0	383 0.3	0.71	25 0.0	228 0.2	335 0.2	37 0.0	0.5	85 0.8	119 0.1	33 0.0	97 0.1	212 0.1	212 0.1	481 0.3	3858 2.7
	10	18 0.0	- 0.0	105 0.1	105 0.1	10 0.0	79 0.1	0. ${ }^{7}$	30 0.0	0.0	20 0.0	0.0	1308 0.9	0.0	-	15 0.0	0.0	33 0.0	- ${ }^{7}$	92 0.1	60	112 0.1	374 0.3	2439 $\mathbf{1 . 7}$
\bigcirc	11	114 0.1	- ${ }^{9}$	107 0.1	205	11 0.0	48 0.0	${ }^{9} 0$	16 0.0	0. ${ }^{4}$	21 0.0	50 0.0	1520 1.1	38 0.0	- ${ }^{17}$	-	- 11	39 0.0	94 0.1	123 0.1	238 0.2	312 0.2	650 0.5	3636 $\mathbf{2 . 6}$
$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & y \end{aligned}$	12	466 0.3	90 0.1	1627 1.1	718 0.5	40 0.0	689 0.5	193	729 0.5	335 0.2	1144 0.8	1592 1.1	221 0.2	1975 1.4	619 0.4	173 0.1	1036 0.7	3060 2.2	440 0.3	1312 0.9	821 0.6	1697 1.2	2879 2.0	21856 15.4
	S 1	2190 1.5	105	218 0.2	967	138 0.1	4541 3.2	124 0.1	- ${ }^{7}$	356 0.3	50 0.0	- $0.0 \mid$	1995 1.4	$260 \mid$	49 0.0	0.4	78 0.1	72 0.1	325 0.2	-	851	911 0.6	1850 1.3	$\begin{array}{r} 15101 \\ 10.7 \end{array}$
	52	2.5 0.2	- 6	52 0.0	387 0.3	25 0.0	1600 1.1	13 0.0	0.4	46 0.0	-	12 0.0	669 0.5	0.01	39 0.0	-	0.0	- 39	75 0.1	1155 0.8	221 0.2	108 0.1	447 0.3	5164 3.6
	S3	101	-	6 0.0	91 0.1	-8	208 0.1	-	-	-	-	-	172 0.1	0.0	0.0	-	24	0.7	30 0.0	-	63 0.0	36 0.0	117 0.1	874 0.6
	54	561	21 0.0	72 0.1	474 0.3	68 0.0	1360 1.0	63 0.0	0.4	103 0.1	15 0.0	- 0.0	1013 0.7	67 0.0	0.5	0.3	- 52	42 0.0	135 0.1	-	310 0.2	415 0.3	$\begin{aligned} & 780 \\ & 0.6 \end{aligned}$	5576 3.8
	S5	818 0.6	45 0.0	249 0.2	437	116 0.1	1450 1.0	95 0.1	32 0.0	41 0.0	34 0.0	45 0.0	2050	0.0	22 0.0	-	43 0.0	57 0.0	121	-	335 0.2	439 0.3	1711 1.2	8187 5.8
	${ }^{1} 1$	- 0.0	-	89 0.1	184 0.1	-	153 0.9	154 0.1	51 0.0	88 0.1	72 0.1	98 0.1	551 0.4	271 0.2	89 0.1	18 0.0	90 0.1	212 0.1	-	-	-	0.6	7 0.0	2148 7.5
	42	13 0.0	-	50 0.0	816 0.6	\% ${ }^{7}$	223 0.2	859	99 0.1	120 0.1	67 0.0	215 0.2	877 0.6	452 0.3	126 0.1	0.04	312 0.2	335 0.2	-	157 0.1	-	0.0	19 0.0	4829 3.4
	43	-64	- ${ }^{3}$	45 0.0	1656 4.2	-	445 0.3	500 0.4	78 0.1	188 0.1	117 0.1	293 0.2	962 0.7	924 0.7	258 0.2	87 0.1	374 0.3	642 0.5	-	-	23 0.0	26 0.0	$\begin{array}{r} 34 \\ 0.0 \\ - \end{array}$	$\begin{array}{r} 6719 \\ 4.7 \end{array}$
	14	$\begin{array}{r}30 \\ 0.0 \\ \hline\end{array}$	-	294 0.2	876 0.6	${ }^{3}$	337 0.2	448 0.3	116 0.1	224	167 0.1	452	1729 1.2	988 0.7	239 0.2	48 0.0	-371 0.3	859	-	-	- ${ }^{8}$	67 0.0	25 0.0	7291 5.1
	45	84 0.1	20 0.0	228 0.2	1642 1.2	0.4	565 0.4	931 0.7	220 0.2	374 0.3	334 0.2	568 0.4	$\begin{array}{r}2285 \\ \hline 1.6\end{array}$	1331 0.9	297 0.2	122 0.9	837	2058 1.5	0.0	-	0.4	253 0.2	33 0.0	12295 8.7
	totals	5140 3.6	415 0.3	4590 3.2	\|r $\begin{array}{r}13245 \\ 9.4\end{array}$	567 0.4	12424 8.8	4037 2.9	1660 1.2	3747 2.6	2414 1.7	4019 2.8	$\left\|\begin{array}{l}19430 \\ 13.7\end{array}\right\|$	15187 10.7	3900 $\mathbf{2 . 8}$	833 0.6	5535 3.9	12476 8.8	1847	4418 3.1	5378 3.8	6351 4.5	13971 9.9	141584
																				LEGEND : $X X X X$ - PERSON TRIPS XX.X - CELL PERCENT				

AUSTIN/SAN ANTONIO ORIGINS/DESTINATIONS BY TRAFFIC 2ONE : ALL VEHICLES
LOCAIION: SOUTH OF NEG BRAUNFELS

austin/san antonio origins/destinations ey traffic zone : passenger vehicles
Location : south of new braunfels

aUSTIN/SAN ANTONIO ORIGINS/DESTIMATIONS by traffic zone : all vehicles
LOCATION : SOUTH OF KYLE
Location : south of kyle

		-1	-109	\bigcirc	-1		\bigcirc			\% 0.8	\%1.	2:10. 0	10.1	\bigcirc	10.0				-oto 0 !	0.0	\% 2.	
			0.1		$0: 1$		-					10.1	1.01		0.1	0.6	$1-$	-	-1	1		\%
			01		0.6		0.01	\% 0	0	0.9		0.910 .8	0.1		10.1		0.	¢ 1	-1-		0.0	:
	22	10.	0818	10	-i	0 O	\% 01	0.1	$0 .:$	[1] ${ }^{2}$		$0 \cdot 10$	2:1		2:1	$0 \cdot 8$	${ }^{202}$	218	18916	\% 2		20:
	0.0	-	$\bigcirc \square^{\text {a }}$		\therefore		-					0.1			0.01	-0 0	\therefore	-1			0.6	\% 0
		$0 \cdot 1$	0010 01	0	0.6	0.01			0.0			0	0.9				0	$0^{\circ} 18$	080	81	18	\%
		-	$\bigcirc 0.1$	-1	0.01	0.0	0.01			0.0		0.010 .0	1			0.0	$0 \cdot$: 10.0	0.8181	${ }^{20}$		
	-	-	100101	0.1	-1		0.01	-	0.0			08910.01	-1			\checkmark	0.	\% 0.0	0.010 .1	\bigcirc		
	0.0	0.01	10.0 0 0il	0.01	\bigcirc		\cdots					0.10 .01	\bigcirc		1		10.0	:1 0	0.1109	\bigcirc	$2:$	
			O.b 0.1		0.0		-					2:1 01		0.0		0.6	$1-$	90.	0.1001	Oil	0	
	0.8		0.0 0.1		0.0		10.0					0.810 .8	- 01		0.9		10:9	$\mathrm{B}^{1} \mathrm{O}^{\circ \prime}$	$0 \cdot 9$	0	: $:$	
	0.		$\bigcirc 1$		0^{188}		\%81	0.1				0.018	18	ai	Q:	121		-	-109		2	\%
	0.6	101	00^{301}	0.1		0.1	-	0.6	10.0			270\| 17	0.01	0.0			18	4	${ }^{222} 1$:3		8
s	0.0	10.01	-010 0	0.01	\bigcirc		\bigcirc	0.6				$0 \cdot 9$	0.01		0.0	0.0	10	10 18	8	0	: 8	
5		-	0.001		0.01	$-$	$-$	\therefore				0:1-1	-1		-1			8		0		
		0.6	$00^{24} 0^{39} 1$	$1-1$	\bigcirc			0.6				08.10 .01	-	0.0	10 O	0 -	0	2		: 8	2:?	
					0.01		0.01					8. 0.01	10.01		0.1			31	1:8		$12:$	
	0.0		0.908		\% 0		Q21	O:	$1{ }^{26}$			$\bigcirc 10$		0.0	1080 0^{80}							
\wedge	$0:$	1	$\bigcirc 1$	$1-1$	80\%		O20]	$0: 1$				-180	-: 1	2iP1	101	O:	1	100	\%	0		\therefore
	2	10.01	10.0 0801		\%i,	0 O		0	0^{30}			0.0818	$0: 1$	- 0	181	2: 2			0.01	\bigcirc		
	0.0		0.3 0^{31}	$1-1$	88	$0 \cdot 1$	Oi,	O:	10:	16		-18	$0: 1$	2:1	188]	Bi]			0.0	-is		
			$00^{1218089}$		8:	$0 \cdot 1$	P:	808	\% 0			0.018	$0: 1$	\% 0	18: 9	ni		\bigcirc			10	in:
,			\%																			

