

Designing Pavements to Support the Heavy Loads in the Energy Development Areas

Technical Report 0-6839-P1 & P2

Cooperative Research Program

TEXAS A&M TRANSPORTATION INSTITUTE COLLEGE STATION, TEXAS

in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/documents/0-6839-P1-P2.pdf

TxDOT Project 0-6839 Workshop: Designing Pavements to Support the Heavy Loads in the Energy Development Areas

TxDOT: Darrin Jensen, Hua Chen, Dar-Hao Chen, Mike Arellano, Andy Naranjo, Robert Moya III

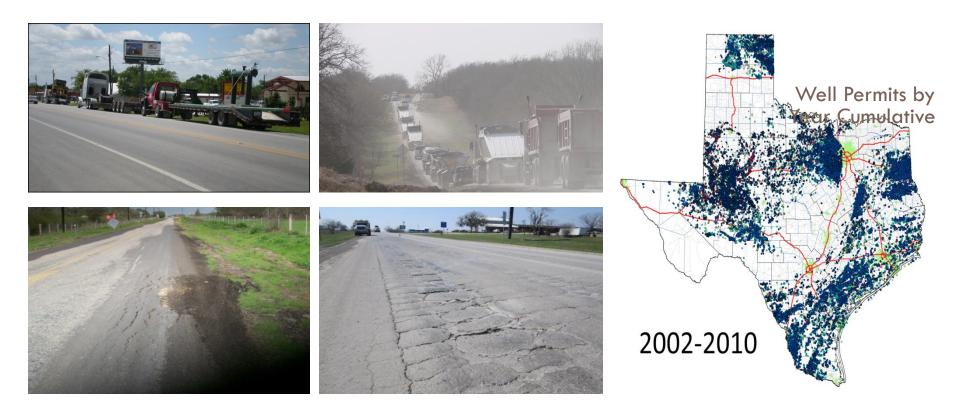
Texas A&M Transportation Institute

Project 0-6839 Research Team

Austin, Tx; February 26, 2018

Concrete pavement options

Flexible pavement options

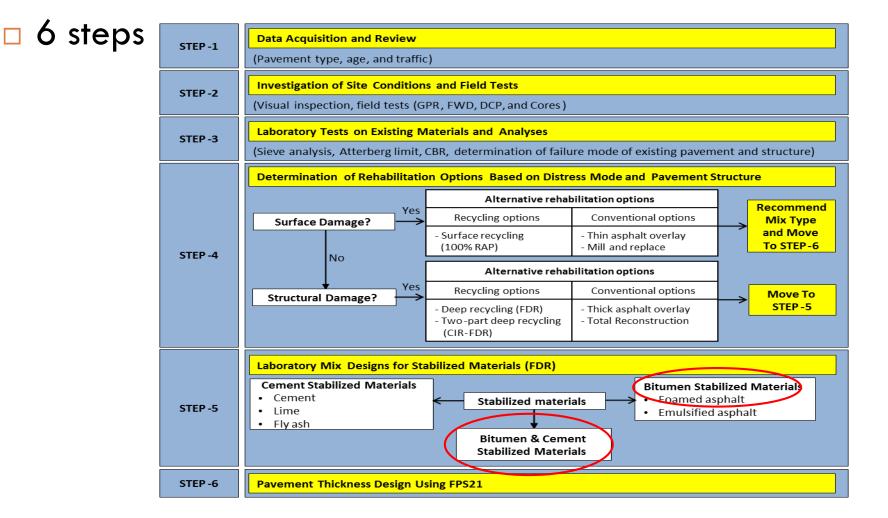

Implementation plan

Project Overview

Energy development areas

Heavy traffic and sever failure

Project Overview

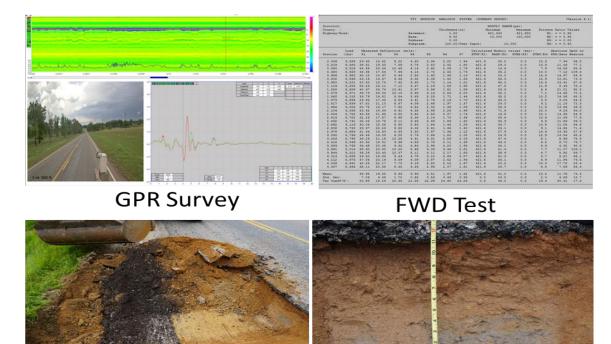

- 2002-2010
- "Features" and challenges of pavement design
 - Early opening requirements (no detours; end of day)
 - Weak/thin existing materials (most FM roads)
 - Excessive traffic loads (50-60% overload)
 - Available funds (limited fund vs. miles and miles)

