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1 INTRODUCTION 

Twin tub girder bridges have the potential to serve as an engineering solution to the 

problem of long-span, curved bridges with tight radii of curvature. Particularly in the state of 

Texas, these bridges are becoming an alternative in lieu of the curved I-girder bridges. However, 

the major deterrent in the widespread reliance of these bridges is the classification of these 

bridges as fracture critical by the Federal Highway Administration (FHWA). The fracture critical 

designation leads to long term costs associated with hands-on inspections and fabrication of the 

fracture critical members (FCMs) according to the American Welding Society (AWS) Fracture 

Control Plan (FCP). There have been disastrous consequences in cases of failure of fracture 

critical bridges, that have elicited the need for rigorous hands-on inspections to avoid such 

terrible losses of life and property in the future. The American Association of State Highway and 

Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design 

Specifications (AASHTO 2017)defines a FCM as a “component in tension whose failure is 

expected to result in the collapse of the bridge or the inability of the bridge to perform its 

function.” Therefore, hands-on inspections are required to ensure the structure is safeguarded 

against fracture and fatigue failures. The hands-on inspection of these bridges are costing the 

Texas Department of Transportation (TxDOT) large sums of funds that could be allocated to 

address other problems since not all the twin tub girder bridges are truly fracture critical. The 

current definition of FCMs, based on only load path redundancy, is highly conservative, which 

deems all bridges as requiring elaborate and expensive inspections that deplete money and time. 

Instead of an elastic analysis that may be grossly underestimating the reserve capacity of the 

redundant structural members, a more realistic and exact elasto-plastic analysis is recommended 

for this research.  

It is imperative to initiate an investigation to assess the relevance of the current 

classification of the twin tub girder bridges as fracture critical. A thorough analysis is needed to 

carry out the investigation aimed at reclassifying a bridge from its fracture critical status by 

proving sufficient reserve strength due to the structural redundancy of the superstructure. To 

execute an investigation, it is proposed that researchers conduct three independent analyses and 

compare the results to comprehend the behavior of these bridge superstructure systems in detail. 

The aim of all three methods is to find the overstrength of the twin tub girder bridges selected 



 

2 

from the Texas Bridge inventory. The overstrength reflects the amount of reserve capacity the 

structural members possess when applied with factored design loads. The decision regarding the 

reclassification from the fracture critical status may be conclusively drawn if the scope of this 

research all three methods converge to a reasonable degree. Once it is identified that the three 

methods consistently predict sufficient reserve capacity, one or more methods may be 

recommended for implementation in the industry depending on the trends, if any, emerging from 

this research project. The three methodologies that are implemented are: 

• An accurate and thorough computational finite element analysis. 

• A yield line analysis based on the classical plastic theory. 

• A lower-bound computational grillage method. 

The finite element analysis implements the use of advanced elasto-plastic nonlinear 

elements to accurately simulate the material behavior and loading. The results generated from 

this method are considered the most accurate because the program utilizes advanced 

computational accuracy to model the system with high precision. Consequently, the procedure 

requires time and sophisticated computational resources. The plastic methods are employed to 

develop upper-bound (yield line theory) and lower-bound (strip method) solutions to calculate 

the reserve capacity manually. This gives a range of the overstrength factors to quickly compare 

with the computational methods. The grillage analysis (based on a lower-bound strip method) is 

conducted using nonlinear elasto-plastic material and hinge properties to model the behavior of 

the bridge under design vehicular loading. The computational push-down grillage analysis is 

carried out using the matrix methods of structural analysis in SAP2000. The grillage analysis can 

be considered as a practical blend of the advanced computational finite element analysis and the 

plastic method due to its nonlinear elasto-plastic modeling approach and its evolution from the 

lower-bound strip method. 

The three methods are independently studied via extensive parametric studies and the 

veracity of each method is checked by validating the analytical results with those obtained 

experimentally from the TxDOT 9-5498 Project. The next stage of analyses involve the 

assessment of the overstrength factors of these bridges when analyzed under AASHTO load and 

resistance factor design (LRFD) loading. This research was aimed at equipping professional 

bridge engineers to apply the analytical methods to investigate the inherent reserve strength of 

the twin tub girder bridges so as to eliminate the FCM designation of the steel tub girders and 
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reclassify them as system redundant members (SRMs) as defined by Federal Highway 

Administration (FHWA) memorandum HIBT-10 FHWA (2012). Since these are to be used on a 

large scale in the transportation industry, at least two of the three methods are meant to be 

practically feasible in terms of their economy and time commitment for industry standards. Thus, 

it is suggested that the simpler methods be used first to assess the overstrength of the bridges. In 

case of a large disparity between the methods, a more advanced and rigorous finite element 

analysis must be considered. 
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2 LITERATURE REVIEW 

2.1 INTRODUCTION 

Steel twin tub girder (STTG) bridges have become increasingly popular in Texas because 

they offer an engineering solution for long-span and/or curved highway bridges. STTG bridges 

appear in many different designs, and they vary in number of spans, span length, and degree of 

horizontal curvature. The twin box bridge superstructure has become more common due to 

reduced number of girder lines, higher torsional stiffness and more aesthetic superstructure 

option compared to curved I-girders. However, according to the AASHTO (2012) Guide 

Specification for Fracture Critical Nonredundant Steel Bridge Members, the choice of twin steel 

tub superstructures comes with additional inspection and fabrication cost due to their fracture 

critical designation. Fracture critical or nonredundant designation requires strict fatigue detail 

and design consideration, substantial testing during fabrication, and in-depth hands-on 

inspections compared to nonfracture critical structures because they consist of theoretically 

nonredundant structural systems. The rigorous frequent inspection requirement increases the life 

cycle cost of this class of bridge superstructure significantly. 

STTG bridges require hands-on inspection every two years, which costs TxDOT about $2 

million every two years, including the traffic control costs. Therefore, removing the fracture 

critical designation of some or all of these bridges may significantly lower the inspection cost of 

this bridge system. To be able to designate a two-girder bridge as redundant, it is necessary to 

show that the bridge has sufficient reserve capacity after the fracture of one of the girders. This 

outcome can be achieved through rigorous analysis techniques.  

This chapter documents the state of the art and practice for the analysis of bridges and 

redundancy studies of fracture critical bridges. The opening subsection introduces the fracture 

critical twin tub girder bridges and describes the motivation for this research. In the second 

subsection, different methods of analysis are listed and briefly summarized. The third subsection 

presents the definition of fatigue and fracture and discusses several bridge failures due to fatigue 

and fracture. The fourth subsection introduces the concept of redundancy and the motivation for 

the initiation of fracture critical protocol. Different definitions provided in the design codes and 

specifications, along with different sources of redundancy, are also discussed in this subsection. 
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In the final subsection, relevant research about fracture critical bridges and modeling approaches 

for evaluating the redundancy of steel twin tub bridges are presented. 

2.2 APPROACHES TO ANALYZING THE BEHAVIOR OF BRIDGE STRUCTURES 

In structural engineering, physical phenomena are simulated using mathematical models 

that can represent the actual behavior of a structural system. Over the previous centuries, 

methods of structural analysis have developed and become more sophisticated as the ability to 

compute solutions has also improved. Indeterminate structural systems require solutions that 

concurrently deal with both equilibrium and compatibility of deformations. In contrast, if the 

compatibility condition is violated due to inelastic behavior but equilibrium is maintained, plastic 

solutions that provide collapse loads may be obtained. This subsection first describes historic to 

modern methods of elastic structural analysis. Next, plastic methods for both frames and slabs 

are discussed. The third and final part to this subsection describes nonlinear methods of analysis 

whereby computational solutions can give the entire solution from the initial elastic behavior to 

the plastic collapse load.  

2.2.1 Elastic Structural Analysis  

Linear analysis simply assumes that the load is proportional to displacement. Robert 

Hooke first introduced this principle in 1678, and it remains well known today as Hooke’s law. 

Essentially, the Hooke’s law stipulates that as force is related to stress and displacement to 

strains, they are also proportional to each other. Linear elastic analysis is based on the original 

undeformed geometry and elastic material properties. Analysis of structures using the mechanics 

of materials approach or the theory of elasticity are analytical formulations using linear elastic 

behavior; therefore, closed-form solutions may be obtained. Although most structural systems 

involve material and geometric nonlinearity, elastic analysis has been widely used due to its 

simplicity. Engineers still use linear elastic methods by some modification to consider 

nonlinearities. When predicting the ultimate strength or in-service deformations, the results of 

linear elastic analysis are adjusted, permitting a prescribed amount of moment redistribution. 

While it remains valid to use superposition for linear elastic analysis and then apply a measure of 

moment redistribution, it is not possible to assess the actual collapse load. However, if the 

provided capacity is greater than the load demands, some reserve capacity remains. Elastic 
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solutions together with a limited amount of moment redistribution are lower-bound limit state 

solutions. 

Linear elastic analysis may be used to estimate the actions and deflections of reinforced 

concrete structures under service loads, but care must be taken for reduced stiffness due to 

cracking resulting from loading or restraint to thermal and shrinkage effects. These additional 

reasons of material nonlinearity complicate the design process using linear elastic methods. 

2.2.1.1 Beams and Frames 

The simplified approach of using linear elastic behavior defined by Hooke’s law enabled 

scientists to formulate mathematical models for many engineering problems. Bernoulli and Euler 

(1750) formulated differential equations for the deflection calculation of a beam. Euler derived 

equations to calculate deflection of beams and buckling load of beams, and his approach could 

be extended to calculate flexural stresses. The Euler-Bernoulli beam theory (EBT) for flexural 

behavior and stiffness was developed and evolved over some 300 years. In EBT, it is assumed 

that plain sections transverse to the longitudinal axis of the beam remain plane (straightness) and 

perpendicular to the axis after deformation (normality). In this so-called straight line theory, the 

transverse deflection of a beam is governed by a fourth-order differential equation. Although the 

derivation of analytical formulas originated back in 1700s, the results of EBT were not 

commonly used until the 19th century when wrought iron and later steel started to be used in 

large structures (Timoshenko 1953). 

The theory of elasticity developed further in the second half of the 18th and throughout 

the 19th century. These developments made it possible to design and build relatively simple 

structures such as bridges. However, finding analytical solutions for mathematical models for 

complicated (indeterminate) structures led to large numbers of equations that were not easy to 

manage without modern computational methods. One of the early methods for analyzing 

statically indeterminate elastic structures was the force method, or flexibility method, that was 

initially developed by James Clerk Maxwell in 1874 and later improved upon by Heinrich 

Müller-Breslau. A breakthrough was made when Hardy Cross (1932) first introduced the 

iterative moment distribution method. 

A significant development that led to computational analysis of structural systems was 

the development of matrix structural analysis (MSA). MSA was first used in the aerospace 



 

8 

industry in the 1930s with formulations developed by Duncan and Collar (1934). Turner (1959) 

proposed the direct stiffness method (DSM) that created the framework for the finite element 

method. Later, Argyris and Kelsey (1960) described contrasting force and displacement-based 

matrix methods. These methods became solvable with early digital computers and were popular 

in the 1960s and beyond. MSA basically discretize the mathematical model and create the matrix 

formulation for an assembly of bar, beam, and/or beam-column members, which is then solved 

by computational tools.  

2.2.1.2 Plates and Shells 

In two-dimensional elasticity, the most basic member behavior is membrane that has in-

plane stiffness only. This behavior is analogous to the bar element in one-dimension elasticity, in 

which the membrane cannot resist any bending moment. A plate is defined as a structural 

member that is thin, and its thickness is much smaller than its length or width. Like the beams, 

the transverse loads are carried by the bending actions of the plate. Plate behavior models out-of-

plane bending stiffness only, and the member can resist bending moments. Various plate theories 

differ by their simplifying assumptions. The most commonly used one is the classical plate 

theory (Kirchhoff plate theory), which is a generalization of the Euler-Bernoulli beam theory. 

There are three main assumptions: (a) sections perpendicular to the mid-surface remain straight 

(straightness), (b) these sections also remain perpendicular to the mid-surface (normality), and 

(c) the thickness does not change during deflection (inextensibility). Based on these assumptions, 

the normal stresses in the transverse direction vanish (plane stress), and the transverse shear 

strains are neglected. However, for thick plates, significant shear strains may contribute to 

transverse stresses. The Mindlin plate theory includes the effect of transverse shear strains by 

removing the normality assumption, which is analogous to the Timoshenko beam theory 

(Timoshenko and Woinowsky-Krieger 1959). Shell behavior considers both in-plane stiffness 

(membrane behavior) and out-of-plane stiffness (plate bending) for modeling a two-dimensional 

structural member. 

It is possible to simulate the behavior of a bridge superstructure as an orthotropic plate in 

order to get an analytical solution for the displacements and stresses and the eigenfrequencies 

(Hurlebaus 2007; Hurlebaus et al. 2001). An orthotropic plate is the common name for plates 

that have uniform but different elastic properties in the two orthogonal directions. In this method, 
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the bridge superstructure is represented by an equivalent orthotropic plate with uniform 

thickness. Longitudinal stiffnesses are calculated based on the composite beam and slab section. 

Transverse stiffnesses are calculated based on the deck stiffness alone. This geometric 

simplification requires that the beams are equally spaced, which is generally the case in practice 

(Sanders and Elleby 1970). Based on these assumptions, the orthotropic plate behavior satisfies a 

fourth-order partial differential equation (Timoshenko and Woinowsky-Krieger 1959). Although 

this method is a way of obtaining the solution, it requires many approximations to reduce the 

three-dimensional complex bridge superstructure to a two-dimensional constant thickness plate. 

2.2.2 Plastic Methods of Analysis (Limit Analysis) 

Traditionally, the theory of elasticity has been widely used because it is relatively simple 

due to the assumption of proportional stress and strain. However, this approach cannot estimate 

the real behavior or safety at the limit state. Structural materials, especially steel, may withstand 

considerable strains beyond their initial yield strain. As a structural member is loaded beyond 

yield, the material behaves in a plastic fashion. Once a section reaches its load capacity, it 

deforms at almost constant load. This ultimate load capacity of the section is calculated from the 

material properties in the plastic range. The first critical section reaches the yield moment while 

other sections of the structure remain elastic. This state of the structure results in elastic-plastic 

deformations that eventually reach full plasticity as the loads are increased. When a full 

mechanism is achieved, the collapse load is reached.  

In formulating plastic methods of analysis, there are two main theorems: (a) the lower-

bound theorem that commonly uses graphical means or simplifying assumptions; and (b) the 

upper-bound theorem, where various mechanisms are assumed with the correct mechanism 

having the lowest load (least energy). 

2.2.2.1 Beams and Frames 

In using the LRFD approach, beams and frames are analyzed using elastic methods, 

while the reinforcement for beams and frames is calculated by strength methods that consider the 

inelastic properties at the ultimate load. Limit analysis does not have this inconsistency and 

accounts for redundancies and redistribution, thereby allowing more practical reinforcement 

design. The limit analysis of beams and frames can be achieved through either lower-bound 
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graphical methods or upper-bound mechanism analysis. In either case, all plastic hinges must 

have adequate rotation capacity. 

2.2.2.1.1 Lower-Bound Equilibrium Solution by Graphical Methods 

The lower-bound analysis implies that the estimated capacity is smaller or equal to the 

true load capacity. The starting point of lower-bound graphical methods consists of (a) drawing 

moment diagrams for a statically determinate structure; (b) assigning fixing moments (the 

redundant actions); and (c) determining the required plastic capacity that is the largest moment. 

Note that this may not lead to a complete mechanism; thus, the solution is said to be lower 

bound.  

2.2.2.1.2 Upper-Bound Plastic Mechanism Analysis by Virtual Work 

The upper-bound method is used as follows: (a) various statically admissible mechanisms 

are postulated; (b) for each mechanism, the collapse load is determined using the principle of 

virtual work; and (c) the correct mechanism is that solution with the lowest collapse load. If the 

correct solution is not found, the obtained solution will be an upper bound to the true solution. 

2.2.2.2 Slabs 

Plastic analysis methods for estimating the ultimate capacity of beam and slab bridges 

have been used by many designers and researchers in the past. For example, the use of elastic 

analysis for estimating highly ductile, reinforced concrete bridge decks results in very 

conservative ultimate load predictions. The application of plastic analysis for slabs is relatively 

less tedious compared to beams and frames because slabs are generally under-reinforced and 

consequently have large rotational capacity. Practical techniques have been developed for the 

application of plastic methods to slabs by using limit analyses such as the upper-bound yield line 

analysis and the lower-bound strip method (Park and Gamble 2000). 

Plastic methods of analysis for the analysis and design of bridge decks have long been 

available but rarely used in the United States. Limit analysis is particularly useful for 

investigating the possible failure modes, behavior beyond yielding, and residual capacity of in-

service or deficient bridges. By investigating certain collapse mechanisms, it is possible to detect 

undesirable collapse mechanisms—such as shear failure, which is a sudden brittle failure 
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mode—and adjust the design to get a more ductile behavior and get flexure mechanism at the 

ultimate load. 

Jackson and Middleton (2013) recently developed a rigorous technique to obtain a yield 

line solution using an automated plastic lower-bound solution. This method eliminates the 

disadvantage of yield line analysis, which may result in unsafe capacity estimate if applied 

carelessly. The authors combined a safe lower-bound plastic analysis approach with a simpler 

yield line analysis. In this technique, the collapse load is estimated using an automatic analysis, 

where the viable moment field is calculated utilizing an optimization technique in which the 

moments are in equilibrium and do not violate yield condition, thus providing a lower-bound 

estimate. The locations that are close to yielding are marked, which eventually creates a yield 

line indicator diagram. Since the yield line indicators are found through a rigorous lower-bound 

method, the yield line analysis using this mechanism provides a realistic upper bound to the true 

collapse load.  

2.2.2.2.1 Upper-Bound Yield Line Analysis 

Ingerslev (1923) first demonstrated yield line behavior through experiments and analysis 

in the inaugural paper published by the Journal of the Institution of Structural Engineers. Later 

in Denmark, Johansen (1943) generalized a yield line theory. While linear elastic analysis can 

only predict the first yield at the section, yield line analysis gives more realistic ultimate capacity 

estimates for slabs. The only concern about yield line analysis is that it may estimate a higher, or 

at best equal, capacity to the true load carrying capacity. Thus, it requires experience to be able 

to establish reasonable or valid yield line mechanisms. In addition, the knowledge of 

reinforcement distribution is necessary at the start of the analysis, which means iterative 

procedure may be required for a specific design. However, this method can be very useful for 

analyzing existing structures. This principle can be also utilized for estimating the reserve 

capacity and redundancy of bridge decks for existing bridges. Because yield line theory generally 

provides upper-bound capacity estimates, it is essential to analyze a wide variety of possible 

kinematically admissible mechanisms in order to identify the critical yield line failure mode 

(Park and Gamble 2000). 

Mander et al. (2011) utilized yield line analysis to estimate the failure mechanism for the 

interior portion of stay-in-place (SIP) precast panels with a cast-in-place (CIP) bridge deck under 
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a monotonic load that was representative of a tandem axle effect. When monotonically 

increasing path loads were applied, delamination occurred between the CIP concrete and the SIP 

panels, resulting in a compound shear-flexure mechanism. The authors derived an additive model 

of flexural yield line failure in the lower SIP precast prestressed panels and punching shear in the 

upper CIP-reinforced concrete. Three modes of failure in bridge decks were identified: 

(a) flexure in CIP slabs common in thin slabs, (b) shear in CIP slabs that is a potential mode of 

failure in slabs without transverse reinforcement, and (c) membrane action that is considered a 

common failure mode in thick slabs with rigid boundary conditions. Based on the evaluation of 

the experimental results, a compound flexure-shear mechanism was proposed to explain the 

failures observed in dual, reinforced prestressed concrete bridge decks. The proposed additive 

shear-flexure model was able to model the experimental results well. However, the authors also 

noted that the mixed shear-flexure mode of failure that was observed in the laboratory 

experiments was not likely to occur in the field since the unrealistically high test pressures 

observed beneath the load plates cannot be achieved with rubber tire equipment. Still, the theory 

is useful to estimate the capacity and to aid in improved design and efficiency of SIP-CIP 

composite decks. 

Pirayeh Gar et al. (2014) utilized yield line theory to analyze the ultimate load capacity of 

bridge deck slabs with precast panels prestressed with aramid fiber-reinforced polymer (AFRP) bars. 

The authors proposed equivalent plastic moment capacity for concrete sections with FRP to be used 

in the yield line analysis since the FRP concrete section does not have a distinct yield plateau. The 

results obtained from the experiment confirmed that the yield line theory is applicable to this new 

bridge deck system, and it was able to predict collapse loads within 3 percent of the observed test 

results. 

2.2.2.2.2 Lower-Bound Strip Method 

Hillerborg (1956) first developed strip methods for slabs. Strip methods provide lower-

bound solutions that satisfy equilibrium and yield conditions (moments are always smaller than 

or equal to the plastic moment) everywhere in the slab. In contrast to yield line analysis, strip 

methods provide conservative (safe) capacity predictions. The strip method is a practical design 

method in which the reinforcement can be designed without any iterative process. Wood et al. 

(1968) later evaluated and improved the method regarding continuity conditions. Armer (1968) 
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conducted an experimental study that tested half-scale slab specimens designed using the strip 

method. It was concluded that strip methods consistently produce safe designs. 

2.2.3 Computational Nonlinear Finite Element Solutions 

Physical systems are generally modeled using differential equations and corresponding 

boundary conditions. For real-world problems, such as complex structural shapes that include 

material nonlinearity, it is usually impossible to get a closed form analytical solution. It is a 

common practice to seek solutions using approximate and computational methods, such as finite 

difference, finite volume, and finite elements. The finite element method (FEM) is the most 

widely used technique due to its generality, versatility, and applicability to various differential 

equations. FEM is particularly useful for analyzing complex geometries, loadings, and material 

properties, which generally apply in real physical problems. In an FEM modeling approach, the 

structure is approximated with sets of elements having simple geometries such as triangles and 

rectangles. Each element satisfies the differential equation of the problem in hand and has the 

material properties of the structure, which forms the element stiffness relation. These elements 

are connected at their nodes to form the global stiffness relation for the whole structure by 

creating a set of algebraic relations. 

Although it is not possible to clearly identify the inventor of FEM, Turner et al. (1956) 

generalized the direct stiffness method and created the FEM that was used in everyday 

engineering problems, starting with aerospace engineering. Later, E. L. Wilson (1958) developed 

the first open source computer program in FOR-TRAN II using IBM 704. Wilson`s work 

provided the basis for most of the early FEM programs (Felippa 2004). In the 1950s and 1960s, 

the FEM technology was transferred from aerospace engineering to a wide range of engineering 

applications by J. H. Argyris, R. W. Clough, H. C. Martin, and O. C. Zienkiewicz (Felippa 

2004).  

2.3 FATIGUE AND FRACTURE IN BRIDGES 

Traffic loads on bridges cause stress cycling. Repeated stress cycling accumulates 

damage that may initiate fatigue cracks. If left unrepaired, the fatigue-induced cracks grow and 

lead to unstable growth and eventually fracture the material. Fatigue damage is prevalent in 

metal structures, particularly steel bridges. High-cycle fatigue failure is common in or near the 
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connection of metal bridge components. Older metal bridges, whether constructed from wrought 

iron or steel, commonly show signs of distress at riveted connections. More modern steel bridge 

structures have the highest probability for fatigue failure at or near welded connections. This 

subsection outlines some classical fatigue and fracture failures and then goes on to describe how 

fatigue problems are categorized by design in accordance with AASHTO (2014) LRFD 

specifications. The subsection discusses fracture critical structural systems and how such systems 

are dealt with by design. 

2.3.1 Fatigue and Fracture Failures in Bridge Structures 

Figure 2.1 shows the infamous collapse of a typical fracture critical bridge, the Point 

Pleasant Bridge. Scheffey (1971) investigated the failure of the collapse of the Point Pleasant 

Bridge in December 1967 and reported that the collapse was due to failure of a single eye-bar 

connecting the suspension chain. The Point Pleasant Bridge, also known as Silver Bridge 

because of its silver-painted aluminum color, was opened in West Virginia over the Ohio River 

in 1928. The Silver Bridge was reported to be a “two-lane, 1760-foot-long eye-bar suspension 

bridge with a 700-foot main span 102 ft above the bottom of the Ohio River channel and two 

380-foot anchor spans”, by the West Virginia Department of Transportation (WVDOT) on their 

webpage that mentions the facts about “Modern Bridges” (WVDOT 2016). The bridge design 

first called for conventional wire cables but was later modified to use eye-bar chains since they 

were less expensive. The Silver Bridge was the first eye-bar suspension bridge in the United 

States, and after nearly 40 years in use and a significant change in vehicle loads, the bridge 

collapsed during evening rush hour, killing 46 people and injuring nine. The Silver Bridge was 

inspected several times before the collapse, and even in the year of the collapse, two inspections 

occurred in the summer, with a final visit of the commission’s area maintenance engineer only 

nine days before the fatal failure (WVDOT 2016). Although the bridges that were constructed 

before 1985 did not have strict fatigue and fracture prevention requirements, there are very few 

examples of failure in the United States, including the Silver Bridge.  
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Figure 2.1. Silver Bridge After the Collapse in 1967 (NTSB 1971). 

Barker and Puckett (2013) described the significant fracture critical bridge collapses that 

led to the development of more strict code provisions, namely the Silver Bridge and the Mianus 

River Bridge. All the other bridge collapses since 1950 were because of other unforeseen events 

such as accidents involving vehicles, ships, or natural disasters. The total collapse of the Silver 

Bridge had a significant influence on the design, selection of materials, and fabrication of future 

bridges and on the inspection of nonredundant bridges in the United States. In 1968, the National 

Bridge Inspection Standards (NBIS) were inaugurated under the Federal-Aid Highway Act, 

which prescribed that the time lag of an inspection of a bridge should not exceed two years.  

In 1983, the Mianus River Bridge collapsed due to fatigue of the material, as shown in 

Figure 2.2 (Barker and Puckett 2013). The Mianus River Bridge was a “pin and hanger” bridge 

design that was commonly used in the year of construction because of the cheaper construction 

costs. The bridge collapsed after 25 years of service. Due to corrosion of storm drains that were 

installed 10 years before the collapse, the pin and hanger assemblies moved and shifted the 

weight to the outside hanger, which then had to carry all the weight, resulting in a fatigue crack. 

This fatigue crack caused the hanger to separate from the upper pin, and subsequently, the span 

of the bridge collapsed, and the span fell into the river. The Mianus River Bridge disaster should 

have been avoided because it had regular, but insufficient inspections. After the collapse of the 

Silver Bridge over the Ohio River, the Mianus River Bridge was inspected 12 times, with the last 

inspection only one year before the collapse. The inspectors only inspected the bridge visually 

from the ground with binoculars, so they could not identify the lateral displacement of the 
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hangers. They noted “heavy rust on the top pins from water leaking through the expansion 

joints,” (Barker and Puckett 2013) but this was not relevant enough to foresee the collapse. 

 
Figure 2.2. Collapse of the Mianus River Bridge (Fisher 1997). 

After the publication of AASHTO guidelines for FCMs, the steel manufacturing industry 

and structural engineers adopted them successfully. Therefore, fatigue and fracture failures have 

been very rare in the last 35 years (Connor et al. 2005). Note, however, that both the Point 

Pleasant Bridge and the Mianus River Bridge were constructed before the implementation of the 

fracture critical bridge (FCB) inspection program. Several FCBs have experienced partial or full-

depth fracture in the last 40 years. They were generally identified during periodic inspection but 

did not result in a collapse or loss of life. Apparently, secondary elements such as the deck, 

cross-bracing, or diaphragm helped to redistribute the load to other members.  

Several total member failures of twin-girder bridges indicated that two-girder bridges 

offer somewhat of a redundant load path even though they are all declared fracture critical 

because of their composition. In May 1975, the Minnesota Department of Highways inspection 

personnel (now Minnesota Department of Transportation) discovered that one of the main 

girders of the Lafayette Street Bridge over the Mississippi River in St. Paul, Minnesota, had a 

full-depth fracture (Fisher et al. 1977). The crack was due to a fatigue crack; as a result, the 

bridge sagged 6.5 in. (165 mm) but did not collapse (Connor et al. 2005).  

In January 1977, a tugboat captain discovered a large crack in a girder of the I-79 

Glenfield Bridge, a two-girder tied arch bridge, over the back channel of the Ohio River (Fisher 

et al. 1980). After spotting the damage, observers watched the crack move up the web to the 

bottom of the flange in about one hour. Figure 2.3 shows the full-depth fracture of the girder. 

Obviously, the bridge had a redundant member that carried the load of the broken girder.  
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Figure 2.3. Cracked Girder of the I-79 Glenfield Bridge in 1977 (Fisher 1984). 

However, none of these two given examples of girder bridges resulted in a collapse and 

provide evidence that two-girder bridges feature some redundancy in load path even though they 

are classified as fracture critical. 

2.3.2 Addressing Fatigue Problems by Design 

Fatigue is the structural damage of the material due to repeatedly applied loads. The 

damage occurs when the material is exposed to cyclic loadings, and the maximum load that 

initiates such damage may be much less than the capacity of the material, which is usually called 

yield stress limit. The material may experience progressive brittle cracking far below its yield 

stress due to the cyclic loadings. Cyclic loading is the repeated loading and unloading of the 

material, and the first microscopic brittle cracks develop where there are stress concentrations.  

Much experimental research has been conducted to identify crack initiation (fatigue) and 

fracture propagation (fracture mechanics). However, all research and simulations on crack 

initiation are modeled on a macroscopic scale, and the first voids become visible at the size of 

1 µm (Belak 1998), which indicates that the nucleation of tiny voids during the fatigue process 

has a microscopic start long before they may be identified. Fatigue has a significant influence on 

the lifetime of the structure because if the crack reaches a critical size, the crack size may 

increase rapidly, and the structure will fracture.  

Fracture is the separation of a structural member into two or more independent pieces due 

to excessive stress or fatigue, and is of two types: ductile and brittle. The first type, the ductile 

fracture is the extensive permanent plastic deformation ahead of the crack, and the deformation 
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is stable during the applied stress unless the load is increased. Most metal fractures may exhibit 

ductile characteristics when the applied load is increased continuously. First, the metal will 

deform elastically and will return to its original state when the applied load is removed until the 

yield point is reached. After exceeding the yield point, the curve typically decreases due to 

dislocation (Cottrell and Bilby 1949), and then the material will deform plastically until the 

ultimate strength is attained. The rupture of structural steel occurs after reaching the ultimate 

strength and passing the necking period, where the strain concentrates disproportionally in a 

small region of the material. The second type of fracture is the brittle fracture, which is how 

ceramics, cold metals, and ice break. Brittle fractures are characterized by possessing little or no 

plastic deformation. The crack appears quickly without an increase of an applied load and 

propagates rapidly.  

A fracture initiated via fatigue stress cycling may also mean that brittle failure has 

progressed to unstable fracture propagation with the maximum (average) stress well below the 

yield stress limit. Therefore, fatigue design specifications for steel bridges were developed in the 

1970s as a result of research studies conducted as part of an NCHRP project (Fisher 1970; Fisher 

et al. 1974). The use of floor beams or diaphragm plates connected to the flanges became a 

requirement in fatigue design specifications by 1985. These fatigue design specifications were 

adopted into AASHTO (1998) LRFD specifications in 1998. Modern steel bridges built after 

1985 possess a high level of reliability in terms of fatigue due to current design and detailing 

requirements according to fatigue design specifications. Fatigue problems in bridges that were 

built according to current fatigue design provisions were typically due to design errors or 

unintended behavior.  

The improved design specifications for modern steel bridges have two main aspects: (a) 

strict controls during the design and construction to prevent structural flaws and to assure 

sufficient material toughness, and (b) detailed inspection requirements to ensure that the defects 

are detected and repaired on time. The requirements for the manufacturing of steel girders and 

material toughness specifications assures high standards for modern bridges. In addition, high 

performance steel offers superior toughness that could reduce the need for some strict provisions 

for FCMs (Dexter et al. 2004). On the other hand, FHWA hands-on inspection requirements 

contain highly restrictive provisions even for newly built steel bridges. Although this inspection 

protocol may be necessary for older bridges built before 1985, the current inspection requirement 



 

19 

does not differentiate between modern bridges and old bridges. Because of the restrictive fracture 

critical definition, numerous modern steel twin I-girder or twin tub girder bridges fall into the 

fracture critical category. 

2.4 REDUNDANCY 

The structural engineering community realized the importance of redundancy in steel 

bridges after the total collapse of the Silver Bridge in West Virginia in 1967 due to the failure of 

a single eye-bar connecting the suspension chain (Scheffey 1971). Code provisions and safety 

requirements were then modified for bridges susceptible to a fracture critical condition, where 

the failure of one member may lead to total collapse of the bridge. The concept of redundancy 

and definition of fracture critical members was first introduced into the AASHTO (1979) 

Standard Specifications for Highway Bridges after the release of the AASHTO (1978) Guide 

Specification for Fracture Critical Nonredundant Steel Bridge Members. However, the definition 

of redundancy and fracture critical members was vague and there remains no clear guidance on 

quantifying the level of redundancy. A fracture critical member is defined as a “component in 

tension whose failure is expected to result in the collapse of the bridge or the inability of the 

bridge to perform its function” in the current AASHTO (2017) LRFD Bridge Design 

Specification, but there are many other definitions, such as “a steel member in tension, or with a 

tension element, whose failure would probably cause a portion of or the entire bridge to 

collapse” in the NBIS (Lwin 2012).  

Most of the U.S. and Canadian departments of transportation (DOTs) use the AASHTO 

or the NBIS definition for redundancy (Connor et al. 2005). In general, slab-on-girder type 

bridge superstructures are considered redundant when they have at least three girders, which is 

based on a load path consideration. This approach is quite conservative and does not take into 

account lateral distribution of loads through secondary elements from a damaged member to an 

undamaged member. In addition, internal redundancy and structural redundancy has not been 

taken into account for redundancy assessment. Early redundancy studies between the 1970s and 

late 1990s were conducted to develop tools for evaluating and measuring the redundancy levels 

in structural systems. This section summarizes several early studies conducted following the 

release of the AASHTO (1978) guide specifications, in which nonredundant bridges were 
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defined as “structures where the failure of one member could cause collapse.” However, no 

objective way of measuring or defining redundancy was introduced.  

Some twin girder bridges are likely to withstand service loads after the fracture of one 

member due to internal redundancy or alternate load paths such as bracings and bridge decks. 

One of the earliest studies about internal redundancy was carried out by Sweeney (1979). The 

author pointed out that riveted built-up members may provide internal redundancy; riveted 

members are not as critical as welded members in case of a fracture. Therefore, these differences 

should be identified to better quantify postfracture redundancy. Sweeney (1979)suggested that 

providing a redundant load path or a component redundant structure, such as in the case of 

riveted built-up structures, may be required to avoid fracture fractures. 

Numerous other studies have focused on postfracture behavior by considering the 

alternative load path provided by bracing. Heins and Hou (1980) and Heins and Kato (1982) 

evaluated two girder steel bridge behavior after the major fracture of a girder. The findings 

suggest lateral bottom bracing and cross-bracing effectively transfer load to intact members, 

creating additional postfracture redundancy. Sandare (1983) investigated the redundancy of a 

steel truss bridge after the fracture of one mid-span truss. The bracing system was effective for 

transferring the loads, and all the members remained elastic under full service load with four HS-

20 trucks including impact. 

In the 1980s, researchers tried to develop guidelines and provisions to better define the 

redundancy of a bridge in the event of a full-depth fracture of a member. One of the early 

attempts was the study by Parmelee and Sandberg (1987). They suggested that more objective 

criteria and provisions should be developed to define redundant live load levels, allowable stress, 

and deflection limits after the fracture of a member in a nonredundant system. 

Frangopol and Curley (1987) performed an analytical study to identify the effect of 

redundancy on the reliability of a bridge system. The authors defined redundant factors, R, for 

intact and damaged structures in order to quantify residual capacity. Equations (2.1) to (2.3) are 

used to find the overall strength of the system. 

 𝑅𝑅2 =  
𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖

 (2.1) 

 𝑅𝑅3 =  
𝐿𝐿𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 (2.2) 
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 Ω = 𝑅𝑅2𝑅𝑅3 =  
𝐿𝐿𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑

𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖
 (2.3) 

where 𝑅𝑅2 = reserve redundant factor; 𝑅𝑅3 = residual redundant factor; 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = load carrying 

capacity of the intact structure; 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖 = design load; and 𝐿𝐿𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 = load carrying capacity of 

the damaged structure. The product of the reserve capacity and the residual capacity is a measure 

of the structure’s reliability. It was suggested that R-factors may provide a deterministic way of 

measuring overall system strength. 

Daniels et al. (1989) carried out a detailed analytical study investigating the redundancy 

of simple-span and continuous steel twin girder bridges with bracing systems. A fracture was 

assumed emanating from the bottom flange up the entire depth of the webs, but not into the 

compression flange. The postfracture behavior of twin girder steel bridges was evaluated in 

significant detail, using guidelines provided for assessing the redundancy through 3D analytical 

models or FEM analysis of an as-built structure with properly modeled bracings. It was 

concluded that twin girder steel bridges with properly designed bracing can provide significant 

redundancy following a near full-depth failure of one of the girders. Although the bracing may 

not be designed for redundancy, the bracing may provide a secondary load path following the 

fracture of one girder. The authors suggested that a redundancy rating based on 3D analytical 

models or computational FEM analysis may be used to develop a redundancy rating.  

Ghosn and Moses (1998) defined redundancy as “the capability of a bridge superstructure 

to continue to carry loads after the damage or the failure of one of its members.” A bridge system 

may be declared safe if it satisfies four criteria. First, the system must provide an appropriate 

safety level against member failure. Second, the system capacity of the bridge must not reach its 

maximum under extreme loading conditions. Third, the bridge must not deform largely under 

expected loading conditions, and fourth, the bridge must be able to carry some traffic loads after 

the failure of one of its members.  

Ghosn and Moses (1998) also set objective criteria for estimating the residual capacity of 

bridges and provided guidelines accordingly. Their proposed approach utilizes statistical system 

factors to assess the level of redundancy of a member. Therefore, the overall system behavior is 

considered rather than the behavior of individual components. Current code requirements 

generally ignore the system effect and consider load path redundancy, which results in a 

conservative consideration. Their research suggested system factors that provide a sufficient 
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level of redundancy for structural safety under service load conditions when the system reserve 

ratio for damaged condition is greater than 0.5, which means that the bridge capacity must be 

more than 50 percent of the capacity of the critical member. Equation (2.4) gives the formula for 

determining the reserve ratio for the system in damaged condition. 

 𝑅𝑅𝑑𝑑 =  
𝐿𝐿𝑓𝑓𝑑𝑑
𝐿𝐿𝐹𝐹1

 (2.4) 

where 𝑅𝑅𝑑𝑑 = system reserve ratio for the damaged condition; 𝐿𝐿𝐹𝐹1 = the capacity of the bridge 

before failure of any member using elastic analysis; and 𝐿𝐿𝑓𝑓𝑑𝑑 = the capacity of the damaged 

bridge before reaching ultimate load. Although different agencies and bridge designers have used 

the proposed approach, it has not been adopted into national bridge design specifications. 

Connor et al. (2005) carried out a synthesis study as part of the National Cooperative 

Highway Research Program (NCHRP) Report 354, which focused on the inspection and 

maintenance of fracture critical bridges since the manufacturing costs were found to be small 

compared to mandated fracture critical inspection. As of 2005, they noted that around 76 percent 

of all FCBs were built prior to 1978. Eleven percent of all bridges in the United States have an 

FCM designation, and 83 percent of these bridges are two girder bridges or two line trusses, and 

43 percent of the FCM are riveted members (Connor et al. 2005). The authors suggested that 

designers focus on a target reliability level rather than a redundancy level. They suggested that it 

is possible to achieve target reliability for a nonredundant bridge by providing about 17 percent 

conservatism in the design. One of the major contributions of this synthesis study was the 

compiled field information about the fracture incidents. Only two bridges, the Point Pleasant 

Bridge (constructed in 1928) and the Mianus River Bridge (constructed in 1957), had a total 

collapse due to fracture. 

A technical memo entitled “Clarification of Requirements for Fracture Critical Members” 

(Lwin 2012b) pointed out the shortcomings of current redundancy definitions and recognized the 

system level performance as a way of evaluating redundancy. The concept of redundancy is 

critical for bridges because nonredundant bridges are classified as fracture critical. Although the 

term redundant is very intuitive for most structural engineers, there is no clear definition for 

measuring the redundancy level of a bridge superstructure. The AASHTO LRFD describes 

redundancy as “the quality of a bridge that enables it to perform its design function in a damaged 

state.”  
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Three different types of redundancy are defined (FHWA NBIS 2012):  

• Load path redundancy. 

• Structural redundancy. 

• Internal redundancy. 

A structure may be classified as redundant if it satisfies one or more of these redundancy criteria. 

Each of these are discussed in the following paragraphs. 

Load path redundancy is relatively straightforward to identify because bridges having 

more than two girders are designated redundant, but some agencies even require four or more 

load carrying girders to be considered as load path redundant. If one of the girders would 

completely fracture or be unable to carry load, the load would be redistributed to the neighboring 

girders, and the bridge would be safe from a total collapse. Load path redundancy simply 

considers parallel primary load carrying members, which may be girders or trusses.  

Structural redundancy is a function of static indeterminacy of the entire structure, which 

may be due to continuity of the bridge over interior supports or sometimes due to secondary 

members such as the deck. Continuous multi-span bridges possess structural redundancy and in 

case of a failure of one beam member, some load is redistributed from one span to another so 

that a total collapse of the bridge may be prevented.  

Internal redundancy may be provided by member detailing to prevent fracture 

propagation through the entire cross-section. Internal redundancy exists in built-up members that 

have multiple parallel plates and other structural components within a member. A member is 

internally redundant if it has three or more similar elements connected together. If one of the 

elements fail, the load may be redistributed to the other elements, and the member will not fail. 

Internal redundancy ceases to exist when the member is repaired by welding the elements 

together. Welded members carry the load path from one element to the other and may be 

considered as one single member. In general, redundancy is determined by considering 

alternative load paths to identify FCBs. However recent experimental and analytical research has 

shown that certain bridges identified as nonredundant may have sufficient reserve capacity due 

to 3D system behavior and transverse load distribution through secondary load paths, such as the 

deck slab and/or cross-frames.  

FCB designations have two main aspects: (a) design/fabrication requirement, and (b) 

inspection protocol. Currently, FHWA requires strict hands-on inspections for fracture critical 
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bridges and FCBs have stricter fabrication requirements to meet the American Welding Society 

(AWS) Bridge Welding Code requirements. Although FHWA (2012) allows the use of rigorous 

analysis and consideration of system level redundancy for the inspection of in-service bridges, 

this approach is not allowed for fabrication protocols of steel twin tubs. Therefore, for 

fabrication, redundancy should be decided based on load path redundancy, and nonredundant 

tension members should conform to AASHTO LRFD, FCP, and AWS. This new classification is 

defined as a system redundant member, which is “a member that requires fabrication according 

to the AWS FCP, but need not be considered a FCM for in-service inspection,” as stated on the 

aforementioned FHWA technical memo webpage (Lwin 2012a). 

2.5 FRACTURE CRITICAL INVESTIGATIONS ON SLAB-ON-STEEL GIRDER 

BRIDGES 

Steel twin I-girder bridges are a popular system of construction used for both straight and curved 

bridges; this bridge system is designated as fracture critical due to a lack of load path redundancy 

(having less than three girder lines). Fasl et al. (2016) investigated the fatigue response of a 

fracture critical steel twin I-girder bridge that was built in 1935 over the Medina River and carry 

I-35 in Texas. The bridge features fatigue cracks along the weld at the top flange and lateral 

beam connections. The bridge was instrumented using strain gage and crack propagation gauges 

along the existing fatigue cracks. The behavior and crack propagation was monitored during rush 

hours. Due to the extent of the fatigue cracks, the girders were strengthened by installing bolted 

cover plates at critical locations, and the behavior was also monitored after the installation of 

those plates. The authors monitored the bridge for more than two months before strengthening 

and estimated the residual fatigue life of the structure. The bridge was also monitored during and 

after the strengthening. The authors reported that the built-up sections provide some level of 

internal redundancy because the fatigue cracks did not propagate into the webs. They also 

concluded that the strengthening method reduced the fatigue damage by providing composite 

action with the deck, and this procedure may be a potential rehabilitation for old bridges that 

exceed their original design life expectancy. 
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2.6 FRACTURE CRITICAL STEEL TWIN TUB GIRDER BRIDGES 

Figure 2.4 presents a typical STTG bridge of the type that has become popular in Texas 

because they offer a solution for long-span and/or curved highway bridges in addition to 

providing an aesthetic structural option. STTG bridges consist of two steel girders that are the 

primary members for transmitting the dead load and live load to the substructure. On the other 

hand, concrete decks and stringers are secondary members that create a load path between 

girders (Daniels et al. 1989). Because of their fracture critical designation, STTG bridges require 

a hands-on inspection every two years. This rigorous inspection may include the testing of welds, 

nondestructive evaluation, and visual assessment. Procedures of nondestructive evaluation of 

steel members may “include dye penetrant, magnetic particle, or ultrasonic techniques” (TxDOT 

2013a). 

Most fracture critical designated bridges in the Texas Bridge inventory are steel twin tub 

girders, which automatically fall into the fracture critical category because they contain only two 

girder lines. Field testing of in-service bridges and experimental testing of full-scale bridges 

under controlled loading help to build up experimental data in order to assess the reliability level 

after the fracture of a load carrying member. Furthermore, these data enable researchers to verify 

different modeling approaches and develop modeling standards for evaluating redundancy levels 

due to internal redundancy, structural redundancy, or alternative load distributions through 

secondary members. 

Coletti et al. (2005) provided guidelines and preliminary design suggestions for the 

design of steel tub girder bridges, including preliminary sizing and spacing considerations. They 

also discussed possible design issues, available analysis tools, and detailing of tub girders. The 

authors stated that steel twin tub girders are economical between a span range of 150 to 500 ft 

and also permit tight radius of curvature solutions and good aesthetics owing to the simple clean 

lines.  
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Figure 2.4. STTG Bridge, I-35/US 290 Interchange, Austin, Texas (Coletti et al. 2005). 

Hunley and Harik (2012) investigated the effect of various secondary structural 

components for developing load transfer paths when one member of a twin steel tub bridge fails 

using a parametric, non-linear, finite element analysis. The variables that were studied in this 

investigation included location of damage, continuity, and span length. A load transfer 

mechanism from a fractured girder to the intact girder should develop in order to have a measure 

of redundancy. Figure 2.5 shows that for steel twin tub superstructures, it is only possible 

through concrete decks and/or external cross-frames. If the deck fails progressively following the 

failure of a girder, one should not rely only on the deck for lateral load transfer.  

Hunley and Harik (2012) analyzed 33 bridge configurations to investigate reserve load 

capacities following the fracture of one member. The fracture of one of the girders was modeled 

by reducing the stiffness of the bottom flange line element and the web shell element. The 

damaged condition of the deck was modeled by reducing the stiffness of the individual finite 

element when it reached crushing strain. Redundancy levels of the analyzed bridges were 

calculated using the damaged condition capacity, 𝑅𝑅𝑑𝑑, as defined in NCHRP Report 406. The 

authors determined the capacity of the damaged bridge should be at least 50 percent of the 

capacity of the undamaged bridge to be classified as redundant. Based on the assessment of 

redundancy levels of all analyzed bridge geometries, the authors concluded that a progressive 

failure of a bridge deck results in insufficient load capacity to meet the minimum redundancy 
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level. It was also noted that girder continuity increases redundancy. The authors also concluded 

that the external bracing is the key parameter for providing sufficient redundancy.  

 
Figure 2.5. External Bracing Types: (a) K-type Cross-Frames; (b) Solid Diaphragms 

(Hunley and Harik 2012). 

Barnard et al. (2010) recently investigated steel twin tub girders’ performance as part of 

TxDOT Project 9-5498. The study included extensive laboratory testing, with the experimental 

investigation of a full-scale box-girder bridge together with comprehensive computational 

modeling. The major objective of the research was to evaluate the behavior of twin box-girder 

bridges after the fracture of one girder and provide guidelines for modeling the postfracture 

response. The tested bridge was simply supported; therefore, it did not have the structural 

redundancy that often exists for continuous multi-span (indeterminate) bridges. External braces 

that could contribute to load distribution in the damaged bridge were removed based on TxDOT 

practices. The authors conducted three tests at different damage states using different loading 

conditions. During the first test, a sudden fracture was created at the mid-span of the bottom 

flange of the exterior girder using charge explosives while an equivalent HS-20 load was placed 

directly above the fractured girder. The bridge deflected less than 1 in. The second test was 

conducted under similar loading, but this time a sudden full-depth fracture was created on the 

external girder. The fractured external girder deflected 7 in. but could still support the service 

load. The third test was an ultimate load test while the exterior girder had a full-depth fracture. 

The bridge could still carry more than five times the legal truck load. Barnard et al. concluded 

that the prominent failure mode was initiated by the pullout of shear studs in the deck followed 

by the crushing of the reinforced concrete deck.  

The effect of different parameters, including radius of curvature, railing, and continuity, 

were also considered in the tests and analysis. The effect of the railing significantly reduced the 
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deflection while increasing the tensile forces on the stud connections. Therefore, ignoring the 

railing is not necessarily conservative in a redundancy analysis. The results also showed that the 

decrease in the radius of curvature resulted in an increase in the vertical deflection of the 

damaged girder. Based on experimental testing, it was observed that the damaged bridge 

performed with sufficient redundancy to redistribute and continue to carry the very high applied 

loads.  

Samaras et al. (2012) proposed a simplified method for evaluating the redundancy of twin 

steel box-girder bridges based on the work conducted as part of TxDOT Project 9-5498. The 

suggested method proposed an initial strength check and yield line analysis for evaluating the 

remaining strength of the damaged bridge. A three-level redundancy check was recommended: 

1. The initial strength check (ISC) of the bridge with an intact girder is conducted. If the 

moment and shear strength is adequate and the deck has adequate shear capacity, the 

bridge can be called redundant. 

2. If the initial strength check is not satisfied, a yield line analysis (YLA) can be 

performed. ISC cannot be used if the shear studs pull out from the deck concrete. 

Figure 2.6 depicts the surveyed deck deflections and assumed elastic plate 

displacements based on the actual failure shape. A yield line pattern was developed 

based on the observed failure shape. It was concluded that the assumed yield line 

could be used for fractured steel twin box-girder bridges for estimating the ultimate 

load if shear studs pull out. Both ISC and YLA are conservative and convenient 

methods to quickly evaluate the redundancy level of fracture critical bridges. It was 

concluded this method can provide information about the mode of failure that can 

help identify the remaining capacity of the bridge with a fractured girder. 

3. If YLA also shows inadequate capacity, then more sophisticated nonlinear 

computational methods, such as finite element, must be used. 
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Figure 2.6. FSEL Bridge Test: (a) Surveyed Deflections and Assumed Yield Line; (b) 

Damaged Deck After Test (Samaras et al. 2012). 

Kim and Williamson (2014) developed finite element modeling guidelines for evaluating 

the redundancy level of steel twin tub bridges. This study was also conducted as part of TxDOT 

Project 9-5498. Their proposed modeling approach considers nonlinearity due to concrete 

cracking and crushing, as well as steel yielding. In addition, the shear stud connection failure 

mechanism was also considered in the FEM model because stud connection failure may 

significantly affect redundancy. The pullout behavior of the embedded shear studs was evaluated 

through laboratory tests (Mouras et al. 2008; Sutton et al. 2014). A shear stud failure mode 

where the girder had a full-depth fracture was observed during the second test. The FEM models 

successfully estimated the bridge component failures. Both the test and FEM analysis suggested 

that the bridge had greater redundancy than defined by current code provisions.  

After verifying the modeling approach, Kim and Williamson (2014) analyzed several 

other bridge configurations using the same modeling approach to investigate the remaining load 

capacity following a full-depth failure of one member. They concluded that the shear stud 

connection behavior is one of the important parameters for capturing the failure mode correctly 

and evaluating the redundancy level. 

2.7 RESEARCH QUESTIONS ARISING FROM LITERATURE REVIEW 

Based on the foregoing survey of the state-of-the-art and state-of-the-practice for fracture 

critical bridges in general and STTG bridges in particular, the following questions remain that 

will be addressed in this research: 
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• Is it possible to identify redundancy levels of existing and future STTG bridges in 

order to classify them as nonfracture critical? 

• Do existing STTG bridges have adequate capacity following the fracture of one box 

member? 

• Are there any currently available analysis techniques that may be utilized for fast and 

reliable capacity estimates for STTG bridges? 

• Is it possible to develop reliable and easy to implement analysis criteria using yield 

line method and/or grillage analysis? 

2.8 RECENT RELATED RESEARCH 

To provide some insight into the methods and approaches used to answer the above 

questions, members of the research team recently conducted experimental and analytical studies 

on developing a new class of bridge for TxDOT. Although not fracture critical in nature, the 

analytical approach is instructive. 

