1. Report No. 2. Government Accession No. FHWA/TX-87/1110-2	3. Rocipiont's Cotolog No.
4. Titlo and Subritlo \qquad COMPARISON OF THE RESULTS FROM TRANPLAN WITH THE TEXAS PACKAGE	$\begin{array}{\|l} \hline \text { 5. Reporl Date } \\ \text { October } 1988 \\ \hline \end{array}$ 6. Purloming Oroonit
Duk M. Chang, Vergil G. Sțover, and George B. Dresser	8. Porforming Organization Raport No. Research Report 1110-2
9. Pefforming Orgonizotion Nome ond Address Texas Transportation Institute Texas A\&M University System College Station, TX 77843	10. Work Unit No. 1. Contract or Grant No. $2-10-87-1110$
12. Sponsoring Agency Nome ond Address Texas State Department of Highways and Public Transportation; Transportation Planning Division P.0. Box 5051 Austin, TX 78763	13. Type of Report ond Poriod Coverad Interim September 1986-November 1987 14. Sponsoring Ageney Code
15. Supplementory Note: Research performed in cooperation with DOT, FHWA. Research Study Title: Subarea Analysis Using Microco	uters

16. Absitact

This report represents the comparison of the results from TRANPLAN with the Texas Travel Demand Package (Texas Package) incorporated in a research project entitled "Subarea Analysis Using Microcomputers." One of the study objectives is to develop and incorporate into the Texas Package procedures for downloading a portion of the output from the Texas Package to the selected microcomputer transportation planning package to perform subarea analysis. TRANPLAN was tested and recommended for interface with the Texas Package. A two-phase test procedure was utilized: Phase I -- assignment comparisons using the same trip table and Phase II -- trip table comparisons. The 1985 network in Bryan-College Station was selected as the data base for this test. The results from the TRANPLAN assignments using three different assignment techniques were compared to the Texas Large Network Assignment Models results. The analysis included selected link, screenlines, cutlines, and major travel routes comparisons. Phase II investigated alternative trip distribution techniques (i.e., TRANPLAN, Texas Model, and Atomistic distributions) for the modeling of the trip table. The results of three trip tables were then compared on a cell-by-cell basis. It was found that there were no differences using A11-Or-Nothing, and that there were no significant differences between the TRANPLAN Incremental assignment and the new capacity restraint assignment of the Texas Large Network Assignment Models. There are slight differences of trip tables between TRANPLAN and MODEL, but the differences are not practically significant.

17. Koy Words - TRANPLAN - Texas Package - Traffic Assignment - Trip Table		18. Distribution Statement No restrictions. This document is available to the public through the National Technical Information Service, 5285 Port Roy.al Road, Springfield, Virginia 22161	
19. Security Classif. (of his Heport) Unclassified	20. Securify Clessif. (of this page) Unclassified	$\begin{gathered} \text { 21. No. of Poges } \\ 44 \end{gathered}$	22. Price

COMPARISON OF THE RESULTS FROM TRANPLAN
 WITH THE TEXAS PACKAGE

by
Duk M. Chang
Assistant Research Planner
Vergil G. Stover
Research Engineer
and
George B. Dresser Study Supervisor

Subarea Analysis Using Microcomputers Research Report Number 1110-2 Research Study Number 2-10-87-1110

Sponsored by
State Department of Highways and Public Transportation

In Cooperation with the U.S. Department of Transportation Federal Highway Administration

Texas Transportation Institute The Texas A\&M University System College Station, Texas

Abstract

This report represents the comparison of the results from TRANPLAN with the Texas Travel Demand Package (Texas Package) incorporated in a research project entitled "Subarea Analysis Using Microcomputers." One of the study objectives is to develop and incorporate into the Texas Package procedures for downloading a portion of the output from the Texas Package to the selected microcomputer transportation planning package to perform subarea analysis.

The TRANPLAN package was already tested and recommended for interface with the Texas Package. TRANPLAN should be compared with the Texas Package before subarea analysis is performed. A two-phase test procedure was utilized: Phase I -- assignment comparisons using the same trip table and Phase II -- trip table comparisons. The 1985 network in Bryan-College Station was selected as the data base for this test.

The results from the TRANPLAN assignments using three different assignment techniques (All-Or-Nothing and two different Incremental Assignments) were compared to the Texas Large Network Assignment Models (All-Or-Nothing, Capacity Restraint, and Incremental Assignments) results. The analysis included a selected link-by-link comparison of the posted assignment results, comparisons of screenlines and cutlines, and a comparison of major travel routes. Phase II investigated alternative trip distribution techniques (i.e., TRANPLAN, Texas Model, and Atomistic distributions) for the modeling of the trip table. The results of three trip tables were then compared on a cell-by-cell basis.

It was found that there were no differences between TRANPLAN and the Texas Package using All-Or-Nothing, and that there were no significant differences between the TRANPLAN Incremental assignment and the new capacity restraint assignment of the Texas Large Network Assignment Models. Finally, there are slight differences of trip tables between TRANPLAN and MODEL, but the differences are not practically significant.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration or the State Department of Highways and Public Transportation. This report does not constitute a standard, specification, or regulation.
PAGES
I. INTRODUCTION 1
Phase I -- Assignment Comparisons Using The Same Trip Table 1
Phase II-- Trip Table Comparisons 1
II. ASSIGNMENT COMPARISONS 2
Selected Links 2
Selected Major Routes 2
Selected Screenlines and Cutlines 2
II.1. ALL-OR-NOTHING ASSIGNMENT 7
Link Volume Differences 7
Major Routes Differences 8
Screenlines and Cutlines Differences 8
Conclusion 9
II.2. CAPACITY RESTRAINT ASSIGNMENT 9
Link Volume Differences 11
Major Routes Differences 12
Screenlines and Cutlines Differences 12
Conclusion 13
II.3. INCREMENTAL ASSIGNMENT 14
Link Volume Differences 15
Major Routes Differences 15
Screenlines and Cutlines Differences 16
Conclusion 16
III. TRIP TABLE COMPARISONS 18
III.1. INPUTS 18
III.2. TRIP END COMPARISON 18
III.3. TRIP TABLE COMPARISON RESULTS 19
TRANPLAN vs. MODEL 19
TRANPLAN vs. ATOM 20
MODEL vs. ATOM 21
Overall Statistical Comparisons 22
III.4. CONCLUSION 23
Appendix A: Comparison Results of Separation Matrices
Appendix B: Trip Table Difference between TRANPLAN and Texas Model
Appendix C: Trip Table Difference between TRANPLAN and Atomistic Model
Appendix D: Trip Table Difference between Texas Model and Atomistic Model
Appendix E: Statistical Calculations of TRANPLAN vs. Texas Model, TRANPLANvs. Atomistic Model, and Texas Model vs. Atomistic Model

