TTI: 0-6968

MASH TL-3 EVALUATION OF TXDOT EXTRA-LARGE MAILBOXES

Test Report 0-6968-R9

Cooperative Research Program

TEXAS A&M TRANSPORTATION INSTITUTE

COLLEGE STATION, TEXAS

TEXAS DEPARTMENT OF TRANSPORTATION

in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/documents/0-6968-R9.pdf

			Technical Rep	ort Documentation Page	
1. Report No. FHWA/TX-19/0-6968-R9	2. Government Accession	n No.	3. Recipient's Catalog No	0.	
4. Title and Subtitle MASH TL-3 EVALUATION OF TXDOT EXTRA-LARGE			5. Report Date Published: Octob	per 2020	
MAILBOXES			6. Performing Organizati	ion Code	
^{7.} Author(s) Chiara Silvestri Dobrovolny, Roger P. Bligh, Wanda L. Menges, Glenn E. Schroeder, and Darrell L. Kuhn			8. Performing Organizati Report 0-6968-R	ion Report No. 9	
9. Performing Organization Name and Address Texas A&M Transportation Institut	e		10. Work Unit No. (TRAIS)		
College Station, Texas 77843-3135			11. Contract or Grant No. Project 0-6968		
12. Sponsoring Agency Name and Address Texas Department of Transportation Research and Technology Impleme	n ntation Office		13. Type of Report and P Technical Report September 2018-	eriod Covered t: -August 2019	
125 E. 11th Street			14. Sponsoring Agency C	Code	
Austin, Texas 78701-2483 15. Supplementary Notes					
Project performed in cooperation w Administration. Project Title: Roadside Safety Devi URL: http://tti.tamu.edu/documents	ith the Texas Depar ce Crash Testing Pr /0-6968-R9.pdf	rtment of Transpor rogram	tation and the Fede	eral Highway	
16. Abstract	, o o o o no no par				
The purpose of the testing reported herein was to assess the performance of TxDOT's extra-large mailboxes according to the safety-performance evaluation guidelines included in AASHTO <i>MASH</i> for Test Level Three (TL-3) for support structures. The mailboxes tested were the single extra-large mailbox on Typ 4 support, two architectural mailboxes and two medium mailboxes on a bent pipe support, and a single extra-large mailbox on Type 3 support.					
The single Centennial model #950020B extra-large mailbox on Type 4 support performed acceptably for <i>MASH</i> Test 3-61.					
The multiple mailboxes on a for <i>MASH</i> Test 3-61.	The multiple mailboxes on a bent pipe support also showed the installation to performed acceptably for <i>MASH</i> Test 3-61.				
The windshield of the test vehicle deformed 4.6 inches into the occupant compartment and the laminate was torn during <i>MASH</i> Test 3-61 on the single Centennial model #950020B extra-large mailbox on Type 3 support. The installation failed criterion D of <i>MASH</i> .					
In a re-test after applying a modification to the connection bracket of the single Centennial model #950020B extra-large mailbox, the Type 3 support performed acceptably for <i>MASH</i> Test 3-61.					
^{17. Key Words} Mailbox, Extra-Large Mailbox, Support Structure, Roadside Safety, Crash Testing, MASH		 18. Distribution Statement No restrictions. This document is available to the public through NTIS: National Technical Information Service Alexandria, Virginia http://www.ntis.gov 		vailable to the	
19. Security Classif.(of this report) Unclassified	20. Security Classif.(of this page) Unclassified		21. No. of Pages 140	22. Price	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

MASH TL-3 EVALUATION OF TXDOT EXTRA-LARGE MAILBOXES

by

Chiara Silvestri Dobrovolny, Ph.D. Associate Research Scientist Texas A&M Transportation Institute

Roger P. Bligh, P.E. Senior Research Engineer Texas A&M Transportation Institute

Wanda L. Menges Research Specialist Texas A&M Transportation Institute

Glenn E. Schroeder Research Specialist Texas A&M Transportation Institute

and

Darrell L. Kuhn, P.E. Research Specialist Texas A&M Transportation Institute

Report 0-6968-R9 Project 0-6968 Project Title: Roadside Safety Device Crash Testing Program

> Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

> > Published: October 2020

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation.

This report is not intended for construction, bidding, or permit purposes. The engineer (researcher) in charge of the project was Roger P. Bligh, P.E. TX#78550.

The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

TTI PROVING GROUND DISCLAIMER

The results of the crash testing reported herein apply only to the article being tested.

REPORT AUTHORIZATION

DocuSigned by: Bill Griffith 44A122CB271845B.

Bill L. Griffith, Research Specialist Deputy Quality Manager

—DocuSigned by: Matt Robinson —EAA22BFA5BFD417...

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

DocuSigned by:

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

DocuSigned by: (a St DA

Chiara Silvestri Dobrovolny, Ph.D. Associate Research Scientist

ACKNOWLEDGMENTS

This project was conducted in cooperation with TxDOT and FHWA The authors thank Mark Johnson of TxDOT for his technical support during the project. The authors also thank Wade Odell for his support as the TxDOT Project Manager.

TABLE OF CONTENTS

List of F	ligures	xiii
List of T	`ables`	xv
Chapter	[•] 1: Introduction	1
Chapter	2: Test Requirements and Evaluation Criteria	
2.1	Crash Test Matrix	3
2.2	Evaluation Criteria	3
Chapter	3: Test Conditions	5
3.1	Test Facility	5
3.2	Vehicle Tow and Guidance System	5
3.3	Data Acquisition Systems	5
3.	.3.1 Vehicle Instrumentation and Data Processing	5
3.	.3.2 Anthropomorphic Dummy Instrumentation	6
3.	.3.3 Photographic Instrumentation and Data Processing	7
Chapter	4: MASH Test 3-61 on Centennial Model Extra-Large Mailbox on Type 4	
Support.		9
4.1	Test Article and Installation Details	9
4.2	Design Modifications during Tests	9
4.3	Material Specifications	9
4.4	Soil Conditions	9
4.5	Test Designation and Actual Impact Conditions	9
4.6	Weather Conditions	13
4.7	Test Vehicle	13
4.8	Test Description	14
4.9	Damage to Test Installation	14
4.10	Damage to Test Vehicle	14
4.11	Occupant Risk Factors	14
Chapter	5: MASH Test 3-61 on Multiple Mailboxes on Bent Pipe Support	19
5.1	Test Article and Installation Details	19
5.2	Design Modifications during Tests	19
5.3	Material Specifications	19
5.4	Soil Conditions.	22
5.5	Test Designation and Actual Impact Conditions	23
5.6	Weather Conditions	23
5.7	Test Vehicle	23
5.8	Test Description	24
5.9	Damage to Test Installation	24
5.10	Damage to Test Vehicle	24
5.11	Occupant Risk Factors	26

TABLE OF CONTENTS (CONTINUED)

Chapter	6: MASH Test 3-61 on Centennial Model Extra-Large Mailbox on Type 3	
Support		
6.1	Test Article and Installation Details	
6.2	Design Modifications during Tests	
6.3	Material Specifications	
6.4	Soil Conditions	
6.5	Test Designation and Actual Impact Conditions	
6.6	Weather Conditions	
6.7	Test Vehicle	
6.8	Test Description	
6.9	Damage to Test Installation	
6.10	Damage to Test Vehicle	
6.11	Occupant Risk Factors	
Chapter	7: MASH Test 3-61 on Single Centennial Model Extra-Large Mailbox on	
Type 3 S	upport	
7.1	Test Article and Installation Details	
7.2	Design Modifications during Testing	
7.3	Material Specifications	
7.4	Soil Conditions	
7.5	Test Designation and Actual Impact Conditions	
7.6	Weather Conditions	
7.7	Test Vehicle	
7.8	Test Description	
7.9	Damage to Test Installation	
7.10	Damage to Test Vehicle	
7.11	Occupant Risk Factors	
Chapter	8: Summary and Conclusions	
8.1	Assessment of Test Results	
8	1.1 Single Centennial Model Extra-Large Mailbox on Type 4 Support	
8	1.2 Multiple Mailboxes on Bent Pipe Support	
8	1.3 Single Centennial Model Extra-Large Mailbox on Type 3 Support	
8	1.4 Single Centennial Model Extra-Large Mailbox on Type 3 Support –	
Ν	Iodified Connection Bracket Design	
8.2	Conclusions	
8	2.1 Single Centennial Model Extra-Large Mailbox on Type 4 Support	
8	2.2 Multiple Mailboxes on Bent Pipe Support	
8	2.3 Single Centennial Model Extra-Large Mailbox on Type 3 Support	
8	2.4 Single Centennial Model Extra-Large Mailbox on Type 3 Support –	
Ν	Iodified Connection Bracket Design	
Chapter	9: Implementation	
Reference	es	59

TABLE OF CONTENTS (CONTINUED)

Page

Appendi	ix A. Crash Test No. 469689-1-1	. 61
A.1	Details of Test Article	. 61
A.2	Vehicle Properties and Information	. 66
A.3	Sequential Photographs	. 69
A.4	Vehicle Angular Displacement	. 71
A.5	Vehicle Accelerations	. 72
Appendi	ix B. Crash Test 469689-1-2	. 75
B .1	Details of Test Article	. 75
B.2	Vehicle Properties and Information	. 85
B.3	Sequential Photographs	. 88
B .4	Vehicle Angular Displacement	. 90
B.5	Vehicle Accelerations	. 91
Appendi	ix C. Crash Test 469689-1-3	. 95
C.1	Details of Test Article	. 95
C.2	Vehicle Properties and Information	101
C.3	Sequential Photographs	104
C.4	Vehicle Angular Displacement	106
C.5	Vehicle Accelerations	107
Appendi	ix D. Crash Test 469689-1-4	111
D.1	Details of Test Article	111
D.2	Vehicle Properties and Information	118
D.3	Sequential Photographs	121
D.4	Vehicle Angular Displacement	123
D.5	Vehicle Accelerations	124

LIST OF FIGURES

		Page
Figure 4.1.	Overall Details of Centennial Model Extra-Large Mailbox on Type 4	
	Support	10
Figure 4.2.	Connection Details for Centennial Model Extra-Large Mailbox on Type 4	
	Support	11
Figure 4.3.	Centennial Model Extra-Large Mailbox on Type 4 Support prior to	
	Testing	12
Figure 4.4.	Mailbox/Test Vehicle Geometrics for Test No. 469689-1-1.	13
Figure 4.5.	Test Vehicle before Test No. 469689-1-1	13
Figure 4.6.	Mailbox after Test No. 469689-1-1.	15
Figure 4.7.	Test Vehicle after Test No. 469689-1-1.	16
Figure 4.8.	Interior of Test Vehicle after Test No. 469689-1-1.	16
Figure 4.9.	Summary of Results for MASH Test 3-61 on Single Centennial Model	
	Extra-Large Mailbox on Type 4 Support	17
Figure 5.1.	Overall Details of Multiple Mailboxes on Bent Pipe Support	20
Figure 5.2.	Connection Details of Multiple Mailboxes on Bent Pipe Support	21
Figure 5.3.	Multiple Mailboxes on Bent Pipe Support prior to Testing	22
Figure 5.4.	Mailboxes/Test Vehicle Geometrics for Test No. 469689-1-2	23
Figure 5.5.	Test Vehicle before Test No. 469689-1-2	24
Figure 5.6.	Mailboxes after Test No. 469689-1-2.	25
Figure 5.7.	Test Vehicle after Test No. 469689-1-2.	26
Figure 5.8.	Interior of Test Vehicle for Test No. 469689-1-2.	26
Figure 5.9.	Summary of Results for MASH Test 3-61 on Multiple Mailboxes on Bent	
-	Pipe Support	28
Figure 6.1.	Overall Details of Centennial Model Extra-Large Mailbox on Type 3	
-	Support	30
Figure 6.2.	Connection Details of Centennial Model Extra-Large Mailbox on Type 3	
U	Support	31
Figure 6.3.	Mailbox prior to Test No. 469689-1-3	32
Figure 6.4.	Mailbox/Test Vehicle Geometrics for Test No. 469689-1-3.	33
Figure 6.5.	Test Vehicle before Test No. 469689-1-3	33
Figure 6.6.	Mailbox after Test No. 469689-1-3.	35
Figure 6.7.	Test Vehicle after Test No. 469689-1-3.	36
Figure 6.8.	Interior of Test Vehicle after Test No. 469689-1-3.	36
Figure 6.9.	Summary of Results for MASH Test 3-61 on Single Centennial Model	
8	Extra-Large Mailbox on Type 3 Support	37
Figure 7.1.	Overall Details of Centennial Model Extra-Large Mailbox on Type 3	
800 / -11	Support	40
Figure 7.2.	Connection Details of Centennial Model Extra-Large Mailbox on Type 3	
1.1801.0 / 121	Support	41
Figure 7.3	Centennial Model Extra-Large Mailbox on Type 3 Support prior to	
8010 / .01	Testing	42
Figure 74	Details of Bracket Used on Centennial Model Extra-Large Mailbox on	12
- 19010 / . 1.	Type 3 Support	

