Technical Report Documentation Page

1. Report No. FHWA/TX-97/1131-8	2. Government Access	ion No.	3. Recipient's Catalog	No.			
4. Title and Subtitle URBAN ROADWAY CONGEST	ION - 1982 TO 19	93					
VOLUME 1: ANNUAL REPOR	6. Performing Organiz	ation Code					
7. Author(s) David L. Schrank and Timothy J.	Lomax		8. Performing Organiza Research Report Volume 1	ation Report No. 1131-8,			
9. Performing Organization Name and Address Texas Transportation Institute			10. Work Unit No. (TR	AIS)			
The Texas A&M University System College Station, Texas 77843-313	m 5		11. Contract or Grant N Study No. 0-113	το. 51			
12. Sponsoring Agency Name and Address Texas Department of Transportation Research and Technology Transfer	on r Office		13. Type of Report and Interim: September 1982	Period Covered - August 1993			
P. O. Box 5080 Austin, Texas 78763-5080			14. Sponsoring Agency	Code			
15. Supplementary Notes Research performed in cooperation of Transportation, Federal Highwa Research Study Title: Measuring	n with the Texas D ny Administration. and Monitoring Ur	epartment of Trans	sportation and the	U.S. Department			
^{16.} Abstract This research report represents the mobility. This study contains the database used for this research of characteristics from 1982 to 1993. to update and verify the primary information is the Federal Highwa	e ninth year of a t e facility informationtains informationtains federal, su database. The p y Administration's	en-year research e on for 50 urban a n on vehicle trave tate, and local agen rimary database a Highway Perform	ffort focused on c reas throughout the el, system length, ncies provided the nd original source ance Monitoring S	quantifying urban he country. The , and urban area information used e of most of the System (HPMS).			
Researchers combined vehicle trav values for 50 urban areas including relative mobility level within an ur	vel and system leng g the seven largest ban area.	gth data to develop in Texas. The RC	Roadway Conges I values provide a	stion Index (RCI) n indicator of the			
This report includes an analysis of the cost of congestion using travel delay and increased fuel consumption as estimated quantities. The impact of congestion was also estimated by the amount of additional facility capacity required to provide urban mobility. Congestion costs were estimated on an areawide, per eligible driver, and per capita basis.							
17. Key Words Mobility, Congestion, Economic A Transportation Planning, Travel D	Analysis, elay, RCI	 18. Distribution Statement No Restrictions. This document is available to the public through NTIS: National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 					
19. Security Classif. (of this report) Unclassified	20. Security Classif.(of Unclassified	this page)	21. No. of Pages 86	22. Price			

-

URBAN ROADWAY CONGESTION - 1982 TO 1993 VOLUME 1: ANNUAL REPORT

by

David L. Schrank Assistant Research Scientist Texas Transportation Institute

and

Timothy J. Lomax Research Engineer Texas Transportation Institute

Research Report 1131-8 Research Study Number 0-1131 Research Study Title: Measuring and Monitoring Urban Mobility in Texas

> Sponsored by the Texas Department of Transportation In Cooperation with U.S. Department of Transportation Federal Highway Administration

> > August 1996

TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843-3135

IMPLEMENTATION STATEMENT

This report provides information that will assist the Texas Department of Transportation in planning future transportation needs for urban areas in Texas. This report quantifies congestion levels and the economic impact of congestion on urban motorists in seven large cities in Texas. The report also presents data for other large U.S. metropolitan areas to assist in determining mobility trends and the relative performance of Texas' roadway networks. This report is valuable for identifying transportation trends and prioritizing future needs.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Texas Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. In addition, this report is not intended for construction, bidding, or permit purposes. David L. Schrank and Timothy J. Lomax (Texas Professional Engineer certification number 54597) prepared this research report.

·

TABLE OF CONTENTS

Page
LIST OF FIGURES
LIST OF TABLES x
SUMMARY xii
INTRODUCTION
Purpose of Congestion Research
Congestion Research Background
Report Organization/Content
AREAWIDE MOBILITY
Trends in Urban Development
Roadway Congestion Index Values, 1993 8
TRAVEL DELAY
COST OF CONGESTION
Additional Capacity
Cost Analysis
CONCLUSIONS
APPENDIX A—SYSTEM LENGTH AND TRAVEL CHARACTERISTICS 41
Travel and System Length Statistics 43
APPENDIX B—ESTIMATION OF CONGESTION COST
Estimation of Congestion Cost 51
REFERENCES

LIST OF FIGURES

FIGU	RE	Page
1	Regional Designations Used in Congestion Summaries	. 5
2	Texas Urban Area Congestion Levels, 1982 - 1993	14
3	Change in Congestion for 50 Urban Areas, 1982 and 1993	20
4	Change in Freeway Congestion Levels for 50 Urban Areas, 1982 and 1993	20
5	Change in PAS Congestion Levels for 50 Urban Areas, 1982 and 1993	21
6	Change in Delay by Congestion Severity, 1982 to 1993	21
7	Roadway Congestion Index and Annual Delay per Capita	24

LIST OF TABLES

TAB	LE Page
S-1	1993 Roadway Congestion Index Value xiv
S-2	Fastest Congestion Growth Areas
S-3	Slowest Congestion Growth Areas
S-4	Daily and Annual Hours of Delay for 1993 xvi
S-5	Annual Excess Fuel Consumed Due to Traffic Congestion in 1993 xvi
S-6	Illustration of Annual Capacity Increase Required to Prevent Congestion Growth xvii
S-7	Component and Total Congestion Costs by Urban Area for 1993 xvii
S-8	1993 Congestion Cost per Eligible Driver xix
S-9	1993 Congestion Cost per Capita xix
1	1993 Roadway Congestion Index Value 10
2	Roadway Congestion Index Values, 1982 to 1993 12
3	Change in Congestion and VKT, 1982 to 1993 15
4	Change in Congested Daily Vehicle-Kilometers of Travel and Severity 18
5	Change in Delay within Congestion Categories, 1982 to 1993 22
6	Daily Person-Hours of Delay for 1993 23
7	Annual Person-Hours of Delay per Capita, 1982 to 1993
8	Annual Person-Hours of Delay per Eligible Driver, 1982 to 1993 27
9	Annual Excess Fuel Consumed Due to Traffic Congestion in 1993 29
10	Annual Wasted Fuel Due to Congestion
11	Illustration of Annual Capacity Increase Required to Prevent Congestion Growth . 32
12	Total Congestion Costs by Urban Area for 1993 34
13	Estimated Unit Costs of Congestion in 1993 36
14	1993 Rankings of Urban Area by Estimated Impact of Congestion
15	Congestion Index and Cost Values, 1992 and 1993 38

LIST OF TABLES, Continued

TABL	Æ	Page
A-1	1993 Freeway System Length and Travel Volume	44
A-2	1993 Principal Arterial Street System Length and Travel Volume	46
A-3	Freeway and Expressway Recurring and Incident Vehicle-Hours of Daily Delay for 1993	47
A-4	Principal Arterial Street Recurring and Incident Vehicle-Hours of Daily Delay for 1993	48
B-1	Congested Daily Vehicle-Kilometers of Travel by Average Annual Daily Traffic per Lane Volumes	52
B-2	1993 Congestion Cost Estimate Variables	53
B-3	1993 Congested Daily Vehicle-Kilometers of Travel	57
B-4	Recurring and Incident Delay Relationships for 1993	58
B-5	Component and Total Congestion Costs by Urban Area for 1993	62

SUMMARY

This report represents the ninth year of a planned ten-year study to measure and monitor urban mobility in 50 urbanized areas throughout the United States. This research study estimates the level of congestion in the seven largest Texas urban areas and 43 other areas representing a cross-section of urban areas throughout the country. Quantitative estimates of mobility levels allow comparisons of transportation systems in the various urbanized areas and assist the transportation community in analyzing urban mobility.

The level of congestion in an urban area was estimated using procedures developed in previous research (1-4). The Roadway Congestion Index (RCI) combines the daily vehicle-kilometers of travel (VKT) per lane-kilometer for freeways and principal arterial street systems in a ratio comparing the existing value to values identified with congested conditions. Equation S-1 illustrates how the areawide and congested level travel per lane values are combined into the RCI values for each urban area.

$$\begin{array}{c} Roadway\\ Congestion = \\ \hline Mdex \end{array} = \begin{array}{c} Freeway \\ VKT/Ln. -Km. \end{array} x \\ \hline VKT \\ 13,000 \end{array} x \\ \hline Freeway \\ VKT \end{array} + \begin{array}{c} Prin \ Art \ Str \\ VKT/Ln. -Km. \end{array} x \\ \hline Prin \ Art \ Str \\ VKT \end{array} \\ \hline Eq. \ S-1 \\ \hline S,000 \end{array} x \\ \hline Freeway \\ VKT \end{array}$$

An RCI value of 1.0 or greater indicates that congested conditions exist areawide. It should be noted that urban areas with areawide values less than 1.0 may have sections of roadway that experience periods of heavy congestion, but the average mobility level within the urban area could be defined as uncongested. The RCI analyses presented in this report are intended to evaluate entire urban areas and not specific locations. The nature of the RCI equation (Eq. S-1) is to underestimate point or specific facility congestion if the overall system has "good" operational characteristics.

Areawide Mobility

Table S-1 combines the freeway and principal arterial street system daily VKT and daily VKT per lane-kilometer into the 1993 estimated Roadway Congestion Index (RCI). The 10 most congested urban areas in the study are displayed. The RCI values range from 1.54 (Los Angeles) to 1.16 (Atlanta). All of these urban areas have surpassed the RCI value at which undesirable levels of congestion occur (1.0).

	Freeway/H	xpressway	Principal A	rterial Street	Roadway/ ³		
Urban Area	Daily VKT ¹ (000)	Daily VKT/ ² Ln-Km	Daily VKT ⁱ (000)	Daily VKT ¹ Daily VKT ² Congestion (000) Ln-Km Index		Rank	
Los Angeles CA	183,460	20,810	133,630	6,610	1.54	1	
Washington DC	46,690	17,790	29,620	7,830	1.41	2	
San Fran-Oak CA	68,830	17,560	22,860	6,040	1.33	3	
Miami FL	15,920	15,450	27,370	7,540	1.32	4	
Chicago IL	65,950	15,850	56,350	6,860	1.26	5	
Detroit MI	47,500	16,160	41,860	6,050	1.23	6	
Seattle-Everett WA	33,330	16,110	15,620	5,970	1.23	6	
San Bernardino-Riv CA	24,500	16,280	17,870	5,240	1.21	8	
San Diego CA	44,680	15,900	15,540	5,560	1.21	8	
Atlanta GA	48,300	15,000	19,320	6,000	1.16	10	

Table S-1. 1993 Roadway Congestion Index Value

Notes: ¹ Daily vehicle-kilometers of travel.

² Daily vehicle-kilometers of travel per lane-kilometer.

³ See Equation S-1.

See Table 1 for complete listing of urban areas. Source: TTI Analysis

Table S-2 displays the 10 urban areas which have experienced the greatest growth in congestion between 1982 and 1993. The RCI values reflect the level of congestion occurring in the urban areas. Salt Lake City experienced a 31 percent increase in congestion during the seven-year period. The congestion increase rate in all cities in the top 10 approached or exceeded two percent per year.

	Percent Change	Rank	Year				
Urban Area	1987-1993	1987-1993	1982	1987	1991	1992	1993
Salt Lake City UT	31	1	0.63	0.70	0.88	0.90	0.92
Columbus OH	19	2	0.68	0.78	0.91	0.93	0.93
Detroit MI	18	3	1.06	1.04	1.16	1.19	1.23
Cincinnati OH	18	3	0.86	0.87	0.99	1.01	1.03
Miami FL	16	5	1.05	1.14	1.28	1.30	1.32
Charlotte NC	16	5	0.71	0.79	0.89	0.89	0.92
Minn-St. Paul MN	15	7	0.76	0.89	0.96	0.99	1.02
Baltimore MD	14	8	0.84	0.91	1.02	1.04	1.04
Oklahoma City OK	13	9	0.72	0.76	0.81	0.83	0.86
Ft Lauderdale FL	13	9	0.88	0.95	1.03	1.05	1.07

Table S-2. Fastest Congestion Growth Areas

See Table 2 for complete listing of urban areas.

Source: TTI Analysis

The 10 urban areas with the smallest growth in congestion between 1982 and 1993 are shown in Table S-3. Of the top ten, only Jacksonsville and San Francisco-Oakland experienced small increases in congestion levels. Congestion decreases in the other eight urban areas were between zero and one percent per year.

Table S-3. Slowest Congestion Growth Areas

	Percent Change	Rank	Year				
Urban Area	1987-1993	1987-1993	1982	1987	1991	1992	1 99 3
Phoenix AZ	(8)	1	1.15	1.18	1.08	1.08	1.08
Austin TX	(5)	2	0.84	1.00	0.94	0.95	0.95
Houston TX	(5)	2	1.17	1.19	1.11	1.12	1.13
New Orleans LA	(4)	4	0.98	1.14	1.12	1.10	1.09
Philadelphia PA	(2)	5	1.00	1.06	1.05	1.05	1.04
Norfolk VA	(1)	6	0.79	0.93	0.93	0.92	0.92
Albuquerque NM	Ö	7	0.78	0.96	0.96	0.95	0.96
St. Louis MO	0	7	0.83	0.96	0.95	0.95	0.96
Jacksonville FL	2	9	0.91	0.94	0.95	0.97	0.96
San Fran-Oak CA	2	9	1.01	1.31	1.34	1.33	1.33

See Table 2 for complete listing of urban areas

Source: TTI Analysis

The 10 urban areas with the highest amount of daily delay are shown in Table S-4. Los Angeles topped this list with over 2.4 million person-hours of delay on a daily basis. New York was the only other urban area with over a million person-hours of daily delay. While Los Angeles tops the list for greatest amount of total delay, it ranks fourth amongst all of the study cities with 65 person-hours of delay annually per eligible driver.

Table S-5 lists the top 10 urban areas based on the amount of fuel wasted annually due to congested travel. Los Angeles tops the list with almost 2.5 billion liters of wasted fuel annually. New York is second with about 2.2 billion liters. Seattle is tenth in this group with about 400 million liters of fuel wasted annually. These 10 areas consume 9.8 billion liters annually due to congestion in their urban areas. Washington, D.C. led this list with about 291 liters of fuel wasted annually per eligible driver.

Table S-6 combines existing freeway and principal arterial street distances with (1989 to 1993) recent annual traffic volume growth rates to produce the number of additional lane-kilometers for both freeway and principal arterial street which would be necessary to avoid increases in areawide congestion. This value illustrates the amount of roadway that would have to be added *every year* to maintain a constant congestion level. The average amount of roadway which was added annually during this time period was also calculated. The annual deficiency in construction of lane-kilometers of freeway and principal arterial streets is shown. Detroit leads this list of cities with a deficiency of 345 lane-kilometers annually between 1989 and 1993 (115 lane-kilometers of freeway and 230 lane-kilometers of principal arterial streets).

	Daily Pe	erson-Hours	of Delay (000)	Person-Annual		Person-Hours of	
Urban Area	Recurring	Incident	Total	Rank ¹	Hours of Delay per Capita	Rank ¹	Annual Delay per Eligible Driver	Rank ¹
Los Angeles CA	1,106	1,295	2,402	1	50	4	65	4
New York NY	750	1,378	2,128	2	31	15	39	17
San Fran-Oak CA	366	462	828	3	43	3	66	3
Washington DC	285	504	789	4	58	1	70	2
Chicago IL	365	423	788	5	26	21	34	20
Detroit MI	253	419	673	6	42	7	57	7
Houston TX	229	309	537	7	46	6	60	5
Boston MA	117	319	437	8	37	12	44	12
Atlanta GA	185	203	388	9	42	7	53	8
Philadelphia PA	162	218	380	10	18	35	23	35

Table S-4. Daily and Annual Hours of Delay for 1993

Notes: ¹ Rank value of 1 associated with most congested conditions.

See Table 6 for complete listing of urban areas.

Source: TTI Analysis.

	Annual	Liters of Fu	el Wasted (n	uillion)	Annual Excess		Annual Excess	
Urban Area	Recurring	Incident	Total	Rank ¹	per Capita (liters)	Rank ¹	per Eligible Driver (liters)	Rank ¹
Los Angeles CA	1 1 5 3	1.350	2,503	1	209	5	269	4
New York NY	788	1.447	2,235	2	131	16	165	16
San Fran-Oak CA	390	492	882	3	230	3	282	3
Washington DC	298	526	824	4	242	1	291	1
Chicago IL	380	440	820	5	108	21	140	21
Detroit MI	260	431	691	6	173	9	234	7
Houston TX	245	331	576	7	197	6	257	5
Boston MA	124	339	463	8	156	12	187	12
Atlanta GA	195	214	409	9	176	8	223	9
Seattle-Everett WA	172	229	401	10	214	4	251	6

Table S-5. Annual Excess Fuel Consumed Due to Traffic Congestion in 1993

Notes: ' Rank value of 1 associated with greatest fuel consumption.

See Table 9 for complete listing of urban areas.

Source: TTI Analysis

	Existing (1993) Lane-km		Average Annual	Annual Freeway Lane-km		Annual Prin. Art. Lane-km		Lane-km Deficiency	
Urban Area	Fwy	Prin. Art.	VKT Growth (%) ¹	Needed	Added	Needed	Added	Fwy	Prin. Art.
Detroit MI	2.938	6,923	5.76	169	54	399	169	115	230
New York NY	9,902	12,397	1.71	170	115	213	141	55	72
Kansas City MO	2,479	1,811	5.24	130	74	95	32	56	63
Los Angeles CA	8,815	20,206	1.38	121	143	278	149	-22	129
Baltimore MD	2,206	2,737	3.40	75	56	93	10	19	83
Minn-St. Paul MN	2,471	1,932	5.06	125	34	98	87	91	11
Denver CO	1,594	2,995	3.39	54	52	101	8	2	93
Chicago IL	4,162	8,211	5.05	210	115	415	423	95	-8
Cincinnati OH	1,554	1,328	4.45	69	30	59	12	39	47
Orlando FL	990	1,787	4.33	43	16	77	20	27	57

Table S-6. Illustration of Annual Capacity Increase Required to Prevent Congestion Growth

Note: ¹ Average Annual Growth rate of Freeway and Principal Arterial Streets Daily VKT between 1989-1993.

See Table 11 for complete listing of urban areas.

Source: TTI Analysis

The urban areas with the highest annual congestion costs are shown in Table S-7. Delay and fuel costs comprise the total congestion costs. These 10 urban areas have an annual combined congestion cost of over \$33 billion. Los Angeles and New York had the highest total congestion costs with values of \$8.53 billion and \$7.60 billion, respectively. The final urban area in the table, Seattle, had a total congestion cost of \$1.35 billion annually.

	Annual			
Urban Area	Delay Fuel		Total	Rank
Los Angeles CA	7,660	870	8,530	1
New York NY	6,810	790	7,600	2
San Fran-Oak CA	2,670	310	2,980	3
Chicago IL	2,520	280	2,800	4
Washington DC	2,520	270	2,790	5
Detroit MI	2,130	210	2,340	6
Houston TX	1,740	180	1,920	7
Boston MA	1,410	150	1,560	8
Atlanta GA	1,240	120	1,360	9
Seattle-Everett WA	1,210	140	1,350	10

Table S-7. Component and Total Congestion Costs by Urban Area for 1993

See Table 12 for complete listing of urban areas.