AUSTIN/SAN ANTONIO ORIGINS/DESTINATIONS BY TRAFFIC ZONE : PASSENGER VEHICLES
LOCAIION: SOUTH OF KYLE
OESYINATIONS

austing san antonio origins/destinations by traffic zone
Location : south df krle
commercial vehicles
destinations
$11 / 21$

AUSTIN/SAN ANTONIG ORIGINS/DESTINATIDNS EY TRAFFIC ZONE : ALL VEHICLES
LOCATION: EETMEEN SAN MARCOS AND SEGUIN

austingsan antonio origins/destimations or traffic zone : passenaer vehicles
LOCAtION: betuen san marcos amo seguin

austin/san antowio origins/ogistinations or traffic tone: commercial vehicles
Location : betwen san marcos ano segin
ORIGINS
AUSTIN/SAN ANTONIO ORIGINS/DESTIMATIONS OV THAFFIC 2ONE : ALL VEHICLES
LOCATION: MORTH OF LOCWHART

austin/san antowio origins/destimations ay traffic zone : passemaer vehicles
Location : horth of lockhart

austin/san antonio origins/destimations be traffic zome: comerecial vehicles
Location : morth of lockmart

AUSTIN/SAN ANTONIO ORIGINS/OESTINATIONS OY TRAFFIC RONE : ALL VEHICLES
LOCATION: NORTH OF SAN ANTONIO
Destrimarions
11
1
12
12

austin/san antonio origins/destimatiows er traffic zone : passenger vehicles
 ocailow : monim of sam amraio

Destimationa
11
12

aUSIIN/SAN ANTONIO ORIGINS/OESTIMATIOWS EV TRAFFIC ZONE : all vEhicles
LOCATION : MORTH OF GEORGETOW
origins
AUSTIN/SAN ANTOWID ORIGINS/DESTIMATIONS OY TRAFFIC ZONE : PASSENGER VEHICLES
LOCAIION: MORTM OF GEORGETOWN

NORTHEOUND AT KYLE
DESTINATIONS

SUMMARY OF MAUOR TRIP INTERCHANGES FOR IH 35 NIGHT-TIME TRUCK SURVEY (8 PM - 7 AM)
SOUTHBOUND AT KYLE
DESTINATIONS

T 1		-				-	-
T2	120 44.1		17 2.0		17 2.0	-	154 18.2
T3		-			-	-	-
T4		-					-
T5		-		-			-
T6	393 46.5		26 3.0	26 3.0	248 29.3	-	692 81.8
TOTAL	513 60.6	-	43 5.1	26 3.0	265 31.3	-	846 -

```
TRUCK (T) INTERCHANGE ZONES
    T2 = AUSTIN
    T4 = SEGUIN
    T5 = SOUTH OF SAN ANTONIO
    TG = NORTH OF AUSTIN
```

 \(T_{1}=\) SAN ANTCNIO XXX - VOLUME
 LEGEND

IH 35 COMmERCIAL TRUCK SURVEY SUMMARY OF CARRIERS SURVEYED

NAME OF CARRIER	TRUCKS	type of vehicle
MARTIN FLOORING	1	COMBINATION
MARTIN LINEN	1	SINGLE UNIT
MARY LEE	1	COMBINATION
MAVERICK	1	COMBINATION
MCCLAIN	1	COMBINATION
MCDIST	1	COMBINATION
MELCHANTS		COMBINATION
MERCHANTS	1	SINGLE UNIT
MILLER	1	combination
MILLERS OUTPOST	1	COMBINATION
MIRACLE CANDLE CO.	1	SINGLE UNIT
MISILETOE EXPRESS	1	COMBINATION
M ${ }^{\text {L LONG }}$	1	COMBINATION
MONFORT OF COLORADO	1	COMBINATION
MONTGOMERY WARD	1	COMEINATION
N \& W TRANSFER	1	COMBINATION
N. ARKANSAS PRODUCE	1	combination
NATIONAL STEEL SVC.	1	SINGLE UNIT
NATIONWIDE	1	combination
NEWELL	1	COMBINATION
NORSACH STEEL	1	COMBINATION
OJ RISS	1	COMBINATION
OLMOS	1	SINGLE UNIT
PARAMOUNT MOVERS	1	COMBINATION
PHOENIX MOTOR EXPRESS	1	TRACTOR ONLY
PIE	1	TRACTOR WITH DOUBLE TRAILER
PMT	1	TRACTOR WITH DOUBLE TRAILER
QUALITY SERVICES	1	COMBINATION
RAILTON	1	COMEINATION
REVCO DRUGS	1	COMBINATION
ROACHEAY	1	COMBINATION
ROBERT HEATH TRUCKING	1	COMBINATION
ROSS	1	COMBINATION
RPS PACKERS	1	combination
RUSSELL TRANSPORT	1	combination
SANDERS	1	COMBINATION
SCHEPPS	1	COMBINATION
SEARS	1	COMBINATION
SEMTO	1	SINGLE UNIT
SENECA TRANSPORT CO.	1	SINGLE UNIT
SERVICE STEEL \& PIPE	1	COMBINATION
SILICA SAND	1	COMBINATION
SILVER BULLET CARRIER CO.	1	COMBINATION
SIRRON	1	COMBINATION
SMITHS	1	COMBINATION
SOUTHERN MAIL INC	1	COMBINATION
SOUTHERN TRUCKING \& SHIPPING	1	COMBINATION
SOUTHWESTERN MOTOR CO.	1	COMBINATION
STS	1	combination
SUGAR FOOD CO.	1	COMBINATION
SUNBELT DIST	1	combination
SW BELL	1	SINGLE UNIT
SW MOTOR TRANSPORT	1	combination
TEX BEN PACKERS	1	combination
TEX WIL CONCRETE	1	COMEINATION
TEXAS CORRUGATORS	1	COMBINATION
TEXAS TANK LINES	1	COMBINATION
THT	1	COMBINATION
TORONE VAN LINES	1	COMBINATION
TPI	1	COMBINATION
TRANCO	1	COMBINATION
TRANSP, CO. INC.	,	COMBINATION
TRIANGLE TRANS.	1	COMBINATION
TXI CEMENT	1	COMBINATION
UNITED VAN	1	combination
US EXPRESS	1	TRACTOR WITH DOUBLE TRAILER
US RENTALS		COMBINATION
USA WESTERN AMERICAN	1	TRACTOR WITH DOUBLE TRAILER
VALLEY TRANSPORT INC.	1	COMBINATION
VEG PAK	,	COMBINATION
W AND R TRUCKING	1	combination
WALES	1	COMBINATION
WAYNE'S MOBILE HOME SERVICE	1	SINGLE UNIT
WEST POINT PEPPEREL	1	tractor with douele trailer