LIST OF FIGURES (CONTINUED)

Page

		rage
Figure 7.5.	Mailbox Installation/Test Vehicle Geometrics for Test No. 469689-1-4	
Figure 7.6.	Test Vehicle before Test No. 469689-1-4	
Figure 7.7.	Mailbox after Test No. 469689-1-4.	
Figure 7.8.	Test Vehicle after Test No. 469689-1-4.	
Figure 7.9.	Interior of Test Vehicle for Test No. 469689-1-4	
Figure 7.10.	Summary of Results for <i>MASH</i> Test 3-61 on Single Centennial Model	10
	Extra-Large Mailbox on Type 3 Support	
Figure A.1.	Sequential Photographs for Test No. 469689-1-1 (Perpendicular and	(0)
F ' A O	Oblique Views).	
Figure A.2.	Vehicle Angular Displacements for Test No. 469689-1-1.	
Figure A.3.	Vehicle Longitudinal Accelerometer Trace for Test No. 469689-1-1	70
T ' A ((Accelerometer Located at Center of Gravity).	
Figure A.4.	Vehicle Lateral Accelerometer Trace for Test No. 469689-1-1	70
T: • 7	(Accelerometer Located at Center of Gravity).	
Figure A.5.	Vehicle Vertical Accelerometer Trace for Test No. 469689-1-1	
	(Accelerometer Located at Center of Gravity).	
Figure B.I.	Sequential Photographs for Test No. 469689-1-2 (Perpendicular and	0.0
F ' D A	Oblique Views).	
Figure B.2.	Vehicle Angular Displacements for Test No. 469689-1-2.	
Figure B.3.	Vehicle Longitudinal Accelerometer Trace for Test No. 469689-1-2	
	(Accelerometer Located at Center of Gravity).	
Figure B.4.	Vehicle Lateral Accelerometer Trace for Test No. 469689-1-2	
	(Accelerometer Located at Center of Gravity).	
Figure B.5.	Vehicle Vertical Accelerometer Trace for Test No. 469689-1-2	
	(Accelerometer Located at Center of Gravity).	
Figure C.1.	Sequential Photographs for Test No. 469689-1-3 (Perpendicular and	104
	Oblique Views).	104
Figure C.2.	Vehicle Angular Displacements for Test No. 469689-1-3.	106
Figure C.3.	Vehicle Longitudinal Accelerometer Trace for Test No. 469689-1-3	105
-	(Accelerometer Located at Center of Gravity).	107
Figure C.4.	Vehicle Lateral Accelerometer Trace for Test No. 469689-1-3	100
	(Accelerometer Located at Center of Gravity).	108
Figure C.5.	Vehicle Vertical Accelerometer Trace for Test No. 469689-1-3	100
	(Accelerometer Located at Center of Gravity).	109
Figure D.1.	Sequential Photographs for Test No. 469689-1-4 (Perpendicular and	
	Oblique Views).	121
Figure D.2.	Vehicle Angular Displacements for Test No. 469689-1-4.	123
Figure D.3.	Vehicle Longitudinal Accelerometer Trace for Test No. 469689-1-4	
	(Accelerometer Located at Center of Gravity).	124
Figure D.4.	Vehicle Lateral Accelerometer Trace for Test No. 469689-1-4	
	(Accelerometer Located at Center of Gravity).	125
Figure D.5.	Vehicle Vertical Accelerometer Trace for Test No. 469689-1-4	
	(Accelerometer Located at Center of Gravity).	126

LIST OF TABLES

Table 2.1.	Test Conditions and Evaluation Criteria Specified for MASH TL-3	
	Support Structures	
Table 2.2.	Evaluation Criteria Required for MASH TL-3 Support Structures	4
Table 4.1.	Events during Test No. 469689-1-1.	14
Table 4.2.	Occupant Risk Factors for Test No. 469689-1-1.	16
Table 5.1.	Events during Test No. 469689-1-2.	
Table 5.2.	Occupant Risk Factors for Test No. 469689-1-2.	27
Table 6.1.	Events during Test No. 469689-1-3	34
Table 6.2.	Occupant Risk Factors for Test No. 469689-1-3.	36
Table 7.1.	Events during Test No. 469689-1-2	45
Table 7.2.	Occupant Risk Factors for Test No. 469689-1-4.	48
Table 8.1.	Performance Evaluation Summary for MASH Test 3-61 on Single	
	Centennial Model Extra-Large Mailbox on Type 4 Support.	52
Table 8.2.	Performance Evaluation Summary for MASH Test 3-61 on Multiple	
	Mailboxes on Bent Pipe Support.	53
Table 8.3.	Performance Evaluation Summary for MASH Test 3-61 on Single	
	Centennial Model Extra-Large Mailbox on Type 3 Support	54
Table 8.4.	Performance Evaluation Summary for MASH Test 3-61 on Single	
	Centennial Model Extra-Large Mailbox on Type 3 Support with Modified	
	Connection Bracket Design.	55
Table A.1.	Vehicle Properties for Test No. 469689-1-1	66
Table A.2.	Exterior Crush Measurements of Vehicle for Test No. 469689-1-1	67
Table A.3.	Occupant Compartment Measurements of Vehicle for Test No.	
	469689-1-1	68
Table B.1.	Vehicle Properties for Test No. 469689-1-2	85
Table B.2.	Exterior Crush Measurements of Vehicle for Test No. 469689-1-2	86
Table B.3.	Occupant Compartment Measurements of Vehicle for Test No.	
	469689-1-2	
Table C.1.	Vehicle Properties for Test No. 469689-1-3	101
Table C.2.	Exterior Crush Measurements of Vehicle for Test No. 469689-1-3	102
Table C.3.	Occupant Compartment Measurements of Vehicle for Test No.	
	469689-1-3	103
Table D.1.	Vehicle Properties for Test No. 469689-1-4	118
Table D.2.	Exterior Crush Measurements of Vehicle for Test No. 469689-1-4	119
Table D.3.	Occupant Compartment Measurements of Vehicle for Test No.	
	469689-1-4	120

SI* (MODERN METRIC) CONVERSION FACTORS					
	APPROXIMA	TE CONVERSIO	NS TO SI UNITS		
Symbol	When You Know	Multiply By	To Find	Symbol	
-	·	LENGTH	•		
in	inches	25.4	millimeters	mm	
ft	feet	0.305	meters	m	
yd	yards	0.914	meters	m	
mi	miles	1.61	kilometers	km	
		AREA			
in ²	square inches	645.2	square millimeters	mm²	
ft ²	square feet	0.093	square meters	m²	
yd²	square yards	0.836	square meters	m²	
ac	acres	0.405	nectares	ha km²	
mi ²	square miles	2.59	square kilometers	Km	
floz	fluid ounces		milliliters	ml	
	allons	29.57	liters	III⊑	
ft ³	cubic feet	0.028	cubic meters	∟ m ³	
vd ³	cubic vards	0.765	cubic meters	m ³	
۶a	NOTE: volumes of	preater than 1000L	shall be shown in m ³		
		MASS			
oz	ounces	28.35	arams	a	
lb	pounds	0.454	kilograms	ka	
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")	
	TEMPE	ERATURE (exac	t degrees)	• • •	
°F	Fahrenheit	5(F-32)/9	Celsius	°C	
		or (F-32)/1.8			
	FORCE a	and PRESSURE	or STRESS		
lbf	poundforce	4.45	newtons	N	
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa	
	APPROXIMATI	E CONVERSION	S FROM SI UNITS		
Symbol	When You Know	Multiply By	To Find	Symbol	
		LENGTH			
mm	millimeters	0.039	inches	in	
m	meters	3.28	feet	ft	
m	meters	1.09	yards	yd	
km	kilometers	0.621	miles	mi	
2		AREA		• •	
mm ²	square millimeters	0.0016	square inches	IN ²	
m ²	square meters	10.764	square teet	11 ²	
111- bo	bostaros	1.190	square yards	yu-	
km ²	Square kilometers	0.386	square miles	ac mi ²	
NIII	Oquare kilometers		Square miles	1111	
ml	milliliters	0.034	fluid ounces	07	
	liters	0.004	gallons	gal	
m ³	cubic meters	35.314	cubic feet	ft ³	
m ³	cubic meters	1.307	cubic vards	vd ³	
		MASS			
g	grams	0.035	ounces	oz	
kg	kilograms	2.202	pounds	lb	
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000lb)	Т	
	TEMPE	ERATURE (exac	t degrees)		
°C	Celsius	1.8C+32	Fahrenheit	°F	
	FORCE and PRESSURE or STRESS				
N	newtons	0.225	poundforce	lbf	
kPa	kilopascals	0.145	poundforce per square inch	lb/in ²	

*SI is the symbol for the International System of Units

CHAPTER 1: INTRODUCTION

The purpose of the testing reported herein was to assess the performance of extra-large mailboxes according to the safety-performance evaluation guidelines included in AASHTO *MASH* for Test Level Three (TL-3) for support structures. The mailboxes tested were the single extra-large mailbox on Type 4 support, two architectural mailboxes and two medium mailboxes on a bent pipe support, and a single extra-large mailbox on Type 3 support (two tests).

CHAPTER 2: TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 CRASH TEST MATRIX

Table 2.1 shows the test conditions and evaluation criteria for *MASH* TL-3 for support structures. The impact performance of the mailbox supports was evaluated using *MASH* Test 3-61 with the 1100C small passenger car. The small passenger car is considered the critical design vehicle based on the mailbox mounting height that is dictated by the United States Postal Service. *MASH* Test 3-62 with the 2270P pickup truck was not performed. The taller hood height and longer wrap-around distance (i.e., the distance from the ground, around the front end, and across the hood to the base of the windshield) of the 2270P pickup truck significantly decreases the probability of windshield impact and occupant compartment intrusion.

MASH Test 3-61, performed on the mailboxes reported herein, involves an 1100C vehicle weighing 2420 lb \pm 55 lb and impacting the test article at an impact speed of 62 mi/h \pm 2.5 mi/h and critical impact angle (CIA) of 0-25° \pm 1.5°.

	To at De si ana diana	Test Vebisle	Impact Conditions		Evoluction Critoria
l est Article	Test Designation	l est venicie	Speed	Angle	Evaluation Criteria
	3-60	1100C	19 mi/h	CIA	B, D, F, H, I, N
Support Structures	3-61	1100C	62 mi/h	CIA	B, D, F, H, I, N
	3-62	2270P	62 mi/h	CIA	B, D, F, H, I, N

 Table 2.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3 Support

 Structures.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 3 presents brief descriptions of these procedures.

2.2 EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2-5 and 5-1 of *MASH* were used to evaluate the crash test reported herein. The test conditions and evaluation criteria required for *MASH* Test 3-61 are listed in Table 2.1, and the substance of the evaluation criteria in Table 2.2. Evaluations of the crash test results are presented in detail under the section Assessment of Test Results.

Evaluation Factors		Evaluation Criteria		
	В.	The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.		
	D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone.		
		Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.		
Occupant Risk	<i>F</i> .	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.		
	Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.		
	Ι.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.		
Post-Impact Vehicular Response	Ν.	Vehicle trajectory behind the test article is acceptable.		

Table 2.2. Evaluation Criteria Required for MASH TL-3 Support Structures.

CHAPTER 3: TEST CONDITIONS

3.1 TEST FACILITY

The full-scale crash tests reported herein were performed at Texas A&M Transportation Institute (TTI) Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, and according to the *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on the Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 miles northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and evaluation of roadside safety hardware and perimeter protective devices. The site selected for installation and testing of the mailboxes and supports was in a cleared block within an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5-ft × 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement, but are otherwise flat and level.

3.2 VEHICLE TOW AND GUIDANCE SYSTEM

Each test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site (no sooner than 2 s after impact), after which the brakes were activated, if needed, to bring the test vehicle to a safe and controlled stop.

3.3 DATA ACQUISITION SYSTEMS

3.3.1 Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels can provide precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration and all instrumentation used in the vehicle conforms to all specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO[®] 2901, precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive a calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel, per SAE J211. Calibrations and evaluations are also made any time data are suspect. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k=2).

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k=2).