Source: TTI Analysis and Local Transportation Agency Reference

Congestion costs can be used in relation to eligible drivers to show the impact on each potential driver in the urban area. Table S-8 lists the top 10 congestion costs per eligible driver for 1993. San Bernardino ranks first with a cost of \$1,090 per driver. Dallas and Houston had costs of \$760 and \$860 per driver, respectively, or approximately \$3.5 per driver per workday.

Table S-8.	1993	Congestion	Cost per	Eligible Driver	
------------	------	------------	----------	-----------------	--

	Total Congestion Cost					
Urban Area	Per Eligible Driver (dollars)	Rank				
San Bernardino-Riv. CA Washington DC San Fran-Oak CA Los Angeles CA Houston TX Seattle-Everett WA Detroit MI Dallas TX San Jose CA Atlanta GA	1,090 980 950 920 860 840 790 760 750 740	1 2 3 4 5 6 7 8 9 10				

See Table 13 for complete listing of urban areas.

Source: TTI Analysis

Expressing congestion costs on a per capita basis illustrates the congestion "tax" paid by residents (Table S-9). The highest 1993 cost per capita occurred in Washington, D.C. with a cost per capita of \$820. San Jose had the smallest cost per capita (\$580) of the top 10 urban areas with a cost of just over \$2 per capita for each workday.

Table S-9.	1993	Congestion	Cost per	Capita
------------	------	------------	----------	--------

	Total Congestion Cost					
Urban Area	Per Capita (dollars)	Rank				
Washington DC San Bernardino-Riv. CA San Fran-Oak CA Seattle-Everett WA Los Angeles CA Houston, TX Dallas, TX Atlanta GA Detroit MI San Jose CA	820 790 780 720 710 660 600 590 590 580	1 2 3 4 5 6 7 8 8 8 10				

See Table 13 for complete listing of urban areas.

Source: TTI Analysis

INTRODUCTION

Congestion within the inner city has long been recognized as a severe problem. Congested streets and freeways have forced residents and businesses to relocate in the surrounding suburbs. Relocating to the suburbs, however, proved to be only a temporary solution to metropolitan area congestion problems. Congestion has expanded into the suburbs, with street systems designed for service to residential areas overburdened with traffic headed to large shopping malls and business parks. Urban transportation systems have been required to serve more travel needs between suburbs and fewer trips to or from downtown business districts.

A recent study ($\underline{5}$) showed this move to the suburbs has been occurring with the length of work trips increasing in urban areas of all sizes. Between 1983 and 1990, work trip length in urban areas under 1 million increased by 20 percent to 13 kilometers, and by 13 percent to 17 kilometers in urban areas with populations over 1 million. The percentage of the population with a work trip length of greater than 16 kilometers increased from 19 percent of the population in 1983 to 23 percent in 1990 for urban areas under 1 million in population. This increase was also true in urban areas with over 1 million in population, with an increase from 31 percent of the population to 36 percent in 1990.

This same study (5) shows that commute times did not increase significantly as did the length of the commute trip. In urban areas with populations greater than 1 million, the commute times remained virtually unchanged. Overall, the commute times increased by 6 percent between 1983 and 1990. Much of this increase occurred in urban areas under 1 million population and areas classified as not urban with increases in commute times of about 4 percent and 6 percent, respectively.

The decline in urban mobility resulting from congestion has become a major concern not only to the transportation community, but also to the motoring public and business community. The understanding that comes from measuring congestion assists transportation professionals, policy makers, and the general public in communicating problems, developing necessary transportation system improvements, and formulating new policies and programs.

Purpose of Congestion Research

Mobility improvement in most metropolitan areas has meant choosing from a limited set of alternatives including controlling area development, spending large sums of money for personal vehicle and transit facility improvements, or accepting decline in the quality of transportation in the cities and suburbs. Transportation professionals, policy makers, the media, and the general public typically view these options as undesirable. In recent years, cities have encouraged the use of various aspects of travel demand management (TDM). Some of these techniques reduce vehicle travel, thus reducing congestion, while others only modify demand by shifting the time of travel.

Whether cities use more traditional techniques of congestion management or the more recent techniques such as TDM, measuring congestion is still a vital step in understanding the problems of congestion and aiding in the development of effective solutions to the urban mobility problem.

Previous research efforts of this series developed a quantitative procedure to compare traffic volumes and roadway systems. The procedure estimates the mobility levels within an urban area and permits the comparison of roadway networks from year to year and area to area. It is important to note that this research is areawide and does not show direct effects from particular corridors or projects within an urban area. Previous research has determined that approximately 95 percent of trips are contained in private auto and truck trips in an urban area. Thus, this report shows the effects of the vast majority of travel within the urban area. This research does not, however, show the effects of operational improvements, transit, or ridesharing.

Congestion Research Background

This research study uses existing data from federal, state, and local agencies to develop planning estimates of the level of congestion within an urban area. The analyses presented in this report are the results of previous research (1-4) conducted at the Texas Transportation Institute. The methodology developed by the previous research provides a procedure which yields a quantitative estimate of urbanized area mobility levels, utilizing generally available data, while minimizing the need for extensive data collection.

The methodology primarily uses the Federal Highway Administration's Highway Performance Monitoring System (HPMS) database with supporting information from various state and local agencies (<u>6</u>). The HPMS database is used as a base because of the relative consistency and comprehensive nature. State departments of transportation collect, review, and report the data. Since each state classifies roadways in a slightly different manner, the data are reviewed and adjusted by TTI and then reviewed by state and local agencies familiar with each urban area.

This process was of particular importance with the 1992 HPMS data because many of the urban areas were affected by a U.S. Census realignment. This realignment may have significantly changed the size of the urban area which, in turn, would also cause a change in system length and vehicle travel with resulting changes in the areawide congestion levels. To avoid a stair-step appearance in the data, some historical data may have been changed also to make the realignment a smoother transition that more closely resembles the actual experience for each year. Thus, *some figures which have been reported in past reports may have changed in this report*.

Currently, the database developed for this research contains vehicle travel, population, urban area size, and system length from 1982 to 1993. Vehicle travel and vehicle travel per lane-kilometer are used as the basis of measuring urban congestion levels and comparing areawide roadway systems.

Report Organization/Content

This report is the eighth of a series (3,4) of reports and is the third in the series to utilize the metric system in the analyses. Tables 1 through 15 and the tables in the Appendix of Volume 1 are reprinted in Imperial units in Appendix A of Volume 2. It is important to note that the calculations performed in this report may produce slightly different results between the two systems due to conversions. This research report focuses on 1993 congestion levels and trends displayed by the data from 1982 to 1993. Information on the methodology and the equations utilized to produce the tables, along with detailed yearly summaries of the data are available in Volume 2 of this report.

This report summarizes and discusses urban mobility levels in 50 urban areas throughout the United States. Seven of the areas studied represent the largest urban areas in Texas; the remaining 43 areas are located in 27 states (Figure 1). These 50 areas include nearly all of the urban areas in the United States with populations of 800,000 or more that have a significant amount of congestion.

There are three major topics addressed in this report: areawide congestion, the impacts of congestion, and the cost of congestion. The following are brief descriptions of the information included within each of these topics.

Areawide Congestion

Understanding the reasons for the type and scope of the urban congestion problems is important to transportation planners and policy makers. Quantitative estimates of congestion levels on major roadways allow comparisons of transportation systems and provide a tool to analyze the differences between different transportation systems and urban areas. This section discusses the trends in urban development, travel and system length statistics, and the 1993 Roadway Congestion Index (RCI) values for 50 urban areas included within the study.

Figure 1. Regional Designations Used in Congestion Summaries

Impacts of Congestion

This section addresses travel delay, the most apparent impact of congestion to the motoring public. Delay may be categorized into two general components—recurring and incident. The impacts of travel delay and the relationship with an urban area's roadway congestion index are analyzed. The amount of excess fuel consumed by vehicles moving slowly in traffic congestion is also estimated.

Cost of Congestion

The economic impact of congestion was estimated for the 50 urban areas studied. Congestion costs have two components—travel delay and wasted fuel. Estimating the costs associated with congestion provides another tool for comparing urban mobility from one area to another. More importantly, congestion cost is another method of tracking changes in congestion levels and their impact on an urbanized area over an extended period of time. Another quantifiable impact of congestion is the additional capacity required to eliminate congestion conditions with only roadway improvements.

AREAWIDE MOBILITY

A 1989 report $(\underline{7})$ identified several trends shaping traffic congestion. The interrelated forces impacting the nature and severity of congestion identified in that report include: (1) suburban development, (2) the economy, (3) the labor force, (4) automobile usage, percent of truck traffic, and the highway infrastructure. The following is an example of how these forces interact:

"Trends in suburban and economic development have supported and generated increased automobile usage and truck traffic. This has resulted in increasing traffic congestion in many metropolitan areas throughout the country" (7).

Trends in Urban Development

Most metropolitan areas have experienced dynamic suburban growth since the 1960s. The prevailing desire to live away from the inner city and yet to be in close enough proximity to enjoy urban amenities encouraged suburban development. This evolutionary process begins with families and then expands to commercial services and jobs. The process shapes traffic congestion in most metropolitan areas by altering the commuting patterns.

The demands placed on the existing highway infrastructure in general, and by the migration of the population and employment opportunities, have not been met by new facility construction. Demands for suburban traffic movement, increasing vehicle-kilometers of travel, and more freeway access points have greatly altered the function of the freeway/expressway system in most metropolitan areas. Increases in delay are the result of the roadway system's capacity not increasing to meet new demands.

The decline in new facility construction during the past 20 years may be attributed to reduced funding, increased construction costs, and public resistance to building and widening transportation facilities. These factors have promoted lower levels of mobility and greater dispersion of the metropolitan area's population. In recent years, an increasingly negative

perception of the mobility level has renewed interest in the condition of transportation systems. This perception has also increased the desire of the transportation community, general public, policy makers, and numerous others to understand the causes, effects, and solutions to urban congestion.

Roadway Congestion Index Values, 1993

Urban roadway congestion levels are estimated using a formula that measures the density of traffic. Average travel volume per lane on freeways and principal arterial streets are estimated using areawide estimates of vehicle-kilometers of travel (VKT) and lane-kilometers of roadway (Ln-Km). The resulting ratios are combined into one value using the amount of travel on each portion of the system. This variable weighting factor allows comparisons between areas such as Phoenix, where principal arterial streets carry twice the amount of travel of freeways, and cities such as Portland, where the ratio is reversed.

The traffic density ratio is divided by a similar ratio that represents congestion for a system with the same mix of freeway and street volume. While it may appear that the travel volume factors on the top and bottom of the equation cancel each other, a sample calculation should satisfy the reader that this is not the case.

Equation 1 illustrates the factors used in the estimate and their combination. The resulting ratio indicates an undesirable level of <u>areawide</u> congestion if a value greater than or equal to 1.0 is obtained.

Roadway Congestion = Index (RCI)	_	Freeway Freeway VKT/LnKm. ^x VKT		+ Prin Art Str + VKT/LnKm.			x Prin Art Str X VKT	D ₂ 1
	-	13,000	x	Freeway VKT	+	5,000	x	Prin Art Str VKT

The congestion index is a macroscopic measure which does not account for local bottlenecks or variations in travel patterns that affect time of travel or origin-destination combinations. It also does not indicate the improvements such as ramp metering, or of treatments designed to give a travel speed advantage to transit and carpool riders.

1993 Roadway Congestion Index Estimates

Table 1 lists the roadway congestion index values for 1993. Of the 50 urban areas studied, 27 have 1993 RCI values of or exceeding 1.0. RCI values for the 10 most congested urban areas range from 1.54 (Los Angeles) to 1.16 (Atlanta). Sixteen urban areas have estimated RCI values ranging between 0.90 and 0.99, indicating the potential approach of undesirable congestion levels. These areas may not currently experience undesirable levels of congestion; however, traffic growth rates indicate congestion levels could become undesirable within the next few years in many of these cities.

The Western region has the highest average RCI value (1.21), and the Northeastern (1.07) and Southern (1.01) regional averages also exceeded 1.0. The Southwestern and Midwestern regions have average RCI values below 1.0.

Four areas in California ranked in the top 10 including two from the Los Angeles Metropolitan area (also San Bernardino-Riverside). None of the urban areas studied in Texas were included in the 10 most congested areas. Houston (tied at 12th) and Dallas (tied at 17th) were the only urban areas studied in Texas which were in the twenty most congested urban areas. Austin had the next highest rank of the Texas urban areas (tied at 33rd). Florida was the only other state with more than one area in the twenty most congested systems (Miami and Tampa).

	Freeway/Expressway Principal Arterial Street					
Tiber Area	1100//43/12	l l			Roadway/ ²	Dank
Urban Area	Daily VKT ¹	Daily VKT/ ²	Daily VKT ¹	Daily VKT/ ²	Index	Kalik
	(000)	Ln-Km	(000)	Ln-Km	HIGEN	
Los Angeles CA	183 460	20.810	133 630	6 610	1.54	1
Washington DC	46,690	17,790	29,620	7,830	1.41	2
San Fran-Oak CA	68,830	17,560	22,860	6,040	1.33	3
Miami FL	15,920	15,450	27,370	7,540	1.32	4
Chicago IL	65,950	15,850	56,350	6,860	1.26	5
Detroit MI	47,500	16,160	41,860	6,050	1.23	6
Seattle-Everett WA	33,330	16,110	15,620	5,9/0	1.23	8
San Diego CA	44,500	15,280	15 540	5,560	1.21	8
Atlanta GA	48,300	15,000	19,320	6.000	1.16	10
New York NY	138,460	13,980	88,550	7,140	1.15	11
Honolulu HI	8,860	13,920	3,110	7,880	1.13	12
Houston TX	51,520	14,880	18,350	5,180	1.13	12
Portland OR	13,440	13,920	7,080	6,670	1.11	14
New Orleans LA	8,370	13,510	7,080	6,290	1.09	15
Phoenix AZ	15,780	13,800	29,790	5,520	1.08	10
Boston MA Dallas TV	34,620	14,240	14 650	4,040	1.07	17
Denver CO	21 330	13 380	17,870	5,970	1.07	17
Tampa FL	6.360	12,340	7,500	6.470	1.06	20
San Jose CA	26,810	13,650	11,750	5,290	1.05	21
Baltimore MD	28,980	13,140	16,100	5,880	1.04	22
Philadelphia PA	32,520	11,950	34,870	6,580	1.04	22
Sacramento CA	16,550	12,770	12,640	6,280	1.04	22
Cincinnati OH	20,710	13,330	7,080	5,330	1.03	25
Minn-St. Paul MN	32,200	13,030	11,430	5,920	1.02	20
Cleveland OH	12,020	12,900	9,020	5,000	0.98	27
Et Landerdale FI	13 690	12,500	10 300	5 250	0.98	28
Albuquerque NM	4,410	11,420	7.250	5,450	0.96	30
Jacksonville FL	9,660	12,500	10,060	4,770	0.96	30
St. Louis MO	31,400	11,340	20,450	6,600	0.96	30
Austin TX	10,340	12,110	4,030	5,210	0.95	33
Fort Worth TX	21,090	12,240	7,570	5,000	0.95	33
Columbus OH	15,700	11,820	5,640	5,470	0.93	35
Hartford CT	11,310	11,520	6,100	5,790	0.93	35
Louisville K I	11,270	11,380	2,040	5 350	0.93	35
Nachville TN	0,290 11,270	11,520	9,020	5,770	0.93	35
Charlotte NC	5 640	11,110	5,190	5,470	0.92	40
Norfolk VA	9.620	10,390	7,890	6,450	0.92	40
Salt Lake City UT	9,760	11,330	4,300	6,140	0.92	40
San Antonio TX	17,230	11,380	9,660	5,310	0.91	43
Indianapolis IN	14,330	11,410	7,250	4,890	0.89	44
Oklahoma City OK	12,400	10,480	7,250	5,630	0.86	45
Orlando FL Distributoria DA	10,020	10,120	8,370	4,080	0.82	40
Phusourgn PA Kapsas Ciny MO	24 150	0,150	8 860	4 890	0.32	48
Fl Paso TX	5 960	10,000	5.380	3,880	0.77	49
Corpus Christi TX	3,140	9,290	2,580	4,320	0.75	50
•	-					
Northeastern Avg	43,950	12,960	30,900	6,320	1.07	
Midwestern Avg	26,030	12,510	15,900	5,670	0.99	
Southern Avg	13,380	12,310	11,010	5,820	1.01	
Soumwestern Avg	18,240	12,170	26 680	5,190	0.90	
Texas Ave	21 340	11,990	8,890	4,860	0.93	
Total Avg	27,760	13.020	17,790	5,780	1.04	
Maximum Value	183,460	20,810	133,630	7,880	1.54	
Minimum Value	3,140	8,130	2,580	3,880	0.75	

Table 1. 1993 Roadway Congestion Index Value

Notes:

Daily vehicle-kilometers of travel.
 Daily vehicle-kilometers of travel per lane-kilometer.
 See Equation 1.

TTI Analysis. Source:

The limitation of any roadway congestion estimate based on traffic volumes, however, is that only part of the land use transportation system is addressed. As Richardson et al. point out, travel times for work trips have not substantially increased between 1983 to 1990 ($\underline{8}$). This reflects the impact of "urban sprawl" as a congestion relief mechanism. As congestion has grown in certain corridors, jobs, residences, or both have relocated to take advantage of less congested roads. Trip lengths and travel speeds can thus both increase as traffic volumes rise due to growth in development. As more development occurs outside the defined urban area, urban area residents make more trips on the roadway system. The long-term sustainability of this growth pattern is being debated, but there is no doubt as to its impact on transportation systems.

Travel time is a very useful congestion measurement. It can be used in multimodal analyses and can illustrate the effect of operational improvements and policy changes designed to make the land use/transportation system function better. Unfortunately, if an analysis focuses only on the work trip, it ignores approximately 50 percent of weekday peak period vehicle trips and 66 percent of weekday vehicle trips. In addition, since 1969, work trips have declined from 36 to 28 percent of total vehicle trips, while family and personal business trips have increased from 31 to 45 percent of total vehicle trips. To suggest that congestion is not increasing because work trip travel times have not substantially changed, is to ignore traffic volumes that are significantly larger than roadway designs envisioned and to discount the effect of three hour peak periods on economic activity in congested travel corridors ($\underline{8}$).

Roadway Congestion Index Growth

Table 2 summarizes roadway congestion index values for all 50 urban areas for certain years between 1982 to 1993. During the last seven years, Salt Lake City and Columbus were estimated to have experienced the fastest increase in congestion, while Phoenix, Austin and Houston have experienced the smallest.

