

Test Report No. 440822-01

EVALUATION OF ATTACHMENTS TO CONCRETE BARRIER SYSTEMS TO DETER PEDESTRIANS

COOPERATIVE RESEARCH PROGRAM

Texas Department of Transportation https://tti.tamu.edu/documents/0-7082-R1-Vol2.pdf

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Roadside Safety & Physical Security Texas A&M University System RELLIS Campus Building 7091 1254 Avenue A Bryan, TX 77807

		Technical Report Documentation Page		
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.		
FHWA/TX-23/0-7082-R1-Vol2				
4. Title and Subtitle		5. Report Date		
EVALUATION OF ATTACHMEN	NTS TO CONCRETE BARRIER	Published: August 2023		
SYSTEMS TO DETER PEDESTR	IANS—VOLUME 2: CRASH	6. Performing Organization Code		
REPORT				
7. Author(s)		8. Performing Organization Report No.		
Chiara Silvestri-Dobrovolny, Roger	P. Bligh, Maysam Kiani,	Report 0-7082-R1-Vol2		
Aniruddha Zalani, William J. L. Scl	hroeder, and Darrell L. Kuhn			
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)		
Texas A&M Transportation Institut	e Proving Ground			
3135 TAMU		11. Contract or Grant No.		
College Station, Texas 77843-3135		Project 0-7082		
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered		
Texas Department of Transportation	n	Technical Report:		
Research and Technology Impleme	ntation Office	August 2020–November 2022		
125 E. 11th Street		14. Sponsoring Agency Code		
Austin, Texas 78701-2483				
15. Supplementary Notes				
Project sponsored by the Texas Department of Transportation and the Federal Highway Administration.				
Project Title: Evaluate Attachments to Concrete Barrier Systems to Deter Pedestrians				
URL: https://tti.tamu.edu/documents/0-7082-R1-Vol2.pdf				
16. Abstract				
The purpose of the tests reported herein was to assess the performance of prioritized attachments to				

concrete barrier systems according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials *Manual for Assessing Safety Hardware (MASH)*, Second Edition. The crash tests for the attachments on the single-slope concrete median barrier were performed in accordance with *MASH* Test Level 4 (TL-4), and the crash tests for the attachments on the F-shape concrete median barrier were performed in accordance with *MASH* Test Level 4 (TL-4).

This report provides details on the prioritized attachments to concrete barrier systems, the crash tests and results, and the performance assessment of the investigated systems for *MASH* TL-3 and TL-4 longitudinal barrier evaluation criteria.

The investigated systems met the performance criteria for *MASH* TL-3 (F-shape) and TL-4 (single-slope) longitudinal barriers.

17. Key Words	18. Distribution Statement			
Longitudinal Barrier, Concrete Barrier, Glare		No restrictions. This document is available to the		
Screen, MASH, Crash Test, Pedestrian Deterrent,		public through NTIS:		
Pedestrian Safety		National Technical Information Service		
		Alexandria, Virginia		
	https://www.ntis.gov			
19. Security Classif. (of this report)	20. Security Classif. (of th	his page)	21. No. of Pages	22. Price
Unclassified Unclassified			224	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

EVALUATION OF ATTACHMENTS TO CONCRETE BARRIER SYSTEMS TO DETER PEDESTRIANS—VOLUME 2: CRASH REPORT

by

Chiara Silvestri-Dobrovolny, Ph.D. Research Scientist Texas A&M Transportation Institute

Roger P. Bligh, P.E. Senior Research Engineer Texas A&M Transportation Institute

Maysam Kiani, Ph.D. Assistant Research Engineer Texas A&M Transportation Institute

Aniruddha Zalani Graduate Assistant Texas A&M Transportation Institute

William J. L. Schroeder Research Engineering Associate Texas A&M Transportation Institute

and

Darrell L. Kuhn, P.E. Quality Manager Texas A&M Transportation Institute

Report 0-7082-R1-Vol2 Project 0-7082 Project Title: Evaluate Attachments to Concrete Barrier Systems to Deter Pedestrians

> Sponsored by the Texas Department of Transportation and the Federal Highway Administration

> > Published: August 2023

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

This research was sponsored by the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of FHWA or TxDOT. This report does not constitute a standard, specification, or regulation.

The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

TTI PROVING GROUND DISCLAIMER

The results of the crash testing reported herein apply only to the article tested.

REPORT AUTHORIZATION

Bill L. Griffith, Research Specialist Deputy Quality Manager Darrell L. Kuhn, P.E., Research Specialist Quality Manager

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager Chiara Silvestri-Dobrovolny, Ph.D. Research Scientist

ACKNOWLEDGMENTS

This project was sponsored by TxDOT and FHWA. The authors thank the project manager, Shelley Pridgen, and the members of the Project Monitoring Committee—Ken Mora and Alberto Guevara from the Design Division and Nicholas Aiello from the Traffic Safety Division—for their guidance and feedback during the project. The authors also thank Texas A&M High Performance Research Computing for providing computing resources for advance simulation analyses performed under this research.

TABLE OF CONTENTS

		Pa	ge
List of Fi	igures		• X
List of Tables		Х	iv
Chapter	1.	Introduction	. 1
Chapter	2.	System Details	.3
2.1.	Test A	rticle and Installation Details	. 3
2.2.	Design	Modifications during Tests	. 3
2.3.	Materia	al Specifications	14
Chapter	3.	Test Requirements and Evaluation Criteria	15
3.1.	Crash 7	Test Performed/Matrix	15
3.2.	Evalua	tion Criteria	15
Chapter	4.	Test Conditions	17
4.1.	Test Fa	ncility	17
4.2.	Vehicle	e Tow and Guidance System	17
4.3.	Data A	cauisition Systems	17
4.3.1	V	ehicle Instrumentation and Data Processing	17
432	2 A	nthronomorphic Dummy Instrumentation	18
433	2. Pł	notographic Instrumentation Data Processing	19
Chanter	5 II	MASH Test 4-12 of Armorcast Gawk Screens on Single Slone Concrete	17
Rarrie	ər (Crae	sh Test No. 440822-01-1)	20
5 1	Test A	rticle Details and Critical Impact Point	20
5.1.	Test D	esignation and Actual Impact Conditions	20
53	Weathe	er Conditions	$\frac{20}{22}$
5.5. 5.4	Test V	ehicle	22
5. 4 . 5.5	Test D	escription	$\frac{23}{24}$
5.5.	Damao	e to Test Installation	2 24
5.0.	Damag	e to Test Vahiela	2 4 26
5.8	Occupy	e to Test Venicle	20
5.0	Tost Si		27
J.J.	6	MASH Test 4.12 of arean Safe® Clara Saraan on Single Slane Parrier	50
(Crock	U. h Toat N	MASH Test 4-12 of creen-sale [*] Glare Screen on Single-Slope Darrier	26
	Test A	NU. 440022-01-2)	30 26
0.1.	Test A	nice Details and Chucal Impact Point	26
0.2.	Weath	esignation and Actual Impact Conditions	20
0.3.	weather		38 20
0.4.	Test V	enicie	39 40
0.5.	Test D	escription	40
6.6.	Damag	e to Test Installation	40
6./.	Damag	te to Test Venicle	42
6.8.	Occupa	ant Risk Factors	45
6.9.	Test Su		45
Chapter	7.	MASH Test 3-11 of Armorcast [®] Gawk Screen on F-Shape Barrier	
(Crasl	h Test N	No. 440822-01-3)	52
7.1.	Test A	rticle Details and Critical Impact Point	52
7.2.	Test D	esignation and Actual Impact Conditions	52

7.3.	Weather Conditions	. 54
7.4.	Test Vehicle	. 55
7.5.	Test Description	. 56
7.6.	Damage to Test Installation	. 57
7.7.	Damage to Test Vehicle	. 58
7.8.	Occupant Risk Factors	. 61
7.9.	Test Summary	. 61
Chapter	8. MASH Test 3-11 of Screen-Safe [®] Glare Screen on F-Shape Barrier	
(Ĉras	h Test No. 440822-01-4)	. 68
8.1.	Test Article Details and Critical Impact Point	. 68
8.2.	Test Designation and Actual Impact Conditions	. 68
8.3.	Weather Conditions	. 70
8.4.	Test Vehicle	. 70
8.5.	Test Description	. 72
8.6.	Damage to Test Installation	. 72
8.7.	Damage to Test Vehicle	. 74
8.8.	Occupant Risk Factors	. 77
8.9.	Test Summary	. 77
Chapter	9. MASH Test 3-11 of Chain-Link Fence on F-Shape Barrier (Crash Test	
No. 44	40822-01-5)	. 84
9.1.	Test Article Details and Critical Impact Point	. 84
9.2.	Test Designation and Actual Impact Conditions	. 84
9.3.	Weather Conditions	. 86
9.4.	Test Vehicle	. 87
9.5.	Test Description	. 88
9.6.	Damage to Test Installation	. 88
9.7.	Damage to Test Vehicle	. 90
9.8.	Occupant Risk Factors	. 93
9.9.	Test Summary	. 93
Chapter	10. Summary and Conclusions	101
10.1.	Assessment of Test Results	101
10.2.	Conclusions	101
Referen	ces	107
APPEN	DIX A. Crash Test 440822-01-1	109
A.1.	Details of Test Article	109
A.2.	Vehicle Properties and Information	115
A.3.	Sequential Photographs	117
A.4.	Vehicle Angular Displacement	120
A.5.	Vehicle Accelerations	121
APPEN	DIX B. Crash Test 440822-01-2	123
B.1.	Details of Test Article	123
B.2.	Vehicle Properties and Information	137
B.3.	Sequential Photographs	139
В.4.	Vehicle Angular Displacement	142
B.5.	Vehicle Accelerations	143
APPEN	DIX C. Crash Test 440822-01-3	145

C.1.	Details of Test Article	145
C.2.	Vehicle Properties and Information	151
C.3.	Sequential Photographs	154
C.4.	Vehicle Angular Displacement	157
C.5.	Vehicle Accelerations	158
APPENI	DIX D. Crash Test 440822-01-4	161
D.1.	Details of Test Article	161
D.2.	Vehicle Properties and Information	173
D.3.	Sequential Photographs	176
D.4.	Vehicle Angular Displacement	179
D.5.	Vehicle Accelerations	180
APPENI	DIX E. Crash Test 440822-01-5	183
E.1.	Details of Test Article	183
E.2.	Vehicle Properties and Information	187
E.3.	Sequential Photographs	190
E.4.	Vehicle Angular Displacement	193
E.5.	Vehicle Accelerations	194
APPENI	DIX F. Material Properties	197
F.1.	Concrete Information for the Single-Slope Concrete Barrier	197
F.2.	Concrete Information for the F-Shape Concrete Barrier	203

LIST OF FIGURES

F	'age
Figure 2.1. Details of Armorcast [®] Gawk Screen on Single-Slope Barrier.	4
Figure 2.2. Details of Screen-Safe® Glare Screen on Single-Slope Barrier.	5
Figure 2.3. Details of Armorcast [®] Gawk Screen on F-Shape Barrier.	6
Figure 2.4. Details of Screen-Safe® Glare Screen on F-Shape Barrier	7
Figure 2.5. Details of Chain-Link Fence on F-Shape Barrier.	8
Figure 2.6. Impact Side of Armorcast [®] Gawk Screen on Single-Slope Barrier prior to	
Testing	9
Figure 2.7. Field Side of Armorcast® Gawk Screen on Single-Slope Barrier prior to Testing	9
Figure 2.8. Impact Side of Screen-Safe [®] Glare Screen on Single-Slope Barrier prior to	
Testing	. 10
Figure 2.9. Screen-Safe® Glare Screen on Single-Slope Barrier prior to Testing	. 10
Figure 2.10. The Armorcast® Gawk Screen on F-Shape Barrier prior to Testing	. 11
Figure 2.11. Impact Side of Armorcast® Gawk Screen on F-Shape Barrier prior to Testing	. 11
Figure 2.12. Impact Side of Screen-Safe® Glare Screen on F-Shape Barrier prior to Testing	. 12
Figure 2.13. Screen-Safe® Glare Screen on F-Shape Barrier prior to Testing.	. 12
Figure 2.14. Chain-Link Fence on F-Shape Barrier prior to Testing	. 13
Figure 2.15. Impact Side of Chain-Link Fence on F-Shape Barrier prior to Testing	. 13
Figure 5.1. Critical Impact Point for Test 440822-01-1.	. 20
Figure 5.2. Armorcast [®] Gawk Screen on Single-Slope Barrier/Test Vehicle Geometrics for	
Test 440822-01-1	. 21
Figure 5.3. Armorcast [®] Gawk Screen on Single-Slope Barrier/Test Vehicle Impact Location	
for Test 440822-01-1.	. 22
Figure 5.4. Impact Side of Test Vehicle before Test 440822-01-1.	. 23
Figure 5.5. Opposite Impact Side of Test Vehicle before Test 440822-01-1	. 23
Figure 5.6. Armorcast [®] Gawk Screen on Single-Slope Barrier after Test at Impact Location,	
Test 440822-01-1	. 25
Figure 5.7. Rear View of the Armorcast® Gawk Screen on Single-Slope Barrier Post Impact,	
Test 440822-01-1	. 26
Figure 5.7. Armorcast [®] Gawk Screen on Single-Slope Barrier after Test at Base Plate with	
Missing Post, Test 440822-01-1.	. 26
Figure 5.8. Impact Side of Test Vehicle after Test 440822-01-1.	. 27
Figure 5.9. Rear Impact Side of Test Vehicle after Test 440822-01-1	. 27
Figure 5.10. Overall Interior of Test Vehicle after Test 440822-01-1	. 28
Figure 5.11. Interior of Test Vehicle on Impact Side after Test 440822-01-1	. 28
Figure 5.12. Summary of Results for MASH Test 4-12 on Armorcast [®] Gawk Screen on	
Single-Slope Barrier	. 31
Figure 5.13. Summary of Results for Test 440822-01-1, Sequential Test Pictures	. 34
Figure 5.14. Summary of Results for Test 440822-01-1, Summary Drawing	. 35
Figure 6.1. Critical Impact Point for Test 440822-01-2.	. 36
Figure 6.2. Screen-Safe [®] Glare Screen on Single-Slope Barrier/Test Vehicle Geometrics for	
Test 440822-01-2	. 37
Figure 6.3. Screen-Safe [®] Glare Screen on Single-Slope Barrier/Test Vehicle Impact	
Location for Test 440822-01-2.	. 38

Figure 6.4. Impact Side of Test Vehicle before Test 440822-01-2.	39
Figure 6.5. Opposite Impact Side of Test Vehicle before Test 440822-01-2.	39
Figure 6.6. Screen-Safe [®] Glare Screen on Single-Slope Barrier after Test at Impact	
Location, Test 440822-01-2.	41
Figure 6.7. Screen-Safe [®] Glare Screen on Single-Slope Barrier after Test at Post 8,	
Test 440822-01-2	42
Figure 6.8. Impact Side of Test Vehicle after Test 440822-01-2.	42
Figure 6.9. Rear Impact Side of Test Vehicle after Test 440822-01-2	43
Figure 6.10. Overall Interior of Test Vehicle after Test 440822-01-2	43
Figure 6.11. Interior of Test Vehicle on Impact Side after Test 440822-01-2.	44
Figure 6.12. Summary of Results for <i>MASH</i> Test 4-12 on Screen-Safe [®] Glare Screen on	
Single-Slope Barrier	46
Figure 6.13. Summary of Results for Test 440822-01-2, Sequential Test Pictures	49
Figure 6.14. Summary of Results for Test 440822-01-2, Summary Drawing	51
Figure 7.1. Critical Impact Point for Test 440822-01-3.	52
Figure 7.2. Armorcast [®] Gawk Screen on F-Shape Barrier/Test Vehicle Geometrics for	
Test 440822-01-3	53
Figure 7.3. Armorcast [®] Gawk Screen on F-Shape Barrier/Test Vehicle Impact Location.	
Test 440822-01-3.	54
Figure 7.4. Impact Side of Test Vehicle before Test 440822-01-3.	55
Figure 7.5. Opposite Impact Side of Test Vehicle before Test 440822-01-3.	55
Figure 7.6. Armorcast [®] Gawk Screen on F-Shape Barrier after Test at Impact Location.	
Test 440822-01-3.	57
Figure 7.7. Armorcast [®] Gawk Screen on F-Shape Barrier after Test at Post 4.	
Test 440822-01-3.	58
Figure 7.8. Impact Side of Test Vehicle after Test 440822-01-3.	58
Figure 7.9. Rear Impact Side of Test Vehicle after Test 440822-01-3.	59
Figure 7.10. Overall Interior of Test Vehicle after Test 440822-01-3	59
Figure 7.11. Interior of Test Vehicle on Impact Side after Test 440822-01-3.	60
Figure 7.12. Summary of Results for MASH Test 3-11 on Armorcast [®] Gawk Screen on	
F-Shape Barrier.	62
Figure 7.13. Summary of Results for Test 440822-01-3. Sequential Test Pictures.	65
Figure 7.14. Summary of Results for Test 440822-01-3. Summary Drawing	67
Figure 8.1. Critical Impact Point for Test 440822-01-4.	68
Figure 8.2. Screen-Safe [®] Glare Screen on F-Shape Barrier/Test Vehicle Geometrics for	
Test 440822-01-4.	69
Figure 8.3. Screen-Safe [®] Glare Screen on F-Shape Barrier/Test Vehicle Impact Location.	
Test 440822-01-4	70
Figure 8.4. Impact Side of Test Vehicle before Test 440822-01-4.	
Figure 8.5. Opposite Impact Side of Test Vehicle before Test 440822-01-4	71
Figure 8.6. Screen-Safe [®] Glare Screen on F-Shape Barrier after Test at Impact Location.	
Test 440822-01-4	73
Figure 8.7. Screen-Safe [®] Glare Screen on F-Shape Barrier after Test at the Joint of	
Posts 6 and 7. Test 440822-01-4	74
Figure 8.8. Impact Side of Test Vehicle after Test 440822-01-4	
Figure 8.9. Rear Impact Side of Test Vehicle after Test 440822-01-4	

Figure 8.10. Overall Interior of Test Vehicle after Test 440822-01-4	75
Figure 8.11. Interior of Test Vehicle on Impact Side after Test 440822-01-4.	76
Figure 8.12. Summary of Results for MASH Test 3-11 on Screen-Safe [®] Glare Screen on	
F-Shape Barrier.	78
Figure 8.13. Summary of Results for Test 440822-01-4, Sequential Test Pictures	81
Figure 8.14. Summary of Results for Test 440822-01-4, Summary Drawing	83
Figure 9.1. Critical Impact Point for Test 440822-01-5.	84
Figure 9.2. Chain-Link Fence on F-Shape Barrier/Test Vehicle Geometrics for	
Test 440822-01-5.	85
Figure 9.3. Chain-Link Fence on F-Shape Barrier/Test Vehicle Impact Location,	
Test 440822-01-5.	86
Figure 9.4. Impact Side of Test Vehicle before Test 440822-01-5.	87
Figure 9.5. Opposite Impact Side of Test Vehicle before Test 440822-01-5.	87
Figure 9.6. Chain-Link Fence on F-Shape Barrier after Test at Impact Location,	
Test 440822-01-5.	89
Figure 9.7. Chain-Link Fence on F-Shape Barrier after Test at the Base of Post 6,	
Test 440822-01-5.	90
Figure 9.8. Impact Side of Test Vehicle after Test 440822-01-5.	90
Figure 9.9. Rear Impact Side of Test Vehicle after Test 440822-01-5	91
Figure 9.10. Overall Interior of Test Vehicle after Test 440822-01-5	91
Figure 9.11. Interior of Test Vehicle on Impact Side after Test 440822-01-5.	92
Figure 9.12. Summary of Results for MASH Test 3-11 on Chain-Link Fence on F-Shape	
Barrier.	95
Figure 9.13. Summary of Results for Test 440822-01-5, Sequential Test Pictures	97
Figure 9.14. Summary of Results for Test 440822-01-5, Summary Drawing	99
Figure A.1. Vehicle Properties for Test No. 440822-01-1.	115
Figure A.4. Sequential Photographs for Test No. 440822-01-1 (Overhead Views)	117
Figure A.5. Sequential Photographs for Test No. 440822-01-1 (Frontal Views)	. 118
Figure A.6. Sequential Photographs for Test No. 440822-01-1 (Rear Views)	. 119
Figure A.7. Vehicle Angular Displacements for Test No. 440822-01-1	. 120
Figure A.8. Vehicle Longitudinal Accelerometer Trace for Test No. 440822-01-1	
(Accelerometer Located at Center of Gravity)	. 121
Figure A.9. Vehicle Lateral Accelerometer Trace for Test No. 440822-01-1 (Accelerometer	
Located at Center of Gravity).	. 121
Figure A.10. Vehicle Vertical Accelerometer Trace for Test No. 440822-01-1	
(Accelerometer Located at Center of Gravity)	. 122
Figure B.1. Vehicle Properties for Test No. 440822-01-2	. 137
Figure B.4. Sequential Photographs for Test No. 440822-01-2 (Overhead Views)	139
Figure B.5. Sequential Photographs for Test No. 440822-01-2 (Frontal Views)	. 140
Figure B.6. Sequential Photographs for Test No. 440822-01-2 (Rear Views)	. 141
Figure B.7. Vehicle Angular Displacements for Test No. 440822-01-2.	142
Figure B.8. Vehicle Longitudinal Accelerometer Trace for Test No. 440822-01-2	
(Accelerometer Located at Center of Gravity).	143
Figure B.9. Vehicle Lateral Accelerometer Trace for Test No. 440822-01-2 (Accelerometer	
Located at Center of Gravity).	143