3.3.2 Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed the side opposite of impact in the 1100C vehicle. The dummy was not instrumented.

3.3.3 Photographic Instrumentation and Data Processing

Photographic coverage of each test included two digital high-speed cameras:

- One placed behind the installation at an angle.
- One placed to have a field of view perpendicular to and aligned with the installation.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the installation. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

CHAPTER 4: MASH TEST 3-61 ON CENTENNIAL MODEL EXTRA-LARGE MAILBOX ON TYPE 4 SUPPORT

4.1 TEST ARTICLE AND INSTALLATION DETAILS

The test installation consisted of an Architectural Mailboxes[©] Centennial model #950020B extra-large mailbox mounted on a 2³/₈-inch OD × 0.095-inch wall white steel tube post. The mailbox was attached to the post using a model DHT# 161443 mailbox bracket. Two steel plate washers (each measuring $2\times5\frac{1}{8}$ -inch thick) and four $\frac{5}{16}$ -inch diameter hex bolts that secured the bracket assembly to the floor of the mailbox, and a $\frac{5}{16}$ -inch bolt secured the bracket to the post.

The post was inserted into a plastic socket and secured with a plastic wedge. This wedge socket was set in an un-reinforced cylindrical concrete foundation measuring 12-inches in diameter \times 30-inches deep. The bottom of the mailbox was located 42 inches above grade.

Figure 4.1 presents overall information on the single Centennial model extra-large mailbox on a Type 4 support, Figure 4.2 shows the connection details, and Figure 4.3 provides photographs of the installation. Appendix A.1 provides further details of the mailbox installation.

4.2 DESIGN MODIFICATIONS DURING TESTS

No modifications were made to the installation during the testing phase.

4.3 MATERIAL SPECIFICATIONS

The drawings in Appendix A.1 indicate properties of the materials used to install/construct the Centennial model extra-large mailbox on a Type 4 support.

4.4 SOIL CONDITIONS

The test installation was set in an un-reinforced concrete cylinder in standard soil meeting AASHTO standard specifications for "Materials for Aggregate and Soil Aggregate Subbase, Base and Surface Courses," designated M147-65(2004), grading B.

4.5 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-61 involves an 1100C vehicle weighing 2420 lb \pm 55 lb impacting the support structure at an impact speed of 62 mi/h \pm 2.5 mi/h and a CIA of 0° \pm 1.5°. The target impact point for *MASH* Test 3-61 on the Centennial model extra-large mailbox on a Type 4 support was the vehicle's right (passenger's side) approximate quarter point, which was aligned with the centerline of the support.

Figure 4.1. Overall Details of Centennial Model Extra-Large Mailbox on Type 4 Support.

10

Figure 4.2. Connection Details for Centennial Model Extra-Large Mailbox on Type 4 Support.

Figure 4.3. Centennial Model Extra-Large Mailbox on Type 4 Support prior to Testing.

The 2008 Kia Rio^{*} used in the test weighed 2432 lb, and the actual impact speed and angle were 63.6 mi/h and 0°, respectively. The actual impact point was the right (passenger's side) quarter point of the front of the vehicle aligned with the centerline of the support. Minimum target kinetic energy (KE) was 288 kip-ft, and actual KE was 329 kip-ft.

^{*} The 2008 model vehicle used is older than the 6-year age noted in *MASH* and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2008 model vehicle met the *MASH* requirements.

4.6 WEATHER CONDITIONS

The test was performed on the morning of June 27, 2019. Weather conditions at the time of testing were as follows: wind speed: 1 mi/h; wind direction: 192° (vehicle was traveling at magnetic heading of 180°); temperature: $83^{\circ}F$; relative humidity: 90 percent.

4.7 TEST VEHICLE

Figures 4.4 and 4.5 show the 2008 Kia Rio used for the crash test. The vehicle's test inertia weight was 2432 lb, and its gross static weight was 2597 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and height to the upper edge of the bumper was 21.5 inches. Table A.1 in Appendix A.2 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 4.4. Mailbox/Test Vehicle Geometrics for Test No. 469689-1-1.

Figure 4.5. Test Vehicle before Test No. 469689-1-1.

4.8 TEST DESCRIPTION

The test vehicle was traveling at an impact speed of 63.6 mi/h when it contacted the mailbox support with the right quarter point of the front of the vehicle aligned with the centerline of the support at an impact angle of 0°. Table 4.1 lists events that occurred during Test No. 469689-1-1. Figure A.1 in Appendix A.3 presents sequential photographs during the test.

TIME (s)	EVENTS
0.0000	Vehicle contacts mailbox support
0.0060	Mailbox support begins to lift out of base
0.0250	Mailbox support separates from base
0.0270	Mailbox impacts hood of vehicle
0.0740	Vehicle loses contact with mailbox and support while traveling at 62.3 mi/h

Table 4.1. Events during Test No. 469689-1-1.

Brakes on the vehicle were applied at 0.9 s after impact, and the vehicle subsequently came to rest 270 ft downstream of the impact.

4.9 DAMAGE TO TEST INSTALLATION

Figure 4.6 shows the damage to the mailbox. The post pulled out of the socket. The mailbox separated into three pieces. The top, sides, and back stayed together and landed 99 ft downstream, and the mailbox door landed 102 ft downstream and 25 ft left. The bottom of the mailbox remaining attached to the post, which stayed engaged with the front of the test vehicle until it stopped, then slid to a stop 7 ft past the vehicle.

4.10 DAMAGE TO TEST VEHICLE

Figure 4.7 shows the damage sustained by the vehicle. There was a 2-inch dent in the front bumper at the right quarter point. The hood received a 33-inch \times 23-inch dent in the right side of the hood with a 0.5-inch \times 3-inch cut and a 0.5-inch \times 1.5-inch cut. The right upper windshield sustained a 1-inch \times 1-inch break near the roof line. Maximum exterior crush to the vehicle was 2.0 inches in the front plane at the right quarter point at bumper height. No occupant compartment deformation or intrusion was observed. Figure 4.8 shows the interior of the vehicle. Tables A.2 and A.3 in Appendix A.2 provide exterior crush and occupant compartment measurements.

4.11 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and are shown in Table 4.2. Figure 4.9 summarizes these data and other pertinent information from the test. Figure A.2 in Appendix A.4 shows the vehicle angular displacements, and Figures A.3 through A.5 in Appendix A.5 show accelerations versus time traces.

Figure 4.6. Mailbox after Test No. 469689-1-1.

Figure 4.7. Test Vehicle after Test No. 469689-1-1.

Figure 4.8. Interior of Test Vehicle after Test No. 469689-1-1.

Occupant Risk Factor	Value	Time
Occupant Impact Velocity (OIV)		
Longitudinal	2.0 ft/s	
Lateral	1.6 ft/s	at 0.8275 s on left side of interior
Occupant Ridedown Accelerations		
Longitudinal	0.8 g	0.9703–0.9803 s
Lateral	0.3 g	0.9502–0.9602 s
Theoretical Head Index Velocity (THIV)	2.8 km/h	at 0.7897 s on left side of interior
Post Head Deceleration (PHD)	0.8 g	0.9703–0.9803 s
Acceleration Severity Index (ASI)	0.12	0.0101–0.0601 s
Maximum 50-ms Moving Average		
Longitudinal	−1.1 g	0.0000–0.0500 s
Lateral	-0.4 g	0.0257–0.0757 s
Vertical	0.9 g	0.0258–0.0758 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	2 °	1.0000 s
Pitch	1 °	0.9930 s
Yaw	4 °	1.0000 s

Table 4.2.	Occupant	Risk	Factors	for	Test No.	469689-1-1.
				-		

17

Figure 4.9. Summary of Results for MASH Test 3-61 on Single Centennial Model Extra-Large Mailbox on Type 4 Support.

Longitudinal -1.1 g

Lateral.....--0.4 g

Vertical..... 0.9 g

Max. Occupant Compartment

Deformation None

Test Inertial 2432 lb

Gross Static 2597 lb

Dummy 165 lb

CHAPTER 5: MASH TEST 3-61 ON MULTIPLE MAILBOXES ON BENT PIPE SUPPORT

5.1 TEST ARTICLE AND INSTALLATION DETAILS

The test installation consisted of two Architectural Mailboxes[©] Oasis Jr. Elite model #620010B-10 and two No. 1-A standard mailboxes (medium) model #E1600B00 mounted on a bent post.

Each standard mailbox was attached to the bent post via angle brackets using a model DHT# 148939 mailbox bracket and one bracket extension, which were secured to the lower side flanges of the mailbox with six (three each side) ¹/₄-inch diameter hex bolts.

Each Oasis Jr. mailbox was attached to the bent post via angle brackets using a model DHT# 148939 mailbox bracket. Two steel plate washers (each measuring $2 \times 5\frac{1}{2} \times \frac{1}{8}$ -inch thick) and four $\frac{3}{8}$ -inch diameter hex bolts that secured the bracket assembly to the floor of the mailbox.

The bent post was fabricated from 2-inch \times 0.1090 (12-gauge) HSS round, inserted into a V-wing socket and held in place with a wedge for the V-wing socket. The V-wing socket was cast in a nonreinforced cylindrical concrete foundation measuring 12-inch diameter \times 30-inch deep. The bottoms of the mailboxes were located 42 inches above grade.

TxDOT investigated the crashworthiness behavior of locking architectural mailboxes and standard mailboxes on the same type of multiple-mount support with use of an 11-gauge steel tube under project 9-1002-15-7 (2). A 12-gauge was preferred for the same type of multiple-mount support for this project, given that the 12-gauge support is readily available, while the 11-gauge would need to be fabricated upon request and would be a more costly product. With the 12-gauge support being thinner than the 11-gauge support, TTI researchers needed to verify the proper crashworthiness behavior of the 12-gauge system under high-speed impact conditions. Based on mailbox weight and dimension comparison, the tested mailbox combination installation was considered to be more critical from a crashworthiness perspective under high-speed impacts.

Figure 5.1 presents overall information on the multiple mailboxes on bent pipe support, Figure 5.2 shows the connection details, and Figure 5.3 provides photographs of the installation. Appendix B.1 provides further details of the mailbox installation.

5.2 DESIGN MODIFICATIONS DURING TESTS

No modifications were made to the installation during the testing phase.

5.3 MATERIAL SPECIFICATIONS

The drawings in Appendix B.1 indicate properties of the materials used to install/construct the multiple mailboxes on bent pipe support.

Test Installation No. 1-A Standard Mailbox (medium) Gibraltar™ Model #E1600B00 Wedge for V-wing Socket 11"H x 8-1/2"W x 21-1/4"L / 7 lbs. DHT #46625 Plan View Locking Mailbox Architectural Mailboxes© Oasis© Jr. Elite Model #620010B-10 T:\1-ProjectFiles\469689-TxDOT\-1 Mailboxes\-1-2 2 X-Ig, 2 Med on Bent Pipe\Drafting, 469689-1-2\469689-1-2 Drawing - 17" ▶ - 14" - ▶ 14 V-wing Socket for Type 1 Foundation DHT #149340 42' Detail A Scale 1:10 Galvanized Multiple Mailbox Post Impact HSS Round 2" x 0.1090 (12 gauge) 0" A **Elevation Views** Concrete, TxDOT Class B (2000 psi) Roadside Safety and Physical Security Division -Proving Ground Texas A&M Transportation Institute 30" 1a. All hex bolts are grade 5. Two F844 flat washers, Ø12" Project #469689-1-2 Multiple Mailboxes 2019-07-11 one lock washer, and hex nut on all hex bolts. Drawn by GES Scale 1:20 Sheet 1 of 2 Test Installation

Figure 5.1. Overall Details of Multiple Mailboxes on Bent Pipe Support.

Figure 5.2. Connection Details of Multiple Mailboxes on Bent Pipe Support.

Figure 5.3. Multiple Mailboxes on Bent Pipe Support prior to Testing.

5.4 SOIL CONDITIONS

The test installation was installed in a concrete foundation in standard soil meeting AASHTO standard specifications for "Materials for Aggregate and Soil Aggregate Subbase, Base and Surface Courses," designated M147-65(2004), grading B.

5.5 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-61 involves an 1100C vehicle weighing 2420 lb \pm 55 lb impacting the support structure at an impact speed of 62 mi/h \pm 2.5 mi/h and a CIA of 0° \pm 1.5°. The target impact point for *MASH* Test 3-61 on the multiple mailboxes on a bent pipe support was the left (driver's side) approximate quarter point aligned with the centerline of the support.

The 2008 Kia Rio^{*} used in the test weighed 2442 lb, and the actual impact speed and angle were 61.6 mi/h and 0°, respectively. The actual impact point was the left (driver's side) quarter point aligned with the centerline of the support. Minimum target KE was 288 kip-ft, and actual KE was 310 kip-ft.