IH 35 COMmERCIAL TRUCK SURVEY
SUMMARY OF CARRIERS SURVEYED

Name of carrier	TRUCKS	type of vehicle
BARRETT MOBILE	1	COMBINATION
BARTON	1	COMBINATION
BESTA	1	COMBINATION
big state	1	COMBINATION
BPI	1	COMBINATION
BRIDGESTONE	+	SINGLE UNIT
BRIGHT LEASING		COMBINATION
BUR-COLD TRANSPORT		combination
BURLINGTON AIR EXPRESS		COMBINATION
BURNHAM	1	combination
CAL-ARK TRUCKING	1	combination
CARROLL	1	SINGLE UNIT
CC bakery	1	combination
CFG	1	COMBINATION
CFI	1	COMBINATION
CHURCHILI	1	COMBINATION
CMT	1	combination
COIN'S COFFEE CO.	1	combination
COMMERCIAL BODY	1	COMBINATION
CONSOLIDATED PRODUCE CO.	1	Single unit
CONTRACT FREIGHT	1	combination
COOSA BAKING	1	COMBINATION
CRAIN	1	combination
CRETE CARRIER	1	combination
Cri	1	COMBINATION
Dagels	1	COMBINATION
DAL CRP	1	COMBINATION
DANNY COFFMAN	1	COMBINATION
DAVIS TRANPORT CO.	1	COMBINATION
DICKIES	1	COMBINATION
DOLLY MADISON	1	COMBINATION
DONCO INC.	1	COMBINATION
DPM	1	COMBINATION
E. A. HOLDER	1	combination
E-L MAIL SERVICE	1	COMBINATION
ED \& MARY	1	combination
EGLEE	1	tractor only
ETC TRANSIT	1	COMBINATION
FIGHDT FREIGHT	1	COMBINATION
FIRESTONE	1	COMBINATION
FLEMING FOODS	1	COMBINATION
FORRESTVILLE INDUSTRIES	1	COMBINATION
FORT WORTH TRANSPORT	1	TRACTOR WITH DOUBLE TRAILER
FRONTIER AUTO SALES	1	tractor with double trailer
FT WORTH CARRIER CORP	1	tractor with double trailer
FUTURE FOAM	1	COMEINATION
GELCD	1	COMBINATION
GELLS	1	COMBINATION
gerald lefeune	1	combination
HARDEES	1	combination
HAROLD IVES	1	combination
HEALTH CARE SUPPLIERS	1	SINGLE UNIT
HEARTLAND EXPRESS	1	COMBINATION
HERTZ	1	SINGLE UNIT
HIghway pipeline	1	combination
HODGE	1	COMBINATION
HOLT CATEPILLAR	1	Single unit
HOT TAMATO EXPRESS	1	COMBINATION
ILCOR	1	COMEINATION
IMPERIAL CUP CO.	1	COMBINATION
INTERMODAL CARRIER	,	COMBINATION
ISI	,	Combination
Jack cooper transport	,	COMBINATION
JACK HOLT	1	COMBINATION
JEWETT SCOTT TRUCK LINES	1	COMBINATION
UOHNSON FARMS	,	COMBINATION
JTL	1	COMEINATION
KENDULL	1	combination
KLLM	,	COMBINATION
KMART	1	COMBINATION
KOREMEH		COMBINATION
LAND AIR	1	COMBINATION
LUXURY CONVERSIONS	;	COMBINATION
MAHON CO	,	COMEINATION

IH 35 COMmERCIAL TRUCK SURVEY
'SUMMARY OF CARRIERS SURVEYED

IH 35 COMMERCIAL TRUCK SURVEY

 SUMMARY OF CARRIERS SURVEYED| NAME OF CARRIER | TRUCKS | TYPE OF VEHICLE |
| :--- | :---: | :--- |
| | | |
| WHITLEY TRUCKS | 1 | COMBINATION |
| WILEY SANDERS | 1 | COMBINATION |
| WILLIAMS INSTRUCTION | 1 | TRACTOR ONLY |
| YOUNGER | 1 | COMBINATION |
| ZENITH | 1 | TRACTORWITH DOUBLE TRAILER |
| ZERO MOTOR FTR. | 1 | COMBINATION |

B. TRAFFIC DIVERSION METHODOLOGY

B. 1 INTRODUCTION

The procedures used to estimate traffic diversion to the proposed alternate route are based on zone-to-zone travel times for basic highway networks with and without the proposed alternate route. The base year (1987) zone-to-zone travel paths of the origin-destination data were determined using a simplified highway network for the study area and the travel time between traffic zones. The travel time between zones was determined based upon the average travel speed and segment distance on the travel paths between the zones. The travel path between zones was selected as the path with the minimum travel time.

After travel times were determined for the existing network, the alternate route was inserted into the network. Once the alternate route was installed in the base year network, all traffic between zones was diverted to the alternate route. The travel time between zones was then determined with the alternate route in the network. The travel time between zones using the alternate route was then compared to that without the alternate route. If there was a reduction in travel time, then the traffic with a shorter travel time was diverted to the appropriate segment(s) of the alternate route. The sums of zone-to-zone travel on the individual segments of the alternate route were then determined to obtain the total number of vehicles on the alternate route.

B. 2 ASSUMPTIONS

The development of the procedure used to determine alternate route traffic required several simplifying assumptions. This was necessary in order to develop a procedure that was manageable yet responsive to the problem being studied. The assumptions used in developing the traffic diversion methodology are discussed below.

1. The highway network for the study was simplified in order to eliminate the large number of the possible routes. With the exception of FM

20 from Bastrop to Lockhart, only major (State, U.S., Interstate) highways were included in the model. All zone-to-zone traffic was assumed to travel only on the highways in the simplified highway network of the model.
2. Traffic volumes used in the analysis are 24 -hour volumes obtained from SDHPT district traffic maps for 1985.
3. All traffic between any two zones was assumed to use the same travel path. This path is the one with the shortest travel time as determined in the model. The travel time was determined from the speed and length of the individual segments of each highway.
4. Travel speed was determined using the 1985 Highway Capacity Manual procedure for multilane and two-lane highways. The number of lanes for each segment was determined from SDHPT information and other sources. Speed calculations were based on the following assumptions:
a. For the study period, the one direction hourly volume is 3.5% of the total 24-hour volume.
b. Directional distribution is $50 / 50$.
c. All lanes are 12 feet wide.
d. All highways have 8 foot wide shoulders on each side of the roadway.
e. Trucks make up 11% of the total traffic (a typical mixture of trucks).
f. Peak hour factor is 0.90 .
g. Level terrain is assumed.
h. Drivers are assumed to be familiar with the roadway.
i. On two-lane highways, no-passing zones are assumed to be 40% of the total roadway length.
5. Travel speeds over the speed limit were not permitted.
6. Traffic volumes were averaged over the length of the individual segments to give an average travel speed over that segment.
7. Traffic was rerouted to the alternate route if any travel time savings was possible.
8. Major improvements to the highway network is 20 years include widening IH 35 to 6 lanes, freeway widening in the cities of Austin and San Antonio, and widening portions of US 90 to 4 lanes.

B. 3 ANALYSIS ZONES AND HIGHWAY NETHORK

In order to provide a framework for the model, the study area and highway network had to be defined. The study area was divided into 14 study zones. The zones used in this diversion model are the same traffic zones used to report the results of the origin/destination study (Figure B-1). The centroid (or major traffic generator/attractor) of each zone was then determined. This centroid was assumed to be a city in the zone, except in the cases of Austin and San Antonio. Austin and San Antonio were divided into five subzones, located at the intersections of freeways. Table B-1 shows the zones and centroids used for each zone and subzone.

A highway network connecting the zone centroids was defined using only the major highways in the area (Figure B-2). Table B-2 lists the highways in the simplified network. The selected highways were then split into individual segments for analysis. The segments were selected based upon the location of cities and the number of lanes on that segment of the highway. Table B-2 also lists the segments for each highway in the network, along with the length of each segment. Possible travel paths between zones were determined using this simplified highway network.

