Texas A\&M Transportation Institute

CRASH TEST AND MASH TL-3
 EVALUATION OF THE TxDOT SHORT RADIUS GUARDRAIL

Crash testing performed at:
TTI Proving Ground 3100 SH 47, Building 7091 Bryan, TX 77807

Test Report No. 0-6711-1
Cooperative Research Program
TEXAS A\&M TRANSPORTATION INSTITUTE COLLEGE STATION, TEXAS

TEXAS DEPARTMENT OF TRANSPORTATION
in cooperation with the
Federal Highway Administration and the
Texas Department of Transportation
http://tti.tamu.edu/documents/0-6711-1.pdf

Technical Report Documentation Page

$\begin{aligned} & \text { 1. Report No. } \\ & \text { FHWA/TX-15/0-6711-1 } \end{aligned}$	2. Government Accession No.		3. Recipient's Catalog N	
4. Title and Subtitle CRASH TEST AND MASH TL-3 EVALUATION OF THE TxDOT SHORT RADIUS GUARDRAIL			5. Report Date Published: March 2015	
			6. Performing Organization Code	
7. Author(s) Akram Y. Abu-Odeh, Katherine McCaskey, Roger P. Bligh, Wanda L. Menges, and Darrell L. Kuhn			8. Performing Organization Report No. Test Report No. 0-6711-1	
9. Performing Organization Name and Address Texas A\&M Transportation Institute Proving Ground The Texas A\&M University System College Station, Texas 77843-3135			11. Contract or Grant No. Project 0-6711	
12. Sponsoring Agency Name and Address Texas Department of Transportation Research and Technology Implementation Office 125 E. $11^{\text {th }}$ Street Austin, Texas 78701-2483			13. Type of Report and Period Covered Test Report: September 2011-August 2014	
15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Short Radius MASH TL-3 Guardrail Treatment URL: http://tti.tamu.edu/documents/0-6711-1.pdf				
16. Abstract When a roadway intersects a highway with restrictive features such as a bridge rail and canal, it becomes difficult to fit a guardrail with the proper length, transitions, and end treatment along the highway. Possible solutions include relocating the constraint blocking the placement of the guardrail, shortening the designed guardrail length, or designing a curved guardrail. Curved, or short radius, guardrails typically present the most viable solution for these areas. However, no previously designed short radius guardrails meet National Cooperative Highway Research Program (NCHRP) Report 350 Test Level 3 (TL-3) guidelines. Now, the American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware (MASH) has updated crash testing criteria. The new guidelines supersede NCHRP Report 350 and increased the size of test vehicles and changed the test matrices to include more impact conditions. Therefore, meeting new impact standards for short radius guardrails has become more challenging. TTI researchers investigated, modeled, and simulated an optimized short radius design under this project. Subsequently, TTI researchers crash tested this system successfully to MASH 3-33, 3-32, 3-31, and 3-35 test conditions. This innovative design utilizes an energy dissipation component plus a cable anchor that provides tension capacity to the rail section on the primary roadway, though an anchor BCT post on the secondary road portion of the system. These new innovative design details made the system very effective in capturing the vehicles in short distances while using readily available components.				
17. Key Words Short Radius, Crash Testing, Roadsi T-Intersections, Curved Rail, Guardr Finite Element, Longitudinal Barrier, Canal, Crash Testing, Roadside Safety	de Safety. ails, Simulation, Bridge Rail, y.	18. Dis No re publi Natio Alex http:	document IS: Informatio nia 22312 ov	vailable to the ice
19. Security Classif.(of this report) Unclassified	20. Security Classif.(of this page) Unclassified		$\begin{gathered} \text { 21. No. of Pages } \\ 422 \end{gathered}$	22. Price

CRASH TEST AND MASH TL-3 EVALUATION OF THE TxDOT SHORT RADIUS GUARDRAIL

by
Akram Y. Abu-Odeh
Research Scientist
Texas A\&M Transportation Institute
Katherine McCaskey
Graduate Assistant - Research
Texas A\&M Transportation Institute
Roger P. Bligh, Ph.D., P.E.
Research Engineer
Texas A\&M Transportation Institute
Wanda L. Menges
Research Specialist
Texas A\&M Transportation Institute
and
Darrell L. Kuhn, P.E.
Research Specialist
Texas A\&M Transportation Institute
Test Report No. 0-6711-1
Project 0-6711
Project Title: Short Radius MASH TL-3 Guardrail Treatment
> Performed in cooperation with the > Texas Department of Transportation > and the > Federal Highway Administration

Published: March 2015

TEXAS A\&M TRANSPORTATION INSTITUTE
College Station, Texas 77843-3135

DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation, and its contents are not intended for construction, bidding, or permit purposes. In addition, the above listed agencies assume no liability for its contents or use thereof. The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. The engineer in charge of the project was Roger P. Bligh, P.E. (Texas, \#78550).