5.6 WEATHER CONDITIONS

The test was performed on the morning of August 23, 2019. Weather conditions at the time of testing were as follows: wind speed: 4 mi/h; wind direction: 192° (vehicle was traveling at magnetic heading of 180°); temperature: 85°F; relative humidity: 82 percent.

5.7 TEST VEHICLE

Figures 5.4 and 5.5 show the 2008 Kia Rio used for the crash test. The vehicle's test inertia weight was 2442 lb, and its gross static weight was 2607 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and height to the upper edge of the bumper was 21.5 inches. Table B.1 in Appendix B.2 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 5.4. Mailboxes/Test Vehicle Geometrics for Test No. 469689-1-2.

^{*} The 2008 model vehicle used is older than the 6-year age noted in *MASH* and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2008 model vehicle met the *MASH* requirements.

Figure 5.5. Test Vehicle before Test No. 469689-1-2.

5.8 TEST DESCRIPTION

The test vehicle was traveling at an impact speed of 61.6 mi/h when it contacted the mailbox installation with the left (driver's side) quarter point aligned with the centerline of the support at an impact angle of 0°. Table 5.1 lists events that occurred during Test No. 469689-1-2. Figure B.1 in Appendix B.3 presents sequential photographs during the test.

TIME (s)	EVENTS
0.0000	Vehicle contacts mailboxes on bent pipe support
0.0120	Bent post begins to pull out of V-Wing socket
0.0320	Bent post fully out of socket
0.0890	Vehicle loses contact with mailboxes and bent pipe support

Table 5.1. Events during Test No. 469689-1-2.

Brakes on the vehicle were applied at 2.5 s after impact, and the vehicle subsequently came to rest 360 ft downstream of the impact.

5.9 DAMAGE TO TEST INSTALLATION

Figure 5.6 shows the damage to the mailbox installation. The bent post pulled out of the V-Wing Socket. The post and mailbox assembly remained intact and landed 115 ft downstream from the impact point.

5.10 DAMAGE TO TEST VEHICLE

Figure 5.7 shows the damage sustained by the vehicle. The front bumper, radiator support, and left headlight were damaged. The hood sustained a 19-inch \times 28-inch \times 9-inch deep indentation on the front left half of the hood. Maximum exterior crush to the vehicle was 9.0 inches in the hood. No occupant compartment deformation or intrusion was observed.

Figure 5.8 shows the interior of the vehicle. Tables B.2 and B.3 in Appendix B.2 provide exterior crush and occupant compartment measurements.

Figure 5.6. Mailboxes after Test No. 469689-1-2.

Figure 5.7. Test Vehicle after Test No. 469689-1-2.

Figure 5.8. Interior of Test Vehicle for Test No. 469689-1-2.

5.11 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and are shown in Table 5.2. Figure 5.8 summarizes these data and other pertinent information from the test. Figure B.2 in Appendix B.4 shows the vehicle angular displacements, and Figures B.3 through B.5 in Appendix B.5 show accelerations versus time traces.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	3.6 ft/s	at 0.5062 a an front of interior
Lateral	0.0	at 0.3963 s on front of interior
Occupant Ridedown Accelerations		
Longitudinal	0.3 g	0.9787–0.9887
Lateral	0.6 g	0.6062–0.6162 s
THIV	4.0 km/h	at 0.5957 s on front of interior
PHD	0.6 g	0.6060–0.6160 s
ASI	0.21	0.0134–0.0634 s
Maximum 50-ms Moving Average		
Longitudinal	−1.9 g	0.0018–0.0518 s
Lateral	-0.5 g	0.0761–0.1261 s
Vertical	-1.2 g	0.0301–0.0801 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	4 °	2.0000 s
Pitch	2 °	1.6547 s
Yaw	3 °	0.3983 s

Table 5.2. Occupant Risk Factors for Test No. 469689-1-2.

30'

Ø12" 🖌 🕨

General Information Test Agency Test Standard Test No TTI Test No. Test Date Test Date	Texas A&M Transportation Institute (TTI) MASH Test 3-61 469689-1-2 2019-08-23	Impact Conditions Speed Angle Location/Orientation Impact Severity Exit Conditions	61.6 mi/h .0° .Apx. Left Qtr Point .310 kip-ft	Post-Impact Trajectory Stopping Distance Vehicle Stability Maximum Yaw Angle	360 ft downstream
Type Name	Support Structure – Mailbox Multiple Mailboxes on Bent Pipe Support	Speed	. 59.0 mi/h . 0°	Maximum Roll Angle	2 4°
Installation Height Material or Key Elements	42 inches to bottom of mailboxes 2 inch × 0.1090 (12-gauge) HSS round, inserted into a V-Wing Socket and held in place with a Wedge for the V-Wing Socket	Occupant Risk Values Longitudinal OIV Lateral OIV Longitudinal Ridedown	NA 3.6 ft/s 0.0 ft/s 0.3 g	Test Article Debris Scatter Longitudinal Lateral	115 ft 3 ft
Soil Type and Condition	Concrete foundation in AASHTO M147- 65(2004), grading B Soil	Lateral Ridedown THIV	. 0.6 g . 4.0 km/h	Vehicle Damage VDS	12LF2
Test Vehicle		PHD	. 0.6 g	CDC	12FLEN2
Type/Designation Make and Model Curb Test Inertial Dummy Gross Static	1100C 2008 Kia Rio 2477 lb 2442 lb 165 lb 2607 lb	ASI Max. 0.050-s Average Longitudinal Lateral Vertical	.0.21 1.9 g 0.5 g 1.2 g	Max. Exterior Deformation OCDI Max. Occupant Compartment Deformation	9.0 inches FL0000000 None

Figure 5.9. Summary of Results for MASH Test 3-61 on Multiple Mailboxes on Bent Pipe Support.

CHAPTER 6: MASH TEST 3-61 ON CENTENNIAL MODEL EXTRA-LARGE MAILBOX ON TYPE 3 SUPPORT

6.1 TEST ARTICLE AND INSTALLATION DETAILS

The test installation consisted of a single Architectural Mailboxes[©] Centennial model #950020B extra-large mailbox mounted on a 2-lb/ft perforated U-channel post. The mailbox was attached to the post via angle brackets using a model DHT# 148939 mailbox bracket. Two steel plate washers (each measuring $2 \times 5\frac{1}{2} \times \frac{1}{8}$ -inch thick) and four $\frac{5}{16}$ -inch diameter hex bolts secured the bracket assembly to the floor of the mailbox.

The post was embedded 30 inches into the soil. The bottom of the mailbox was located 42 inches above grade.

Figure 6.1 presents overall information on the single Centennial model extra-large mailbox on a Type 3 support, Figure 6.2 shows the connection details, and Figure 6.3 provides photographs of the installation. Appendix C.1 provides further details of the mailbox installation.

6.2 DESIGN MODIFICATIONS DURING TESTS

No modifications were made to the installation during the testing phase.

6.3 MATERIAL SPECIFICATIONS

The drawings in Appendix C.1 indicate properties of the materials used to install/construct the Centennial Model #950020B extra-large mailbox on a Type 3 support.

6.4 SOIL CONDITIONS

The test installation was installed in standard soil meeting AASHTO standard specifications for "Materials for Aggregate and Soil Aggregate Subbase, Base and Surface Courses," designated M147-65(2004), grading B.

6.5 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-61 involves an 1100C vehicle weighing 2420 lb \pm 55 lb impacting the support structure at an impact speed of 62 mi/h \pm 2.5 mi/h and a CIA of 0° \pm 1.5°. The target impact point for *MASH* Test 3-61 on the Centennial extra-large mailbox on a Type 3 support was the left (driver's side) quarter point aligned with the centerline of the support.

T:\1-ProjectFiles\469689-TxDOTv1 Mailboxes\-1-3 Single X-Ig on Type 3\Drafting, 469689-1-3\469689-1-3 Drawing

Figure 6.1. Overall Details of Centennial Model Extra-Large Mailbox on Type 3 Support.

TR No. 0-6968-R9

Figure 6.2. Connection Details of Centennial Model Extra-Large Mailbox on Type 3 Support.

31

Figure 6.3. Mailbox prior to Test No. 469689-1-3.

The 2011 Kia Rio^{*} used in the test weighed 2436 lb, and the actual impact speed and angle were 63.9 mi/h and 0°, respectively. The actual impact point was the left quarter point aligned with the centerline of the support. Minimum target KE was 288 kip-ft, and actual KE was 333 kip-ft.

^{*} The 2011 model vehicle used is older than the 6-year age noted in *MASH* and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2011 model vehicle met the *MASH* requirements.

6.6 WEATHER CONDITIONS

The test was performed on the afternoon of June 27, 2019. Weather conditions at the time of testing were as follows: wind speed: 2 mi/h; wind direction: 136° (vehicle was traveling at magnetic heading of 180°); temperature: 91°F; relative humidity: 67 percent.

6.7 TEST VEHICLE

Figures 6.4 and 6.5 show the 2011 Kia Rio used for the crash test. The vehicle's test inertia weight was 2436 lb, and its gross static weight was 2601 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and height to the upper edge of the bumper was 21.5 inches. Table C.1 in Appendix C.2 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 6.4. Mailbox/Test Vehicle Geometrics for Test No. 469689-1-3.

Figure 6.5. Test Vehicle before Test No. 469689-1-3.

6.8 TEST DESCRIPTION

The test vehicle was traveling at an impact speed of 63.9 mi/h when it contacted the mailbox with the left (driver's side) quarter point aligned with the centerline of the support at an impact angle of 0°. Table 6.1 lists events that occurred during Test No. 469689-1-3. Figure C.1 in Appendix C.3 presents sequential photographs during the test.

TIME (s)	EVENTS
0.0000	Vehicle contacts mailbox support
0.0180	Support pulled from the ground
0.0280	Mailbox contacts vehicle hood
0.0430	Mailbox contacts vehicle windshield
0.0940	Support rebounds from vehicle bumper while vehicle traveling at 62.8 mi/h

Table 6.1. Events during Test No. 469689-1-3.

Brakes on the vehicle were applied at 1.25 s, and the vehicle subsequently came to rest 282 ft downstream of the impact.

6.9 DAMAGE TO TEST INSTALLATION

Figure 6.6 shows the damage to the mailbox. The support pulled out of the soil. The mailbox separated into four pieces. The bottom of the mailbox remaining mounted to the support and landed 177 ft downstream and 22 ft left. The other pieces landed from 12 ft right to 25 ft left and from 84 ft to 210 ft downstream.

6.10 DAMAGE TO TEST VEHICLE

Figure 6.7 shows the damage sustained by the vehicle. The left quarter point of the front bumper sustained a 3.0-inch deep dent, and the left side of the hood was deformed with a 1.0-inch \times 3-inch long cut. The windshield was shattered over an area of 36 inches \times 33 inches with 4.6 inches of deformation into the occupant compartment. The windshield laminate was also torn. Maximum exterior crush to the vehicle was 3.0 inches in the front plane at the left quarter point at bumper height. Maximum occupant compartment deformation was 4.6 inches in the windshield area. Figure 6.8 shows the interior of the vehicle. Tables C.2 and C.3 in Appendix C.2 provide exterior crush and occupant compartment measurements.

6.11 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and are shown in Table 6.2. Figure 6.9 summarizes these data and other pertinent information from the test. Figure C.2 in Appendix C.4 shows the vehicle angular displacements, and Figures C.3 through C.5 in Appendix C.5 show accelerations versus time traces.

Figure 6.6. Mailbox after Test No. 469689-1-3.

Figure 6.7. Test Vehicle after Test No. 469689-1-3.

Figure 6.8. Interior of Test Vehicle after Test No. 469689-1-3.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	No contact	
Lateral	No contact	The cretically, the convert
Occupant Ridedown Accelerations		does not impost the interior
Longitudinal	NA	of the webiele
Lateral	NA	of the venicle.
THIV	NA	
PHD	NA	
ASI	0.06	0.0051–0.0551 s
Maximum 50-ms Moving Average		
Longitudinal	-0.6 g	0.0003–0.0503 s
Lateral	0.5 g	0.0137–0.0637 s
Vertical	0.5 g	0.0035–0.0535 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	3 °	0.7275 s
Pitch	1 °	0.2752 s
Yaw	1 °	0.7413 s

Table 6.2. Occupant Risk Factors for Test No. 469689-1-3.