Figure B-1. Austin/San Antonio Traffic Analysis Zones

Table B-1. Zone Centroi ds Used in Trafpic Oi version Analysis

Zone	Location	Centraid
1	NNW of San Antorio	Boerne
2	NW of Austin	Leander
3	NE of Austio	Taylor
4	SW of Austin	San Marcos
5	SE of Austin	Bastrop
6	NME of San Antonio	New Braunfels
7	S of Austin	Locknart
8	w of San Antonio	
9	ENE of San Antonio	Seguin
10	S of San Antonio	Pleasanton
11	E of San Antonio	Stockdale
12	N of Austin	Temple
13	San Antonio	
	Subzone 1	IH 410 North and US 281
	2	IH 10 East and Loop 1604
	3	IH 410 South and US 281
	4	IH 410 West and US 90
	5	San Antonio CBD
14	Austin	
	Subzone 1	US 183 and US 290
	2	US 183 and SH 71
	3	US 290 and Loop 360
	4	Jollyville
	5	Austin CBD

B. 4 SPEED AND TRAVEL TIME DETERMINATION

The travel time between zone centroids was determined based upon the average travel speed over the highway segments. Travel speed was determined based upon volumes and highway geometrics. Several AADT volumes were obtained from SDHPT traffic maps for each segment of highway. The volumes on

Note: See Table B-2 for network description.

Figure B-2. "Simplified" Highway Network Used in Traffic Diversion Analysis

Table B-2. Description of Simpli fied Higway Network Used in Traffic Di versi on Analysis

Higway and Segment No.	Location	Length (miles)
I-35		
1	San Antonio CBD to North Loop 410	15
2	North Loop 410 to Loop 1604	5
3	Loop 1604 to New Braunfels	13
4	New Braunfels to San Marcos	17
5	San Marcos to SH 71	25
6	SH 71 to Austin CBD	5
7	Austin CBD to US 183	7
8	US 183 to US 79	11
9	US 79 to SH 53	41
I-10		
1	Boerne to West Loop 410	20
2	West Loop 410 to San Antonio CBD	8
3	San Antonio CBD to East Loop 410	12
4	East Loop 410 to Loop 1604	14
5	Loop 1604 to Seguin	9
US 281		
1	San Antorio CBD to FM 537	10
2	FM 537 to Loop 410	4
3	Loop 410 to Loop 1604	1
4	Loop 1604 to SH 46	15
5	SH 46 to FM 311	6
6	FM 311 to FM 165	16
7	FM 165 to US 290	8
8	US 290 to Jahnson City	6
9	Jonnson City to SH 29	37

Table B-2. Description of Simplified tig gway Network Used in Traficic Diversion Analysis (Cont.)

Higway and Segnent No.	Location	Length (miles)
SH 46		
1	Boerne to US 281	21
2	US 281 to IH 35	21
3	IH 35° to IH 10	13
US 290		
1	US 281 to SH 71	31
2	SH 71 to IH 35	10
US 183		
1	IH 10 to FM 20	16
2	FM 20 to SH 21	11
3	SH 21 to SH 71	10
4	IH 35 to Jollyville	8
5	Jollyville to Leander	8
6	Leander to SH 29	6
7	SH 71 to IH 35	9
SH 21		
1	Bastrop to US 183	27
2	US 183 to San Marcos	18
SH 123		
1	San Marcos to Seguin	21
2	Seguin to Stockdale	24
Loop 1604		
1	US 281 to FM 2252	8
2	FM 2252 to IH 35	2
3	IH 35 to FM 78	2
4	FM 78 to IH 10	6

Table B-2. Description of Simplified Higway Network Used in Traffic oiversion Analysis (Cont.)

Hig giway and Segment No.	Location	Length (mi les)
Loop 410		
1	US 90 to US 281 North	14
2	US 281 North to IH 35 North	6
3	IH 35 North to IH 10 East	6
4	IH 10 East to US 281 South	12
5	US 281 South to US 90	19
FM 20		
1	Bastrop to Lockhart	29
SH 97		
1	Pleasanton to Stockdale	41
SH 142		
1	Locknart to IH 35	18
SH 71		
1	IH 35 to US 183	10
2	US 183 to Bastrop	27
US 90		
1	Hondo to Loop 410	29
2	Loop 410 to IH 10	10
IH 37		
1	SH 97 to Loop 410	23
2	Loop 410 to San Antonio CBD	9
SH 79		
1	Taylor to IH 35	17

Table B-2. Description of Simplified H ghway Network Used in Traffic diversion Analysis (Cont.)

Hi ghway and Segnent No.	Locati on	Length (mi les)
SH 95	Taylor to Bastrop	
1		33
Alternate		
Route	US 71 to SH 21	20
1	SH 21 to FM 20	5
2	FM 20 to SH 80	11
3	SH 80 to Seguin	16
5	Seguin to Loop 1604	10

each segment were averaged to obtain a representative volume for that segment. This volume was used to calculate the average speed over the segment. These calculations were based on the Highway Capacity Manual procedure, using the assumptions listed in Section B.2. From the length and speed on each segment, a travel time for that segment was determined. Vehicles were assigned to a particular path if it had the shortest zone-tozone travel time.

Travel times for alternative paths between zones were compared to determine the path with the shortest travel time. Some paths between zones were eliminated from consideration because building the proposed alternate route would have no possibility of reducing the travel time between the two zones. The travel paths which were not considered in the analyses are listed in Table $\mathrm{B}-3$.

B. 5 APPLICATION/VALIDATION

Application of the methodology involved "installing" the alternate route in the simplified network and assigning the appropriate trip interchange volumes to the network. The travel speed on the new alignment of the

Table B-3. Trip Interchanges Not Evaluated in Application of Traffic Diversi on Methodology

Zones	Correspondi ng Centroids	
3 to/from 1	Taylor	Boerne
8 to/from 1	Hondo	Boerne
10 to/from 1	Pleasanton	Boerne
10 to/from 8	Pleasanton	Hondo
11 to/from 1	Stockdale	Boerne
11 to/from 8	Stockdale	Hondo
12 to/from 2	Temple	Leander
12 to/from 3	Temple	Taylor
12 to/from 5	San Antonio	Bastrop
13 to/from 1	San Antonio	Boerne
13 to/from 6	San Antonio	New Braunfels
13 to/from 8	San Antonio	Hondo
13 to/fron 10	San Antonio	Pleasanton
13 to/from 11	Austin	Stockdale
14 to/from 2	Austin	Leander
14 to/from 3	Austin	Taylor
14 to/from 12		Temple

alternate route was assumed to be 55 mph . The travel time between zones was then determined using the appropriate sections of the alternate route. The travel time between zones using the alternate route was then compared to that without the alternate route. If there was any reduction in the travel time by using the alternate route, then that traffic with a shorter travel time was diverted to the appropriate segment(s) of the alternate route. After the traffic volumes on the alternate route were determined, the travel speed was reevaluated to insure the 55 mph assumption was correct.

The volume of traffic which would divert to the alternate route was determined from the vehicle trip table obtained from the $0-D$ study. The trip table used in the analyses is shown in Table B-4. If it was decided that traffic would divert to the alternate route because of a shorter travel time, then the volume in the table for that particular origin and destination was