LIST OF FIGURES

Figure II-1. SELECTED LINKS. 3
Figure II-2. SIX MAJOR TRAVEL ROUTES. 4
Figure II-3. SELECTED CUTLINES. 5
Figure II-4. SELECTED SCREENLINES. 6

LIST OF TABLES

PAGES
Table II-1. Distribution of Selected Links Volume Differences by Volume Group Using All-Or-Nothing. 7
Table II-2. Summary of Major Travel Routes Using All-Or-Nothing. 8
Table II-3. Summary of Screenlines and Cutlines Differences Using All-Or-Nothing Assignment. 8
Table II-4. Distribution of Selected Links Volume Differences by Volume Group Using Capacity Restraint Assignment. 11
Table II-5. Summary of Major Travel Routes Using Capacity Restraint Assignment. 13
Table II-6. Summary of Screenlines and Cutlines Differences Using Capacity Restraint Assignment. 13
Table II-7. Distribution of Selected Links Volume Differences by Volume Group Using Incremental Assignment. 15
Table II-8. Summary of Major Travel Routes Using Incremental Assignment. 16
Table II-9. Summary of Screenlines and Cutlines Differences Using Incremental Assignment. 17
Table III-1. Summary of Trip End Comparison. 19
Table III-2A. Summary of Trip Table Percent Difference between TRANPLAN (V1) and MODEL (V2). 19
Table III-2B. Summary of Trip Table Absolute Difference between TRANPLAN (V1) and MODEL (V2). 20
Table III-3A. Summary of Trip Table Percent Difference between TRANPLAN (V1) and ATOM (V2). 20
Table III-3B. Summary of Trip Table Absolute Difference between TRANPLAN (V1) and ATOM (V2). 21
Table III-4A. Summary of Trip Table Percent Difference between MODEL (V1) and ATOM (V2). 21
Table III-4B. Summary of Trip Table Absolute Difference between MODEL (V1) and ATOM (V2). 22
Table III-5. Summary of Statistical Comparisons. 23

I. INTRODUCTION

One of the study objectives is to develop and incorporate into the Texas Travel Demand Package (Texas Package) procedures for downloading a portion of the output from the Texas Package to the selected microcomputer transportation planning package to perform subarea analysis. The TRANPLAN package was tested and recommended for interface with the Texas Package. TRANPLAN should be compared with the Texas Package before subarea analysis is performed.

It is obvious that no package assignment procedure will exactly replicate the assignment results which would be produced using another package. The TRANPLAN assignment procedure should, however, reasonably replicate the assignment results from the Texas Package modeling process. There are, of course, two primary sources of variation which may affect the assignment results: (1) the assignment procedure itself and (2) the urban travel patterns described by the trip table. In other words, there are basically two issues to be addressed by the preliminary tests. First, given the urban travel pattern (i.e., given the trip table for the urban area), can the TRANPLAN assignment procedure reasonably replicate the assignment results from the Texas Package? Second, given that the TRANPLAN assignment procedure can reasonably replicate the mainframe assignment results, can a trip table from the TRANPLAN Gravity Model be sufficiently accurate to produce reasonable assignment results?

To address these issues, a two-phase test procedure was utilized. The 1985 network in Bryan-College Station was selected as the data base for this test. This well-detailed and coded network consists of 269 internal zones, 16 external stations, 688 nodes, and 2967 links. The following briefly outlines the two-phase preliminary test procedure being performed:

Phase I -- Assignment Comparisons Using the Same Trip Table

A trip table from the Texas Trip Distribution Models will be assigned to TRANPLAN using three different assignment techniques (i.e., All-OrNothing, Capacity Restraint using five iterations, and Incremental Assignments). The results will then be compared to the assignment results from Texas Large Network Assignment Models. The analysis includes a selected link-by-link comparison of the posted assignment results, comparisons of screenlines and cutlines, and a comparison of major travel routes.

Phase II -- Trip Table Comparisons

Phase II would be initiated only if the results from Phase I have no differences between the Texas Large Network Assignment Models and the TRANPLAN package. Phase II would investigate alternative trip distribution techniques (i.e., TRANPLAN, Texas Model, and Atomistic Model distributions) for the modeling of the trip table. The results of three trip tables will then be compared on a cell-by-cell basis. These comparisons include TRANPLAN vs. Texas Mode1, TRANPLAN vs. Atomistic Mode1, and Texas Model vs. Atomistic Model. The purpose of this report is to present the findings of both Phase I and Phase II of this study.

II. ASSIGNMENT COMPARISONS

As specified in the introduction (Phase I), a trip matrix (285x285) from the 1985 network in Bryan-College Station was prepared by the Texas Trip Distribution Models, and a traffic assignment was performed using three different assignment techniques. To evaluate the TRANPLAN assignment techniques, the assigned volumes from selected links, screenlines and cutlines, and major travel routes were compared with those from the Texas Large Network Assignment Models results. The following measures of assignment accuracy were utilized in evaluating the results of the various assignments.

Selected Links

To illustrate the magnitude of the assignment differences, 54 selected links were cross-classified by volume group (based on the TRANPLAN assignment) and the magnitude of the link volume and percent volume differences observed between the two assignments (see Table II-l). Figure II-1 shows the selected links in the study area.

Selected Major Routes

An evaluation of the major route differences provides an indication of the location and the relative position of the individual link disparities with respect to the network structure. Six major travel routes are shown in Figure II-2. The summary of six major routes within the study area indicates the number of links of each route, total traffic volumes, and differences (see Table II-2).

Selected Screenlines and Cutlines

Eleven cutlines were determined within the study area. Six intercepted the northbound/southbound thoroughfares, and the remaining five intercepted eastbound/westbound thoroughfares. Figure II-3 shows the locations of the 11 cutlines. Four screenlines defined within the network are shown in Figure II-4.

Figure II-1. SELECTED LINKS.

Figure II-2. SIX MAJOR TRAVEL ROUTES.

Figure II-3. SELECTED CUTLINES.

Figure II-4. SELECTED SCREENLINES.

II.1. ALL-OR-NOTHING ASSIGNMENT

Link Volume Differences

As may be observed in Table II-1, 83 percent of the 54 links were within the 25 volume difference range, and all links were within the 100 volume difference range. Approximately 76 percent of the links had a percent difference of less than 0.1 percent, and all links had a difference of less than 1.0 percent. These data illustrate that there are no link volume differences between the two packages using the All-Or-Nothing assignment.