Recently, (Jiang 2015) adopted the yield line theory and strip methods (a lower-bound 

plastic method) to estimate the overstrength capacity of slab-on-beam bridges. This study was 

conducted as a continuation of TxDOT Project 0-6722 (Hueste et al. 2015; Terzioglu 2015; 

Terzioglu et al. 2016a; Terzioglu et al. 2016b). Different failure modes—including beam-only, 

slab-only, and mixed mechanisms—were considered. Plastic overstrength factors were 

determined using an upper-bound yield line analysis (Figure 2.7), and a lower-bound strip 

method was used for two different spread slab beam bridges. It was found that the two bridge 

designs evaluated are sufficiently safe at their ultimate limit states, and the plastic overstrength 

analyses provide important information regarding the balance of each design with respect to the 

hierarchy of failure mechanisms. Local flexural failure is more likely when wheel loads are 

applied to the slab at the end of the bridge deck. To remove this undesirable feature, 

strengthening the end region of the deck slab by adding more reinforcing steel to rebalance the 

design is suggested. 
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Figure 2.7. Yield Line Model Adapted from Jackson and Middleton (2013) Showing 

Observed Cracks as Tested by Hazell (1999). 

Figure 2.8 presents the mid-span deflections of each slab beam in the Texas A&M 

University’s RELLIS campus bridge and US 69 bridge under monotonic loads from initial elastic 

conditions until collapse. The overstrength factors were over 2.0 for both bridges. The estimated 

values from yield line and strip methods of analysis gave upper- and lower-bound values 

respectively. Apart from the slab-only failure mechanism, yield line theory generally provides 

upper-bound solutions, strip methods generate lower-bound results, and those values converge to 

be similar to each other. 

 
Note: Ω = overstrength factor. 

Figure 2.8. Beam Deflections Due to Scaled Ultimate Design Loads (Jiang 2015). 
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3 COMPUTATIONAL MODELING OF FRACTURE CRITICAL STEEL 

TWIN TUB GIRDER BRIDGES 

3.1 INTRODUCTION 

This task of the “Fracture Critical Steel Twin Tub Girder Bridges Project” includes the 

creation of an FEM model for a single-span fracture critical twin tub bridge and its verification 

using data collected in TxDOT Research Project 0-6937.  

In this phase of research, a model has been created using the commercial software 

package Abaqus, a general purpose FEM code that can be used to solve a wide range of 

advanced engineering problems representative of the materials and geometry of the TxDOT 

bridge from Project 9-5498. This model includes the use of nonlinear elasto-plastic elements that 

adequately represent the nonlinear material behavior of crushing concrete and yielding of steel.  

The FEM model has been used to simulate and analyze a sudden partial and a full-depth 

fracture of one of the tub girders. This FEM model allows for the evaluation of the residual 

capacity of the girder postfailure, and it considers the load path redistribution of the lateral load 

through the secondary load paths such as the bridge decks.  

The accuracy of the above-stated FEM model has been evaluated using test data from the 

TxDOT research project. This research project involved the full-scale testing of a fracture critical 

steel box-girder bridge in August of 2009. This bridge was tested under four loading conditions, 

the first of which was an undamaged girder under an HS-20 truck load. The second loading 

condition consisted of a sudden fracture of one of the girder flanges under an HS-20 truck load. 

The third loading condition was a full-depth flange and web fracture under an HS-20 truck load. 

The fourth and final load case was the ultimate loading of a full-depth fracture. All four of the 

load cases were run using the FEM model, and the results from the various loading situations 

were compared to the full-scale test bridge results to verify the model’s ability to adequately 

assess the redundancy. Once the test results were compared, it was determined the model was 

successful in replicating the behavior of the full-scale test. This finding is promising for the 

future task of using FEM models in parametric studies to evaluate fracture critical twin tub girder 

bridges for redundancy.  
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The next section of this chapter describes the Ferguson Structural Engineering 

Laboratory (FSEL) test bridge, including the geometric parameters, material properties, test 

setup, and research procedure. It also details the four different loading scenarios and behavioral 

results. The following section details the development and test results for the various load cases 

of the FEM model. The fourth and final section of this chapter includes a comparison of the FEM 

model results to those acquired out in the field from the FSEL test bridge and an assessment of 

the FEM’s ability to be used as realistic method of evaluating redundancy of in-use and future-

construction fracture critical bridges.  

3.2 DESCRIPTION OF THE TEST BRIDGE USED FOR MODEL VERIFICATION 

The FSEL test bridge was constructed as a TxDOT and FHWA research initiative to 

evaluate the redundancy of twin box-girder steel bridges. The twin box-girder steel bridge is a 

fracture critical bridge, and the details of that study are in TxDOT Technical Report 9-5498. This 

type of bridge construction has received the fracture critical designation because it only has two 

tension flanges in the positive moment region of the bridge, and if one girder fails, the second 

girder may not be capable of supporting the required full-factored design loads.  

The FSEL test bridge was originally used as a section of an exit ramp in Houston, TX. 

After taken out of service a portion of the bridge was used for the FSEL test bridge. The FSEL 

test bridge was designed to represent the worst case configuration, with respect to redundancy. 

The bridge was set up in a simply supported manner and all external braces that could have 

assisted in load transfer following a girder failure were also removed according to common 

TxDOT practice. Furthermore, the railing was constructed with expansion joints that 

significantly reduce any load carrying capability that might contribute to stiffening the girders. 

Finally, the bridge was constructed with a tight radius of curvature in the horizontal plan; an 

equivalent HS-20 truck load was applied on the exterior girder at the location of the 

mechanically induced girder fracture. An image of the full-scale destructive test setup of the twin 

steel box-girder bridge is located in Figure 3.1. 

In subsequent sub-sections of this section, the geometry, material properties, test 

methods, and various load cases and failure modes are discussed.  
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Figure 3.1. The FSEL Test Bridge (Barnard et al. 2010). 

3.2.1 Geometric and Material Properties 

A typical cross-section of the FSEL test bridge is depicted in Figure 3.2. Figure 3.3 

shows the plan view of the bridge, while the haunch detailing is shown in Figure 3.4. The FSEL 

test bridge was originally used as a section of the exit ramp on the IH 10/Loop 610 interchange 

in Houston, Texas. The bridge was configured in a simply supported fashion, with a total bridge 

span length of 120 ft. The top and bottom flange thickness did not change along the entire length 

of the bridge. The total width of the bridge deck was 23 ft 4 in., with a roadway width of 21 ft 4 

in. A standard T501 section railing was used on both sides of the roadway over the entire length 

of the bridge. The bridge had a tight radius of curvature of 1365 ft. A summary of the bridge 

properties is shown in Table 3.1. 

Table 3.1. FSEL Test Bridge Properties.  

Property Measurement 
Length  120' 
Deck Width 23' 4" 
Roadway Width  21' 4" 
Radius of Curvature 1365' 
Shear Stud Spacing 22" 
Diaphragm Spacing  12' 
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The bridge also had shear studs welded to the top girder flanges located in groups of three 

spaced at 22 in. on center. There was also a 3 in. unreinforced concrete haunch added above the 

top flanges of the steel girders.  
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Figure 3.4. Haunch Detail: (a) Cross-Section of Haunch; (b) Construction Photo Before 

Casting (Barnard et al. 2010). 

The FSEL test bridge also contained diaphragms between the girders at 12 ft increments 

on each side of the centerline. Figure 3.3, a plan view of the bridge, shows that half stations are 

the locations of the cross-bracing, and whole station numbers represent halfway points between 

cross-bracing.  

The detailing of the intermediate diaphragm can be seen in Figure 3.5 and is comprised of 

a 5 in. by 5 in. by 3/8 in. angle to connect the top together and two 3 in. by 3 in. by 1/4 in. angles 

to connect the top angle to the girder.  

 
Figure 3.5. Intermediate Diaphragm Details of FSEL Test Bridge (TxDOT 1996). 

A typical section showing the detail of the bridge span is shown in Figure 3.6. The bridge 

deck was 8 in. thick, with 2 in. and 1.25 in. of concrete cover over the upper and lower layer 

rebars. The deck consisted of two layers of longitudinal steel reinforcing bars: the top layer bars 

are labeled T bars and are size #4, and the bottom layer bars are labeled D bars and are size #5. 

Both layers of bars have a spacing of 6 in. The deck also contained two layers of transverse 
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rebars: the top layer rebars are labeled A bars and are size #5, and the bottom layer rebars are 

labeled B bars and are size #5. Both layers of bars have a spacing of 6 in.  

 
Figure 3.6. Typical Slab Section (TxDOT 2009). 

The flanges and webs of the steel girder were constructed out of steel plates. The bottom 

flange of the girder was a 47 in. wide, 3/4 in. thick steel plate. The top flange of the girder was 

constructed of two 12 in. wide, 5/8 in. thick steel plates. The web of the girder was composed of 

two 1/2 in. plates on a 1 to 4 slope rise from the bottom flange to the top flanges over a vertical 

height of 57 in. The details of the girder are shown in Figure 3.7 through Figure 3.9.  
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Figure 3.9. Tub Girder Cross-Section (TxDOT 1996). 

The flanges and webs of the twin box-girder were comprised of A572 Grade 50 steel with 

yield strength of 50 ksi and an ultimate strength of 65 ksi. The lateral bracing was constructed 

using A36 steel with yield strength of 36 ksi and an ultimate strength of 58 ksi. The shear studs 

used on the top flange for the girder to engage the concrete deck were 7/8 in. in diameter and 

were 5 in. tall and were constructed from the A108 cold-drawn bar.  

The bridge deck consisted of both steel reinforcing bars and concrete. Both the #4 and the 

#5 reinforcing bars were made of Grade 60 steel (Table 3.2). The actual values obtained in 

testing are the values used in the modeling phase of this research.  

The concrete in the bridge deck, the interior railing, and the exterior railing was specified 

to have a compressive strength of 4 ksi. The actual 28-day compressive strength of the deck was 

4.84 ksi. The interior railing’s compressive strength was 5.34 ksi, and the exterior railing’s was 

4.74 ksi. However, the maximum recorded strength of the deck, interior railing, and exterior 

railing was 6.26 ksi, 6.63 ksi, and 6.27 ksi, respectively. Table 3.3 lists the strengths of the deck, 

interior railing, and exterior railing. 
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Table 3.2. Steel Reinforcing Bar Properties (Neuman 2009). 

Bar 
Designation 

Nominal Yield 
Strength Fy (ksi) 

(specified) 

Nominal Yield 
Strength Fy (ksi) 

(measured) 

Nominal Ultimate 
Strength Fu (ksi) 

(measured) 
#4 60 60 102 
#5 60 68 101 

Table 3.3. Concrete Properties of Deck Slab and Railings (Neuman 2009). 

Deck Slab—Cast 8/17/06 
TxDOT Class S-Type (4 ksi) 

Test Date 
Age 

(days) 
Average 
f'c (ksi) 

9/14/2006 28 4.84 
10/24/2006 68 5.37 
8/16/2008 669 6.26 

4/2/2009 898 6.26 
Interior Railing—Cast 8/22/06 
Austin Class S-Type (4 ksi) 

Test Date 
Age 
(days) 

Average 
f'c (ksi) 

9/19/2006 28 5.34 
10/24/2006 63 5.95 
8/16/2008 664 6.63 
Exterior Railing—Cast 8/24/06 
Austin Class S-Type (4 ksi) 

Test Date 
Age 
(days) 

Average 
f'c (ksi) 

9/19/2006 26 4.74 
10/24/2006 61 4.90 
8/16/2008 662 6.27 
4/2/2009 891 5.49 

 

In Table 3.3, it appears that on April 2, 2009, the ultimate strength decreases. However, 

according to Neuman (2009), the samples used for testing on April 2, 2009, had poor endcap 

surfaces that may account for this inconsistency. 

Important steel members and dimensions are listed in Table 3.4, which contains the 

member type, dimensions, and steel type.  
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Table 3.4. FSEL Test Bridge Steel Member Sizes. 
3.2.1.1.1.1.1 Member  Dimension Steel Type 

Girder 
Bottom Flange Plate 47" x 3/4" 

A572 Gr.50 Web Plates (2) 1/2" 
Top Flange Plates (2) 12" x 5/8" 

Shear Studs 
(group of 3) 
per flange 

Diameter 7/8" A108 @ 22" 
Spacing Length  5" 

Diaphragm Top Angle 5" x 5" x 3/8" A36 Gr.36 Cross Angles 3" x 3" x 1/4" 

Reinforcing 
Bar 

Bar A—Top Transverse  #5 
Gr. 60 @ 6" 

Spacing 
Bar B—Bottom Transverse #5 
Bar T—Top Longitudinal #4 
Bar D—Bottom Longitudinal  #5 

3.2.2 Experimental Methodology and Test Results 

The FSEL test bridge was observed under four different load cases. The first loading case 

was just after construction under the HS-20 truck load. The second load case was just after 

flange fracture under the HS-20 truck loading. The third load case was just after flange and web 

fracture under the HS-20 truck loading. The fourth and final load case was after the flange and 

web fracture under ultimate loading conditions.  

The following subsections will discuss instrumentation, testing methods, and test results 

of the previously discussed load cases.  

3.2.2.1 Applying Approximate Service Loading to Intact Bridge and After Removing the 

Bottom Flange of One Girder  

During the construction phase of the twin tub girder bridge, various structural 

components were instrumented to determine the strains and deflections of critical members. 

Uniaxial strain gages were placed on strategic shear studs near the mid-span of the single-span 

bridge to observe the induced tensile force. Rosset strain gages were affixed on specific 

reinforcing bars within the concrete deck.  

Traditional surveying methods were used to determine deflections by shooting 1/10th 

points along the length of the interior and exterior girders. A straight line between the north and 

south end supports was used as the zero deflection, or base line. It should be noted that the 

researchers assumed the supported ends of the girder had zero deflection, even though the ends 

of the girders were supported by elastomeric bearing pads.  
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The induced fracture was strategically placed at the location of maximum damage 

potential—the mid-span of the bridge on the exterior girder. The fracture of flange was induced 

by a linear explosive charge affixed to the 47 in. tension flange to most accurately simulate a 

sudden and abrupt failure, as would be expected in in-situ conditions. A blast shield was attached 

to the girder prior to the flange fracture, specially designed to protect the underside of the deck 

from steel debris projectiles that were generated because of the fracture simulation.  

The maximum standard truck load (the TxDOT standard HS-20 truck load) was chosen 

as the loading condition for Phases 2 and 3 of the project. The standard HS-20 truck load is 76 

kip, with the front, middle, and rear axles separated by 14 ft. To generate the maximum moment 

the truck is placed on the exterior girder with the middle truck axle located at the exact midpoint, 

the middle and rear axles have a standard load of 33.9 kip, and the front axle has a load of 8.2 

kip. Under this loading condition, a maximum moment of 1985 kip-ft is induced at the mid-span 

of the bridge at the location of the fracture for the HS-20 truck load. 

In the research, the HS-20 truck load was simulated using five concrete girders that had a 

total weight of 76 kip supported by wooden cribbing to simulate axle loading. The middle axle 

was located 3.67 ft from the mid-span of the bridge, with all 3 axles separated by 14 ft. As per 

AASHTO standards, the exterior girder was placed 2 ft from the interior edge of the T501 

concrete railing. A precise loading diagram of the HS-20 truck load in relation to the bridge 

fracture is shown in Figure 3.10. 

  
Figure 3.10. Simulated HS-20 Truck Load on the FSEL Test Bridge (Neuman 2009). 
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After the bridge was constructed, deflection measurements were collected at tenth points. 

The maximum deflection was observed at the mid-span of the bridge. The fractured girder 

initially deflected downward 5.55 in. under the HS-20 truck load, and a deflection of 5.64 in. was 

recorded upon flange fracture. The intact girder initially deflected downward 5.03 in. under the 

HS-20 truck load and deflected 4.94 in. after flange fractures. Note that these deflection 

measurements also include the initial upward deflection due to camber. The measurements were 

taken over several days by several different surveyors. Ambient temperature conditions changed 

during this time. Figure 3.11 shows the deflections of the fractured and intact girder after the HS-

20 truck load application and after the girder flange was fractured. 

 
(a) Pre Flange Fracture 

 
(b) Post Flange Fracture 

Figure 3.11. Fractured and Intact Girder Deflections (adapted from Barnard et al. [2010]). 

Upon failure of the girder flange, the bridge was able to withstand the HS-20 truck load 

without failure. Therefore, this finding promotes the idea that that twin tub bridges may have a 

measure of redundancy leading to further load carrying capability despite a fracture.  
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3.2.2.2 Removing the Webs of the Fractured Girder 

The first step in testing the third load case involved repositioning the bridge to the 

approximate height of where it stood prior to the bottom flange being fractured during the second 

load case. In the fully supported position, an oxy-acetylene torch was used to extend the fracture 

from the bottom flange, and it was terminated 10 in. below the top flange weld. Following the 

cutting of the web, the concrete girders and wooden underpinning were once again strategically 

placed on the bridge per AASHTO standards at a location of maximum moment, with the outer 

girder 2 ft from the interior edge of the T501 railing, as shown in Figure 3.12. To appropriately 

simulate a sudden fracture of the tension flange and web, a special support system had to be 

installed that could quickly and simultaneously collapse, which was accomplished by using a 

scissor jack with cross tie supports, or tension tie assemblies, equipped with an explosive charge 

that would simultaneously fail. The tension tie assembly can be seen in Figure 3.13.  

 
Figure 3.12. Full-Depth Web Fracture and HS-20 Truck Load Positioning (Neuman 2009). 
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Figure 3.13. Scissor Jack with Explosive Tie Assembly (Neuman 2009). 

Before and after important stages in the testing procedure, surveys of the interior and 

exterior girders were taken at tenth points. The three main stages included after the HS-20 truck 

loading but prior to the scissor jack release, after the scissor jack release, and after unloading the 

HS-20 truck loading. Once again, the zero deflection line was taken as a straight line from the 

bottom of the girder at the north and south support.  

The deflected shape of the fractured girder varied significantly from that of the intact 

girder. After the HS-20 truck load was applied to the bridge, the scissor jacks were released, and 

all dynamic energy was dissipated. The mid-span of the girder deflected downward a total of 

7.02 in. for the fractured girder and 4.09 in. for the intact girder. It should be noted that the 

measurement also included the initial deflection due to camber. The overall appearance of the 

girder resembled that of “two partially restrained cantilevers pinned at the center” (Neuman, 

2009). The deflections of the fractured and intact girders at the tenth points during the HS-20 

truck load can be seen in Figure 3.14. 
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Figure 3.14. Fractured Girder Deflections Post Web Fracture (Neuman 2009). 

Even though the fractured girder deflected significantly, the bridge did not fail and was 

able to carry the HS-20 truck load. These results indicate potential redundancy in the structure.  

3.2.2.3 Applying the Ultimate Load 

Upon completion of testing the bridge with the exterior girder’s web fractured under HS-

20 loading, the bridge had not collapsed and was able to resist load. To test for the ultimate 

loading condition, the five girders from the previous tests as well as an additional sixth girder 

were arranged in 40 ft by 8 ft bays centered on the mid-span of the bridge. The total weight of all 

six concrete girders was 82.1 kip. Once again, the outer concrete block was placed 2 ft from the 

interior railing as per AASHTO recommendations. The diagram of the loading bay can be seen 

in Figure 3.15.  

Once again, the bridge deck, girders, diaphragms, studs, and railing were instrumented by 

many strain gages and potentiometers.  

When the concrete girders were appropriately arranged, the bridge load was increased by 

using raw material to fill the bin. The raw material used for the loading was roadway base 

material. The roadway base material was brought onto the construction site via trucks and 

dumped into a holding area. The roadway base material was then loaded into a 1-cubic-yd 

concrete hopper and transferred to the bin by way of crane. To ensure that there was an accurate 

record of the load on the bridge, a load cell was attached to the crane. Each hopper was 

subsequently unloaded in a symmetric pattern in the bin and centered about the mid-span of the 

bridge. There was a concrete bedding placed below the fracture of the exterior girder to catch the 

bridge as it failed.  
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Figure 3.15. Bin Placement Diagram and Photo (Neuman 2009). 

The bridge was incrementally loaded over the course of two weeks. A total of 104 

concrete hoppers of roadway base material were added to the bridge prior to its failure. The total 

weight of concrete girders plus the base roadway material was 363.3 kip, meaning that the 

bridge, with a completely fractured tension flange and web, held more than four times the weight 

of the largest legal truck load of 80 kip.  

Again, this final load case suggests that a so-called fracture critical twin tub girder bridge 

may have redundancy attributes that require further investigation.  

3.3 NONLINEAR FINITE ELEMENT MODEL OF THE TEST BRIDGE 

The FEM provides a versatile computational approach for correctly modeling the 

geometry of the bridge, thereby requiring few (if any) simplifying assumptions, particularly if 

three-dimensional (3D) modeling is adopted. A realistic representation of actual bridge geometry 

of slab-on-girder bridges may require significant mesh refinement and use of correct element 

types. The choice of element depends on the disposition of the bridge geometry. Commercial 

FEM programs provide a wide variety of element types to choose from depending on the 

relevant characteristic of the member, such as beam, shell, or isoparametric solid brick elements. 

Numerous guidelines and recommendations appropriately modeling different bridge types may 

be found in the literature (Barnard et al. 2010; Puckett et al. 2011; Puckett et al. 2005; Sotelino et 

al. 2004; Zokaie et al. 1991). 
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The appropriateness and accuracy of the selected modeling approach was verified 

through a comparison of field test results from TxDOT Project 9-5498 (Barnard et al. 2010) to 

the estimated response from the FEM model. A contemporary commercial software package, 

Abaqus v 6.14 (Dassault Systems 2014), which is a general-purpose FEM code used for solving 

a broad range of advanced problems in various fields of engineering, was used for simulating the 

response of the FSEL test bridge. A detailed nonlinear elasto-plastic finite element model was 

developed utilizing material nonlinearity due to crushing and cracking of concrete and yielding 

of rebar and steel plates. To achieve material nonlinearity, a concrete damaged plasticity model, 

which allows definition of dilation angle and yield surface, was used to represent the concrete 

components, and steel components were modeled using a metal plasticity model with isotropic 

hardening. The connection between steel tub girders and the reinforced concrete deck slab was 

modeled implicitly using nonlinear connector elements, which represent the load-deformation 

behavior of the haunch and shear studs. The pullout and shear load displacement behavior of 

shear studs were adopted from a study conducted on small-scale lab specimens, including the 

haunch (Mouras et al. 2008). 

The superstructure of a STTG bridge consisted of two steel tub girders and a cast-in-place 

reinforced concrete deck slab plus the normal railings. The concrete deck and railings were 

modeled using 3D eight-node linear continuum elements (C3D8). 3D two-node straight truss 

elements (T3D2), which use linear interpolation, were used to represent the reinforcement; they 

were modeled as embedded within the concrete. The main members of a steel tub girder are steel 

plates for the bottom flange, webs, top flanges, and end diaphragms. In addition, intermediate 

diaphragm members connect the top and bottom flanges every 12 ft, with lateral brace members 

connecting the top flanges at the same points. Steel plates of the tubs were modeled using eight-

node quadrilateral shell elements with reduced integration (S8R). All internal brace members 

were modeled using first-order 3D beam elements (B31). The effect of haunch was incorporated 

in the pullout behavior of shear stud connections, which was modeled implicitly using 3D two-

node connector elements (CONN3D2).  

The steel girders were seated on 3 in. thick elastomeric bearing pads that were 22 in. long 

and 11 in. wide. The bearing pads were located at the transverse center at both ends of each 

girder. Simulating the mechanical properties of a bearing pad is important because the boundary 

conditions may have a significant effect on the overall behavior of the bridge. Compressive and 



 

53 

shear stiffness of the pads was adopted from other research (Hueste et al. 2015) that used similar 

bearing pad geometry. The compressive stiffness of 6000 k/in and shear stiffness of 20 k/in. (G = 

100.6 psi) were used.  

A steel twin tub bridge consists of two main components—steel tub girders and a 

reinforced concrete deck slab. Another key component of STTG bridges is the shear stud and 

haunch connection. Although this connection is made from steel studs and concrete haunch, it is 

not easy to model this connection explicitly. Therefore, this connection was also modeled using a 

nonlinear plasticity constitutive model.  

The accurate modeling of a bridge superstructure is highly dependent on accurately 

defining the material behavior. Both steel and concrete may be modeled as an isotropic, linear 

elastic material so long as the structure is not under any critical loading beyond service loads. 

However, since this research aimed to investigate the behavior at loads much higher than at 

service level, both steel plates of the tub girders and reinforced concrete deck underwent 

significant deformations. When a structural component is subjected to severe overload, it is 

important to define how it may behave under such a load and whether it may possess sufficient 

ductility to withstand such a load without a catastrophic collapse. This type of behavior may be 

defined using nonlinear material models that include strain hardening effects. For both steel and 

concrete, there is wide range of constitutive models discussed in the literature, and the most 

common are available under the materials within the Abaqus software library. The mechanical 

constitutive relations were modeled considering both linear elastic and inelastic response. The 

inelastic response was simulated using available plasticity models. Damage mechanics were not 

included in the steel and concrete material constitutive models because the stiffness degradation 

and local failures are complex and create numerical convergence problems for complex behavior 

of reinforced concrete. 

3.3.1 Inelastic Steel Model 

The tub girders of the test bridge consisted of built-up members constructed using Grade 

50 structural steel. Inelastic, mechanical constitutive behavior of steel plates and reinforcing bars 

were modeled using classical metal plasticity with an isotropic strain hardening rule. Plastic 

stress-strain behavior was modeled as rate independent. Perfectly plastic behavior was assumed 

once the equivalent stress reached the yield strength point based on the von Mises yield criteria. 
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Structural steel for webs and flanges, interior and end diaphragms, and lateral cross-bracings 

were also constructed using Grade 50 steel. ASTM A615 Grade 60 steel was used for all 

reinforcing bars in the deck slab and railings. Figure 3.16 shows the stress-strain behavior of 

steel components from uniaxial tension tests of the structural steel that was used for the tub 

girders and as reinforcing bars of the deck slab. 

 
Figure 3.16. Constitutive Model for Steel Components (adapted from Barnard et al. 

[2010]). 

3.3.2 Nonlinear Concrete Model 

The deck slab of the test bridge was constructed using TxDOT Class S-Type concrete 

with a specified strength of f’c = 4 ksi at 28 days. The actual compressive strength is generally 

higher than the specified value. To accurately define the mechanical constitutive behavior of the 

concrete, compressive strength obtained from the laboratory tests should be used. Figure 3.17 

shows the concrete compressive strength of deck and railing concrete at different ages measured 

from the concrete cylinder tests. Although the concrete compressive strength was slightly 

different for the deck and railing, the same compressive strength was used for all concrete 

components for simplicity. A compressive strength value of f’c = 5.37 ksi was used for the first 

fracture test (bottom fracture), and f’c = 6.23 ksi was used for the second and third tests.  
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Figure 3.17. Concrete Compressive Strength from Cylinder Tests (Barnard et al. 2010). 

The concrete components were modeled using 3D eight-node solid brick elements. The 

damaged plasticity model was used to simulate the behavior of the concrete. The concrete 

damaged plasticity model provides general capabilities to capture inelastic behavior of concrete 

due to cracking in tension and crushing in compression and defines different tensile and 

compressive strengths. This model is suitable for concrete under low confining pressures, where 

the main failure criteria is tension cracking or compression crushing. The confinement effect in 

the concrete deck of the STTG bridge is limited since the thickness is very small compared to 

width and length. The concrete damaged plasticity model uses isotropic compression and tension 

plasticity in combination with isotropic damaged elasticity to define the inelastic behavior of 

concrete. The concrete compressive hardening curve was defined using Equation (3.1) as given 

by the Kent and Park (1971) model for two different compressive strengths at different ages of 

concrete. Tensile behavior is defined using the initial stiffness of the stress-strain curve in 

compression. The behavior after reaching the tensile and compressive strength was assumed to 

be perfectly plastic.  

𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑖𝑖′ �
2𝜀𝜀𝑖𝑖
𝜀𝜀𝑖𝑖𝑐𝑐

− �
𝜀𝜀𝑖𝑖
𝜀𝜀𝑖𝑖𝑐𝑐

�
2
� (3.1) 

where 𝑓𝑓𝑖𝑖 = concrete compressive stress at specified strain (ksi); 𝑓𝑓𝑖𝑖′ = concrete compressive 

strength at 28 days (ksi); 𝜀𝜀𝑖𝑖  = strain; and 𝜀𝜀𝑖𝑖𝑐𝑐 = strain at maximum stress (taken herein as 

𝜀𝜀𝑖𝑖𝑐𝑐 = 0.002). 
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Figure 3.18 shows the adopted stress-strain behavior of concrete for Test 1, 2, and 3 

depending on the measured compressive strength and the Kent and Park model. No test data are 

available regarding the tensile strength or modulus of elasticity of concrete. Therefore, the 

guidelines provided in American Concrete Institute (ACI) 318-14 (2014) Section 19.2 were used. 

Tensile strength of the concrete was calculated using the empirical relation provided in 

AASHTO LRFD (2014) Article 5.4.2.6, which is Equation (3.2), as follows: 

𝑓𝑓𝑟𝑟 = 0.2�𝑓𝑓𝑖𝑖′ (3.2) 

where 𝑓𝑓𝑟𝑟 = the modulus of rupture (ksi) and 𝑓𝑓𝑖𝑖′ = the compressive strength of concrete (ksi). 

The modulus of elasticity of concrete for different ages of concrete were also calculated using an 

empirical relation provided in AASHTO LRFD (2014) Article 5.4.2.4, expressed in 

Equation (3.3): 

𝐸𝐸𝑖𝑖 = 33000𝐾𝐾1𝑤𝑤𝑖𝑖1.5�𝑓𝑓𝑖𝑖′ (3.3) 

where 𝐾𝐾1 = the correction factor for the source of aggregate, which is taken to be 1.0 unless 

determined by physical test; 𝑤𝑤𝑖𝑖 = unit weight of concrete (kcf)—use 0.145 kcf for normal weight 

concrete; and 𝑓𝑓𝑖𝑖′ = compressive strength of concrete (ksi). 

 
Figure 3.18. Concrete Stress-Strain Behavior for Damaged Plasticity Model. 

Table 3.5 lists the tensile strength, compressive strength, and modulus of elasticity for the 

deck and railing concrete that was used to simulate the test bridge. Although the third test was 

conducted later, the concrete properties were assumed to be same as the second test because no 
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cylinder test data were available. Also, the additional strength increase after the second test was 

not expected to be significant. 

The concrete damaged plasticity model requires definition of various mechanical 

parameters to define the inelastic behavior of concrete. In addition to providing the compression 

hardening and tension stiffening behavior, the dilation angle, the flow potential eccentricity, and 

the ratio of biaxial compression to uniaxial compression, the ratio of the second stress invariant 

in the tensile meridian to the one in the compression meridian must be provided. Because of the 

absence of detailed material properties, default values that are common for normal concrete were 

used.  

Table 3.5. Mechanical Properties of Concrete at Different Ages. 

Test No. Age of Concrete 
(days) 

Compressive 
Strength, 𝒇𝒇𝒄𝒄′  (ksi) 

Tensile Strength 
(ksi) 

Modulus of 
Elasticity (ksi) 

1 66 5.37 0.46 4222 

2 293 6.23 0.5 4550 

3 940 6.23 0.5 4550 

Note: Compressive strength values were obtained from laboratory tests; tensile strength and MOE values were 
calculated using empirical AASHTO LRFD formulas. 

 

3.3.3 Modeling Shear Stud and Haunch Behavior 

Slabs on steel girder bridges are typically constructed with shear studs to transfer 

longitudinal interface shear stresses between the deck and girders. Thus, shear studs are welded 

to the top flanges of the girders and are required to extend at least 2 in. above the deck slab soffit 

(AASHTO 2014). In general, tub girders are constructed with initial camber. Therefore, variable 

haunch is provided to obtain uniform deck thickness. (TxDOT 2013b) Bridge Design Manual 

limits the haunch thickness to 3 in. when there is no reinforcement provided within the haunch. 

Shear studs are key elements for developing composite action between girders and a reinforced 

concrete deck. Mechanical properties due to composite action were simulated through modeling 

of pullout and shear behavior for the stud-haunch connection. Simulating this connection is key 

to the successful modeling of a damaged girder because the stud-haunch connection is under 

significant pullout and shear force following the fracture of one tub girder. 
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Topkaya et al. (2004) investigated the horizontal shear transfer for curved steel girder 

bridges and developed a load-slip relationship model for shear studs using experimental 

observations. The authors provided Equation (3.4) to model the load versus slip behavior for a 

stud or group of studs: 
𝑄𝑄
𝑄𝑄𝑑𝑑

=
3(Δ/0.03)

1 + 2(Δ/0.03)
 (3.4) 

in which Δ = slip (in.); and 𝑄𝑄𝑑𝑑  = the design strength of shear studs (kip) and is defined as the 

point where the shear displacement reaches 0.003 in., and is defined in Equation (3.5) as: 

𝑄𝑄𝑑𝑑 = 1.75𝐴𝐴𝑑𝑑𝑖𝑖(𝑓𝑓𝑖𝑖′𝐸𝐸𝑖𝑖)0.3 (3.5) 

in which 𝑓𝑓𝑖𝑖 
′  = the compressive strength of concrete (ksi); 𝐸𝐸𝑖𝑖 = the modulus of elasticity of 

concrete (ksi); and 𝐴𝐴𝑑𝑑𝑖𝑖 = the cross-sectional area of shear studs at a section (in2). 

The test bridge used in this research had three 5 in. long and 7/8 in. diameter shear studs 

installed on the top flanges every 2 ft. A group of three studs (𝐴𝐴𝑑𝑑𝑖𝑖 = 1.804 in2) at a section were 

simulated using one connector element having the same behavior as the three studs combined. 

Figure 3.19 shows the shear force slip behavior of a set of three studs at a section for two 

different compressive strengths. This constitutive relation was utilized to represent the horizontal 

shear behavior of connector elements that are used to model stud-haunch interface between the 

concrete deck and steel girders. 

The pullout behavior of shear studs was modeled using the recommendations of Sutton 

(2007) and Mouras et al. (2008). The authors conducted experimental research on ductility 

characteristics and the strength of shear studs embedded in reinforced concrete decks. 

Experimental pullout strengths of test specimens with haunch were found to be lower compared 

to the values predicted by ACI 318 equations because ACI does not take into account the 

presence of haunch. Mouras et al. (2008) developed modification factors for ACI equations to 

account for the haunch thickness. 
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Figure 3.19. Mechanical Constitutive Model for Shear in Stud-Haunch Connections. 

Barnard et al. (2010) developed a simplified load deformation behavior for connector 

elements using regression analysis of the test results from Sutton (2007) and Mouras et al. 

(2008). Figure 3.20 shows typical pullout behavior from experiments and assumed behavior for 

the connector elements of the FEM model.  

 
Figure 3.20. Stud Pullout Behavior under Tension (Barnard et al. 2010). 
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3.4 VERIFICATION OF FINITE ELEMENT MODELING APPROACH 

A full 3D non-linear elasto-plastic finite element model of the full scale test bridge 

described above was created using the commercial software Abaqus (Dassault Systemes 2014). 

The bridge deck and rails were modeled using 3D brick elements and divided into uniform 4 in. 

meshes throughout the deck. For the tub girders, a 6 in. mesh size was adopted. Figure 3.21 

shows the finite element model of the bridge superstructure. 

Various load and damage conditions were simulated to create the actual loading 

conditions that were conducted during the test program. Before the first test, which is the fracture 

of the bottom flange, the bridge was loaded with concrete block to simulate vehicle loading. 

Next, three simulations were conducted: (a) simulation of the bottom flange fracture, (b) 

simulation of the web and bottom flange fracture, and (c) simulation of the ultimate load capacity 

of the fractured bridge. 

 
Figure 3.21. Finite Element Model of the STTG Test Bridge. 

3.4.1 Simulating the Vehicle Loading 

Initial testing was conducted on the intact bridge without any damage. The bridge was 

loaded with concrete block having a total weight of 76.2 kip. The concrete blocks were arranged 
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such that the loading represented an HS-20 design truck load with three axles 14 ft apart. 

Detailed weights of each load and position of the loads were described in Section 1.2.  

The finite element simulation for the vehicle loading was achieved in two steps: (1) the 

application of deck and railing weight on the top flanges of tub girders only, and (2) the 

application of vehicle load on top of the deck, which was carried by the composite girder and 

deck section. The objective was to represent the locked-in stresses developed during 

construction. To achieve such a loading simulation in Abaqus, a mock deck and railing (with 

very small stiffness and mass) were defined and tied to the actual deck and railing. The purpose 

of mock sections was to keep track of the deflected shape so that the actual deck could be 

correctly positioned once the concrete hardens. During the first step, the deck, the railing, and the 

reinforcement were all removed from the model, and their weight was applied on the top flange. 

They were later reactivated with self-weight, and the initial applied load was removed from the 

top flanges. Since there is a tie constraint between the mock and the actual deck and railing, the 

deck and railing positioned at the right location following the reactivation.  

As the load simulation strategy implies, the baseline for the girder deflections is the 

undeformed shape of the girder before casting the deck and railings. Non-composite girders 

deflected due to weight of the unhardened concrete. Then the vehicle load was applied after the 

concrete hardened, at which point the composite girders deflected an additional amount. 

Figure 3.22 shows the comparison of experimental deflection profiles for east and west girders 

with the FEM predictions. 
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(a) Fractured East Girder 

 
(b) Intact West Girder 

Figure 3.22. Comparison of FEM Deflection Profile with Test Results under Vehicle 
Loading. 

3.4.2 Simulating the First Test (Bottom Flange Removal) 

The main objective of this analysis was to evaluate the behavior of the STTG bridge for 

the case of a partial and full fracture of one girder. Partial fracture of the east girder (outer girder) 

was created using explosives to create sudden failure of the entire bottom flange. To achieve 

such a load simulation in a finite element model, two halves of the east girder were tied together 

using weld connector elements (CONN3D2) along the predefined line at the mid-span. The 

loading steps and analysis procedures were followed as described in the previous section. 

Construction loads and the vehicle load were applied in a single static analysis step. In the final 

step, the connectors of the bottom flange only deactivated as a dynamic analysis step. 

Figure 3.23(a) shows the comparison of test deflections for the fractured girder with the FEM 
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predictions of the current study to the FEM predictions from Barnard et al. (2010). 

Figure 3.23(b) shows the estimated deflection profiles from FEM analysis and corresponding 

experimental deflections for the intact girder. While both predictions are in good agreement with 

test results, the estimated deflections for the intact girder were relatively closer to the intact 

measured ones. 

 
(a) Fractured East Girder 

 
(b) Intact West Girder 

Figure 3.23. Comparison of FEM Deflection Profile with Test Results After Bottom Flange 
Fracture. 

3.4.3 Simulating the Second Test (Removal of the Webs of the Fractured Girder) 

One of the main objectives of the project was to evaluate the behavior of the bridge 

following a full-depth fracture of a girder. Barnard et al. (2010) manually created a full-depth 

crack by extending the bottom flange fracture of the exterior girder using an acetylene torch. 

Temporary truss supports were provided during the cutting process so that the introduced 
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fracture damage could be released suddenly to account for the dynamic effects. The concrete 

blocks were placed at the locations described in Figure 3.12 while the truss supports were still in 

place. Then, the supports were suddenly released. 

The simulation process for the construction step was carried out like the first test in order 

to capture the locked-in stresses that develop during the construction. In the second static step, 

temporary boundary conditions fixing the vertical degree of freedom were applied 2.5 ft away on 

both sides from the centerline of the exterior girder. Vehicle loads were applied, and predefined 

connector elements joining the bottom flange and webs of the east girder were deactivated. The 

third step was removal of the temporary boundary conditions, which was applied as a transient 

dynamic analysis. Figure 3.24 shows the deflected shape of the bridge superstructure following 

the full-depth fracture of the east girder.  

 
Figure 3.24. FEM Deflection Profile Following the Fracture of the Web. 

Figure 3.25 shows the comparison of estimated and measured deflection profiles along 

the bottom flange of the fractured girder and intact girder, respectively. The measured mid-span 

deflection of the fractured girder was 7.02 in., and the FEM model predicted a value of 7.8 in. 

(11 percent higher). On the other hand, the estimated maximum deflection for the intact girder 

was about 30 percent higher than the measured value.  
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(a) Fractured East Girder 

 
(b) Intact West Girder 

Figure 3.25. Comparison of FEM Deflection Profile with Test Results After Web Fracture.  

Figure 3.26 shows the stress distribution throughout the bridge and stress concentration at 

the end of the web fracture. The fracture extends almost the whole depth of both webs and stops 

10 in. below the top flange, which is where the torch cut was stopped for the test bridge. 
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Figure 3.26. FEM von Mises Stress Results Showing the Stress Concentration Web 

Fracture. 

3.5 CONCLUDING REMARKS  

The current finite element model in this study used a constant mesh density throughout 

the bridge. The steel tub girders utilized 6 in. mesh, while the concrete was modeled using a 4 in. 

mesh size. This initial choice of the mesh size was justified based on similar studies in the 

literature and engineering judgment. A detailed convergence study was conducted to evaluate the 

mesh sensitivity of the key parameters. 

The accuracy of the FEM results in this phase of the research project, when compared to 

the field data of the FSEL test bridge, gives confidence to the use of FEM in determining 

deflections and failure loads of so-called fracture critical bridges. In the following research 

phase, numerous geometric variations of the FEM model were created that consider the effect of 

different span lengths, different degrees of curvature, and continuity on redundancy. After the 

development of the different FEM models, simplified upper-bound plastic yield line theory and 

lower-bound Grillage methods were explored for determining the ultimate loading condition. 

The results from both the yield line theory and the grillage method were compared to the results 

from the various FEM bridge models for accuracy. Last, a set of guidelines for implementing 

design/analysis and estimating the redundancy levels and reserve strength capacity for twin tub 

girder bridges was generated. 
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4 PARAMETRIC STUDY FOR STEEL TWIN TUB GIRDER BRIDGES 

USING NONLINEAR FINITE ELEMENT ANALYSIS 

4.1 INTRODUCTION 

The current task deals with a parametric study that includes the selection of 15 typical 

STTG bridges from the Texas bridge inventory and computational modeling of the selected 

bridges using FEM. FEM models of the selected bridges were created following the same 

procedures as the verified FEM model that was tested as part of a previous TxDOT research 

project (Barnard et al. 2010). The TxDOT 5498 Research Project involved full-scale testing of a 

fracture critical steel box-girder bridge under static HS-20 truck load and at ultimate load levels 

following full-depth fracture of the outside girder. The previous chapter presented all the details 

of the FEM modeling approach and comparative results of different static tests of the test bridge 

with the simulation results obtained from nonlinear FEM analysis.  

The current study investigates the performance of existing fracture critical STTG bridges 

in the case of a full-depth fracture of one of the girders. Therefore, a total of 15 STTG bridges 

were selected by considering different span lengths, different degrees of curvature, and the effect 

of continuity. These parameters are critical geometric parameters for evaluating the bridges’ 

response in terms of load distribution between girders. 

FEM models were created using the commercial software package Abaqus, which is a 

general purpose FEM software that is used to solve a wide range of advanced engineering 

problems. All bridge models used nonlinear elasto-plastic elements that adequately represent the 

nonlinear material behavior of crushing concrete and yielding of steel. FEM models were 

analyzed under the factored HL-93 live load model that includes HS-20 truck loading plus 

uniform distributed lane loading. Factored load demands were calculated, such as those in the 

AASHTO LRFD Bridge Design Specifications (AASHTO 2014), using 1.25DL +1.75 (LL + 

IM), where DL, LL, and IM represent dead load, live load, and impact factor, respectively. 

All bridge models were analyzed to identify residual capacity before and after the full-

depth fracture (bottom flange, web, and top flange) of the outside girder. Therefore, a 

quantitative redundancy measure was defined to identify the overstrength of an intact and 

damaged bridge superstructure to demonstrate the sufficient load carrying capacity under critical 
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flexural conditions. 3D FEM modeling provided more realistic capacity estimations of the bridge 

by considering the load path redistribution of the lateral load through secondary load paths such 

as the bridge decks. 

The next section presents the Texas STTG bridge inventory and shows distribution of 

span lengths and curvatures for all STTG bridges. It also describes the selection methodology 

and lists the 15 selected bridges. The following section provides details about the material and 

load models used for all FEM models. The fourth and final section of this chapter presents load 

displacement results for all 15 bridges and lists the overstrength factors.  

4.2 EVALUATION OF TXDOT STEEL TWIN TUB BRIDGE INVENTORY 

4.2.1 General 

It is important that selected bridges represent existing STTG bridge inventory. This 

selection was done using a range of critical parameters that represent current STTG bridges in 

Texas. Based on literature and input from TxDOT, the critical parameters were identified as span 

length, radius of curvature, and continuity. The distribution of these three key parameters were 

investigated while selecting the 15 bridges for the parametric study. 

4.2.2 Distribution of Texas STTG Bridges 

Span length is one of the key parameters that can affect postfracture behavior, overall flexural 

demand, and load distribution. The relatively high flexural strength of steel tub girders offers 

long-span ranges up to 500 ft. An efficient lower span length is limited to 150 ft due to the 5 ft 

minimum web depth suggestion, which provides accessibility during inspection. Although very 

long spans have been achieved, most of the steel twin tub bridges are typically between 150–300 

ft in length. Figure 4.1 presents the histogram of maximum span lengths for Texas STTG 

bridges. the majority of STTG bridges have between 150–300 ft span lengths with a median 

value of 210 ft.  
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Figure 4.1. Distribution of Texas STTG Bridges by Maximum Span Length. 

Another important parameter is the horizontal curvature. Although steel tub girders can 

be used for straight bridges, they offer a great advantage for curved bridges due to their superior 

torsional stiffness. They can achieve extremely tight curvatures, up to 6.7E-03. The range of 

horizontal curvature may be considered from tangential to a 150 ft radius. The flexural bending 

load demand on the outside girder increases as the curvature increases. Therefore, curvatures of 

STTG bridges were considered as one of the key parameters for the bridge selection process. 

Figure 4.2 shows the distribution of Texas STTG bridges by curvature. Most STTG bridges in 

Texas have curvature values between 7E-04–1.6E-03 with a mean curvature of 1.2E-03.  

 
Figure 4.2. Distribution of Texas STTG Bridges by Curvature. 

The third parameter of importance is continuity, which generally improves residual 

capacity due to structural redundancy inherent to continuous bridges. Most STTG bridges are 
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classified as fracture critical based on load path redundancy that only considers lateral load 

distribution; thus, all bridges with less than three girders are categorized as fracture critical. 

However, structural redundancy due to continuity can contribute significantly to longitudinal 

distribution of the load, thereby improving the flexural capacity. Therefore, different numbers of 

continuous spans—including simply supported, two-span continuous, and three-span continuous 

bridges—were considered to assess the effect of continuity on the level of redundancy. 

Figure 4.3 provides a histogram for the distribution of STTG bridges in terms of number of 

continuous spans. Most STTG bridges have three continuous spans; next in frequency are two-

span continuous bridges.  

 
Figure 4.3. Distribution of Texas STTG Bridges by Number of Continuous Spans. 

The above listed three key parameters were evaluated to come up with a range of radii of 

curvatures, span lengths, and number of continuous spans that represent most Texas STTG 

bridges. Table 4.1 lists the range of selected parameters that were considered for the FEM 

models for the parametric study.  

Table 4.1. Range of Parameters Considered for the Bridge Selection. 

Parameter Range 
Span Length, L 100–300 ft 
Curvature, R 0–6E-03  
Continuity Simple, Two, and Three Spans 
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4.2.3 Selection of Fifteen Representative Steel Twin Tub Girder Bridges 

The investigation of the histogram for number of continuous spans suggests that a 

majority of selected bridges should be three-span continuous followed by two-span continuous 

and simple-span bridges. These three groups represent all that is necessary to evaluate the 

structural behavior because they cover simple-span, exterior, and interior spans of continuous 

bridges. A total of 7 three-span continuous, 5 two-span continuous, and 3 simple-span bridges 

were selected based on the distribution of Texas STTG bridges by number of spans. 

Span length versus curvature scatter plots were created for simple, two-span, and three-

span bridges (Figure 4.4, Figure 4.5, and Figure 4.6). The scatter plots were then grouped using 

k-means clustering, which groups data points using the squared Euclidean distance measured. 

Clustering scattered data points helps to identify different data groups with multiple parameters. 

The solid red line shows where the span length to radius ratio is equal to 0.3 ft. For closed box 

and tub girders, the effect of curvature may be ignored in the analysis for determination of the 

major-axis bending moments and bending shears if for all spans the arc span divided by radius is 

less than 0.3 radians, girders are concentric, and bearings are not skewed (AASHTO 2014). The 

black circled points are the selected bridges for that specific category. The selection procedure 

followed two main criteria: (a) bridges from different clusters having similar curvature values 

but different span lengths, and (b) bridges from the same cluster having similar span lengths but 

different curvatures.  

 
Figure 4.4. Span vs. Curvature Scatter of Simple-Span STTG Bridges in Texas. 
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Figure 4.5. Span vs. Curvature Scatter of Two-Span STTG Bridges in Texas. 

 
Figure 4.6. Span vs. Curvature Scatter of Three-Span STTG Bridges in Texas. 

Figure 4.4 shows the scatter plot with selected bridges for simple-span STTG bridges. 

Three simple-span bridges were selected for the parametric study: one bridge with a small 

curvature from the short-span cluster and two bridges with small and large curvatures from the 

long-span cluster. Similarly, Figure 4.5 presents the scattered distribution of span length-

curvature data and selected bridges for two-span STTG bridges. A total of five two-span bridges 

were selected for the parametric study from different span length groups having various 

curvature values. Figure 4.6 presents the clustered scatter of span-curvature data and selected 

bridges for three-span STTG bridges. Four bridges from different span clusters ranging from 

short to long spans and another three bridges from the medium-span cluster having small, 

medium, and large curvatures were selected. Table 4.2 lists the selected Texas STTG bridges 

with their span length radius of curvature and continuity information.  
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Table 4.2. Main Geometric Properties of Selected Texas STTG Bridges.  
Bridge 

No. Bridge ID Span 1 
(ft) 

Span 2 
(ft) 

Span 3 
(ft) 

Radius of 
Curvature (ft) 

1 12-102-3256-01-403 220.5 − − 573.0 
2 12-102-0271-17-530 115.0 − − 1909.9 
3 12-102-3256-01-403 230.0 − − 2207.3 
4 12-102-0271-07-637 132.0 128.2 − 195.0 
5 14-227-0-0015-13-452 140.0 139.6 − 450.0 
6 12-102-0271-07-575 140.0 140.0 − 818.5 
7 12-102-0177-07-394 218.9 189.7 − 763.9 
8 12-102-0271-06-661 265.0 295.0 − 881.5 
9 12-102-0177-07-394 139.5 151.4 125.6 763.9 
10 14-227-0-0015-13-450 148.0 265.0 189.6 716.2 
11 12-102-0271-07-593 223.0 366.0 235.0 818.5 
12 12-102-0271-07-639 140.0 180.0 145.0 225.0 
13 14-227-0-0015-13-452 151.5 190.0 151.5 450.0 
14 18-057-0-0009-11-460 150.0 190.0 150.0 1010.0 
15 12-102-0271-06-689 200.0 295.0 200.0 809.0 

Note: − indicates that data is “not available” or “not applicable.” 

4.3 NONLINEAR FINITE ELEMENT MODEL OF STEEL TWIN TUB GIRDER 

BRIDGES 

4.3.1 General 

3D FEM models of all 15 selected bridges were created and analyzed using Abaqus 

(Dassault Systemes 2017) finite element software. 3D nonlinear finite element analysis enables 

correct modeling of the geometry and accurate representation of the material properties with very 

few simplifying assumptions. The selection of mesh size and element type is critical for realistic 

representation of the bridge geometry and numerical accuracy of computational FEM analysis. In 

addition, using appropriate material models that can capture the nonlinear behavior of steel and 

concrete ensures accurate prediction of load displacement behavior at high load levels. Two 

subsections present finite element types, mesh size, and material models that were used for all 

bridge models in the parametric study. The third subsection describes the application of the HL-

93 load model, load factors, and loading positions that were applied to simulate vehicular design 

loads. 
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4.3.2 Element Type and Mesh Size 

Depending on the degree of assumptions, one can chose a variety of finite elements 

ranging from one-dimensional truss and beam elements, to two-dimensional shell elements, to 

three-dimensional solid brick elements. There are many previous studies, guidelines, and 

recommendations for appropriately modeling various structural components. Generally, shell 

elements are the appropriate choice for thin steel plates, while solid elements provide more 

accurate results for concrete members (Barnard et al. 2010; Puckett et al. 2011; Puckett et al. 

