TECHNICAL REPORT STANDARD TITLE PAGE

63

			2 Provide Catalog	kj	
I. Report No.	2 Obvernment Acc	ESSION NO.	S RECLIENT'S COULD	140.	
FHWA/TX-91/1185-3F					
4. Title and Subtitle	<u></u>		5. Report Date February 1991	/Revised	
AESTHETICALLY PLEASING C PEDESTRIAN-TRAFFIC BRIDG	CONCRETE COMBIN E RAIL - TEXAS TYP	ATION PE C411	6. Performing Organizat	ion Code	
7 Author's:			8. Performing Organizat	ion Report No.	
T.J. Hirsch, C.E. Buth, and Wa	nda Campise		Research Rep	ort 1185-3F	
9. Performing Organization Name and Ad	dress		10. Work Unit No.		
Texas Transportation Institute			11 Convertier Great N	a	
Texas A&M University			Descent Oran A		
College Station, Texas 77843-3	1135		13. Type of Report and	2-0-09/90-1100 Period Covered	
12. Sponsoring Agency Name and Address	. <u></u>		Septe	mber 1989	
Texas State Dept. of Highways	& Public Transport	ation	Final -		
Transportation Planning Divisio	n		Augus	it 1990	
P. U. Box 5051			14. Sponsoring Agency (lode	
Ausun, Texas 78763					
13. Supplementary Notes					
Research performed in cooper Research Study Title: Aestheti	ation with DOT, FHV cally Pleasing Bridge	VA. e Rails			
16. Abstract		Westman Internet States and the second second second			
objective of this research study was to develop aesthetically pleasing, structurally sound railings that can serve as alternative railings in city or urban areas. This report presents a new concrete combination pedestrian-traffic bridge railTexas Type C411. This bridge rail was constructed of reinforced concrete 42 in. high by 12 in. thick and contains 6 in. wide by 28 in. high openings at 18 in. center-to-center longitudinal spacing. The combination pedestrian-traffic					
bridge rail was located off a o	it wide sidewalk with	o in. high curb se	parating it noni the tra	ame.	
The bridge rail was developed for use on urban streets where the speed limit would be 45 mph or less. Service Level 1 of NCHRP 230 and Performance Level 1 of the 1989 AASHTO <u>Guide Specifications for</u> Bridge Railings were considered inappropriate.					
NCHRP Project C22-7, "Update of Roadside Safety Hardware Crash Test Specifications," and NCHRP Project 12-33, "Development of a Comprehensive Bridge Specification and Commentary," were seriously considering a different test matrix at the time these tests were conducted. It was decided to use a 4,500 lb car at 45 mph and 25 degree impact angle and an 1,900 lb car at 45 mph and 20 degree impact angle.					
The new C411 bridge rail per met the usual safety evaluation roadways.	erformed very well ur criteria. The C411	nder these two crasi should be safe for	h tests. The crash tes use on low speed, 45	t results easily 5 mph or less,	
17. Key Words		18. Distribution State	ment	<u> </u>	
Bridge Rails, Traffic Barriers, Highway Safety, Pedestrian - C	Bridge Rails, Traffic Barriers, Highway Safety, Pedestrian - Cars			is the Service	
19. Security Classif (of this month)	20 5	Springtiel	a, Virginia 22161	27 Pure	
	AV. SWEURITY CIES	ni, tar una baña:	ATT 110. 01 / 4948	46, 1714W	

Unclassified

Unclassified

AESTHETICALLY PLEASING CONCRETE COMBINATION PEDESTRIAN-TRAFFIC BRIDGE RAIL - TEXAS TYPE C411

by

T. J. Hirsch Research Engineer & Principal Investigator

C. E. Buth Research Engineer

and

Wanda L. Campise Research Associate

Research Report 1185-3F

on

Research Study No. 2-5-89/90-1185 Aesthetically Pleasing Bridge Rails

Sponsored by Texas State Department of Highways and Public Transportation

> in cooperation with The U.S. Department of Transportation Federal Highway Administration

October 1990

Texas Transportation Institute Texas A&M University College Station, Texas

METRIC (SI*) CONVERSION FACTORS

Symbol	When You Know	Multiply By	To Find	Symbol	Sym	hol When	You Know	BALLING BAL	W	
				Jymoor	C)		OU KNOW	MUNITIPITY BY	lo fina	Symbol
		LENGTH			<u> </u>			LENGTH		
					m	m millim	etres	0.039	inches	in
in	inches	2.54	centimetres	cm	<u>—</u> " п	n metres	3	3.28	feet	ft
ft	feet	0.3048	metres	m	R n	n metres	3	1.09	yards	yđ
yd	yards	0.914	metres	m	≝ kr	m kilome	tres	0.621	miles	mi
ml	miles	1.61	kilometres	km						
					61 11			AREA		
		AREA			= = = m	m² millim	etres squared	0.0016	souare inches	in²
17		A45 A			<u> </u>	n² metres	souared	10.764	square feet	ft ²
442	square inches	040.2	Centimetres squareo	GIB -	ki	m² kilome	tres squared	0.39	square miles	mi²
11- volt		0.0929	metres squared	m²	<u>≣</u> h	a hector	es (10 000 m²)	2.53	acres	ac
mit	square miles	2.630	kilometree squared	kml	- 2					
80	acres	0.395	hectares	ha				CC Augin	6.4 \	
40	40100	0.000	nootaree				A IVI	122 (Meið	<u>ny</u>	
					<u> </u>	g grams		0.0353	ounces	oz
	N	IASS (weig	aht)		<u> </u>	g kilogra	ams	2.205	pounds	lb
					M	lg megag	grams (1 000 kg) 1.103	short tons	Т
oz	ounces	28.35	grams	g						
lb	pounds	0.454	kilograms	kg	2 S			VOLUME		
T	short tons (2000)	15) 0.907	megagrams	Mg						
					 m	nL millilit	res	0.034	fluid ounces	fl oz
			-		<u> </u>	L litres		0.264	gailons	gal
		VOLUME			<u> </u>	n ^a metre:	s cubed	35.315	cubic feet	ft3
flor	fluid ounces	29.57	millilitree	mi	<u> </u>	n ^a metres	s cubed	1.308	cubic yards	yd*
nat	nations	3 785	litras	1						
ft ³	cubic faat	0.0328	metres cubed	- m ³			TEMPE	RATURE	(exact)	
vd ^a	cubic vards	0.0765	metres cubed	m ³						
NOTE: Vo	lumes areater then	1000 Leball b	ehown in mi		••••••••••••••••••••••••••••••••••••••	C Celsius	9/5	(then	Fahrenheit	٩F
NOTE. VO	NUMES Prester trian	NUU L SHAN D	s shown in he.			temp	erature a	dd 32)	temperature	
						٩F	32	98.6	°F 212	
	TEMP	ERATURE	(exact)			- 40 40	-20 0	80 120	0 160 200 60 80 100	
°F I	Fahrenheit 5/ temperature	/9 (after subtracting 32	Celsius) temperature	°C	Thes	se factors co	nform to the r	37 equirement of	•C FHWA Order 5190.1	A.

* SI is the symbol for the International System of Measurements

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

KEY WORDS

Bridge Rails, Traffic Barriers, Highway Safety, Pedestrian - Cars

ACKNOWLEDGMENTS

This research study was conducted under a cooperative program between the Texas Transportation Institute (TTI), the State Department of Highways and Public Transportation (SDHPT), and the Federal Highway Administration (FHWA). Dean Van Landuyt (Designing Engineer, SDHPT), John J. Panak (Bridge Designing Engineer, SDHPT), and Van M. McElroy (Supervising Bridge Engineer, SDHPT, Dallas) were closely involved in all phases of this study.

IMPLEMENTATION STATEMENT

As of the writing of this report, none of the findings or conclusions presented have been implemented.

ABSTRACT

Research has developed railings to withstand impact loads from vehicles of everincreasing size; however, aesthetic considerations have been overshadowed by safety and structural requirements. The objective of this research study was to develop aesthetically pleasing, structurally sound railings that can serve as alternative railings in city or urban areas.

This report presents a new concrete combination pedestrian-traffic bridge rail - Texas Type C411.

This bridge rail was constructed of reinforced concrete 42 in. high by 12 in. thick and contains 6 in. wide by 28 in. high openings at 18 in. center-to-center longitudinal spacing. The combination pedestrian-traffic bridge rail was located on a 6 ft wide sidewalk with 8 in. high curb separating it from the traffic.

The C411 was developed for use on urban streets where the speed limit would be 45 mph or less. Service Level 1 of NCHRP 230 and Performance Level 1 of the 1989 AASHTO <u>Guide Specifications for Bridge Railings</u> were considered inappropriate.

NCHRP Project C22-7, "Update of Roadside Safety Hardware Crash Test Specifications," and NCHRP Project 12-33, "Development of a Comprehensive Bridge Specification and Commentary," were seriously considering a different test matrix at the time these tests were conducted. It was decided to use a 4,500 lb car at 45 mph and 25 degree impact angle and an 1,900 lb car at 45 mph and 20 degree impact angle.

The new C411 bridge rail performed very well under these two crash tests. The crash test results easily met the usual safety evaluation criteria. The C411 should be safe for use on low speed, 45 mph or less, roadways.