	1	144 0.2	3 0.0	24 0.0	27 0.0	$\begin{array}{r}0 \\ 0.0\end{array}$	43 0.0	25 0.0	7 0.0	13 0.0	26 0.0	30 0.0	214 0.2	1592	120 0.1	41 0.0	423	593 0.6	0.0	0	16 0.0	14 0.0	53 0.1	3425 3.6
	2	5 0.0	7 0.0	32 0.0	20 0.0	- 0	17 0.0	15 0.0	- 0	7 0.0	- ${ }^{6}$	14 0.0	113 0.1	34 0.0	18 0.0	- 0	13 0.0	29 0.0	- 0	- 0	- 0	- 0	0.0	334 0.4
	3	- 12	16 0.0	768 0.8	117 0.1	- 0	40 0.0	40 0.0	16 0.0	35 0.0	43 0.0	51 0.1	1038 1.1	151 0.2	33 0.0	-8	70 0.1	220 0.2	63 0.1	24 0.0	32 0.0	211 0.2	169 0.2	3157 3.3
	4	23 0.0	-11	112 0.1	1803 1.9	15 0.0	75 0.1	113 0.1	0.1	819 0.9	87 0.1	153 0.2	304 0.3	740 0.8	322 0.3	38 0.0	265 0.3	423 0.4	236 0.2	558 0.6	1167 1.2	618 0.6	$\begin{array}{r} 1766 \\ 1.9 \end{array}$	$\begin{aligned} & 8705 \\ & 10.2 \end{aligned}$
	5	0.0	$\begin{array}{r}0 \\ 0.0 \\ \hline\end{array}$	5 0.0	$\begin{array}{r}22 \\ 0.0 \\ \hline-12\end{array}$	$\begin{array}{r}0 \\ 0.0 \\ \hline\end{array}$	0.4	21 0.0	$\begin{array}{r}8 \\ 0.0 \\ \hline\end{array}$	18 0.0	0.0	0.4	28 0.0	94 0.1	19 0.0	0.0	33 0.0	81 0.1	- 0	-4	$\begin{array}{r}\circ \\ 0.0 \\ \hline\end{array}$	0.0	$\begin{aligned} & 11 \\ & 0.0 \end{aligned}$	367 0.4
	6	41 0.0	19 0.0	43 0.0	112 0.1	20 0.0	91 0.1	31 0.0	42 0.0	124 0.1	50 0.1	57 0.1	242 0.3	3275 3.4	1063 1.1	128 0.1	746 0.8	1614 1.7	-50	114 0.1	164 0.2	158 0.2	462 0.5	8646 9.1
	7	10 0.0	9 0.0	51 0.1	104	28 0.0	- 88	160 0.2	0.0	28 0.0	17 0.0	14 0.0	101	56 0.1	15 0.0	0.0	+180	83 0.1	77 0.1	379 0.4	365 0.4	304 0.3	680 0.7	2543 2.7
	8	$\begin{array}{r}49 \\ 0.1 \\ \hline-17\end{array}$	0.6	27 0.0	- 50	30 0.0	044	- 0	0.4	- ${ }^{4}$	7 0.0	- 0	362 0.4	15 0.0	- 0	-0	- 0	- ${ }^{6}$	0.0	022	27 0.0	43 0.0	117 0.1	843 0.9
	9	17 0.0	$\begin{array}{r}4 \\ 0.0 \\ \hline\end{array}$	$\begin{array}{r}37 \\ 0.0 \\ \hline\end{array}$	940 1.0	- ${ }^{5}$	108 0.1	39 0.0	7 0.0	278 0.3	-88	-14	159 0.2	258 0.3	29 0.0	$\begin{array}{r}3 \\ 0.0 \\ \hline\end{array}$	59 0.1	76 0.1 -	$\begin{array}{r}19 \\ \hline .9 \\ \hline\end{array}$	$\begin{array}{r}73 \\ 0.1 \\ \hline\end{array}$	169 0.2	122 0.1	$\begin{aligned} & 328 \\ & 0.3 \end{aligned}$	2752 2.9
	10	13 0.0	$\begin{array}{r}5 \\ 0.0 \\ \hline\end{array}$	38 0.0	37 0.0	0.3	37 0.0	0.4	0.9	0.0	0. ${ }^{7}$	- ${ }^{4}$	601 0.6	20 0.0	-0.0	-8	12 0.0	0	- ${ }^{8}$	${ }^{53}$	40 0.0	0.1	168 0.2	1166 1.2
0	11	75 0.1	0	46 0.0	132 0.1	0.0	28 0.0	0.1	7 0.0	- ${ }^{4}$	0.4	21 0.0	678 0.7	31 0.0	0.1	0	-8	24 0.0	06.1	107	152 0.2	193 0.2	400 0.4	2008 2.1
$\begin{array}{r} n \\ N \\ N \end{array}$	12	282 0.3	78 0.1	1943 1.2	381 0.4	24 0.0	298 0.3	114 0.1	414	188 0.2	559 0.6	781 0.8	189 0.2	1134 1.2	349 0.4	71 0.1	638 0.7	1667 1.7	345 0.4	732 0.8	543 0.6	1182 1.2	1836 1.9	12948 13.6
	51	1447 1.5	60 0.1	171 0.2	768 0.8	98 0.1	3288 3.5	89 0.1	13 0.0	258 0.3	23 0.0	0. 14	1208 1.3	158 0.2	29 0.0	0.4	41 0.0	-43	257 0.3	- 0	612 0.6	702 0.7	1442 1.5	10725 11.3
	52	138 0.1	7 0.0	47 0.0	326 0.3	24 0.0	1127 1.2	17 0.0	0.4	44 0.0	0. 0	13 0.0	363 0.4	24 0.0	23 0.0	-0	12 0.0	35 0.0	75 0.1	943 1.0	163 0.2	99 0.1	331 0.3 -	3815 4.0
	S3	61 0.1	6 0.0	- 0.0	68 0.1	0.3	134 0.1	0		0.0	0.0	-0	105 0.1	0. ${ }^{7}$	0.0	-0	0.0	0.0	0.0	0	48 0.1	29 0.0	85 0.1	$\begin{aligned} & 589 \\ & 0.6 \end{aligned}$
	54	373 0.4	$0_{0} 0$	48 0.1	326 0.3	- 0.0	892 0.9	-32	0.4	85 0.1	-9	9 0.0	595 0.6	- 30	0.0	- ${ }^{3}$	26 0.0	26 0.0	113 0.1	- 0	231 0.2	333 0.3	526 0.6	3728 3.9
	S5	519 0.5	0.0	143 0.2	281 0.3	67 0.1	1030 1.1	82 0.1	$0{ }^{17}$	40 0.0	0.1	20 0.0	1215 1.3	- 35	15 0.0	0.0	-18	37 0.0	102	- 0	250 0.3	327 0.3	1264 1.3	5495 5.8
	${ }^{1}$	$\begin{array}{r}11 \\ 0.0 \\ \hline\end{array}$	0 0.0	59 0.1	183 0.2 .-	0	-88	124 0.1	36 0.0	68 0.1	36 0.0	84 0.1	418	218 0.2	61 0.1	- 0	85 0.1	148 0.2	$\begin{array}{r}\circ \\ 0 \\ \hline\end{array}$	- 0	- 0	7 0.0	- 0	1642 1.7
	42	0.14	0 0.0	34 0.0	652 0.7	- ${ }_{0}^{4}$	135 0.1	555 0.6	- 59	96 0.1	29 0.0	121 0.1	610 0.6	330	100	0.0	189 0.2	195 0.2	- 0	99 0.1	0	15 0.0	17 0.0	3301 3.5
	${ }^{3}$	$\begin{array}{r}32 \\ 0.0 \\ \hline\end{array}$	3 0.0	33 0.0	1312 1.4	0.0	226 0.2	404	59 0.1	127 0.1	55 0.1	157 0.2	630 0.7	640 0.7	198 0.2	69 0.1	238 0.3	424 0.4	- 0	- 0	0.19	24 0.0	37 0.0	4680 4.9
	4	- 25	- 0	263 0.3	783 0.8	0.4	215 0.2	323 0.3	61 0.1	135 0.1	92 0.1	268 0.3	1227	748 0.8	180 0.2	0.0	287 0.3	539 0.6	0.0	-. 0	0. ${ }^{5}$	0.5	$\begin{array}{r} 25 \\ 0.0 \end{array}$	$\begin{array}{r} 5277 \\ 5.5 \end{array}$
	25	45 0.0	13 0.0	175 0.2	1264 1.3 -29	$\begin{array}{r}4 \\ 0.0 \\ \hline\end{array}$	393 0.4	560 0.6	114 0.1	219 0.2	160 0.2	334 0.4	${ }^{1489} 1.6$	1000 1.0	208 0.2	78 0.1	488 0.5	1506 1.6	- 5	0.0	0.4	$\begin{array}{r} 34 \\ 0.0 \end{array}$	$\begin{array}{r} 30 \\ 0.0 \end{array}$	$\begin{array}{r} 8131 \\ 8.5 \end{array}$
	totals	3343 3.5	292 0.3	3309 3.5	9708 10.2	376 0.4	8331 8.7	2767 2.9	948 1.0	2596 2.7	1233 1.3	2163 2.3	1889 12.5	10599 11.1	2801 2.9	558 0.6	3682 3.9	7795 8.2	1452 1.5	3120 3.3	4000 4.2	4538 4.8	9777 10.3	95277

legend : $\begin{aligned} \mathrm{XXXX} & \text { - Vehicle trips } \\ & X X . X-\operatorname{cell} \text { percent }\end{aligned}$
assigned to the appropriate segment of the alternate route. The sums of the traffic volumes on each of the segments of the alternate route were then determined. This sum represents the traffic added to the alternate route and does not account for traffic already on existing segments of the route. For example, traffic already on US 183 and IH 10 was not included in the alternate route traffic assignments.