	Percent Change	ngeYear								
Urban Area	1987-1993	Rank	1982	1984	1986	1987	1989	1991	1992	1993
Phoenix AZ	(8)	1	1.15	1.10	1.20	1.18	1.03	1.08	1.08	1.08
Austin TX	(5)	2	0.84	0.86	0.94	1.00	0.96	0.94	0.95	0.95
Houston TX	(5)	2	1.17	1.25	1.21	1.19	1.13	1.11	1.12	1.13
New Orleans LA	(4)	4	0.98	1.05	1.09	1.14	1.13	1.12	1.10	1.09
Philadelphia PA	(2)	3	1.00	1.04	1.00	1.00	1.05	1.05	1.05	1.04
Albumarmia NDA		7	0.79	0.81	0.90	0.95	0.95	0.95	0.92	0.96
St. Louis MO	0	7	0.70	0.89	0.90	0.96	0.96	0.95	0.95	0.96
Jacksonville FL	2	9	0.91	0.96	0.95	0.94	0.93	0.95	0.97	0.96
San Fran-Oak CA	2	9	1.01	1.12	1.24	1.31	1.36	1.34	1.33	1.33
Boston MA	3	11	0.90	0.95	1.04	1.04	1.09	1.06	1.07	1.07
Corpus Christi TX	4	12	0.67	0.69	0.71	0.72	0.70	0.72	0.74	0.75
Nashville TN	4	12	0.77	0.83	0.86	0.89	0.90	0.90	0.92	0.93
Pittsburgh PA	4	12	0.78	0.76	0.79	0.79	0.82	0.82	0.81	0.82
Sacramento CA	4	12	0.80	0.88	0.95	1.00	1.01	1.04	1.04	1.04
Tampa FL	4	12	0.94	1.05	1.00	1.02	1.05	1.05	1.07	1.00
Dallas TX	5	17	0.91	0.97	1.03	1.02	1.07	1.10	1.07	1.07
Indianapolis IN	5	17	0.67	0.75	0.81	0.85	0.86	0.84	0.84	0.89
Los Angeles CA	5	17	1.22	1.32	1.42	1.47	1.54	1.56	1.54	1.54
Milwaukee WI	5	17	0.83	0.87	0.90	0.95	0.97	1.00	1.00	1.00
Orlando FL	6	22	0.72	0.73	0.76	0.77	0.77	0.78	0.80	0.82
San Antonio TX	6	22	0.77	0.82	0.88	0.86	0.87	0.89	0.90	0.91
San Bernardino-Riv CA	6	22	1.11	1.13	1.15	1.14	1.17	1.22	1.22	1.21
San Jose CA	6	22	0.86	0.91	0.97	0.99	1.03	1.08	1.07	1.05
Harftford CT	7	26	0.76	0.86	0.85	0.87	0.89	0.89	0.91	0.93
El Paso IX Honolulu HI	õ	27	0.03	0.05	1.03	1.05	1.07	1 10	0.70	1 13
	o g	27	0.92	0.95	0.80	0.86	0.86	0.88	0.90	0.93
New York NY	8	27	1.01	0.99	1.06	1.06	1.12	1.14	1.14	1.15
Seattle-Everett WA	8	27	0.95	1.02	1.09	1.14	1.20	1.20	1.22	1.23
Fort Worth TX	9	32	0.76	0.80	0.87	0.87	0.87	0.92	0.94	0.95
Ft. Lauderdale FL	9	32	0.87	0.86	0.85	0.90	0.92	0.95	0.96	0.98
Washington DC	9	32	1.12	1.11	1.27	1.29	1.33	1.33	1.36	1.41
Chicago IL	10	35	1.02	1.05	1.15	1.15	1.21	1.27	1.28	1.20
Cleveland OH	10	33	0.80	0.83	0.80	0.89	0.90	0.95	0.95	0.90
Mamphic TN	10	30	0.02	0.00	0.00	0.71	0.72	0.75	0.77	0.93
Portiand OR	12	30	0.05	0.88	0.97	0.99	1.07	1.08	1.10	1.11
San Diego CA	12	39	0.78	0.91	1.00	1.08	1.18	1.22	1.22	1.21
Denver CO	13	41	0.88	0.93	0.97	0.95	1.01	1.03	1.05	1.07
Oklahoma City OK	13	41	0.72	0.75	0.76	0.76	0.78	0.81	0.83	0.86
Baltimore MD	14	43	0.84	0.85	0.88	0.91	0.98	1.02	1.04	1.04
Minn-St. Paul MN	15	44	0.76	0.84	0.89	0.89	0.92	0.96	0.99	1.02
Charlotte NC	16	45	0.71	0.76	0.78	0.79	0.82	0.89	0.89	0.92
Miami FL	10	43	1.05	1.10	1.14	1.14	1.25	1.20	1.50	1.52
Detroit MI	18	47	1.06	1.07	1.05	1.04	1.09	1 16	1.19	1.03
Columbus OH	19	49	0.68	0.71	0.75	0.78	0.82	0.91	0.93	0.93
Salt Lake City UT	31	50	0.63	0.65	0.68	0.70	0.81	0.88	0.90	0.92
Northeastern Ave			000	0.04	0.00	1 00	1 04	1 04	1.05	1.07
Midwestern Avg			0.92	0.83	0.77	0.89	0.92	0.96	0.97	0.99
Southern Avg			0.86	0.90	0.93	0.95	0.98	0.99	1.00	1.01
Southwestern Avg			0.83	0.87	0.93	0.92	0.92	0.94	0.95	0.96
Western Avg			0.95	1.01	1.09	1.13	1.18	1.20	1.20	1.21
Texas Avg			0.81	0.86	0.91	0.91	0.90	0.91	0.93	0.93
Total Avg			0.86	0.90	0.95	0.97	1.00	1.02	1.03	1.04
Maximum Value			1.22	1.32	1.42	1.47	1.54	1.56	1.54	1.54
Minimum Value			0.62	0.00	0.08	0.70	0.70	0.72	0.74	0.75

Table 2.	Roadway	Congestion	Index	Values.	1982 to	1993
14010 2.	1. July 1. ay	Congestion	TIMAY	• 41443,	170-00	

Source: TTI Analysis

Figure 2 illustrates trend data for the Texas urban areas studied. This figure graphically shows that all of the Texas urban areas experienced increases in congestion in 1993 except Austin and Dallas. Austin, Fort Worth, and San Antonio are all above the 0.90 level, which means they could reach the 1.00 level in the next few years.

Table 3 compares growth between the congestion level and the daily vehicle-kilometers of travel in each urban area. This table shows some of the dramatic changes in growth rates between the early 1980s and early 1990s. Salt Lake City, for example, was ranked 31st and 20th for its growth in congestion and daily VKT, respectively, between 1982 and 1986, while it is ranked first in both categories for its growth between 1987 and 1993. Slower economic growth and freeway and street expansions funded by increases in fuel tax in the early 1980s have slowed the growth of roadway congestion in Texas relative to most other states.

Figure 2. Texas Urban Area Congestion Levels, 1982 - 1993

		1982 t	o 1986		1987 to 1993				
Urban Area	Roadway (Inc	Congestion lex	Daily V Kilometers	Daily Vehicle- Kilometers of Travel		Congestion lex	Daily Vehicle- Kilometers of Travel		
	Percent Change	Rank	Percent Change	Rank	Percent Change	Rank	Percent Change	Rank	
Salt Lake City UT Columbus OH Cincinnati OH Detroit MI	8 10 (2) (1)	31 26 48 47	22 19 6 4	20 27 47 49	31 19 18 18	1 2 3 3	54 28 34 34	1 14 4 4	
Charlotte NC Miami FL Minn-St. Paul MN	10 9 17	26 30 9	21 13 27	23 37 10	16 16 15	5 5 7	31 32 30	10 8 11 22	
Denver CO Oklahoma City OK Portland OR	5 10 6 11	26 34 24	14 13 26	34 37 13	14 13 13 12	9 9 11	21 25 29	26 20 13	
San Diego CA Memphis TN Chicago IL Clavaland OH	28 (4) 13 8	1 50 16 31	36 13 21 6	3 37 23 47	12 11 10 10	11 13 14 14	19 40 36 32	32 2 3 8	
Kansas City MO Fort Worth TX Ft. Lauderdale FL	10 14 (2)	26 13 48	20 22 3	25 20 50	10 9 9	14 17 17	26 17 27	18 38 17	
Washington DC El Paso TX Honolulu HI Louisville KY	13 19 12 3	16 7 19 43	30 23 14 15	18 34 31	9 8 8 8	17 20 20 20	19 14 28 26	32 43 14 18	
New York NY Seattle-Everett WA Hartford CT	5 15 12	38 12 19	11 25 31	43 15 6	8 8 7	20 20 25	15 19 19	41 32 32 21	
San Antonio TX San Bernardino-Riv CA San Jose CA	0 14 4 13	13 40 16	14 24 11 18	16 43 28	6 6 6	26 26 26 26	24 21 21 14	26 26 43	
Atlanta GA Dallas TX Indianapolis IN Los Angeles CA	20 24 21	6 2 5	37 32 22 23	2 5 20 18	5 5 5 5	30 30 30 30	30 12 14 15	11 46 43 41	
Milwaukee WI Corpus Christi TX Nashville TN	8 6 12	31 34 19	11 11 33	43 43 4	5 4 4	30 35 35	17 19 34	38 32 4	
Pittsburgh PA Sacramento CA Tampa FL Boston MA	1 19 2 16	46 7 45 10	16 29 27 17	30 8 10 29	4 4 3	35 35 35 40	22 28 20 5	23 14 30 50	
Jacksonville FL San Fran-Oak CA Albuquerque NM St. Louis MO	4 23 23 12	40 3 3	15 27 29 26	31 10 8 13	2 2 0	41 41 43 43	18 9 22 17	37 49 23 38	
Norfolk VA Philadelphia PA New Orleans LA	14 6 11	13 34 24	20 13 13	25 37 37	(1) (2) (4)	45 46 47	21 11 10	26 47 48	
Austin TX Houston TX Phoenix AZ	12 3 4	19 43 40	51 13 15	1 37 31	(5) (5) (8)	48 48 50	22 20 34	23 30 4	

Table 3. Change in Congestion and VKT, 1982 to 1993

Source: TTI Analysis
TRAVEL DELAY

Travel delay is the most apparent impact of congestion to the motoring public. Analyses of delay have generally been divided into two estimates—recurring and incident. Recurring delay occurs due to normal daily operations when demand for roadway facilities is near or exceeds capacity. The most common example of recurring delay is the increased travel time during peak periods.

Accidents, breakdowns, or other occurrences which temporarily decrease roadway capacity cause incident delay. When congestion levels increase (creating higher RCI values), it is the recurring delay that is being measured. Incident delay is not directly related to or caused by high traffic volume, and incident congestion may be much greater for less congested areas. A severe incident will cause a significant increase in travel delay for an otherwise uncongested area. The estimation of travel delay is discussed in Appendix B of Volume 1.

Table 4 shows the change in congestion levels by region between 1982 and 1993. The largest change in freeway congestion occurred in the Southwestern region with the percent of congested vehicle-kilometers of travel (VKT) climbing from 44 to 54 percent over the twelve-year span. The largest change in principal arterial congestion occurred in the Western region with the percent of congested daily VKT rising from 40 to 55 percent. The percentage of congested daily VKT from all 50 study cities on freeways rose by 8 percentage points (44 to 52 percent) and 9 percentage points (49 to 58 percent) on principal arterial streets for the twelve-year period.

1	Freeway						Principal Arte	rial Street	
Region	Year	Percent of	Level of	Congestion	(percent)	Percent of	Percent of Level of Congestion (perce		
		Daily VKT Congested	Moderate	Heavy	Severe	Daily VKT Congested	Moderate	Heavy	Severe
Northeastern	1982	43	51	19	30	63	26	30	44
	1993	50	26	33	41	72	13	21	66
	change	+7	(25)	+14	+11	+9	(13)	(9)	+22
Midwestern	1982	27	41	31	28	48	33	28	39
	1993	36	26	18	56	54	22	25	53
	change	+9	(15)	(13)	+28	+6	(11)	(3)	+14
Southern	1982	32	54	35	11	46	22	29	49
	1993	41	24	33	43	54	20	21	59
	change	+9	(30)	(2)	+32	+8	(2)	(8)	+10
Southwestern	1982	44	27	16	57	42	43	23	34
	1993	54	19	32	49	49	29	34	37
	change	+10	(8)	+16	(8)	+7	(14)	+11	(3)
Western	1982	60	34	23	43	40	44	37	19
	1993	68	13	15	72	55	18	27	55
	change	+8	(21)	(8)	+29	+15	(26)	(10)	+36
Texas	1982	47	18	15	67	29	35	27	38
	1993	55	19	36	45	37	29	36	35
	change	+8	+1	+21	(22)	+8	(6)	+9	(3)
Total	1982	44	39	23	38	49	33	30	37
	1993	52	20	23	57	58	19	25	56
	change	+8	(19)	0	+19	+9	(14)	(5)	+19

Table 4. Change in Congested Daily Vehicle-Kilometers of Travel and Severity

Source: TTI Analysis

The breakdown of congestion on the freeway and principal arterial street systems into levels defined by severity is also shown in Table 4. The Southwestern and Texas regions experienced declines in the percentage of freeway daily VKT experiencing severe congestion. The Northeastern, Southwestern, and Texas regions had increases in heavy congestion on their freeway system. Nationally, severe congestion increased by 19 percentage points. On the principal arterial system, all regions experienced an increase in severe congestion levels except the Southwestern and Texas regions. Nationally, severe congestion levels rose by about 19 percentage points over the twelve year period. Some of this information is shown graphically in the next three figures.

Figure 3 shows the change in congestion levels in the 50 study cities between 1982 and 1993. The average amount of daily VKT experiencing congestion in 1982 on the freeways was 44 percent with 49 percent on the principal arterial street system. These values grew to 52 percent for freeways and expressways and 58 percent for principal arterial streets in 1993.

Figure 4 shows how the levels of congestion have changed during the 1982 to 1993 period on the freeways and expressways in the 50 study cities. In 1982, the congestion levels were 39 percent moderate, 23 percent heavy, and 38 percent severe. The percentage of heavy congestion remained unchanged between the years 1982 and 1993, while the severe congestion rose by 19 percentage points. The breakdown in 1993 was 20 percent moderate, 23 percent heavy, and 57 percent severe.

The change in congestion levels for the principal arterial street system (PAS) for 1982 to 1993 is shown in Figure 5. In 1982, total congestion was comprised of 33 percent moderate, 30 percent heavy, and 37 percent severe. The percentages moved further to the severe side by 1993 with 19 percent moderate, 25 percent heavy, and 56 percent severe.

Table 5 displays the percentage of delay (person-hours) in each of the three congestion levels. Increases in the amount of delay from severe congestion occurred in all regions except Southwestern and Texas. Both of these regions experienced large increases in delay caused by heavy congestion. This information is shown graphically in Figure 6 for all 50 urban areas combined. This graphic shows the large increase in the amount of delay caused by severe congestion on average for the 50 areas.

Figure 3. Change in Congestion for 50 Urban Areas, 1982 and 1993

Figure 4. Change in Freeway Congestion Levels for 50 Urban Areas, 1982 and 1993

Figure 5. Change in PAS Congestion Levels for 50 Urban Areas, 1982 and 1993

Figure 6. Change in Delay by Congestion Severity, 1982 to 1993

Urban Area	Percent of Delay (person-hours) by Congestion Level in 1982		Percent of by Cong	Delay (perso estion Level	on-hours) in 1993	Change in Percentage Points 1982 to 1993			
	Moderate	Heavy	Severe	Moderate	Heavy	Severe	Moderate	Heavy	Severe
Northeastern Avg	27	25	48	12	25	63	(15)	0	15
Midwestern Avg	26	39	44	15	20	65	(11)	(10)	21
Southern Avg	26	33	41	14	26	60	(12)	(7)	19
Southwestern Avg	22	18	60	15	32	53	(7)	14	(7)
Western Avg	25	27	48	9	16	75	(16)	(11)	27
Texas Avg	14	16	70	14	35	51	0	19	(19)
Total Avg	25	26	49	12	22	66	(13)	(4)	17

Table 5. Change in Delay within Congestion Categories, 1982 to 1993

Table 6 illustrates the daily and annual delay estimates and rankings. Daily person-hours of delay are presented along with annual delay per person and per eligible driver. A ranking of these values are also shown. Los Angeles topped the list with over 2.4 million person-hours of delay daily. Washington, D.C. had the highest annual delay per capita (58 hours), while San Bernardino-Riverside led the annual delay per eligible driver (76 hours). Thirty-nine of the 50 urban areas have delay per eligible driver of over 20 hours a year or one half of a work week. Sixteen urban areas have over a work week of delay per eligible driver per year. On average, in the 50 areas, about three quarters of a work week is spent in delay per eligible driver. Summary statistics show that the Western and Northeastern regions have the largest average per capita delay, while the Midwestern region has the least. These also show that the Western region had the highest average per eligible driver delay.

The annual delay per person and per eligible driver quantifies the congestion levels independent of urban area size and population. Ranking delay in this manner allows an evaluation similar to the RCI in that it analyzes the effects on individual motorists. Figure 7 illustrates this comparison.

Table 7 gives the annual delay per capita in each urban area for certain years from 1982 to 1993. Twenty-two of the 50 urban areas had at least a 100 percent growth in delay per capita over the twelve-year period. Three of the areas (Hartford, Cleveland, and Cincinnati) had at least a 200 percent delay per capita growth in the same period. Houston, Philadelphia, Tampa, and Phoenix were the only areas that showed less than a 50 percent increase in delay per capita during this same time.

	Daily Person-Hours of Delay (000) Annual P		Annual Person-	_	Annual Person-Hours			
Urban Area	Recurring	Incident	Total	Rank ¹	Hours of Delay per Capita	Rank'	of Delay per Eligible Driver	Kank'
Northeastern Cities								
Baltimore MD	73	132	205	19	24	22	31	12
Hartford CT	117	37	56	40	23	23	30	23
New York NY	750	1,378	2,128	2	31	15	39	17
Philadelphia PA	162	218	380	10	18	35	23	35
Pittsburgh PA Washington DC	285	504	789	21	21 58	20	20 70	2
Midwestern Cities	200			-		-		
Chicago IL	365	423	788	4	26	21	34	20
Cincinnati OH Cleveland OH	42	30 40	/8 89	33 29	10	40	16	40
Columbus OH	37	31	68	35	17	37	22	36
Detroit MI	253	419	673	6	42	7	57	7
Indianapolis IN	15	20	36	44 20	9 12	47	12	4/ 11
Louisville KY	20	22	42	43	13	41	16	42
Milwaukee WI	30	32	62	37	13	41	17	41
Minn-St. Paul MN	73	71	144	23	17	37	21	38
St. Louis MO	85	19 97	182	20	23	23	29	24
Southern Cities								
Atlanta GA	185	203	388	9	42	7	53	8
Charlotte NC Et Lauderdale EI	23 45	23 60	47 105	41 26	23	23 32	28	33
Jacksonville FL	37	47	83	32	27	19	35	19
Memphis TN	17	19	36	44	10	46	13	46
Miami FL Nachville TN	139 22	173	312 46	13 41	40 19	10	21 24	33
New Orleans LA	34	51	85	30	19	33	25	32
Norfolk VA	31	59	90	28	23	23	29	24
Orlando FL	28	37	66 63	36	18	35	22	36 20
Southwestern Cities	29	- 24	05	51	21	20	27	27
Albuquerque NM	17	18	35	44	17	37	21	38
Austin TX	35	39	74	34	33	13		13
Dallas TX	129	217	346	12	41	.)(9	53	8
Denver CO	103	108	211	17	33	13	41	13
El Paso TX	9	10	18	49	8	49	11	49
Fort Worth TX Houston TX	229 229	92 309	147 537	7	50 46	6	60	5
Phoenix AZ	136	112	248	15	30	17	40	15
Salt Lake City UT	18	14	32	48	9	47	12	47
San Antonio TX Western Cities	4/	52	77	27	21	20	20	21
Honolulu HI	33	52	86	30	31	15	37	18
Los Angeles CA	1,106	1,295	2,402	1	50	4	65	4
Portland UK Sacramento CA	44 56	73 49	106	24 25	27	27	29	20
San Bernardino-Riv CA	135	157	292	14	55	2	76	1
San Diego CA	124	86	210	18	21	28	26	30
San Fran-Uak CA San Jose CA	300 113	402	848 245	16	54 40	10	52	10
Seattle-Everett WA	162	215	377	ĩĩ	50	4	59	6
Northeastern Avg	210	384	594		30		38	
Midwestern Avg	84	104	188		18		23	
Southern Avg	54	66	120		24		30	
Southwestern Avg	238	88 280	518		25 39		49	
Texas Avg	72	103	175		26		34	
Total Avg	120	163	283		26		33	
Maximum Value	1,100	1,3/8	2,402		50 5		7	

Table 6. Daily Person-Hours of Delay for 1993

Notes: ¹ Rank value of 1 associated with most congested conditions.