Figure B.10. Vehicle Vertical Accelerometer Trace for Test No. 440822-01-2
(Accelerometer Located at Center of Gravity)
Figure C.1. Vehicle Properties for Test No. 440822-01-3 151
Figure C.2. Exterior Crush Measurements for Test No. 440822-01-3
Figure C.3. Occupant Compartment Measurements for Test No. 440822-01-3 153
Figure C.4. Sequential Photographs for Test No. 440822-01-3 (Overhead Views)154
Figure C.5. Sequential Photographs for Test No. 440822-01-3 (Frontal Views)155
Figure C.6. Sequential Photographs for Test No. 440822-01-3 (Rear Views)156
Figure C.7. Vehicle Angular Displacements for Test No. 440822-01-3 157
Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 440822-01-3
(Accelerometer Located at Center of Gravity)
Figure C.9. Vehicle Lateral Accelerometer Trace for Test No. 440822-01-3 (Accelerometer
Located at Center of Gravity)158
Figure C.10. Vehicle Vertical Accelerometer Trace for Test No. 440822-01-3
(Accelerometer Located at Center of Gravity)
Figure D.1. Vehicle Properties for Test No. 440822-01-4
Figure D.2. Exterior Crush Measurements for Test No. 440822-01-4 174
Figure D.3. Occupant Compartment Measurements for Test No. 440822-01-4 175
Figure D.4. Sequential Photographs for Test No. 440822-01-4 (Overhead Views)176
Figure D.5. Sequential Photographs for Test No. 440822-01-4 (Frontal Views) 177
Figure D.6. Sequential Photographs for Test No. 440822-01-4 (Rear Views)178
Figure D.7. Vehicle Angular Displacements for Test No. 440822-01-4 179
Figure D.8. Vehicle Longitudinal Accelerometer Trace for Test No. 440822-01-4
(Accelerometer Located at Center of Gravity)
Figure D.9. Vehicle Lateral Accelerometer Trace for Test No. 440822-01-4 (Accelerometer
Located at Center of Gravity)
Figure D.10. Vehicle Vertical Accelerometer Trace for Test No. 440822-01-4
(Accelerometer Located at Center of Gravity)
Figure E.1. Vehicle Properties for Test No. 440822-01-5
Figure E.2. Exterior Crush Measurements for Test No. 440822-01-5 188
Figure E.3. Occupant Compartment Measurements for Test No. 440822-01-5 189
Figure E.4. Sequential Photographs for Test No. 440822-01-5 (Overhead Views) 190
Figure E.5. Sequential Photographs for Test No. 440822-01-5 (Frontal Views)
Figure E.6. Sequential Photographs for Test No. 440822-01-5 (Rear Views) 192
Figure E.7. Vehicle Angular Displacements for Test No. 440822-01-5
Figure E.8. Vehicle Longitudinal Accelerometer Trace for Test No. 440822-01-5
(Accelerometer Located at Center of Gravity)
Figure E.9. Vehicle Lateral Accelerometer Trace for Test No. 440822-01-5 (Accelerometer
Located at Center of Gravity)
Figure E.10. Vehicle Vertical Accelerometer Trace for Test No. 440822-01-5
(Accelerometer Located at Center of Gravity)

LIST OF TABLES

	Page
Table 2.1. Concrete Strength.	14
Table 3.1. Test Conditions and Evaluation Criteria Specified for Longitudinal Barriers	15
Table 3.2. Evaluation Criteria Required for MASH Testing	16
Table 5.1. Impact Conditions for MASH Test 4-12, Crash Test 440822-01-1.	20
Table 5.2. Exit Parameters for MASH Test 4-12, Crash Test 440822-01-1	21
Table 5.3. Weather Conditions for Test 440822-01-1.	22
Table 5.4. Vehicle Measurements for Test 440822-01-1.	24
Table 5.5. Events during Test 440822-01-1	24
Table 5.6. Damage to Armorcast [®] Gawk Screen on Single-Slope Barrier, Test 440822-01-1.	25
Table 5.7. Occupant Compartment Deformation for Test 440822-01-1.	29
Table 5.8. Exterior Vehicle Damage for Test 440822-01-1.	29
Table 5.9. Occupant Risk Factors for Test 440822-01-1.	30
Table 5.10. Summary of Results for Test 440822-01-1, General Information, Impact and	
Exit Conditions.	32
Table 5.11. Summary of Results for Test 440822-01-1, Occupant Risk, Vehicle and Test	
Article Damage.	33
Table 6.1. Impact Conditions for MASH Test 4-12, Crash Test 440822-01-2.	36
Table 6.2. Exit Parameters for MASH Test 4-12, Crash Test 440822-01-2	37
Table 6.3. Weather Conditions for Test 440822-01-2.	38
Table 6.4. Vehicle Measurements for Test 440822-01-2.	40
Table 6.5. Events during Test 440822-01-2	40
Table 6.6. Damage to Screen-Safe [®] Glare Screen on Single-Slope Barrier,	
Test 440822-01-2	41
Table 6.7. Occupant Compartment Deformation for Test 440822-01-2.	44
Table 6.8. Exterior Vehicle Damage for Test 440822-01-2.	44
Table 6.9. Occupant Risk Factors for Test 440822-01-2.	45
Table 6.10. Summary of Results for Test 440822-01-2, General Information, Impact and	
Exit Conditions	47
Table 6.11. Summary of Results for Test 440822-01-2, Occupant Risk, Vehicle and Test	
Article Damage	48
Table 7.1. Impact Conditions for MASH Test 3-11, Crash Test 440822-01-3.	53
Table 7.2. Exit Parameters for MASH Test 3-11, Crash Test 440822-01-3	53
Table 7.3. Weather Conditions for Test 440822-01-3.	54
Table 7.4. Vehicle Measurements for Test 440822-01-3.	56
Table 7.5. Events during Test 440822-01-3	56
Table 7.6. Damage to Armorcast® Gawk Screen on F-Shape Barrier, Test 440822-01-3	57
Table 7.7. Occupant Compartment Deformation for Test 440822-01-3.	60
Table 7.8. Exterior Vehicle Damage for Test 440822-01-3.	60
Table 7.9. Occupant Risk Factors for Test 440822-01-3.	61
Table 7.10. Summary of Results for Test 440822-01-3, General Information, Impact and	
Exit Conditions.	63
Table 7.11. Summary of Results for Test 440822-01-3, Occupant Risk, Vehicle and Test	
Article Damage	64

Table 8.1. Impact Conditions for MASH Test 3-11, Crash Test 440822-01-4.	69
Table 8.2. Exit Parameters for MASH Test 3-11, Crash Test 440822-01-4	69
Table 8.3. Weather Conditions for Test 440822-01-4.	70
Table 8.4. Vehicle Measurements for Test 440822-01-4.	72
Table 8.5. Events during Test 440822-01-4.	72
Table 8.6. Damage to Screen-Safe [®] Glare Screen on F-Shape Barrier, Test 440822-01-4	73
Table 8.7. Occupant Compartment Deformation for Test 440822-01-4.	76
Table 8.8. Exterior Vehicle Damage for Test 440822-01-4.	76
Table 8.9. Occupant Risk Factors for Test 440822-01-4.	77
Table 8.10. Summary of Results for Test 440822-01-4, General Information, Impact and	
Exit Conditions.	79
Table 8.11. Summary of Results for Test 440822-01-4, Occupant Risk, Vehicle and Test	
Article Damage.	80
Table 9.1. Impact Conditions for MASH Test 3-11, Crash Test 440822-01-5.	84
Table 9.2. Exit Parameters for MASH Test 3-11, Crash Test 440822-01-5	85
Table 9.3. Weather Conditions for Test 440822-01-5.	86
Table 9.4. Vehicle Measurements for Test 440822-01-5.	88
Table 9.5. Events during Test 440822-01-5	88
Table 9.6. Damage to Chain-Link Fence on F-Shape Barrier, Test 440822-01-5	89
Table 9.7. Occupant Compartment Deformation for Test 440822-01-5.	92
Table 9.8. Exterior Vehicle Damage for Test 440822-01-5.	92
Table 9.9. Occupant Risk Factors for Test 440822-01-5	93
Table 9.10. Summary of Results for Test 440822-01-5, General Information, Impact and	
Exit Conditions.	95
Table 9.11. Summary of Results for Test 440822-01-5, Occupant Risk, Vehicle and Test	
Article Damage.	96
Table 10.1. Performance Evaluation Summary for MASH Test 4-12 on Armorcast [®] Gawk	
Screen on Single-Slope Barrier, Test 440822-01-1, April 29, 2022 1	01
Table 10.2. Performance Evaluation Summary for MASH Test 4-12 on Screen-Safe [®] Glare	
Screen on Single-Slope Barrier, Test 440822-01-2, June 1, 2022 1	.02
Table 10.3. Performance Evaluation Summary for MASH Test 3-11 on Armorcast [®] Gawk	
Screen on F-Shape Barrier, Test 440822-01-3, April 19, 2022 1	.03
Table 10.4. Performance Evaluation Summary for MASH Test 3-11 on Screen-Safe [®] Glare	
Screen on F-Shape Barrier, Test 440822-01-4, May 17, 2022 1	04
Table 10.5. Performance Evaluation Summary for MASH Test 3-11 on Chain-Link Fence on	
F-Shape Barrier, Test 440822-01-5, August 4, 2022 1	05
Table 10.6. Assessment Summary for MASH TL-3 Tests on Armorcast [®] Gawk Screen,	
Screen-Safe [®] Glare Screen, and Chain-Link Fence on F-Shape Barrier; and	
MASH TL-4 Tests on Armorcast [®] Gawk Screen and Screen-Safe [®] Glare Screen	
on Single-Slope Barrier1	06

SI* (MODERN METRIC) CONVERSION FACTORS						
APPROXIMATE CONVERSIONS TO SI UNITS						
Symbol	When You Know	Multiply By	To Find	Symbol		
-	·	LENGTH				
in	inches	25.4	millimeters	mm		
ft	feet	0.305	meters	m		
yd	yards	0.914	meters	m		
mi	miles	1.61	kilometers	km		
		AREA		2		
in ²	square inches	645.2	square millimeters	mm ²		
ft ²	square feet	0.093	square meters	m²		
yd²	square yards	0.836	square meters	m²		
ac	acres	0.405	nectares	ha km²		
mi-	square miles		square kilometers	Km-		
floz	fluid ounces		milliliters	ml		
	allons	29.57	liters	1		
ft ³	cubic feet	0.028	cubic meters	∟ m ³		
vd ³	cubic vards	0.765	cubic meters	m ³		
۶a	NOTE: volumes of	reater than 1000L	shall be shown in m ³			
		MASS				
oz	ounces	28.35	grams	a		
lb	pounds	0.454	kilograms	ka		
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")		
	TEMPE	RATURE (exac	t degrees)			
°F	Fahrenheit	5(F-32)/9	Celsius	°C		
		or (F-32)/1.8				
	FORCE a	and PRESSURE	or STRESS			
lbf	poundforce	4.45	newtons	N		
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa		
	APPROXIMATI	E CONVERSION	S FROM SI UNITS			
Symbol	When You Know	Multiply By	To Find	Symbol		
		LENGTH				
mm	millimeters	0.039	inches	in		
m	meters	3.28	feet	ft		
m	meters	1.09	yards	yd		
km	kilometers	0.621	miles	mi		
2		AREA		• 2		
mm ²	square millimeters	0.0016	square inches	IN ²		
m^2	square meters	10.764	square verde	It ²		
ho	square meters	1.190	square yards	yu-		
km ²	Square kilometers	0.386	square miles	ac mi ²		
		VOLUME				
ml	milliliters	0.034	fluid ounces	07		
L	liters	0.264	gallons	gal		
m ³	cubic meters	35.314	cubic feet	ft ³		
m ³	cubic meters	1.307	cubic yards	yd ³		
		MASS	-			
g	grams	0.035	ounces	oz		
kg	kilograms	2.202	pounds	lb		
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000lb)	Т		
	TEMPE	RATURE (exac	t degrees)			
°C	Celsius	1.8C+32	Fahrenheit	°F		
	FORCE and PRESSURE or STRESS					
N	newtons	0.225	poundforce	lbf		
			•			

*SI is the symbol for the International System of Units

Chapter 1. INTRODUCTION

The purpose of the tests reported herein was to assess the performance of prioritized attachments to concrete barrier systems according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH*), Second Edition (1). The crash tests for the attachments on single-slope concrete median barrier were performed in accordance with *MASH* Test Level 4 (TL-4), and the crash tests for the attachments on F-shape concrete median barrier were performed in accordance with *MASH* Test Level 3 (TL-3). The intended use of the attachments is to deter pedestrian crossings across highways.

Chapter 2. SYSTEM DETAILS

2.1. TEST ARTICLE AND INSTALLATION DETAILS

Detailed descriptions of each installation are presented in each system's respective chapter.

Figure 2.1 through Figure 2.5 present the overall information on the attachments to concrete barrier systems, and Figure 2.6 through Figure 2.15 provide photographs of the installations. Appendix A through Appendix E provide further details on the attachments to concrete barrier systems. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground and the manufacturers of the attachments, and construction was performed by MBC Construction and TTI Proving Ground personnel.

2.2. DESIGN MODIFICATIONS DURING TESTS

No modifications were made to the installations during the testing phase.

Q.Vaccreditation-17025-2017\EIR-000 Project Files\440822 TXDOT Attachments on Barriers - Chiara\Drafting, 440822\1-2, Single Slope\440822-1 Drawing

Figure 2.1. Details of Armorcast[®] Gawk Screen on Single-Slope Barrier.

1a. See attached documents from manufacturer for installation instructions. Not all details are shown here. 1b. Adjust as needed to avoid damage from previous installation.

Institute

Drawn by GES Scale 1:150

Project #440822-2 Screen Safe on Single Slope Median

15

Roadside Safety and Physical Security Division -Proving Ground

Sheet 1 of 3 Test Installation

2022-05-18

- ±112-1/2" See 1b

Q:\Accreditation-17025-2017\EIR-000 Project Files\440822 TXDOT Attachments on Barriers - Chiara\Drafting, 440822 1-4\1-2, Single Slope\440822-2 Drawing

Figure 2.2. Details of Screen-Safe[®] Glare Screen on Single-Slope Barrier.

Q:Vaccreditation-17025-2017/EIR-000 Project Files/440822 TXDOT Attachments on Barriers - Chiara/Drafting, 440822/3-4, F-shape/440822-3 Drawing

Figure 2.3. Details of Armorcast[®] Gawk Screen on F-Shape Barrier.

Q:\accreditation-17025-2017\EIR-000 Project Files\440822 TXDOT Attachments on Barriers - Chiara\Drafting, 440822 1-4\3-4, F-shape\440822-4 Drawing

Figure 2.4. Details of Screen-Safe[®] Glare Screen on F-Shape Barrier.

1a. Galvanized steel chain link fabric, 9 gauge 2" mesh x 72", knuckle selvage top and bottom, with a breaking strength of 1290 lbs, meeting ASTM A392 Class 1 or ASTM A491. Chain link fabric is placed on the non-impact side of the installation.
1b. Tension Wire is Type II 7 gauge, ASTM A824 and A817, with Class 4 zinc coating, typical at top and bottom. Position Tension Wires in center of diamonds in Chain Link as shown, or as close as possible. Secure Tension Wire to Brace Band

bolt at each end. Secure Chain Link to Tension Wires at 24" spacing with 12 gauge zinc coated hog rings (ASTM F626). Secure Tension Wire to Line Posts with 9 gauge zinc coated wire (ASTM F626), with 3 wraps at each end of the wire. 1c. Secure chain link fabric to Brace Rails with 9 gauge zinc coated wire (ASTM F626) at 24" spacing. hex nut and F436 Washer on each. **1f.** Posts are centered on Median Barrier parapet sections, and placed where indicated in Detail E for Single Slope Traffic Rail parapet sections. Chain link is on impact side for the entire installation.

1g. Secure chain link fabric to intermediate posts with 9 gauge zinc coated wire (ASTM F626) at 12" spacing. Typical at Posts 2 - 10.

Q:\Accreditation-17025-2017\EIR-000 Project Files\440822 TXDOT Attachments on Barriers - Chiara\440822-01-5 Chain Link Fence on F-Shape\Drafting, 440822-5 V440822-5 Drawing

Figure 2.5. Details of Chain-Link Fence on F-Shape Barrier.

Figure 2.6. Impact Side of Armorcast[®] Gawk Screen on Single-Slope Barrier prior to Testing.

Figure 2.7. Field Side of Armorcast[®] Gawk Screen on Single-Slope Barrier prior to Testing.

Figure 2.8. Impact Side of Screen-Safe[®] Glare Screen on Single-Slope Barrier prior to Testing.

Figure 2.9. Screen-Safe[®] Glare Screen on Single-Slope Barrier prior to Testing.

Figure 2.10. The Armorcast[®] Gawk Screen on F-Shape Barrier prior to Testing.

Figure 2.11. Impact Side of Armorcast[®] Gawk Screen on F-Shape Barrier prior to Testing.

Figure 2.12. Impact Side of Screen-Safe[®] Glare Screen on F-Shape Barrier prior to Testing.

Figure 2.13. Screen-Safe[®] Glare Screen on F-Shape Barrier prior to Testing.

Figure 2.14. Chain-Link Fence on F-Shape Barrier prior to Testing.

Figure 2.15. Impact Side of Chain-Link Fence on F-Shape Barrier prior to Testing.

2.3. MATERIAL SPECIFICATIONS

Appendix F provides material certification documents for the materials used to install/construct the F-shape and single-slope barriers. Table 2.1 shows the average compressive strengths of the concrete on the days of the first tests: April 19, 2022, for the F-shape barriers, and April 29, 2022, for the single-slope barriers.

Location	Design Strength (psi)	Avg. Strength (psi)	Age (days)	Detailed Location	Casting Date
F-Shape	3600	5370	36	South ² / ₃ of Barrier	March 14, 2022
F-Shape	3600	5140	36	North ¹ / ₃ of Barrier	March 14, 2022
Single-Slope	3600	5280	36	South ² / ₃ of Barrier	March 24, 2022
Single-Slope	3600	4873	36	North ¹ / ₃ of Barrier	March 24, 2022

 Table 2.1. Concrete Strength.

Chapter 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1. CRASH TEST PERFORMED/MATRIX

Table 3.1 shows the test conditions and evaluation criteria for *MASH* Test 4-12 (Tests 440822-01-1 and 440822-01-2) and *MASH* Test 3-11 (Tests 440822-01-3, 440822-01-4, 440822-01-5) for longitudinal barriers. The target critical impact points (CIPs) for each test were determined using the information provided in *MASH* Section 2.2.1 and Section 2.3.2. The target CIPs for *MASH* Tests 3-11 and 4-12 are shown in their respective chapters.

Table 3.1. Test Conditions and Evaluation Criteria Specified for Longitudinal Barriers.

Test Designation	Test Vehicle	Impact Speed	Impact Angle	MASH Evaluation Criteria
3-11	2270P	62 mi/h	25°	A, D, F, H, I
4-12	10000S	56 mi/h	15°	A, D, G

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2.2 and 5.1 of *MASH* were used to evaluate the crash tests reported herein. Table 3.2 provides detailed information on the evaluation criteria.

Evaluation Factors	Evaluation Criteria	MASH Test
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	11, 12
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .	11, 12
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	11
G.	It is preferable, although not essential, that the vehicle remain upright during and after the collision.	12
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s. Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 10 ft/s, or maximum allowable value of 16 ft/s.	11
I.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	11

Table 3.2. Evaluation Criteria Required for MASH Testing.

Chapter 4. TEST CONDITIONS

4.1. TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, as well as *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The site selected for construction and testing was an out-of-service apron/runway. The apron/runway consists of an unreinforced jointed-concrete pavement in 12.5-ft \times 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

4.2. VEHICLE TOW AND GUIDANCE SYSTEM

For the testing utilizing the 2270P and 10000S vehicles, each was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

4.3. DATA ACQUISITION SYSTEMS

4.3.1. Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained onboard data acquisition system. The signal conditioning and acquisition system is a multi-channel data acquisition system (DAS) produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid-state units designed for crash test service. The data acquisition hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the DAS unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each DAS is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to the specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO[®] 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made anytime data are suspect. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the DAS-captured data to compute the occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

4.3.2. Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side/opposite side of impact of each of the 2270P vehicles. The dummy was not instrumented.

According to *MASH*, use of a dummy in the 2270P vehicle is optional. However, *MASH* recommends that a dummy be used when testing "any longitudinal barrier with a height greater than or equal to 33 inches." More specifically, use of the dummy in the 2270P vehicle is recommended for tall rails to evaluate the "potential for an occupant to extend out of the vehicle and come into direct contact with the test article." Although this information is reported, it is not part of the impact performance evaluation. Since the height of the barriers with attachments
ranged from 56 inches to 104³/₄ inches, a dummy was placed in the front seat of each 2270P vehicle on the impact side and restrained with lap and shoulder belts.

MASH does not recommend or require use of a dummy in the 10000S vehicle, and no dummy was placed in the vehicle.

4.3.3. Photographic Instrumentation Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- One located overhead with a field of view perpendicular to the ground and directly over the impact point.
- One placed upstream from the installation at an angle to have a field of view of the interaction of the rear of the vehicle with the installation.
- A third placed with a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the concrete barriers. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

Chapter 5. *MASH* TEST 4-12 OF ARMORCAST GAWK SCREENS ON SINGLE SLOPE CONCRETE BARRIER (CRASH TEST NO. 440822-01-1)

5.1. TEST ARTICLE DETAILS AND CRITICAL IMPACT POINT

The installation consisted of a 100-ft long section of a cast-in-place single-slope concrete median barrier, with 20 sections of Armorcast[®] gawk screen panels mounted on top starting 23 inches from the upstream end of the concrete. The single-slope barrier was 42 inches tall, 24 inches wide at its base, and sloped symmetrically upward on both sides for a final width of 8 inches at the top of the barrier. The gawk screen panels were 63 inches long with a 6-inch overlap; thus, each individual panel spanned 57 inches. The panels were 24 inches tall and had a 6-inch wide, 1-inch tall base that sloped up on both sides for a final width of 2 inches at the top of the screen. The screens had two ⁹/₁₆-inch slots spaced vertically on one end and two ⁹/₁₆-inch holes spaced vertically on the opposite end in order to bolt the screens end to end on top of the single-slope barrier. Each screen was fixed to the barrier by being placed over a 26-inch tall post that was anchored to the top of the concrete barrier. The posts were centered on their respective screens, and a hitch pin attached to a chain welded to the inside of the post was inserted into a ¹/₄-inch through hole in order to keep the screens from being easily removed from the posts.

Figure 5.1 shows the impact conditions for MASH Test 4-12 (Crash Test 440822-01-1).

Figure 5.1. Critical Impact Point for Test 440822-01-1.