The diversion model was validated to determine its accuracy by calculating the study period volumes at three locations (two on IH-35 and one on US 183). The volumes on three segments, corresponding to three survey stations, were tabulated by hand. These volumes were determined from the model of existing conditions without the Alternate Route. When expanded to represent a 24 -hour volume, the model volumes were approximately 10 percent higher than the observed volumes.

The higher volumes can be accounted for in two ways. First, the highway network in the model has fewer roads for the vehicles to travel on, therefore forcing the vehicles which would normally travel on a highway not in the network to use one of the major highways. In addition, the volumes in the model were based on a the trip table developed from the results of the 0-D study. The single table used in the model was derived from a trip table at each of the six survey stations. There is likely some repetition in vehicle trips, thereby increasing the total number of vehicles in the highway network.

Since the methodology over-estimated volumes on IH-35 and US 183 by nearly identical percentages, the procedure was considered to be sufficiently accurate for use in estimating base year (1987) traffic on the proposed alternate route. The procedure used to forecast design year (year 2006) traffic volumes on the alternate involved applying growth rates to the base year volumes. The development of these growth rates, and justification for their use, is discussed below.

B. 6 TRAFFIC FORECASTING PROCEDURES

Table B-5 summarizes historical and projected traffic volumes in the vicinity of the six $0-D$ survey stations. The projected volumes are given in

Table B-5. Historical and Projected Traffic Volumes, Austin/San Antondo Study Corri dor

Year	Average Annual Daily Iraffic (AADI)						Totals		
	Station 1	Station 2	Station 3	Station 4	Station 5	Station 6			
	(1 $\mathrm{H}-35$)	($1 \mathrm{H}-35$)	(SH-123)	(US-183)	(us-281)	(1H-35)	IH	Non-IH	All Stations
1977	24.500	22.700	5.100	4.700	5.700	17.100	64.300	15.500	79.800
1978	25.600	24.800	5.500	4.900	6.500	17.100	68.100	16,900	85.000
1979	25.800	24.100	5,400	4.900	5.900	18.300	68.200	16,200	84.400
1980	24.000	23.000	5.900	4.400	5.300	17.600	64.600	15.600	80.200
1981	24.000	20.000	5.200	4.100	5.400	17.500	61.500	14.700	76.200
1982	25.000	21.000	5,400	4.600	6.000	19.000	71.000	16.000	87.000
1983	28.000	33.000	5,500	5.000	6.700	21.000	82.000	17.200	99.200
1984	36.000	34,000	5,100	5.600	8.100	24.000	94.000	18.800	112.800
1985	37.000	37.000	7.300	6.500	11.600	27.000	101.000	25.400	126.400
1986	34.000	38.000	7.200	6.800	11.400	28.000	100.000	25.400	125.400
Annual									
Growth									
(197]-									
1986)	(3.7x)	(5.9x)	(4.0x)	(4.2x)	(8.0x)	(5.6x)	(5.0x)	(5.6\%)	(5.2x)
1991									
Low	$40.600(3.6 \%)^{\text {d }}$	44.900 (3.4\%)	7.300 (0.3x)	7.100 (0.9x)	12.700 (2.2x)	31.700 (2.5x)	117.200 (3.28)	27.100 (1.3x)	144.300 (2.9x)
Medium	41.600 (4.1)	46.200 (4.0)	7.500 (0.8)	7.200 (1.2)	13.200 (3.0)	32.400 (3.0)	120.200 (3.8)	27.900 (1.9)	148.100 (3.4)
High	42.500 (4.6)	47.400 (4.5)	7.600 (1.1)	7.400 (1.7)	13.600 (3.6)	33.200 (3.5)	123.100 (4.2)	28.600 (2.4)	151.700 (3.9)
1996									
Low	42.800 (2.3)	48.300 (2.4)	7.400 (0.3)	7.300 (0.7)	13.700 (1.9)	34.000 (2.0)	125.100 (2.3)	28.400 (1.1)	153.500 (2.9)
Medium	48.500 (3.6)	55.500 (3.9)	8.400 (1.6)	8.300 (2.0)	16,300 (3.6)	38.600 (3.3)	142.600 (3.6)	33.000 (2.7)	175.600 (3.4)
High	54.300 (4.8)	62.800 (5.2)	9.300 (2.6)	9.300 (3.2)	18.900 (5.2)	43.200 (4.4)	160.300 (4.8)	37.500 (4.0)	197.800 (4.7)
2001									
Low	44.900 (1.9)	51.600 (2.1)	7.600 (0.4)	7.600 (0.7)	14.600 (1.7)	36.300 (1.8)	132.800 (1.9)	29.800 (1.1)	162.600 (1.8)
Medium	55.500 (3.3)	64.900 (3.6)	9.300 (1.7)	9.400 (2.2)	19.400 (3.6)	44.800 (3.2)	165.200 (3.4)	38.100 (2.7)	203.300 (3.3)
High	66.000 (4.5)	78.200 (4.9)	10.900 (2.8)	11.200 (3.4)	. 24.200 (5.2)	53.200 (4.4)	191.400 (4.6)	46.300 (4.1)	243.700 (4.5)
2006									
Low	47.000 (1.6)	55.000 (1.9)	7.700 (0.3)	7.900 (0.8)	15.500 (1.6)	38.700 (1.6)	140.700 (1.7)	31.100 (1.0)	171.800 (1.6)
Medium	62.400 (3.1)	74.300 (3.4)	10.200 (1.8)	10.500 (2.2)	22.500 (3.5)	50.900 (3.0)	187.600 (3.2)	43.200 (2.1)	230.800 (3.1)
High	77.800 (4.2)	93.600 (4.6)	12.600 (2.8)	13.100 (3.3)	29.600 (4.9)	63.200 (4.2)	234.600 (4.4)	$55.300(4.0)$	289.900 (4.3)

Source: Transportation Planning Division SOHPT (October 1987)
${ }^{a}(x . x y)$ Denotes compound annual growth rate since 1986.
terms of low, medium, and high growth rates, as developed by SDHPT from regression analyses of the historical data. The historical data indicate that, with the exception of US 281, traffic on all types of roadways in the corridor has grown at a compound annual rate of $4 \%-6 \%$. If the high-growth years of 1985-86 are removed from consideration, the US 281 growth rate of 8% per year becomes more consistent with the other roadways in the corridor, with a compound annual growth rate of 5.2% for the period 1977-84.

The projected year 2006 growth rates are al so fairly consistent by roadway type. The interstate growth rates, for example, range from a low of about 2% per year to a high of $4 \%-5 \%$ per year. With the exception of US 281 , the projections for the non-interstate roadways range from a low of about 1%, to a high of about 3% per year.

The I-35 traffic data in Table B-5 were compared with corridor population projections (Table B-6) to investigate the relationships between I-35 traffic and corridor population. The following simple linear regression model was used in the analyses.
$A A D T=B_{0}+B_{1} P O P$
where:

$$
\begin{aligned}
& \text { AADT = Average Annual Daily Traffic (I-35) } \\
& B_{0}, B_{1}=\text { Regression Coefficients } \\
& P O P=\text { Corridor Population }
\end{aligned}
$$

Table B-7 summarizes the results of the analyses of the projected data. The regression analyses of the traffic and population projections indicated that for every 1% increase in projected corridor population, traffic on I-35 has been projected to increase by $3 \%-4 \%$.