282'

Impact Conditions

General Information Test Agency...... Texas A&M Transportation Institute (TTI) Test Standard Test No..... MASH Test 3-61 TTI Test No. 469689-1-3 Test Date 2019-06-27 **Test Article** Type Support Structure – Mailbox Name..... Centennial Extra-Large Mailbox Installation Length...... 42 inches to bottom of mailbox Material or Key Elements ... Single Centennial Model Extra-Large Mailbox on Type 3 Support Soil Type and Condition Embedded in AASHTO M147-65(2004), grading B Soil (crushed limestone) **Test Vehicle** Type/Designation 1100C Make and Model 2011 Kia Rio Curb..... 2481 lb

Test Inertial2436 lbDummy165 lbGross Static2601 lb

Angle	0°
Location/Orientation	Left Qtr Point
Impact Severity	333 kip-ft
Exit Conditions	
Speed	62.8 mi/h
Angle	NA
Occupant Risk Values	
Longitudinal OIV	No Contact
Lateral OIV	No Contact
Longitudinal Ridedown	NA
Lateral Ridedown	NA
THIV	NA
PHD	NA
ASI	0.06
Max. 0.050-s Average	
Longitudinal	-0.6 g
Lateral	0.5 g
Vertical	0.5 g

Speed 63.9 mi/h

Post-Impact Trajectory

Stopping Distance..... 282 ft downstream Vehicle Stability

Maximum Yaw Angle	1°
Maximum Pitch Angle	1°
Maximum Roll Angle	3°

Test Article Debris Scatter

Vehicle Damage

VDS	12FL1
CDC	12FLEN5
Max. Exterior Deformation	3.0 inches
OCDI	FS000000
Max. Occupant Compartment	
Deformation	4.6 inches
	(windshield)

Figure 6.9. Summary of Results for MASH Test 3-61 on Single Centennial Model Extra-Large Mailbox on Type 3 Support.

2020-10-13

37

CHAPTER 7: MASH TEST 3-61 ON SINGLE CENTENNIAL MODEL EXTRA-LARGE MAILBOX ON TYPE 3 SUPPORT

7.1 TEST ARTICLE AND INSTALLATION DETAILS

The test installation consisted of a single Architectural Mailboxes[©] Centennial model #950020B mailbox mounted on a 2 lb/ft perforated U-channel post. The mailbox was attached to the post via angle brackets using a model DHT# 148939 mailbox bracket four slotted L brackets (each measuring $2 \times 6 \times 7/8 \times 1/8$ -inch thick), and two steel plate washers (each measuring $2 \times 5 \times 1/8$ -inch thick). Four 5/16-inch diameter hex bolts secured the plate washers, L brackets, and the mailbox bracket assembly to the floor of the mailbox, and four 1/4-inch hex bolts secured the L brackets to the lower side flanges of the mailbox.

The post was embedded 30 inches into the soil. The bottom of the mailbox was located 42 inches above grade.

Figure 7.1 presents overall information on the single Centennial model extra-large mailbox on Type 3 support, Figure 7.2 shows connection details, and Figure 7.3 provides photographs of the installation. Appendix B.1 provides further details of the mailbox installation.

7.2 DESIGN MODIFICATIONS DURING TESTING

Test No. 469689-1-4 was a repeat of testing installation and impact conditions from Test No. 469689-1-3. The only design modification applied for Test No. 469689-1-4 was the inclusion of an additional connection bracket between the extra-large mailbox and the support. The connection bracket design previously tested under Test Nos. 469689-1-1 and 469689-1-3 specifically connected the extra-large mailbox floor to the mailbox support structure. For both Test Nos. 469689-1-1 and -1-3, the extra-large mailbox body fractured as a result of the high-speed vehicle impact, resulting in a separation between the mailbox floor and the mailbox sides was noted. After separation, the mailbox side became test article debris projected against the vehicle body and impacted the windshield. While in Test No. 469689-1-1 the contact between the mailbox side and the windshield did not affect the system crashworthiness, in Test No. 469689-1-3 the mailbox side caused a windshield deformation greater than the maximum allowed in *MASH*.

It became clear that a bracket that would connect the support, the mailbox floor, and the mailbox side was a possible solution to avoid separation of the mailbox floor from the rest of the mailbox body. Thus, four L brackets were integrated into the mailbox support assembly as described above. Figures 7.1 through 7.4 show the details of these brackets.

T:/1-ProjectFiles/469689-TxDOT-1 Mailboxes\-1-4 Single X-Ig on Type 3 (re-design)\Drafting, 469689-1-4)469689-1-4 Drawing

Figure 7.1. Overall Details of Centennial Model Extra-Large Mailbox on Type 3 Support.

Figure 7.2. Connection Details of Centennial Model Extra-Large Mailbox on Type 3 Support.

Figure 7.3. Centennial Model Extra-Large Mailbox on Type 3 Support prior to Testing.

Figure 7.4. Details of Bracket Used on Centennial Model Extra-Large Mailbox on Type 3 Support.

TR No. 0-6968-R9

7.3 MATERIAL SPECIFICATIONS

The drawings in Appendix D.1 indicate properties of the materials used to install/construct the Centennial model extra-large mailbox on Type 3 Support.

7.4 SOIL CONDITIONS

The test installation was installed in standard soil meeting AASHTO standard specifications for "Materials for Aggregate and Soil Aggregate Subbase, Base and Surface Courses," designated M147-65(2004), grading B.

7.5 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-61 involves an 1100C vehicle weighing 2420 lb \pm 55 lb impacting the support structure at an impact speed of 62 mi/h \pm 2.5 mi/h and a CIA of 0° \pm 1.5°. The target impact point for *MASH* Test 3-61 on the Centennial model extra-large mailbox on a Type 3 support was the right (passenger's side) quarter point aligned with the centerline of the support.

The 2011 Kia Rio^{*} used in the test weighed 2443 lb, and the actual impact speed and angle were 63.3 mi/h and 0°, respectively. The actual impact point was the right (passenger's side) approximate quarter point aligned with the centerline of the support. Minimum target KE was 288 kip-ft, and actual KE was 327 kip-ft.

7.6 WEATHER CONDITIONS

The test was performed on the morning of August 23, 2019. Weather conditions at the time of testing were as follows: wind speed: 3 mi/h; wind direction: 334° (vehicle was traveling at magnetic heading of 180°); temperature: 90° F; relative humidity: 69 percent.

7.7 TEST VEHICLE

Figures 7.5 and 7.6 show the 2011 Kia Rio used for the crash test. The vehicle's test inertia weight was 2443 lb, and its gross static weight was 2608 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and height to the upper edge of the bumper was 21.5 inches. Table D.1 in Appendix D.2 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

^{*} The 2011 model vehicle used is older than the 6-year age noted in *MASH* and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2011 model vehicle met the *MASH* requirements.

Figure 7.5. Mailbox Installation/Test Vehicle Geometrics for Test No. 469689-1-4.

Figure 7.6. Test Vehicle before Test No. 469689-1-4.

7.8 TEST DESCRIPTION

The test vehicle was traveling at an impact speed of 63.3 mi/h when it contacted the mailbox with the right (passenger's side) quarter point aligned with the centerline of the support at an impact angle of 0°. Table 7.1 lists events that occurred during Test No. 469689-1-2. Figure D.1 in Appendix D.3 presents sequential photographs during the test.

TIME (s)	EVENTS
0.0000	Vehicle contacts Mailbox post
0.0070	Mailbox post begins to pull out of ground
0.0180	Mailbox post separated from remaining post in ground
0.0750	Mailbox and post no longer in contact with vehicle

Table 7 1	Events	during	Test No	469689-	1-2
1 auto / .1.	Lycints	uuring	ICSUIN	J. TUJUUJ-	1-4.

Brakes on the vehicle were applied at 2.2 s after impact, and the vehicle subsequently came to rest 373 ft downstream of the impact.

7.9 DAMAGE TO TEST INSTALLATION

Figure 7.7 shows the damage to the mailbox installation. The post fractured approximately 2 inches below grade. The mailbox remained intact and attached to the upper portion of the post, and this assembly landed 180 ft downstream.

7.10 DAMAGE TO TEST VEHICLE

Figure 7.8 shows the damage sustained by the vehicle. The front bumper sustained a small indentation 14 inches to the right of centerline, and the hood was deformed over an area 35 inches \times 25 inches and 1.5 inches deep. Maximum exterior crush to the vehicle was 1.5 inches in the hood. No occupant compartment deformation or intrusion was observed. Figure 7.9 shows the interior of the vehicle. Tables D.2 and D.3 in Appendix D.2 provide exterior crush and occupant compartment measurements.

Figure 7.7. Mailbox after Test No. 469689-1-4.

Figure 7.8. Test Vehicle after Test No. 469689-1-4.

Figure 7.9. Interior of Test Vehicle for Test No. 469689-1-4.

7.11 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and are shown in Table 7.2. Figure 7.10 summarizes these data and other pertinent information from the test. Figure D.2 in Appendix D.4 shows the vehicle angular displacements, and Figures D.3 through D.5 in Appendix D.5 show accelerations versus time traces.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	0.3 ft/s	at 0.0228 a on right side of interior
Lateral	2.3 ft/s	at 0.9528 s on right side of interior
Occupant Ridedown Accelerations		
Longitudinal	0.3 g	1.5377–1.5477
Lateral	0.4 g	1.6796–1.6896 s
THIV	2.6 km/h	at 0.9307 s on right side of interior
PHD	0.4 g	1.6795–1.6895 s
ASI	0.08	0.0385–0.0885 s
Maximum 50-ms Moving Average		
Longitudinal	-0.6 g	0.0015–0.0515 s
Lateral	-0.3 g	0.0088–0.0588 s
Vertical	0.7 g	0.0158–0.0658 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	1 °	0.2498 s
Pitch	2 °	2.0000 s
Yaw	1 °	1.8654 s

Table 7.2. Occupant Risk Factors for Test No. 469689-1-4.

 est Vehicle
 1100C

 Type/Designation
 1100C

 Make and Model
 2011 Kia Rio

 Curb
 2544 lb

 Test Inertial
 2443 lb

 Dummy
 165 lb

 Gross Static
 2608 lb

Figure 7.10. Summary of Results for MASH Test 3-61 on Single Centennial Model Extra-Large Mailbox on Type 3 Support.

Max. 0.050-s Average

Longitudinal -0.6 g

Lateral..... -0.3 g

Vertical...... 0.7 g

Max. Exterior Deformation...... 1.5 inches

Deformation None

Max. Occupant Compartment

OCDI..... FR0000000

CHAPTER 8: SUMMARY AND CONCLUSIONS

8.1 ASSESSMENT OF TEST RESULTS

An assessment of each test based on the applicable safety evaluation criteria for *MASH* Test 3-61 for support structures is provided in Tables 8.1 through 8.4 and summarized below.

8.1.1 Single Centennial Model Extra-Large Mailbox on Type 4 Support

The mailbox and post readily activated by pulling out of the support socket. The detached pieces of mailbox contacted the hood and windshield. The hood sustained a 0.5-inch \times 3-inch cut and a 0.5-inch \times 1.5-inch cut. The windshield was shattered but not torn or deformed into the occupant compartment. No occupant compartment deformation or intrusion occurred. The 1100C remained upright during and after the collision event. Maximum roll and pitch angles were 2° and 1°, respectively. Occupant risk factors were within the preferred limits specified in *MASH* for support structures. The 1100C vehicle came to rest 270 ft behind the initial location of the installation.

8.1.2 Multiple Mailboxes on Bent Pipe Support

The mailbox and support readily activated by pulling out of the V-wing socket. The detached pieces of mailbox contacted the hood, causing a 19-inch \times 28-inch \times 9-inch deep indentation on the front left half of the hood. The mailbox did not damage the windshield. No occupant compartment deformation or intrusion occurred. The 1100C remained upright during and after the collision event. Maximum roll and pitch angles were 4° and 2°, respectively. Occupant risk factors were within the preferred limits of *MASH* for support structures. The 1100C vehicle came to rest 360 ft behind the initial location of the installation.

8.1.3 Single Centennial Model Extra-Large Mailbox on Type 3 Support

The mailbox and post readily activated by pulling out of the ground. The detached pieces of mailbox contacted the hood and windshield. The hood sustained a 1-inch \times 3-inch cut. The windshield was shattered, the glass deformed 4.6 inches into the occupant compartment, and the laminate was torn. No other occupant compartment deformation or intrusion occurred. The 1100C remained upright during and after the collision event. Maximum roll and pitch angles were 3° and 1°, respectively. No occupant contact on the interior of the vehicle occurred. The 1100C vehicle came to rest 282 ft behind the initial location of the installation.