Project Main Objectives

Develop materials options suitable for early trafficking

- Recommend pavement designs that are structurally adequate for overloaded vehicles
- Work with Districts to design, construct, and monitor test sections with new materials and design approaches


Selecting rehabilitation options


Case Study: FM906 in Paris District, Texas

Project Info. (Step-1)

- From FM 196 to US 271
- 4.5 miles long (net)
- AADT (2015): 904
- Future AADT (2035): 1,810
- Truck Percent: 4.3
- Speed Limit: 55 MPH
- Number of Lanes: 2
- Existing Structure

Field Survey and Test (Step-2)

Test Pit

Material Collection and Laboratory Test (Step-3)

Sieve Analysis / Plastic Index / Proctor Test

Gradation % Passing									
Sieve	Existing Base	New Base							
1 ¾ "	100	100							
1 ¼ "	99.0	95.4							
3⁄4 "	90.5	78.5							
3/8 "	66.0	57.7							
# 4	55.3	44.1							
# 40	29.0	28.2							
Plasticity Index	7	4							
Combined Materials		Dry Density							
	OMC (%)	(pcf)							
75% Existing Base & 25% RAP	5.4	133.0							
42% Existing Base, 33% New Base, & 25% RAP	6.0	131.1							

Rehabilitation Method Selection (Step-4): We select FDR for this study

Laboratory Mix Designs on FDR Mixes (Step-5)

Design #	Material %	%RAP	Foamed % (PG64-22)	Emulsion % (CSS-1H)	Additive
1	75% EB	25%	2.4	-	0%
2	75% EB	25%	2.4	-	1% Cement
3	42% EB 33% NB	25%	2.4	-	0%
4	42% EB 33% NB	25%	2.4	-	1% Cement
5	75% EB	25%	-	4	0%
6	75% EB	25%	-	4	1% Cement
7	42% EB 33% NB	25%	-	4	0%
8	42% EB 33% NB	25%	-	4	1% Cement

Moisture Conditioning

8 FDR Mixes

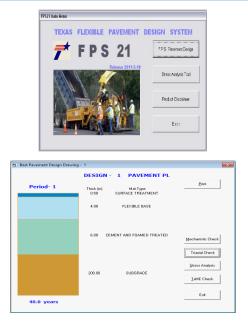
Design #	Material %	%RAP	Foamed % (PG64-22)	Emulsion % (CSS-1H)	Additive	Dry IDT (psi)	Wet IDT (psi)
1	75% EB	25%	2.4	-	0%	78.9	1.7
2	75% EB	25%	2.4		1% Cement	73.3	33.5
3	42% EB 33% NB	25%	2.4	-	0%	71.3	2.9
4	42% EB 33% NB	25%	2.4	-	1% Cement	49.3	37.9
5	75% EB	25%	1 N=	4	0%	76.4	50.2
6	75% EB	25%	-	4	1% Cement	53.2	41.1
7	42% EB 33% NB	25%	-	4	0%	67.5	42.7
8	42% EB 33% NB	25%	-	4	1% Cement	56.0	49.5

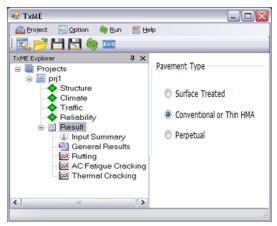
Rehabilitation Method Selection (Step-4): We select FDR for this study

Laboratory Mix Designs on FDR Mixes (Step-5)

Design #	Material %	%RAP	Foamed % (PG64-22)	Emulsion % (CSS-1H)	Additive
1	75% EB	25%	2.4	-	0%
2	75% EB	25%	2.4	-	1% Cement
3	42% EB 33% NB	25%	2.4	-	0%
4	42% EB 33% NB	25%	2.4	-	1% Cement
5	75% EB	25%	-	4	0%
6	75% EB	25%	-	4	1% Cement
7	42% EB 33% NB	25%	-	4	0%
8	42% EB 33% NB	25%	-	4	1% Cement