Similar analyses of historical I-35 traffic data (Table B-8) and historical corridor population data (Table B-9) showed the projected relationships to be consistent with observed trends (Table B-10). The results of these analyses, then, indicate that the projections of $1-35$

Table B-6. Historical and Projected County Populations, Austin/San Antonio Study Corridor

County	Population by Year and Source							
	1980	1990			Capital Area Planning Commission	2000		
		Texas Department of Water Resources ${ }^{\text {a }}$	Texas Department of Healen ${ }^{\text {a }}$	National Plannifing Association ${ }^{\text {a }}$		Texas Department of Water Resources	Texas Department of Health	Natl onal Plansing Assoclation
willl amson	76,500	130,900 (5.55) ${ }^{\text {e }}$	152,600 (7.2x)	109, 800 (3.77)	169,000 (8.38)	201,600 (5.0x)	310,600 (7.3x)	147, 200 (3.3x)
rravts	419,800 ${ }^{\text {c }}$	503, 700 (3.4)	576,600 (3.2)	512, 400 (2.0)	640,200 (4.3)	760,900 (3.0)	819,700 (3.4)	614,400 (1.9)
Bastrop	24,700	35,000 (3.6)	36,400 (4.0)	29,800 (1.9)	44,400 (6.0)	47,000 (3.3)	59,100 (4.5)	35,400 (1.8)
Hays	40,600	61, 100 (4.2)	48,700 (1.8)	49,600 (2.0)	82,400 (7.3)	90,900 (4.1)	65,200 (2.4)	59,400 (1.9)
Caldmell	23,600	27,900 (1.7)	28,900 (2.1)	25,600 (0.8)	30,600 (2.6)	30,300 (1.3)	38,200 (2.4)	28,300 (0.9)
Comal	36,400	51,900 (3.6)	55,900 (4.4)	46,500 (2.5)	-	66,800 (3.1)	85, 200 (4.3)	56, 500 (2.2)
Guadalupe	46, 70	61, 200 (2.7)	66,900 (3.7)	58,200 (2.2)	-	71,100 (2.1)	97, 100 (3.7)	69,600 (2.0)
Baxar	988, $800^{\text {d }}$	1,222,200 (2.1)	1,226,200 (2.2)	1,138,500 (1.4)	-	1,484, 200 (2.1)	1,570,300 (2.3)	1,288, 100 (1.3)
rotal	1,657, 100	2,173,900 (2.8)	2,192, 200 (2.8)	1,970,400 (1.8)	-	2, 752, 800 (2.6)	3,045,400 (3.1)	2,298,900 (1.7)

[^1]Table B-7. Summary of Regression Analyses of Projected I-35 Traffic and Corridor Population

Survey Station (I-35)	Estimate of B_{1}	p-value
1. New Braunfels		
Lowa		
Medi um		
Hign	0.032	0.22
2. Kyle	0.029	0.06
Low	0.030	0.04
Medi um		
High	0.044	0.20

a Low, medium, high refers to range of projections given in Tables Cl and C2.

Table B-8. Historical I-35 Traffic Volumes (AADT)

Year	New Braunfels Stati on (Stati on 1)	Kyle Stati on (Stati on 2)
1970	16,100	14,700
1971	18,600	16,400
1972	19,100	18,400
1973	21,700	20,500
1974	20,700	19,100
1975	21,600	20,600

Table B-9. Histori cal Corri dor Population Data

County	Year								
	1960	1970	1971	1972	1973	1974	1975	1976	1977
Bastrop	16,900	17,300	18,100	18,800	19,300	19,700	19,600	19,900	20,200
Bexar	687,100	830,500	860,400	874, 300	896, 300	909,700	913,400	935,500	952,100
Caldwell	17,200	21, 200	21,400	22,100	21,700	21,800	21,600	22,000	22,000
Comal	19,800	24,200	25,300	27,300	27,900	28, 300	28,900	29,900	31,100
Guadalupe	19,900	33,600	34,400	35,400	37,400	38,400	38,700	39,500	39,800
Hays	29,000	27,600	28,900	30,700	33, 200	34, 500	34, 100	34,600	34, 300
Travis	212, 130	295, 500	307,900	318,400	339,400	350, 100	360,800	375,400	380,200
Willi amson	35,000	37,300	38,700	40,500	44,300	45,600	47,000	49,400	53,300
Total	1,037,000	1,287,200	1,335,100	1,367,500	1,419,500	1,448, 100	1,464,100	1,506,200	1,533,000
County	1978	1980	1981	1982	1983	1984	1985	1986	
Bastrop	20,100	24,700	26, 300	28,000	29,500	31, 100	34,200	36,500	
Bexar	965,700	988, 800	1, 024, 300	1,045,500	1,074,500	1,092,100	1,134,900	1,170,000	
Caldwell	22, 300	23,600	24, 800	24,800	25,800	26,400	27,400	29,200	
Comal	31,900	36,400	37,900	39,500	41,500	43,200	46,200	49,300	
Guadalupe	40,100	40,600	48,200	49,600	51, 300	53,200	54,600	57,100	
Hays	35,000	46,700	43,100	43,900	47,400	49,500	56,000	60,800	
Travis	384, 700	419,600	430, 000	452,700	472, 700	499, 100	533,200	551,000	
Wi 11 i amson	58,200	76,500	81,200	86, 800	86, 800	96,800	106,300	114,600	
Total	1,558,000	1,656,900	1,715,500	1,770,800	1,770,800	1,891,400	1,992,800	2,068,500	

Source: U.S. Department of Commerce, Bureau of the Census.
traffic (Table B-5) inherently take into account the population growth projected for the corridor; at least for the medium and high range of forecasts.

Table B-10. Sumary of Regression Analyses of Historical I-35 Traffic and Corridor Population

Survey Station (I-35)	Estimate of B_{1}	p-value
1. New Braunfels	0.023	0.0001
2. Kyle	0.028	0.0001

Based on these considerations, compound annual growth rates of 2% (low), 3% (medium), and 5% (high) would appear to be reasonable values for projecting design year traffic volumes on the proposed alternate route. While it is recognized that this approach is somewhat simplistic, the lack of detailed and consistent sociodemographic data at the urban-area level prevented the direct development of more refined (e.g., gravity model) types of analyses.

B. 7 LEVEL-OF-SERVICE ANALYSES

In order to provide a general point of reference for assessing the reasonableness of the diversion potential of the proposed alternate route, peak-hour level-of-service analyses were performed for the major roadways in the study corridor. The analyses take into account current and projected traffic volumes and improvements that have been proposed in the corridor. Table B-11 summarizes the results of the analyses. The analyses indicate that, if I-35 is upgraded to a 6-1 ane facility, the level-of-service provided by the interstate 20-years from now will not be substantially lower than current levels-of-service.

Also shown in Table B-11 is the projected year 2006 level-of-service with the 1986 (4 lane) cross section. The analyses indicate substantial reductions in levels-of-service (typically "C" or worse) for those segments of I-35 between Austin and San Antonio if the current cross section is maintaine maintained.

