1. Report No.	2. Government A	accession No.	3. Recipient's Catalog No.		
FHWA/TX-90/1131-5					
4. Title and Subtitle Estimates of Urban Roadway Cor	ngestion - 1990		5. Report Date March 1993		
			6. Performing Organization Code		
7. Author(s) David L. Schrank, Shawn M. Tu	rner and Timoth	y J. Lomax	8. Performing Organization Report No. Research Report 1131-5		
9. Performing Organization Name and A Texas Transportation Institute	Address		10. Work Unit No.		
Texas A&M University System College Station, Texas 77843-31	.35		11. Contract or Grant No. Study No. 2-10-90-1131		
12. Sponsoring Agency Name and Addre Texas Department of Transportati Transportation Planning Division P.O. Box 5051 Austin, Texas 78763		 13. Type of Report and Period Covered Interim: September 1987 July 1990 July 1992 March 1993 			
			14. Sponsoring Agency Code		
15. Supplementary Notes Research performed in cooperatio Research Study Title: 1989 Roac	on with DOT, FI Iway Congestion	HWA. Estimates and Tre	ends		
 16. Abstract 16. Abstract 17. This research report is the fifth year continuation of a six year research effort focused on quantifying urban mobility. This study contain the facility information for 50 urban areas throughout the country. The database used for this research contains vehicle-miles of travel, urban area information, and facility mileage data from 1982 to 1990. Various federal, state, and local agencies provided the information used to update and verify the primary database. The primary database and source of information is the Federal Highway Administration's Highway Performance Monitoring System (HPMS). Vehicle-miles of travel and lane-mile data were combined to develop Roadway Congestion Index (RCI) values for 50 urban areas including the seven largest in Texas. These RCI values provide an indicator of the relative mobility level within an urban area. An analysis of the impacts and cost of congestion were also performed using travel delay, increased fuel consumption, and additional facility lane-miles as measures of urban mobility. Congestion costs were estimated on an areawide, per registered vehicle, and per capita basis. 					
 17. Key Words Mobility, Congestion, Economic Analysis, Transportation Planning, Travel Delay 18. Distribution Statement No restrictions. This document is available to the public through the National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 					

19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 82	22. Price
Form DOT F 1700.7 (8-69)			

ESTIMATES OF URBAN ROADWAY CONGESTION - 1990

David Schrank Research Associate

Shawn Turner Graduate Research Assistant

> Timothy J. Lomax Research Engineer

Research Report 1131-5

Research Study Number 2-10-88-1131

Sponsored By

Texas Department of Transportation in Cooperation with the U.S. Department of Transportation U.S. Federal Highway Administration

Texas Transportation Institute The Texas A&M University System College Station, Texas 77843-3135

March 1993

ABSTRACT

This research report is the fifth year of a six year research effort focused on quantifying urban mobility. This study contains the facility information for 50 urban areas throughout the country. The database used for this research contains vehicle-miles of travel, urban area information, and facility mileage data from 1982 to 1990. Various federal, state, and local agencies provided the information used to update and verify the primary database. The primary database and source of information is the Federal Highway Administration's Highway Performance Monitoring System (HPMS).

Vehicle-miles of travel and lane-mile data were combined to develop Roadway Congestion Index (RCI) values for 50 urban areas including the seven largest in Texas. These RCI values provide an indicator of the relative mobility level within an urban area.

An analysis of the impacts and cost of congestion was also performed using travel delay, increased fuel consumption, and additional facility lane-miles as measures of urban mobility. Congestion costs were estimated on an areawide, per registered vehicle, and per capita basis.

Key Words: Mobility, Congestion, Economic Analysis, Transportation Planning, Travel Delay.

۰. .

.

IMPLEMENTATION STATEMENT

To determine future highway needs and assist the Texas Department of Transportation in planning, it is desirable to measure and monitor the severity of congestion in the large Texas metropolitan areas. This report provides a quantification of those congestion levels and the economic impact of congestion on urban motorists. The report also presents data on other large metropolitan areas throughout the country to assist in determining nationwide mobility trends. Information in this report should be of value in identifying transportation trends and prioritizing needs for the future.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Texas Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. In addition, this report is not intended for construction, bidding, or permit purposes. David L. Schrank, Shawn M. Turner and Timothy J. Lomax (Texas Professional Engineer certification number 54597) prepared this research report.

SUMMARY

This report represents the fifth year of a planned six-year study to measure and monitor urban mobility in 50 urbanized areas throughout the United States. This research study estimates the level of congestion in the seven largest Texas urban areas and 43 other areas representing a cross-section of urban areas throughout the country. Quantitative estimates of mobility levels allow comparisons of transportation systems in the various urbanized areas and assist the transportation community in analyzing urban mobility.

The level of congestion in an urban area was estimated using procedures developed in previous research (1,2,3,4,5,6). The Roadway Congestion Index (RCI) combines the daily vehicle-miles of travel per lane-mile (DVMT) for freeways and principal arterial street systems in a ratio comparing the existing DVMT to calculated DVMT values identified with congested conditions. Equation S-1 illustrates how the areawide and congested level DVMTs are combined into the RCI values for each urban area.

An RCI value of 1.0 or greater indicates that congested conditions exist areawide. It should be noted that urban areas with areawide values less than 1.0 may have sections of roadway that experience periods of heavy congestion, but the average mobility level within the urban area could be defined as uncongested. The RCI analyses presented in this report are intended to evaluate entire urban areas and not specific locations. The nature of the RCI equation (Eq. S-1) is to underestimate point or specific facility congestion if the overall system has "good" operational characteristics.

Areawide Mobility

Table S-1 combines the freeway and principal arterial street system DVMT and DVMT per lanemile into the 1990 estimated roadway congestion index (RCI). The eleven most congested urban areas in the study are displayed. The RCI values range from 1.55 (Los Angeles) to 1.12 (Houston and New Orleans). All of these urban areas have surpassed the point (1.0) at which undesirable levels of congestion occur.

	Freeway /	Expressway	Principa St	l Arterial reet	Roadway ³	
Urban Area	DVMT ¹ (1000)	DVMT/ ² Ln-Mile	DVMT ¹ (1000)	DVMT/ ² Ln-Mile	Congestion Index	Rank
Los Angeles CA Washington DC San Fran-Oak CA Miami FL Chicago IL San Diego CA Seattle-Everett WA San Bernardino-Riv CA New York NY Houston TX	110,350 25,340 42,590 8,570 38,030 27,690 18,920 14,580 82,920 28,230	21,100 16,610 17,820 14,170 15,680 16,050 15,640 16,290 16,290 14,050 14,700	80,370 19,560 14,000 15,810 29,050 9,340 9,130 10,150 52,060 10,830	6,480 8,500 6,110 7,620 6,980 5,460 5,800 4,740 6,890 5,080	1.55 1.37 1.35 1.26 1.25 1.22 1.20 1.19 1.14 1.12	1 2 3 4 5 6 7 8 9 10

Table S-1. 1990 Roadway Congestion Levels

Notes: ¹ Daily vehicle-miles of travel ² Daily vehicle-miles of travel per lane-mile ³ See Equation S-1

See Table 1 for complete listing of urban areas. Source: TTI Analysis

The ten urban areas which have experienced the greatest growth in congestion between 1982 and 1990 are displayed in Table S-2. The RCI values reflect the level of congestion occurring in the urban areas. San Diego experienced a 56 percent increase in congestion during the nine year period. The congestion increase rate in all cities in the top ten exceeded two percent per year.

	Year								Percent	
Urban Area	1982	1983	1984	1985	1986	1987	1988	1989	1990	1982 to 1990
Atlanta GA Dallas TX Minn-St. Paul MN Seattle-Everett WA Los Angeles CA Sacramento CA Washington DC San Fran-Oak CA Salt Loke City UT	0.89 0.84 0.74 0.95 1.22 0.80 1.07 1.01	0.94 0.89 0.79 0.99 1.27 0.84 1.09 1.05 0.63	0.97 0.94 0.81 1.02 1.32 0.88 1.12 1.12	1.02 0.98 0.83 1.05 1.36 0.92 1.20 1.17	1.09 1.04 0.87 1.09 1.42 0.95 1.28 1.28	1.11 1.02 0.87 1.14 1.47 1.00 1.30 1.31	1.14 1.02 0.88 1.17 1.52 1.03 1.32 1.33 0.72	1.14 1.02 0.90 1.21 1.54 1.01 1.36 1.36	1.11 1.05 0.93 1.20 1.55 1.02 1.37 1.35 0.85	25 25 26 26 27 27 27 28 34 35
San Diego CA	0.78	0.83	0.85	0.00	1.00	1.08	1.13	1.18	1.22	56

Table S-2. Fastest Congestion Growth Areas

See Table 6 for complete listing of urban areas.

Source: TTI Analysis

The twelve urban areas with the smallest growth in congestion between 1982 and 1990 are shown in Table S-3. Phoenix, Houston, and Detroit all experienced decreases in congestion with Phoenix showing the greatest decrease (10 percent). Congestion increases in these areas were less than one percent per year.

		Year							Percent	
Urban Area	1982	1983	1984	1985	1986	1987	1988	1989	1990	1982 to 1990
Phoenix AZ Houston TX	1.15	1.16	1.10	1.13	1.20	1.18	1.00	1.03	1.03	-10 -4
Detroit MI Louisville KY	1.13	1.10	1.13	1.12	1.11	1.10	1.09	1.08	1.09	-4
Philadelphia PA	1.00	1.03	1.04	0.90	1.06	1.06	1.07	1.05	1.05	5
Memphis TN	0.78	0.78	0.76	0.78	0.79	0.79	0.81	0.82	0.82	5
Corpus Christi TX Jacksonville FL	0.67	0.69	0.69	0.71 0.98	0.71 0.95	0.72 0.94	0.70 0.95	0.71 0.93	0.72	7 8
Orlando FL San Bernardino-Riv CA	0.66	0.68	0.67	0.71	0.71	0.72	0.74	0.72	0.72	9
Ft. Lauderdale FL	0.86	0.85	0.84	0.84	0.84	0.90	0.90	0.92	0.94	9

Table S-3. Slowest Congestion Growth Areas

See Table 6 for complete listing of urban areas Source: TTI Analysis

Table S-4 combines existing lane-miles on both freeway and principal arterial streets with recent annual growth rates (1987 to 1990) of the daily vehicle-miles travelled (DVMT) on these facilities to produce the number of additional lane-miles which would be necessary to avoid increases in areawide congestion. This value illustrates the amount of roadway that would have to be added *every year* to maintain a constant congestion level. Los Angeles would require 665 lane-miles (197 freeway, 468 principal arterial street) to maintain current levels of mobility.

The urban area with the smallest additional lane-miles in this summary group, San Francisco-Oakland, would require 126 lane-miles (64 freeway, 62 principal arterial street). Roadway mileage has not been constructed at these rates in most cities in the recent past, indicating a need to pursue other methods to improve mobility.

	E: (1990)	xisting Lane-miles	Average Annual VMI	Annua Lane-	-	
Urban Area	Freeway	Prin. Arter.	Growth (%)	Freeway	Prin. Arter.	Rank∠
Los Angeles CA	5,230	12,405	3.8	197	468	1
New York NY	5,900	7,560	3.4	201	257	2
Chicago IL	2,425	4,160	6.3	152	261	3
Phoenix AZ	625	3,120	6.3	39	196	4
San Diego CA	1,725	1,710	5.7	99	98	5
St. Louis MO	1,695	1,800	5.3	89	95	6
Miami FL	605	2,075	6.1	37	126	7
Cleveland OH	1,100	1,120	6.8	75	76	8
San Bernardino-Riv CA	895	2,140	4.4	39	94	9
San Fran-Dak CA	2,390	2,290	2.7	64	62	10

Table S-4. Roadway Necessary to Maintain Constant Congestion Levels

¹Average Annual Growth rate of Freeway and Principal Arterial Streets DVMT between 1987-1990 ²Ranked by total of freeway and principal arterial street lane-miles.

See Table 8 for complete listing of urban areas. Source: TTI Analysis

The urban areas with the highest congestion costs are shown in Table S-5. The total congestion costs are comprised of delay and fuel costs. The delay and fuel costs have components related to the type of delay (recurring or incident) that occurs in the urban area. Los Angeles and New York had the highest total congestion costs with values of \$7.67 billion and \$6.56 billion, respectively. The tenth urban area in the table, Seattle-Everett, had a total congestion cost of \$1.14 billion.

Table S-5.	Component	and T	otal	Congestion	Costs	By	Urban	Area	for	1990

		Annual Cost Due to Congestion (\$Millions)							
	Recurring	Incident	Recurring	Incident	Delay&Fuel				
Urban Area	Delay	Delay	Fuel	Fuel	Cost	Rank			
Los Angeles CA	3,000	3,530	530	620	7,680	1			
New York NY	1,950	3,630	350	640	6,570	2			
San Fran-Oak CA	1,050	1,330	190	240	2,810	3			
Washington DC	760	1,260	130	220	2,370	4			
Chicago IL	900	1,040	160	190	2,290	5			
Houston TX	600	810	100	140	1,650	6			
Detroit MI	510	800	80	130	1,520	7			
Boston MA	330	910	60	160	1,460	8			
Philadelphia PA	430	570	70	90	1,160	9			
Seattle-Everett WA	420	550	70	100	1,140	10			

See Table 16 for complete listing of urban areas.

Source: TTI Analysis and Local Transportation Agency Reference

Congestion costs can be used in relation to registered vehicles to show the economic impact on each automobile in the urban area. Table S-6 lists the top ten congestion costs per registered vehicle for 1990. Washington D.C. ranks first with a cost of \$1,420 per vehicle. Dallas and Houston each have costs of \$750 per vehicle, or approximately \$3 per workday.

Urban Area	Congestion Cost Per Registered Vehicle	Rank
Washington DC	\$1,420	1
San Bernardino-Riv. CA	\$1,320	2
New York NY	\$1,090	3
Los Angeles CA	\$ 980	4
San Jose CA	\$ 960	5
San Fran-Oak CA	\$ 930	6
Boston MA	\$ 880	7
Seattle-Everett WA	\$ 880	8
Dallas TX	\$ 750	9
Houston TX	\$ 750	10

Table S-6. 1990 Congestion Cost per Registered Vehicle

See Table 17 for complete listing of urban areas

Source: TTI Analysis

Expressing congestion costs on a per capita basis illustrates the congestion "tax" paid by residents (Table S-7). The highest 1990 cost per capita occurred in San Bernardino-Riverside with a cost per capita of \$880. Miami had the smallest cost per capita of the top ten urban areas with a cost of approximately \$2 per capita for each workday.

Urban Area	Congestion Cost Per Capita	Rank
San Bernardino-Riv CA	\$ 880	1
Washington DC	\$ 770	2
San Fran-Oak CA	\$ 760	3
San Jose CA	\$ 690	4
Los Angeles CA	\$ 670	5
Seattle-Everett WA	\$ 660	6
Dallas TX	\$ 570	7
Houston TX	\$ 570	8
Atlanta GA	\$ 530	9
Miami fL	\$ 520	10

Table S-7. 1990 Congestion Cost per Capita

See Table 17 for complete listing of urban areas Source: TTI Analysis

By arranging the urban areas into groups based on characteristics such as population size, it is possible to view the effects of congestion on the different groups of areas in the study. Table S-8 shows the vehicle hours of delay present in the study areas. The largest group (Chicago,

Los Angeles, New York) has vehicle delay of at least 110 hours per person annually. The smallest group, comprised of areas with populations of 800,000 or less, has vehicle delay of 50 hours per person. This seems to indicate that the average congestion impact is twice as large on the average resident of a city with a population greater than 7 million than in the group of the smallest cities in our study.

Population Group	Average Delay (Vehicle-hours)	Total Delay per 1000 Persons (Veh-Hours)
Fifth Group	1,272,570	110
Fourth Group	302,520	100
Third Group	141,830	90
Second Group	65,050	60
First Group	31,510	50

Table	s-8.	1990	Vehicle	Delay	for	Population	Groups
							di eqpo

Source: TTI Analysis

TABLE OF CONTENTS

Page

Summary
List of Tables
List of Figures
Introduction
Purpose of Congestion Research
Congestion Research Background 2
Report Organization/Content 2
Areawide Mobility, 1990
Trends in Urban Development
Travel and Mileage Statistics
Roadway Congestion Index Values, 1989
Impacts of Congestion
Travel Volumes
Additional Capacity
Travel Delays
Costs of Congestion
Economic Impact Estimates
Economic Analysis
Congestion Trends for Urban Area Groups
Population Size
Population Density
Conclusions
References

LIST OF TABLES

Page

Table S-1.	1990 Roadway Congestion Levels viii
Table S-2.	Slowest Congestion Growth Areas
Table S-3.	Fastest Congestion Growth Areas
Table S-4.	Roadway Necessary to Maintain Constant Congestion Levels x
Table S-5.	Component and Total Congestion Costs by
	Urban Area for 1990x
Table S-6.	Congestion Cost per Registered Vehicle
Table S-7.	Congestion Cost per Capita xi
Table S-8.	1990 Vehicle Delay for Population Groups
Table 1.	1990 Freeway Mileage and Travel Volume
Table 2.	1990 Principal Arterial Street Mileage and Travel Volume 11
Table 3.	Summary of Freeway Travel Frequency and Urban Population
	Statistics for 1990
Table 4.	Principal Arterial Street Travel Frequency and Population
	Density Statistics for 1990
Table 5.	1990 Roadway Congestion Index Value
Table 6.	Roadway Congestion Index Values, 1982 to 1990
Table 7.	1990 Urban Area Travel by Facility Type
Table 8.	Illustration of Annual Capacity Increase Required to
	Prevent Congestion Growth
Table 9.	Freeway and Expressway Recurring and Incident Hours
	of Daily Delay for 1990 27

LIST OF TABLES (continued)

Page

Table 10.	Principal Arterial Street Recurring and Incident Hours
	of Daily Delay for 1990
Table 11.	Total Vehicle Hours of Delay for 1990
Table 12.	Summary of 1990 DVMT Values and Population for Congestion
	Cost Estimates
Table 13.	Speed Relationships with Average Daily Traffic per
	Lane Volumes
Table 14.	Total Vehicle Delay, 1986 to 1990 35
Table 15.	Annual Wasted Fuel Due to Congestion
Table 16.	Component and Total Congestion Costs by Urban
	Area for 1990
Table 17.	Estimated Impact of Congestion in 1990 39
Table 18.	1990 Rankings of Urban Area by Estimated Impact
	of Congestion
Table 19.	1990 Congestion Index Values
Table 20.	Component and Total Congestion Costs by Urban Area
	for 1986
Table 21.	Estimated Impact of Congestion in 1986 43
Table 22.	Component and Total Congestion Costs by Urban Area for 1987 44
Table 23.	Estimated Impact of Congestion in 1987 45
Table 24.	Component and Total Congestion Costs by Urban Area for 1988 46
Table 25.	Estimated Impact of Congestion in 1988
Table 26.	Component and Total Congestion Costs by Urban Area for 1989 48
Table 27.	Estimated Impact of Congestion in 1989
Table 28.	Urban Area Grouping by Population Size

LIST OF TABLES (continued)

Table 29.	1990 Freeway Mileage and Travel Volume
	Grouped by Population
Table 30.	1990 Principal Arterial Street Mileage and Travel Volume
	Grouped by Population
Table 31.	1990 Roadway Congestion Index Values Grouped
	by Population
Table 32.	Roadway Congestion Index Values Grouped by Population,
	1982 to 1990
Table 33.	Total Vehicle Hours of Delay for 1990 Grouped
	by Population
Table 34.	1990 Component and Total Congestion Costs Grouped
	by Population
Table 35.	Urban Area Grouping by Population Density
Table 36.	1990 Freeway Mileage and Travel Volume Grouped
	by Population Density
Table 37.	1990 Principal Arterial Street Mileage and Travel Volume
	Grouped by Population Density
Table 38.	1990 Roadway Congestion Index Values Grouped
	by Population Density
Table 39.	Roadway Congestion Index Values Grouped
	by Population Density, 1982 to 1990
Table 40.	Total Vehicle-Hours of Delay for 1990 Grouped
	by Population Density
Table 41.	1990 Component and Total Congestion Costs Grouped
	by Population Density

LIST OF FIGURES

Page

Figure 1.	Regional Area Map
Figure 2.	Texas Urban Area RCIs 1982-1990 19
Figure 3.	Freeway Percentage of DVMT 23
Figure 4.	Principal Arterial Street Percentage of DVMT
Figure 5.	Roadway Congestion Index Values Grouped by Population,
	1982 to 1990
Figure 6.	Roadway Congestion Index Values Grouped by Population,
	Density 1982 to 1990

INTRODUCTION

Congestion within the inner city has long been recognized as a severe problem. Congested streets and freeways have forced residents and businesses to relocate in the surrounding suburbs. Relocating to the suburbs, however, proved to be only a temporary solution to metropolitan area congestion problems. Congestion has expanded into the suburbs, with street systems designed for service to residential areas overburdened with traffic headed to large shopping malls and business parks. Urban transportation systems have been required to serve more travel needs between suburbs and fewer trips to or from downtown business districts.