TTI PROVING GROUND DISCLAIMER

The results of the crash testing reported herein apply only to the article being tested.

ACKNOWLEDGMENTS

This research project was conducted under a cooperative program between the Texas Transportation Institute, the Texas Department of Transportation, and the Federal Highway Administration. The TxDOT project manager for this research was Wade Odell, P.E. with the Research and Technology Implementation Office (RTI). Technical support and guidance was provided by Rory Meza, P.E. The authors acknowledge and appreciate their guidance and assistance.

This work was partially supported by the U.S. Department of Transportation, the Illinois Department of Transportation, the Transportation Research and Analysis Computing Center, and the Texas A\&M Supercomputing Facility (http://sc.tamu.edu) who provided resources and supercomputer hours for running the simulation cases for this project.

The research team acknowledges the technical insight and help of Michael Brackin, P.E. and Lance Bullard, Jr., P.E.

The research team also acknowledges the following students for providing help during the execution of this project:

- Michael Bychkowski,
- Matthew Spencer,
- James Kovar,
- Ivan Liu,
- Kang-Mi Kim,
- Aaron Barta,
- Melinda Mason,
- Marsha Palasota,
- Kelly Ha, and
- Robert Berg.

TABLE OF CONTENTS

Page
List of Figures ix
List of Tables xvii
Chapter 1. Introduction. 1
1.1. Introduction 1
1.2. Objectives/Scope of Research 1
1.3. Literature Review 1
Chapter 2. Short Radius Concepts 41
2.1. Summary of Previous Literature Review 41
2.2. Base (Template) Short Radius System 42
2.3. Concept Analyses 43
2.4. Detailed Modeling 65
2.5. Experimental Evaluation of Needed Energy 78
2.6. Updated Model 99
2.7. Earlier Systems 100
2.8. Current Short Radius System Design 102
2.9. Simulation of MASH Test 3-33; Truck Impacting Short Radius without Sand Barrels 104
2.10. Simulation of MASH Test 3-33; Truck Impacting Short Radius with Sand Barrels 108
2.11. Conclusions 114
2.12. Recommendation 115
Chapter 3. Simulation of Recommended Design Concepts 117
3.1. Simulation of MASH Test 3-32 Small Car Impacting Short Radius without Flare and without Sand Barrels 117
3.2. Simulation of MASH Test 3-32 Small Car Impacting Short Radius with Flare and 400-Lb Sand Barrels 120
3.3. Simulation of MASH Test 3-32 Small Car Impacting Short Radius with Flare and $700-\mathrm{Lb}$ Sand Barrels Spread Out along Rail 123
3.4. Simulation of MASH Test 3-33 Truck Impacting Short Radius with Flare and Sand Barrels 127
3.5. Simulation of MASH Test 3-31 Truck Impacting Short Radius with Flare and 700-Lb Sand Barrels Spread Out along Rail 130
3.6. Simulation of MASH Test 3-31 Truck Impacting Short Radius with Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable around Post in Radius 133
3.7. Simulation of MASH Test 3-31 Truck Impacting Short Radius with Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable behind Post in Radius 139
Chapter 4. Crash Test Matrix 147
4.1. MASH Test 3-31 147
4.2. MASH Test 3-32 147
4.3. MASH Test 3-33 148
4.4. MASH Test 3-35 149

TABLE OF CONTENTS (CONTINUED)