Table II-1. Distribution of Selected Links Volume Differences by Volume Group Using All-Or-Nothing.

Volume Group (vpd)	Absolute Volume Difference (vpd)				Totals
	$\begin{gathered} 0 \text { to } \\ 10 \end{gathered}$	$11 \text { to }$	$\begin{gathered} 26 \text { to } \\ 50 \end{gathered}$	$\begin{gathered} 51 \text { to } \\ 100 \end{gathered}$	
0- 999					0
1,000 - 4,999	6				6
5,000 - 9,999	10	2		2	14
10,000-14,999	5	1		2	8
15,000-19,999	3	3			6
20,000-29,000	3	2		1	6
30,000-39,999	1	6		2	9
40,000 and above		3		2	5
Totals	28	17	0	9	54
Percent	51.9	31.4	0	16.7	100.0
Accum. \%	51.9	83.3	83.3	100.0	100.0

Volume Group (vpd)	$\begin{aligned} & \text { Absolute } \\ & 0.0 \text { to } \\ & 0.1 \end{aligned}$	Percent 0.1 to 0.3	$\begin{aligned} & \text { Difference } \\ & 0.3 \text { to } \\ & 0.6 \end{aligned}$	$\begin{gathered} \text { (percent) } \\ 0.6 \text { to } \\ 1.0 \end{gathered}$	Totals
0- 999					0
1,000 - 4,999	6				6
5,000 - 9,999	10	2		2	14
10,000-14,999	5	1	1	1	8
15,000-19,999	5	1			6
20,000 - 29,000	5			1	6
30,000-39,999		2			9
40,000 and above	3	2			5
Totals	41	8	2	3	54
Percent	75.9	14.8	3.7	5.6	100.0
Accum. \%	75.9	90.7	94.4	100.0	100.0

Major Routes Differences

The summary of six major routes within the study area is provided in Table II-2. The table indicates that the mean volume differences of all routes are well within 50 traffic volumes. Using a peak hour factor of 0.1 , this suggests an average peak hour nondirectional difference of substantially less than five vehicles per hour. In addition, all average percent differences are within 0.1 percent, and the vehicle miles total for each route shows negligible differences between the two assignments (i.e., all are within 0.1 percent).

Table II-2. Summary of Major Travel Routes Using All-Or-Nothing.

Trave1 Routes	Number of Links	TRANPLAN Volume	Total Volume		Differences Percent
Highway 21	27	422,923	-130	-0.03	Average Volume Differences
Highway 60	26	457,633	-394	-0.09	-5
Texas Avenue	60	$1,942,922$	2126	0.01	-15
FM 2818	40	405,234	127	0.03	35
Highway 30	8	92,106	0	0.0	3
Highway 6	31	526,151	-222	-0.04	0

Screenlines and Cutlines Differences

A review of Table II-3 indicates the degree of "fit" between two assignments relative to 11 cutlines and four screenlines. The four selected screenlines show that the TRANPLAN package has an excellent comparableness to the Texas Package assignment volume totals. All screenlines and cutlines were well within 1.0 percent; therefore, there is considered to be an insignificant difference between the two packages.

Table II-3. Summary of Screenlines and Cutlines Differences Using All-Or-Nothing Assignment.

Cutlines	Number of Links	TRANPLAN Volumes	Texas Package			
Volumes					\quad	Absolute
:---:						
Volume	\quad	Differences				
:---:						
Percent						

Table II-3. (Continued)

Screenlines	Number of Links	TRANPLAN Volumes	Texas Package Volumes		Absolute Volume
N-S	28	173862	173822	40	0.02
E-W/S	8	45852	45852	0	0.0
E-W	15	147912	147916	-4	-0.0
E-W/N	10	32851	32851	0	0.0

Conclusion

It was felt that the TRANPLAN All-Or-Nothing assignment yielded excellent results. However, it further appears that there should be slightly different procedures for building a minimum path or for calculating travel time between TRANPLAN and the Texas Package. In short, the results of the All-Or-Nothing assignment comparisons in Phase I tests were felt to demonstrate the applicability of trip distribution modeling at this level of detail and its impact on All-Or-Nothing assignment results.

II.2. CAPACITY RESTRAINT ASSIGNMENT

A new impedance adjustment function for capacity restraint was used for the Texas Large Network Assignment Models in running Assign Self-Balancing. The most significant difference between the new impedance adjustment function and the old Texas Procedure is that, with the new function, the link impedances are adjusted after each iteration for every link having a specified capacity whether or not the assigned link volume is over or under capacity. The old procedure adjusted link impedances only for those links where the assigned volume exceeded capacity. When the use of Capacity Restraint Traffic Assignment in the Texas Package is indicated, the analyst must consider two options: Iteration Weighting and Access/Egress Penalties (turn penalties).

In defining the iteration weights, it was recommended that later assignments (iteration) should be weighted more heavily than earlier ones. Additionally, in an effort to dampen oscillations in the assignments to parallel facilities on consecutive iterations, successive pairs of all-ornothing assignments should receive equal weights. As a result of these considerations, iteration weights of $15 \%, 15 \%, 20 \%, 20 \%$, and 30% were used in this comparison. The access/egress penalties option was not used.

The formulation of the new Texas function should directly use the impedance computed from the input speed and distance rather than an estimate of the zero volume impedance based on an estimate of the zero volume (free flow) speed. Since the input speeds in Texas studies generally reflect an estimated speed at a V/C ratio of roughly 0.85 , the impedance remains unchanged at this ratio. The impedance should increase at ratios above 0.85 ; the impedance decreases at the ratios below 0.85. A bounding condition was placed on the impedance adjustment function because there is a potential for severe oscillation in both link impedances and assigned link volumes. The final formulation of the impedance adjustment function was:
$I_{(n+1)}=\left(0.92+0.15\left(V_{(n)} / C\right)^{4}\right) \times I_{(1)}$
subject to the constraint that $I_{(n+1)} \leq(n+1) I_{1}$
and where $V_{(n)}=$ a weighted average of the volumes assigned on
all preceding iterations
C = level of service link capacity $\frac{1}{(1)}=$ level of service link impedance $I_{(n+1)}=$ adjusted link impedance
Level of service link capacity is the maximum number of vehicles a link can serve and still maintain a steady flow without being unstable. Level of service link travel time is the time required to traverse the link under these conditions. It is important to note that every link impedance having a specified capacity is subject to adjustment between successive iterations in this procedure.