2005; Sotelino et al. 2004; Zokaie et al. 1991). Based on those parameters, the concrete deck and 

railings were modeled using C3D8. The reinforcement was provided using embedded rebars that 

are modeled as T3D2. Rebar behavior is modeled using metal plasticity that is superposed on the 

mesh of C3D8 concrete elements. Steel plates of the bottom flanges, webs, top flanges, and end 

diaphragms use four-node quadrilateral shell elements with reduced integration (S4R), while 

intermediate diaphragm members and lateral brace members were modeled using B31. The 

effect of the concrete haunch was incorporated in the pullout behavior of the shear stud 

connections that were modeled implicitly using CONN3D2. 

A mesh size of 8 in. was selected based on a mesh sensitivity study that was conducted 

on the FSEL test bridge, the details of which were reported in the previous chapter, except that 

the deck thickness (8 or 8.5 in.) was divided into four elements in the vertical direction to 

provide improved accuracy and reduce the numerical convergence issues around ultimate load 

levels due to the cracking of concrete. The effect of deck mesh in the vertical direction was also 

investigated by using two and four elements for FEM analysis of the FSEL bridge. It was found 

that both choices provide good ultimate load estimates. However, refined deck mesh in the 

vertical direction gives slightly better stiffness degradation prediction around ultimate load levels 

and slightly conservative ultimate load estimate. Therefore, the use of four elements for the deck 

thickness was adapted for all bridges in the parametric study. Figure 4.7 shows the finite element 

types and mesh details on a typical STTG bridge (FSEL test bridge). 
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Figure 4.7. Mesh Details and Finite Element Types Shown on a Typical STTG Bridge. 

The steel girders were considered to be seated on 3 in. thick elastomeric bearing pads that 

were 22 in. long and 11 in. wide. The bearing pads were located at the transverse center at both 

ends of each girder. Simulating the mechanical properties of a bearing pad is important because 

the boundary conditions may have a significant effect on the overall behavior of the bridge. A 

compressive stiffness value of 6000 k/in was adapted from other research (Hueste et al. 2015) 

that used similar bearing pad geometries. The shear stiffness was calculated as 12 k/in. using a 

manufacturer-provided shear modulus, G = 100.6 psi.  

4.3.3 Constitutive Material Models 

FEM models for the parametric study used the same constitutive material models as the 

verified FEM model of the FSEL test bridge. The FEM models were developed utilizing material 

nonlinearity due to the crushing and cracking of concrete and the yielding of rebar and steel 

plates. Concrete behavior was modeled using a concrete damaged plasticity model that assumed 

tensile cracking and compressive crushing as the main failure mechanisms. A 28-day design 

compressive strength of 4000 psi that is provided in structural drawings was used for all selected 

STTG bridges. Steel components used classical metal plasticity model with isotropic hardening. 

Structural drawings provided the design yield strength as 60 ksi and 50 ksi for mild steel 

reinforcement and steel plates, respectively. The haunch was not modeled explicitly; instead, 
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pullout and shear behavior of studs were modeled implicitly. The behavior of shear studs was 

modeled using formulas provided by Mouras et al. (2008). Damage mechanics were not included 

in the steel and concrete material constitutive models because the stiffness degradation and local 

failures are complex and create numerical convergence problems for the complex behavior of 

reinforced concrete. 

4.3.3.1 Steel Components 

All tub girders of selected STTG bridges are built-up members using Grade 50 structural 

steel. The constitutive behavior of steel plates and reinforcing bars were modeled using classical 

metal plasticity with the isotropic strain hardening rule and without rate dependency. Perfectly 

plastic behavior was assumed once the equivalent stress reached the yield strength point based on 

the von Mises yield criteria. ASTM A615 grade 60 steel was used for all reinforcing bars in deck 

slabs and railings. Figure 4.8 shows the stress-strain model of steel that was adapted from 

Barnard et al. (2010). 

 
Figure 4.8. Constitutive Model for Steel Components (adapted from Barnard et al. [2010]). 

4.3.3.2 Reinforced Concrete 

The constitutive behavior of concrete was simulated with the concrete damaged plasticity 

model that uses the concept of isotropic damaged elasticity together with tensile and compressive 

plasticity to represent the inelastic behavior of concrete. This model is intended primarily for 

reinforced concrete structures and suitable for concrete under low confining pressures in which 

the main failure criteria is tension cracking or compression crushing. The constitutive behavior 
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of concrete was defined using the Kent and Park (1971) model, with a design compressive 

strength of 4000 psi. The behavior after reaching the tensile and compressive strength was 

assumed to be perfectly plastic.  

Figure 4.9 shows the adopted stress-strain behavior of concrete. The tensile strength of 

the concrete was calculated using the empirical relation provided in AASHTO LRFD (2014) 

Article 5.4.2.6, as follows in Equation (4.1): 

𝑓𝑓𝑟𝑟 = 0.2�𝑓𝑓𝑖𝑖′ (4.1) 

where, 𝑓𝑓𝑟𝑟 = the modulus of rupture (ksi) and 𝑓𝑓𝑖𝑖′ = the compressive strength of concrete (ksi). 

The modulus of elasticity of concrete for different ages of concrete were also calculated using an 

empirical relation provided in AASHTO LRFD (2014) Article 5.4.2.4, in Equation (4.2): 

𝐸𝐸𝑖𝑖 = 33000𝐾𝐾1𝑤𝑤𝑖𝑖1.5�𝑓𝑓𝑖𝑖′ (4.2) 

where 𝐾𝐾1 = the correction factor for the source of aggregate, which is taken to be 1.0 unless 

determined by physical test; 𝑤𝑤𝑖𝑖 = the unit weight of concrete (kcf), using 0.145 kcf for the 

normal weight of concrete; and 𝑓𝑓𝑖𝑖′ = compressive strength of concrete (ksi). 

 
Figure 4.9. Concrete Stress-Strain Behavior for Damaged Plasticity Model. 

The concrete damaged plasticity model requires the definition of various mechanical 

parameters to define the inelastic behavior of concrete. In addition to the compression hardening 

and tension-stiffening behavior, the dilation angle, the flow potential eccentricity, and the ratio of 

biaxial compression to uniaxial compression, the ratio of second stress invariant in tensile 

meridian to that of the compression meridian must be provided. In the absence of detailed 

material properties, default values that are common for normal concrete were used.  
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4.3.3.3 Modeling Shear Stud and Haunch Behavior 

Shear studs develop composite action between steel girders and the reinforced concrete 

deck. Simulating mechanical behavior of this composite action is critical to capturing the 

ultimate load behavior of STTG bridges because the stud-haunch connection is under significant 

pullout and shear force following the fracture of one tub girder. Similar to the verified FEM 

model of the FSEL test bridge, the parametric study used load displacement expressions 

provided in Topkaya et al. (2004) for horizontal shear behavior for all STTG bridges. These 

equations model the load versus horizontal slip behavior for a stud or group of studs as a 

function of the total cross-sectional area of shear studs and the compressive strength and 

modulus of elasticity of concrete. Detailed equations for the horizontal shear model of the studs 

are provided in Chapter 3. Figure 4.10 shows a typical shear model for a group of studs that has 

1.8 in2 total cross-sectional area in 4 ksi concrete. 

 
Figure 4.10. Constitutive Shear Model of Stud-Haunch Connection—Bridge 1. 

Similar to the verified FEM model, the pullout behavior of shear studs was modeled 

using the recommendations of Sutton (2007) and Mouras et al. (2008), which include 

modification factors for ACI equations to account for the haunch thickness. Figure 4.11 shows 

typical pullout behavior from experiments and assumed behavior for connector elements of the 

FEM model.  
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Figure 4.11. Stud Pullout Behavior—Bridge 1. 

4.3.4 Simulating the Design Loading 

A full three-dimensional non-linear elasto-plastic finite element model of all 15 bridges 

was created using the commercial software Abaqus (Dassault Systemes 2017) by following the 

procedures described above. Prior to any vehicular loading, dead loads were applied to 

realistically capture any locked-in stresses that developed due to construction loads. These initial 

loads were simulated in five steps: Step 1 was taking the self-weight of steel twin tub girders to 

simulate the stresses induced during the erection of girders. Step 2 was the application of deck 

and railing weight on the top flanges of tub girders to simulate additional stresses on non-

composite steel tub girders when the deck concrete is fresh. To achieve such a loading simulation 

in Abaqus, a mock deck and railing (with very small stiffness and mass) were defined and tied to 

the actual deck and railing. The purpose of the mock sections was to keep track of the deflected 

shape so that the actual deck could be correctly positioned once the concrete hardened. During 

the second step, the deck, the railing, and the reinforcement were all removed from the model, 

and their weight was applied on the top flange. Step 3 was the activation of the deck, railing, and 

reinforcement with self-weight and the removal of the applied distributed load from the top 

flanges. Step 4 included removal of temporary exterior diaphragms and removal of weld 

connectors mid-span of the outside girder for the span being analyzed. If the analysis is for the 

nonfractured case, the weld connectors are not removed. The fracture event is assumed to happen 

while the HL-93 load is on the structure (1.25DL + 1.0LL). Extreme event load factors for live 

loads are generally smaller than 1.0 to account for the very low joint probability of two events 
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(such as an earthquake and live load). However, in the case of a fracture, the probability of 

having a fracture while the truck is on the bridge is more likely. Therefore, the load factor for 

live loads are 1.0. 

All bridges were first analyzed without any fracture and then with a full-depth fracture 

crack mid-span of the outside girder under a factored HL-93 vehicular load model that consisted 

of an HS-20 truck load with impact plus a uniform distributed lane load (LL = 0.64 k/ft applied 

over a 10 ft width). In Step 5, the live load was updated to 2.33HS20 + 1.75LL to account for 

design load factors. The total load at Step 5 was equal to 1.25DL + 2.33HS20 + 1.75LL for a 

one-lane-loaded case, and the same amount of factored vehicular load (2.33HS20 + 1.75LL) was 

applied to the second lane for a two-lanes-loaded case. Figure 4.12 shows the longitudinal and 

transverse positions of an HS-20 truck and uniform distributed lane load for two-lane bridges. 

The first lane was defined 2 ft away from the nominal face of the outer rail, and the second lane 

was defined as adjacent to the first lane. The transverse positions of the HS-20 truck and uniform 

distributed lane loading was favored toward the outer rail to create a more critical loading 

condition because all bridges are curved, and the fracture was created mid-span of the outer 

girder. All selected STTG bridges are two-lane bridges; therefore, the analysis involved both 

one-lane-loaded and two-lanes-loaded cases. The same loading conditions as Step 5 were applied 

for the following steps until the structure lost 95 percent of initial stiffness of the intact bridge. 

The initial three steps were conducted using static analysis to capture locked-in construction 

stresses. The following steps were conducted using general nonlinear dynamic analysis that uses 

implicit time integration to obtain a quasi-static response in which inertia effects are introduced.  

 
Figure 4.12. HL-93 Load Position for Two-Lane-Loaded Case. 
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4.4 FINITE ELEMENT ANALYSIS OF SELECTED STTG BRIDGES 

In an investigation of the redundancy level (overstrength) of the damaged bridge 

superstructure, an overstrength factor is defined in Equation (4.3): 

Ω = 𝑅𝑅𝑑𝑑/𝑄𝑄𝑢𝑢 (4.3) 

where 𝑅𝑅𝑑𝑑 = the capacity of the damaged bridge and 𝑄𝑄𝑢𝑢 = the factored load demand. The bridge 

can be considered redundant with sufficient reserve capacity when Ω > 1.0. Redundancy levels 

of each selected STTG bridge were evaluated based on the FEM results using nominal material 

properties. Factored load demands were the same as those in the AASHTO LRFD Bridge Design 

Specifications (2014): 1.25DL + 1.75 (HS20 + IM) +1.75LL, where DL , LL, and IM represent 

dead load, lane load, and impact factor, respectively. 

It is important to define ultimate capacity to be able to evaluate the redundancy level of a 

bridge. Ghosn and Moses (1998), in NCHRP Report 406, defined ultimate capacity as the 

ultimate load that can be applied before the collapse of the bridge, and they defined collapse as 

the formation of a collapse mechanism. Long-span, highly ductile structures can experience 

significant deflections prior to formation of a collapse mechanism. Therefore, researchers have 

generally developed the ultimate limit state and the deflection limit states (Ghosn and Moses 

1998; Hunley and Harik 2012). In this research, a similar approach was adopted, and the two-

limit states are defined as (a) ultimate limit state, and (b) deflection limit states. Ultimate limit 

state is defined as the load that corresponds to formation of a collapse mechanism, and this point 

is explicitly defined as the point at which the bridge stiffness drops to 5 percent of the initial 

stiffness (SF) of an intact bridge. Deflection limit states are defined as the limit chord rotation 

along the outside girder and the transverse relative deck rotation. A chord rotation value equal to 

2 degrees for simple and interior spans and 3 degrees for exterior spans is used as a deflection 

limit state in the longitudinal direction. The transverse deck rotation of 5 degrees is 

recommended as the second deflection limit state. At such longitudinal and transverse rotation 

levels, the bridge loses its functionality, becomes very uncomfortable for the bridge users, and 

provides sufficient damage indication to an observer.  

The above described ultimate limit state and two deflection limit states were used to 

define the ultimate capacity of the analyzed bridges. The following subsections summarize the 

FEM models and the redundancy plots for the FSEL bridge and 15 selected bridges. The 

redundancy evaluation includes load displacement and load rotation charts. 
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4.4.1 Bridge 0—FSEL Bridge 

The FSEL test bridge was originally used as a section of the exit ramp on the IH 10/Loop 

610 interchange in Houston, Texas. The bridge girders were configured in a simply supported 

fashion, with a total bridge span length of 120 ft, and re-decked at the Ferguson Laboratory at 

UT Austin. The details of the geometry are provided as part of the previous chapter, in which the 

FEM model was analyzed under experimental loads. In this chapter, the same FEM model was 

analyzed under factored design loading to evaluate redundancy level with respect to design level 

loads. Because of its 23 ft deck width, it was analyzed as a one-lane bridge. This bridge is the 

only one-lane bridge that was analyzed as part of this research study; the remaining 15 bridges 

are two-lane bridges.  

Figure 4.13 shows the deflection profile of Bridge 0 at the ultimate capacity, and 

Figure 4.14(a) illustrates the load displacement along the centerline of the outside and inside 

girders; the secondary x-axis on top depicts the chord rotations, and the secondary y-axis on the 

right shows the overstrength, which is the normalized load by the factored design load 

(1.25DL + 1.75(HS20 + IM) + 1.75LL). Solid lines represent the behavior of the outside girder, 

while dashed lines represent the inside girder. The blue lines show the results obtained from the 

FEM analysis of the fractured bridge where a full-depth fracture is induced at the maximum 

moment location of the outside girder. The green lines show the FEM results for the nonfractured 

bridge in its intact state. The ultimate load points are shown with diamond symbols. The ultimate 

load points are defined based on the stiffness degradation principle that is based on the initial 

stiffness of the intact bridge or the deflection limit state as described above. 

Figure 4.14(b) shows the longitudinal deck rotation along the outer flange of the outside 

girder and transverse deck rotations at the cross-section corresponding to maximum deflections. 

Positive transverse deck rotation occurs at the interior top flange of the outside girder, while the 

negative transverse deck rotation corresponds to relative rotation at the interior top flange of the 

inside girder. 
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Figure 4.13. FEM Deflection Profile of Bridge 0 with Fractured Outside Girder. 

 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.14. FEM Results for Bridge 0. 
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4.4.2 Bridge 1—NBI #12-102-3256-01-403  

Bridge 1 was built in 2007 in Houston on an IH 10 connector. It is a single-span simply 

supported bridge, 220.5 ft long, 32 ft 5 in. wide, with an 8 in. thick deck supported by two steel 

tub girders. A nonlinear FEM model of the bridge was created following the procedures 

described in Chapter 3. Table 4.3 and Table 4.4 provide tabulated information about overall 

geometry and member dimensions that are necessary for creating the FEM model. Further details 

about bridge geometry, member dimensions, reinforcement, diaphragm, and bracing details may 

be found in the structural drawings that are provided in Appendix A. 

Table 4.3. Geometric Properties and Member Dimensions of Bridge 1. 
Location Parameter Description/Value 

Bridge 

Location Harris County, I-610 
Year Designed/Year Built 2004/2007 
Design Load HS20 
Length, ft 220.46 
Spans, ft 220.46 
Radius of Curvature, ft 572.96 

Deck 

Width, ft 32.417 
Thickness, in. 8 
Haunch, in. 5 
Rail Type SSTR 

Studs 
No. of Studs per row 3 
Length, in. 6 
Diameter, in. 0.875 

Interior 
Intermediate 
Diaphragm 

Top Angle L 5 x 3 1/2 x 5/8 
Diagonal Angle L 5 x 3 ½ x 5/8 
Stiffeners 5/8" x 7" 

Exterior 
Erection 

Diaphragm 

Top Shape WT 7 x 34 
Diagonal Angle L 5 x 3 ½ x 5/8 
Bottom Shape WT 7 x 34 

End Diaphragm 

Interior Plate 1" 
Exterior Plate 1" 
Top Exterior Plate 1" x 18" 
Bottom Exterior Plate 1" x 18" 
Top Interior Plate 1" x 18" 
Stiffeners 1" x 9" 
  1 1/4" x 9" 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 
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Table 4.4. Geometric Details of Steel Tub Girders for Bridge 1. 

Location ft  
Top Flange Web Bottom Flange 

Width 
in. 

Thickness 
in. 

Width 
in. 

Thickness 
in. 

Width 
in. 

Thickness 
in. 

0–52 18 1.50 84 2.625 72 1.000 
52–167 18 2.25 84 2.625 72 1.500 

167–220 18 1.50 84 2.625 72 1.000 
 

Figure 4.15 shows the deflection profile of Bridge 1 at the ultimate load level, and 

Figure 4.16(a) illustrates the load displacement for both fractured and intact bridges along the 

centerline of the outside and inside girders. Figure 4.16(b) shows deck rotations in the 

longitudinal and transverse directions for fractured Bridge 1. Although stiffness drops to 5 

percent of initial stiffness, at Ω = 0.88, the chord rotations and deck transverse rotation limits 

occurs at Ω = 0.82, which controls the ultimate capacity. Bridge 1 is one of the longest single-

span bridges, with a 220 ft span length. FEM results indicate that the bridge cannot carry the 

factored design load when the outside girder has a full-depth fracture.  

 

 

 
Figure 4.15. FEM Deflection Profile of Bridge 1 with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.16. FEM Results for Bridge 1. 

4.4.3 Bridge 2—NBI #12-102-0271-17-530 

Bridge 2 was built in 2004 in Harris County on the I-610 connector. It is a single-span 

simply supported bridge 115 ft long, 26.6 ft wide, and has an 8 in. thick deck. The nonlinear 

FEM model of Bridge 2 follows similar procedures and loading conditions as described for 

Bridge 1. Table 4.5 and Table 4.6 provide member dimensions and tabulated information about 

overall geometry for Bridge 2. Further details about bridge geometry, member dimensions, 

reinforcement, diaphragm, and bracing details may be found in the structural drawings that are 

provided in Appendix A. 

Table 4.5. Geometric Details of Steel Tub Girders for Bridge 2. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–115 18 1.00 79 0.625 50 1.000 
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Table 4.6. Geometric Properties and Member Dimensions of Bridge 2. 
Location Parameter Description/Value 

Bridge 

Location Harris County, I-610 
Year Designed/Year Built 2002/2004 
Design Load HS25 
Length, ft 115 
Spans, ft 115 
Radius of Curvature, ft 1909.86 

Deck 

Width, ft 26.625 
Thickness, in. 8 
Haunch, in. 4 
Rail Type SSTR 

Studs 
No. of Studs per row 4 
Length, in. 7 
Diameter, in. 0.875 

Interior 
Intermediate 
Diaphragm 

Top Angle L 5 x 3 ½ x 1/2 
Diagonal Angle L 5 x 3 ½ x 1/2 
Stiffeners 5/8" x 7" 

Exterior 
Erection 

Diaphragm 

Top Shape WT 7 x 21.5 
Bottom Shape WT 7 x 21.5 
Diagonal Angle L 5 x 3 ½ x 1/2 

Exterior End 
Diaphragm  

Top Plate  1" x 16" 
Solid Plate 3/4" 
Bottom Plate 1" x 16" 

Interior End 
Diaphragm 

Solid Plate 1" 
Top Plate 1" x 16" 
Stiffeners 1 1/2" x 8" 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 
 

Figure 4.17 shows the deflection profile of Bridge 2 at the ultimate load level, and 

Figure 4.18 illustrates the load displacement and deck rotation plots. FEM results indicate that 

Bridge 2 can carry 3.6 times the factored design load in its intact state. The FEM model of 

Bridge 2 was also analyzed by introducing a full-depth fracture mid-span of the outside girder 

while the HL-93 loading is located mid-span and 2 ft away from the face of the outside rail in the 

transverse direction. FEM results of the fractured Bridge 2 estimates the overstrength factor as 

1.65, which is 55 percent lower than an intact Bridge 2. This single-span bridge has medium 

span length, and it can carry more than the factored design load in its fractured condition. 

Although stiffness drops to 5 percent of initial stiffness at Ω = 0.1.75, the chord rotation limits 

occurs at Ω = 1.65, which controls the ultimate capacity.  
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Figure 4.17. FEM Deflection Profile of Bridge 2 with Fractured Outside Girder. 

 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.18. FEM Results for Bridge 2. 
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4.4.4 Bridge 3—NBI #12-102-0508-01-294 

Bridge 3 was built in 2002 in Harris County. It is a single-span simply supported bridge 

with a 230 ft span length, 38.8 ft wide roadway, and a 9 in. thick deck. Table 4.7 summarizes the 

information about overall geometry and member dimensions for Bridge 3. Table 4.8 lists the 

geometric dimensions of steel tub girder components throughout the length of the bridge. The 

steel tub girders of the bridge have a constant web thickness, but the top and bottom flange 

thickness varies. Further details about bridge geometry, member dimensions, reinforcement, 

longitudinal stud spacing, other diaphragm types, and lateral bracing details may be found in the 

structural drawings that are provided in Appendix A. 

Table 4.7. Geometric Properties and Member Dimensions of Bridge 3. 
Location Parameter Description/Value 

Bridge 

Location Harris County, 
FWY 

Year Designed/Year Built 1997/2002 
Design Load HS20 
Length, ft 230 
Spans, ft 230 
Radius of Curvature, ft 2207.3 

Deck 

Width, ft 38.833 
Thickness, in. 9 
Haunch, in. 4 
Rail Type T-501 

Studs 
No. of Studs per row 3 
Length, in. 6 
Diameter, in. 0.875 

Interior 
Intermediate 
Diaphragm 

Top Angle L 5 x 5 x 1/2 
Diagonal Angle L 5 x 5 x 1/2 
Stiffeners 3/4" x 8" 

Exterior 
Erection 

Diaphragm 

Top Shape WT 8 x 33.5 
Bottom Shape WT 8 x 33.5 
Diagonal Angle L 5 x 5 x 1/2 

Interior End 
Diaphragm 

Top Plate 1" x 16" 
Solid Plate 2" 
Stiffeners 3/4" x 7" 

Exterior End 
Diaphragm 

Top Plate  1" x1 6" 
Solid Plate 3/4" 
Bottom Plate 1" x 16" 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 
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Table 4.8. Geometric Details of Steel Tub Girders for Bridge 3. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–21 24 1.50 102 0.75 63.5 1.250 

21–42 24 2.50 102 0.75 63.5 1.750 
42–185 24 3.00 102 0.75 63.5 2.750 

185–207 24 2.50 102 0.75 63.5 1.750 
207–230 24 1.50 102 0.75 63.5 1.250 

 

Figure 4.19 shows the FEM deflection profile for Bridge 3 at the ultimate load level, 

Figure 4.20(a) presents load versus displacement results along the centerline of the outside and 

inside girders of Bridge 3, and Figure 4.20(b) provides deck rotation results. The FEM analysis 

of the nonfractured Bridge 3 resulted in a 2.3 overstrength factor, while the fractured case has a 

0.85 overstrength factor that is a reduction of 37 percent due to a full-depth fracture of the 

outside girder. Overstrength factors of Bridge 3 can somewhat be compared to that of Bridge 1, 

which has a similar span length but a larger radius of curvature. The radius of curvature of 

Bridge 1 is 573 ft, while Bridge 3 has a 2207 ft radius. The radius of curvature of Bridge 3 is 

almost four times larger, but the overstrength factor is only slightly increased from 0.82 to 0.85 

for the fractured case. Note that the radius of curvature is not the only variable between the two 

bridges; they also have different deck and girder geometries.  

 
Figure 4.19. FEM Deflection Profile of Bridge 3 with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.20. FEM Results for Bridge 3. 

4.4.5 Bridge 4—NBI #12-102-0271-07-637 

Bridge 4 was built in 2007 in Harris County. It is a two-span continuous STTG bridge 

having 132 ft and 128 ft span lengths; it is 28.4 ft wide and has an 8.5 in. thick deck. Table 4.9 

summarizes the overall geometry properties and member details for Bridge 4. Table 4.10 lists the 

dimensional details of the steel tub girder components along the entire length of the bridge. The 

steel tub girders of the bridge have a constant web thickness, but the top and bottom flange 

thickness varies. Further details may be found in the structural drawings of Bridge 4 that are 

provided in Appendix A. 
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Table 4.9. Geometric Properties and Member Dimensions of Bridge 4. 
Location Parameter Description/Value 

Bridge 

Location Harris County, 
FWY 

Year Designed/Year Built 2004/2007 
Design Load HS25 
Length, ft 260.27 
Spans, ft 132.03, 128.24 
Radius of Curvature, ft 195 

Deck 

Width, ft 28.417 
Thickness, in. 8.5 
Haunch, in. 3.5 
Rail Type SSTR 

Studs 
No. of Studs per row 3 
Length, in. 7 
Diameter, in. 0.875 

Interior 
Intermediate 
Diaphragm 

Top Angle L 5 x 5 x 1/2 
Diagonal Angle L 5 x 5 x 1/2 
Stiffeners 1/2" x 8" 

Exterior 
Erection 

Diaphragm 

Top Shape WT 7 x 21.5 
Diagonal Angle L 5 x 3 x ½ x 1/2 
Bottom Shape WT 7 x 21.5 

End and Bent 
Diaphragm 

Interior Top Plate 1" x 16" 
Interior Solid Plate 3/4" 
Interior Bottom Plate 1" x 16" 
Exterior Top Plate 1" x 16" 
Exterior Solid Plate 3/4" 
Stiffeners 1" x 8" 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 

Table 4.10. Geometric Details of Steel Tub Girders for Bridge 4. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–82 20 1.00 54 0.5 72 0.875 

82–110 20 1.50 54 0.5 72 1.750 
110–130 20 2.75 54 0.5 72 1.750 
130–150 20 2.75 54 0.5 72 1.750 
150–177 20 1.50 54 0.5 72 1.750 
177–260 20 1.00 54 0.5 72 0.875 

 

Nonlinear FEM analyses were performed separately for the fractured and nonfractured 

cases for both spans of Bridge 4 by placing the design vehicular live load at mid-span of the span 

under consideration. The fractured condition was created by removing the welded connectors of 

the bottom flange and both webs and top flanges of the outside girder at the moment-critical 
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location. Figure 4.21 shows the meshed superstructure and deflection profile of Span 1 for 

Bridge 4 at ultimate load level and Figure 4.22 shows the load versus displacement plots for 

Span 1 of Bridge 4 along the centerline of the outside and inside girders.  

Figure 4.23 shows the meshed superstructure and deflection profile of Span 2 for Bridge 

4 at ultimate load level and Figure 4.24 shows the load versus displacement plots of Span 2 of 

Bridge 4 along the centerline of the outside and inside girders. Nonlinear FEM analyses were 

conducted for the fractured and nonfractured conditions while the loading was located at mid-

span of the corresponding span. The two spans have similar lengths, resulting in very close 

overstrength factors of around 1.7 when analyzed with a full-depth fracture at the moment-

critical position of the outside girder of the loaded span. Similarly, FEM analysis of the 

nonfractured span gave very close overstrength factors of around 2.7 for both spans.  

 

 
Figure 4.21. FEM Deflection Profile of Bridge 4, Span 1, with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.22. FEM Results for Bridge 4, Span 1. 

 

 
Figure 4.23. FEM Deflection Profile of Bridge 4, Span 2, with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.24. FEM Results for Bridge 4, Span 2. 

4.4.6 Bridge 5—NBI #14-227-0-0015-13-452 

Bridge 5 was built in 2002 in Travis County along I-35. It is a two-span continuous 

STTG bridge having 140 ft and 139.6 ft span lengths, with a 30 ft wide, 8 in. thick deck. 

Table 4.11 provides dimensional details of steel tub girder components along the entire length of 

the bridge. Table 4.12 summarizes the overall geometric properties and member details for 

Bridge 5. The steel tub girders of the bridge have variable web and flange thickness along the 

length of the bridge. Further details may be found in Appendix A. 

Both spans were modeled following the actual geometry of the bridge to simulate the 

exact geometry and boundary conditions. However, only Span 1 was loaded and analyzed 

because the lengths of the spans were almost equal. The loaded span was first analyzed when 

there was no fracture in both the outside and inside steel tub girders, and the second analysis was 

carried out under the same loading conditions but with a full-depth fracture (bottom flange and 

both webs) mid-span of the outside girder. Figure 4.25 shows the meshed superstructure and 

deflection profile of Bridge 5 at ultimate load level when analyzed with a fracture in the outside 

girder of Span 1. 
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Table 4.11. Geometric Details of Steel Tub Girders for Bridge 5. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–105 18 1.00 54 0.5 56 0.750 

105–122 18 1.00 54 0.5625 56 1.250 
122–140 18 1.75 54 0.5625 56 1.250 
140–157 18 1.75 54 0.5625 56 1.250 
157–174 18 1.75 54 0.5625 56 1.250 
174–192 18 1.00 54 0.5625 56 0.750 
192–280 18 1.00 54 0.5 56 0.750 

Table 4.12. Geometric Properties and Member Dimensions of Bridge 5. 
Location Parameter Description/Value 

Bridge 

Location Travis County, I-35 
Year Designed/Year Built 1998/2002 
Design Load HS20 
Length, ft 279.58 
Spans, ft 140, 139.58 
Radius of Curvature, ft 450 

Deck 

Width, ft 30 
Thickness, in. 8 
Haunch, in. 4 
Rail Type T4(S) 

Studs 
No. of Studs per row 3 
Length, in. 7 
Diameter, in. 0.875 

Interior 
Intermediate 
Diaphragm  

Top Angle L 4 x 4 x 1/2 
Diagonal Angle L 4 x 4 x 1/2 
Stiffeners 5/8" x 8" 

Exterior 
Erection 

Diaphragm 

Top Angle L 5 x 5 x 1/2 
Diagonal Angle L 5 x 5 x 1/2 
Bottom Angle L 5 x 5 x 1/2 

End Diaphragm 

Interior Top Plate 3/4" x 12" 
Interior Solid Plate 1/2" 
Interior Bottom Plate 3/4" x 12" 
Exterior Top Plate 3/4" x 12" 
Exterior Solid Plate 1/2" 
Stiffeners 5/8" x 5" 

Pier Diaphragm 

Interior Top Plate 1" x 18" 
Interior Solid Plate 1/2" 
Interior Bottom Plate 1" x 18" 
Exterior Top Plate 1" x 18" 
Exterior Solid Plate 7/8" 
Stiffeners 3/4" x 7" 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 
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Figure 4.26 shows the load versus displacement and deck rotation plots for Span 1 and 2 

of Bridge 5. The overstrength factor was estimated to be 2.2 for the nonfractured bridge while 

the overstrength factor reduces by 45 percent to 1.2 when analyzed with a full-depth fracture at 

the moment-critical location of the outside girder. The design vehicular load was also located at 

the moment-critical longitudinal position favored toward the outside rail for the FEM analysis of 

the fractured and nonfractured bridges. 

 
Figure 4.25. FEM Deflection Profile of Bridge 5 with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.26. FEM Results for Bridge 5, Spans 1 and 2. 

4.4.7 Bridge 6—NBI #12-102-0271-07-575 

Bridge 6 was built in 2005 in Harris County along IH 10. It is a two-span continuous 

STTG bridge having 140 ft span lengths, with a 30 ft wide, 8 in. thick deck supported by two 

steel tub girders. Table 4.13 provides some of the overall geometric properties and member 

details for Bridge 6. Table 4.14 provides dimensional details of steel tub girder components 

along the entire length of the bridge. The steel tub girders of the bridge have variable top and 

bottom flange thickness as well as a variable top flange width along the length of the bridge. All 

variable geometric properties were incorporated into the FEM model. Further details may be 

found in the structural drawings of Bridge 6 that are provided in Appendix A. 
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Table 4.13. Geometric Properties and Member Dimensions of Bridge 6. 
Location Parameter Description/Value 

Bridge 

Location Harris County, 
IH 10 

Year Designed/Year Built 2003/2005 
Design Load HS25 
Length, ft 280 
Spans, ft 140,140 
Radius of Curvature, ft 818.51 

Deck 

Width, ft 38.417 
Thickness, in. 8.25 
Haunch, in. 4.5 
Rail Type SSTR 

Studs 
No. of Studs per row 4 
Length, in. 7  
Diameter, in. 0.875 

Interior 
Intermediate 
Diaphragm 

Top Angle L 5 x 3 ½ x 1/2 
Diagonal Angles L 5 x 3 ½ x 1/2 
Stiffeners 11/16" x 7 1/2" 

Exterior 
Erection 

Diaphragm 

Top Shape WT 7 x 21.5 
Bottom Shape WT 7 x 21.5 
Diagonal L 5 x 3 ½ x 1/2 

Interior End 
Diaphragm 

Solid Plate 1 1/2" 
Top Plate 1 1/2" x 16" 
Stiffeners 1 1/2" x 8" 

Exterior End 
Diaphragm 

Top Plate 1" x 16" 
Solid Plate 1" 
Bottom Plate 1" x 16" 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 

Table 4.14. Geometric Details of Steel Tub Girders for Bridge 6. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–110 18 1.00 76 0.6875 60 1.000 

110–130 22 1.00 76 0.6875 60 1.875 
130–150 22 1.88 76 0.6875 60 1.875 
150–170 22 1.00 76 0.6875 60 1.875 
170–280 18 1.00 76 0.6875 60 1.000 

 

The entire length of Bridge 6 was modeled as a two-span bridge, where the intermediate 

pier bend was modeled using the same boundary conditions as the end piers. Since both spans 

are exterior spans having the same span length, only Span 1 was loaded with a factored HL-93 

vehicular load and analyzed. The first simulation was carried out with no fracture, and the 

second simulation was conducted with the same loading conditions but with a full-depth fracture 
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mid-span of the outside girder. Figure 4.27 shows the superstructure mesh and deflection profile 

of Bridge 6 at the ultimate load level when analyzed with a fracture in the outside girder of Span 

1 and two-lanes-loaded case. Maximum deflection of the fractured girder was around 40 in., 

which is well above acceptable serviceability limits.  

Figure 4.28 shows the load versus displacements and deck rotation for Span 1 and Span 2 

of Bridge 6. The FEM prediction for the overstrength factor was 3.3 for the nonfractured bridge, 

but the overstrength factor reduces by 45 percent to 1.8 when analyzed with a full-depth fracture 

at the moment-critical location of the outside girder.  

 

 
Figure 4.27. FEM Deflection Profile of Bridge 6 with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.28. FEM Results for Bridge 6, Spans 1 and 2. 

4.4.8 Bridge 7—NBI #12-102-0177-07-394 

Bridge 7 was built in 2004 in Harris County along IH 10. It is a two-span continuous 

STTG bridge having 219 ft and 190 ft span lengths, with a 28.4 ft wide, 8 in. thick deck 

supported by two steel tub girders. Table 4.15 lists dimensions of steel tub girder components 

that vary along the length of the bridge.  

The simulation of a factored HL-93 vehicular load was done for both spans separately, 

and both spans were analyzed under fractured and nonfractured conditions. The HS-20 truck load 

was placed at the moment-critical position starting 2 ft away from the outside rail for the span 

being simulated while the other span sustained a factored dead load only. The fractured condition 

was also created in the span under consideration by removing the weld connectors of the bottom 

flange, both webs, and top flanges of the outside girder at the moment-critical location. 

Figure 4.29 presents deflection profiles for Span 1 of Bridge 7 at ultimate capacity and 

Figure 4.30 shows the load versus displacement and deck rotation plots for Span 1 of Bridge 7.  

Table 4.16 summarizes some of the key characteristics of Bridge 7, including the overall 

geometry, age, and location information, stud, and diaphragm details. The top flanges’ have 
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variable widths and thicknesses, while the bottom flanges have variable thicknesses; these 

factors were incorporated into the FEM model. Further geometric and material details may be 

found in the structural drawings of Bridge 7 that are provided in Appendix A. 

Table 4.15. Geometric Details of Steel Tub Girders for Bridge 7. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–17 20 1.10 63 0.625 60 1.000 

17–141 20 2.36 63 0.625 60 2.362 
141–162 20 1.77 63 0.625 60 1.772 
162–193 30 1.77 63 0.625 60 1.772 
193–219 30 3.15 63 0.625 60 3.150 
219–247 30 3.15 63 0.625 60 3.150 
247–292 30 1.77 63 0.625 60 1.772 
292–381 20 1.10 63 0.625 60 1.102 
381–408 20 1.10 63 0.625 60 1.000 
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Table 4.16. Geometric Properties and Member Dimensions of Bridge 7. 
Location Parameter Description/Value 

Bridge 

Location Harris County, 
IH 10 

Year Designed/Year Built 2002/2004 
Design Load HS20 
Length, ft 408.62 
Spans, ft 218.92,189.7 
Radius of Curvature, ft 763.96 

Deck 

Width, ft 28.417 
Thickness, in. 7.9 
Haunch, in. 5.5 
Rail Type T501 

Studs 
No. of Studs per row 3 
Length, in. 7 
Diameter, in. 0.866 

Interior 
Intermediate 
Diaphragm  

Top Plate L 5 x 3 ½ x 1/2 
Diagonal Angle L 5 x 3 ½ x 1/2 
Stiffeners 5/8" x 8" 

Exterior 
Erection 

Diaphragm 

Top Section WT 7 x 32 
Diagonal Angle L 5x 3 ½ x 1/2 
Bottom Plate WT 8 x 50 

Exterior End 
Diaphragm  

Top Plate 3/4" x 12" 
Solid Plate 3/4" 
Bottom Plate 3/4"x 12" 

Interior End 
Diaphragm 

Solid Plate 3/4" 
Top Plate 3/4" x 12" 
Stiffeners 1 1/4" x 5" 
  1 1/2" x 5" 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 
 

Figure 4.31 presents deflection profile for Span 2 of Bridge 7 at ultimate capacity and 

Figure 4.32 shows the load versus displacement and deck rotation plots for Span 2 of Bridge 7. 

When simulated with a fractured girder, the 220 ft long span reaches load levels 1.2 times the 

factored design load, while the 190 ft Span 2 can achieve a 1.45 overstrength factor. These 

governing overstrength values correspond to 2 degrees longitudinal chord rotation limit, while 

the overstrength factors corresponding to 95 percent stiffness degradation are 1.4 and 1.75 for 

Span 1 and Span 2, respectively.  
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Figure 4.29. FEM Deflection Profile of Bridge 7, Span 1, with Fractured Outside Girder. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.30. FEM Results for Bridge 7, Span 1. 
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Figure 4.31. FEM Deflection Profile of Bridge 7, Span 2, with Fractured Outside Girder. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.32. FEM Results for Bridge 7, Span 2. 
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diaphragm details. Table 4.18 lists the dimensions of steel tub girder components. The thickness 

of both the top and bottom flanges varies along the length of the girder, and that element was 

adapted into the FEM model. Further geometric and material details may be found in the 

structural drawings of Bridge 8 that are provided in Appendix A. 

Table 4.17. Geometric Properties and Member Dimensions of Bridge 8. 
Location Parameter Description/Value 

Bridge 

Location Harris County, 
IH 10 

Year Designed/Year Built 2011/NA 
Design Load NA 
Length, ft 560 
Spans, ft 265, 295 
Radius of Curvature, ft 881.47 

Deck 

Width, ft 28.417 
Thickness, in. 8 
Haunch, in. 4 
Rail Type SSTR 

Studs 
No. of Studs per row 3 
Length, in. 7 1/2 
Diameter, in. 0.875 

Interior End 
Diaphragm 

Solid Plate 1" 
Top Plate 1" x 16" 
Stiffeners 1 1/2" x 8" 

Interior 
Intermediate 
Diaphragm  

Top Angle L 5 x 3 ½ x 1/2 
Diagonal Angle L 5 x 3 ½ x 1/2 
Stiffeners 3/4" x 8" 

Exterior End 
Diaphragm 

Top Plate 1" x 16" 
Solid Plate 1" 
Bottom Plate 1" x 16" 

Exterior 
Erection 

Diaphragm 

Top Shape WT 7 x 21.5 
Diagonal Angle L 5 x 3 ½ x 1/2 
Bottom Shape WT 7 x 21.5 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 
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Table 4.18. Geometric Details of Steel Tub Girders for Bridge 8. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–30 24 1.25 93 0.75 53.5 1.250 

30–71 24 1.50 93 0.75 53.5 1.500 
71–142 24 1.50 93 0.75 53.5 2.000 

142–183 24 1.50 93 0.75 53.5 1.500 
183–214 24 1.25 93 0.75 53.5 1.500 
214–234 24 2.00 93 0.75 53.5 2.000 
234–307 24 2.50 93 0.75 53.5 2.500 
307–338 24 1.25 93 0.75 53.5 1.500 
338–370 24 1.50 93 0.75 53.5 1.500 
370–391 24 1.50 93 0.75 53.5 2.000 
391–496 24 2.00 93 0.75 53.5 2.500 
496–528 24 1.50 93 0.75 53.5 2.000 
528–560 24 1.25 93 0.75 53.5 1.250 

 

The entire superstructure of Bridge 8 was modeled by FEM utilizing the same material 

properties and boundary conditions as other FEM models. Both spans were analyzed under a 

factored HL-93 vehicular load while keeping only a factored dead load on the other span. Two 

lanes were defined starting 2 ft away from the face of outside rail. Both HS-20 truck and uniform 

distributed lane loads were favored toward the outside edge of the defined lanes to illustrate the 

most critical flexural loading condition. Figure 4.33 shows the deflection profiles for Span 1 of 

Bridge 8 when two lanes are loaded and Figure 4.34 presents the load versus displacement and 

deck rotation plots for Span 1 of Bridge 8. The ultimate load is located on the span that is being 

analyzed, and a full-depth fracture is induced at the moment-critical location of the outside 

girder. Figure 4.35 shows the deflection profiles for Span 2 of Bridge 8 when two lanes are 

loaded and Figure 4.36 presents the load versus displacement and deck rotation plots for Span 2 

of Bridge 8. When simulated with a fractured girder, Span 1 (265 ft) has an overstrength factor 

of 1.0, while its second span (30 ft longer) can only achieve a 0.9 overstrength factor. The 

governing overstrength factors for both spans correspond to ultimate load capacities at 5 percent 

of initial stiffness.  
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Figure 4.33. FEM Deflection Profile of Bridge 8, Span 1, with Fractured Outside Girder. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.34. FEM Results for Bridge 8, Span 1. 
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Figure 4.35. FEM Deflection Profile of Bridge 8, Span 2, with Fractured Outside Girder. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.36. FEM Results for Bridge 8, Span 2. 
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reinforcement and similar steel tub girder dimensions. Table 4.19 summarizes key characteristics 

of Bridge 9, including overall geometry, age, location information, stud, and diaphragm details. 

Table 4.20 lists dimensions of the steel tub girder components. The thickness of both top and 

bottom flanges varies along the length of the girder, and that element was incorporated into the 

FEM model. Further geometric and material details may be found in the structural drawings of 

Bridge 9 that are provided in Appendix A. 

Table 4.19. Geometric Properties and Member Dimensions of Bridge 9. 
Location Parameter Description/Value 

Bridge 

Location Harris County, 
IH 10 

Year Designed/Year Built 2002/2004 
Design Load HS20 
Length, ft 416.66 
Spans, ft 139.5,151.44,125.62 
Radius of Curvature, ft 763.93 

Deck 

Width, ft 28.417 
Thickness, in. 7.9 
Haunch, in. 4 
Rail Type T501 

Studs 
No. of Studs per row 3 
Length, in. 7 
Diameter, in. 0.866 

Interior End 
Diaphragm  

Solid Plate 3/4" 
Top Plate 3/4" x 14" 
Stiffeners 1 1/2" x 5" 
  1 1/4" x 5" 

Interior 
Intermediate 
Diaphragm 

Top Angle L 5 x 3 ½ x 1/2 
Diagonal Angle L 5 x 3 ½ x 1/2 
Stiffeners 8" x 5/8" 

Exterior End 
Diaphragm  

Top Plate 3/4" x 12" 
Solid Plate 3/4" 
Bottom Plate 3/4" x 12" 
  L 5 x 3 ½ x 1/2 

Exterior 
Erection 

Diaphragm 

Top Shape WT 7 x 32 
Diagonal Angle L 5 x 3 ½ x 1/2 
Bottom Shape WT 7 x 32 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 
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Table 4.20. Geometric Details of Steel Tub Girders for Bridge 9. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–104 20 1.10 63 0.625 59 1.000 

104–127 20 1.10 63 0.625 59 1.250 
127–152 20 1.58 63 0.625 59 1.500 
152–177 20 1.10 63 0.625 59 1.250 
177–240 20 1.10 63 0.625 59 1.000 
240–265 20 1.10 63 0.625 59 1.250 
265–278 20 1.10 63 0.625 59 1.500 
278–316 20 1.58 63 0.625 59 1.500 
316–341 20 1.10 63 0.625 59 1.250 
341–416 20 1.10 63 0.625 59 1.000 

 

A nonlinear FEM model of Bridge 9 was created for the entire bridge length using the 

same material properties and boundary conditions as previous bridge models. All three spans 

were analyzed separately under simulated HL-93 design vehicular loading while keeping only a 

factored dead load on the other spans. Figure 4.37 shows the deflection profiles for Span 1 of 

Bridge 9 when two lanes of ultimate loading are located on the analyzed span, and a full-depth 

fracture is induced at the moment-critical location of the outside girder in the same span, and 

Figure 4.38 presents the load versus displacement and deck rotation plots for Span 1 of Bridge 9. 

Span 1 and Span 3 were also analyzed under the same loading conditions for fractured and 

nonfractured conditions. The fracture was always located in the loaded span, and the other spans 

were considered intact. Figure 4.39 shows the deflection profiles for Span 2 of Bridge 9 when 

two lanes of ultimate loading are located on the analyzed span, and a full-depth fracture is 

induced at the moment-critical location of the outside girder in the same span, and Figure 4.40 

presents the load versus displacement and deck rotation plots for Span 2 of Bridge 9. 

Figure 4.41 shows the deflection profiles for Span 3 of Bridge 9 when two lanes of 

ultimate loading are located on the analyzed span, and a full-depth fracture is induced at the 

moment-critical location of the outside girder in the same span, and Figure 4.42 presents the load 

versus displacement and deck rotation plots for Span 3 of Bridge 9. When simulated with a 

fractured girder, the 140 ft Span 1 obtains an overstrength factor of 1.7, while the 126 ft long 

Span 3 can achieve a 1.8 overstrength factor. The predicted overstrength factor for the longer 

151 ft interior span is 2.45 because the interior span has redundancy due to continuity from both 

ends. 
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Figure 4.37. FEM Deflection Profile of Bridge 9, Span 1, with Fractured Outside Girder. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.38. FEM Results for Bridge 9, Span 1. 
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Figure 4.39. FEM Deflection Profile of Bridge 9, Span 2, with Fractured Outside Girder. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.40. FEM Results for Bridge 9, Span 2. 
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Figure 4.41. FEM Deflection Profile of Bridge 9, Span 3, with Fractured Outside Girder. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.42. FEM Results for Bridge 9, Span 3. 

4.4.11 Bridge 10—NBI #14-227-0-0015-13-450 

Bridge 10 is a three-span continuous bridge that was built in 2002 in Harris County along 

IH 10. Bridge 10 has 148 ft, 265 ft, and 189.6 ft long spans, with a 716 ft radius of curvature and 

0 1 2 3 4 5 6 7

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 60 70 80

Chord Angle, θ (deg.)

To
ta

l L
oa

d,
  P

  (
ki

ps
)

Maximum Deflection, δ (in.)

Outside Girder (OG)
Inside Girder (IG)
OG-Intact Bridge
IG-Intact Bridge

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6

O
ve

rs
tr

en
gt

h,
  Ω

Relative Slope, θ (deg.)

Long. - Outer Flange of OG
Transverse Negative
Transverse Positive



 

115 

a 30 ft wide, 8 in. thick deck. Table 4.21 lists several main key characteristics of Bridge 10 that 

include overall geometry, age, location information, studs, and diaphragm details.  

Table 4.22 provides dimensional details of the steel tub girder components. Along the length of 

the girders, top and bottom flanges and webs have variable thicknesses that were incorporated 

into the FEM model. Other details about geometry, member dimensions, reinforcement layout, 

and other diaphragm types may be found in the structural drawings of Bridge 10 that are 

provided in Appendix A. 

Table 4.21. Geometric Properties and Member Dimensions of Bridge 10. 
Location Parameter Description/Value 

Bridge 

Location Harris County, 
IH 10 

Year Designed/Year Built 1998/2002 
Design Load HS20 
Length, ft 602.58 
Spans, ft 148, 265, 189.58 
Radius of Curvature, ft 716.2 

Deck 

Width, ft 30 
Thickness, in. 8 
Haunch, in. 5 
Rail Type T4(s) 

Studs 
No. of Studs per row 3 
Length, in. 7 
Diameter, in. 0.875 

Interior 
Intermediate 
Diaphragm 

Top Angle L 4 x 4 x 1/2 
Diagonal Angles L 4 x 4 x 1/2 
Stiffeners 5/8" x 8" 

Exterior 
Erection 

Diaphragm 

Top Shape L 5 x 5 x 1/2 
Diagonal Angles L 5 x 5 x 1/2 
Bottom Shape L 5 x 5 x 1/2 

Interior End 
Diaphragm 

Solid Plate 5/8" x 78" 
Stiffeners 7/8" x 8" 
Top Plate 1" x 16" 

Exterior End 
Diaphragm 

Top Plate 1 1/4" x 24" 
Solid Plate 3/4" 
Bottom Plate 1 1/4" x 24" 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 
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Table 4.22. Geometric Details of Steel Tub Girders for Bridge 10. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–50 24 1.00 78 0.625 59 0.750 

50–98 24 1.00 78 0.625 59 1.250 
98–131 24 2.00 78 0.75 59 2.000 

131–181 24 3.00 78 0.875 59 2.000 
181–230 24 1.00 78 0.875 59 1.250 
230–247 24 1.00 78 0.75 59 1.000 
247–297 24 1.00 78 0.75 59 1.250 
297–330 24 1.00 78 0.75 59 1.000 
330–380 24 1.00 78 0.875 59 1.250 
380–396 24 2.00 78 0.875 59 1.250 
396–430 24 3.00 78 0.875 59 2.000 
430–447 24 3.00 78 0.875 59 2.000 
447–464 24 2.00 78 0.75 59 1.250 
464–499 24 1.00 78 0.75 59 1.250 
499–602 24 1.00 78 0.625 59 0.750 

 

A nonlinear 3D FEM model of Bridge 10 was created for the entire bridge length using 

the material properties that are provided in structural drawings. The boundary conditions were 

modeled as spring stiffness (described in Chapter 3). The results herein present load 

displacement behavior after the initiation of a full-depth fracture crack at the moment-critical 

location of the outside girder for the loaded span. The factored dead load was applied on all three 

spans while the factored HL-93 design vehicular load was only applied on the span being 

simulated with a fracture crack. Figure 4.43, shows the colored deflection contours of Span 1 of 

Bridge 10 when two lanes of ultimate loading are located on the corresponding span with a full-

depth fracture crack at the moment-critical location of the outside girder and Figure 4.44 presents 

the load versus displacement and deck rotation plots for Span 1 of Bridge 10. The behavior of the 

other two spans were also simulated under the same loading conditions for fractured and 

nonfractured conditions. The fracture was always located in the loaded span, and the other spans 

were considered intact. Figure 4.45, shows the colored deflection contours of Span 2 of Bridge 

10 when two lanes of ultimate loading are located on the corresponding span with a full-depth 

fracture crack at the moment-critical location of the outside girder and Figure 4.46 presents the 

load versus displacement and deck rotation plots for Span 2 of Bridge 10. Figure 4.47, shows the 

colored deflection contours of Span 3 of Bridge 10 when two lanes of ultimate loading are 

located on the corresponding span with a full-depth fracture crack at the moment-critical location 
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of the outside girder and Figure 4.48 presents the load versus displacement and deck rotation 

plots for Span 3 of Bridge 10. 

