TTI: 0-6968

MASH TEST 4-12 OF SHALLOW ANCHORAGE SINGLE SLOPE TRAFFIC RAIL (SSTR)

Test Report 0-6968-R10

Cooperative Research Program

TEXAS A&M TRANSPORTATION INSTITUTE COLLEGE STATION, TEXAS

TEXAS DEPARTMENT OF TRANSPORTATION

in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/documents/0-6968-R10.pdf

		Technical Report Documentation Page		
1. Report No. FHWA/TX-21/0-6968-R10	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle MASH TEST 4-12 OF SHALLOW	5. Report Date Published: December 2020			
TRAFFIC RAIL (SSTR)		6. Performing Organization Code		
^{7. Author(s)} Sana M. Moran, Roger P. Bligh, Wa William Schroeder, and Darrell L. F	8. Performing Organization Report No. Report 0-6968-R10			
9. Performing Organization Name and Address Texas A&M Transportation Institute	e	10. Work Unit No. (TRAIS)		
The Texas A&M University System College Station Texas 77843-3135	11. Contract or Grant No. Project 0-6968			
12. Sponsoring Agency Name and Address Texas Department of Transportation Research and Technology Implement 125 E. 11 th Street	13. Type of Report and Period Covered Technical Report: September 2017–August 2020 14. Sponsoring Agency Code			
Austin, Texas 78701-2483 15. Supplementary Notes Project performed in cooperation with Administration. Project Title: Roadside Safety Device	ith the Texas Department of Transport ce Analysis, Testing, and Evaluation	rtation and the Federal Highway Program		
UKL. http://tititainu.edu/documents/0-0906-K10.put				

16. Abstract

The purpose of the tests reported herein was to assess the performance of the Texas Department of Transportation's (TxDOT's) shallow anchorage single slope traffic rail (SSTR) according to the safetyperformance evaluation guidelines included in the American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware (MASH). MASH Test 4-12 was performed on the TxDOT shallow anchorage SSTR to determine the structural adequacy of the anchorage.

Two different barrier configurations were evaluated: with and without dowel bars between barrier segments across expansion joints. This report provides details of the TxDOT shallow anchorage SSTR, the crash tests and results, and the performance assessment of the TxDOT shallow anchorage SSTR as a MASH Test Level 4 (TL-4) longitudinal barrier.

Both variations of the TxDOT shallow anchorage SSTR (with and without dowel bars between barrier segments across expansion joints) were determined to be MASH TL-4 compliant. No delamination or damage to the deck was observed in the test installation after impact.

17. Key Words		18. Distribution Statement		
Bridge Rail, Median Barrier, Shallow Anchorage,		No restrictions. This document is available to the		
Concrete Barrier, Single Slope Barrier, Crash		public through NTIS:		
Testing, Roadside Safety, MASH		National Technical Information Service		
		Alexandria, Virginia		
		http://www.ntis.gov		
19. Security Classif. (of this report)20. Security Classif. (of the UnclassifiedUnclassifiedUnclassified		iis page)	21. No. of Pages 116	22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

MASH TEST 4-12 OF SHALLOW ANCHORAGE SINGLE SLOPE TRAFFIC RAIL (SSTR)

by

Sana M. Moran Assistant Transportation Researcher Texas A&M Transportation Institute

Roger P. Bligh, Ph.D., P.E. Senior Research Engineer Texas A&M Transportation Institute

Wanda L. Menges Research Specialist Texas A&M Transportation Institute

William Schroeder Research Engineering Associate Texas A&M Transportation Institute

and

Darrell L. Kuhn, P.E. Research Specialist Texas A&M Transportation Institute

Report 0-6968-R10 Project 0-6968 Project Title: Roadside Safety Device Analysis, Testing, and Evaluation Program

> Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

> > Published: December 2020

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of FHWA or TxDOT. This report does not constitute a standard, specification, or regulation. This report is not intended for construction, bidding, or permit purposes. The engineer in charge of this project was Roger P. Bligh, P.E. Texas #78550. The United States Government and the State of Texas do not endorse products or manufacturers. Trade of manufacturers' names appear herein solely because they are considered essential to the object of this report.

TTI PROVING GROUND DISCLAIMER

The results of the crash testing reported herein apply only to the article tested.

REPORT AUTHORIZATION

DocuSigned by: Bill Griffith

Bill L. Griffith, Research Specialist Deputy Quality Manager

DocuSigned by: Luba

DocuSigned by:

Sana Moran

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

— DocuSigned by:

Matt Kobinson Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

Sana M. Moran Assistant Transportation Researcher

ACKNOWLEDGMENTS

This project was conducted in cooperation with TxDOT and FHWA. The authors thank Wade Odell, TxDOT Research and Technology Implementation Division project manager, and Taya Retterer and Jon Ries with the TxDOT Bridge Division for their design input and guidance during the project. This project was successful due to their contributions and assistance.

TABLE OF CONTENTS

List of Figures	. xi
List of Tables	xiii
Chapter 1. Introduction	1
Chapter 2. System Details	3
2.1. Test Article and Installation Details	3
2.2. Design Modifications	3
2.3. Material Specifications	3
Chapter 3. Test Requirements and Evaluation Criteria	7
3.1. Crash Test Performed/Matrix	7
3.2. Evaluation Criteria	8
Chapter 4. Test Conditions	, 11
4.1. Test Facility	. 11
4.2. Vehicle Tow and Guidance System	. 11
4.3. Data Acquisition Systems	. 11
4.3.1. Vehicle Instrumentation and Data Processing	. 11
4.3.2. Anthropomorphic Dummy Instrumentation	. 12
4.3.3. Photographic Instrumentation Data Processing	. 12
Chapter 5. MASH Test 4-12 (Crash Test No. 469680-02-1)	. 15
5.1. Test Designation and Actual Impact Conditions	. 15
5.2. Weather Conditions	. 16
5.3. Test Vehicle	. 16
5.4. Test Description	. 16
5.5. Damage to Test Installation	. 17
5.6. Damage to Test Vehicle	. 17
5.7. Vehicle Instrumentation	. 17
Chapter 6. MASH Test 4-12 without Dowel Rods (Crash Test No. 469680-02-2)	. 21
6.1. Test Designation and Actual Impact Conditions	. 21
6.2. Weather Conditions	. 21
6.3. Test Vehicle	. 22
6.4. Test Description	. 22
6.5. Damage to Test Installation	. 23
6.6. Damage to Test Vehicle	. 23
6.7. Vehicle Instrumentation	. 23
Chapter 7. MASH Test 4-12 without Dowel Bars and with Concrete Apron Extended	
Downstream of the Barrier (Crash Test No. 469680-02-3)	. 29
7.1. Test Designation and Actual Impact Conditions	. 29
7.2. Weather Conditions	. 30
7.3. Test Vehicle	. 30
7.4. Test Description	. 31
7.5. Damage to Test Installation	. 31
7.6. Damage to Test Vehicle	. 31
7.7. Vehicle Instrumentation	. 34

Chapter 8. Summary and Conclusions	37
8.1. Assessment of Test Results	37
8.2. Conclusions	37
Chapter 9. Implementation	41
References	43
Appendix A. Details of Shallow Anchorage SSTR	45
Appendix B. Supporting Certification Documents	49
Appendix C. MASH Test 4-12 (Crash Test No. 469680-02-1)	69
C.1. Vehicle Properties and Information	69
C.2. Sequential Photographs	71
C.3. Vehicle Angular Displacements	74
C.4. Vehicle Accelerations	75
Appendix D. MASH Test 4-12 without Dowel Bars (Crash Test No. 469680-02-2)	81
D.1. Vehicle Properties and Information	81
D.2. Sequential Photographs	83
D.3. Vehicle Angular Displacements	85
D.4. Vehicle Accelerations	86
Appendix E. MASH Test 4-12 without Dowel Bars and with Concrete Apron Extended	
Downstream of Barrier (Crash Test No. 469680-02-3)	93
E.1. Vehicle Properties and Information	93
E.2. Sequential Photographs	95
E.3. Vehicle Angular Displacements	98
E.4. Vehicle Accelerations	99

LIST OF FIGURES

D' 0.1		4
Figure 2.1. \mathbf{F}	TXDOT Shallow Anchorage SSTR Details.	4
Figure 2.2. Γ'	TXDOT Shallow Anchorage SSTR prior to Testing.	כ
Figure 3.1.	Target CIP for First and Third MASH Test 4-12 on TXDOT Shallow	-
F ' 0.0	Anchorage SSTR (Test No. 469680-02-1 and 3).	/
Figure 3.2.	Target CIP for Second MASH Test 4-12 on TxDOT Shallow Anchorage	
	SSTR(Test No. 469680-02-2)	8
Figure 5.1.	TxDOT Shallow Anchorage SSTR/Test Vehicle Geometrics for	
	Test No. 469680-02-1	15
Figure 5.2.	Test Vehicle before Test No. 469680-02-1.	16
Figure 5.3.	TxDOT Shallow Anchorage SSTR after Test No. 469680-02-1.	18
Figure 5.4.	Test Vehicle after Test No. 469680-02-1.	19
Figure 5.5.	Interior of Test Vehicle after Test No. 469680-02-1	19
Figure 5.6.	Summary of Results for MASH Test 4-12 on TxDOT Shallow Anchorage	
	SSTR.	20
Figure 6.1.	TxDOT Shallow Anchorage SSTR without Dowel Bars/Test Vehicle	
U	Geometrics for Test No. 469680-02-2.	21
Figure 6.2.	Test Vehicle before Test No. 469680-02-2.	22
Figure 6.3.	TxDOT Shallow Anchorage SSTR after Test No. 469680-02-2.	24
Figure 6.4.	Field Side of SSTR after Test No. 469680-02-2.	25
Figure 6.5.	Test Vehicle after Test No. 469680-02-2	
Figure 6.6	Test Vehicle (Uprighted) after Test No. 469680-02-2	26
Figure 6.7	Summary of Results for MASH Test 4-12 on TxDOT Shallow Anchorage	20
1 iguie 0.7.	SSTR without Dowel Bars	27
Figure 7.1	Runout Area Extended for Test No. 469680-02-3	29
Figure 7.2	TxDOT Shallow Anchorage SSTR without Dowel Bars and with	>
1 iguie 7.2.	Concrete Apron Extended Downstream of Barrier/Test Vehicle	
	Geometrics for Test No. 469680-02-3	30
Figure 7.3	Test Vehicle before Test No. $469680-02-3$	30
Figure 7.4	TyDOT Shallow Anchorage SSTP after Test No. 460680.02.3	30
Figure 7.4.	Field Side of SSTD after Test No. 460680 02.3	32
Figure 7.5.	The Side of SSTR after Test No. 409000-02-3.	33
Figure 7.0.	Test Vehicle (Uprighted) after Test No. 460680.02.2	33
Figure 7.7.	Itest vehicle (Uprighted) after Test No. 469680-02-5.	34
Figure 7.8 .	Interior of 1est venicle after 1est No. 469680-02-5	34
Figure 7.9.	Summary of Results for MASH Test 4-12 on TxDOT Shallow Anchorage	
	SSTR without Dowel Bars and with Concrete Apron Extended	~ ~
-	Downstream of the Barrier.	35
Figure C.1.	Sequential Photographs for Test No. 469680-02-1 (Overhead and Frontal	
	Views).	71
Figure C.2.	Sequential Photographs for Test No. 469680-02-1 (Rear View).	73
Figure C.3.	Vehicle Angular Displacements for Test 469680-02-1	74
Figure C.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 469680-02-1	
	(Accelerometer Located at Center of Gravity)	75

Figure C.5.	Vehicle Lateral Accelerometer Trace for Test No. 469680-02-1	
C	(Accelerometer Located at Center of Gravity)	76
Figure C.6.	Vehicle Vertical Accelerometer Trace for Test No. 469680-02-1	
-	(Accelerometer Located at Center of Gravity)	77
Figure C.7.	Vehicle Longitudinal Accelerometer Trace for Test No. 469680-02-1	
-	(Accelerometer Located at Rear of Vehicle)	78
Figure C.8.	Vehicle Lateral Accelerometer Trace for Test No. 469680-02-1	
C	(Accelerometer Located at Rear of Vehicle)	79
Figure C.9.	Vehicle Vertical Accelerometer Trace for Test No. 469680-02-1	
-	(Accelerometer Located at Rear of Vehicle)	80
Figure D.1.	Sequential Photographs for Test No. 469680-02-2 (Overhead and Frontal	
C	Views).	83
Figure D.2.	Vehicle Angular Displacements for Test No. 469680-02-2.	85
Figure D.3.	Vehicle Longitudinal Accelerometer Trace for Test No. 469680-02-2	
-	(Accelerometer Located at Center of Gravity)	86
Figure D.4.	Vehicle Lateral Accelerometer Trace for Test No. 469680-02-2	
C	(Accelerometer Located at Center of Gravity)	87
Figure D.5.	Vehicle Vertical Accelerometer Trace for Test No. 469680-02-2	
-	(Accelerometer Located at Center of Gravity)	88
Figure D.6.	Vehicle Longitudinal Accelerometer Trace for Test No. 469680-02-2	
C	(Accelerometer Located at Rear of Vehicle)	89
Figure D.7.	Vehicle Lateral Accelerometer Trace for Test No. 469680-02-2	
C	(Accelerometer Located at Rear of Vehicle)	90
Figure D.8.	Vehicle Vertical Accelerometer Trace for Test No. 469680-02-2	
C	(Accelerometer Located at Rear of Vehicle)	91
Figure E.1.	Sequential Photographs for Test No. 469680-02-3 (Overhead and Frontal	
-	Views).	95
Figure E.2.	Sequential Photographs for Test No. 469680-02-3 (Rear View).	97
Figure E.3.	Vehicle Angular Accelerations for Test No. 479680-02-3.	98
Figure E.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 469680-02-3	
-	(Accelerometer Located at Center of Gravity)	99
Figure E.5.	Vehicle Lateral Accelerometer Trace for Test No. 469680-02-3	
-	(Accelerometer Located at Center of Gravity)	100
Figure E.6.	Vehicle Vertical Accelerometer Trace for Test No. 469680-02-3	
-	(Accelerometer Located at Center of Gravity)	101
Figure E.7.	Vehicle Longitudinal Accelerometer Trace for Test No. 469680-02-3	
-	(Accelerometer Located at Rear of Vehicle)	102
Figure E.8.	Vehicle Lateral Accelerometer Trace for Test No. 469680-02-3	
-	(Accelerometer Located at Rear of Vehicle)	103
Figure E.9.	Vehicle Vertical Accelerometer Trace for Test No. 469680-02-3	
-	(Accelerometer Located at Rear of Vehicle)	104