Page
Chapter 5. System Details 151
5.1. Test Article Design and Construction 151
5.2. Material Specifications 160
5.3. Soil Conditions 165
Chapter 6. Crash Test Procedures 167
6.1. Test Facility 167
6.2. Vehicle Tow and Guidance Procedures 167
6.3. Data Acquisition Systems 167
Chapter 7. Crash Test Results 169
7.1. MASH Test 3-33 (Crash Test No. 467114-3) 169
7.2. MASH Test 3-32 (Crash Test No. 467114-4) 175
7.3. MASH Test 3-31 (Crash Test No. 467114-5) 182
7.4. MASH Test 3-35 (Crash Test No. 467114-6) 188
7.5. MASH Test 3-35 (Crash Test No. 467114-7) 193
Chapter 8. Summary and Conclusions 201
8.1. Assessment of Test Results 201
8.2. Conclusions 202
Chapter 9. Implementation Statement 209
References 211
Appendix A. Engineering Analysis of End Anchors and Cable Bearing on BCT 213
A.1. Foundation of Concrete Parapet on the Primary Roadway 213
A.2. BCT and CRT Area Moment of Inertia Calculations. 213
A.3. Wire Area Moment of Inertial Calculations 214
A.4. BCT Post Check on Primary Roadway 215
A.5. Check Bending Capacity of Pipe Section 216
A.6. Check Capacity of Weld 217
A.7. Anchor Post on Secondary Roadway. 218
A.8. Tensile Capacity of Thrie Beam 218
A.9. Capacity of the Two Cables 219
A.10. Moment Capacity of Pipe Section 219
Appendix B. Details of the Test Article for Test Nos. 467114-3 through 467114-6. 221
Appendix C. Details of the Test Article for Test No. 467114-7. 243
Appendix D. Certification Documentation 265
Appendix E. Information for Crash Test No. 467114-3 333
Appendix F. Information for Crash Test No. 467114-4 347
Appendix G. Information for Crash Test No. 467114-5 361
Appendix H. Information for Crash Test No. 467114-6 375
Appendix I. Information for Crash Test No. 467114-7 389

LIST OF FIGURES

Page
Figure 1.1. Impact Conditions and System Damage for YC-1 (3) 3
Figure 1.2. Sequential Photographs for YC-1 (3). 3
Figure 1.3. Impact Conditions and System Damage for YC-2 (3). 4
Figure 1.4. Sequential Photographs for YC-2 (3) 4
Figure 1.5. Impact Conditions and System Damage for YC-3 (3). 5
Figure 1.6. Sequential Photographs for YC-3 (3) 5
Figure 1.7. Impact Conditions and System Damage for YC-4 (3). 6
Figure 1.8. Sequential Photographs for YC-4 (3) 6
Figure 1.9. Impact Conditions and System Damage for YC-5 (3). 7
Figure 1.10. Sequential Photographs for YC-5 (3) 8
Figure 1.11. Impact Conditions and System Damage for YC-6 (3). 8
Figure 1.12. Sequential Photographs for YC-6 (3). 9
Figure 1.13. Impact Conditions and System Damage for YC-7 (3). 10
Figure 1.14. Sequential Photographs for YC-7 (3) 10
Figure 1.15. Sequential Photographs for Test 1263-1 (5) 12
Figure 1.16. Sequential Photographs for Test 1263-2 (5) 13
Figure 1.17. Sequential Photographs for Test 1263-3 (5) 13
Figure 1.18. Sequential Photographs for Test 1263-4 (5) 14
Figure 1.19. Sequential Photographs for Test 1263-5 (5) 14
Figure 1.20. Sequential Photographs for Test 1263-6 (5) 15
Figure 1.21. Sequential Photographs for Test 1442-1 (6) 17
Figure 1.22. Sequential Photographs for Test 1442-2 (6) 17
Figure 1.23. Sequential Photographs for Test 1442-3 (O) 18
Figure 1.24. Sequential Photographs for Test 1442-4 (6) 18
Figure 1.25. Sequential Photographs for Test 1442-5 (6) 19
Figure 1.26. Sequential Photographs for Test SR-1 (8). 22
Figure 1.27. Sequential Photographs for Test SR-2 (8) 22
Figure 1.28. Sequential Photographs for Test SR-3 (8) 22
Figure 1.29. Sequential Photographs for Test SR-4 (8). 22
Figure 1.30. Sequential Photographs for Test SR-5 (11). 25
Figure 1.31. Sequential Photographs for Test SR-6 (11). 25
Figure 1.32. Sequential Photographs for Test SR-7 (9) 28
Figure 1.33. Sequential Photographs for Test SR-8 (9). 28
Figure 1.34. Fracturing Bolt Steel Post Design (13) 32
Figure 1.35. Barrier Design Detail of UBSPN-1 (13). 33
Figure 1.36. Vehicle Final Position for Test UBSPN-1 (13). 34
Figure 1.37. Sequential Photographs for Test UBSPN-1 (13). 34
Figure 1.38. Barrier Design Detail of UBSPN-2 (14). 35
Figure 1.39. Vehicle Final Position Test UBSPN-2 (14) 35
Figure 1.40. Sequential Photographs for Test UBSPN-2 (14). 36
Figure 1.41. Vehicle Final Position Test UBSPN-3 (15) 36
Figure 1.42. Sequential Photographs for Test UBSPN-3 (15). 36
Figure 1.43. Vehicle Final Position UBSPN-4 (15). 37

LIST OF FIGURES (CONTINUED)