TABLE OF CONTENTS

Page

DISCLAIMER	iii
KEY WORDS	iii
ACKNOWLEDGMENTS	iii
IMPLEMENTATION STATEMENT	iii
ABSTRACT	iv
LIST OF FIGURES	vi
LIST OF TABLES	vi
INTRODUCTION	1
DESCRIPTION OF BRIDGE RAIL	2
CRASH TESTS	10
TEST DESCRIPTION 1185-5 TEST RESULTS 1185-5 CONCLUSIONS	12 18 18
TEST DESCRIPTION 1185-6 TEST RESULTS 1185-6 CONCLUSIONS	20 26 26
SUMMARY AND CONCLUSIONS	28
REFERENCES	32
APPENDIX A - INSTRUMENTATION AND DATA ANALYSIS	A-1
APPENDIX B - SEQUENTIAL PHOTOGRAPHS OF TEST 1185-5	B- 1
APPENDIX C - ELECTRONIC ACCELEROMETER, ROLL, PITCH, AND YAW DATA TEST 1185-5	C-1
APPENDIX D - SEQUENTIAL PHOTOGRAPHS OF TEST 1185-6	D-1
APPENDIX E - ELECTRONIC ACCELEROMETER, ROLL, PITCH, AND YAW DATA TEST 1185-6	E-1

LIST OF FIGURES

Figure		Page
1	Texas type C411 bridge rail - plan and elevation	3
2	Texas type C411 bridge rail - cross section	4
3	Texas type C411 bridge rail - plan and elevation	5
4	Bridge rail prior to test 1185-5	6
5	Failure mechanism analysis Texas type C411 bridge rail	7
6	Possible failure modes for rails	8
7	Vehicle before test 1185-5	13
8	Vehicle/bridge rail installation geometrics for test 1185-5	14
9	Bridge rail after test 1185-5	15
10	Right side of vehicle, test 1185-5	16
11	Vehicle after test 1185-5	17
12	Summary of results for test 1185-5	19
13	Vehicle before test 1185-6	21
14	Vehicle/bridge rail installation geometrics for test 1185-6	22
15	Bridge rail after test 1185-6	23
16	Damage to right side of vehicle, test 1185-6	24
17	Vehicle after test 1185-6	25
18	Summary of results for test 1185-6	27

LIST OF TABLES

Table		Page
1	Test Severity Levels, Vehicles, Weights, Angles and Speed	11
2	Safety Evaluation of Crash Test No. 1185-5	30
3	Safety Evaluation of Crash Test No. 1185-6	31

INTRODUCTION

Research has developed railings to withstand impact loads from vehicles of everincreasing size; however aesthetic considerations have been overshadowed by safety and structural requirements. Engineers often fail to recognize the impact of our structures on the landscape, particularly in city or urban areas. Architects and developers often propose aesthetically pleasing railings that engineers cannot accept because of structural inadequacies. The objective of this research study was to develop aesthetically pleasing, structurally sound railings that can serve as alternative railings.

This study was attempting to develop one or more new concrete, steel, and aluminum railings or combination railings, some with curb and sidewalk.

This report presents a new open type concrete combination pedestrian-traffic bridge rail--Texas Type C411. The research study advisory committee composed of

Luis Ybanez, Bridge Engineer, Bridge Division, Austin, John J. Panak, Bridge Designing Engineer, Bridge Division, Austin, Dean Van Landuyt, Designing Engineer, Bridge Division, Austin, Van M. McElroy, Supervising Bridge Engineer, District 18, Dallas, John V. Blain, Jr., District Design Engineer, District 18, Dallas, John P. Kelley, Supervising Design Engineer, District 18, Dallas, Don Simpson, Architect, Hellmuth, Obata, Kassabaum, Inc., Dave Retzsch, Architect, Hellmuth, Obata, Kassabaum, Inc., T. J. Hirsch, Research Engineer, TTI, and W. Lynn Beason, Associate Research Engineer, TTI,

reviewed design sketches of twenty-two different bridge rail designs before selecting the new Texas Type C411 as its third priority.

.

DESCRIPTION OF BRIDGE RAIL TEXAS TYPE C411

This bridge rail was constructed of reinforced concrete 42 in. high by 12 in. thick and contains 6 in. wide by 28 in. high openings at 18 in. center-to-center longitudinal spacing. The combination pedestrian-traffic bridge rail was located on a 6 ft wide sidewalk with 8 in. high curb separating it from the traffic. Figures 1, 2, and 3 present an elevation, cross section, and plan view of the C411 rail. The sidewalk deck is a 7.75 in. thick typical Texas bridge slab design in accordance with AASHTO specifications $(4)^*$.

Figure 4 shows a photograph of the bridge rail installation prior to crash testing. The installation was 47 ft 4 in. long. The three pilasters are not super strong posts as they appear to be. They contain styrofoam blocks 10.5 in. by 13 in. by 31 in., (void) which means the pilasters are similar to the 6 in. by 28 in. openings. The use of the pilasters is thus optional since they did not contribute to the bridge rail strength as built and crash tested.

This bridge rail was designed using a failure mechanism (or yield line) method of analysis (1). The design strength of the concrete was $f_c = 3,600$ psi and the yield strength of reinforcing steel was $f_y = 60,000$ psi. The top beam was nominally 7 in. wide and 10 to 12 in. thick (b = 7 in. and d = 8.25 in.), yielding an ultimate moment capacity of 20.0 kip-ft. The posts were 10 in. wide and 10 in. thick (b = 10 in. and d = 8 in.), yielding an ultimate moment capacity of 20.6 kip-ft. With a moment arm of 3.5 ft, each post could resist a lateral load of about 5.9 kips. Figure 5 presents a summary of the failure mechanism analysis of the strength of the T411 bridge rail. The failure load would be about 51.4 kips or more over five spans or 7.5 ft length of bridge rail.

^{*} Numbers in parentheses, thus (4), refer to corresponding item in References.

Figure 4. Bridge rail prior to test 1185-5.

FIGURE 5. FAILURE MECHANISM ANALYSIS OF THE TEXAS C411 BRIDGE RAIL.

L = post spacing
Mp = plastic or yield line capacity of rail
Pp = ultimate load capacity of a single post
wl = total ultimate vehicle impact load
l = length of distributed vehicle impact load

PLAN VIEW

FIGURE 6. POSSIBLE FAILURE MODES FOR BEAM AND POST BARRIERS (D) Four Span Failure Mode

$$wl = \frac{8M_p}{4L - l/2} + \frac{4P_pL}{4L - l/2} + P_p$$

(E) Five Span Failure Mode

$$wl = \frac{8M_p}{5L - l/2} + \frac{12P_pL}{5L - l/2}$$

(F) Six Span Failure Mode

$$wl = \frac{8M_p}{6L - l/2} + \frac{12P_pL}{6L - l/2} + P_p$$

(G) Seven Span Failure Mode

$$wl = \frac{8M_p}{7L - l/2} + \frac{24P_pL}{7L - l/2}$$

(H) Eight Span Failure Mode

$$wl = \frac{8M_p}{8L - l/2} + \frac{24P_pL}{8L - l/2} + P_p$$

The equations above for the ultimate horizontal load capacity (wl) satisfy all equations of static equilibrium. A simpler equation (which does not quite satisfy equations of static equilibrium for forces and moments in the beam) is as follows:

(I)
$$wl = \frac{8M_p}{NL - l/2} + \sum_{0}^{NL} P_p$$

where N = number of spans in the failure mechanism. Equation (I) was used to analyze this rail (Figure 5).

Figure 6 (Continued). Possible failure modes for beam and post barriers.

CRASH TESTS

The Texas Type C411 was developed for use on urban streets where the speed limit would be 45 mph or less. The selection of a crash test matrix posed a problem. Service Level 1 of NCHRP 230 (3) would indicate a 4,500 lb car at 60 mph and a 15 degree impact angle for the strength test and an 1,800 lb car at 60 mph and 20 degree impact angle for geometry evaluation. The 1989 AASHTO <u>Guide Specifications for Bridge Railings</u> (9), Performance Level 1, would indicate testing with a 5,400 lb pickup truck at 45 mph and 20 degree impact angle.

Both of these documents were in the process of being revised by NCHRP Project C22-7, "Update of Roadside Safety Hardware Crash Test Specifications," and NCHRP Project 12-33, "Development of a Comprehensive Bridge Specification and Commentary." These two projects were seriously considering the severity level test matrix shown in Table 1 at the time these tests were conducted. It was, therefore, decided to use Severity Level 2 from Table 1. This was a 4,500 lb car (not truck) at 45 mph and 25 degree impact angle and an 1,900 lb car at 45 mph and 20 degree impact angle.

Table 1.	Test	Severity	Levels,	Vehicles,	Weights,	Angles	and	Speeds
----------	------	----------	---------	-----------	----------	--------	-----	--------

.

Test Vehicle Description	Severity Level (SL) and Test Speed mph					mph		
Vehicle Description	W (kips)	θ (degrees)	SL-1	SL-2	SL-3	SL-4	SL-5	SL-6
Small Automobile	1.9	20	30	45	60	60	60	60
Pickup Truck or Sports Wagon Truck	4.5	25	30	45	60	60*	60*	60*
Medium Single Unit Truck	18.0	15				50		
Van Type Tractor-Trailer	80.0	15					50	
Tank Type Tractor-Trailer	80.0	15						50

*These tests should be conducted unless it can be conclusively shown that these tests would be no more severe than the small automobile test (above) and the truck test (below).

.

TEST DESCRIPTION 1185-5

The 1982 Honda Civic (Figures 7 and 8) was directed into the bridge rail installation using a reverse tow and guidance system. Test inertia mass of the vehicle was 1,800 lb (808 kg) and its gross static mass was 1,970 lb (894 kg). The height to the lower edge of the vehicle bumper was 15.0 in. (38.1 cm) and it was 20.5 in. (52.1 cm) to the top of the bumper. Other dimensions and information on the test vehicle are given in Figure C1 of Appendix C. The vehicle was free-wheeling and unrestrained just prior to impact.

The speed of the vehicle at impact with the curb was 45.5 mph (73.2 km/h) and the angle of impact was 20.1 degrees. The vehicle impacted the curb approximately 8 ft (2.4 m) from the end of the sidewalk. As the vehicle rode up the curb, the right front wheel twisted counter-clockwise, and as it rode onto the sidewalk, the vehicle redirected slightly. At 0.322 second, the vehicle impacted the bridge rail 28 ft (8.5 m) from the end of the rail traveling at 43.0 mph (69.2 km/h) and an angle of 17.8 degrees. The vehicle was also airborne at this time and began to redirect significantly at 0.371 second. At 0.626 second the vehicle was traveling parallel with the bridge rail at a speed of 34.1 mph (54.9 km/h), and at 0.632 second the rear of the vehicle hit the bridge rail. The vehicle lost contact with the bridge rail at 0.761 second traveling at 32.2 mph (51.8 km/h) and exit trajectory of 2.7 degrees. The front of the vehicle rode off the sidewalk at 0.781 second and touched ground at 0.932 second after impact. The brakes were then applied and the vehicle yawed counter-clockwise and subsequently came to rest 105 ft (32.0 m) down and 25 ft (7.6 m) in front of the point of impact. Sequential photographs are shown in Figures B1 and B2 of Appendix B.