Annual Person-Hours of Delay per Capita

Figure 7. Roadway Congestion Index and Annual Delay per Capita

		Annual Delay per Capita					
Urban Area	1982	1985	1988	1991	1992	1993	1982-1993
Northeastern Cities							
Baltimore MD	10	16	17	20	24	24	140
Boston MA	21	26	38	37	38	37	76
Hartford CT	7	10	16	17	19	23	229
New York NY	20	23	26	28	30	31	55
Philadelphia PA	15	18	21	19	18	18	20
Pittsburgh PA	10	14	19	20	20	21	110
Washington DC	34	42	49	53	59	58	71
Midwestern Cities						24	07
Chicago IL	14	19	20	23	26	26	220
Cincinnati OH	5	5		12	14	10	220
Columbus OH			13	17	18	17	200
Detroit MI	22	23	29	35	38	42	91
Indianapolis IN	3	4	5	6	7	9	200
Kansas City MO	5	6	7	8	11	12	140
Louisville KY	6	7	8	9	11	13	117
Milwaukee WI	7	9	11	12	13	13	86
Minn-St. Paul MN	7	10	15	16	17	17	143
Oklahoma City OK	7	8	10	10	11	11	57
St. Louis MO	15	19	19	21	20	23	53
Southern Cities	22	22	26	25	27	42	01
Alianta GA	11	33		33	37	42	100
Et Lauderdale El	11	13	15	18	19	20	82
Jacksonville FL	16	20	20	23	25	27	69
Memphis TN	5	ĩŝ	7	9	9	10	100
Miami FL	25	29	35	38	38	40	60
Nashville TN	11	15	24	22	21	19	73
New Orleans LA	11	17	20	19	19	19	73
Norfolk VA	14	20	25	24	24	23	64
Orlando FL	11	13	14	14	15	18	64
Tampa FL	16	21	22	22	22	21	51
Albuquerque NM	7	10	11	13	14	17	143
Austin TX	20	27	29	27	27	33	65
Corous Christi TX	2	3	3	4	5	5	150
Dallas TX	28	34	40	41	41	41	46
Denver CO	19	21	23	29	30	33	74
El Paso TX	3	5	6	5	8	8	167
Fort Worth TX	16	20	25	27	27	30	88
Houston TX	38	46	41	43	44	46	21
Phoemx AZ	23	23	28	29	30	30	30
Salt Lake City UT	4	4	17	17	8 10	21	125
Western Cities	10	17	17	17	19	21	110
Honolulu HI	20	24	25	26	29	31	55
Los Angeles CA	32	42	49	49	50	50	56
Portland OR	13	14	20	22	26	27	108
Sacramento CA	11	15	18	19	19	22	100
San Bernardino-Riv CA	31	40	52	53	55	55	77
San Diego CA	9	· 14	23	23	22	21	133
San Fran-Oak CA	32	4/	33	54 A1	33		67
Seattle-Everett WA	24	32	42	41	50	50	127
- PALLAR ANT WAVE TTAR							*- <i>i</i>
Northeastern Avg	17	21	27	28	30	30	76
Midwestern Avg	9	11	13	15	16	18	100
Southern Avg	14	18	22	22	23	24	71
Southwestern Avg	16	19	21	22	23	25	56
Western Avg	22	29	36	57	38	39	77
Texas Avg	1/	22	25	25	24	20	55 72
10121 Avg Maximum Value	15	47	23 55	24 54	50	58	53
Minimum Value	2	3	3	4	5	5	150

Table 7. Annual Person-Hours of Delay per Capita, 1982 to 1993

The summary statistics show that the Northeastern, Midwestern, and Western regions had at least an 80 percent growth in delay per capita between 1982 and 1993. The Texas cities displayed a 50 percent increase in delay per capita over this period.

The annual delay per eligible driver for certain years from 1982 to 1993 is shown in Table 8. Nineteen of the 50 urban areas experienced at least a 100 percent increase in delay over the twelve year period. Philadelphia, St. Louis, Tampa, Dallas, Houston, Phoenix, and Honolulu were the only areas that experienced less than a 50 percent increase in delay per eligible driver over the period. The Midwestern region had the greatest increase with 100 percent climb, while the Southwestern and Texas regions had the smallest changes with 63 and 50 percent increases, respectively.

One direct effect of congestion is that excess fuel is consumed while vehicles drive in congested traffic conditions. The excess fuel consumed in congestion is estimated in this study from the speeds used in the travel delay estimates. Raus (2) developed an equation for fuel economy that is appropriate for use with areawide speed and travel estimates. Equation 2 is a simple linear relationship between average speed and vehicle fuel efficiency. The speeds for the three congested categories of travel and the uncongested range were used in Equation 2 to estimate fuel economy values for each range. The amount of peak-period travel was combined with the fuel consumption rate for each congested category to estimate the amount of fuel consumed in excess of that which would have been consumed during uncongested travel.

		Annual Delay per Eligible Driver							
Urban Area	1982	1985	1988	1991	1992	1993	1982 - 1993		
Northeastern Cities									
Baltimore MD	13	21	22	26	30	31	138		
Boston MA	26	32	46	44	45	44	69		
Hartford CT	Ĩ	13	21	23	25	30	233		
New York NY	25	30	33	36	38	39	56		
Philadelphia PA	20	24	27	24	23	23	15		
Pittsburgh PA	13	17	24	24	25	26	100		
Washington DC	42	51	60	64	70	70	67		
Midwestern Cities	72		00	0.			•		
Chicago II	19	25	26	30	34	34	79		
Cincinnati OH	7	9	14	16	18	20	186		
Cleveland OH	5	7	10	13	15	16	220		
Columbus OH	11	12	17	22	23	22	100		
Detroit MI	30	31	40	47	51	57	90		
Indianapolis IN	4	5	7	7	8	12	200		
Kansas City MO	6	7	10	10	14	15	150		
Louisville KY	8	9	10	11	13	16	100		
Milwaukee WI	9	12	15	16	17	17	89		
Minn-St. Paul MN	9	12	19	20	22	21	133		
Oklahoma City OK	9	11	13	12	14	14	56		
St. Louis MO	20	24	24	27	26	29	45		
Southern Cities									
Atlanta GA	29	43	46	45	47	53	83		
Charlotte NC	14	21	24	29	28	28	100		
Ft. Lauderdale FL	13	15	19	21	23	24	85		
Jacksonville FL	22	26	26	30	32	35	59		
Memphis TN	7	7	9	11	12	13	86		
Miami FL	30	36	44	49	47	51	70		
Nashville TN	14	19	31	28	26	24	71		
New Orleans LA	14	23	27	26	25	25	79		
Norfolk VA	18	25	32	31	30	29	61		
Orlando FL	13	16	17	17	18	22	69		
Tampa FL	21	27	27	28	28	27	29		
Southwestern Cities									
Albuquerque NM	9	13	15	17	18	21	133		
Austin TX	26	35	36	34	34	41	58		
Corpus Christi TX	3	3	5	5	7	7	133		
Dallas TX	36	44	52	53	53	53	47		
Denver CO	24	27	29	36	37	41	71		
El Paso TX	5	7	8	7	11	11	120		
Fort Worth TX	22	27	33	35	36	40	82		
Houston TX	51	60	54	57	57	60	18		
Phoenix AZ	30	31	38	38	39	40	33		
Salt Lake City UT	5	2	0	22	10	12	140		
San Antonio 1X	15	25	23	23	25	20	0/		
Western Cities	25	20	20	21	25	27	18		
	25 41	29 51	62	51	64	65	50		
Los Angeles CA	41		24	27	37	34	113		
Secomments CA	14	10	23	24	25	29	107		
San Bernardino-Riv CA	42	54	72	72	76	76	81		
San Diego CA	12	18	29	29	28	26	117		
San Fran-Oak CA	30	58	67	66	65	66	69		
San Iose CA	33	47	56	54	54	52	58		
Seattle-Everett WA	26	38	53	55	59	59	127		
Northeastern Avg	21	27	33	34	37	38	81		
Midwestern Avg	12	14	17	19	21	23	92		
Southern Avg	18	23	27	29	29	30	67		
Southwestern Avg	21	25	27	29	30	32	52		
Western Avg	28	37	46	47	49	49	75		
Texas Avg	23	29	30	31	32	34	48		
Total Avg	19	24	29	30	32	33	74		
Maximum Value	51	60	12	12	/0	/0	49		
Minimum value	3	3	3	3	1	/	155		

Table 8. Annual Person-Hours of Delay per Eligible Driver, 1982 to 1993

Table 9 shows the annual excess fuel consumed in congested travel within the study areas. Los Angeles and New York had the highest fuel consumption with more than 2 billion liters wasted annually in each urban area. Houston ranked seventh with 576 million liters consumed annually due to congestion. To see the effect of this on the individual motorist, the wasted fuel was divided by the population and eligible drivers. Washington, D.C. had the most fuel wasted per capita with about 240 liters. This value shows that each person in Washington, D.C. wastes almost 1 liter of fuel per workday in congested travel. Houston (6th), Dallas (7th), Austin (13th), and Fort Worth (15th) rank in the top fifteen urban areas. The Western region had the highest wasted fuel per capita with 189 liters. All other regions were no higher than 150 liters per capita. The impact on individual drivers has San Bernardino-Riverside with the greatest fuel wasted per driver with 320 liters per year. Washington, D.C. was second with 291 liters per driver. Houston (5th) and Dallas (8th) were the only Texas cities in the top 10. The Western region had the highest average with 239 liters per eligible driver or about 1 wasted liter of fuel per workday. All other regions were under 200 liters per eligible driver.

The annual amount of fuel wasted due to congestion for certain years from 1982 to 1993 is shown in Table 10. Thirty-two of the 50 urban areas experienced at least a 100 percent increase in the amount of wasted fuel. Hartford had the largest increase with 275 percent over the twelve-year period. Houston had the smallest increase with only 48 percent. The summary statistics show that the Midwestern, Western, and Southern regions had the highest average growth over the period. Each experienced at least 100 percent growth.

	Annual Li	ters of Fuel	Wasted (m	illion)	Annual Excess	_	Annual Excess Fuel Consumed	
Urban Area	Recurring	Incident	Total	Rank ¹	per Capita (liters)	Rank ²	per Eligible Driver (liters)	Rank ²
Northeastern Cities								
Baltimore MD	77	139	216	19	102	22	130	22
Boston MA Hartford CT	124	339 40	403	40	96	24	107	23
New York NY	788	1,447	2,235	2	131	16	165	16
Philadelphia PA	163	219	382	11	73	36	93	35
Pittsburgh PA	65	98 526	163 824	21	86 242	30	104 201	32
Washington DC Midwestern Cities	290	520	024	4	242	1	231	-
Chicago IL	380	440	820	5	108	21	140	21
Cincinnati OH	46	39	85	33	68	39	87	39
Cleveland OH Columbus OH	54 30	43	9/ 71	28 35	54 73	41 36	92	37
Detroit MI	260	431	691	6	173	°9	234	7
Indianapolis IN	17	22	39	44	40	47	52	47
Kansas City MO	20	44	64 42	38	50 52	44 43	65	44
Milwaukee WI	32	33	65	37	53	42	71	41
Minn-St. Paul MN	78	75	153	23	72	38	91	38
Oklahoma City OK	17	19	36	46	46	45	59	45
St. Louis MO Southern Cities	89	101	190	20	90	24	125	24
Atlanta GA	195	214	409	9	176	8	223	9
Charlotte NC	24	24	48	41	94	26	118	27
Ft. Lauderdale FL	48	63	111	25	86 112	30	103	33
Jacksonville FL Memphis TN		49 19	00 37	52 45	42	46	54	46
Miami FL	141	175	316	13	163	11	206	11
Nashville TN	23	25	48	41	80	34	101	34
New Orleans LA	36	54 62	90	20	82 98	33	107	30 25
Orlando FL	30	40	70 70	36	76	35	93	35
Tampa FL	29	34	63	39	85	32	106	31
Southwestern Cities	17	10	26	16	69	20	87	30
Albuquerque NM Austin TX	38	42		40 34	141	13	179	13
Corpus Christi TX	3	4	7	50	23	50	32	50
Dallas TX	140	236	376	12	180	7	231	8
Denver CO	108	113	221	18 40	137	14 40	49	49
Fort Worth TX	59	101	160	22	132	15	174	14
Houston TX	245	331	576	7	197	6	257	5
Phoenix AZ	140	115	255	16	123	18	162	17
San Lake City 01 San Antonio TX	50	55	105	27	88	29	118	27
Western Cities								
Honolulu HI	35	1 250	2 502	30	131	16	156	18 1
LOS Angeles CA Portland OR	1,153	1,550	2,505	24	115	19	143	20
Sacramento CA	59	52	111	25	92	27	121	26
San Bernardino-Riv CA	142	166	308	14	232	2	320	1
San Diego CA San Fran-Oak CA	390	492	251 882	17	230	20	282	3
San Jose CA	120	141	261	15	171	10	223	9
Seattle-Everett WA	172	229	401	10	214	4	251	6
Northeastern Avg	219	399	618		131		163	
Midwestern Avg	89 56	110	199		95 114		144	(I
Southwestern Avg	76	95	171		134		175	
Western Avg	252	298	550		189		239	
Texas Avg	78	112	190		150		190	
10tal Avg Maximum Value	1.153	1.350	2,503		242		320	
Minimum Value	3	4	7		23		32	

Table 9. Annual Excess Fuel Consumed Due to Traffic Congestion in 1993

Notes:

¹ Rank value of 1 associated with greatest fuel consumption.
² Rank value of 1 associated with greatest fuel consumption per capita.

TTI Analysis. Source:

			Annu	al Wasted I	iters (millio	ons)			Percent
Urban Area	1982	1984	1986	1988	1990	1991	1992	1993	Change 1982-1993
Hartford CT	16	24	27	40	45	44	49	60	275
Indianapolis IN	11	13	14	22	24	24	27	39	255
Salt Lake City UT	10	12	14	17	20	25	29	34	240
Cleveland OH	30	38	43	58	76	77	88	98	227
San Diego CA	74	106	134	215	230	232	239	231	212
Cincinnati OH	28	32	35	53	59	65	77	85	204
Charlotte NC	16	20	29	34	40	44	46	48	200
Kansas City MO	22	25	28	35	37	37	204	00	195
Baltimore MD	120	105	127	140	107	1/0	204	401	100
Seattle-Everett WA	139	203	12	310	13	12	10	20	186
El Paso IX Minn St. Davil MN	55	70	04	126	13	142	155	153	178
Sammento CA	40	50	61	77	91	01	97	111	178
Albumerme NM	13	19	20	23	29	28	30	36	177
Atlanta GA	157	194	268	292	313	319	353	409	161
Orlando FL	28	34	44	47	50	53	57	70	150
Austin TX	33	42	59	64	65	66	67	80	142
Corpus Christi TX	3	3	4	4	4	5	6	7	133
San Antonio TX	45	56	82	84	84	87	95	105	133
San Bernardino-Riv CA	132	165	213	233	268	284	298	307	133
Columbus OH	31	34	40	46	63	65	71	72	132
Ft. Lauderdale FL	48	54	68	78	95	97	105	111	131
Memphis TN	16	17	19	24	27	31	34	37	131
Portland OR	54	56	66	86	95 26	97	116	124	130
Louisville KY	19	20	23	25	26	28	35	43	126
Nashville TN	22	32	38	54	23	149	52	40	110
Pittsburgh PA	77	90	122	142	149	140	1.04	160	112
Fort Worth LA	200	90 474	564	628	700	721	800	874	111
Washington DC	42	51	51	60	74	74	80	87	107
San Jose CA	126	165	212	243	251	262	265	261	107
Norfolk VA	47	57	83	94	99	98	98	95	102
Denver CO	112	143	144	151	178	191	201	221	97
Oklahoma City OK	19	25	26	29	28	30	34	37	95
Chicago IL	424	507	622	613	696	730	809	821	94
Detroit MI	357	385	420	475	539	573	620	691	94
Milwaukee WI	34	42	49	59	62	63	66	66	94
San Fran-Oak CA	454	624	723	841	869	859	858	882	94
Phoenix AZ	133	137	180	210	218	231	245	255	92
Honolulu HI	49	59	01	09	72	202	84 202	216	80
Miami FL	1/1	109	203	200	2 405	295	295	2 503	83
Los Angeles CA	1,370	307	2,001	471	453	463	2,400 472	463	82
New Orleans LA	50	73	83	90	90	89	88	90	80
Tampa FL	36	45	47	58	60	65	65	63	75
Dallas TX	216	272	352	339	359	367	370	376	74
St. Louis MO	118	138	148	152	165	169	167	190	61
New York NY	1,397	1,408	1593	1,818	2,018	2,020	2,154	2,234	60
Philadelphia PA	253	260	315	346	348	355	371	382	51
Houston TX	388	469	496	496	518	537	546	576	48
Northeastern Avg	352	381	447	512	554	560	601	620	76
Midwestern Avg	96	111	129	141	159	167	184	196	104
Southern Avg	58	68	85	99	108	110	115	125	116
Southwestern Avg	94	114	135	139	147	154	159	170	81
Western Avg	271	348	421	484	515	521	535	546	101
Texas Avg	110	135	162	161	168	173	178	189	72
Total Avg	154	183	218	245	265	270	285	297	93
Maximum Value	1,397	1,702	2,081	2,272	2,405	2,425	2,466	2,503	79
Minimum Value	3	3	4	4	4	5	6	7	133

Table 10.	Annual	Wasted	Fuel	Due	to	Congestion
-----------	--------	--------	------	-----	----	------------

Source: TTI Analysis and Local Transportation Agency References.

COST OF CONGESTION

Another method of assessing impact is to look at economic factors. Travel delay and wasted fuel can be expressed as costs of congestion. This section presents estimates of this cost in each of the study areas and relates these costs to the persons and vehicles in the area. This chapter also reviews the effort required by urban areas to maintain a constant congestion level using additional roadway construction as the only enhancement.

Additional Capacity

The addition of capacity to alleviate congestion is becoming more difficult and less acceptable in many urban areas, but it is among the tools that are used to address congestion problems. As Table 2 indicates, very few urban areas have been able to sustain the level of roadway construction necessary to maintain a slow congestion growth rate on their major roadway system. Table 11 compares the amount of roadway needed each year to maintain the 1993 congestion level based on the recent traffic growth rate and the amount of roadway constructed over the most recent five years.

The estimate of the annual roadway construction needed to address increasing traffic levels is developed by applying the annual traffic growth rate to the amount of freeway and principal arterial streets. The congestion index is a ratio of traffic volume (demand) to facility length (supply). If the RCI is to remain constant (indicating the same congestion level), system supply has to increase by the same percentage as demand.

For example, Salt Lake City would require an additional 48 lane-kilometers of freeway and 39 lane-kilometers of principal arterial streets every year to maintain the 1993 congestion level with 5.57 percent annual growth in daily VKT between 1989 and 1993. During this 5 year period, only an average of 10 lane-kilometers of freeway and 32 lane-kilometers of principal arterial street were added annually. This gave Salt Lake City an annual deficit of 38 lane-kilometers of freeway and 7 lane-kilometers of principal arterial streets.