The decline in urban mobility resulting from congestion has become a major concern not only to the transportation community, but also to the motoring public and business community. Measuring congestion provides an understanding of the phenomenon which assists transportation professionals, policy makers, and the general public in effectively communicating problems and developing necessary transportation system improvements.

Purpose of Congestion Research

Why should we research and investigate effects of urban congestion? Quite simply, old solutions are not working any more. In the past, the mobility situation in most metropolitan areas has had the limited choices of controlling area growth, large expenditures for general use and transit facility improvements, or accepting decline in the quality of transportation in the cities and suburbs. Transportation professionals, policy makers, the media, and the general public generally view these options as undesirable. In more recent years, cities have encouraged the use of various aspects of travel demand management (TDM). Some of these techniques reduce vehicle-miles of travel, thus reducing congestion, while others only modify demand by shifting the time of travel.

Whether cities use more traditional techniques of congestion management or the more recent techniques such as TDM, measuring congestion is still a vital step in understanding the problems of congestion and aiding in the development of effective solutions to the urban mobility problem.

Previous research efforts of this series developed a quantitative procedure to compare traffic volumes and roadway mileage. The procedure estimates the mobility levels within an urban area and permits the comparison of transportation systems from year to year and area to area.

Congestion Research Background

This research study uses existing data from federal, state, and local agencies to develop planning estimates of the level of mobility within an urban area. The analyses presented in this report are the result of previous research (1-6) conducted at the Texas Transportation Institute. The methodology developed by the previous research provides a procedure which yields a quantitative estimate of urbanized area mobility levels, utilizing generally available data, while minimizing the need for extensive data collection.

The methodology primarily uses the Federal Highway Administration's Highway Performance Monitoring System (HPMS) database with supporting information from various state and local agencies. Currently, the database developed for this research contains vehicle travel, population, urban area size, and facility mileage from 1982 to 1990. Primarily, vehicle travel and vehicle travel per lane-mile are used as the basis of measuring urban mobility and comparing areawide roadway systems.

Report Organization/Content

There have been some changes incorporated in this report that differentiate it from others in this series (3,4,5,6). Recent congestion reports (3,4,5) contained detailed discussions of development for both the roadway congestion index (RCI) and cost methodology, including extensive appendices containing data compiled during the study. This research report will focus on the results of analyses estimating 1990 congestion levels and trends displayed by the data from 1982

to 1990. In addition, the metropolitan areas in the study have been grouped by such factors as population, land area, and population density to display trends that exist between these various groups. Information on the methodology is available in the previous reports.

This report summarizes and discusses urban mobility levels in 50 metropolitan areas throughout the United States. Seven of the areas studied represent the largest metropolitan areas in Texas; the remaining 43 areas are located in 27 states (Figure 1). These 50 areas include nearly all of the urban areas in the United States with populations of 800,000 or more that have a significant amount of congestion. Figure 1 illustrates the geographic regions used in the analyses to combine urban areas studied. There are three major topics addressed in this report: areawide mobility, the impacts of congestion, and the cost of congestion. The following are brief descriptions of the information included within each of these topics.

Areawide Mobility

Understanding the reasons for the type and scope of urban congestion problem has become important to transportation planners and policy makers. Obtaining quantitative estimates of mobility levels that allow the comparisons of transportation systems provides a tool to analyze the differences between different transportation systems and urban areas. This section discusses the trends in urban development, travel and mileage statistics, and the 1990 Roadway Congestion Index (RCI) values for 50 urban areas included within the study.

Impacts of Congestion

The most quantifiable impacts of congestion are additional capacity required to eliminate congested conditions and the amount of time spent by motorists in congestion. This section discusses the relationship between the freeway and principal arterial street systems and annual traffic growth. Travel delays are also addressed in this section. Delay, the most apparent impact of congestion to the motoring public, may be categorized into two general areas -- recurring and incident. The impacts of travel delay and the relationship with an urban area's RCI are analyzed.

Figure 1. Regional Area Map

Cost of Congestion

Within this section the economic impact of congestion was estimated for the 50 urban areas studied. Congestion costs have two components -- delay and wasted fuel. Estimating the costs associated with congestion provides another tool for comparing urban mobility from one area to another. More importantly estimating congestion costs allows a method of tracking changes in congestion levels and their impact on an urbanized area over an extended period of time.

AREAWIDE MOBILITY

A 1989 report (7) identified several trends shaping traffic congestion. The interrelated forces impacting the nature and severity of congestion identified in that report include: (1) suburban development, (2) the economy, (3) the labor force, (4) automobile usage, (5) percent of truck traffic, and (6) the highway infrastructure. The following is an example of how these forces interact:

"Trends in suburban and economic development have supported and generated increased automobile usage and truck traffic. This has resulted in increasing traffic congestion in many metropolitan areas throughout the country" ($\underline{7}$).

Trends in Urban Development

Most metropolitan areas have experienced dynamic suburban growth since the 1960s. Suburban development was encouraged by the prevailing desire to live away from the inner city and yet be in close enough proximity to enjoy urban amenities. This evolutionary process begins with families and then expands to commercial services and jobs. The process shapes traffic congestion in most large and small metropolitan areas by altering the commuting patterns.

The demands placed on the existing highway infrastructure in general and by the migration of the population and employment opportunities have not been met by new facility construction. Demands for suburban traffic movement, increasing vehicle-miles of travel, and more freeway access points have greatly altered the function of the freeway/expressway system in most metropolitan areas. Increases in delay are the result of the roadway system capacity not increasing to meet new demands.

The decline in new facility construction during the past 20 years may be attributed to reduced funding, increased construction costs, and public resistance to building and widening transportation facilities. These factors have promoted lower levels of mobility and greater dispersion of the metropolitan area's population. In recent years, an increasingly negative

perception of the mobility level has renewed interest in the transportation infrastructure. This same perception of the transportation infrastructure has also increased the desire of the transportation community, general public, policy makers, and numerous others to understand the causes, effects, and solutions to urban congestion.

Travel and Mileage Statistics

Previous TTI research (3,4,5,6) used daily vehicle-miles of travel (DVMT) per lane-mile of freeway and principal arterial street as indicators of urban congestion levels. The previous studies established the values of 13,000 DVMT per freeway lane-mile and 5,000 DVMT per (principal arterial street) lane-mile as the thresholds for undesirable congestion levels. Briefly, when areawide freeway travel volumes exceed an average of 13,000 DVMT per lane-mile, undesirable levels of congestion occur. The corresponding level of service is reached on principal arterial streets when travel volumes average 5,000 DVMT per lane-mile.

This section presents comparisons of mobility within geographic regions and between individual urban areas using DVMT per lane-mile statistics.

Freeway Travel and Mileage Statistics

Areawide freeway operating statistics are summarized in Table 1. The urban areas are ranked according to the primary congestion indicator, DVMT per lane-mile. Summary statistics for each geographical region are located at the bottom of Table 1.

Eighteen urbanized areas exceeded the 13,000 DVMT per lane-mile level indicating areawide congested conditions on the freeway systems. Of the ten urban areas with the highest DVMT per lane-mile values, five have experienced congested freeway systems since 1982. An additional eleven urban areas studied have DVMT per lane-mile values within ten percent of the 13,000 level. Urban areas with travel demands in this range would only have to experience moderate to slight increases in travel demands to cause their freeway systems to operate under congested conditions.

	DVMT ¹	Lane-	Avg. No.	DVMT/ ²	
lirhan Area	(1000)	Miles	Lanes	Ln-Mile	Rank ³
Los Angeles CA	110.350	5.230	8.2	21,100	1
San Fran-Oak CA	42 590	2,390	6.8	17.820	2
Usehington DC	25 340	1 530	5.3	16,610	3
Son Perparding-Piv CA	14 580	000	7 1	16 290	4
San Diana Câ	27 400	1 730	7 /	16,050	5
San Diego LA	27,090	2 / 70	57	15,690	6
	18,030	1 210	5.7	15,600	7
Seattle-Everett WA	18,920	1,210	0.0	1/ 700	9
Houston TX	28,230	1,920	0.3	14,700	0
Boston MA	21,610	1,520	5.9	14,220	9
Atlanta GA	24,260	1,710	6.1	14,190	10
Miami FL	8,570	610	5.4	14,170	11
New York NY	82,920	5,900	5.6	14,050	12
Dallas TX	23,680	1,710	5.9	13,850	15
New Orleans LA	4,970	360	5.8	13,810	14
San Jose CA	15,780	1,160	6.6	13,600	15
Honolulu HI	4,620	340	5.2	13,590	16
Portland OR	7,470	560	5.1	13,460	17
Detroit MI	22,650	1,700	5.8	13,320	18
Milwaukee WI	7.690	600	5.6	12,920	19
Denver CO	11,270	890	5.2	12,730	20
Baltimore MD	15 800	1.250	5.4	12,640	21
Cipcippati OH	11 380	910	5.7	12,570	22
	13,700	1 100	4.7	12 450	23
	0 260	750	60	12 350	24
Dhoonix A7	7,200	630	5.6	12,270	25
PROPRIA AL	19 770	1 510	5.0	12,210	26
Philadelphia PA	10,330	7,510	2.1	12,140	27
lampa FL	3,030	500	4.9	12,100	20
Austin IX	5,440	450	5.0	12,090	20
Minn-St. Paul MN	17,790	1,480	4.9	12,020	29
Jacksonville FL	5,380	450	4.0	11,960	50
Ft. Lauderdale FL	7,110	600	5.4	11,840	31
Norfolk VA	5,450	470	4.6	11,720	32
Fort Worth TX	11,840	1,020	5.8	11,610	33
St. Louis MO	19,120	1,700	5.5	11,280	34
San Antonio TX	9,280	830	5.3	11,250	35
Albuquerque NM	2,400	220	5.0	11,160	36
Memphis TN	4,340	390	5.4	11,130	37
Hartford CT	6,230	580	5.5	10,730	38
Indianapolis IN	8,050	760	5.3	10,590	39
Louisville KY	6,200	590	4.6	10,500	40
Salt Lake City UT	5,330	510	5.6	10,450	41
Columbus OH	8,350	800	5.8	10,440	42
Nashville TN	5,000	490	4.6	10,200	43
	5,950	590	4.9	10,080	44
Oklahoma City OK	6 940	720	5 1	9.630	45
	3 330	350	5.2	9 510	46
EL FOSU IA Komana City NO	12 540	1 360	4.4	0,230	47
Campus Christi TV	1 540	100	5 4	8 (30	48
Corpus Christi IX	9,000	1 000	1.3	8 200	40
Pittsburgh PA	0,200	1,000	4.5	7 (70	50
Charlotte NC	2,500	200	4.2	1,010	00
	or (00	4 000		12 (10	
Northeastern Avg	25,490	1,900	2.3	11 700	1
Midwestern Avg	14,570	1,180	5.5	11,720	
Southern Avg	7,000	570	5.1	11,710	
Southwestern Avg	10,000	790	5.5	11,640	
Western Avg	27,920	1,580	6.6	15,540	
Texas Avg	11,910	920	5.6	11,630	
Total Avg	15,780	1,130	5.5	12,520	
Maximum Value	110,350	5,900	8.2	21,100	
Minimum Value	1,560	190	4.2	7,670	

Table 1. 1990 Freeway Wileage and Travel Volume

Note:

¹ Daily vehicle-miles of travel ² Daily vehicle-miles of travel per lane-mile of freeway ³ Rank value of 1 associated with most congested condition Ranked by DVMT/Lane-mile

Source: TTI Analysis and Local Transportation Agency References

The summary statistics at the bottom of Table 1 show average DVMT per lane-mile values by geographic region. Every region (except the Western region) has DVMT per lane-mile values below the 13,000 level. Comparing these statistics with the similar 1989 analysis (6) shows that the average DVMT per lane-mile value for every geographic region (except Southern) has increased from one to two percent. Over the same period the Southern DVMT per lane-mile average has decreased slightly (less than one percent).

Principal Arterial Street Travel and Mileage Statistics

Table 2 shows the operating characteristics of the principal arterial street system for each urban area included in this study. As in Table 1, Table 2 ranks urban areas by travel demand per lanemile and contains regional summary statistics. In 1990, 34 of the urban areas studied experienced DVMT per lane-mile levels exceeding 5,000. Of these 34 urban areas, 27 have had travel demands exceeding 5,000 DVMT per lane-mile since 1982.

The summary statistics show that all the regional averages except the Texas average exceed the 5,000 DVMT per lane-mile level. In contrast to the freeway values, the arterial street statistics indicate more congested operation on the arterial street systems in this study. The regional average travel demand on principal arterial street systems increased between one and three percent from 1989 levels in all of the geographic regions studied, except Texas. Urban areas in Texas showed no change in travel demand from 1989.

	DVMT'1	Lane-	Avg. No.	DVMT/2	
Urban Area	(1000)	Miles	Lanes	Ln-Mile	Rank ³
Washington DC	19,560	2,300	4.0	8,500	1
Honolulu HI	1,570	200	3.8	7,860	2
Miami FL	15,810	2,080	4.3	7,620	3
St. Louis MO	12,960	1,800	3.2	7,200	4
Chicago IL	29,050	4,160	3.7	6,980	5
New York NY	52,060	7,560	3.4	6,890	6
Tampa FL	4,360	660	3.8	6,610	7
Philadelphia PA	21,390	3,250	3.1	6,580	8
New Orleans LA	4,100	630	4.2	6,560	9
Los Angeles CA	80,370	12,410	4.0	6,480	10
Portland OR	3,710	580	3.3	6,400	11
Sacramento CA	7,000	1,100	4.0	6,360	12
Detroit MI	22,880	3,600	4.4	6,350	15
Atlanta GA	9,780	1,570	3.7	6,230	14
San Fran-Oak CA	14,000	2,290	3.9	6,110	15
Pittsburgh PA	10,910	1,820	3.2	5,990	10
Baltimore MD	9,850	1,000	4.1	5,930	10
Hartford CT	3,750	640	3.7	5,910	10
Denver CO	10,900	1,850	3.9	5,090	20
Seattle-Everett WA	9,150	1,560	3.4	5,000	20
Nashville IN	5,440	940	3.3	5,790	21
Norfolk VA	4,260	740	3.5	5,790	21
Charlotte NC	5,090	540	3.0	5,110	22
Salt Lake Lity UI	2,040	500	3.0	5,750	24
Louisville Kr	2,930	7 120	5.0	5,000	26
Phoenix AZ	0 3/0	3,120	4.1	5,640	27
San Diego CA	3,540	680	3.4	5 270	28
	3,070	720	37	5 260	29
Actoquerque Mm Momphic TN	/ 2/0	810	43	5 230	30
Columbus ON	3 180	610	3.3	5 210	31
Et Lauderdale Fl	5 800	1 120	4.3	5,200	32
	5 790	1,120	3.0	5,170	33
Houston TX	10,830	2,130	4.3	5,080	34
Fort Worth TX	4,240	870	4.1	4,870	35
Austin TX	2,090	430	4.2	4,860	36
Dallas TX	8.310	1,710	4.8	4,860	36
San Jose CA	6,780	1,400	4.2	4,860	36
Jacksonville FL	5,810	1,200	3.7	4,840	39
San Antonio TX	5,240	1,090	3.5	4,810	40
Milwaukee WI	4,780	1,010	3.4	4,760	41
San Bernardino-Riv CA	10,150	2,140	4.2	4,740	42
Minn-St. Paul MN	5,640	1,200	3.3	4,700	43
Corpus Christi IX	1,500	330	3.9	4,620	44
Boston MA	12,540	2,760	2.3	4,540	45
Kansas City MO	4,810	1,060	3.5	4,540	45
Indianapolis IN	3,970	880	3.7	4,510	47
Cincinnati OH	3,670	820	3.3	4,480	48
El Paso TX	3,200	840	4.2	3,830	49
Orlando FL	3,850	1,570	3.7	2,450	50
Northeastern Avg	18,580	2,860	3.4	6,340	
Midwestern Avg	8,600	1,450	3.5	5,400	
Southern Avg	6,050	1,080	3.8	5,640	
Southwestern Avg	6,340	1,220	4.0	5,040	
Western Avg	15,780	2,600	3.8	6,010	
Texas Avg	5,060	1,060	4.1	4,700	
Total Avg	10,230	1,720	3.7	5,620	
Maximum Value	80,370	12,410	4.8	8,500	
Minimum Value	1,500	200	2.3	2,450	

Table 2. 1990 Principal Arterial Street Nileage and Travel Volume

Notes:

¹ Daily vehicle-miles of travel ² Daily vehicle-miles of travel per lane-mile of principal arterial ³ Rank value of 1 associated with most congested condition ranked by DVMT/Lane-mile

Source: TTI Analysis and Local Transportation Agency References

Relationship Between Travel Demand and Urban Area Population/Size

In previous reports (4,5,6), reference was made to relationships of DVMT and facility lane-miles to urban area population and size. The relationship between travel demand, lane-miles, and population indicates on what facilities motorists place the highest demand, while the relationship between DVMT, facility lane-miles, and area size indicates the density of both the freeway and principal arterial street systems.

Tables 3 and 4 show the relationship between DVMT and urban area population. In both tables, the urban areas are ranked by DVMT and facility lane-miles per person. Comparison of the summary statistics of these tables indicates:

- The DVMT per person value shows each geographic region studied depends on the freeway system for service of the majority of travel demand.
- The freeway systems in the Texas region and the principal arterial street systems in the Southern region are the most dense across the regions.
- The greatest travel per capita occurs on the freeways in the Western region and on the principal arterial street system in the Southern region.

Roadway Congestion Index Values, 1990

Table 5 combines the freeway and principal arterial street system DVMT and DVMT per lanemile values into the estimated 1990 Roadway Congestion Index (RCI). Equation 1 illustrates how those values are used to calculate the RCI value for individual urban areas. The RCI value is a relative measure of the level of congestion for a given urban area. An RCI value of 1.0 or greater indicates an undesirable areawide congestion level.