Moisture Conditioning

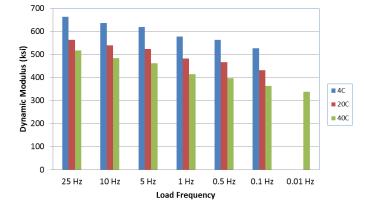

8 FDR Mixes


Design #	Material %	%RAP	Foamed % (PG64-22)	Emulsion % (CSS-1H)	Additive	Dry IDT (psi)	Wet IDT (psi)
1	75% EB	25%	2.4	-	0%	78.9	1.7
2	75% EB	25%	2.4		1% Cement	73.3	33.5
3	42% EB 33% NB	25%	2.4	-	0%	71.3	2.9
4	42% EB 33% NB	25%	2.4	-	1% Cement	49.3	37.9
5	75% EB	25%	1 N=	4	0%	76.4	50.2
6	75% EB	25%	-	4	1% Cement	53.2	41.1
7	42% EB 33% NB	25%	-	4	0%	67.5	42.7
8	42% EB 33% NB	25%	-	4	1% Cement	56.0	49.5

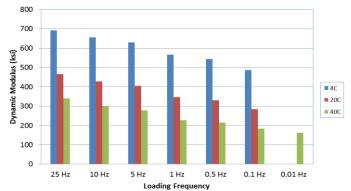
Pavement Thickness Design using FPS 21(Step-6)

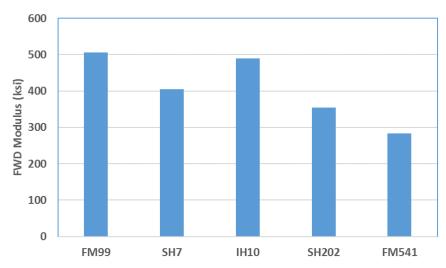
	FM 99	FM 906	FM 541
AADT (2015)	3,352	904	697
Future AADT (2035)	6,710	1,810	1,400
Truck Percent (%)	4.9	4.3	22.8
Speed Limit (MPH)	60	55	55
Number of Lanes	2	2	2
18 kip ESAL for 20-year (millions)	1.144	0.271	1.111
Variables used for ESAL calculation	Design years=20 Dir. Distribution=0.5 Lane Distribution=1.0 Growth Rate (%)=3.50 Truck Factor= 1.35	Design years=20 Dir. Distribution=0.5 Lane Distribution=1.0 Growth Rate (%)=3.53 Truck Factor= 1.35	Design years=20 Dir. Distribution=0.5 Lane Distribution=1.0 Growth Rate (%)=3.54 Truck Factor= 1.35
Subgrade Modulus (ksi)	19.5	10	14.3

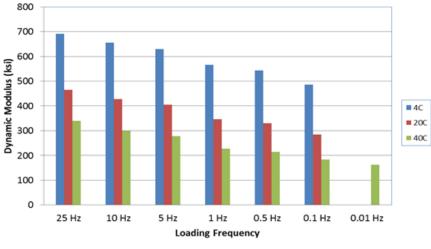

- □ FPS21
 - Modulus
 - Traffic: ESALs
 - Design life
- Texas Triaxial check
 - One pass shear failure
- TxME check
 - Load spectra
 - Rutting
 - Cracking



FDR materials moduli: laboratory measurement




FM541: Foamed Asphalt Stabilized Base



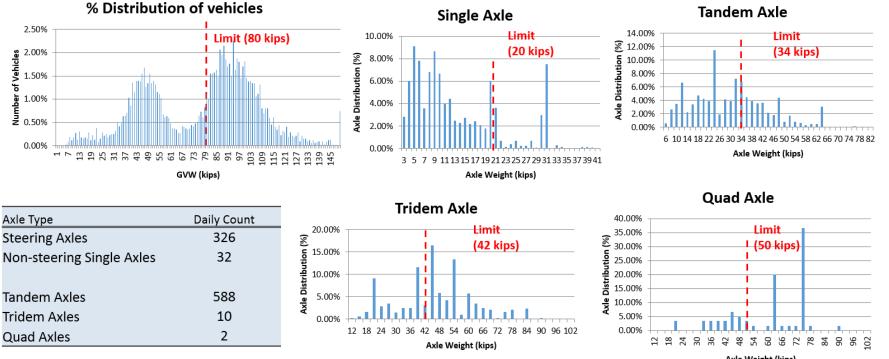
FDR materials moduli: lab vs. FWD (field)