Table B-11. Current and Projected Levels-of-Service, Austin/San Antonio Study Corridor

	Roadway	Cross-Section		Di rectional Peak-Hour Volume ${ }^{\text {b }}$ (VPH)				Peak-Hour Speed (MPH)				Peak-Hour Level-of-Service			
				1986	$2006{ }^{\text {c }}$			1986	2006			1986	2006		
		1986	$2006{ }^{\text {a }}$		Low	Medi um	High		Low	Medi um	Hig		Low	Medi um	High
	$\begin{aligned} & \text { I-35 } \\ & \text { (New Braunfels) } \end{aligned}$	4 Lanes Divided	6 Lanes Di vided	1190	1650	2180	2720	56	56	54	52	A	$A / B^{\text {d }}$	B/C	B/D
	$\begin{aligned} & \text { I-35 } \\ & \text { (Kyle) } \end{aligned}$	4 Lanes Di vided	6 Lanes Di vided	1330	1925	2600	3275	55	55	53	50	B	B/C	B/D	C/E
	SH 123 (Seguin)	4 Lanes Undi vided	4 Lanes Undi vided	250	270	360	440	59	59	59	58	A	A	A	A
	US 183 (Lockart)	4 Lanes undi vided	4 Lanes Undi vided	240	280	370	460	59	59	59	58	A	A	A	A
$\begin{aligned} & \infty \\ & 1 \\ & \vdots \end{aligned}$	US 281 (San Antonio)	4 Lanes Divided	4 Lanes Divided	400	540	790	1035	59	58	57	56	A	A	A	A
	$\begin{aligned} & \text { I-35 } \\ & \text { (Georgetown) } \end{aligned}$	4 Lanes Di vided	6 Lanes of vided	980	1360	1780	2210	56	57	56	54	A	A/B	A/B	B/C

[^2]
B. 8 RESULTS

B.8.1 Summary

Table B-12 summarizes the estimates of 1987 and year 2006 alternate route traffic. The estimates distinguish between survey period (7:00 a.m.8:00 p.m.) traffic that could divert to the alternate route, 24 -hour diverted traffic volumes, and estimated total daily traffic. The estimates of 24 -hour diverted traffic volumes were developed by assuming that traffic during the period 7:00 a.m. to 8:00 p.m. constitutes 70\% of the daily traffic (Table B13). The estimates of total daily traffic take into account current and projected traffic on existing segments of the proposed alternate route.

The analyses suggest that, if the proposed alternate route was in-place today, at its maximum load-point approximately 7300 vehicles per day (vpd) would divert to the facility (Figure B-3). This estimate represents approximately 20% of the current ADT on I-35 between Austin and San Antonio. The corresponding year 2006 projections indicate that approximately 11,000 (low estimate) to 18,000 (high estimate) vpd would divert to the alternate route. Estimates of total daily traffic for the year 2006 range from a low of just over 23,000 vpd to a high of nearly $51,000 \mathrm{vpd}$. This considerable range in the year 2006 estimates is due to the wide range of ADTs currently on existing segments of the proposed route.

B.8.2 Discussion

There are several factors that should be taken into account when assessing the reasonableness of the estimates of alternate route traffic shown in Table B-12. For example, the level-of-service analyses (Table B-11) indicate that, if proposed I-35 improvements are implemented, the level-ofservice on the interstate will not be reduced substantially over the next 20 years. This would suggest that congestion on I-35 will not become a more significant factor in the route selection process. Additionally, the traffic diversion methodology assumes that the proposed alternate route is a limited access type of facility (i.e., comparable to I-35). Furthermore, the diversion methodology does not explicitly account for the different speed

Table B-12. Estimated 1987 and Year 2006 Alternate Route Traffic

Segment	$\begin{array}{\|c} \text { Esti mated } \\ 1987 \\ \text { ADT }^{\text {a }} \end{array}$	Di verted Traffic				Estimated Total Daily Traffic ${ }^{\text {e }}$			
		1987	$2006{ }^{\text {d }}$			1987	2006		
			Low	Medi um	Hig		Low	Medi um	Hig
1. SH 71 to SH 21	13,900	4,400 ${ }^{\text {b }} / 6,300^{c}$	6,400/9,200	7,700/11,000	11,100/15,900	20,200	33,600	35,400	40,300
2. SH 21 to FM 20	7,600	4,700/6,700	6,800/9,800	8,200/11, 700	11,900/16,900	14,300	23,100	25,000	30,200
3. FM 20 to SH 123	7,600 ${ }^{\text {f }}$	5, 100/7, 300	7,400/10,600	8,900/12,800	12,900/18,400	14,900	23,900	26, 100	31,700
4. SH 123 to Loop 1604	21,200	3,700/5,300	5,400/7,700	6,500/9,300	9,300/13,400	26,500	44,900	46,500	50,600

${ }^{\text {a }}$ Current traffic on existing segments of proposed alternate route. Estimated from 1985 average segment ADT (assumes 3% compound annual growth).
b:00 a.m.-8:00 p.m.
${ }^{c} 24$-hour volume. Assumes survey períod (7:00 am.-8:00 p.m.) volume $=70 \%$ of ADT (See Table B-13).
${ }^{d_{\text {Assumes }}}$ following compound annual growth rates: Low $=2 \%$, Medi $u m=3 \%, \mathrm{High}=5 \%$.
Estimated 24 -hour di verted traffic +1987 ADT (at 3% per year for year 2006).
$f_{\text {Segment }} 3$ is proposed new segment. 1987 ADT on this segment assumed equal to ADT on segment 2.

Table B-13. Survey Period Traffic Volumes as Percent of 24 -Hour Volumes

Survey Station and Di rection	Survey Period		
	$\begin{gathered} \text { 24-Hour } \\ \text { Traffic volume } \end{gathered}$	Traffic volume (7:00 a.m.-8:00 p.m.)	Percent Daily Traffic in Survey Period
1. New Braunfels (I-35)			
N日	19,456	14,129	73\%
SB	19,653	14,193	72
Total	39,109	28,322	72
2. Kyle (I-35)			
NB	21,044	13,871	66
SB	20,899	14,553	70
Total	41,943	28,424	68
3. Seguin (SH 123)			
NB	3,072	2,127	69
SB	3,239	2,316	72
Total	6,311	4,443	70
4. Locthart (US 183)			
NB	3,530	2,401	68
SB	3,857	2,753	71
Total	7,387	5,154	70
5. San Antonio (US 281)			
NB	5,954	4,755	80
SB	5,980	4,491	75
Total	11,934	9,246	77
6. Georgetown (I-35)			
NB	13,987	9,685	69
SB	13,724	9,969	73
Total	27,711	19,654	71
Total All Stations	134,395	95,243	71

drivers are indifferent when choosing among the alternative routes available to them. This is, drivers may need to perceive that they would save at least a specified, minimum amount of time (or percent of their total travel time) before they would consider switching (diverting) to another route. Probabilistic traffic assignment procedures, for example, attempt to account for this by allowing more than one "minimum" path in the highway network. The point of this discussion is that some drivers may not perceive the travel time savings offered by the proposed alternate route to be sufficient to justify diverting from I-35.

REFERENCES

1. Stokes, R.W. and T. Chira-Chavala. Study Design for Austin/San Antonio Origin-Destination Study. Research Report 1186-1 (Draft), Texas Transportation Institute (March 1987).
2. Federal Highway Administration. Urban O-D Surveys. U.S. Department of Transportation (July 1975).
3. Harmelink, M.D. A Study of Rural Roadside Interview Sampling Techniques. Report RR 142, Ontario Ministry of Transportation and Communication (February 1969).
4. Hajek, J.J. Optimal Sample Size of Roadside Interview 0-D Surveys. Ontario Ministry of Transportation and Communication (January 1977).
5. Miller, I., et al. Sampling Methods for Roadside Interviewing. In Highway Research Board Buletin 76, pp. 31-52 (1953).
6. Chui, M.K. Texas Population Projections: 1985-2005. Research Report 268-3F, Texas Transportation Institute (August 1984).
7. Baulch, C. Growth Trends Report No. 4. Capital Area Planning Commission, Austin (April 1987).

[^0]: ${ }^{\text {a }} \mathrm{NB}=$ Northbound, $\mathrm{SB}=$ Southbound.
 ${ }^{\text {b }}$ Di recti onal ADT assumes $50 / 50$ split. Source: District Highway Maps, SDHPT.
 ${ }^{c} n=$ No. of postcards to be di stributed.
 $d_{p}=m i n i m u m$ O-D trip interchange volume which can be estimated from survey results with desi red accuracy level (expressed as proportion of ADT).

[^1]: Source: (6)
 Source: (7)
 C Austin population $=345,500$
 ${ }^{\text {d }}$ San Antunio population $=785,000$
 $e^{(x . x x}$) denotes compound annual growth rate si nce 1960.

[^2]: ${ }^{\text {a }}$ Source: SDHPT Project Development Plans.
 ${ }^{\mathrm{b}}$ Assumes di rectional peak-hour $=3.5 \%$ of AADT.
 ${ }^{\mathrm{C}}$ Source: Table B-5.
 ${ }^{\text {d Denotes }}$ year 2006 level-of-service with 1986 cross-section.