		Unbas	Damm	DIALT 1			
	Donn	Urban	Popn	Por		Per	
Urban Area	2000 V 1000 V	(Sa Mi)	Pers/Sa Mi	Person	Rank ³	1000 Pers	Rank ³
or ball Area	(10007	(Squiry	1013/34 11	1 01 3011	Kank		
Northeastern Cities							
Baltimore MD	1,990	550	3,620	7.94	23	0.63	22
Boston MA	2,960	1,070	2,760	7.31	28	0.51	16
Hartford CT	610	360	1,690	10.20	10	0.95	48
New York NY	16,780	3,190	5,270	4.94	44	0.35	2
Philadelphia PA	4,220	1,130	3,730	4.34	49	0.36	10
Pittsburgh PA	1,870	740	2,520	4.39	40	0.54	14
Washington DL	5,100	640	3,090	0.17	22	0.49	14
Chicago II	7 510	1 000	3 770	5.06	42	0.32	1
Cincippati ON	1 1/0	570	2,000	0.00	11	0.79	38
	1 790	650	2,780	7.65	25	0.61	21
	850	310	2,740	9.82	13	0.94	47
Detroit MI	4,000	1,260	3,190	5.66	37	0.43	8
Indianapolis IN	950	440	2,150	8.52	20	0.80	39
Kansas City MO	1,160	610	1,900	10.82	8	1.17	50
Louisville KY	810	380	2,130	7.65	25	0.73	34
Milwaukee WI	1,230	550	2,240	6.25	34	0.48	13
Minn-St. Paul MN	2,010	1,020	1,970	8.85	18	0.74	35
Oklahoma City OK	740	500	1,470	9.44	17	0.98	49
St. Louis MO	1,960	730	2,680	9.76	15	0.86	42
Southern Cities	4 000	4 550	1 010	12.0/	4	0.01	14
Atlanta GA	1,880	1,550	1,210	12.94	/1	0.91	28
Et Louderdele El	1 270	240 430	2 050	5 50	38	0.47	12
Incksonville El	720	4J0 540	1,330	7.47	27	0.63	22
Memobis TN	860	430	2,020	5.05	43	0.45	10
Miami FL	1.850	480	3,850	4.63	45	0.33	2
Nashville TN	570	500	1,130	8.85	18	0.87	44
New Orleans LA	1,080	360	3,000	4.60	46	0.33	2
Norfolk VA	930	820	1,130	5.89	36	0.50	15
Orlando FL	850	410	2,070	7.00	31	0.69	31
Tampa FL	700	450	1,570	5.19	40	0.43	8
Southwestern Cities							_
Albuquerque NM	530	260	2,060	4.57	47	0.41	(
Austin TX	510	350	1,460	10.67	9	0.88	42
Corpus Christi IX	280	180	1,600	2.57	39	0.00	21 1.2
Dallas IX	1,990	1,440	1,380	7 17	4 70	0.00	42 20
Denver LU	1,200	210	2 570	6 17	35	0.55	25
EL PASO TA Fort Worth TX	1 200	850	1 410	9.87	12	0.85	41
Houston TX	2,880	1.640	1.760	9.80	14	0.67	28
Phoenix AZ	1,900	980	1,940	4.05	50	0.33	2
Salt Lake City UT	800	470	1,700	6.66	33	0.64	24
San Antonio TX	1,170	490	2,410	7.93	24	0.71	33
Western Cities							
Honolulu HI	660	140	4,890	7.00	31	0.52	17
Los Angeles CA	11,420	2,190	5,230	9.66	16	0.46	11
Portland OR	1,030	420	2,450	7.25	29	0.54	18
Sacramento CA	1,100	360	3,040	0.40	21	0.00	30
San Bernardino-Kiv CA	2 700	490 710	2,390	12.40	2	0.75	36
San Fran-Oak CA	3 680	850	4 350	11 59	5	0.65	25
San Jose CA	1,410	450	3,130	11.19	6	0.83	40
Seattle-Everett WA	1,730	730	2,390	10.94	7	0.70	32
			•				
Northeastern Avg	4,500	1,130	3,330	6.76		0.55	
Midwestern Avg	2,010	750	2,420	8.29		0.74	
Southern Avg	1,010	560	2,010	6.57		0.57	
Southwestern Avg	1,220	700	1,820	1.67		0.66	
Western Avg	2,720	700	5,460	10.07		0.65	
lexas AVg	1,220	740	1,800	0.04 7.00		0.75	
lotal AVG Maximum Value	2,090	740	2,210 5 270	12 04		1.17	
Minimum Value	280	1/0	1 130	4 05		0.32	
minimum value	200	140	00141	4.00		0.32	L

Table 3. Freeway Travel Frequency and Density Statistics for 1990

Notes:

¹ Daily vehicle-miles of travel per person ² Lane-miles per 1000 persons ³ Rank value of 1 associated with most congested condition

Source: TTI Analysis and Local Transportation Agency References

				1		2	
		Urban	Popn	DVMT'		Ln Mi	
	Popp	Area	Density	Per		Per	
Unben Anno	(1000)	(Se Mi)	Perc/Sa Mi	Person	Pank ³	1000 Pers	Rank ³
Urban Area	(1000)	(sq.m)	reis/sy mi	reison	KOIK	1000 1 010	i curic
Northeastern Cities							
Baltimore MD	1,990	550	3,620	4.95	22	0.83	20
Boston MA	2,960	1.070	2.760	4.24	30	0.93	29
Hartford CT	610	360	1.690	6.15	14	1.04	38
New York NY	16 780	3 100	5 270	3 10	47	0.45	3
NEW TURK NT	10,700	1 170	7 770	5.10	21	0.77	17
Philadelphia PA	4,220	1,150	5,750	5.07	21	0.11	75
Pittsburgh PA	1,870	740	2,520	5.85	16	0.98	35
Washington DC	3,100	840	3,690	6.31	12	0.74	14
Midwestern Cities							
Chicago II	7 510	1 990	3 770	3.87	37	0.55	4
Cincinneti OU	1 1/0	570	2 000	3 22	1.6	0.72	11
	1,140	570	2,000	7 27	40	0.72	
Cleveland OH	1,790	000	2,780	3.23	45	0.03	
Columbus OH	850	310	2,740	5.74	41	0.72	11
Detroit MI	4,000	1,260	3,190	5.72	17	0.90	25
Indianapolis IN	950	440	2,150	4.20	31	0.93	29
Kancas City MO	1 160	610	1 900	4 15	33	0.91	26
	210	700	2,170	7.41	12	0.44	10
Louisville Kr	810	500	2,150	3.04	42	0.04	10
Milwaukee WI	1,250	550	2,240	3.89	30	0.02	17
Minn-St. Paul MN	2,010	1,020	1,970	2.81	48	0.60	7
Oklahoma City OK	740	500	1,470	4.88	24	0.93	29
St. Louis MO	1.960	730	2.680	6.61	10	0.92	28
Southern Cities	1		-,				
Atlanta CA	1 990	1 550	1 210	5 22	20	0.84	21
	1,000	2,250	1,210	2.22	20	1 10	1.7
Charlotte NC	450	240	1,880	0.00		1.19	43
Ft. Lauderdale FL	1,270	430	2,950	4.57	27	0.88	24
Jacksonville FL	720	540	1,330	8.06	5	1.67	48
Memohis TN	860	430	2.020	4.92	23	0.94	33
Miami Fl	1 850	480	3,850	8.54	4	1.12	40
Nochville TN	570	500	1 130	0 63	1	1.66	47
Nasiville in	1 000	740	7,000	7.05	70	0.58	6
New Urleans LA	1,080	300	5,000	5.00	39	0.50	10
Norfolk VA	930	820	1,130	4.60	26	0.79	18
Orlando FL	850	410	2,070	4.53	28	1.85	50
Tampa FL	700	450	1,570	6.23	13	0.94	33
Southwestern Cities			•				
Albumoneus MM	570	240	2 040	7 22	6	1 37	66
Atbuquerque MM	550	200	2,000	1.22	7(0.0/	21
Austin TX	510	350	1,400	4.10	34	0.84	21
Corpus Christi TX	280	180	1,600	5.43	18	1.16	41
Dallas TX	1,990	1,440	1,380	4.18	32	0.86	23
Denver CO	1.580	890	1,780	6.90	8	1.17	42
EL Paso TY	540	210	2 570	5 93	15	1.55	45
	1 200	850	1 / 10	7 57	1.1	0.73	17
Fort worth IX	1,200	010	1,410	3.33	44	0.75	1/
Houston IX	2,880	1,040	1,700	3.10	40	0.74	14
Phoenix AZ	1,900	980	1,940	9.29	2	1.65	40
Salt Lake City UT	800	470	1,700	2.54	49	0.44	Z
San Antonio TX	1,170	490	2,410	4.48	29	0.93	29
Western Cities			•				
Honolulu HI	0.4.4	1/.0	6 800	2 78	50	0.30	1
	11 / 20	2 100	5 270	7.0/	7	1 00	30
LOS ANGELES CA	11,420	2,190	5,230	7.04		1.09	, JY
Portland OR	1,030	420	2,450	5.60	43	0.56	2
Sacramento CA	1,100	360	3,040	6.39	11	1.00	37
San Bernardino-Riv CA	1,170	490	2,390	8.68	3	1.83	49
San Diego CA	2,300	710	3,230	4,07	35	0.75	16
San Fran-Oak CA	083 7	850	4 350	3 81	38	0.62	8
Com Loop CA	1 / 10	450	7,330	6.01	25	0.00	34
san Jose LA	1,410	450	3,130	4.00	25	0.77	24
Seattle-Everett WA	1,730	730	2,390	5.28	19	0.91	20
1	1					1	1
Northeastern Avg	4,500	1,130	3,330	5.10		0.82	1
Midwestern Avg	2,010	750	2,420	4.16		0.77	1
Southern Ava	1.010	560	2.010	6.09		1.13	
Southwestern Ava	1 220	700	1 820	5 21		1.04	1
Julinestern Avg	2 700	700	7 / / 0	5 17		0.80	
Western AVg	2,120	700	5,400	2.12		0.07	1
Texas Avg	1,220	740	1,800	4.49		0.97	1
Total Avg	2,090	740	2,510	5.12		0.94	
Maximum Value	16,780	3,190	5,270	9.63		1.85	1
Minimum Value	280	140	1 130	2.38		0.30	1
	200		.,				L

1

Table 4. Principal Arterial Street Travel Frequency and Density Statistics for 1990

Notes: ¹ Daily vehicle-miles of travel per person ² Lane-miles per 1000 persons ³ Rank value of 1 associated

Source: TTI Analysis and Local Transportation Agency References

Table !	5. 199	0 Roadway	Congestion	Index	Value
---------	--------	-----------	------------	-------	-------

	Freeway / Expressway		Principa St	l Arterial	Roadway ³	
	DVMT ¹	DVMT/2	DVMT'	DVMT/2	Congestion	
Urban Area	(1000)	Ln-Mile	(1000)	Ln-Mile	Index	Rank
	440.750		00 770	((20	4 EE	
Los Angeles CA	110,350	21,100	80,370	0,480	1.00	2
Washington DC	25,340	16,610	19,560	8,500	1.37	2
San Fran-Oak CA	42,590	17,020	14,000	0,110	1.32	
Miami FL	8,570	14,170	15,810	7,020	1.20	5
Chicago IL	38,030	15,000	29,030	0,900	1.22	~
San Diego CA	27,090	16,050	9,340	5,400	1.22	7
Seattle-Everett WA	10,920	15,040	9,150	6,000	1 10	8
San Bernardino-Kiv CA	14,000	16,290	52 060	6 800	1 14	ŏ
New YORK NY	28 220	14,050	10,830	5 080	1 12	10
Neu Oploops IA	20,230	13,700	4 100	6 560	1 12	10
Atlanta CA	2/ 2/0	16 190	0 780	6,230	1 11	12
	4 620	13 590	1 570	7 860	1.11	12
	22 650	13,370	22,880	6 350	1.09	14
	7 470	13, 460	3 710	6 400	1.07	15
Roston MA	21 610	14 220	12 540	4 540	1.06	16
Dallas TY	23 680	13,850	8 310	4 860	1.05	17
Philadelphia DA	18 330	12 140	21 300	6,580	1.05	17
Tampa Fl	3 630	12 100	4 360	6 610	1.05	17
San Jose CA	15 780	13,600	6,780	4,860	1.04	20
Denver CO	11 270	12,730	10,900	5,890	1.03	21
Phoenix A7	7,670	12,270	17.610	5,640	1.03	21
Sacramento CA	9,260	12,350	7,000	6.360	1.02	23
Baltimore MD	15,800	12,640	9,850	5,930	1.01	24
Milwaukee WI	7.690	12,920	4,780	4.760	0.99	25
St. Louis MO	19,120	11,280	12,960	7,200	0.99	25
Cleveland OH	13,700	12,450	5,790	5,170	0.97	27
Cincinnati OH	11.380	12,570	3,670	4,480	0.96	28
Norfolk VA	5,450	11,720	4,260	5,790	0.96	28
Austin TX	5,440	12,090	2,090	4,860	0.94	30
Ft. Lauderdale FL	7,110	11,840	5,800	5,200	0.94	30
Jacksonville FL	5,380	11,960	5,810	4,840	0.94	30
Albuquerque NM	2,400	11,160	3,790	5,260	0.93	33
Minn-St. Paul MN	17,790	12,020	5,640	4,700	0.93	33
Memphis TN	4,340	11,130	4,240	5,230	0.91	35
Fort Worth TX	11,840	11,610	4,240	4,870	0.90	36
Hartford CT	6,230	10,730	3,750	5,910	0.89	37
Nashville TN	5,000	10,200	5,440	5,790	0.89	37
San Antonio TX	9,280	11,250	5,240	4,810	0.88	39
Louisville KY	6,200	10,500	2,950	5,660	0.86	40
Salt Lake City UT	5,330	10,450	2,040	5,730	0,85	41
Columbus OH	8,350	10,440	3,180	5,210	0.85	42
Indianapolis IN	8,050	10,590	3,970	4,510	0.85	42
Pittsburgh PA	8,200	8,200	10,910	5,990	0.82	44
Oklahoma City OK	6,940	9,630	3,590	5,270	0.79	45
Charlotte NC	2,300	7,670	3,090	7 970	0.76	40
EL Paso IX	3,330	9,510	5,200	3,030	0.74	47
Kansas Lity MU Cappus Christi IV	12,000	9,230	4,010	4,540	0.74	47
Orlanda El	5 050	10 080	7,900	2 /50	0.72	49
	0,70	10,000	5,050	2,450	V)/E	
Northeastern Ava	25 400	12 660	18 580	6.340	1.05	
Midwestern Ava	14 370	11,720	8,600	5,400	0.94	
Southern Avg	7,000	11,710	6,050	5,640	0.97	
Southwestern Ava	10,000	11,640	6,340	5,040	0.93	
Western Ava	27,920	15,540	15,780	6,010	1.19	
Texas Avg	11,910	11,630	5,060	4,700	0.91	
Total Avg	15,780	12,520	10,230	5,620	1.00	
Maximum Value	110,350	21,100	80,370	8,500	1.55	
Minimum Value	1,560	7,670	1,500	2,450	0.72	
	-	-				

Notes:

¹ Daily vehicle-miles of travel ² Daily vehicle-miles of travel per lane-mile ³ See Equation 1

Source: TTI Analysis

1990 Roadway Congestion Index Estimates

Of the 50 urban areas studied, 24 have RCI values exceeding 1.0. RCI values for the ten most congested urban areas range from 1.55 (Los Angeles) to 1.12 (Houston and New Orleans). Twelve urban areas have estimated RCI values ranging between 0.99 and 0.90 indicating the potential approach of undesirable congestion levels. These areas may not currently experience undesirable levels of congestion, however, traffic growth rates indicate congestion levels could become undesirable within the next few years in many of these cities.

The Western region has the highest average RCI value of 1.19. The only other regional average exceeding 1.0 was the Northeastern (1.05). The Southwestern, Southern, and Midwestern regions have average RCI values below 1.0.

Houston (tied at 10th) was the only urban area studied in Texas which was included in the ten most congested urban areas. Dallas (tied at 17th) was the second highest ranked area within the state. Austin was ranked (tied at 30th) as the only other urbanized area in the state in the top 30.

Roadway Congestion Index Growth, 1982 to 1990

Roadway congestion index values for all 50 urban areas from 1982 to 1990 are summarized in Table 6. During the study period, San Diego, San Francisco, and Salt Lake City were estimated to have experienced the fastest increase in congestion, while Phoenix, Detroit, and Houston have experienced the smallest. Of the urban areas in Texas, Dallas has the largest increase in RCI from 1982 levels (25 percent). Approximately 40 percent of the urban areas have experienced between 17 and 23 percent growth between 1982 and 1990. The summary statistics show that no geographic region experienced a decrease in average 1990 RCI values from 1989 levels.

Figure 2 illustrates trend data for the Texas urban areas studied. This figure graphically shows the improving trend of congestion in Houston which is currently below 1982 levels. Dallas, Fort Worth, and Austin experienced increasing congestion levels until 1986. Since that time,
congestion levels have been relatively constant. San Antonio, El Paso, and Corpus Christi exhibited a slightly increasing trend in their RCI values between 1987 and 1990.

	Year								Percent	
						1				Change
Urban Area	1982	1983	1984	1985	1986	1987	1988	1989	1990	1982 to 1990
Dhoopiy A7	1 15	1 16	1 10	1 13	1.20	1.18	1.00	1.03	1.03	-10
Houston TY	1 17	1 21	1.25	1.23	1.21	1.19	1.15	1.13	1.12	-4
Detroit MI	1 17	1 10	1 13	1 12	1 11	1 10	1.09	1.08	1.09	-4
	0.84	0.82	0.81	0.70	0.80	0.88	0.87	0.86	0.86	2
Dhilodelphie DA	1 00	1 07	1 0/	0.00	1 06	1 06	1 07	1 05	1.05	5
Pritadelphia PA	0.79	0.76	0.76	0.78	0.70	0.70	0.81	0.82	0.82	5
Momphie TH	0.10	0.70	0.76	0.75	0.77	0.84	0.86	0.02	0.91	6
Control Christi TV	0.00	0.00	01.0	0.71	0.71	0.72	0.70	0.71	0.72	7
	0.07	0.07	0.07	0.71	0.05		0.95	0.03	0.94	8
Delende El	0.07	0.50	0.70	0.70	0.71	0.72	0.74	0.72	0.72	9
San Bernardino-Riv CA	1 00	1 11	1 12	1.11	1.14	1.13	1.16	1.16	1.19	9
Et Lauderdale Fl	10.86	0.85	0.84	0.84	0.84	0.90	0.90	0.92	0.94	9
Oklahoma City OK	0.00	0.72	0.75	0.74	0.71	0.76	0.78	0.78	0.79	10
Cincinnati OH	0.86	0.83	0.82	0.83	0.84	0.87	0.88	0.94	0.96	12
Tampa El	0.00	0.91	1.03	1.00	0.96	1.02	1.03	1.03	1.05	12
New York NY	1 01	1.02	0.99	1.00	1.06	1.06	1.10	1.12	1.14	13
San Antonio TX	0.77	0.79	0.82	0.87	0.90	0.85	0.86	0.87	0.88	14
New Orleans IA	0.98	1.00	1.05	1.10	1.11	1.14	1.13	1.13	1.12	14
Charlotte NC	0.67	0 72	0.72	0.73	0.73	0.74	0.73	0.74	0.78	16
Indiananolis IN	0.71	0.66	0.75	0.76	0.80	0.85	0.84	0.85	0.83	17
Hartford CT	0.76	0.79	0.86	0.85	0.85	0.87	0.91	0.89	0.89	17
	0.10	0.64	0.65	0.70	0.75	0.71	0.74	0.74	0.74	17
Boston Må	0.00	0.03	0.95	0.98	1.04	1.04	1.12	1.09	1.06	18
Fort Worth TY	0.76	0.79	0.80	0.82	0.87	0.87	0.87	0.87	0.90	18
	0.78	0.83	0.89	0.93	0.88	0.91	0.90	0.91	0.93	19
Milwaukee VI	0.83	0.84	0.87	0.88	0.90	0.95	0.94	0.97	0.99	19
St Louis MO	0.83	0.87	0.88	0.89	0.93	0.96	0.98	0.96	0.99	19
Kansas City MO	0.62	0.62	0.60	0.65	0.69	0.71	0.72	0.72	0.74	19
Honolulu HI	0.93	0.95	0.97	0.97	1.05	1.07	1.10	1.09	1.11	19
Miami Fl	1.05	1.09	1.07	1.13	1.10	1.14	1.18	1.25	1.26	20
Baltimore MD	0.84	0.84	0.85	0.84	0.88	0.90	0.92	0.99	1.01	20
Nashville TN	0.74	0.76	0.83	0.81	0.86	0.88	0.94	0.90	0.89	20
Denver CO	0.85	0.88	0.93	0.96	0.97	0.95	0.99	1.01	1.03	21
Cleveland OH	0.80	0.82	0.83	0.81	0.86	0.89	0.97	0.95	0.97	21
Norfalk VA	0.79	0.77	0.79	0.84	0.90	0.93	0.94	0.95	0.96	22
Columbus OH	0.68	0.71	0.71	0.71	0.75	0.78	0.79	0.82	0.83	22
Austin TX	0.77	0.84	0.89	0.91	0.98	0.96	0.96	0.96	0.94	22
San Jose CA	0.85	0.87	0.90	0.94	0.96	0.98	0.99	1.02	1.04	22
Chicago IL	1.02	1.02	1.05	1.08	1.15	1.15	1.18	1.21	1.25	23
Portland OR	0.87	0.86	0.88	0.93	0.97	1.00	1.05	1.07	1.07	23
Atlanta GA	0.89	0.94	0.97	1.02	1.09	1.11	1.14	1.14	1.11	25
Dallas TX	0.84	0.89	0.94	0.98	1.04	1.02	1.02	1.02	1.05	25
Minn-St. Paul MN	0.74	0.79	0.81	0.83	0.87	0.87	0.88	0.90	0.93	26
Seattle-Everett WA	0.95	0.99	1.02	1.05	1.09	1.14	1.17	1.21	1.20	26
Los Angeles CA	1.22	1.27	1.32	1.36	1.42	1.47	1.52	1.54	1.55	27
Sacramento CA	0.80	0.84	0.88	0.92	0.95	1.00	1.03	1.01	1.02	27
Washington DC	1.07	1.09	1.12	1.20	1.28	1.30	1.32	1.36	1.37	28
San Fran-Oak CA	1.01	1.05	1.12	1.17	1.24	1.31	1.33	1.36	1.55	54
Salt Lake City UT	0.63	0.63	0.65	0.68	0.68	0.70	0.72	0.81	0.85	35
San Diego CA	0.78	0.85	0.91	0.95	1.00	1.08	1.15	1.18	1.22	50
Northeastern Ava	0 01	0 02	0.94	0.94	0.00	1,00	1.04	1.05	1.05	
Miduestern Ava	0.82	0.82	0.83	0.84	0.87	0.90	0.91	0.92	0.94	
Southern Ava	0.85	0.86	0.88	0.90	0.91	0.94	0.96	0.97	0.97	
Southwestern Ava	0.82	0.85	0.87	0.90	0.93	0.91	0.90	0.91	0.93	
Western Avg	0.94	0.97	1.01	1.04	1.09	1.13	1.16	1.18	1.19	
Texas Avg	0.80	0.84	0.86	0.89	0.92	0.90	0.90	0.90	0.91	
Total Avg	0.86	0.88	0.90	0.92	0.95	0.97	0.98	0.99	1.00	
Maximum Value	1.22	1.27	1.32	1.36	1.42	1.47	1.52	1.54	1.55	
Minimum Value	0.62	0.62	0.60	0.65	0.68	0.70	0.70	0.71	0.72	
PLETHING FOR GC	1				1		1		1	

Table 6. Roadway Congestion Index Values, 1982 to 1990

Figure 2. Texas Urban Area RCIs 1982 - 1990

IMPACTS OF CONGESTION

The most quantifiable impacts of congestion are additional capacity required to eliminate the congested conditions and the time spent in congested traffic conditions. Additional capacity required annually to maintain existing traffic density levels indicates the burden of congestion on the transportation infrastructure and available roadway funds. Travel delay is the measure of inconvenience congestion imposes on the motoring public.