Page
Figure 1.44. Sequential Photographs for Test UBSPN-4 (15) 37
Figure 1.45. Recommended NCHRP Report 350 TL-2 T-Intersection System (16). 40
Figure 2.1. Final Vehicle Position for MwRSF Test SR-8 (9). 41
Figure 2.2. Working Width for MwRSF Test SR-8 (9). 41
Figure 2.3. MASH TL-3 Recommended Test Matrix. 42
Figure 2.4. Base Short Radius System (16). 43
Figure 2.5. TxDOT Transition Detail GF (31) TR-11 44
Figure 2.6. Sequential Images of Truck Impact with Baseline System. 45
Figure 2.7. Sliding Post Models 47
Figure 2.8. Short Radius Design with Sliding Posts 47
Figure 2.9. Sequential Images of Truck Impact with Sliding Posts System 48
Figure 2.10. Short Radius Design with Parallel Cables Attached to Posts. 49
Figure 2.11. Sequential Images of Truck Impact with Parallel Cables Attached to Posts. 50
Figure 2.12. Short Radius Design with Parallel Cables Attached to Rail. 52
Figure 2.13. Four Stacked Parallel Cables to Rail. 52
Figure 2.14. Short Radius Design with Sand-Filled Barrels. 53
Figure 2.15. Sequential Images of Truck Impact with 5-Barrel System with Back Rail. 54
Figure 2.16. Sequential Images of Truck Impact with 5-Barrel System with Two Cables. 56
Figure 2.17. Sequential Images of Truck Impact with 15-Barrel System. 58
Figure 2.18. Short Radius Design of 3-Barrel System with Stacked Rail. 59
Figure 2.19. Sleds for Barrels. 60
Figure 2.20. Short Radius Design of Three Barrels with Sled Reinforcement. 60
Figure 2.21. Sequential Images of Truck Impact with 3-Barrel System with Sled Reinforcement. 61
Figure 2.22. Short Radius Design with Cable Median behind Rail. 62
Figure 2.23. Short Radius Design with Free Mass. 63
Figure 2.24. Sequential Images of Truck Impact with Free Mass System. 64
Figure 2.25. Short Radius Design with Detailed Double Rail 66
Figure 2.26. Sequential Images of Truck Impact with Detailed Double Rail System. 67
Figure 2.27. Longitudinal Velocity of the Pickup Impacting the Double Rail System. 68
Figure 2.28. Vehicle Displacement of Detailed Double Rail System. 68
Figure 2.29. Vehicle Trajectory of Detailed Double Rail System 69
Figure 2.30. Short Radius Design of Detailed Rail with Free Mass. 69
Figure 2.31. Sequential Images of Truck Impact with Double Rail System with Free Mass 70
Figure 2.32. X-Velocity of Double Rail System with Free Mass. 71
Figure 2.33. Vehicle Displacement of Double Rail System with Free Mass. 72
Figure 2.34. Vehicle Trajectory of Double Rail System with Free Mass 72
Figure 2.35. Short Radius Design of Detailed Rail with Additional Posts. 73
Figure 2.36. Sequential Images of Truck Impact with Double Rail System with Additional Posts. 74
Figure 2.37. X-Velocity of Double Rail System with Additional Posts. 75
Figure 2.38. Vehicle Displacement of Double Rail System with Additional Posts. 76
Figure 2.39. Vehicle Trajectory of Double Rail System with Additional Posts 76
Figure 2.40. Overhead View of the Short Radius System. 77

LIST OF FIGURES (CONTINUED)