LIST OF TABLES

Table 3.1.	Test Conditions and Evaluation Criteria Specified for MASH TL-4	
	Longitudinal Barriers.	7
Table 3.2.	Evaluation Criteria Required for MASH Test 4-12.	9
Table 5.1.	Events during Test No. 469680-02-1	16
Table 6.1.	Events during Test No. 469680-02-2.	22
Table 7.1.	Events during Test No. 469680-02-3	31
Table 8.1.	Performance Evaluation Summary for MASH Test 4-12 on TxDOT	
	Shallow Anchorage SSTR	38
Table 8.2.	Performance Evaluation Summary for MASH Test 4-12 on TxDOT	
	Shallow Anchorage SSTR without Dowel Bars.	39
Table 8.3.	Performance Evaluation Summary for MASH Test 4-12 on TxDOT	
	Shallow Anchorage SSTR without Dowel Bars and with Concrete Apron	
	Extended Downstream of the Barrier.	40
Table C.1.	Vehicle Properties for Test No. 469680-02-1	69
Table D.1.	Vehicle Properties for Test No. 469680-02-2.	81
Table E.1.	Vehicle Properties for Test No. 469680-02-3	93

SI* (MODERN METRIC) CONVERSION FACTORS						
APPROXIMATE CONVERSIONS TO SI UNITS						
Symbol	When You Know	Multiply By	To Find	Symbol		
-	·	LENGTH	•			
in	inches	25.4	millimeters	mm		
ft	feet	0.305	meters	m		
yd	yards	0.914	meters	m		
mi	miles	1.61	kilometers	km		
		AREA				
in ²	square inches	645.2	square millimeters	mm²		
ft ²	square feet	0.093	square meters	m²		
yd²	square yards	0.836	square meters	m²		
ac	acres	0.405	nectares	ha km²		
111-	square miles		square kilometers	KIII-		
floz	fluid ounces	29.57	milliliters	ml		
	allons	2 7 8 5	liters	1		
ft ³	cubic feet	0.028	cubic meters	m ³		
vd ³	cubic vards	0.765	cubic meters	m ³		
<i></i>	NOTE: volumes of	reater than 1000L	shall be shown in m ³			
		MASS				
oz	ounces	28.35	grams	g		
lb	pounds	0.454	kilograms	kg		
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")		
	TEMPE	ERATURE (exac	t degrees)			
°F	Fahrenheit	5(F-32)/9	Celsius	°C		
		or (F-32)/1.8				
	FORCE a	and PRESSURE	or STRESS			
lbf	poundforce	4.45	newtons	Ν		
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa		
	APPROXIMATE	E CONVERSION	S FROM SI UNITS			
Symbol	When You Know	Multiply By	To Find	Symbol		
		LENGTH				
mm	millimeters	0.039	Inches	in ti		
m	meters	3.28	leet	IT Vid		
III km	kilomotors	1.09	yarus	yu mi		
NIII	KIIOITIEIEIS		Thies			
mm ²	square millimeters		square inches	in ²		
m ²	square meters	10 764	square feet	ft ²		
m ²	square meters	1 195	square vards	vd ²		
ha	hectares	2.47	acres	ac		
km ²	Square kilometers	0.386	square miles	mi ²		
		VOLUME	•			
mL	milliliters	0.034	fluid ounces	oz		
L	liters	0.264	gallons	gal		
m ³	cubic meters	35.314	cubic feet	ft ³		
m ³	cubic meters	1.307	cubic yards	yd ³		
MASS						
g	grams	0.035	ounces	oz		
kg	kilograms	2.202	pounds	lb T		
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000lb)	I		
	TEMPE	RATURE (exac	t degrees)	~-		
°C	Celsius	1.8C+32	Fahrenheit	°F		
	FORCE a	and PRESSURE	or STRESS			
N	newtons	0.225	poundforce	lbf		
kPa	kilopascals	0.145	poundforce per square inch	lb/in ²		

*SI is the symbol for the International System of Units

CHAPTER 1. INTRODUCTION

The Texas Department of Transportation's (TxDOT's) single slope traffic rail (SSTR) has performed acceptably according to the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)* Test Level 4 (TL-4) longitudinal barriers (1). Different configurations of the SSTR have been tested and shown to satisfy *MASH* TL-4 criteria (2). However, it is further desired to be able to anchor an SSTR into a 4½-inch-thick cast-in-place deck slab that is constructed over a prestressed box beam, slab beam, or prestressed panel. The main concern with this application is the strength of the anchoring system.

The purpose of the tests reported herein was to assess the performance of the TxDOT shallow anchorage SSTR according to the safety-performance evaluation guidelines included in the AASHTO *MASH*. *MASH* Test 4-12 was performed on the TxDOT shallow anchorage SSTR to determine the structural adequacy of the anchorage.

This report provides details of the TxDOT shallow anchorage SSTR, the crash tests and results, and the performance assessment of the TxDOT shallow anchorage SSTR as a *MASH* TL-4 longitudinal barrier.

CHAPTER 2. SYSTEM DETAILS

2.1. TEST ARTICLE AND INSTALLATION DETAILS

The installation consisted of three sections of 36-inch-tall concrete SSTR. Two of the sections were 25 ft. in length, and the third section, placed on the left end when viewing from the traffic side, was 74 ft. 9¾ inches long. There was a 2-inch joint between each barrier section, which resulted in a total length of 125 ft. 1¾ inches. The SSTR was anchored in place using No. 4 rebar anchors embedded in a cast-in-place concrete slab measuring 4½ inches thick. The rebar anchors rested on the top surface of precast concrete panels that were 8 ft. 4 inches long, 10 ft. wide, and 4 inches thick. The upper concrete slab was then cast in place over the precast concrete panels to simulate field construction.

Figure 2.1 presents overall information on the TxDOT shallow anchorage SSTR, and Figure 2.2 provides photographs of the test installation. Appendix A provides further details on the TxDOT shallow anchorage SSTR. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground, and construction was performed by Tucker Construction and supervised by TTI Proving Ground personnel.

2.2. DESIGN MODIFICATIONS

For Test No. 469680-02-2, the dowel bars between barrier segments across the expansion joints were cut through so the barrier segments were not connected. After only minor barrier movement and damage in Test No. 469680-02-1, this was done to see if acceptable impact performance could be achieved without the need for dowel bars across adjacent joints. Prior to the third test (Test No. 469680-02-3), the concrete apron was extended downstream of the barrier to replace the soil beyond the end of the barrier to provide a more uniform and representative runout area.

2.3. MATERIAL SPECIFICATIONS

The specified compressive strength of the concrete used in the panels, deck, and parapet was 5000 psi, 4000 psi, and 3600 psi, respectively. On the day of the first test, June 16, 2020, the average compressive strength of the concrete was as follows:

- Average concrete strength for the panels: 5360 psi at 42 days of age.
- Average concrete strength for the deck: 5121 psi at 33 days of age.
- Average concrete strength for the parapet: 4255 psi at 25 days of age.

Appendix B provides material certification documents for the materials used to install/construct the TxDOT shallow anchorage SSTR.

Figure 2.1. TxDOT Shallow Anchorage SSTR Details.

TR No. 0-6968-R10

4

2020-12-15

Figure 2.2. TxDOT Shallow Anchorage SSTR prior to Testing.

CHAPTER 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1. CRASH TEST PERFORMED/MATRIX

Table 3.1 shows the recommended test conditions and evaluation criteria for *MASH* TL-4 longitudinal barriers.

8					
Test Article	Test	Test Vehicle	Impact Conditions		Evaluation
	Designation		Speed	Angle	Criteria
	4-10	1100C	62 mi/h	25°	A, D, F, H, I
Longitudinal Barrier	4-11	2270P	62 mi/h	25°	A, D, F, H, I
Duiller	4-12	10000S	56 mi/h	15°	A, D, G

Table 3.1. Test Conditions and Evaluation Criteria Specified for MASH TL-4Longitudinal Barriers.

MASH Test 4-12 was performed on the TxDOT shallow anchorage SSTR. Test 4-12 was the critical test for evaluating the strength of the anchorage system. Tests 4-10 and 4-11 were not considered necessary to assess *MASH* compliance of the anchorage system. Previous tests that have been performed on single slope barriers indicate the profile is *MASH* compliant for the 1100C passenger car and 2270P pickup truck (*3*, *4*).

The target critical impact point (CIP) for the test was determined using the information provided in *MASH* Section 2.2.1, Section 2.3.2, and Table 2-8. Figure 3.1 shows the target CIP for *MASH* Test 4-12 on the TxDOT shallow anchorage SSTR, which is 5 ft. upstream of an expansion joint.

Figure 3.1. Target CIP for First and Third *MASH* Test 4-12 on TxDOT Shallow Anchorage SSTR (Test No. 469680-02-1 and 3).

Figure 3.2. Target CIP for Second *MASH* Test 4-12 on TxDOT Shallow Anchorage SSTR (Test No. 469680-02-2)

In Test No. 469680-02-2, the dowels bars across the expansion joints were cut such that the barrier segments were not connected. For this test, the impact point was shifted to an undamaged barrier section with the CIP as shown in Figure 3.1 In this test, the vehicle rolled onto its roof, causing excessive occupant compartment deformation. The rollover was partially attributed to an uneven runout area (part soil and part concrete) beyond the barrier installation. Therefore, *MASH* Test 4-12 was repeated on the system without dowel bars (Test No. 469680-02-3) with a more uniform and representative runout area. Since both barrier segments had been previously impacted, the impact point was shifted back to the first barrier segment as shown in Figure 3.1.

The crash test and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2-2 and 5-1 of *MASH* were used to evaluate the crash tests reported herein. Table 3.1 lists the test conditions and evaluation criteria required for *MASH* Test 4-12, and Table 3.2 provides detailed information on the evaluation criteria. An evaluation of the crash test results is presented in Chapter 7.

Evaluation Factors	Evaluation Criteria		
Structural Adequacy	A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.		
	D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone.		
Occupant Risk	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.		
	<i>G.</i> It is preferable, although not essential, that the vehicle remain upright during and after the collision.		

 Table 3.2. Evaluation Criteria Required for MASH Test 4-12.

CHAPTER 4. TEST CONDITIONS

4.1. TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, as well as *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The site selected for construction and testing of the TxDOT shallow anchorage SSTR was along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5-ft × 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

4.2. VEHICLE TOW AND GUIDANCE SYSTEM

Each test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

4.3. DATA ACQUISITION SYSTEMS

4.3.1. Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained onboard data acquisition system. The signal conditioning and acquisition system is a 16-channel Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axes of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid-state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to the specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO[®] 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rateof-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made anytime data are suspect. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the data from the TDAS Pro to compute the occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

4.3.2. Anthropomorphic Dummy Instrumentation

MASH does not recommend or require use of a dummy in the 10000S vehicle, and no dummy was placed in the vehicle.

4.3.3. Photographic Instrumentation Data Processing

Photographic coverage of the test included three digital high-speed cameras:

- One overhead with a field of view perpendicular to the ground and directly over the impact point.
- One placed upstream from the installation at an angle to have a field of view of the interaction of the rear of the vehicle with the installation.
- A third placed with a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the TxDOT shallow anchorage SSTR. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

CHAPTER 5. MASH TEST 4-12 (CRASH TEST NO. 469680-02-1)

5.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 4-12 involves a 10000S vehicle weighing 22,000 lb \pm 660 lb impacting the CIP of the longitudinal barrier at an impact speed of 56 mi/h \pm 2.5 mi/h and an angle of 15 degrees \pm 1.5 degrees. The CIP for *MASH* Test 4-12 on the TxDOT shallow anchorage SSTR was 5 ft \pm 1 ft upstream of the centerline of the joint between Segments 1 and 2. Figure 3.1 and Figure 5.1 depict the target impact setup.

Figure 5.1. TxDOT Shallow Anchorage SSTR/Test Vehicle Geometrics for Test No. 469680-02-1.

The 10000S vehicle weighed 22,340 lb, and the actual impact speed and angle were 56.9 mi/h and 14.6 degrees. Minimum target impact severity (IS) was 142 kip-ft, and actual IS was 153 kip-ft. The actual impact point was 3.4 ft upstream of the centerline of the joint between Segments 1 and 2, which is 1.6 ft downstream of the target impact point and 0.6 ft outside the recommended MASH tolerance for impact point, and thus is out of specifications for MASH. When speaking about the impact point for large trucks, MASH Section 2.3.2.2 states that "the critical impact point for these vehicles should be chosen to maximize loading on critical barrier elements such as joints and splices." Section A2.3.2.2 further elaborates that "impact point selection guidelines presented in Section 2.3.2.2 are based on the distance from initial contact to the location of maximum lateral force." The objective of MASH Test 4-12 on the TxDOT shallow anchorage SSTR was to evaluate the effectiveness of the shallow anchorage system at a critical area near a barrier end/joint. Film analysis of this test showed that both the initial frontal impact and the subsequent rear impact of the truck occurred on the downstream end of the impacted barrier segment in advance of the joint. In fact, the lateral impact forces were applied to the barrier at a point closer to the segment end than initially planned, making it even more critical for evaluation of both the barrier and anchorage system. Thus, the outcome of the test was considered valid despite the actual impact point falling 0.6 ft downstream of the recommended MASH tolerance for CIP.

5.2. WEATHER CONDITIONS

The test was performed on the afternoon of June 16, 2020. Weather conditions at the time of testing were as follows: wind speed: 10 mi/h; wind direction: 203 degrees (vehicle was traveling at a heading of 185 degrees); temperature: 89°F; relative humidity: 48 percent.