5.2. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 5.1 for the *MASH* impact conditions and Table 5.2 for the exit parameters for Test 440822-01-1. Figure 5.2 and Figure 5.3 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	56	±2.5	56.7
Impact Angle (deg)	15	±1.5	15
Vehicle Inertial Weight (lb)	22,000	±660	22,430
Impact Severity (kip-ft)	142	≥142	161.5

 Table 5.1. Impact Conditions for MASH Test 4-12, Crash Test 440822-01-1.

Test Parameter	Specification	Tolerance	Measured	
Impact Location	60 inches upstream from the center of post 6	±12 inches	70.4 inches upstream from the center of post 6	

Table 5.2. Exit Parameters for MASH Test 4-12, Crash Test 440822-01-1.

Exit Parameter	Measured
Speed (mi/h)	Not Measureable
Trajectory (deg)	Along barrier
Heading (deg)	Along barrier
Brakes applied post impact (s)	2.9
	242 ft downstream of impact point
Vehicle at rest position	5 ft to the field side
	0° downstream
Comments:	Vehicle remained upright and stable.

Figure 5.2. Armorcast[®] Gawk Screen on Single-Slope Barrier/Test Vehicle Geometrics for Test 440822-01-1.

Figure 5.3. Armorcast[®] Gawk Screen on Single-Slope Barrier/Test Vehicle Impact Location for Test 440822-01-1.

5.3. WEATHER CONDITIONS

Table 5.3 provides the weather conditions for Test 440822-01-1.

Date of Test	April 29, 2022 AM
Temperature (°F)	79
Relative Humidity (%)	78
Wind Direction (deg)	178
Vehicle Traveling (deg)	335
Wind Speed (mi/h)	14

5.4. TEST VEHICLE

Figure 5.4 and Figure 5.5 show the 2008 Sterling used for the crash test. Table 5.4 shows the vehicle measurements. Figure A.1 in Appendix A.2 gives additional dimensions and information on the vehicle.

Figure 5.4. Impact Side of Test Vehicle before Test 440822-01-1.

Figure 5.5. Opposite Impact Side of Test Vehicle before Test 440822-01-1.

Test Parameter	MASH	Allowed Tolerance	Measured
Curb Weight (lb)	13,200	±2200	14,690
Wheelbase (inches)	240	≤240	207.5
Overall Length (inches)	394	≤394	339
Cargo Bed Height (inches) ^a	49	±2	50
Center of Gravity (CG) of Ballast above Ground ^b (inches)	63	±2	61.8

 Table 5.4. Vehicle Measurements for Test 440822-01-1.

^a Without ballast.

^b See Section 4.2.1.2 in *MASH* 2016 for recommended ballasting procedures.

5.5. TEST DESCRIPTION

Table 5.5 lists events that occurred during Test No. 440822-01-1. Figures A.4 through A.6 in Appendix A.3 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0400	Screen began to deform
0.0440	Vehicle began to redirect
0.0660	Post 6 began to deflect toward the field side
0.1070	Front passenger side tire lifted off pavement
0.2700	Rear driver side lower corner of box impacted top of barrier
0.2990	Vehicle was parallel with the installation
1.1260	Panels fully released from the concrete barrier
1.2890	Front passenger side tire contacted pavement

Table 5.5. Events during Test 440822-01-1.

5.6. DAMAGE TO TEST INSTALLATION

There was some scuffing and gouging at impact on the concrete barrier. Panels 6–20 were removed from the parapet. Panels 6 and 7 landed behind the parapet, and the others landed from 195 to 240 ft downstream. The pipe-to-plate connection failed at panels 7, 11, 15, and 16. The anchor bolts failed on the others.

Table 5.6 describes the damage to the Armorcast[®] gawk screen on the single-slope barrier. Figure 5.6 and Figure 5.7 show the damage to the Armorcast[®] gawk screen on the single-slope barrier.

Test Parameter	Measured
Permanent Deflection/Location	0 inches at the concrete barrier
Dynamic Deflection	0 inches at the concrete barrier (screen released from barrier)
Working Width ^a and Height	Dislodged Screen panels at 129.9 inches, at a height of 27.7 inches

Table 5.6. Damage to Armorcast[®] Gawk Screen on Single-Slope Barrier, Test 440822-01-1.

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 5.6. Armorcast[®] Gawk Screen on Single-Slope Barrier after Test at Impact Location, Test 440822-01-1.

Figure 5.7. Rear View of the Armorcast[®] Gawk Screen on Single-Slope Barrier Post Impact, Test 440822-01-1.

Figure 5.8. Armorcast[®] Gawk Screen on Single-Slope Barrier after Test at Base Plate with Missing Post, Test 440822-01-1.

5.7. DAMAGE TO TEST VEHICLE

Figure 5.9 and Figure 5.10 show the damage sustained by the vehicle. Figure 5.11 and Figure 5.12 show the interior of the test vehicle. Table 5.7 and Table 5.8 provide details on the occupant compartment deformation and exterior vehicle damage.

Figure 5.9. Impact Side of Test Vehicle after Test 440822-01-1.

Figure 5.10. Rear Impact Side of Test Vehicle after Test 440822-01-1.

Figure 5.11. Overall Interior of Test Vehicle after Test 440822-01-1.

Figure 5.12. Interior of Test Vehicle on Impact Side after Test 440822-01-1.

Test Parameter	Specification	Measured
Roof	\leq 4.0 inches	0 inches
Windshield	\leq 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	0 inches

 Table 5.7. Occupant Compartment Deformation for Test 440822-01-1.

Table 5.8. Exterior Vehicle Damage for Test 440822-01-1.

Side Windows	Side windows shattered due to flexing in the door panel.
Maximum Exterior Deformation	15 inches in the front plane at the left front corner at bumper height.
VDS	11LFQ5
CDC	11FLEW6
Fuel Tank Damage	Yes, but there was no rupture of the tank.
Description of Damage to Vehicle:	The front bumper and hood, left headlight, left front U-bolts and spring assembly, left front tire and rim, outer fiberglass skin of left front door, left door glass and window track, left mirror, left cab corner, left fuel tank, left battery box, and left rear inner tire and rim were all damaged. The windshield had a 3½-inch diameter break, but there was no damage to the laminate.

5.8. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 5.9. Figure A.7 in Appendix A.4 shows the vehicle angular displacements, and Figures A.8 through A.10 in Appendix A.5 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	7.5	0.2048 s on left side of interior
OIV, Lateral (ft/s)	≤40.0	11.2	0.2048 s on left side of interior
Ridedown, Longitudinal (g)	≤20.49	4.8	0.2913–0.3013 s
Ridedown, Lateral (g)	≤20.49	6.1	0.2437–0.2537 s
Theoretical Head Impact Velocity (THIV) (m/s)	N/A	4.1	0.1961 s on left side of interior
Acceleration Severity Index (ASI)	N/A	0.4	0.2502–0.3002 s
50-ms Moving Avg. Accelerations (MA) Longitudinal (g)	N/A	-2.2	0.0462–0.0962 s
50-ms MA Lateral (g)	N/A	2.9	0.0651–0.1151 s
50-ms MA Vertical (g)	N/A	3.0	0.2617–0.3117 s
Roll (deg)	≤75	24	0.7004 s
Pitch (deg)	≤75	6	0.8283 s
Yaw (deg)	N/A	19	0.6689 s

Table 5.9. Occupant Risk Factors for Test 440822-01-1.

5.9. TEST SUMMARY

Figure 5.13, Table 5.10, and Table 5.11 summarize the results of *MASH* Test 440862-03-3. Figure 5.14 shows the sequential photographs from the crash test. Figure 5.15 shows the summary drawing for the crash test.

			Test Agency Texas A8			&M Transportation Institute (TTI)			
			Test Standard/Test No.			MASH 2016, Test 4-12			
				Т	TI Project No.	440822-01-1			
					Test Date	2022-04-29			
	TEST A	RTICLE							
Sand The way was a second		1-14 - Elin			Type	Longitud	inal Barrie	r	
the second se					Name	Armorcast [®] Gawk Screen on Single-Slope Barrier			
the second for		And the second se	Length			100 ft	100 ft		
0.00	0 s		Koy Matoriala			42-inch t	42-inch tall single-slope barrier, 24-inch \times 120-inch		
					Key Materials	gawk scr	eens, 26-in	ch tall 1-inch schedule 40) pipe posts
			Soil Type and Condition Concre				, damp		
		1.11							
			Type/Designation			10000S			
And Logical I				Year, M	ake and Model	2008 Ster	rling		
				Cu	rb Weight (lb)	14,690			
		1-		Inert	ial Weight (lb)	22,430			
the second se		Contraction of the second second			Dummy (lb)	N/A			
the second s	A A A A A A A A A A A A A A A A A A A	State of the state		G	ross Static (lb)	22,430			
0.10	0 s		IMPAC1		TIONS	1			
				Impac	t Speed (mi/h)	56.7			
				Impa	ct Angle (deg)	15			
				In	npact Location	70.4 inch	es upstream	n from the center of post	6
Vag	THAN THAN			Impact S	everity (kip-ft)	161.5			
			EXIT CO	ONDITIO	NS				
			Exit Speed (mi/h)			N/A	N/A		
-1 17		- Ale and	Trajecto	ry/Headii	ng Angle (deg)	Along ba	rrier		
the second secon		Contraction of the second		Ex	it Box Criteria	N/A			
the second for	Acounting	States of the states		Stopping Distance		242 ft do	wnstream o	of impact point	
				510		5 ft to the	e field side		
0.20	0 s		TEST A	RTICLE	DEFLECTION	S			
			Dynamic (inches)			Concrete	Barrier at	0 inches	
As many			Permanent (inches)			Concrete	Barrier at	0 inches	
	THE	14 50	Working Width/Height (inches) 129			129.9/27	.7		
						Γ			
And Parts			VDS			11LFQ5			
	4	-			CDC	11FLEW	6		
- t		and the second		Max Ex	t. Deformation	15 inches			
0.30	0 c	And the second s	Max. Occupant Compartment			No Occu	pant Comp	artment Deformation	
0.50	0.0		0	CCUPAN	T RISK VALU	IES			
Long OIV (ft/s)	7.5	Long Ride	lown (g)	4.8	Max, 50-ms I	(ong. (g)	-2.2	Max Roll (deg)	24
Lat. OIV (ft/s)	11.2	Lat. Ridedo	wn(g)	6.1	Max. 50-ms I	Lat. (g)	2.9	Max. Pitch (deg)	6
THIV (m/s)	4.1	ASI	(8)	0.4	Max. 50-ms	Vert. (g)	3.0	Max. Yaw (deg)	19
						(6)		(
								66° -	
			242			-			
			242					42"	
5.0' -		Exit ar	ngle and headin	g angle are b	oth zero	5'			
TU		<u> </u>							
						Г			
								o	_
							1		

Figure 5.13. Summary of Results for *MASH* Test 4-12 on Armorcast[®] Gawk Screen on Single-Slope Barrier.

General	Test Agency	Texas A&M Transportation Institute (TTI)	
Information	Test Standard Test No.	MASH 2016, Test 4-12	
	TTI Test No.	440822-01-1	
	Test Date	2022-04-29	
Test Article	Туре	Longitudinal Barrier	
	Name	Armorcast [®] Gawk Screen on Single-Slope Barrier	
	Installation Length	100 ft	
	Material or Key Elements	42-inch tall single-slope barrier, 24-inch \times 120-inch gawk screens, 26-inch tall 1-inch schedule 40 pipe posts	
Foundation Type/Condition Concrete, dam		Concrete, damp	
Test Vehicle	Type/Designation	10000S	
	Make and Model	2008 Sterling	
	Curb	14,690 lb	
	Test Inertial	22,430 lb	
	Dummy	N/A	
	Gross Static	22,430 lb	
Impact	Speed	56.7 mi/h	
Conditions	Angle	15 degrees	
	Location	70.4 inches upstream from the center of post 6	
	Impact Severity	161.5 kip-ft	
Exit Conditions	Speed	N/A	
	Exit Trajectory/ Heading	Along barrier	

Table 5.10. Summary of Results for Test 440822-01-1, General Information, Impact and Exit Conditions.

Occupant Risk Values	Longitudinal OIV	7.5 ft/s
	Lateral OIV	11.2 ft/s
	Longitudinal RDA	4.8 g
	Lateral RDA	6.1 g
	THIV	4.1 m/s
	ASI	0.4
Max. 0.050-s Average	Longitudinal	-2.2 g
	Lateral	2.9 g
	Vertical	3.0 g
Post-Impact Trajectory	Stopping Distance	242 ft downstream of impact 5 ft to the field side
Vehicle Stability	Maximum Roll Angle	24 degrees
	Maximum Pitch Angle	6 degrees
	Maximum Yaw Angle	19 degrees
	Vehicle Snagging	No
	Vehicle Pocketing	No
Test Article Deflections	Dynamic	Concrete Barrier at 0 inches
	Permanent	Concrete Barrier at 0 inches
	Working Width	129.9 inches (barrier attachment)
	Height of Working Width	27.7 inches
Vehicle Damage	VDS	11LFQ5
	CDC	11FLEW6
	Max. Exterior Deformation	15 inches
	Max. Occupant Compartment Deformation	No Occupant Compartment Deformation

Table 5.11. Summary of Results for Test 440822-01-1, Occupant Risk, Vehicle and Test Article Damage.

(a) 0.000 s

(b) 0.100 s

Figure 5.14. Summary of Results for Test 440822-01-1, Sequential Test Pictures.

(c) 0.200 s

(d) 0.300 s

Figure 5.13. Summary of Results for Test 440822-01-1, Sequential Test Pictures (Continued).

Figure 5.15. Summary of Results for Test 440822-01-1, Summary Drawing.

Chapter 6. *MASH* TEST 4-12 OF CREEN-SAFE® GLARE SCREEN ON SINGLE-SLOPE BARRIER (CRASH TEST NO. 440822-01-2)

6.1. TEST ARTICLE DETAILS AND CRITICAL IMPACT POINT

The installation consisted of a 100-ft long section of a cast-in-place single-slope concrete median barrier, with an 81-ft 3-inch section of Screen-Safe[®] glare screen and work-zone safety shield mounted on top, starting approximately 112 inches from the upstream end of the single-slope barrier. The single-slope barrier was 42 inches tall, 24 inches wide at its base, and sloped symmetrically upward on both sides for a final width of 8 inches at the top of the barrier. The Screen-Safe[®] glare screen was split into two sections. The upstream section was 25 ft long, and the downstream section was 50 ft long. Each end of the screen was anchored with a 6-ft 7-inch long anchor cable attached from the top of the end posts to an eyebolt anchored to the top of the single-slope barrier. The glare screen was a double-reverse corrugated steel screen fabric that stood 24 inches above the top of the single-slope barrier and was affixed to the barrier by threaded 26-inch long post bolts that were screwed into wedge anchors installed in the top of the concrete barriers.

Figure 6.1 shows the impact conditions for MASH Test 4-12 (Crash Test 440822-01-2).

Figure 6.1. Critical Impact Point for Test 440822-01-2.

6.2. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 6.1 for the *MASH* impact conditions and Table 6.2 for the exit parameters for Test 440822-01-2. Figure 6.2 and Figure 6.3 depict the target impact setup.

Table 6.1. Impact	Conditions f	for MASH Test	4-12, Crash	Test 440822-01-2.
-------------------	---------------------	---------------	-------------	-------------------

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	56	±2.5	56.7
Impact Angle (deg)	15	±1.5	15.2
Vehicle Inertial Weight (lb)	22,000	±660	22,210
Impact Severity (kip-ft)	142	≥142	164.1
Impact Location	60 inches upstream from the centerline of	±12 inches	64.6 inches upstream from the centerline of

Test Parameter	Specification	Tolerance	Measured
	joint between posts 5 and 6		joint between posts 5 and 6

Table 6.2. Exit Parameters for MASH Test 4-12, Crash Test 440822-01-2.

Exit Parameter	Measured
Speed (mi/h)	N/A
Trajectory (deg)	Along barrier
Heading (deg)	Along barrier
Brakes applied post impact (s)	3.0
	333 ft downstream of impact point
Vehicle at rest position	21 ft to the field side
	180 degrees
Comments:	Vehicle remained upright and stable

Figure 6.2. Screen-Safe[®] Glare Screen on Single-Slope Barrier/Test Vehicle Geometrics for Test 440822-01-2.

Figure 6.3. Screen-Safe[®] Glare Screen on Single-Slope Barrier/Test Vehicle Impact Location for Test 440822-01-2.

6.3. WEATHER CONDITIONS

Table 6.3 provides the weather conditions for Test 440822-01-2.

Date of Test	June 1, 2022 PM
Temperature (°F)	80
Relative Humidity (%)	91
Wind Direction (deg)	270
Vehicle Traveling (deg)	185
Wind Speed (mi/h)	8

Table 6.3.	Weather	Conditions	for	Test 440822-0	01-2.

6.4. TEST VEHICLE

Figure 6.4 and Figure 6.5 show the 2011 Freightliner M2 used for the crash test. Table 6.4 shows the vehicle measurements. Figure B.1 in Appendix B.2 gives additional dimensions and information on the vehicle.

Figure 6.4. Impact Side of Test Vehicle before Test 440822-01-2.

Figure 6.5. Opposite Impact Side of Test Vehicle before Test 440822-01-2.

Test Parameter	MASH	Allowed Tolerance	Measured
Curb Weight (lb)	13,200	±2200	13,110
Wheelbase (inches)	240	≤240	205
Overall Length (inches)	394	≤394	330.5
Cargo Bed Height (inches) ^a	49	±2	51
CG of Ballast above Ground ^b (inches)	63	±2	63.5

Table 6.4. Vehicle Measurements for Test 440822-01-2.

^a Without ballast.

^b See Section 4.2.1.2 in *MASH* 2016 for recommended ballasting procedures.

6.5. TEST DESCRIPTION

Table 6.5 lists events that occurred during Test No. 440822-01-2. Figures B.4 through B.6 in Appendix B.3 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0420	Vehicle began to redirect
0.0440	Screen began to deform
0.0640	Posts 5 and 6 began to deflect toward the field side
0.1710	Front driver side tire lifted off pavement
0.2300	Rear driver side tire lifted off pavement
0.2660	Rear passenger side lower corner of box impacted top of barrier
0.2670	Vehicle was parallel to the installation
0.7560	Front driver side tire contacted pavement

Table 6.5. Events during Test 440822-01-2.

6.6. DAMAGE TO TEST INSTALLATION

There was some scuffing and gouging at the impact location and along the barrier for the duration of contact. The screen remained intact, but it was bunched up and severely deformed at post 8. There was some slight damage to the screen at posts 4 and 9. Post 14 and its anchor insert pulled loose from the barrier. Several post bolts were bent toward the field side. Posts 5 and 6 had a 26-degree lean, post 7 had a 46-degree lean, post 8 had an 83-degree lean, post 9 had a 45-degree lean, post 10 had a 38-degree lean, post 11 had a 37-degree lean, post 12 had a 43-degree lean, post 13 had a 39-degree lean, and post 15 had a 36-degree lean, all from vertical. Posts 1 through 3 and 16 were all undamaged.

Table 6.6 describes the damage to the Screen-Safe[®] glare screen on the single-slope barrier. Figure 6.6 and Figure 6.7 show the damage to the Screen-Safe[®] glare screen on the single-slope barrier.

Test Parameter	Measured	
Permanent Deflection/Location	The fence at 20.5 inches toward field side, 20 inches downstream of post 9	
Dynamic Deflection	Not measurable (view obscured by box truck)	
Working Width ^a and Height	The box truck at 69 inches, at a height of 136.6 inches	

Table 6.6. Damage to Screen-Safe[®] Glare Screen on Single-Slope Barrier, Test 440822-01-2.

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 6.6. Screen-Safe[®] Glare Screen on Single-Slope Barrier after Test at Impact Location, Test 440822-01-2.

Figure 6.7. Screen-Safe[®] Glare Screen on Single-Slope Barrier after Test at Post 8, Test 440822-01-2.

6.7. DAMAGE TO TEST VEHICLE

Figure 6.8 and Figure 6.9 show the damage sustained by the vehicle. Figure 6.10 and Figure 6.11 show the interior of the test vehicle. Table 6.7 and Table 6.8 provide details on the occupant compartment deformation and exterior vehicle damage.

Figure 6.8. Impact Side of Test Vehicle after Test 440822-01-2.

Figure 6.9. Rear Impact Side of Test Vehicle after Test 440822-01-2.

Figure 6.10. Overall Interior of Test Vehicle after Test 440822-01-2.

Figure 6.11. Interior of Test Vehicle on Impact Side after Test 440822-01-2.

Test Parameter	Specification	Measured
Roof	\leq 4.0 inches	0 inches
Windshield	≤ 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	3.5 inches
Side Front Panel	≤ 12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	0 inches

Table 6.7. Occur	oant Compartmen	t Deformation for	• Test 440822-01-2.
Tuble 0.7. Occu	pane Comparemen	t Deloi mation ioi	

Side Windows	Side windows remained intact.
Maximum Exterior Deformation	12 inches in the front plane at the right front corner at bumper height.
VDS	01RFQ2
CDC	01FREN3
Fuel Tank Damage	Yes, there was some scuffing and denting, but no punctures were noted.
Description of Damage to Vehicle:	The front axle of the box truck was knocked out. The right front bumper, right front tire and wheel, right front headlight and wheel, right side steps, right side diesel tank, right side mirror, and left front axle and bottom fender were all damaged. The right front corner of the box had a 1.5-inch \times 12-inch tear, and there was a 1.5-inch \times 1.5-inch hole in the right front corner 46 inches up.

6.8. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.9. Figure B.7 in Appendix B.4 shows the vehicle angular displacements, and Figures B.8 through B.10 in Appendix B.5 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	6.3	0.2067 s on right side of interior
OIV, Lateral (ft/s)	≤40.0	10.4	0.2067 s on right side of interior
Ridedown, Longitudinal (g)	≤20.49	4.2	0.2499–0.2599 s
Ridedown, Lateral (g)	≤20.49	10.7	0.2413–0.2513 s
THIV (m/s)	N/A	3.8	0.1979 s on right side of interior
ASI	N/A	0.6	0.2482–0.2982 s
50-ms MA Longitudinal (g)	N/A	-2.1	0.0542–0.1042 s
50-ms MA Lateral (g)	N/A	-5.0	0.2190–0.2690 s
50-ms MA Vertical (g)	N/A	-3.1	0.2507–0.3007 s
Roll (deg)	≤75	23	0.7006 s
Pitch (deg)	≤75	25	5.0000 s
Yaw (deg)	N/A	53	5.0000 s

 Table 6.9. Occupant Risk Factors for Test 440822-01-2.