8.1.4 Single Centennial Model Extra-Large Mailbox on Type 3 Support – Modified Connection Bracket Design

The mailbox and post readily activated by pulling out of the ground. The detached pieces of mailbox contacted the hood, causing a 35-inch \times 25-inch \times 1.5-inch deep indentation on the front right half of the hood. The mailbox did not damage the windshield. No occupant compartment deformation or intrusion occurred. The 1100C remained upright during and after the collision event. Maximum roll and pitch angles were 2° and 1°, respectively. Occupant risk factors were within the preferred limits of *MASH* for support structures. The 1100C vehicle came to rest 373 ft behind the initial location of the installation.

Table 8.1. Performance Evaluation Summary for MASH Test 3-61 on Single Centennial Model Extra-Large Mailbox onType 4 Support.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469689-1-1 T	est Date: 2019-06-27
MASH Test Evaluation Criteria		Test Results	Assessment
Stru	ctural Adequacy		
В.	The test article should readily activate in a predictable	The mailbox and post readily activated by	Decc
	manner by breaking away, fracturing, or yielding.	pulling out of the support socket.	Fass
Occ	upant Risk		
<i>D</i> .	Detached elements, fragments, or other debris from	The detached pieces of mailbox contacted the	
	the test article should not penetrate or show potential	hood and windshield. The hood sustained a	
	for penetrating the occupant compartment, or present	0.5-inch \times 3-inch cut and a 0.5-inch \times 1.5-inch	
	an undue hazard to other traffic, pedestrians, or	cut. The windshield was shattered but not torn or	Doco
	personnel in a work zone.	deformed into the occupant compartment.	Fass
	Deformations of, or intrusions into, the occupant	No occupant compartment deformation or	
	compartment should not exceed limits set forth in	intrusion occurred.	
	Section 5.3 and Appendix E of MASH.		
<i>F</i> .	The vehicle should remain upright during and after	The 1100C remained upright during and after the	
	collision. The maximum roll and pitch angles are not	collision event. Maximum roll and pitch angles	Pass
	to exceed 75 degrees.	were 2° and 1° , respectively.	
Н.	Longitudinal and lateral occupant impact velocities	Longitudinal OIV was 2.0 ft/s, and lateral OIV	
	should fall below the preferred value of 10 ft/s, or at	was 1.6 ft/s.	Pass
	least below the maximum allowable value of 16.4 ft/s.		
Ι.	Longitudinal and lateral occupant ridedown	Maximum longitudinal occupant ridedown	
	accelerations should fall below the preferred value of	acceleration was 0.8 g, and maximum lateral	Pass
	15.0 Gs, or at least below the maximum allowable	occupant ridedown acceleration was 0.3 g.	1 455
	value of 20.49 Gs.		
Veh	icle Trajectory		
Ν.	Vehicle trajectory behind the test article is acceptable.	The 1100C vehicle came to rest 270 ft behind the	Doco
		installation.	F 855

Test Agency: Texas A&M Transportation Institute		Test No.: 469689-1-2 T	'est Date: 2019-08-23
	MASH Test Evaluation Criteria	Test Results	Assessment
Structural Adequacy			
В.	The test article should readily activate in a predictable	The mailbox and support readily activated by	Pass
	manner by breaking away, fracturing, or yielding.	pulling out of the V-Wing socket.	
$\frac{Occ}{D}$	upant Risk		
<i>D</i> .	Detached elements, fragments, or other debris from	The detached pieces of mailbox contacted the	
	the test article should not penetrate or show potential	hood, causing 19-inch \times 28-inch \times 9-inch deep	
	for penetrating the occupant compartment, or present	indentation on the front left half of the hood. The	Pass
	an undue hazard to other traffic, pedestrians, or	mailbox did not damage the windshield.	
	personnel in a work zone.		
	Deformations of, or intrusions into, the occupant	No occupant compartment deformation or	
	compartment should not exceed limits set forth in	intrusion occurred.	Pass
	Section 5.3 and Appendix E of MASH.		
<i>F</i> .	The vehicle should remain upright during and after	The 1100C remained upright during and after the	
	collision. The maximum roll and pitch angles are not	collision event. Maximum roll and pitch angles	Pass
	to exceed 75 degrees.	were 4° and 2° , respectively.	
Н.	Longitudinal and lateral occupant impact velocities	Longitudinal OIV was 3.6 ft/s, and lateral OIV	
	should fall below the preferred value of 10 ft/s, or at	was 0.0 ft/s.	Pass
	least below the maximum allowable value of 16.4 ft/s.		
Ι.	Longitudinal and lateral occupant ridedown	Maximum longitudinal occupant ridedown	
	accelerations should fall below the preferred value of	acceleration was 0.3 g, and maximum lateral	Deer
	15.0 Gs, or at least below the maximum allowable	occupant ridedown acceleration was 0.6 g.	Pass
	value of 20.49 Gs.		
Vehicle Trajectory			
<i>N</i> .	<i>Vehicle trajectory behind the test article is acceptable.</i>	The 1100C vehicle came to rest 360 ft behind the	-
		installation.	Pass

Table 8.2. Performance Evaluation Summary for MASH Test 3-61 on Multiple Mailboxes on Bent Pipe Support.

Table 8.3. Performance Evaluation Summary for MASH Test 3-61 on Single Centennial Model Extra-Large Mailbox onType 3 Support.

Tes	Agency: Texas A&M Transportation Institute	Test No.: 469689-1-3 T	est Date: 2019-06-27
	MASH Test Evaluation Criteria	Test Results	Assessment
Stru	ctural Adequacy		
В.	The test article should readily activate in a predictable	The mailbox and post readily activated by	Decc
	manner by breaking away, fracturing, or yielding.	pulling out of the ground.	Fass
Occ	upant Risk		
<i>D</i> .	Detached elements, fragments, or other debris from	The detached pieces of mailbox contacted the	
	the test article should not penetrate or show potential	hood and windshield. The hood sustained a	
	for penetrating the occupant compartment, or present	1-inch \times 3-inch cut. The windshield was	
	an undue hazard to other traffic, pedestrians, or	shattered, the glass deformed 4.6 inches into the	Fail
	personnel in a work zone.	occupant compartment, and the laminate was	1 all
	Deformations of, or intrusions into, the occupant	torn. No other occupant compartment	
	compartment should not exceed limits set forth in	deformation or intrusion occurred.	
	Section 5.3 and Appendix E of MASH.		
F.	The vehicle should remain upright during and after	The 1100C remained upright during and after the	
	collision. The maximum roll and pitch angles are not	collision event. Maximum roll and pitch angles	Pass
	to exceed 75 degrees.	were 3° and 1°, respectively.	
Н.	Longitudinal and lateral occupant impact velocities	No theoretical contact occurred.	
	should fall below the preferred value of 10 ft/s, or at		Pass
	<i>least below the maximum allowable value of 16.4 ft/s.</i>		
<i>I</i> .	Longitudinal and lateral occupant ridedown	No theoretical contact occurred	
	accelerations should fall below the preferred value of		Pass
	15.0 Gs, or at least below the maximum allowable		1 455
	value of 20.49 Gs.		
Veh	icle Trajectory		
Ν.	Vehicle trajectory behind the test article is acceptable.	The 1100C vehicle came to rest 282 ft behind the	Pass
		installation.	1 455

Table 8.4. Performance Evaluation Summary for MASH Test 3-61 on Single Centennial Model Extra-Large Mailbox onType 3 Support with Modified Connection Bracket Design.

Test Agency: Texas A&M Transportation Institute		Test No.: 469689-1-4 T	est Date: 2019-08-23
	MASH Test Evaluation Criteria	Test Results	Assessment
Stru	ictural Adequacy		
В.	The test article should readily activate in a predictable	The mailbox and post readily activated by	Decc
	manner by breaking away, fracturing, or yielding.	pulling out of the ground.	r ass
Occ	upant Risk		
<i>D</i> .	Detached elements, fragments, or other debris from	The detached pieces of mailbox contacted the	
	the test article should not penetrate or show potential	hood, causing a 35-inch \times 25-inch \times 1.5-inch	
	for penetrating the occupant compartment, or present	deep indentation on the front right half of the	Pass
	an undue hazard to other traffic, pedestrians, or	hood. The mailbox did not damage the	
	personnel in a work zone.	windshield.	
	Deformations of, or intrusions into, the occupant	No occupant compartment deformation or	
	compartment should not exceed limits set forth in	intrusion occurred.	Pass
	Section 5.3 and Appendix E of MASH.		
F.	The vehicle should remain upright during and after	The 1100C remained upright during and after the	
	collision. The maximum roll and pitch angles are not	collision event. Maximum roll and pitch angles	Pass
	to exceed 75 degrees.	were 2° and 1°, respectively.	
Н.	Longitudinal and lateral occupant impact velocities	Longitudinal OIV was 0.3 ft/s, and lateral OIV	
	should fall below the preferred value of 10 ft/s, or at	was 2.3 ft/s.	Pass
	<i>least below the maximum allowable value of 16.4 ft/s.</i>		
Ι.	Longitudinal and lateral occupant ridedown	Maximum longitudinal occupant ridedown	
	accelerations should fall below the preferred value of	acceleration was 0.3 g, and maximum lateral	Pass
	15.0 Gs, or at least below the maximum allowable	occupant ridedown acceleration was 0.4 g.	1 455
	value of 20.49 Gs.		
Veh	<u>ticle Trajectory</u>		
Ν.	Vehicle trajectory behind the test article is acceptable.	The 1100C vehicle came to rest 373 ft behind the	Doos
		installation.	F 485

8.2 CONCLUSIONS

8.2.1 Single Centennial Model Extra-Large Mailbox on Type 4 Support

The single Centennial model extra-large mailbox on Type 4 support performed acceptably for *MASH* Test 3-61.

8.2.2 Multiple Mailboxes on Bent Pipe Support

The bent pipe support with multiple mailboxes performed acceptably for *MASH* Test 3-61.

8.2.3 Single Centennial Model Extra-Large Mailbox on Type 3 Support

During *MASH* Test 3-61 on the single Centennial model extra-large mailbox on Type 3 support, the windshield of the test vehicle deformed 4.6 inches into the occupant compartment, and the laminate was torn. The installation failed criterion D of *MASH*.

8.2.4 Single Centennial Model Extra-Large Mailbox on Type 3 Support – Modified Connection Bracket Design

A newly designed connection bracket detail was utilized to connect the extra-large mailbox to the Type 3 support. With the new connection detail, the single Centennial model extra-large mailbox on Type 3 support performed acceptably for *MASH* Test 3-61.
CHAPTER 9: IMPLEMENTATION*

The small passenger car is considered the critical design vehicle for evaluation of mailbox support systems based on the mounting height regulated for mailboxes by the United States Postal Service. At the required mounting height, any interaction between the mailbox and the windshield of the pickup truck design vehicle is improbable. The taller hood height and longer wrap-around distance (i.e., the distance from the ground, around the front end, and across the hood to the base of the windshield) of the 2270P pickup truck significantly decreases the probability of windshield impact and occupant compartment intrusion. Therefore, Test 3-62 with the pickup truck was considered unnecessary for the *MASH* evaluation of the TxDOT mailbox systems.

The *MASH* test matrix for breakaway supports includes two tests with the 1100C small passenger car: a low-speed test at 19 mi/h (Test 3-60) and a high-speed test at 62 mi/h (Test 3-61). In the low speed small car test, *MASH* testing has shown that the mailbox support assembly will be pushed forward by the impacting vehicle (2, 3). Under the lower impact severity, it is unlikely that the mailbox will separate from the support or that the support assembly will interact with the vehicle windshield.

The most critical test for evaluation of mailbox systems is *MASH* test designation 3-61. This test evaluates both the structural adequacy of the mailbox connection hardware and the interaction of the mailbox support assembly with the vehicle windshield. If the mailbox remains attached during this high-speed test, it is not expected to detach in the low-speed test.

Three different mailbox support systems were selected for *MASH* testing and evaluation during this project. Separate tests were performed for each system. These include: a single extralarge mailbox system on a recycled rubber post with Type 4 foundation, multiple mailbox systems (two external standard medium mailboxes and two internal lockable mailboxes) on a 12-gauge bent pipe, and a single extra-large mailbox system on a perforated steel U-channel post with Type 3 foundation.

The single extra-large mailbox system with the original connection bracket system on a perforated U-channel post and Type 3 foundation did not pass *MASH* Test 3-61, as detachment of the side from the mailbox floor was observed, which led to an undesirable impact of the mailbox on the vehicle windshield. Each of these systems is considered *MASH* compliant and suitable for continued implementation, when the newly designed connection bracket between the extra-large mailbox and the mailbox support is used.