5.3. TEST VEHICLE

Figure 5.2 shows the 2011 International 4300 single-unit truck (SUT) used for the crash test. The vehicle's test inertia weight was 22,340 lb, and its gross static weight was 22,340 lb. The height to the lower edge of the vehicle bumper was 18.5 inches, and height to the upper edge of the bumper was 33.5 inches. The height to the center of gravity of the vehicle's ballast was 61.75 inches. Table C.1 in Appendix C.1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system and was released to be freewheeling and unrestrained just prior to impact.

Figure 5.2. Test Vehicle before Test No. 469680-02-1.

5.4. TEST DESCRIPTION

Table 5.1 lists events that occurred during Test No. 469680-02-1. Figures C.1 and C.2 in Appendix C.2 present sequential photographs during the test.

Time (s)	Events
0.000	Vehicle bumper impacts barrier
0.006	Right front tire leaves pavement
0.035	Vehicle begins to redirect
0.143	Left front tire leaves pavement
0.207	Left rear tires leave pavement
0.244	Vehicle travels parallel with barrier
0.251	Right lower rear corner of box contacts top of barrier
1.105	Left front tire contacts pavement

Table 5.1. Events during Test No. 469680-02-1.

For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 65.6 ft for heavy vehicles). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied at 2.5 s after impact. After loss of contact with the barrier, the vehicle came to rest 279 ft downstream of the point of impact and 70 ft toward the field side of the barrier.

5.5. DAMAGE TO TEST INSTALLATION

Figure 5.3 shows the damage to the TxDOT shallow anchorage SSTR. Before the test, any cracks in the deck and barrier were noted with a black paint marker. No additional cracks or enlarging of existing cracks were evident after the test. The deck was tested for delamination at the interface between the two concrete slabs, and none were detected. There was gouging and scuffing present on the traffic face of the barrier at the impacted joint. Rebar was exposed on the downstream end of Segment 1 at the joint between Segments 1 and 2. There was also gouging at the top of the field side corner of Segments 1 and 2 from contact with the bottom frame of the box of the truck. Working width^{*} was 78.4 inches, and height of working width was 152.2 inches. No dynamic deflection during the test or permanent deformation after the test was observed.

5.6. DAMAGE TO TEST VEHICLE

Figure 5.4 shows the damage sustained by the vehicle. The front bumper, hood, right front tire and rim, right front spring assembly and U-bolts, right fuel tank and side steps, right door, right floor pan, right lower edge of box, right rear outer tire and rim, and right rear U-bolts were damaged. Maximum exterior crush to the vehicle was 18.0 inches in the front plane at the right front corner at bumper height. Maximum occupant compartment deformation was 2.5 inches in the right front floor pan/firewall. Figure 5.5 shows the interior of the vehicle.

5.7. VEHICLE INSTRUMENTATION

Data from the accelerometers were digitized for informational purposes only and are reported in Figure 5.6. Figure C.3 in Appendix C.3 shows the vehicle angular displacements, and Figures C.4 through C.9 in Appendix C.4 show acceleration versus time traces. Figure 5.6 summarizes pertinent information from the test.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 5.3. TxDOT Shallow Anchorage SSTR after Test No. 469680-02-1.

Figure 5.4. Test Vehicle after Test No. 469680-02-1.

Figure 5.5. Interior of Test Vehicle after Test No. 469680-02-1.

Test Agency..... Texas A&M Transportation Institute (TTI Test Standard Test No...... MASH Test 4-12 TTI Test No. 469680-02-1 Test Date 2020-06-16 Test Article Type Longitudinal Barrier—Bridge Rail Name..... TxDOT Shallow Anchorage SSTR Installation Length..... 125 ft 1¾ inches Material or Key Elements ... 36-inch-tall single sloped barrier anchore to a 4¹/₂-inch-thick concrete slab cast in place on top of precast panels measuring 8 ft 4 inches long x 10 ft wide x 4 inches thick

Type/Designation 10000S

Curb..... 13.640 lb Test Inertial 22,340 lb

Dummy No dummy Gross Static 22,340 lb

Soil Type and Condition Concrete slab, damp

Make and Model 2011 International 4300 SUT

	Impact Conditions	
)	Speed	56.9 mi/h
,	Angle	14.6°
	Location/Orientation	3.4 ft upstream of
		joint 1–2
	Impact Severity	153 kip-ft
	Exit Conditions	·
	Speed	Out of view
	Trajectory/Heading Angle	Along barrier
ed	Occupant Risk Values	0
	Longitudinal OIV	6.2 ft/s
g	Lateral OIV	13.5 ft/s
-	Longitudinal Ridedown	4.3 g
	Lateral Ridedown	6.9 g
	THIV	4.5 m/s
	ASI	0.6
	Max. 0.050-s Average	
	Longitudinal	−2.2 g
	Lateral	−4.6 g
	Vertical	3.6 g
		-

Post-Impact Trajectory

Stopping Distance	279 ft downstream
	70 ft twd field side
Vehicle Stability	
Maximum Yaw Angle	15°
Maximum Pitch Angle	27°
Maximum Roll Angle	12°
Vehicle Snagging	No
Vehicle Pocketing	No
Test Article Deflections	
Dynamic	None measurable
Permanent	None measurable
Working Width	78.4 inches
Height of Working Width	152.2 inches
Vehicle Damage	
VDS	NA
CDC	01FREW3
Max. Exterior Deformation	18.0 inches
OCDI	NA
Max. Occupant Compartment	
Deformation	2.5 inches

Note: OIV = Occupant Impact Velocity; THIV = Theoretical Head Impact Velocity; ASI = Acceleration Severity Index; NA = Not Applicable.

Figure 5.6. Summary of Results for MASH Test 4-12 on TxDOT Shallow Anchorage SSTR.

Test Vehicle

CHAPTER 6. MASH TEST 4-12 WITHOUT DOWEL BARS (CRASH TEST NO. 469680-02-2)

6.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

In the original test installation, dowel bars were included between barrier segments across the expansion joints to provide load transfer and continuity between barrier segments and limit barrier movement and possible deck damage. Based on the results of the first test (i.e., no barrier movement and no deck damage or delamination), TxDOT requested an additional *MASH* Test 4-12 without the dowel bars. If successful, this configuration would reduce construction complexity of the barrier in the field.

For Test No. 469680-02-2, the dowel bars between barrier segments across the expansion joints were cut through such that the barrier segments were not connected. The CIP for *MASH* Test 4-12 on the TxDOT shallow anchorage SSTR without dowel bars was 5 ft \pm 1 ft upstream of the centerline of the joint between Segments 2 and 3. This downstream joint was selected to avoid the need for barrier repair at the previously impacted joint.

Figure 3.2 and Figure 6.1 depict the target impact setup. The remaining target impact conditions for *MASH* Test 4-12 are stated in Section 5.1.

Figure 6.1. TxDOT Shallow Anchorage SSTR without Dowel Bars/Test Vehicle Geometrics for Test No. 469680-02-2.

The 10000S vehicle weighed 22,190 lb, and the actual impact speed and angle were 56.7 mi/h and 14.2 degrees. The actual impact point was 4.5 ft upstream of the centerline of the joint between Segments 2 and 3. Minimum target IS was 142 kip-ft, and actual IS was 144 kip-ft.

6.2. WEATHER CONDITIONS

The test was performed on the morning of August 10, 2020. Weather conditions at the time of testing were as follows: wind speed: 9 mi/h; wind direction: 190 degrees (vehicle was traveling at a heading of 185 degrees); temperature: 89°F; relative humidity: 58 percent.

6.3. TEST VEHICLE

Figure 6.2 shows the 2011 International 4300 SUT used for the crash test. The vehicle's test inertia weight was 22,190 lb, and its gross static weight was 22,190 lb. The height to the lower edge of the vehicle bumper was 18.25 inches, and height to the upper edge of the bumper was 33.25 inches. The height to the center of gravity of the vehicle's ballast was 63.4 inches. Table D.1 in Appendix D.1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 6.2. Test Vehicle before Test No. 469680-02-2.

6.4. TEST DESCRIPTION

Table 6.1 lists events that occurred during Test No. 469680-02-2. Figure D.1 in Appendix D.2 presents sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle bumper impacts barrier
0.0150	Right front tire leaves pavement
0.0360	Vehicle begins to redirect
0.1050	Left front tire leaves pavement
0.2450	Left rear tires leave pavement
0.2890	Vehicle travels parallel with barrier
0.8370	Left front tire returns to pavement

Table 6.1. Events during Test No. 469680-02-2.
For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 65.6 ft for heavy vehicles). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were not applied. After loss of contact with the barrier, the vehicle rolled 192 degrees and came to rest on its roof 229 ft downstream of the point of impact and 43 ft toward the field side of the barrier.

6.5. DAMAGE TO TEST INSTALLATION

Figure 6.3 and Figure 6.4 show the damage to the TxDOT shallow anchorage SSTR without dowel bars. No cracks were observed in the barrier or deck slab. No delaminations were detected at the interface between the two concrete slabs. Some gouging occurred on the traffic face of the barrier in the impact region, and contact and scuff marks were evident from the point of impact to the end of the barrier. Working width^{*} was 60.6 inches, and height of working width was 150.9 inches. No dynamic deflection during the test nor permanent deformation after the test was observed.

6.6. DAMAGE TO TEST VEHICLE

Figure 6.5 and Figure 6.6 show the damage sustained by the vehicle. After loss of contact with the barrier, the vehicle rolled 192 degrees and came to rest on its roof. Before the vehicle rolled over, the front bumper, hood, front axle, right and left front spring assembly and U-bolts, right front tire and rim, right front door, right fuel tank and side steps, rear of cab, lower edge of the box, and right rear outer rim were damaged. Maximum exterior crush to the vehicle before rollover was 16.0 inches in the side plane at the right front corner at bumper height. Due to rollover, the occupant compartment deformation was unable to be measured.

6.7. VEHICLE INSTRUMENTATION

Data from the accelerometers were digitized for informational purposes only and are reported in Figure 6.2. Figure D.2 in Appendix D.3 shows the vehicle angular displacements, and Figures D.3 through D.8 in Appendix D.4 show acceleration versus time traces. Figure 6.7 summarizes pertinent information from the test.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 6.3. TxDOT Shallow Anchorage SSTR without Dowel Bars after Test No. 469680-02-2.

Figure 6.4. Field Side of SSTR without dowel bars after Test No. 469680-02-2.

Figure 6.5. Test Vehicle after Test No. 469680-02-2.

Figure 6.6. Test Vehicle (Uprighted) after Test No. 469680-02-2.

27

	impuot oonait
Texas A&M Transportation Institute (TTI)	Speed
MASH Test 4-12	Angle
469680-02-2	Location/Orie
2020-08-10	
	Impact Severit
Longitudinal Barrier—Bridge Rail	Exit Condition
TxDOT Shallow Anchorage SSTR	Speed
125 ft 1¾ inches	Trajectory/He
36-inch-tall single sloped barrier anchored	Occupant Risk
to a 4½-inch-thick concrete slab cast in	Longitudinal (
place on top of precast panels measuring	Lateral OIV
8 ft 4 inches long x 10 ft wide x 4 inches	Longitudinal I
thick	Lateral Rided
Concrete slab, damp	THIV
· ·	ASI
10000S	Max. 0.050-s A
2011 International 4300 SUT	Longitudina
13,020 lb	Lateral
22,190 lb	Vertical
No dummy	
22,190 lb	
	Texas A&M Transportation Institute (TTI) MASH Test 4-12 469680-02-2 2020-08-10 Longitudinal Barrier—Bridge Rail TxDOT Shallow Anchorage SSTR 125 ft 1¾ inches 36-inch-tall single sloped barrier anchored to a 4½-inch-thick concrete slab cast in place on top of precast panels measuring 8 ft 4 inches long x 10 ft wide x 4 inches thick Concrete slab, damp 10000S 2011 International 4300 SUT 13,020 lb 22,190 lb No dummy 22,190 lb

..... 14.2° entation

J -	
Location/Orientation 4.5	5 ft upstream of pint 2–3
mpact Severity14	4 kip-ft
Exit Conditions	
Speed Ou	It of view
Trajectory/Heading Angle Ald	ong barrier
Occupant Risk Values	•
Longitudinal OIV 5.6	∂ft/s
Lateral OIV 9.8	3 ft/s
Longitudinal Ridedown 2.9) g
Lateral Ridedown 10	.5 g
THIV 3.4	1 m/s
ASI0.5	5
/lax. 0.050-s Average	
Longitudinal1	.6 g
Lateral 3.9) g
Vertical17	.3 g

rust-impact majectory	
Stopping Distance	229 ft downstream
	43 ft twd field side
Vehicle Stability	
Maximum Yaw Angle	17°
Maximum Pitch Angle	35°
Maximum Roll Angle	192°
Vehicle Snagging	No
Vehicle Pocketing	No
Test Article Deflections	
Dynamic	None measurable
Permanent	None measurable
Working Width	60.6 inches
Height of Working Width	150.9 inches
Vehicle Damage	
VDS	NA
CDC	NA
Max. Exterior Deformation	Vehicle rolled 192°
OCDI	NA
Max. Occupant Compartment	
Deformation	Vehicle rolled 192°

Figure 6.7. Summary of Results for MASH Test 4-12 on TxDOT Shallow Anchorage SSTR without Dowel Bars.

CHAPTER 7. *MASH* TEST 4-12 WITHOUT DOWEL BARS AND WITH CONCRETE APRON EXTENDED DOWNSTREAM OF THE BARRIER (CRASH TEST NO. 469680-02-3)

7.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

In the previous *MASH* Test 4-12 (469680-02-2), the vehicle rolled onto its roof, causing excessive occupant compartment deformation. Analysis indicated that soil in the runout area immediately downstream of the test installation contributed to the roll of the SUT after it exited the barrier system. The impact side tires and wheels furrowed into the soil, while the tires on the opposite side of the truck were on concrete pavement. *MASH* Section 3.2 states that "a flat surface, preferably paved, should be used when accelerating the test vehicle to the desired speed and to provide for unrestricted trajectory of the vehicle following impact. The surface should be free of curbs, swales, ditches, or other irregularities that could influence impact or post-impact behavior of the vehicle except when test conditions require such features."