Page
Figure 2.41. Isometric View of the Short Radius System 77
Figure 2.42. Close-Up View of the Short Radius System. 78
Figure 2.43. Field Side View of the Short Radius System. 78
Figure 2.44. Simplified Car Model 79
Figure 2.45. Simplified Truck Model. 79
Figure 2.46. Dimensions of Barrel Layout. 82
Figure 2.47. Weight Example for Barrel Layout Naming Convention. 82
Figure 2.48. Comparison of Simulations with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout. 83
Figure 2.49. Kinetic Energy of the Yaris for $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout. 83
Figure 2.50. Kinetic Energy of Car with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout Experiment. 84
Figure 2.51. Pieces of Barrel after Experiment. 85
Figure 2.52. Pieces of Barrels during Simulation. 86
Figure 2.53. Simulation and Physical Experiment Comparison with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and 700-Lb Layout. 87
Figure 2.54. Kinetic Energy of the Yaris for $400-\mathrm{Lb}, 700-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout. 88
Figure 2.55. Kinetic Energy of the Yaris for $700-\mathrm{Lb}, 700-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout. 89
Figure 2.56. Kinetic Energy of Car with 700-Lb, 700-Lb, and 700-Lb Barrel Layout Experiment. 90
Figure 2.57. Simulation and Physical Experiment Comparison with $700-\mathrm{Lb}, 700-\mathrm{Lb}$, and 700-Lb Layout. 92
Figure 2.58. Kinetic Energy of the Truck with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout. 93
Figure 2.59. Kinetic Energy of Truck with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout Experiment. 94
Figure 2.60. Simulation and Physical Experiment Comparison with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and 700-Lb Layout. 95
Figure 2.61. Kinetic Energy of the Truck with $400-\mathrm{Lb}, 700-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout 96
Figure 2.62. Kinetic Energy of Truck with 700-Lb, $700-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout. 97
Figure 2.63. Kinetic Energy of Truck with $700-\mathrm{Lb}, 700-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout Experiment. 98
Figure 2.64. Simulation and Physical Experiment Comparison with $700-\mathrm{Lb}, 700-\mathrm{Lb}$, and 700-Lb Layout. 99
Figure 2.65. Most Recent Model. 99
Figure 2.66. Whole System with Two W-Beams 100
Figure 2.67. Primary Roadway Side View. 100
Figure 2.68. Primary Secondary Roadway Side View. 100
Figure 2.69. Progression of Truck Impact. 101
Figure 2.70. Current System under Investigation. 102
Figure 2.71. Rotating Anchor Design Option 1. 103
Figure 2.72. Rotating Anchor Design Option 2. 103
Figure 2.73. Entire System. 104
Figure 2.74. Side View of Primary Roadway. 104
Figure 2.75. Side View of Secondary Roadway 104
Figure 2.76. X-Velocity in Mph. 105

LIST OF FIGURES (CONTINUED)

Page
Figure 2.77. Sequential Images of Simulation. 106
Figure 2.78. Plastic Strain. 107
Figure 2.79. Total Displacement. 107
Figure 2.80. Entire System with Barrels (Front, Back, and Top Views). 109
Figure 2.81. X-Velocity in Mph. 110
Figure 2.82. Time $=0.02 \mathrm{~s}$ when Impact Begins. 110
Figure 2.83. Time $=0.12 \mathrm{~s}$, after Barrels Have Had Their Greatest Impact. 111
Figure 2.84. Time $=0.445 \mathrm{~s}$, after the System Has Had Its Impact. 111
Figure 2.85. Time $=0.645$ s, when Vehicle Reaches Zero Velocity 112
Figure 2.86. Plastic Strain on Entire Rail. 112
Figure 2.87. Plastic Strain in Several Problem Areas. 113
Figure 2.88. Total Displacement. 113
Figure 3.1. No Flare and No Sand Barrels 117
Figure 3.2. Sequential Images of Simulation with No Flare and No Sand Barrels. 118
Figure 3.3. X-Velocity in Mph in Simulation with No Flare and No Sand Barrels. 118
Figure 3.4. Total Displacement in Simulation with No Flare and No Sand Barrels. 119
Figure 3.5. Flare and $400-\mathrm{Lb}$ Sand Barrels Behind the Radius. 120
Figure 3.6. Sequential Images of Simulation with Flare and $400-\mathrm{Lb}$ Sand Barrels. 121
Figure 3.7. X-Velocity in Mph on Simulation with Flare and 400-Lb Sand Barrels. 122
Figure 3.8. Total Displacement on Simulation with Flare and 400-Lb Sand Barrels (Sand Hidden). 122
Figure 3.9. Flare and Spread Out 700-Lb Barrels. 124
Figure 3.10. Sequential Images of Simulation with Flare and Spread Out 700-Lb Barrels. 125
Figure 3.11. X-Velocity in Mph of Simulation with Flare and Spread Out 700-Lb Barrels. 126
Figure 3.12. Total Displacement of Simulation with Flare and Spread Out 700-Lb Barrels (Sand Hidden). 126
Figure 3.13. Flare and Spread Out 700-Lb Barrels. 128
Figure 3.14. X-Velocity in Mph of Simulation with Truck, Flare, and Spread Out 700-Lb Barrels. 128
Figure 3.15. Sequential Images of Simulation with Truck, Flare, and Spread Out 700-Lb Barrels. 129
Figure 3.16. Total Displacement in Simulation with Truck, Flare, and 700-lb Sand Barrels (Sand Hidden). 130
Figure 3.17. Flare and 700-Lb Barrels Spread Out behind Rail. 131
Figure 3.18. Sequential Images of Simulation with Truck, Flare, and 700-Lb Barrels Spread Out behind Rail. 131
Figure 3.19. X-Velocity in Mph of Simulation with Truck, Flare, and 700-Lb Barrels Spread Out behind Rail. 132
Figure 3.20. Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable around Post in Radius. 133
Figure 3.21. Anchor Cable Angle Attachment to BCT Post 134
Figure 3.22. Back View of Tension Cable (Sand Hidden). 134
Figure 3.23. Front View of Cable (Sand Hidden). 135
Figure 3.24. Alignment of Truck with System. 135