Field Modulus

I-10 Asphalt Emulsion Stabilized Base

Recommended modulus: 300 ksi

Traffic: load spectrum; Case study: FM468

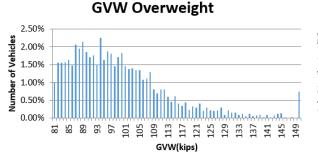

Vehicle Class Distribution & Growth

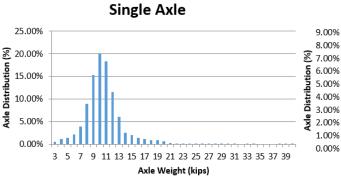
Vehicle Class	Pictorial View	Distribution (%)
Class04		0.94
Class05		3.24
Class06		2.87
Class07		0.40
Class08		2.51
Class09		86.88
Class10		2.97
Class11		0.00
Class12		0.08
Class13	0- 00 00 0 0	0.11
	Sum of Distribution =	100.00%

Traffic: load spectrum; Case study: FM468

GVW & Axle Load Distribution

Portable WIM | 16-Days Traffic Data Collection | GVW = Gross Vehicle Weight




Axle Weight (kips)

Traffic: load spectrum; Case study: FM468

Overloading & Overweight Data

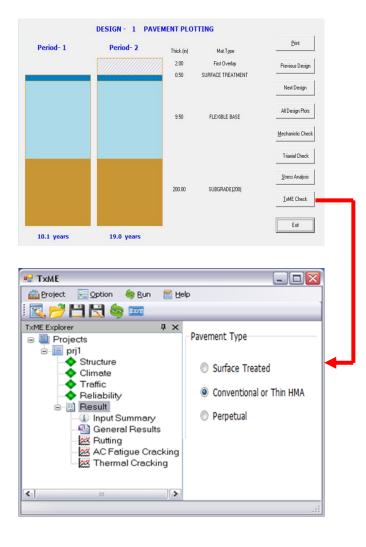
Portable WIM | 16-Days Traffic Data Collection

55.75 % Overloaded Trucks Daily (GVW ≥ 80 kips)

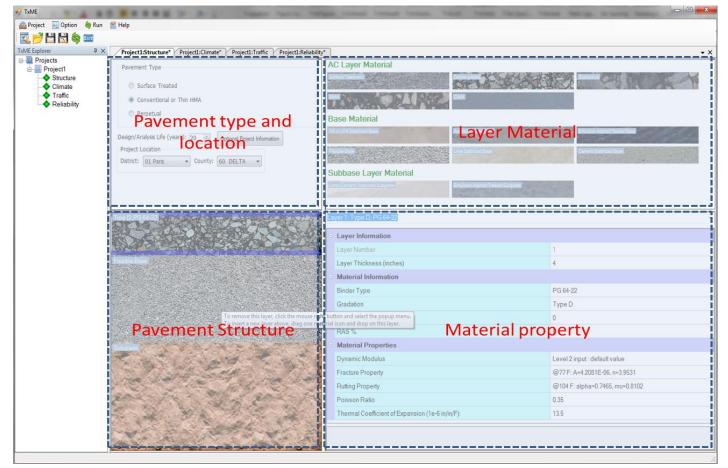
1.39 % Overloaded Trucks Daily (Single Axle Weight ≥20 kips)

52.92 % Overloaded Trucks Daily (Tandem Axle Weight ≥34 kips)

Over-Weight Summary	Daily Overweight Count (% of Total)	Maximum Overweight Recorded	Legal Limit	%age Overweight
GVW Overweight (<mark>≥ 80 kips</mark>)	182 <mark>(55.75%)</mark>	411 kips	80 kips	414%
Single Axles (≥ <mark>20 kips</mark>)	5 (1.39%)	41kips	20 kips	105%
Tandem Axles (<mark>≥ 34 kips</mark>)	311 <mark>(52.92%)</mark>	80 kips	34 kips	135.3%
Tridem Axles (<mark>≥ 42 kips</mark>)	4(41.03%)	90 kips	42 kips	114.3%
Quad Axles (≥ 50 kips)	1(48.48%)	90 kips	50 kips	80%