Travel Volumes

Freeway and principal arterial street systems are the primary facilities selected for expansion because the majority (60 to 70 percent) of an urban area's DVMT is served by these facilities. Table 7 illustrates the percentage of daily VMT served by the freeway and principal arterial street systems. While the average amount of daily VMT served by these facilities is significant in all areas, comparing the percentage for each urban and geographic area (Table 7) does give some indication of the facility carrying the majority of the demand.

Figure 3 illustrates the regional daily VMT served by the freeway system for each geographical region studied. During the study period, the percentages have remained relatively constant for each region. Motorists in the Western region place the highest demand on the freeway system, while the Southern region places the lowest. Motorists in the Texas and Midwestern regions place the second highest average demand on the freeway system of all geographic regions.

Figure 4 shows the corresponding demands placed on the principal arterial street systems. This figure shows that the highest demand on the principal arterial street system is placed by the Northeastern and Southern regions. The Texas and Midwestern regions depend the least on this system for urban travel. Each of the regions have shown a decrease in the percentage of DVMT serviced by principal arterial streets from 1982 to 1990.

	Daily V	ehicle-Miles of	Travel	Fwy/Expwy ¹	Prin.Art.Str.'	Fwy/Prin.Art.Str.
Urban Area	Fwy/Expwy	Prin.Art.Str.	Area Total	% of Total	% of Total	% of Total
Northeastern Cities						
Baltimore MD	15,800	9,850	36,370	43	27	70
Boston MA	21,610	12,540	51,340	42	24	66
Hartford CT	6,230	3,750	13,900	45	27	72
New York NY	82,920	52,060	225,010	37	23	60
Philadelphia PA	18,330	21,390	65,760	28	33	61
Pittsburgh PA	8,200	10,910	32,470	25	34	59
Washington DC	25,340	19,560	64,320	39	30	69
Midwestern Cities		AA 474				
Chicago IL	38,030	29,050	123,470	31	24	55
Cincinnati UH	11,380	5,670	24,040	47	15	62
	13,700	5,790	32,970	42	18	60 40
Dotroit MI	22,450	2,100	10,000	40	17	02 59
Indiananolis IN	8 050	22,000	21 070	29	29 10	57
Kansas City MO	12 560	/ 810	27,070	56	18	64
	6 200	2 950	17 670	35	17	52
Milwaukee WI	7 690	4 780	28,660	27	17	44
Minn-St. Paul MN	17,790	5.640	43,190	41	13	54
Oklahoma City OK	6.940	3,590	18,550	37	19	56
St. Louis MO	19,120	12,960	45,290	42	29	71
Southern Cities						
Atlanta GA	24,260	9,780	64,830	37	15	52
Charlotte NC	2,300	3,090	10,150	23	30	53
Ft. Lauderdale FL	7,110	5,800	24,300	29	24	53
Jacksonville FL	5,380	5,810	17,790	30	33	63
Memphis TN	4,340	4,240	16,130	27	26	53
Miami FL	8,570	15,810	33,530	26	47	73
Nashville TN	5,000	5,440	15,610	32	35	67
New Orleans LA	4,970	4,100	16,720	30	25	55
Norfolk VA	5,450	4,260	20,270	27	21	48
Orlando FL	5,950	3,850	17,730	34	22	56
Tampa FL	5,630	4,360	15,730	23	28	51
Southwestern Cities	2 (00	7 700	10 2/0	27	77	(0)
Albuquerque NM	2,400	3,790	10,240	25	57	60
Austin IX Coopus Christi IX	5,440	2,090	12,000	45	17	02
	27 490	9,310	52 170	24	23	41
	11 270	10,000	27 150	45	61	82
EL Paso TX	3 330	3 200	0 (40	42	340	69
Fort Worth TX	11 840	4 240	28 070	42	15	57
Houston TX	28 230	10,830	71 610	39	15	54
Phoenix AZ	7,670	17,610	39,650	19	44	63
Salt Lake City UT	5,330	2,040	15,170	35	13	48
San Antonio TX	9,280	5,240	25,320	37	21	58
Western Cities	·	·	-			
Honolulu HI	4,620	1,570	10,970	42	14	56
Los Angeles CA	110,350	80,370	250,670	44	32	76
Portland OR	7,470	3,710	19,400	39	19	58
Sacramento CA	9,260	7,000	23,620	39	30	69
San Bernardino-Riv CA	14,580	10,150	25,050	58	41	99
San Diego CA	27,690	9,340	51,610	54	18	72
San Fran-Oak CA	42,590	14,000	76,950	55	18	73
San Jose CA	12,780	0,700	32,450	49	21	/0
Seattle-Everett WA	10,920	9,130	40,040	40	22	60
Northeastern Ava	25 / 00	18 590	0.88 QA	37	28	74
Miduestern Avo	16 370	00,00	30 020	78	20	58
Southern Avg	7 000	6,000	22 080	20	28	57
Southwestern Ava	10 000	6 340	27 030	75	25	60
Western Avg	27,920	15,780	59,060	47	24	71
Texas Avg	11 910	5 060	29.300	38	20	58
Total Avg	15,780	10,230	41,000	37	25	62
Maximum Value	110.350	80.370	250,670	58	47	99
Minimum Value	1,560	1,500	6,550	19	13	44
	·	-	-			

Table 7. 1990 Urban Area Travel by Facility Type

Notes: ¹ Percentage of Total Daily Vehicle-Miles of Travel serviced by specified facility

Figure 3. Freeway Percentage of DVMT

Figure 4. Principal Arterial Street Percentage of DVMT

Additional Capacity

The addition of capacity to alleviate congestion is becoming more difficult in many urban areas, but it can be an effective tool in addressing congestion problems. As Table 8 illustrates, this practice is difficult to maintain over many years. The annual DVMT growth rate is applied to the existing system length to show the amount of additional lane-mileage that is required to prevent congestion levels from increasing. The system capacity has to increase by the same percentage as traffic volume for congestion levels to be maintained.

For example, New York would require 201 additional lane-miles of freeway and 257 lane-miles of principal arterial streets per year to maintain the 1990 congestion level with the 3.4 percent growth in DVMT it experienced between 1987 and 1990.

The amount of additional capacity required for freeway and principal arterial street systems make it apparent that the construction of additional lane-miles as the sole alternative to alleviate congestion is not feasible for many urban areas. Regardless of whether the majority of an area's travel is served by the freeway or principal arterial street system, roadway construction must be combined with a range of other improvements and programs to address the needs of severely congested corridors.

Travel Delays

Travel delay is the most apparent impact of congestion to the motoring public. Analyses of delay have generally been divided into two estimates -- recurring and incident. Recurring delay occurs due to normal daily operations. The most common example of recurring delay is the increased travel time during peak periods of operation.

The other type of delay related to congestion is incident delay. Incident delay is caused by accidents, breakdowns, or other occurrences which decrease roadway capacity. When congestion levels increase (creating higher RCI values), it is the recurring delay that is directly affected. While incident delay is not directly related to or caused by congestion, the delay resulting from incidents significantly increases under congested conditions.

		Additional Miles Needeo 1990 Conge	Annual Lane- d to Maintain stion Level	Average Annual Lane-Miles Added to System, 1987 to 1990		
Urban Area	A∨g. Annua¦ VMT Growth	Freeway	Prin. Arter.	Freeway	Prin. Arter.	
Los Angeles CA	3.8	197	468	117	208	
New York NY	3.4	201	257	37	220	
Chicago IL	6.3	152	261	80	140	
Phoenix AZ	6.3	39	196	95	185	
San Diego CA	5.7	99	98	28	50	
St. Louis MO	5.3	89	95	88	18	
Miami FL	6.1	37	126	17	25	
Cleveland OH	6.8	/5	76 0/	47	1/0	
San Bernardino-Riv CA	4.4	39	94	13	140	
San Fran-Oak CA	2.1	64 51	02	20	0	
Baltimore MU	4.1	21	00 / 8	30	13	
Minn-St. Paul MN	4.0	60 /3	40	18	20	
Rittohurgh RA	2.0	38	69	22	40	
Houston TY	2.5	47	53	93	53	
Cipcippati OH	5.4	49	44	20	10	
Denver CO	3.2	29	60	10	7	
Seattle-Everett WA	3.2	38	50	23	33	
Detroit MI	1.6	28	59	30	50	
Sacramento CA	4.6	35	51	30	33	
Philadelphia PA	1.8	27	58	58	10	
Salt Lake City UT	9.2	47	33	13	3	
San Jose CA	2.5	29	35	7	12	
Dallas TX	1.8	31	31	17	7	
Atlanta GA	1.8	30	28	23	58	
Ft. Lauderdale FL	3.3	20	37	13	15	
Kansas City MO	2.2	30	23	10	7	
Columbus OH	3.7	29	22	8	5	
Orlando FL	2.4	14	37	15	13	
Nashville TN	3.6	17	35	20	12	
Portland OR	4.1	23	24	7	10	
Memphis TN	3.8	17	20	5 15	10	
Milwaukee Wi	2.9	17	29	17	20	
Jacksonville FL San Antonio TV	2.1	12	24	3	13	
San Antonio IX Nortford CT	3.2	10	21	10	17	
Charlotte NC	43	13	23	7	8	
	3.6	11	24	7	17	
Albuquerque NM	3.6	8	26	5	23	
Fort Worth TX	1.8	18	16	10	3	
Louisville KY	3.1	18	16	27	5	
Oklahoma City OK	2.4	17	16	7	8	
Norfolk VA	2.5	11	18	5	12	
El Paso TX	1.8	6	15	0	10	
New Orleans LA	1.4	5	9	10	2	
Honolulu HI	2.3	8	5	3	3	
Indianapolis IN	0.8	6	7	17	12	
Boston MA	0.3	4	8	10	21	
Austin TX	1.0	5	4	10	2	
Corpus Christi TX	U.8	1	3	۷	٤	

Table 8. Illustration of Annual Capacity Increase Required to Prevent Congestion Growth

¹ Average Annual Growth Rate of Freeway and Principal Arterial Streets traffic volume between 1987 and 1990.

Tables 9 and 10 categorize delay by the severity level (moderate, heavy, and severe) for freeways and principal arterial street systems. The congestion categories are based on average daily traffic volumes per lane (9). Table 11 summarizes the vehicle-hours of delay by type and urban area. These values were also used to estimate the economic impacts of congestion.

The rankings in Table 11 are similar to the rankings by RCI (Table 5). Vehicle-hours of delay are also ranked after being normalized by population. The total delay per 1000 persons quantifies the congestion levels independent of urban area size and population. Ranking delay in this manner allows an evaluation similar to the RCI in that it analyzes the effects on individual motorists. Summary statistics show that the Western and Northeastern regions have the largest average per capita delay, while the midwestern region has the least.

	Recurring Hours of Delay				Incident Hours of Delay				
Urban Area	Moderate	Heavy	Severe	Total	Moderate	Heavy	Severe	Total	
Northeastern Cities									
Baltimore MD	3,880	7,320	13,970	25,170	8,930	16,830	32,140	57,900	
Boston MA	9,650	20,460	31,260	61,370	33,780	71,620	109,410	214,810	
Hartford CT	3,040	1,070	440	4,550	8,210	2,900	1,180	12,290	
New York NY	101,900	51,840	133,770	287,510	254,750	129,600	334,430	718,780	
Philadelphia PA	9,760	6.360	9,720	25,840	20,490	13,370	20,420	54,280	
Pittsburgh PA	1.420	3,020	6,150	10,590	4,130	8,750	17,820	30,700	
Washington DC	12,730	30,460	64,290	107,480	28,020	67,010	141,430	236,460	
Midwestern Cities	,						·	•	
Chicago II	11.040	26.020	106,000	143,060	13,250	31,220	127,200	171,670	
Cincinnati OH	8,890	5,590	3,410	17.890	7,120	4,470	2,720	14,310	
Cleveland OH	8,920	6.730	2.060	17,710	6,250	4,710	1,440	12,400	
Columbus OH	730	5,120	8,140	13,990	510	3,590	5,700	9,800	
Detroit MI	9,830	6.490	43,020	59.340	21,630	14,270	94,650	130,550	
Indianapolis IN	2,690	0	1,390	4,080	4.030	· 0	2,090	6,120	
Kansas City MO	1,510	1.710	0	3,220	4.690	5.310	. 0	10,000	
Louisville KY	760	50	940	1,750	840	60	1.040	1,940	
Milwaukee WI	2,780	4.720	6.730	14.230	2.780	4,720	6.730	14,230	
Minn-St. Paul MN	5,590	6 780	22,080	34,450	5.030	6,100	19,870	31,000	
Oklahoma City OK	1 970	1 470	1	3 440	2,170	1,620	0	3,790	
St Louis MD	8 300	2 350	11 470	22 120	9.960	2.820	13.770	26.550	
Southern Cities	0,300	L, 550	'''''	22,120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,			
Atlanta GA	4 310	22 330	47 150	73 790	4,740	24,560	51,860	81,160	
Charlotte NC	3 700	000		4 780	3 030	790	0	3,820	
	6 630	3 / 00	1 070	0 100	6 940	5 230	1 600	13 770	
	4,050	2 610	1,010	8 9/.0	9 500	3 910	0	13 410	
	1 640	2,010	ő	1 000	1 800	380	0	2 180	
Minphis IN	6 870	/ /50	21 260	72 580	10 310	6 670	31 800	48 870	
Minami FL Nachville TN	3 800	4,450	21,200	6 270	6 180	1 690	1 030	6 900	
Nashville in	9,000	0,050	6 110	16 000	1 520	16 300	11 010	28 830	
New Orleans LA	820	5 500	10 260	16,580	2,050	13,750	25 650	41,450	
Nortotk VA	6 600	2 360	3 / 10	12,60	10,030	3 540	5 120	18,690	
	700	1 860	3,410	5 800	1 050	2 780	5,000	8 830	
I Tampa FL	700	1,000	3,330	5,070	1,050	2,100	5,000	0,000	
Albuquerque NM	580	1 380	020	2 880	630	1 520	1 010	3 160	
A LOUQUERQUE NM	/ 2/0	1,300	4 070	17 850	4 660	7 350	7 630	10 640	
AUSTIN IX	4,240	0,000	0,930	11,000	4,000	0,0,0	1,050	750	
	12 (70	27 / 20	1 17 140	97 250	22 910	12 160	8/ 800	1/0 860	
Dallas IX	12,070	23,420	47,100	74 220	5 / 80	42,100	21 /50	36 220	
Denver CO	5,460	9,290	21,450	30,220	5,400	9,290	21,430	30,220	
EL Paso IX	1,450	1,770	17 150	70,220	1,590	15 770	370	54 500	
FORT WORTH IX	4,010	0,520	01 0/0	17/ 770	10,300	50 030	127 /40	188 680	
Houston IX	7,350	36,380	91,040	134,770	10,290	50,930	/ 810	11 770	
Phoenix AZ	2,420	14,980	12,050	29,430	970	5,990	4,010	2 4/0	
Salt Lake City UI	1,560	2,090	750	4,400	2 500	1,250	12 700	2,040	
San Antonio IX	2,000	10,000	11,540	23,900	2,590	11,000	12,700	20,270	
Western Cities	0.070	7 750	0.070	4/ 050	(000	4 7/0	15 800	26 720	
Honolulu HI	2,2/0	3,150	540 410	14,000	4,090	26 200	672 730	722 130	
Los Angeles CA	19,550	21,040	7 000	17 150	11 050	8 200	1/ 150	36 200	
Portland UK	0,400	4,100	7,000	22 500	5 510	5 400	2 280	13 / 00	
Sacramento CA	9,190	9,340	5,970	78 500	11 / 00	10 7/0	72 170	0/ 210	
San Bernardino-Kiv CA	9,500	10,950	60,140	70,590	0 7/0	11 710	76,170	/4,510	
San Diego CA	15,570	21 700	43,330	11,100	7,340	27 210	20,120	302 210	
San Fran-Uak CA	25,220	12 2/0	103,030	232,400	32,190	1/ 200	62 170	88 010	
San Jose CA	9,320	12,240	20,000	73,340	12,190	41 690	/1 900	116 100	
Seattle-Everett WA	9,010	44,000	29,920	02,990	12,010	01,090	41,090	110,190	
	20.7/0	47 330	77 000	7/ /50	E1 100	11. 700	07 970	180 720	
Northeastern Avg	20,340	11,220	37,090	14,000	51,190	44,500	22,020	74 020	
Midwestern Avg	5,250	2,590	17,100	27,940	0,520	0,5/0	12 100	30,020	
Southern Avg	5,670	4,960	8,500	17,130	5,010	17 7/0	12,100	24,550	
Southwestern Avg	5,940	10,410	19,030	55,580	5,360	13,340	20,510	45,210	
Western Avg	11,710	16,060	105,740	155,510	15,560	19,220	121,610	100,450	
Texas Avg	4,760	12,400	24,880	42,040	7,280	18,390	57,700	05,570	
Total Avg	7,890	10,020	34,390	52,300	13,460	15,770	50,120	79,350	
Maximum Value	101,900	51,840	560,610	714,350	254,750	129,600	672,730	1057080	
Minimum Value	580	0	0	580	510	0	0	510	
L	<u>.</u>				******	<u></u>			

Table 9. Freeway and Expressway Recurring and Incident Hours of Daily Delay for 1990¹

Note: ¹ Delay calculated based on vehicular speed in Table 13.