	Exist La	ing (1993) ane-km	Average Annual	Annual H Lane	Freeway -km	Annual F Lane	Prin. Art. e-km	La Dei	nne-km ficiency
Urban Area	Fwy	Prin. Art.	VKT Growth (%) ¹	Needed	Added ²	Needed	Added ²	Fwy	Prin. Art
Detroit MI	2.938	6.923	5.76	169	54	399	169	115	230
New York NY	9,902	12,397	1.71	170	115	213	141	55	72
Kansas City MO	2.479	1.811	5.24	130	74	95	32	56	63
Los Angeles CA	8.815	20,206	1.38	121	143	278	149	(22)	129
Baltimore MD	2.206	2,737	3.40	75	56	93	10	19	83
Minn-St. Paul MN	2.471	1.932	5.06	125	34	98	87	91	11
Denver CO	1.594	2,995	3.39	54	52	101	8	2	93
Chicago IL	4,162	8.211	5.05	210	115	415	423	95	(8)
Cincinnati OH	1.554	1.328	4.45	69	30	59	12	39	47
Orlando FL	990	1.787	4.33	43	16	77	20	27	57
Washington DC	2.624	3,784	2.89	76	44	109	60	32	49
Columbus OH	1.328	1.030	4.47	59	14	46	16	45	30
Cleveland OH	1.916	1.843	3.45	66	52	64	12	14	52
Dallas TX	2.866	2.882	2.44	70	36	70	38	34	32
Miami FL	1.030	3.631	3.82	39	24	139	89	15	50
San Antonio TX	1.513	1.819	3.88	59	46	71	20	13	51
Fort Worth TX	1.723	1.513	3.52	61	22	53	30	39	23
Nashville TN	1.014	1.562	5.20	53	60	81	14	(7)	67
Ft. Lauderdale FL	1.095	1.964	4.65	51	36	91	48	15	43
Phoenix AZ	1.143	5,394	4.57	52	42	246	201	10	45
Okłahoma City OK	1.183	1.288	4.07	48	6	52	48	42	4
Salt Lake City UT	861	700	5.57	48	10	39	32	38	7
Houston TX	3.462	3.542	3.35	116	117	119	76	(1)	43
Pittsburgh PA	1.852	2,995	3.02	56	68	90	36	(12)	54
Seattle-Everett WA	2.069	2.616	2.77	57	50	72	40	` 7	32
Atlanta GA	3.220	3,220	5.34	172	129	172	177	43	(5)
Charlotte NC	507	950	4.72	24	8	45	24	16	21
Louisville KY	990	934	3.86	38	12	36	28	26	8
Memphis TN	733	1,674	6.37	47	30	107	91	17	16
San Diego CA	2,809	2,793	1.19	33	10	33	26	23	7
Philadelphia PA	2,721	5,297	1.52	41	74	80	18	(33)	62
Sacramento CA	1.296	2,013	3.75	49	30	76	68	19	8
Hartford CT	982	1,055	2.46	24	12	26	14	12	12
Indianapolis IN	1,256	1,481	2.79	35	24	41	28	11	13
El Paso TX	596	1,385	2.12	13	8	29	12	5	17
Portland OR	966	1,063	4.16	40	20	44	42	20	2
Honolulu HI	636	394	5.19	33	22	20	10	11	10
Norfolk VA	926	1,224	3.68	34	46	45	14	(12)	31
Austin TX	853	773	5.07	43	42	39	22	1	17
Jacksonville FL	773	2,109	2.86	22	16	60	48	6	12
Corpus Christi TX	338	596	4.58	15	10	27	16	5	11
Milwaukee WI	974	1,803	2.49	24	6	45	48	18	(3)
San Jose CA	1,964	2,222	1.82	36	24	40	38	12	2
Tampa FL	515	1,159	3.15	16	10	37	36	6	1
St. Louis MO	2,769	3,099	1.02	28	14	32	52	14	(20)
San Bernardino-Riv CA	1,505	3,413	3.47	52	22	118	159	30	(41)
Albuquerque NM	386	1,328	2.72	11	10	36	50	1	(14)
New Orleans LA	620	1,127	1.85	11	14	21	32	(3)	(11)
Boston MA	2,431	4,653	0.56	14	(2)	26	74	16	(48)
San Fran-Oak CA	3,920	3,784	0.57	22	34	22	85	(12)	(63)

Table 11. Illustration of Annual Capacity Increase Required to Prevent Congestion Growth

Notes:

¹ Average annual growth rate of freeway and principal arterial streets between 1989 and 1993.
 ² Average lane-kilometers added annually from 1989 to 1993.

The amount of additional capacity required for freeway and principal arterial street systems makes it apparent that the construction of additional roadway as the sole alternative to alleviate congestion is not being used in many urban areas. Regardless of whether the majority of an area's travel is served by the freeway or principal arterial street system, roadway construction must be combined with a range of other improvements and programs to address the needs of severely congested corridors.

Cost Analysis

Many variables are used to analyze congestion cost in this study. Some of these cost variables fluctuate with price trends. The variables—fuel cost, commercial vehicle operating cost, and the average cost of time—are updated annually to reflect the change in these costs. A more detailed discussion of the calculation of cost can be found in Appendix B of Volume 1 of this report. Estimates of vehicle-hours of delay and liters of wasted fuel should be used to analyze congestion trends since congestion costs reflect changes in the price per hour or liter, as well as changes in the transportation situation in an urban area.

The component and total congestion costs for each urban area are shown in Table 12. In 1993, the total cost of congestion for the urban areas studied was approximately \$51 billion. This represents a six percent increase in the cost of congestion since 1992 (\$48 billion). The increase in the value of time rate was 2.4 percent, and fuel costs averaged about an 8 percent decrease in the 50 study areas. Most of the increase, therefore, was due to the increase in travel delay, which averaged 75 percent for the period spanning 1982 to 1993 (Table 7). Studywide averages indicate that delay accounted for approximately 90 percent of an urban area's congestion cost. The average cost burden placed on urban areas in 1993 due to delay was \$910 million, compared to \$850 million in 1992.

Fourteen urban areas had total congestion costs exceeding \$1 billion. Of the seven urban areas studied in Texas, only two, Houston (7th) and Dallas (12th), ranked in this highest group. Congestion in the Texas urbanized areas resulted in a cost of approximately \$4.4 billion, a seven percent increase from 1992 congestion costs.

Tinhar Arra	millions)	Dank		
Urban Area	Delay	Fuel	Total	калк
Los Angeles CA	7.660	870	8,530	1
New York NY	6.810	790	7,600	2
San Fran-Oak CA	2,670	310	2,980	3
Chicago IL	2,520	280	2,800	4
Washington DC	2,520	270	2,790	5
Detroit MI	2,130	210	2,340	6
Houston TX	1,740	180	1,920	7
Boston MA	1,410	150	1,560	8
Atlanta GA	1,240	120	1,360	9
Seattle-Everett WA	1,210	140	1,350	10
Philadelphia PA	1,190	120	1,310	11
Dallas TX	1,130	110	1,240	12
Miami FL	980	110	1,090	13
San Bernardino-Riv CA	930	110	1,040	14
Phoenix AZ	790	90	880	15
San Jose CA	790	90	880	15
San Diego CA	690	80	770	17
Denver CO	670	80	750	18
Baltimore MD	650	80	730	19
St. Louis MO	580	60	640	20
Pittsburgh PA	510	50	560	21
Fort Worth TX	480	50	530	22
Minn-St. Paul MN	470	40	510	23
Portland OR	370	50	420	24
Ft. Lauderdale FL	340	40	380	25
Sacramento CA	340	40	380	25
San Antonio TX	320	40	360	27
Cleveland OH	290	30	320	28
Honolulu HI	290	30	320	28
Norfolk VA	280	30	310	30
Jacksonville FL	270	30	300	31
New Orleans LA	270	30	300	31
Cincinnati OH	260	20	280	33
Austin TX	250	20	270	34
Columbus OH	220	20	240	35
Orlando FL	210	20	230	36
Milwaukee WI	200	20	220	37
Tampa FL	200	20	220	37
Kansas City MO	190	20	210	39
Hartford CT	180	20	200	40
Nashville TN	150	20	170	41
Charlotte NC	140	20	160	42
Louisville KY	130	20	150	43
Indianapolis IN	120	10	130	44
Albuquerque NM	110	20	130	44
Memphis TN	110	20	130	44
Oklahoma City OK	110	20	130	44
Salt Lake City UT	110	10	120	48
El Paso TX	60	10	60	49
Corpus Christi TX	20	0	20	50
Northeastern Avg	1,900	210	2,110	
Midwestern Avg	600	60	660	
Southern Avg	380	40	420	
Southwestern Avg	510	50	560	
Western Avg	1,660	190	1,850	
Texas Avg	570	60	630	
Total Avg	910	100	1,010	
Maximum Value	7,660	870	8,530	
Minimum Value	20	0	20	

Table 12	Total Convestion	Costs by	Ilrhan Area	for 1993
	Tom Congestion	C03G 09	Oroan mou	101 1772

Table 13 illustrates the estimated cost of congestion per capita and eligible driver. Viewing congestion costs in relation to population and eligible drivers provides an estimate of the effects of congestion on the individual, which might be thought of as the "congestion tax" on residents of urban areas. San Bernardino-Riverside had the highest per eligible driver cost (\$1,090 per driver), while Washington, D.C. had the highest per capita cost (\$820 per person). Houston had the highest values of any of the urban areas in Texas in both categories with a per driver cost of \$860 and a per capita cost of \$660.

The individual relationships of the "congestion tax" estimates to roadway congestion index can be seen in Table 14, which illustrates the rankings of urban areas by the roadway congestion index, annual per capita, and per eligible driver costs. The rankings of the cost estimates are fairly consistent with just thirteen urban areas occupying the top 10 positions in the three categories. The individual cost components should be more closely related to the roadway congestion index values, which is also a measure of the impact of congestion on individuals. When compared with the roadway congestion index rankings, only three urban areas, Chicago, Miami, and San Diego are ranked in the top 10 in the RCI but not in either of the unit cost categories.

Table 15 displays the 1992 and 1993 rankings of the RCI values and the congestion costs per capita. The change during the past year can be seen in the cost and RCI rankings. Fifteen urban areas changed their RCI rankings by more than one position. Of these fifteen, only six moved their overall rankings higher between 1992 and 1993 (Hartford, Cleveland, Detroit, Louisville, Denver, and Charlotte).

	Congest	tion Cost
Urban Area	Per Eligible Driver	Per Capita
	(dollars)	(donars)
Northeastern Cities		
Baltimore MD	440	350
Boston MA	630	520
Hartford CT	430	330
New YORK NY Dhiladalahia DA	500	450
Pitteburgh PA	360	290
Washington DC	980	820
Midwestern Cities		
Chicago IL.	470	370
Cincinnati OH	290	220
Cleveland OH	240	180
Columbus OH	310	230 590
Indiananolis IN	170	130
Kansas City MO	210	160
Louisville KY	220	180
Milwaukee WI	240	180
Minn-St. Paul MN	300	240
Oklahoma City OK	200	150
St. Louis MO	410	320
Southern Cities	740	500
Auanta GA Charlotta NC	/40	320
Et Lauderdale El	400	290
Jacksonville FL	500	380
Memphis TN	180	140
Miami FL	710	560
Nashville TN	340	270
New Orleans LA	360	270
Norfolk VA	410	330
Orlando FL	310	250
Southwestern Cities	370	250
Albuquerque NM	300	230
Austin TX	590	470
Corpus Christi TX	110	80
Dallas TX	760	600
Denver CO	580	460
El Paso TX	160	120
FOR WORD IX	96C 840	440 660
Phoenix AZ	560	420
Salt Lake City UT	170	130
San Antonio TX	400	290
Western Cities		
Honolulu HI	540	450
Los Angeles UA Portland OP	920	/10
FUILIAIRE OK Sacramento CA	400 410	310
San Bernardino-Riv CA	1.090	790
San Diego CA	380	300
San Fran-Oak CA	950	780
San Jose CA	750	580
Seattle-Everett WA	840	720
Northeastern Avg	530	430
Midwestern Avg	320	250
Southern Avg	420	340
Southwestern Avg	460	350
Western Avg	710	560
Texas Avg	490	380
Total Avg	470	370
Minimum Value	1,090	020 80
ivinimulti v aluc	¥ 10	٥v

Table 13. Estimated Unit Costs of Congestion in 1993

Urban Area	Roadway Congestion Index	Congestion Cost per Capita	Congestion Cost per Eligible Driver		
Northeastern Cities					
Reltimore MD	22	27	22		
Poston MA	17	12	12		
BUSION MA	17	12	12		
Haruord C1	33	23	25		
New York NY		15	10		
Philadelphia PA	22	35	35		
Pittsburgh PA	46	29	31		
Washington DC	2	1	2		
Midwestern Cities					
Chicago IL	5	21	21		
Cincinnati OH	25	40	40		
Cleveland OH	28	41	41		
Columbus OH	35	35	36		
Detroit MI	6	8	7		
Indianapolis IN	44	47	47		
Kansas City MO	48	44	44		
Louisville KY	35	41	43		
Milwaukee WI	27	41	41		
Minn-St. Paul MN	26	38	38		
Oklahoma City OK	45	45	45		
St. Louis MO	30	25	24		
Southern Cities					
Atlanta GA	10	8	10		
Charlotte NC	40	25	27		
Et Laudardala El	10	20	33		
Ft. Laudeluaie FL	28	23	10		
Jacksonvine FL	30	20	15		
Memphis IN	55	40	40		
Miami PL	4	11	11		
Nashville IN	33	33	34		
New Orleans LA	15	33	31		
Nortolk VA	40	23	24		
Orlando FL	46	35	30		
Tampa FL	20	29	30		
Southwestern Cities					
Albuquerque NM	30	39	38		
Austin TX	33	13	13		
Corpus Christi TX	50	50	50		
Dallas TX	17	7	8		
Denver CO	17	14	14		
El Paso TX	49	49	49		
Fort Worth TX	33	17	14		
Houston TX	12	6	5		
Phoenix AZ	16	18	16		
Salt Lake City UT	40	47	47		
San Antonio TX	43	29	27		
Western Cities					
Honolulu HI	12	15	18		
Los Angeles CA	1	5	4		
Portland OR	14	19	20		
Sacramento CA	22	27	24		
San Bernardino-Riv CA	8	2	1		
San Diego CA	8	28	29		
San Fran-Oak CA	3	3	3		
San Jose CA	21	10	9		
Seattle-Everett WA	6	4	6		
		·			

Table 14. 1993 Rankings of Urban Area by Estimated Impact of Congestion

	Roadway Congestion Index			Congestio per Capi	on Cost ita (\$)	Annual Congestion Cost (\$ millions)		
Urban Area	1992 Value	1993 Value	1992 Rank	1993 Rank	1992	1993	1992	1993
Northeastan Cities								
Raltimore MD	1.04	1.04	23	22	330	350	680	730
Baston MA	1.07	1.07	17	17	530	520	1 560	1.560
Harrford CT	0.01	0.03	39	35	260	330	160	200
New York NY	1 14	1 15	11	11	420	450	7.170	7.600
Dhiladelphia DA	1.14	1.13	21	22	250	250	1.260	1.310
Pittsburgh PA	0.81	0.82	46	46	280	290	520	560
Washington DC	1.36	1.41	2	2	820	820	2,680	2,790
Midwestern Cities				_				
Chicago IL	1.28	1.26	5	5	360	370	2,720	2,800
Cincinnati OH	1.01	1.03	25	25	210	220	250	280
Cleveland OH	0.95	0.98	30	28	160	180	290	320
Columbus OH	0.93	0.93	35	35	250	250	240	240
Detroit MI	1.19	1.23	9	6	520	590	2,080	2,340
Indianapolis IN	0.85	0.89	44	44	90	130	90	130
Kansas City MO	0.77	0.78	48	48	160	160	190	210
Louisville KY	0.90	0.93	40	35	140	180	120	150
Milwaukee WI	1.00	1.00	26	27	180	180	220	220
Minn-St. Paul MN	0.99	1.02	27	26	240	240	510	510
Oklahoma City OK	0.83	0.86	45	45	150	150	110	130
St. Louis MO	0.95	0.96	30	30	280	320	550	640
Southern Cities								1.000
Atlanta GA	1.17	1.16	10	10	510	590	1,160	1,360
Charlotte NC	0.89	0.92	43	40	310	320	150	160
Ft. Lauderdale FL	0.96	0.98	29	28	270	290	350	380
Jacksonville FL	0.97	0.96	28	30	350	380	260	300
Memphis TN	0.92	0.93	36	35	130	140	110	130
Miami FL	1.30	1.32	4	4	510	560	990	1,090
Nashville TN	0.92	0.93	30	35	290	270	200	200
New Orleans LA	1.10	1.09	15	15	200	270	220	320
Norioik VA	0.92	0.92	50	40	210	250	100	230
Uriando PL Terras El	0.80	1.06	47	20	210	200	220	230
Southwastern Cities	1.07	1.00	17	20	510	230	220	220
Albumerme NM	0.95	0.96	30	30	190	230	100	130
Austin TY	0.95	0.95	30	33	390	470	220	270
Corrus Christi TX	0.74	0.75	50	50	70	80	20	20
Dallas TX	1.07	1.07	17	17	580	600	1,210	1,240
Denver CO	1.05	1.07	21	17	420	460	670	750
El Paso TX	0.76	0.77	49	49	110	120	60	60
Fort Worth TX	0.94	0.95	34	33	390	440	460	530
Houston TX	1.12	1.13	12	12	620	660	1,790	1,920
Phoenix AZ	1.08	1.08	16	16	410	420	820	880
Salt Lake City UT	0.90	0.92	40	40	110	130	90	120
San Antonio TX	0.90	0.91	40	43	260	290	310	360
Western Cities								
Honolulu HI	1.10	1.13	13	12	420	450	280	310
Los Angeles CA	1.54	1.54	1	1	700	710	8,250	8,530
Portland OR	1.10	1.11	13	14	360	390	380	420
Sacramento CA	1.04	1.04	23	22	270	310	320	380
San Bernardino-Riv CA	1.22	1.21	6	8	760	790	990	1,040
San Diego CA	1.22	1.21	6	8	320	300	780	770
San Fran-Oak CA	1.33	1.33	3	3	750	780	2,840	2,980
San Jose CA	1.07	1.05	17	21	580	580	880	880
Seattle-Everett WA	1.22	1.23	6	6	/10	/20	1,300	1,300

Table 15. Congestion Index and Cost Values, 1992 and 1993

Source: TTI Analysis and Local Transportation Agency References.

CONCLUSIONS

This report presents estimates of congestion and the importance of congestion for 50 large and medium cities from 1982 to 1993. The congestion estimates are based on travel volume and roadway capacity in urbanized areas. Given that traffic volume has continued to increase and transportation funding has not kept pace with the rising cost of transportation projects, it should be no surprise that congestion, when measured by vehicle travel per kilometer of roadway, has increased significantly in most major urban areas since 1982. Only a few areas have come close to maintaining a constant congestion level over the period from 1982 to 1993.

The estimate of the amount of roadway construction required to maintain a congestion level or to reduce congestion to acceptable levels (Table 11) also gives little hope for those who think that congestion problems can be solved by the construction of additional freeway and arterial street lanes. The commitment to sustain such a construction program has not been in place in many areas, and the magnitude of the problem suggests that such an approach will not be effective in most of the areas studied. Recent traffic growth rates require the annual addition of 48 lane-kilometers of freeways and principal arterial streets just to maintain a constant congestion level.

A multimodal and multiprogram combination of construction, operation, and demand management improvements is required to improve mobility in most medium and large urban areas. Longer term solutions will focus on communication improvements and better land use/transportation coordination. Funding and environmental concerns will increase pressure on transportation professionals to find solutions to mobility problems.