When simulated with a fractured girder, the 148 ft exterior Span 1 obtains an 

overstrength factor of 1.7, which is 46 percent lower than the nonfractured case. 265 ft long 

interior Span 2 can achieve a 1.45 overstrength factor when simulated with a fracture in the 

outside girder, while the same span could achieve a 2.2 overstrength factor when the girders are 

intact. The interior span is almost two times longer than the first span and therefore has a lower 

overstrength factor and gains its ultimate strength at a larger maximum displacement. The 

predicted overstrength factor for the longer 190 ft exterior Span 3 is 1.45, which is 42 percent 

lower than the nonfractured simulation of the same span. Although the interior span is 40 percent 

longer than exterior Span 3, the estimated overstrength factors are the same because the interior 

span has additional redundancy due to continuity from both ends. This observation shows that 

the structural redundancy due to continuity contributes significantly to the redistribution of the 

loads, thereby providing additional distribution path. The redundancy evaluations must consider 

longitudinal distribution between spans in addition to load path redundancy for lateral 

distribution between girders to be able to accurately predict the overstrength factors. For all three 

spans, the longitudinal chord rotation limit governs the ultimate capacity values. The ultimate 

limit state corresponding to 5 percent initial stiffness value is 1.7, 2.05, and 1.6 for Spans 1, 2, 

and 3, respectively. 

 
Figure 4.43. FEM Deflection Profile of Bridge 10, Span 1, with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.44. FEM Results for Bridge 10, Span 1. 

 

 
Figure 4.45. FEM Deflection Profile of Bridge 10, Span 2, with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.46. FEM Results for Bridge 10, Span 2. 

 

 
Figure 4.47. FEM Deflection Profile of Bridge 10, Span 3, with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.48. FEM Results for Bridge 10, Span 3. 

4.4.12 Bridge 11—NBI #12-102-0271-07-593 

Bridge 11, a three-span continuous bridge, was built in 2007 in Harris County along 

IH 10. Bridge 11 has 223 ft, 366 ft, and 235 ft long spans, with an 818.5 ft radius of curvature 

and a 28.4 ft wide, 8 in. thick deck. Table 4.23 summarizes several main key characteristics of 

Bridge 11, including geometry, age, location, studs, and diaphragm details. Table 4.24 lists 

dimensions of the steel tub girder components along the length of the bridge. The webs and 

bottom flange have variable thicknesses along the length of the girders, while both the width and 

thickness of the top flange changes along the length. The variable geometric properties of the 

steel tub girder components were incorporated into the FEM model. Further details about 

geometry, member dimensions, reinforcement layout, and other diaphragm types may be found 

in the structural drawings of Bridge 11 that are provided in Appendix A. 
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Table 4.23. Geometric Properties and Member Dimensions of Bridge 11. 
Location Parameter Description/Value 

Bridge 

Location Harris County, 
IH 10 

Year Designed/Year Built 2004/2007 
Design Load HS25 
Length, ft 824 
Spans, ft 223, 366, 235 
Radius of Curvature, ft 818.51 

Deck 

Width, ft 28.417 
Thickness, in. 8 
Haunch, in. 4 
Rail Type SSTR 

Studs 
No. of Studs per row 4 
Length, in. 6 
Diameter, in. 0.875 

Interior 
Intermediate 
Diaphragm 

Top Angle L 6 x 6 x 5/8 
Diagonal Angles L 6 x 6 x 5/8 
Stiffeners 3/4" x 8" 

Exterior 
Erection 

Diaphragm 

Top Angle WT 7 x 34 
Diagonal Angles L 5 x 3 ½ x 1/2 
Bottom Shape WT 7 x 34 

Internal End 
Diaphragm  

Top Plate 1" 
Solid Plate 1" x 18" 
Stiffeners 1" x 9" 

External End 
Diaphragm  

Top Plate 1" x 18" 
Solid Plate 1" 
Bottom Plate 1" x 18" 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 

Table 4.24. Geometric Details of Steel Tub Girders for Bridge 11. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–128 18 1.00 102 2.875 66 1.0 

128–154 18 1.00 102 2.875 66 1.5 
154–180 30 1.75 102 2.875 66 1.5 
180–247 30 3.00 102 2.875 66 3.0 
247–256 30 3.00 102 2.875 66 1.5 
256–281 30 1.75 102 2.875 66 1.5 
281–522 18 1.75 102 2.875 66 1.5 
522–555 30 1.75 102 2.875 66 1.5 
555–630 30 3.00 102 2.875 66 3.0 
630–647 30 1.75 102 2.875 66 1.5 
647–681 18 1.00 102 2.875 66 1.5 
681–824 18 1.00 102 2.875 66 1.0 
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The 3D FEM model of Bridge 11 was created for the entire bridge length of the three-

span superstructure. Figure 4.49 show the deflection profiles for Span 1 of Bridge 11 when two 

lanes of ultimate loading are located on the corresponding span with a full-depth fracture crack at 

the moment-critical location of the outside girder and Figure 4.50 presents the load versus 

displacement and deck rotation plots for Span 1 of Bridge 11. Figure 4.51 show the deflection 

profiles for Span 2 of Bridge 11 when two lanes of ultimate loading are located on the 

corresponding span with a full-depth fracture crack at the moment-critical location of the outside 

girder and Figure 4.52 presents the load versus displacement and deck rotation plots for Span 2 

of Bridge 11. Figure 4.53 show the deflection profiles for Span 3 of Bridge 11 when two lanes of 

ultimate loading are located on the corresponding span with a full-depth fracture crack at the 

moment-critical location of the outside girder and Figure 4.54 presents the load versus 

displacement and deck rotation plots for Span 3 of Bridge 11. 

The behavior of all three spans were simulated under the same loading conditions for 

fractured and nonfractured conditions. For exterior spans, the ultimate limit state governs the 

capacity values. For the interior span transverse deck rotation limit governs the capacity. The 

ultimate limit state corresponding to 95% stiffness degradation is 1.6, 2.45, and 1.6 for Spans 1, 

2, and 3, respectively. 

 

 
Figure 4.49. FEM Deflection Profile of Bridge 11, Span 1, with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.50. FEM Results for Bridge 11, Span 1. 

 

 
Figure 4.51. FEM Deflection Profile of Bridge 11, Span 2, with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.52. FEM Results for Bridge 11, Span 2. 

 

 
Figure 4.53. FEM Deflection Profile of Bridge 11, Span 3, with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.54. FEM Results for Bridge 11, Span 3. 

4.4.13 Bridge 12—NBI # 12-102-0271-07-639 

Bridge 12 is a three-span continuous bridge that was built in 2007 in Harris County along 

IH 10. Bridge 12 has 140 ft, 180 ft, and 145 ft long spans, with a 225 ft radius of curvature and a 

28.4 ft wide, 8.5 in. thick deck. Table 4.25 provides various key characteristics of Bridge 12, 

including overall geometry, year built, location, stud information, and diaphragm details. 

Table 4.26 lists dimensional details of the steel tub girder components along the length of the 

bridge. Both top and bottom flanges of the tub girders have variable thicknesses along the length. 

The variation in the member thickness was incorporated into the FEM model. Further details 

about geometry, member dimensions, reinforcement layout, and other diaphragm types may be 

found in the structural drawings of Bridge 12 that are provided in Appendix A. 
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Table 4.25. Geometric Properties and Member Dimensions of Bridge 12. 
Location Parameter Description/Value 

Bridge 

Location Harris County, IH 10 
Year Designed/Year Built 2004/2007 
Design Load HS25 
Length, ft 465 
Spans, ft 140, 180, 145 
Radius of Curvature, ft 225 

Deck 

Width, ft 28.417 
Thickness, in. 8.5 
Haunch, in. 3.5 
Rail Type SSTR 

Studs 
No. of Studs per row 3 
Length, in. 7 
Diameter, in. 0.875 

End Diaphragm 

Interior Plate, in. 0.75 
Exterior Plate, in. 0.75 
Top Plate 1" x 16" 
Jacking Stiffener 1" x 8"  

Intermediate 
Diaphragm 

Top Angle L 5 x 5 x 1/2 
Diagonal Angles L 5 x 5 x 1/3 
Stiffeners 1/2" x 8" 
Lateral Bracing WT8 x 44.5 

Exterior 
Erection 

Diaphragm 

Top Angle WT7 x 21.5 
Bottom Angle WT 7 x 21.5 
Diagonal Angles L 5 x 3 ½ x 1/2 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 

Table 4.26. Geometric Details of Steel Tub Girders for Bridge 12. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–90 20 1.00 54 0.5 72 0.875 

90–116 20 1.75 54 0.5 72 1.750 
116–138 20 3.25 54 0.5 72 1.750 
138–160 20 3.25 54 0.5 72 1.750 
160–189 20 1.75 54 0.5 72 1.750 
189–267 20 1.00 54 0.5 72 0.875 
267–296 20 1.75 54 0.5 72 1.750 
296–318 20 3.25 54 0.5 72 1.750 
318–340 20 3.25 54 0.5 72 1.750 
340–371 20 1.75 54 0.5 72 1.750 
371–465 20 1.00 54 0.5 72 0.875 

 

Figure 4.55 show the deflection contour map for Span 1 of Bridge 12 when the analyzed 

span is simulated with a full-depth fracture crack at the moment-critical location of the outside 
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girder and with two lanes of ultimate loading favored toward the outside edge and Figure 4.56 

presents the load versus displacement and deck rotation plots for Span 1 of Bridge 12. 

Figure 4.57 show the deflection contour map for Span 2 of Bridge 12 when the analyzed 

span is simulated with a full-depth fracture crack at the moment-critical location of the outside 

girder and with two lanes of ultimate loading favored toward the outside edge and Figure 4.58 

presents the load versus displacement and deck rotation plots for Span 2 of Bridge 12. 

Figure 4.59 show the deflection contour map for Span 3 of Bridge 12 when the analyzed 

span is simulated with a full-depth fracture crack at the moment-critical location of the outside 

girder and with two lanes of ultimate loading favored toward the outside edge and Figure 4.60 

presents the load versus displacement and deck rotation plots for Span 3 of Bridge 12. 

The load-deflection behavior of the bridge was simulated for each span separately when 

the load is located on the corresponding span for fractured and nonfractured conditions. Similar 

length exterior spans achieve overstrength factors of 1.6, which is approximately 35 percent 

lower than the simulation of the same spans without a fracture. The 180 ft long interior span can 

achieve a 1.8 overstrength factor when simulated with a fracture in the outside girder. The 

interior span is about 30 percent longer than the exterior spans but could obtain slightly larger 

overstrength factor due to additional redundancy of the interior span. The governing overstrength 

factor that corresponds to the ultimate capacity for all three spans was the longitudinal chord 

rotation limit state. The ultimate limit state corresponding to 5 percent initial stiffness value is 

1.9, 2.1, and 1.9 for Spans 1, 2, and 3, respectively. 

 
Figure 4.55. FEM Deflection Profile of Bridge 12, Span 1, with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.56. FEM Results for Bridge 12, Span 1. 

 
Figure 4.57. FEM Deflection Profile of Bridge 12, Span 2, with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.58. FEM Results for Bridge 12, Span 2. 

 

 
Figure 4.59. FEM Deflection Profile of Bridge 12, Span 3, with Fractured Outside Girder. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.60. FEM Results for Bridge 12, Span 3. 

4.4.14 Bridge 13—NBI #14-227-0-0015-13-452 

Bridge 13, a three-span continuous bridge, was built in 2002 in Travis County along I-35. 

Bridge 13 has 151.5 ft, 190 ft, and 151.5 ft long spans, with a 450 ft radius of curvature and a 30 

ft wide, 8 in. thick deck. Table 4.27 summarizes several key characteristics of Bridge 13, 

including overall geometry, year built, location information, studs, and diaphragm details. 

Table 4.28 provides dimensional details of the steel tub girder components along the length of 

the bridge. The thickness of the webs and top and bottom flanges of the tub girders varies along 

the length of the bridge. The variation in the member thickness was included in the FEM model. 

Further details about geometry, member dimensions, reinforcement layout, and other diaphragm 

types may be found in the structural drawings of Bridge 13 that are provided in Appendix A. 
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Table 4.27. Geometric Properties and Member Dimensions of Bridge 13. 
Location Parameter Description/Value 

Bridge 

Location Travis County, I-35 
Year Designed/Year Built 1998/2002 
Design Load HS20 
Length, ft 493 
Spans, ft 151.5, 190, 151.5 
Radius of Curvature, ft 450 

Deck 

Width, ft 30 
Thickness, in. 8 
Haunch, in. 4 
Rail Type T4(S) 

Studs 
No. of Studs per row 3 
Length, in. 7 
Diameter, in. 0.875 

Interior 
Intermediate 
Diaphragm 

Top Angle  4 x 4 x 1/2 
Diagonal Angles 4 x 4 x 1/2 
Stiffeners 5/8" x 8" 

Exterior 
Erection 

Diaphragm 

Top Angle L 5 x 5 x 1/2 
Diagonal Angles L 5 x 5 x 1/2 
Bottom Angle L 5 x 5 x 1/2 

Interior End 
Diaphragm 

Top Plate 3/4" x 18" 
Solid Plate 1/2" 
Bottom Plate 3/4" x 18" 

Exterior End 
Diaphragm 

Top Plate 3/4" x1 8" 
Solid Plate 1/2" 
Stiffeners 5/8" x 5" 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 
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Table 4.28. Geometric Details of Steel Tub Girders for Bridge 13. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–18 24 1.25 54 0.625 60 0.75 

19–94 24 1.25 54 0.500 60 0.75 
94–113 24 1.25 54 0.625 60 0.75 

113–132 24 1.25 54 0.625 60 1.25 
132–151 24 1.75 54 0.625 60 1.50 
151–170 24 2.75 54 0.625 60 2.00 
170–189 24 1.75 54 0.625 60 1.50 
189–208 24 1.25 54 0.625 60 1.25 
208–284 24 1.25 54 0.500 60 0.75 
284–303 24 1.25 54 0.625 60 0.75 
303–322 24 1.25 54 0.625 60 1.25 
322–341 24 1.75 54 0.625 60 1.50 
341–360 24 2.75 54 0.625 60 2.00 
360–379 24 1.75 54 0.625 60 1.50 
379–398 24 1.25 54 0.625 60 1.25 
398–474 24 1.25 54 0.500 60 0.75 
474–493 24 1.25 54 0.625 60 0.75 

 

Figure 4.61 shows the deflection profile for Spans 1 and 3 of Bridge 13 when simulated 

with a full-depth fracture in the outside girder of the corresponding span and with the HL-93 

loading at a critical flexural position on the same span and Figure 4.62 presents load versus 

displacement and deck rotation plots for Spans 1 and 3 of Bridge 13. The behavior of the exterior 

Span 1 and interior Span 2 were simulated under the same loading conditions for fractured and 

nonfractured conditions. The fracture was always located in the loaded span, while the other 

spans were nonfractured and carried only a factored dead load. 

Figure 4.63 shows the deflection profile for Span 2 of Bridge 13 when simulated with a 

full-depth fracture in the outside girder of the corresponding span and with the HL-93 loading at 

a critical flexural position on the same span while Figure 4.64 presents load versus displacement 

and deck rotation plots for Span 2 of Bridge 13. 

The exterior spans have the same span length and therefore achieved the same 

overstrength factor of 1.0, which is 50 percent lower than the simulation of the same spans 

without a fracture. The 190 ft long interior Span 2 obtained a 1.4 overstrength factor when 

simulated with a fracture in the outside girder. Despite the 25 percent longer span length, the 

interior span has a bigger overstrength factor due to continuity from both ends of the span. The 
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governing overstrength factor that corresponded, to the ultimate capacity for the exterior and 

interior spans was longitudinal chord rotation limit state. The ultimate limit state corresponding 

to 5 percent initial stiffness value is 1.5 and 1.75 for Spans 1 and 2, respectively. 

 
Figure 4.61. FEM Deflection Profile of Bridge 13, Span 1 and 3, with Fractured Outside 

Girder. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.62. FEM Results for Bridge 13, Span 1 and 3. 
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Figure 4.63. FEM Deflection Profile of Bridge 13, Span 2, with Fractured Outside Girder. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.64. FEM Results for Bridge 13, Span 2. 
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Bridge 14 is a three-span continuous bridge that was built in 2012 in Dallas County along 

IH 30. Bridge 14 has 150 ft, 190 ft, and 150 ft long spans with a 1010 ft radius of curvature and a 

28 ft wide, 8 in. thick deck. Table 4.29 provides key characteristics of Bridge 14, including 
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overall geometry, year built, location information, studs, and diaphragm details. Table 4.30 

provides dimensional details of the steel tub girder components along the length of the bridge. 

The webs and top and bottom flanges of the tub girders have variable thicknesses along the 

length of the bridge. The variation in the member thickness was included in the FEM model. The 

deck geometry and span lengths of Bridge 14 are very similar to that of Bridge 13. However, the 

more recently built Bridge 14 has deeper web sections and wider bottom flanges, which 

improves the capacity significantly. Further details about geometry, member dimensions, 

reinforcement layout, and other diaphragm types may be found in the structural drawings of 

Bridge 14 that are provided in Appendix A. 

Table 4.29. Geometric Properties and Member Dimensions of Bridge 14. 
Location Parameter Description/Value 

Bridge 

Location Dallas County, IH 30 
Year Designed/Year Built 2008/2012 
Design Load HS20 
Length, ft 490 
Spans, ft 150,190,150 
Radius of Curvature, ft 1010 

Deck 

Width, ft 28 
Thickness, in. 8 
Haunch, in. 4 
Rail Type SSTR 

Studs 
No. of Studs per row 3 
Length, in. 7 
Diameter, in. 0.875 

Internal 
Intermediate 
Diaphragm 

Top Shape WT 7 x 21.5 
Diagonal Angles L 4 x 4 x 1/2 
Stiffeners 5/8" x 8" 

Exterior 
Erection 

Diaphragm 

Solid Plate 1/2" 
Top Plate 1/2" x 8 1/4" 
Bottom Plate 1/2" x 8 1/4" 

Interior End 
Diaphragm 

Solid Plate 1/2" 
Top Plate 3/4" x 12" 
Jacking Stiffeners 1 1/2" x 5" 
Cross Stiffeners 1/2" x 5" 

Exterior End 
Diaphragm 

Top Plate 1/2" x 8 1/4" 
Solid Plate 1/2" 
Bottom Plate 1/2" x 8 1/4" 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 
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Table 4.30. Geometric Details of Steel Tub Girders for Bridge 14. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–103 22 1.00 60 0.5625 70 0.750 

103–112 22 1.00 60 0. 5625 70 1.125 
112–131 22 1.00 60 0.625 70 1.125 
131–169 22 1.75 60 0.625 70 1.500 
169–198 22 1.00 60 0.625 70 1.125 
198–302 22 1.00 60 0. 5625 70 0.750 
302–321 22 1.00 60 0.625 70 1.125 
321–358 22 1.75 60 0.625 70 1.500 
358–386 22 1.00 60 0.625 70 1.125 
386–490 22 1.00 60 0. 5625 70 0.750 

 

A nonlinear 3D FEM model of Bridge 14 was created for the entire bridge length using 

the material properties that are provided in structural drawings. The boundary conditions were 

modeled as spring stiffness in the vertical and horizontal directions (as described in Chapter 3). 

Figure 4.65 shows the deflection contour map for Spans 1 and 3 of Bridge 14 when simulated 

with a full-depth fracture in the outside girder of the corresponding span and the HL-93 loading 

at a critical flexural position on the same span and Figure 4.66 presents the load versus 

displacement and deck rotation plots for the exterior spans of Bridge 14.  

Figure 4.67 shows the deflection contour map for Span 2 of Bridge 14 when simulated 

with a full-depth fracture in the outside girder of the corresponding span and the HL-93 loading 

at a critical flexural position on the same span and Figure 4.68 presents the load versus 

displacement and deck rotation plots for the interior span of Bridge 14. 

The behavior of both exterior Span 1 and interior Span 2 were simulated under the same 

loading conditions for fractured and nonfractured conditions. The fracture was always located in 

the loaded span, while the other spans were nonfractured and carried only a factored dead load. 

The exterior spans have the same lengths and therefore achieved the same overstrength factor of 

1.65, which is 25 percent lower than the simulation of the same spans without a fracture. The 190 

ft long interior span obtained a 1.8 overstrength factor when simulated with a fracture in the 

outside girder. Despite the 25 percent longer span length, the interior span has a slightly bigger 

overstrength factor due to continuity from both ends of the span. When compared with Bridge 

13, Bridge 14 has about 20 percent higher overstrength factors for all three spans due to the 

deeper and stiffer steel tub girders of the more recently built Bridge 14.  
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Figure 4.65. FEM Deflection Profile of Bridge 14, Span 1, with Fractured Outside Girder. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.66. FEM Results for Bridge 14, Span 1.  
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Figure 4.67. FEM Deflection Profile of Bridge 14, Span 2, with Fractured Outside Girder. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.68. FEM Results for Bridge 14, Span 2. 

4.4.16 Bridge 15—NBI #12-102-0271-06-689 

Bridge 15, a three-span continuous bridge, was built in 2014 in Dallas County along 

IH 30. Bridge 14 has 200 ft, 295 ft, and 200 ft long spans, with an 809 ft radius of curvature and 

a 28.4 ft wide, 8 in. thick deck. Table 4.31 provides various key characteristics of Bridge 15, 

0 1 2 3 4 5

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 60 70 80 90 100

Chord Angle, θ (deg.)

To
ta

l L
oa

d,
 P

 (k
ip

)

Maximum Deflection, δ (in.)

Outside Girder (OG)
Inside Girder (IG)
OG-Intact Bridge
IG-Intact Bridge

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

O
ve

rs
tr

en
gt

h,
 Ω

Relative Slope, θ (deg.)

Long. - Outer Flange of OG
Transverse Negative
Transverse Positive



 

139 

including geometry, year built, location information, studs, and diaphragm details. Table 4.32 

provides dimensional details of the steel tub girder components along the length of the bridge. 

Both bottom and top flanges of the tub girders have variable thicknesses along the length of the 

bridge. The variation in the member thickness was incorporated in the FEM model. Further 

details about geometry, member dimensions, reinforcement layout, and other diaphragm types 

may be found in the structural drawings of Bridge 15 that are provided in Appendix A. 

Table 4.31. Geometric Properties and Member Dimensions of Bridge 15. 
Location Parameter Description/Value 

Bridge 

Location Dallas County, IH 30 
Year Designed/Year Built 2012/2014 
Design Load HL-93 
Length, ft 695 
Spans, ft 200,295,200 
Radius of Curvature, ft 809 

Deck 

Width, ft 28.417 
Thickness, in. 8 
Haunch, in. 4.5 
Rail Type SSTR 

Studs 
No. of Studs per row 4 
Length, in. 7 
Diameter, in. 0.875 

Interior 
Intermediate 
Diaphragm 

Top Angle L 5 x 3 ½ x 1/2 
Diagonal Angles L 5 x 3 ½ x 1/2 
Stiffeners 11/16" x 7 1/2" 

Exterior 
Erection 

Diaphragm 

Top Shape WT 7 x 21.5 
Bottom Shape WT 7 x 21.5 
Diagonal Angles L 5 x 3 ½ x 1/2 

Interior End 
Diaphragm 

Solid Plate 1" 
Top Plate 1" x 20" 
Stiffeners 1" x 16" 

Exterior End 
Diaphragm 

Solid Plate 1" 
Top Plate 1" x 16" 
Stiffeners 1" x 16" 

Note: Typical exterior, interior, and end diaphragms are listed. See Appendix A for other types. 
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Table 4.32. Geometric Details of Steel Tub Girders for Bridge 15. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–126 24 1.25 84 0.6875 53.5 1.250 

126–147 24 1.50 84 0.6875 53.5 1.750 
147–168 24 1.75 84 0.6875 53.5 2.000 
168–189 24 2.25 84 0.6875 53.5 2.250 
189–210 24 2.25 84 0.6875 53.5 2.250 
210–231 24 2.50 84 0.6875 53.5 2.500 
231–252 24 1.75 84 0.6875 53.5 2.000 
252–284 24 1.25 84 0.6875 53.5 1.250 
284–410 24 1.50 84 0.6875 53.5 1.750 
410–422 24 1.25 84 0.6875 53.5 1.250 
442–463 24 1.75 84 0.6875 53.5 2.000 
463–484 24 2.25 84 0.6875 53.5 2.250 
484–505 24 2.50 84 0.6875 53.5 2.500 
505–526 24 2.25 84 0.6875 53.5 2.250 
526–547 24 1.75 84 0.6875 53.5 2.000 
547–568 24 1.50 84 0.6875 53.5 1.75 
568–698 24 1.25 84 0.6875 53.5 1.25 

 

A nonlinear 3D FEM model of Bridge 14 was created for the entire bridge length using 

the material properties that are provided in structural drawings. Figure 4.69 show the deflection 

profiles for Span 1 and Span 3 of Bridge 15 when simulated with a full-depth fracture in the 

outside girder of the corresponding span and the HL-93 vehicular load at a critical flexural 

position on the same span and Figure 4.70 presents the load versus displacement and deck 

rotation plots for the exterior spans of Bridge 15. The behavior of both spans was simulated 

under the same loading conditions for fractured and nonfractured conditions.  

Figure 4.71 show the deflection profiles for Span 2 of Bridge 15 when simulated with a 

full-depth fracture in the outside girder of the corresponding span and the HL-93 vehicular load 

at a critical flexural position on the same span and Figure 4.72 presents the load versus 

displacement and deck rotation plots for the interior span of Bridge 15. 

The exterior spans have the same lengths and therefore achieved the same overstrength 

factor of 1.7, which is 37 percent lower than the simulation of the same spans without a fracture. 

The 295 ft long interior span obtained a 1.4 overstrength factor when simulated with a fracture in 

the outside girder. The interior span length is 50 percent longer than the exterior spans and 

achieved 18 percent lower overstrength factor.  
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Figure 4.69. FEM Deflection Profile of Bridge 15, Span 1, with Fractured Outside Girder. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.70. FEM Results for Bridge 15, Span 1. 
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Figure 4.71. FEM Deflection Profile of Bridge 15, Span 2, with Fractured Outside Girder. 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the outside girder, Ω is the load normalized by factored design load. 

Figure 4.72. FEM Results for Bridge 15, Span 2. 
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for verification of the FSEL test bridge. Table 4.33, Table 4.34, and Table 4.35 provide a brief 

summary of bridge geometries and FEM results for single-span bridges, exterior spans of 

continuous bridges, and interior spans of continuous bridges. The results presented include 

overstrength factors corresponding to the ultimate limit state (5 percent residual stiffness) and 

deflection limit states (longitudinal chord rotation and transverse deck rotation) for fractured 

STTG bridges. Based on the evaluation of FEM overstrength predictions, the following 

conclusions were drawn. 

• Simple-span bridges generally obtain relatively low overstrength factors compared to 

continuous spans when simulated with a full-depth fracture at the mid-span of the 

outside girder. The overstrength factors (load normalized by factored design load) of 

modeled simple-span bridges range from 0.82 to 1.65 for fractured conditions 

although they can achieve 2.3 to 3.6 overstrength factors when both girders are intact. 

There is an average 37 percent reduction in ultimate load capacity when a fracture is 

induced in the outside girder. 

• The overstrength factors of exterior spans (both spans of two-span bridges and 

exterior spans of three-span bridges) range between 1.0 and 1.8 when the outside 

girder of the simulated span has a full-depth fracture mid-span of the outside girder. 

(There is only one span with an 0.9 overstrength factor, which is the longest exterior 

span length of 295 ft). The average reduction in ultimate load carrying capacity due to 

the fracture of the outside girder is about 40 percent for the exterior spans of 

continuous bridges.  

• The estimated overstrength factors of interior spans of three-span continuous bridges 

were the highest compared to exterior spans and simple spans. This effect can best be 

observed by comparing the exterior spans and interior span of the same three-span 

bridge. The interior spans of bridges 9, 10, 12, and 13 are 20 to 40 percent longer than 

their exterior spans. Despite the increase in the span length, the interior spans of these 

five 3-span continuous bridges have higher overstrength factors for both fractured and 

nonfractured analysis. The overstrength factors of interior spans of three-span 

continuous bridges ranges from 1.2 to 2.45 for fractured bridges, while it ranges from 

1.9 to 3.4 for intact bridges. The average reduction in the ultimate load carrying 
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capacity due to a fracture of the outside girder is about 20 percent for the interior 

spans of continuous bridges. 

• It is evident that structural redundancy due to continuity significantly increases the 

capacity by allowing load distribution between spans, thereby providing additional 

redundancy. Redundancy evaluation that only considers load path redundancy in the 

transverse direction between girders underestimates the overstrength factor for the 

continuous bridges. 

• It is not possible to evaluate the effect of different parameters by comparing different 

bridges because multiple parameters vary between different bridges. However, it is 

possible to evaluate the effect of span length by observing the two different span 

lengths of the same two-span bridge or two different exterior span lengths of the same 

three-span bridge. The evaluation of Bridges 7, 9, and 10 indicate that an increase in 

the span length decreases the overstrength factors.  

o Bridge 7 has 219 ft and 190 ft exterior spans with a 764 ft radius of curvature. 

A 15 percent increase in the span length resulted in a 17 percent reduction in 

the overstrength factor for a fractured bridge. 

o Bridge 9 has 140 ft and 126 ft exterior spans with a 764 ft radius of curvature. 

An 11 percent increase in the span length resulted in only a 6 percent 

reduction in overstrength factor. 

o Bridge 10 has 190 ft and 148 ft long exterior spans with a 716 ft radius of 

curvature. A 28 percent increase in the span length resulted in a 15 percent 

reduction in overstrength factor. 

Table 4.33. Overstrength Factors for Single-Span STTG Bridges. 

ID Span R 
(ft) 

L 
(ft) 

B 
(ft) 

S 
(ft) 

5% 
SF 

5° 
Trans. 

2° 
Long. 

0 1 1300 120 23 6.0 0.86 − 0.91 
1 1 573 220 32 9.5 0.88 0.82 0.82 
2 1 1910 115 26 6.1 1.75 1.70 1.65 
3 1 2207 230 39 12.6 0.88 0.85 0.87 

Note: L = length, B = breadth, R = radius of curvature, S = spacing between interior top flanges. 
− indicates that data is “not available” or “not applicable.” 
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Table 4.34. Overstrength Factors for Exterior Spans of STTG Bridges. 

ID Span R 
(ft) 

L 
(ft) 

B 
(ft) 

S 
(ft) 

5% 
SF 

5° 
Trans. 

3° 
Long. 

4 1 195 132 28 7.6 2.00 2.30 1.65 
4 2 195 128 28 7.6 2.03 − 1.73 
5 1 450 140 30 9.7 1.50 − 1.20 
5 2 450 140 30 9.7 1.50 − 1.20 
6 1 819 140 38 9.8 1.90 2.10 1.80 
6 2 819 140 38 9.8 1.90 2.10 1.80 
7 1 764 219 28 7.4 1.40 1.20 1.20 
7 2 764 190 28 7.4 1.75 − 1.45 
8 1 882 265 28 8.4 0.99 − - 
8 2 882 295 28 8.4 0.88 − 0.91 
9 1 764 140 28 7.4 1.80 2.00 1.70 
9 3 764 126 28 7.4 1.90 2.15 1.80 

10 1 716 148 30 7.7 1.70 − 1.70 
10 3 716 190 30 7.7 1.60 − 1.45 
11 1 819 223 28 7.0 1.60 − 1.70 
11 3 819 235 28 7.0 1.60   1.65 
12 1 225 140 28 7.6 1.90 1.95 1.60 
12 3 225 145 28 7.6 1.90 1.90 1.60 
13 1 450 152 30 9.3 1.50 − 1.00 
13 3 450 152 30 9.3 1.50 − 1.00 
14 1 1010 150 28 6.5 1.80 − 1.65 
14 3 1010 150 28 6.5 1.80 − 1.65 
15 1 809 200 28 8.0 1.80 − 1.70 
15 3 809 200 28 8.0 1.80 − 1.70 

Note: L = length, B = breadth, R= radius of curvature, S = spacing between interior top flanges. 
− indicates that data is “not available” or “not applicable.” 
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Table 4.35. Overstrength Factors for Interior Spans of STTG Bridges. 

ID Span R 
(ft) 

L 
(ft) 

B 
(ft) 

S 
(ft) 

5% 
SF 

5° 
Trans. 

2° 
Long. 

9 2 764 151 28 7.0 2.45 2.55 2.50 
10 2 716 265 30 7.7 2.05 1.60 1.45 
11 2 819 366 28 7.0 2.45 1.20 1.55 
12 2 225 180 28 7.6 2.10 2.05 1.80 
13 2 450 190 30 9.3 1.75 − 1.40 
14 2 1010 190 28 6.5 2.00 − 1.80 
15 2 809 295 28 8.0 1.40 1.70 1.50 

Note: L = length, B = breadth, R = radius of curvature, S = spacing between interior top flanges. 
− indicates that data is “not available” or “not applicable.” 
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5 YIELD LINE ANALYSIS OF STEEL TWIN TUB GIRDER BRIDGES 

This chapter gives a detailed explanation of the background, methodology and analysis 

used for implementing the yield line theory as an alternative analytical tool for assessing the 

overstrength factor of bridges. The chapter begins with an overview of the plastic analyses, 

which pertained to the yield line theory. The study for developing a yield line pattern based on 

specific bridge geometry and loading conditions is documented, as is validation of the solution 

with the experimental data. The implementation of the aforementioned techniques was extended 

to the wheel loading, and failure mechanisms were accordingly established. The specifications 

and results for each bridge are listed in the subsequent sections. The overstrength factors are 

summarized, and the reserve capacity of the selected bridges is examined based on the results.  

5.1 INTRODUCTION 

This chapter presents the results of the analysis of 15 typical STTG bridges selected from 

the Texas bridge inventory. The basis of the selection was discussed in detail in Chapter 4. The 

primary goal of yield line analysis is to validate the results from the static load test conducted 

experimentally during a previous TxDOT research project (Barnard et al. 2010). The full-scale 

testing of a typical STTG bridge was conducted as part of TxDOT Research Project 9-5498, and 

the experimental static ultimate load capacity of the bridge was reported. In the present task, the 

yield line analysis of the same bridge was undertaken to validate the failure mechanism with the 

experimental results. The failure mechanism of the bridge was studied in detail to analyze the 

load path when the exterior girder is fractured along the depth of its webs and its bottom flange. 

The problem was evaluated in light of various conditions, such as reduction in capacity due to 

the fracture of the outer girder, the contribution of the stud failure on the overall load carrying 

capacity, the capacity of the deck slab, and the impact of the external loads applied. The 

mechanism was further postulated to assess the behavior under live loads when the outside girder 

is fully fractured. The analysis procedures and results are discussed in the following sections. 
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5.2 YIELD LINE THEORY 

The governing equation for the yield line analysis establishes the overstrength factor as 

follows in Equation (5.1): 

 Ω𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐼𝐼𝐸𝐸𝐸𝐸 (5.1) 

where 𝐸𝐸𝐸𝐸𝐸𝐸 = external work done by the factored loads based on 1.25DL + 1.75(LL + IM); 

𝐼𝐼𝐸𝐸𝐸𝐸 = internal work done on the yield lines in the deck, work done by plastic moments in the 

steel tub flanges (of the fractured girder), and work done by the pullout of shear studs between 

the tub flanges and reinforced concrete deck slab; and Ω is an overstrength factor necessary to 

give equivalence with 𝐼𝐼𝐸𝐸𝐸𝐸.  

5.2.1 Internal Work Done 

The internal work done due to the deck, flanges of the fractured girder, exterior guardrail, 

and the studs can be computed as the following in Equation (5.2): 

𝐼𝐼𝐸𝐸𝐸𝐸 =  ∑𝑚𝑚𝑥𝑥𝛳𝛳𝑥𝑥𝑦𝑦 +  ∑𝑚𝑚𝑦𝑦𝛳𝛳𝑦𝑦𝑥𝑥 +  ∑𝐸𝐸stud𝛿𝛿stud  (5.2) 

where ∑𝑚𝑚𝑥𝑥𝛳𝛳𝑥𝑥𝑦𝑦 = the summation of the internal work done due to the moment capacity of the 

deck in the longitudinal direction, the internal work done due to the guardrail, and the internal 

work done due to the fractured girder; ∑𝑚𝑚𝑦𝑦𝛳𝛳𝑦𝑦𝑥𝑥 = the internal work done due to the moment 

capacity of the deck in the transverse direction; ∑𝐸𝐸stud𝛿𝛿stud = the internal work done due to the 

studs; 𝑚𝑚𝑥𝑥 and 𝑚𝑚𝑦𝑦 = the longitudinal and the transverse moment capacity, respectively; 

𝛳𝛳𝑥𝑥 and 𝛳𝛳𝑦𝑦 = the angular deflection of the plane segments of the deck slab along the longitudinal 

and transverse directions, respectively; 𝑦𝑦 and 𝑥𝑥 = the distances along which the moment 

capacities act in the longitudinal and transverse directions, respectively; 𝐸𝐸stud = the internal 

work done by the group of studs connecting the deck slab and the twin tub girders; and 𝛿𝛿stud = 

the deflection of the center of gravity of that length along which the girder flanges are assumed 

to separate from the deck slab according to the geometry of the mechanism selected. 

5.2.2 External Work Done 

The loading that was applied in the experimental study of the bridge at the Ferguson 

Structural Engineering Laboratory, University of Texas at Austin, has been recreated in terms of 

distributed loads. The girders forming the boundary enclosure for the sand are termed as “sand 
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bin,” and the applied sand load increasingly added until failure of the bridge takes place has been 

modeled as accurately as possible from the data available. The applied sand load is known to 

exert a load of 363 kip from the experimental results. 

The external work done due to the self-weight of each component, such as the deck slab, 

the fractured girder, and guardrail has been computed. The work done due to the sand bin girders 

and the sand has been computed using Equation (5.3): 

𝐸𝐸𝐸𝐸𝐸𝐸 = ∑𝑤𝑤d𝐴𝐴d𝛿𝛿d +  ∑𝑤𝑤load𝐴𝐴load𝛿𝛿load  (5.3) 

in which ∑𝑤𝑤d𝐴𝐴d𝛿𝛿d = the total external work done due to the self-weight of the bridge 

components and ∑𝑤𝑤load𝐴𝐴load𝛿𝛿load = the total external work done due to the externally applied 

load of the sand bin girders and the sand; where 𝑤𝑤d = the self-weight of the structure components 

expressed as an area load; 𝐴𝐴d = the area of the respective components whose self-weight is 𝑤𝑤d; 

𝛿𝛿d = the deflection of the center of gravity of the region whose area is 𝐴𝐴d; 𝑤𝑤load = the external 

load applied due to the sand bin girders and the sand, expressed as an area load; 𝐴𝐴load = the area 

of the applied load; and 𝛿𝛿load = deflection of the center of gravity of the region whose area is 

𝐴𝐴load. 

Equations (5.2) and (5.3) are obtained in terms of the deflection (𝛿𝛿) that occurs at the 

location of maximum sagging. The principle of virtual work facilitates the computation of the 

load of sand needed to be added to reach the collapse of the bridge by equating Equations (5.2) 

and (5.3). 
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5.3 VALIDATION OF YIELD LINE ANALYSIS WITH EXPERIMENTAL RESULTS 

This section gives a detailed analysis of the experimentally tested STTG bridge, which 

formerly was a single-lane, high-occupancy-vehicle (HOV) flyover exit-ramp of the interchange 

between IH 10 and Loop 610 in Houston, Texas. The yield line analysis was validated using the 

experimental results from the TxDOT Research Project 9-5498. 

5.3.1 General Overview of Collapse Mechanism 

An upper-bound yield line or plastic analysis solution may lead to a sufficient and 

economical treatment to address the reserve strength of bridges. A general treatise of plastic and 

yield line methods may be found in (Park and Gamble 2000). Plastic methods aim to identify the 

inherent reserve capacity of the structure that will be higher than the strength calculated from an 

elastic analysis. Elastic analysis is only able to identify the loads necessary to achieve first yield, 

whereas plastic methods provide the limit load that leads to a collapse mechanism. This rigid-

plastic solution utilizes the equations of equilibrium or the virtual work equations; the former are 

generally used for lower-bound strip methods, whereas the latter are used for upper-bound 

solutions. The assumed virtual deflection eventually gets eliminated from the solution equations, 

thereby producing a single equation in terms of the collapse load. This solution provides the 

mechanism by which yield lines and plastic hinges form and significant plastic deformation 

occurs. Such a plastic analysis approach provides a rapid procedure in contrast with 

computational solutions like the FEM solutions since plastic methods are essentially hand-

calculation methods. The success of the upper-bound plastic solutions, however, rests largely on 

identifying the correct yield line pattern forming the collapse mechanism. 

5.3.2 Potential Collapse Mechanisms for the Experimental Bridge 

Various yield line collapse mechanisms may be postulated, and the collapse load is 

determined using either a virtual work or an equilibrium analysis. The correct mechanism 

provides the minimum collapse load. The most admissible mechanism is identified from the 

various possibilities such that the boundary conditions of the bridge and the deck slab are 

suitably modeled. The loading of the bridge influences the formation of the yield line pattern. 

The concrete beams that form a rectangular bin at the mid-span along the outer edge of the 
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bridge are formed to pour the sand in the critical region above the fractured girder. The barrier 

dimensions impact the crack formation and the governing mechanism due to the added stiffness 

from the concrete girders. 

Consider the experimental twin tub bridge span tested at the University of Texas 

(Barnard et al. 2010; Neuman 2009). Figure 5.1 illustrates the few possible failure mechanisms 

that may occur due to the sand loading described in Neuman (2009) when the bending of the 

deck slab is on the longitudinal axis passing through the girder of the sand bin positioned at the 

nonfractured girder’s interior flange. The different variables assigned for the dimensions of the 

bridge are needed for the computation of the load. The transverse dimensions are represented 

with be, bg, bs, br, and b’y. The variables be, bg, and bs represent the width of the edge from the 

outer flange of the fractured girder, the overall width of each twin tub girder, and the spacing 

between interior flanges of the outer and inner girders, respectively; br = width assumed for the 

railing, and b’y = the transverse distance from the outer edge of the bridge at which the horizontal 

yield line lies. The longitudinal dimensions are represented with Xx, 𝑎𝑎e, 𝑎𝑎s and 𝑎𝑎b. Xx, 𝑎𝑎e, 𝑎𝑎s and 

𝑎𝑎b denote the distance of the point of intersection of the negative inclined yield line and the axis 

along the outer edge of the bridge from the mid-span, the length of half-span, the length of half 

of the negative horizontal yield line, and the length of half of the sand bin, respectively (Neuman 

2009). 

Solutions are presented for the variations of collapsed loads with the yield line geometry 

for different mechanisms and compared in Figure 5.1(a) (Yield Line Mechanism [YLM] 1). The 

graph shows the variation of the ultimate collapse load as the dimension of half of the horizontal 

negative yield line, 𝑎𝑎𝑑𝑑, varies from 0 ft to 60 ft. Figure 5.1(a) gives the overall minimum solution 

although it is eliminated as inadmissible because the girder is required to twist significantly, and 

this twist cannot be achieved unless the girder yields plastically. Figure 5.1(b) (YLM 2) assumes 

the girder is seated at the center of the tub. This feature was not strictly the case in the tests, so it 

is eliminated. Figure 5.1(c) (YLM3) assumes the fractured girder is seated over its entire width. 

Displacement compatibility along the length of the girder is violated, requiring some of the shear 

studs to pull out. Indeed, this was the case in the reported tests, and accordingly this work has 

been incorporated into the analysis. 

 Similarly, YLM 4, shown in Figure 5.1(d), requires stud pullout, but it should be noted 

that none of the YLM 4 solutions in Figure 5.2(a) are critical, which leaves mechanism YLM3 as 
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the remaining viable mechanism. Among the various mechanisms, the case where the negative 

yield line passes through the exterior flange of the fractured outside girder is found to be the 

minimum. For this critical case, two of the values of 𝑎𝑎𝑑𝑑 were short-listed such that the solutions 

resulting from these values encompass all possible mechanisms. Figure 5.2(b) illustrates the 

critical mechanism, with the loading for key 𝑎𝑎𝑑𝑑 values indicated by red circles and pictorially 

represented in Figure 5.3(a), (b), (c), and (d), respectively.  

Figure 5.3(a) and (b) illustrate two of the key mechanisms that form the extremities of the 

possible 𝑎𝑎𝑑𝑑 values for YLM3. The parts (c) and (d) illustrate an intermediate case for 𝑎𝑎𝑑𝑑 and a 

limiting case of 𝑋𝑋𝑥𝑥, which denotes the distance from mid-span to the location where diagonal 

negative yield lines intersect the point where the elevations meet at the zero-deflection datum. It 

is essential to carefully judge the admissibility of each mechanism in accordance with the 

boundary conditions and with the rules governing deformation compatibility. Several admissible 

collapse mechanisms were postulated in the given research. Since this is an upper-bound 

solution, the veracity of the critical collapse load must be thoroughly checked. Solution (b) 

shown in Figure 5.2(b), where 𝑎𝑎𝑑𝑑 = 20 ft, which is the half-length of the stiff barrier at the back 

of the sand heap, was adopted because it constrained the mechanism shown in Figure 5.3(b). 
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(a) YLM-1, Negative YL through interior flange of OG, Ultimate Collapse Load = 233 kip 

 
(b) YLM-2, Negative YL through mid-width of OG, Ultimate Collapse Load = 297 kip 

 
(c) YLM-3, Negative YL through exterior flange of OG, Ultimate Collapse Load = 353 kip 

 
(d) YLM-4, Negative YL through edge of OG, Ultimate Collapse Load = 400 kip 

Note: YLM = yield line mechanism; YL = yield lines; OG = outside girder. 
The colors distinguish different locations through which diagonal negative YL pass:  

Green: passing through interior flange of OG; Blue: passing through mid-width of OG;  
Red: passing through exterior flange of OG; Purple: passing through mid-width of OG. 

Figure 5.1. Different Probable Yield Line Mechanisms to Study the Model that Best 
Represents Collapse Mechanism Taking Place in Experimental Sand Loading Test. 
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(a) Mechanisms 1 to 4, to be read in conjunction with Figure 5.1 

 
(b) Mechanism 3 showing the different solutions given in Figure 5.3 

Figure 5.2. Minimization Curves of Ultimate Static Load Generated for Sand Load on 
TxDOT Research Project 9-5498. 
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(a) Limiting case with as = 0 ft 

 
(b) Sand Bin constraint on as 

 

(c) Intermediate case encompassing all admissible values of as 

 
(d) Limiting case with as running along the span length 

Figure 5.3. Probable Mechanisms Postulated. 
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5.3.3 Bridge Specifications and Details 

This section describes the properties of the experimental test bridge under consideration 

used for the validation of the plastic limit analysis. Prior to the testing, this span was part of a 

single-lane, HOV flyover exit-ramp of the interchange between IH 10 and Loop 610 in Houston, 

Texas.  

5.3.3.1 Material Properties 

The deck slab was uniformly reinforced in each direction. The average cylindrical 

compressive strength of concrete in the deck slab was 6.26 ksi, and that in the exterior guardrail 

was also 6.26 ksi. The reinforcement in the longitudinal direction of the deck slab was provided 

with #4 bars at 9 in. on-center spacing with a nominal yield strength of 60 ksi at the top and #5 

bars at 6 in. on-center spacing with a nominal yield strength of 68 ksi at the bottom. The 

reinforcement in the transverse direction of the deck slab was provided with #5 bars at 6 in. on-

center spacing with a nominal yield strength of 68 ksi at top and bottom. The nominal yield 

strength of the steel twin tub girders was 50 ksi. The modulus of elasticity of the steel is taken as 

29000 ksi Neuman (2009). 

5.3.3.2 Bridge Properties 

The bridge deck was 120 ft long, 23.22 ft wide, and 8 in. thick. Figure 5.4(a), (b), and (c) 

present the dimensions of the steel tub girder, the shear stud connection detail, and the guardrails, 

respectively. The web of the girder was 57 in. deep and 0.5 in. thick. The flanges were 12 in. 

wide and 0.625 in. thick, spaced at 6 ft on-center. The bottom flange steel plate was 47 in. wide 

and 0.75 in. thick. A 3 in. haunch was provided between the reinforced concrete deck, and the 

deck was flanked by T501 guardrails on both sides longitudinally Neuman (2009). 

5.3.3.3 Member Capacity 

The internal work done computations are based upon the moment capacities of the 

various member components engaged in the failure mechanism of the bridge, such as the 

transverse and longitudinal deck-slab sections of unit foot width, the guardrail, and the flanges.  
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(a) Dimensions of steel tub girder 

 

(b) Shear stud connection detail 

 
(c) Cross-section showing T501 guardrails 

Figure 5.4. Bridge Properties. 
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These capacities are obtained using the standard U.S. code-based ultimate strength (Mn), 

using the yield strengths of steel and the characteristic strength of concrete as specified. These 

computations do not consider the effects of strain hardening. The flexural capacity of the railing 

was calculated by considering it as a regular doubly reinforced beam. The moment capacity of 

the flanges at the fractured section at mid-span was computed such that the compressive strength 

due to deck slab was not double counted. 

The positive longitudinal moment capacity of the deck slab was 𝑚𝑚𝑥𝑥  =16.18 k-in./in.; the 

negative longitudinal moment capacity per unit width of the deck slab was 𝑚𝑚𝑥𝑥
′  =10.69 k-in./in.; 

the positive transverse moment capacity per unit width of the deck slab was 𝑚𝑚𝑦𝑦  =24.88 k-in./in.; 

and the negative transverse moment capacity per unit width of the deck slab was 𝑚𝑚𝑦𝑦
′  = 19.81 k-

in./in. The moment capacity of the flanges of the fractured girder was 𝑀𝑀𝑓𝑓= 598 k-ft, and the 

moment capacity due to the T501 guardrail was 𝑀𝑀𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟= 485 k-ft. The pullout capacity of the 

shear studs was found to be 16 kip following the methods specified in ACI-318 (2017) and 

modified as per the recommendations from the experimental research conducted by Sutton 

(2007) and Mouras et al. (2008). 
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5.3.4 Ultimate Collapse Load  

Figure 5.5 illustrates the yield line mechanism chosen for the sand loading. The negative 

yield lines follow a trapezoidal shape due to spreading of the sand load over the deck slab. This 

pattern is corroborated well by the crack lines observed during the experimental testing for 

TxDOT Research Project 9-5498. The loading was recreated for the manual analysis of the 

experimental bridge using yield line theory. The sand loading was modeled to capture the effects 

on deck slab as accurately as possible by accounting for the geometry in which the sand was 

accumulated around and inside the concrete girders forming the periphery. The load primarily 

affects the mid-span since it was concentrated within the sand bin area. To account for this 

sagging behavior, the positive yield lines (represented by the wiggly lines), form a V-shape at the 

mid-span region.  

 

 
(a) Plan view of the bridge with the postulated yield line mechanism under experimental sand 

loading 
 

 
(b)Profile with angular deflections and assumed separation of the deck and flanges of outside 

girder (OG) 
 

Figure 5.5. Critical Mechanism with the Inclined Negative Yield Lines Passing through 
Exterior Flange of the Outside Girder at the Supports. 
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The minimization trials conducted as mentioned in Section 5.3.2. resulted in the optimal 

mechanism in which the diagonal negative yield lines passes through the outer flange of the 

fractured outside girder before it terminates at the point where the elevations meet at the zero- 

deflection datum, located at a certain distance 𝑋𝑋𝑥𝑥 on either side of the mid-span.The ultimate 

collapse load computation consists of the internal and external work done calculations. 

The internal work done due to the slab (that has been divided into segments), the rail 

along the outer edge of the bridge, and the fractured outside girder are tabulated in Table 5.1. 

The internal work done due to the studs can be computed based on the assumption that the work 

is done due to the separation of the deck slab along the two flanges of the outside fractured girder 

following a constant angular deflection, φ, that can be expressed in terms of the deflection, δ as 

follows in Equation (5.4): 

φ =  
𝛿𝛿
𝑋𝑋𝑥𝑥

 (5.4) 

The design concrete breakout strength of the stud group 𝑁𝑁𝑖𝑖𝑐𝑐𝑑𝑑 is computed to be 16 kip. 

The length of separation of the deck along the interior and exterior flanges of the outside 

fractured girder are denoted by 𝑙𝑙 and 𝑙𝑙′, respectively. The average separation between the deck 

slab and the interior and exterior flanges of the outside fractured girder are represented as 𝛿𝛿𝑟𝑟 and 

𝛿𝛿𝑟𝑟′, given by Equations (5.5) and (5.6).  