Consequently, *MASH* Test 4-12 was repeated with a modification to the runout area. Figure 7.1 shows how the concrete apron was extended downstream of the test installation to replace the existing soil immediately beyond the end of the barrier. The extension of the concrete downstream of the barrier is considered more representative of the field applications for this system on high-speed bridge structures. The CIP for *MASH* Test 4-12 on the TxDOT shallow anchorage SSTR without dowel bars was 5 ft \pm 1 ft upstream of the centerline of the joint between Segments 1 and 2. Damage to the barrier at this location from Test No. 469680-02-1 was repaired using a non-shrink grout. Figure 3.1 and Figure 7.2 depict the target impact setup. The remaining target impact conditions for *MASH* Test 4-12 are described in Section 5.1.

The 10000S vehicle weighed 22,500 lb, and the actual impact speed and angle were 57.4 mi/h and 14.7 degrees. The actual impact point was 5.0 ft upstream of the centerline of the joint between Segments 1 and 2. Minimum target IS was 142 kip-ft, and actual IS was 160 kip-ft.

Figure 7.1. Runout Area Extended for Test No. 469680-02-3.

Figure 7.2. TxDOT Shallow Anchorage SSTR without Dowel Bars and with Concrete Apron Extended Downstream of Barrier/Test Vehicle Geometrics for Test No. 469680-02-3.

7.2. WEATHER CONDITIONS

The test was performed on the afternoon of August 19, 2020. Weather conditions at the time of testing were as follows: wind speed: 8 mi/h; wind direction: 72 degrees (vehicle was traveling at a heading of 185 degrees); temperature: 96°F; relative humidity: 23 percent.

7.3. TEST VEHICLE

Figure 7.3 shows the 2009 International 4300 SUT used for the crash test. The vehicle's test inertia weight was 22,500 lb, and its gross static weight was 22,500 lb. The height to the lower edge of the vehicle bumper was 18.25 inches, and height to the upper edge of the bumper was 33.25 inches. The height to the center of gravity of the vehicle's ballast was 61.25 inches. Table E.1 in Appendix E.1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 7.3. Test Vehicle before Test No. 469680-02-3.

7.4. TEST DESCRIPTION

Table 7.1 lists events that occurred during Test No. 469680-02-3. Figures E.1 and E.2 in Appendix E.2 present sequential photographs during the test.

Time (s)	Events
0.000	Vehicle bumper impacts barrier
0.012	Right front tire leaves pavement
0.037	Vehicle begins to redirect
0.185	Left front tire leaves pavement
0.226	Left rear tires leave pavement
0.234	Lower right rear corner of box frame contacts barrier
0.294	Vehicle travels parallel with barrier
0.650	Left front tire returns to pavement

Table 7.1. Events during Test No. 469680-02-3.

For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 65.6 ft for heavy vehicles). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied at 2.75 s after impact. After loss of contact with the barrier, the vehicle came to rest 263 ft downstream of the point of impact and 99 ft toward the field side of the barrier.

7.5. DAMAGE TO TEST INSTALLATION

Figure 7.4 and Figure 7.5 show the damage to the TxDOT shallow anchorage SSTR without dowel bars. No cracks were observed in the barrier or deck slab. No delamination was detected at the interface between the two concrete slabs. There was some gouging on the face of the concrete barrier in the impact region and on Segment 2, with scuffing running along the length of the barrier. A section of rebar was exposed on the traffic side of Segment 1 at the joint between Segments 1 and 2. Working width* was 81.5 inches, and height of working width was 142.5 inches. No dynamic deflection during the test nor permanent deformation after the test was observed.

7.6. DAMAGE TO TEST VEHICLE

Figure 7.6 and Figure 7.7 show the damage sustained by the vehicle. The front bumper, hood, right floor pan, front axle, U-bolts, spring assembly, right front tire and rim, right fuel tank and side steps, right front corner of the box, and right rear outer tire and rim were damaged due to contact with the barrier. After loss of contact with the barrier, the vehicle rolled onto its left side, which caused damage to the left front door, windshield, left side steps and battery box, and left air tanks. Maximum exterior crush to the vehicle was 16.0 inches in the side plane at the

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

right front corner at bumper height. Maximum occupant compartment deformation was 9.75 inches in the right floor pan area at the seam with the right door. Figure 7.8 shows the interior of the vehicle after the test.

Figure 7.4. TxDOT Shallow Anchorage SSTR without Dowel Bars and with Concrete Apron Extended Downstream of Barrier after Test No. 469680-02-3.

Figure 7.5. Field Side of SSTR without Dowel Bars and with Concrete Apron Extended Downstream of Barrier after Test No. 469680-02-3.

Figure 7.6. Test Vehicle after Test No. 469680-02-3.

Figure 7.7. Test Vehicle (Uprighted) after Test No. 469680-02-3.

Figure 7.8. Interior of Test Vehicle after Test No. 469680-02-3.

7.7. VEHICLE INSTRUMENTATION

Data from the accelerometers were digitized for informational purposes only and are reported in Figure 7.9. Figure E.3 in Appendix E.3 shows the vehicle angular displacements, and Figures E.4 through E.9 in Appendix E.4 show acceleration versus time traces. Figure 7.9 summarizes pertinent information from the test.

Dummy No dummy Gross Static 22,500 lb

0.400 s

0.700 s

Existing Con

4-1/2"

General Information

Test Article

Test Vehicle

TR No. 0-6968-R10

 $\frac{3}{5}$

99 [.]	
•	Exit and Heading Angle Impact Angle

0.200 s

Impact Conditions

Test Agency	Texas A&M Transportation Institute (TTI)	Śpeed	57.4 mi/h
TTI Test No.	469680-02-3	Location/Orientation	5 ft upstream of
Test Date	2020-08-19		joint 1–2
est Article		Impact Severity	160 kip-ft
Туре	Longitudinal Barrier—Bridge Rail	Exit Conditions	
Name	TxDOT Shallow Anchorage SSTR	Speed	Out of view
Installation Length	125 ft 1¾ inches	Trajectory/Heading Angle	Along barrier
Material or Key Elements	36-inch-tall single sloped barrier anchored	Occupant Risk Values	-
	to a 4½-inch-thick concrete slab cast in	Longitudinal OIV	6.2 ft/s
	place on top of precast panels measuring	Lateral OIV	11.2 ft/s
	8 ft 4 inches long x 10 ft wide x 4 inches	Longitudinal Ridedown	3.3 g
	thick	Lateral Ridedown	4.9 g
oil Type and Condition	Concrete slab, damp	THIV	4.0 m/s
est Vehicle		ASI	0.4
Type/Designation	10000S	Max. 0.050-s Average	
Make and Model	2009 International 4300 SUT	Longitudinal	−1.6 g
Curb	13,770	Lateral	−2.9 g
Test Inertial	22,500 lb	Vertical	−3.2 g
-			

Post-Impact Trajectory

8'-4" x 10'-0" pre-cast panel Typ x 15, with 1/8" joints

-cast-in-place slat

Single Slope Parape

i oot impaot i ajootory	
Stopping Distance	263 ft downstream 99 ft twd field side
Vehicle Stability	
Maximum Yaw Angle	38°
Maximum Pitch Angle	16°
Maximum Roll Angle	44°
Vehicle Snagging	No
Vehicle Pocketing	No
Test Article Deflections	
Dynamic	None measurable
Permanent	None measurable
Working Width	81.5 inches
Height of Working Width	142.5 inches
Vehicle Damage	
VDS	NA
CDC	01FREW3
Max. Exterior Deformation	16.0 inches
OCDI	NA
Max. Occupant Compartment	
Deformation	9.75 inches

Figure 7.9. Summary of Results for MASH Test 4-12 on TxDOT Shallow Anchorage SSTR without Dowel Bars and with **Concrete Apron Extended Downstream of the Barrier.**

CHAPTER 8. SUMMARY AND CONCLUSIONS

8.1. ASSESSMENT OF TEST RESULTS

The crash tests reported herein were performed in accordance with *MASH* Test 4-12 on the TxDOT shallow anchorage SSTR. During the first test (469680-02-1), the impact point was out of the ± 1 ft specification per *MASH*, but the outcome of the test was considered valid since the vehicle impacted the barrier at a location more critical for evaluation of both the barrier and anchorage system. Table 8.1 provides an assessment of this test based on the applicable safety evaluation criteria for *MASH* Test 4-12 for longitudinal barriers.

For both the second and third tests (469680-02-2 and 3), the dowel bars between barrier segments across the expansion joints were cut through such that the barrier segments were not connected. In the second test (469680-02-2), the vehicle rolled over onto its roof. Table 8.2 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 4-12 for longitudinal barriers. The third test was a repeat of the second test. It was determined that soil in the runout area at the end of the test installation contributed to the rollover of the truck in the second test. Therefore, prior to the third test (469680-02-3), the concrete apron was extended downstream of the barrier to replace the soil immediately beyond the end of the barrier to provide a runout area that was more uniform and consistent with anticipated field implementation. Table 8.3 provides an assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 4-12 for longitudinal barriers.

8.2. CONCLUSIONS

Table 8.1 and Table 8.3 show that the TxDOT shallow anchorage SSTR (with and without dowel bars between barrier segments across expansion joints) meets the performance criteria for *MASH* Test 4-12 for longitudinal barriers.

Table 8.1. Performance Evaluation Summary for MASH Test 4-12 on TxDOT Shallow Anchorage SSTR.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469680-02-1	Test Date: 2020-06-16
	MASH Test 4-12 Evaluation Criteria	Test Results	Assessment
Str	uctural Adequacy		
Α.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The TxDOT shallow anchorage SSTR contained and redirected the 10000S vehicle. The vehicle did not penetrate, underride, or override the installation. No measurable dynamic deflection or permanent deformation was observed.	Pass
Occ	cupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	No detached elements, fragments, or other debris from the test article were present to penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area. Maximum occupant compartment deformation was 2.5 inches in the right front floor pan/firewall area.	Pass
<i>G</i> .	It is preferable, although not essential, that the vehicle remain upright during and after collision.	The 10000S vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 12° and 27° .	Pass

Table 8.2. Performance Evaluation Summary for MASH Test 4-12 on TxDOT Shallow Anchorage SSTR withoutDowel Bars.

Test Agency: Texas A&M Transportation Institute	Test No.: 469680-02-2	Test Date: 2020-08-10
MASH Test 4-12 Evaluation Criteria	Test Results	Assessment
 Structural Adequacy A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable. 	The TxDOT shallow anchorage SSTR without dowel bars contained and redirected the 10000S vehicle. The vehicle did not penetrate, underride, or override the installation. No measurable dynamic deflection or permanent deformation was observed.	Pass
Occupant RiskD.Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	No detached elements, fragments, or other debris from the test article were present to penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area. Rolled over onto roof.	Fail
<i>G.</i> It is preferable, although not essential, that the vehicle remain upright during and after collision.	The 10000S vehicle rolled 192° and came to rest on its roof. <i>MASH</i> Section A2.2.1 permits only a ¹ / ₄ roll of the vehicle.	Fail

Table 8.3. Performance Evaluation Summary for MASH Test 4-12 on TxDOT Shallow Anchorage SSTR without Dowel Bars and with Concrete Apron Extended Downstream of the Barrier.

Test Agency: Texas A&M Transportation Institute	Test No.: 469680-02-3	Test Date: 2020-08-19
MASH Test 4-12 Evaluation Criteria	Test Results	Assessment
 Structural Adequacy A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable. 	The TxDOT shallow anchorage SSTR without dowel bars contained and redirected the 10000S vehicle. The vehicle did not penetrate, underride, or override the installation. No measurable dynamic deflection or permanent deformation was observed.	Pass
Occupant RiskD.Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	No detached elements, fragments, or other debris from the test article were present to penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area. Maximum occupant compartment deformation was 9.75 inches in the right floor pan at a seam location with the door.	Pass
<i>G.</i> It is preferable, although not essential, that the vehicle remain upright during and after collision.	The 10000S vehicle rolled counterclockwise and came to rest on its left side.	Pass

CHAPTER 9. IMPLEMENTATION*

The TxDOT shallow anchorage SSTR attached to a 4.5-inch-thick cast-in-place deck performed acceptably for *MASH* Test 4-12 both with and without No. 8 rebar dowels between adjacent barrier segments across expansion joints. There was no structural damage to the deck, and only minor damage to the SSTR.

MASH Test 4-10 with the 1100C passenger car and Test 4-11 with the 2270P pickup truck were considered unnecessary. When impacted by the SUT, the shallow anchorage SSTR had no dynamic or permanent movement and behaved as a rigid barrier. The SSTR has previously been successfully crash tested with the passenger vehicles, demonstrating the impact performance of the single slope profile (*3*, *4*). Thus, the TxDOT shallow anchorage SSTR attached to a 4.5-inch-thick cast-in-place deck is considered *MASH* compliant.

The shallow anchorage applications of interest to TxDOT include anchorage over a prestressed concrete panel inset from the deck edge, and on the edge of a deck over a prestressed box or slab beam. The application over a panel would have a minimum cast-in-place deck thickness of 4.5 inches, and the deck over a box or slab beam would have a thickness of at least 5 inches. The shallow anchorage over a panel was considered to be the critical case for evaluation due to the shallower anchor embedment and opportunity for concrete fracture or delamination around or beneath the anchor bars. Based on the successful *MASH* testing of this application, the less critical application of a shallow anchorage SSTR attached to the edge of a 5-inch-thick deck cast in place over a prestressed box beam or slab beam is also considered *MASH* compliant and suitable for implementation.

The 25-ft barrier segments evaluated in the tests represent a minimum segment length for field implementation. Implementation can be accomplished through revision of bridge rail standard detail sheets.

^{*} The opinions/interpretations identified/expressed in this chapter are outside the scope of TTI Proving Ground's A2LA Accreditation.