As can be seen in Figure 9, the rail received minimal cosmetic damage. There were tire marks on the face of the bridge rail from the point of impact continuing down 11 ft (3.4 m). There was some scraping and gouging along the edges of the portholes.

The vehicle sustained moderate damage to the right side as shown in Figures 10 and 11. Maximum crush at the right front corner at bumper height was 9.0 in. (22.9 cm). The right front and rear rims were bent and the tires damaged. There was damage to the hood, grill, bumper, right front quarter panel, the right door, the right rear quarter panel and the rear bumper.

Figure 7. Vehicle before test 1185-5.

Figure 8. Vehicle/bridge rail installation geometrics for test 1185-5.

Figure 9. Bridge rail after test 1185-5.

Figure 10. Damage to right side of vehicle, test 1185-5.

Figure 11. Vehicle after test 1185-5.

TEST RESULTS 1185-5

The speed of the vehicle as it impacted the curb was 45.5 mph (73.2 km/h) and the angle of impact was 20.1 degrees. As the vehicle impacted the bridge rail, it was traveling at 43.3 mph (69.7 km/h) and 17.8 degrees. The speed of the vehicle as it was parallel to the bridge rail was 34.1 mph (54.9 km/h). Exit speed was 32.2 mph (51.8 km/h) and exit trajectory was 2.7 degrees. Occupant impact velocity was 12.1 ft/s (3.7 m/s) in the longitudinal direction and 7.3 ft/s (2.2 m/s) in the lateral direction. The highest 0.010-second occupant ridedown accelerations were -4.6 g (longitudinal) and 7.4 g (lateral). These data and other pertinent information from the test are summarized in Figure 12. Vehicular angular displacements are displayed in Figure C2 of Appendix C.

Vehicular accelerations versus time traces filtered at 300 Hz are presented in Figures C3 through C6 in Appendix C. These data were further analyzed to obtain 0.050-second average accelerations versus time. The maximum 0.050-second averages measured at the center of gravity were -3.6 g (longitudinal) and 4.0 g (lateral).

CONCLUSIONS

The bridge rail contained and smoothly redirected the test vehicle with no lateral movement or cracking of the bridge rail. There were no detached elements or debris to present undue hazard to other traffic. The vehicle remained upright and relatively stable during the collision. The occupant/compartment impact velocities and 10-ms occupant ridedown accelerations were within the usual recommended limits. The vehicle trajectory at loss of contact indicates no intrusion into adjacent traffic lanes.

.

4

- Seall

Test No	Impact Speed 45.5 mi/h (73.2 km/h) Impact Angle 20.1 degrees Speed at Parallel 34 1 mi/h (54.9 km/h)
Test Installation Texas Type C411	Exit Speed 32.2 mi/h (51.8 km/h)
Bridge Rail	Exit Trajectory 2.7 degrees
Installation Length 52 ft (16 m)	Vehicle Accelerations (Max. 0.050-sec Avg)
Vehicle 1982 Honda Civic	Longitudinal3.6 g
Vehicle Weight	Lateral 4.0 g
Test Inertia 1,800 lb (817 kg)	Occupant Impact Velocity
Gross Static 1,970 lb (894 kg)	Longitudinal 12.1 ft/s (3.7 m/s)
Vehicle Damage Classification	Lateral 7.3 ft/s (2.2 m/s)
CDC 01FREK1 & 01RFES3	Longitudinal4.6 g
Maximum Vehicle Crush . 9.0 in (22.9 cm)	Lateral 7.4 g

Figure 12. Summary of results for test 1185-5.

TEST DESCRIPTION 1185-6

The 1982 Oldsmobile 98 (Figures 13 and 14) was directed into the bridge rail installation using a reverse tow and guidance system. Test inertia mass of the vehicle was 4,500 lb (2,043 km). The height to the lower edge of the vehicle bumper was 12.25 in. (31.1 cm) and it was 20.75 in. (52.7 cm) to the top of the bumper. Other dimensions and information on the test vehicle are given in Figure E1 of Appendix E. The vehicle was free-wheeling and unrestrained just prior to impact.

The speed of the vehicle at impact was 47.0 mph (75.6 km/h) and the angle of impact was 25.4 degrees. The vehicle impacted the curb approximately 5.75 ft (1.75 m) from the end of the sidewalk. As the right front tire rode up the curb and onto the sidewalk, the vehicle redirected slightly. At 0.177 second, the vehicle impacted the bridge rail 14 ft (4.3 m) from the end of the rail traveling at 46.7 mph (75.1 km/h) and an angle of 22.7 degrees. The right front wheel and tire was mangled in the porthole at 0.237 second, and the vehicle began to redirect significantly at 0.246 second. At 0.492 second, the vehicle was traveling parallel with the bridge rail at a speed of 32.1 mph (51.6 km/h) and at 0.567 second, the rear of the vehicle hit the bridge rail. The vehicle lost contact with the bridge rail at 0.658 second traveling at 28.9 mph (46.5 km/h) and exit of trajectory of 3.5 degrees. The undercarriage of the vehicle bottomed out on the curb at 0.744 second, and the vehicle rode off the sidewalk at 1.466 second after impact. The brakes were then applied and the vehicle yawed clockwise and subsequently came to rest 105 ft (32.0 m) down from the point of impact. Sequential photographs are shown in Figures D1 and D2 of Appendix D.

As can be seen in Figure 15, the rail received moderate cosmetic damage. There were tire marks on the face of the bridge rail from the point of impact continuing down 15 ft (4.6 m). There was some scraping and gouging along the edges of the portholes.

The vehicle sustained damage to the right side as shown in Figures 16 and 17. Maximum crush at the right front corner at bumper height was 14.0 in. (35.6 cm). The floorpan and subframe of the vehicle was bent. The right A-arm, tie rod, and sway bar were damaged. The windshield was cracked and the roof bent. The right front and rear rims were bent and the tires damaged. There was damage to the hood, grill, front bumper,

Figure 13. Vehicle before test 1185-6.

Figure 14. Vehicle/bridge rail installation geometrics for test 1185-6.

Figure 15. Bridge rail after test 1185-6.

Figure 16. Damage to right side of vehicle, test 1185-6.

Figure 17. Vehicle after test 1185-6.

radiator and fan, right front quarter panel, the right front and rear doors, the right rear quarter panel and the rear bumper.

TEST RESULTS 1185-6

The speed of the vehicle as it impacted the curb was 47.0 mph (75.6 km/h) and the angle of impact was 25.4 degrees. As the vehicle impacted the bridge rail, it was traveling at 46.7 mph (75.1 km/h) and 22.7 degrees. The speed of the vehicle as it was parallel to the bridge rail was 32.1 mph (51.6 km/h). Exit speed was 28.9 mph (46.5 km/h) and exit trajectory was 3.5 degrees. Occupant impact velocity was 23.2 ft/s (7.1 m/s) in the longitudinal direction and 17.1 ft/s (5.2 m/s) in the lateral direction. The highest 0.010-second occupant ridedown accelerations were -4.8 g (longitudinal) and 8.5 g (lateral). These data and other pertinent information from the test are summarized in Figure 18. Vehicular angular displacements are displayed in Figure E2 of Appendix E.

Vehicular accelerations versus time traces filtered at 300 Hz are presented in Figures E3 through E7 of Appendix E. These data were further analyzed to obtain 0.050-second average accelerations versus time. The maximum 0.050-second averages measured at the center of gravity were -6.6 g (longitudinal) and 6.2 g (lateral).

CONCLUSIONS

The bridge rail contained and smoothly redirected the test vehicle with no lateral movement or cracking of the bridge rail. There were no detached elements or debris to present undue hazard to other traffic. The vehicle remained upright and relatively stable during the collision. The occupant/compartment impact velocities and 10-ms occupant ridedown accelerations were within the usual recommended limits. The vehicle trajectory at loss of contact indicates no intrusion into adjacent traffic lanes.

0.000 s 0.177 s	0.349 s	0.549 s
Test No 07/03/90 Test Installation Texas Type C411 Bridge Rail Installation Length	Impact Speed 47.0 Impact Angle 25.4 Speed at Parallel . 32.1 Exit Speed 28.9 Exit Trajectory 3.5 Vehicle Accelerations (Max. 0.050-sec Avg) Longitudinal6.6 Lateral 6.2 Occupant Impact Velocity Longitudinal 23.2 Lateral 17.1 Occupant Ridedown Accelera Longitudinal4.8 Lateral 8.5	<pre>mi/h (75.6 km/h) degrees mi/h (51.6 km/h) mi/h (46.5 km/h) degrees g g ft/s (7.1 m/s) ft/s (5.2 m/s) ations g g g</pre>

Figure 18. Summary of results for test 1185-6.

SUMMARY and CONCLUSIONS

This was probably the first time a combination pedestrian-traffic bridge rail mounted on an 8 in. high curb and 6 ft wide sidewalk has been designed and crash tested. This type rail was developed for use where city streets pass over federal aid or interstate highways or other hazards. The combination pedestrian-traffic rail would only be exposed to moderate speed (45 mph) vehicles. NCHRP Report 230's (3) low service level crash test (SL-1) called for a 4,500 lb car traveling 60 mph and impacting at a 15 degree angle and a second test with an 1,800 lb car impacting at 60 mph and 20 degree angle. The 1989 <u>Guide</u> <u>Specifications for Bridge Railings'</u> (9) low performance level (PL-1) called for a crash test with a 5,400 lb pickup truck impacting at 45 mph and 20 degree angle and a second test with an 1,800 lb car impacting at 50 mph and 20 degree angle. Neither of these two crash tests seemed appropriate for this type traffic rail and its intended location on low speed (less than 50 mph) city streets.

Table 1, which is now being considered by two NCHRP-AASHTO research projects, seemed appropriate because the 1,900 lb car and 4,500 lb pickup truck would both impact at 45 mph at 20 degree and 25 degree angles, respectively. (Note: a 4,500 lb car was used here.)

The 8 in. high curb, 6 ft wide sidewalk and 42 in. high combination pedestrian-vehicle bridge rail performed very well in the two crash tests. Appendix F of the 1977 <u>Guide for Selecting, Locating, and Designing Traffic Barriers</u> (14) presents automobile trajectory data predicted by the HVOSM computer model when an automobile impacts curbs of various heights.