𝛿𝛿𝑟𝑟 = 0.5 𝑟𝑟
2
 φ (5.5) 

𝛿𝛿𝑟𝑟′ = 0.5 𝑟𝑟′

2
 φ (5.6) 

The stud spacing is denoted by 𝑠𝑠𝑑𝑑𝑖𝑖𝑢𝑢𝑑𝑑and is considered in ft. The internal work done due 

to studs is given by Equation (5.7): 

𝐼𝐼𝐸𝐸𝐸𝐸𝑑𝑑𝑖𝑖𝑢𝑢𝑑𝑑 = 𝑁𝑁𝑖𝑖𝑐𝑐𝑑𝑑𝑠𝑠𝑑𝑑𝑖𝑖𝑢𝑢𝑑𝑑(𝛿𝛿𝑟𝑟𝑙𝑙 + 𝛿𝛿𝑟𝑟′  𝑙𝑙′) (5.7) 

The external virtual work done by the deck slab, the girder, the guardrail, the girders 

forming the concrete bin girders, and the applied sand load can be expressed in Equation (5.8) as: 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑤𝑤𝑑𝑑𝐴𝐴𝑑𝑑𝛿𝛿𝑑𝑑 + 𝐸𝐸𝑑𝑑𝛿𝛿𝑑𝑑 + 𝐸𝐸𝑟𝑟𝛿𝛿𝑟𝑟 + 𝐸𝐸𝑖𝑖𝑐𝑐𝑑𝑑𝛿𝛿𝑖𝑖𝑐𝑐𝑑𝑑 + 𝑤𝑤𝑑𝑑𝐴𝐴𝑑𝑑𝛿𝛿𝑑𝑑 (5.8) 
 

where 𝑤𝑤𝑑𝑑 = weight of deck slab per unit area; 𝐸𝐸𝑑𝑑 = weight force of the fractured outside girder; 

𝐸𝐸𝑟𝑟 = weight force of the outer rail; 𝐸𝐸𝑖𝑖𝑐𝑐𝑑𝑑 = weight force of the concrete bin girders; 𝑤𝑤𝑑𝑑 = weight 
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of sand load per unit area; 𝐴𝐴𝑑𝑑 = area of the deck slab that undergoes deflection for the assumed 

yield line mechanism; 𝐴𝐴𝑑𝑑 = area of the region in which the sand is poured; 𝛿𝛿𝑑𝑑 = deflection of the 

center of gravity of the area 𝐴𝐴𝑑𝑑; 𝛿𝛿𝑑𝑑 = deflection of the center of gravity of the fractured outside 

girder; 𝛿𝛿𝑟𝑟 = deflection of the center of gravity of the outer rail; 𝛿𝛿𝑖𝑖𝑐𝑐𝑑𝑑 = deflection of the center of 

gravity of the concrete bin girders; and 𝛿𝛿𝑑𝑑 = deflection of the center of gravity of the area 𝐴𝐴𝑑𝑑.  

The sand load, 𝑤𝑤𝑑𝑑, is the unknown that can be solved by equating the internal work done 

and the external work done. Using the critical mechanism from the minimization curves and 

applying the concepts discussed in Section 5.3, the ultimate collapse load is computed to be 

353 kip. This compares well with the experimental collapse load of 363 kip. It is to be noted that 

the experimental value reported includes the total weight of the sand poured. However, for this 

analysis, the entire sand does not contribute to the work done in causing virtual deflection 

because some of the sand that is spilled out of the deflecting region of the deck slab does no 

work for the assumed yield line mechanism. 

Deducting that volume of the sand load from the reported collapse load, the failure load is 

calculated as 358 kip. The analytical yield line result of 𝐸𝐸𝑦𝑦𝑖𝑖𝑑𝑑𝑟𝑟𝑑𝑑 = 353 kip is quite close to the 

experimental outcome of 𝐸𝐸𝑦𝑦𝑖𝑖𝑑𝑑𝑟𝑟𝑑𝑑 = 353 kip. The overall concept of the plastic yield line 

mechanism analysis is thus considered validated. The yield solution is expected to be an upper-

bound solution, as suggested by (Park and Gamble 2000). However, the exception to this 

solution is that when deflections are extremely large and tensile, membrane forces may arise 

from a catenary action. For such action, the rigid-plastic theory adopted herein breaks down 

Pirayeh Gar et al. (2014). 
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Table 5.1. Internal Work Done Due to Deck Slab, Fractured Outside Girder, and Rail. 
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5.4 GENERAL THEORY FOR FRACTURE CRITICAL SECTIONS 

This section presents the theory behind postulated collapse mechanisms using the method 

of virtual work. A derivation is given for a critical folded plate yield-line mechanism that is 

representative of expected limit behavior in a certain class of bridge deck systems. General 

equations are then derived for the overstrength factor of fracture critical bridges. 

5.4.1 Virtual Work Equations 

Bridge decks supported by fracture critical girders are analyzed by yield-line theory using 

the equations of virtual work. In the upper-bound method of plastic collapse mechanism analysis, 

any kinematically admissible mechanism may be postulated. The mechanism with the lowest 

collapse load is then the theoretically correct mechanism. 

Figure 5.6 presents a folded plate mechanism with 𝑁𝑁 yield lines zigzagging between the 

unfractured and fractured girders, where 𝑁𝑁 is an unknown number of diagonal yield lines but 

determined by a load minimization procedure. The degree of an equivalent distributed load that 

may be placed over the fractured girder, 𝐸𝐸𝑑𝑑, and its magnitude is found via a virtual work 

analysis.  

Consider a folded plate mechanism supported on three sides, with the fourth side 

supported by a torsionally restrained beam with a central hinge, as shown in Figure 5.6(a). Note 

that negative (hogging) yield lines are dashed, while wiggly solid yield lines are positive 

(sagging) moments. The long edge with double hatching is fully fixed (clamped against rotation) 

while the ends are simply supported (free to rotate). The figure also shows the transverse angular 

deflections along the D-D, E-E, and F-F profiles. 

Figure 5.6(b) depicts the side elevation illustrating the deflection profiles along Sections 

A-A, B-B, and C-C. Figure 5.6(c) and (d) show the geometry of the folded plate mechanisms 

with deflections, from which the internal work done is derived by considering the half-span of a 

bridge, as shown. Displacing the fractured girder downward by unit displacement (δ = 1) at mid-

span, the external work done is given by Equation (5.9) 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑑𝑑𝐿𝐿𝑥𝑥
𝛿𝛿
2

= 0.5𝐸𝐸𝑑𝑑𝐿𝐿𝑥𝑥 (5.9) 
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 (a) 

 

(b) 

(c) 

(d) 

Figure 5.6. Folded Plate Mechanism for N Diagonal Yield Lines Showing (a) Plan View and 
Side Elevation Showing Deflection Profiles along D-D, E-E, and F-F; (b) Side Elevation 

Showing Deflection Profile along Sections A-A, B-B, and C-C; (c) Plan View Focusing on 
Half Bridge with N Diagonal Yield Lines and Side Elevation with Transverse Angular 

Deflection; and (d) Side View Showing Deflection Profiles with Longitudinal Deflections 
along Profile C-C. 
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The internal work done is computed for the cases obtained by incrementing the number 

of diagonal yield lines in multiples of four, and a pattern emerges that is used for expressing the 

internal work done in terms of 𝑁𝑁. The internal work done is thus expressed as Equation (5.10): 

𝐼𝐼𝐸𝐸𝐸𝐸 =  �(𝑚𝑚𝑥𝑥
′ + 𝑚𝑚𝑥𝑥)(𝛳𝛳𝑥𝑥)(𝑦𝑦) +  ��𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦��𝛳𝛳𝑦𝑦�(𝑥𝑥) (5.10) 

The deflection profile C-C shows a linear variation from zero at the supports to δ at the 

fracture location (mid-span). The angle of rotation in the longitudinal direction is a constant 

given by the slope of the section along C-C. Observing the section profile B-B, the section 

plateaus out between the alternate triangular segments formed between the zigzag yield lines. 

Therefore, the internal work done due to the longitudinal reinforcement for each of the triangular 

segment under consideration for half the span length is given by Equation (5.11).  Since the 

rotation takes place alternately, the summation is carried out 𝑁𝑁/4 times for the half span of the 

bridge. 
1
2
𝐼𝐼𝐸𝐸𝐸𝐸𝑥𝑥 =

𝑁𝑁
4

(𝑚𝑚𝑥𝑥
′ + 𝑚𝑚𝑥𝑥) �

2𝛿𝛿
𝐿𝐿𝑥𝑥
� (𝑠𝑠) (5.11) 

Twice the summation of the term in Equation (5.11) simplifies to the following 

expression for internal work done due to longitudinal reinforcement for the entire bridge in 

Equation (5.12): 

𝐼𝐼𝐸𝐸𝐸𝐸𝑥𝑥 = (𝑚𝑚𝑥𝑥
′ + 𝑚𝑚𝑥𝑥) �

𝛿𝛿
𝐿𝐿𝑥𝑥
� (𝑠𝑠𝑁𝑁) (5.12) 

The rotation of the slab in the transverse direction is not constant since it depends on the 

deflection of the slab along the C-C section, which linearly varies. Figure 5.6(c) and (d) show the 

deflection at every 1/ 𝑁𝑁 th segment, where each segment’s length is 𝐿𝐿𝑥𝑥/ 𝑁𝑁. It is observed that the 

deflection of the ith segment is the ith multiple of 2𝛿𝛿/ 𝑁𝑁, which implies a maximum deflection at 

the mid-span when i = 𝑁𝑁/2. The angle of rotation in the transverse direction is the ratio of the ith 

deflection to the spacing, 𝑠𝑠. At section F-F, the rotation takes place once by the negative diagonal 

yield line and is calculated to be (1 × 2𝛿𝛿)/ 𝑠𝑠𝑁𝑁 over a distance of 𝐿𝐿𝑥𝑥/ 𝑁𝑁. Along section E-E, the 

horizontal negative yield line rotates the slab by (6 × 2𝛿𝛿)/𝑠𝑠𝑁𝑁 over a distance of 2𝐿𝐿𝑥𝑥/ 𝑁𝑁. The 

negative diagonal yield line causes a rotation of (7 × 2𝛿𝛿)/𝑠𝑠𝑁𝑁 over a distance of 𝐿𝐿𝑥𝑥/ 𝑁𝑁. The 

horizontal positive yield line plateau the slab from a rotation of (7 × 2𝛿𝛿)/𝑠𝑠𝑁𝑁 over a distance of 

2𝐿𝐿𝑥𝑥/ 𝑁𝑁. Similar rotations take place for each section passing through the negative diagonal yield 

lines. Similarly, positive rotations pass through the sections with positive diagonal yield lines. 
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An exception is the triangle shown at D-D. Since this analysis solves the problem using 

symmetry, care must be taken that the horizontal negative yield line rotates the slab in a similar 

way, with a rotation of (0.5𝑁𝑁 × 2𝛿𝛿)/ 𝑠𝑠𝑁𝑁, but for a distance of 𝐿𝐿𝑥𝑥/ 𝑁𝑁.  

The internal work done is calculated along all the yield lines, and it is observed from the 

terms of the expression that the deflections form an arithmetic progression (AP) from 1 to 𝑁𝑁/2 

terms. Using the result of the sum of first “n” natural numbers of an AP, n(n+1)/2 and 

substituting in terms of the problem parameters, the expression of the internal work done due to 

transverse reinforcement for each of the triangular segment under consideration for half the span 

length is given by Equation (5.13). 

                               �𝐼𝐼𝐸𝐸𝐸𝐸𝑦𝑦.𝑖𝑖 = ��𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦� �

𝑖𝑖. 2𝛿𝛿
𝑠𝑠𝑁𝑁 � �

𝐿𝐿𝑥𝑥
𝑁𝑁�

𝑁𝑁/2

𝑖𝑖=1

  (5.13) 

 Twice the summation then provides the internal work done due to the transverse 

reinforcement deck-slab reinforcement for the entire span as follows in Equation (5.14):  

         𝐼𝐼𝐸𝐸𝐸𝐸𝑦𝑦 = �
𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦

2𝑠𝑠
� �

0.5𝑁𝑁 + 1
0.5𝑁𝑁 �𝛿𝛿𝐿𝐿𝑥𝑥 (5.14) 

Substituting Equations (5.12) and (5.14) in Equation (5.10), the total internal work done due to 

the folded plate mechanism is given as the summation of 𝐼𝐼𝐸𝐸𝐸𝐸𝑥𝑥 and 𝐼𝐼𝐸𝐸𝐸𝐸𝑦𝑦, thus expressed in 

Equation (5.15): 

            𝐼𝐼𝐸𝐸𝐸𝐸 = ��
𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦

2𝑠𝑠
� �1 +

2
𝑁𝑁�

𝐿𝐿𝑥𝑥 + �
𝑚𝑚𝑥𝑥
′ + 𝑚𝑚𝑥𝑥

𝐿𝐿𝑥𝑥
� 𝑠𝑠𝑁𝑁� 𝛿𝛿 (5.15) 

where 𝑚𝑚𝑦𝑦
′  and 𝑚𝑚𝑦𝑦 are the negative and positive moment capacities per unit width in the y-

direction, respectively, and 𝑚𝑚𝑥𝑥
′ , and 𝑚𝑚𝑥𝑥 are the negative and positive moment capacities per unit 

width in the x-direction, respectively; 𝑁𝑁 = the number of diagonal yield lines in the area under 

consideration; 𝐿𝐿𝑥𝑥 = the length of the span of the bridge; and 𝑠𝑠 = the width of the area of the slab 

along which the mechanism under consideration is applied.  

Equating the external and internal work, 𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐼𝐼𝐸𝐸𝐸𝐸, gives an expression for finding 𝑁𝑁, 

the derivation of which is shown in Equations (5.16) to (5.19): 

       𝐸𝐸𝑑𝑑𝐿𝐿𝑥𝑥
𝛿𝛿
2

=  ��𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦� �

𝐿𝐿𝑥𝑥
2𝑠𝑠�

+ �𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦� �

𝐿𝐿𝑥𝑥
𝑠𝑠𝑁𝑁�

+ (𝑚𝑚𝑥𝑥
′ + 𝑚𝑚𝑥𝑥) �

𝑠𝑠𝑁𝑁
𝐿𝐿𝑥𝑥
�� 𝛿𝛿 (5.16) 

from which the equivalent collapse load on the girder can be determined as follows:  



 

167 

𝐸𝐸𝑑𝑑 =
2
𝐿𝐿𝑥𝑥
��𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦� �
𝐿𝐿𝑥𝑥
2𝑠𝑠�

+ �𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦� �

𝐿𝐿𝑥𝑥
𝑠𝑠𝑁𝑁�

+ (𝑚𝑚𝑥𝑥
′ + 𝑚𝑚𝑥𝑥) �

𝑠𝑠𝑁𝑁
𝐿𝐿𝑥𝑥
�� 𝛿𝛿. (5.17) 

The line load 𝐸𝐸𝑑𝑑 , will have a minimum value when 
𝑑𝑑𝑊𝑊𝑒𝑒
𝑑𝑑𝑁𝑁

= 0, as follows: 

𝑑𝑑𝐸𝐸𝑑𝑑

𝑑𝑑𝑁𝑁
= −�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦� �
𝐿𝐿𝑥𝑥
𝑠𝑠𝑁𝑁2� +  (𝑚𝑚𝑥𝑥

′ + 𝑚𝑚𝑥𝑥) �
𝑠𝑠
𝐿𝐿𝑥𝑥
�  = 0 (5.18) 

 

�𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦�

(𝑚𝑚𝑥𝑥
′ + 𝑚𝑚𝑥𝑥) = �

𝑠𝑠2𝑁𝑁2

𝐿𝐿𝑥𝑥2
� (5.19) 

Upon solving, the minimum value of 𝑁𝑁 is obtained in Equation (5.20) : 

𝑁𝑁 =  
𝐿𝐿𝑥𝑥
𝑠𝑠
�
𝑚𝑚′𝑦𝑦 + 𝑚𝑚𝑦𝑦

𝑚𝑚′𝑥𝑥 + 𝑚𝑚𝑥𝑥
 (5.20) 

Back-substituting 𝑁𝑁 into Equation (5.17) gives the equivalent collapse line load in 

Equation (5.21):  

𝐸𝐸𝑑𝑑 𝑑𝑑𝑖𝑖𝑖𝑖 =  
4
𝐿𝐿𝑥𝑥
�(𝑚𝑚𝑥𝑥

′ + 𝑚𝑚𝑥𝑥)�𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦� +  

�𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦�
𝑠𝑠

 (5.21) 

It is also of interest to note the geometry of yield lines. From Figure 5.6(a), the angle ϴ may be 

found using trigonometry, as shown in Equation (5.22): 

tan θ =  
𝑠𝑠𝑁𝑁
𝐿𝐿𝑥𝑥

= �
𝑚𝑚′𝑦𝑦 + 𝑚𝑚𝑦𝑦

𝑚𝑚′𝑥𝑥 + 𝑚𝑚𝑥𝑥
 (5.22) 

where θ is the angle of the diagonal yield lines with the horizontal. Therefore, Equation (5.21) 

may be further simplified to give alternate forms for expression for 𝐸𝐸𝑑𝑑 𝑑𝑑𝑖𝑖𝑖𝑖 represented by 

Equations (5.23a) and (5.23b) 

𝐸𝐸𝑑𝑑 𝑑𝑑𝑖𝑖𝑖𝑖 =  
�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦�
𝑠𝑠

+ 4�
𝑚𝑚𝑥𝑥
′ + 𝑚𝑚𝑥𝑥

𝐿𝐿𝑥𝑥
� tanθ (5.23a) 

or  

𝐸𝐸𝑑𝑑 𝑑𝑑𝑖𝑖𝑖𝑖 =  
�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦�
𝑠𝑠

�1 +
4𝑠𝑠
𝐿𝐿𝑥𝑥

cot θ� (5.23b) 

Note that for isotropic reinforcement, 𝑚𝑚𝑥𝑥 = 𝑚𝑚𝑦𝑦 and 𝑚𝑚′𝑥𝑥 = 𝑚𝑚𝑦𝑦
′ , 𝛳𝛳 = 45◦. A similar result to 

Equation (5.22) is given in (Park and Gamble 2000) based on the Affinity Theorem for 

orthotropic plates.  
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The aforementioned theory was applied to the test bridge from TxDOT Research Project 

9-5498 and the minimum equivalent lane load was computed. Figure 5.7 presents a graph 

plotting the minimization of the distributed load, 𝐸𝐸𝑑𝑑, with respect to the number of diagonal 

yield lines, 𝑁𝑁. 

 
Figure 5.7. Variation of Distributed Load with Number of Diagonal Yield Lines. 

Consider an area load of 𝑤𝑤 acting on the trapezoidal region of the slab shown in Figure 

5.6. The virtual work done by the load will be the product of the load, the area on which it acts, 

and the virtual deflections of the center of gravity of that area. From Figure 5.6(a), it can be 

observed that the diagonal yield lines divide the slab into triangular segments that undergo 

deflection. The virtual deflections of the triangular segments alternate as follows. Considering 

half the span, as shown in Figure 5.6(c), and starting from the supports, the centroidal deflection 

is the ith multiple of 4/3𝑁𝑁, where i = 1, 3, 5, … (0.5 𝑁𝑁-1)—in other words, a set of odd integers 

from 1 to (0.5 𝑁𝑁-1); and it is the jth multiple of 2/3𝑁𝑁, where i = 2, 4, 6, … (0.5 𝑁𝑁-2), or a set of 

odd integers from 2 to (0.5 𝑁𝑁-2). This encompasses the centroidal deflections of all the triangular 

segments from the support till the mid-span except the half triangle at section D-D. The areas of 

all these segments are 𝑁𝑁𝑠𝑠/𝐿𝐿𝑥𝑥. As seen in the case of the internal work done, an exception is the 

triangle at section D-D, with an area of 𝑁𝑁𝑠𝑠/2𝐿𝐿𝑥𝑥 and a centroidal deflection of 1/3. A pattern 

emerges from several computations of the external work done by incrementing the number of 

diagonal yield lines in multiples of 4, similar to that observed from the calculations of the 

internal work. The alternate centroidal deflections from the supports to the mid-span form two 

series of arithmetic progression, one of first 𝑁𝑁/4 odd numbers, from 1 to (0.5 𝑁𝑁-1), and the other 

of first (.25𝑁𝑁-1) even numbers, from 2 to (0.5 𝑁𝑁-2). The sum of each series is obtained using the 
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expression for the sum of first n terms of an AP, 0.5n (𝑎𝑎1 +  𝑎𝑎𝑖𝑖), where 𝑎𝑎1and 𝑎𝑎𝑖𝑖 are the first 

and nth terms of the AP, respectively. 

The summation of the product of the areas of each segment for half the span with their 

respective centroidal deflections is given as 𝑠𝑠𝐿𝐿/12 for the odd numbered segments, (𝑁𝑁-

4) 𝑠𝑠𝐿𝐿𝑥𝑥/24𝑁𝑁 for the even numbered segments, and 𝑠𝑠𝐿𝐿/6 𝑁𝑁 for the triangle at D-D section. For the 

full span, the summation of the product of slab segment and the centroidal deflection is 𝑠𝑠𝐿𝐿𝑥𝑥/4. 

The external work done due to area load 𝑤𝑤 is given by 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡𝑑𝑑𝑡𝑡𝑖𝑖𝑢𝑢𝑑𝑑 in Equation (5.24): 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡𝑑𝑑𝑡𝑡𝑖𝑖𝑢𝑢𝑑𝑑= 𝑤𝑤𝑠𝑠𝐿𝐿𝑥𝑥/4 (5.24) 

5.4.1.1 Upper-Bound Solution 

From the yield line solution from Equation (5.16), the total load on the girder can be set 

as 𝐸𝐸𝑇𝑇 = 𝐿𝐿𝑥𝑥𝐸𝐸𝑑𝑑. Then, equating external and internal work done (with 𝛿𝛿 = 1) yields the following 

Equation (5.25):  

 

0.5𝐸𝐸𝑇𝑇 =  ��𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦� �

𝐿𝐿𝑥𝑥
2𝑠𝑠
� + �𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦� �
𝐿𝐿𝑥𝑥
𝑠𝑠𝑁𝑁
� + (𝑚𝑚𝑥𝑥

′ + 𝑚𝑚𝑥𝑥) �
𝑠𝑠𝑁𝑁
𝐿𝐿𝑥𝑥
�� (5.25) 

where 𝐸𝐸𝑇𝑇 = total ultimate load at the bridge participating in the collapse mechanism.  

 

The internal work done may be rewritten by substituting Equation (5.20) in 

Equation (5.15) and further simplified using Equation (5.22). For the next step, put in the 𝐼𝐼𝐸𝐸𝐸𝐸 =

𝐸𝐸𝐸𝐸𝐸𝐸 format using Equation (5.23a) as shown in Equations (5.26) and (5.27). 

 

𝛺𝛺0.5𝐸𝐸𝑇𝑇 = 𝛺𝛺0.5𝐸𝐸𝑑𝑑𝐿𝐿𝑥𝑥 =  2(𝑚𝑚𝑥𝑥
′ + 𝑚𝑚𝑥𝑥) tan 𝜃𝜃 +  �𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦�
𝐿𝐿𝑥𝑥
2𝑠𝑠

 (5.26) 

𝛺𝛺0.5𝐸𝐸𝑇𝑇 = �𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦�

𝐿𝐿𝑥𝑥
2𝑠𝑠
�1 + 2 �

2𝑠𝑠
𝐿𝐿𝑥𝑥
� �

𝑚𝑚′𝑥𝑥 + 𝑚𝑚𝑥𝑥

𝑚𝑚′𝑦𝑦 + 𝑚𝑚𝑦𝑦
� tan θ� (5.27) 

 

Define angle α, as shown in Figure 5.6(a), in Equation (5.28):  
𝑠𝑠

𝐿𝐿𝑥𝑥/2
= tanα  (5.28) 

Then, by using Equation (5.22), Equation (5.27) may be recast as Equation (5.29):  
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𝛺𝛺0.5𝐸𝐸𝑇𝑇 = �𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦� cotα �1 + 2

tan α
tan θ

� (5.29) 

 

Thus, the system upper-bound overstrength factor is given as Equations (5.30 a) and (5.30b) : 

𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 =
𝐼𝐼𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸𝐸𝐸 

=
�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦�[cotα + 2 cot θ]
0.5𝐸𝐸𝑇𝑇

 (5.30a) 

or  

𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 =
�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦� �
𝐿𝐿𝑥𝑥
2𝑠𝑠� �1 + 2 tan α

tan θ�
0.5𝐸𝐸𝑇𝑇

 (5.30b) 

5.4.1.2 Lower-Bound Solution 

A lower-bound solution may also be formed using a strip method (Park and Gamble 

2000). Figure 5.8 illustrates the lower-bound solution via strips in equilibrium in the 𝑥𝑥- and 𝑦𝑦-

directions, respectively, where 𝐸𝐸𝑥𝑥 and 𝐸𝐸𝑦𝑦 are the uniformly distributed load on the longitudinal 

and transverse strips, respectively. Equations (5.31) to (5.38) show the steps leading to the lower-

bound solution as follows: 

Consider the 𝐸𝐸𝑦𝑦 strips (assuming 𝐿𝐿𝑥𝑥 = 𝑠𝑠): 

�𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦� = 2𝐸𝐸𝑦𝑦

𝐿𝐿𝑥𝑥
4

= 2𝐸𝐸𝑦𝑦
2𝑠𝑠
4

= 𝐸𝐸𝑦𝑦𝑠𝑠 (5.31) 
 

∴ 𝐸𝐸𝑦𝑦 =
�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦�
𝑠𝑠

 (5.32) 

Distributed load by 𝐸𝐸𝑥𝑥 strips:  

(𝑚𝑚′𝑥𝑥 + 𝑚𝑚𝑥𝑥) =  𝐸𝐸𝑥𝑥
𝑠𝑠
𝐿𝐿𝑥𝑥2

8  Thus,  𝐸𝐸𝑥𝑥 = 8𝑠𝑠
𝐿𝐿𝑥𝑥2  (𝑚𝑚′𝑥𝑥 + 𝑚𝑚𝑥𝑥) 

 
(5.33) 

 

𝐸𝐸𝑑𝑑 = 𝐸𝐸𝑥𝑥 + 𝐸𝐸𝑦𝑦 =
8𝑠𝑠
𝐿𝐿𝑥𝑥2

(𝑚𝑚′𝑥𝑥 + 𝑚𝑚𝑥𝑥) +
�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦�
𝑠𝑠

 (5.34) 
 

𝛺𝛺0.5𝐸𝐸𝑇𝑇 = 𝛺𝛺0.5𝐸𝐸𝑑𝑑𝐿𝐿𝑥𝑥 = �𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦�

𝐿𝐿𝑥𝑥
2𝑠𝑠

+  
4𝑠𝑠
𝐿𝐿𝑥𝑥

(𝑚𝑚′𝑥𝑥 + 𝑚𝑚𝑥𝑥) (5.35) 

  
 

but, 
𝑑𝑑

𝐿𝐿𝑥𝑥/2
= tan 𝛼𝛼, therefore by inversion it is substituted into Equation (5.35): 

𝛺𝛺0.5𝐸𝐸𝑇𝑇 = �𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦� cotα +  2(𝑚𝑚′𝑥𝑥 + 𝑚𝑚𝑥𝑥) tanα (5.36) 

𝛺𝛺0.5𝐸𝐸𝑇𝑇 = �𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦� �cotα +  2�

𝑚𝑚′𝑥𝑥 + 𝑚𝑚𝑥𝑥

𝑚𝑚′𝑦𝑦 + 𝑚𝑚𝑦𝑦
� tanα� (5.37) 
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𝛺𝛺0.5𝐸𝐸𝑇𝑇 = �𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦�[cotα +  2 cot2θ tan α] (5.38) 

Solving gives the lower-bound overstrength factor in Equations (5.39a) and (5.39b):  

𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 =
�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦�[cotα +  2 cot2θ tanα]
0.5𝐸𝐸𝑇𝑇

 (5.39a) 
 

or 

𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 =
�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦� �
𝐿𝐿𝑥𝑥
2𝑠𝑠� �1 + 2  tan2α

 tan2θ�

0.5𝐸𝐸𝑇𝑇
 

   
(5.39b) 

 
 
 

 
 

 
(a) Plan view of interior slab with a central fracture on the edge beam. 

 
(b) Side elevation of the mechanism. 

Figure 5.8. Strip Equivalent Mechanism. 

 

5.4.1.3 Generalized Plastic Solution 

By harmonizing the upper- and lower-bound solutions, a general solution covering the 

two distinct approaches is as follows in Equations (5.40) to (5.42): 

𝛺𝛺 =
�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦� �
𝐿𝐿𝑥𝑥
2𝑠𝑠� 𝑘𝑘𝑐𝑐𝑐𝑐𝑢𝑢𝑖𝑖𝑑𝑑

0.5𝐸𝐸𝑇𝑇
 (5.40) 

 



 

172 

in which 

𝑘𝑘𝑐𝑐𝑐𝑐𝑢𝑢𝑖𝑖𝑑𝑑
𝑢𝑢𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = �1 + 2

tan α
tan θ

� = 1 +
4𝑠𝑠
𝐿𝐿𝑥𝑥
��

𝑚𝑚′𝑥𝑥 + 𝑚𝑚𝑥𝑥

𝑚𝑚′𝑦𝑦 + 𝑚𝑚𝑦𝑦
� (5.41) 

 

and 

𝑘𝑘𝑐𝑐𝑐𝑐𝑢𝑢𝑖𝑖𝑑𝑑𝑟𝑟𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = �1 + 2
 tan2α
 tan2θ

� = 1 +
8𝑠𝑠2

𝐿𝐿𝑥𝑥2 �
𝑚𝑚′𝑥𝑥 + 𝑚𝑚𝑥𝑥

𝑚𝑚′𝑦𝑦 + 𝑚𝑚𝑦𝑦
� (5.42) 

5.4.1.4 Accounting for the Effect of the Horizontal Curve of a Bridge 

Figure 5.9 presents a schematic representation of a generic curved bridge in plan view. 

Since the bridges are curved in reality, with a centerline radius of curvature 𝑅𝑅℄, arched at an 

angle 𝜔𝜔, with a centerline length, 𝐿𝐿𝑥𝑥, and breadth, 𝐵𝐵, the length of the innermost edge 

progressively increases as a function of 𝑅𝑅℄ and 𝜔𝜔.  

 
Figure 5.9. Layout of a Generic Curved Bridge in Plan. 

Since the internal work done is primarily contributed by the trapezoidal band that is 

equidistant from the centerline of the bridge at a distance of 𝑠𝑠/2, the increase and decrease of the 

arc lengths of this folded plate mechanism are compensated. Therefore, the span length 𝐿𝐿𝑥𝑥 used 

for the internal work done calculations for the trapezoidal region refers to the length of the 

centerline of the bridge span. However, since the outer region primarily contributes toward the 

external work done for the yield line mechanism under consideration and the internal work done 

by the region beyond the trapezoidal band, the span length used in those computations refers to 
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the length of the outer region of the curved bridge, which is denoted in Equations (5.43) to (5.45) 

by: 

𝐿𝐿𝑥𝑥∗ = (𝑅𝑅℄  +  0.25𝐵𝐵)𝜔𝜔 (5.43) 
 

𝜔𝜔 =
𝐿𝐿𝑥𝑥
𝑅𝑅℄ 

 (5.44) 

𝐿𝐿𝑥𝑥∗ = �1 +  
𝐵𝐵

4𝑅𝑅℄ �
𝐿𝐿𝑥𝑥 (5.45) 

5.4.2 Overstrength Capacity for Factored Applied Loads for Single-Span Bridge 

Figure 5.10 presents a generic bridge loaded with two HL-93 vehicular load models. The 

HL-93 loading consists of HS-20 trucks having 8 kip, 32 kip, and 32 kip axle loads spaced 14 ft 

apart along the bridge span and placed centrally such that the load is concentrated above the 

fracture.  

 
Figure 5.10. HL-93 Load Position for Two-Lane Loaded Case. 

These concentrated point loads are the resultant load of each of the 6 ft wide axles. 

Additionally, a congested traffic load is applied as a uniformly distributed load of 0.64 kip/ft 

spread across a width of 10 ft. Each lane consists of a congested lane load and the truck, and 

each lane is specified to have an equivalent width of 12 ft according to AASHTO (2017) 

specifications.  

Figure 5.11 presents the implementation of the yield line mechanism postulated for the 

HL-93 loading on a typical single-span bridge. The internal work done due to the trapezoidal 
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region can be obtained from Equation (5.40). Assuming a unit virtual deflection and further 

simplifying gives Equation (5.46). 

𝐼𝐼𝐸𝐸𝐸𝐸 = �𝑚𝑚𝑦𝑦
′ + 𝑚𝑚𝑦𝑦� �

𝐿𝐿𝑥𝑥
2𝑠𝑠
� 𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 (5.46) 

The internal work done due to the rectangular part of the deck slab and the fractured 

outside girder is due to the hinge formation at the mid-span that causes a rotation of 4/𝐿𝐿𝑥𝑥 by the 

positive longitudinal reinforcement 𝑚𝑚𝑥𝑥 along a width 𝑏𝑏 as shown in Equation (5.47) 

𝐼𝐼𝐸𝐸𝐸𝐸 = 4𝑚𝑚𝑥𝑥 �
𝑏𝑏
𝐿𝐿𝑥𝑥∗
� (5.47) 

 

rearranging more specifically, in terms of the moment at the central hinge region, is represented 

by Equation (5.48): 

𝐼𝐼𝐸𝐸𝐸𝐸 =
4
𝐿𝐿𝑥𝑥∗

(𝑚𝑚𝑥𝑥𝑏𝑏) (5.48) 

This constitutes the total internal work done for the assumed yield line mechanism when the 

outside girder is fully fractured.  

 
Figure 5.11. Critical Yield Line Mechanism for a Fractured Single-Span (9-5498). 

The external work done is due to the virtual work done by the deck slab, the girder and 

the guardrail, and the HL-93 loading. The external work done due to the live load (HL-93) is 

considered due to the lane load that is increased by 75 percent to account for live load allowance 

and to the wheel loads of the trucks that are increased by 75 percent to account for the live load 

factor, and it increases by 33 percent to account for the impact factor as specified by AASHTO 

(2017). 

For the sake of convenience, an approximation is implemented wherein the lane load is 

considered spread across the deck, similar to the self-weight per unit area. This measurement is 

achieved by applying the lane load for a width of the HL-93 lane of 12 ft. Thus, the distributed 
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lane load is 𝑤𝑤𝑟𝑟 of 0.0533 ksf and considered to act with the area load of reinforced concrete deck 

slab, 𝑤𝑤𝑖𝑖. The equivalent combined area load is denoted by 𝑤𝑤𝑢𝑢. This assumption is justified 

because the lane load is considered to act over an area beyond the actual loaded area. In 

accordance with the LRFD loads, (AASHTO (2017), the dead loads are increased by 25 percent. 

The external work done due to an area load 𝑤𝑤𝑢𝑢 in Equation (5.49) is derived using 

Equation (5.24): 

𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝑢𝑢 = 𝑤𝑤𝑢𝑢𝐿𝐿𝑥𝑥∗ �
𝑏𝑏
2

+
𝑠𝑠
4�

 (5.49) 

The external work done due to the combined weight of the fractured outside girder and 

the outer guardrail, 𝐸𝐸𝑥𝑥, is given by Equation (5.50):  

𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝑥𝑥 =
𝐸𝐸𝑥𝑥𝐿𝐿𝑥𝑥∗

2
 (5.50) 

The deflections under each wheel load are computed using similar triangles and are 

multiplied with the factored loads of each wheel to obtain the external virtual work done by the 

HS-20 truck, as given by Equation (5.51): 

𝐸𝐸𝐸𝐸𝐸𝐸𝐻𝐻𝐻𝐻20 = �168 −
2613
𝐿𝐿𝑥𝑥∗

� (5.51) 

For a wider bridge, the second lane of trucks may participate (in part) in the collapse 

mechanism, as depicted in Figure 5.12(b). The axle loads are therefore required to be increased 

proportionally to their deflection with respect to the truck position over the fractured girder. 

Thus, the lane load requires modification through the scalar 𝐾𝐾𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑. For one line of truck wheels 

participating, the factor is given by Equation (5.52):  

𝐾𝐾𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 = 1 + 0.5 
𝑦𝑦
𝑠𝑠
 (5.52) 

in which 𝑦𝑦 = distance measured from the intact (unfractured) girder to the line of wheels. 

Equation (5.53) is used if both lines of wheels are participating in the mechanism: 

𝐾𝐾𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 = 1 + 𝑦𝑦
𝑠𝑠 ; 𝐾𝐾𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 ≤ 2 (5.53) 

where 𝑦𝑦 = distance to the centerline of the truck. Thus, the total external work done is given by 

Equation (5.54):  

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑤𝑤𝑢𝑢𝐿𝐿𝑥𝑥∗ (0.5𝑏𝑏 + 0.25𝑠𝑠) + 0.5𝐸𝐸𝑥𝑥𝐿𝐿𝑥𝑥∗ + �168 −
2613
𝐿𝐿𝑥𝑥∗

�𝐾𝐾𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 (5.54) 

and may be contracted to the following in Equation (5.55):  
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𝐸𝐸𝐸𝐸𝐸𝐸 = 0.5𝐸𝐸𝑇𝑇 (5.55) 

where 𝐸𝐸𝑇𝑇 = total ultimate load at the bridge participating in the collapse mechanism, represented 

by Equation (5.56):  

𝐸𝐸𝑇𝑇 = 𝑤𝑤𝑢𝑢𝐿𝐿𝑥𝑥∗ (𝑏𝑏 + 0.5𝑠𝑠) + 𝐸𝐸𝑥𝑥𝐿𝐿𝑥𝑥∗ + �336 −
5226
𝐿𝐿𝑥𝑥∗

�𝐾𝐾𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑. (5.56) 

Solving for the overstrength factor 𝛺𝛺 = 𝐼𝐼𝐸𝐸𝐸𝐸/𝐸𝐸𝐸𝐸𝐸𝐸 for the simply supported span is given by 

Equation (5.57): 

𝛺𝛺 =
�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦� �
𝐿𝐿𝑥𝑥
2𝑠𝑠� 𝑘𝑘𝑐𝑐𝑐𝑐𝑢𝑢𝑖𝑖𝑑𝑑 + (𝑚𝑚𝑥𝑥𝑏𝑏) � 4

𝐿𝐿𝑥𝑥∗
�

0.5𝐸𝐸𝑇𝑇
 (5.57) 

where 𝑚𝑚′𝑦𝑦 and 𝑚𝑚𝑦𝑦 are the negative and positive moment capacities per unit width in the y-

direction, respectively, and 𝑚𝑚′𝑥𝑥, and 𝑚𝑚𝑥𝑥 are the negative and positive moment capacities per unit 

width in the x-direction, respectively; 𝐿𝐿𝑥𝑥 = the centerline length of the span of the bridge;  𝐿𝐿𝑥𝑥∗  = 

the length of the outer region of the bridge, factored for curvature; 𝑠𝑠 = the width of the area of 

the slab along which the mechanism under consideration is applied; 𝑏𝑏 = the transverse distance 

of the interior flange of the fractured girder from the outer edge of the bridge; 𝑤𝑤𝑢𝑢 = the area load 

consisting of self-weight of the reinforced concrete deck slab and the applied lane load; and 𝐸𝐸𝑥𝑥 = 

the line load consisting of the self-weight of the fractured tub girder and the guardrail. 

When implemented for the bridge of TxDOT Research Project 9-5498, the upper-bound 

and lower-bound overstrength factors are found—using Equation (5.57)—to be 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.46 

and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟  = 1.28. Note that in that project, the bridge is narrow and can only accommodate a 

single HS-20 truck load alone. 

5.4.3 Analysis for Spans with Plastic End Moments  

Consider now the general case for spans that possess a measure of fixity at their ends due 

to the presence of continuity via the adjacent spans, as shown in Figure 5.12 (a). 

Equating the factored external work done to the internal work done as shown in 

Equations (5.58) and (5.59): 

Ω 0.5𝐸𝐸𝑇𝑇 = 0.5𝑀𝑀𝑡𝑡1
− 𝜃𝜃 + 0.5𝑀𝑀𝑡𝑡2

− 𝜃𝜃 (5.58) 

Ω 0.5𝐸𝐸𝑇𝑇 = �0.5𝑀𝑀𝑡𝑡1
− + 0.5𝑀𝑀𝑡𝑡2

− � �
2
𝐿𝐿𝑥𝑥∗
� (5.59) 

Thus, the overstrength factor for the intact case is given by Equation (5.60):  
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Ω =
�0.5𝑀𝑀𝑡𝑡1

− + 0.5𝑀𝑀𝑡𝑡2
− � � 2

𝐿𝐿𝑥𝑥∗
�

0.5𝐸𝐸𝑇𝑇
 (5.60) 

where 0.5𝑀𝑀𝑡𝑡1
−  and 0.5𝑀𝑀𝑡𝑡2

−  are the plastic moment capacities of the composite deck participating 

in the overall plastic mechanism (0.5 is used since the outside girder alone takes part in the 

critical mechanism). 

This result may now be incorporated into the overall solution for the fractured girder 

case. Thus, the overall effective weight, 𝐸𝐸𝐸𝐸𝑇𝑇 , used in the plastic analysis is given by 

Equation (5.61): 

𝐸𝐸𝐸𝐸𝑇𝑇 = 𝑤𝑤𝑏𝑏𝐿𝐿𝑥𝑥∗(𝑏𝑏 + 0.5𝑠𝑠) + 𝐸𝐸𝑥𝑥𝐿𝐿𝑥𝑥∗ + �336 −
5226
𝐿𝐿𝑥𝑥∗

�𝐾𝐾𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 (5.61) 

 
(a) Continuous Bridge Span with End Elastic Moments 

 
(b) Layout of a Typical Interior Span with Yield Line Mechanism 

Figure 5.12. Collapse Load Analysis of Interior Span of Continuous Bridges. 

Adding the effect of end moments, the overall collapse overstrength capacity is given by 

Equation (5.62): 
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𝛺𝛺 =
�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦� �
𝐿𝐿𝑥𝑥
2𝑠𝑠� 𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 + �4𝑚𝑚𝑥𝑥𝑏𝑏

𝐿𝐿𝑥𝑥∗
� + �0.5𝑀𝑀𝑡𝑡1

− + 0.5𝑀𝑀𝑡𝑡2
− � � 2

𝐿𝐿𝑥𝑥∗
�

0.5𝐸𝐸𝐸𝐸𝑇𝑇
 

(5.62) 

 

For the end-spans in multi-span bridges as well as two-span continuous bridges, either 

0.5𝑀𝑀𝑡𝑡1
−  or 0.5𝑀𝑀𝑡𝑡2 is set to zero at the outermost abutments, as shown in Figure 5.13. The 

overstrength factor of the system due to the moment, 0.5𝑀𝑀𝑡𝑡
− , at the continuous interior support is 

given by Equation (5.63):  

Ω =
�0.5𝑀𝑀𝑡𝑡

−� � 1
(λ − 1)𝐿𝐿𝑥𝑥∗

�

0.5𝐸𝐸𝑇𝑇
 (5.63) 

where 0.5𝑀𝑀𝑡𝑡
−  = the plastic moment capacities of the composite deck participating in the overall 

plastic mechanism at the supports, and λ = fraction of span length from the simply supported end 

of the span at which the steel twin tub girder is fractured. The overall effective weight, 𝐸𝐸𝐸𝐸𝑇𝑇, used 

in the plastic analysis, is given by Equation (5.64):  

𝐸𝐸𝐸𝐸𝑇𝑇 = 𝑤𝑤𝑏𝑏𝐿𝐿𝑥𝑥∗(𝑏𝑏 + 0.5𝑠𝑠) + 𝐸𝐸𝑥𝑥𝐿𝐿𝑥𝑥∗ + �336 −
523
λ𝐿𝐿𝑥𝑥∗

−
2091

(1− λ)𝐿𝐿𝑥𝑥∗
�𝐾𝐾𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 (5.64) 

The critical case in which the external work done, 0.5𝐸𝐸𝐸𝐸𝑇𝑇, is set to be the maximum by 

positioning the 8 kip load at the side of the fracture that is nearer to the simply supported end of 

the span is considered in Equation (5.64).  

This result may now be incorporated into the overall solution for the fractured girder case 

and represented by Equation (5.65).  

𝛺𝛺 =
�𝑚𝑚𝑦𝑦

′ + 𝑚𝑚𝑦𝑦� �
𝐿𝐿𝑥𝑥
2𝑠𝑠� 𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 + � 𝑚𝑚𝑥𝑥𝑏𝑏

(λ − λ2)𝐿𝐿𝑥𝑥
� + �

0.5𝑀𝑀𝑡𝑡
−

(1 − λ)𝐿𝐿𝑥𝑥
�

0.5𝐸𝐸𝐸𝐸𝑇𝑇
 

(5.65) 



 

179 

 
(a) End-Span of Bridge 

 
(b) Layout of a Typical Interior Span with Yield Line Mechanism 

Figure 5.13. Collapse Load Analysis of End-Spans of Continuous Bridges. 

5.4.4 Location of Maximum Positive Moment for Collapse Analysis of Fractured Girder 

The location of the maximum positive moment within the end-span region of multi-span 

continuous bridge structures depends on several factors: 

• The stiffness (length) of the adjoining span or spans. 

• The relative positive to negative moment capacities, as designed and constructed.  

• The relative proportion of distributed loads to point loads.  



 

180 

To illustrate the significance of the above, consider the following scenarios depicted in 

Figure 5.14 where the location of the maximum positive moment is expressed as a fraction of the 

span length, λ. 

Figure 5.14(a) and (b) respectively show the extreme cases for a multi-span bridge with 

full fixity (where 𝑀𝑀𝐹𝐹=𝑤𝑤𝐿𝐿2/8) and for a two-span structure with partial fixity where only one 

span is fully loaded. For an elastic design, moment capacities are proportionately tuned to the 

elastic bending moment diagram. Thus, for Figure 5.14(a) and (b), λ = 0.375 (full fixity) and 

λ = 0.4375 (partial fixity), respectively. Figure 5.14(c) and (d) present the location of the 

maximum positive moment under the moving concentrated load with full fixity (where 

𝑀𝑀𝐹𝐹= (𝜆𝜆 − 𝜆𝜆3)𝑃𝑃𝐿𝐿/2) and partial fixity for a two-span structure. The maximum positive moment 

occurs where λ = 0.366 (full fixity) and λ = 0.5536 (partial fixity). 



 

181 

 

 

 

 

 

 

 

BMD 
 

 

 

 

 

BMD 
  

 (a) Elastic Design Propped Cantilever  (b) Elastic Design of Two Spans 

 

 

 

 

 BMD 
 

 

 

 

 

 

 BMD 
 

 (c) Maximum Positive Moment Location 

under Moving Concentrated Load 

 (d) Two Span with Moving Load Case 

 

 

 

 

 

 

 hinge  

 

 

 

 

 

 

 hinge  

 (e) Uniformly Distributed Load  (f) Concentrated Moving Load 

Figure 5.14. Different Scenarios Used to Determine the Location of Maximum Positive 
Moment for Collapse Analysis. 
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For plastic analysis and design, in both the cases of Figure 5.14(a) and (b), λ = 0.414 if 

the beam has the same positive and negative moment capacity as shown in Figure 5.14(e). 

Figure 5.14(f) indicates that the maximum moment occurs at the location where the concentrated 

load acts. The critical location in the end spans in continuous bridges will be at that location 

where fracture critical (welded joint) details exist closest to the maximum positive moment 

region. Because this may vary from structure to structure, for simplicity it may be assumed to be 

in the vicinity of λ = 0.40. Such high moments are assumed to be capable of initiating fracture at 

that location. Therefore, for consistency, in this study the location of fractures in the end-spans of 

multi-span continuous bridges shall be taken herein as λ = 0.40. 

To check the veracity of this assumption, the overstrength factors of the fifteen pre-

selected bridges were calculated using the exact λ value found using the formula given in 

Equation (5.66):  

where 𝜇𝜇 represents the ratio of the negative and positive bending moment (µ=𝑀𝑀𝑡𝑡
−/𝑀𝑀𝑡𝑡

+) of the 

composite bridge section at support and at mid-span, respectively. These “exact” values of λ 

range from 0.37 to 0.42 for the different bridges under consideration and presented in Table 5.2. 

The overstrength factors have also been calculated by setting λ = 0.4 and λ = 0.5. To assess the 

significance of the differences in overstrength factors, ratios have been formed using 

Equation (5.67):  

Results are shown for these ratios plotted as a cumulative distribution in Figure 5.15. A 

lognormal distribution has also been fitted to the data points for the two cases where λ = 0.4 and 

λ = 0.5. The median values of the distributions show that when λ = 0.4, there is only a very slight 

bias of 0.73 percent, whereas the bias (error) increases markedly to 11 percent when λ = 0.5. 

This simply means that λ = 0.5 is not the most appropriate or adverse location to assume the 

existence of a girder fracture in end-span positive moment regions. It is therefore evident that in 

lieu of a more precise minimization analysis, one can confidently adopt λ = 0.4 as being an 

appropriate location to assume fractures in end-spans of the continuous bridges. Using λ = 0.4 

means that any error introduced into the Ω factor will be less than 3 percent. 

λ =  
�𝜇𝜇 + 1 − 1

𝜇𝜇
 

(5.66) 

𝑅𝑅 =
Ω(λ)

Ω(λ𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖)
 (5.67) 
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Figure 5.15. Cumulative Distribution for λ = 0.4 and λ = 0.5. 

Table 5.2. Comparison of Overstrength Factors for Exterior Spans, Ω. 

ID Lx 

 (ft) λexact 
B  

(ft) 
Ω 

λexact 
Ω at 
λ=0.4  

Ω at 
λ=0.5 

B4S1 132 0.39 28 1.79 1.80 1.98 
B4S2 128 0.39 28 1.83 1.85 2.03 
B5S1 140 0.41 30 1.41 1.40 1.53 
B5S2 140 0.41 30 1.40 1.39 1.52 
B6S1 140 0.40 38 1.63 1.62 1.81 
B6S2 140 0.40 38 1.63 1.62 1.81 
B7S1 219 0.40 28 1.45 1.45 1.57 
B7S2 190 0.37 28 1.64 1.69 1.86 
B8S1 265 0.41 28 1.35 1.34 1.44 
B8S2 295 0.42 28 1.26 1.25 1.33 
B9S1 140 0.41 28 1.57 1.56 1.71 
B9S3 126 0.41 28 1.69 1.68 1.86 
B10S1 148 0.39 30 1.96 1.98 2.23 
B10S3 190 0.37 30 1.62 1.67 1.85 
B11S1 223 0.37 28 1.71 1.75 1.97 
B11S3 235 0.37 28 1.61 1.65 1.85 
B12S1 140 0.38 28 1.73 1.75 1.91 
B12S3 145 0.38 28 1.69 1.71 1.87 
B13S1 152 0.37 30 1.38 1.41 1.57 
B13S3 152 0.37 30 1.37 1.40 1.55 
B14S1 150 0.40 28 1.63 1.63 1.77 
B14S3 150 0.40 28 1.63 1.63 1.77 
B15S1 200 0.39 28 1.69 1.70 1.85 
B15S3 200 0.39 28 1.69 1.69 1.85 

0

0.5

1

0.8 0.9 1 1.1 1.2

CD
F

Overstrength factor ratio

0.4

0.5

Median = 1.0073
β = 0.0124
Median = 1.1075
β = 0.0229
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5.5 YIELD LINE ANALYSIS OF SELECTED STTG BRIDGES 

This section discusses the yield line analysis conducted for the 15 pre-selected bridges. 

The mechanism that was formulated for the HL-93 loading case with the folded plate mechanism 

was implemented for the calculation of the overstrength factors of the bridges. The expressions 

for the overstrength factor derived in Section 5.4, modified according to the boundary conditions 

of the bridges, namely the simply supported, the pinned-fixed and the fixed-fixed condition, and 

for the trucks accommodated on the deck under HL-93 loading, are used to obtain the results 

reported in this section. 

5.5.1 Bridge 1—NBI #12-102-3256-01-403 

The yield line analysis for the first of the bridges is illustrated in Figure 5.16. This is a 

single-span bridge of 220 ft span length and 32 ft width. The upper-bound and lower-bound 

overstrength factors calculated using an appropriate factor explained in Equation (5.52) to 

modify Equation (5.57) to account for the addition of the external work done due to inner wheels 

of the second truck are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 0.62 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 0.57 for this bridge. In fact, all the STTG 

bridges selected for this section are wide enough to accommodate two lanes of HL-93 loading, 

unlike the bridge of TxDOT Research Project 9-5498. 

 
 

Figure 5.16. Plan, Cross-Section, and Side Elevation with HL-93 Loading for Single-Span 
Bridges. 
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5.5.2 Bridge 2—NBI #12-102-0271-17-530 

This is a single-span bridge of 115 ft span length and 26.42 ft width. The upper-bound 

and lower-bound overstrength factors calculated using Equation (5.57) are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.17 and 

𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.02 for this bridge. Since the span of this bridge is much less than that of Bridge 1, the 

overstrength factor is higher. It is to be noted that the dimensions of this bridge are comparable 

to that of the test bridge, and consequently, so is the overstrength factor. 

5.5.3 Bridge 3—NBI #12-102-0508-01-294 

This is a single-span bridge of 230 ft span length and 38.84 ft width. The upper-bound 

and lower-bound overstrength factors calculated using an appropriate factor explained in 

Equation (5.53) to modify Equation (5.56) to account for the addition of the external work done 

due to both the lines of wheels of the second truck are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 0.51 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 0.44 for this 

bridge. Equation (5.53) is applied because the bridge is so wide that the outer wheels also cause a 

small amount of deflection and, therefore, external work. Since the span length of this bridge is 

very high, the overstrength factor is low.  