Systems that were tested with a single mailbox should be implemented with a single mailbox only.

TxDOT standard MB 15(1) does not permit the use of large mailboxes on the outside positions of the multiple mailbox mount. Therefore, the 12-gauge multiple mailbox mount in Type 4 foundation system was tested with two medium mailboxes in the outer mounting positions and two locking architectural mailboxes in the inner mounting positions. This is considered the most critical permissible configuration, given that the locking architectural

^{*} The opinions/interpretations identified/expressed in this section of the report are outside the scope of TTI Proving Ground's A2LA Accreditation.

mailboxes are heavier than the extra-large mailboxes. Other combinations of small, medium, and extra-large mailboxes are considered less critical, and can therefore be considered *MASH* compliant based on the successful testing of the critical configuration.

Implementation of the mailbox systems can be achieved by the Maintenance Division through updating of mailbox standard MB-15(1) (as necessary) to reflect the details presented in this report.

REFERENCES

- 1. AASHTO. *Manual for Assessing Roadside Safety Hardware*. Second Edition, 2016, American Association of State Highway and Transportation Officials: Washington, DC.
- C.S. Dobrovolny, R.P. Bligh, and W.L. Menges, Crash Test and Evaluation of Multiple Mailbox Supports for Use with Locking Architectural Mailboxes, Report No. 9-1002-15-7, Texas A&M Transportation Institute, College Station, TX, February 2017.
- 3. R.P. Bligh, W.L. Menges, and D.L. Kuhn, Crash Test and Evaluation of Locking Architectural Mailboxes, Report No. 9-1002-12-9, Texas A&M Transportation Institute, College Station, TX, September 2014.

APPENDIX A. CRASH TEST NO. 469689-1-1

A.2 VEHICLE PROPERTIES AND INFORMATION

Table A.1. Vehicle Properties for Test No. 469689-1-1.

Date:	2019-06-27	Test No.:	469689-1-1		VIN No.:	KNADE123	58637506	4
Year:	2008	Make:	Kia		Model:	Rio		<u> </u>
Tire Infla	tion Pressure: <u>32</u>	PSI	_ Odometer:	256263		Tire Size:	<u>185/65R1</u>	4
Describe	any damage to the	e vehicle pric	or to test: <u>No</u>	one				
• Denot	es accelerometer lo	ocation.						
NOTES:			– A M ——			•• •		N T
			_					
Engine T Engine C	ype: <u>4 CYL</u>		-					<u> </u>
	ssion Type:	Manual	_	 Q → I 	- 2			A
Optional		4WD	P				-1	
None			- • • •			•	\mathbb{M}	
Dummy I Type: Mass: Seat Po	Data: <u>50th Percer</u> <u>165 lb</u> osition: <u>Side Oppos</u>	ntile Male ite Impact			HWE			ĸ
Geomet	r y: inches		H	•		с—		
A <u>66.38</u>	F <u>33</u> .	00	K <u>12.25</u>		P <u>4.12</u>	2	U <u>1</u>	4.75
В <u>51.50</u>	G		L <u>25.25</u>		Q <u>22.5</u>	50	V <u>2</u>	20.75
C <u>165.7</u>	<u>5 </u>	80	M <u>57.75</u>		R <u>15.5</u>	50	W <u>3</u>	35.80
D <u>34.00</u>		5	N <u>57.70</u>		S <u>8.25</u>	5	X <u>7</u>	71.50
E <u>98.75</u>	J_ <u>_21.</u>	50	O <u>27.00</u>		⊤ <u>66.2</u>	20	-	
Whee RA	<pre>! Center Ht Front _1 NGE LIMIT: A = 65 ±3 inches;</pre>	1.00 C = 169 ±8 inches;	VVheel(E = 98 ±5 inches; F =	Senter Ht H 35 ±4 inches; H	Cear <u>11.C</u> = 39 ±4 inches;	0 O (Bottom of Hood Li	W-H <u>(</u> p) = 24 ±4 inct).00 nes
	TOP OF RADIATOR SU	PPORT = _28.25_	_ inches; (M+N)/2 = 5	i6 ±2 inches; W-H	< 2 inches or L	ise MASH Paragraph	A4.3.2	
GVWR F	atings:	Wass: Ib	<u>Curb</u>		lest	inertial	Gro	<u>ss Static</u>
Front	1/18	IVI front	<u>1584</u>		1550		<u>1635</u>	
Back	1874	IVI rear	893		882		962	
Iotal	3638	IVI Total	<u>2477</u>	 vable TIM = 2420	2432	ahle GSM = 2585 lb	<u>2597</u>	
Mass Di Ib	stribution:	779	_ RF: 771		LR: 45	2	RR: 43	30

Date:	2019-06-27	Test No.:	469689-1-1	VIN No.:	KNADE123586375064
Year:	2008	Make:	Kia	Model:	Rio

Table A.2. Exterior Crush Measurements of Vehicle for Test No. 469689-1-1.

VEHICLE CRUSH MEASUREMENT SHEET¹ Complete When Applicable

Complete Wit	en appliedole
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2 _
< 4 inches	2
\geq 4 inches	

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

a .c		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C1	C ₂	C3	C_4	C_5	C_6	±D
	Front Plane at bumper height		2								
	Measurements recorded										
	🖌 inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2019-06-27	_ Test No.: _	469689-1-1	V	/IN No.:	KNADE12358	6375064
Year:	2008	_ Make:	Kia	N	lodel:	Rio	
<u> </u>	H-		11	OC DEF	CUPANT ORMATIO	COMPARTN N MEASURI	IENT EMENT
	F				Before	After (inches)	Differ.
	Ğ		_	A1	67.50	67.50	0.00
¶[JJF.	A2	67.25	67.25	0.00
Ç.			£	A3	67.75	67.75	0.00
				B1	40.50	40.50	0.00
				B2	39.00	39.00	0.00
	B1, B2,	B3, B4, B5, B6		B3	40.50	40.50	0.00
				B4	36.25	36.25	0.00
	A1, A2	8A3		B5	36.00	36.00	0.00
JE	D1, D2, & D3	808		B6	36.25	36.25	0.00
				C1	26.00	26.00	0.00
<u> </u>			1	C2	0.00	0.00	0.00
				СЗ	26.00	26.00	0.00
				D1	9.50	9.50	0.00
				D2	0.00	0.00	0.00
				D3	9.50	9.50	0.00
				E1	51.50	51.50	0.00
				E2	51.00	51.00	0.00
				F	51.00	51.00	0.00
			I	G	51.00	51.00	0.00
				н	37.50	37.50	0.00
				I	37.50	37.50	0.00
Lateral a	rea across the cat	from		J	51.00	51.00	0.00
driver's sid	de kick panel to pa	assenger's side	kick panel.				

Table A.3. Occupant Compartment Measurements of Vehicle for Test No. 469689-1-1.

A.3 SEQUENTIAL PHOTOGRAPHS

Figure A.1. Sequential Photographs for Test No. 469689-1-1 (Perpendicular and Oblique Views) (Continued).

A.4

VEHICLE ANGULAR DISPLACEMENT

Figure A.2. Vehicle Angular Displacements for Test No. 469689-1-1.

Figure A.3. Vehicle Longitudinal Accelerometer Trace for Test No. 469689-1-1 (Accelerometer Located at Center of Gravity).

Figure A.4. Vehicle Lateral Accelerometer Trace for Test No. 469689-1-1 (Accelerometer Located at Center of Gravity).

Figure A.5. Vehicle Vertical Accelerometer Trace for Test No. 469689-1-1 (Accelerometer Located at Center of Gravity).

APPENDIX B.

CRASH TEST 469689-1-2

TR No. 0-6968-R9

https://www.architecturalmailboxes.com/wp-content/uploads/2015/08/6200-website.jpg[7/11/2019 10:46:51 AM]

2020-10-13

B.2 VEHICLE PROPERTIES AND INFORMATION

Date: <u>2019-08-23</u> Tes	t No.: <u>469689-1-2</u>	VIN No.: KNADE1	23586375064
Year: <u>2008</u> Mał	ke: <u>Kia</u>	Model: <u>Rio</u>	
Tire Inflation Pressure: <u>32 PSI</u>	Odometer: <u>2562</u>	Tire Size	<u>185/65R14</u>
Describe any damage to the veh	icle prior to test: <u>None</u>		
Denotes accelerometer location	in.		
NOTES.			
	À M		— - — ● Ň Ť
Engine Type: <u>4 CYL</u>			
Engine CID: <u>1.6 L</u> Transmission Type:			
Auto or <u>Ma</u>	inual	R R	
Optional Equipment:	- 4WD		
<u>None</u>			
Dummy Data:		L _S L _G	
Type: <u>50th Percentile N</u>			K
Seat Position: OPPOSITE IMPA		E	
<u> </u>		C	
Geometry: inches	K 40.05	D 440	
A <u>66.38</u> F <u>33.00</u>	<u> </u>	P <u>4.12</u>	U <u>14.75</u>
C 165 75 H 35 67	∟ <u>25.25</u> M 57.75	Q_ <u>22.50</u> R15.50	 W 35.60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N <u>57.70</u>	S_825	X <u>33.00</u> X 71.50
E 98.75 J 21.50	O 27.00	T 66.20	
Wheel Center Ht Front 11.00	Wheel Cente	r Ht Rear 11.00	W-H 0.00
RANGE LIMIT:A = 65 ±3 inches; C = 169 TOP OF RADIATOR SUPPORT	±8 inches; E = 98 ±5 inches; F = 35 ±4 inc = <u>∠0.20</u> inches; (M+N)/2 = 56 ±2 inch	ches; H = 39 ±4 inches; O (Bottom of Hoo nes; W-H < 2 inches or use MASH Paragr	od Lip) = 24 ±4 inches aph A4.3.2
GVWR Ratings: Mas	s: lb <u>Curb</u>	Test Inertial	<u>Gross Static</u>
Front <u>1718</u> Mi	ront <u>1584</u>	1561	1646
Back <u>1874</u> M	ear <u>893</u>	881	961
Total <u>3638</u> M [.]	Total <u>2477</u>	_2442	2607
Mass Distribution	Allowable IIN	1 = 2420 lb ±55 lb Allowable GSM = 258	5 lb ± 55 lb

Table B.1. Vehicle Properties for Test No. 469689-1-2.

Date:	2019-08-23	Test No.:	469689-1-2	VIN No.:	KNADE123586375064
Year:	2008	Make:	Kia	Model:	Rio

Table B.2. Exterior Crush Measurements of Vehicle for Test No. 469689-1-2.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2 _
< 4 inches	2
\geq 4 inches	

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

G		Direct I	Damage								
Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	C ₂	C ₃	C4	C ₅	C_6	±D
	Hood		9								
	Measurements recorded										
	🖌 inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2019-08-23	Test No.:	469689-1-2	v	/IN No.:	KNADE12358	86375064
Year:	2008	Make:	Kia	N	lodel:	Rio	
ſ	H-		71	OC DEF	CUPANT ORMATIO	COMPARTI N MEASURI	IENT EMENT
	F				Before	After (inches)	Differ.
	G		Δ	\1	67.50	67.50	0.00
11			∠JJF ∧	\2	67.25	67.25	0.00
\$				3	67.75	67.75	0.00
			B	31	40.50	40.50	0.00
			B	32	39.00	39.00	0.00
	B1, B2,	B3, B4, B5, B6	B	33	40.50	40.50	0.00
			E	34	36.25	36.25	0.00
	A1, A	2, &A B	È B	35	36.00	36.00	0.00
d e			E E	36	36.25	36.25	0.00
) c	21	26.00	26.00	0.00
			C	2	0.00	0.00	0.00
			C	3	26.00	26.00	0.00
			C)1	9.50	9.50	0.00
			C)2	0.00	0.00	0.00
	// †	┦ ┦ \\	C)3	9.50	9.50	0.00
		B2 D0	E	1	51.50	51.50	0.00
			E	2	51.00	51.00	0.00
			F		51.00	51.00	0.00
			Ģ	3	51.00	51.00	0.00
			F	1	37.50	37.50	0.00
			I		37.50	37.50	0.00
*l ateral a	rea across the cal	h from	J	*	51.00	51.00	0.00
driver's si	de kick panel to p	assenger's side	kick panel.				

Table B.3. Occupa	ant Compartment	Measurements of	Vehicle for	Test No.	469689-1-2.
-------------------	-----------------	------------------------	-------------	----------	-------------

B.3 SEQUENTIAL PHOTOGRAPHS

Figure B.1. Sequential Photographs for Test No. 469689-1-2 (Perpendicular and Oblique Views).