APPENDIX A

SYSTEM LENGTH AND TRAVEL CHARACTERISTICS

Travel and System Length Statistics

Previous TTI research (3,4) used daily vehicle-kilometers of travel (daily VKT) per lane-kilometer of freeway and principal arterial street as indicators of urban congestion levels. The previous studies established the values of 13,000 daily VKT per freeway lane-kilometer and 5,000 daily VKT per principal arterial street lane-kilometer as the thresholds for undesirable congestion levels. Briefly, when areawide freeway travel volumes exceed an average of 13,000 daily VKT per lane-kilometer, undesirable levels of congestion occur. The corresponding level of service is reached on principal arterial streets when travel volumes average 5,000 daily VKT per lanekilometer. More information is available on the development of the methodology in Volume 2.

This section presents comparisons of mobility within geographic regions and between individual urban areas using daily VKT per lane-kilometer statistics.

Freeway Travel and Distance Statistics

Table A-1 summarizes areawide freeway operating statistics. The urban areas are ranked according to the primary congestion indicator, daily VKT per lane-kilometer. Twenty-three urbanized areas exceeded the 13,000 daily VKT per lane-kilometer level indicating areawide congested conditions on the freeway systems. Six of these areas have experienced congested freeway systems since 1982. An additional 10 urban areas studied have daily VKT per lane-kilometer values within 10 percent of the 13,000 level. Urban areas with travel demands in this range would only have to experience moderate to slight increases in travel demands over a few years to cause their freeway systems to operate under congested conditions. The summary statistics at the bottom of Table A-1 show average daily VKT per lane-kilometer values by geographic region. Every region, except the Western region (affected by the California cities), has daily VKT per lane-kilometer values below the 13,000 level.

	1				
	Daily VKT ¹		Avg. No.	Daily VKT/	D = =1.4
Urban Area	(000)	Lane-Kilometers	Lanes ²	Lane-Kilometer ³	Rank
	(000)				
Los Angeles CA	183,460	8.810	8.20	20,810	1
Washington DC	46.690	2.620	5.40	17,790	2
San Fran-Oak CA	68,830	3,920	6.80	17,560	3
San Bernardino-Riv CA	24 500	1.510	7.20	16.280	4
Detroit MI	47,500	2,940	6.00	16,160	5
Seattle-Everett WA	33,330	2,070	6.00	16,110	6
San Diego CA	44 680	2,810	7.60	15,900	7
Chicago II	65,950	4 160	5.70	15,850	8
Miami El	15 920	1,030	5 50	15 450	9
Atlanta GA	48 300	3,220	640	15,000	10
Houston TV	51 520	3,460	6.40	14,880	ii I
Poston MA	34 620	2 430	5.90	14 240	12
Dollas TY	40,000	2,430	6.00	13,990	13
Dallas IA Now York NV	128 460	0,000	5.70	13,990	14
INEW FOIR IN I	130,400	5,500	5.70	13,000	15
	0,000	070	5.30	13,920	15
Portiand OK	15,440	1 140	5.20	13,920	15
Phoenix AZ	15,700	1,140	5.80	13,600	18
San Jose CA	20,810	1,900	0.70	13,030	10
New Orleans LA	8,370	1 500	5.00	13,310	20
Denver CO	21,330	1,390	5.30	13,300	20
Cincinnati OH	20,710	1,550	5.70	13,330	21
Baltimore MD	28,980	2,210	5.50	13,140	22
Minn-St. Paul MN	32,200	2,470	5.00	13,030	23
Milwaukee WI	12,620	9/0	5.60	12,900	24
Sacramento CA	16,550	1,300	7.00	12,770	25 27
Cleveland OH	24,100	1,920	4.90	12,580	20
Ft. Lauderdale FL	13,690	1,090	5.50	12,500	27
Jacksonville FL	9,660	770	4.80	12,500	27
Tampa FL	6,360	520	5.00	12,340	29
Fort Worth TX	21,090	1,720	5.90	12,240	30
Austin TX	10,340	850	5.60	12,110	31
Philadelphia PA	32,520	2,720	5.10	11,950	32
Columbus OH	15,700	1,330	5.90	11,820	33
Hartford CT	11,310	980	5.60	11,520	34
Albuquerque NM	4,410	390	5.10	11,420	35
Indianapolis IN	14,330	1,260	5.50	11,410	30 07
Louisville KY	11,270	990	4.60	11,380	3/
San Antonio TX	17,230	1,510	5.40	11,380	3/
St. Louis MO	31,400	2,770	5.70	11,340	39
Salt Lake City UT	9,760	860	5.70	11,330	40
Memphis TN	8,290	730	5.40	11,320	41
Charlotte NC	5,640	510	4.30	11,110	42
Nashville TN	11,270	1,010	4.90	11,110	42
Oklahoma City OK	12,400	1,180	5.20	10,480	44
Norfolk VA	9,620	930	4.70	10,390	45
Orlando FL	10,020	990	5.00	10,120	40
El Paso TX	5,960	600	5.30	10,000	47
Kansas City MO	24,150	2,480	4.60	9,740	48
Corpus Christi TX	3,140	340	5.50	9,290	49
Pittsburgh PA	15,050	1,850	4.30	8,130	50
	44.44	0.000		10.070	
Northeastern Avg	43,950	3,250	5.36	12,960	
Midwestern Avg	26,030	2,000	5.37	12,510	·
Southern Avg	13,380	1,040	5.21	12,310	
Southwestern Avg	18,240	1,390	5.64	12,170	
western Avg	40,720	2,000	0.0/	13,000	
Texas Avg	21,340	1,020	5.15	11,990	
Total Avg	2/,760	1,950	5.62	15,020	
Maximum Value	183,460	9,900	8.20	20,810	
Minimum Value	3,140	340	4.30	8,130	

Table A-1. 1993 Freeway System Length and Travel Volume

¹ Daily vehicle-kilometers of travel. Notes:

² Average number of lanes.
³ Daily vehicle-kilometers of travel per lane-kilometer of freeway.
⁴ Rank value of 1 associated with most congested condition.

Ranked by daily VKT/lane-kilometer.

TTI Analysis and Local Transportation Agency References. Source:

Principal Arterial Street Travel and System Length Statistics

Table A-2 shows the operating characteristics of the principal arterial street system for each urban area included in this study. As in Table A-1, Table A-2 ranks urban areas by travel per lane-kilometer and contains regional summary statistics. In 1993, 43 of the urban areas studied experienced daily VKT per lane-kilometer levels exceeding 5,000. Of the 50 study areas, 26 have had travel demands exceeding 5,000 daily VKT per lane-kilometer since 1982.

The summary statistics show that all the regional averages, except the Texas average, exceed the 5,000 daily VKT per lane-kilometer level. In contrast to the freeway values, the arterial street statistics indicate more congested operation on the arterial street systems in this study. The regional average travel demand on principal arterial street systems increased between one and two percent from 1992 levels in the Southwestern, Western, and Texas regions. The regional average travel demands showed smaller increases in the Northeastern and Midwestern regions (less than 1 percent), while the Southern region actually showed a very small decrease.

Travel Delay

The recurring and incident hours of delay are shown by congestion level in Tables A-3 and A-4. These two tables give a more detailed look at the delay previously shown in Table 6. The types and severity of delay and facility on which it occurs are shown in these two tables. Table A-3 shows these values for the freeway facilities in the 50 urban areas. This table shows which levels of congestion contain the greatest amount of delay within recurring and incident delay types. Table A-4 shows this same information for the principal arterial street systems in the 50 urban areas.

Urban Area	Daily VKT ¹ (000)	Lane- Kilometers	Avg. No. Lanes ²	Daily VKT/ Lane-Kilometer ³	Rank ⁴
Honolulu HI	3 110	390	3 80	7 880	1
Washington DC	29 620	3.780	4.00	7,830	2
Miami FL	27,370	3,630	4.60	7,540	3
New York NY	88,550	12,400	3.40	7,140	4
Chicago IL	56.350	8.210	3.90	6,860	5
Portland OR	7,080	1,060	3.50	6,670	6
Los Angeles CA	133,630	20,210	4.10	6,610	7
St. Louis MO	20,450	3,100	3.60	6,600	8
Philadelphia PA	34,870	5,300	3.30	6,580	9
Tampa FL	7,500	1,160	3.80	6,470	10
Norfolk VA	7,890	1,220	3.50	6,450	11
New Orleans LA	7,080	1,130	4.20	6,290	12
Sacramento CA	12,640	2,010	4.20	6,280	13
Pittsburgh PA	18,520	2,990	3.20	6,180	14
Salt Lake City UT	4,300	700	4.00	6,140	15
Detroit MI	41,860	6,920	4.50	6,050	10
San Fran-Oak CA	22,860	3,780	4.00	6,040	17
Louisville KY	5,040	2 220	3.70	6,030	10
Atlanta GA	19,520	3,220	3.00	5 070	20
Seattle Everatt WA	17,070	2,550	3.50	5,970	20
Minn St. Daul MN	11,020	1 030	3.50	5,920	20
Paltimore MD	16,100	2 740	4 10	5,880	23
Hartford CT	6 100	1 050	3.80	5,790	24
Nashville TN	9,020	1,560	3.50	5.770	25
Oklahoma City OK	7 250	1 290	3.40	5.630	26
San Diego CA	15,540	2,790	3.50	5,560	27
Phoenix AZ	29,790	5.390	4.30	5,520	28
Charlotte NC	5,190	950	3.30	5,470	29
Columbus OH	5,640	1,030	3.50	5,470	29
Albuquerque NM	7,250	1,330	4.00	5,450	31
Cleveland OH	9,980	1,840	3.00	5,410	32
Memphis TN	8,950	1,670	4.60	5,350	33
Cincinnati OH	7,080	1,330	3.50	5,330	34
San Antonio TX	9,660	1,820	3.60	5,310	35
San Jose CA	11,750	2,220	4.20	5,290	30
Ft. Lauderdale FL	10,300	1,900	4.50	5,230	29
San Bernardino-Riv CA	1/,8/0	3,410 770	4.20	5,240	30
Austin 1X	4,030	2 540	4.20	5,210	40
	10,550	2,540	4.50	5 080	41
Dallas IA Fort Worth TY	7 570	1 510	4.50	5,000	42
Milwaukee Wi	9 020	1,800	3.40	5.000	42
Indiananolis IN	7 250	1,480	3.80	4,890	44
Kansas City MO	8,860	1.810	3.60	4,890	44
Boston MA	22,540	4.650	2.50	4,840	46
Jacksonville FL	10.060	2,110	3.90	4,770	47
Orlando FL	8,370	1,790	3.80	4,680	48
Corpus Christi TX	2,580	600	4.10	4,320	49
El Paso TX	5,380	1,380	4.30	3,880	50
Notheastorn A	20.000	1 700	2 17	6 320	
Midwestern Avg	15 000	2 640	3.67	5 670	
Southern Avg	11 010	1 860	3.95	5 820	
Southwestern Avg	11 040	2.080	4.18	5.190	
Western Avg	26.680	4.280	3.89	6.170	
Texas Avg	8.890	1,790	4.26	4,860	
Total Avg	17,790	2,930	3.84	5,780	
Maximum Value	133,630	20,210	4.90	7,880	
Minimum Value	2,580	390	2.50	3,880	

Table A-2. 1993 Principal Arterial Street System Length and Travel Volume¹

Notes: ¹ Daily vehicle-kilometers of travel.

² Average number of lanes.

³ Daily vehicle-kilometers of travel per lane-kilometer of freeway.

Rank value of 1 associated with most congested condition. Ranked by daily VKT/lane-kilometer. 4

TTI Analysis and Local Transportation Agency References Source:

	Recurring Vehicle-Hours of Delay ¹			In	Incident Vehicle-Hours of Delay			
Urban Area	Moderate	Heavy	Severe	Total	Moderate	Heavy	Severe	Total
Northeastern Cities								
Baltimore MD	6,900	6,490	21,270	34,660	15,860	14,920	48,920	79,700
Boston MA	8,810	17,180	37,510	63,500	30,840	60,120	131,290	222,250
Hartford CT	1,860	4,240	2,290	8,390	5,020	11,440	6,180	22,640
New York NY	66,600	128,750	120,710	316,060	166,490	321,880	301,760	790,130
Philadelphia PA	6,850	8,060	10,000	31,570	14,390	10,920	34,980	00,290
Washington DC	1,970	4,140 24 120	08.840	138 160	33,750	53 000	217 450	303,950
Midwestern Cities	15,150	24,150	20,040	150,100	55,410	55,070	217,450	505,550
Chicago IL	19.620	18,490	130,740	168,850	23,550	22,180	156,880	202,610
Cincinnati OH	6,230	12,500	8,110	26,840	4,990	10,000	6,480	21,470
Cleveland OH	10,780	7,680	11,870	30,330	7,540	5,380	8,310	21,230
Columbus OH	920	5,980	13,350	20,250	650	4,190	9,350	14,190
Detroit MI	11,240	8,960	82,010	102,210	24,720	19,720	180,420	224,860
Indianapolis IN	4,110	1,380	1,400	6,890	6,170	2,060	2,090	10,320
Lauisuilla KV	3,790	1,030	2,870	6,290 4 320	1,750	5,000	2,600	4 740
Milwaukee WI	2,540	4 860	7,570	14,970	2,540	4.860	7,570	14,970
Minn-St. Paul MN	10,390	3,590	23,360	37,340	9,350	3,230	21,030	33,610
Oklahoma City OK	1,910	1,960	160	4,030	2,100	2,160	170	4,430
St. Louis MO	7,470	11,350	10,290	29,110	8,960	13,620	12,350	34,930
Southern Cities				100 100		a a c aa		110.000
Atlanta GA	7,930	27,900	66,330	102,160	8,730	30,690	72,970	112,390
Charlotte NC	2,540	2,030	2,450	20,200	2,040	1,620	7,330	5,020 30,450
FL Lauderdale FL	4,090	6 870	4,000	20,300	5 080	10,390	2 560	17 940
Memphis TN	1,820	1.510	870	4.200	2,000	1.660	960	4.620
Miami FL	6,170	5,160	28,240	39,570	9,250	7,740	42,360	59,350
Nashville TN	3,230	1,990	2,650	7,870	3,550	2,190	2,920	8,660
New Orleans LA	2,270	10,650	2,800	15,720	4,090	19,160	5,040	28,290
Norfolk VA	3,690	7,410	2,730	13,830	9,220	18,520	6,830	34,570
Orlando FL	4,290	2,700	5,860	12,850	6,440	4,050	8,790	19,280
Tampa FL Southwestern Cities	450	830	4,230	3,310	0/0	1,230	0,540	0,200
Albumerane NM	790	1 030	1.550	3.370	870	1.130	1.710	3.710
Austin TX	4,100	7.340	10,810	22,250	4,510	8,080	11,890	24,480
Corpus Christi TX	940	500	0	1,440	1,030	540	0	1,570
Dallas TX	16,870	28,640	40,010	85,520	30,370	51,560	72,020	153,950
Denver CO	6,360	9,240	33,200	48,800	6,360	9,240	33,200	48,800
El Paso TX	1,750	2,760	17 220	2,15U 26,910	1,920	3,030	21,000	5,050
Fort Worm 1X	7,200	12,330	80 870	152,000	12 370	74 730	125 820	212 920
Phoenix AZ	5 470	6 250	31,410	43,130	2,190	2,500	12,570	17.260
Salt Lake City UT	1.790	3,570	4,040	9,400	1,080	2,140	2,420	5,640
San Antonio TX	2,880	9,090	16,460	28,430	3,170	10,000	18,110	31,280
Western Cities				10.100		6 0 0 0		
Honolulu HI	2,480	3,490	12,430	18,400	4,470	6,290	22,380	33,140
Los Angeles CA	26,480	23,900	3/0,430 11 820	020,810	31,/80	28,680	091,/10 23,670	152,170
Sacramento CA	4,050	12 030	2 280	20 300	3 590	7 220	1 370	12.180
San Bernardino-Riv CA	5,550	12,970	55,690	74.210	6,660	15,570	66,820	89,050
San Diego CA	25,170	25,460	30,940	81,570	15,100	15,270	18,570	48,940
San Fran-Oak CA	20,100	40,060	176,770	236,930	26,120	52,080	229,800	308,000
San Jose CA	6,680	12,390	49,390	68,460	8,010	14,870	59,270	82,150
Seattle-Everett WA	5,460	30,680	63,440	99,580	7,650	42,960	88,810	139,420
Northeastern Ave	15 450	27 570	A3 200	86 310	28 870	70.050	108 180	217.050
Midwestern Avg	6 680	6 600	24.510	37,790	8 630	7,780	34.680	51.090
Southern Avg	3.620	7.120	11,160	21,900	5,200	10.380	14,370	29,950
Southwestern Avg	5,190	12,190	22,290	39,670	6,990	16,830	28,130	51,950
Western Avg	11,330	18,490	108,800	138,620	12,390	21,520	133,600	167,510
Texas Avg	6,090	16,290	25,000	47,380	9,490	24,300	37,080	70,870
Total Avg	7,740	13,020	38,890	59,650	12,420	21,530	56,870	90,820
Maximum Value	00,000	128,750	570,430 A	020,810	100,490	521,880 540	01/16	1 570
winninum value	430	500	v	1,440	0.0		v	1,570

Table A-3. Freeway and Expressway Recurring and Incident Vehicle-Hours of Daily Delay for 1993

Notes: ¹ Delay calculated based on vehicular speed in Table B-1.