Table 5.3 summarizes the input values and the results for the overstrength factors of the 

test bridge of TxDOT Research Project 9-5498 and single-span STTG bridges using the 

equations mentioned in Section 5.4.1.4. 

Table 5.3. Summary of Overstrength Factors for Single-Span Bridges. 

ID Lx  

ft 
R 
ft 

B 
ft 

Lx
* 

ft 
s 
ft 

b 
ft 

t 
in 

mx 

kip 
m'x  

kip 
my  

kip 
m'y  

kip 
wu 

 ksf 
Wx 

kip/ft 
IWD 
k-ft 

EWD 
k-ft 

Ω 
UB 

Ω 
LB 

9-5498 120 1300 23 121 6.0 8.7 8 16 11 25 20 0.22 0.94 521 357 1.46 1.28 
B1 220 573 32 224 9.5 11.4 8 10 5 27 21 0.22 3.44 605 980 0.62 0.57 
B2 115 1910 26 115 6.1 10.2 8 15 13 23 19 0.22 1.42 478 409 1.17 1.02 
B3 230 2207 39 231 12.6 13.1 9 18 15 27 23 0.23 2.50 543 1065 0.51 0.44 

Note: UB and LB denote upper-bound and lower-bound overstrength factors, respectively. 

5.5.4 Bridge 4—NBI #12-102-0271-07-637 

Bridge 4 is a two-span bridge with an exterior critical span that is 132 ft long and 28.42 ft 

wide, and it has the upper-bound and lower-bound overstrength factors of 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.80 and 

𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟=1.67. The 128 ft span is not critical since the upper-bound and lower-bound overstrength 

factors are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.85 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.71. Equation (5.52) was used to modify Equation (5.64). 
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The fixed-end moment causes negative yield line to occur vertically along the width 𝑏𝑏 at the 

interior continuous support. There will also be additional hinge formation due to the negative 

moment of the steel tub girder. Both effects are accounted for by the plastic moment capacity of 

the composite deck at support, 𝑀𝑀𝑡𝑡
−.  

5.5.5 Bridge 5—NBI #14-227-0-0015-13-452 

This is a two-span bridge whose exterior span is 140 ft long and 30 ft wide. The upper-

bound and lower-bound overstrength factors are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.40 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.28 for this span. 

The other exterior span of 139.58 ft span length has critical upper-bound and lower-bound 

overstrength factors of 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟  = 1.39 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.28. The calculations use the same procedure 

as that of Bridge 4. 

5.5.6 Bridge 6—NBI #12-102-0271-07-575 

This is a two-span bridge whose exterior critical spans are both 140 ft long and 38.42 ft 

wide. The upper-bound and lower-bound overstrength factors are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.62 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 

1.52. Equation (5.64) is modified using the appropriate factor mentioned in Equation (5.53) to 

account for the external work done due to the second truck since the bridge is so wide that the 

outer wheels of the second truck also cause a small amount of deflection and, consequently, 

external work. This modification factor is similar to that used for computing the overstrength 

factor of Bridge 3. 

5.5.7 Bridge 7—NBI #12-102-0177-07-394 

This is a two-span bridge whose exterior critical span is 219 ft long and 28.42 ft wide. 

The upper-bound and lower-bound overstrength factors calculated using Equation (5.65) and 

Equation (5.52) are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.45 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.37 for this span. The upper-bound and lower-

bound overstrength factors calculated using the same equation for the 190 ft span are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 

1.69 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.59. 
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5.5.8 Bridge 8—NBI #12-102-0271-06-661 

This is a 28.42 ft wide two-span bridge whose exterior critical span is 295 ft long. The 

upper-bound and lower-bound overstrength factors calculated using Equation (5.65) are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 

1.25 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.18 for this span. The upper-bound and lower-bound overstrength factors 

calculated using Equation (5.65) for the 265 ft span are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.34 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.27. The 

modification factor of Equation (5.52) was used.  

5.5.9 Bridge 9—NBI #12-102-0177-07-394 

This three-span bridge has a width of 28.42 ft and an exterior critical span 140 ft long. 

The upper-bound and lower-bound overstrength factors are calculated to be 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.56 and 

𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.44 for the exterior critical span and calculated to be 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.68 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.56 

for the other exterior span of 126 ft. Equation (5.65) and Equation (5.61) were used by 

modifying with the factor explained in Equation (5.52) to find the overstrength factor of the 

interior span. The fixed-end moments cause negative yield line to occur vertically along a width 

of 𝑏𝑏 at the two continuous supports of the interior span. There will also be additional hinge 

formation due to the negative moment of the steel tub girder. Both of these are accounted for by 

the plastic moment capacities of the composite deck, 𝑀𝑀𝑡𝑡1
−  and 𝑀𝑀𝑡𝑡2

− , at the continuous supports at 

the left and right ends of the interior span, respectively. For Bridge 9, the interior continuous 

span, clamped on both ends, is 151 ft long and 28.42 ft wide. The upper-bound and lower-bound 

overstrength factors are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 2.34 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 2.24.  

5.5.10 Bridge 10—NBI # 14-227-0-0015-13-450 

This three-span bridge is 30 ft wide and the exterior critical span is 190 ft long, and the 

other exterior span is 148 ft long. The upper-bound and lower-bound overstrength factors 

calculated using Equation (5.65) are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.67 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.59 for the exterior critical span 

and 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.98 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.88 for the other exterior span. The interior span of length 265 ft 

and width 30 ft has upper-bound and lower-bound overstrength factors of 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.90 and 

𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.84 that were calculated using Equation (5.62). 
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5.5.11 Bridge 11—NBI #12-102-0271-07-593 

This three-span bridge is 28.42 ft wide; the critical exterior span is 235 ft long and the 

other exterior span is 223 ft long. The upper-bound and lower-bound overstrength factors 

calculated using Equation (5.65) are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.65 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.59 for the exterior critical span 

and 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.75 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.69 for the other exterior span. The interior span, 366 ft long 

and 30 ft wide, has upper-bound and lower-bound overstrength factors of 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.69 and 

𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.66 that were calculated using Equation (5.62).  

5.5.12 Bridge 12—NBI # 12-102-0271-07-639 

This three-span bridge is 28 ft wide, the critical exterior span is 145 ft long, and the other 

exterior span is 140 ft long. The upper-bound and lower-bound overstrength factors calculated 

using Equation (5.65) are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.71 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.60 for the exterior critical span and 

𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.75 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.63 for the other exterior span. The interior span, 180 ft long and 28 

ft wide, has upper-bound and lower-bound overstrength factors of 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 2.20 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 

2.10 that were calculated using Equation (5.62). 

5.5.13 Bridge 13—NBI #14-227-0-0015-13-452 

This three-span bridge has a width of 30 ft. Both exterior spans are 151.5 ft long, but with 

differing girder dimensions. The upper-bound and lower-bound overstrength factors calculated 

using Equation (5.65) are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.40 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.30 for the exterior critical span and 

𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.41 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.32 for the other exterior span. The 190 ft long, 30 ft wide interior 

span has upper-bound and lower-bound overstrength factors of 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.89 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.80 

that were calculated using Equation (5.62). 

5.5.14 Bridge 14—NBI #18-057-0-0009-11-460 

This three-span bridge has a width of 28 ft; both the exterior spans are 150 ft long. The 

upper-bound and lower-bound overstrength factors calculated using Equation (5.65) are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 

1.63 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.52 for both. The 190 ft long, 28 ft wide interior span has upper-bound and 

lower-bound overstrength factors of 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 2.07 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.98 that were calculated using 

Equation (5.62). 
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5.5.15 Bridge 15—NBI #12-102-0271-06-689 

This three-span bridge has a width of 28 ft, and both exterior spans are 200 ft long, but 

with differing girder dimensions. The upper-bound and lower-bound overstrength factors 

calculated using Equation (5.65) are 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.69 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.59 for the exterior critical span 

and 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.70 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 = 1.60 for the other exterior span. The 295 ft long, 28 ft wide 

interior span has upper-bound and lower-bound overstrength factors of 𝛺𝛺𝑈𝑈𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 = 1.86 and 𝛺𝛺𝐿𝐿𝑐𝑐𝐿𝐿𝑑𝑑𝑟𝑟 

= 1.78 that were calculated using Equation (5.65).  

It is to be noted that Bridges 9–15 use the modification factor defined in Equation (5.52) 

for both exterior and interior spans to account for the external work done by the HS-20 truck 

load of the second lane.  

Table 5.4 and Table 5.5 summarize the input values and the results for the bridges to 

obtain the overstrength factors of the exterior and interior spans of the STTG bridges using the 

equations mentioned in Section 5.4.3. 
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Table 5.4. Summary of Overstrength Factors for Exterior Spans. 

ID Lx 
ft 

R 
ft 

B 
ft 

Lx
* 

ft 
s  
ft 

b 
ft 

t 
in 

mx  
kip 

m'x  
kip 

my  
kip 

m'y  
kip 

0.5Mp-  
k-ft 

wu  
ksf 

Wx  
kip/ft 

IWD  
k-ft 

EWD  
k-ft 

Ω 
UB 

Ω 
LB 

B4S1 132 195 28 137 8 10.4 9 14 13 25 21 34362 0.23 1.44 899 499 1.80 1.67 
B4S2 128 195 28 133 8 10.4 9 14 13 25 21 34362 0.23 1.42 900 487 1.85 1.71 
B5S1 140 450 30 142 10 10.2 8 12 9 23 19 26450 0.22 0.95 683 490 1.40 1.28 
B5S2 140 450 30 142 10 10.2 8 12 9 23 19 26450 0.22 0.99 683 491 1.39 1.28 
B6S1 140 819 38 142 10 14.3 8 15 13 29 24 52716 0.22 1.74 1087 671 1.62 1.52 
B6S2 140 819 38 142 10 14.3 8 15 13 29 24 52716 0.22 1.74 1087 671 1.62 1.52 
B7S1 219 764 28 221 7 10.5 8 15 11 20 17 60107 0.22 1.85 1060 733 1.45 1.37 
B7S2 190 764 28 191 7 10.5 8 15 11 20 17 60107 0.22 1.53 1058 628 1.69 1.59 
B8S1 265 882 28 267 8 10.0 8 15 12 23 19 69672 0.22 2.02 1177 876 1.34 1.27 
B8S2 295 882 28 297 8 10.0 8 15 12 23 19 69672 0.22 2.13 1209 971 1.25 1.18 
B9S1 140 764 28 141 7 10.5 8 15 11 20 17 29774 0.22 1.32 763 490 1.56 1.44 
B9S3 126 764 28 127 7 10.5 8 15 11 20 17 29774 0.22 1.33 768 458 1.68 1.56 

B10S1 148 716 30 150 8 11.2 8 12 9 21 17 58368 0.22 1.42 1070 541 1.98 1.88 
B10S3 190 716 30 192 8 11.2 8 12 9 21 17 64603 0.22 1.46 1082 648 1.67 1.59 
B11S1 223 819 28 225 7 10.7 8 14 11 21 17 150362 0.22 4.21 1770 1010 1.75 1.69 
B11S3 235 819 28 237 7 10.7 8 14 11 21 17 150362 0.22 4.24 1745 1058 1.65 1.59 
B12S1 140 225 28 144 8 10.4 9 13 10 25 21 35482 0.23 1.47 907 519 1.75 1.63 
B12S3 145 225 28 150 8 10.4 9 13 10 25 21 35482 0.23 1.44 908 530 1.71 1.60 
B13S1 152 450 30 154 9 10.3 8 12 9 21 17 35873 0.22 1.13 749 530 1.41 1.32 
B13S3 152 450 30 154 9 10.3 8 12 9 21 17 35873 0.22 1.21 749 536 1.40 1.30 
B14S1 150 1010 28 151 7 10.8 8 14 10 21 17 31546 0.22 1.40 839 515 1.63 1.52 
B14S3 150 1010 28 151 7 10.8 8 14 10 21 17 31546 0.22 1.40 839 515 1.63 1.52 
B15S1 200 809 28 202 8 10.2 8 16 14 25 21 61187 0.22 1.83 1164 685 1.70 1.60 
B15S3 200 809 28 202 8 10.2 8 16 14 25 21 61187 0.22 1.85 1164 687 1.69 1.59 

Table 5.5. Summary of Overstrength Factors for Interior Spans. 

ID Lx 
ft 

R 
ft 

B 
ft 

Lx
* 

ft 
s 
ft 

b 
ft 

t 
in 

mx 
kip 

m'x 
kip 

my 
kip 

m'y 
kip 

0.5Mp1- 
k-ft 

0.5Mp2- 

k-ft 
wu 
ksf 

Wx 
kip/ft 

IWD 
k-ft 

EWD 
k-ft 

Ω 
UB 

Ω 
LB 

B9S2 151 764 28 153 7.4 10.5 8 15 11 20 17 29774 29774 0.22 1.37 1218 520 2.34 2.24 
B10S2 265 716 30 268 7.7 11.2 8 12 9 21 17 58368 64603 0.22 1.61 1620 851 1.90 1.84 
B11S2 366 819 28 369 7.0 10.7 8 14 11 21 17 150362 150362 0.22 4.41 2663 1573 1.69 1.66 
B12S2 180 225 28 186 7.6 10.4 9 13 10 25 21 35482 35482 0.23 1.61 1384 629 2.20 2.10 
B13S2 190 450 30 193 9.3 10.3 8 12 9 21 17 35873 35873 0.22 1.21 1180 625 1.89 1.80 
B14S2 190 1010 28 191 6.5 10.8 8 14 10 21 17 31546 31546 0.22 1.45 1264 611 2.07 1.98 
B15S2 295 809 28 298 8.0 10.2 8 16 14 25 21 61187 61187 0.22 1.97 1755 944 1.86 1.78 
Note: UB and LB denote upper-bound and lower-bound overstrength factors, respectively. 

5.6 CLOSURE 

In this chapter, yield line theory was developed so that it can be applied to twin tub girder 

bridges with one tub completely fractured. First, the general yield line methodology was 

validated for a test bridge loaded to failure with a large load of sand on the mid-span region. 
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Second, the yield line theory was adapted using both upper- and lower-bound approaches for the 

class of curved twin tub bridges investigated herein. Finally, the theory was applied to the 15 

bridges investigated in these results. The results were tabulated for each span type: (a) simply 

supported, (b) both ends continuous; and (c) one end continuous plus the abutment simply 

supported (free). Table 5.6 summarizes the overstrength factors for the test bridge of TxDOT 

Research Project 9-5498 and the 15 preselected STTG bridges with the overstrength factors of 

the critical spans presented in boldface. 

Some of the conclusions drawn from the results of yield line analysis are as follows: 

• The critical mechanism postulated to predict the capacity of the test bridge was 

validated using the experimental results. The collapse load calculated using the yield 

line analysis was 353 kip, while the experiment conducted during TxDOT Research 

Project 9-5498 gave a load of 358 kip. The yield line result is 1.40 percent lower than 

the reported collapse load.  

• The analysis modified the yield line theory to account for the stud failure. 

• The analysis of the bridges under the HL-93 loads results in a mechanism that makes 

use of torsional folded-plate action. This mechanism ensures the estimation of critical 

capacity after several trials.  

• The simple-span bridges with the span lengths of 115 ft and 120 ft have upper-bound 

overstrength factors of 1.17 and 1.46, respectively, while those with the span lengths 

of 220 ft and 230 ft have upper-bound overstrength factors of 0.62 to 0.51, 

respectively. 

• The exterior spans have upper-bound overstrength factors ranging from 1.25 to 1.98 

depending on the length of the span and the variation of the girder geometry along the 

span.  

• The interior spans have overstrength factors ranging from 1.69 to 2.34 depending on 

the length of the span. 

• The redundancy due to the continuity at supports contributes to a greater strength, as 

evidenced by the higher overstrength factors of the exterior and interior spans when 

compared to those of the simply supported single spans. The general order is that the 

interior spans have the most load bearing capacity, the exterior spans have the next 

highest load bearing capacity, and the single-span bridges are weakest in comparison, 
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especially for long span bridges having span length greater than 120 ft, as seen in the 

case of Bridges 1 and 3. 

• The width of the bridges, however, is observed to not have as substantial an impact as 

that of the length of the span and boundary conditions in the case of yield line 

analysis. This phenomenon is because the external work done due to the second truck 

considered for the computation of the overstrength factor of the wider bridges does 

not change the overall outcome significantly since the deflections under the second 

HS-20 truck are of smaller magnitude.  

• The overall analysis is conservative because the guardrail is disengaged in this 

analysis. This assumption is reasonable since the guardrail is not constructed as a 

uniformly continuous entity due to the presence of expansion joints. Moreover, 

crushing of the guardrail under compression is reported to have taken place during the 

failure of the test bridge, as mentioned by Barnard et al. (2010). Therefore, it is 

reasonable to not count on any strength from the guardrail since it may lead to an 

incorrectly higher estimate of the strength of the bridge. 

 

These results are further discussed and compared in Chapter 7.  
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Table 5.6. Overstrength Factors for 15 Selected STTG Bridges. 

Bridge 
ID 

Radius of 
curvature 

ft 

Width, B 
ft 

Span, Lx 

ft 

 
Overstrength Factor  

Ωyield Line  

9-5498 1300 23 120 1.46 1.28 
1 573 32 220 0.62 0.57 
2 1910 26 115 1.17 1.02 
3 2207 39 230 0.51 0.44 

4-S1 195 28 132 1.80 1.67 
4-S2 28 128 1.85 1.71 
5-S1 450 30 140 1.40 1.28 
5-S2 30 140 1.39 1.28 
6-S1 819 38 140 1.62 1.52 
6-S2 38 140 1.62 1.52 
7-S1 764 28 219 1.45 1.37 
7-S2 28 190 1.69 1.59 
8-S1 819 28 265 1.34 1.27 
8-S2 28 295 1.25 1.18 
9-S1 

764 
28 140 1.56 1.44 

9-S2 28 151 2.34 2.24 
9-S3 28 126 1.68 1.56 

10-S1 
716 

30 148 1.98 1.88 
10-S2 30 265 1.90 1.84 
10-S3 30 190 1.67 1.59 
11-S1 

819 
28 223 1.75 1.69 

11-S2 28 366 1.69 1.66 
11-S3 28 235 1.65 1.59 
12-S1 

225 
28 140 1.75 1.63 

12-S2 28 180 2.20 2.10 
12-S3 28 145 1.71 1.60 
13-S1 

450 
30 151 1.41 1.32 

13-S2 30 190 1.89 1.80 
13-S3 30 151 1.40 1.30 
14-S1 

1010 
28 150 1.63 1.52 

14-S2 28 190 2.07 1.98 
14-S3 28 150 1.63 1.52 
15-S1 

809 
28 200 1.70 1.60 

15-S2 28 295 1.86 1.78 
15-S3 28 200 1.69 1.59 

Note: The boldface type value for Ω is the critical (lowest Ω) case for the bridge concerned. 
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6 PARAMETRIC STUDY FOR STEEL TWIN TUB GIRDER BRIDGES 

USING GRILLAGE METHOD PUSH-DOWN ANALYSIS 

6.1 INTRODUCTION 

This task consisted of a parametric study involving a selection of 15 preselected typical 

STTG bridges from the Texas bridge inventory utilizing a Grillage Method Push-down Analysis. 

These 15 bridges are the same bridges evaluated using the FEM in Chapter 4. The grillage 

method employed was verified using the static ultimate load test results of the STTG bridge 

tested in TxDOT Research Project 9-5498 (Barnard et al. 2010). The TxDOT project consisted of 

testing a full-scale fracture critical steel box-girder bridge under simulated HS-20 truck loading 

and at ultimate loading with a full-depth fracture on the exterior girder.  

This task evaluated the performance of existing fracture critical STTG bridges in the 

event of a full-depth web fracture of one of the girders. The 15 bridges under evaluation vary 

with respect to span lengths, degree of curvature, and continuity. These variables are the most 

critical geometric properties for determining the response of a bridge to load distribution 

between girders.  

Grillage models were created using the commercial software package SAP2000, which is 

a structural analysis program that utilizes the matrix structural analysis approach to solve and 

evaluate structural engineering problems. All the grillage bridge models have used nonlinear 

elasto-plastic material and hinge properties due to the nonlinear behavior of the reinforcing bars, 

steel plates, and concrete during concrete crushing and steel yielding under ultimate loading 

conditions. The grillage models were analyzed under the factored HL-93 live loading model. 

This loading pattern consists of HS-20 truck loading as well as a uniformly distributed lane load. 

Per AASHTO LRFD Bridge Design Specifications AASHTO (2017), the load demands were 

1.25DL + 1.75(LL + IM), where DL, LL, and IM represent respectively dead load, live load, and 

impact factor.  

The bridges evaluated utilizing the grillage method were analyzed twice: (1) analysis of 

the bridge with the intact girder condition, and (2) analysis of the bridge with a full-depth girder 

fracture for one of the tub girders. The intact bridge analysis provides information about the 

initial stiffness of the intact bridge as well as the overstrength factor for the nonfractured case. 
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The second analysis is for simulating the ultimate load behavior when one of the girders are 

fractured. A predefined overstrength factor was determined for both the fully intact case and one 

fractured girder case to assess the load carrying capacity of both cases under critical loading. The 

grillage method allows for load redistribution from the fractured girder through the lateral deck 

slab members.  

The next section describes the grillage method and material models used for all evaluated 

bridges. The following section gives the load displacement results of the grillage models as well 

as their respective overstrength factor results.  

6.2 GRILLAGE METHOD PUSH-DOWN ANALYSIS 

6.2.1 Introduction 

The grillage method is a computational variation of the strip method, both of which are 

conservative lower-bound solutions. Designers have employed the strip method due to its ability 

to quickly generate solutions by hand. Like the strip method, the grillage method models the 

bridge deck and beam elements as a grillage of beams. The longitudinal grillage members consist 

of the steel tub girders, the concrete deck with longitudinal reinforcement, and the guardrail. The 

transverse grillage members are bridge deck components with transverse reinforcement. 

The grillage method was originally developed in the 1950s by Lightfoot and Sawko 

(1959). Created in the primitive days of matrix structural analysis, the grillage method was 

utilized to divide a bridge deck into equivalent longitudinal and transverse beam members that 

resembled a grillage. Due to the increase in technological abilities through programs such as 

SAP2000, this method has increased in accuracy. Surana and Agrawal (1998) studied the grillage 

method of analysis as it applies to various bridge types. When compared with other methods of 

analysis, including FEM, the grillage method of analysis was found to be an accurate and valid 

modeling technique. 

Grillage models of the preselected 15 bridges were created and analyzed using the 

structural analysis software SAP2000 Version 19 (Computers and Structures 2017). The grillage 

models were expected to capture the constitutive material behavior and boundary condition to be 

able to accurately predict load displacement behavior and the ultimate load capacity of the 

analyzed bridge. For all 15 bridges, the support conditions were modeled using springs with a 
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lateral stiffness of 6 kip/in. and a vertical stiffness of 3050 kip/in. These values are conducive 

with the stiffness values used in the elastomeric bearing pads at the support locations in the 

bridges. Appropriate steel and concrete nonlinear material models were used to ensure 

appropriate modeling of bridge behavior under the ultimate loading conditions.  

6.2.2 Material Models  

Grillage models generated for the 15 bridges in the parametric study were created using 

similar material models utilized in the FEM modeling approach. Nonlinear material models were 

used for the grillage analysis of the bridges due to the concrete crushing and yielding of the steel 

plates and reinforcing bars. The steel model used for both reinforcing bars and steel plates 

assume nonlinear elastic-plastic behavior with strain hardening. The mechanical constitutive 

model of concrete considers nonlinear inelastic behavior up to peak stress level without damage 

mechanics. Therefore, it assumes perfectly plastic behavior beyond peak compressive and tensile 

stress.  

6.2.2.1 Steel Material Model  

The built-up plate components of the STTG bridges are comprised of Grade 50 structural 

steel. The classical metal plasticity models with strain hardening simulated the constitutive 

behavior of both the steel members and reinforcing bars. The nonlinear steel models assumed a 

perfectly plastic behavior once the yield stress was reached. The reinforcing bar in both the 

longitudinal and transverse directions, as well as in the railings, consists of Grade 60 ASTM 

A615 steel. Figure 6.1 shows the stress-strain relationship of both the plate steel and reinforcing 

bars. Both steel plate and rebar constitutive behavior were obtained from material tests 

conducted on actual specimens as part of TxDOT Research Project 9-5498 (Barnard et al. 2010) 
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a) Reinforcing Bar b) Steel Plate 

Figure 6.1. Constitutive Model for Steel Members (from SAP2000).  

6.2.2.2 Concrete Material Model 

The constitutive concrete behavior was defined using the Kent and Park (1971) model, 

the same model used in the FEM analysis, with a design strength of 4000 psi. After reaching 

ultimate compressive and tensile forces, the concrete behavior is assumed to be perfectly plastic.  

Figure 6.2 shows the stress-strain behavior of the concrete used for the grillage models. 

The tensile strength of the concrete was calculated using the empirical equation in AASHTO 

(2017) Article 5.4.2.6 as: 

𝑓𝑓𝑟𝑟 = 0.2�𝑓𝑓′𝑖𝑖 (6.1) 

where, 𝑓𝑓𝑟𝑟 = the modulus of rupture (ksi) and 𝑓𝑓′𝑖𝑖  = compressive strength of concrete (ksi). The 

modulus of elasticity of concrete for different strength capacities were calculated using an 

empirical equation from AASHTO (2017) Article 5.4.2.4 as: 

𝐸𝐸𝑖𝑖 = 33000𝐾𝐾1𝑤𝑤𝑖𝑖1.5�𝑓𝑓′𝑖𝑖 (6.2) 

where 𝐾𝐾1 = correction factor for aggregate source, which is assumed to be 1.0 unless determined 

by physical test; 𝑤𝑤𝑖𝑖 = unit weight of concrete (kcf)—0.145 is assumed for normal weight 

concrete; and 𝑓𝑓′𝑖𝑖 = compressive strength of concrete (ksi).  
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Figure 6.2. Constitutive Model of Concrete (from SAP2000).  

The constitutive model from SAP2000 indicates that beyond compressive crushing and 

tensile rupturing, the strength is maintained. This behavior was utilized in order to be consistent 

with the FEM modeling approach and to avoid convergence issues in SAP2000. 

6.2.3 Grillage Beam Elements  

Hambly and Pennells (1975) and Barker and Puckett (2007) have established guidelines 

for the construction and location placement of beam elements. It is recommended that each 

grillage member take on the same bending and torsional properties of their representative bridge 

sections. For the case of slab-on-girder bridges, the longitudinal beam element should be placed 

along the centerline of the girder. Since the twin tub girders are so wide, in this grillage analysis 

they were divided in half, and the centerline of the top flange was used as the centerline for the 

placement of grillage elements. This process maintains the stiffness at the appropriate location 

within the bridge structure and appropriate load distribution. Lateral beam members should be 

placed at appropriate locations. Grillage members should be positioned in locations of high stress 

and forces. High force and stress locations could include interior and exterior supports and point 

load locations. To assure accurate load distribution, it is important that the longitudinal and 

transverse members are equally gaged in both directions. 

The exterior longitudinal members (Figure 6.3a) consist of the guardrail, the deck from 

the outside edge to the center of the tub girder—including corresponding reinforcing bars, and 

half of the tub girder. The interior longitudinal members (Figure 6.3b) consist of the deck from 

the center of the tub girder to the centerline of the bridge, with corresponding reinforcing bars, 
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and half of the tub girder. The transverse members (Figure 6.4a-b) consist of the deck slab and 

transverse reinforcing bars. The longitudinal members are placed along the centerline of each of 

the four top flange members of the tub girders. The transverse members are placed at 7 ft 

increments along the interior with varying spacing at the end supports. Figure 6.5 is a 

representative grillage schematic of a grillage model.  

 
a) Exterior Longitudinal Member b) Interior Longitudinal Member 

Figure 6.3. Representative Longitudinal Grillage Members. 
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a) Exterior Transverse Member b) Interior Transverse Member 

Figure 6.4. Representative Transverse Grillage Members. 

 
Figure 6.5. Representative Grillage Schematic.  

6.2.4 Grillage Plastic Hinges  

To capture the nonlinear behavior of the bridge during ultimate loading conditions, the 

nonlinear static analysis approach, also known as push-down analysis, was used. Incorporating 

this approach reduces the uncertainty and conservatism inherently existing in elastic analysis. 
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Since the bridge superstructure is modeled as grillage of beam elements, inelastic behavior is 

achieved by using plastic hinges at the anticipated hinge locations. The hinges used are moment 

controlled (M3) in the global Z (or gravitational) direction. Longitudinal and transverse hinges 

were developed using the moment curvature responses of the individual cross-sections. The 

individual cross-sections were generated using the section designer tool in SAP2000, which 

allows the user to combine the concrete, reinforcing bars, and steel plates into one composite 

grillage member. Once the member is created, SAP2000 has a moment curvature feature within 

the section designer that generates the moment curvature response of the composite section. In 

the case of the fractured longitudinal plastic hinge, the bottom flange and web were removed 

prior to generating the moment curvature diagram.  

The length of the plastic hinge was taken to be half of the depth of the member in both 

the transverse and longitudinal directions. Two of the most prominent hinge length expressions 

for reinforced concrete beam elements in flexure were developed by Corley (1966) and Mattock 

(1967), represented as Equations (6.3) and (6.4) respectively: 

𝑙𝑙𝑡𝑡 = 0.5𝑑𝑑 + 0.5√𝑑𝑑(𝑧𝑧/𝑑𝑑)  (6.3) 

𝑙𝑙𝑡𝑡 = 0.5𝑑𝑑 + 0.05(𝑧𝑧) (6.4) 

where 𝑙𝑙𝑡𝑡 = plastic hinge length, 𝑑𝑑 = member depth, and 𝑧𝑧 = distance from hinge to node location. 

For the purposes of this section, the hinge was located at the point of contra flexure, therefore 

driving the value of 𝑧𝑧 to 0. The remaining portions of both expressions reduces to half the 

member depth value.  

A representative external longitudinal intact plastic hinge is shown in Figure 6.6. For 

convergence requirements, once the maximum moment value was reached, a perfectly plastic 

assumption was made, and the maximum moment was maintained for all further rotation. 

Perfectly plastic assumption is acceptable because the aim was to identify the ultimate load, not 

the post-peak-load degradation of the structure. 
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Figure 6.6. Representative Plastic Hinge Property (SAP2000). 

For the longitudinal members, the hinges were placed at both ends of the longitudinal 

beam elements. For the transverse members, the hinges were placed at the edge of the top 

flanges, or half a flange length from each node.  

6.2.5 Simulating HL-93 Loading  

In simulating the HL-93 loading, it was critical to place the HS-20 truck load and the 

uniform lane load at the appropriate critical locations (shown in Figure 6.7). The interior 

transverse grillage beams were placed at 7 ft increments to have a grillage member at locations 

corresponding to the axles of an HS-20 truck that has axle spacing of 14 ft. The center axle of the 

truck load was placed at the mid-span. An HS-20 truck consists of 32 kip middle and rear axles 

and 8 kip front axle for a total of 72 kip. The distance between wheel lines of the truck is 6 ft.  

When the two-lane bridges were analyzed, the first lane, which is 12 ft wide, was defined 

as close as possible to the outside edge of the curved bridge to create the most adverse loading 

condition when the outside girder has a full-depth web fracture. AASHTO LRFD (2017) requires 

that a design lane should be at least 2 ft away from the nominal rail face, which is generally one 

ft away from the edge of the deck. To create the most adverse loading conditions, both the HS-20 

truck and the uniform lane load were placed at the outside edge of the design lane. For the first 
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lane loading, the first wheel line of the truck was placed 3 ft from the edge of the deck (at the 

outside edge of the first lane), and per the HS-20 definition, the second wheel line was located 6 

ft from the first wheel line. The standard uniform lane load is distributed to 10 ft width and starts 

at 3 ft from the outside edge of the deck and ends at 13 ft from the deck edge. Therefore, the 

uniform lane load for the first lane was modeled by a lane load of 0.64 kip/ft along the 

longitudinal members located 8 ft from the outer edge of the bridge. Since the lane load 

generally occurred between two grillage members, an equivalent load was distributed 

appropriately to each of the grillage members. The second lane loading is the same as the first 

one; however, it begins at the edge of the second lane, which is 15 ft away from the outer edge of 

the deck.  

 
Figure 6.7. HL-93 Loading Diagram for Two-Lane Loaded Case. 

Each bridge was first analyzed in its intact condition with no fractures. Subsequently, the 

fractured model for each bridge was analyzed. Load steps were generated for the two lanes 

loaded cases as follow: 1.25DL + 1.75LL + 1.75(HS-20 +IM), where DL is dead load, LL is lane 

load, IM = 33 percent impact load, and HS-20 is the HS-20 truck load.  

The intact bridge was analyzed first. The grillage members were generated in SAP2000’s 

section designer. Using the moment curvature feature within the section designer, researchers 

produced the moment curvature output for each of the transverse and longitudinal members in 

the bridge. Plastic hinges were developed for each of the intact members based on the moment 

curvature criteria produced from the section designer. The longitudinal and transverse grillage 

members were then arranged in a grillage array that adequately represented the geometry for the 

bridge. End spring supports were then added to represent the elastomeric bearing pads. 
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Appropriate section hinges were added to each node, or crossing, of longitudinal and transverse 

members. HS-20 truck loads and lane loads were appropriately defined and assigned to the 

correct grillage elements. The standard load case was then defined as 1.25DeadLoad + 

1.75LaneLoad + 2.33HS-20Load. The first loading step began at a zero stress state, and each 

additional load case began at the final loading and displacement of the preceding load case. Each 

load step was applied to the bridge in 20 increments. Load steps were continually applied to the 

bridge until the stiffness reduced to 5 percent of the initial stiffness of the intact bridge. 

After the analysis of the intact bridge, the bridge was evaluated in its fractured state. 

Once the analysis of the intact bridge was complete, a copy of both the exterior and interior 

longitudinal sections at mid-span were created. The bottom flanges and webs were removed in 

both sections to mimic a full web fracture. Researchers used the section designer to generate 

moment curvature plots for each of the sections and compatible hinges. At mid-span of the intact 

bridge, the exterior and interior longitudinal hinges were then replaced on the heavily loaded side 

of the bridge with the representative fractured hinges. The bridge was then analyzed under the 

same loading sequence as the intact bridge, starting from a state of zero stress with continuous 

additions of the standard load case in 1/20 th increments until either the stiffness was reduced to 

5 percent of the stiffness of the intact bridge, the transverse rotation was greater than 5°, or the 

longitudinal rotation was greater than 3° for the exterior spans and greater than 2° for the interior 

spans. 

SAP2000 has a load case feature called staged loading that allows certain loads to be 

applied to certain members during various stages of construction. An example is applying the 

dead load of the tub girder and the weight of the concrete slab to only the tub girder of the 

composite member while applying the live loads and impact loads to the composite deck and tub 

girder member. Staged loading would have allowed a more accurate representation of the true 

load displacement nature of both the intact and fractured bridge spans. However, it could not be 

utilized in the fractured bridge case because staged loading does not allow for frame section or 

plastic hinge substitutions during mid-loading. For comparative purposes, the intact and 

fractured bridges were loaded from a zero stress state in complete composite action.  
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6.3 GRILLAGE ANALYSIS OF SELECTED STTG BRIDGES 

To successfully gage the redundancy of the 15 STTG bridges, it was important to 

establish a quantitative measurement of the remaining strength in the bridge beyond the factored 

design load demand. An overstrength factor was established to measure the residual strength and 

is defined as: 

𝛺𝛺 = 𝑅𝑅𝑑𝑑/𝑄𝑄𝑢𝑢 (6.5) 

where 𝑅𝑅𝑑𝑑 = capacity of the damaged bridge, and 𝑄𝑄𝑢𝑢 = factored load demand. Bridges where 

𝛺𝛺 > 1.0 are considered redundant and have enough reserve capacity postfracture. In this section, 

redundancy levels are established via the grillage results using design material properties. The 

loading condition, as per AASHTO LRFD Bridge Design Specifications AASHTO (2017), used 

was 1.25DL + 1.75(HS20 + IM) + 1.75LL, where DL, LL, and IM are dead load, uniform lane 

load, and impact factor, respectively.  

6.3.1 Grillage Analysis of Bridge 0—FSEL: TxDOT Project # 0-6937 

The FSEL Test Bridge included in TxDOT Project 0-6937 is a simple-span straight 

bridge used for research purposes and for method verification earlier in this project. The FSEL 

test bridge has a span length of 120 ft, a bridge width of 23 ft 4 in, and an 8-in. deck. The FSEL 

test bridge was evaluated using the established grillage method. It should be noted that due to the 

narrow road width, only one lane of HL-93 loading was used to evaluate the postfracture 

redundancy.Table 6.1 and Table 6.2 list the necessary details for the Bridge FSEL (0).  

Table 6.1. Geometric Details of Steel Tub Girders for Bridge FSEL (0). 

Location ft 
Top Flange Web Bottom Flange 

Width 
in. 

Thickness 
in. 

Width 
in. 

Thickness 
in. 

Width 
in. 

Thickness 
in. 

0–120 12 0.625 57 0.5 47 0.75 
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Table 6.2. General Geometric Properties of Bridge FSEL (0). 

Location Parameter Description/Value 

Bridge 

Length, ft 120 
Spans, ft 120 
Radius of Curvature, ft - 
Width, ft 23.333 

Deck 
Thickness, in. 8 
Haunch, in. 4 
Rail Type T501 

Rebar 

# of Bar Longitudinal Top Row (#4) 32 
# of Bar Longitudinal Bottom Row 
(#5) 30 

Transverse Spacing Top Row (#5) 6 
Transverse Spacing Bottom Row (#5) 6 

 

Figure 6.8 depicts the displacement profile with activated hinges of the FSEL bridge. 

Figure 6.9 shows the grillage analysis results of the FSEL bridge. The solid lines indicate the 

behavior of the outside girder, and the dashed lines indicate the behavior of the inside girder. The 

blue color represents the load displacement results for the fractured model, and the green 

represents the load displacement results of the intact model. The ultimate load capacity of the 

fracture bridge model is indicated by a blue diamond symbol. The ultimate load capacity of the 

bridge is defined as the lowest of the following: when the stiffness of the bridge falls below 5 

percent of the initial stiffness of the intact outside girder, or the transverse rotation is greater than 

5 degrees, or the longitudinal rotation is greater than 2 degrees.  

The fractured FSEL bridge fails under HL-93 loading at an overstrength factor of 1.07 

via longitudinal rotation, and the intact bridge fails under stiffness control at an overstrength 

value of 2.55.  
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 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.8. Grillage Deflection Profile of FSEL Bridge with Activated Hinges. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.9. Grillage Analysis Results of FSEL Bridge. 
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6.3.2 Grillage Analysis of Bridge 1—NBI #12-102-3256-01-403  

The simple-span, 220.5 ft long, 32 ft 5 in. wide Bridge 1, built along the IH 10 connector 

in 2007 in Houston, TX, is primarily supported by two steel tub girders and has an 8 in. thick 

deck. A comprehensive grillage model was generated following the procedure established in 

Section 1.2. Table 6.3 and Table 6.4 contain the necessary geometric information for generating 

an adequate grillage model.  

Table 6.3. Geometric Details of Steel Tub Girders for Bridge 1. 

Location 
ft 

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–52 18 1.50 84 0.625 72 1.00 

52–167 18 2.25 84 0.625 72 1.50 
167–220 18 1.50 84 0.625 72 1.00 

Table 6.4. General Geometric Properties of Bridge 1.  

Location Parameter Description/Value 

Bridge 

Location Harris County, I-610 
Year Designed/Year Built 2004/2007 
Design Load HS20 
Length, ft 220.46 
Spans, ft 220.46 
Radius of Curvature, ft 572.96 

Deck 

Width, ft 32.417 
Thickness, in. 8 
Haunch, in. 5 
Rail Type SSTR 

Rebar 

# of Bar Longitudinal Top Row (#5) 38 
# of Bar Longitudinal Bottom Row (#5) 44 
Transverse Spacing Top Row (#5) in. 5 
Transverse Spacing Bottom Row (#5) in. 5 

 

Figure 6.10 shows the grillage deflection profile of Bridge 1 with activated plastic hinges 

at the ultimate loading condition. Figure 6.11 depicts the load displacement plot of the bridge at 

the center of both the interior and exterior girders.  
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The intact bridge has an overstrength factor of 1.00, and the fractured bridge has an 

overstrength factor of 0.21 controlled by longitudinal rotation. Under the fractured condition, 

Bridge 1 is not considered redundant because its overstrength factor is less than 1.  

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.10. Grillage Deflection Profile of Bridge 1 with Activated Hinges. 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.11. Grillage Analysis Results of Bridge 1. 
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6.3.3 Grillage Analysis of Bridge 2—NBI #12-102-0271-17-530 

Bridge 2, built on the I-610 connector in 2004 and located in Harris County, is a simple-

span bridge 115 ft in length, with a deck width of 26.6 ft and thickness of 8 in. The nonlinear 

model for Bridge 2 was developed using a similar process as Bridge 1. Table 6.5 and Table 6.6 

contain the relative geometry information for Bridge 2 necessary to create a grillage model.  

Table 6.5. Geometric Details of Steel Tub Girders for Bridge 2. 

Location 
ft 

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–115 18 1.00 79 0.625 50 1.00 

Table 6.6. General Geometric Properties of Bridge 2. 

Location Parameter Description/Value 

Bridge 

Location Harris County, 
I-610 

Year Designed/Year Built 2002/2004 
Design Load HS25 
Length, ft 115 
Spans, ft 115 
Radius of Curvature, ft 1909.86 

Deck 

Width, ft 26.625 
Thickness, in. 8 
Haunch, in. 4 
Rail Type SSTR 

Rebar 

# of Bar Longitudinal Top Row (#5) 40 
# of Bar Longitudinal Bottom Row (#5) 32 
Transverse Spacing Top Row (#5) in. 5 
Transverse Spacing Bottom Row (#5) in. 5 

 

 Figure 6.12 depicts the deflection profile of Bridge 2 at the ultimate loading condition 

with activated hinges. Figure 6.13 illustrates the load displacement along the centerline of the 

girders.  

 The fractured grillage model of Bridge 2 was run with a full web fracture at mid-span of 

the bridge. Under HL-93 loading, Bridge 2 has an intact overstrength factor of 3.42 and a 

fractured overstrength factor of 1.11 controlled by stiffness reduction. Since the overstrength 
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value is greater than 1, Bridge 2 is redundant; however, there is a significant strength reduction 

caused by the fracture of the outside girder.  

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.12. Grillage Deflection Profile of Bridge 2 with Activated Hinges. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.13. Grillage Analysis Results of Bridge 2. 
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6.3.4 Grillage Analysis of Bridge 3—NBI #12-102-0508-01-294 

Bridge 3, built in 2002 in Harris County, has a span length of 230 ft, with a roadway 

width of 38.8 ft and a 9 in. deck slab thickness. Table 6.7 and Table 6.8 both contain geometric 

information on Bridge 3 that is necessary to create an accurate grillage model. The process by 

which the grillage model was created was the same used for the preceding bridges.  

Table 6.7. Geometric Details of Steel Tub Girders for Bridge 3. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–21 24 1.5 102 0.75 63.5 1.25 

21–42 24 2.5 102 0.75 63.5 1.75 
42–185 24 3 102 0.75 63.5 2.75 

185–207 24 2.5 102 0.75 63.5 1.75 
207–230 24 1.5 102 0.75 63.5 1.25 

Table 6.8. General Geometric Properties of Bridge 3. 

Location Parameter Description/Value 

Bridge 

Location Harris County, FWY 
Year Designed/Year Built 1997/2002 
Design Load HS20 
Length, ft 230 
Spans, ft 230 
Radius of Curvature, ft 2207.3 

Deck 

Width, ft 38.833 
Thickness, in. 9 
Haunch, in. 4 
Rail Type T-501 

Rebar 

# of Bar Longitudinal Top Row (#5) 46 
# of Bar Longitudinal Bottom Row (#5) 64 
Transverse Spacing Top Row (#5), in. 5 
Transverse Spacing Bottom Row (#5), in.  5 

 

 Figure 6.14 shows the deflection profile of Bridge 3 along with the activated plastic 

hinges. The load displacement results from Bridge 3 are shown in Figure 6.15. Postfracture, the 

bridge has an overstrength factor of 0.16 controlled by transverse rotation and varies 
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significantly from the intact overstrength factor of 2.00. In its factored state, Bridge 3 has an 

overstrength factor less than 1 and is therefore not a redundant structure.  

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.14. Grillage Deflection Profile for Bridge 3 with Activated Hinges. 

 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.15. Grillage Analysis Results of Bridge 3. 
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6.3.5 Grillage Analysis of Bridge 4—NBI #12-102-0271-07-637 

Bridge 4 is a two-span continuous STTG bridge built in 2007 in Harris County. Span 1 of 

Bridge 4 is 132 ft long, and Span 2 is 128 ft long. Bridge 4 has a deck width of 28.4 ft and a 

thickness of 8.5 in. Table 6.9 and Table 6.10 give the geometric properties for Bridge 4. It should 

be noted that although the top and bottom flanges do not vary in width, they do vary in thickness. 

It should also be noted that over the intermediate support and negative moment region there is an 

additional top reinforcing bar.  

Table 6.9. Geometric Details of Steel Tub Girders for Bridge 4. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–82 20 1.00 54 0.5 72 0.875 

82–110 20 .50 54 0.5 72 1.750 
110–130 20 2.75 54 0.5 72 1.750 
130–150 20 2.75 54 0.5 72 1.750 
150–177 20 1.50 54 0.5 72 1.750 
177–260 20 1.00 54 0.5 72 0.875 

 

Figure 6.16 shows the deflection profile of Bridge 4 with a fracture at 0.4*L of Span 2. 

Figure 6.17 and Figure 6.18 show the load versus displacement diagram for Spans 1 and 2, 

respectively, of Bridge 4. For an 0.4*L fracture, the overstrength factors are 1.30 for Span 1 and 

1.32 for Span 2. Prior to fracture, Span 1 has an overstrength factor of 2.60, and Span 2 has an 

overstrength factor of 2.88. Under HL-93 loading, both spans are redundant under the fractured 

condition and are controlled by longitudinal rotation. 
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Table 6.10. General Geometric Properties of Bridge 4. 

Location Parameter Description/Value 

Bridge 

Location Harris County, FWY 
Year Designed/Year Built 2004/2007 
Design Load HS25 
Length, ft 260.27 
Spans, ft 132.03, 128.24 
Radius of Curvature, ft 195 

Deck 

Width, ft 28.417 
Thickness, in. 8.5 
Haunch, in. 3.5 
Rail Type SSTR 

Rebar 

# of Bar Longitudinal Top Row (#5) 38 
# of Bar Longitudinal Bottom Row (#5) 30 
# of Bar Longitudinal Top Row (#5) @support 78 
# of Bar Longitudinal Bottom Row (#5) @support 30 
Transverse Spacing Top Row (#5), in. 5 
Transverse Spacing Bottom Row (#5), in.  5 

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.16. Grillage Deflection Profile for Span 2 of Bridge 4 with Activated Hinges. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.17. Grillage Analysis Results of Bridge 4, Span 1. 

  
(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.18. Grillage Analysis Results of Bridge 4, Span 2. 
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6.3.6 Grillage Analysis of Bridge 5—NBI #14-227-0-0015-13-452 

Bridge 5 was built in 2002 in Travis County along I-35. It is a continuous two-span twin 

tub girder bridge. The first span of Bridge 5 has a span length of 140 ft, and the second span has 

a length of 139.6 ft. The bridge deck is 30 ft wide with a thickness of 8 in. Table 6.11 and 

Table 6.12 contain the geometric properties of Bridge 5 needed to construct an appropriate 

grillage model. Note that the top flange, web, and bottom flange thickness, as well as the rebar 

configuration, changes along the length.  

Table 6.11. Geometric Details of Steel Tub Girders of Bridge 5. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–105 18 1.00 54 0.5 56 0.75 

105–122 18 1.00 54 0.5625 56 1.250 
122–140 18 1.75 54 0.5625 56 1.250 
140–157 18 1.75 54 0.5625 56 1.250 
157–174 18 1.57 54 0.5625 56 1.250 
174–192 18 1.00 54 0.5625 56 0.75 
192–280 18 1.00 54 0.5 56 0.75 
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Table 6.12. General Geometric Properties of Bridge 5. 

Location Parameter Description/Value 

Bridge 

Location Travis County, I-35 
Year Designed/Year Built 1998/2002 
Design Load HS20 
Length, ft 279.58 
Spans, ft 140, 139.58 
Radius of Curvature, ft 450 

Deck 

Width, ft 30 
Thickness, in. 8 
Haunch, in. 4 
Rail Type T4(S) 

Rebar 

# of Bar Longitudinal Top Row (#4) 41 
# of Bar Longitudinal Bottom Row (#5) 36 
# of Bar Longitudinal Top Row (#4) @support 41 
# of Bar Longitudinal Top Row (#5) @support 40 
# of Bar Longitudinal Bottom Row (#5) @support 36 
Transverse Spacing Top Row (#5), in. 5 
Transverse Spacing Bottom Row (#5), in.  5 
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Figure 6.19 shows the deflection profile of Span 1 of Bridge 5. Figure 6.20 depicts the 

load displacement results for Spans 1 and 2 of Bridge 5. Prior to fracture, Bridge 5 has an 

overstrength factor of 2.15. With a controlling fractured overstrength value of 1.10, Bridge 5 is 

considered redundant. Since the bridge contains spans of almost equal lengths, there was no need 

to run a second analysis on Span 2. The fracture failure of Bridge 5 is controlled by longitudinal 

rotation.  

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.19. Grillage Deflection Profile for Span 1 of Bridge 5 with Activated Hinge. 
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(a) Load displacement (b) Deck rotation 
Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 

Figure 6.20. Grillage Analysis Results of Bridge 5, Spans 1 & 2. 

6.3.7 Grillage Analysis of Bridge 6—NBI #12-102-0271-07-575 

Bridge 6 is a two-span continuous twin tub girder bridge located in Harris County 

constructed along IH 10 in 2005. Both spans of Bridge 6 have a length of 140 ft, and it has a 

deck width of 30 ft with a thickness of 8.25 in. Table 6.13 contains the geometric details of the 

steel tubs. It should be noted that along the length of the girder, the top flange thickness changes. 

Table 6.14 provides general information about the overall geometric properties of the bridge. 

The grillage model for Bridge 6 was created using the same principles as for all the preceding 

bridges.  
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Table 6.13. Geometric Details of Steel Tub Girders of Bridge 6. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–110 18 1.000 76 0.6875 60 1.000 

110–130 22 1.000 76 0.6875 60 1.875 
130–150 22 1.875 76 0.6875 60 1.875 
150–170 22 1.000 76 0.6875 60 1.875 
170–280 18 1.000 76 0.6875 60 1.000 

Table 6.14. General Geometric Properties of Bridge 6. 

Location Parameter Description/Value 

Bridge 

Location Harris County, 
IH 10 

Year Designed/Year Built 2003/2005 
Design Load HS25 
Length, ft 280 
Spans, ft 140,140 
Radius of Curvature, ft 818.51 

Deck 

Width, ft 38.417 
Thickness, in. 8.25 
Haunch, in. 4.5 
Rail Type SSTR 

Rebar 

# of Bar Longitudinal Top Row (#5) 54 
# of Bar Longitudinal Bottom Row (#5) 48 
# of Bar Longitudinal Top Row (#5) @support 99 
# of Bar Longitudinal Bottom Row (#5) @support 48 
Transverse Spacing Top Row (#5), in. 4 
Transverse Spacing Bottom Row (#5), in.  4 

Figure 6.21 depicts the deflection profile of Spans 1 and 2 of Bridge 6 under ultimate 

loading condition with activated plastic hinges. Figure 6.22 shows the load deflection data at 

0.4*L of Bridge 6. Both spans of Bridge 6 have an intact overstrength factor of 3.38. After 

fracture of the outside girder, the overstrength factor is 1.43, yet the fracture overstrength factor 

is still greater than 1. This implies that the bridge is redundant.. 
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 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.21. Grillage Deflection Profile for Spans 1 & 2 of Bridge 6 with Activated 

Hinges. 

 

  
(a) Load displacement (b) Deck rotation 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.22. Grillage Analysis Results of Bridge 6, Spans 1 & 2. 
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6.3.8 Grillage Analysis of Bridge 7—NBI #12-102-0177-07-394 

Bridge 7 is a two-span continuous twin tub bridge with two spans of length 219 ft and 

190 ft, respectively, built in 2004 along IH 10 in Harris County. This bridge has an overall deck 

width of 28.4 ft and a thickness of 8 in. Table 6.15 contains the geometric information for the 

steel tub girder. It should be noted that the top and bottom flanges change thickness along the 

length of the girder and along the top flange width. Further geometric details of Bridge 7 are 

depicted in Table 6.16. This table includes details of the concrete deck and the reinforcing bars.  

Figure 6.23 shows the grillage profile of Bridge 7 under ultimate loading condition on 

Span 2 with a fracture located mid-span of Span 2 with activated plastic hinges. Figure 6.24 and 

Figure 6.25 contain the load displacement results for both Spans 1 and 2, respectively for 

Bridge 7.  