6.9. TEST SUMMARY

Figure 6.12, Table 6.10, and Table 6.11 summarize the results of *MASH* Test 440862-03-3. Figure 6.13 shows the sequential photographs from the crash test. Figure 6.14 shows the summary drawing for the crash test.

Test Agency			Test Agency	Texas A&M Transportation Institute (TTI)					
			Test Standard/Test No.			MASH 2016, Test 4-12			
			TTI Project No.			440822-01-2			
		Test Date 2			2022-06	2022-06-01			
A A A A A A A A A A A A A A A A A A A		-	TEST A	TEST ARTICLE					
a state of the state of the		-			Туре	Longitudinal Barrier			
		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			Name	Screen-	Safe® Glare	Screen on Single-Slope	Barrier
					Length	100 ft			
						42-inch tall single-slope concrete barrier, 24-inch tall			
0.00					Key Materials	double-reverse corrugated steel, and 26-inch long			
0.00)0 s					³ /4-inch post bolts			
				Soil Typ	e and Condition	Concret	e, damp		
			TEST VEHICLE						
1		÷ . \		Ту	ype/Designation	10000S			
				Year, N	lake and Model	2011 Fr	eightliner N	12	
		The second second		C	Curb Weight (lb)	13,110			
		ALL		Iner	rtial Weight (lb)	22,210			
	Contraction of the local division of the loc				Dummy (lb)	N/A			
		C. C. LAND		(Gross Static (lb)	22,210			
0.10	00 s		IMPAC1		TIONS				
				Impa	act Speed (mi/h)	56.7			
				Imp	act Angle (deg)	15.2			
						64.6 inc	hes upstrea	m from the centerline of	joint
	~			1	impact Location	between	posts 5 an	d 6	-
		+ , \	Impact Severity (kip-ft) 164.1						
			EXIT CO	EXIT CONDITIONS					
		Therese	Exit Speed (mi/h) N		Not mea	asurable			
	1		Trajectory/Heading Angle (deg)		Along b	arrier			
			Exit Box Criteria		N/A				
		CALL STREET		C.L.	Distant	333 ft downstream of impact point			
			Stopping Distance 2		21 ft to the field side				
0.20)0 s		TEST A	RTICLE	DEFLECTIONS				
				D	ynamic (inches)	Not mea	asurable		
-	1		Permanent (inches)		20.5				
	at la	at 1	Worki	ng Width	/Height (inches)	69/136.6			
		-	VEHICL	E DAMA	GE				
		Theres	VDS		01RFQ2				
		-			CDC	01FREN3			
	The second		Max. Ext. Deformation		12 inches				
		Max. Occupant Compartment							
0.300 s		Deformation		3.5 inch	es in the rig	gnt front floor pan			
			00	CCUPAN	IT RISK VALUE	S			
Long. OIV (ft/s)	6.3	Long. Rideo	lown (g)	4.2	Max. 50-ms Lo	ong. (g)	-2.1	Max. Roll (deg)	23
Lat. OIV (ft/s)	10.4	Lat. Ridedo	wn (g)	10.7	Max. 50-ms La	it. (g)	-5.0	Max. Pitch (deg)	25
THIV (m/s)	3.8	ASI		0.6	Max. 50-ms Ve	ert. (g)	-3.1	Max. Yaw (deg)	53
21' Impact Angle Impact Angle 42' Impact Path I				00° ▲ 42° ▲	<u>.</u>				
*				ш <u>_</u>]	Impact Path				
						or			

Figure 6.12. Summary of Results for *MASH* Test 4-12 on Screen-Safe[®] Glare Screen on Single-Slope Barrier.

General	Test Agency	Texas A&M Transportation Institute			
Information	Test Standard Test No.	MASH 2016, Test 4-12			
	TTI Test No.	440822-01-2			
	Test Date	2022-06-01			
Test Article	Туре	Longitudinal Barrier			
	Name	Screen-Safe [®] Glare Screen on Single-Slope Barrier			
	Installation Length	100 ft			
	Material or Key Elements	42-inch tall single-slope concrete barrier, 24-inch tall double- reverse corrugated steel, and 26-inch long ³ / ₄ -inch post bolts			
	Foundation Type/Condition	Concrete, damp			
Test Vehicle	Type/Designation	10000S			
	Make and Model	2011 Freightliner M2			
	Curb	13,110 lb			
	Test Inertial	22,210 lb			
	Dummy	N/A			
	Gross Static	22,210			
Impact	Speed	56.7 mi/h			
Conditions	Angle	15.2 degrees			
	Location	64.6 inches upstream from the centerline of joint between posts 5 and 6			
	Impact Severity	164.1 kip-ft			
Exit Conditions	Speed	Not measurable			
	Exit Trajectory/ Heading	Along barrier			

Table 6.10. Summary of Results for Test 440822-01-2, General Information, Impact and Exit Conditions.

Occupant Risk Values	Longitudinal OIV	6.3 ft/s	
	Lateral OIV	10.4 ft/s	
	Longitudinal RDA	4.2 g	
	Lateral RDA	10.7 g	
	THIV	3.8 m/s	
	ASI	0.6	
Max. 0.050-s Average	Longitudinal	-2.1 g	
	Lateral	-5.0 g	
	Vertical	-3.1 g	
Post-Impact Trajectory	Stopping Distance	333 ft downstream of impact point21 ft to the field side	
Vehicle Stability	Maximum Roll Angle	23 degrees	
	Maximum Pitch Angle	25 degrees	
	Maximum Yaw Angle	53 degrees	
	Vehicle Snagging	No	
	Vehicle Pocketing	No	
Test Article Deflections	Dynamic	Not measurable	
	Permanent	20.5 inches	
	Working Width	69 inches (truck)	
	Height of Working Width	136.6 inches	
Vehicle Damage	VDS	01RFQ2	
	CDC	01FREN3	
	Max. Exterior Deformation	12 inches	
	Max. Occupant Compartment Deformation	3.5 inches in the right front floor pan	

Table 6.11. Summary of Results for Test 440822-01-2, Occupant Risk, Vehicle and Test Article Damage.

(a) 0.000 s

(b) 0.100 s

Figure 6.13. Summary of Results for Test 440822-01-2, Sequential Test Pictures.

(c) 0.200 s

(d) 0.300 s

Figure 6.13. Summary of Results for Test 440822-01-2, Sequential Test Pictures (Continued).

Figure 6.14. Summary of Results for Test 440822-01-2, Summary Drawing.

Chapter 7. *MASH* TEST 3-11 OF ARMORCAST[®] GAWK SCREEN ON F-SHAPE BARRIER (CRASH TEST NO. 440822-01-3)

7.1. TEST ARTICLE DETAILS AND CRITICAL IMPACT POINT

The installation consisted of a 100-ft long section of a cast-in-place F-shape concrete median barrier, with a 79-ft 9-inch section of Armorcast[®] gawk screen panels mounted on top starting from the upstream end of the F-shape barrier. The F-shape barrier was 32 inches tall, 24 inches wide at its base, and sloped upward on both sides for a final width of 9½ inches at the top of the barrier. The gawk screens were 63 inches long, with a 6-inch overlap, so each individual barrier spanned 57 inches. The screens were 24 inches tall, and had a 6-inch wide 1-inch tall base that sloped up on both sides for a final width of 2 inches at the top of the screen. The screens had two ⁹/₁₆-inch wide slots vertically spaced on one end and two ⁹/₁₆-inch holes vertically spaced on the opposite end in order to bolt the screens end to end on top of the F-shape barrier. Each screen was fixed to the barrier by being placed over a 26-inch tall post that was anchored to the top of the concrete barrier. The posts were centered on their respective screens, and a hitch pin attached to a chain welded to the inside of the post was inserted into a ¹/₄-inch through hole in order to keep the screens from being easily removed from the posts.

Figure 7.1 shows the impact conditions for MASH Test 3-11 (Crash Test 440822-01-3).

Figure 7.1. Critical Impact Point for Test 440822-01-3.

7.2. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 7.1 for the *MASH* impact conditions and Table 7.2 for the exit parameters for Test 440822-01-3. Figure 7.2 and Figure 7.3 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	62.8
Impact Angle (deg)	25	±1.5°	24.6
Impact Severity (kip-ft)	106	≥106 kip-ft	114.8
Impact Location	43 inches upstream from the centerline of post 4	±12 inches	45.2 inches upstream from the centerline of post 4

Table 7.1. Impact Conditions for MASH Test 3-11, Crash Test 440822-01-3.

Table 7.2. Exit Parameters for MASH Test 3-11, Crash Test 440822-01-3.

Exit Parameter	Measured
Speed (mi/h)	52.7
Trajectory (deg)	1
Heading (deg)	8
Brakes applied post impact (s)	Brakes not applied
Vehicle at rest position	184 ft downstream of impact point 32 ft to the traffic side
veniere at rest position	100° right
Comments:	Vehicle remained upright and stable. Vehicle crossed exit box ^a 76 ft downstream from loss of contact.

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 7.2. Armorcast[®] Gawk Screen on F-Shape Barrier/Test Vehicle Geometrics for Test 440822-01-3.

Figure 7.3. Armorcast[®] Gawk Screen on F-Shape Barrier/Test Vehicle Impact Location, Test 440822-01-3.

7.3. WEATHER CONDITIONS

Table 7.3 provides the weather conditions for Test 440822-01-3.

Date of Test	April 19, 2022 AM
Temperature (°F)	69
Relative Humidity (%)	50
Wind Direction (deg)	270
Vehicle Traveling (deg)	325
Wind Speed (mi/h)	10

Table 7.3.	Weather	Conditions	for	Test 440822-01-3.
7.4. TEST VEHICLE

Figure 7.4 and Figure 7.5 show the 2017 RAM 1500 used for the crash test. Table 7.4 shows the vehicle measurements. Figure C.1 in Appendix C.2 gives additional dimensions and information on the vehicle.

Figure 7.4. Impact Side of Test Vehicle before Test 440822-01-3.

Figure 7.5. Opposite Impact Side of Test Vehicle before Test 440822-01-3.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	165
Inertial Weight (lb)	5000	±110	5025
Gross Static ^a (lb)	5165	±110	5190
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46
Track Width ^b (inches)	67	±1.5	68.3
CG aft of Front Axle ^c (inches)	63	±4	61.4
CG above Ground ^{c,d} (inches)	28	≥28	28.3

Table 7.4. Vehicle Measurements for Test 440822-01-3.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy. ^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

7.5. **TEST DESCRIPTION**

Table 7.5 lists events that occurred during Test No. 440822-01-3. Figures C.4 through C.6 in Appendix C.3 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0175	Front driver side fender contacted screen attachment
0.0240	Screen began to deform
0.0390	Vehicle began to redirect
0.0430	Post 6 began to deflect toward the field side
0.0780	Front passenger side tire lifted off pavement
0.1340	Rear passenger side tire lifted off pavement
0.1960	Vehicle was parallel with the installation
0.2000	Rear driver side bumper contacted F-shape barrier
0.3960	Vehicle lost contact with the rail and exited the test article traveling 52.7 mi/h at a trajectory of 1.2 degrees and a vehicle heading of 8.3 degrees

Table 7.5. Events during Test 440822-01-3.

7.6. DAMAGE TO TEST INSTALLATION

There was some scuffing and gouging at impact on the concrete barrier. Screen 4 was damaged and had a vertical tear at its post. The posts and baseplates of screens 3, 4, and 5 were all bent.

Table 7.6 describes the damage to the Armorcast[®] gawk screen on the F-shape barrier. Figure 7.6 and Figure 7.7 show the damage to the Armorcast[®] gawk screen on the F-shape barrier.

Table 7.6. Damage to Armorcast[®] Gawk Screen on F-Shape Barrier, Test 440822-01-3.

Test Parameter	Measured
Permanent Deflection/Location	The screen at 8.5 inches toward field side, 5 inches upstream of post 4
Dynamic Deflection	The screen at 16.5 inches toward field side
Working Width ^a and Height	29.5 inches, at a height of 56 inches (barrier attachment)

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 7.6. Armorcast[®] Gawk Screen on F-Shape Barrier after Test at Impact Location, Test 440822-01-3.

Figure 7.7. Armorcast[®] Gawk Screen on F-Shape Barrier after Test at Post 4, Test 440822-01-3.

7.7. DAMAGE TO TEST VEHICLE

Figure 7.8 and Figure 7.9 show the damage sustained by the vehicle. Figure 7.10 and Figure 7.11 show the interior of the test vehicle. Table 7.7 and Table 7.8 provide details on the occupant compartment deformation and exterior vehicle damage. Figures C.2 and C.3 in Appendix C.2 provide exterior crush and occupant compartment measurements.

Figure 7.8. Impact Side of Test Vehicle after Test 440822-01-3.

Figure 7.9. Rear Impact Side of Test Vehicle after Test 440822-01-3.

Figure 7.10. Overall Interior of Test Vehicle after Test 440822-01-3.

Figure 7.11. Interior of Test Vehicle on Impact Side after Test 440822-01-3.

Test Parameter	Specification	Measured
Roof	≤ 4.0 inches	0 inches
Windshield	≤ 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤ 9.0 inches	-2 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	-1 inch
Front Door (above Seat)	≤ 9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	0 inches

Table 7.7. Occur	pant Compartmen	t Deformation for	r Test 440822-01-3.
Table 7.7. Occu	pant Comparimen	t Deloi mation io	

Table 7.8. Exterior Vehicle Damage for Test 440822-01-3.

Side Windows	The side window shattered due to the flex of the door and was not caused by the test article impacting or penetrating the vehicle.
Maximum Exterior Deformation	12 inches in the front plane at the left front corner at bumper height.
VDS	11LFQ4
CDC	11FLEW4
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood and grill, radiator and support, left headlight, left front quarter fender, left front tire and rim, left rear door, left cab corner, left rear tire and rim, left taillight, and rear bumper were damaged. The windshield had a lateral crack on the left side as a result of the deformation of the vehicle, and the left front door had a 6-inch gap at the top.

7.8. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 7.9. Figure C.7 in Appendix C.4 shows the vehicle angular displacements, and Figures C.8 through C.10 in Appendix C.5 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	20.1	0.0886 s on left side of interior
OIV, Lateral (ft/s)	≤40.0	30.4	0.0886 s on left side of interior
Ridedown, Longitudinal (g)	≤20.49	3.1	0.1085–0.1185 s
Ridedown, Lateral (g)	≤20.49	13.5	0.2347–0.2447 s
THIV (m/s)	N/A	11.3	0.0869 s on left side of interior
ASI	N/A	2.2	0.0581–0.1081 s
50-ms MA Longitudinal (g)	N/A	-9.7	0.0333–0.0833 s
50-ms MA Lateral (g)	N/A	16.6	0.0370–0.0870 s
50-ms MA Vertical (g)	N/A	3.6	0.0858–0.1358 s
Roll (deg)	≤75	27	0.5651 s
Pitch (deg)	≤75	17	4.9784 s
Yaw (deg)	N/A	145	4.9045 s

 Table 7.9. Occupant Risk Factors for Test 440822-01-3.

7.9. TEST SUMMARY

Figure 7.12, Table 7.10, and Table 7.11 summarize the results of *MASH* Test 440862-03-3. Figure 7.13 shows the sequential photographs from the crash test. Figure 7.14 shows the summary drawing for the crash test.

			1			1			
			Test Agency			Texas A&M Transportation Institute (TTI)			
			Test Standard/Test No.			MASH 2016, Test 3-11			
4				TTI Project No.	440822	-01-3			
				Test Date	2022-04	-19			
			TEST ARTICLE			T			
					Туре	Longitu	dinal Barrie	er	
The second	1				Name	Armore	ast® Gawk	Screen on F-Shape Barri	er
12.	A	100			Length	100 ft			
0.00)0 s				Key Materials	32-inch screens,	tall F-shap 26-inch tal	e barrier, 24-inch × 120-i 1 1-inch schedule 40 pipe	inch gawk e posts
				Soil Typ	e and Condition	Concret	e, damp		
1		100	TEST V	EHICLE					
and the second	10 4 4 M	and the second		Ту	pe/Designation	2270P			
	DÍA			Year, N	lake and Model	2017 R	2017 RAM 1500		
				C	Curb Weight (lb)	5040			
				Iner	rtial Weight (lb)	5025			
The second	-	1			Dummy (lb)	165			
72.	-	-		(Gross Static (lb)	5190			
0.10)0 s		IMPAC ⁻	T CONDI	TIONS	•			
			-	Impa	ct Speed (mi/h)	62.8			
				Imp	act Angle (deg)	24.6			
		100		I	mpact Location	45.2 inc	hes upstrea	m from the centerline of	post 4
stands =	1.1	and the second		Impact 3	Severity (kip-ft)	114.8	1		1
	A MAI	Car Martin	EXIT C	ONDITIO	NS				
			Exit Speed (mi/h)			52.7			
		te -	Trajectory/Heading Angle (deg)			1/8			
A state of the sta		1	Exit Box Criteria			Crossed	76 ft dowr	stream from loss of cont	act
121 111 111	-	and the second			184 ft d	ownstream	of impact point		
			Stopping Distance		32 ft to	the traffic s	ide		
0.20)0 s		TEST A	RTICLE	DEFLECTIONS	5			
	31 - 3			D	ynamic (inches)	16.5			
	. /	A State	Permanent (inches)		8.5				
Carles & Pro-	DIN S. SPA	19 10	Working Width/Height (inches)			29.5/56	.0		
	A	14 M-4	VEHICLE DAMAGE			1			
					VDS	01LFQ6	<u>5</u>		
			CDC		01FLEW4				
The start of the s		1		Max. E	xt. Deformation	12 inche	es		
12.			Max	k. Occupar	nt Compartment	0 in share			
0.30)0 s			-	Deformation	2 incres	s in the toe	pan	
			0	CCUPAN	IT RISK VALUE	S			
Long. OIV (ft/s)	20.1	Long. Rideo	down (g)	3.1	Max. 50-ms Lo	ong. (g)	-9.7	Max. Roll (deg)	27
Lat. OIV (ft/s)	30.4	Lat. Ridedo	wn (g)	13.5	Max. 50-ms La	at. (g)	16.6	Max. Pitch (deg)	17
THIV (m/s)	11.3	ASI	-	2.2	Max. 50-ms V	ert. (g)	3.6	Max Yaw (deg)	145
11.1' Exit Angle 3.8' Her Heading Angle Impact Angle Impact Path Exit Angle Box									
					C	"L <i>11/1/12</i>			

Figure 7.12. Summary of Results for *MASH* Test 3-11 on Armorcast[®] Gawk Screen on F-Shape Barrier.

General	Test Agency	Texas A&M Transportation Institute (TTI)	
mormation	Test Standard Test No.	MASH 2016, Test 3-11	
	TTI Test No.	440822-01-3	
	Test Date	2022-04-19	
Test Article	Туре	Longitudinal Barrier	
	Name	Armorcast [®] Gawk Screen on F-Shape Barrier	
	Installation Length	100 ft	
	Material or Key Elements	32-inch tall F-shape barrier, 24-inch \times 120-inch gawk screens, 26-inch tall 1-inch schedule 40 pipe posts	
	Foundation Type/Condition	Concrete, damp	
Test Vehicle	Type/Designation	2270P	
	Make and Model	2017 RAM 1500	
	Curb	5040 lb	
	Test Inertial	5025 lb	
	Dummy	165 lb	
	Gross Static	5190 lb	
Impact	Speed	62.8 mi/h	
Conditions	Angle	24.6 degrees	
	Location	45.2 inches upstream from the centerline of post 4	
	Impact Severity	114.8 kip-fit	
Exit Conditions	Speed	52.7 mi/h	
	Exit Trajectory/ Heading	1 degree/8 degrees	

Table 7.10. Summary of Results for Test 440822-01-3, General Information, Impact and Exit Conditions.

Occupant Risk Values	Longitudinal OIV	20.1 ft/s
	Lateral OIV	30.4 ft/s
	Longitudinal RDA	3.1 g
	Lateral RDA	13.5 g
	THIV	11.3 m/s
	ASI	2.2
Max. 0.050-s Average	Longitudinal	-9.7 g
	Lateral	16.6 g
	Vertical	3.6 g
Post-Impact Trajectory	Stopping Distance	184 ft downstream of impact point32 ft to the traffic side
Vehicle Stability	Maximum Roll Angle	27 degrees
	Maximum Pitch Angle	17 degrees
	Maximum Yaw Angle	145 degrees
	Vehicle Snagging	No
	Vehicle Pocketing	No
Test Article Deflections	Dynamic	16.5 inches
	Permanent	8.5 inches
	Working Width	29.5 inches (barrier attachment)
	Height of Working Width	56.0 inches
Vehicle Damage	VDS	01LFQ6
	CDC	01FLEW4
	Max. Exterior Deformation	12 inches
	Max. Occupant Compartment Deformation	2 inches in the toe pan

Table 7.11. Summary of Results for Test 440822-01-3, Occupant Risk, Vehicle and Test Article Damage.

(a) 0.000 s

(b) 0.100 s

Figure 7.13. Summary of Results for Test 440822-01-3, Sequential Test Pictures.

(c) 0.200 s

(d) 0.300 s

Figure 7.13. Summary of Results for Test 440822-01-3, Sequential Test Pictures (Continued).

Figure 7.14. Summary of Results for Test 440822-01-3, Summary Drawing.

Chapter 8. *MASH* TEST 3-11 OF SCREEN-SAFE[®] GLARE SCREEN ON F-SHAPE BARRIER (CRASH TEST NO. 440822-01-4)

8.1. TEST ARTICLE DETAILS AND CRITICAL IMPACT POINT

The installation consisted of a 100-ft long section of a cast-in-place F-shape concrete barrier, with an 81-ft 6½-inch section of Screen-Safe[®] glare screen and work-zone safety shield mounted on top starting approximately 90 inches from the upstream end of the F-shape barrier. The F-shape barrier was 32 inches tall, 24 inches wide at its base, and sloped upward on both sides for a final width of 9½ inches at the top of the barrier. The Screen-Safe[®] glare screen was split into two sections. The upstream section was 31 ft 6½ inches long, and the downstream section was 50 ft long. Each end of the screen was anchored with a 6-ft 7-inch long anchor cable attached from the top of the end posts to an eyebolt anchored to the top of the F-shape barrier. The glare screen was a double-reverse corrugated steel screen fabric that stood 24 inches above the top of the F-shape barrier and was affixed to the barrier by threaded 26-inch long, ¾-inch diameter post bolts that were screwed into wedge anchors installed in the top of the concrete barriers.