It was found that there are significant different procedures and options in iterative capacity restraint assignment in TRANPLAN compared with the new capacity restraint assignment procedure used for the Texas Package because all selected interzonal highway trips are loaded on the minimum paths of the input highway network in Restraint Loading of TRANPLAN. However, it was suggested that the incremental assignment in TRANPLAN might give very similar results if the proper options and parameters were used. There are various options and parameters for the TRANPLAN incremental assignment procedures. In order to obtain the compatible results with Capacity Restraint Traffic Assignment in the Texas Package, the following options and parameters were used in this report:

1. No DAMPING option used in this assignment specifies that the network time is directly adjusted by the time difference.
2. BASE NETWORK option used in this assignment specifies that the adjusted network for any iteration is based on an accumulated loaded volume which is applied to the original network to produce the adjusted network (unless, applied to the previous network).
3. ADJUST 100 option used in this assignment specifies that volumes loaded are hypothetically expanded to 100 percent before the volume/capacity ratio is calculated for link impedance adjustment.
4. LOAD PERCENTAGES parameter of $15,15,20,20$, and 30 percents used in this procedure specifies the number of iterations as well as the percent of the total volume to be applied during each iteration.

For each iteration, a given percentage of selected interzonal highway trips was loaded on the minimum paths determined during path building. The network parameter, time, may be adjusted link by link according to userspecified volume/capacity time adjustment curve data or the following capacity restraint formula in TRANPLAN:

$$
\begin{aligned}
T_{n}=T_{n-1} & \times\left[1.0+0.15(V / C)^{4}\right] \times 0.87 \\
\text { where, } & =\text { current restraint iteration } \\
T_{n}^{n} & =\text { travel time on loaded link } \\
T_{n-1} & =\text { travel time of the previous iteration } \\
V & =\text { assigned volume } \\
& =\text { capacity specified in link data (practical capacity) }
\end{aligned}
$$

A capacity-restraint assignment is constrained not only to the travel impedance but also to each link capacity. Since the two capacity restraint formulas were different, it was decided to use the user-specified V/C time adjustment curve data which is essentially from the final formulation of the impedance adjustment function in the Texas Package.

The bounding condition, $\operatorname{Max}\left(I_{(n+1)}\right) \leq(n+1) I_{1}$, was placed on the impedance adjustment function in the $n \neq 1$ exas Package. However, this limit cannot be simulated in TRANPLAN of each iteration. Instead of the bounding condition, the minimum limit of 0.167 (for base time/adjusted time) was used in the V/C ratio of 2.4 or higher. Finally, the following curve data were specified using the data specifications in a TRANPLAN control file:

\$DATA
ASSIGNMENT GROUP $=0-9$, XYDATA $=(0.0,1.087)(0.5,1.076)(1.0, .935)$
$(1.5,0.595)(2.0,0.301)(2.4,0.167)(4.0,0.167)$
\$END TP FUNCTION

Link Volume Differences

About 40 percent of the 54 links were within the 200 volume difference range, and 80 percent were within the 800 volume difference range shown in Table II-4. It is interesting to note for perspective that volume differences of 800 vpd or less suggest peak-hour differences of 80 vph or less (assuming a 0.1 peak hour factor). In short, the magnitude of the link volume differences observed were not considered of sufficient magnitude to significantly affect any long-range planning decisions.

Table II-4. Distribution of Selected Links Volume Differences by Volume Group Using Capacity Restraint Assignment.

Volume Group (vpd)	Absolute Volume Difference (vpd)						Totals
	$\begin{array}{r} 0- \\ 200 \end{array}$	$\begin{aligned} & 201- \\ & 400 \end{aligned}$	$\begin{aligned} & 401- \\ & 600 \end{aligned}$	$\begin{aligned} & 601- \\ & 800 \end{aligned}$	$\begin{array}{r} 801-1 \\ 1000 \end{array}$	1001above	
0-999							0
1,000 - 4,999	6						6
5,000 - 9,999	3	3	3				9
10,000-14,999	7	3		1		3	14
15,000-19,999	4		1	1	1	1	8
20,000-29,000	2	2	1	1		2	8
30,000-39,999		1	2	2		3	8
40,000 and above						1	1
Totals	22	9	7	5	1	10	54
Percent	40.7	16.7	13.0	9.3	1.8	18.5	100.0
Accum. \%	40.7	57.4	70.4	79.7	81.5	100.0	100.0

Table II-4. (Continued)

Volume Group (vpd)	$\begin{aligned} & \text { Absolute } \\ & 0.0 \text { to } \\ & 3.0 \end{aligned}$	Percent 3.0 to 6.0	$\begin{aligned} & \text { Difference } \\ & 6.0 \text { to } \\ & 9.0 \end{aligned}$	$\begin{aligned} & \text { (percent) } \\ & 9.0 \text { to } \\ & 10.0 \end{aligned}$	Totals
$0-4999$ $1,000-4,999$	4	1	1		0
1,000 - 9,999	3	3	3		9
10,000-14,999	8	2	2	2	14
15,000-19,999	4	3	1		8
20,000-29,000	5	2	1		8
30,000-39,999	5	2	1		8
40,000 and above	1				1
Totals	30	13	9	2	54
Percent	55.6	24.0	16.7	3.7	100.0
Accum. \%	55.6	79.6	96.3	100.0	100.0

As may be observed in Table II-4, over 55 percent of the links had a percent difference of less than 3.0 percent, and over 96 percent had a difference of less than 9.0 percent. Only two link had 10.1 percent difference. It should be further noted that 23 of the 25 links with an assigned volume greater than 15,000 vpd (i.e., 92.0 percent of the higher volume links) had link volume differences of 6.0 percent or less and that all 25 links had differences of less than 9.0 percent. These data again illustrate that there are no significant link volume differences between the Texas Package, using the new capacity restraint assignment, and TRANPLAN, using the incremental assignment.

Major Routes Differences

The summary of six major routes within the study area is provided in Table II-5. The table indicates that the mean volume differences of all routes are well within 700 traffic volumes. Using a peak hour factor of 0.1 , this suggests an average peak hour nondirectional difference of substantially less than 70 vehicles per hour. In addition, all average percent differences are within 5.1 percent, and the vehicle miles total for each route shows negligible differences between the two assignments (i.e., all are within 5.1 percent).