	Recurring Hours of Delay		Incident Hours of Delay					
Urban Area	Moderate	Heavy	Severe	Total	Moderate	Heavy	Severe	Total
Northeastern Cities								
Baltimore MD	1,400	2,240	17,280	20,920	1,540	2,470	19,010	23,020
Boston MA	3,090	4,240	21,660	28,990	3,400	4,670	23,830	31,900
Hartford CT	1,470	2,360	2,660	6,490	1,620	2,590	2,920	7,130
New York NY	24,070	45,730	169,480	239,280	26,470	50,300	186,430	263,200
Philadelphia PA	8,940	15,400	68,870	93,210	9,830	16,940	75,760	102,530
Pittsburgh PA	4,950	4,950	27,120	37,020	5,450	5,450	29,830	40,730
Washington DC	3,790	26,160	69,590	99,540	4,170	28,780	76,550	109,500
Midwestern Cities								
Chicago IL	14,980	27,740	59,210	101,930	16,470	30,510	65,130	112,110
Cincinnati OH	1,180	590	2,920	4,690	1,300	650	3,220	5,170
Cleveland OH	1,950	2,980	3,710	8,640	2,140	3,280	4,080	9,500
Columbus OH	850	2,450	4,620	7,920	940	2,700	5,080	8,720
Detroit MI	6,080	13,790	61,380	81,250	6,690	15,170	67,520	89,380
Indianapolis IN	1,680	210	1,540	3,430	1,850	240	1,700	3,790
Kansas City MO	650	820	5,640	7,110	720	900	6,200	7,820
Louisville KY	1,340	4,430	2,280	8,050	1,480	4,880	2,510	8,870
Milwaukee WI	1,830	2,270	4,450	8,550	2,010	2,500	4,890	9,400
Minn-St. Paul MN	2,520	1,210	13,960	17,690	2,780	1,330	15,360	19,470
Oklahoma City OK	1,010	2,020	3,680	6,710	1,110	2,220	4,050	7,380
St. Louis MO	5,260	19,640	15,550	40,450	5,790	21,610	17,110	44,510
Southern Cities								14 700
Atlanta GA	2,650	7,220	27,690	37,560	2,920	7,940	30,460	41,320
Charlotte NC	280	3,440	8,380	12,100	310	3,780	9,220	13,310
Ft. Lauderdale FL	1,870	8,060	12,830	22,760	2,050	8,870	14,110	25,030
Jacksonville FL	2,020	4,440	9,470	15,930	2,220	4,880	10,420	17,520
Memphis IN	1,030	3,300	3,480	7,810	1,140	3,030	3,830	79 190
Miami FL	700	0,180	03,730	17,070	1,280	0,000	10,100	1/ 700
Nashville IN	1 570	2,490	9,890	15,080	1 (80	2,740	10,880	14,390
New Unleans LA	1,550	2,140	1,770	7 0/0	1,680	2,350	0,550	12,500
NOFTOLK VA	1,370	1,880	4,690	10,740	1,500	2,060	17 000	21 280
Temps 51	2 520	2,400	10,300	19,300	2 910	2,720	17,990	17 100
	2,560	1,900	11,110	15,050	2,810	2,100	12,220	17,190
Albuquergue MM	1 950	7 000	1 220	4 000	2 070	1 200	1 750	7 670
Albuquerque NM	1,050	3,900	1,230	0,980	2,030	4,290	2 280	5 200
Compus Christi IV	320	1,000	110	4,720	7,090	1,050	120	660
	3 710	3 //0	/ / / ON	11 6/0	4 080	3 780	4 940	12 800
	3,710	7 850	18 280	20 080	4,000	8 630	20 110	32 080
	130	150	600	880	4,240	170	660	970
Fort Worth TY	1 800	1 760	2 200	5 9/0	2 080	1 030	2 520	6 530
	3 750	12 430	12 300	28 480	4 120	13 670	13 530	31 320
Phoenix A7	15 610	21 970	27 360	64 940	17 170	24 170	30,090	71 430
Salt Lake City III	1 180	1 150	1 500	3 830	1 300	1 260	1 650	4 210
San Antonio TX	840	560	2 790	4 100	930	610	3 070	4,610
Western Cities			-,	-,,,,,	,30	5.0	-,0,0	
Honotulu HI	1.430	940	3,160	5.530	1.570	1.040	3.480	6.090
Los Angeles CA	28,350	70,580	118,340	217,270	31,190	77,630	130,170	238,990
Portland OR	850	4,950	6,690	12,490	940	5,450	7,360	13,750
Sacramento CA	370	4,720	16,540	21.630	410	5,190	18,190	23,790
San Bernardino-Riv CA	9,800	10,450	10,220	30,470	10,780	11,500	11,250	33,530
San Diego CA	2,400	9,610	1,260	13,270	2,650	10,570	1,390	14,610
San Fran-Oak CA	1,800	6.720	43.810	52.330	1,980	7.390	48,190	57,560
San Jose CA	3,630	2,320	23,480	29,430	3,990	2,560	25,830	32,380
Seattle-Everett WA	2,930	3,910	22,460	29,300	3,230	4,300	24,700	32,230
	.	·			-		1	[.
Northeastern Avg	6,820	14,440	53,810	75,070	7,500	15,880	59,190	82,570
Midwestern Avg	3,280	6,510	14,910	24,700	3,610	7,170	16,400	27,180
Southern Avg	1,430	3,960	15,950	21,340	1,570	4,360	17,540	23,470
Southwestern Avg	3,100	5,000	6,640	14,740	3,410	5,500	7,300	16,210
Western Avg	5,730	12,690	27,330	45,750	6,300	13,960	30,060	50,320
Texas Avg	1,660	2,880	3,520	8,060	1,830	3,170	3,870	8,870
Total Avg	3,770	7,840	21,000	32,610	4,150	8,630	23,100	35,880
Maximum Value	28,350	70,580	169,480	268,410	31,190	77,630	186,430	295,250
Minimum Value	130	150	110	390	140	170	120	430
	<u> </u>	<u>.</u>	• • • • • • • • • • • • • • • • • • • •				·	

Table 10. Principal Arterial Street Recurring and Incident Hours of Daily Delay for 1990¹

Note: ¹ Delay calculation based on vehicular speed in Table 13.

					Total Delay	
		Vehicle Hou	rs of Delay	. 1	per 1000	1
Urban Area	Recurring	Incident	Total	Rank'	Persons	Rank
Northeastern Cities						
Baltimore MD	46,090	80,910	127,010	20	60	31
Boston MA	90,370	246,700	337,070	8	110	11
Hartford CT	11,040	19,430	30,470	41	50	35
New York NY	526,790	981,980	1,508,760	2	90	12
Philadelphia PA	119,060	156,810	275,870	9	70	24
Pittsburgh PA	47,610	71,430	119,040	21	60	31
Washington DC	207,030	345,960	552,990	4	180	2
Midwestern Cities						
Chicago IL	244,980	283,790	528,770	5	70	24
Cincinnati OH	22,590	19,480	42,060	37	40	39
Cleveland OH	26,330	21,890	48,220	33	30	42
Columbus OH	21,920	18,510	40,430	39	50	35
Detroit MI	140,600	219,940	360,540	7	90	12
Indianapolis IN	7,520	9,900	17,420	47	20	45
Kansas City MO	10,330	17,820	28,160	42	20	45
Louisville KY	9,810	10,790	20,610	45	30	42
Milwaukee WI	22,780	23,630	46,410	36	40	39
Minn-St. Paul MN	52,150	50,470	102,620	22	50	35
Oklahoma City OK	10,150	11,160	21,310	43	30	42
St. Louis MO	62,580	71,050	133,630	19	70	24
Southern Cities	,					
Atlanta GA	111,350	122,480	233,830	13	120	9
Charlotte NC	16,880	17,140	34,020	40	80	17
Ft. Lauderdale FL	31,930	38,800	70,740	28	60	31
Jacksonville FL	24,870	30,930	55,790	31	80	17
Memphis TN	9,800	10,780	20,580	46	20	45
Miami FL	103,650	127,050	230,700	14	120	9
Nashville TN	19,350	21,290	40,640	38	70	24
New Orleans LA	27,450	41,410	68,860	29	60	31
Norfolk VA	24,510	50,170	74,680	26	80	17
Orlando FL	31,810	39,980	71,790	27	80	17
Tampa FL	21,520	26,020	47,540	34	70	24
Southwestern Cities	ŗ	-	-			
Albuquerque NM	9,850	10,830	20,680	44	40	39
Austin TX	22,580	24,840	47,410	35	90	12
Corpus Christi TX	1,280	1,410	2,690	50	10	50
Dallas TX	94,900	162,670	257,570	11	130	7
Denver CO	66,200	69,200	135,400	18	90	12
El Paso TX	4,440	4,880	9,320	49	20	45
Fort Worth TX	36,210	61,030	97,240	23	80	17
Houston TX	163,250	220,000	383,250	6	130	7
Phoenix AZ	94,360	83,200	177,570	16	90	12
Salt Lake City UT	8,220	6,850	15,070	48	20	45
San Antonio TX	28,090	30,900	58,990	30	50	35
Western Cities		-	_			
Honolulu HI	20,380	32,800	53,180	32	80	17
Los Angeles CA	819,040	961,130	1,780,170	1	160	4
Portland OR	29,650	48,050	77,700	25	80	17
Sacramento CA	44,120	37,280	81,400	24	70	24
San Bernardino-Riv CA	109,060	127,820	236,880	12	200	1
San Diego CA	91,230	61,370	152,600	17	70	24
San Fran-Oak CA	284,800	359,770	644,570	3	180	2
San Jose CA	102,780	120,390	223,170	15	160	4
Seattle-Everett WA	112,290	148,420	260,710	10	150	6
	1/0 710	271 900	621 600		00	
Northeastern AVG	147,/10 50 280	67 200	115 850		40	
Midwestern Avg	J2,030 70 /70	17 820	000 28		80	
Southern Avg	30,470	47,020	100 540		70	
Southwestern Avg	40,130	01,440 210 700	300 0/0		130	
Western Avg	179,200	210,700	122 750		70	
Texas AVg	50,110	115 210	122,000		20	
IOTAL AVG	04,910 910 0/0	112,210	1 790 170		200	
Maximum Value	019,040	901,900	1,100,110		10	
minimum value	1,200	1,410	۷,0۷۷		iv.	

Table 11. Total Vehicle Hours of Delay for 1990

Note: ¹ Rank value of 1 associated with most congested conditions

COST OF CONGESTION

Another method of assessing impact is to look at economic factors. Two quantities closely related to congestion are delay and wasted fuel. This chapter presents estimates of the value of traffic delay and fuel wasted due to congested traffic for the 50 study areas.

Economic Impact Estimates

Estimates of congestion costs were based on the congested peak-period VMT on freeways and principal arterial street systems. Table 12 lists the freeway and principal arterial street DVMT and populations utilized in the congestion cost estimates. The data shown in this table were obtained through the HPMS database and various state and local agencies.

The two primary components of the congestion cost estimates were traffic delay and excess fuel consumption. Congestion severity affects both the travel time and fuel consumption by decreasing the speed and vehicle fuel efficiency as congestion becomes worse. The congestion categories used to estimate vehicle-hours of delay (Table 11) were also used to estimate fuel consumption. The vehicular speeds used in the congestion cost estimates are shown in Table 13.

Congestion cost estimates also used several study constants and urban area variables in the calculations. The five values held constant for all urban areas in the congestion cost analyses and calculations included:

- 1. Average vehicle occupancy -- 1.25 persons per vehicle
- 2. Working days per year -- 250 days
- 3. Average cost of time $(\underline{9}) \$10.00$ per person-hour (1990 value)
- 4. Commercial vehicle operating cost (10) -\$1.95 per mile (1990 value)
- 5. Vehicle mix -- 95 percent passenger and 5 percent commercial

	Daily Ve	/el (1000)		
			Freeway	
	Freeway/	Principal	and	Population
Urban Area	Expressway	Arterial Street	Arterial	(1000)
Northeastern Cities				
Baltimore MD	15,800	9,850	25,650	1,990
Boston MA	21,610	12,540	34,150	2,960
Hartford CT	6,230	3,750	9,980	610
New York NY	82,920	52,060	134,980	16,780
Philadelphia PA	18,330	21,390	39,720	4,220
Pittsburgh PA	8,200	10,910	19,110	1,870
Washington DC	25,340	19,560	44,900	3,100
Midwestern Cities	-	-		
Chicago IL	38,030	29,050	67,080	7,510
Cincinnati OH	11,380	3,670	15,050	1,140
Cleveland OH	13,700	5,790	19,490	1,790
Columbus OH	8,350	3,180	11.530	850
Detroit MI	22 650	22 880	45.520	4,000
Indiananolis IN	8 050	3,970	12,020	950
Kapeas City MO	12 560	4 810	17 370	1,160
	6 200	2 050	9 140	810
	7 600	6 780	12 670	1 230
Milwaukee WI	17,090	5 440	27 630	2 010
ATTAINTSL. MAUL MN	4 0/0	3,040	10 520	7/0
UKLANOMA LITY UK	0,940	12 040	32 020	1 040
ST. LOUIS MU	19,120	12,900	52,000	1,700
Southern Litles	3/ 3/3	0 700	7/ 0/0	1 890
Atlanta GA	24,200	9,760	54,040	1,000
Charlotte NC	2,300	3,090	5,390	420
Ft. Lauderdale FL	7,110	5,800	12,910	1,270
Jacksonville FL	5,380	5,810	11,190	720
Memphis TN	4,340	4,240	8,580	860
Miami FL	8,570	15,810	24,380	1,850
Nashville TN	5,000	5,440	10,440	570
New Orleans LA	4,970	4,100	9,070	1,080
Norfolk VA	5,450	4,260	9,710	930
Orlando FL	5,950	3,850	9,800	850
Tampa FL	3,630	4,360	7,990	700
Southwestern Cities				
Albuquerque NM	2,400	3,790	6,190	530
Austin TX	5,440	2,090	7,530	510
Corpus Christi TX	1,560	1,500	3,060	280
Dallas TX	23,680	8,310	31,990	1,990
Denver CO	11,270	10,900	22,170	1,580
EL Paso TX	3,330	3,200	6,530	540
Fort Worth TX	11,840	4,240	16,080	1.200
Houston TX	28,230	10,830	39,060	2,880
Phoenix A7	7 670	17 610	25,280	1,900
Salt Lake City UT	5 330	2,040	7,370	800
San Antonio TX	9,280	5,240	14.520	1,170
Western Cities	.,	- /= ···		•
Honolulu HJ	4.620	1,570	6,190	660
Los Angeles CA	110.350	80.370	190.720	11,420
Portland OR	7.470	3,710	11,180	1.030
Sacramento CA	9.260	7,000	16,260	1,100
San Renarding-Riv CA	14 580	10,150	24.730	1,170
San Diego CA	27 690	9.340	37.030	2.300
San Fran-Oak CA	42 590	14 000	56.590	3,680
	15 780	6 780	22 560	1,410
Seattle-Evenett UA	18 020	0,130	28,050	1,730
Seallie Lvereit WA	10,720	5,150	20,000	,,
Northeastern Ava	25 400	18 580	44,070	4,500
Miducatorn Ave	1/ 270	0,000	22 070	2 010
Southors Ave	7 000	6,000 6 050	13 0/0	1 010
Southern Avg	10,000	6,000	16 7/0	1 220
Southwestern Avg	10,000	15 700	/2 200	2 720
Western Avg	27,920	15,700	43,700	1 220
Texas Avg	11,910	2,000	10,970	2,000
Iotal Avg	15,780	10,230	20,010	2,090
Maximum Value	110,350	80,570	190,720	10,780
Minimum Value	1,560	1,500	5,060	200

Table 12. Summary of 1990 DVWT Values and Population for Congestion Cost Estimates

Functional Class	Parameters	Severity of Congestion ^{1,2}						
		Moderate	Heavy	Severe				
Freeway/Expressway	ADT/Lane	15,000 - 17,500	17,501 - 20,000	Over 20,000				
	Speed (mph) 3	38	33	30				
Principal Arterial	ADT/Lane	5,750 - 7,000	7,001 - 8,500	Over 8,500				
arreets	Speed (mph) ³	28	25	23				

Table 13. Speed Relationships with Average Daily Traffic per Lane Volumes

Note: ¹Assumes congested freeway operation when ADT/Lane exceeds 15,000. ²Assumes congested principal arterial street operations when ADT/lane exceeds 5,750. ³Value represents a weighted average

Source: TTI Analysis and Houston-Galveston Regional Transportation Study

Four area specific variables were also used in the congestion cost estimates. These variables are briefly described below:

- 1. Daily vehicle-miles of travel (DVMT) -- the average daily traffic (ADT) of a section of roadway multiplied by the length (in miles) of that roadway section.
- 2. Fuel cost -- the state average fuel cost per gallon for 1990.
- 3. Registered vehicles -- the number of registered vehicles as reported by local agencies.
- 4. Population -- estimated using the 1990 Census Bureau estimates and HPMS data.

These variables were used to estimate and analyze the effects of congestion in each urban area. The economic impact of congestion was stated in terms of annual congestion cost, cost per registered vehicle, and cost per capita. Previous reports have included additional insurance costs resulting from operating a vehicle in larger metropolitan areas. Due to the difficulty in obtaining data from the insurance industry, these costs were omitted from this cost analysis.

Economic Analysis

While the above variables are used to analyze congestion cost in this study, it should be recognized that some of these cost variables fluctuate with economic trends. The variables -- fuel cost, commercial vehicle operating cost, and the average cost of time -- are updated

annually to reflect the change in these costs. Estimates of vehicle-hours of delay and gallons of wasted fuel should be used to analyze congestion trends.

Table 14 gives the total delay in each urban area from 1986 to 1990. Thirty-four of the 50 urban areas had at least a 15 percent growth in delay over the five-year period. Ten of the areas had at least a 50 percent growth in the same period. Sacramento showed a 100 percent increase in delay during this same time. Only two urban areas (Austin and San Antonio) displayed a decrease in delay over this five-year period.

The summary statistics show that only the Midwestern and Texas regions did not have at least a 15 percent growth in delay from 1986 to 1990. The Texas region had no change in delay over this period. The Northeastern and Southern regions showed the largest percent increase in total delay over the five-year period.

As congestion increases, slower vehicle speeds result in increased fuel consumption. The procedure used to estimate the amount of wasted fuel is tied to the average speed values used to calculate vehicle delay. The change in wasted fuel and vehicle delay are, thus, closely related. While this is not appropriate over all speed ranges, it provides reasonable estimates of areawide fuel consumption. The equation used to estimate fuel consumption has a linear relationship to speed.

The amount of fuel which was wasted due to congestion from 1986 to 1990 is shown in Table 15. The summary statistics show that the Northeastern and Southern regions had the highest average growth over the period. The Southwestern and Texas regions were the only two which did not surpass a 15 percent growth in wasted fuel over the five year period.

The component and total congestion costs for each urban area are shown in Table 16. In 1990, the total cost of congestion for the urban areas studied was approximately \$43.2 billion. This represents a 10 percent increase in the economic impact of congestion since 1989 (\$39.2 billion). The increase in the value of time rate was 8 percent and fuel costs averaged a 9 percent increase. Studywide averages indicate that recurring and incident delay accounted for

	Total Delay						
Urban Area	1986	1987	1988	1989	1990	1986-1990	
Nonthoostorn Citics							
Reltimore ND	05	100	105	120	125	32	
	285	270	370	350	335	18	
Hartford CT	20	20	30	35	30	50	
New York NY	1 190	1.265	1.370	1.515	1.510	27	
Philadelphia PA	250	270	275	270	275	10	
Pittsburgh PA	95	100	115	115	120	26	
Washington DC	440	475	495	540	555	26	
Midwestern Cities							
Chicago IL	480	470	470	495	530	10	
Cincinnati OH	25	30	40	40	40	60	
Cleveland ON	35	40	45	45	50	43	
Columbus OH	30	35	35	40	40	33	
Detroit MI	340	345	350	360	360	6	
Indianapolis IN	10	10	15	15	15	50	
Kansas City MO	20	20	25	25	30	50	
Louisville KY	20	20	20	20	20	0	
Milwaukee WI	35	40	45	45	45	29	
Minn-St. Paul MN	70	95	95	95	105	50	
Oklahoma City OK	20	20	25	20	20	0	
St. Louis MO	115	120	105	140	135	17	
Southern Cities							
Atlanta GA	225	240	225	230	235	4	
Charlotte NC	25	25	30	30	35	40	
Ft. Lauderdale FL	65	65	70	65		8	
Jacksonville FL	40	45	45	22	20	20	
Memphis TN	15	15	20	20	20	53	
Miami FL	150	170	200	220	230	77	
Nashville in	50	35	70	70	70	8	
New Urleans LA	60	70	70	75	75	25	
NOFTOLK VA	60	40	60	70	70	17	
Urlando FL	75	60	45	45	50	43	
Fampa FL Southwestern Cities		40	49	47			
Albuquenque NM	15	15	15	20	20	33	
Austin TV	50	45	45	45	45	-10	
Compus Christi IV	5	5	5	ŝ	5	0	
	260	235	240	240	260	Ö	
	110	110	115	120	135	23	
	10	10	10	10	10	0	
Fort Worth TX	95	90	90	90	95	0	
Houston TX	370	355	365	375	385	4	
Phoenix A7	145	145	185	180	180	24	
Salt Lake City UT	10	15	15	15	15	50	
San Antonio TX	65	65	60	60	60	-8	
Western Cities							
Honolulu HI	45	45	50	55	55	22	
Los Angeles CA	1,645	1,715	1,685	1,750	1,780	8	
Portland OR	50	60	70	75	80	60	
Sacramento CA	40	55	70	80	80	100	
San Bernardino-Riv CA	185	190	215	230	235	27	
San Diego CA	95	125	145	155	155	63	
San Fran-Oak CA	540	615	625	650	645	19	
San Jose CA	195	210	215	225	225	15	
Seattle-Everett WA	175	210	235	255	260	49	
			767	100		24	
Northeastern Avg	340	360	395	420	420	24	
Midwestern Avg	100	105	105	110		10	
Southern Avg	70	75	80	85	85	21	
Southwestern Avg	100	100	105	105	110	10	
Western Avg	330	360	370	585	390		
Texas Avg	120	115	115	120	120	10	
Total Avg	170	180	185	1 750	1 700	10	
Maximum Value	1,645	1,715	1,085	1,150	1,700		
Minimum Value	5	>	>	2	2		

Table 14	Total	Vehicle	Dolay	1986 to 1990	
ladie 14.	, iotat	venicie	velay,	1900 10 1990	