The data generated by the HVOSM computer model of an automobile predicted that these two vehicles would vault so that the bumper would be 14 in. to 18 in. higher than normal when it impacts the bridge rail behind the 8 in. high curb and 6 ft wide sidewalk. The crash tests showed the Honda bumper was only 4 in. higher than normal and the Oldsmobile bumper was only 3.5 in. to 7.5 in. higher (the bumper was 3.5 in. higher on initial impact and continued to climb to 7.5 in. higher 0.25 sec later). The normal bumper height of the Honda was 20.5 in. and that of the Oldsmobile was 20.75 in. when parked on a level surface. During the Oldsmobile test the right front and rear tires blew out and the wheel rims were bent during the curb impact.

In the strength test with the 4,500 lb vehicle at 47.0 mph and 25.4 degree angle, the change in speed and angle after the curb impact until the rail impact was only -0.3 mph and -2.7 degrees. The conclusion is that the effect of the 8 in. high curb and 6 ft wide sidewalk on the vehicle impact with the bridge rail was not as significant as engineers had once thought.

While the crash tests variables used were not those recommended by the crash test matrix of <u>NCHRP 230</u> or the <u>1989 Guide Specifications for Bridge Railings</u>, Tables 2 and 3 compare the test results with the usual safety evaluation criteria presented in these documents. The crash test results indicate that this C411 bridge rail should be safe for use on low speed (45 mph) or less roads.

Table 2.	Safety Evaluation of Crash Test No. 1185	5-5
C411	Bridge Rail (1,900 lb/45 mph/20 deg)	

Usual Safety Eva	luation Criteria	Test Results		Pass/Fail
Must contain vehicle		Vehicle was contained	Vehicle was contained	
Debris shall not penetrate	passenger compartment	No debris penetrated passenge	er compartment	Pass
Passenger compartment m deformation	ust have essentially no	Minimal deformation		Pass
Vehicle must remain uprig	ght	Vehicle did remain upright		Pass
Must smoothly redirect the	e vehicle	Vehicle was redirected		Pass
Effective coefficient of fright	ction (9)			
µ	Assessment	<u> </u>	Assessment	
025	Good	.55	Marginal	Pass
.2635	Fair			
> .35	Marginal			
Shall be less than				
Occupant Impac	t Velocity - fps	Occupant Impact Velocity - fps		Pass
Longitudinal	Lateral	Longitudinal	Lateral	
30	25	12.1	7.3	
Occupant Ridedown Accelerations - g's		Occupant Ridedown Accelerations - g's		Pass
Longitudinal	Lateral	Longitudinal	Lateral	
15	15	-4.6	7.4	
Exit angle shall be less th	an 12 degrees	Exit angle was 2.7 degrees		Pass

Table 3.	Safety Evaluation	ion of Crash	Test No. 1185-6
C411	Bridge Rail (4	,500 lb/45 n	1ph/25 deg)

Usual Safety Eva	luation Criteria	Test Results		Pass/Fail
Must contain vehicle		Vehicle was contained	Vehicle was contained	
Debris shall not penetrate	passenger compartment	No debris penetrated passenge	er compartment	Pass
Passenger compartment m deformation	nust have essentially no	Minimal deformation		Pass
Vehicle must remain upri	ght	Vehicle did remain upright		Pass
Must smoothly redirect th	e vehicle	Vehicle was redirected		Pass
Effective coefficient of fri	ction (9)			
<u> </u>	Assessment	<i>µ</i>	Assessment	
025	Good	.51	Marginal	Pass
.2635	Fair			
> .35	Marginal			
Shall be less than				
Occupant Impac	t Velocity - fps	Occupant Impact V	<u>/elocity - fps</u>	Pass
Longitudinal	Lateral	Longitudinal	Lateral	
30	25	23.2	17.1	
Occupant Ridedown Accelerations - g's		Occupant Ridedown Accelerations - g's		Pass
Longitudinal	Lateral	Longitudinal	Lateral	
15	15	-4.8	8.5	
Exit angle shall be less th	an 15 degrees	Exit angle was 5.0 degrees		Pass

REFERENCES

- 1. Hirsch, T.J., "Analytical Evaluation of Texas Bridge Rails to Contain Buses and Trucks," Research Report 230-2, Texas Transportation Institute, Texas A&M University, Aug. 1978.
- 2. Hirsch, T.J., "Longitudinal Barriers for Buses and Trucks, State of the Art," Research Report 416-2F, Texas Transportation Institute, Texas A&M University, Feb. 1986.
- 3. Michie, Jarvis D., "Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances," NCHRP Report 230, Transportation Research Board, National Research Council, Washington, D.C., Mar. 1981.
- 4. <u>Standard Specifications for Highway Bridges</u>, Twelfth Edition, American Association of State Highway and Transportation Officials, Washington, D.C., 1977.
- 5. Noel, J.S., T.J. Hirsch, C.E. Buth, and A. Arnold, "Loads on Bridge Railings," <u>Transportation Research Record 796</u>, Transportation Research Board, Jan. 1981.
- 6. Olson, R.M., et al., "Tentative Service Requirements for Bridge Rail Systems," NCHRP Report 86, Washington, D.C., 1970.
- 7. Buth, C.E., "Safer Bridge Railings," Vol. 1, 2, 3, and 4, Report No. FHWA/RD-82-072, Texas Transportation Institute, Texas A&M University, June 1984.
- Bronstad, M.E., et al., "Bridge Rail Designs and Performance Standards," Volume I: Research Report, Report No. FHWA/RD-87/049, Feb. 1987.
- 9. <u>Guide Specifications for Bridge Railings--An Alternative Bridge Railing Specification</u> in the AASHTO Standard Specifications for Highway Bridges, American Association of State Highway and Transportation Officials, 1988.
- 10. Arnold, A.G., and T.J. Hirsch, "Bridge Deck Designs for Railing Impacts," Research Report 295-1F, Texas Transportation Institute, Texas A&M University, Aug. 1985.
- 11. Hirsch, T.J., "Longitudinal Barriers for Buses and Trucks," <u>Transportation Research</u> <u>Record 1052</u>, Transportation Research Board, 1986.
- 12. Hirsch, T.J., C.E. Buth, W.L. Campise, and D. Kaderka, "Aesthetically Pleasing Concrete Beam and Posts Bridge Rail - Texas Type T411," Research Report 1185-1, Texas Transportation Institute, Texas A&M University, Mar. 1989.

- 13. Hirsch, T.J., C.E. Buth, W.L. Campise, and D. Kaderka, "Aesthetically Pleasing Steel Pipe Bridge Rail - Texas Type T421," Research Report 1185-2, Texas Transportation Institute, Texas A&M University, Nov. 1989.
- 14. <u>Guide for Selecting, Locating, and Designing Traffic Barriers</u>, American Association of State Highway and Transportation Officials, 1977.

APPENDIX A

Instrumentation and Data Analysis

APPENDIX A

INSTRUMENTATION AND DATA ANALYSIS

The vehicle was equipped with triaxial accelerometers mounted near the center of gravity to measure x, y, and z components of acceleration. In addition, yaw, pitch, and roll rates were measured by on-board instruments. The electronic signals were telemetered to a base station for recording on magnetic tape and for display on a real-time strip chart. Provision was made for transmission of calibration signals before and after the test, and an accurate time reference signal was simultaneously recorded with the data.

Contact switches on the bumper were actuated just prior to impact by wooden dowels to indicate the elapsed time over a known distance to provide a measurement of impact velocity. The initial contact also produced an "event" mark on the data record to establish the instant of impact. Data from the electronic transducers were digitized, using a microcomputer, for analysis and evaluation of performance.

Analog data obtained from the electronic transducers were digitized and then analyzed on a microcomputer using three computer programs: DIGITIZE, VEHICLE, and PLOTANGLE.

The DIGITIZE program uses digitized data from vehicle-mounted linear accelerometers to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, final occupant displacement, highest 0.010-second average of vehicle acceleration after occupant/compartment impact, and time of highest 0.010-second average. The DIGITIZE program also calculates a vehicle impact velocity and the change in vehicle velocity at the end of a given impulse period.

The VEHICLE program also uses digitized data from vehicle-mounted linear accelerometers to compute vehicle accelerations, areas enclosed by acceleration-time curves, changes in velocity, changes in momentum, instantaneous forces, average forces, and maximum average accelerations over 0.050-second intervals in each of three directions. The VEHICLE program plots acceleration versus time curves for the longitudinal, lateral, and vertical directions.

The PLOTANGLE program uses the digitized data from the yaw, pitch, and roll rate

charts to compute angular displacement in degrees at 0.001-second intervals and then instructs a plotter to draw a reproducible plot: yaw, pitch, and roll versus time. It should be noted that these angular displacements are sequence dependent with the sequence being yaw-pitch-roll for the data presented herein. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate system being that which existed at initial impact.

Still photography, real-time cine, and video were used to record conditions of the test vehicle and bridge rail before and after the test. Video and real-time and high-speed cine were used to document the test. One high-speed camera was placed to have a field of view parallel to and aligned with the bridge rail at the downstream end, one was placed over the bridge rail to have a field of view perpendicular to the ground, another was placed perpendicular to the front of the bridge rail, and one was placed behind the bridge rail. The films from these cameras were used to observe phenomena occurring during collision and obtain time-event, displacement, and angular data.

APPENDIX B

Sequential Photographs of Test 1185-5

0.149 s

0.224 s

Figure B1. Sequential photographs for test 1185-5.