Tandem Axle

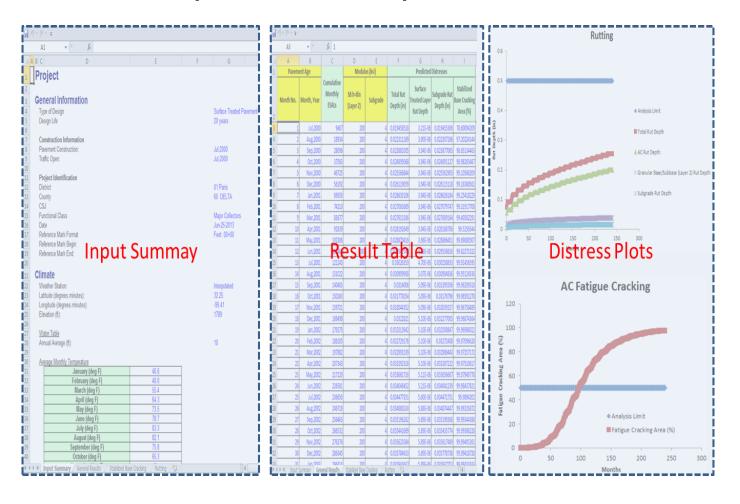
□ Traffic: load spectrum vs. ESAL


Highway ID	Station ID	AADTT	ESAL from TxME Load Spectra (20 years)
I35	513	10,867	49,650,718
I10	502	8,005	32,748,557
I20	526	7,704	50,529,653
I45	539	6,834	37,354,536
135	531	6,299	26,717,107
I20	544	5,767	28,243,048
US287	506	4,182	36,010,559
US287	528	3,247	17,228,683
SH114	527	2,656	13,479,223
SH130	532	2,269	7,682,393
US59	535	2,000	5,656,394
US82	530	919	3,120,864
US96	142	846	4,337,616
SH121	546	550	1,976,022
SH6	Portable WIM	474	1,830,420
US82	543	372	1,310,763
FM468	Portable WIM	1,062	11,437,641
FM3129	541	251	1,652,034
FM2223	800	142	516,928