	Recurring Vehicle-Hours of Delay ¹			Incident Vehicle-Hours of Delay				
Urban Area	Moderate	Heavy	Severe	Total	Moderate	Heavy	Severe	Total
Northeastern Cities								
Baltimore MD	1,620	4,300	17,650	23,570	1,790	4,720	19,420	25,930
Boston MA	4,650	6,330	19,300	30,280	5,120	6,970	21,230	33,320
Hartford CT	1,290	2,530	2,860	6,680	1,420	2,780	3,140	7,340
New York NY	10,390	53,200	220,450	284,040	11,430	58,520	242,500	312,450
Philadelphia PA	5,340	13,600	79,360	98,300	5,880	14,900	87,290 27,530	108,130
Washington DC	7,560	18.050	64 030	90.030	8,330	19 850	70 430	99,030
Midwestern Cities	1,550	10,050	04,000	50,050	0,700	19,050		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Chicago IL	14,580	41,580	67,330	123,490	16,030	45,740	74,070	135,840
Cincinnati OH	1,520	1,720	3,350	6,590	1,670	1,890	3,690	7,250
Cleveland OH	1,520	3,990	3,990	9,500	1,670	4,390	4,390	10,450
Columbus OH	1,450	1,530	6,620	9,600	1,590	1,690	7,280	10,500
Detroit MI	7,930	10,910	81,630	100,470	8,720	12,000	2 320	5 880
Kansas City MO	1,450	1,790	3 240	6710	1,350	1,970	3 570	7 380
Louisville KY	1 410	2,850	7.370	11.630	1,550	3,140	8.110	12,800
Milwaukee WI	910	2,640	5,860	9,410	1,000	2,900	6,450	10,350
Minn-St. Paul MN	1,720	2,360	16,940	21,020	1,900	2,590	18,630	23,120
Oklahoma City OK	1,510	3,000	4,920	9,430	1,660	3,300	5,410	10,370
St. Louis MO	8,160	9,630	21,120	38,910	8,980	10,590	23,230	42,800
Southern Cities		6.150	25 222	45.550	4.500	6 760	20 740	50.000
Atlanta GA	4,180	0,150	35,220	45,550	4,590	0,700	38,740 9,670	12 930
Et Laudardale El	3 670	2,000 4 890	7 250	15,810	4 040	5 380	7 970	17,390
lacksonville FL	3,940	3,440	10,140	17,520	4,340	3,780	11,150	19,270
Memphis TN	2,600	2,690	4,050	9,340	2,860	2,960	4,450	10,270
Miami FL	4,560	8,670	58,350	71,580	5,020	9,540	64,190	78,750
Nashville TN	2,140	3,850	3,560	9,550	2,350	4,240	3,920	10,510
New Orleans LA	1,990	3,490	5,950	11,430	2,190	3,840	6,550	12,580
Norfolk VA	930 970	3,040	7,160	11,130	1,020	3,350	7,880	12,250
Urlando FL Tamma El	1 570	1,350	8,000	9,080	1 730	1,490	0,000	19 130
Southwestern Cities	1,570	3,440	12,570	17,500	1,750	5,770	15,010	15,150
Albuquerque NM	2,450	2,640	4,930	10,020	2,690	2,900	5,420	11,010
Austin TX	1,500	2,010	2,570	6,080	1,650	2,210	2,830	6,690
Corpus Christi TX	510	400	0	910	560	440	0	1,000
Dallas TX	4,490	5,840	7,250	17,580	4,940	6,430	7,980	19,350
Denver CO	4,380	6,620	22,860	33,860	4,820	7,280	25,140	37,240
El Paso TX	1 740	2 260	1,150	1,/90	1 010	2 490	3,000	7 490
For Word IA	2 690	13 980	14 270	30,940	2 960	15 380	15,700	34,040
Phoenix AZ	11.670	25,200	29.030	65,900	12,830	27,730	31,930	72,490
Salt Lake City UT	2,140	2,000	920	5,060	2,350	2,200	1,010	5,560
San Antonio TX	1,990	2,270	4,890	9,150	2,190	2,490	5,380	10,060
Western Cities	1 0 00	700	C 100	0.050	1 250	770	6 7720	0 050
Honolulu Hi	1,230	66 260	0,120	3,000	1,350	73 000	0,/30	284.050
Portland OR	1 710	5 600	6 990	14.300	1.880	6.160	7.680	15.720
Sacramento CA	2.220	5,020	17.620	24,860	2,440	5,520	19,380	27,340
San Bernardino-Riv CA	7,250	9,480	16,790	33,520	7,970	10,430	18,470	36,870
San Diego CA	1,600	10,740	5,520	17,860	1,760	11,810	6,070	19,640
San Fran-Oak CA	2,980	7,600	45,360	55,940	3,280	8,360	49,900	61,540
San Jose CA	3,500	3,600	14,670	21,770	3,850	3,900	10,130	23,940
Seame-Everen WA	3,070	5,300	20,900	29,930	4,040	J,0JV	23,000	52,950
Northeastern Ave	5.550	14.960	61.240	81.750	6.100	16.460	67.360	89,920
Midwestern Avg	3,660	6,980	18,710	29,350	4,020	7,670	20,580	32,270
Southern Avg	2,380	3,970	14,630	20,980	2,620	4,360	16,090	23,070
Southwestern Avg	3,080	5,780	8,240	17,100	3,390	6,360	9,070	18,820
Western Avg	5,370	12,710	33,520	51,600	5,910	13,980	36,880	50,770
Texas Avg	1,890	3,8/0	4,/10	10,470	2,080	4,200	26 540	30 760
Iotal Avg Maximum Value	3,820 24 180	66 360	220 450	284 040	26.600	73.000	242.500	312,450
Minimum Value	270	340	0	910	290	370	0	1,000

,

Table A-4.	Principal A	rterial Street	Recurring an	nd Incident	Vehicle-Hours	of Daily	Delay f	for 1993
						· · · · · · · · · · · · · · · · · · ·		

Notes: ¹ Delay calculated based on vehicular speed in Table B-1.

APPENDIX B

ESTIMATION OF CONGESTION COST

·

Estimation of Congestion Cost

The cost of congestion in each area is estimated using the Highway Performance Monitoring System database and several factors developed from studies of urban travel speeds and traffic volume. This Appendix summarizes the constant values and the variables used to estimate travel delay and fuel consumption costs resulting from traffic congestion.

Cost Estimate Constants

Congestion cost estimates are prepared with the following values held constant for all 50 areas.

- Occupancy—1.25 persons per vehicle. This value is representative of most urban travel during peak travel periods. Occupancy levels are slightly higher near major activity centers and lower in the suburbs.
- Working days per year—250. Weekends and holidays, when congestion levels drop dramatically, are not considered in the conversion from average daily to annual estimates.
- Average cost of time-\$10.75 per person-hour (10).1

The concept of time valuation used in this study is that people demonstrate a value that they place on time by their actions. Use of a toll facility, frequent lane changing maneuvers, close headway driving, or using residential streets to bypass a congested arterial are behaviors that could lead to accidents or traffic citations, but also may be perceived as time-saving actions. These are the types of characteristics that are included in the value of time used in this study, rather than a wage-based value that might estimate the value to society from time spent in congestion.

• Commercial vehicle operating cost—\$1.40 per kilometer (<u>11</u>). The congestion impact on cargo is not measured in this cost component, but on the value of the vehicle and driver.

¹Referenced value of \$8.00/hr in 1985 adjusted with the Consumer Price Index to value used for 1993 wage rate.

- Vehicle types—95 percent passenger and 5 percent commercial. While the truck percentage is significantly higher in some corridors, this is a good estimate for most urban areas during the peak periods.
- Vehicle Speeds—illustrated in Table B-1. An analysis of traffic volume per lane and peak-period travel speed resulted in the speed estimates used in the delay estimates.

These constants were applied to all study areas consistently for the cost estimate calculations.

			Congested Daily VKT ^{1,2}				
Functional Class	Parameters	Uncongested	Moderate	Heavy	Severe		
Freeway/Expressway	ADT/Lane	Under 15,000	15,000 - 17,500	17,501 - 20,000	Over 20,000		
	Speed (kph) ³	97	61	53	48		
Principal Arterial Streets	ADT/Lane	Under 5,750	5,750 - 7,000	7,001 - 8,500	Over 8,500		
	Speed (kph)3	56	45	40	37		

Table B-1. Congested Daily Vehicle-Kilometers of Travel by Average Annual Daily Traffic per Lane Volumes

Note: ¹ Assumes congested freeway operation when ADT/Lane exceeds 15,000. ² Assumes congested principal arterial street operations when ADT/lane exceeds 5,750.

³ Represent a "soft" conversion from miles per hour

Source: TTI Analysis and Houston-Galveston Regional Transportation Study (Volume 2, Appendix B) (12)

Cost Estimate Variables

In addition to the derived constants, five urbanized area/state specific variables were identified and used in the congestion cost estimate calculations. These variables are illustrated in Table B-2.
	Daily Vehicle Kil	ometers of Travel	State Average		Eligible Drivers	
Urban Area	Freeway (000) Prin. Art. St. (000)		Fuel Cost, (\$/liter)	Population (000)	(000)	
Northeastern Cities						
Baltimore MD	28,980	16,100	0.34	2,110	1,660	
Boston MA	34,620	22,540	0.33	2,980	2,480	
Hartford CT	11,310	6,100	0.36	620	4/0	
New York NY	138,460	88,550	0.35	17,000	15,570	
Philadelphia PA	32,520	18 520	0.32	1 900	1 570	
Washington DC	15,050	20 620	0.32	3 400	2,830	
Washington DC.	40,090	29,020	0.52	5,400	2,050	
Chicago II	65 950	56,350	0.33	7.600	5.870	
Cincinnati OH	20,710	7.080	0.31	1,250	970	
Cleveland OH	24,100	9,980	0.31	1,800	1,370	
Columbus OH	15,700	5,640	0.31	980	780	
Detroit MI	47,500	41,860	0.31	4,000	2,950	
Indianapolis IN	14,330	7,250	0.30	960	740	
Kansas City MO	24,150	8,860	0.29	1,300	1,020	
Louisville KY	11,270	5,640	0.30	820	650	
Milwaukee WI	12,620	9,020	0.32	1,230	930	
Minn-St. Paul MN	32,200	7 250	0.31	2,120	620	
St. Louis MO	31,400	20,450	0.50	1 990	1 550	
Southern Cities	51,400	20,450	0.25	2,000	1,000	
Atlanta GA	48 300	19.320	0.29	2,320	1,830	
Charlotte NC	5,640	5,190	0.31	520	410	
Ft. Lauderdale FL	13,690	10,300	0.33	1,300	1,080	
Jacksonville FL	9,660	10,060	0.33	770	590	
Memphis TN	8,290	8,950	0.31	890	680	
Miami FL	15,920	27,370	0.33	1,940	1,530	
Nashville TN	11,270	9,020	0.31	600	480	
New Orleans LA	8,370	7,080	0.33	1,110	780	
Norfolk VA Orlando El	9,620	7,890	0.31	960	750	
Tampa El	6 360	7,500	0.33	740	590	
Southwestern Cities	0,500	7,000	0.25			
Albuquerque NM	4,410	7,250	0.34	530	410	
Austin TX	10,340	4,030	0.31	570	450	
Corpus Christi TX	3,140	2,580	. 0.31	290	210	
Dallas TX	40,090	14,650	0.31	2,090	1,630	
Denver CO	21,330	17,870	0.34	1,610	1,290	
El Paso TX	5,960	5,380	0.31	5/0	410	
Fort Worth 1X	21,090	1,370	0.31	2 030	2 240	
Phoenix A7	15 780	29 790	0.31	2,930	1,570	
Salt Lake City UT	9 760	4,300	0.31	880	680	
San Antonio TX	17,230	9,660	0.31	1,200	890	
Western Cities						
Honolulu HI	8,860	3,110	0.42	690	580	
Los Angeles CA	183,460	133,630	0.35	11,950	9,300	
Portiand OR	13,440	12 640	0.30	1,080	8/U 070	
San Bernarding-Div CA	24 500	17 870	0.55	1 330	960	
San Diego CA	44,680	15.540	0.35	2,530	1.010	
San Fran-Oak CA	68.830	22,860	0.35	3,830	3,130	
San Jose CA	26,810	11,750	0.35	1,530	1,170	
Seattle-Everett WA	33,330	15,620	0.34	1,880	1,600	
Manuha antari Arri-	12 050	20.000	0.22	4 740	3 810	
Northeastern Avg	43,930	15 000	0.55	2 070	1 590	
Southern Avg	13 380	11 010	0.32	1 100	870	
Southwestern Avg	18,240	11.040	0.32	1.270	970	
Western Avg	46,720	26,680	0.36	2,890	2,280	
Texas Avg	21,340	8,890	0.31	1,270	960	
Total Avg	27,760	17,790	0.33	2,200	1,730	
Maximum Value	183,460	133,630	0.42	17,000	13,570	
Minimum Value	3,140	2,580	0.29	290	210	

Table B-2.	1993	Congestion	Cost	Estimate	Variables

Source: TTI Analysis and Local Transportation Agency References.

Daily Vehicle-Kilometers of Travel

The daily vehicle-kilometers of travel (VKT) is the average daily traffic (ADT) of a section of roadway multiplied by the length (in kilometers) of that section of roadway. This allows the daily volume of all urban facilities to be represented in terms that can be quantified and utilized in cost calculations. Daily VKT was estimated for the freeways and principal arterial streets located in each study urbanized area. These estimates originate from the HPMS database and other local transportation data sources and are presented in a previous section of this report.

Fuel Costs

Statewide average fuel cost estimates were obtained from 1993 data published by the American Automobile Association (AAA) (13). These data represent the average reported fuel cost for 1993. Values for different fuel types used in motor vehicles, i.e., diesel and gasoline, did not vary enough to be reported separately. Therefore, an average rate for fuel was used in cost estimate calculations.

Population

Population data were obtained from the combination of 1990 U.S. Census Bureau estimates and 1993 population estimates reported in the Federal Highway Administration's Highway Performance Monitoring System (HPMS).

Eligible Drivers

The number of eligible drivers for each area was obtained using the population estimate derived above, along with estimates of the percentage of population 16 years of age and older taken from the Statistical Abstract of the United States (14).

Cost Estimate Calculations

The first step in the cost estimate procedure was to convert daily VKT into vehicle-hours of delay. Vehicle-hours of delay is the basis for the delay and fuel cost calculations. To obtain vehicle-hours of delay, vehicle-kilometers of travel on congested roadways during each peak period was estimated. This was accomplished by the use of two factors.

Highway Performance Monitoring System (HPMS) data were used to determine the percentage of urbanized area daily VKT occurring on congested facilities. Two functional classes, freeways/expressways and principal arterial streets, were considered in the calculation of this factor. Congested conditions for these facilities were defined by the ADT per lane values shown in Table B-1.

Using Table B-1 values, the percentage of daily VKT operating in each of the three congested conditions could be calculated for each functional class. These percentages adjust daily VKT to congested daily VKT, the first step in the process to obtain travel volume that occurs during congested conditions.

The congested daily travel values were adjusted by a factor to represent the percentage of travel occurring in the peak period. This factor was calculated using the Texas Department of Transportation's (TxDOT) 1986 Automatic Traffic Recorder Data (15) for the study areas in Texas. Using these data, the percentage of ADT occurring during the morning and evening peak periods was estimated using these data. These data indicated that a relatively consistent value of 45 percent of total daily traffic occurred during the peak periods. This factor was applied to all the study areas. The delay estimates do not include midday, weekend, and special event congestion.

Once the daily VKT was converted to peak-period congested vehicle-kilometers of travel (Table B-3), the recurring vehicle-hours of delay were computed (Equation B-1). Recurring delay is caused by the peak facility conditions during normal operations. This value does not include delay resulting from accidents, construction, or maintenance operations.

Recurring Vehicle-Hours of = <u>Peak-Period Congested DVKT</u> Delay per Day = <u>Avg. Peak-Period Speed</u> - <u>Peak-Period Congested DVKT</u> Avg. Off-Peak Speed Eq. B-1

This calculation was performed for both freeways and principal arterial streets in a study area; the total recurring vehicle-hours of delay is the sum of the two. The result of these calculations is shown in Table B-4.

Another type of delay encountered by vehicles is incident delay. This is the delay that results from an accident or disabled vehicle. Incident vehicle-hours of delay vary for each area by facility type, i.e., freeway/expressway or arterial street. For the freeway system in individual study areas, the ratio of recurring to incident delay reported by Lindley (<u>16</u>) was used. The resulting incident delay was calculated using Equation B-2.

Frwy IncidentPeak-PeriodFrwyVehicle-Hours of Delay = Frwy Vehicle-Hours of Delay x Incident/Recurring
per DayEq. B-2Per DayPer DayRatio

An incident will have varying effects on different types of facilities; for the purpose of this study, incident delay for arterial streets is defined as 110 percent of arterial street recurring delay. This incident delay factor was calculated using Equation B-3.

Principal Arterial Street Incident		Principal Artrial Street Recurring		
Vehicle-Hour Delay	=	Vehicle-Hour Delay	x 1.1	Eq. B-3
per Day		per Day		

	Daily Vehic of 2	cle-Kilometers Travel	Percent of VKT on Co	Peak-Period ^{1,2} ongested Roads	Peak Period Congested Daily VKT ^{1,3}			
Urban Area	Freeway (000)	Prin.Art.St. (000)	Freeway (%)	Prin.Art.St. (%)	Freeway (000)	Prin.Art.St. (000)	Freeway & Prin.Art.St. (000)	
Northeastern Cities Baltimore MD Boston MA Hartford CT New York NY Philadelphia PA Pittsburgh PA Washington DC	28,980 34,620 11,310 138,460 32,520 15,050 46,690	16,100 22,540 6,100 88,550 34,870 18,520 29,620	30 45 20 60 25 20 70	40 40 35 85 75 65 85	3,910 7,010 1,020 37,380 3,660 1,350 14,710	2,900 4,060 960 33,870 11,770 5,420 11,330	6,810 11,070 1,980 71,250 15,430 6,770 26,040	
Midwestern Chies Chicago IL Cincinnati OH Cleveland OH Columbus OH Detroit MI Indianapolis IN Kansas City MO Louisville KY Milwaukee WI Minn-St. Paul MN Oklahoma City OK St. Louis MO	65,950 20,710 24,100 15,700 14,330 24,150 11,270 12,620 32,200 12,400 31,400	56,350 7,080 9,980 5,640 41,860 7,250 8,860 5,640 9,020 11,430 7,250 20,450	60 35 35 30 50 15 10 10 30 30 10 25	65 30 30 65 25 25 60 30 50 40 60	$17,810 \\ 3,260 \\ 3,800 \\ 2,120 \\ 10,690 \\ 970 \\ 1,090 \\ 510 \\ 1,700 \\ 4,350 \\ 560 \\ 3,530 \\ \end{array}$	16,480 960 1,350 1,270 12,240 820 1,000 1,520 1,220 2,570 1,300 5,520	34,290 4,220 5,140 3,390 22,930 1,780 2,080 2,030 2,920 6,920 1,860 9,050	
Southern Cities Atlanta GA Charlotte NC Ft. Lauderdale FL Jacksonville FL Memphis TN Miami FL Nashville TN New Orleans LA Norfolk VA Orlando FL Tampa FL	48,300 5,640 13,690 9,660 8,290 15,920 11,270 8,370 9,620 10,020 6,360	19,320 5,190 10,300 27,370 9,020 7,080 7,890 8,370 8,370 7,500	50 35 40 35 15 60 20 50 40 35 20	65 60 50 55 370 35 50 40 30 65	$10,870 \\ 890 \\ 2,460 \\ 1,520 \\ 560 \\ 4,300 \\ 1,010 \\ 1,880 \\ 1,730 \\ 1,580 \\ 570 \\ 570 \\$	5,650 1,400 2,320 2,490 1,410 8,620 1,420 1,590 1,420 1,130 2,190	$\begin{array}{c} 16,520\\ 2,290\\ 4,780\\ 4,010\\ 1,970\\ 12,920\\ 2,430\\ 3,480\\ 3,150\\ 2,710\\ 2,770\end{array}$	
Southwestern Cities Albuquerque NM Austin TX Corpus Christi TX Dallas TX Denver CO El Paso TX Fort Worth TX Houston TX Phoenix AZ Salt Lake City UT San Antonio TX	4,410 10,340 3,140 21,330 5,960 21,090 51,520 15,780 9,760 17,230	7,250 4,030 2,580 14,650 17,870 5,380 7,570 18,350 29,790 4,300 9,660	20 55 55 55 25 45 70 65 25 40	45 50 15 40 55 10 30 50 70 45 30	400 2,560 210 9,920 5,280 670 4,270 16,230 4,620 1,100 3,100	1,470 910 170 2,640 4,420 1,020 4,130 9,380 870 1,300	1,8603,46039012,5609,700910529020,36014,0001,9704,400	
Western Cities Honolulu HI Los Angeles CA Portland OR Sacramento CA San Bernardino-Riv CA San Diego CA San Fran-Oak CA San Jose CA Seattle-Everett WA	8,860 183,460 13,440 16,550 24,500 44,680 68,830 26,810 33,330	3,110 133,630 7,080 12,640 17,870 15,540 22,860 11,750 15,620	50 75 40 35 70 50 80 60 70	75 55 60 35 65 55 55 55	$\begin{array}{c} 1,990\\ 61,920\\ 2,420\\ 2,610\\ 7,720\\ 10,050\\ 24,780\\ 7,240\\ 10,500\end{array}$	1,050 33,070 1,910 3,130 4,830 2,450 6,690 2,910 3,870	3,040 94,990 4,330 5,730 12,540 12,500 31,470 10,150 14,360	
Northeastern Avg Midwestern Avg Southern Avg Southwestern Avg Western Avg Texas Avg Total Avg Maximum Value Minimum Value	43,950 26,030 13,380 18,240 46,720 21,340 27,760 183,460 3,140	30,900 15,900 11,010 26,680 8,890 17,790 133,630 2,580	39 28 36 43 59 44 40 80 10	61 44 50 40 57 32 49 85 10	9,860 4,200 2,490 4,400 14,360 5,280 6,490 61,920 210	10,040 3,850 2,700 2,410 6,660 1,490 4,650 33,870 170	19,910 8,050 5,180 6,810 21,010 6,770 11,140 94,990 390	

Table B-3. 1993 Congested Daily Vehicle-Kilo	meters of Travel
--	------------------

¹ Daily vehicle-kilometers of travel. Notes:

Represents the percentage of daily vehicle-kilometers of travel on each roadway system during the peak period operating on 2 congestion conditions. ³ Daily vehicle-kilometers of travel by peak-period vehicle travel and percent of congested daily VKT.