LIST OF FIGURES (CONTINUED)

Page
Figure 3.25. Sequential Images of Simulation of Truck, Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable around Post in Radius (Sand Hidden). 136
Figure 3.26. Sequential Images of Tire and Cable Interaction (Sand Hidden) 137
Figure 3.27. Tire and Cable Interaction (Sand Hidden) 137
Figure 3.28. X-Velocity in Mph of Simulation of Truck, Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable around Post in Radius 138
Figure 3.29. Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable behind Post in Radius. 139
Figure 3.30. Back View of Rail (Sand Hidden). 140
Figure 3.31. Front View of Rail (Sand Hidden). 140
Figure 3.32. Alignment of Truck with System. 140
Figure 3.33. Sequential Images of Simulation from Front of Rail (Sand Hidden) 141
Figure 3.34. Sequential Images of Simulation from Back of Rail (Sand Hidden) 142
Figure 3.35. Sequential Images of Truck and Cable Interaction (Sand Hidden). 142
Figure 3.36. Tire and Cable Interaction (Sand Hidden). 143
Figure 3.37. Final Displacement of the Truck (Sand Hidden) 143
Figure 3.38. X-Velocity in Mph of Simulation with Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable behind Post in Radius 144
Figure 4.1. Alignment of Truck with System for MASH Test 3-31 147
Figure 4.2. Alignment of Car with System for MASH Test 3-32. 148
Figure 4.3. Alignment of Truck with System for MASH Test 3-33 148
Figure 4.4. Alignment of Truck with System for MASH Test 3-35 149
Figure 5.1. Layout of the Short Radius Guardrail for Test Nos. 467114-3 through 467114-6 156
Figure 5.2. Overall Details of the Short Radius Guardrail for Test Nos. 467114-3 through 467114-6. 157
Figure 5.3. Short Radius Guardrail (Overall, Secondary Road, and Radius) prior to Test Nos. 467114-3 through 467114-6. 158
Figure 5.4. Short Radius Guardrail (Primary Road) before Test Nos. 467114-3 through 467114-6. 159
Figure 5.5. Layout of the Short Radius Guardrail for Test No. 467114-7 161
Figure 5.6. Overall Details of the Short Radius Guardrail for Test No. 467114-7 162
Figure 5.7. Short Radius Guardrail (Overall, Secondary Road, and Radius) prior to Test No. 467114-7 163
Figure 5.8. Short Radius Guardrail (Primary Road) before Test No. 467114-7 164
Figure 7.1. Vehicle/Installation Geometrics before Test No. 467114-3. 169
Figure 7.2. Vehicle/Installation after Test No. 467114-3. 170
Figure 7.3. Installation after Test No. 467114-3 171
Figure 7.4. Vehicle after Test No. 467114-3 172
Figure 7.5. Interior of Vehicle after Test No. 467114-3 172
Figure 7.6. Summary of Results for MASH Test 3-33 on the Short Radius Guardrail 173
Figure 7.7. Vehicle/Installation Geometrics before Test No. 467114-4. 176
Figure 7.8. Vehicle/Installation after Test No. 467114-4. 177
Figure 7.9. Installation after Test No. 467114-4 178
Figure 7.10. Vehicle after Test No. 467114-4. 179

LIST OF FIGURES (CONTINUED)