0.322 s

0.460 s

0.603 s

0.761 s

Figure B1. Sequential photographs for test 1185-5. (Continued)

APPENDIX C

Electronic Accelerometer, Roll, Pitch, and Yaw Data Test 1185-5

•

Date:	Test	: No.:11	85-5	VIN:	JHMSL5328CS017	095
Make: <u>Honda</u>	Model:	Civic	Year:	1982	Odometer: _	104346
Tire Size: P175	80R13 Ply	Rating:	Bia	s Ply: _	Belted:	Radial: <u>X</u>
1 + ($ \leq $	Acceleromete	rs	Tire Condit b	ion: good fair <u>X</u> adly worn
a p		•	<u>}</u>]=	311-	Vehicle Geo	metry - inches
]		Ť	a <u>62 3/4</u>	b <u>30</u>
¥	S				c <u>88 1/4</u>	d* <u>53</u>
	l				e <u>29</u>	f <u>147 1/4</u>
	<	94 1/4	>		g	h <u>33.1</u>
Tino dia	. r .	∧ Acce	lerometers		i	j <u>29</u>
Wheel dia		sology			k <u>16 3/4</u>	l 27 1/2
<u>n-> </u>	• ³		\sum		m20 1/2	n 4
		/•		A	o 15	p <u>53 3/4</u>
m ot		•		Ţk ↓g	r 23	s 14 1/4
	h <mark>< h</mark>				Farino Typo	4 cv]
*				<i>i</i> e	Engine Type. Engine CID:	<u> </u>
~	V"1	f	<u> </u>		Transmission	Type:
4-wheel weight for c.g. det.	lf <u>568</u> rf	557 lr	353 rr 3	322	Automatic (FWD) or R	or Manual WD or 4WD
Mass - pounds	Curb	Test Inerti	al Gross St	tatic	Body Type:	Hatch
M.		1125	1207	7	Mechanism:	umn torrapse
м		675	763	}	Behind w	heel units ed tube
M _T		1800	1970)	Cylindri Embedded NOT coll	cal mesh units ball apsible
Note any damage t	o vehicle prid	or to test:			Other_en Unknown	ergy absorption
Crack in wind	shield (marke	ed)		nan aya gana gana gana a	Brakes:	
				unne a gyrnae B Fisic al Aff	Front: di	sc <u>X</u> drum
					Rear: di	scdrum <u>_X_</u>

*d = overall height of vehicle
 Figure Cl. Test vehicle properties (test 1185-5).

۰.

Figure C2. Vehicle angular displacement for test 1185-5.

Figure C3. Vehicle longitudinal accelerometer trace for test 1185-5. (near center-of-gravity)

C-3

TEST 1185-5

Figure C4. Vehicle lateral accelerometer trace for test 1185-5. (near center-of-gravity)

C-4

LATERAL ACCELERATION (g's)

Figure C5. Vehicle vertical accelerometer trace for test 1185-5. (near center-of-gravity)

VERTICAL ACCELERATION (g's)

C-5

Figure . Vehicle lateral accelerometer trace for test 1185-5 (rear of vehicle)

C-6

LATERAL ACCELERATION (g's)

APPENDIX D

.

•

Sequential Photographs of Test 1185-6

0.000 s

0.177 s

0.263 s

Figure D1. Sequential photographs for test 1185-6.

0.349 s

0.435 s

0.549 s

0.658 s

Figure D1. Sequential photographs for test 1185-6. (Continued)

APPENDIX E

.

Electronic Accelerometer, Roll, Pitch, and Yaw Data Test 1185-6

Date:	1	est No.: _	1185-6	-	VIN:	163AW69N4CM133	944
Make: <u>01dsmo</u> t	<mark>oile</mark> Mode	1: <u>Ninet</u>	y-eight	Year:	1982	Odometer:	86762
Tire Size: P22	25 75R15 P	ly Rating:	4	Bia	s Ply:	Belted:	Radial: <u>X</u>
<u>А</u> П			Acceler	rometers	v	Tire Condi	tion: good fair <u>X</u> badly worn
a p					↓ ↓ ↓ ↓	Vehicle Ge a <u>75 1/2</u> c <u>119</u>	ometry - inches b <u>43 3/4</u> d* <u>58 1/2</u>
	l	→ 159"				e56	f 218 3/4
Tire dia ———	 ─ < ^ >	<u> </u>	ccelerome	≻l ters		g	h <u>125.5</u>
Wheel dia —		ATTE:	1			1	j <u>33 1/2</u>
	ØĽ		$\overline{\mathbb{O}}$		¢k	k g m 20 3/4 o 12 1/4	l n 61 3/4
*	b ✓ ^M 1	f	√ ¹¹ 2	e >	v	r <u>28</u> Engine Type Engine CID Transmissic	s <u>16 1/4</u> e: <u>V-8</u> : <u>350 Diesel</u> on Type:
4-wheel weight for c.g. det.	lf 1276	rf <u>1325</u>	lr97	4rr	925	Automatic FWD or (or Manual RWD or 4WD
Mass - pounds M ₁ -	Curb 2443	Test Ir 2601	nertial	Gross S	itatic	Body Type: Steering Co Mechanism	4-Door Jumn Collapse
M ₂	1588	1899				Behind Convolu	wheel units ited tube
M _T -	4031 e to vehicle	4500 prior to t	cest:			Cylindr Embedde NOT_col Other_e Unknowr	rical mesh units ed ball lapsible energy absorption
*d = overall he	right of vehi	cle				Brakes: Front: d Rear: d	lisc_X_drum liscdrum_X
	Figure E	1. Test	vehicle p	propertie	es (118	5-6).	

E-1

•

4

Figure E3. Vehicle longitudinal accelerometer trace for test 1185-6 (near center-of-gravity)

LONGITUDINAL ACCELERATION (g's)

Figure E4. Vehicle lateral accelerometer trace for test 1185-6 (near center-of-gravity)

E-4

LATERAL ACCELERATION (g's)

Figure E5. Vehicle vertical accelerometer trace for test 1185-6 (near center-of-gravity)

Figure E6. Vehicle longitudinal accelerometer trace for test 1185-6 (rear of vehicle)

E-6

LONGITUDINAL ACCELERATION (g's)

Figure E7. Vehicle lateral accelerometer trace for test 1185-6 (rear of vehicle)

LATERAL ACCELERATION (g's)

ω

FIGURE 5. FAILURE MECHANISM ANALYSIS OF THE TEXAS C411 BRIDGE RAIL.

7

Figure B1. Sequential photographs for test 1185-5.

0.322 s

0.460 s

0.603 s

1-

0.761 s

Figure Bl. Sequential photographs for test 1185-5. (Continued)

0.263 s

Figure D1. Sequential photographs for test 1185-6.

0.349 s

0.435 s

0.549 s

0.658 s

Figure D1. Sequential photographs for test 1185-6. (Continued)

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2 Government Acce	ssion No. 3	Reci ient s Cataloa	No.	
EHWA /TY-01 /1185-3E					
4. Trile and Subtrile		5.	Report Date		
			February 1991/Revised		
AESTHETICALLY PLEASING CO PEDESTRIAN-TRAFFIC BRIDGE	ATION 6.	6. Performing Organization Code			
7 Author's:		8. 1	Performing Organizat	ion Report No.	
T.J. Hirsch, C.E. Buth, and War		Research Rep	ort 1185-3F		
9. Performing Organization Name and Add	ress	10.	Work Unit No.		
Texas Transportation Institute					
Texas A&M University		11.	11. Contract or Grant No.		
College Station, Texas 77843-31	135	13	Research Study	2-5-89/90-1185	
12. Sponsoring Agency Name and Address			Septe	mber 1989	
Texas State Dept. of Highways	& Public Transporta	tion	Final -		
Transportation Planning Division	ı		Augus	it 1990	
P. O. Box 5051		14.	Sponsoring Agency (lode	
Austin, Texas 78763					
6. Abstract Research has developed ra	ailings to withstand	impact loads from ve	hicles of ever-in	creasing size;	
however, aesthetic consideratio objective of this research study serve as alternative railings in c	ns have been overs was to develop aes ty or urban areas.	shadowed by safety and sthetically pleasing, struc	l structural requi cturally sound ra	irements. The illings that can	
This report presents a new	concrete combination	on pedestrian-traffic brid	ge railTexas Ty	/pe C411.	
This bridge rail was construc by 28 in. high openings at 18 in bridge rail was located on a 6 ft	ted of reinforced co center-to-center lo wide sidewalk with	ncrete 42 in. high by 12 i ngitudinal spacing. The 8 in. high curb separati	n. thick and con combination pe ng it from the tra	tains 6 in. wide destrian-traffic affic.	
The bridge rail was develope Service Level 1 of NCHRP 230 <u>Bridge Railings</u> were considered	ed for use on urban and Performance I I inappropriate.	streets where the speed evel 1 of the 1989 AAS	limit would be 4 SHTO <u>Guide Spe</u>	5 mph or less. acifications for	
NCHRP Project C22-7, "Upc Project 12-33, "Development of considering a different test matr Ib car at 45 mph and 25 degree	late of Roadside Sa a Comprehensive I ix at the time these impact angle and a	fety Hardware Crash Te Bridge Specification and tests were conducted. In 1,900 lb car at 45 mpl	st Specifications Commentary," It was decided th and 20 degree	," and NCHRP were seriously to use a 4,500 impact angle.	
The new C411 bridge rail pe met the usual safety evaluation roadways.	fformed very well ur criteria. The C411	der these two crash test should be safe for use o	s. The crash tes on low speed, 4	t results easily 5 mph or less,	
7. Key Words		18. Distribution Statement			
		No restriction.	This document	is	
Bridge Rails, Traffic Barriers.		available to the public through the			
Highway Safety, Pedestrian - Cars		National Technical Information Service			
		5285 Port Roy	al Road		
		Springfield, Vir	ginia 22161		
9. Security Classif. (of this report)	20. Security Clas	sif. (of this page)	21- No. of Pages	22. Price	
Inclosefied	Linolog	oifiori	60		
	Unclas		00	1	

AESTHETICALLY PLEASING CONCRETE COMBINATION PEDESTRIAN-TRAFFIC BRIDGE RAIL - TEXAS TYPE C411

by

T. J. Hirsch Research Engineer & Principal Investigator

> C. E. Buth Research Engineer

> > and

Wanda L. Campise Research Associate

Research Report 1185-3F

on

Research Study No. 2-5-89/90-1185 Aesthetically Pleasing Bridge Rails

Sponsored by Texas State Department of Highways and Public Transportation

> in cooperation with The U.S. Department of Transportation Federal Highway Administration