Figure 8.1 shows the impact conditions for MASH Test 3-11 (Crash Test 440822-01-4).

8.2. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 8.1 for the *MASH* impact conditions and Table 8.2 for the exit parameters for Test 440822-01-4. Figure 8.2 and Figure 8.3 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	62.3
Impact Angle (deg)	25	±1.5°	24.5
Impact Severity (kip-ft)	106	≥106 kip-ft	112.9
Impact Location	43 inches upstream from the centerline of the screen joint (between posts 6 and 7)	±12 inches	41.4 inches upstream from the centerline of the screen joint (between posts 6 and 7)

 Table 8.1. Impact Conditions for MASH Test 3-11, Crash Test 440822-01-4.

Table 8.2. Exit Parameters for MASH Test 3-11, Crash Test 440822-01-4.

Exit Parameter	Measured
Speed (mi/h)	47.8
Trajectory (deg)	2
Heading (deg)	9
Brakes applied post impact (s)	2.5
	195 ft downstream of impact point
Vehicle at rest position	8 ft to the traffic side
	45° right
Comments:	Vehicle remained upright and stable.
	Vehicle crossed exit box ^a 79 ft downstream from loss of contact.

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 8.2. Screen-Safe[®] Glare Screen on F-Shape Barrier/Test Vehicle Geometrics for Test 440822-01-4.

Figure 8.3. Screen-Safe[®] Glare Screen on F-Shape Barrier/Test Vehicle Impact Location, Test 440822-01-4.

8.3. WEATHER CONDITIONS

Table 8.3 provides the weather conditions for Test 440822-01-4.

Date of Test	May 17, 2022 PM
Temperature (°F)	89
Relative Humidity (%)	63
Wind Direction (deg)	177
Vehicle Traveling (deg)	195
Wind Speed (mi/h)	11

Fable 8.3.	Weather	Conditions	for Test	440822-01-4.

8.4. TEST VEHICLE

Figure 8.4 and Figure 8.5 show the 2017 RAM 1500 used for the crash test. Table 8.4 shows the vehicle measurements. Figure D.1 in Appendix D.2 gives additional dimensions and information on the vehicle.

Figure 8.4. Impact Side of Test Vehicle before Test 440822-01-4.

Figure 8.5. Opposite Impact Side of Test Vehicle before Test 440822-01-4.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable)a (lb)	165	N/A	165
Inertial Weight (lb)	5000	±110	5060
Gross Static ^a (lb)	5165	±110	5225
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46
Track Width ^b (inches)	67	±1.5	68.3
CG aft of Front Axle ^c (inches)	63	±4	61
CG above Ground ^{c,d} (inches)	28	≥28	28.8

 Table 8.4. Vehicle Measurements for Test 440822-01-4.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

8.5. TEST DESCRIPTION

Table 8.5 lists events that occurred during Test No. 440822-01-4. Figures D.4 through D.6 in Appendix D.3 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0420	Vehicle began to redirect
0.0650	Windshield began to crack due to truck body twisting from impact
0.0900	Front driver side tire lifted off pavement
0.1280	Rear driver side tire lifted off pavement
0.1960	Vehicle was parallel with the installation
0.1980	Rear passenger side corner contacted F-shape barrier
0.3930	Vehicle lost contact with the rail and exited the test article traveling 47.8 mi/h at a trajectory of 1.7 degrees and a vehicle heading of 8.9 degrees

Table 8.5. Events during Test 440822-01-4.

8.6. DAMAGE TO TEST INSTALLATION

There was some scuffing and gouging at impact on the concrete barrier. The glare screen was deformed, and several post bolts were bent toward the field side. Post 5 had a 10-degree lean from vertical, posts 6 and 7 had a 63-degree lean, post 8 had a 45-degree lean, and post 9 had an 11-degree lean.

Table 8.6 describes the damage to the Screen-Safe[®] glare screen on the F-shape barrier. Figure 8.6 and Figure 8.7 show the damage to the Screen-Safe[®] glare screen on the F-shape barrier.

Test Parameter	Measured
Permanent Deflection/Location	The screen at 21 inches toward field side at the joint of posts 6 and 7
Dynamic Deflection	The screen at 24 inches toward field side
Working Width ^a and Height	36 inches, at a height of 56 inches (barrier attachment)

Table 8.6. Damage to Screen-Safe [®] (Glare Screen on F-Sha	pe Barrier, '	Test 440822-01-4.
---	------------------------------	---------------	-------------------

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 8.6. Screen-Safe[®] Glare Screen on F-Shape Barrier after Test at Impact Location, Test 440822-01-4.

Figure 8.7. Screen-Safe[®] Glare Screen on F-Shape Barrier after Test at the Joint of Posts 6 and 7, Test 440822-01-4.

8.7. DAMAGE TO TEST VEHICLE

Figure 8.8 and Figure 8.9 show the damage sustained by the vehicle. Figure 8.10 and Figure 8.11 show the interior of the test vehicle. Table 8.7 and Table 8.8 provide details on the occupant compartment deformation and exterior vehicle damage. Figures D.2 and D.3 in Appendix D.2 provide exterior crush and occupant compartment measurements.

Figure 8.8. Impact Side of Test Vehicle after Test 440822-01-4.

Figure 8.9. Rear Impact Side of Test Vehicle after Test 440822-01-4.

Figure 8.10. Overall Interior of Test Vehicle after Test 440822-01-4.

Figure 8.11. Interior of Test Vehicle on Impact Side after Test 440822-01-4.

Test Parameter	Specification	Measured
Roof	≤ 4.0 inches	0 inches
Windshield	≤ 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤ 9.0 inches	-7 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	-5 inches
Front Door (above Seat)	≤ 9.0 inches	-2.3 inches
Front Door (below Seat)	≤12.0 inches	0 inches

Table 8.7. Occupant Compartment Deformation for Test 440822	-01-4.
---	--------

Table 8.8. Exterior Vehicle Damage for Test 440822-01-4.

Side Windows	The right passenger's side window shattered due to the deformation of the door and was not caused by penetration of the test article.
Maximum Exterior Deformation	14 inches in the front plane at the right front corner above the bumper.
VDS	01RFQ4
CDC	01FREW3
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, radiator and support, right frame rail, right front tire and rim, right front quarter fender, right front door, right rear door, right cab corner, right rear quarter fender, right rear rim, and rear bumper were damaged. The windshield had some separation in the laminate due to the deformation of the vehicle. The right front door had a 6.75-inch gap at the top.

8.8. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 8.9. Figure D.7 in Appendix D.4 shows the vehicle angular displacements, and Figures D.8 through D.10 in Appendix D.5 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	21.6	0.0991 s on right side of interior
OIV, Lateral (ft/s)	≤40.0	25.4	0.0991 s on right side of interior
Ridedown, Longitudinal (g)	≤20.49	3.3	0.2041–0.2141 s
Ridedown, Lateral (g)	≤20.49	7.2	0.2048–0.2148 s
THIV (m/s)	N/A	10.3	0.0960 s on right side of interior
ASI	N/A	1.9	0.0627–0.1127 s
50-ms MA Longitudinal (g)	N/A	-10.5	0.0374–0.0874 s
50-ms MA Lateral (g)	N/A	-14.0	0.0379–0.0879 s
50-ms MA Vertical (g)	N/A	4.0	0.1007–0.1507 s
Roll (deg)	≤75	39	0.6754 s
Pitch (deg)	≤75	12	0.6032 s
Yaw (deg)	N/A	48	1.0782 s

 Table 8.9. Occupant Risk Factors for Test 440822-01-4.

8.9. TEST SUMMARY

Figure 8.12, Table 8.10, and Table 8.11 summarize the results of *MASH* Test 440862-03-3. Figure 8.13 shows the sequential photographs from the crash test. Figure 8.14 shows the summary drawing for the crash test.

		1			Test Agency	Texas A	&M Transpo	ortation Institute (TTI)	
The second second			Test Standard/Test No.			MASH 2016, Test 3-11			
			TTI Project No. 44			440822-	440822-01-4		
Inan - Me Line	Test Date 2022				-17				
TEST ARTICLE									
and AV		The state of the			Туре	Longitu	dinal Barrier		
I man and a second					Name	Screen-	Safe® Glare S	Screen on F-Shape Barri	ier
them			Length	100 ft					
0.00	00 s				Key Materials	32-inch screens,	32-inch tall F-shape barrier, 24-inch × 120-inch glare screens, 26-inch tall 1-inch schedule 40 pipe posts		
	1	0		Soil Type	e and Condition	Concret	e, damp		
		ALC: NO.	TEST VI	EHICLE					
				Ту	pe/Designation	2270P			
			Year, Make and Model 2017			2017 RA	017 RAM 1500		
				C	urb Weight (lb)	5080			
-		and the second second		Iner	tial Weight (lb)	5060			
T					Dummy (lb)	165			
	-	Contraction of the		(Gross Static (lb)	5225			
0.10	0 s		IMPACT	CONDI	TIONS				
				Impa	ct Speed (mi/h)	62.3			
				Imp	act Angle (deg)	24.5			
			Impact Location			41.4 inc joint (be	hes upstream etween posts	from the centerline of 6 and 7)	the screen
			Impact Severity (kip-ft) 112			112.9			
			EXIT CONDITIONS						
			Exit Speed (mi/h) 4'			47.8	47.8		
3			Trajectory/Heading Angle (deg) 2/			2/9			
Francisco				Exit Box Criteria Crossed			79 ft downs	tream from loss of conta	act
the second s	-	and the second second		Sto	opping Distance	195 ft d	ownstream o	f impact point	
0.20	0 a		TECTA			8 ft to th	ie traffic side		
0.20	0.5	1000 to 1	TESTA		unamia (inchas)	24			
				D	manant (inches)	24			
Mar Harris			Workin	ng Width	Height (inches)	21			
		0	VEHICI	VEHICLE DAMAGE					
		1-	VEHICLE DAMAGE		01RFO	1			
		And and a state of the state of			CDC	01FRFV	W3		
Ŧ		and the second		Max E	xt Deformation	14 inche	45 AS		
0.30	0 c	1	Max	. Occupar	nt Compartment	7 inches	in the toe pa	in	
0.30			0	CUPAN	T RISK VALUE	s			
Long OIV (ft/s)	21.6	Long Dida	lown (g)	33	Max 50 ms L	ong (g)	-10.5	Max Roll (deg)	30
Long. OIV (n/s)	21.0	Long. Kidedo	wn (g)	7.2	Max. 50-ms La	(g)	-14.0	Max. Roll (deg)	12
THIV (m/s)	10.3	ASI	wii (g)	1.2	Max 50-ms Ve	ert (g)	4.0	Max. Yaw (deg)	48
	10.5	7101		1.9	Wax. 50 ms ve	<i></i> (g)	7.0	Max. Taw (deg)	40
							50		
4			Heading An		0.0'				
8']				e internet	−3.5' ⊢3.5'				
					<u>`~</u>	4	32" -	(A A	
			1 L		Im Im	pact Angle			
			Exit Anale I	Box_	Impact Path	¥			
							0" -	L(#//X//%	

Figure 8.12. Summary of Results for *MASH* Test 3-11 on Screen-Safe[®] Glare Screen on F-Shape Barrier.

General	Test Agency	Texas A&M Transportation Institute
Information	Test Standard Test No.	MASH 2016, Test 3-11
	TTI Test No.	440822-01-4
	Test Date	2022-05-17
Test Article	Туре	Longitudinal Barrier
	Name	Screen-Safe [®] Glare Screen on F-Shape Barrier
	Installation Length	100 ft
	Material or Key Elements	32-inch tall F-shape barrier, 24-inch \times 120-inch glare screens, 26-inch tall 1-inch schedule 40 pipe posts
	Foundation Type/Condition	Concrete, damp
Test Vehicle	Type/Designation	2270P
	Make and Model	2017 RAM 1500
	Curb	5080 lb
	Test Inertial	5060 lb
	Dummy	165 lb
	Gross Static	5225 lb
Impact	Speed	62.3 mi/h
Conditions	Angle	24.5 degrees
	Location	41.4 inches upstream from the centerline of the screen joint (between posts 6 and 7)
	Impact Severity	112.9 kip-ft
Exit Conditions	Speed	47.8 mi/h
	Exit Trajectory/ Heading	2 degrees/9 degrees

Table 8.10. Summary of Results for Test 440822-01-4, General Information, Impact and Exit Conditions.

Occupant Risk Values	Longitudinal OIV	21.6 ft/s
	Lateral OIV	25.4 ft/s
	Longitudinal RDA	3.3 g
	Lateral RDA	7.2 g
	THIV	10.3 m/s
	ASI	1.9
Max. 0.050-s Average	Longitudinal	-10.5 g
	Lateral	-14.0 g
	Vertical	4.0 g
Post-Impact Trajectory	Stopping Distance	195 ft downstream of impact point 8 ft to the traffic side
Vehicle Stability	Maximum Roll Angle	39 degrees
	Maximum Pitch Angle	12 degrees
	Maximum Yaw Angle	48 degrees
	Vehicle Snagging	No
	Vehicle Pocketing	No
Test Article Deflections	Dynamic	24 inches
	Permanent	21 inches
	Working Width	36 inches (barrier attachment)
	Height of Working Width	56 inches
Vehicle Damage	VDS	01RFQ4
	CDC	01FREW3
	Max. Exterior Deformation	14 inches
	Max. Occupant Compartment Deformation	7 inches in the toe pan

 Table 8.11. Summary of Results for Test 440822-01-4, Occupant Risk, Vehicle and Test

 Article Damage.

(a) 0.000 s

(b) 0.100 s

Figure 8.13. Summary of Results for Test 440822-01-4, Sequential Test Pictures.

(c) 0.200 s

(d) 0.300 s

Figure 8.13. Summary of Results for Test 440822-01-4, Sequential Test Pictures (Continued).

Figure 8.14. Summary of Results for Test 440822-01-4, Summary Drawing.

Chapter 9. *MASH* TEST 3-11 OF CHAIN-LINK FENCE ON F-SHAPE BARRIER (CRASH TEST NO. 440822-01-5)

9.1. TEST ARTICLE DETAILS AND CRITICAL IMPACT POINT

The installation consisted of a 100-ft long section of a cast-in-place F-shape concrete barrier, with an 80-ft long section of chain-link fence mounted on top and approximately centered on the F-shape barrier. The F-shape barrier was 32 inches tall, 24 inches wide at its base, and sloped upward on both sides for a final width of 9½ inches at the top of the barrier. The chain-link fence was 72 inches tall and was secured to the posts, which were spaced at 96 inches. The posts were affixed to the barrier by threaded 5%-inch diameter rods secured in the concrete with epoxy.

Figure 9.1 shows the impact conditions for MASH Test 3-11 (Crash Test 440822-01-5).

Figure 9.1. Critical Impact Point for Test 440822-01-5.

9.2. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 9.1 for the *MASH* impact conditions and Table 9.2 for the exit parameters for Test 440822-01-5. Figure 9.2 and Figure 9.3 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	61
Impact Angle (deg)	25	±1.5°	25
Impact Severity (kip-ft)	106	≥106 kip-ft	112.5
Impact Location	43 inches upstream from the centerline of post 6	±12 inches	42 inches upstream from the centerline of post 6

 Table 9.1. Impact Conditions for MASH Test 3-11, Crash Test 440822-01-5.

Exit Parameter	Measured
Speed (mi/h)	48.3
Trajectory (deg)	3
Heading (deg)	10
Brakes applied post impact (s)	2.1
	210 ft downstream of impact point
Vehicle at rest position	2 ft to the traffic side
	5° right
Comments: Vehicle remained upright and stable.	
	Vehicle crossed exit box ^a 75 ft downstream from loss of contact.

Table 9.2. Exit Parameters for MASH Test 3-11, Crash Test 440822-01-5.

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 9.2. Chain-Link Fence on F-Shape Barrier/Test Vehicle Geometrics for Test 440822-01-5.

Figure 9.3. Chain-Link Fence on F-Shape Barrier/Test Vehicle Impact Location, Test 440822-01-5.

9.3. WEATHER CONDITIONS

Table 9.3 provides the weather conditions for Test 440822-01-5.

Date of Test	August 4, 2022 AM
Temperature (°F)	90
Relative Humidity (%)	68
Wind Direction (deg)	174
Vehicle Traveling (deg)	195
Wind Speed (mi/h)	11

Table 9.3.	Weather	Conditions	for '	Test	440822	-01-5.

9.4. TEST VEHICLE

Figure 9.4 and Figure 9.5 show the 2016 RAM 1500 used for the crash test. Table 9.4 shows the vehicle measurements. Figure E.1 in Appendix E.2 gives additional dimensions and information on the vehicle.

Figure 9.4. Impact Side of Test Vehicle before Test 440822-01-5.

Figure 9.5. Opposite Impact Side of Test Vehicle before Test 440822-01-5.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	165
Inertial Weight (lb)	5000	±110	5065
Gross Static ^a (lb)	5165	±110	5230
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46
Track Width ^b (inches)	67	±1.5	68.3
CG aft of Front Axle ^c (inches)	63	±4	61.2
CG above Ground ^{c,d} (inches)	28	≥28	28.5

 Table 9.4. Vehicle Measurements for Test 440822-01-5.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

9.5. TEST DESCRIPTION

Table 9.5 lists events that occurred during Test No. 440822-01-5. Figures E.4 through E.6 in Appendix E.3 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0370	Passenger side front of vehicle impacted post 6
0.0390	Vehicle began to redirect
0.0810	Windshield on passenger side began to crack due to flexing of the vehicle body
0.2070	Passenger side rear bumper impacted barrier
0.2080	Vehicle was parallel with installation
0.4410	Vehicle exited installation at 48.3 mi/h and at a trajectory of 3.5 degrees and heading of
0.7710	9.6 degrees

Table 9.5. Events during Test 440822-01-5.

9.6. DAMAGE TO TEST INSTALLATION

There was some scuffing and gouging at the impact location on the concrete barrier. The chain link was pulled loose from the bottom wire from post 5 to post 7. The chain link was pushed up 10 inches and back 12 inches just upstream of post 6. Post 6 was bent at 20 inches from the bottom, and the weld securing the pipe to the base plate failed ³/₄ of the way around the pipe.

Table 9.6 describes the damage to the chain-link fence on the F-shape barrier. Figure 9.6 and Figure 9.7 show the damage to the chain-link fence on the F-shape barrier.

Test Parameter	Measured
Permanent Deflection/Location	The fence at 7.3 inches toward field side, at post 6
Dynamic Deflection	The fence at 28.6 inches toward field side
Working Width ^a and Height	The fence at 41.4 inches, at a height of 103.8 inches

Table 9.6. Damage to Chain-Link Fence on F-Shape Barrier, Test 440822-01-5.

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 9.6. Chain-Link Fence on F-Shape Barrier after Test at Impact Location, Test 440822-01-5.

Figure 9.7. Chain-Link Fence on F-Shape Barrier after Test at the Base of Post 6, Test 440822-01-5.

9.7. DAMAGE TO TEST VEHICLE

Figure 9.8 and Figure 9.9 show the damage sustained by the vehicle. Figure 9.10 and Figure 9.11 show the interior of the test vehicle. Table 9.7 and Table 9.8 provide details on the occupant compartment deformation and exterior vehicle damage. Figures E.2 and E.3 in Appendix E.2 provide exterior crush and occupant compartment measurements.

Figure 9.8. Impact Side of Test Vehicle after Test 440822-01-5.

Figure 9.9. Rear Impact Side of Test Vehicle after Test 440822-01-5.

Figure 9.10. Overall Interior of Test Vehicle after Test 440822-01-5.

Figure 9.11. Interior of Test Vehicle on Impact Side after Test 440822-01-5.

Test Parameter	Specification	Measured
Roof	≤ 4.0 inches	0 inches
Windshield	≤ 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	-5 inches
Floor Pan/Transmission Tunnel	≤12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	-4 inches
Front Door (above Seat)	≤ 9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	-3 inches

Table 9.7. Occupant Compartment Deformation for Test 440822-01-5.

Table 9.8. Exterior Vehicle Damage for Test 440822-01-5.

Side Windows	The right passenger's side window shattered due to the deformation of the door and was not caused by penetration of the test article.
Maximum Exterior Deformation	10.5 inches in the front plane at the right front corner at bumper height.
VDS	01RFQ4
CDC	01FREW3
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, radiator and support, right front tire and rim, right front quarter fender, windshield, right front door and glass, right rear door, right rear quarter fender, right taillight, and rear bumper were all damaged. The right front door had a 9-inch gap at the top of the door.

9.8. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 9.9. Figure E.7 in Appendix E.4 shows the vehicle angular displacements, and Figures E.8 through E.10 in Appendix E.5 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	23.1	0.0982 s on right side of interior
OIV, Lateral (ft/s)	≤40.0	25.8	0.0982 s on right side of interior
Ridedown, Longitudinal (g)	≤20.49	4.2	0.2236–0.2336 s
Ridedown, Lateral (g)	≤20.49	5.7	0.2195–0.2295 s
THIV (m/s)	N/A	10.7	0.0953 s on right side of interior
ASI	N/A	1.8	0.0613–0.1113 s
50-ms MA Longitudinal (g)	N/A	-11.2	0.0339–0.0839 s
50-ms MA Lateral (g)	N/A	-14.3	0.0381–0.0881 s
50-ms MA Vertical (g)	N/A	3.4	0.0994–0.1494 s
Roll (deg)	≤75	23	0.5730 s
Pitch (deg)	≤75	8	0.5848 s
Yaw (deg)	N/A	41	0.9163 s

Table 9.9. Occupant Risk Factors for Test 440822-01-5.

9.9. TEST SUMMARY

Figure 9.12, Table 9.10, and Table 9.11 summarize the results of *MASH* Test 440862-03-3. Figure 9.13 shows the sequential photographs from the crash test. Figure 9.14 shows the summary drawing for the crash test.