Page
Figure 7.11. Interior of Vehicle after Test No. 467114-4 179
Figure 7.12. Summary of Results for MASH Test 3-32 on the Short Radius Guardrail 180
Figure 7.13. Vehicle/Installation Geometrics before Test No. 467114-5 182
Figure 7.14. Vehicle/Installation after Test No. 467114-5. 183
Figure 7.15. Installation after Test No. 467114-5 184
Figure 7.16. Vehicle after Test No. 467114-5. 185
Figure 7.17. Interior of Vehicle after Test No. 467114-5. 185
Figure 7.18. Summary of Results for MASH Test 3-31 on the Short Radius Guardrail 186
Figure 7.19. Vehicle/Installation Geometrics before Test No. 467114-6. 189
Figure 7.20. Vehicle/Installation after Test No. 467114-6. 189
Figure 7.21. Installation after Test No. 467114-6. 191
Figure 7.22. Vehicle after Test No. 467114-6. 192
Figure 7.23. Summary of Results for MASH Test 3-35 on the Short Radius Guardrail 194
Figure 7.24. Vehicle/Installation Geometrics for Test No. 467114-7. 195
Figure 7.25. Vehicle/Installation after Test No. 467114-7. 196
Figure 7.26. Installation after Test No. 467114-7. 197
Figure 7.27. Vehicle after Test No. 467114-7. 198
Figure 7.28. Summary of Results for MASH Test 3-35 on the Modified Short Radius Guardrail. 200
Figure A.1. Parapet and Foundation. 213
Figure A.2. 6×19 IWRC Steel Wire Cable Section and Approximation. 214
Figure A.3. Modified 6-Ft Foundation Tube. 216
Figure A.4. Anchor Post System on Secondary Roadway. 218
Figure A.5. Anchor Post. 219
Figure E1. Sequential Photographs for Test No. 467114-3 (Overhead and Frontal Views). 337
Figure E2. Vehicle Angular Displacements for Test No. 467114-3 339
Figure E3. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-3 (Accelerometer Located at Center of Gravity). 340
Figure E4. Vehicle Lateral Accelerometer Trace for Test No. 467114-3 (Accelerometer Located at Center of Gravity). 341
Figure E5. Vehicle Vertical Accelerometer Trace for Test No.467114-3 (Accelerometer Located at Center of Gravity). 342
Figure E6. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-3 (Accelerometer Located Rear of Center of Gravity). 343
Figure E7. Vehicle Lateral Accelerometer Trace for Test No. 467114-3 (Accelerometer Located Rear of Center of Gravity). 344
Figure E8. Vehicle Vertical Accelerometer Trace for Test No. 467114-3 (Accelerometer Located Rear of Center of Gravity). 345
Figure F1. Sequential Photographs for Test No. 467114-4 (Overhead and Frontal Views). 350
Figure F2. Sequential Photographs for Test No. 467114-4 (Rear View). 352
Figure F3. Vehicle Angular Displacements for Test No. 467114-4 353
Figure F4. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-4 (Accelerometer Located at Center of Gravity). 354

LIST OF FIGURES (CONTINUED)

Page
Figure F5. Vehicle Lateral Accelerometer Trace for Test No. 467114-4 (Accelerometer Located at Center of Gravity). 355
Figure F6. Vehicle Vertical Accelerometer Trace for Test No. 467114-4 (Accelerometer Located at Center of Gravity). 356
Figure F7. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-4 (Accelerometer Located Rear of Center of Gravity). 357
Figure F8. Vehicle Lateral Accelerometer Trace for Test No. 467114-4 (Accelerometer Located Rear of Center of Gravity). 358
Figure F9. Vehicle Vertical Accelerometer Trace for Test No. 467114-4 (Accelerometer Located Rear of Center of Gravity). 359
Figure G1. Sequential Photographs for Test No. 467114-5 (Overhead and Rear Views). 365
Figure G2. Sequential Photographs for Test No. 467114-5 (Rear View). 367
Figure G3. Vehicle Angular Displacements for Test No. 467114-5. 368
Figure G4. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-5
(Accelerometer Located at Center of Gravity). 369
Figure G5. Vehicle Lateral Accelerometer Trace for Test No. 467114-5 (Accelerometer Located at Center of Gravity). 370
Figure G6. Vehicle Vertical Accelerometer Trace for Test No. 467114-5 (Accelerometer Located at Center of Gravity). 371
Figure G7. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-5
(Accelerometer Located Rear of Center of Gravity). 372
Figure G8. Vehicle Lateral Accelerometer Trace for Test No. 467114-5 (Accelerometer Located Rear of Center of Gravity). 373
Figure G9. Vehicle Vertical Accelerometer Trace for Test No. 467114-5 (Accelerometer Located Rear of Center of Gravity). 374
Figure H1. Sequential Photographs for Test No. 467114-6 (Overhead and Rear Views). 379
Figure H2. Vehicle Angular Displacements for Test No. 467114-6. 381
Figure H3. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-6 (Accelerometer Located at Center of Gravity). 382
Figure H4. Vehicle Lateral Accelerometer Trace for Test No. 467114-6 (Accelerometer Located at Center of Gravity). 383
Figure H5. Vehicle Vertical Accelerometer Trace for Test No. 467114-6 (Accelerometer Located at Center of Gravity). 384
Figure H6. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-6
(Accelerometer Located Rear of Center of Gravity). 385
Figure H7. Vehicle Lateral Accelerometer Trace for Test No. 467114-6 (Accelerometer Located Rear of Center of Gravity). 386
Figure H8. Vehicle Vertical Accelerometer Trace for Test No. 467114-6 (Accelerometer Located Rear of Center of Gravity). 387
Figure I1. Sequential Photographs for Test No. 467114-7 (Overhead and Rear Views). 393
Figure I2. Sequential Photographs for Test No. 467114-7 (Rear View). 395
Figure I3. Vehicle Angular Displacements for Test No. 467114-7 396
Figure I4. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-7 (Accelerometer
Located at Center of Gravity). 397