> > October 1990

Texas Transportation Institute Texas A&M University College Station, Texas

METRIC (SI*) CONVERSION FACTORS

	APPROXIMATE CONVERSIONS TO SI UNITS					APPROXIMATE CONVERSIONS TO SI UNITS				
Symbol	When You Know	Muitiply By	To Find	Symbol		Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH	1					LENGTH		
-						mm	millimetres	0.039	inches	in
10	incnes	2.54	millimetres	mm		m	metres	3.28	feet	ft
TL Lund	leet	0.3046	metres	m		m	metres	1.09	yards	yd
mi	miles	1.61	kilometres	km`		km	kilometres	0.621	miles	mi
								AREA		
		AREA					millimatras sourced	0.0016		: 9
						1010- m ¹	metres squared	10 764	square incries	ft2
inª (1)	square inches	645.2	millimetres squared	mm•		km²	kilometres squared	0.39	square miles	miž
11+ 	square teet	0.0929	metres squared	m•		ha	hectores (10 000 m ²)	2.53	acres	ac
yu- mil	square yards	2.60	kilometree equared	in- kmi	·		,			
ac	acres	0.395	hectares	ha		MASS (weight)				
									<u></u>	
					°	g	grams	0.0353	ounces	oz
	N	IASS (weig	ght)		* *	kg	kilograms	2.205	pounds	lb
07	0110088	28.35		a		Mg	megagrams (1 000 kj	g) 1.103	short tons	т
lb	pounds	0.454	kilograms	kg	· · · · · · ·					
т	short tons (2000	lb) 0.907	megagrams	Mg						
						mL	millilitres	0.034	fluid ounces	fl oz
		VOLUME	-			L	litres	0.264	gallons	gal
		VOLUME	-			m,	metres cubed	35.315	cubic feet	ft³
fioz	fluid ounces	29.57	millilitres	mL		"	metres cubed	1.308	cubic yards	yd³
cal	nations	3.785	litres	L						
ft ³	cubic feet	0.0328	metres cubed	m³	× ×		TEMPE	RATURE	exact)	
yd*	cúbic yards	0.0765	metres cubed	m*						
NOTE: V	olumes greater than	1000 L shall be	a shown in m².			°C	Celsius 9/5 temperature a	(then dd 32)	Fahrenheit temperature	٩F
							°F 32	98.6	°F 212	
	TEMP	PERATURE	(exact)					80 120	160 200	
٥F	Fahrenheit 5	/9 (after	Celsius	°C				37		
	temperature	subtracting 32) temperature			These fai	ctors conform to the r	equirement of I	HWA Order 5190.1	Α.

* SI is the symbol for the International System of Measurements

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

KEY WORDS

Bridge Rails, Traffic Barriers, Highway Safety, Pedestrian - Cars

ACKNOWLEDGMENTS

This research study was conducted under a cooperative program between the Texas Transportation Institute (TTI), the State Department of Highways and Public Transportation (SDHPT), and the Federal Highway Administration (FHWA). Dean Van Landuyt (Designing Engineer, SDHPT), John J. Panak (Bridge Designing Engineer, SDHPT), and Van M. McElroy (Supervising Bridge Engineer, SDHPT, Dallas) were closely involved in all phases of this study.

IMPLEMENTATION STATEMENT

As of the writing of this report, none of the findings or conclusions presented have been implemented.

ABSTRACT

Research has developed railings to withstand impact loads from vehicles of everincreasing size; however, aesthetic considerations have been overshadowed by safety and structural requirements. The objective of this research study was to develop aesthetically pleasing, structurally sound railings that can serve as alternative railings in city or urban areas.

This report presents a new concrete combination pedestrian-traffic bridge rail - Texas Type C411.

This bridge rail was constructed of reinforced concrete 42 in. high by 12 in. thick and contains 6 in. wide by 28 in. high openings at 18 in. center-to-center longitudinal spacing. The combination pedestrian-traffic bridge rail was located on a 6 ft wide sidewalk with 8 in. high curb separating it from the traffic.

The C411 was developed for use on urban streets where the speed limit would be 45 mph or less. Service Level 1 of NCHRP 230 and Performance Level 1 of the 1989 AASHTO <u>Guide Specifications for Bridge Railings</u> were considered inappropriate.

NCHRP Project C22-7, "Update of Roadside Safety Hardware Crash Test Specifications," and NCHRP Project 12-33, "Development of a Comprehensive Bridge Specification and Commentary," were seriously considering a different test matrix at the time these tests were conducted. It was decided to use a 4,500 lb car at 45 mph and 25 degree impact angle and an 1,900 lb car at 45 mph and 20 degree impact angle.

The new C411 bridge rail performed very well under these two crash tests. The crash test results easily met the usual safety evaluation criteria. The C411 should be safe for use on low speed, 45 mph or less, roadways.

TABLE OF CONTENTS

Page

DISCLAIMER	iii
KEY WORDS	iii
ACKNOWLEDGMENTS	iii
IMPLEMENTATION STATEMENT	iii
ABSTRACT	iv
LIST OF FIGURES	vi
LIST OF TABLES	vi
INTRODUCTION	1
DESCRIPTION OF BRIDGE RAIL	2
CRASH TESTS	10
TEST DESCRIPTION 1185-5 TEST RESULTS 1185-5 CONCLUSIONS	12 18 18
TEST DESCRIPTION 1185-6 TEST RESULTS 1185-6 CONCLUSIONS	20 26 26
SUMMARY AND CONCLUSIONS	28
REFERENCES	32
APPENDIX A - INSTRUMENTATION AND DATA ANALYSIS	A-1
APPENDIX B - SEQUENTIAL PHOTOGRAPHS OF TEST 1185-5	B-1
APPENDIX C - ELECTRONIC ACCELEROMETER, ROLL, PITCH, AND YAW DATA TEST 1185-5	C-1
APPENDIX D - SEQUENTIAL PHOTOGRAPHS OF TEST 1185-6	D-1
APPENDIX E - ELECTRONIC ACCELEROMETER, ROLL, PITCH, AND YAW DATA TEST 1185-6	E-1

INTRODUCTION

Research has developed railings to withstand impact loads from vehicles of everincreasing size; however aesthetic considerations have been overshadowed by safety and structural requirements. Engineers often fail to recognize the impact of our structures on the landscape, particularly in city or urban areas. Architects and developers often propose aesthetically pleasing railings that engineers cannot accept because of structural inadequacies. The objective of this research study was to develop aesthetically pleasing, structurally sound railings that can serve as alternative railings.

This study was attempting to develop one or more new concrete, steel, and aluminum railings or combination railings, some with curb and sidewalk.

This report presents a new open type concrete combination pedestrian-traffic bridge rail--Texas Type C411. The research study advisory committee composed of

Luis Ybanez, Bridge Engineer, Bridge Division, Austin, John J. Panak, Bridge Designing Engineer, Bridge Division, Austin, Dean Van Landuyt, Designing Engineer, Bridge Division, Austin, Van M. McElroy, Supervising Bridge Engineer, District 18, Dallas, John V. Blain, Jr., District Design Engineer, District 18, Dallas, John P. Kelley, Supervising Design Engineer, District 18, Dallas, Don Simpson, Architect, Hellmuth, Obata, Kassabaum, Inc., Dave Retzsch, Architect, Hellmuth, Obata, Kassabaum, Inc., T. J. Hirsch, Research Engineer, TTI, and W. Lynn Beason, Associate Research Engineer, TTI,

reviewed design sketches of twenty-two different bridge rail designs before selecting the new Texas Type C411 as its third priority.

DESCRIPTION OF BRIDGE RAIL TEXAS TYPE C411

This bridge rail was constructed of reinforced concrete 42 in. high by 12 in. thick and contains 6 in. wide by 28 in. high openings at 18 in. center-to-center longitudinal spacing. The combination pedestrian-traffic bridge rail was located on a 6 ft wide sidewalk with 8 in. high curb separating it from the traffic. Figures 1, 2, and 3 present an elevation, cross section, and plan view of the C411 rail. The sidewalk deck is a 7.75 in. thick typical Texas bridge slab design in accordance with AASHTO specifications (4)^{*}.

Figure 4 shows a photograph of the bridge rail installation prior to crash testing. The installation was 47 ft 4 in. long. The three pilasters are not super strong posts as they appear to be. They contain styrofoam blocks 10.5 in. by 13 in. by 31 in., (void) which means the pilasters are similar to the 6 in. by 28 in. openings. The use of the pilasters is thus optional since they did not contribute to the bridge rail strength as built and crash tested.

This bridge rail was designed using a failure mechanism (or yield line) method of analysis (1). The design strength of the concrete was $f_c = 3,600$ psi and the yield strength of reinforcing steel was $f_y = 60,000$ psi. The top beam was nominally 7 in. wide and 10 to 12 in. thick (b = 7 in. and d = 8.25 in.), yielding an ultimate moment capacity of 20.0 kip-ft. The posts were 10 in. wide and 10 in. thick (b = 10 in. and d = 8 in.), yielding an ultimate moment capacity of 20.6 kip-ft. With a moment arm of 3.5 ft, each post could resist a lateral load of about 5.9 kips. Figure 5 presents a summary of the failure mechanism analysis of the strength of the T411 bridge rail. The failure load would be about 51.4 kips or more over five spans or 7.5 ft length of bridge rail.

^{*} Numbers in parentheses, thus (4), refer to corresponding item in References.

Figure 4. Bridge rail prior to test 1185-5.

L = post spacing
Mp = plastic or yield line capacity of rail
Pp = ultimate load capacity of a single post
wl = total ultimate vehicle impact load
l = length of distributed vehicle impact load

PLAN VIEW

FIGURE 8. POSSIBLE FAILURE MODES FOR BEAM AND POST BARRIERS

CRASH TESTS

The Texas Type C411 was developed for use on urban streets where the speed limit would be 45 mph or less. The selection of a crash test matrix posed a problem. Service Level 1 of NCHRP 230 (3) would indicate a 4,500 lb car at 60 mph and a 15 degree impact angle for the strength test and an 1,800 lb car at 60 mph and 20 degree impact angle for geometry evaluation. The 1989 AASHTO <u>Guide Specifications for Bridge Railings</u> (9), Performance Level 1, would indicate testing with a 5,400 lb pickup truck at 45 mph and 20 degree impact angle.

Both of these documents were in the process of being revised by NCHRP Project C22-7, "Update of Roadside Safety Hardware Crash Test Specifications," and NCHRP Project 12-33, "Development of a Comprehensive Bridge Specification and Commentary." These two projects were seriously considering the severity level test matrix shown in Table 1 at the time these tests were conducted. It was, therefore, decided to use Severity Level 2 from Table 1. This was a 4,500 lb car (not truck) at 45 mph and 25 degree impact angle and an 1,900 lb car at 45 mph and 20 degree impact angle.