REFERENCES

- 1. AASHTO. *Manual for Assessing Roadside Safety Hardware, Second Edition.* American Association of State Highway and Transportation Officials, Washington, DC, 2016.
- 2. Nauman M. Sheikh, Roger P. Bligh, and Wanda L. Menges. *Determination of Minimum Height and Lateral Design Load for MASH Test Level 4 Bridge Rails*. Report No. 9-1002-5, Texas A&M Transportation Institute, College Station, TX, December 2011.
- 3. William F. Williams, Roger P. Bligh, and Wanda L. Menges. *MASH Test 3-11 of the TxDOT Single Slope Bridge Rail (Type SSTR) on Pan-Formed Bridge Deck.* Report No. 9-1002-3, Texas A&M Transportation Institute, College Station, TX, March 2011.
- Akram Y. Abu-Odeh, D. Lance Bullard, Jr., P.E., Wanda L. Menges, Glenn E. Schroeder, and Darrell L. Kuhn, P.E. MASH TL-5 Evaluation of 6-ft Tall Illinois Tollway Constant Slope Barrier on Cantilevered Bridge Deck with Noise Abatement Panels. Report No. 690900-ITG4-6, Texas A&M Transportation Institute, College Station, TX, December 2019.

TR No. 0-6968-R10

45

2020-12-15

47

Welded Wire

OPTIONAL WELDED WIRE REINFORCEMENT (WWR)

Q:\Accreditation-17025-2017/EIR-000 Project Files/469680 - TxDOT - Bligh\-2 Shallow Anchorage SSTR\02-2 (Additional 4-12 Test)\Drafting, 02-2/469680-02-2 Draw

DESCRIPTION	LONGITUDINAL WIRES	VERTICAL WIRES	
Minimum (Cumulative Total) Wire Area	1.067 Sq In.	0.267 Sq In. per Ft	
	No. of Wires	Spacing	
Minimum	8 4"		
Maximum	10 8"		
Maximum Wire Size Differential	The smaller wire must have an area of 40% or more of the larger wire.		

4a. This excerpt from the TxDOT Type SSTR Drawing (rlstd014) shows the allowable options for the welded wire. The contractor shall supply the fabrication drawing and material specifications for the welded wire used for the installation.	Texas A&M Transportation Institute		Roadside Safety and Physical Security Division - Proving Ground	
	Project #469	9680-02-2 Shallov	v Anchorage SSTR	2020-07-14
- ·	Drawn by GES	Scale 1:200	Sheet 4 of 4 Welded	Wire

APPENDIX B. SUPPORTING CERTIFICATION DOCUMENTS

Proving Ground¶ 3100 SH 47, Bidg 700 Bryan, TX 7780711 • Quis The information cont	Texas A&M Transportatio Institute Tayas A&M-UniversityI College Station, TX:-77843 Phone 979-845-837511 ality ·Forma tained in this document is college	Prepared-by: Approved-by Infidential to TTI Proving	V.3-01Concret Sampling¤ Wanda L. Menges¶ Darrell L. Kuhn¤ Ground.¶	e.	Doc. No.¶ ¶ <i>QF-7.3-01</i> ¤ Revision: ↔ 6¤	Issue Date: ← ← 2018-06-18¤ Page:¶ 1 of 1¤ C
Project No:	469680-2	Casting Date:	5/4/2020	Mix De	sign (psi): <u>4</u>	000 psi
Name of Technician Taking Sample	Terac	on	Name of Technician Breaking Sample		Terac	on
Signature of Technician Taking Sample	Terac	on	Signature of Technician Breaking Sample		Terac	on
Load No.	Truck No.	Ticket No.	Locati	ion (fro	m concrete r	nap)
⊤1	⊤ucker	449	First 10 Bl	locks sta	arting from th	ne south
Τ2	⊤ucker	858	Las	t 5 bloc	ks in the nort	h
Load No.	Break Date	Cylinder Age	Total Load (lbs)	Bre	ak (psí)	Average
	2	see attached Rep	orts from Terracon			

TUCKER_concrete

9797776749 1904

TUCKER_CONST TTI_LOWER_ANCHORAGE

TICKET # 858

 START
 DATE:
 2020-05-04
 TIME:
 10:37:31

 STOP
 DATE:
 2020-05-04
 TIME:
 11:07:14

MIX DESIGN: B1500

RAW CEMENT COUNTS: 3943 RAW CONVEYOR COUNTS: 134158 CONVEYOR SPEED: 45 TOTAL YARDS 5.5

MATERIAL	R	A	Т	E		S	E	Т	T	1	NG	1	()	Т	A	L				
CEMENT	8		4	5	9	2	4	L	B	S	1	3	1	2	5	1		7	9	2	
SAND	4		3	7	8	5	3		G	A	Т	7	()	3	0	,	1	8	L	
ADJUSTED :																					
STONE	5		7	0	1	8	5	3		G	A	ç	1	7	0	9		1	0	4	
ADJUSTED :																					
WATER	2	1		4	8	2	2	2	G	A	L			3	8		1	0	1	6	
ADMIX #1	0		0	0	Ζ	1	M	1	N			()		0	0	Z				
ADMIX #2	1	2	4		6	0	4	1	9	0	Z	8	3 1)	5		0	8	1	2	
ADMIX #3	0		0	0	Z	1	M	1	N			()		0	0	Z				

ASTM DATA AVAILABLE UPON REQ

Name_____ NOTES:

Т	L	J	(3		K		E		F	2				(;	(0		N	J	(3		R		E		1	-	E					
		8	97	3	0	7	L 7	A 7	-	Y 6	7	W 4	8	L	L		R	D	v	M	s 1	8	0	2												
		J	0 T	b I		# A	N	TC	UH	CR	K I	ED	RG	E											•											
S 1 S 1	A	RP	T		D	A	T	E	: :	1	C	0	55	1	0	# 4 4	1	2 2	0	2 2	0		4 T T	4	M M	E	:		0	8		43	97	::	42	1
R A R A		~	CC	EO	MN	EV	NE	M T Y	0	X C R	0	DUC	ENO	STU	I S N	G	S	-	C	B	1	5	0	0	-		1		2		85	0 9	79	6 8		
	1	-	,			F		-				I	ľ	-	Г	1	L)	3								1	1)	•		J		U		
N C L F V S	A R G A	TPMBTKM	ETSLEAA	RYAER6X	I P N N 8	A E D D 6 G	L 1	M		2	R 3	A .	4 4	E 8 5 5 2	7.51	S . 2 9	E 4 5 0 M	TLGGGGA	T B A P P X	I T T M	MEE	G	P	Y		1 1 2	6 4 3 1 9 1	T 4 1 3 5 1 2 0 1 2 . 5	C 5 1 9	0 0 6	A 4 2 3 G G		BBBLL	SSSS		
N	10	M T	E	S		-	-									L	[5	1	6	C	f(0	1	ſ	2			-	-	-	-	-		

Report Number: A1171057.0114 Service Date: 05/04/20 **Report Date:** 05/04/20 PO #469680-02 Task:

College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

Client			Project			
Texas Transportation Instit Attn: Gary Gerke TTI Business Office	tute		Riverside Campus Riverside Campus Bryan, TX			
3135 TAMU			-			
College Station, TX 77843	3-3135		Project Number: A1171057			
Material Information	n		Sample Information			
Specified Strength: 5,00	00 psi @ 2	8 days	Sample Date: Sampled By: Weather Conditions:	05/04/20 Cullen Tur Cloudy, lie	Sample Time: ney ht wind	1007
Supplier: Tucker Batch Time: 0949	Plant: Ticket No. •	440	Accumulative Yards: Placement Method: Weten A dded Before (gal):	10.5/16 Direct Disc	Batch Size (cy): charge	10.5
Field Test Data	Ticket No.:	449	Water Added Before (gal): Water Added After (gal): Sample Location:	0 3rd Panel		
Test	Result	Specification	Placement Location:	Panels		
Slump (in):	4	Not Specified				
Air Content (%):	2.4	Not Specified				
Concrete Temp. (F):	oncrete Temp. (F): 76 40 - 95					

Laboratory Test Data

Ambient Temp. (F): Plastic Unit Wt. (pcf):

Yield (Cu. Yds.):

ratory les	st Data				Age at	Maximum	Compressive				
Specimen ID	Avg Diam. (in)	Area (sq in)	Date Received	Date Tested	Test (days)	Load (lbs)	Strength (psi)	Fracture Type	Tested By		
A	6.00	28.27	05/05/20	06/15/20	42 F	136,970	4,840	1	SLS		
В	6.00	28.27	05/05/20	06/15/20	42 F	141,110	4,990	2	SLS		
С	6.00	28.27	05/05/20	06/15/20	42 F	149,090	5,270	1	SLS		
D			05/05/20		Hold						
Initial Cure: Outside Final Cure: Field Cured											
	Specimen Specimen ID A B C D Cure: Outsi	ratory lest Data Specimen Avg Diam. $\begin{array}{c c} ID & (in) \\ \hline A & 6.00 \\ B & 6.00 \\ C & 6.00 \\ D \\ \hline \\ Cure: Outside \end{array}$	ID (in) (sq in) A 6.00 28.27 B 6.00 28.27 C 6.00 28.27 D 0 28.27 C 6.00 28.27 D 0 28.27 D 0 28.27	ID (in) (sq in) Received A 6.00 28.27 05/05/20 B 6.00 28.27 05/05/20 C 6.00 28.27 05/05/20 D 0 28.27 05/05/20 C 6.00 28.27 05/05/20 D 05/05/20 05/05/20 D 05/05/20 05/05/20 Cure: Outside Final Cure	ID Avg Diam. Area Date Date ID (in) (sq in) Received Tested B 6.00 28.27 05/05/20 06/15/20 C 6.00 28.27 05/05/20 06/15/20 D 0 28.27 05/05/20 06/15/20 D 0 28.27 05/05/20 06/15/20 D 0 05/05/20 06/15/20 D 05/05/20 06/15/20 05/05/20 D 05/05/20 05/05/20 06/15/20 D 05/05/20 05/05/20 06/15/20 D 05/05/20 05/05/20 05/05/20	ID (in) (sq in) Received Tested (days) A 6.00 28.27 05/05/20 06/15/20 42 F B 6.00 28.27 05/05/20 06/15/20 42 F C 6.00 28.27 05/05/20 06/15/20 42 F D 05/05/20 06/15/20 42 F 1000000000000000000000000000000000000	ID Area (in) Area (sq in) Date Received Date Tested Test (days) Maximum Load ID (in) (sq in) Received Tested (days) (lbs) A 6.00 28.27 05/05/20 06/15/20 42 F 136,970 B 6.00 28.27 05/05/20 06/15/20 42 F 141,110 C 6.00 28.27 05/05/20 06/15/20 42 F 149,090 D 05/05/20 06/15/20 42 F 149,090 149,090 D 05/05/20 Hold F 149,090 149,090 D 05/05/20 Final Cure: Field Cured F	ID (in) (sq in) Date Date Tested (days) (lbs) (gsi) (gsi) A 6.00 28.27 05/05/20 06/15/20 42 F 136,970 4,840 B 6.00 28.27 05/05/20 06/15/20 42 F 141,110 4,990 C 6.00 28.27 05/05/20 06/15/20 42 F 141,110 4,990 D 05/05/20 06/15/20 42 F 149,090 5,270 D 05/05/20 Hold Final Cure: Field Cured Field Cured	ID (in) (sq in) Received Tested (days) (lbs) (psi) Type B 6.00 28.27 05/05/20 06/15/20 42 F 136,970 4,840 1 C 6.00 28.27 05/05/20 06/15/20 42 F 141,110 4,990 2 D 05/05/20 06/15/20 42 F 141,990 5,270 1 D 05/05/20 06/15/20 42 F 149,090 5,270 1 D 05/05/20 06/15/20 Hold E 149,090 5,270 1		

40 - 95

Not Specified

Comments: F = Field Cured

Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Cullen Turney

Reported To:

Contractor:

Report Distribution: (1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Alex Dunigan, P.E.

79

146.0

(1) Texas Transportation Institute, Bill Griffith

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 1 of 2

CR0001, 11-16-12, Rey 6

Start/Stop: 0930-1200

81

146.8

Report Number: A1171057.0114 Service Date: 05/04/20 **Report Date:** 05/04/20 Task: PO #469680-02

10/10	000002		,	13 010 5701	100511011 5272	
Client			Project			
Texas Transportation Inst	itute		Riverside Campus			
Attn: Gary Gerke			Riverside Campus			
TTI Business Office			Bryan, TX			
3135 TAMU						
College Station, TX 7784	3-3135		Project Number: A1171057			
Material Informatio	n		Sample Information			
Specified Strength: 5,0)00 psi @ 2	8 days	Sample Date:	05/04/20	Sample Time:	1045
		-	Sampled By:	Cullen Tur	ney .	
Mix ID: B1500			Weather Conditions:	Cloudy, lig	zht wind	
Supplier: Tucker			Accumulative Yards:	16/16	Batch Size (cv):	5.5
Batch Time: 1037	Plant:		Placement Method:	Direct Dis	charge	
Truck No.:	Ticket No.:	858	Water Added Before (gal):	0	C	
			Water Added After (gal):	0		
Field Test Data			Sample Location:	12th Panel		
Test	Result	Specification	Placement Location:	Panels		
Slump (in):	4 3/4	Not Specified				
Air Content (%):	2.1	Not Specified				
Concrete Temp. (F):	83	40 - 95				

Laboratory Test Data

Ambient Temp. (F):

Yield (Cu. Yds.):

Plastic Unit Wt. (pcf):

Labo	ratory Te	st Data				Age at	Maximum	Compressive		
Set	Specimen	Avg Diam.	Area	Date	Date	Test	Load	Strength	Fracture	Tested
No.	ID	(in)	(sq in)	Received	Tested	(days)	(lbs)	(psi)	Туре	By
2	A	6.00	28.27	05/05/20	06/15/20	42 F	160,640	5,680	1	SLS
2	В	6.00	28.27	05/05/20	06/15/20	42 F	161,570	5,710	1	SLS
2	С	6.00	28.27	05/05/20	06/15/20	42 F	160,280	5,670	2	SLS
2	D			05/05/20		Hold				
Initial Cure: Outside Final Cure: Field Cured										

40 - 95

Not Specified

Comments: F = Field Cured

Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Cullen Turney

Reported To:

Contractor:

Report Distribution: (1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Alex Dunigan, P.E. (1) Texas Transportation Institute, Bill Griffith

Reviewed By:

Start/Stop: 0930-1200

Alexander Dunigan

Project Manager

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 2 of 2

CR0001, 11-16-12, Rev.6

TR No. 0-6968-R10

-	Proving Ground 3100 SH-47, BHg TOO Bryan, TX:77807 Qui The information con Project No:	Texas A&M Transportation Texas A&M University[Texas A&M University] Texas A&M Universit	on 311 confident C	QF.7. Prepared by: V Approved by: ual to TT Proving asting Date:	3-01Concret Sampling¤ Vanda L. Menges¶ Darrell L. Kuhn¤ Ground.¶ 5/13/2020	e. Mix De	Doc. ·No.¶ ¶ <i>QF-7.3-01¤</i> Revision: ← 6¤ esign (psi): 4	Issue Date: ← ← 2018-06-18¤ Page:¶ 1 • of 1¤ 0000 psi
Nar	ne of Technician Taking Sample Signature of Technician	Tera	icon		Name of Technician Breaking Sample Signature of Technician Breaking		Terac	con
	Taking Sample	l era	icon T		Sample		lerac	con
	Load No.	Truck No.		ICKET NO.	Locat	ion (fro	om concrete	map)
	Τ1	Tucker		1407	30' of	northe	rn portion of	deck
	Τ2	Tucker		102	Remaining	deck u	p to 6 feet in	the south
	Τ3	⊤ucker		481	Remaining 6	foot se	ction of deck	in the south
	Load No.	Break Date	Су	linder Age	Total Load (lbs)	Bre	ak (psi)	Average
			See a	attached Repo	orts from Terracon			
			 					

TUCKER COR 8930 LACY WELL RE 77845 979 777 Job # TUCKER CONS TTI TICKET # START DATE: 05/13/2 STOP DATE: 05/13/2 MIX DESIGN RAW CEMENT COUNTS RAW CONVEYOR COUNTS TOTAL YARD MATERIAL RATE SET CAPTYPE1 448.3L LRMSAND 5.6 G RGBLND 5.6 G RGBL	ncrete 6749 TRUCTION 102 020 TIME: 11:15:05 020 TIME: 12:17:23 B1400 14704 5480 S 10.64 TING 5500.8LBS ATE 14511.9LBS ATE 20041.8LBS PM 275.0GAL PM 10.6GAL RATIO 0.42 INFORMATION	TUCKER C 8930 LACY WELL 978 777 6748 V Job # TUCKER CO SHALLOW ABCHORA TICKET # START DATE: 05/13 STOP DATE: 05/13 MIX DESIG RAW CEMENT COUNTS RAW CONVEYOR COUNTS TOTAL YAR MATERIAL RATE SE CAPTYPE1 474.7 LRMSAND 5.5 RGBLEND 7.1 WATER 28.5 SIKA686 0.8 MAX GPY 22.53	Oncrete RD, 77845 M1803 NST G 1407 12020 TIME: 11:00:06 12020 TIME: 11:30:45 N B1400 5223 3320 DS 7.96 TTING GATE 9206.9LBS GATE 9206.9LBS GATE 12715.2LBS GATE 12715.2LBS GATE 12715.2LBS GATE 12715.2LBS M B4.7gal GPM 8.0GAL MAX GPM 22.7
N A M E		CONTINUED FROM_	1406
CONTINUED FROM	101		.)
	(({()		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TUCKER CONCRETE 8930 LACY WELL RD CS 8930 LACY WELL RD CS 979-777-6749 VM1802 Job # TUCKER TTI 1 ICKET # 481 TTI 1 ICKET # 481 START DATE: 05/13/2020 TIME: 11:35:24	RAW CEMENT COUNTS RAW CONVEYOR COUNTS <b>TOTAL YARDS</b> <b>1.51</b> MATERIAL RATE SETTING CAPTYPE1 487.4LBPM CAPTYPE1 487.4LBPM CAPTYPE1 487.4LBPM CAPTYPE1 487.4LBPM 7.1 GATE 2061.3LBS LRMSAND 7.1 GATE 2061.3LBS RGBLEND 7.1 GATE 2061.3LBS RAGBLEND 7.1 GATE 2061.3LBS RAGBLEND 7.1 GATE 2061.3LBS RAGBLEND 7.1 GATE 2061.3LBS RAGBLEND 7.1 GATE 2051.3LBS RAGBLEND 7.1 CATE 2051.3	NOTES: Ulffldd-2

Report Number: A1171057.0115 Service Date: 05/13/20 **Report Date:** 05/14/20 Task: PO #469680-02



979-846-3767 Reg No: F-3272

Client			Project			
Texas Transportation Inst Attn: Gary Gerke TTI Business Office 3135 TAMU	titute		Riverside Campus Riverside Campus Bryan, TX			
College Station, TX 7784	43-3135		Project Number: A1171057			
Material Informatio	n		Sample Information			
Specified Strength: 3, Mix ID: B1400	000 psi @ 2	8 days	Sample Date: Sampled By: Weather Conditions:	05/13/20 Sam Mohammed Mobe Partly cloudy, ligh	ple Time: een it wind	1100
Supplier: Tucker Co Batch Time: 1100 Truck No :	ncrete Plant: Ticket No :	1406	Accumulative Yards: Placement Method: Water Added Before (gal):	7.96/20 Bate Direct Discharge	h Size (cy):	7.96
Field Test Data	TRACT 100	1400	Water Added After (gal): Sample Location:	0 Northside		
Test	Result	Specification	Placement Location:	Colorado deck		
Slump (in):	7 1/2	Not Specified				
Air Content (%):	1.4	Not Specified				
Ambient Temp. (F):	80 75	40 - 95				

#### Laboratory Test Data

Plastic Unit Wt. (pcf):

Yield (Cu. Yds.):

Labo	ratory Te	st Data				Age at	Maximum	Compressive		
Set No	Specimen	Avg Diam.	Area	Date Received	Date Tested	Test (days)	Load	Strength	Fracture	Tested
140.		(11)	<u>(sq m)</u>	Received	Testeu	(uays)	(108)	(hai)	Турс	Dy
1	A	6.00	28.27	05/14/20	06/15/20	33 F	149,520	5,290	2	SLS
1	В	6.00	28.27	05/14/20	06/15/20	33 F	144,480	5,110	1	SLS
1	С	6.00	28.27	05/14/20	06/15/20	33 F	146,360	5,180	1	SLS
1	D			05/14/20		Hold				
Initial	Cure: Outsi	ide		Final C	ure: Field Cu	red				

Not Specified

Comments: Not tested for plastic unit weight. F = Field Cured

#### Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Start/Stop: 0930-1400

Terracon Rep.: Mohammed Mobeen

Reported To:

Contractor:

**Report Distribution:** 

(1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Alex Dunigan, P.E.

(1) Texas Transportation Institute, Bill Griffith

#### Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 1 of 3

CR0001, 11-16-12, Rey 6

Report Number: A1171057.0115 Service Date: 05/13/20 **Report Date:** 05/14/20 PO #469680-02 Task:



College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

Client			Project		
Texas Transportation Institu Attn: Gary Gerke TTI Business Office 3135 TAMU	te		Riverside Campus Riverside Campus Bryan, TX		
College Station, TX 77843-	3135		Project Number: A1171057		
Material Information			Sample Information		
Specified Strength: 3,000 Mix ID: B1400	) psi @ 2	28 days	Sample Date: Sampled By: Weather Conditions:	05/13/20 <b>Sample Time:</b> Mohammed Mobeen Partly cloudy	1230
Supplier: Tucker Conc	rete		Accumulative Yards:	10.64/20 Batch Size (cy):	10.64
Batch Time: 1115	Plant:		Placement Method:	Direct Discharge	
Truck No.:	Ticket No.:	102	Water Added Before (gal):	0	
Field Test Data			Water Added After (gal): Sample Location:	0 South side	
Test	Result	Specification	Placement Location:	Colorado deck	
Slump (in):	7	Not Specified			
Air Content (%):	1.4	Not Specified			
Concrete Temp. (F):	86	40 - 95			
Ambient Temp. (F):	75	40 - 95			

#### Laboratory Test Data

Plastic Unit Wt. (pcf):

Yield (Cu. Yds.):

Laboratory Test Data						Age at	Maximum	Compressive		
Set	Specimen	Avg Diam.	Area	Date	Date	Test	Load	Strength	Fracture	Tested
INO.	<u> </u>	<u>(III)</u>	<u>(sq m)</u>	Received	Tested	(days)	(105)	(psi)	Туре	ву
2	A	6.00	28.27	05/14/20	06/15/20	33 F	148,500	5,250	2	SLS
2	В	6.00	28.27	05/14/20	06/15/20	33 F	141,290	5,000	2	SLS
2	С	6.00	28.27	05/14/20	06/15/20	33 F	148,510	5,250	2	SLS
2	D			05/14/20		Hold				
Initial	Cure: Outsi	ide		Final C	ure: Field Cu	red				

Not Specified

Comments: Not tested for plastic unit weight. F = Field Cured

#### Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Start/Stop: 0930-1400

Terracon Rep.: Mohammed Mobeen

Reported To:

Contractor:

**Report Distribution:** 

(1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Alex Dunigan, P.E.

(1) Texas Transportation Institute, Bill Griffith

#### Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 2 of 3

CR0001, 11-16-12, Rey 6

Report Number: A1171057.0115 Service Date: 05/13/20 **Report Date:** 05/14/20 Task: PO #469680-02



10.11	0,000 02		,		100511011 02/2					
Client			Project							
Texas Transportation Ins	stitute		Riverside Campus							
Attn: Gary Gerke			Riverside Campus							
TTI Business Office			Bryan TX							
3135 TAMU										
College Station, TX 778	43-3135		Project Number: A1171057							
Material Information	on		Sample Information							
Specified Strength: 3.	,000 psi @ 2	8 days	Sample Date:	05/13/20	Sample Time:	1300				
		•	Sampled By:	Mohammed Mobeen						
Mix ID: B1400			Weather Conditions:	Partly cloudy, light wind						
Supplier: Tucker C	oncrete		Accumulative Yards:	1.51/20	Batch Size (cy):	1.51				
Batch Time: 1217	Plant:		Placement Method:	Direct Discharge						
Truck No.:	Ticket No.:	481	Water Added Before (gal):	0	0					
			Water Added After (gal):	0						
Field Test Data			Sample Location:	South side						
Test Result Specification			Placement Location:	Colorado deck						
Slump (in):	7 1/2	Not Specified								
Air Content (%):	1.5	Not Specified								
Concrete Temp. (F): 88 4		40 - 95								
Ambient Temp. (F): 76 40 - 95										

#### Laboratory Test Data

Plastic Unit Wt. (pcf):

Yield (Cu. Yds.):

Laboratory Test Data						Age at	Maximum	Compressive		
Set	Specimen	Avg Diam.	Area	Date	Date	Test	Load	Strength	Fracture	Tested
No.		(in)	(sq in)	Received	Tested	(days)	(lbs)	(psi)	Туре	By
3	A	4.00	12.57	05/14/20	06/15/20	33 F	62,640	4,980	1	SLS
3	В	4.00	12.57	05/14/20	06/15/20	33 F	57,350	4,560	1	SLS
3	С	4.00	12.57	05/14/20	06/15/20	33 F	68,780	5,470	1	SLS
3	D	4.00	12.57	05/14/20	06/15/20	33 F				
3	E			05/14/20		Hold				
Initial Cure: Outside Final Cur					ure: Field Cu	red				

Not Specified

Comments: Not tested for plastic unit weight. F = Field Cured

#### Samples Made By: Terracon

Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and Services: test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Mohammed Mobeen

**Reported To:** 

Contractor:

#### **Report Distribution:**

(1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Alex Dunigan, P.E. (1) Texas Transportation Institute, Bill Griffith

**Reviewed By:** 

Start/Stop: 0930-1400

Alexander Dunigan

Project Manager

#### Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 3 of 3

CR0001, 11-16-12, Rev.6

TR No. 0-6968-R10

-	Proving-Ground1 3100-SH-47, Bidg-709 Bryan, :TX:778071 Qui The information com	Texas A&M Transportation Texas A&M University[] College Station. TX- 77843 Phone 079-845-63761] ality ·Form¤ tained in this document is co	on M onfident	QF.7. Prepared by: V Approved by: iai to TTI Proving (	.3-01Concret Sampling Wanda L. Menges Darrell L. Kuhn¤ Ground	œ.	Doc.·No.¶ ¶ <i>QF-7.3-01</i> ¤ Revision: ← 6¤	Issue Date: ← ↓ 2018-06-18¤ Page:¶ 1.of·1¤ C	
	Project No:	469680-2	с	asting Date:	5/21/2020	Mix D	esign (psi): <u>3</u>	8600 psi	
Nar	ne of Technician Taking Sample	Tera	con		Name of Technician Breaking Sample		Teracon		
	Signature of Technician Taking Sample	Tera	con		Signature of Technician Breaking Sample		Terac	con	
	Load No.	Truck No.	Т	icket No.	Locat	ion (fro	om concrete	map)	
	T <b>1</b>	Tucker		134		North 3	8/4 of barrier		
	⊤2	Tucker		914 sout			./4 of barrier		
	Load No.	Break Date	Су	linder Age	Total Load (lbs)	Bro	eak (psi)	Average	
			See a	ttached Repo	orts from Terracon				
# TUCKER Concrete 8930 LACY WELL RD 77845 979 777 6749

Job # TUCKER COSTRUCTION TTI

TICKET # 134 START DATE: 05/21/2020 TIME: 14:10:04 STOP DATE: 05/21/2020 TIME: 14:52:22

MIX DESIGN B1400 RAW CEMENT COUNTS RAW CONVEYOR COUNTS

RAW	CONVEY	DR COUN	JNTS			1	34	0	6 0	)
Т	DTAL	YA	R	DS	9			4	5	5
MAT CAP LRN RGB	ERIAL TYPE1 ISAND LND	RATE 44 5	SE 8.3 .6 .8	TTING LBPM GATE GATE	T C 4 8 8 5 1 2 8 7 8 1 7 7 8 5	) T	A 8 0 2		3 5	

5.6 GATE 6.8 GATE 26.9 GPM 17785.2LBS 258.7GAL WATER SIKA686 0.9GPM 9.5GAL WATER / CEMENT RATIO 0.4 REQUEST ASTM INFORMATION 0.44

NAME NOTES :