Urban Area	Annual M 1986	lasted Gal 1987	lons (mill 1988	ions) 1989	1990	% change 1986-1990
						,
Northeastern Cities Reltimore MD	44	46	48	53	57	30
Boston MA	132	125	168	160	155	17
Hartford CT	9	10	14	15	14	56
New York NY	547	577	622	689	691	26
Philadelphia PA	107	115	118	<u> </u>	51	24
Washington DC	199	214	221	240	243	22
Midwestern Cities						
Chicago IL	212	208	204	221	236	11
Cincinnati OH	12	15	18	19	20	67 50
Columbus ON	14	16	17	18	19	36
Detroit MI	150	151	153	157	158	5
Indianapolis IN	5	5	7	7	8	60
Kansas City MO	10	10	12	12	13	50 13
Louisville KY	8 17	9 10	20	20	21	24
Mitwaukee wi Minn-St. Paul MN	33	42	43	44	47	42
Oklahoma City OK	9	8	10	10	10	11
St. Louis MO	51	53	47	61	55	8
Southern Cities	07	105	101	10/	105	Ŕ
Atlanta GA Charlotte NC	97 11	105	14	104	16	45
Ft. Lauderdale FL	30	32	33	31	33	10
Jacksonville FL	18	21	20	24	25	39
Memphis TN	7	7	8	9	9	29
Miami FL Nachville TN	67 17	/3 15	89 18	95	99	40
Nashville in New Orleans IA	29	29	31	31	31	7
Norfolk VA	28	32	32	33	34	21
Orlando FL	29	28	28	31	32	10
Tampa FL	16	17	19	19	20	25
Southwestern Cities	6	7	8	Q	0	50
Austin TX	23	21	20	21	24	4
Corpus Christi TX	1	1	1	1	1	0
Dallas TX	120	112	115	115	122	2
Denver CO	49	49	52	55	64 5	51
EL Paso IX Fort Worth TV	5 43	4	4	43	46	7
Houston TX	170	164	169	173	177	4
Phoenix AZ	63	63	79	78	78	24
Salt Lake City UT	5	6	6	7	7	40
San Antonio TX	29	29	28	28	28	-3
Hopolulu HI	21	21	24	24	25	19
Los Angeles CA	743	774	754	784	799	8
Portland OR	23	28	32	35	36	57
Sacramento CA	20	25	32	36	37	85
San Bernardino-Riv CA	46	60 60	90 68	72	70	52
San Fran-Oak CA	246	280	287	297	297	21
San Jose CA	84	90	99	102	102	21
Seattle-Everett WA	81	98	109	118	121	49
Northoastorn Ave	15/	162	177	180	100	23
Midwestern Ava	45	46	47	50	52	16
Southern Avg	31	34	36	37	39	26
Southwestern Avg	47	45	48	48	51	9
Western Avg	149	162	167	175	177	19
fexas Avg Total Avg	26 76	55 80	24 84	25 80	91	20
Maximum Value	743	774	754	784	799	1345
Minimum Value	1	1	1	1	1	
				L	L	1

Table 15. Annual Wasted Fuel Due to Congestion

		(illions)				
	Recurring	Incident	Recurring	Incident	Total	
Urban Area	Delay	Delay	Fuel	Fuel	Cost	Rank
Los Angeles CA	3,000	3,530	530	620	7,670	1
New York NY	1,950	3,630	350	640	6,560	2
San Fran-Oak CA	1,050	1,330	190	240	2,810	3
Washington DC	760	1,260	130	220	2,370	4
Chicago IL	900	1,040	160	190	2,280	5
Houston TX	600	810	100	140	1,650	6
Detroit MI	510	800	80	130	1,530	7
Boston MA	330	910	60	160	1,460	8
Philadelphia PA	430	570	70	90	1,160	9
Seattle-Everett WA	420	550	70	100	1,140	10
Dallas TX	350	610	60	100	1,120	11
San Bernardino-Riv CA	400	470	70	80	1,030	12
Atlanta GA	410	450	60	70	1,000	13
Miami FL	370	460	60	70	970	15
San Jose CA	380	440	70	80	970	15
Phoenix AZ	340	300	60	50	750	16
San Diego CA	340	230	60	40	670	17
Denver CO	240	250	40	40	580	18
St. Louis MO	230	260	30	40	560	19
Baltimore MD	170	300	30	50	550	20
Pittsburgh PA	170	260	30	40	500	21
Minn-St. Paul MN	190	190	30	30	440	22
Fort Worth TX	140	230	20	40	420	23
Sacramento CA	160	140	30	20	350	24
Portland OR	110	180	20	30	340	25
Norfolk VA	90	180	20	30	320	26
Orlando FL	120	150	20	20	310	27
Ft. Lauderdale FL	120	140	20	20	300	29
New Orleans LA	100	150	20	30	300	29
San Antonio TX	100	120	20	20	260	30
Honolulu HI	80	120	20	30	240	32
Jacksonville FL	90	110	20	20	240	32
Austin TX	80	90	10	20	210	34
Cleveland OH	100	80	20	10	210	34
Milwaukee WI	80	90	10	10	200	36
Tampa FL	80	90	10	20	200	36
Cincinnati OH	90	70	20	10	190	37
Columbus OH	80	70	10	10	170	39
Nashville TN	70	80	10	10	170	39
Charlotte NC	60	60	10	10	150	40
Hartford CT	40	70	10	10	130	41
Kansas City MO	40	70	10	10	120	42
Albuquerque NM	40	40	10	10	90	45
Louisville KY	40	40	10	10	90	45
Memphis TN	40	40	10	10	90	45
Oklahoma City OK	40	40	10	10	90	45
Indianapolis IN	30	40	0	10	80	47
Salt Lake City UT	30	30	10	0	70	48
El Paso TX	20	20	0	0	40	49
Corpus Christi TX	0	10	0	0	10	50
Northesetern Ava	550	1 000	100	170	1.820	
Nut theastern Avg	100	230	30	40	500	
Southorn Ave	1/0	170	20	30	370	
Southuestern Ave	190	230	30	40	470	
Bostern Ave	100	780	120	140	1.690	
TOYON AVA	100	270	30	,40 40	530	
Total Ava	310	420	50	70	860	
Havimum Valua	3 000	3 630	530	64.0	7 670	
Minimum Value	J,000	10	0,00	0	10	
minimum value	v	10	v	Ŷ		

Table 16. Component and Total Congestion Costs By Urban Area for 1990

approximately 85 percent of an urban area's congestion cost. The average economic burden placed on urban areas in 1990 due to congestion was \$860 million, compared to \$780 million in 1989.

Thirteen urban areas had total congestion costs equal to or exceeding \$1 billion. Of the seven urban areas studied in Texas only two, Houston -- 6th and Dallas -- 11th, ranked in the top fifteen. Congestion in the Texas urbanized areas resulted in a cost of approximately \$3.7 billion, a 12 percent increase from 1989 congestion costs.

Table 17 illustrates the estimated economic impact of congestion per capita and per registered vehicle. Viewing congestion costs in relation to population and vehicles provides an estimate of the effects of congestion on the individual. The urban area with the highest per vehicle cost was Washington, D.C. (\$1,420 per registered vehicle), while San Bernardino-Riverside had the highest per capita cost (\$880 per person). The relationships of these cost estimates to total congestion cost can be seen in Table 18, which illustrates the rankings of urban areas by the annual, per capita, and per registered vehicle costs. The rankings of the cost estimates are fairly consistent with 15 urban areas occupying the top ten positions in all three categories. The 1989 and 1990 rankings of the RCI values and the congestion costs per capita are displayed in Table 19. The change during the past year can be seen in the costs and RCI rankings.

Tables 20 through 27 present estimates of congestion cost from 1986 to 1989. Previously published estimates presented in this series of reports have been revised for some areas to reflect new information. The data in Tables 20 through 27 are the best current information on the delay, fuel and cost values for the years 1986 through 1989. Some of the data missing in 1986 and 1987 was unobtainable because of the various methods of reporting information in the HPMS database.

	Total Congestio	on Cost
	Per Registered Vehicle	Per Capita
Urban Area	(Dollars)	(Dollars)
Northeastern Cities		
Baltimore MD	530	270
Boston MA	880	490
Hartford CT	250	220
New York NY	1,090	390
Philadelphia PA	420	270
Pittsburgh PA	400	270
Washington DC	1,420	770
Midwestern Cities	1	
Chicago IL	570	300
Cincinnati OH	200	160
Cleveland OH	140	120
Columbus OH	230	200
Detroit MI	530	380
Indianapolis IN	130	80
Kansas City MO	160	100
Louisville KY	190	110
Milwaukee WI	370	160
Minn-St. Paul MN	270	220
Oklahoma City OK	190	120
St. Louis MO	540	290
Southern Cities		
Atlanta GA	640	530
Charlotte NC	390	320
Ft. Lauderdale FL	290	240
Jacksonville FL	400	330
Memohis TN	140	100
Miami FL	680	520
Nashville TN	340	310
New Orleans LA	340	270
Norfolk VA	390	350
Orlando FL	420	360
	310	290
Southwestern Cities		
Albuquerque NM	210	170
Austin TX	410	410
Corpus Christi IX	50	40
Dallas TX	750	570
Denver CO	420	370
EL Paso TX	120	80
Fort Worth TX	420	350
Houston TX	750	570
Phoenix AZ	630	400
Salt Lake City UT	90	80
San Antonio TX	290	220
Western Cities		
Honolulu HI	470	360
Los Angeles CA	980	670
Portland OR	500	330
Sacramento CA	280	320
San Bernardino-Riv CA	1,320	880
San Diego CA	480	290
San Fran-Oak CA	930	760
San Jose CA	960	690
Seattle-Everett WA	880	660
Hanthaastaum from	710	790
NORTHEASTERN AVG	200	100
MIGWESTERN AVG	290	770
Southern Avg	390	200
Southwestern Avg	580	500
Western Avg	(60	550
Texas Avg	400	520
Total Avg	480	540
Maximum Value	1,420	088
Minimum Value	50	40

Table 17. Estimated Unit Costs of Congestion in 1990

Source: TTI Analysis and Local Transportation Agency References

Table 18. 1990 Rankings of Urban Area by Estimated Impact of Congestion

Urban Area	Areawide Cost of Congestion	Congestion Cost per Capita	Congestion Cost per Reg. Vehicle
Northeastern Cities			
Baltimore MD	20	30	17
Boston Må	8	11	8
Hostford CT	41	37	38
		1/	33
NEW TOPK NT	2	71	24
Philadelphia PA		31	24
Pittsburgh PA	21	33	20
Washington DC	4	2	
Midwestern Cities	_		
Chicago IL	5	26	14
Cincinnati OH	37	40	41
Cleveland OH] 33	43	45
Columbus OH	38	38	39
Detroit MI	7	15	16
Indianapolis IN	47	48	47
Kansas City MO	42	45	44
Louisville KY	46	44	42
Milwaukee WI	35	41	30
Mino-St Paul MN	22	35	37
Oklahoma fity OK	43	42	43
St Louis MO	19	28	15
Southern Cities		20	
Atlanta Ch	17	0	12
	13	24	20
	40	24	27
Ft. Lauderdale FL	20	24	33
Jacksonville FL	31	21	21
Memphis TN	45	46	40
Miami FL	15	10	11
Nashville TN	39	25	32
New Orleans LA	29	32	31
Norfolk VA	26	20	28
Orlando FL	27	17	23
Tampa FL	36	29	33
Southwestern Cities			
Albuquerque NM	44	39	40
Austin TX	34	12	25
Corpus Christi TX	50	50	50
Dallas TX	11	8	9
Denver CO	18	16	22
EL Paco TV	40	49	48
Fort Vorth TV	27	19	21
Houston TV		7	10
Dhashiy 47	14	17	17
Phoenix AZ	10	13	13
Salt Lake City UI	48	4/	47
San Antonio IX	<u>د</u> ا	00	54
Western Cities	70	10	20
Honolulu HI	52	18	20
Los Angeles CA		>	4
Portland OR	25	22	18
Sacramento CA	24	23	36
San Bernardino-Riv CA	12	1	2
San Diego CA	17	27	19
San Fran-Oak CA	3	3	6
San Jose CA	14	4	5
Seattle-Everett WA	10	6	7

Table	19.	1990	Congestion	Index	Values
TODIC	17.	1770	ungesciult	11000	a d c de d

			Roadway Congestion		Congestion Costs		
	DVMI/In-Miles		1000			Longesti	on Losis
Urban Area	Frwy	Prin. Art Street	Value	<u>ка</u> 1989	1990	1989	1990
Northeastern Cities						25.0	270
Baltimore MD	12,640	5,930	1.01	24	24	250	270
Boston MA	14,220	4,540	1.06	13	16	470	490
Hartford CT	10,730	5,910	0.89	37	37	230	220
New York NY	14,050	6,890	1.14	12	9	370	390
Philadelphia PA	12,140	6,580	1.05	17	17	250	270
Pittsburgh PA	8,200	5,990	0.82	42	44	240	270
Washington DC	16,610	8,500	1.37	2	2	690	770
Midwestern Cities				_	_		700
Chicago IL	15,680	6,980	1.25	5	5	270	300
Cincinnati OH	12,570	4,480	0.96	30	28	140	160
Cleveland OH	12,450	5,170	0.97	28	27	110	120
Columbus OH	10,440	5,210	0.83	42	42	180	200
Detroit MI	13,320	6,350	1.09	15	14	360	380
Indianapolis IN	10,590	4,510	0.83	41	42	70	80
Kansas City MO	9,230	4,540	0.74	48	47	90	100
Louisville KY	10,500	5,660	0.86	40	40	100	110
Milwaukee WI	12,920	4,760	0.99	25	25	140	160
Minn-St. Paul MN	12,020	4,700	0.93	55	55	200	220
Oklahoma City OK	9,630	5,270	0.79	45	45	120	120
St. Louis MO	11,280	7,200	0.99	26	25	280	290
Southern Cities					10	(00	570
Atlanta GA	14,190	6,230	1.11		12	490	550
Charlotte NC	7,670	5,770	0.78	40	40	280	320
Ft. Lauderdale FL	11,840	5,200	0.94	32	30	210	240
Jacksonville FL	11,960	4,840	0.94	51	50	500	330
Memphis TN	11,150	5,230	0.91	35	35	90	520
Miami FL	14,170	7,620	1.20	4	4	470	710
Nashville TN	10,200	5,790	0.89	55	37	290	270
New Orleans LA	15,810	6,500	1.12	10	10	200	350
NOTTOLK VA	10,020	5,790	0.90	20	20	3/0	360
Urtando FL	10,080	2,450	1.05	10	17	250	200
I lampa FL Couthursterm Cities	12,100	0,010	1.05	10		250	270
Albumonguo NM	11 160	5 260	0.03	33	77	160	170
Albuquerque MM	17,100	/ 860	0.95	26	30	370	410
Austin IX	9 / 70	4,000	0.74	50	40	40	410
	17 950	4,020	1 05	20	17	500	570
	12,000	5,800	1 03	20	21	310	370
EL Paso TV	0 510	3,830	0.74	46	47	70	80
EL PASO IA	11 610	/ 870	0.00	78	36	320	350
	16 700	5 080	1 12	10	10	520	570
Phoenix A7	12 270	5,660	1.03	18	21	370	400
Salt Jake City UT	10,450	5,730	0.85	44	41	80	80
San Antonio TV	11 250	4 810	0.88	38	30	200	220
Western Cities	1,250	4,010					
Honolulu HI	13,590	7.860	1,11	13	12	330	360
los Angeles CA	21,100	6.480	1.55	1	1	620	670
Portland OR	13,460	6,400	1.07	16	15	300	330
Sacramento CA	12,350	6.360	1.02	22	23	300	320
San Bernardino-Riv CA	16,290	4,740	1.19	8	8	840	880
San Diego CA	16,050	5,460	1.22	7	6	280	290
San Fran-Oak CA	17,820	6,110	1.35	2	3	720	760
San Jose CA	13,600	4,860	1.04	20	20	650	690
Seattle-Everett WA	15,640	5,800	1.20	5	7	610	660
				L	L	L	l

Notes: ¹ Cost includes delay and fuel

	Annual Cost Due to Congestion (\$Millions)						
Urban Area	Recurring Delay	Incident Delay	Recurring Fuel	Incident Fuel	Delay&Fuel Cost		
Northeastern Cities							
Baitimore MD Boston MA	-	-	-	-	-		
Hartford CT	20	40	-	-	-		
New York NY	-	-	-	-	-		
Philadelphia PA	-	-	-	-	-		
Pittsburgh PA	-	-	-	-	-		
Washington DC	-	-	-	-	-		
Midwestern Cities	_	_	_		_		
Cincipnati OH	-	-	-	_	-		
Cleveland OH	-	-	-	-	-		
Columbus OH	50	40	*	-	-		
Detroit MI	-	-	-	-	-		
Indianapolis IN	-	-	-	- 10	- 70		
Kansas City MO Louisville KY	20	40 70		10	07 08		
Milwaukee WI	50 60	06 03	10	10	130		
Minn-St. Paul MN	110	110	20	20	250		
Oklahoma City OK	-	-	-	-	-		
St. Louis MO	160	180	90	100	540		
Southern Cities	770	7(0	EO	E.0.	790		
Atlanta GA Charlotte NC	- 550 - 60	04C 0.5	50	5U -	180		
Ft. Lauderdale Fl	40 90	40	10	20	220		
Jacksonville FL	50	70	10	10	140		
Memphis TN	20	20	0	0	50		
Miami FL	210	250	30	40	520		
Nashville TN	40	50	10	10	110		
New Orleans LA	80	120	10	20	220		
NOFTOLK VA Orlando Fl	00 RA	150	- 10	- 20	210		
Tampa FL	50	60	10	10	130		
Southwestern Cities							
Albuquerque NM	20	20	0	0	50		
Austin TX	70	80	10	10	180		
Corpus Christi TX	0	0	0	0	10		
Dallas IX Denver CO	290	500	40 20	70	380		
EL Paso TX	10	20	0	0	30		
Fort Worth TX	110	180	20	30	330		
Houston TX	480	640	70	90	1,290		
Phoenix AZ	230	210	40	30	500		
Salt Lake City UT	20	20	0	0	40		
San Antonio IX Vestern Cities	90	100	10	10	220		
Honolulu HI	50	90	10	10	160		
Los Angeles CA	2,300	2,690	360	420	5,760		
Portland OR	60	90	10	10	170		
Sacramento CA	70	60	10	10	150		
San Bernardino-Riv CA	260	300	40	50	650 750		
San Ulego CA San Fran-Oak CA	180 730	020	50 110	140	1,000		
San Jose CA	270	320	40	50	690		
Seattle-Everett WA	230	300	40	50	620		
		10					
Northeastern Avg	20	40	- 20	-	210		
Southern Avg	100	120	20	20	260		
Southwestern Ava	140	180	20	30	360		
Western Avg	460	540	70	80	1,160		
Texas Avg	150	220	20	30	420		
Total Avg	190	230	30	40	520		
Maximum Value	2,300	2,690	360	420	5,760		
Minimum Value	U	U	U	U	10		

Table 20. Component and Total Congestion Costs By Urban Area for 1986

Note: - Denotes Data Not Available

	Total Congest	ion Cost
_	Per Registered Vehicle	Per Capita
Urban Area	(Dollars)	(Dollars)
Northeastern Cities		
Baltimore MD	-	-
Boston MA	-	-
Hartford CT	-	-
New York NY	-	-
Philadelphia PA	-	-
Pittsburgh PA	-	-
Washington DC	-	-
Midwestern Cities		
Chicago IL	-	-
Cincinnati OH	-	-
Cleveland OH	-	-
Columbus OH	-	-
Detroit MI	-	-
Indianapolis IN	-	-
Kansas City MO	120	70
Louisville KY	140	80
Milwaukee WI	160	110
Minn-St. Paul MN	220	130
Oklahoma City OK	-	-
St. Louis MO	390	280
Southern Cities		
Atlanta GA	550	460
Charlotte NC	-	-
Et Lauderdale El	230	190
rt. Lauderdate rL	250	210
Jacksonville FL	110	40
Memphis IN	710	200
Miami FL Mashadila TN	700	210
Nashville IN	300	210
New Urleans LA	270	210
Nortolk VA		700
Orlando FL	570	500
Tampa FL	190	210
Southwestern Cities		
Albuquerque NM	130	100
Austin TX	390	380
Corpus Christi TX	40	40
Dallas TX	560	480
Denver CO	300	250
El Paso TX	100	70
Fort Worth TX	360	290
Houston TX	680	460
Phoenix AZ	450	290
Salt Lake City UT	60	50
San Antonio TX	280	230
Western Cities		
Honolulu HI	330	270
Los Angeles CA	750	540
Portland OR	290	170
Sacramento CA	140	160
San Bernardino-Riv CA	960	660
San Diego CA	320	180
San Fran-Oak CA	710	550
San Jose CA	710	510
Seattle-Everett VA	590	400
Seattle Everett mit		
Northeastern Ava	-	-
Miduestern Ava	210	130
Southern Ave	290	240
Southunstonn Ave	300	240
Southwestern Avg	500	780
Toxoo Avg	7/0	280
Texas Avg	340 750	200
Iotal Avg	220	200
Maximum Value	900	000
Minimum Value	40	40