TxME check

load spectrum

TxME check


TxME check: load spectrum

evel 2: ESALs						Lev	el 1: Loi	ad Spectra								
: Load Spectr	9															
neral Traffic Ir	formation		_				_	Axle	Configu	uration						_
								-	xle Tire							
(C . T.									ingle Ti	re Press	ure (psi	0:		100		
ffic Two-way	AADTT:				500)ual Tire					100		
	s in Design Dire				2			1.5								
Gen	erad	nfi	or	ma	atio	on		9	AX AX Ixle space	e (Col	nfi	gu	rat	tic	on
cent of Truck	ks in Design La	ne (%)	:		95.0			i 1 -								
eration Speed	i (mph):				60			2 H H	andem					51.6		
					00			12.1	Tridem A		:			49.2		
								(Quad Ax	le (in):				49.2		
Axle Load Dist	Monthly A									1	_			l	x	
Axle Load Dist View © Cumula		n		Axles	teering	Axle	۲	Other Sir	gle Axle		© Tar	ndem A	xle	Į	×	
View	tribution	'n		© St	teering . ridem A:			Other Sir Quad Axi	-		© Tar	ndem A	xle	Į	×	
View © Cumula © Distribu	tribution	n		© St					-		© Tar	ndem A	xle	Į	×	
View © Cumula © Distribu	tribution tive Distributio		3000	© 51 © T		xle	0		e) 150(-		
View Cumula Distribut Axle Factors	tribution ative Distribution ution by Axle Type Veh. Class 4	Total 100.00	1.8	 S1 T 4000 0.96 	ridem A 5000 6 2.91 3	xle 0000 7 .99 6	7000 8 5.8 1	Quad Ax	e) 10000 10.97	9.88	12000	13000 7.33) 14000 5.55	4.23		
View Cumula O Distribu Axle Factors Season January January	tribution htive Distribution ution by Axle Type Veh. Class 4 5	Total 100.00 100.00	1.8 10.05	© Si © T 4000 0.96 13.21	ridem A: 5000 6 2.91 3 16.42 1	xle 0000 7 .99 6 0.61 9	7000 8 5.8 1 5.22 8	Quad Ax 000 900 1.47 11.3 .27 7.12	e 10000 10.97 5.85	0 11000 9.88 4.53	12000 8.54 3.46	13000 7.33 2.56	0 14000 5.55 1.92	4.23 1.54		
View Cumula Distribu Axle Factors Season January January January	tribution ative Distribution ution by Axle Type Veh. Class 4 5 5 6	Total 100.00 100.00 100.00	1.8 10.05 2.47	© St © T 4000 0.96 13.21 1.78	ridem A: 5000 6 2.91 3 16.42 1 3.45 3	xle 0000 7 .99 6 0.61 9 .95 6	7000 8 5.8 1: 9.22 8. 5.7 8.	Quad Ax	0 10000 10.97 5.85 5 13.57	0 11000 9.88 4.53 12.13	12000 8.54 3.46 9.48	13000 7.33 2.56 6.83	14000 5.55 1.92 5.05	4.23 1.54 3.74		
View Cumula Distribu Axle Factors Season January January January January	tribution attive Distribution the Distribution by Axle Type Veh. Class 4 5 6 7	Total 100.00 100.00 100.00 100.00	1.8 10.05 2.47 2.14	 St T 4000 0.96 13.21 1.78 0.55 	ridem A 5000 6 2.91 3 16.42 1 3.45 3 2.42 2	xle 0000 7 .99 6 0.61 9 .95 6 .7 3	7000 8 5.8 1 5.22 8 5.7 8 8.21 5	Quad Axi 0000 9000 1.47 11.3 .27 7.12 .45 11.8 .81 5.26	 10000 10.97 5.85 13.57 7.39) 11000 9.88 4.53 12.13 6.85	12000 8.54 3.46 9.48 7.42	13000 7.33 2.56 6.83 8.99	14000 5.55 1.92 5.05 8.15	4.23 1.54 3.74 7.77		
View Cumula Distribut Axle Factors Season January January January January January	tribution ative Distribution tition by Axle Type Veh. Class 4 5 6 6 7 8	Total 100.00 100.00 100.00 100.00 100.00	1.8 10.05 2.47 2.14 11.65	 State T T 4000 0.96 13.21 1.78 0.55 5.37 	ridem A 5000 6 2.91 3 16.42 1 3.45 3 2.42 2 7.84 6	xle 0000 7 .99 6 0.61 9 .95 6 .7 3 .99 7	7000 8 5.8 1: 5.22 8. 5.7 8. 5.21 5. 7.99 9.	Quad Axi 0000 9000 1.47 11.3 27 7.12 45 11.8 81 5.26 63 9.93	 a b a a	0 11000 9.88 4.53 12.13 6.85 6.47	12000 8.54 3.46 9.48 7.42 5.19	13000 7.33 2.56 6.83 8.99 3.99	14000 5.55 1.92 5.05 8.15 3.38	4.23 1.54 3.74 7.77 2.73		
View Cumula Distribu Axle Factors Season January January January January January January	tribution ative Distribution by Axle Type Veh. Class 4 5 6 7 7 8 9	Total 100.00 100.00 100.00 100.00 100.00 100.00	1.8 10.05 2.47 2.14 11.65 1.74	 S1 T 4000 0.96 13.21 1.78 0.55 5.37 1.37 	ridem A 5000 6 2.91 3 16.42 1 3.45 3 2.42 2 7.84 6 2.84 3	xle 0000 7 .99 6 0.61 9 .95 6 .7 3 .99 7 .53 4	7000 8 5.8 1 5.22 8 5.7 8 3.21 5 7.99 9 4.93 8	Quad Axi 0000 9000 1.47 11.3 27 7.12 45 11.8 81 5.26 63 9.93 43 13.6	 10000 10.97 5.85 13.57 7.39 8.51 17.68 	0 11000 9.88 4.53 12.13 6.85 6.47 16.71	12000 8.54 3.46 9.48 7.42 5.19 11.57	13000 7.33 2.56 6.83 8.99 3.99 6.09	14000 5.55 1.92 5.05 8.15 3.38 3.52	4.23 1.54 3.74 7.77 2.73 1.91		