2' —			Headin	g Angle	Li Impact Angle —	*		32"	
			Exit Angle -11.1'		=		8'-8-3/4" (top of Post)		
THIV (m/s)	10.7	ASI	.0/	1.8	Max. 50-ms V	ert. (g)	3.4	Max. Yaw (deg)	41
Lat. OIV (ft/s)	25.8	Lat. Ridedo	wn (g)	5.7	Max. 50-ms La	at. (g)	-14.3	Max. Pitch (deg)	8
Long. OIV (ft/s)	23.1	Long. Rideo	lown (g)	4.2	Max. 50-ms Lo	ong. (g)	-11.2	Max. Roll (deg)	23
0.50	0 8		00	CUPAN	T RISK VALUE	S			
0.30)0 c		Max	. Occupar	t Compartment Deformation	5 inches in the right foot well			
		and the second second		Max. E	xt. Deformation	10.5 inches			
	and the	· -			CDC	01EREW3			
And A sta	1.2	-	VEHICL	E DAMA	VDS				
AND A			Worki	ng Width/	Height (inches)	41.4/105.8			
		Bann	Permanent (inches) 7.3			7.3	2.0		
Section 10		Len 1	Dynamic (inches)			28.6			
0.20	0 s		TEST A	RTICLE	DEFLECTIONS	3			
a Bring of the second	and the second		Stopping Distance 210 ft downstream of impact point 2 ft to the traffic side						
A second second second			Exit Box Criteria			Crossed	Crossed 75 ft downstream from loss of contact		
		and the second	Trajectory/Heading Angle (deg)			3/10			
			Exit Speed (mi/h)			48.3			
	(internet)	-	EXIT CONDITIONS						
		alon al		Impact S	Severity (kip-ft)	112.5			
		-		I	mpact Location	42 inche	es upstream	from the centerline of po	ost 6
		1.		Imp	act Angle (deg)	25.0			
				Impa	ct Speed (mi/h)	61.0			
0.10	0 s		IMPACT	CONDI					
and the second se	No. C.	and the second		(Gross Static (lb)	5230			
	-			mer	Dummy (lb)	165			
				Iner	tial Weight (10)	5065			
	A	A.		r ear, N	urb Weight (1b)	2016 RA	am 1500		
		-		Ty	pe/Designation	2270 P	M 1500		
			TEST V	EHICLE		0.000			
		0		Soil Type	e and Condition	Concret	e, damp		
0.000 s				Key Materials	32-inch fence	tall F-shape	barrier, 72-inch tall cha	in-link	
State of the second			Length	100 ft	(11) [1	1 . 72 . 1 . 11 1	• 1• 1		
		and the second second			Name	Chain-L	ink Fence o	n F-Shape Barrier	
					Туре	Longitu	dinal Barrie	r	
A A A A A A A A A A A A A A A A A A A	-	- al	TEST A	RTICLE					
					Test Date	2022-08-04			
	-				TTI Project No.	440822-	440822-01-5		
		(Stand		Test Sta	andard/Test No.	MASH 2016, Test 3-11			
					Test Agency	Texas A	&M Transp	ortation Institute (TTI)	

Figure 9.12. Summary of Results for *MASH* Test 3-11 on Chain-Link Fence on F-Shape Barrier.

General	Test Agency	Texas A&M Transportation Institute	
Information	Test Standard Test No.	MASH 2016, Test 3-11	
	TTI Test No.	440822-01-5	
	Test Date	2022-08-04	
Test Article	Туре	Longitudinal Barrier	
	Name	Chain-Link Fence on F-Shape Barrier	
	Installation Length	100 ft	
	Material or Key Elements	32-inch tall F-shape barrier, 72-inch tall chain-link fence	
	Foundation Type/Condition	Concrete, damp	
Test Vehicle	Type/Designation	2270 P	
	Make and Model	2016 RAM 1500	
	Curb	5066 lb	
	Test Inertial	5065 lb	
	Dummy	165 lb	
	Gross Static	5230 lb	
Impact Conditions	Speed	61 mi/h	
	Angle	25 degrees	
	Location	42 inches upstream from the centerline of post 6	
	Impact Severity	112.5 kip-ft	
Exit Conditions	Speed	48.3 mi/h	
	Exit Trajectory/Heading	3 degrees/10 degrees	

Table 9.10. Summary of Results for Test 440822-01-5, General Information, Impact and
Exit Conditions.

Occupant Risk Values	Longitudinal OIV	23.1 ft/s
	Lateral OIV	25.8 ft/s
	Longitudinal RDA	4.2 g
	Lateral RDA	5.7 g
	THIV	10.7 m/s
	ASI	1.8
Max. 0.050-s Average	Longitudinal	-11.2 g
	Lateral	-14.3 g
	Vertical	3.4 g
Post-Impact Trajectory	Stopping Distance	210 ft downstream of impact point2 ft to the traffic side
Vehicle Stability	Maximum Roll Angle	23 degrees
	Maximum Pitch Angle	8 degrees
	Maximum Yaw Angle	41 degrees
	Vehicle Snagging	No
	Vehicle Pocketing	No
Test Article Deflections	Dynamic	28.6 inches
	Permanent	7.3 inches
	Working Width	41.4 inches (fence)
	Height of Working Width	103.8 inches
Vehicle Damage	VDS	01RFQ4
	CDC	01FREW3
	Max. Exterior Deformation	10.5 inches
	Max. Occupant Compartment Deformation	5 inches

 Table 9.11. Summary of Results for Test 440822-01-5, Occupant Risk, Vehicle and Test

 Article Damage.

(a) 0.000 s

(b) 0.100 s

Figure 9.13. Summary of Results for Test 440822-01-5, Sequential Test Pictures.

(c) 0.200 s

(d) 0.300 s

Figure 9.13. Summary of Results for Test 440822-01-5, Sequential Test Pictures (Continued).

Figure 9.14. Summary of Results for Test 440822-01-5, Summary Drawing.

Chapter 10. SUMMARY AND CONCLUSIONS

10.1. ASSESSMENT OF TEST RESULTS

The crash tests for the attachments on the single-slope concrete median barrier were performed in accordance with *MASH* TL-4, and the crash tests for the attachments on the F-shape concrete median barrier were performed in accordance with *MASH* TL-3. The tables in this chapter provide an assessment of each test based on the applicable safety evaluation criteria for *MASH* longitudinal barriers.

10.2. CONCLUSIONS

Table 10.1 through Table 10.6 show that the attachments on concrete barriers met the performance criteria for *MASH* longitudinal barriers for their respective test levels.

Table 10.1. Performance Evaluation Summary for MASH Test 4-12 on Armorcast® (Gawk
Screen on Single-Slope Barrier, Test 440822-01-1, April 29, 2022.	

Evaluation Criteria	MASH Description	Assessment
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	Pass
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .	Pass
G.	It is preferable, although not essential, that the vehicle remain upright during and after collision.	Pass

Table 10.2. Performance Evaluation Summary for MASH Test 4-12 on Screen-Safe[®] GlareScreen on Single-Slope Barrier, Test 440822-01-2, June 1, 2022.

Evaluation Criteria	MASH Description	Assessment
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	Pass
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .	Pass
G.	It is preferable, although not essential, that the vehicle remain upright during and after collision.	Pass

Table 10.3. Performance Evaluation Summary for MASH Test 3-11 on Armorcast® GawkScreen on F-Shape Barrier, Test 440822-01-3, April 19, 2022.

Evaluation Criteria	MASH Description	Assessment
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	Pass
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	Pass
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s (10 ft/s for supports), or maximum allowable value of 40 ft/s (16 ft/s for supports).	Pass
I.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Pass

Table 10.4. Performance Evaluation Summary for MASH Test 3-11 on Screen-Safe® GlareScreen on F-Shape Barrier, Test 440822-01-4, May 17, 2022.

Evaluation Criteria	MASH Description	Assessment
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	Pass
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	Pass
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s (10 ft/s for supports), or maximum allowable value of 40 ft/s (16 ft/s for supports).	Pass
I.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Pass

Table 10.5. Performance Evaluation Summary for MASH Test 3-11 on Chain-Link Fenceon F-Shape Barrier, Test 440822-01-5, August 4, 2022.

Evaluation Criteria	MASH Description	Assessment
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	Pass
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	Pass
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s (10 ft/s for supports), or maximum allowable value of 40 ft/s (16 ft/s for supports).	Pass
I.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Pass

Table 10.6. Assessment Summary for MASH TL-3 Tests on Armorcast® Gawk Screen,Screen-Safe® Glare Screen, and Chain-Link Fence on F-Shape Barrier; and MASH TL-4Tests on Armorcast® Gawk Screen and Screen-Safe® Glare Screen on Single-Slope Barrier.

Evaluation Criteria	Test No. 440822-01-1 <i>MASH</i> 4-12	Test No. 440822-01-2 <i>MASH</i> 4-12	Test No. 440822-01-3 <i>MASH</i> 3-11	Test No. 440822-01-4 <i>MASH</i> 3-11	Test No. 440822-01-5 <i>MASH</i> 3-11
А	S	S	S	S	S
D	S	S	S	S	S
F	N/A	N/A	S	S	S
G	S	S	N/A	N/A	N/A
Н	N/A	N/A	S	S	S
Ι	N/A	N/A	S	S	S
Overall	Pass	Pass	Pass	Pass	Pass

Note: S = Satisfactory; N/A = Not Applicable.

REFERENCES

1. AASHTO. *Manual for Assessing Roadside Safety Hardware*, Second Edition. American Association of State Highway and Transportation Officials, Washington, DC, 2016.

APPENDIX A. CRASH TEST 440822-01-1

A.1. DETAILS OF TEST ARTICLE

Q:Accreditation-17025-2017\EIR-000 Project Files\440822 TXDOT Attachments on Barriers - Chiara\Drafting, 440822\1-2, Single Slope\440822-1 Drawing

Armorcast Products Company 9140 Lurline Ave Chatsworth, Ca 91311 Tel: (818) 982-3600 Fax: (818) 982-7742

Gawk Screen

Recommended Installation Instructions

- 1. Place the first 10 foot long Gawk Screen on the concrete K- Rail and mark the centers of the bottom opening. Two openings per 10 foot sections at approximately 60" apart. Remove the gawk screen.
- 2. Center the provided 1" diameter steel pipes with plate over the marked location and top of the K-Rail.
- 3. Mark the holes through the steel plate onto the top of the K-Rail for each side.
- 4. Use 3/8" diameter wedge anchors, also known as Red Heads.
- 5. Drill a minimum of 1 ¹/₂" deep hole into concrete with a carbide tipped masonry drill. Follow wedge anchor manufacturer recommendations for embedment length and installation instructions.
- 6. Clean hole, place the wedge anchor through the hole directly into the concrete and hammer it in to the drilled hole until the threads are below the concrete surface.
- 7. Remove the nuts and place the steel pipes with plate assembly over the threaded anchors and into the holes in the plate.
- 8. Replace the nuts and turn by hand until the unit is hand tightened. Tighten each nut with a wrench, approximately three or four full turns, to complete the fastening.
- 9. Place the first gawk screen over the steel pipe and place the locking pin into the ¼" hole on the steel pipe.
- 10. Repeat the above steps for each 10 foot section. Place another plastic extension on the adjacent concrete K-Rail and slide toward the installed plastic extension to interlock the two extensions.
- 11. Continue the above procedure until all gawk screens are placed.

A.2. VEHICLE PROPERTIES AND INFORMATION

Figure A.1. Vehicle Properties for Test No. 440822-01-1.

Date:	2022-3-29	_ Test No.:	440822-01-01	VIN No.:	2FZACGBSX8	BSX8AZ54986	
Year:	2008	Make:	STERLING	Model:	del:		
	WEIGHTS		CUPP	TEST			
			7080	TEST	8210		
VVfront axle Wrear axle		7610		14220			
		1 4600					
WTOTAL			12 200 ±2200 lb &llowoble B				
Maga F	Ballast:	((as-nee) lb or kg) (See MA	ded) A <i>SH</i> Section 4.2.	1.2 for recommende	d ballasting)	
$(\square lb \text{ or } \square kg)$: LF: $\frac{4210}{2}$		RF: <u>4000</u>	LR: 7920	RR:	RR : <u>6300</u>		
Engine	Туре:		Accelero	meter Locatior	ns (🗌 inches or	mm)	
Engine	Size:		-	X ¹	У	Z ²	
Transm	nission Type:		Front:				
\checkmark	Auto or _	_ Manual	Center:	131.50	0.00	50.00	
	FWD 🔽 RWD	_ 4WD	Rear:	231.50	0.00	50.00	
Describ	be any damage to th	e vehicle prior	to test: <u>NONE</u>				
Other i attachi	notes to include ba ment:	ıllast type, dii	mensions, mass, loc	ation, center	of mass, and m	ethod of	
TWC	BLOCKS H 30 W 6	60 L 30					
CEN	TERED IN MIDDLE	OF BED					
TIED	DOWN WITH FOU	R 3/8 CABLE	S PER BLOCK				

Figure A.1. Vehicle Properties for Test No. 440822-01-1 (Continued).

A.3. **SEQUENTIAL PHOTOGRAPHS**

(a) 0.000 s

(c) 0.200 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s

Figure A.4. Sequential Photographs for Test No. 440822-01-1 (Overhead Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s

Figure A.5. Sequential Photographs for Test No. 440822-01-1 (Frontal Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure A.6. Sequential Photographs for Test No. 440822-01-1 (Rear Views).

A.4. VEHICLE ANGULAR DISPLACEMENT

Roll, Pitch and Yaw Angles

Figure A.7. Vehicle Angular Displacements for Test No. 440822-01-1.

A.5. VEHICLE ACCELERATIONS

Figure A.8. Vehicle Longitudinal Accelerometer Trace for Test No. 440822-01-1 (Accelerometer Located at Center of Gravity).

Figure A.9. Vehicle Lateral Accelerometer Trace for Test No. 440822-01-1 (Accelerometer Located at Center of Gravity).

Figure A.10. Vehicle Vertical Accelerometer Trace for Test No. 440822-01-1 (Accelerometer Located at Center of Gravity).

APPENDIX B. CRASH TEST 440822-01-2

B.1. DETAILS OF TEST ARTICLE

Q:Vaccreditation-17025-2017/EIR-000 Project Files/440822 TXDOT Attachments on Barriers - Chiara/Drafting, 440822 1-4/1-2, Single Slope/440822-2 Drawing

- Using 1" Masonry Bit, Drill anchor holes beginning at location where the Screen Safe is to start
- Drill 1" diameter holes with depth of 3-3/8" (+/-1/8") to accommodate Hilti-Anchor
 - Clean drilled holes with air blower
- Use anchor tool provided to set anchor flush, and seat into concrete
- Remove plastic insert inside anchor

3 3/16

Ancho

<u>|</u>+,-+|

3/8

- Unroll DRC next to predrilled holes
- Attach supplied Com-A-Long attachment to far end of DRC from starting point
- It is best to have a post bolt at each anchor location

Safer Transportation Through Innovation

- · Lift entire section of Screen Safe DRC onto barrier
- Insert first post bolt with end treatment cable attached through first row of DRC past end tab. Secure into anchor.
- Attach turnbuckle end to eye bolt, tighten turnbuckle by hand keeping first post bolt vertical.
- At other end of 50' section attach a Come-A-Long Ratchet to the attachment, and secure Come-A-Long to a fixed object in line with barrier.
- Ratchet Come-A-Long tightening DRC taking slack out of the section. Pay attention to first post bolt and that it is not bending; use turnbuckle to keep vertical.
- Section should be mostly free standing at this point with minimal support.

Safer Transportation Through Innovation

Screen Safe DRC should be under tension. The roll will stretch, and proper tension is the key to performance.

- After first post bolt and end treatment are secured and plumb with DRC under tension, thread next post bolt at anchor location as close as possible.
- Use the come-a-long to ratchet the DRC into place where the anchor bolt lines up with the anchor hole.
- Completely thread the post bolt until the head is flush with the top of the DRC. Be careful not to over tighten and compress the DRC.
- DO NOT insert the next bolt until the previous is fully seated.
- Continue this process, one by one, tightening as you go, seating each bolt completely
- Anti-Seize is not required, but recommended on post bolt threads. Use of pneumatic wrenches and or power tools is
 acceptable

Safer Transportation Through Innovation

- When you reach the end of a section of DRC you can either end it with another end treatment, or continue it using a splice plate.
- When Splicing the DRC, insert the final post bolt in the section through the splice plate BEFORE threading into DRC and anchor.
- With final bolt secure, and splice plate in place, cut remaining DRC leaving one row of DRC beyond last ³/₄" post bolt. (Note: release DRC tension and attachments prior to cutting)
- Spray Galvanize all cut sections of DRC
- Lift the next section in place and thread the post bolt through the splice plate and DRC, and secure in the anchor.
- Attach come-a-long to far end and pull DRC under tension. Note: Splice will require tension to keep plumb and vertical.

- When you reach the end of the run that is to be protected, insert the final post bolt with the end cable attachment threaded trough the post bolt before threading into the DRC.
- Secure final post bolt, and trim remaining DRC off leaving at least one row of fabric between the final post bolt and the cut.
- With final bolt secure, and end treatment in place and free of saw path, cut remaining DRC leaving one row of DRC beyond last 34" post bolt. (again, release DRC tension and attachments prior to cutting)
- Spray all cut ends of DRC with Cold Spray Galvanizing.
- Secure end treatment to eye bolt anchored in approx. 6'-3" from final post bolt.
- Use turnbuckle to apply tension to keep final post bolt plumb and vertical.

Safer Transportation Through Innovation

Safer Transportation Through Innovation

Hwy 285, Morrison, CO

Safer Transportation Through Innovation

B.2. VEHICLE PROPERTIES AND INFORMATION

Figure B.1. Vehicle Properties for Test No. 440822-01-2.

Date:	2022-06-01	Test No.:	440822-01-2	VIN No.:	1FVACWBSX	BHAZ5837	
Year:	2011	Make:	FREIGHTLINER	Model:	M2		
	WEIGF (☑ lb Allowa Ballast: <u>9100</u>	HTS or ☐kg) Wfront axle Wrear axle WTOTAL able Range for CURB = √	CURB 6990 6120 13110 13,200 ±2200 lb Allowable R (as-nee √ lb or _ kg) (See M/	TEST TEST ange for TIM = 22,0 ded) ASH Section 4.2.	INERTIAL 6360 15850 22210 046 ±660 lb 1.2 for recommend	ed ballasting)	
Mass ⊑ (√Ib c	Distribution or ☐kg):	LF: <u>3130</u>	RF: <u>3230</u>	LR: 7930	RR:	7920	
Engine Engine Transm	Type: CUMMII Size: 8.3L hission Type: Auto or FWD T_ RM	NS Manual VD 4WD	Acceleron Front: Center: Rear:	meter Location x ¹ 0.00 146.30 244.30	ns (🗹 inches of y 0.00 0.00 0.00	r mm) z² 0.00 50.00 50.00	
Other r attachr TWO CEN TIED 63.5	notes to include ment: BLOCKS H 30 ⁻¹ TERED IN MIDE DOWN WITH F	e ballast type, din W 60 L 30 DLE OF BED OUR 3/8 CABLES GROUND TO CE	nensions, mass, loc S PER BLOCK NTER OF BLOCK	ation, center	of mass, and m	ethod of	

Figure B.1. Vehicle Properties for Test No. 440822-01-2 (Continued).

B.3. **SEQUENTIAL PHOTOGRAPHS**

(a) 0.000 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s

Figure B.4. Sequential Photographs for Test No. 440822-01-2 (Overhead Views).

(a) 0.000 s

(c) 0.200 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s

(h) 0.700 s

Figure B.5. Sequential Photographs for Test No. 440822-01-2 (Frontal Views).

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s

(h) 0.700 s

Figure B.6. Sequential Photographs for Test No. 440822-01-2 (Rear Views).

B.4. VEHICLE ANGULAR DISPLACEMENT

Roll, Pitch and Yaw Angles

Figure B.7. Vehicle Angular Displacements for Test No. 440822-01-2.

B.5. VEHICLE ACCELERATIONS

Figure B.8. Vehicle Longitudinal Accelerometer Trace for Test No. 440822-01-2 (Accelerometer Located at Center of Gravity).

Figure B.9. Vehicle Lateral Accelerometer Trace for Test No. 440822-01-2 (Accelerometer Located at Center of Gravity).

Figure B.10. Vehicle Vertical Accelerometer Trace for Test No. 440822-01-2 (Accelerometer Located at Center of Gravity).

APPENDIX C. CRASH TEST 440822-01-3

C.1. DETAILS OF TEST ARTICLE

Q:\Accreditation-17025-2017\EIR-000 Project Files\440822 TXDOT Attachments on Barriers - Chiara\Drafting, 440822\3-4, F-shape\440822-3 Drawing

Q:Accreditation-17025-2017\EIR-000 Project Files\440822 TXDOT Attachments on Barriers - Chiara\Drafting, 440822\3-4, F-shape\440822-3 Drawing

Armorcast Products Company 9140 Lurline Ave Chatsworth, Ca 91311 Tel: (818) 982-3600 Fax: (818) 982-7742

Gawk Screen

Recommended Installation Instructions

- 1. Place the first 10 foot long Gawk Screen on the concrete K- Rail and mark the centers of the bottom opening. Two openings per 10 foot sections at approximately 60" apart. Remove the gawk screen.
- 2. Center the provided 1" diameter steel pipes with plate over the marked location and top of the K-Rail.
- 3. Mark the holes through the steel plate onto the top of the K-Rail for each side.
- 4. Use 3/8" diameter wedge anchors, also known as Red Heads.
- 5. Drill a minimum of 1 ¹/₂" deep hole into concrete with a carbide tipped masonry drill. Follow wedge anchor manufacturer recommendations for embedment length and installation instructions.
- 6. Clean hole, place the wedge anchor through the hole directly into the concrete and hammer it in to the drilled hole until the threads are below the concrete surface.
- 7. Remove the nuts and place the steel pipes with plate assembly over the threaded anchors and into the holes in the plate.
- 8. Replace the nuts and turn by hand until the unit is hand tightened. Tighten each nut with a wrench, approximately three or four full turns, to complete the fastening.
- 9. Place the first gawk screen over the steel pipe and place the locking pin into the ¼" hole on the steel pipe.
- 10. Repeat the above steps for each 10 foot section. Place another plastic extension on the adjacent concrete K-Rail and slide toward the installed plastic extension to interlock the two extensions.
- 11. Continue the above procedure until all gawk screens are placed.