# TUCKER_concrete

9797776749 1904 TUCKER CONST TTI

TICKET # 914

 START DATE:
 2020-05-21
 TIME:
 14:43:35

 STOP
 DATE:
 2020-05-21
 TIME:
 15:05:58

## MIX DESIGN: B1400

RAW CEMENT COUNTS: 1635 RAW CONVEYOR COUNTS: 55574 CONVEYOR SPEED: 45 TOTAL YARDS 2.75

MATERIAL	RATE SETTING	T O T A L
CEMENT	8.45924LBS/	1 3 4 8 . 3 8 4
SAND	5.248304 GA	3 5 5 1 . 2 0 2
ADJUSTED STONE	6.848384 GA	4904.412
ADJUSTED	24.03363GAL	70.21GAL
WATER	0.00Z/MIN	0.00Z
ADMIX #1	127.624890Z	339.0704
ADMIX #2	0.00Z/MIN	0.00Z

# ASTM DATA AVAILABLE UPON REQ

Name NOTES :

#### CONCRETE COMPRESSIVE STRENGTH TEST REPORT

Report Number: A1171057.0117 Service Date: 05/21/20**Report Date:** 05/21/20 PO #469680-02 Task:



979-846-3767 Reg No: F-3272

		Project								
ıte		Riverside Campus Riverside Campus Bryan, TX								
-3135		Project Number: A1171057								
Texas Transportation Institute         Attn: Gary Gerke         TTT Business Office         3135 TAMU         College Station, TX 77843-3135         Material Information         Specified Strength: 3,000 psi @         Mix ID:       B1400         Supplier:       Tucker Concrete         Batch Time:       1410         Plant:       Ticket No.:         Truck No.:       Ticket No.:         Stell Test Data       Specification         Slump (in):       8 1/2         Air Content (%):       1.9			Sample Information							
0 psi @		Sample Date: Sampled By: Weathan Conditioner	05/21/20 Justin Maa	Sample Time:	1415					
rete		Accumulative Vards:	- Cloudy, ng - 10/12	Batch Size (cy):	2					
Plant: Ticket No.:	134	Placement Method: Water Added Before (gal):	Direct Dise	charge	2					
		Water Added After (gal): Sample Location:	0 Southeast /	end						
Result 8 1/2	Specification Not Specified	Placement Location:	PO #4696	80-02						
1.9	Not Specified									
90 86 146.4	40 - 95 40 - 95 Not Specified									
	nte -3135 0 psi @ rrete Plant: Ticket No.: <u>Result</u> 8 1/2 1.9 90 86 146.4	nte -3135 0 psi @ xrete Plant: Ticket No.: 134 <u>Result</u> <u>Specification</u> 8 1/2 Not Specified 1.9 Not Specified 90 40 - 95 86 40 - 95 146.4 Not Specified	Project         nte       Riverside Campus Riverside Campus Bryan, TX         -3135       Project Number: A1171057         -3135       Project Number: A1171057         -3135       Project Number: A1171057         -3135       Sample Information         0 psi @       Sample Date: Sample By: Weather Conditions: Accumulative Yards: Placement Method: Placement Method: Water Added Before (gal): Water Added Before (gal): Water Added After (gal): Sample Location: Placement Location:         Result       Specification Not Specified         90       40 - 95 86         86       40 - 95 146.4	<b>Project</b> iteRiverside Campus Riverside Campus Bryan, TX $3135$ Project Number: A1171057 <b>Sample Information</b> 0 psi @Sample Date: Sampled By: Veather Conditions: Direct Dise0 psi @Sample Date: Sampled By: Plant: Ticket No.: 134Mathematical Water Added Before (gal): Not Specified 1.9Not Specified Placement Location:ResultSpecification 90 40 - 95 86 146.4Specified Not Specified	ProjectIteRiverside Campus Riverside Campus Bryan, TX33135Project Number: A1171057Sample Information0 psi @Sample Date: Sample Date: Sampled By: Plat: Ticket No.: 13405/21/20 Sample Time: Sampled By: Placement Method: Placement Method: Direct Discharge Water Added Before (gal): 0 Sample Location: Placement Location:05/21/20 Sample Time: Sample Could, light wind Accumulative Yards: Direct Discharge Water Added Before (gal): 0 Sample Location: Placement Location:05/21/20 Sample Time: Sample Could, light wind Direct Discharge O O Sample Location: Placement Location:05/21/20 Sample Time: Sample Could, light wind Direct Discharge O O Sample Location: Placement Location:Placement Method: Placement Location: Placement Location:00 Plate9680-02					

#### Laboratory Test Data

Set No.	Specimen ID	Avg Diam. (in)	Area (sq in)	Date Received	Date Tested	Test (days)	Load (lbs)	Strength (psi)	Fracture Type	Tested By
1	A	6.00	28.27	05/22/20	06/15/20	25 F	121,650	4,300	1	SLS
1	В	6.00	28.27	05/22/20	06/15/20	25 F	125,180	4,430	1	SLS
1	С	6.00	28.27	05/22/20	06/15/20	25 F	119,860	4,240	1	SLS
1	D			05/22/20		Hold				
Initial	Cure: Outs	ide		Final C	ure: Field Cu	red				

Age at Maximum Compressive

Start/Stop: 1315-1530

Comments: F = Field Cured

Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Justin Maass

Reported To:

Contractor:

#### **Report Distribution:**

(1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Alex Dunigan, P.E.

(1) Texas Transportation Institute, Bill Griffith

#### Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 1 of 2

CR0001, 11-16-12, Rey 6

#### CONCRETE COMPRESSIVE STRENGTH TEST REPORT

Report Number: A1171057.0117 Service Date: 05/21/20 **Report Date:** 05/21/20 Task: PO #469680-02



Client			Project			
Texas Transportation Instit Attn: Gary Gerke TTI Business Office 3135 TAMU	tute		Riverside Campus Riverside Campus Bryan, TX			
College Station, TX 77843	-3135		Project Number: A1171057			
Material Information	1		Sample Information			
Specified Strength: 3,00 Mix ID: B1400 Supplier: Tucker Con Batch Time: 1443 Truck No.: Field Test Data	00 psi @ crete Plant: Ticket No.:	914	Sample Date: Sampled By: Weather Conditions: Accumulative Yards: Placement Method: Water Added Before (gal): Water Added After (gal): Sample Location:	05/21/20 Justin Maass Cloudy, light 12/12 Direct Disch 0 0 Southeast en	Sample Time: i Batch Size (cy): arge d	1445 10
Test	Result	Specification	Placement Location:	PO #469680	-02	
Slump (in): Air Content (%): Concrete Temp. (F): Ambient Temp. (F): Plastic Unit Wt. (pcf): Vield (Cu. Vds.):	7 1/2 1.9 90 87 147.0	Not Specified Not Specified 40 - 95 40 - 95 Not Specified				

#### Laboratory Test Data

Labo	ratory Te	st Data				Age at	Maximum	Compressive		
Set	Specimen	Avg Diam.	Area	Date	Date	Test	Load	Strength	Fracture	Tested
No.	ID	(in)	(sq in)	Received	Tested	(days)	(lbs)	(psi)	Туре	By
2	A	6.00	28.27	05/21/20	06/15/20	25 F	113,350	4,010	3	SLS
2	В	6.00	28.27	05/21/20	06/15/20	25 F	114,210	4,040	1	SLS
2	С	6.00	28.27	05/21/20	06/15/20	25 F	127,430	4,510	3	SLS
2	D			05/21/20		Hold				
Initial	Cure: Outsi	ide		Final C	ure: Field Cu	red				

Comments: F = Field Cured

Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Justin Maass

Reported To:

Contractor:

Report Distribution: (1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Alex Dunigan, P.E. (1) Texas Transportation Institute, Bill Griffith

**Reviewed By:** 

Start/Stop: 1315-1530

Alexander Dunigan

Project Manager

#### Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 2 of 2

CR0001, 11-16-12, Rev.6

TR No. 0-6968-R10



CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510 CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771 We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Rolando A Davila

Quality Assurance Manager

HEAT NO.:3094958 SECTION: REBAR 13MM (#4) 40'0" GRADE: ASTM A615-18e1 Gr 420/6 ROLL DATE: 02/25/2020 MELT DATE: 02/16/2020 Cert. No.: 83003292 / 094958A371	M (#4) 40'0" 420/60         S         CMC Construction Svcs College Stati         S         CMC Construction Svcs College Stati         H           le1 Gr 420/60         L         10650 State Hwy 30         I         I         I         10650 State Hwy 30         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I		College Stati	Delivery#: 83003292 BOL#: 73447157 CUST PO#: 842514 CUST P/N: DLVRY LBS / HEAT: 19881.000 LB DLVRY PCS / HEAT: 744 EA				
Characteristic	Value		Characteristic		Value		Characteristic	Value
C Mn P Si Cu Cr Ni Mo V	0.44% 0.85% 0.008% 0.046% 0.33% 0.10% 0.10% 0.19% 0.074% 0.000%		Bend Test Diam	eter	1.750IN	The Following is *Material is fully k	true of the material repre	esented by this MTR:
Сь	0.001%					*100% meited an	d rolled in the USA	
Sn Al	0.020% 0.000%					*Contains no well *Contains no Well	. i compliant d repair rcury contamination	
Yield Strength test 1 Tensile Strength test 1 Elongation test 1 Elongation Gage Lgth test 1 Tensile to Yield ratio test1 Bend Test 1	68.2ksi 106.1ksi 14% 8IN 1.56 Passed					*Manufactured in of the plant qua *Meets the "Buy / *Warning: This p known to the St or other reprodu	accordance with the latest lity manual America" requirements of 2 roduct can expose you to o late of California to cause o citive harm. For more infor	version 23 CFR635.410, 49 CFR 661 chemicals which are cancer, birth defects mation go
						to www.P65Warn	ings.ca.gov	

REMARKS :

Page 1 OF 1 02/26/2020 23:31:24



17

CMC

CMC STEEL TENNESSEE 1919 Tennessee Avenue Knoxville TN 37921-2686 CERTIFIED MILL TEST REPORT For additional copies call

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Jim Hall U

Quality Assurance Manager

HEAT NO.:7008674 SECTION: REBAR 13MM (#4) 20'0" 42 B150 GRADE: ASTM A615-20 Gr 420/60 ROLL DATE: MELT DATE: 03/31/2020 Cert. No.: 83060448 / 008674L771	20/60 (       	S CMC Con 10650 St College S US 77845 979 774	struction Svcs College Stati ate Hwy 30 tation TX 5-7950 5900	S H I P T O	CMC Construction Svcs C 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	College Stati	Delivery#: 83060448 BOL#: 73535610 CUST PO#: 847776 CUST P/N: DLVRY LBS / HEAT: 28056.000 LB DLVRY PCS / HEAT: 2100 EA
Characteristic Va	alue		Characteristic	Valu	e	Charac	teristic Value
C 0.	.31%		Rebar Deformation Avg. S	Spaci	0.330IN		
Mn 0.	.66%		Rebar Deformation Avg. H	leigh	0.033IN		
P 0.	.008%		Rebar Deformation Max.	Gap	0.130IN		
S 0.	.062%						
SI U.	.19%						
Cr 0	10%						
Ni 0	12%						
Mo 0.	.015%					The Following is t	rue of the material represented by this MTR:
V 0.	.003%					* Material is fully	killed
Sn 0.	.007%					*100% melted a	nd rolled in the USA
						*EN10204:2004	3.1 compliant
Yield Strength test 1 93	3.4ksi					* Contains no we	ld repair
Yield Strength test 1 (metri 64	44MPa					* Contains no Me	arcury contamination
Tensile Strength test 1 10	09.5ksi					* Manufactured in	accordance with the latest version
Tensile Strength 1 (metric) 75	55MPa					of the plant qua	anty manual
Elongation test 1 11	1%					* Warning: This	noduct can expose you to chemicals which are
Elongation Gage Light test 1 81	IN 0.0 mm					known to the S	State of California to cause cancer. birth defects
Elongation Gage Lgtn 1 (metri 20 Bond Test 1 Ba	nond					or other reprodu	ictive harm. For more information go
Bend Test 1 Pa	assed					to www.P65Wai	rnings.ca.gov

REMARKS : ALSO MEETS AASHTO M31

Page 1 OF 1 05/01/2020 07:25:21



CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510 CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771 We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Rolando A Davila

Quality Assurance Manager

HEAT NO.:3094648         S         CM           SECTION: REBAR 16MM (#5) 40'0" 420/60         O         O           GRADE: ASTM A615-18e1 Gr 420/60         L         106           ROLL DATE: 02/14/2020         D         Co           MELT DATE: 02/04/2020         US         VS           Cert. No.: 83003290 / 094648A765         T         975		S CMC Con O L 10650 Sta D College S US 77845 T 979 774 5 O	C Construction Svcs College Stati 50 State Hwy 30 lege Station TX 77845-7950 774 5900		CMC Construction Svcs College Stati 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900		Delivery#: 83003290 BOL#: 73447155 CUST PO#: 842512 CUST P/N: DLVRY LBS / HEAT: 24030.000 LB DLVRY PCS / HEAT: 576 EA	
Characteristic	Value		Characteristic		Value		Characteristic	Value
C Mn P S Si Cu Cr Ni Mo V Cb Sn Al Yield Strength test 1 Tensile Strength test 1 Elongation test 1 Elongation test 1	0.42% 0.93% 0.010% 0.047% 0.28% 0.28% 0.28% 0.20% 0.075% 0.000% 0.001% 0.001% 0.0027% 0.000% 65.7ksi 104.6ksi 14% 8IN		Bend Test Diam	eter	2.188IN	The Following is *Material is fully k *100% melted an *EN10204:2004 3 *Contains no welk *Contains no welk *Contains no Mer *Manufactured in of the plant qua *Meets the "Buy J *Warning: This p	true of the material repres illed d rolled in the USA .1 compliant d repair cury contamination accordance with the latest v lity manual America" requirements of 23 roduct can expose you to cl	sented by this MTR: ersion 8 CFR635.410, 49 CFR 661 hemicals which are
Tensile to Yield ratio test1 Bend Test 1	1.59 Passed					known to the St or other reprodu to www.P65Warn	tate ot California to cause ca active harm. For more inform ings.ca.gov	ancer, birth defects iation go

REMARKS :

Page 1 OF 1 02/26/2020 21:41:26



ŝ.