View Cumula View View View Season January January January January January January January January January January January	tribution ative Distribution ty Axle Type Veh. Class 4 5 6 7 7 8 9 9 10	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00	1.8 10.05 2.47 2.14 11.65 1.74 3.64	 S1 T 4000 0.96 13.21 1.78 0.55 5.37 1.37 1.24 	ridem A 5000 6 2.91 3 16.42 1 3.45 3 2.42 2 7.84 6 2.84 3 2.36 3	xle 0000 7 .99 6 0.61 9 .95 6 .7 3 .99 7 .53 4 .38 5	7000 8 5.8 1: 5.7 8. 5.7 8. 5.21 5. 7.99 9. 5.18 8.	Quad Axi 0000 9000 1.47 11.3 27 7.12 45 11.8 81 5.26 63 9.93 43 13.6 35 13.8	 10000 10.97 5.85 13.57 7.39 8.51 17.68 17.35) 11000 9.88 4.53 12.13 6.85 6.47 16.71 16.21	12000 8.54 3.46 9.48 7.42 5.19 11.57 10.27	13000 7.33 2.56 6.83 8.99 3.99 6.09 6.52	14000 5.55 1.92 5.05 8.15 3.38 3.52 3.94	4.23 1.54 3.74 7.77 2.73 1.91 2.33		
View Cumula Distribu Axle Factors Season January January January January January January	tribution ative Distribution tition Veh. Class 4 5 5 6 6 7 7 8 9 9 10 11	Total 100.00 100.00 100.00 100.00 100.00 100.00	1.8 10.05 2.47 2.14 11.65 1.74 3.64 3.55	 SI T T 4000 0.96 13.21 1.78 0.55 5.37 1.37 1.24 2.91 	ridem A 5000 6 2.91 3 16.42 1 3.45 3 2.42 2 7.84 6 2.84 3 2.36 3 5.19 5	xle 0000 7 .99 6 0.61 9 .95 6 .7 3 .99 7 .53 4 .38 5 .27 6	7000 8 5.8 1 5.22 8 5.7 8 3.21 5 7.99 9 4.93 8	Quad Axi 0000 9000 1.47 11.3 27 7.12 45 11.8 81 5.26 63 9.93 43 13.6 35 13.8 98 8.08	 10000 10.97 5.85 13.57 7.39 8.51 17.68 17.35 9.68 	0 11000 9.88 4.53 12.13 6.85 6.47 16.71	12000 8.54 3.46 9.48 7.42 5.19 11.57	13000 7.33 2.56 6.83 8.99 3.99 6.09	14000 5.55 1.92 5.05 8.15 3.38 3.52	4.23 1.54 3.74 7.77 2.73 1.91		
View Cumula Distribut Axle Factors Season January	tribution ative Distribution tition Veh. Class 4 5 5 6 6 7 7 8 9 9 10 11	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	1.8 10.05 2.47 2.14 11.65 1.74 3.64 3.55	 SI T T 4000 0.96 13.21 1.78 0.55 5.37 1.37 1.24 2.91 	ridem A 5000 6 2.91 3 16.42 1 3.45 3 2.42 2 7.84 6 2.84 3 2.36 3 5.19 5	xle 0000 7 .99 6 0.61 9 .95 6 .7 3 .99 7 .53 4 .38 5 .27 6	7000 8 5.8 1 5.7 8 5.7 8 5.7 8 5.7 9 5.18 8 5.32 6	Quad Axi 0000 9000 1.47 11.3 27 7.12 45 11.8 81 5.26 63 9.93 43 13.6 35 13.8 98 8.08	 10000 10.97 5.85 13.57 7.39 8.51 17.68 17.35 9.68 	9.88 4.53 12.13 6.85 6.47 16.71 16.21 8.55	12000 8.54 3.46 9.48 7.42 5.19 11.57 10.27 7.29	13000 7.33 2.56 6.83 8.99 3.99 6.09 6.52 7.16	14000 5.55 1.92 5.05 8.15 3.38 3.52 3.94 5.65	4.23 1.54 3.74 7.77 2.73 1.91 2.33 4.77		
View Cumula Distribut Axle Factors Season January	tribution ative Distribution the Distribution the Distribution by Axle Type Veh. Class 4 5 6 7 8 8 9 9 10 11 12	Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00	1.8 10.05 2.47 2.14 11.65 1.74 3.64 3.55	 SI T T 4000 0.96 13.21 1.78 0.55 5.37 1.37 1.24 2.91 	ridem A 5000 6 2.91 3 16.42 1 3.45 3 2.42 2 7.84 6 2.84 3 2.36 3 5.19 5	xle 0000 7 .99 6 0.61 9 .95 6 .7 3 .99 7 .53 4 .38 5 .27 6	7000 8 5.8 1 5.7 8 5.7 8 5.7 8 5.7 9 5.18 8 5.32 6	Quad Axi 000 9000 1.47 11.3 27 7.12 45 11.8 81 5.26 63 9.93 43 13.6 35 13.8 98 8.08 86 9.58	 10000 10.97 5.85 13.57 7.39 8.51 17.68 17.35 9.68 	9.88 4.53 12.13 6.85 6.47 16.71 16.21 8.55 8.59	12000 8.54 3.46 9.48 7.42 5.19 11.57 10.27 7.29	13000 7.33 2.56 6.83 8.99 3.99 6.09 6.52 7.16	14000 5.55 1.92 5.05 8.15 3.38 3.52 3.94 5.65	4.23 1.54 3.74 7.77 2.73 1.91 2.33 4.77		