C.2. VEHICLE PROPERTIES AND INFORMATION

Date: 02	220-03-19	Test No.:	440822-	01-03	VIN No.:	1C6RI	R6FT8HS	55155			
Year:	2017	Make	RAN	Λ	Model:		1500				
Tire Size:	265/70 R 17			Tire I	nflation Pre	ssure:	35 p	osi			
Tread Type:	Highway				Odo	meter: <u>185</u> 3	370				
Note any dam	Note any damage to the vehicle prior to test: None										
Denotes accelerometer location.											
NOTES: No	ne		1		711						
Engine Type: Engine CID:	V-8 5.7 liter		WHEEL TRACK					WHEEL TRACK			
Transmission	Type:	1 Manual				-TES	T INERTIAL C. M.				
FWD						FA-		•			
Optional Equi None	pment:		P					В			
Dummy Data: Type:	50th Perc	entile male	j j-j ī-	- 29			Pr-				
Mass: Seat Positio		35 SIDE		- F - ▶ -	н — н	L _G - • - • - •		•			
	in the second				M front		∇_{mear}				
Δ 78 :	incnes 50 ⊏	40.00	K	20.00	P	-c		► 26.75			
B 74.0	00 G	28.25		30.00	- ' - Q	30.50	- Ŭ-	30.25			
C 227.5	<u> </u>	61.40	 M	68.50	 R	18.00	- · - W	61.40			
D 44.0	00 1	11.75	N	68.00	s –	13.00	- x	79.00			
E 140.	50 J	27.00	0	46.00		77.00					
Wheel Cen Height Fro	ter ont	14.75 Clea	Wheel Well arance (Front)		6.00	Bottom Fra Height - Fr	me ont	12.50			
Wheel Cen	ter	 14.75	Wheel Well		9.25	Bottom Fra	me	22.50			
RANGE LIMIT: A=7	8 ±2 inches; C=237 ±	13 inches; E=148 ±12 i	nches; F=39±3 incl	nes; G = > 28 ir	nches; H = 63 ±4 ir	nches; O=43 ±4 inch	es; (M+N)/2=67	±1.5 inches			
GVWR Rating	gs:	Mass: Ib	Curb	2	Test	Inertial	Gros	s Static			
Front <u>3</u>	700	Mfront		2962		2829					
Back 3	900	M _{rear}		2078		2196					
Total 6	700	M _{Total}	5	5040		5025	0.163	5190			
Mass Distrib	ution:			(Allowable	Range for LIM and	5000 ID ±11	(GI U				
lb	LF:	1419	RF:	1410	LR:	1120	RR:	1076			

Figure C.1. Vehicle Properties for Test No. 440822-01-3.

Date:	0220-03-19	Test No.:	440822-01-03	VIN No.:	1C6RR6FT8HS55155
Year:	2017	Make:	RAM	Model:	1500

Complete When Applicable End Damage Side Damage Undeformed end width Bowing: B1 X1 Corner shift: A1 B2 X2 A2 A2 Bowing constant (check one) $\frac{X1+X2}{2} =$ = ≤ 4 inches = =

VEHICLE CRUSH MEASUREMENT SHEET¹

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

~		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C ₂	C3	C4	C_5	C_6	±D
1	AT FT BUMPER	14	12	32							-11
2	ABOVE FT BUMPER	14	6	50							76
	Measurements recorded										
	√ inches or ☐ mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure C.2. Exterior Crush Measurements for Test No. 440822-01-3.

Date:	0220-03-19	_ Test No.: _	440822-01-03	VIN No.:	1C6RR6FT8	1C6RR6FT8HS55155		
Year:	2017 Make: RAM		Model:	150	1500			
	717	+ -) [+	ا	OCCUPAN DEFORMATI	T COMPART ON MEASUR	MENT EMENT		
	F			Before	After (inches)	Differ.		
	J E1	E2 E3	E4	1 _ 65.00	65.00	0.00		
			A	2 63.00	63.00	0.00		
		н	A L	3 65.50	65.50	0.00		
			В	1 45.00	45.00	0.00		
			В	2 38.00	38.00	0.00		
			В	3 45.00	45.00	0.00		
		B1-3 B4- -3 A1-3	В	4 39.50	39.50	0.00		
			-6 B	5 43.00	43.00	0.00		
6			В	6 39.50	39.50	0.00		
			C	1 26.00	24.00	-2.00		
	\mathcal{I}		C	2 0.00	0.00	0.00		
			С	3 26.00	26.00	0.00		
			D	1 11.00	11.00	0.00		
			D	2 0.00	0.00	0.00		
			D	3 11.50	11.50	0.00		
		25	E	1 58.50	58.50	0.00		
	B1,4	, <u>,,,,,,,</u> B3,6	E	2 63.50	63.50	0.00		
		1-4 i	E	3 63.50	63.50	0.00		
			E	4 63.50	63.50	0.00		
			F	59.00	59.00	0.00		
			G	59.00	59.00	0.00		
			н	37.50	37.50	0.00		

Figure C.3. Occupant Compartment Measurements for Test No. 440822-01-3.

J*

37.50

25.00

37.50

24.00

*Lateral area across the cab from driver's side

kickpanel to passenger's side kickpanel.

0.00

-1.00

C.3. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s

Figure C.4. Sequential Photographs for Test No. 440822-01-3 (Overhead Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s

Figure C.6. Sequential Photographs for Test No. 440822-01-3 (Rear Views).

C.4. VEHICLE ANGULAR DISPLACEMENT

Roll, Pitch and Yaw Angles

Figure C.7. Vehicle Angular Displacements for Test No. 440822-01-3.

C.5. VEHICLE ACCELERATIONS

Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 440822-01-3 (Accelerometer Located at Center of Gravity).

Figure C.9. Vehicle Lateral Accelerometer Trace for Test No. 440822-01-3 (Accelerometer Located at Center of Gravity).

Figure C.10. Vehicle Vertical Accelerometer Trace for Test No. 440822-01-3 (Accelerometer Located at Center of Gravity).

APPENDIX D. CRASH TEST 440822-01-4

D.1. DETAILS OF TEST ARTICLE

Q:\Accreditation-17025-2017\EIR-000 Project Files\440822 TXDOT Attachments on Barriers - Chiara\Drafting, 440822 1-4\3-4, F-shape\440822-4 Drawing

- Using 1" Masonry Bit, Drill anchor holes beginning at location where the Screen Safe is to start
- Drill 1" diameter holes with depth of 3-3/8" (+/-1/8") to accommodate Hilti-Anchor
 - Clean drilled holes with air blower
- Use anchor tool provided to set anchor flush, and seat into concrete
- Remove plastic insert inside anchor

3 3/16

Ancho

<u>|</u>+,-+|

3/8

- Unroll DRC next to predrilled holes
- Attach supplied Com-A-Long attachment to far end of DRC from starting point
- It is best to have a post bolt at each anchor location

- · Lift entire section of Screen Safe DRC onto barrier
- Insert first post bolt with end treatment cable attached through first row of DRC past end tab. Secure into anchor.
- Attach turnbuckle end to eye bolt, tighten turnbuckle by hand keeping first post bolt vertical.
- At other end of 50' section attach a Come-A-Long Ratchet to the attachment, and secure Come-A-Long to a fixed object in line with barrier.
- Ratchet Come-A-Long tightening DRC taking slack out of the section. Pay attention to first post bolt and that it is not bending; use turnbuckle to keep vertical.
- Section should be mostly free standing at this point with minimal support.

Safer Transportation Through Innovation

Screen Safe DRC should be under tension. The roll will stretch, and proper tension is the key to performance.

- After first post bolt and end treatment are secured and plumb with DRC under tension, thread next post bolt at anchor location as close as possible.
- Use the come-a-long to ratchet the DRC into place where the anchor bolt lines up with the anchor hole.
- Completely thread the post bolt until the head is flush with the top of the DRC. Be careful not to over tighten and compress the DRC.
- DO NOT insert the next bolt until the previous is fully seated.
- Continue this process, one by one, tightening as you go, seating each bolt completely
- Anti-Seize is not required, but recommended on post bolt threads. Use of pneumatic wrenches and or power tools is
 acceptable

Safer Transportation Through Innovation

- When you reach the end of a section of DRC you can either end it with another end treatment, or continue it using a splice plate.
- When Splicing the DRC, insert the final post bolt in the section through the splice plate BEFORE threading into DRC and anchor.
- With final bolt secure, and splice plate in place, cut remaining DRC leaving one row of DRC beyond last ³/₄" post bolt. (Note: release DRC tension and attachments prior to cutting)
- Spray Galvanize all cut sections of DRC
- Lift the next section in place and thread the post bolt through the splice plate and DRC, and secure in the anchor.
- Attach come-a-long to far end and pull DRC under tension. Note: Splice will require tension to keep plumb and vertical.

- When you reach the end of the run that is to be protected, insert the final post bolt with the end cable attachment threaded trough the post bolt before threading into the DRC.
- Secure final post bolt, and trim remaining DRC off leaving at least one row of fabric between the final post bolt and the cut.
- With final bolt secure, and end treatment in place and free of saw path, cut remaining DRC leaving one row of DRC beyond last 34" post bolt. (again, release DRC tension and attachments prior to cutting)
- Spray all cut ends of DRC with Cold Spray Galvanizing.
- Secure end treatment to eye bolt anchored in approx. 6'-3" from final post bolt.
- Use turnbuckle to apply tension to keep final post bolt plumb and vertical.

Safer Transportation Through Innovation

Safer Transportation Through Innovation

Safer Transportation Through Innovation

Hwy 285, Morrison, CO

D.2. VEHICLE PROPERTIES AND INFORMATION

Date: 20	022-05-17	Test No.:	440822-	01-04	VIN No.:	1C6RR6	GT2HS5	576423
Year:	2017	Make:	RAI	M	Model		1500	
Tire Size:	265/70 R 1	7		Tire	Inflation Pre	essure:	35 p	si
Tread Type:	Highway				Odd	meter: <u>12520</u>	00	
Note any dam	nage to the v	ehicle prior to	test: <u>None</u>	9				
 Denotes ad 	celerometer	location.		ļ	◀X ◀₩_ →			
NOTES: No	ne		1		71			
Engine Type: Engine CID:	Engine Type: V-8 Engine CID: 5.7 liter							
Transmission	Туре:					-TEST I	NERTIAL C. M.	
								4
Optional Equi None	pment:		P					В
Dummy Data:				FG			Dr	D FK L
Type: Mass:	50th Per	centile Male	-	∢ F -►•	∟u ←H	L _G L _v L _s		-
Seat Position	n: Impact S	lide	-		ч ′м	-Е	► ▼ M	
Geometry:	inches				FRONT	— C ———	REAR	-
A78.5	50 F	40.00	к	20.00	_ P _	3.00	υ_	25.75
B74.0	<u>00</u> G	28.80	_ L	30.00	_ Q _	30.50	V _	30.25
C227.5	50 <u></u> H	61.03	M	68.50	_ R _	18.00	W _	61.00
D 44.0	00 <u></u> I	11.75	N	68.00	_ s _	13.00	× _	79.00
E <u>140.</u>	50 J	27.00		46.00	_ T _	77.00		
Height Fro	ont	14.75 Cle	earance (Front)		6.00	Height - Fro	nt	12.50
Wheel Cen Height Re	ter ear	14.75 cu	Wheel Well earance (Rear)		9.25	Bottom Fram Height - Rea	e ar	22.50
RANGE LIMIT: A=7	8 ±2 inches; C=237	±13 inches; E=148 ±12	inches; F=39±3 inc	hes; G = > 28 in	nches; H = 63 ±4 i	nches; O=43 ±4 inches	(M+N)/2=67	±1.5 inches
GVWR Rating	gs:	Mass: Ib	Curl	<u>2</u>	Test	Inertial	Gros	s Static
Front 3	700	M _{front}		2881		2862		2947
Back 3	900	M _{rear}	:	2199		2198		2278
Total 6	700	M _{Total}	Ę	5080		5060		5225
Mass Distrib	ution:			(Allowable	Range for TIM and	GSM = 5000 lb ±110 l	b)	
lb	LF	1435	RF:	1427	LR:	1132	RR:	1066

Figure D.1. Vehicle Properties for Test No. 440822-01-4.

Date:	2022-05-17	Test No.:	440822-01-04	VIN No.:	1C6RR6GT2HS576423
Year:	2017	Make:	RAM	Model:	1500

VEHICLE CRUSH MEASUREMENT SHEET¹

End Damage	Side Damage				
Undeformed end width	Bowing: B1 X1				
Corner shift: A1	B2 X2				
A2					
End shift at frame (CDC)	Bowing constant				
(check one)	X1+X2				
< 4 inches	2 =				
\geq 4 inches					

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

Specific Impact	Plane* of	Direct I Width**	Damage Max***	Field	C_1	C_2	C3	C4	C5	C_6	±D
Number	C-inteasurements		Crush	L							
1	AT FT BUMPER	16	9	34	-	-	-	-	-	-	+12
2	ABOVE FT BUMPER	16	14	54	-	-	-	-	-	-	+64
	Measurements recorded										
	√ inches or ☐ mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure D.2. Exterior Crush Measurements for Test No. 440822-01-4.