Table 21. Estimated Impact of Congestion in 1986

Note: - Denotes Data Not Available

	Annual Cost Due to Congestion (\$Millions)					
	Recurring	Incident	Recurring	Incident	Delay&Fuel	
Urban Area	Delay	Delay	Fuel	Fuel	Cost	
Northeastern Cities	400	200	20	70	360	
Baltimore MD	120	200	20	00	970	
Boston MA	240	620		90 10	80	
Harttord CI	1 300	2 570	200	370	4 540	
NEW TOFK NT Dhiladolphia DA	360	460	50	60	940	
Philadelphia PA Ditteburgh DA	120	100	20	30	360	
Vachington DC	560	920	00	140	1.710	
Miduestern Cities	500	720	<i>,</i> ,,	140	.,	
Chicano II	680	780	100	120	1.680	
Cincipnati OH	50	50	10	10	110	
Cleveland OH	70	50	10	10	140	
Columbus OH	60	50	10	10	120	
Detroit MI	420	650	60	100	1,230	
Indianapolis IN	-	-	-	-		
Kansas City MO	20	50	0	10	80	
Louisville KY	30	30	0	0	80	
Milwaukee WI	60	70	10	10	150	
Minn-St. Paul MN	150	140	20	20	340	
Oklahoma City OK	-	-	-	-	-	
St. Louis MO	180	200	20	30	430	
Southern Cities						
Atlanta GA	360	390	50	60	860	
Charlotte NC	40	40	10	10	90	
Ft. Lauderdale FL	90	110	10	20	240	
Jacksonville FL	60	80	10	10	170	
Memphis TN	20	30	Ű	Ű	60	
Miami FL	240	290	40	40	600	
Nashville TN	50	50	10	10	120	
New Orleans LA	80	120	10	20	250	
Nortolk VA	70	150	10	20	250	
Orlando FL	90	110	10	20	220	
lampa FL	60	70	10	10	140	
Southwestern Citles			_	_	_	
Albuquerque NM	70	80	10	10	170	
AUSTIN IX	70	00 0	10	10	10	
	280	470	40	70	860	
	160	170	30	30	390	
	10	10	0	0	30	
Fort Worth TX	110	180	20	30	330	
Houston TX	480	640	70	100	1,290	
Phoenix A7	240	210	40	30	520	
Salt Lake City UT	20	20	0	0	50	
San Antonio TX	90	100	10	20	230	
Western Cities						
Honolulu HI	50	90	10	10	170	
Los Angeles CA	2,460	2,890	390	460	6,190	
Portland OR	. 70	120	10	20	220	
Sacramento CA	90	80	10	10	200	
San Bernardino-Riv CA	270	320	40	50	690	
San Diego CA	240	160	40	30	460	
San Fran-Oak CA	850	1,070	130	170	2,230	
San Jose CA	300	360	50	60	760	
Seattle-Everett WA	290	38 0	50	60	770	
	(4 300	
Northeastern Avg	400	710	60	100	1,280	
Midwestern Avg	170	210	50	50	440	
Southern Avg	110	130	20	20	2/0	
Southwestern Avg	150	190	20	30	390	
Western Avg	510	610	80	100	1,500	
Texas Avg	150	210	20	50	420	
Iotal Avg	250	340	40	50	00U	
Maximum Value	2,460	2,890	240	460	0,190	
Minimum Value	U	U	U	U	10	

Table 22.	Component	and	Total	Congestion	Costs	8y	Urban	Area	for	1987
-----------	-----------	-----	-------	------------	-------	----	-------	------	-----	------

Note: - Denotes Data Not Available

	Total Congestion Cost					
	Per Registered Vehicle	Per Capita				
Urban Area	(Dollars)	(Dollars)				
Nontheostopp Citics						
Roltimore MD	370	190				
	640	340				
Hartford CT	160	130				
New York NY	790	280				
Philadelphia PA	350	230				
Pittsburgh PA	300	200				
Washington DC	1,060	570				
Midwestern Cities	·					
Chicago IL	430	230				
Cincinnati OH	130	120				
Cleveland OH	100	80				
Columbus OH	170	150				
Detroit MI	430	320				
Indianapolis IN	-	-				
Kansas City MO	120	70				
Louisville KY	170	100				
Milwaukee WI	290	120				
Minn-St. Paul MN	210	180				
UKLANOMA CITY UK	-	220				
St. Louis MU	450	220				
Southern Littles	570	400				
Atlanta GA Charlette NC	260	230				
Et Louderdale El	250	200				
Incksonville El	290	250				
Memohis TN	100	70				
Miami FL	450	340				
Nashville TN	250	230				
New Orleans LA	280	220				
Norfolk VA	320	290				
Orlando FL	360	300				
Tampa FL	250	220				
Southwestern Cities						
Albuquerque NM	-	-				
Austin TX	370	360				
Corpus Christi TX	50	40				
Dallas TX	550	450				
Denver CO	300	260				
El Paso TX	90	60				
Fort Worth TX	330	290				
Houston TX	580	460				
Phoen1X AZ	440	200				
Salt Lake City UI	70	220				
San Antonio IX Vestern Cities	200	220				
Western crities	340	270				
	810	570				
Portland OR	350	210				
Sacramento CA	170	200				
San Bernardino-Riv CA	970	680				
San Diego CA	350	220				
San Fran-Oak CA	760	630				
San Jose CA	780	560				
Seattle-Everett WA	670	480				
Northeastern Avg	520	280				
Midwestern Avg	250	160				
Southern Avg	310	260				
Southwestern Avg	310	250				
Western Avg	580	450				
Texas Avg	520	270				
Total Avg	580	270				
Maximum Value	1,000	000				
Minimum Value	50	40				

Table 23. Estimated Impact of Congestion in 1987

Note: - Denotes Data Not Available

	Annual	Cost Due to	Congestion	(\$Million	s)
	Recurring	Incident	Recurring	Incident	Delay&Fuel
Urban Area	Delay	Delay	Fuel	Fuel	Cost
Northeastern Cities					
Baltimore MD	130	220	20	40	400
Boston MA	320	890	50	150	1,580
Hartford CT	30	70	10	10	120
New York NY	1,580	2,880	240	440	1 010
Philadelphia PA	390 150	490	20	70	410
Victopurgn PA	600	210	100	160	1 850
Washington DC Widuestern Cities	000	990	100	100	1,050
Chicago II	700	810	110	130	1.760
Cincinnati OH	70	60	10	10	150
Cleveland OH	80	60	10	10	170
Columbus OH	70	50	10	10	140
Detroit MI	440	680	70	110	1,290
Indianapolis IN	20	30	0	0	60
Kansas City MO	30	60	0	10	100
Louisville KY	30	30	0	0	70
Milwaukee WI	70	70	10	10	170
Minn-St. Paul MN	160	150	30	30	360
Oklahoma City OK	30	40	10	10	80
St. Louis MO	160	180	20	30	390
Southern Cities					
Atlanta GA	350	380	50	60	850
Charlotte NC	50	50	10	10	110
Ft. Lauderdale FL	100	120	20	20	250
Jacksonville FL	70	80	10		170
Memphis TN	30	30	50	40	70
Miami FL	290	360	50	60 10	160
Nashville IN	60 00	170	10	20	260
New Urleans LA	90	150	10	20	200
NOFTOLK VA	00 00	110	10	20	230
Tampa El	90 60	80	10	10	160
Tampa ru Southwostorn Cition	00	- 20	10	10	100
	20	30	n	n	60
Austin TX	70	80	10	10	180
Corpus Christi IX	0 0	Ő	0	l o	10
Dallas TX	300	510	50	80	930
Denver CO	180	190	30	30	430
El Paso TX	10	20	0	0	40
Fort Worth TX	110	190	20	30	350
Houston TX	510	690	80	110	1,390
Phoenix AZ	300	290	50	50	680
Salt Lake City UT	20	20	0	0	50
San Antonio TX	90	100	10	20	230
Western Cities	**				
Honolulu HI	60	100	10	20	200
Los Angeles CA	2,510	2,940	410	480	6,540
Portland OR	90	140	10	20	260
Sacramento CA	120	100	20	20	200
San Bernardino-Riv CA	320	30U 100	50	20	550
San Diego LA San Fran-Ock CA	200	1 1/0	150	100	2 380
San Jose CA	700	3,140	50	130 AN	820
Seattle-Everatt UA	330	430	50	70	890
Segure-Lighter WA	550	-30			
Northeastern Ava	460	820	70	130	1,470
Midwestern Ava	150	190	20	30	400
Southern Ava	110	140	20	20	300
Southwestern Ava	150	190	20	30	400
Western Avg	550	650	90	110	1,390
Texas Avg	160	230	30	40	450
Total Avg	260	350	40	60	700
Maximum Value	2,510	2,940	410	480	6,340
Minimum Value	0	0	0	0	10
		L	L	L	

Table 24. Component and Total Congestion Costs By Urban Area for 1988

Note: - Denotes Data Not Available

	Total Congestion Cost				
	Per Registered Vehicle	Per Capita			
Urban Area	(Dollars)	(Dollars)			
Northeastern Cities					
Baltimore MD	390	210			
Boston MA	900	480			
Hartford CT	230	190			
New York NY	880	310			
Philadelphia PA	370	240			
Pittsburgh PA	340	220			
Washington DC	1,130	610			
Midwestern Cities					
Chicago IL	440	240			
Cincinnati OH	160	150			
Cleveland OK	110	90			
Columbus OH	190	160			
Detroit MI	450	330			
Indianapolis IN	110	60			
Kansas City MO	150	90			
Louisville KY	160	90			
Milwaukee WI	320	140			
Minn-St. Paul MN	220	190			
Oklahoma City OK	180	120			
St. Louis MO	410	200			
Southern Cities					
Atlanta GA	550	480			
Charlotte NC	300	260			
Ft. Lauderdale FL	260	210			
Jacksonville FL	290	250			
Memphis TN	110	80			
Miami FL	550	410			
Nashville TN	310	290			
New Orleans LA	310	240			
Norfolk VA	340	300			
Orlando FL	360	300			
Tampa FL	270	250			
Southwestern Cities					
Albuquerque NM	160	120			
Austin TX	370	360			
Corpus Christi TX	50	40			
Dallas TX	580	480			
Denver CO	320	280			
El Paso TX	100	70			
Fort Worth TX	340	300			
Houston TX	620	490			
Phoenix AZ	580	370			
Salt Lake City UT	70	60			
San Antonio TX	250	190			
Western Cities					
Honolulu HI	400	300			
Los Angeles CA	810	570			
Portland OR	430	280			
Sacramento CA	210	250			
San Bernardino-Riv CA	1,130	790			
San Diego CA	400	250			
San Fran-Oak CA	790	660			
San Jose CA	830	600			
Seattle-Everett WA	760	550			
Nonthonotorn Ave	610	320			
Miduostopp Avg	2/0	160			
Midwestern Avg	240	280			
Southern Avg	330	200			
Southwestern Avg	510	230			
Western Avg	040	4/0			
lexas Avg	330	280			
Iotal Avg	400	280			
Maximum Value	1,150	(90			
Minimum Value	50	40			

Table 25. Estimated Impact of Congestion in 1988

Source: ITI Analysis and Local Transportation Agency References

	Annual	Cost Due to	n Congestion	(\$Million	s)
	Recurring	Incident	Recurring	Incident	Delay&Fuel
Hirbon Area	Delav	Delav	Fuel	Fuel	Cost
VIDAL AICA	Decay	Jecuy	,		
Northeastern Cities					
Baltimore MD	150	260	30	40	470
Boston MA	320	880	50	140	1,390
Hartford CT	40	80	10	10	140
New York NY	1,810	3,380	300	560	6,040
Philadelphia PA	400	520	60	80	1,060
Pittsburgh PA	160	230	20	30	440
Washington DC	690	1,140	110	190	2,130
Midwestern Cities			170	450	4 070
Chicago IL	780	900	130	150	1,970
CincinnatiOH	70	60 70	10	10	100
Cleveland OH	90	70	20	10	150
Columbus OH	70	00 7(0	10	120	1 410
Detroit MI	480	740	00 0	10	60
Indianapolis IN Kensee City MO	20	50	0	10	100
kansas tity mu	30	60 60	10	10	80
Nilupukaa Wi	- 50 7∩	80	10	10	180
Minn-St Davi MM	170	160	30	30	390
Oklahoma City OK	30	40	10	10	80
St. Louis MO	220	250	30	40	540
Southern Cities					
Atlanta GA	370	410	60	70	910
Charlotte NC	50	50	10	10	120
Ft. Lauderdale FL	100	130	20	20	270
Jacksonville FL	80	100	10	20	210
Memohis TN	30	30	10	10	80
Miami FL	330	410	50	70	870
Nashville TN	70	70	10	10	160
New Orleans LA	90	140	20	20	270
Norfolk VA	80	170	10	30	290
Orlando FL	100	130	20	20	270
Tampa FL	70	80	10	10	170
Southwestern Cities					90
Albuquerque NM	30	40	10	10	190
Austin TX	80	80	10	10	100
Corpus Christi TX	0	570	0	00	080
Dallas TX	310	530	50	90 30	480
Denver CO	200	210	50	50	400
EL PASO IX	120	20	20	30	370
FORT WORTH IX	550	740	00	120	1,500
nouston IX Rhoopix A7	330	200	50	50	700
FIGENIX AL	320	270	0,	0	60
San Antonio TV	100	110	20	20	240
Vestern fities	100				
Honolulu KI	70	110	10	20	220
Los Angeles CA	2.750	3,220	480	560	7,000
Portland OR	100	160	20	30	310
Sacramento CA	140	120	30	20	310
San Bernardino-Riv CA	360	420	60	70	920
San Diego CA	320	210	60	40	620
San Fran-Oak CA	980	1,240	170	220	2,620
San Jose CA	360	420	60	70	910
Seattle-Everett WA	380	500	60	80	1,020
				450	1 (70
Northeastern Avg	510	930	80	150	1,6/0
Midwestern Avg	170	210	30	50	440
Southern Avg	130	160	20	30	220
Southwestern Avg	160	200	50	120	420
Western Avg	610	/10	110	120	/ / 20
Texas Avg	1/0	240	50 E0	40	780
Total Avg	280	390	50	540	7 000
Maximum Value	2,150	5,500	400	000	10
minimum value	U	U U			

Table 26. Component and Total Congestion Costs By Urban Area for 1989

	Total Congestion Cost	
	Per Registered Vehicle	Per Capita
Urban Area	(Dollars)	(Dollars)
Northeastern Cities		
Raltimore MD	460	250
Boston MA	840	470
Hartford CT	270	230
New York NY	1,020	370
Philadelphia PA	380	250
Pittsburgh PA	360	240
Washington DC	1,280	690
Midwestern Cities		
Chicago IL	480	270
Cincinnati OH	170	140
Cleveland OH	130	110
Columbus OH	200	180
Detroit MI	490	360
Indianapolis IN	110	70
Kansas City MU	150	90
	770	100
Minn-St Doul MN	2/0	200
Oklahoma City OK	180	120
St. Louis MO	570	280
Southern Cities	510	200
Atlanta GA	590	490
Charlotte NC	330	280
Ft. Lauderdale FL	260	210
Jacksonville FL	360	300
Memphis TN	120	90
Miami FL	610	470
Nashville TN	320	290
New Orleans LA	320	260
Norfolk VA	360	310
Orlando FL	380	340
Tampa FL	270	250
Southwestern Cities		
Albuquerque NM	190	160
Austin TX	370	370
Corpus Christi IX	50	40
Dallas IX	00U 750	210
Denver CU	300 110	310
EL PASO IX Egent Vonth TV	780	320
Houston TY	500 600	520
Phoenix 47	500	370
Salt Lake City UT	90	80
San Antonio TX	270	200
Western Cities		200
Honolulu HI	440	330
Los Angeles CA	900	620
Portland OR	460	300
Sacramento CA	250	300
San Bernardino-Riv CA	1,200	840
San Diego CA	440	280
San Fran-Oak CA	850	720
San Jose CA	900	650
Seattle-Everett WA	810	610
		3/0
Northeastern Avg	660	360
Midwestern Avg	270	1/0
Southern Avg	360	500
Southwestern Avg	540	270
Western Avg	07U 340	200
rexas Avg		270
total Avg Maximum Valua	440	840
Minimum Value	50	640
einimum vatue	00	40

Table 27. Estimated Impact of Congestion in 1989

Source: III Analysis and Local Transportation Agency References

CONGESTION TRENDS FOR URBAN AREA GROUPS

Previous sections have presented travel, roadway supply, and congestion statistics for individual urban areas and geographic regions across the United States. Other groupings based on population size and population density were used to further examine the various congestion trends that occur between the urban areas and over the past decade. Grouping areas by population size or population density can reveal how the size of a city, or its development characteristics, are related to congestion. This section presents and examines the various congestion trends for the 50 urban areas grouped by population size and population density.

Population Size

The amount of congestion in an urban area is intuitively related to its population. Larger urban centers tend to be more congested and typically have a range of solutions to address transportation problems, indicating a recognition of the problems of relying on roadway solutions. This section presents an analysis of the relationship between population and congestion level.

For the purposes of this analysis, Chicago, New York, and Los Angeles were separated because of their comparatively large populations, and the remaining areas were divided into four approximately even groups based on the 1990 population estimates (Table 28). Chicago, New York, and Los Angeles have populations much greater than the areas in the adjacent group, and the statistics for these three areas would have distorted the true average statistics for the fourth group. The major Texas urban areas are located in three of the groups: Corpus Christi, Austin, and El Paso are in the first group; San Antonio and Forth Worth are in the third group; and, Dallas and Houston fall into the fourth group. Table 28 also shows the 1990 RCI value and percent change in the RCI from 1982 to 1990 for each urban area in the five groups.

Urban Area	Population (1000)	Roadway ¹ Congestion Index	Percent Change in Roadway Congestion Index, 1982 to 1990
First Group	0.80	0 72	7
	450	0.78	16
LNAFLOTTE NC	510	0.94	22
	525	0.93	19
	540	0.74	17
	565	0.89	20
Hartford CT	610	0.89	17
Honolulu HI	660	1.11	19
Tampa FL	700	1.05	12
Jacksonville FL	720	0.94	8
Oklahoma City OK	735	0.79	10
Salt Lake City UT	800	0.85	
Second Group			3
Louisville KY	810	0.86	2
Orlando FL	850	0.72	22
Columbus OH	850	0.85	6
Memphis TN	000	0.91	22
Nortolk VA	923	0.90	17
Indianapolis IN	1 030	1 07	23
Portland UK	1 080	1.12	14
New Offerins LA	1 095	1.02	27
Cincippati ON	1,140	0.96	12
Kansas City MO	1,160	0.74	19
San Bernardino-Riv CA	1,170	1.19	9
Third Group			
San Antonio TX	1,170	0.88	14
Fort Worth TX	1,200	0.90	18
Milwaukee WI	1,230	0.99	19
Ft. Lauderdale FL	1,270	0.94	9 32
San Jose CA	1,410	1.04	22
Denver CO	1,580	1.03	26
Seattle-Everett WA	1,730	1.20	21
Cleveland OH	1,790	1 26	20
Miami FL	1 865	0.82	5
Atlanta CA	1 875	1.11	25
Allanca GA Dhoeniy A7	1,895	1.03	-10
Fourth Group	.,		
St. Louis MO	1,960	0.99	19
Baltimore MD	1,990	1.01	20
Dallas TX	1,990	1.05	25
Minn-St. Paul MN	2,010	0.93	26
San Diego CA	2,295	1.22	56
Houston TX	2,880	1.12	-4
Boston MA	2,955	1.06	18
Washington DC	3,100	1.37	20
San Fran-Oak CA	5,675	1.35	-6
Detroit MI	4,000	1.09	5
Philadelphia PA	4,220	1.02	
Chicago II	7 510	1.25	23
Los Angeles CA	11.420	1.55	27
New York NY	16.780	1.14	13

Table 28. Urban Area Grouping by Population Size

Note: ¹ See Equation 1
Mileage and Travel Volume Statistics

The average freeway and principal arterial street mileage and travel volumes (DVMT) for the five population groups are shown in Tables 29 and 30. The general trend is increasing average roadway mileage and travel volumes for an increasing population size. Chicago, New York, and Los Angeles (fifth group) have disproportionately higher travel volumes and roadway mileage than the first four groups. The average DVMT per lane-mile, a measure of the severity of congestion, shows that freeway and principal arterial street congestion is more extensive in the larger population groups.