0.050 s

0.100 s

Figure B.1. Sequential Photographs for Test No. 469689-1-2 (Perpendicular and Oblique Views) (Continued).

Figure B.2. Vehicle Angular Displacements for Test No. 469689-1-2.

B.5

VEHICLE ACCELERATIONS

Figure B.3. Vehicle Longitudinal Accelerometer Trace for Test No. 469689-1-2 (Accelerometer Located at Center of Gravity).

Figure B.4. Vehicle Lateral Accelerometer Trace for Test No. 469689-1-2 (Accelerometer Located at Center of Gravity).

Figure B.5. Vehicle Vertical Accelerometer Trace for Test No. 469689-1-2 (Accelerometer Located at Center of Gravity).

APPENDIX C. CRASH TEST 469689-1-3

C.1 DETAILS OF TEST ARTICLE

86

TR No. 0-6968-R9

100

C.2 VEHICLE PROPERTIES AND INFORMATION

Date:	2019-06-27	Test No.:	469689-1-3	VIN No.:	KNADH4A34B6930314
Year:	2011	- Make	Kia	- Model	Rio
Tine lef		-			
rite ini	lation Pressure. <u>32</u>	251	_ Odometer. <u>148912</u> _		The Size. <u>185/65R14</u>
Descrit	be any damage to the	e vehicle pric	or to test: <u>None</u>		
• Den	otes accelerometer le	ocation.			
NOTES					
NOTE	. <u>None</u>		- A M		€●
Engine	Type: 4 CYL				
Engine	CID: <u>1.6 L</u>		-		
	nission Type: Auto or	Manual	→ Q →		
			P		
Option	al Equipment:				
None	2			$\lambda \square$	
_					
Dummy Type	y Data: 50th Porce	ntilo Molo	 ⊲ F ⊳ ⊲_	—_H►	
Mass	<u>165 lb</u>			W	
Seat I	Position: <u>OPPOSITE</u>			L	x
Geome	etry: inches			C)───►
A <u>66.3</u>	38 F <u>33</u>	.00	K <u>12.25</u>	P <u>4.12</u>	U <u>14.75</u>
В <u>51.5</u>	50 G		L <u>25.25</u>	Q <u>22.50</u>	D V <u>20.75</u>
C <u>165</u>	<u>.75 H 35</u>	.38	M <u>57.75</u>	R <u>15.50</u>	0 W <u>35.38</u>
D <u>34.(</u>	<u>00 7.7</u>	75	N <u>57.70</u>	S <u>8.25</u>	X <u>71.50</u>
E <u>98.7</u>	7 <u>5</u> J <u>21</u>	.50	O <u>27.00</u>	<u>66.20</u>	<u>) </u>
VVNe	eel Center Ht Front _ RANGELIMIT: A = 65 +3 inches:	C = 169 +8 inches	F = 98 +5 inches: F = 35 +4 inches: F	Rear <u>11.00</u>) (Bottom of Hood Lip) = 24 +4 inches
	TOP OF RADIATOR SI	JPPORT = <u>-28.25</u>	_ inches; (M+N)/2 = 56 ±2 inches; W	H < 2 inches or us	e MASH Paragraph A4.3.2
GVWR	Ratings:	Mass: Ib	<u>Curb</u>	<u>Test Ir</u>	nertial <u>Gross Static</u>
Front	<u>1718</u>	IVI front	1586	1563	<u> </u>
Back Total	<u>1874</u>	lVirear M−	865	873	<u> </u>
rolar	5636	ivi i otal	<u>∠401</u> Allowable TIM = 242		<u></u>
Mass I	Distribution:				
lb	LF:	789	RF: <u>_774</u>	LR: <u>425</u>	RR: <u>448</u>

Table C.1. Vehicle Properties for Test No. 469689-1-3.

Date:	2019-06-27	9-06-27 Test No.: 469689-1-3		VIN No.:	KNADH4A34B6930314	
Year:	2011	Make:	Kia	Model:	Rio	

Table C.2. Exterior Crush Measurements of Vehicle for Test No. 469689-1-3.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable							
End Damage	Side Damage						
Undeformed end width	Bowing: B1 X1						
Corner shift: A1	B2 X2						
A2							
End shift at frame (CDC)	Bowing constant						
(check one)	X1+X2 _						
< 4 inches	2						
\geq 4 inches							

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

a :c		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	C ₂	C3	C_4	C ₅	C_6	±D
	Front Plane at bumper ht		3								
	Windshield		4.6								
	Measurements recorded										
	✓ inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:201	9-06-27	Test No.:	469689-1-3		/IN No.:	KNADH4A34B6930314				
Year: 2	2011	Make:	Kia	N	/lodel:	Rio				
	H		1	OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT						
	F				Before	After (inches)	Differ.			
	Ğ			A1	67.50	67.50	0.00			
¶Ĺ			JJ	A2	67.25	67.25	0.00			
\$-				A3	67.75	67.75	0.00			
				B1	40.50	40.50	0.00			
				B2	39.00	39.00	0.00			
	B1, B2, B3, B4, B5, B6	33, B4, B5, B6		B3	40.50	40.50	0.00			
			<	B4	36.25	36.25	0.00			
	A1, A2,			B5	36.00	36.00	0.00			
	D1, D2, & D3 C1 C2			B6	36.25	36.25	0.00			
				C1	26.00	26.00	0.00			
				C2	0.00	0.00	0.00			
				СЗ	26.00	26.00	0.00			
				D1	9.50	9.50	0.00			
	/			D2	0.00	0.00	0.00			
				D3	9.50	9.50	0.00			
		2 50		E1	51.50	51.50	0.00			
(2 B3		E2	51.00	51.00	0.00			
				F	51.00	51.00	0.00			
				G	51.00	51.00	0.00			
				н	37.50	37.50	0.00			
				-	37.50	37.50	0.00			
l ateral area acro	oss the cab	from		J	51.00	51.00	0.00			

Table C.3. Occupant Compartment Measurements of Vehicle for Test No. 469689-1-3.

*Lateral area across the cab from driver's side kick panel to passenger's side kick panel.

C.3 SEQUENTIAL PHOTOGRAPHS

Figure C.1. Sequential Photographs for Test No. 469689-1-3 (Perpendicular and Oblique Views) (Continued).

0.150 s

Figure C.2. Vehicle Angular Displacements for Test No. 469689-1-3.

TR No. 0-6968-R9

C:5

VEHICLE ACCELERATIONS

Figure C.4. Vehicle Lateral Accelerometer Trace for Test No. 469689-1-3 (Accelerometer Located at Center of Gravity).

Z Acceleration at CG

Figure C.5. Vehicle Vertical Accelerometer Trace for Test No. 469689-1-3 (Accelerometer Located at Center of Gravity).

APPENDIX D. CRASH TEST 469689-1-4

111

116

D.2 VEHICLE PROPERTIES AND INFORMATION

Table D.1. Vehicle Properties for Test No. 469689-1-4.

Date:	2019-08-23	Test No.:	469689-1-4	VIN No.:	KNADH4A31B6714470
Year:	2011	Make:	Kia	Model:	Rio
Tire Inf	lation Pressure: <u>32</u>	PSI	Odometer: <u>13</u>	38332	Tire Size: <u>185/65R14</u>
Describ	be any damage to the	e vehicle pric	r to test: <u>None</u>		
• Deno	otes accelerometer lo	ocation.			
NOTES	S:		- A M		•••
			-		
Engine	Type: <u>4 CYL</u>		-		
	hission Type: Auto or FWD T RWD	_ Manual 4WD	- ₽ ► ≪ _	R R	
Optiona <u>None</u>	al Equipment:				
Dummy Type: Mass: Seat F	/ Data: <u>50th Percer</u> <u>165 lb</u> Position: <u>OPPOSITE</u>	ntile Male		F H H	
Geome	etry: inches				C
A <u>66.3</u>	88 F <u>33.</u>	00	K <u>12.25</u>	P <u>4.12</u>	2U <u>14.75</u>
В <u>51.5</u>	50 G		L <u>25.25</u>	Q <u>22.5</u>	50 V <u>20.75</u>
C <u>165</u>	<u>.75 Н 35.</u>	16	M <u>57.75</u>	R <u>15.5</u>	60W_ <u>35.10</u>
D <u>34.0</u>	00 <u>7.7</u>	5	N <u>57.70</u>	S <u>8.25</u>	<u> </u>
E <u>98.7</u>	<u>75 J 21.</u>	50	O <u>27.00</u>	T <u>66.2</u>	20
Whe	el Center Ht Front _	1.00	Wheel Cer	nter Ht Rear <u>11.0</u>	0 W-H <u>0.00</u>
ŀ	RANGE LIMIT: A = 65 ±3 inches; TOP OF RADIATOR SU	C = 169 ±8 inches; PPORT = <u>20.20</u>	± = 98 ±5 inches; F = 35 ± _ inches; (M+N)/2 = 56 ±2	4 inches; H = 39 ±4 inches; inches;W-H < 2 inches or u	O (Bottom of Hood Lip) = 24 ±4 inches ise MASH Paragraph A4.3.2
GVWR	Ratings:	Mass: Ib	<u>Curb</u>	Test	nertial <u>Gross Static</u>
Front	<u>1718</u>	M _{front}	1637	1573	
Back	1874	M _{rear}	907	870	950
Total	3638	М _{Тоtal}	_2544	2443	2608
Mass E	Distribution:		Allowable	e TIM = 2420 lb ±55 lb Allow	rable GSM = 2585 lb ± 55 lb
aı	LF:	753	KF: 820	LK: <u>48</u>	3 KK: 387

Date:	2019-08-23	Test No.:	469689-1-4	VIN No.:	KNADH4A31B6714470	
Year:	2011	Make:	Kia	Model:	Rio	

Table D.2. Exterior Crush Measurements of Vehicle for Test No. 469689-1-4.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable								
End Damage	Side Damage							
Undeformed end width	Bowing: B1 X1							
Corner shift: A1	B2 X2							
A2								
End shift at frame (CDC)	Bowing constant							
(check one)	X1+X2 _							
< 4 inches	2							
\geq 4 inches								

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

G		Direct Damage									
Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C1	C ₂	C3	C4	C ₅	C_6	±D
	Hood		1.5								
	Measurements recorded										
	🖌 inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2019-08-23	_ Test No.:	469689-1-4	<u>۱</u>	/IN No.:	KNADH4A31	36714470
Year:	2011	_ Make:	Kia	P	Model:	Rio	
	H-		1	O(DEF	CCUPANT ORMATIO	COMPARTI N MEASURI	MENT EMENT
	F				Before	After (inches)	Differ.
	G]		A1	67.50	67.50	0.00
			JJ	A2	67.25	67.25	0.00
<u> </u>				A3	67.75	67.75	0.00
				B1	40.50	40.50	0.00
				B2	39.00	39.00	0.00
	B1, B2,	B3, B4, B5, B6		B3	40.50	40.50	0.00
	A1, A2, &A 3 D1, D2, & D3 C1, C2, & C3		B4	36.25	36.25	0.00	
				B5	36.00	36.00	0.00
\neg				B6	36.25	36.25	0.00
				C1	26.00	26.00	0.00
				C2	0.00	0.00	0.00
				C3	26.00	26.00	0.00
				D1	9.50	9.50	0.00
				D2	0.00	0.00	0.00
	// 1	1 1		D3	9.50	9.50	0.00
		B2 D2		E1	51.50	51.50	0.00
		& F2		E2	51.00	51.00	0.00
				F	51.00	51.00	0.00
				G	51.00	51.00	0.00
				н	37.50	37.50	0.00
				I	37.50	37.50	0.00
Lateral are	ea across the cat	o from		J	51.00	51.00	0.00
driver's sid	e kick panel to pa	assenger's side l	kick panel.				

Table D.3. Occupant Compartment Measurements of Vehicle for Test No. 469689-1-4.

D.3 SEQUENTIAL PHOTOGRAPHS

Figure D.1. Sequential Photographs for Test No. 469689-1-4 (Perpendicular and Oblique Views) (Continued).

Figure D.2. Vehicle Angular Displacements for Test No. 469689-1-4.

TR No. 0-6968-R9

123

TR No. 0-6968-R9

124

Gross Mass: 2608 lb Impact Speed: 63.3 mi/h

Impact Angle: 90°

Figure D.4. Vehicle Lateral Accelerometer Trace for Test No. 469689-1-4 (Accelerometer Located at Center of Gravity).

Z Acceleration at CG

Figure D.5. Vehicle Vertical Accelerometer Trace for Test No. 469689-1-4 (Accelerometer Located at Center of Gravity).