Screenlines and Cutlines Differences

A review of Table II-6 indicates the degree of "fit" between two assignments relative to 11 cutlines and four screenlines. The four screenlines selected show an excellent comparison with the comparable Texas Package assignment volume totals. The difference for all screenlines was well within 0.8 percent and is thereby considered insignificant. However, 11 cutlines indicated that the absolute percent difference was less than 4.1 percent, and therefore the difference between the two packages was not considered to be significant.

Table 11-5. Summary of Major Travel Routes Using Capacity Restraint Assignment.

Travel Routes	Number of Links	TRANPLAN Volume	Total Differences Volume Percent	Average Volume Differences	
Highway 21	27	392,947	4933	1.26	183
Highway 60	26	340,933	17215	5.05	662
Texas Avenue	60	$1,399,317$	15240	1.09	254
FM 2818	40	426,854	19785	4.64	495
Highway 30	8	90,543	-621	-0.69	-78
Highway 6	31	556,326	-11348	-2.04	-336

Table II-6. Summary of Screenlines and Cutlines Differences Using Capacity Restraint Assignment.

Cutlines	Number of Links	TRANPLAN Volumes	Texas Package Volumes		Absolute Volume
A	5	12041	12049	-8	-0.07
B	4	50360	51854	-1494	-2.94
C	3	30567	30410	157	0.51
D	3	28819	27903	916	3.18
E	4	40051	39368	683	1.71
F	3	22062	21156	906	4.10
G	3	28762	28398	364	1.27
H	3	19184	19476	-291	-1.52
I	4	37345	37377	-32	0.09
J	3	16337	16562	-225	1.38
K	4	23043	23396	-353	1.53

Screenlines	Number of Links	TRANPLAN Volumes	Texas Package Volumes		Absolute Volume
N-S	28	177676	177945	-269	-0.15
E-W/S	8	46698	46798	-100	-0.21
E-W	15	149962	148863	1099	-0.73
E-W/N	10	33947	33789	158	0.47

Conclusion

It was felt that there is no significant difference between the TRANPLAN incremental assignment and the new capacity restraint assignment of the Texas Large Network Assignment Models. Therefore, the results of the capacity restraint assignment comparisons in these Phase I tests were felt to demonstrate the applicability of trip distribution modeling at this level of detail and its impact on the assignment results.

II.3. INCREMENTAL ASSIGNMENT

There are totally different incremental assignment procedures and options between TRANPLAN and the Texas Large Network Assignment Models. An incremental technique in Texas Package adjusts link impedances from a lookup table by level of service (LOS) to obtain the desired balance. The program runs four increments, each of 25 percent. The program produces several cross classification tables and comparison tables to indicate how well the objective is being achieved.

The following options and parameters were used in the Texas Large Network Assignment Models in running Incremental Assignment:

1. The initial speeds for each link are determined by using level of service A speeds from the input level of service speed table.
2. After each increment the assigned volume is adjusted to 100 percent and the volume to capacity ratio is calculated for links nondirectionally. This ratio is used to extract a new speed from the level of service speed table for the next increment.
3. Each iteration receives approximately 25 percent of the trips. The first increment will receive the 25 percent of the trip interchanges plus the remainder of the integer division by four of each trip interchange.
4. Paths are allowed through links with Volume/Capacity (V/C) ratios over 1.0.

The following options and parameters were used in the TRANPLAN Incremental Assignment:

1. BASE NETWORK option used in this assignment specifies that the adjusted network for any iteration is based on an accumulated loaded volume which is applied to the original (or base) network to produce the adjusted network.
2. ADJUST 100 option used in this assignment specifies that volumes loaded are hypothetically expanded to 100 percent before the volume/capacity ratio is calculated for link impedance adjustment.
3. LOAD PERCENTAGES parameter of $25,25,25,25$ percents used in this procedure specifies the number of iterations as well as the percent of the total volume to be applied during each iteration.

For each iteration, a given percentage of selected interzonal highway trips was loaded on the minimum paths determined during path building. The network parameter, time, was adjusted link by link according to the following capacity restraint formula in TRANPLAN:

$$
\begin{aligned}
T_{n}=T_{n-1} & \times\left[1.0+0.15(V / C)^{4}\right] \times 0.87 \\
\text { where, } & \\
T_{n} & =\text { current restraint iteration } \\
T_{n-1} & =\text { travel time on loaded link } \\
V^{\prime} & =\text { assigned volume } \\
C & =\text { capacity specified in link data (practical capacity) }
\end{aligned}
$$

Link Volume Differences

As may be observed in Table II-7, only 59 percent of the 54 links were within the 1,000 volume difference range, and 98 percent were within the 3,000 volume difference range shown in Table II-7. Even one link had a volume difference greater than 3,000 vpd. This link is located at the north end of Texas Avenue and had a volume difference of $-3,283$ vpd representing a percent error of -15.9 percent. In short, the link volume differences observed were considered of sufficient magnitude to significantly affect any long-range planning decisions.

As may be observed, over 35 percent of the links had a percent difference of higher than 10.0 percent. It should be further noted that 17 of the 19 links with an assigned volume greater than 20,000 vpd (i.e., 89.5 percent of the higher volume links) had link volume differences of 10.0 percent or less and that all 19 links had differences of less than 25.0 percent. These data again illustrate that there are significant link volume differences between the two packages using the Incremental Assignment, but the differences are of no practical significance.

Major Routes Differences

The summary of six major routes within the study area is provided in Table II-8. The table indicates that the mean volume differences of all routes are well within 600 traffic volumes. Using a peak hour factor of 0.1 , this suggests an average peak hour nondirectional difference of substantially less than 60 vehicles per hour. In addition, all average percent differences are within 3.3 percent, and the vehicle miles total for each route shows negligible differences between the two assignments (i.e., all are within 3.3 percent).

Table II-7. Distribution of Selected Links Volume Differences by Volume Group Using Incremental Assignment.