TEST DESCRIPTION 1185-5

The 1982 Honda Civic (Figures 7 and 8) was directed into the bridge rail installation using a reverse tow and guidance system. Test inertia mass of the vehicle was 1,800 lb (808 kg) and its gross static mass was 1,970 lb (894 kg). The height to the lower edge of the vehicle bumper was 15.0 in. (38.1 cm) and it was 20.5 in. (52.1 cm) to the top of the bumper. Other dimensions and information on the test vehicle are given in Figure C1 of Appendix C. The vehicle was free-wheeling and unrestrained just prior to impact.

The speed of the vehicle at impact with the curb was 45.5 mph (73.2 km/h) and the angle of impact was 20.1 degrees. The vehicle impacted the curb approximately 8 ft (2.4 m) from the end of the sidewalk. As the vehicle rode up the curb, the right front wheel twisted counter-clockwise, and as it rode onto the sidewalk, the vehicle redirected slightly. At 0.322 second, the vehicle impacted the bridge rail 28 ft (8.5 m) from the end of the rail traveling at 43.0 mph (69.2 km/h) and an angle of 17.8 degrees. The vehicle was also airborne at this time and began to redirect significantly at 0.371 second. At 0.626 second the vehicle was traveling parallel with the bridge rail at a speed of 34.1 mph (54.9 km/h), and at 0.632 second the rear of the vehicle hit the bridge rail. The vehicle lost contact with the bridge rail at 0.761 second traveling at 32.2 mph (51.8 km/h) and exit trajectory of 2.7 degrees. The front of the vehicle rode off the sidewalk at 0.781 second and touched ground at 0.932 second after impact. The brakes were then applied and the vehicle yawed counter-clockwise and subsequently came to rest 105 ft (32.0 m) down and 25 ft (7.6 m) in front of the point of impact. Sequential photographs are shown in Figures B1 and B2 of Appendix B.

As can be seen in Figure 9, the rail received minimal cosmetic damage. There were tire marks on the face of the bridge rail from the point of impact continuing down 11 ft (3.4 m). There was some scraping and gouging along the edges of the portholes.

The vehicle sustained moderate damage to the right side as shown in Figures 10 and 11. Maximum crush at the right front corner at bumper height was 9.0 in. (22.9 cm). The right front and rear rims were bent and the tires damaged. There was damage to the hood, grill, bumper, right front quarter panel, the right door, the right rear quarter panel and the rear bumper.

Figure 8. Vehicle/bridge rail installation geometrics for test 1185-5.

Figure 10. Damage to right side of vehicle, test 1185-5.

TEST RESULTS 1185-5

The speed of the vehicle as it impacted the curb was 45.5 mph (73.2 km/h) and the angle of impact was 20.1 degrees. As the vehicle impacted the bridge rail, it was traveling at 43.3 mph (69.7 km/h) and 17.8 degrees. The speed of the vehicle as it was parallel to the bridge rail was 34.1 mph (54.9 km/h). Exit speed was 32.2 mph (51.8 km/h) and exit trajectory was 2.7 degrees. Occupant impact velocity was 12.1 ft/s (3.7 m/s) in the longitudinal direction and 7.3 ft/s (2.2 m/s) in the lateral direction. The highest 0.010-second occupant ridedown accelerations were -4.6 g (longitudinal) and 7.4 g (lateral). These data and other pertinent information from the test are summarized in Figure 12. Vehicular angular displacements are displayed in Figure C2 of Appendix C.

Vehicular accelerations versus time traces filtered at 300 Hz are presented in Figures C3 through C6 in Appendix C. These data were further analyzed to obtain 0.050-second average accelerations versus time. The maximum 0.050-second averages measured at the center of gravity were -3.6 g (longitudinal) and 4.0 g (lateral).

CONCLUSIONS

The bridge rail contained and smoothly redirected the test vehicle with no lateral movement or cracking of the bridge rail. There were no detached elements or debris to present undue hazard to other traffic. The vehicle remained upright and relatively stable during the collision. The occupant/compartment impact velocities and 10-ms occupant ridedown accelerations were within the usual recommended limits. The vehicle trajectory at loss of contact indicates no intrusion into adjacent traffic lanes.

TEST DESCRIPTION 1185-6

The 1982 Oldsmobile 98 (Figures 13 and 14) was directed into the bridge rail installation using a reverse tow and guidance system. Test inertia mass of the vehicle was 4,500 lb (2,043 km). The height to the lower edge of the vehicle bumper was 12.25 in. (31.1 cm) and it was 20.75 in. (52.7 cm) to the top of the bumper. Other dimensions and information on the test vehicle are given in Figure E1 of Appendix E. The vehicle was free-wheeling and unrestrained just prior to impact.

The speed of the vehicle at impact was 47.0 mph (75.6 km/h) and the angle of impact was 25.4 degrees. The vehicle impacted the curb approximately 5.75 ft (1.75 m) from the end of the sidewalk. As the right front tire rode up the curb and onto the sidewalk, the vehicle redirected slightly. At 0.177 second, the vehicle impacted the bridge rail 14 ft (4.3 m) from the end of the rail traveling at 46.7 mph (75.1 km/h) and an angle of 22.7 degrees. The right front wheel and tire was mangled in the porthole at 0.237 second, and the vehicle began to redirect significantly at 0.246 second. At 0.492 second, the vehicle was traveling parallel with the bridge rail at a speed of 32.1 mph (51.6 km/h) and at 0.567 second, the rear of the vehicle hit the bridge rail. The vehicle lost contact with the bridge rail at 0.658 second traveling at 28.9 mph (46.5 km/h) and exit of trajectory of 3.5 degrees. The undercarriage of the vehicle bottomed out on the curb at 0.744 second, and the vehicle rode off the sidewalk at 1.466 second after impact. The brakes were then applied and the vehicle yawed clockwise and subsequently came to rest 105 ft (32.0 m) down from the point of impact. Sequential photographs are shown in Figures D1 and D2 of Appendix D.

As can be seen in Figure 15, the rail received moderate cosmetic damage. There were tire marks on the face of the bridge rail from the point of impact continuing down 15 ft (4.6 m). There was some scraping and gouging along the edges of the portholes.

The vehicle sustained damage to the right side as shown in Figures 16 and 17. Maximum crush at the right front corner at bumper height was 14.0 in. (35.6 cm). The floorpan and subframe of the vehicle was bent. The right A-arm, tie rod, and sway bar were damaged. The windshield was cracked and the roof bent. The right front and rear rims were bent and the tires damaged. There was damage to the hood, grill, front bumper,

20

Figure 14. Vehicle/bridge rail installation geometrics for test 1185-6.

Figure 16. Damage to right side of vehicle, test 1185-6.

radiator and fan, right front quarter panel, the right front and rear doors, the right rear quarter panel and the rear bumper.

TEST RESULTS 1185-6

The speed of the vehicle as it impacted the curb was 47.0 mph (75.6 km/h) and the angle of impact was 25.4 degrees. As the vehicle impacted the bridge rail, it was traveling at 46.7 mph (75.1 km/h) and 22.7 degrees. The speed of the vehicle as it was parallel to the bridge rail was 32.1 mph (51.6 km/h). Exit speed was 28.9 mph (46.5 km/h) and exit trajectory was 3.5 degrees. Occupant impact velocity was 23.2 ft/s (7.1 m/s) in the longitudinal direction and 17.1 ft/s (5.2 m/s) in the lateral direction. The highest 0.010-second occupant ridedown accelerations were -4.8 g (longitudinal) and 8.5 g (lateral). These data and other pertinent information from the test are summarized in Figure 18. Vehicular angular displacements are displayed in Figure E2 of Appendix E.

Vehicular accelerations versus time traces filtered at 300 Hz are presented in Figures E3 through E7 of Appendix E. These data were further analyzed to obtain 0.050-second average accelerations versus time. The maximum 0.050-second averages measured at the center of gravity were -6.6 g (longitudinal) and 6.2 g (lateral).

CONCLUSIONS

The bridge rail contained and smoothly redirected the test vehicle with no lateral movement or cracking of the bridge rail. There were no detached elements or debris to present undue hazard to other traffic. The vehicle remained upright and relatively stable during the collision. The occupant/compartment impact velocities and 10-ms occupant ridedown accelerations were within the usual recommended limits. The vehicle trajectory at loss of contact indicates no intrusion into adjacent traffic lanes.

SUMMARY and CONCLUSIONS

This was probably the first time a combination pedestrian-traffic bridge rail mounted on an 8 in. high curb and 6 ft wide sidewalk has been designed and crash tested. This type rail was developed for use where city streets pass over federal aid or interstate highways or other hazards. The combination pedestrian-traffic rail would only be exposed to moderate speed (45 mph) vehicles. NCHRP Report 230's (3) low service level crash test (SL-1) called for a 4,500 lb car traveling 60 mph and impacting at a 15 degree angle and a second test with an 1,800 lb car impacting at 60 mph and 20 degree angle. The 1989 <u>Guide</u> <u>Specifications for Bridge Railings</u>' (9) low performance level (PL-1) called for a crash test with a 5,400 lb pickup truck impacting at 45 mph and 20 degree angle and a second test with an 1,800 lb car impacting at 50 mph and 20 degree angle. Neither of these two crash tests seemed appropriate for this type traffic rail and its intended location on low speed (less than 50 mph) city streets.

Table 1, which is now being considered by two NCHRP-AASHTO research projects, seemed appropriate because the 1,900 lb car and 4,500 lb pickup truck would both impact at 45 mph at 20 degree and 25 degree angles, respectively. (Note: a 4,500 lb car was used here.)

The 8 in. high curb, 6 ft wide sidewalk and 42 in. high combination pedestrian-vehicle bridge rail performed very well in the two crash tests. Appendix F of the 1977 <u>Guide for Selecting, Locating, and Designing Traffic Barriers</u> (14) presents automobile trajectory data predicted by the HVOSM computer model when an automobile impacts curbs of various heights.