Table 6.15. Geometric Details of Steel Tub Girders of Bridge 7. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–17 20 1.100 63 0.625 60 1.000 

17–141 20 2.360 63 0.625 60 2.362 
141–162 20 1.770 63 0.625 60 1.772 
162–193 30 1.770 63 0.625 60 1.772 
193–219 30 3.150 63 0.625 60 3.150 
219–247 30 3.150 63 0.625 60 3.150 
247–292 30 1.770 63 0.625 60 1.772 
292–381 20 1.100 63 0.625 60 1.102 
381–408 20 1.100 63 0.625 60 1.000 
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Table 6.16. General Geometric Properties of Bridge 7. 
Location Parameter Description/Value 

Bridge 

Location Harris County, 
IH 10 

Year Designed/Year Built 2002/2004 
Design Load HS20 
Length, ft 408.62 
Spans, ft 218.92,189.7 
Radius of Curvature, ft 763.96 

Deck 

Width, ft 28.417 
Thickness, in. 7.9 
Haunch, in. 5.5 
Rail Type T501 

Rebar 

# of Bar Longitudinal Top Row (#5) 30 
# of Bar Longitudinal Bottom Row (#5) 40 
# of Bar Longitudinal Top Row (#5) @support 59 
# of Bar Longitudinal Bottom Row (#5) @support 40 
Transverse Spacing Top Row (#5), in. 6 
Transverse Spacing Bottom Row (#5), in.  6 

 

 Spans 1 and 2 have intact overstrength factors of 1.85 and 2.15. Span 1 has a fractured 

overstrength factor of 0.94, and Span 2 has a fractured overstrength factor of 1.25. Span 1, 

having an omega less than 1, is not considered redundant, but Span 2 is redundant postfracture. 

Both Span 1 and Span 2 fail due to excess longitudinal rotation.  

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.23. Grillage Deflection Profile for Span 2 of Bridge 7 with Activated Hinges. 
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(a) Load displacement (b) Deck rotation 
Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 

Figure 6.24. Grillage Analysis Results of Bridge 7, Span 1. 

 

  

(a) Load displacement (b) Deck rotation 
Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 

Figure 6.25. Grillage Analysis Results of Bridge 7, Span 2. 
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6.3.9 Grillage Analysis of Bridge 8—NBI #12-102-0271-06-661 

Bridge 8 is a two-span twin tub girder continuous bridge built in Harris County along 

IH 10 in 2011. Bridge 8 is composed of a 265 ft span and a 295 ft span, with a 28.4 ft wide, 8 in. 

thick deck. Table 6.17 contains the geometric information for the steel tub portion for Bridge 8. 

It should be observed that the top flange and bottom flange of the tubs vary in thickness along 

the length of the girder. Table 6.18 provides further geometric information for Bridge 8, 

including concrete deck and reinforcing bar details.  

 

 Figure 6.26 depicts the grillage displacement profile of a fractured Span 1 under ultimate 

loading conditions. Figure 6.27 and Figure 6.28 contain the load versus displacement behavior of 

Spans 1 and Span 2. Span 1 has an intact overstrength factor of 1.75 and a fractured overstrength 

factor of 0.88. Span 2 has an intact overstrength factor of 1.45 and a fractured overstrength factor 

of 0.60. Both spans, with controlling overstrength factors of less than 1, do not exhibit redundant 

behavior and are controlled by transverse and longitudinal rotation.  
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Table 6.17. Geometric Details of Steel Tub Girders of Bridge 8. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–30 24 1.25 93 0.75 53.5 1.250 

30–71 24 1.50 93 0.75 53.5 1.500 
71–142 24 1.50 93 0.75 53.5 2.000 

142–183 24 1.50 93 0.75 53.5 1.500 
183–214 24 1.25 93 0.75 53.5 1.500 
214–234 24 2.00 93 0.75 53.5 2.000 
234–307 24 2.50 93 0.75 53.5 2.500 
307–338 24 1.25 93 0.75 53.5 1.500 
338–370 24 1.50 93 0.75 53.5 1.500 
370–391 24 1.50 93 0.75 53.5 2.000 
391–496 24 2.00 93 0.75 53.5 2.500 
496–528 24 1.50 93 0.75 53.5 2.000 
528–560 24 1.25 93 0.75 53.5 1.250 

 

Table 6.18. General Geometric Properties of Bridge 8. 

Location Parameter Description/Value 

Bridge 

Location Harris County, 
IH 10 

Year Designed/Year Built 2011/NA 
Design Load NA 
Length, ft 560 
Spans, ft 265, 295 
Radius of Curvature, ft 881.47 

Deck 

Width, ft 28.417 
Thickness, in. 8 
Haunch, in. 4 
Rail Type SSTR 

Rebar 

# of Bar Longitudinal Top Row (#5) 38 
# of Bar Longitudinal Bottom Row (#5) 38 
# of Bar Longitudinal Top Row (#5) @support 76 
# of Bar Longitudinal Bottom Row (#5) @support 38 
Transverse Spacing Top Row (#5), in. 5 
Transverse Spacing Bottom Row (#5), in.  5 
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 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.26. Grillage Deflection Profile for Span 2 of Bridge 8 with Activated Hinges. 

 

  

(a) Load displacement (b) Deck rotation 
Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 

Figure 6.27. Grillage Analysis Results of Bridge 8, Span 1. 
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(a) Load displacement (b) Deck rotation 
Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 

Figure 6.28. Grillage Analysis Results of Bridge 8, Span 2. 
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The first three-span continuous bridge evaluated in this study is Bridge 9. Bridge 9 has 

spans of length 139.5 ft, 151.4 ft, and 125.5 ft. The overall deck width is 28.4 ft wide with a 

thickness of 8 in. It should be noted that Bridge 9 contains the same segment of bridges that 

contain Bridge 7. Table 6.19 and Table 6.20 contain relevant geometric properties to produce a 

grillage model for Bridge 9. It should be noted that the top and bottom flange thickness changes 

along the length of the tub girder.  
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Table 6.19. General Geometric Properties of Bridge 9. 

Location Parameter Description/Value 

Bridge 

Location Harris County, IH 10 
Year Designed/Year Built 2002/2004 
Design Load HS20 
Length, ft 416.66 
Spans, ft 139.5,151.44,125.62 
Radius of Curvature, ft 763.93 

Deck 

Width, ft 28.417 
Thickness, in. 8 
Haunch, in. 4 
Rail Type T501 

Rebar 

# of Bar Longitudinal Top Row (#5) 30 
# of Bar Longitudinal Bottom Row (#5) 40 
# of Bar Longitudinal Top Row (#5) @support 59 
# of Bar Longitudinal Bottom Row (#5) 
@support 30 

Transverse Spacing Top Row (#5), in. 5 
Transverse Spacing Bottom Row (#5), in.  5 

 

Figure 6.29 depicts the displacement profile of Bridge 9 with HL-93 loading on the 

fractured Span 2. Figure 6.30, Figure 6.31, and Figure 6.32 depict the load displacement results 

of all three spans in Bridge 9. Span 1 has an intact overstrength factor of 2.82 and a fractured 

overstrength factor of 1.35. Span 2 has an intact overstrength factor of 3.10 and a fractured factor 

of 2.10. Span 3 has an intact overstrength factor of 3.05 and a fractured overstrength factor of 

1.53. All spans of Bridge 9, even with the exterior girder fractured, have overstrength factors 

greater than 1 and are considered redundant and are controlled by stiffness. 
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Table 6.20. Geometric Details of Steel Tub Girders of Bridge 9. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–104 20 1.10 63 0.625 59 1.000 

104–127 20 1.10 63 0.625 59 1.250 
127–152 20 1.58 63 0.625 59 1.500 
152–177 20 1.10 63 0.625 59 1.250 
177–240 20 1.10 63 0.625 59 1.000 
240–265 20 1.10 63 0.625 59 1.250 
265–278 20 1.10 63 0.625 59 1.500 
278–316 20 1.58 63 0.625 59 1.500 
316–341 20 1.10 63 0.625 59 1.250 
341–416 20 1.10 63 0.625 59 1.000 

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.29. Grillage Deflection Profile for Span 2 of Bridge 9 with Activated Hinges. 



 

233 

 
 

(a) Load displacement (b) Deck rotation 
Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 

Figure 6.30. Grillage Analysis Results of Bridge 9, Span 1. 

 

 
 

(a) Load displacement (b) Deck rotation 
Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 

Figure 6.31. Grillage Analysis Results of Bridge 9, Span 2. 
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(a) Load displacement (b) Deck rotation 
Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 

Figure 6.32. Grillage Analysis Results of Bridge 9, Span 3. 
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Table 6.21. Geometric Details of Steel Tub Girders of Bridge 10. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–50 24 1.00 78 0.625 59 0.750 

50–98 24 1.00 78 0.625 59 1.250 
98–131 24 2.00 78 0.75 59 2.000 

131–181 24 3.00 78 0.875 59 2.000 
181–230 24 1.00 78 0.875 59 1.250 
230–247 24 1.00 78 0.75 59 1.000 
247–297 24 1.00 78 0.75 59 1.250 
297–330 24 1.00 78 0.75 59 1.000 
330–380 24 1.00 78 0.875 59 1.250 
380–396 24 2.00 78 0.875 59 1.250 
396–430 24 3.00 78 0.875 59 2.000 
430–447 24 3.00 78 0.875 59 2.000 
447–464 24 2.00 78 0.75 59 1.250 
464–499 24 1.00 78 0.75 59 1.250 
499–602 24 1.00 78 0.625 59 0.750 

 

 Figure 6.33 depicts the displacement profile of Bridge 10 with HL-93 loading and a 

fracture in Span 2. Figure 6.34, Figure 6.35, and Figure 6.36 illustrate the load displacement 

results for all spans of Bridge 10. Span 1 has a fractured overstrength factor of 1.71. Span 2 has a 

fractured overstrength factor of 1.25 and an intact overstrength factor of 1.85. Span 3 has a 

fractured factor of 1.25 and an intact factor of 2.10. Each of the spans has an overstrength factor 

greater than 1 and are therefore exhibiting a necessary level of redundancy for load redistribution 

postfracture. Span 1 is controlled by stiffness; however, Span 2 and Span 3 are controlled by 

longitudinal chord rotation.  
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Table 6.22. General Geometric Properties of Bridge 10. 

Location Parameter Description/Value 

Bridge 

Location Harris County, 
IH 10 

Year Designed/Year Built 1998/2002 
Design Load HS20 
Length, ft 602.58 
Spans, ft 148, 265, 189.58 
Radius of Curvature, ft 716.2 

Deck 

Width, ft 30 
Thickness, in. 8 
Haunch, in. 5 
Rail Type T4(s) 

Rebar 

# of Bar Longitudinal Top Row (#4) 42 
# of Bar Longitudinal Bottom Row (#5) 32 
# of Bar Longitudinal Top Row (#4) @support 42 
# of Bar Longitudinal Top Row (#5) @support 40 
# of Bar Longitudinal Bottom Row (#5) @support 32 
Transverse Spacing Top Row (#5), in. 6 
Transverse Spacing Bottom Row (#5), in.  6 

 

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.33. Grillage Deflection Profile for Span 2 of Bridge 10 with Activated Hinges. 
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(a) Load displacement (b) Deck rotation 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.34. Grillage Analysis Results of Bridge 10, Span 1. 

 

 
 

(a) Load displacement (b) Deck rotation 
Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 

Figure 6.35. Grillage Analysis Results of Bridge 10, Span 2. 
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(a) Load displacement  (b) Deck rotation 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.36. Grillage Analysis Results of Bridge 10, Span 3. 
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as does the bottom flange thickness.  
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Table 6.23. Geometric Details of Steel Tub Girders of Bridge 11. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–128 18 1.00 102 0.875 66 1.000 

128–154 18 1.00 102 0.875 66 1.500 
154–180 30 1.75 102 0.875 66 1.500 
180–247 30 3.00 102 0.875 66 3.000 
247–256 30 3.00 102 0.875 66 1.500 
256–281 30 1.75 102 0.875 66 1.500 
281–522 18 1.75 102 0.875 66 1.500 
522–555 30 1.75 102 0.875 66 1.500 
555–630 30 3.00 102 0.875 66 3.000 
630–647 30 1.75 102 0.875 66 1.500 
647–681 18 1.00 102 0.875 66 1.500 
681–824 18 1.00 102 0.875 66 1.000 

 

 Figure 6.37 illustrates the deflection profile of Span 2 for an HL-93 load. Figure 6.38, 

Figure 6.39, and Figure 6.40 show the load displacement response of all three spans of Bridge 

11. Span 1 has a fractured overstrength factor of 1.35. Span 2 has a fractured overstrength factor 

of 1.00. Span 3 has a fractured overstrength factor of 1.30. Span 1 fails via stiffness, Span 2 fails 

via longitudinal rotation, and Span 3 is controlled by transverse rotation.  
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Table 6.24. General Geometric Properties of Bridge 11. 

Location Parameter Description/Value 

Bridge 

Location Harris County, 
IH 10 

Year Designed/Year Built 2004/2007 
Design Load HS25 
Length, ft 824 
Spans, ft 223, 366, 235 
Radius of Curvature, ft 818.51 

Deck 

Width, ft 28.417 
Thickness, in. 8 
Haunch, in. 4 
Rail Type SSTR 

Rebar 

# of Bar Longitudinal Top Row (#5) 30 
# of Bar Longitudinal Bottom Row (#5) 38 
# of Bar Longitudinal Top Row (#5) @support 59 
# of Bar Longitudinal Bottom Row (#5) @support 38 
Transverse Spacing Top Row (#5), in. 6 
Transverse Spacing Bottom Row (#5), in.  6 

 

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.37. Grillage Deflection Profile for Span 2 of Bridge 11 with Activated Hinges. 
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(a) Load displacement (b) Deck rotations 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.38. Grillage Analysis Results of Bridge 11, Span 1. 

 

  
(a) Load displacement (b) Deck rotation 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.39. Grillage Analysis Results of Bridge 11, Span 2. 
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(a) Load displacement (b) Deck rotation 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.40. Grillage Analysis Results of Bridge 11, Span 3. 
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contain the geometric properties and information necessary for appropriately generating a 

grillage model to represent Bridge 12. Note that both the top and bottom flanges vary in 

thickness along the length of the member.  
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Table 6.25. Geometric Details of Steel Tub Girders of Bridge 12. 

Location 
ft 

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–90 20 1.00 54 0.5 72 0.875 

90–116 20 1.75 54 0.5 72 1.750 
116–138 20 3.25 54 0.5 72 1.750 
138–160 20 3.25 54 0.5 72 1.750 
160–189 20 1.75 54 0.5 72 1.750 
189–267 20 1.00 54 0.5 72 0.875 
267–296 20 1.75 54 0.5 72 1.750 
296–318 20 3.25 54 0.5 72 1.750 
318–340 20 3.25 54 0.5 72 1.750 
340–377 20 1.75 54 0.5 72 1.750 
340–465 20 1.00 54 0.5 72 0.875 

 

 Figure 6.41 depicts the displacement profile for Bridge 12 under the ultimate HL-93 

loading state. Figure 6.42, Figure 6.43, and Figure 6.44 illustrate the load displacement behavior 

of all spans of Bridge 12 under HL-93 loading. Span 1 has a fractured overstrength factor of 1.20 

and an intact factor of 2.50. Span 2 has a fractured overstrength factor of 1.56 and an intact 

factor of 2.60. Span 3 has a fractured overstrength factor of 1.15 and an intact factor of 2.35. 

Once again, the longer spans have lower overstrength factors. Span 1 fails due to transverse 

rotation while Spans 2 and 3 fail due to longitudinal rotation.  
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Table 6.26. General Geometric Properties of Bridge 12. 

Location Parameter Description/Value 

Bridge 

Location Harris County, IH 10 
Year Designed/Year Built 2004/2007 
Design Load HS25 
Length, ft 465 
Spans, ft 140, 180, 145 
Radius of Curvature, ft 225 

Deck 

Width, ft 28.417 
Thickness, in. 8.5 
Haunch, in. 3.5 
Rail Type SSTR 

Rebar 

# of Bar Longitudinal Top Row (#5) 40 
# of Bar Longitudinal Bottom Row (#5) 30 
# of Bar Longitudinal Top Row (#5) @support 79 
# of Bar Longitudinal Bottom Row (#5) @support 30 
Transverse Spacing Top Row (#5), in. 5 
Transverse Spacing Bottom Row (#5), in.  5 

 

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.41. Grillage Deflection Profile for Span 2 of Bridge 12 with Activated Hinges. 
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(a) Load displacement (b) Deck rotation 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.42. Grillage Analysis Results of Bridge 12, Span 1. 

 

 
 

(a) Load displacement (b) Deck rotation 
Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 

Figure 6.43. Grillage Analysis Results of Bridge 12, Span 2. 

0 1 2 3 4 5 6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80

Chord Angle, θ (deg.)
To

ta
l L

oa
d,

 P
 (k

ip
s)

Maximum Deflection, δ (in.)

Outside Girder (OG)
Inside Girder (IG)
OG-Intact Bridge
IG-Intact Bridge

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

O
ve

rs
tr

en
gt

h,
 Ω

Relative slope, θ (deg.)

Long. -Outer Flange
of OG
Transverse Negative

Transverse Positive

0 1 2 3 4 5 6

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120

Chord Angle, θ (deg.)

To
ta

l L
oa

d,
 P

 (k
ip

s)

Maximum Deflection, δ (in.)

Outside Grider (OG)
Insider Girder (IG)
OG-Intact Bridge
IG-Intact Bridge

0.0

0.5

1.0

1.5

2.0

2.5

3.0
0 1 2 3 4 5 6

O
ve

rs
tr

en
gt

h,
 Ω

Relative slope, θ (deg.)

Long. -Outer Flange of
OG
Transverse Negative

Transverse Positive



 

246 

  
(a) Load displacement (b) Deck rotation 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.44. Grillage Analysis Results of Bridge 12, Span 3. 

6.3.14 Grillage Analysis of Bridge 13—NBI #14-227-0-0015-13-452 

Bridge 13, located in Travis County along I-35, is a three-span continuous bridge built in 

2002. Bridge 13 has an overall deck width of 30 ft with a deck thickness of 8 in. and has 151.5 ft, 

190 ft, and 151.5 ft long spans. Table 6.27 contains the geometric property details for the tub 

girders for Bridge 13. Table 6.28 details further geometric properties necessary for constructing 

an appropriate grillage model.  
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Table 6.27. Geometric Details of Steel Tub Girders of Bridge 13. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–18 24 1.25 54 0.625 60 0.750 

18–94 24 1.25 54 0.625 60 0.750 
94–113 24 1.25 54 0.625 60 0.750 

113–132 24 1.25 54 0.625 60 1.250 
132–151 24 1.75 54 0.625 60 1.500 
151–170 24 2.75 54 0.625 60 2.000 
170–189 24 1.75 54 0.625 60 1.500 
189–208 24 1.25 54 0.625 60 1.250 
208–284 24 1.25 54 0.625 60 0.750 
284–303 24 1.25 54 0.625 60 0.750 
303–322 24 1.25 54 0.625 60 1.250 
322–341 24 1.75 54 0.625 60 1.500 
341–360 24 2.75 54 0.625 60 2.000 
360–379 24 1.75 54 0.625 60 1.500 
379–398 24 1.25 54 0.625 60 1.250 
398–474 24 1.25 54 0.625 60 0.750 
474–493 24 1.25 54 0.625 60 0.750 

 

 Figure 6.45 illustrates the deflection profile of Bridge 13 with a fractured second span 

and with the HL-93 load case. Figure 6.46 and Figure 6.47 depict the load displacement behavior 

of each span of Bridge 13. Spans 1 and 3 have an intact overstrength factor of 2.10 with a 

fractured overstrength factor of 1.10. Span 2 has an intact overstrength factor of 2.20 and a 

fractured overstrength factor of 1.35. All spans of Bridge 3 fail due to longitudinal rotation.  
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Table 6.28. General Geometric Properties of Bridge 13. 

Location Parameter Description/Value 

Bridge 

Location Travis County, I-35 
Year Designed/Year Built 1998/2002 
Design Load HS20 
Length, ft 493 
Spans, ft 151.5, 190, 151.5 
Radius of Curvature, ft 450 

Deck 

Width, ft 30 
Thickness, in. 8 
Haunch, in. 4 
Rail Type T4(S) 

Rebar 

# of Bar Longitudinal Top Row (#4) 40 
# of Bar Longitudinal Bottom Row (#5) 32 
# of Bar Longitudinal Top Row (#4) @support 39 
# of Bar Longitudinal Top Row (#5) @support 40 
# of Bar Longitudinal Bottom Row (#5) @support 32 
Transverse Spacing Top Row (#5), in. 6 
Transverse Spacing Bottom Row (#5), in. 6 

 

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.45. Grillage Deflection Profile for Span 2 of Bridge 13 with Activated Hinges. 
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(a) Load displacement (b) Deck rotation 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.46. Grillage Analysis Results of Bridge 13, Spans 1 and 3. 

 

  
(a) Load displacement (b) Deck rotation 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.47. Grillage Analysis Results of Bridge 13, Span 2. 
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6.3.15 Grillage Analysis of Bridge 14—NBI #18-057-0-0009-11-460 

Bridge 14, built in Dallas County in 2012, is a three-span continuous bridge built along 

IH 30. Bridge 14 consists of three spans with lengths of 150 ft, 190 ft, and 150 ft. It has a deck 

with an overall width of 28 ft and a thickness of 8 in. Table 6.29 contains the geometric 

information of the steel tub girders for Bridge 14. Note that the top flanges, web, and bottom 

flange vary in thickness along the length of the girder. Table 6.30 contains additional information 

needed to construct an accurate grillage model of Bridge 14.  

Table 6.29. Geometric Details of Steel Tub Girders of Bridge 14. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–103 22 1.00 60 0.5625 70 0.750 

103–112 22 1.00 60 0.5625 70 1.125 
112–131 22 1.00 60 0.625 70 1.125 
131–169 22 1.75 60 0.625 70 1.500 
169–198 22 1.00 60 0.625 70 1.125 
198–302 22 1.00 60 0.5625 70 0.750 
302–321 22 1.00 60 0.625 70 1.125 
321–358 22 1.75 60 0.625 70 1.500 
358–386 22 1.00 60 0.625 70 1.125 
386–490 22 1.00 60 0.5625 70 0.750 

 

Figure 6.48 shows the deflection profile of Span 2 under the ultimate HL-93 loading with 

a mid-span fracture and activated plastic hinge. Figure 6.49 and Figure 6.50 illustrate the load 

displacement behavior of all spans of Bridge 14. Spans 1 and 3 have an intact overstrength factor 

of 2.15 and a fractured overstrength factor of 1.25. Span 2 has an intact overstrength factor of 

2.05 and a fractured overstrength factor of 1.35. All spans of Bridge 14 have fractured 

overstrength factors greater than 1 and are therefore redundant. All spans of Bridge 14 are 

controlled by the longitudinal rotation limit.  
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Table 6.30. General Geometric Properties of Bridge 14. 

Location Parameter Description/Value 

Bridge 

Location Dallas County, 
IH 30 

Year Designed/Year Built 2008/2012 
Design Load HS20 
Length, ft 490 
Spans, ft 150,190,150 
Radius of Curvature, ft 1010 

Deck 

Width, ft 28 
Thickness, in. 8 
Haunch, in. 4 
Rail Type SSTR 

Rebar 

# of Bar Longitudinal Top Row (#4) 38 
# of Bar Longitudinal Bottom Row (#5) 32 
# of Bar Longitudinal Top Row (#4) @support 38 
# of Bar Longitudinal Top Row (#5) @support 38 
# of Bar Longitudinal Bottom Row (#5) @support 32 
Transverse Spacing Top Row (#5), in. 6 
Transverse Spacing Bottom Row (#5), in.  6 

 

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.48. Grillage Deflection Profile for Span 2 of Bridge 14 with Activated Hinges. 
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(a) Load displacement (b) Deck rotation 
Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 

Figure 6.49. Grillage Analysis Results of Bridge 14, Spans 1 and 3. 

 

  
(a) Load displacement  (b) Deck rotation 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.50. Grillage Analysis Results of Bridge 14, Span 2. 
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6.3.16 Grillage Analysis of Bridge 15—NBI #12-102-0271-06-689 

The final bridge investigated in this study is Bridge 15. It is a three-span continuous 

bridge. Bridge 15 contains 200 ft, 295 ft, and 200 ft long spans, with an overall deck width of 

28.4 ft and a thickness of 8 in. Table 6.31 details the geometric details of the tub girders in 

Bridge 15. It should be noted that the top and bottom flanges vary in thickness along the length 

of the girder. Table 6.32 outlines additional information regarding the geometric configuration of 

Bridge 15 needed to generate an appropriate grillage model.  

Table 6.31. Geometric Details of Steel Tub Girders of Bridge 15. 

Location 
ft  

Top Flange Web Bottom Flange 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
Width 

in. 
Thickness 

in. 
0–126 24 1.25 84 0.6875 53.5 1.250 

126–147 24 1.50 84 0.6875 53.5 1.750 
147–168 24 1.75 84 0.6875 53.5 2.000 
168–189 24 2.25 84 0.6875 53.5 2.250 
189–210 24 2.25 84 0.6875 53.5 2.250 
210–231 24 2.50 84 0.6875 53.5 2.500 
231–252 24 1.75 84 0.6875 53.5 2.000 
252–284 24 1.25 84 0.6875 53.5 1.250 
284–410 24 1.50 84 0.6875 53.5 1.750 
410–422 24 1.25 84 0.6875 53.5 1.250 
422–463 24 1.75 84 0.6875 53.5 2.000 
463–484 24 2.25 84 0.6875 53.5 2.250 
484–505 24 2.50 84 0.6875 53.5 2.500 
505–526 24 2.25 84 0.6875 53.5 2.250 
526–547 24 1.75 84 0.6875 53.5 2.000 
547–568 24 1.50 84 0.6875 53.5 1.750 
568–698 24 1.25 84 0.6875 53.5 1.250 

 

Figure 6.51 depicts the displacement profile of the fractured Span 2 under the ultimate 

HL-93 loading case. Figure 6.52 and Figure 6.53 show the load displacement response of all 

spans in Bridge 15. Spans 1 and 3 have an intact overstrength factor of 2.45 and a fractured 

overstrength factor of 1.40. Span 2 has a fractured overstrength factor of 1.25. All three spans of 

Bridge 15 have fractured omega factors greater than 1 and are considered redundant. Every span 

in Bridge 15 is controlled by longitudinal rotation.  
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Table 6.32. General Geometric Properties of Bridge 15. 

Location Parameter Description/Value 

Bridge 

Location Dallas County, IH 30 
Year Designed/Year Built 2008/2012 
Design Load HS20 
Length, ft 490 
Spans, ft 150,190,150 
Radius of Curvature, ft 1010 

Deck 

Width, ft 28 
Thickness, in. 8 
Haunch, in. 4 
Rail Type SSTR 

Rebar 

# of Bar Longitudinal Top Row (#5) 38 
# of Bar Longitudinal Bottom Row (#5) 36 
# of Bar Longitudinal Top Row (#5) @support 77 
# of Bar Longitudinal Bottom Row (#5) 
@support 36 

Transverse Spacing Top Row (#5), in. 5 
Transverse Spacing Bottom Row (#5), in.  5 

 

 
 Note: The colors represent achieved curvature limits (magenta = yielding, yellow = beyond yielding, orange = 

beyond yielding close to failure, red = failure). Additional hinge data are located in Appendix B. 
Figure 6.51. Grillage Deflection Profile for Span 2 of Bridge 15 with Activated Hinges. 
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(a) Load displacement (b) Deck rotation 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.52. Grillage Analysis Results of Bridge 15, Spans 1 and 3. 

 

  
(a) Load displacement (b) Deck rotation 

Note: δ is along the centerline of the girder, Ω is the load normalized by factored design load. 
Figure 6.53. Grillage Analysis Results of Bridge 15, Span 2. 
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6.4 CONCLUSION  

In the portion of the STTG study discussed in this chapter, 15 bridges from the Texas 

bridge inventory were evaluated to determine their strength and redundancy before and after a 

simulated fracture under HL-93 design load. The 15 bridges were modeled using the state-of-the-

art structural analysis program SAP2000 based on matrix analysis methods and principles. These 

bridges were evaluated in a manner outlined in Section 6.2 of this report. Table 6.33, Table 6.34, 

and Table 6.35 offer a summary of the grillage analysis results gathered and include the 

normalized load for the fractured and nonfractured cases for each bridge. From the grillage 

analysis results, the following observations were seen: 

• Overall, simple-span bridges have much lower fractured overstrength factors than 

their continuous-span counterparts. The fractured overstrength factors range from 

0.16 to 1.11, while their intact overstrength factors range from 3.42 to 1.00. On 

average, after simulating a full web fracture, simple-span bridges experience a 

strength reduction of nearly 74 percent. 

• In the case of exterior spans of continuous bridges (all spans in two-span bridges and 

the exterior span in three-span bridges), fractured overstrength factors range from 

0.60 to 1.71. Their intact overstrength factors range from 1.45 to 3.38. However, 

overall, exterior spans lose an average of 46 percent of their initial strength post web 

fracture, which is significantly less than that of the single-span bridges. 

• When compared to single-span bridges and the exterior spans, the interior spans of 

the three-span continuous bridge had the lowest strength reduction post full web 

fracture. This outcome can be seen by looking at the results of the continuous bridges. 

The intact overstrength factors range from 1.85 to 3.10. The fractured overstrength 

factors range from 1.00 to 2.10. However, the average strength reduction of the 

interior spans is only 35 percent, which is significantly lower than that of the simple 

spans and exterior spans.  

• The results show some redundancy due to continuity because as the degree of 

continuity increases, the average strength reduction decreases. These results 

demonstrate that even though some transverse redundancy exists between the two 
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girders, there is some longitudinal redundancy and load redistribution between the 

spans of the same bridge.  

Table 6.33. Overstrength Factors for Single-Span Bridges Utilizing Grillage Analysis. 

ID Span R (ft) L (ft) B (ft) S (ft) 5% SF 5° 
Trans. 

2° 
Long. 

0 1 1300 120 23 6.0 1.33 1.33 1.07 
1 1 573 220 32 9.5 0.46 0.28 0.21 
2 1 1910 115 26 6.1 1.11 1.65 1.11 
3 1 2207 230 39 12.6 0.60 0.16 0.37 
Note: L = length, B = breadth, R = radius of curvature, S = spacing between interior top flanges. 

Table 6.34. Overstrength Factors for End Spans Utilizing Grillage Analysis. 

ID Span R (ft) L (ft) B (ft) S (ft) 5% SF 5° 
Trans. 

3° 
Long. 

4 1 195 132 28 7.6 1.50 1.45 1.30 
4 2 195 128 28 7.6 1.58 1.53 1.32 
5 1 450 140 30 9.7 1.25 1.30 1.10 
5 2 450 140 30 9.7 1.25 1.30 1.10 
6 1 819 140 38 9.8 1.43 1.58 1.58 
6 2 819 140 38 9.8 1.43 1.58 1.58 
7 1 764 219 28 7.4 1.30 1.15 0.94 
7 2 764 190 28 7.4 1.50 1.45 1.25 
8 1 882 265 28 8.4 0.94 0.88 0.83 
8 2 882 295 28 8.4 0.80 0.60 0.60 
9 1 764 140 28 7.4 1.35 1.65 1.40 
9 3 764 126 28 7.4 1.53 1.95 1.61 

10 1 716 148 30 7.7 1.71 2.10 1.94 
10 3 716 190 30 7.7 1.40 1.35 1.25 
11 1 819 223 28 7.0 1.35 1.45 1.50 
11 3 819 235 28 7.0 1.40 1.30 1.40 
12 1 225 140 28 7.6 1.55 1.20 1.40 
12 3 225 145 28 7.6 1.50 1.35 1.15 
13 1 450 152 30 9.3 1.40 1.25 1.10 
13 3 450 152 30 9.3 1.40 1.25 1.10 
14 1 1010 150 28 6.5 1.35 1.45 1.25 
14 3 1010 150 28 6.5 1.35 1.45 1.25 
15 1 809 200 28 8.0 1.55 1.60 1.40 
15 3 809 200 28 8.0 1.55 1.60 1.40 

Note: L = length, B = breadth, R = radius of curvature, S = spacing between interior top flanges. 
 



 

258 

Table 6.35. Overstrength Factors for Interior Spans Utilizing Grillage Analysis. 

ID Span R (ft) L (ft) B (ft) S (ft) 5% SF 5° 
Trans. 

2° 
Long. 

9 2 764 151 28 7.0 2.10 2.50 2.15 
10 2 716 265 30 7.7 1.50 1.45 1.25 
11 2 819 366 28 7.0 1.15 1.10 1.00 
12 2 225 180 28 7.6 2.05 1.67 1.56 
13 2 450 190 30 9.3 1.60 1.50 1.35 
14 2 1010 190 28 6.5 1.45 1.60 1.35 
15 2 809 295 28 8.0 1.50 1.45 1.25 

Note: L = length, B = breadth, R = radius of curvature, S = spacing between interior top flanges. 
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7 DISCUSSION AND IMPLICATIONS 

7.1 INTRODUCTION AND SCOPE 

From the foregoing three chapters, it is evident that there are varying degrees of disparity 

between the results of the three analysis methods used in this investigation. This chapter 

discusses the significance of those observed differences and the implications going forward in 

professional practice. This chapter compares the bridges by dividing them into categories by 

degree of redundancy. First, simply supported bridges (Bridges 0 to 3) that have no longitudinal 

redundancy from end fixity are considered. Next, the center spans of the three-span bridges 

(Bridges 9 to 15) that have full moment restraint at each end of their span are compared. Last, the 

end spans of all multi-span bridges (Bridges 4 to 15) are considered. The end spans have 1 

degree of longitudinal redundancy that provides some protection against span collapse in the 

event of fracture within one of the steel tubs. 

7.2 SINGLE SPANS (ZERO FIXITY AT SUPPORTS) 

Figure 7.1 shows a simply supported span with a central plastic hinge. Since this location 

is normally the location of the maximum bending moment, it is also assumed to be the most 

likely location for a sudden fracture. If a fracture occurs, the remaining capacity is comprised of 

transverse plastic yield in the deck plus a longitudinal folded plate mechanism that exists 

between the twin tubs. This plastic mechanism between the fractured and intact box girders is the 

only measure of redundancy that exists in restraining collapse of the fractured girder. This shall 

be referred to as longitudinal redundancy herein.  

A comparison of the simply supported analysis is presented in Figure 7.2 and Figure 7.3 

for short (L < 120 ft) and long (L ≥ 220 ft) bridges, respectively. Table 7.1 presents the 

overstrength results of the single-span bridges tabulated in increasing order of their span lengths. 

As the length increases, the overstrength capacity of the spans decrease. For the two shorter-span 

simply supported bridges presented in Figure 7.2, it is evident that the overstrength factor above 

the normal design requirements can be maintained (Ω > 1). In contrast, the two longer single-

span bridges presented in Figure 7.3 do not, in general, meet the criteria of Ω ≥ 1. This result 

suggests that at the very least there should be a limitation of span length for bridges in order to 
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be reclassified as nonfracture critical. As a general principle, there remain limitations on the 

restraint that can effectively be mobilized to prevent collapse from the longitudinal redundancy 

inherent in this single-span class of twin tub bridge structures.  

In practice, a prudently conservative approach is to continue to classify all simply 

supported twin tub bridges as fracture critical unless it can be shown by advanced analysis or 

tests that sufficient redundancy remains after fracture (i.e., Ω > 1). In this instance, advanced 

analysis means a full non-linear FEM analysis confirmed independently by the yield line theory. 

Note that the non-linear grillage analysis, while promising, cannot be used with confidence for 

simply supported bridges at this time due to the disparity between the two computational 

methods. However, continued use and refinement are encouraged because the effort required to 

obtain a result is substantially less than that required for an FEM solution.  

 
(a) Single-Span Support Conditions 

 
(b) Plan View of a Typical Single Span 

Figure 7.1. Single Span with Zero Fixity at Supports. 

Table 7.1. Overstrength Results for Single-Span Twin Tub Girder Bridges. 

       Yield Line  

ID Span R (ft) L (ft) B (ft) S (ft) FEM Upper 
Bound 

Lower 
Bound Grillage 

2 1 1910 115 26 6.1 1.65 1.17 1.02 1.11 
0 1 1300 120 23 6 0.86 1.46 1.28 1.07 
1 1 573 220 32 9.5 0.82 0.62 0.57 0.21 
3 1 2207 230 39 12.6 0.85 0.51 0.44 0.16 
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(i) Load displacement (ii) Deck rotations 

(a) Comparison of the Results for Bridge 2, L = 115 ft 

  
(i) Load displacement (ii) Deck rotations 

(b) Comparison of the Results for Bridge 0, L = 120 ft 
Figure 7.2. Results for Short Single-Span (Simply Supported) Fractured Twin Tub Bridges 
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(i) Load displacement (ii) Deck rotations 

(a) Comparison of the Results for Bridge 1, L = 220 ft 

  
(i) Load displacement (ii) Deck rotations 

(b) Comparison of the Results for Bridge 3, L = 230 ft 
Figure 7.3. Results for Long Single-Span (Simply Supported) Fractured Twin Tub Bridges. 
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7.3 INTERIOR SPANS WITH TWO DEGREES OF LONGITUDINAL FIXITY  

Figure 7.4 shows a typical interior span of a multi-span bridge structure. To form a 

plastic collapse mechanism, it is necessary to form three plastic hinges: one in the center of the 

span region where the positive moments are greatest, and one at each end of the span over the 

pier supports. For a fracture critical twin tub bridge, it is assumed that it is the interior hinge 

region that is prone to brittle fracture, leaving the deck alone to provide a transverse yield line at 

the fractured tub location. 

Additional redundancy is then provided by the transverse hinge and yield lines at each 

span end over the bearing seats. Like their single-span counterparts, transverse redundancy is 

also provided if only one tub fractures by the formation of the longitudinal folded plate 

mechanism. As seen from the analysis of the simple-span bridges, the longitudinal redundancy 

provided by the folded plate mechanism becomes increasingly inefficient as the span length 

increases. This effect is also demonstrated with the interior span of the three-span bridges 

although it is not so pronounced since much of the reserve capacity (overstrength) is supplied by 

the formation of the plastic hinges at the supports. Figure 7.5 through Figure 7.8 show the results 

sorted into average, long, and very long (interior) span bridges, respectively. 

 
(a) Interior Span Support Conditions 

 
(b) Plan View of a Typical Interior Span 

Figure 7.4. Interior Span with Fixities at Both Supports. 
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(i) Load displacement (ii) Deck rotations 

(a) Comparison of the Results for Bridge 9, Span 2, L = 151 ft 

  
(i) Load displacement (ii) Deck rotations 
(b) Comparison of the Results for Bridge 12, Span 2, L = 180 ft 

Figure 7.5. Results for Average Interior Spans of Fractured Twin Tub Bridges. 

It should be noted that in all cases the overstrength factor is greater than unity (Ω > 1), 

indicating that in the event of a complete fracture of a steel tub, sufficient redundancy and 
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reserve capacity exist to sustain design loads. Table 7.2 shows the overstrength results sorted by 

ascending span length. It is evident that there is a reduction in overstrength as the span length 

increases. 

Table 7.2. Overstrength Results for Interior Span Twin Tub Girder Bridges. 

       Yield Line  

ID Span R (ft) L (ft) B (ft) S (ft) FEM Upper 
Bound 

Lower 
Bound Grillage 

9 2 764 151 28 7 2.45 2.34 2.24 2.10 
12 2 225 180 28 7.6 1.80 2.20 2.10 1.56 
13 2 450 190 30 9.3 1.40 1.89 1.80 1.35 
14 2 1010 190 28 6.5 1.80 2.07 1.98 1.35 
10 2 716 265 30 7.7 1.45 1.90 1.84 1.25 
15 2 809 295 28 8 1.40 1.86 1.78 1.25 
11 2 819 366 28 7 1.20 1.69 1.66 1.00 

 

Figure 7.5 shows the analysis results for the shortest two average spans (Bridges 9 and 

12) in this category (L < 180 ft). Reasonably good agreement is shown between the three 

different analysis approaches. It should be noted that when the FEMs and grillage methods 

exceed the upper-bound plastic (yield line) solutions, the effect is ascribed to membrane 

(catenary) action arising from the large vertical displacements. These two bridges have 

considerable overstrength (Ω > 2). 

Figure 7.6 shows the results for the longer of the medium-length central spans (Bridges 

13 and 14, with L equivalent to 180 ft < L < 200 ft) where these spans have a moderate degree of 

overstrength (1.4 < Ω < 2.0). While there is a disparity in the results between the two 

computational methods (see in particular Figure 7.6[b]), the grillage method still indicates 

sufficient overstrength to justify reclassifying the span as nonfracture critical. It is also worth 

noting that the deflections at mid-span govern at 2 degrees chord rotation, whereas δ ~ 42 in. 

governs the overall result. 

Figure 7.7 and Figure 7.8 present the results for three interior spans (Bridges 10, 15, and 

11) herein defined as being long central spans (L > 200 ft) and very long central spans 

(L > 350 ft). 
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(i) Load displacement (ii) Deck rotations 
(a) Comparison of the Results for Bridge 13, Span 2, L = 190 ft 

  
(i) Load displacement (ii) Deck rotations 
(b) Comparison of the Results for Bridge 14, Span 2, L = 190 ft 

Figure 7.6. Results for Average Interior Spans of Fracture Twin Tub Bridges. 

0 1 2 3 4 5 6

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 100 110 120

Chord Angle, θ (deg.)
To

ta
l L

oa
d,

 P
, (

ki
p)

Maximum Deflection, δ (in.)

FEM-OG
Grillage-OG
YL-UB
YL-LB

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6

O
ve

rs
tr

en
gt

h,
 Ω

Relative Slope, θ (deg.)

0 1 2 3 4 5

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 100

Chord Angle, θ (deg.)

To
ta

l L
oa

d,
 P

, (
ki

p)

Maximum Deflection, δ (in.)

FEM-OG
Grillage-OG
YL-UB
YL-LB

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6

O
ve

rs
tr

en
gt

h,
 Ω

Relative Slope, θ (deg.)



 

267 

  
(i) Load displacement (i) Deck rotations 
(a) Comparison of the Results for Bridge 10, Span 2, L = 265 ft 

  
(i) Load displacement (ii) Deck rotations 
(b) Comparison of the Results for Bridge 15, Span 2, L = 295 ft 

Figure 7.7. Results for Long Interior Spans of Fracture Twin Tub Bridges.  
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(i) Load displacement (ii) Deck rotations 

Comparison of the Results for Bridge 11, Span 2, L = 366 ft 
Figure 7.8. Results for Very Long Interior Span of Fracture Twin Tub Bridges. 

While all the results show that Ω > 1, the overstrength decreases as the span length 

increases. The estimated overstrength factors are in good agreement between the FEM and 

grillage analysis, with the grillage method consistently providing the lower-bound solution. 

However, the disparity between the computational methods and yield line analysis becomes 

more pronounced for these longer spans. In part, the disparity is attributed to the three-

dimensional member depth not accounted for in the yield line analysis. It is of interest to note 

that at a deflection of δ ~ 90 in., the capacity for both the FEM and the plastic limit analysis 

(yield line method) are in good agreement for each bridge. 

7.4 EXTERIOR SPANS (ONE SUPPORT FIXED, ONE SUPPORT FREE) 

Figure 7.9 shows a typical exterior span of a multi-span bridge structure. A plastic 

collapse mechanism is formed with two plastic hinges—one at the location of the maximum 

bending moment and one at the end of the span over the interior pier support. It is assumed that 

the interior hinge region is prone to brittle fracture. Section 5.4.4 explains the choice of the 

location of this brittle fracture at 40 percent of the span length from the exterior support. In case 
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of a fracture, the deck alone provides a transverse yield line at the fractured tub location of the 

fracture critical twin tub girders. The interior support at one end of the span provides additional 

redundancy similar to the supports of the interior spans. 

In the event of the fracturing of only one tub, transverse redundancy provided by the 

longitudinal folded plate mechanism is observed, like that of single and interior spans. This 

redundancy, too, becomes ineffectual with an increase in span length. However, the formation of 

the plastic hinges at the support makes up for this reduction in the system overstrength.  

Figure 7.10 to Figure 7.14, Figure 7.15 to Figure 7.17, Figure 7.18 to Figure 7.19, and 

Figure 7.20 present the results of the exterior spans grouped as short, average, long, and very 

long spans, respectively. Figure 7.10(a) and (b) and Figure 7.11(a) present the shortest of the 

exterior spans (L < 140 ft) of Bridges 9 and 4, respectively. Figure 7.11(b), Figure 7.12, 

Figure 7.13, and Figure 7.14 present the results of those shorter spans falling under the category 

of 140 ft  ≤ L < 150 ft for Bridges 9, 6, 5, 12 and 10, respectively, all of which have a moderate 

degree of overstrength (1.5 < Ω < 2.0). 

 
(a) Exterior Span Support Conditions 

 
(b) Plan View of a Typical Exterior Span 

Figure 7.9. Exterior Span with Fixity at One Support. 
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(i) Load displacement (ii) Deck rotations 
(a) Comparison of the Results for Bridge 9, Span 3, L = 126 ft 

  
(i) Load displacement (ii) Deck rotations 
(b) Comparison of the Results for Bridge 4, Span 2, L = 128 ft 

Figure 7.10. Results for Short Exterior Spans of Fracture Twin Tub Bridges. 
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(i) Load displacement (i) Deck rotations 
(a) Comparison of the Results for Bridge 4, Span 1, L = 132 ft 

  
(i) Load displacement (ii) Deck rotations 
(b) Comparison of the Results for Bridge 9, Span 1, L = 140 ft 

Figure 7.11. Results for Short Exterior Spans of Fracture Twin Tub Bridges.  
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(i) Load displacement (ii) Deck rotations 

(a) Comparison of the Results for Bridge 6, Spans 1 and 2, L = 140 ft 

  
(i) Load displacement (ii) Deck rotations 

(b) Comparison of the Results for Bridge 5, Spans 1 and 2, L = 140 ft 
Figure 7.12. Results for Short Exterior Spans of Fracture Twin Tub Bridges. 
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(i) Load displacement (ii) Deck rotations 
(a) Comparison of the Results for Bridge 12, Span 1, L = 140 ft 

  
(i) Load displacement (ii) Deck rotations 
(b) Comparison of the Results for Bridge 12, Span 3, L = 145 ft 

Figure 7.13. Results for Short Exterior Spans of Fracture Twin Tub Bridges. 
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(i) Load displacement (ii) Deck rotations 

Comparison of the Results for Bridge 10, Span 1, L = 148 ft 
Figure 7.14. Results for Short Exterior Span of Fracture Twin Tub Bridges. 

There appears to be good agreement between the FEM and the lower-bound plastic 

method for Bridges 4 and 12. While there is a disparity in the results between the two 

computational methods for Bridges 9, 6, and 10, the grillage method still indicates sufficient 

overstrength to justify reclassifying the spans as nonfracture critical. It is also worth noting that 

the deflections at mid-span govern at 2 degrees chord rotation, whereas δ ~ 30 to 40 in. governs 

the overall result. 

Figure 7.12(b) presents the results for both the spans of Bridge 5. Although this is an 

exterior span bridge falling under the category of shorter spans (140 ft ≤ L < 150 ft), the 

overstrength (Ω = 1.2) is lower than that of the other spans in this category. The key difference 

between Bridge 5 and Bridge 6 is the radius of curvature (R = 450 ft) is much tighter in the 

former than in the latter (R = 819 ft). Similarly, the overstrength is lower for Span 1 of 

Bridge 12.  

Figure 7.15, Figure 7.16, and Figure 7.17 present the exterior spans of average length 

(150 ft ≤ L ≤ 200 ft). 
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(i) Load displacement (ii) Deck rotations 

(a) Comparison of the Results for Bridge 14, Span 1 and 3, L = 150 ft 

  
(i) Load displacement (ii) Deck rotations 

(b) Comparison of the Results for Bridge 13, Spans 1 and 3, L = 152 ft 
Figure 7.15. Results for Average Exterior Spans of Fracture Twin Tub Bridges. 
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(i) Load displacement (ii) Deck rotations 
(a) Comparison of the Results for Bridge 7, Span 2, L = 190 ft 

  
(i) Load displacement (ii) Deck rotations 
(b) Comparison of the Results for Bridge 10, Span 3, L = 190 ft 

Figure 7.16. Results for Average Exterior Spans of Fracture Twin Tub Bridges. 
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(i) Load displacement (ii) Deck rotations 

Comparison of the Results for Bridge 15, Spans 1 and 3, L = 200 ft 
Figure 7.17. Results for Average Exterior Spans of Fracture Twin Tub Bridges. 

Figure 7.15(a) and Figure 7.17 present the results of Bridges 14 and 15, respectively, 

which exhibit a good agreement between the FEM and the upper-bound plastic method of 

analysis with a sufficient degree of overstrength (Ω > 1.60). Figure 7.16(a) and (b) show the 

results of those average spans falling under the category of 150 ft  ≤ L ≤ 200 ft for Bridges 7 and 

10, respectively. There appears to be a disparity in the results between the two computational 

methods (for Bridges 7 and 10). The grillage method still indicates sufficient overstrength to 

justify reclassifying the spans as nonfracture critical. It is also worth noting that the deflections at 

mid-span govern at 2 degrees chord rotation, where δ ~ 50 in. governs the overall result. 

Figure 7.15(b) presents the results for both the spans of Bridge 13. Although this is an 

exterior span bridge falling under the category of average spans (150 ft ≤ L ≤ 200 ft), the 

overstrength (Ω ~ 1.00) is lower than the other spans of this category due to a tighter radius of 

curvature (R = 450 ft).  

Figure 7.18 and Figure 7.19 present the exterior spans of long length (200 ft < L< 250 ft). 
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(i) Load displacement (ii) Deck rotations 

Comparison of the Results for Bridge 7, Span 1, L = 219 ft 
Figure 7.18. Results for Long Exterior Spans of Fracture Twin Tub Bridges. 

Figure 7.18 shows a disparity between the results of Bridge 7 (Span 1) obtained from the 

three methods: the overstrength for the FEM is 1.20; the lower-bound plastic method is 1.37; and 

the grillage analysis is 0.94. This disparity may be due to the three-dimensional member depth 

not being fully accounted for in the grillage method. Figure 7.19 shows that both the spans 

exhibit a considerable overstrength (Ω > 1.00) with both the computational methods. It is of 

interest to note that at a deflection of δ ~ 60 in., the capacity for both the FEM and the plastic 

limit analysis (yield line method) are in good agreement for both the spans.  

Figure 7.20 presents the results of Bridge 8, whose spans are classified as very long since 

both exceed 250 ft. Although there is a considerable disparity between the three results, both the 

FEM and the grillage method predict an overstrength less than unity. Therefore, this bridge may 

not be reclassified as nonfracture critical. 

Like their interior span counterparts, all the exterior spans (except for Span 2 of Bridge 7 

and both the spans of Bridges 8 and 13) exhibit sufficient redundancy and reserve capacity to 

bear the externally applied loads when experiencing a total fracture of the outer critical steel tub, 

owing to the overstrength factor exceeding unity.  
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(i) Load displacement (ii) Deck rotations 
(a) Comparison of the Results for Bridge 11, Span 1, L = 223 ft 

  
(i) Load displacement (ii) Deck rotations 
(b) Comparison of the Results for Bridge 11, Span 3, L = 235 ft 

Figure 7.19. Results for Long Exterior Spans of Fracture Twin Tub Bridges. 
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(i) Load displacement (ii) Deck rotations 
(a) Comparison of the Results for Bridge 8, Span 1, L = 265 ft 

  
(i) Load displacement (ii) Deck rotations 
(b) Comparison of the Results for Bridge 8, Span 2, L = 295 ft 

Figure 7.20. Results for Very Long Exterior Spans of Fracture Twin Tub Bridges. 
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Table 7.3 lists the results of the exterior sorted spans based on their lengths—short, 

medium, long, and very long spans. It is observed that the yield line theory analysis shows a 

pattern among the overstrength factors of the bridges with respect to the boundary conditions and 

the length of the spans. The longer bridges with simple supports are susceptible to failure 

although the redundancy of continuous supports increases the strength, as evidenced from the 

higher overstrength factors of the exterior spans and an even higher strength of the interior spans.  

Table 7.3. Overstrength Results for Exterior Span Twin Tub Girder Bridges. 