**Quality Control Department Certificate of Analysis and Test** 

12262 FM 3083, Conroe, TX. 77301

#:1 P.O: Order #: S-6161

**Customer:** CMC Construction Serv. / Houston 2001 Brittmoore Rd. Houston, TX 77043

ITEM DESCRIPTION
VX6 D10.7XD13.4 68"(+1-1/2",+1") X 24'6"(6",18")

Mechanical Properties								
Test Date:	3/25/2020	3/25/2020						
Wire Size	D13.4	D10.7						
Heat Number	2020598	2020150						
Diameter	0.413	0.369						
Avg. Lbs Force	12,300	10,000						
Avg. Tensile (psi)	91,600	93,000						
Avg. Yield (psi)	88,300	91,600						
Avg.Weld Shear(psi)	48,400	48,400						
Bend Test	PASS	PASS						
Reduction of Area %	N/A	N/A						

The undersigned certifies that the material tested above complies with the ASTM A1064/A1064M-18a.

The wire was melted and manufactured in the United States of America and complies with Buy America Requirements.

for Jose V Torres **Quality Control Manager** 

4/29/2020

Date

MATERIAL TEST REPORT Date Printed: 02/26/2020									
Mid Annerfactor Stated & Wire Mid Annerfactor Stated	Bill to: NATIONAL WIRE CORPORATION 12262 F.M. 3083 alejandra@nationalwirellc.com CONROE_TX_77301	7730							
Customer No: 00000006002 PO Number: 1480 Ship Date: 02/26/2020	Item Number Description								
Order Number: 109159 Load Number: 133572	D15321012IQM 1012IQ - 15/32 In Rod								
	CHEMICAL ANALYSIS								
Heat Number         C         Mn           2020598         0.1200         0.5000	P         S         Si         Cu         Ni         Cr         Mo         Sn         V         Al           0.0100         0.0270         0.1400         0.2000         0.1200         0.1400         0.0300         0.0080         0.0030         0.0000	<u>N B</u> 0.0091 0.0002							

MECHANICAL PROPERTIES									
	Yield Tensile Elongation Reduction Bend Test								
Heat Number	(Psi)	(Psi)	(%)	(%)	Pass/ Fail				
2020598	47164 psi /	65513 psi /	23.44	68.79					

The melting and rolling processes used to manufacture the above described material took place in the United States of America. The material was produced and tested in accordance with ASTM A-510.

the fill Quality Assurance:

τ. 	MATERIAL TEST REPORT Date Printed: 02/17/2020	PAGE 1						
Mid American Steel & Wire Mid American Steel & Wire Mid Offician Customer No: 00000006002	Bill to: NATIONAL WIRE CORPORATIONShip to: NATIONAL WIRE CORP.12262 F.M. 3083 alejandra@nationalwirellc.com CONROE, TX 7730112262 F.M. 3083 CONROE, TX 77301, TX	K 7730						
PO Number: 1478 Ship Date: 02/17/2020 Order Number: 108617 Load Number: 133374	Item Number Description D2764101200M 27/64 1012 ROD							
CHEMICAL ANALYSIS								
Heat Number C Mn	<u>PSSiCuNiCrMoSnVAl</u>	N B						
2020150 0.1200 0.5000	0.0100 0.0280 0.1700 0.2200 0.0800 0.0800 0.0200 0.0100 0.0010 0.0000	0.0077 0.0002						

MECHANICAL PROPERTIES							
		Yield	Tensile	Elongation	Reduction	Bend Test	
	Heat Number	(Psi)	(Psi)	(%)	(%)	Pass/ Fail	
	2020150	41635 psi /	62441 psi /	25.00	64.05		

The melting and rolling processes used to manufacture the above described material took place in the United States of America. The material was produced and tested in accordance with ASTM A-510.

X Quality Assurance:

)

# APPENDIX C. MASH TEST 4-12 (CRASH TEST NO. 469680-02-1)

## C.1. VEHICLE PROPERTIES AND INFORMATION

## Table C.1. Vehicle Properties for Test No. 469680-02-1.



Date:	2020-6-16	Test No.:	469680-2	VIN No.:	1HTMMAAN5	3H388517
Year:	2011	Make:	INTERNATIONA	L Model:	4300	)
	WEIGH ([∕] lb_c	<b>TS</b> or	CURB 704 660	0	INERTIAL 8230 14110	
		Wtotal	1364	0	22340	
	Allowab	ole Range for CURB =	13,200 ±2200 lb   Allowab	le Range for TIM = 22,	046 ±660 lb	
E	Ballast: 8700	(	(as-i (Sec	needed) MASH Section 4.2	1.2 for recommende	ad ballasting)
<b>/lass D</b> √Ib o	Distribution r ☐ kg ): L	<b>.F:</b> 4170	RF: <u>4060</u>	_ LR: 7320	RR:	6790
ingine Ingine	Type: DT Size: ⁴⁶⁶		Accele	erometer Locatio x ¹	ns ( 🗹 inches or <b>y</b>	[−] mm ) z²
U			 Fron	t:		
ransm	ission Type: Auto or	Manual	Cente	r: 129.30	0	48.25
	FWD 🔽 RW		Rea	r: 229.30	0	48.25
)escrib   Dther n	e any damage to	the vehicle prio	r to test: <u>None</u>	ocation, center	of mass, and m	ethod of
ttachn	nent:				•	
Iwol	DIOCKS 30 Inches	nigh x 60 inche:	s wide x 30 inches l	ong		
Cente	ered in middle of	bed				
61.75	5 inches from gro	und to center of	block			
Tipd	down with four 5/	16-inch cables				

# Table C.1. Vehicle Properties for Test No. 469680-02-1 (Continued).

Referenced to the front axle Above ground

# C.2. SEQUENTIAL PHOTOGRAPHS















Figure C.1. Sequential Photographs for Test No. 469680-02-1 (Overhead and Frontal Views).

















Figure C.1. Sequential Photographs for Test No. 469680-02-1 (Overhead and Frontal Views) (Continued).



0.000 s



0.100 s



0.200 s



0.300 s

Figure C.2. Sequential Photographs for Test No. 469680-02-1 (Rear View).



0.400 s



0.500 s



0.600 s



0.700 s



Figure C.3. Vehicle Angular Displacements for Test 469680-02-1.



**C.4**.

VEHICLE ACCELERATIONS

Figure C.4. Vehicle Longitudinal Accelerometer Trace for Test No. 469680-02-1 (Accelerometer Located at Center of Gravity).



Figure C.5. Vehicle Lateral Accelerometer Trace for Test No. 469680-02-1 (Accelerometer Located at Center of Gravity).



## Figure C.6. Vehicle Vertical Accelerometer Trace for Test No. 469680-02-1 (Accelerometer Located at Center of Gravity).

Γ



Figure C.7. Vehicle Longitudinal Accelerometer Trace for Test No. 469680-02-1 (Accelerometer Located at Rear of Vehicle).



Figure C.8. Vehicle Lateral Accelerometer Trace for Test No. 469680-02-1 (Accelerometer Located at Rear of Vehicle).



Z Acceleration at Rear of Vehicle

Figure C.9. Vehicle Vertical Accelerometer Trace for Test No. 469680-02-1 (Accelerometer Located at Rear of Vehicle).

# APPENDIX D. MASH TEST 4-12 WITHOUT DOWEL BARS (CRASH TEST NO. 469680-02-2)

## D.1. VEHICLE PROPERTIES AND INFORMATION



## Table D.1. Vehicle Properties for Test No. 469680-02-2.

Date:2020-8-10 Test No.:		469680-02-2		VIN No.	:1	1HTMMAA6BH318203		
Year:	2011	Make:	INTERNATIONAL		Model:		4300	
	WEIGHTS ([] Ib or V V Allowable	∫	CURE	3 6960 6060 13020 Allowable R (as-pee	T  ange for TIM ded)	EST INEF	RTIAL 8090 14100 22190 60 lb	
E Mass D	Ballast: 9170		[✔lb or 🗌 kg)	(See M/	ASH Section	n 4.2.1.2 fo	r recommend	ed ballasting)
[√lb o	r 🗌 kg): LF	3950	<b>RF:</b> 4140	)	LR: <u>7</u> 2	260	RR:	6840
Engine Engine :	Type: <u>DT</u> Size: ⁴⁶⁶			Accelero	meter Loc <b>x¹</b>	ations (	√inches o y	r ☐mm) z²
Γransm	ission Type: Auto or _ <b>[</b> 	_ Manual	(	Front:	130	0.1	0	50
Describ	e any damage to tl	he vehicle pric	r to test: <u>NC</u>	DNE				
Other n attachn Two I	<b>otes to include b</b> nent: Blocks 30 inches h	<b>allast type, d</b> i igh x 60 inche	i <b>mensions, m</b> s wide x 30 in	i <mark>ass, loc</mark> ches lon	<b>ation, cer</b> g	nter of m	ass, and m	nethod of
Cente	ered in middle of b	ed						
63.37	inches from grour	nd to center of	block					
lied o	aown with four 5/10	o-inch cables	per block					
Perforn	ned by: <u>SCD</u>					Date:	2020-	8-10
Referenc Above g	ed to the front axle round							

# Table D.1. Vehicle Properties for Test No. 469680-02-2 (Continued).

# D.2. SEQUENTIAL PHOTOGRAPHS















0.300 s Figure D.1. Sequential Photographs for Test No. 469680-02-2 (Overhead and Frontal Views).



















Figure D.1. Sequential Photographs for Test No. 469680-02-2 (Overhead and Frontal Views) (Continued).





Figure D.2. Vehicle Angular Displacements for Test No. 469680-02-2.

58





**D.4**.

Figure D.3. Vehicle Longitudinal Accelerometer Trace for Test No. 469680-02-2 (Accelerometer Located at Center of Gravity).

98



Figure D.4. Vehicle Lateral Accelerometer Trace for Test No. 469680-02-2 (Accelerometer Located at Center of Gravity).



# Figure D.5. Vehicle Vertical Accelerometer Trace for Test No. 469680-02-2 (Accelerometer Located at Center of Gravity).

88





## Figure D.6. Vehicle Longitudinal Accelerometer Trace for Test No. 469680-02-2 (Accelerometer Located at Rear of Vehicle).



Figure D.7. Vehicle Lateral Accelerometer Trace for Test No. 469680-02-2 (Accelerometer Located at Rear of Vehicle).





Figure D.8. Vehicle Vertical Accelerometer Trace for Test No. 469680-02-2 (Accelerometer Located at Rear of Vehicle).

# APPENDIX E. MASH TEST 4-12 WITHOUT DOWEL BARS AND WITH CONCRETE APRON EXTENDED DOWNSTREAM OF BARRIER (CRASH TEST NO. 469680-02-3)

# E.1. VEHICLE PROPERTIES AND INFORMATION



More information needed on next page

Date:	2020-8-19	Test No.:	460680-0	)2-3	VIN No.:	1HTMMAA	N89H164197	
Year:	2009	Make:	INTERNATI	ONAL	Model:	4	4300	
	WEIGI (☑ Ib	HTS or ∐kg) Wfront axle Wrear axle	CURB	7040 6730 13770	TES 	<b>5T INERTIAL</b> 8200 14300 22500		
	Allow	able Range for CURB =	13,200 ±2200 lb   A	llowable R	ange for TIM = 2	22,046 ±660 lb		
E	Ballast: ⁸⁷³⁰	(	√lb or 🗌 kg)	(as-need (See MA	ded) A <i>SH</i> Section 4	.2.1.2 for recomme	ended ballasting)	
<b>Mass D</b> ( <b>√</b> lb o	istribution r □ kg ):	LF: 4190	<b>RF</b> : <u>4010</u>		LR: 716	0 RI	<b>R:</b> <u>7140</u>	
Engine Engine	Type: DT Size: 466			Acceleror	neter Locat <b>x¹</b>	ions ( 🗹 inches <b>y</b>	or 🗌 mm ) z²	
Transm	ission Type: Auto or FWD <u>7</u> RV	Manual VD 4WD	- C	Front: _ enter: _ Rear: _	130.00 238.00	0.00	47.50 47.50	
Other n attachn	otes to include nent: plocks 30 inche	e ballast type, di s high x 60 inche:	mensions, ma	<b>ass, loca</b> thes long	ation, cente	er of mass, and	l method of	
Cente	ered in middle o	f bed						
61.25	inches from gr	ound to center of	block					
Tied	down with four {	5/16-inch cables p	ber block					
 Perforr	ned by: SCE	)			Da	ate:202	20-8-19	
Reference Above g	ed to the front as round	kle				-		

# Table E.1. Vehicle Properties for Test No. 469680-02-3 (Continued).
# E.2. SEQUENTIAL PHOTOGRAPHS















Figure E.1. Sequential Photographs for Test No. 469680-02-3 (Overhead and Frontal Views).

0.300 s



















Figure E.1. Sequential Photographs for Test No. 469680-02-3 (Overhead and Frontal Views) (Continued).



0.000 s



0.100 s



0.200 s



0.300 s



0.400 s



0.500 s



0.600 s



0.700 s

Figure E.2. Sequential Photographs for Test No. 469680-02-3 (Rear View).



Figure E.3. Vehicle Angular Accelerations for Test No. 479680-02-3.





**E.4**.

VEHICLE ACCELERATIONS

Figure E.4. Vehicle Longitudinal Accelerometer Trace for Test No. 469680-02-3 (Accelerometer Located at Center of Gravity).



### Figure E.5. Vehicle Lateral Accelerometer Trace for Test No. 469680-02-3 (Accelerometer Located at Center of Gravity).

100





#### Figure E.6. Vehicle Vertical Accelerometer Trace for Test No. 469680-02-3 (Accelerometer Located at Center of Gravity).





# X Acceleration at Rear of Vehicle

Figure E.7. Vehicle Longitudinal Accelerometer Trace for Test No. 469680-02-3 (Accelerometer Located at Rear of Vehicle).





#### Figure E.8. Vehicle Lateral Accelerometer Trace for Test No. 469680-02-3 (Accelerometer Located at Rear of Vehicle).

103





Z Acceleration at Rear of Vehicle