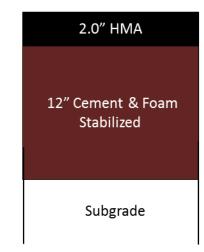
Vehicle Class	Pictorial View	Distribution (%)	Growth Rate (%)	Growth Function
lass 4		1.8	4	Compound
lass 5		24.6	4	Compound
lass 6		7.6	4	Compound
lass 7		0.5	4	Compound
ss Veh	icle Cla	ss Dist	ributio	nand
lass 9		Growt		Compound
lass 10	10	Glowr	4	Compound
lass 11		0.8	4	Compound
lass 12		3.3	4	Compound
		15.3	4	Compound

Vehicle Class	Steering Axle	Other Single Axle	Tandem Axles	Tridem Axles	Quad Axles
Class 4	0	1.62	0.39	0	0
Class 5	0	2	0	0	0
Class 6	0	1.02	0.99	0	0
Class 7	0	1	0.26	0.83	0
Class 8	0	2.38	0.67	0	0
Class 9	 Axles 	per	Trucl	k	0
class 10	0	1.19	1.09	0.89	0
class 11	0	4.29	0.26	0.06	0
class 12	0	3.52	1.14	0.06	0
elass 13	0	2.15	2.13	0.35	0
Note: Steering Ax	le Single axle, single	tire; Other Si	ngle Axle S	ingle axle, du	ial tires.

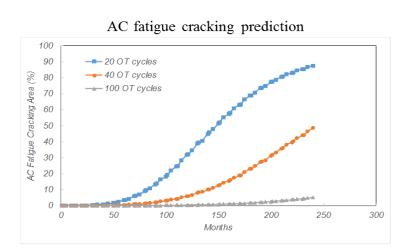
TxME check: performance prediction

TxME check

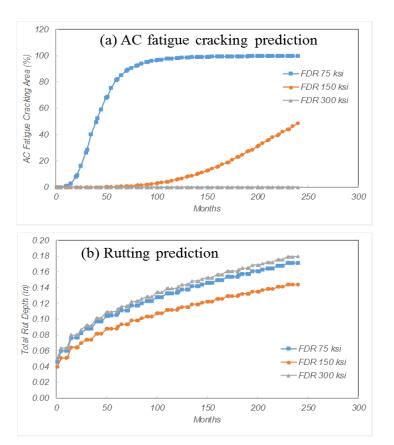
Influence of Material Properties


Variable inputs

- Fracture properties of dense grade type-D: 20, 40, and 100 overlay cycles
- FDR Modulus (ksi): 300, **150**, 75


Fixed inputs

- Traffic: Traffic spectra from Station 535
- Subgrade Modulus (ksi): 14.3.
- Climate: San Antonio, TX


FM541 Design #3

TxME check

Influence of Fracture Property of Mix

Influence of Modulus of FDR Mix

- □ FM541: foamed asphalt stabilization
- SH202: foamed asphalt stabilization
- I10: asphalt emulsion stabilization
- SH7: foamed asphalt stabilization
- FM99: foamed asphalt stabilization
- □ US281/SH123: concrete pavement

□ FM541: foamed asphalt stabilization

After 2 years: no cracking; average rut depth: 2.9 mm

□ SH202: foamed asphalt stabilization

After 1.5 years: no cracking; average rut depth: 5.4 mm

□ 110: asphalt emulsion stabilization

After 1.5 years: no cracking; average rut depth: 6.4 mm

□ SH7: foamed asphalt stabilization

After 1.5 years: no cracking AND no rutting

FM99: foamed asphalt stabilization

After 3.5 years: limited longitudinal cracking; rut depth: 4 mm

Implementation plan

- Rehabilitation options
- Mix design
- Structural design
- Construct sections: foamed vs. emulsion
- Continue to monitor existing field test sections
- Document US281/SH123 construction

Thank You All!

Questions???