       Yield Line  

ID Span R (ft) L (ft) B (ft) S (ft) FEM Upper 
Bound 

Lower 
Bound Grillage 

9 3 764 126 28 7.4 1.80 1.68 1.56 1.53 
4 2 195 128 28 7.6 1.73 1.85 1.71 1.32 
4 1 195 132 28 7.6 1.65 1.80 1.67 1.30 
9 1 764 140 28 7.4 1.70 1.56 1.44 1.35 
6 1 819 140 38 9.8 1.80 1.62 1.52 1.43 
6 2 819 140 38 9.8 1.80 1.62 1.52 1.43 
5 1 450 140 30 9.7 1.20 1.40 1.28 1.10 
5 2 450 140 30 9.7 1.20 1.39 1.28 1.10 

12 1 225 140 28 7.6 1.60 1.75 1.63 1.20 
12 3 225 145 28 7.6 1.60 1.71 1.60 1.15 
10 1 716 148 30 7.7 1.70 1.98 1.88 1.71 
14 1 1010 150 28 6.5 1.65 1.63 1.52 1.25 
14 3 1010 150 28 6.5 1.65 1.63 1.52 1.25 
13 1 450 152 30 9.3 1.00 1.41 1.32 1.10 
13 3 450 152 30 9.3 1.00 1.40 1.30 1.10 
7 2 764 190 28 7.4 1.45 1.69 1.59 1.25 

10 3 716 190 30 7.7 1.45 1.67 1.59 1.25 
15 1 809 200 28 8 1.70 1.70 1.60 1.40 
15 3 809 200 28 8 1.70 1.69 1.59 1.40 
7 1 764 219 28 7.4 1.20 1.45 1.37 0.94 

11 1 819 223 28 7 1.60 1.75 1.69 1.35 
11 3 819 235 28 7 1.60 1.65 1.59 1.30 
8 1 882 265 28 8.4 0.99 1.34 1.27 0.83 
8 2 882 295 28 8.4 0.88 1.25 1.18 0.60 
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8 FINDINGS 

Here is a summary of the major study findings: 

• All bridges may be reclassified as not fracture critical if shown by two of the analysis 

methods (FEM, grillage, or yield line) that they possess sufficient overstrength (Ω > 

1) when analyzed under design loads with a fully fractured outside girder. 

• In this study, all simply supported bridges that have a fully fractured outside girder 

either showed marginally acceptable overstrength capacity or as the spans grew 

beyond 115 ft were likely to be deficient in terms of overstrength. In general, single-

span twin tub bridges lack redundancy and should remain classified as fracture 

critical. 

• If bridges possess structural redundancy, which can be provided by continuity of 

girders over interior supports, they may be reclassified as nonfracture critical, 

providing the span lengths are not very long (see next item).  

• If span lengths of continuous bridges exceed 250 ft for exterior spans or 350 ft for 

interior spans, special studies should be conducted to justify their reclassification to 

nonfracture critical.  
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APPENDIX A. STRUCTURAL DRAWINGS 
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APPENDIX B. GRILLAGE 



 

B-2 

Bridge 1: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 2.1 Long. Int. 2.1 

 M C M C M C M C 
Positive SF 325620 5.8E-05 301909 0.00019 409992 6E-05 382836 0.0002 
Negative SF 198418 5.8E-05 203118 6.4E-05 267269 6E-05 272043 6.7E-05 

Normalized 
Moment 

Curvature 

-1.36 -35 -1.38 -35 -1.36 -35 -1.38 -35 
-1.36 -23 -1.38 -23 -1.36 -23 -1.38 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.75 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.92 0.56 0.87 0.19 0.95 0.56 0.91 0.25 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Frac. Ext. 1.1 Frac. Int. 1.1 Trans.  Trans. End 

 M C M C M C M C 
Positive SF 12736 1.14E-04 1730 2.42E-03 1910 0.00187 371 0.00187 
Negative SF 1915 5.15E-04 2066 5.37E-04 1640 0.00187 316 0.00187 

Normalized 
Moment 

Curvature 

-1 -35 -1 -20 -1 -30 -1 -30 
-1 -23 -1 -10 -1 -22 -1 -22 
-1 -1 -1 -5 -1 -1 -1 -1 

-0.91 -0.22 -1 -1 -0.76 -0.22 -0.76 -0.22 
0 0 0 0 0 0 0 0 
1 1 0.88 0.22 0.76 0.22 0.77 0.14 
1 3 1 1 1 1 1 1 
1 5 1 5 1 3 1 3 
1 15 1 15 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 

Section Start (ft) End (ft) 
1.1 0 47 
2.1 47 166 
1.1 166 220 



 

B-3 

Bridge 2: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Frac. Ext. 1.1 Frac. Int. 1.1 

 M C M C M C M C 
Positive SF 250798 5.96E-05 221238 0.000154 13209 1.05E-04 1130 2.45E-3 
Negative SF 144085 5.96E-05 142720 6.91E-05 1844 7.36E-04 1611 5.44E-4 

Normalized 
Moment 

Curvature 

-1.35 -35 -1.38 -35 -1 -35 -1 -20 
-1.35 -25 -1.38 -25 -1 -22 -1 -10 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.72 -0.56 -0.8 -0.56 -0.76 -0.36 -1 -1 

0 0 0 0 0 0 0 0 
0.91 0.56 0.955 0.45 1 1 0.98 0.56 

1 1 1 1 1 3 1 1 
1 3 1 3 1 5 1 5 
1 13 1 13 1 15 1 15 

 Trans.  
8.1.1.1.1.1.1.1 Trans. 

End     
 M C M C     
Positive SF 1970 0.00168 1367 0.00168     
Negative SF 1598 0.00168 1104 0.00168     

Normalized 
Moment 

Curvature 

-1.1 -25 -1.1 -25     
-1.1 -15 -1.1 -15     
-1 -1 -1 -1     

-0.76 -0.22 -0.76 -0.22     
0 0 0 0     

0.76 0.22 0.76 0.22     
1 1 1 1     
1 3 1 3     
1 13 1 13     

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 

Section Start (ft) End 
(ft) 

1.1 0 115 
 



 

B-4 

Bridge 3: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 2.1 Long. Int. 2.1 

 M C M C M C M C 
Positive SF 469639 7.72E-05 454024 0.000203 556185 7.86E-05 539178 0.00016 
Negative SF 303757 4.96E-05 314564 5.22E-05 407572 5.05E-05 417493 5.3E-05 

Normalized 
Moment 

Curvature 

-1.36 -35 -1.37 -35 -1.37 -35 -1.38 -35 
-1.36 -23 -1.37 -23 -1.37 -23 -1.38 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.75 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.88 0.36 0.85 0.14 0.91 0.36 0.96 0.33 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 3.1 Long. Int. 3.1 Frac. Ext. 3.1 Frac. Int. 3.1 

 M C M C M C M C 
Positive SF 720943 5.36E-05 707906 0.000125 13389 1.30E-4 2978 1.99E-3 
Negative SF 528265 5.36E-05 540368 5.62E-05 2402 5.84E-4 2835 4.43E-4 

Normalized 
Moment 

Curvature 

-1.37 -35 -1.38 -35 -1 -35 -1 -20 
-1.37 -23 -1.38 -23 -1 -23 -1 -10 

-1 -1 -1 -1 -1 -1 -1 -3 
-0.7 -0.56 -0.8 -0.56 -0.9 -0.22 -1 -1 

0 0 0 0 0 0 0 0 
0.91 0.36 0.91 0.25 1 1 0.86 0.22 

1 1 1 1 1 3 1 1 
1 3 1 3 1 5 1 5 
1 13 1 13 1 15 1 15 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-5 

 Trans Trans End 

 M C M C 
Positive SF 2325 0.002166 2166 0.002166 
Negative SF 1937 0.002166 1814 0.002166 

Normalized 
Moment 

Curvature 

-1.12 -30 -1.15 -30 
-1.12 -13 -1.15 -20 

-1 -1 -1 -1 
-0.76 -0.22 -0.76 -0.22 

0 0 0 0 
0.77 0.14 0.77 0.14 

1 1 1 1 
1 3 1 3 
1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 

Section Start (ft) End (ft) 
1.1 0 17 
2.1 17 38 
3.1 38 185 
2.1 185 206 
1.1 206 230 

 



 

B-6 

Bridge 4: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 2.2 Long. Int. 2.2 

 M C M C M C M C 
Positive SF 190121 8.16E-05 163477 0.000285 265333 4.94E-05 242505 0.00016 
Negative SF 97566 8.16E-05 102225 9.49E-05 143129 8.89E-05 147628 0.0001 

Normalized 
Moment 

Curvature 

-1.35 -35 -1.35 -35 -1.4 -30 -1.4 -30 
-1.35 -25 -1.35 -25 -1.4 -20 -1.4 -20 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.86 -0.56 -0.92 -0.56 

0 0 0 0 0 0 0 0 
0.95 0.56 0.89 0.19 0.54 0.4 0.94 0.36 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 3.2 Long. Int. 3.2 Frac. Ext. 1.1 Frac. Int. 1.1 

 M C M C M C M C 
Positive SF 269552 8.63E-05 248898 0.00022 11005 1.04E-4 1361 2.26E-3 
Negative SF 199102 8.63E-05 201214 9.89E-05 1607 4.66E-4 1740 5.03E-4 

Normalized 
Moment 

Curvature 

-1.35 -35 -1.35 -35 -1 -35 -1 -20 
-1.35 -25 -1.35 -25 -1 -25 -1 -10 

-1 -1 -1 -1 -1 -1 -1 -3 
-0.7 -0.56 -0.89 -0.56 -0.92 -0.22 -1 -1 

0 0 0 0 0 0 0 0 
0.95 0.56 0.93 0.25 1 1 1 1 

1 1 1 1 1 3 1 3 
1 3 1 3 1 5 1 5 
1 13 1 13 1 15 1 15 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-7 

 Trans Trans End 1 Trans End 2 Trans Pier 

 M C M C M C M C 
Positive SF 2107 0.00152 1971 0.00152 1325 0.00152 3400 0.00152 
Negative SF 1745 0.00152 1633 0.00152 1094 0.00152 2822 0.00152 

Normalized 
Moment 

Curvature 

-1.2 -25 -1.2 -25 -1.2 -25 -1.2 -25 
-1.2 -15 -1.2 -15 -1.2 -15 -1.2 -15 
-1 -1 -1 -1 -1 -1 -1 -1 

-0.76 -0.22 -0.76 -0.22 -0.76 -0.22 -0.76 -0.22 
0 0 0 0 0 0 0 0 

0.76 0.22 0.76 0.22 0.76 0.22 0.76 0.22 
1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 
Note: M = moment (kip-in.) and C = curvature (1/in.). 

 

Section Start (ft) End (ft) 
1.1 0 80 
2.2 80 108 
3.2 108 154 
2.2 154 182 
1.1 182 260 

 

  



 

B-8 

Bridge 5: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 2.2 Long. Int. 2.2 

 M C M C M C M C 
Positive SF 130422 0.000132 126415 0.000343 177826 0.000141 175804 0.000284 
Negative SF 80979 8.46E-05 84913 8.83E-05 115300 9.08E-05 120784 9.48E-05 

Normalized 
Moment 

Curvature 

-1.35 -35 -1.35 -35 -1.35 -35 -1.35 -35 
-1.35 -25 -1.35 -25 -1.35 -25 -1.35 -25 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.97 0.64 0.85 0.14 0.936 0.36 0.85 0.14 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 3.2 Long. Int. 3.2 Long. Ext. 4.2 Long. Int. 4.2 

 M C M C M C M C 
Positive SF 180799 0.000138 178975 0.00027 204632 0.000139 203853 0.000278 
Negative SF 136766 8.88E-05 139570 9.23E-05 161921 8.93E-05 164301 9.26E-05 

Normalized 
Moment 

Curvature 

-1.35 -35 -1.38 -35 -1.4 -35 -1.42 -35 
-1.35 -25 -1.38 -25 -1.4 -25 -1.42 -25 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.936 0.36 0.85 0.14 0.936 0.36 0.85 0.14 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-9 

 Frac. Ext. 1.1 Frac. Int. 1.1 
Trans/Trans 

Pier 
Trans End 

1&2 

 M C M C M C M C 
Positive SF 5557 2.32E-4 1612 2.61E-3 1876 0.00168 890 0.00168 
Negative SF 1615 5.81E-4 1868 5.80E-4 1513 0.00168 714 0.00168 

Normalized 
Moment 

Curvature 

-1 -35 -1 -20 -1.1 -25 -1.1 -25 
-1 -20 -1 -10 -1.1 -15 -1.1 -15 
-1 -1 -1 -1 -1 -1 -1 -1 

-0.83 -0.4 -1 -1 -0.76 -0.22 -0.76 -0.22 
0 0 0 0 0 0 0 0 
1 1 0.84 0.22 0.76 0.22 0.76 0.22 
1 3 1 1 1 1 1 1 
1 5 1 5 1 3 1 3 
1 15 1 15 1 13 1 13 
Note: M = moment (kip-in.) and C = curvature (1/in.). 

 

Section Start (ft) End (ft) 
1.1 0 91 
2.2 91 112 
3.2 112 126 
4.2 126 147 
3.2 147 161 
2.2 161 182 
1.1 182 280 

 

  



 

B-10 

Bridge 6: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 2.2 Long. Int. 2.2 

 M C M C M C M C 
Positive SF 326511 6.38E-05 300556 0.000159 473215 7.08E-05 438043 8.05E-05 
Negative SF 175770 6.38E-05 178676 7.16E-05 226048 7.08E-05 232720 8.05E-05 

Normalized 
Moment 

Curvature 

-1.37 -35 -1.38 -35 -1.4 -35 -1.45 -35 
-1.37 -25 -1.38 -25 -1.4 -20 -1.45 -17 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.97 0.64 0.85 0.14 0.936 0.36 0.85 0.14 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 3.2 Long. Int. 3.2 Frac. Ext. 1.1 Frac. Int. 1.1 

 M C M C M C M C 
Positive SF 481552 6.91E-05 451631 0.000121 15849 1.23E-4 1915 2.55E-3 
Negative SF 294883 6.91E-05 302235 7.76E-05 2130 5.55E-4 1139 3.96E-3 

Normalized 
Moment 

Curvature 

-1.38 -35 -1.36 -35 -1 -35 -1 -20 
-1.38 -20 -1.36 -19 -1 -20 -1 -12 

-1 -1 -1 -1 -1 -1 -1 -2 
-0.7 -0.56 -0.8 -0.56 -0.83 -0.56 -1 -1 

0 0 0 0 0 0 0 0 
0.936 0.36 0.85 0.14 1 1 0.97 0.56 

1 1 1 1 1 1 1 1 
1 3 1 3 1 5 1 5 
1 13 1 13 1 15 1 15 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-11 

 
Trans/Trans 

Pier 
Trans End  

1 & 2 

 M C M C 
Positive SF 2422 0.0016 1211 0.0016 
Negative SF 2023 0.0016 1011 0.0016 

Normalized 
Moment 

Curvature 

-1.15 -25 -1.15 -25 
-1.15 -15 -1.15 -15 

-1 -1 -1 -1 
-0.76 -0.22 -0.76 -0.22 

0 0 0 0 
0.76 0.22 0.76 0.22 

1 1 1 1 
1 3 1 3 
1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 

Section Start (ft) End (ft) 
1.1 0 98 
2.2 98 119 
3.2 119 154 
2.2 154 175 
1.1 175 280 

 

  



 

B-12 

Bridge 7: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 2.1 Long. Int. 2.1 

 M C M C M C M C 
Positive SF 213076 7.09E-05 188227 0.000244 354649 7.85E-05 323880 0.000141 
Negative SF 121565 7.09E-05 120700 8.12E-05 226366 7.85E-05 225805 9.03E-05 

Normalized 
Moment 

Curvature 

-1.35 -35 -1.37 -35 -1.35 -35 -1.35 -35 
-1.35 -25 -1.37 -25 -1.35 -25 -1.35 -20 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.97 0.64 0.87 0.19 0.936 0.36 0.93 0.36 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 3.1 Long. Int. 3.1 Long. Ext. 3.2 Long. Int. 3.2 

 M C M C M C M C 
Positive SF 297884 7.57E-05 265857 0.000194 298366 7.57E-05 266127 0.000136 
Negative SF 180976 7.57E-05 179504 8.71E-05 187592 7.57E-05 187181 8.71E-05 

Normalized 
Moment 

Curvature 

-1.35 -35 -1.38 -35 -1.35 -35 -1.38 -35 
-1.35 -25 -1.38 -25 -1.35 -25 -1.38 -21 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.936 0.36 0.977 0.45 0.936 0.36 0.977 0.45 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
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 Long. Ext. 4.1 Long. Int. 4.1 Long. Ext. 4.2 Long. Int. 4.2 

 M C M C M C M C 
Positive SF 297327 7.47E-05 266825 0.000187 297795 7.47E-05 268404 0.000187 
Negative SF 210110 7.47E-05 209302 8.43E-05 214882 7.47E-05 214860 8.43E-05 

Normalized 
Moment 

Curvature 

-1.35 -35 -1.36 -35 -1.35 -35 -1.37 -35 
-1.35 -25 -1.36 -25 -1.35 -25 -1.37 -25 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.936 0.36 0.85 0.14 0.936 0.36 0.85 0.14 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 5.2 Long. Int. 5.2 Long. Ext. 6.1 Long. Int. 6.1 

 M C M C M C M C 
Positive SF 437012 7.92E-05 409104 0.000138 225491 7.18E-05 198753 0.000183 
Negative SF 355101 7.92E-05 354835 8.86E-05 127166 7.18E-05 126139 8.25E-05 

Normalized 
Moment 

Curvature 

-1.36 -35 -1.38 -35 -1.36 -35 -1.38 -35 
-1.36 -25 -1.38 -25 -1.36 -25 -1.38 -25 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.936 0.36 0.85 0.14 0.936 0.36 0.88 0.25 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
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 Frac. Ext. 2.1  Frac. Int. 2.1 Frac. Ext. 6.1 Frac. Int. 6.1 

 M C M C M C M C 
Positive SF 11389 1.26E-4 1288 3.22E-3 11389 1.26E-4 1288 3.22E-3 
Negative SF 2220 5.66E-4 1999 4.60E-4 2220 5.66E-4 1999 4.60E-4 

Normalized 
Moment 

Curvature 

-1 -35 -1 -20 -1 -35 -1 -20 
-1 -20 -1 -10 -1 -20 -1 -10 
-1 -1 -1 -5 -1 -1 -1 -5 

-0.86 -0.22 -1 -1 -0.86 -0.22 -1 -1 
0 0 0 0 0 0 0 0 
1 1 0.93 0.36 1 1 0.93 0.36 
1 3 1 1 1 3 1 1 
1 5 1 5 1 5 1 5 
1 15 1 15 1 15 1 15 

 Trans Trans End 1 Trans End 2 Trans Pier 

 M C M C M C M C 
Positive SF 1683 0.00168 1938 0.00168 1810 0.00168 3844 0.00168 
Negative SF 1341 0.00168 1546 0.00168 1443 0.00168 3076 0.00168 

Normalized 
Moment 

Curvature 

-1.06 -25 -1.09 -25 -1.09 -25 -1.09 -25 
-1.06 -15 -1.09 -15 -1.09 -15 -1.09 -15 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.76 -0.22 -0.76 -0.22 -0.76 -0.22 -0.76 -0.22 

0 0 0 0 0 0 0 0 
0.76 0.22 0.76 0.22 0.76 0.22 0.76 0.22 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 

Section Start (ft) End (ft) 
1.1 0 18.5 
2.1 18.5 137.5 
3.1 137.5 144.5 
3.2 144.5 165.5 
4.2 165.5 186.5 
5.2 186.5 244 
4.2 244 272 
4.1 272 286 
6.1 286 377 
1.1 377 409 

  



 

B-15 

Bridge 8: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 2.1 Long. Int. 2.1 

 M C M C M C M C 
Positive SF 370539 5.49E-05 349445 0.000133 403697 5.59E-05 382149 0.000135 
Negative SF 233674 5.49E-05 243588 5.98E-05 257589 5.59E-05 267853 6.09E-05 

Normalized 
Moment 

Curvature 

-1.37 -35 -1.37 -35 -1.37 -35 -1.38 -35 
-1.37 -25 -1.37 -25 -1.37 -25 -1.38 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.91 0.56 0.87 0.19 0.915 0.56 0.98 0.7 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 3.1 Long. Int. 3.1 Long. Ext. 4.2 Long. Int. 4.2 

 M C M C M C M C 
Positive SF 466905 5.82E-05 439859 0.000099 435027 5.73E-05 414385 0.000139 
Negative SF 287156 5.82E-05 298668 6.36E-05 273090 5.73E-05 289604 6.27E-05 

Normalized 
Moment 

Curvature 

-1.38 -35 -1.39 -35 -1.35 -35 -1.39 -35 
-1.38 -25 -1.39 -25 -1.35 -25 -1.39 -25 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.924 0.56 0.97 0.64 0.936 0.36 0.96 0.45 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-16 

 Long. Ext. 5.2 Long. Int. 5.2 Long. Ext. 6.2 Long. Int. 6.2 

 M C M C M C M C 
Positive SF 471122 5.72E-05 450807 0.000138 538066 5.84E-05 513367 9.83E-05 
Negative SF 333928 5.72E-05 348645 6.21E-05 396561 5.84E-05 411494 6.32E-05 

Normalized 
Moment 

Curvature 

-1.37 -35 -1.38 -35 -1.37 -35 -1.38 -35 
-1.37 -25 -1.38 -25 -1.37 -25 -1.38 -25 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.936 0.36 0.85 0.14 0.932 0.56 0.88 0.25 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 7.1 Long. Int. 7.1 Frac. Ext. 3.1  Frac. Int. 3.1 

 M C M C M C M C 
Positive SF 531378 5.93E-05 506462 0.0001 10423 1.04E-4 1636 2.39E-3 
Negative SF 356981 5.93E-05 368277 6.45E-05 1661 7.3E-4 2162 5.3E-4 

Normalized 
Moment 

Curvature 

-1.37 -35 -1.39 -35 -1 -35 -1 -20 
-1.37 -25 -1.39 -25 -1 -22 -1 -10 

-1 -1 -1 -1 -1 -1 -1 -5 
-0.7 -0.56 -0.8 -0.56 -0.77 -0.36 -1 -1 

0 0 0 0 0 0 0 0 
0.932 0.56 0.97 0.64 1 1 0.83 0.22 

1 1 1 1 1 3 1 1 
1 3 1 3 1 5 1 5 
1 13 1 13 1 15 1 15 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-17 

 Frac. Ext. 7.1 Frac. Int. 7.1 
Trans/Trans 

Pier Trans End 1 

 M C M C M C M C 
Positive SF 10423 1.04E-4 1636 2.39E-3 1970 0.00168 857 0.00163 
Negative SF 1661 7.3E-4 2162 5.3E-4 1598 0.00168 697 0.00163 

Normalized 
Moment 

Curvature 

-1 -35 -1 -20 -1.09 -30 -1.09 -30 
-1 -22 -1 -10 -1.09 -22 -1.09 -20 
-1 -1 -1 -5 -1 -1 -1 -1 

-0.77 -0.36 -1 -1 -0.76 -0.22 -0.76 -0.22 
0 0 0 0 0 0 0 0 
1 1 0.83 0.22 0.76 0.22 0.76 0.22 
1 3 1 1 1 1 1 1 
1 5 1 5 1 3 1 3 
1 15 1 15 1 13 1 13 

 Trans End 2       
 M C       
Positive SF 1112 0.00168       
Negative SF 900 0.00168       

Normalized 
Moment 

Curvature 

-1.09 -25       
-1.09 -15       

-1 -1       
-0.76 -0.22       

0 0       
0.76 0.22       

1 1       
1 3       
1 13       

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-18 

Section Start (ft) End (ft) 
1.1 0 20.5 
2.1 20.5 62.5 
3.1 62.5 139.5 
2.1 139.5 174.5 
4.2 174.5 202.5 
5.2 202.5 223.5 
6.2 223.5 300.5 
4.2 300.5 335.5 
2.1 335.5 363.5 
3.1 363.5 384.5 
7.1 384.5 489.5 
3.1 489.5 524.5 
1.1 524.5 560 

 

  



 

B-19 

Bridge 9: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 1.2 Long. Int. 1.2 

 M C M C M C M C 
Positive SF 207692 7.21E-05 183132 0.000249 207889 7.21E-05 184293 0.000249 
Negative SF 119209 7.21E-05 121462 8.29E-05 124631 7.21E-05 127592 8.29E-05 

Normalized 
Moment 

Curvature 

-1.35 -35 -1.37 -35 -1.35 -35 -1.38 -35 
-1.35 -24 -1.37 -23 -1.35 -23 -1.38 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.91 0.56 0.87 0.19 0.92 0.56 0.98 0.52 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 2.2 Long. Int. 2.2 Long. Ext. 3.2 Long. Int. 3.2 

 M C M C M C M C 
Positive SF 236543 7.43E-05 210295 0.000191 270759 7.59E-05 242600 0.000195 
Negative SF 137495 7.43E-05 140681 0.000086 168541 7.59E-05 171669 8.78E-05 

Normalized 
Moment 

Curvature 

-1.38 -35 -1.39 -35 -1.35 -35 -1.39 -35 
-1.38 -25 -1.39 -25 -1.35 -25 -1.39 -25 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.93 0.56 0.97 0.64 0.939 0.56 0.96 0.45 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-20 

 Frac. Ext. 3.1  Frac. Int. 3.1 Trans 
Trans Pier  

1 & 2 

 M C M C M C M C 
Positive SF 10410 1.20E-4 1386 2.45E-3 1970 0.00168 1588 0.00163 
Negative SF 1613 8.37E-4 1628 5.45E-4 1598 0.00168 1291 0.00163 

Normalized 
Moment 

Curvature 

-1 -35 -1 -20 -1.09 -30 -1.1 -30 
-1 -22 -1 -10 -1.09 -22 -1.1 -20 
-1 -1 -1 -5 -1 -1 -1 -1 

-0.8 -0.36 -1 -1 -0.76 -0.22 -0.76 -0.22 
0 0 0 0 0 0 0 0 
1 1 0.875 0.22 0.76 0.22 0.76 0.22 
1 3 1 1 1 1 1 1 
1 5 1 5 1 3 1 3 
1 15 1 15 1 13 1 13 

 Trans End 1 & 2       
 M C       
Positive SF 985 0.00163       
Negative SF 799 0.00163       

Normalized 
Moment 

Curvature 

-1.09 -30       
-1.09 -20       

-1 -1       
-0.76 -0.22       

0 0       
0.76 0.22       

1 1       
1 3       
1 13       

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-21 

Section Start (ft) End (ft) 
1.1 0 77 
1.2 77 91 
2.2 91 119 
3.2 119 145.5 
2.2 145.5 173.5 
1.1 173.5 243.5 
2.2 243.5 271.5 
3.2 271.5 298 
2.2 298 326 
1.2 326 333 
1.1 333 417 

 

  



 

B-22 

Bridge 10: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 2.2 Long. Int. 2.2 

 M C M C M C M C 
Positive SF 217603 9.71E-05 212466 0.000254 278214 0.000103 270328 0.000208 
Negative SF 140128 6.24E-05 142863 6.53E-05 179860 0.000066 183001 6.94E-05 

Normalized 
Moment 

Curvature 

-1.36 -35 -1.37 -35 -1.35 -35 -1.38 -35 
-1.36 -24 -1.37 -23 -1.35 -23 -1.38 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.966 0.64 0.84 0.14 0.92 0.56 0.98 0.52 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 3.1 Long. Int. 3.1 Long. Ext. 3.2 Long. Int. 3.2 

 M C M C M C M C 
Positive SF 296612 0.000104 286104 0.000157 298104 0.000104 288148 0.000157 
Negative SF 178276 6.71E-05 181632 7.05E-05 188232 6.71E-05 191464 7.05E-05 

Normalized 
Moment 

Curvature 

-1.38 -35 -1.39 -35 -1.37 -35 -1.39 -35 
-1.38 -25 -1.39 -25 -1.37 -25 -1.39 -25 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.97 0.64 0.97 0.64 0.885 0.36 0.96 0.45 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-23 

 Long. Ext. 4.2 Long. Int. 4.2 Long. Ext. 5.2 Long. Int. 5.2 

 M C M C M C M C 
Positive SF 384584 0.000108 375509 0.000113 392385 0.000105 383816 0.000156 
Negative SF 281405 6.95E-05 284502 7.28E-05 320221 6.73E-05 322860 7.01E-05 

Normalized 
Moment 

Curvature 

-1.37 -35 -1.39 -35 -1.38 -35 -1.39 -35 
-1.37 -25 -1.39 -23 -1.38 -25 -1.39 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.885 0.36 0.96 0.45 0.885 0.36 0.96 0.45 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 6.2 Long. Int. 6.2 Long. Ext. 7.2 Long. Int. 7.2 

 M C M C M C M C 
Positive SF 409398 0.000106 402775 0.000158 40078 0.000109 393203 0.00115 
Negative SF 331376 6.81E-05 333892 7.09E-05 289823 7.03E-05 293010 7.36E-05 

Normalized 
Moment 

Curvature 

-1.38 -35 -1.38 -35 -1.38 -35 -1.38 -35 
-1.38 -25 -1.38 -23 -1.38 -23 -1.38 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.885 0.36 0.96 0.45 0.919 0.36 0.96 0.45 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-24 

 Long. Ext. 8.1 Long. Int. 8.1 Long. Ext. 8.2 Long. Int. 8.2 

 M C M C M C M C 
Positive SF 311592 0.000106 300765 0.000111 314537 0.000106 306241 0.000159 
Negative SF 186784 6.81E-05 190210 7.15E-05 196656 6.81E-05 199977 7.15E-05 

Normalized 
Moment 

Curvature 

-1.38 -35 -1.38 -35 -1.38 -35 -1.38 -35 
-1.38 -23 -1.38 -23 -1.38 -23 -1.38 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.88 0.36 0.96 0.45 0.88 0.36 0.977 0.64 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 9.1 Long. Int. 9.1 Long. Ext. 10.1 Long. Int. 10.1 

 M C M C M C M C 
Positive SF 286913 0.000103 276390 0.000155 267679 0.000102 257893 0.000152 
Negative SF 172623 6.64E-05 175858 6.96E-05 164251 6.53E-05 167380 6.85E-05 

Normalized 
Moment 

Curvature 

-1.38 -35 -1.38 -35 -1.38 -35 -1.38 -35 
-1.38 -23 -1.38 -23 -1.38 -23 -1.38 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.88 0.36 0.955 0.45 0.87 0.36 0.955 0.45 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-25 

 Long. Ext. 11.2 Long. Int. 11.2 Long. Ext. 12.2 Long. Int. 12.2 

 M C M C M C M C 
Positive SF 321647 0.000103 312965 0.000207 462765 0.00011 460216 0.000164 
Negative 
SF 238811 6.06E-05 241427 6.89E-05 368211 7.05E-05 371099 7.36E-05 

Normalized 
Moment 

Curvature 

-1.38 -35 -1.38 -35 -1.38 -35 -1.38 -35 
-1.38 -23 -1.38 -23 -1.38 -23 -1.38 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.87 0.36 0.955 0.45 0.93 0.36 0.955 0.45 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Frac. Ext. 1.1 Frac. Int. 1.1 Frac. Ext. 2.2 Frac. Int. 2.2 

 M C M C M C M C 
Positive SF 4870 2.69E-4 1288 3.14E-3 7056 2.69E-4 1597 2.02E-3 
Negative 
SF 1882 6.73E-4 1963 4.48E-4 2966 6.73E-4 2950 4.48E-4 

Normalized 
Moment 

Curvature 

-1 -35 -1 -20 -1 -35 -1 -20 
-1 -20 -1 -10 -1 -20 -1 -10 
-1 -1 -1 -3 -1 -1 -1 -5 

-0.86 -0.4 -1 -1 -0.7 -0.4 -1 -1 
0 0 0 0 0 0 0 0 
1 1 0.93 0.36 1 1 0.88 0.56 
1 3 1 1 1 3 1 1 
1 5 1 5 1 5 1 5 
1 15 1 15 1 15 1 15 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-26 

 Frac. Ext. 3.1 Frac. Int. 3.1 Trans 
Trans End  

1 & 2 

 M C M C M C M C 
Positive SF 4870 2.69E-4 1288 3.14E-3 1683 0.00163 1810 0.00163 
Negative SF 1882 6.73E-4 1963 4.48E-4 1341 0.00163 1443 0.00163 

Normalized 
Moment 

Curvature 

-1 -35 -1 -20 -1.09 -30 -1.09 -30 
-1 -20 -1 -10 -1.09 -22 -1.09 -20 
-1 -1 -1 -3 -1 -1 -1 -1 

-0.86 -0.4 -1 -1 -0.76 -0.22 -0.76 -0.22 
0 0 0 0 0 0 0 0 
1 1 0.93 0.36 0.76 0.22 0.76 0.22 
1 3 1 1 1 1 1 1 
1 5 1 5 1 3 1 3 
1 15 1 15 1 13 1 13 

 Trans Pier 1 & 2       
 M C       
Positive SF 2573 0.00168       
Negative SF 2056 0.00168       

Normalized 
Moment 

Curvature 

-1.1 -30       
-1.1 -20       
-1 -1       

-0.76 -0.22       
0 0       

0.76 0.22       
1 1       
1 3       
1 13       
Note: M = moment (kip-in.) and C = curvature (1/in.). 

 



 

B-27 

Section Start (ft) End (ft) 
1.1 0 53 
2.2 53 95 
3.2 95 102 
4.2 102 116 
5.2 116 123 
6.2 123 161.5 
7.2 161.5 175.5 
8.2 175.5 210.5 
9.1 210.5 217.5 

10.1 217.5 238.5 
3.1 238.5 294.5 

10.1 294.5 315.5 
9.1 315.5 322.5 
8.1 322.5 343.5 
8.2 343.5 364.5 

11.1 364.5 378.5 
6.2 378.5 399.5 

12.2 399.5 424 
6.2 424 438 

11.2 438 459 
3.2 459 494 
1.1 494 603 

 

  



 

B-28 

Bridge 11: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 1.2 Long. Int. 1.2 

 M C M C M C M C 
Positive SF 447209 5.19E-05 408675 9.05E-05 448318 5.19E-05 411855 9.05E-05 
Negative SF 247199 5.19E-05 250474 5.82E-05 255876 5.19E-05 259154 5.82E-05 

Normalized 
Moment 

Curvature 

-1.38 -35 -1.39 -35 -1.38 -35 -1.38 -35 
-1.38 -24 -1.39 -23 -1.38 -23 -1.38 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.91 0.56 0.86 0.36 0.9 0.56 0.96 0.64 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 2.2 Long. Int. 2.2 Long. Ext. 3.2 Long. Int. 3.2 

 M C M C M C M C 
Positive SF 530622 5.46E-05 472660 6.18E-05 539602 5.22E-05 508662 8.94E-05 
Negative SF 293839 5.46E-05 296990 6.18E-05 387820 5.22E-05 390551 5.75E-05 

Normalized 
Moment 

Curvature 

-1.38 -35 -1.37 -35 -1.37 -35 -1.39 -35 
-1.38 -23 -1.37 -21 -1.37 -23 -1.39 -25 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.92 0.56 0.91 0.56 0.92 0.56 0.96 0.45 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-29 

 Long. Ext. 4.2 Long. Int. 4.2 Long. Ext. 5.1 Long. Int. 5.1 

 M C M C M C M C 
Positive SF 802228 5.61E-05 774300 9.56E-05 535682 5.36E-05 494752 9.34E-05 
Negative SF 624428 5.61E-05 626681 6.14E-05 326054 5.36E-05 329068 0.00006 

Normalized 
Moment 

Curvature 

-1.37 -35 -1.4 -35 -1.37 -35 -1.36 -35 
-1.37 -23 -1.4 -23 -1.37 -23 -1.36 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.92 0.56 0.977 0.64 0.92 0.56 0.977 0.64 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 5.2 Long. Int. 5.2 Long. Ext. 6.1 Long. Int. 6.1 

 M C M C M C M C 
Positive SF 537206 5.36E-05 498665 9.34E-05 539611 0.000053 503906 9.17E-05 
Negative SF 335055 5.36E-05 338073 0.00006 351542 0.000053 354478 0.000059 

Normalized 
Moment 

Curvature 

-1.37 -35 -1.39 -35 -1.37 -35 -1.39 -35 
-1.37 -23 -1.39 -23 -1.37 -23 -1.39 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.92 0.56 0.977 0.64 0.92 0.56 0.977 0.64 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 

  



 

B-30 

 Frac. Ext. 1.2 Frac. Int. 1.2 Frac. Ext. 6.1 Frac. Int. 6.1 

 M C M C M C M C 
Positive SF 15220 1.09E-4 1584 2.29E-3 11569 1.09E-4 1347 2.29E-3 
Negative SF 2476 4.91E-4 2458 5.09E-4 1859 4.91E-4 1799 5.09E-4 

Normalized 
Moment 

Curvature 

-1 -35 -1 -20 -1 -35 -1 -20 
-1 -22 -1 -11 -1 -22 -1 -10 
-1 -1 -1 -5 -1 -1 -1 -5 

-0.7 -0.22 -1 -1 -0.88 -0.22 -1 -1 
0 0 0 0 0 0 0 0 
1 1 0.93 0.56 1 1 0.87 0.22 
1 3 1 1 1 3 1 1 
1 5 1 5 1 5 1 5 
1 15 1 15 1 15 1 15 

 Trans Trans End 1 Trans End 2 Trans Pier 1 

 M C M C M C M C 
Positive SF 1683 0.00168 663 0.00168 407 0.00168 1810 0.00168 
Negative SF 1341 0.00168 524 0.00168 319 0.00168 1443 0.00168 

Normalized 
Moment 

Curvature 

-1.06 -30 -1.09 -30 -1.09 -30 -1.1 -30 
-1.06 -22 -1.09 -20 -1.09 -20 -1.1 -20 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.76 -0.22 -0.76 -0.22 -0.76 -0.22 -0.76 -0.22 

0 0 0 0 0 0 0 0 
0.76 0.22 0.76 0.22 0.76 0.22 0.76 0.22 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-31 

 Trans Pier 2 

 M C 
Positive SF 1556 0.00168 
Negative 
SF 1239 0.00168 

Normalized 
Moment 

Curvature 

-1.05 -30 
-1.05 -22 

-1 -1 
-0.76 -0.22 

0 0 
0.76 0.22 

1 1 
1 3 
1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 

Section Start (ft) End (ft) 
1.1 0 62.5 
1.2 62.5 118.5 
2.2 118.5 153.5 
3.2 153.5 167.5 
4.2 167.5 245 
3.2 245 280 
5.2 280 315 
5.1 315 336 
6.1 336 462 
5.1 462 490 
5.2 490 518 
3.2 518 553 
4.2 553 629.5 
3.2 629.5 650.5 
2.2 650.5 678.5 
1.2 678.5 734.5 
1.1 734.5 824 

 

  



 

B-32 

Bridge 12: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 2.2 Long. Int. 2.2 

 M C M C M C M C 
Positive SF 177808 8.01E-05 150041 0.000279 265809 4.91E-05 242338 0.00016 
Negative SF 91919 8.01E-05 95191 9.29E-05 148519 8.83E-05 152662 0.000103 

Normalized 
Moment 

Curvature 

-1.38 -35 -1.36 -35 -1.39 -35 -1.38 -35 
-1.38 -24 -1.36 -23 -1.39 -21 -1.38 -19 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.93 0.56 0.89 0.19 0.54 0.4 0.91 0.56 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 3.2 Long. Int. 3.2 Frac. Ext. 1.1 Frac. Int. 1.1 

 M C M C M C M C 
Positive SF 271522 8.54E-05 249832 0.000216 9162 1.04E-4 1291 3.40E-3 
Negative SF 206366 8.54E-05 208809 9.71E-05 1456 1.04E-4 1448 4.86E-4 

Normalized 
Moment 

Curvature 

-1.35 -35 -1.37 -35 -1 -35 -1 -20 
-1.35 -23 -1.37 -23 -1 -22 -1 -11 

-1 -1 -1 -1 -1 -5 -1 -5 
-0.7 -0.56 -0.8 -0.56 -1 -1 -1 -1 

0 0 0 0 0 0 0 0 
0.92 0.56 0.96 0.45 1 1 0.86 0.14 

1 1 1 1 1 3 1 1 
1 3 1 3 1 5 1 5 
1 13 1 13 1 15 1 15 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-33 

 Trans Trans End 1 Trans End 2 Trans Pier 1 

 M C M C M C M C 
Positive SF 2107 0.00152 1053 0.00152 1836 0.00152 1836 0.00152 
Negative SF 1745 0.00152 872 0.00152 1522 0.00152 1522 0.00152 

Normalized 
Moment 

Curvature 

-1.12 -30 -1.12 -30 -1.13 -30 -1.13 -30 
-1.12 -22 -1.12 -21 -1.13 -21 -1.13 -21 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.76 -0.22 -0.76 -0.22 -0.76 -0.22 -0.76 -0.22 

0 0 0 0 0 0 0 0 
0.76 0.22 0.76 0.22 0.76 0.22 0.76 0.22 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Trans Pier 2       
 M C       
Positive SF 2618 0.00152       
Negative SF 2172 0.00152       

Normalized 
Moment 

Curvature 

-1.13 -30       
-1.13 -21       

-1 -1       
-0.76 -0.22       

0 0       
0.76 0.22       

1 1       
1 3       
1 13       
Note: M = moment (kip-in.) and C = curvature (1/in.). 

 

Section Start (ft) End (ft) 
1.1 0 84 
2.2 84 112 
3.2 112 153 
2.2 153 181 
1.1 181 258 
2.2 258 286 
3.2 286 336.5 
2.2 336.5 364.5 
1.1 364.5 465 
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Bridge 13: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 2.1 Long. Int. 2.1 

 M C M C M C M C 
Positive SF 141226 0.000132 137479 0.000344 131426 0.00013 127379 0.000338 
Negative SF 94747 0.000085 96545 8.84E-05 89122 8.37E-05 90702 0.000087 

Normalized 
Moment 

Curvature 

-1.38 -35 -1.38 -35 -1.39 -35 -1.4 -35 
-1.38 -24 -1.38 -23 -1.39 -23 -1.4 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.97 0.64 0.89 0.19 0.88 0.36 0.91 0.56 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 3.2 Long. Int. 3.2 Long. Ext. 4.2 Long. Int. 4.2 

 M C M C M C M C 
Positive SF 183037 0.000141 181343 0.000282 206928 9.14E-05 204910 0.000285 
Negative SF 127072 9.04E-05 130833 9.41E-05 154578 9.14E-05 158006 0.000095 

Normalized 
Moment 

Curvature 

-1.36 -35 -1.37 -35 -1.36 -35 -1.37 -35 
-1.36 -23 -1.37 -23 -1.36 -23 -1.37 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.8 -0.56 -0.83 -0.56 

0 0 0 0 0 0 0 0 
0.93 0.36 0.97 0.52 0.93 0.56 0.96 0.33 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
 



 

B-35 

 Long. Ext. 5.2 Long. Int. 5.2 Frac. Ext. 2.1 Frac. Int. 2.1 

 M C M C M C M C 
Positive SF 255210 9.29E-05 251558 0.000214 4670 2.45E-4 1313 3.58E-3 
Negative 
SF 206924 9.29E-05 209171 9.61E-05 1517 1.10E-4 1654 5.11E-4 

Normalized 
Moment 

Curvature 

-1.36 -35 -1.39 -35 -1 -35 -1 -20 
-1.36 -23 -1.39 -23 -1 -18 -1 -10 

-1 -1 -1 -1 -1 -1 -1 -5 
-0.85 -0.56 -0.83 -0.56 -0.84 -0.22 -1 -1 

0 0 0 0 0 0 0 0 
0.95 0.56 0.97 0.45 1 1 0.95 0.36 

1 1 1 1 1 3 1 1 
1 3 1 3 1 5 1 5 
1 13 1 13 1 15 1 15 

 Trans  Trans End 1 & 2 Trans Pier 1 & 2   
 M C M C M C   
Positive SF 1683 0.00168 523 0.00168 2430 0.00168   
Negative 
SF 1341 0.00168 415 0.00168 1946 0.00168   

Normalized 
Moment 

Curvature 

-1.06 -30 -1.05 -30 -1.06 -30   
-1.06 -22 -1.05 -21 -1.06 -21   

-1 -1 -1 -1 -1 -1   
-0.76 -0.22 -0.76 -0.22 -0.76 -0.22   

0 0 0 0 0 0   
0.76 0.22 0.76 0.22 0.76 0.22   

1 1 1 1 1 1   
1 3 1 3 1 3   
1 13 1 13 1 13   

Note: M = moment (kip-in.) and C = curvature (1/in.). 
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Section Start (ft) End (ft) 
1.1 0 12.75 
2.1 12.75 89.75 
1.1 89.75 96.75 
3.2 96.75 124.75 
4.2 124.75 131.75 
5.2 131.75 162.5 
4.2 162.5 169.5 
3.2 169.5 197.5 
1.1 197.5 204.5 
2.1 204.5 281.5 
1.1 281.5 288.5 
3.2 295.5 316.5 
4.2 316.5 323.5 
5.2 323.5 354.5 
4.2 354.5 361.25 
3.2 361.5 389.25 
1.1 389.25 396.25 
2.1 396.25 473.25 
1.1 473.25 439 
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Bridge 14: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 2.1 Long. Int. 2.1 

 M C M C M C M C 
Positive SF 173059 0.000077 141867 0.000273 212111 8.09E-05 179280 0.000215 
Negative SF 92595 0.000077 95620 9.09E-05 105407 8.09E-05 111621 9.69E-05 

Normalized 
Moment 

Curvature 

-1.34 -35 -1.36 -35 -1.39 -35 -1.35 -35 
-1.34 -23 -1.36 -23 -1.39 -23 -1.35 -21 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.92 0.56 0.87 0.19 0.95 0.56 0.91 0.25 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 3.2 Long. Int. 3.2 Long. Ext. 4.2 Long. Int. 4.2 

 M C M C M C M C 
Positive SF 216831 8.15E-05 185714 0.000271 250576 8.53E-05 222027 0.000161 
Negative SF 117869 8.15E-05 122621 9.75E-05 123737 8.53E-05 131276 0.000103 

Normalized 
Moment 

Curvature 

-1.36 -35 -1.37 -35 -1.39 -35 -1.37 -35 
-1.36 -23 -1.37 -23 -1.39 -21 -1.37 -19 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.8 -0.56 -0.83 -0.56 

0 0 0 0 0 0 0 0 
0.95 0.56 0.97 0.45 0.98 0.56 0.96 0.33 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
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 Long. Ext. 5.2 Long. Int. 5.2 Frac. Ext. 1.1 Frac. Int. 1.1 

 M C M C M C M C 
Positive SF 254768 8.39E-05 226322 0.000221 9168 1.04E-4 1220 2.28E-3 
Negative 
SF 162599 8.39E-05 166674 9.96E-05 1539 1.04E-4 1522 5.06E-4 

Normalized 
Moment 

Curvature 

-1.35 -35 -1.38 -35 -1 -35 -1 -20 
-1.35 -23 -1.38 -23 -1 -23 -1 -10 

-1 -1 -1 -1 -1 -5 -1 -5 
-0.85 -0.56 -0.83 -0.56 -1 -1 -1 -1 

0 0 0 0 0 0 0 0 
0.98 0.56 0.97 0.45 1 1 0.88 0.22 

1 1 1 1 1 3 1 1 
1 3 1 3 1 5 1 5 
1 13 1 13 1 15 1 15 

 Trans  Trans End 1 & 2 Trans Pier 1 & 2   
 M C M C M C   
Positive SF 1683 0.00168 297 0.002611 2192 0.00168   
Negative 
SF 1341 0.00168 216 0.00168 1750 0.00168   

Normalized 
Moment 

Curvature 

-1.06 -30 -1 -30 -1.06 -30   
-1.06 -22 -1 -21 -1.06 -21   

-1 -1 -1 -1 -1 -1   
-0.76 -0.22 -0.76 -0.22 -0.76 -0.22   

0 0 0 0 0 0   
0.76 0.22 0.77 0.14 0.76 0.22   

1 1 1 1 1 1   
1 3 1 3 1 3   
1 13 1 13 1 13   

Note: M = moment (kip-in.) and C = curvature (1/in.). 
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Bridge 15: Hinge and Section Data 

 Long. Ext. 1.1 Long. Int. 1.1 Long. Ext. 1.2 Long. Int. 1.2 

 M C M C M C M C 
Positive SF 323409 5.78E-05 293107 0.000147 323958 5.78E-05 295102 0.000147 
Negative SF 203763 5.78E-05 207149 6.61E-05 212854 5.78E-05 216195 6.61E-05 

Normalized 
Moment 

Curvature 

-1.36 -35 -1.38 -35 -1.36 -35 -1.38 -35 
-1.36 -23 -1.38 -23 -1.36 -23 -1.38 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.91 0.56 0.87 0.19 0.91 0.56 0.87 0.19 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 2.1 Long. Int. 2.1 Long. Ext. 2.2 Long. Int. 2.2 

 M C M C M C M C 
Positive SF 384229 5.99E-05 350980 0.000153 385000 5.99E-05 350195 0.000107 
Negative SF 246757 5.99E-05 250145 6.88E-05 256878 5.99E-05 260221 6.88E-05 

Normalized 
Moment 

Curvature 

-1.36 -35 -1.38 -35 -1.36 -35 -1.38 -35 
-1.36 -23 -1.38 -23 -1.36 -23 -1.38 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.7 -0.56 -0.8 -0.56 

0 0 0 0 0 0 0 0 
0.95 0.56 0.91 0.25 0.95 0.56 0.91 0.25 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
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 Long. Ext. 3.2 Long. Int. 3.2 Long. Ext. 4.2 Long. Int. 4.2 

 M C M C M C M C 
Positive SF 415986 6.06E-05 383112 0.000155 448197 0.000061 411657 0.000108 
Negative SF 285021 6.06E-05 288302 6.96E-05 326085 0.000061 329189 6.95E-05 

Normalized 
Moment 

Curvature 

-1.36 -35 -1.38 -35 -1.37 -35 -1.39 -35 
-1.36 -23 -1.38 -23 -1.37 -23 -1.39 -23 

-1 -1 -1 -1 -1 -1 -1 -1 
-0.7 -0.56 -0.8 -0.56 -0.8 -0.56 -0.83 -0.56 

0 0 0 0 0 0 0 0 
0.95 0.56 0.97 0.45 0.98 0.56 0.96 0.33 

1 1 1 1 1 1 1 1 
1 3 1 3 1 3 1 3 
1 13 1 13 1 13 1 13 

 Long. Ext. 5.2 Long. Int. 5.2 Frac. Ext. 1.1 Frac. Int. 1.1 

 M C M C M C M C 
Positive SF 582446 4.79E-05 550752 9.82E-05 12087 1.15E-4 1347 2.12E-3 
Negative SF 469228 8.62E-05 471302 9.82E-05 2126 8.06E-4 2067 4.72E-4 

Normalized 
Moment 

Curvature 

-1.24 -35 -1.25 -35 -1 -35 -1 -20 
-1.24 -19 -1.25 -17 -1 -23 -1 -10 

-1 -1 -1 -1 -1 -1 -1 -5 
-0.85 -0.56 -0.96 -0.56 -0.78 -0.36 -1 -1 

0 0 0 0 0 0 0 0 
0.55 0.4 0.96 0.56 1 1 0.77 0.22 

1 1 1 1 1 3 1 1 
1 3 1 3 1 5 1 5 
1 13 1 13 1 15 1 15 

Note: M = moment (kip-in.) and C = curvature (1/in.). 
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 Frac. Ext. 2.1 Frac. Int. 2.1 Trans 
Trans End 

 1 & 2 

 M C M C M C M C 
Positive SF 12087 1.15E-4 1347 2.12E-3 1970 0.00168 1588 0.00168 
Negative SF 2126 8.06E-4 2067 4.72E-4 1598 0.00168 1291 0.00168 

Normalized 
Moment 

Curvature 

-1 -35 -1 -20 -1.06 -30 -1.11 -30 
-1 -23 -1 -10 -1.06 -22 -1.11 -22 
-1 -1 -1 -5 -1 -1 -1 -1 

-0.78 -0.36 -1 -1 -0.76 -0.22 -0.76 -0.22 
0 0 0 0 0 0 0 0 
1 1 0.77 0.22 0.76 0.22 0.77 0.14 
1 3 1 1 1 1 1 1 
1 5 1 5 1 3 1 3 
1 15 1 15 1 13 1 13 

 Trans Pier 1 & 2       
 M C       
Positive SF 2701 0.00168       
Negative SF 2193 0.00168       

Normalized 
Moment 

Curvature 

-1.09 -30       
-1.09 -21       

-1 -1       
-0.76 -0.22       

0 0       
0.76 0.22       

1 1       
1 3       
1 13       

Note: M = moment (kip-in.) and C = curvature (1/in.). 
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Section Start (ft) End (ft) 
1.1 0 100 
2.1 100 114 
2.2 114 135 
3.2 135 156 
4.2 156 177 
5.2 177 207.5 
4.2 207.5 228.5 
3.2 228.5 249.5 
1.2 249.5 256.5 
1.1 256.5 277.5 
2.1 277.5 410.5 
1.1 410.5 424.5 
1.2 424.5 431.5 
3.2 431.5 452.5 
4.2 452.5 473.5 
5.2 473.5 504 
4.2 504 525 
3.2 525 546 
2.2 546 567 
1.1 567 695 
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