The magnitude of the freeway DVMT per lane-mile values also indicate that, on the average, urban areas in the fourth and fifth groups experience undesirable areawide levels of congestion on the freeway system. The magnitude of the principal arterial street DVMT per lane-mile values suggest that, on the average, all population groups experience undesirable levels of congestion on principal arterial streets.

Population Group	DVMT ¹	Lane-	Avg. No.	DVMT/
	(1000)	Miles	Lanes	Ln-Mile ^{2,3}
Fifth Group	77,100	4,520	6.5	16,950
Fourth Group	23,890	1,680	5.8	14,060
Third Group	12,020	940	5.5	12,570
Second Group	8,210	700	5.5	11,850
First Group	4,350	410	5.1	10,630

Table 29. 1990 Freeway Mileage and Travel Volume Grouped by Population

Note: ¹ Daily vehicle-miles of travel

² Daily vehicle-miles of travel per lane-mile of freeway

³ Value in excess of 13,000 indicates undesirable level of congestion on area freeway system

Population Group	DVMT ¹	Lane-	Avg. No.	DVMT/
	(1000)	Miles	Lanes	Ln-Mile ^{2,3}
Fifth Group	53,820	8,040	3.7	6,780
Fourth Group	13,390	2,220	3.7	5,940
Third Group	8,900	1,550	3.8	5,570
Second Group	4,660	950	3.7	5,160
First Group	3,350	630	3.7	5,530

Table 30. 1990 Principal Arterial Street Nileage and Travel Volume Grouped by Population

Note: ' Daily vehicle-miles of travel

² Daily vehicle-miles of travel per lane-mile of principal arterial street ³ Value in excess of 5,000 indicates undesirable level of congestion on area principal arterial street system

Source: TTI Analysis and Local Transportation Agency References

1990 Roadway Congestion Index Estimates

The components of the Roadway Congestion Index (RCI) equation and the average 1990 RCI values for the five population groups are shown in Table 31. The average RCI values exhibit the general trend of increasing average levels of congestion for increasing urban area population size. The urban areas with large populations (fourth and fifth group) have undesirable levels of congestion (RCI values of 1.11 and 1.31, respectively), while the average for the medium-size areas (third group) is just beginning to indicate areawide congestion (RCI value of 1.01). Smaller urban areas in the first and second groups have average RCI values of 0.89 and 0.93, below what might be considered areawide congestion.

	Freeway /	Expressway	Principa Str	Roadway ³	
Population Group	DVMT ¹	DVMT/ ²	DVMT ¹	DVMT/ ²	Congestion
	(1000)	Ln-Mile	(1000)	Ln-Mile	Index
Fifth Group	77,100	16,950	53,820	6,780	1.31
Fourth Group	23,890	14,060	13,390	5,940	1.11
Third Group	12,020	12,570	8,900	5,570	1.01
Second Group	8,210	11,850	4,660	5,160	0.93
First Group	4,350	10,630	3,350	5,530	0.89

Table 31. 1990 Roadway Congestion Index Values Grouped by Population

Notes: Daily vehicle-miles of travel

² Daily vehicle-miles of travel per lane-mile ³ See Equation 1

Source: TTI Analysis

Roadway Congestion Trends, 1982 to 1990

The average growth in congestion between 1982 and 1990 for the five population groups ranges between 15 and 21 percent (Table 32, Figure 5). Congestion has increased faster in the larger population groups than in the smaller population groups. Interestingly, the average growth in congestion for the smallest study areas in the first group has slightly outpaced growth in the medium to large study areas in the second and third groups.

Table 32. Roadway Congestion Index Values Grouped by Population, 1982 to 1990

·····································		Year								Percent
Population Group	1982	1983	1984	1985	1986	1987	1988	1989	1990	1982 to 1990
Fifth Group	1.08	1.10	1.12	1.15	1.21	1.23	1.27	1.29	1.31	21
Fourth Group	0.94	0.97	1.00	1.01	1.06	1.08	1.09	1.10	1.11	19
Third Group	0.88	0.90	0.91	0.94	0.96	0.98	0.98	1.00	1.01	15
Second Group	0.81	0.81	0.82	0.84	0.87	0.90	0.92	0.93	0.93	15
First Group	0.76	0.79	0.83	0.83	0.84	0.86	0.87	0.87	0.89	17

Source: TTI Analysis

Travel Delays

Table 33 illustrates travel delay information for the five population groups. Inspection of the table reveals that the average total delay for Chicago, New York, and Los Angeles (fifth group) exceeds 1.2 million vehicle-hours of delay. This means the total delay is over four times that of the other large urban areas in the fourth group. The general trend for the other groups is one of higher delay for larger population size. The total delay per 1000 persons for the five population groups ranges from 110 to 50 vehicle-hours, with lower delay values in smaller population areas.

Population Group	Total Delay (vehicle hours)	Total Delay per 1000 Persons
Fifth Group	1,272,570	110
Fourth Group	302,520	100
Third Group	141,830	90
Second Group	65,050	60
First Group	31,510	50

Table 33. Total Vehicle Hours of Delay for 1990 Grouped by Population

Source: TTI Analysis

Costs of Congestion

The congestion cost data presented in Table 16 was summarized to determine the average costs of congestion for the five population groups (Table 34). The larger urban areas in the fourth group had average annual congestion costs exceeding \$1.3 billion, while the average congestion cost in the fifth group was more than \$5.5 billion. The congestion cost per registered vehicle and per capita are also shown in Table 34. These normalized costs, which could also be called a "congestion tax," are the additional loss of money that congestion imposes upon residents of the urban area. The cost per registered vehicle ranged from \$880 to \$270 for the five population groups, and the annual cost per capita ranged from \$460 to \$230 per person. The costs per capita in the fourth and fifth group are much lower than the cost per vehicle, which reflects the lower vehicle ownership rate in urban areas in the Northeast and Midwest that comprise most of the cities in those two groups.

	Annual Cost	Due to Congesti	on (\$Millions)	Cost per	Cost per	
Population Group	Delay Fuel		Total	Vehicle (\$)	Capita (\$)	
Fifth Group Fourth Group Third Group Second Group First Group	4,680 1,110 520 240 110	820 190 90 40 20	5,510 1,300 610 280 140	880 680 510 360 270	460 450 380 270 230	

Table 34. 1990 Component and Total Congestion Costs Grouped by Population

Population Density

The population density of an urban area provides some indication of the compactness of development. In the United States, a general trend is that older cities in the Northeast and Midwest exhibit more dense development than those cities in the Southern and Southwestern regions. The 50 urban areas in this study were divided into 4 approximately even groups based on the population density (Table 35). Examination of the table reveals that those urban areas with the greatest population density (fourth group) are primarily located in the Northeast or in California. All of the major Texas urban areas are within the first group of population density (1130 to 1755 persons per square mile) with the exception of San Antonio, which falls into the third group. With respect to population density, the urban areas of Chicago, New York, and Los Angeles are comparable to those urban areas in the fourth group and were so included.

Mileage and Travel Volume Statistics

Tables 36 and 37 present the average freeway and principal arterial street mileage and DVMT for the four population density groups. The first three groups have relatively comparable travel and roadway characteristics, while the fourth group has much greater travel volumes and roadway supply for both freeways and principal arterial streets. The average freeway DVMT per lane-mile for the fourth group is greater than 15,000, but the average for the other three is below what could be considered areawide congestion. The average principal arterial street congestion for urban areas in the first, third, and fourth groups could be considered above undesirable levels.

			_
		Roadway ¹	Percent Change in
	Population Density	Congestion	Roadway Congestion Index,
Ushan Anon	(persons/sq mi)	Index	1982 to 1990
Urban Area	(per sons/sq. mr./	Thech	
First Group	4170	0.90	20
Nashville TN	1130	0.09	22
Norfolk VA	1135	0.98	25
Atlanta GA	1215	1.11	23
Jacksonville FL	1335	0.94	8
Dallas TX	1380	1.05	25
Fort Worth TX	1410	0.90	18
Austin TX	1455	0.94	22
Oklahoma City OK	1470	0.79	10
Tampa El	1575	1.05	12
Corrus Christi IX	1600	0.72	7
Ventford CT	1695	0.89	17
	1700	0.85	35
Salt Lake City Of	1755	1 12	-4
HOUSTON IX	CC11	1 + 16	·
Second Group	4 7778	1 07	21
Denver CO	1775	1.03	14
Charlotte NC	18/5	0.78	10
Kansas City MO	1900	0.74	19
Phoenix AZ	1945	1.03	-10
Minn-St. Paul MN	1970	0.93	26
Cincinnati OH	2000	0.96	12
Memohis TN	2025	0.91	6
Albuquerque NM	2060	0.93	19
Orlando Fl	2075	0,72	9
Louisville KY	2130	0.86	2
Indiananolis IN	2150	0.83	17
	2235	0.99	19
	2225	1 20	26
Seattle-Everett WA	2303	1.20	
Inird Group	2700	1 10	0
San Bernardino-Riv	2390	1.19	1/
San Antonio TX	2410	0.88	27
Portland OR	2450	1.07	23
Pittsburgh PA	2520	0.82	5
El Paso TX	2570	0.74	17
St. Louis MO	2685	0.99	19
Columbus OH	2740	0.83	22
Boston MA	2760	1.06	18
Cleveland OH	2775	0.97	21
Ft. Lauderdale FL	2955	0.94	9
New Orleans A	3000	1.12	14
Secremento CA	3040	1.02	27
Fourth Group	20,0		
	3135	1.04	22
San Juse LA	7195	1 00	-4
Detroit Mi	2020	1 22	56
San Diego CA	3230	1 01	20
Baltimore MD	3020	1.01	28
Washington DC	2020	1.5/	5
Philadelphia PA	5/35	1.03	77
Chicago IL	3775	1.25	<i>23</i>
Miami FL	3855	1.26	20
San Fran-Oak CA	4350	1.35	54
Honolulu HI	4890	1.11	19
Los Angeles CA	5225	1.55	27
New York NY	5270	1.14	13

Table 35. Urban Area Grouping by Population Density

Note: ¹ See Equation 1

Pop. Density Group	DVMT ¹ (1000)	Lane- Miles	Avg. No. Lanes	DVMT/ Ln-Mile ^{2,3}
Fourth Group	34,390	2,150	6.0	15,060
Third Group	10,580	870	5.6	12,090
Second Group	8,960	760	5.1	11,430
First Group	10,230	810	5.4	11,670

Table 36. 1990 Freeway Wileage and Travel Volume Grouped by Population Density

Note: ¹ Daily vehicle-miles of travel

² Daily vehicle-miles of travel per lane-mile of freeway ³ Value in excess of 13,000 indicates undesirable level of congestion

on area freeway system

Source: TTI Analysis and Local Transportation Agency References

Table 37. 1990 Principal Arterial Street Mileage and Travel Volume Grouped by Population Density

Pop. Density Group	DVMT ¹	Lane-	Avg. No.	DVNT/
	(1000)	Miles	Lanes	Ln-Mile ^{2,3}
Fourth Group	23,550	3,550	3.9	6,640
Third Group	7,050	1,300	3.6	5,500
Second Group	6,030	1,210	3.6	4,980
First Group	5,080	940	3.8	5,420

Note: ¹ Daily vehicle-miles of travel

 ² Daily vehicle-miles of travel per lane-mile of principal arterial street
³ Value in excess of 5,000 indicates undesirable level of congestion on area principal arterial street system

1990 Roadway Congestion Index Estimates

The average congestion levels (as represented by the RCI values) for the four population density groups are shown in Table 38. Urban areas in the fourth group have an average level of congestion 20 percent greater than what might be considered the beginning of areawide congestion (RCI value of 1.20). The other three groups have average congestion levels slightly less than the threshold for average areawide congestion.

	Freeway /	Expressway	Principa	Roadway ³	
Pop. Density Group	DVHT ¹	DVMT/ ²	DVMT ¹	DVMT/ ²	Congestion
	(1000)	Ln-Mile	(1000)	Ln-Mile	Index
Fourth Group	34,390	15,060	23,550	6,640	1.20
Third Group	10,580	12,090	7,050	5,500	0.97
Second Group	8,960	11,430	6,030	4,980	0.92
First Group	10,230	11,670	5,080	5,420	0.94
Notes: ¹ Daily vehicl ² Daily vehicl ³ See Equation	e-miles of t e-miles of t 1	ravel ravel per lane	e-mile		

Table 38. 1990 Roadway Congestion Index Values Grouped by Population Density

Source: TTI Analysis

Roadway Congestion Trends, 1982 to 1990

The average congestion levels from 1982 through 1990 for the four population density groups are presented in Table 39. The urban areas with the highest population density (fourth group) have exhibited the largest increase in congestion at 21 percent. The other three groups have experienced a slower growth in congestion, increasing between 13 and 16 percent between 1982 and 1990. Figure 6 provides a graphical picture of congestion trends for the four groups over the past 8 years.

Table 39. Roadw	y Congestion	Index Values	Grouped by Po	opulation	Density,	1982 to	1990
-----------------	--------------	--------------	---------------	-----------	----------	---------	-------------

		Year								Percent
Pop. Density Group	1982	1983	1984	1985	1986	1987	1988	1989	1990	1982 to 1990
Fourth Group Third Group Second Group First Group	0.99 0.83 0.81 0.81	1.01 0.85 0.82 0.84	1.04 0.86 0.83 0.88	1.05 0.89 0.85 0.89	1.11 0.92 0.87 0.91	1.13 0.93 0.89 0.92	1.16 0.96 0.89 0.93	1.19 0.96 0.91 0.93	1.20 0.97 0.92 0.94	21 16 13 16

Source: TTI Analysis

Figure 6. Roadway Congestion Index Values Grouped by Population Density, 1982 to 1990

Table 40 presents the average delay for the four groups. Again, urban areas in the fourth group of population density experience greater than four times the average amount of total delay as areas in any of the other groups. The total delay per 1000 persons ranges from 110 vehicle-hours for the fourth group to 60 vehicle hours for the second group.

Pop. Density Group	Total Delay (vehicle-hours)	Total Delay per 1000 Persons
Fourth Group	536,530	110
Third Group	106,860	70
Second Group	75,230	60
First Group	100,580	70

Table 40. Total Vehicle-Hours of Delay for 1990 Grouped by Population Density

Source: TTI Analysis

Costs of Congestion

The annual congestion costs for delay and wasted fuel are shown in Table 41. The average total delay and fuel cost for urban areas in the fourth group is \$2.32 billion per year, over five times the cost incurred by congestion in any of the other groups. The congestion costs per vehicle range from \$750 for the fourth group to \$340 for the second group. The cost per capita is slightly lower, ranging from \$470 in the fourth group to \$250 in the second group. As illustrated earlier, the larger difference in costs per capita and per vehicle in the cities in the fourth group reflects the lower vehicle ownership rates of urban areas with high population density.

Table 41.	1990	Component	and Total	Congestion	Costs	Grouped	bv	Population	Density
10010 41.	.,,,	component		congestion	00343	u vupcu	~,	ropatation	Density

	Annual Cost	Due to Congestic	Cost per	Cost per	
Pop. Density Group	Delay	Fuel	Total	Vehicle (\$)	Capita (\$)
Fourth Group Third Group Second Group First Group	1,970 390 270 380	340 70 40 70	2,310 460 310 450	750 450 340 430	470 310 250 320

CONCLUSIONS

This research report represents the results of the fifth year analysis of a six-year research effort focused on quantifying urban mobility. Relative mobility levels in 50 urban areas throughout the country were presented and discussed in this report. The 50 urban areas studied include the seven largest in Texas and a representative cross section of other large urban areas.

The Roadway Congestion Index (RCI) is one measure of urban mobility levels. This value is based on daily vehicle-miles of travel per lane-mile of roadway. The RCI values are intended to be areawide rather than site specific representations of congestion level.

The RCI values in Table 6 illustrate the growing congestion problem in medium and large urban areas in the United States. Congestion exceeded desirable levels in 24 areas in 1990, up from 11 in 1982. Only three of the 50 areas, Phoenix, Houston and Detroit, have had decreases in congestion between 1982 and 1990.

In 1982, eleven urban areas had achieved levels of undesirable congestion, by 1986, seven additional areas had reached or surpassed the point at which undesirable levels of congestion occur. This same trend of growth in congestion, continued through 1990 with six additional urban areas reaching a level of undesirable congestion bringing the total number of cities with undesirable levels of congestion to 24.

Ten more urban areas have estimated RCI values ranging between 0.97 and 0.90. These areas may not experience undesirable levels of congestion in the immediate future; however, congestion levels could become undesirable within the next five to ten years.

Houston (tied for 10th) was the only Texas urban area which was included in the ten most congested urban areas. Dallas (tied for 17th) was the second highest ranked area within the state. Austin was the third highest ranked (tied at 30th) urbanized area in the state with the remaining four Texas cities not ranked in the top 30.

The cost of congestion in the 50 urban areas studied exceeded \$43.2 billion in 1990. Thirteen areas had costs greater than or equal to \$1 billion. These 13 areas accounted for \$31.2 billion or about 74 percent of the congestion costs of the 50 urban areas studied. It can be seen in Table 16 that delay, both recurring and incident, accounted for approximately 85 percent of the congestion costs of an urban area, while excess fuel consumption accounts for the remainder. Increases in delay and fuel costs averaged about 11 percent annually between 1987 and 1990. Twenty-seven of the 50 areas had annual increases greater than or equal to 10 percent.

The effects of congestion costs on the individual can be seen by relating cost to population and vehicle ownership. Washington, D.C. has the highest cost per registered vehicle at \$1,420, while San Bernardino-Riverside has the highest cost per capita at \$880. The average cost per vehicle and cost per capita are \$480 and \$340, respectively. The average annual growth of both these values was 9 percent between 1987 and 1990 (in unadjusted dollars). Twenty-four areas had cost per vehicle growth rates equal to or greater than 10 percent over the four year period. Twenty-three areas had cost per capita annual growth rates equal to or greater than 10 percent between 1987 and 1990.

There are many different ways to group the urban areas in order to view trend characteristics. One such way is by population. When grouping the study areas by population, it is possible to see the quantity of congestion present in certain general sizes of urban area. Table 31 shows the DVMT, DVMT per lane mile, and RCI value for five population groups. The smallest urban areas, group one, have an average RCI value of 0.89. This shows that these smaller areas, populations less than or equal to 800,000, are approaching the level where areawide congestion is occurring. Group 3, comprised of urban areas whose population is between 1.17 and 1.90 million, has an average RCI value of 1.01. This shows that, on the average, congestion is already occurring in areas of this size.

Differences in the rankings within Table 18 indicate that no single measure of congestion can capture all of the aspects of the congestion issue. Table 8 similarly indicates that the amount of roadway capacity necessary to achieve a constant congestion level is beyond the ability of most medium and large urban areas. While much discussion centers on reducing congestion,

it would seem that on an areawide basis, a more realistic goal for the roadway system would be to maintain existing congestion levels.

REFERENCES

- Texas Transportation Institute. "Estimates of Relative Mobility In Major Texas Cities," Research Report 323-1F, 1982.
- Texas Transportation Institute. "Relative Mobility In Texas Cities, 1975 to 1984," Research Report 339-8, 1986.
- Texas Transportation Institute. "The Impact Of Declining Mobility In Major Texas And Other U.S. Cities," Research Report 431-1F, 1988.
- Texas Transportation Institute. "Roadway Congestion In Major Urbanized Areas: 1982 to 1987," Research Report 1131-2, 1989.
- Texas Transportation Institute. "Roadway Congestion In Major Urbanized Areas: 1982 to 1988," Research Report 1131-3, 1990.
- Texas Transportation Institute. "1989 Roadway Congestion Estimates and Trends," Research Report 1131-4, 1991.
- United States General Accounting Office. "Traffic Congestion: Trends, Measures, and Effects," Washington, D.C., 1989.
- 8. National Council on Public Works Improvements. "Fragile Foundations: A Report on America's Public Works," Washington, D.C., 1988.
- United States Department of Transportation, Federal Highway Administration. "Highway Performance Monitoring System," 1982 to 1989 Data.
- Chui, Margaret K., and William E. McFarland, "The Value of Travel Time: New Estimates Developed Using a Speed Choice Model," Texas Transportation Institute, January 1987.
- 11. "Private Truck Counsel of America Cost Index Survey," Houston Post, July 6, 1987.