TTI Analysis and Local Transportation Agency References. Source:

	Peak Period Congested Daily VKT			Ratio of Incident ² Delay to Recurring Delay		Daily Recurring Vehicle ³ Hours of Delay			Daily Incident Vehicle ³ Hours of Delay		
Urban Area	Freeway (000)	Prin.Art.St. (000)	Freeway and Prin. Art. St. (000)	Freeway	Prin.Art.St.	Freeway	Hours of Delay Prin.Art.St.	Total	Freeway	Prin.Art.St.	Total
Northeastern Cities											
Baltimore MD	3 010	2 900	6.810	22	1 1	24 650	22 570	69 220	70 700	05.000	105 (00
Boston MA	7.010	2,900	11 070	2.5	1.1	54,050	23,370	58,220	79,700	25,930	105,630
Hartford CT	1,020	4,000	1 080	3.3	1,1	03,300	30,290	95,780	222,240	33,310	255,560
New York NY	37 380	33 870	71.250	2.7	1.1	316 050	0,080	15,000	22,040	7,340	29,980
Philadelphia PA	3,660	11 770	15 430	2.5	1.1	21 570	264,030	120,870	/90,140	312,430	1,102,590
Pittsburgh DA	1,350	5 420	6 770	2.1		31,570	98,300	129,870	00,290	108,130	174,430
Washington DC	1,330	11 330	26 040	2.9		11,0/0	39,340	51,200	34,410	43,270	77,680
Midwestern Cities	14,710	11,550	20,040	2.2	1,1	156,100	90,030	228,190	303,950	99,030	402,980
Chicago II.	17 810	16 480	34 290	12	1 1	168 840	123 400	202 240	202 610	125 940	229.450
Cincinnati OH	3 260	960	4 220	0.8	1.1	26 840	6 500	232,340	202,010	155,040	336,430
Cleveland OH	3,800	1 350	5 140	0.0	1.1	30 320	0,590	30,430	21,470	10,450	20,720
Columbus OH	2,120	1,270	3,390	0.7	1.1	20,260	9,500	20 850	14 180	10,450	31,070
Detroit MI	10.690	12.240	22,930	2.2	1.1	102 210	100,460	202 660	224 860	110,500	24,740
Indianapolis IN	970	820	1,780	1.5	11	6 880	5 350	12 230	10 330	5 880	16 210
Kansas City MO	1.090	1.000	2,080	3.1	1.1	8 300	6 710	15,010	25 720	7 300	33,110
Louisville KY	510	1.520	2.030	1.1	1.1	4 320	11 630	15,010	4 750	12 700	17 540
Milwaukee WI	1,700	1.220	2,920	1.0	1.1	14,970	9 4 10	24 380	14 970	10 350	25 320
Minn-St. Paul MN	4.350	2,570	6,920	0.9	1.1	37,340	21 020	58 360	33 610	23 120	56 730
Oklahoma City OK	560	1,300	1.860	1.1	1.1	4.030	9,430	13,460	4 430	10 370	14,800
St. Louis MO	3,530	5.520	9,050	1.2	1.1	29.110	38,910	68 020	34 930	42,800	77 730
Southern Cities	.,		.,					00,020	51,550	.2,000	11,150
Atlanta GA	10.870	5,650	16,520	1.1	1.1	102,170	45,550	147.720	112,390	50 100	162 490
Charlotte NC	890	1,400	2,290	0.8	1.1	7,020	11,750	18 770	5 610	12 930	18 540
Ft. Lauderdale FL	2.460	2,320	4,780	1.5	1.1	20,300	15 810	36 110	30 450	17 390	47 840
Jacksonville FL	1.520	2,490	4,010	1.5	1.1	11,960	17,520	29 480	17 950	19 270	37,220
Memphis TN	560	1.410	1,970	1.1	1.1	4,200	9,330	13,530	4 620	10 270	14,890
Miami FL	4.300	8.620	12,920	1.5	1.1	39,560	71,590	111,150	59.340	78,740	138,090
Nashville TN	1,010	1,420	2,430	1.1	1.1	7,860	9,550	17,420	8,650	10,510	19,160
New Orleans LA	1,880	1,590	3.480	1.8	1.1	15.720	11.430	27.150	28,300	12.580	40.870
Norfolk VA	1,730	1,420	3,150	2.5	1.1	13,830	11,130	24,970	34,580	12.250	46.820
Orlando FL	1,580	1,130	2,710	1.5	1.1	12,860	9,680	22,530	19,290	10,640	29,930
Tampa FL	570	2,190	2,770	1.5	1.1	5,510	17,390	22,900	8,260	19,130	27,390

Table B-4.	Recurring and	Incident Delay	Relationships	for	1993
------------	---------------	----------------	---------------	-----	------

	Peak Period Congested Daily VKT ¹			Ratio of Incident ² Delay to Recurring Delay		Daily Recurring Vehicle ³ Hours of Delay			Daily Incident Vehicle ³ Hours of Delay		
Urban Area	Freeway (000)	Prin.Art.St. (000)	Freeway and Prin. Art. St. (000)	Freeway	Prin.Art.St.	Freeway	Hours of Delay Prin.Art.St.	Total	Freeway	Prin.Art.St.	Total
Southwestern Cities											
Albuquerque NM	400	1.470	1.860	1.1	1.1	3 370	10 010	13 380	3 700	11.010	14 710
Austin TX	2,560	910	3.460	1.1	1.1	22,250	6 080	28 330	24 470	6 690	31 160
Corpus Christi TX	210	170	390	1.1	1.1	1 430	920	2 350	1 580	1 010	2 580
Dallas TX	9,920	2.640	12.560	1.8	1.1	85 530	17 580	103 110	153,950	10 340	173 300
Denver CO	5,280	4,420	9,700	1.0	1.1	48,800	33,860	82,660	48 800	37 240	86 040
El Paso TX	670	240	910	1.1	1.1	5,140	1,790	6,930	5 660	1 970	7 630
Fort Worth TX	4,270	1,020	5.290	1.8	1.1	36.810	6.810	43,630	66 260	7 490	73,760
Houston TX	16,230	4,130	20,360	1.4	1.1	152,090	30,940	183.030	212,920	34 040	246,960
Phoenix AZ	4,620	9,380	14,000	0.4	1.1	43,140	65,900	109.040	17,260	72,490	89 750
Salt Lake City UT	1,100	870	1,970	0.6	1.1	9,400	5,060	14,460	5,640	5,570	11 210
San Antonio TX	3,100	1,300	4,400	1.1	1.1	28,440	9,150	37,580	31,280	10,060	41,340
Western Cities				_			-,	2.1000	01,200	10,000	11,540
Honolulu HI	1,990	1,050	3,040	1.8	1.1	18,410	8,050	26,460	33,130	8,860	41 990
Los Angeles CA	61,920	33,070	94,990	1.2	1.1	626,810	258,220	885,030	752,170	284.050	1.036.220
Portland OR	2,420	1,910	4,330	2.0	1.1	21,270	14.290	35,570	42,540	15.720	58,270
Sacramento CA	2,610	3,130	5,730	0.6	1.1	20,300	24,860	45,160	12,180	27,340	39,520
San Bernardino-Riv CA	7,720	4,830	12,540	1.2	1.1	74.210	33,520	107,720	89,050	36,870	125,920
San Diego CA	10,050	2,450	12,500	0.6	1.1	81,580	17,850	99,430	48,950	19,640	68,590
San Fran-Oak CA	24,780	6,690	31,470	1.3	1.1	236,930	55,950	292,870	308,000	61.540	369,550
San Jose CA	7,240	2,910	10,150	1.2	1.1	68,450	21,760	90.220	82,140	23,940	106.090
Seattle-Everett WA	10,500	3,870	14,360	1.4	1.1	99,580	29,950	129,530	139,420	32,950	172,360
Northeastern Avg	9,860	10,040	19,910	2.6	1.1	86,310	81,750	168,060	217,050	89,920	306,980
Midwestern Avg	4,200	3,850	8,050	1.3	1.1	37,780	29,340	67.130	51.090	32,280	83,360
Southern Avg	2,490	2,700	5,180	1.4	1.1	21,910	20,980	42,880	29,950	23,070	53.020
Southwestern Avg	4,400	2,410	6,810	1.1	1.1	39.670	17,100	56,770	51,960	18,810	70,770
Western Avg	14,360	6,660	21.010	1.3	1.1	138,610	51,610	190,220	167,510	56.770	224,280
Texas Avg	5,280	1,490	6,770	1.3	1.1	47,380	10,470	57,850	70,870	11.510	82,390
Total Avg	6,490	4,650	11,140	1.5	1.1	59,650	36,150	95,800	90,820	39,770	130,590
Maximum Value	61,920	33,870	94,990	3.5	1.1	626,810	284,050	885,030	790,140	312,450	1102.590
Minimum Value	210	170	390	0.4	1.1	1,430	920	2,350	1,580	1,010	2,580

Table B-4. Recurring and Incident Delay Relationships for 1993 (continued)

 ¹ Daily vehicle-kilometers of travel. Represents the percentage of Daily Vehicle-Kilometers of travel on each roadway system during the peak period operating in congested conditions.
² Percentage of Incident Delay related to Recurring Delay.
³ Facility delays as calculated by type and urban area. Notes:

TTI Analysis and Local Transportation Agency References Source:

The factor of 1.1 is based on the following assumptions as they relate to delay:

- 1. Arterial street system designs are more consistent from city to city than freeway design;
- 2. The side streets, drives, median openings, and other appurtenances associated with arterial streets allow numerous opportunities to remove incidents from the traveled way; and
- 3. Historical data show the accident rate on arterial streets to be approximately twice that of freeways, but, as stated in the second assumption, there is a greater opportunity to remove the incident from the roadway.

Table B-4 shows the results of the freeway and principal arterial street recurring and incident delay calculations.

Prior to calculating the congestion costs, two other variables were calculated to simplify the cost equations. These variables are the average vehicular speed and the average fuel economy for the vehicles operating in congested conditions. The average vehicular speed is a weighted average of the operating speeds on the facility under consideration, and is defined by Equation B-4.

$$\frac{Avg. Speed}{(kph)} = \frac{(Frwy speed^{1}x Peak - Period Frwy VKT) + (Prin.Art. Speed^{1}x Peak - Period Prin.Art. Str. VKT)}{Total Peak - Period VKT} Eq. B-4$$

¹ Speeds determined by congestion severity (Table B-1).

Congestion Cost

Two cost components can be associated with congestion: delay cost and fuel cost. These costs can be directly related to the vehicle-hours of delay. Table B-5 is a summary of the cost calculations for the component congestion cost per each urbanized area.

The average fuel economy represents the fuel consumption of the vehicles operating in congested conditions. The equation (Equation B-5) is a linear regression applied to a modified version of fuel consumption reported by Raus ($\underline{9}$).

$$\frac{Average \ Fuel \ Economy}{(kph)} = 3.74 + \frac{0.11 \ (Average \ Vehicular \ Speed)}{(kph)} \qquad Eq. B-5$$

Delay Cost

The delay cost is the cost of lost time due to congested roadways. This cost was calculated by Equation B-6.

$$\frac{Annual}{Delay \ Cost} = \frac{Vehicle - Hrs. \ of \ Delay}{Day} x \frac{1.25 \ person}{Vehicle} x \frac{\$10.75}{Hour} x \frac{250 \ Workdays}{Year} \qquad Eq. B-6$$

where: vehicle-hours of delay/day is the combined freeway and principal arterial street representing the city's recurring or incident delay.

This equation is used to separately calculate delay costs resulting from both incident and recurring delays.

Urban Area	Recurring Delay	Incident Delay	Recurring Fuel	Incident Fuel	Total	Rank
Los Angeles CA New York NY San Fran-Oak CA Chicago IL Washington DC Detroit MI Houston TX Boston MA Atlanta GA Seattle WA Philadelphia PA Dallas TX Miami FL San Bernardino-Riv CA Phoenix AZ San Jose CA San Diego CA Denver CO Baltimore MD	Delay 3,530 2,400 1,180 1,170 910 800 740 380 590 520 510 420 440 430 360 430 410 330 230	Delay 4,130 4,410 1,490 1,350 1,610 1,330 1,000 1,030 650 650 650 680 710 540 500 430 360 280 340 420	Fuel 400 280 140 130 100 80 80 80 40 60 60 60 50 40 50 50 40 50 50 40 50 50 40 30	470 510 170 150 170 130 100 110 60 80 70 70 60 60 60 50 40 30 40 50	8,530 7,600 2,980 2,800 2,790 2,340 1,920 1,560 1,360 1,360 1,350 1,310 1,240 1,090 1,040 880 880 880 770 750 730	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 18 19
St. Louis MO Pittsburgh PA Fort Worth TX Minn-St. Paul MN Portland OR Sacramento CA Ft. Lauderdale FL San Antonio TX Cleveland OH Norfolk VA Honolulu HI Jacksonville FL New Orleans LA Cincinnati OH Austin TX Columbus OH Orlando FL Milwaukee WI Tampa FL Korene City MO	270 270 200 180 240 140 150 150 150 160 100 110 120 110 140 120 90 100 90	310 310 230 230 230 160 190 170 130 190 170 150 160 120 130 100 120 100 110	30 20 20 20 20 20 20 20 20 20 20 10 10 10 10 10 10 10 10	30 30 30 20 20 20 20 20 20 20 20 20 10 10 10 10 10 10	640 560 530 510 420 380 380 320 320 320 320 320 320 320 32	20 21 22 23 24 25 25 27 28 28 30 31 31 33 34 35 36 37 37 39
Kansas City MO Hartford CT Nashville TN Charlotte NC Louisville KY Indianapolis IN Albuquerque NM Memphis TN Oklahoma City OK Salt Lake City UT El Paso TX Corpus Christi TX	60 60 70 60 50 50 50 50 60 30 10	130 120 80 70 70 60 60 60 60 50 30 10	10 10 10 10 0 10 10 10 10 10 0 0	10 10 10 10 10 10 10 10 10 0 0 0	210 200 170 160 150 130 130 130 130 120 60 20	39 40 41 42 43 44 44 44 44 44 48 49 50
Northeastern Avg Midwestern Avg Southern Avg Western Avg Texas Avg Total Avg Maximum Value Minimum Value	670 270 170 230 760 230 380 3,530 10	1,230 330 210 290 900 330 520 4,410 10	70 30 20 90 20 40 40 0	140 30 20 30 100 30 60 510 0	2,110 660 420 570 1,850 630 1,010 8,540 20	

Table B-5. Component and Total Congestion Costs by Urban Area for 1993

Source: TTI Analysis and Local Transportation Agency References.

Fuel Cost

Fuel cost was also related to vehicle-hours of delay per day and speed by Equation B-7 for passenger vehicles and Equation B-8 for commercial vehicles.

$$\frac{Vehicle - Hrs \text{ of } Delay}{Fuel \ Cost} = \frac{\frac{Vehicle - Hrs \text{ of } Delay}{Day}}{Avg. \ Fuel \ Economy} \times 95\% \times Avg. \ Speed \ x \ Avg. \ Fuel \ Cost}{Eq. B-7}$$

$$\frac{Commercial}{Fuel \ Cost} = \frac{\frac{Vehicle - Hrs \ of \ Delay}{Day} \ x \ 5\% \ x \ Avg. \ Speed \ x \ Avg. \ Fuel \ Cost}{Avg. \ Fuel \ Economy} Eq. B-8$$

where: vehicle-hours of delay is the combined value for freeways and principal arterial streets representing either recurring or incident delay.

These calculations were completed for both incident and recurring delay. The respective portions, i.e., incident and recurring, were combined in Equation B-9 to determine the yearly fuel cost due to congestion resulting from incident and recurring delay.

Average Urbanized Area
Fuel Cost = (Passenger Fuel Cost + Commercial Fuel Cost) x
$$\frac{250 Days}{Year}$$
 Eq. B-9

This calculation was done for each study area using the specific area/state fuel cost, peak-period congested daily VKT, and vehicle-hours of recurring and incident delay per day.

REFERENCES

- Lomax, Timothy J., Dennis L. Christiansen, and A. V. Fitzgerald. Texas Transportation Institute, "Estimates of Relative Mobility In Major Texas Cities," Research Report 323-1F, 1982.
- 2 Lomax, Timothy J. Texas Transportation Institute, "Relative Mobility In Texas Cities, 1975 to 1984," Research Report 339-8, 1986.
- 3 Lomax, Timothy J., Diane L. Bullard, and James W. Hanks, Jr. Texas Transportation Institute, "The Impact Of Declining Mobility In Major Texas and Other U.S. Cities," Research Report 431-1F, 1988.
- 4 Lomax, Timothy J., Dave Schrank, and Shawn Turner. Texas Transportation Institute, "Urban Roadway Congestion - 1982 to 1992," Research Report 1131-7, September 1995.
- 5 Vincent, Mary Jayne, et al. 1990 Nationwide Personal Transportation Survey—Urban Travel Patterns, FHWA-PL-94-01B, Comsis Corp., Silver Spring, Maryland, June 1994.
- 6 Federal Highway Administration. "Highway Performance Monitoring System," 1982 to 1993 Data. FHWA-M 5600.1B, August 1993.
- 7 United States General Accounting Office. "Traffic Congestion: Trends, Measures, and Effects," Washington, D.C., 1989.
- 8 Richardson, Harry W., and Peter Gordon. 1990 Nationwide Personal Transportation Survey Databook—Volume 2. FHWA-PL-94-010B, Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1994.
- 9 Raus, J. "A Method for Estimating Fuel Consumption and Vehicle Emissions on Urban Arterials and Networks," FHWA-TS-81-210, April 1981.
- 10 Chui, Margaret K., and William E. McFarland. "The Value of Travel Time: New Estimates Developed Using a Speed Choice Model," Research Report 396-2F, Texas Transportation Institute, January 1987.
- 11 "Private Truck Counsel of America Cost Index Survey," Houston Post, July 6, 1987.
- 12 Morris, D. E., and Michael Ogden. "Houston-Galveston Regional Transportation Study," Texas Transportation Institute, January 1990.
- 13 American Automobile Association, "Fuel Gauge Report, 1993.

- 14 Statistical Abstract of the United States 1994. U.S. Department of Commerce, Bureau of the Census 114th Edition, Washington, D.C., 1994.
- 15 Texas State Department of Highways and Public Transportation. "Permanent Automatic Traffic Recorder Data—1950-1984."
- 16 Lindley, Jeffrey A. "Quantification of Urban Freeway Congestion and Analysis of Remedial Measures," FHWA-RD-87-052, October 1986.