The data generated by the HVOSM computer model of an automobile predicted that these two vehicles would vault so that the bumper would be 14 in. to 18 in. higher than normal when it impacts the bridge rail behind the 8 in. high curb and 6 ft wide sidewalk. The crash tests showed the Honda bumper was only 4 in. higher than normal and the Oldsmobile bumper was only 3.5 in. to 7.5 in. higher (the bumper was 3.5 in. higher on initial impact and continued to climb to 7.5 in. higher 0.25 sec later). The normal bumper height of the Honda was 20.5 in. and that of the Oldsmobile was 20.75 in. when parked on

Usual Safety Eva	luation Criteria	Test Resu	Pass/Fail	
Must contain vehicle		Vehicle was contained	Pass	
Debris shall not penetrate	passenger compartment	No debris penetrated passenge	Pass	
Passenger compartment m deformation	ust have essentially no	Minimal deformation	Pass	
Vehicle must remain uprig	ght	Vehicle did remain upright	Pass	
Must smoothly redirect the	e vehicle	Vehicle was redirected	Pass	
Effective coefficient of friction (9)				
<u> </u>	Assessment	μ	Assessment	
025	Good	.55	Marginal	Pass
.2635	Fair			
> .35	Marginal			
Shall be less than				
Occupant Impact Velocity - fps		Occupant Impact Velocity - fps		Pass
Longitudinal	Lateral	Longitudinal	Lateral	
30	25	12.1	7.3	
Occupant Ridedown Accelerations - g's		Occupant Ridedown Accelerations - g's		Pass
Longitudinal	Lateral	Longitudinal	Lateral	
15	15	-4.6	7.4	
Exit angle shall be less the	an 12 degrees	Exit angle was 2.7 degrees		Pass

Table 2. Safety Evaluation of Crash Test No. 1185-5C411 Bridge Rail (1,900 lb/45 mph/20 deg)

REFERENCES

- 1. Hirsch, T.J., "Analytical Evaluation of Texas Bridge Rails to Contain Buses and Trucks," Research Report 230-2, Texas Transportation Institute, Texas A&M University, Aug. 1978.
- 2. Hirsch, T.J., "Longitudinal Barriers for Buses and Trucks, State of the Art," Research Report 416-2F, Texas Transportation Institute, Texas A&M University, Feb. 1986.
- 3. Michie, Jarvis D., "Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances," NCHRP Report 230, Transportation Research Board, National Research Council, Washington, D.C., Mar. 1981.
- 4. <u>Standard Specifications for Highway Bridges</u>, Twelfth Edition, American Association of State Highway and Transportation Officials, Washington, D.C., 1977.
- 5. Noel, J.S., T.J. Hirsch, C.E. Buth, and A. Arnold, "Loads on Bridge Railings," <u>Transportation Research Record 796</u>, Transportation Research Board, Jan. 1981.
- 6. Olson, R.M., et al., "Tentative Service Requirements for Bridge Rail Systems," NCHRP Report 86, Washington, D.C., 1970.
- 7. Buth, C.E., "Safer Bridge Railings," Vol. 1, 2, 3, and 4, Report No. FHWA/RD-82-072, Texas Transportation Institute, Texas A&M University, June 1984.
- 8. Bronstad, M.E., et al., "Bridge Rail Designs and Performance Standards," Volume I: Research Report, Report No. FHWA/RD-87/049, Feb. 1987.
- 9. <u>Guide Specifications for Bridge Railings--An Alternative Bridge Railing Specification</u> in the AASHTO Standard Specifications for Highway Bridges, American Association of State Highway and Transportation Officials, 1988.
- 10. Arnold, A.G., and T.J. Hirsch, "Bridge Deck Designs for Railing Impacts," Research Report 295-1F, Texas Transportation Institute, Texas A&M University, Aug. 1985.
- 11. Hirsch, T.J., "Longitudinal Barriers for Buses and Trucks," <u>Transportation Research</u> <u>Record 1052</u>, Transportation Research Board, 1986.
- 12. Hirsch, T.J., C.E. Buth, W.L. Campise, and D. Kaderka, "Aesthetically Pleasing Concrete Beam and Posts Bridge Rail - Texas Type T411," Research Report 1185-1, Texas Transportation Institute, Texas A&M University, Mar. 1989.

APPENDIX A

Instrumentation and Data Analysis

APPENDIX A

INSTRUMENTATION AND DATA ANALYSIS

The vehicle was equipped with triaxial accelerometers mounted near the center of gravity to measure x, y, and z components of acceleration. In addition, yaw, pitch, and roll rates were measured by on-board instruments. The electronic signals were telemetered to a base station for recording on magnetic tape and for display on a real-time strip chart. Provision was made for transmission of calibration signals before and after the test, and an accurate time reference signal was simultaneously recorded with the data.

Contact switches on the bumper were actuated just prior to impact by wooden dowels to indicate the elapsed time over a known distance to provide a measurement of impact velocity. The initial contact also produced an "event" mark on the data record to establish the instant of impact. Data from the electronic transducers were digitized, using a microcomputer, for analysis and evaluation of performance.

Analog data obtained from the electronic transducers were digitized and then analyzed on a microcomputer using three computer programs: DIGITIZE, VEHICLE, and PLOTANGLE.

The DIGITIZE program uses digitized data from vehicle-mounted linear accelerometers to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, final occupant displacement, highest 0.010-second average of vehicle acceleration after occupant/compartment impact, and time of highest 0.010-second average. The DIGITIZE program also calculates a vehicle impact velocity and the change in vehicle velocity at the end of a given impulse period.

The VEHICLE program also uses digitized data from vehicle-mounted linear accelerometers to compute vehicle accelerations, areas enclosed by acceleration-time curves, changes in velocity, changes in momentum, instantaneous forces, average forces, and maximum average accelerations over 0.050-second intervals in each of three directions. The VEHICLE program plots acceleration versus time curves for the longitudinal, lateral, and vertical directions.

The PLOTANGLE program uses the digitized data from the yaw, pitch, and roll rate
APPENDIX B

Sequential Photographs of Test 1185-5

0.149 s

0.224 s

Figure B1. Sequential photographs for test 1185-5.

APPENDIX C

•

Electronic Accelerometer, Roll, Pitch, and Yaw Data Test 1185-5

•

Date:	•	Test No.: _	1185-5	teraph an anno 1997 agus a sguar a agus a bhairte	VIN:	JHMSL5328CS017	095
Make: <u>Honda</u>	Mode	el: <u>Civ</u>	vic	Year:	1982	Odometer:	104346
Tire Size: P17	' <u>5 80R13</u> F	Ply Rating:		Bias	s Ply: _	Belted:	Radial: X
1	(177	Acceleromete		rs	Tire Condit b	tion: good fair <u>X</u> adly worn
ap 					Vehicle Geo	metry - inches	
					1	a <u>62 3/4</u>	b <u></u>
						c <u>88 1/4</u>	<u>a*53</u> _
		l d	1 / 4 11			e <u>29</u>	f <u>147 1/4</u>
	~	94	1/4"	>		g	h <u>33.1</u>
Tino dia	r. r	R	Accelerom	eters		i	j 29
Wheel dia			N			k <u>16 3/4</u>	l <u>27 1/2</u>
n->	+			\sim		m 20 1/2	n 4
j m ot				THE T	g	o <u>15</u> r 23	p 53 3/4 s 14 1/4
	b VM1	h c	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	е, 7 м ₂		Engine Type Engine CID:	: <u>4 cy</u> 1
-wheel weight for c.g. det.	lf_568_	rf_557	lr_353		322	Transmission Automatic FWD or f	or Manual RWD or 4WD
ass - pounds	Curb	Test Inc	ertial	Gross St	tatic	Body Type: _	Hatch
Μ,		112	5	1207	,	Mechanism:	ann corrupse
и — Мо		67	5	763	}	Behind w Convolut	vheel units ed tube
M _T	1800 1970					Cylindrical mesh unit Embedded ball NOT collapsible	
ote any damage	to vehicle	prior to te	est:			Unknown	ieryy absorptio
Crack in wir	ndshield (ma	arked)		nannafaithe Manadaka an an Anna an Aonain		Brakes:	
						Front: di	sc <u>X</u> drum
						Rear: di	scdrum_X

•

*d = overall height of vehicle
Figure Cl. Test vehicle properties (test 1185-5).

••

Figure C3. Vehicle longitudinal accelerometer trace for test 1185-5. (near center-of-gravity)

C-3

Figure C5. Vehicle vertical accelerometer trace for test 1185-5. (near center-of-gravity)

.

C-5

APPENDIX D

.

Sequential Photographs of Test 1185-6

0.000 s

0.089 s

0.263 s

Figure D1. Sequential photographs for test 1185-6.

APPENDIX E

.

Electronic Accelerometer, Roll, Pitch, and Yaw Data Test 1185-6

Date: _____ Test No.: 1185-6 VIN: 163AW69N4CM133944 Make: Oldsmobile Model: Ninety-eight Year: 1982 Odometer: 86762 Tire Size: P225 75R15 Ply Rating: 4 Bias Ply: Belted: Radial: X Tire Condition: good fair X Accelerometers badly worn Vehicle Geometry - inches la. a 75 1/2 b 43 3/4 c 119 d* 58 1/2 56 l f 218 3/4 е 159" g_____h_125.5 Tire dia -----Accelerometers i ---- j 33 1/2 Wheel dia s 'n k _____ & ____ m 20 3/4 n 5 1 k mŤ o 12 1/4 p 61 3/4 h r 28 s 16 1/4 b C ρ ∇M_1 小 Engine Type: V-8 f Engine CID: <u>350 Diesel</u> Transmission Type: (Automatic) or Manual 4-wheel weight lf 1276 rf 1325 lr 974 rr 925 for c.a. det. FWD or (RWD) or 4WD Body Type: 4-Door Mass - pounds Curb Test Inertial Gross Static Steering Column Collapse Mechanism: 2443 2601 M Behind wheel units 1588 1899 Convoluted tube M2 Cylindrical mesh units 4031 4500 M_T Embedded ball NOT collapsible Other energy absorption Note any damage to vehicle prior to test: Unknown Brakes: Front: disc X drum Rear: disc drum X *d = overall height of vehicle

Figure El. Test vehicle properties (1185-6).

•

Figure E3. Vehicle longitudinal accelerometer trace for test 1185-6 (near center-of-gravity)

Ξ3

Figure E5. Vehicle vertical accelerometer trace for test 1185-6 (near center-of-gravity)

E-5

VERTICAL ACCELERATION (g's)

Figure E7. Vehicle lateral accelerometer trace for test 1185-6 (rear of vehicle)

E-7