Volume Group (vpd)	$\begin{array}{r} 0- \\ 250 \end{array}$	solute $251-$ 500	Volume $501-$ 1000	Differ $1001-$ 2000	ce (vpd) $2001-$ 3000	3001above	Totals
0- 999							0
1,000 - 4,999	2	3	1				6
5,000-9,999	2	1	5	1			9
10,000-14,999	4	1		3	5		14
15,000 - 19,999			1	3	1		5
20,000-29,000	4		1	3	2	1	11
30,000 - 39,999	4		2	2			8
40,000 and above					1		
Totals	16	5	10	13	9	1	54
Percent	29.6	9.3	18.5	24.1	16.6	1.9	100.0
Accum. \%	29.6	38.9	57.4	81.5	98.1	100.0	100.0

Table II-7. (Continued)

Volume Group (vpd)	Absolute Percent Volume Difference					
	$\begin{gathered} 0.0 \text { to } \\ 2.0 \end{gathered}$	$\begin{gathered} 2.0 \text { to } \\ 5.0 \end{gathered}$	$\begin{aligned} & 5.0 \text { to } \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \text { to } \\ & 25 \end{aligned}$	25 to above	Totals
0- 999						0
1,000 - 4,999	1	1		3	1	6
5,000 - 9,999	2	1	2	4		9
10,000 - 14,999	4	1	2	7		14
15,000-19,999		1	3	2		6
20,000-29,000	5	2		2		10
30,000 - 39,999	6	2				8
40,000 and above			1			1
Totals	18	8	9	18	1	54
Percent	33.3	14.8	16.7	33.3	1.9	100.0
Accum. \%	33.3	48.1	64.8	98.2	100.0	100.0

Table II-8. Summary of Major Travel Routes Using Incremental Assignment.

Trave1 Routes	Number of Links	TRANPLAN Volume	Total Volume	Differences		
Percent						Average Volume
:---						
Differences						

Screenlines and Cutlines Differences

A review of Table II-9 indicates the degree of "fit" between two assignments relative to 11 cutlines and four screenlines. The four screenlines selected show an excellent comparison of the Texas Package assignment volume totals. The percent difference between the two packages for all screenlines is well within 3.0 percent and is thereby considered no significant difference. Only one of 11 cutlines indicated the absolute percent difference of 15.8 percent.

Conclusion

It was felt that there is a significant difference between the TRANPLAN Incremental Assignment and the Texas Large Network Assignment Models. Therefore, the results of the incremental assignment comparisons in these Phase I tests do not indicate the need for further investigation of this assignment technique in Phase II of this study.

Table II-9. Summary of Screenlines and Cutlines Differences Using Incremental Assignment.

Cutlines	Number of Links	TRANPLAN Volumes	Texas Package Volumes		Absolute Volume
A	5	12180	12104	76	Differences Percent
B	4	50872	53215	-2343	-4.62
C	3	31551	32535	-984	-3.12
D	3	27912	29270	-1358	-4.87
E	4	39523	39262	261	0.66
F	3	22942	22312	630	2.75
G	3	28419	26655	1764	6.21
H	3	20232	23424	-3192	-15.77
I	4	38510	38050	460	1.19
J	3	16526	15370	1156	7.00
K	4	23833	25151	-1318	-5.53

Screenlines	Number of Links	TRANPLAN Volumes	Texas Package Volumes		Absolute Differences Volume
N-S	28	180524	179029	1495	0.83
E-W/S	8	47182	46325	857	1.82
E-W	15	152151	150390	1761	1.16
E-W/N	10	34721	33749	972	2.80

III. TRIP TABLE COMPARISONS

Since the Phase I study results demonstrated the feasibility of two assignments (All-Or-Nothing and Incremental Assignments) of the TRANPLAN package, Phase II of the study was initiated. The basic objectives of Phase II were to investigate trip distribution techniques for the modeling of the trip table and to compare the results of three trip tables (TRANPLAN, Texas Model, and Atomistic Model distributions) on a cell-by-cell basis.

Trip distribution is the process by which the trip interchange volumes between zones are estimated. Thus, the expected urban travel pattern is described. The Texas Trip Distribution Models provide the analyst with the option to select either of two synthetic, mathematical, distribution techniques. The alternatives are MODEL (Texas Model) and ATOM (Atomistic Model). MODEL and ATOM perform the same task, trip distribution, but in fundamentally differing ways. Nevertheless, the inputs are similar, and the outputs are similar.

III.1. INPUTS

The same input data base was used for the Phase II analysis. In order to simplify the analyses and minimize the study costs, the trip distributions were performed for a single trip purpose: total internal travel (home-based work + home-based nonwork + nonhome-based + truck \& taxi).

Preliminary evaluation of the results found that some differences existed in searching a minimum path between the Texas Package and TRANPLAN. The problems were associated with the handling of a decimal number. The impedance (e.g., travel time) of the Texas Package is calculated by truncation in a third decimal point while the impedance of TRANPLAN is rounded to a second decimal point. Two separation matrices from the Texas Package and TRANPLAN were compared after the truncation problem of the Texas Package was altered. It was found that there is no difference between the two separation matrices (see Appendix A). The modified Friction-Factors from desired trip length frequency were used for the TRANPLAN trip distribution. Again, the same trip length frequency distributions results from the TRANPLAN trip distribution were used for MODEL and ATOM.

RADIUS cards that are not required as input into TRANPLAN or MODEL are used to define the centroid area in ATOM. This card simply presents the dimension (in minutes) of each zone radius as input into ATOM. Where zones or sectors are not performing correctly during the validation process, the adjustment of the radius value can increase or decrease intrazonal trips as needed to establish proper interchange volumes.

III.2. TRIP END COMPARISON

As indicated in Table III-1, there is no significant difference in production and attraction of the trip ends; however, the Atomistic Model has generated less intrazonal trips than TRANPLAN and/or the Texas Model. Again, by considering the activities within a zone to be spatially distributed (rather than concentrated at a single theoretical point, i.e.,
the zone centroid), the Atomistic Model can be expected to yield travel pattern estimates more consistent with basic travel theory than the Texas Model when dealing with very large zones such as the sectors.

Table III-1. Summary of Trip End Comparison.

	PRODUCTION	ATTRACTION	TOTAL	INTRAZONAL	TOTAL
TRANPLAN	394729	394729	789458	13344	802802
MODEL	394733	394733	789466	13317	802783
ATOM	394717	394717	789434	9240	798674

111.3. TRIP TABLE COMPARISON RESULTS

TRANPLAN vs. MODEL
As indicated in Appendix B, 31246 interchanges in the trip table of TRANPLAN and 31148 interchanges in the Texas Model of the total 66564 interchanges (47 percent) have zero volume in both trip tables. Table III2A shows that 52410 interchanges (78.7 percent) have less than or equal to five traffic volumes in the trip table of TRANPLAN, and a total of 40723 cells (61.18 percent) are indicated as less than or equal to 1.0 percent difference.

Table III-2A. Summary of Trip Table Percent Difference between TRANPLAN (V1) and MODEL (V2).