Date:	2022-05-17	_ Test No.:	440822-01-04		VIN No.:	1C6RR6GT2	HS576423
Year:	2017	_ Make:	RAM		Model:	1500)
	71 .		₩)	O DEF	CCUPANT (FORMATION	COMPARTN N MEASURI	MENT EMENT
	F				Before	After (inches)	Differ.
	J E1	E2 E3 E	4	41	65.00	65.00	0.00
K				42	63.00	63.00	0.00
		Н	NL ,	43	65.50	65.50	0.00
			I	31	45.00	45.00	0.00
			I	32	38.00	38.00	0.00
			I	33	45.00	45.00	0.00
			_)) I	34	39.50	39.50	0.00
		B1-3 B4-		35	43.00	43.00	0.00
	DI	-3	- E	36	39.50	39.50	0.00
				C1	26.00	26.00	0.00
			(C2	0.00	0.00	0.00
	~~~		(	C3	26.00	19.00	-7.00
			I	D1	11.00	11.00	0.00
			I	D2	0.00	0.00	0.00
			I	D3	11.50	13.25	1.75
		 }2.5    =	I	Ξ1	60.00	57.75	-2.25
	B1,4	B3,6		Ξ2	63.50	63.50	0.00
	E	1-4	I	E3	63.50	63.50	0.00
			I	Ξ4	63.50	63.50	0.00
			I	=	59.00	59.00	0.00
			(	G	59.00	59.00	0.00
			I	4	37.50	37.50	0.00
*Lateral a	rea across the cat	o from driver's s	de l		37.50	37.50	0.00

Figure D.3. Occupant Compartment Measurements for Test No. 440822-01-4.

J*

24.00

19.00

kickpanel to passenger's side kickpanel.

-5.00

# D.3. SEQUENTIAL PHOTOGRAPHS



(a) 0.000 s

(b) 0.100 s



(c) 0.200 s

(d) 0.300 s



(e) 0.400 s

(f) 0.500 s



(g) 0.600 s (h) 0.700 s igure D.4. Sequential Photographs for Test No. 440822 01 4 (Overhead Views)



(a) 0.000 s

(b) 0.100 s



(c) 0.200 s

(d) 0.300 s



(e) 0.400 s

(f) 0.500 s



(g) 0.600 s (h) 0.700 s Figure D.5. Sequential Photographs for Test No. 440822-01-4 (Frontal Views).



(a) 0.000 s

(b) 0.100 s



(c) 0.200 s

(d) 0.300 s



(e) 0.400 s

(f) 0.500 s



(g) 0.600 s

(h) 0.700 s

Figure D.6. Sequential Photographs for Test No. 440822-01-4 (Rear Views).

## D.4. VEHICLE ANGULAR DISPLACEMENT



## Roll, Pitch and Yaw Angles

Figure D.7. Vehicle Angular Displacements for Test No. 440822-01-4.

#### **D.5. VEHICLE ACCELERATIONS**



Figure D.8. Vehicle Longitudinal Accelerometer Trace for Test No. 440822-01-4 (Accelerometer Located at Center of Gravity).



Figure D.9. Vehicle Lateral Accelerometer Trace for Test No. 440822-01-4 (Accelerometer Located at Center of Gravity).



Figure D.10. Vehicle Vertical Accelerometer Trace for Test No. 440822-01-4 (Accelerometer Located at Center of Gravity).

## APPENDIX E. CRASH TEST 440822-01-5

#### E.1. DETAILS OF TEST ARTICLE



Q:Accreditation-17025-2017/EIR-000 Project Files/440822 TXDOT Attachments on Barriers - Chiara/440822-01-5 Chain Link Fence on F-Shape/Drafting, 440822-5 Drawing



Q:Vaccreditation-17025-2017/EIR-000 Project Files/440822 TXDOT Attachments on Barriers - Chiara/440822-01-5 Chain Link Fence on F-Shape/Drafting, 440822-5/440822-5 Drawing



Q:Accreditation-17025-2017/EIR-000 Project Files/440822 TXDOT Attachments on Barriers - Chiara/440822-01-5 Chain Link Fence on F-Shape\Drafting, 440822-5/440822-5 Drawing



# E.2. VEHICLE PROPERTIES AND INFORMATION

Date: 20	022-08-04	Test No.:	440822-0	01-5	VIN No.:	1C6RF	RGT5GS32	26771
Year:	2016	Make:	RAM		Model:		1500	
Tire Size:	265/70 R 1	7		Tire I	nflation Pre	ssure:	35 p	si
Tread Type:	Highway				Odo	meter: <u>1844</u>	170	
Note any dam	nage to the v	ehicle prior to t	est: <u>None</u>					
• Denotes ac		location		Ľ	•X	•		
NOTES: NO	ne		.   •	$\mathcal{T}$	$\uparrow \parallel \uparrow$			T 1
Engine Type: Engine CID:	V-8 5.7 liter		A M –					- N T
Transmission	Туре:	<b>-</b>				-TES	TINERTIAL C. M.	
		Manual		_   ⁺ ♀	+			
			P				N	Ī
Optional Equi	pment:		•	F		<b>9</b> 0,	$\sim$	B
				FAG.			M	
Dummy Data:	: 50th Per	centile Male					Y_	
Mass:		165 lb		- F	⊷H—►		<b>∢</b> D	-
Seat Positio	n: <u>IMPACT</u>	SIDE			•	Е ———		
Geometry:	inches			ľ ľ	IM FRONT		V M REAR	
A 78.	50 F	40.00	К	20.00	P	-с— 3.00	U	► 26.75
в 74.	00 G	28.50		30.00		30.50	- _v –	30.25
C 227.	50 H	61.19	 М	68.50	 R	18.00		61.20
D 44.	00	11.75	N	68.00	s	13.00	X	79.00
E 140.	50 J	27.00	0	46.00		77.00		
Wheel Cen Height Fr	ter ont	14.75 Cle	Wheel Well arance (Front)		6.00	Bottom Frai Height - Fr	me ont	12.50
Wheel Cen	ter	14.75	Wheel Well		9.25	Bottom Fra	me	22.50
RANGE LIMIT: A=7	8 ±2 inches; C=237	±13 inches; E=148 ±12	inches; F=39±3 inche	es; G = > 28 ir	nches; H = 63 ±4 ir	ches; O=43 ±4 inche	es; (M+N)/2=67 :	±1.5 inches
GVWR Rating	gs:	Mass: Ib	<u>Curb</u>		<u>Test I</u>	<u>nertial</u>	Gross	<u>s Static</u>
Front 3	5700	Mfront	2	962		2859		2944
Back 3	900	M _{rear}	2	104		2206		2286
Total 6	700	M _{Total}	50	)66 (Allowable	Danga for TIM cr!	5065	) (b)	5230
<b>Mass Distrib</b> Ib	<b>ution:</b> LF	: 1448	RF: 1	411	LR:	1111	RR: '	1095

Figure E.1. Vehicle Properties for Test No. 440822-01-5.

Date:	2022-08-04	Test No.:	440822-01-5	VIN No.:	1C6RRGT5GS326771
Year:	2016	Make:	RAM	Model:	1500

# VEHICLE CRUSH MEASUREMENT SHEET¹

Complete wh	en Applicable				
End Damage	Side Damage				
Undeformed end width	Bowing: B1 X1				
Corner shift: A1	B2 X2				
A2					
End shift at frame (CDC)	Bowing constant				
(check one)	$X1+X2$ _				
< 4 inches	2				
$\geq$ 4 inches					

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

a .a		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C1	C ₂	C3	C ₄	C ₅	C ₆	±D
1	AT FT BUMPER	16	9	36							18
2	SAME	16	10.5	59							72
	Measurements recorded										
	√inches or ☐mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

#### Figure E.2. Exterior Crush Measurements for Test No. 440822-01-5.

Date:	2022-08-04	_ Test No.:	440822-01-5	∿	/IN No.:	1C6RRGT5C	SS326771
Year:	2016	_ Make:	RAM	N	lodel:	1500	C
		<u>, + )</u> ,+	<u></u>	OC DEF	CUPANT ( ORMATION	COMPARTI N MEASURI	MENT EMENT
	F				Before	After (inches)	Differ.
	J E1	E2 E3		\1	65.00	65.00	0.00
K			A	\2	63.00	63.00	0.00
			A LI	\3	65.50	65.50	0.00
			E	31	45.00	45.00	0.00
			E	32	38.00	38.00	0.00
			- <u></u> , E	33	45.00	45.00	0.00
			E	34	39.50	39.50	0.00
		B1-3 B		35	43.00	43.00	0.00
6	D1-	3	E	36	39.50	39.50	0.00
				21	26.00	26.00	0.00
- ((	$\bigcirc$		C	2	0.00	0.00	0.00
	<u> </u>		C	3	26.00	21.00	-5.00
			C	D1	11.00	11.00	0.00
			C	)2	0.00	0.00	0.00
			L C	)3	11.50	11.50	0.00
	B	25	E	1	58.50	61.00	2.50
	B1,4	B3,6	E	2	63.50	60.50	-3.00
	E:	l–4 —   <b>—</b> ►	E	3	63.50	63.50	0.00
			E	4	63.50	63.50	0.00
			F		59.00	59.00	0.00
			C	3	59.00	59.00	0.00
			F	4	37.50	37.50	0.00

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

Figure E.3. Occupant Compartment Measurements for Test No. 440822-01-5.

Т

J*

37.50

25.00

37.50

21.00

0.00

-4.00

# E.3. SEQUENTIAL PHOTOGRAPHS



(a) 0.000 s

(b) 0.100 s



(c) 0.200 s

(d) 0.300 s



(e) 0.400 s

(f) 0.500 s



(g) 0.600 s (h) 0.700 s Figure E.4. Sequential Photographs for Test No. 440822-01-5 (Overhead Views).



(a) 0.000 s

(c) 0.200 s

(d) 0.300 s



(e) 0.400 s

(f) 0.500 s



(g) 0.600 s (h) 0.700 s



(a) 0.000 s

(b) 0.100 s



(c) 0.200 s

(d) 0.300 s



(e) 0.400 s

(f) 0.500 s



(g) 0.600 s

(h) 0.700 s

Figure E.6. Sequential Photographs for Test No. 440822-01-5 (Rear Views).

## E.4. VEHICLE ANGULAR DISPLACEMENT



### Roll, Pitch and Yaw Angles

Figure E.7. Vehicle Angular Displacements for Test No. 440822-01-5.

#### E.5. VEHICLE ACCELERATIONS



Figure E.8. Vehicle Longitudinal Accelerometer Trace for Test No. 440822-01-5 (Accelerometer Located at Center of Gravity).



Figure E.9. Vehicle Lateral Accelerometer Trace for Test No. 440822-01-5 (Accelerometer Located at Center of Gravity).



Figure E.10. Vehicle Vertical Accelerometer Trace for Test No. 440822-01-5 (Accelerometer Located at Center of Gravity).

# **APPENDIX F. MATERIAL PROPERTIES**

# F.1. CONCRETE INFORMATION FOR THE SINGLE-SLOPE CONCRETE BARRIER

	exas A&M ransportation istitute	QF 7.3-01 Samj	Concrete pling	Doc. No. QF <b>7</b> .3-01	Revision Date: 2020-0 <b>7-</b> 29					
Qualit	y Form	Revised by: B.L. Griffi Approved by: D. L. Ku	th hn	Revision: 7	Page: 1 of 1					
Project No:	440822	Casting Date:	3/24/2022	Mix Design (psi):	3600					
Name of Technician Taking Sample	Terr	acon	Name of Technician Breaking Sample	Terracon						
Signature of Technician Taking Sample	Terr	acon	Signature of Technician Breaking Sample	of g le Terracon						
Load No.	Truck No.	Ticket No.	Locat	ion (from concrete	e map)					
Т1	RickLeroy121	111716	Single Slope	South 2/3 of Barrie	r					
т2	ChrisBurns130	111718	Single Slope	North 1/3 of Barrie	r					
Load No.	Break Date	Cylinder Age	Total Load (lbs)	Break (psi)	Average					
	REMIT PAYMEN P.O. BOX138 KURTEN, TX 77	NT TO: 7862	5222 Br	EXC Sandy Point RD. yan, Tx 77807	17534 SH College Station	6 South h, TX 77845	DISPATC OFFIC ESPANC	111716 H - 979-316-2906 E - 979-985-3636 L - 512-658-7809		
---	---------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------	--------------------------------------------------------------------	--	--
	MBC MAN RELLIS	NAGEMENT CAMPUS, B	RYAN TX					LL GO TO TO THE		
	TIME	FORMULA	LOAD SIZE	YARD ORDERED		DRIVER/TRUCK		PLANT TRANSACTION#		
	D.LO	TO LEGISDUP	10.00	EU. WU H		RICKL	ERUY LEL	58970		
	DATE	TTTOPNO	LOAD#	YARDS DEL.	BATCH#	WATER TRIM	SLUMP	TICKET NUMBER		
	ALL TALL	1 TTHREE	10.00	10.00		C. Nations	2.00 in	57138		
	QUANTITY	CODE	DESCRIPTION				UNIT PRICE	EXTENDED PRICE		
	5:46	s FUEL		Fuel	Charge	Thank yo	u for your	business		
	LEFT PLANT	ARRIVED JOB	START UNLOADING	SLUMP	CONCRETE TEMP.	AIR TEMP	Prey, RH	T		
	Market and	ALC: NOT THE REAL					Ticket for	al		
-	FINISH UNLOADING	LEFT JOB	ARRIVED AT PLANT	ON SITE TER	TESTING RACON		and had			
				TESTING LAB: GES CME	SNER	Street W. W	ADDITIONAL CHARG	E 1		
+		TE	STED	AIR	CYLINDERS		ADDITIONAL CHARGE 2			
		YES	NO NO			GRAND TOTAL Excessive Water is Detrimental to Concrete Performann H ₀ Added by Request/Authorized By:				
	IRRITATIN	WARNING NG TO THE SKIN A	ND EYES	PROPERTY DA (TO BE SIGNED IF DELIVERY T Dear Customer - The driver	MAGE RELEASE TO BE MADE INSIDE CURB LINE) of this truck in presenting this					
	Contains Portland Cemer CONTACT MAY CAUSE	t, Wear Rubber Boots an BURNS. Avoid Contact V	d Gloves. PROLONGED With Eyes and Prolonged	RELEASE to you for your sign size and weight of this truck r the premises and/or adjace material in this load where yo	nature is of the opinion that the may possibly cause damage to nt property if he places the bu desire it. It is our wish to	GAL X				
	Water. If Irritation Persists. CONCRETE is a PERISHAE	Get Medical Attention.KE	EP CHILDREN AWAY	help you in everyway that we driver is requesting that you s and this supplier from any re may occur to the premise	can, but in order to do this the ign this RELEASErelieving him sponsibility from damage that s and or adjacent property.	WEIGHMASTER Surcharge for credit cards				
	PURCHASER UPON LEAVE ORIGINAL INSTRUCTIONS M starts. The undersigned prom incurred in collection any sums	NG the PLANT, ANY CHANG MUST be TELEPHONED to the tises to pay all costs, including a owed	GES or CANCELLATION of OFFICE BEFORE LOADING reasonable attorney's fees.	buildings, sidewalks, driveway this material and that you al mud from the wheels of his ve public streets. Further as	s, curbs, etc. by the delivery of so agree to help him remove hicle so that he will not liter the additional consideration; the					
	All accounts not paid within 30 annum. Not Responsible For F Made at Time Material is Deliv A \$25.00 Service Charge and U Checks. Demerge charge after	days of delivery will bear interes eactive Aggregate or Color Qua ered. Loss of the Cash Discounted will 90 min. will be \$100.00/hr.	t at the rate of 18% per ality. No Claim Allowed Unless be Collected on all Returned	Undersigned agrees to indee driver of this truck and this su the premises and /or adjac claimed by anyone to have ari SIGNED:	mnity and hold harmless the optier for any and all damage to rent property, which may be sen out of delivery of this order	NOTICE: MY SIGNATURE WARNING NOTICE AND SU CAUSED WHEN DELIVERING LOAD RECEIVED BY X	BELOW INDICATES THAT I I PPLIER WILL NOT BE RESPOI G INSIDE CURB LINE.	HAVE READ THE HEALTH NSIBLE FOR ANY DAMAGE		
							1	L11716		

REMIT PAYME P.O. BOX138 KURTEN, TX	ENT TO: 77862	5222 Br	Sandy Point RD. yan, Tx 77807	A TABLE A TABL	TE 6 South n, TX 77845 HWY 21, ET ALT INTO 6HT THRU T	DISPATC OFFIC ESPANC SILVER HT RELLIS HE CIRCLE	<b>1111718</b> H - 979-316-2906 E - 979-985-3636 L - 512-658-7809
TIME DATE QUANTITY	FORMULA CODE	LOAD SIZE LOAD# DESCRIPTION	YARD ORDERED YARDS DEL.	BATCH#	DRIVER/TRUCK WATER TRIM	SLUMP SLUMP S. 00 10 UNIT PRICE	PLANT TRANSACTION#
LEFT PLANT	ARRIVED JOB	START UNLOADING	SLUMP		AIR TEMP	a For your lar Prev. RH Ticket Tot;	business I
IRRITATII	WARNING NG TO THE SKIN AI		TESTING LAB: GES: CME AIR PROPERTY DAI TO BE SIGNED IF DELIVERY T BPP, California - The driver of	ACON SNER OTHER CYLINDERS MAGE RELEASE DE MADE INSIDE CURB LINE) Mits frok, in Descriting inte	Excessive Water H ₂ 0 Ad	ADDITIONAL CHARGI ADDITIONAL CHARGI GRAND TOTAL is Detrimental to Concret ded by Request/Authorize	E 1 E 2 e Performance. d By:
CONTACT May Cause Contract with Skin. In Case Water. If Initiation Persiste CONCRETE is a PERISHA OCONCRETE is a PERISHA Discourds and the paid within 30 annum. Not Responsible For Matte at Time Material is Dails A 35: 00 Service Charge and Checks. Demerge charge after	II. wear Hubber Boots an BURNS. Avoid Contact V of Contact with Skin or Ey. Get Medical Attention. KEE SLE COMMODITY and BECON NUST be FLEXT ANY CHANG NUST be TELEFHONED to the Mark of the Chart, ANY CHANG Store PLAY and Control Control International Control Control And Control Control Control Mark of the Cash Disconted will So min. will be \$100.00mr.	Id Gloves. PROLONGED With Eyes and Prolonged es, Rinse Thoroughly With FP CHLDREN AWAY. MES THE PROPERTY of the IES or CANCELLATION of Teston Barroney's feest. at the rate of 18% per fity. No Claim Allowed Unless be Collected on all Returned	size and weight of this truck of the premises markor algoers help you in overyway that we driver is requesting that you algo pullaring, sidewalks, driveway thur materials and that you algo pullaring, sidewalks, driveway thur materials and that you algo pullaring sidewalks, driveway thur materials and that you algo pullaring sidewalks, driveway thur materials and that you algo pullaring sidewalks, driveway that materials and that you algo pullaring sidewalks, driveway and algoes that algoes that the sidewalk and pullar sidewalks and we algoes and you address claimed by anyone to have ans sidewalks.	and possible satisfies of that the same possible satisfies of the places the order of the satisfies of the satisfies of the order of the satisfies of the satisfies of the desire of the satisfies of the satisfies of the desire of the satisfies of the satisfies of the desired of the satisfies of the satisfies of the satisfies of the satisfies of the satisfies of the satisfies of the satisfies of the satisfies of the satisfies of the satisfies of the satisfies of the satisfies of the satisfies of the satisfies of the satisfies of the satisfies of	GAL X WEIGHMASTER Surch NOTICE: MY SIGNATURE BI WARNING NOTICE AND SUP CAUSED WITEN DELIVENING LOAD RECEIVED BY	Harge for credit ca ELOW INDICATES THAT I HA PLIER WILL NOT BE RESPONS INSIDE CURB LINE.	rds NVE READ THE HEALTH BIBLE FOR ANY DAMAGE
						1	11718

Report Number: A1171057.0222 Service Date: 03/24/22 **Report Date:** 05/03/22 Revision 1 - cylinder break PO# 440822 Task:



6198 Imperial Loop College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

Client				Project							
Texas Transpo Attn: Gary Ge TTI Business 3135 TAMU	rtation Instituto rke Office	>		Riverside Campus Riverside Campus Bryan, TX							
College Statio	n, TX 77843-3	135		Project Number: A1171057							
Material Inf	ormation			Sample Information							
Specified Stre	ength: 3,600	psi @ 23	3 days	Sample Date: Sampled By: Weather Conditions:	03/24/22 Sample Time: 092 Brian Maass Clear light wind						
Supplier: Batch Time:	Texcrete 0828	Plant:	2	Accumulative Yards: Placement Method:	10/10 Direct Disch	Batch Size (cy):	10				
Truck No.:	121	Ticket No.:	57138	Water Added Before (gal): Water Added After (gal):	5						
Field Test D	Data			Sample Location:	Center of le	ft barricade					
Test Result Specification				Placement Location:	it Location: Barricade I						
Slump (in):         6											
Air Content (%): 2.0											
Concrete Temp. (F): 67											
Ambient Temp. (F): 52											

## Laboratory Test Data

Plastic Unit Wt. (pcf):

Yield (Cu. Yds.):

Labo	orator	y Test Data					Age at	Max	Comp		
Set	Spe	c Cyl.	Avg Diam.	Area	Date	Date	Test	Load	Strength	Frac	Tested
No.	ID	Cond.	(in)	(sq in)	Received	Tested	(days)	(lbs)	(psi)	Туре	By
1	A	Good	6.01	28.37		04/29/22	36 F	150,350	5,300	4	SLS
1	В	Good	6.01	28.37		04/29/22	36 F	150,600	5,310	4	SLS
1	С	Good	6.01	28.37		04/29/22	36 F	148,300	5,230	1	JTE
1	D						Hold				
Initial	Cure:	Outside Plastic	Lids	Final	l Cure: Field	Cured	S	ample Descr	iption: 6-inch	diameter cy	linders
Comn	nents:	F = Field Cure	d								

Note: Reported air content does not include Aggregate Correction Factor (ACF).

### Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Start/Stop: 0800-1100

Terracon Rep.: Brian Maass

Reported To:

Contractor: MDC

**Report Distribution:** 

(1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Alex Dunigan, P.E.

146.4

(1) Texas Transportation Institute, Bill Griffith

### Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 1 of 2

CR0001, 11-16-12, Rey 6

58

147.0

Report Number: A1171057.0222 Service Date: 03/24/22 **Report Date:** 05/03/22 Revision 1 - cylinder break PO# 440822 Task:



6198 Imperial Loop College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

Client			Project							
Texas Transportation Instit Attn: Gary Gerke TTI Business Office 3135 TAMU	ute		Riverside Campus Riverside Campus Bryan, TX							
College Station, TX 77843	-3135		Project Number: A1171057							
Material Information	1		Sample Information							
Specified Strength:3,60Mix ID:Class CSupplier:TexcreteBatch Time:0914Truck No.:130	00 psi @ 24 Plant: Ticket No.:	8 days 2 57140	Sample Date:03/24/22Sample Time:101Sampled By:Brian MaassWeather Conditions:Clear light windAccumulative Yards:20/20Batch Size (cy):10Placement Method:Direct DischargeWater Added Before (gal):5							
Field Test Data <u>Test</u> Slump (in): Air Content (%): Concrete Temp. (F):	<b>Result</b> 7 1/2 1.8 66	Specification	Water Added After (gal): Sample Location: Placement Location:	0 Center of r Barricade	ight barricade 2					

# Laboratory Test Data

Ambient Temp. (F):

Yield (Cu. Yds.):

Plastic Unit Wt. (pcf):

Labo	ratory	Test Data					Age at	Max	Comp		
Set	Spec	Cyl.	Avg Diam.	Area	Date	Date	Test	Load	Strength	Frac	Tested
No.	ID	Cond.	(in)	(sq in)	Received	Tested	(days)	(lbs)	(psi)	Туре	By
2	Α	Good	6.01	28.37		04/29/22	36 F	136,520	4,810	4	SLS
2	В	Good	6.01	28.37		04/29/22	36 F	138,620	4,890	2	SLS
2	С	Good	6.01	28.37		04/29/22	36 F	139,680	4,920	1	JTE
2	D						Hold				
Initial	Initial Cure: Outside Plastic Lids Final Cure: Field Cured Sample Description: 6-inch diameter cylinders										linders
0		E ELLO									

Comments: F = Field Cured

Note: Reported air content does not include Aggregate Correction Factor (ACF).

#### Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

# Terracon Rep.: Brian Maass

**Reported To:** Contractor:

### MDC **Report Distribution:**

(1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Alex Dunigan, P.E. (1) Texas Transportation Institute, Bill Griffith

**Reviewed By:** 

Start/Stop: 0800-1100

Alexander Dunigan

Project Manager

### Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 2 of 2

CR0001, 11-16-12, Rev.6

TR No. 440822-01-1-5

# F.2. CONCRETE INFORMATION FOR THE F-SHAPE CONCRETE BARRIER

	exas A&M ransportation istitute	QF 7.3-01 Samj	Concrete pling	Doc. No. QF <b>7.3-</b> 01	Revision Date: 2020-0 <b>7</b> -29		
Qualit	y Form	Revised by: B.L. Griffi Approved by: D. L. Ku	th hn	Revision: 7	Page: 1 of 1		
Project No:	440822	Casting Date:	3/14/2022	Mix Design (psi):	3600		
Name of Technician Taking Sample	Terr	acon	Name of Technician Breaking Sample	ہ عTerracon			
Signature of Technician Taking Sample	Terr	acon	Signature of Technician Breaking Sample	Terr	acon		
Load No.	Truck No.	Ticket No.	Locat	ion (from concrete	e map)		
Т1	Christopher1C7	109441	F-Shape	South 2/3 of Barrie	r		
Т2	JamesJ131	109443	F-Shape	North 1/3 of Barrie	r		
Load No.	Break Date	Cylinder Age	Total Load (lbs)	Break (psi)	Average		





Report Number: A1171057.0221 Service Date: 03/14/22 **Report Date:** 05/02/22 Task: PO# 440822



6198 Imperial Loop College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

Client			Project							
Texas Transportation Institut Attn: Gary Gerke TTI Business Office	с		Riverside Campus Riverside Campus Bryan, TX							
College Station, TX 77843-3	135		Project Number: A1171057							
Material Information			Sample Information							
Specified Strength: 3,600	psi @ 40	ó days	Sample Date: Sampled By: Weather Conditioner	03/14/22 Sample Time: 21 Randy Rippstein						
Supplier: Texcrete Batch Time: 2030 Truck No.: 1C7	Plant: Ticket No.:	Bryan 56655	Accumulative Yards: Placement Method: Water Added Before (gal):	Accumulative Yards: 8 Batch Size (cy): 8 Placement Method: Direct Discharge Water Added Before (gal): 0						
Field Test Data		~	Water Added After (gal): Sample Location:	0 See GPS Location						
Test Slump (in):	Result 6	Specification	Placement Location:	on F-Shape	40822-3 Amorcast p e median	anels				
Air Content (%):1.3Concrete Temp. (F):70Aubitud Tunu (F):60										
Ampient temp, (r);	00									

## Laboratory Test Data

Plastic Unit Wt. (pcf):

Yield (Cu. Yds.):

Labo	ratory	y lest Data					Age at	Max	Comp		
Set	Spee	e Cyl.	Avg Diam.	Area	Date	Date	Test	Load	Strength	Frac	Tested
No.	ID	Cond.	(in)	(sq in)	Received	Tested	(days)	(lbs)	(psi)	Type	By
1	A	Good	6.01	28.37		04/19/22	36 F	153,410	5,410	4	SLS
1	В	Good	6.01	28.37		04/19/22	36 F	152,050	5,360		SLS
1	С	Good	6.01	28.37		04/19/22	36 F	151,420	5,340		SLS
1	D						Hold				
Initial	Cure:	Outside Plastic	Lids	Final	l Cure: Field	Cured	S	ample Descr	iption: 6-inch	diameter cyl	linders

Initial Cure: Outside Plastic Lids Comments: F = Field Cured

Note: Reported air content does not include Aggregate Correction Factor (ACF). "To be Utilized" Break 3 cylinders on April 29 & Hold 1.

### Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Start/Stop: 0900-1300

Terracon Rep.: Randy Rippstein Reported To: Bill with TTI

Contractor:

## **Report Distribution:**

(1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Alex Dunigan, P.E.

149.2

(1) Texas Transportation Institute, Bill Griffith

### Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 1 of 2

CR0001, 11-16-12, Rey 6

TR No. 440822-01-1-5

Report Number: A1171057.0221 Service Date: 03/14/22**Report Date:** 05/02/22 PO# 440822 Task:



6198 Imperial Loop College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

Client			Project							
Texas Transportation Institut Attn: Gary Gerke	e		Riverside Campus Riverside Campus							
TTI Business Office 3135 TAMU			Bryan, TX							
College Station, TX 77843-3	135		Project Number: A1171057							
Material Information			Sample Information							
Specified Strength: 3,600	psi @ 4	6 days	Sample Date: Sampled By:	le Date: 03/14/22 Sample Time: 101 led By: Randy Rippstein						
Mix ID: TDCLC3600			Weather Conditions: Cloudy, Heavy Wind							
Supplier: Texcrete			Accumulative Yards: 16 Batch Size (cy): 8							
Batch Time: 0842	Plant:	Bryan	Placement Method: Direct Discharge							
Truck No.: 131	Ticket No.:	56657	Water Added Before (gal): 0							
Field Teet Dete			Water Added After (gal):	0						
Field lest Data			Sample Location:	See GPS L	ocation					
Test	Result	Specification	Placement Location:	Project # 440822-3 Amorcast Panels						
Slump (in):	6 1/2			on F-Shap	e Median					
Air Content (%):	1.5									
Concrete Temp (E):	71									

## Laboratory Test Data

Ambient Temp. (F):

Yield (Cu. Yds.):

Plastic Unit Wt. (pcf):

Labo	ratory	/ Test Data					Age at	Max	Comp		
Set	Spec	e Cyl.	Avg Diam.	Area	Date	Date	Test	Load	Strength	Frac	Tested
No.	ID	Cond.	(in)	(sq in)	Received	Tested	(days)	(lbs)	(psi)	Туре	By
2	Α	Good	6.01	28.37		04/19/22	36 F	147,980	5,220	3	SLS
2	в	Good	6.01	28.37		04/19/22	36 F	147,510	5,200		SLS
2	С	Good	6.01	28.37		04/19/22	36 F	141,830	5,000		SLS
2	D						Hold				
Initial	Cure:	Outside Plastic	Lids	Fina	Cure: Field	Cured	S	ample Descr	iption: 6-inch	diameter cyl	inders

Initial Cure: Outside Plastic Lids Comments: F = Field Cured

Note: Reported air content does not include Aggregate Correction Factor (ACF). "To be Utilized" Break 3 cylinders on April 29 & Hold 1.

Samples Made By: Terracon

Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and Services: test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Randy Rippstein Bill with TTI Reported To: Contractor:

## **Report Distribution:**

(1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Alex Dunigan, P.E. (1) Texas Transportation Institute, Bill Griffith

73

148.6

**Reviewed By:** 

Start/Stop: 0900-1300

Alexander Dunigan

Project Manager

### Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 2 of 2

CR0001, 11-16-12, Rev.6

TR No. 440822-01-1-5