Volume					
Group (V1)					
0-5	35106	0	0	17304	52410
6-10	2026	0	174	3513	5713
11-50	2513	953	2957	791	7214
51-2000	1078	132	17	0	1227
Total	40723	1085	3148	21608	66564
Percent	61.18	1.63	4.72	32.47	100.0
Accum. \%	61.18	62.81	67.53	100.00	100.0

Table III-2B indicates the absolute differences between TRANPLAN and MODEL trip tables. 40068 cells (60.20 percent) show no trip difference at all. The number of trip differences between cells of the two trip tables are all within ± 5 trips. In addition, about 99.0 percent of the interchanges are within only ± 2 trips difference.

Table III-2B. Summary of Trip Table Absolute Difference between TRANPLAN (V1) and MODEL (V2).

Volume Group (V1)	0	Absolute Difference (V1 - V2)				
0-5	35106	13725	3168	411	0	52410
6-10	2026	2686	860	141	0	5713
11-50	2507	3400	1120	187	0	7214
51-2000	429	578	178	42	0	1227
Total	40068	20389	5326	781	0	66564
Percent	60.20	30.63	8.00	1.17	0	100.0
Accum. \%	60.20	90.83	98.83	100.00	100.0	100.0

TRANPLAN vs. ATOM
As indicated in Appendix C, 31354 interchanges of the total 66564 interchanges (46.9 percent) have zero volume in the trip table of the Atomistic Model. Total 39799 cells (59.79 percent) are indicated as less than or equal to 1.0 percent difference in Table III-3A.

Table III-3A. Summary of Trip Table Percent Difference between TRANPLAN (V1) and ATOM (V2).

Volume	Percent Difference [(V1-V2)/ (V1 + V2)]				
Group (V1)	0-1	1-2	2-5	5-100	Total
0-5	35298	0	0	17112	52410
6-10	1979	0	169	3565	5713
11-50	2052	799	2938	1425	7214
51-2000	470	288	336	133	1227
Total	39799	1087	3443	22235	66564
Percent	59.79	1.63	5.18	33.40	100.0
Accum. \%	59.79	61.42	66.60	100.00	100.0

Table III-3B indicates the absolute differences between TRANPLAN and ATOM trip tables. While about 97.1 percent of the interchanges are within ± 2 trips difference, 412 interchanges (0.62 percent) have six or more trips differences between cells of the two trip tables.

Table III-3B. Summary of Trip Table Absolute Difference between TRANPLAN (V1) and ATOM (V2).

Volume Group \qquad	0	Absolute Difference (V1 - V2)				
0-5	35298	13561	3124	427	0	52410
6-10	1979	2611	908	214	1	5713
11-50	2041	3082	1444	581	66	7214
51-2000	143	270	189	280	345	1227
Total	39461	19524	5665	1502	412	66564
Percent	59.28	29.33	8.51	2.26	0.62	100.0
Accum. \%	59.28	88.61	97.12	99.38	100.0	100.0

MODEL vs. ATOM

As indicated in Appendix D and Table III-4A, 52423 interchanges (78.8 percent) have less than or equal to five traffic volumes in the trip table of the Texas Model. A total of 39968 cells (60.04 percent) are indicated as less than or equal to 1.0 percent difference.

Table III-4A. Summary of Trip Table Percent Difference between MODEL (V1) and ATOM (V2).

Volume	Percent Difference [(V1 - V2) / (V1 + V2)]				
Group (V1)					
0-5	35436	0	0	16987	52423
6-10	1968	0	138	3579	5685
11-50	2098	748	3082	1305	7233
51-2000	466	316	309	132	1223
Total	39968	1064	3529	22003	66564
Percent	60.04	1.60	5.30	33.06	100.0
Accum. \%	60.04	61.64	66.94	100.00	100.0

Table III-4B indicates the absolute differences between MODEL and ATOM trip tables. While about 97.1 percent of the interchanges are within ± 2 trips difference, 393 interchanges (0.59 percent) have six or more trips differences between cells of the two trip tables which indicate significant difference.

Table III-4B. Summary of Trip Table Absolute Difference between MODEL (V1) and ATOM (V2).

Volume Group (V1)	0	Absolute Difference (V1 - V2)				
0-5	35436	13586	2965	436	0	52423
6-10	1968	2587	950	179	1	5685
11-50	2087	3044	1418	625	59	7233
51-2000	131	270	213	276	333	1223
Total	39622	19487	5546	1516	393	66564
Percent	59.52	29.28	8.33	2.28	0.59	100.0
Accum. \%	59.52	88.80	97.13	99.41	100.0	100.0

Overall Statistical Comparisons

Each of the three trip tables has the same total traffic volume of approximately 394700 which yields an overall average interchange volume of 5.9 trips for all three tables. Four common statistical measures (standard deviation of the differences [SD], root-mean-square error [RMS], percent RMS error [PRMS], and sum of square difference [SUMSQ]) were employed in the evaluation of trip table differences on a cell-by-cell basis. The following relationships were used for calculation:
$0 S D=\sqrt{\left(\Sigma\left(V 1_{i}-V 2_{i}\right)^{2} / N\right)-\left(\sum\left(V 1_{i}-V 2_{i}\right) / N\right)^{2}}$
0 RMS $=\sqrt{\left(\Sigma\left(V 1_{i}-V 2_{i}\right)^{2} / N\right)}$
0 PRMS $=100 \times\left(\right.$ RMS $\left./\left(\Sigma V 1_{i} / N\right)\right)$
0 SUMSQ $=\Sigma\left(\mathrm{Vl}_{\mathfrak{i}}-\mathrm{V} 2_{\mathfrak{i}}\right)^{2}$

$$
\text { where, } \begin{aligned}
V 1_{\mathfrak{i}} & =\text { base traffic volume of interchange } \mathfrak{i} \\
\mathrm{V} \mathbf{i}^{\mathbf{i}} & =\text { compared traffic volume of interchange } \mathfrak{i} \\
\mathcal{N} & =\text { total number of interchanges of trip table }
\end{aligned}
$$

While a mean difference tending toward zero would indicate that the traffic volumes were evenly divided into the trip tables, it does not necessarily follow that it is a "good" of the results. The standard deviation is a measure of the dispersion of data about the mean, and it gives some indication of the "goodness" of the results. The smaller the value of the standard deviation, the closer the grouping of data about the mean.

Root-mean-square (RMS) error is very similar to the standard deviation, in that it is also a measure of dispersion of the data. However, it is a measure of dispersion of the differences relative to a zero difference; whereas, the standard deviation is relative to the mean difference.

Calculation of the standard deviation involves a bias which is the mean; as the mean approaches zero, the standard deviation approaches the RMS error.

Percent RMS error (PRMS) measures the relationship between RMS error and the average traffic volume. It is valuable in comparing results of different trip tables, and it is a relative measure among trip tables. Sum of square difference (SUMSQ) is the most direct measure of interchange differences between the two tables.

As indicated in Table III-5, there are no different results between SD and RMS because of no differences in mean traffic volume among the trip tables. The comparison of TRANPLAN vs. MODEL has smaller values of SD and RMS than the other two comparisons. Also, it is 90 times smaller than the other two comparisons in the SUMSQ difference. Finally, in comparison to values of the four statistical measures from the TRANPLAN trip table, the Texas Model appears to be within acceptable limits.

Table III-5. Summary of Statistical Comparisons.

	SD	RMS	PRMS	SUMSQ
TRANPLAN vs. MODEL	0.86	0.9	14.49	49130
TRANPLAN vs. ATOM	8.14	8.1	137.23	4408464
MODEL vs. ATOM	8.14	8.1	137.19	4405842

III.4. CONCLUSION

The trip table evaluations demonstrate the feasibility of using the Texas Model interfacing with TRANPLAN in further applications. Both the Texas Model and TRANPLAN are considering the activities within a zone to be concentrated at a single theoretical point (i.e., the zone centroid) instead of considering the activities to be spatially distributed in the Atomistic Model.

The results from the Tables III-3A\&B are very similar to the results from the Tables III-4A\&B; that is, TRANPLAN vs. ATOM has almost the same significant difference as MODEL vs. ATOM. The difference of trip tables from TRANPLAN vs. MODEL is less significant than the one either from TRANPLAN vs. ATOM or from MODEL vs. ATOM. Finally, there are slight differences of trip tables between TRANPLAN and MODEL, but the differences are of no practical significance.
abeyoed sexal •s^ N甘7dNvyl - sas!ufew uotfeuedas fo sfinsay uos!deduoj
\forall x!puədd \forall

	DCCO / UAG TRANPLAN SYSTEM VERSION 5.0			REPORT MATRIX COMPARISON B/CS TEST NETWORK COMPARISON OF 285×285 SEPARATION MATRICES between texas package and tranplan																		PAGE DATE TIME
					PARAT UM CE HANG	TION C ENTROID ES WIT		$\begin{aligned} & \text { SON } \\ & \text { SER = } \\ & \text { SEPI } \end{aligned}$	$\begin{array}{r} \text { EPOR } \\ 285 \\ \text { RAT } \end{array}$	--.	$\begin{aligned} & \text { FRE } \\ & \text { TAP } \end{aligned}$	JENCY D $1=$	STRI 285	UTIO				$\begin{aligned} & \text { F PURI } \\ & 2= \end{aligned}$	OSES	$\begin{array}{r} = \\ 85 \end{array}$		
											PURPO	SE 4										
	SEPARAT	ION GR					NEGA	IVE										POSI	IVE			
	V1		-50	-30	-20	-10	-7	-5	-3	-2	-1	-0	+1	+2	+3	+4	+6	+8	+11	+21	+31	TOT
			T0	T0	10	T0	TO	TO	T0													
			-31	-21	-11	-8	-6	-4	-3	-2	-1	+0	+1	+2	+3	+5	+7	+10	+20	+30	+50	
	$0-$	1		00		00	0	0	0	0	0	285	0	0	0	0	0	0	0	0	0	285
	21-	25	0	0 0		00	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	4
	31-	35		00		00	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2
	36-	40		00		00	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	6
	41-	45	0	00		00	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2
	46-	50		00		00	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2
	$51-$	60		00		00	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	10
	$61-$	70		00		00	0	0	0	0	0	12	0	0	0	0	0	0		0	0	12
D	71-	80		00		00	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	12
1	81-	90		00		00	0	0	0	0	0	20	0	0	0	0	0	0	0	0	0	20
\mapsto	91-	100		00		00	0	0	0	0	0	44	0	0	0	0	0	0	0	0	0	44
	101-	150		00		00	0	0	0	0	0	254	0	0	0	0	0	0	0	0	0	254
	151-	200		00		00	0	0	0	0	0	493	0	0	0	0	0	0	0	0	0	493
	201-	250		00		00	0	0	0	0	0	663	0	0	0	0	0	0	0	0	0	663
	251-	300		00		00	0	0	0	0	0	1032	0	0	0	0	0	0	0	0	0	1032
	301-	350		00		00	0	0	0	0	0	1334	0	0	0	0	0	0	0	0	0	1334
	351-	400		00		00	0	0	0	0	0	1609	0	0	0	0	0	0	0	0	0	1609
	401-	450		00		00	0	0	0	0	0	1931	0	0	0	0	0	0	0	0	0	1931
	451-	500		00		00	0	0	0	0	0	2372	0	0	0	0	0	0	0	0	0	2372
	501-	1000		00		00	0	0	0	0	0	29790	0	0	0	0	0	0	0	0	0	29790
	1001-	2000		00		00	0	0	0	0	0	36837	0	0	0	0	0	0	0	0	0	36837
	2001-	3000		00		00	0	0	0	0	0	4405	0	0	0	0	0	0	0	0	0	4405
	3001 AND	OVER		00		00	0	0	0	0	0	106	0	0	0	0	0	0	0	0	0	106
	TOT			00		00	0	0	0	0	0	81225	0	0	0	0	0	0	0	0	0	81225

PAGE NO DATE O2AUG88 TIME 15:10:46

SEPARATION COMPARISON REPORT $-\cdots$ FREQUENCY DISTRIBUTION (V1-V2).
MAXIMUM CENTROID NUMBER $=285$

Maximu Centroid Number a 285
285

PURPOSE 4

Appendix B

Trip Table Difference between TRANPLAN and Texas Model

Appendix C

Trip Table Difference between TRANPLAN and Atomistic Model

DCCO / UAG
TRANPLAN SYSTEM RANPLAN SYS
VERSION 5.0

REPORT MATRIX COMPARISON
B/CS TEST NETWORK COMPARISON OF 258×258 TRIP MATRICES TRANPLAN AND ATOMISTIC

PAGE NO.
DATE
TIME 15:19:35

VOLUME COMPARISON REPORT ---- FREQUENCY DISTRIBUTION (V1-V2 / V1+V2).

MAXIMUM CENTROID NUMBER $=258$
 INTERCHANGES WITH ZERO VOLUME
 TAPE $1=31246$
 UMBER OF PURPOSES =

PURPOSE 1

Appendix D

Trip Table Difference between Texas Model and Atomistic Model

Appendix E

Statistical Calculations

 ofTRANPLAN vs. Texas Model, TRANPLAN vs. Atomistic Model, and Texas Model vs. Atomistic Model