LIST OF FIGURES (CONTINUED)

Page
Figure I5. Vehicle Lateral Accelerometer Trace for Test No. 467114-7 (Accelerometer Located at Center of Gravity). 398
Figure I6. Vehicle Vertical Accelerometer Trace for Test No. 467114-7 (Accelerometer Located at Center of Gravity). 399
Figure I7. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-7 (Accelerometer Located Rear of Center of Gravity). 400
Figure I8. Vehicle Lateral Accelerometer Trace for Test No. 467114-7 (Accelerometer
Located Rear of Center of Gravity). 401
Figure I9. Vehicle Vertical Accelerometer Trace for Test No. 467114-7 (Accelerometer
Located Rear of Center of Gravity) 402

LIST OF TABLES

Page
Table 1.1. Summary of Crash Test Data for Yuma County (3) 11
Table 1.2. Summary of Crash Test Data of TTI W-Beam System (5). 16
Table 1.3. Summary of Crash Test Data of TTI Thrie Beam System (6) 19
Table 1.4. Summary of MwRSF Phase II Crash Test Data (8) 23
Table 1.5. Summary of Midwest Roadside Safety Facility Phase III Crash Test (11) 26
Table 1.6. Summary of Midwest Roadside Safety Facility Phase IV Crash Test Data (9). 27
Table 1.7. Summary of CRT Wood Post Bogie Test Results (13). 29
Table 1.8. Wood CRT in Soil (13) 30
Table 1.9. Round 2 and 3 of Tests of Fracturing Bolt Steel Post (13) 31
Table 1.10. Details on Fracturing Bolt Steel Post (13) 32
Table 1.11. Summary of Bullnose Barrier Tests (15) 38
Table 1.12. NCHRP Report 350 TL-2 Criteria (16). 38
Table 2.1. MASH TL-3 Recommended Test Matrix 42
Table 2.2. Baseline Simulation. 46
Table 2.3. Sliding Posts System 49
Table 2.4. Parallel Cables to Post. 51
Table 2.5. Four Stacked Cables Attached to Rail. 53
Table 2.6. 5-Barrel System with Back Rail. 55
Table 2.7. 5-Barrel System with Two Cables 55
Table 2.8. 15-Barrel System. 57
Table 2.9. 3-Barrel System with Stacked Rail. 59
Table 2.10. 3-Barrel System with Sled Reinforcement. 62
Table 2.11. Free Mass System Results. 65
Table 2.12. Detailed Double Rail System 66
Table 2.13. Double Rail System with Free Mass. 71
Table 2.14. Double Rail with Additional Posts. 73
Table 2.15. Summary of Simulations with Simplified Car and Truck Models. 80
Table 2.16. Summary of Simulations with Small Car and Truck Models 81
Table 2.17. TRAP Results for Yaris with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout 84
Table 2.18. TRAP Results for Car with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout Experiment. 86
Table 2.19. TRAP Results for Yaris with $400-\mathrm{Lb}, 700-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout 88
Table 2.20. TRAP Results for the Yaris with 700-Lb, 700-Lb, and 700-Lb Barrel Layout 89
Table 2.21. TRAP Results for Car with $700-\mathrm{Lb}, 700-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout Experiment 91
Table 2.22. TRAP Results for Truck with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout 93
Table 2.23. TRAP Results for Truck with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout Physical Experiment. 94
Table 2.24. TRAP Results for Truck with $400-\mathrm{Lb}, 700-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout 96
Table 2.25. TRAP Results for Truck with $700-\mathrm{Lb}, 700-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout. 97
Table 2.26. TRAP Results for Truck with 700-Lb, 700-Lb, and 700-Lb Barrel Layout Physical Experiment. 98
Table 2.27. TRAP Results for MASH Test 3-33 without Barrels. 108

LIST OF TABLES

Page
Table 2.28. TRAP Results for MASH Test 3-33 with Barrels. 114
Table 3.1. TRAP Summary Data in Simulation with No Flare and No Sand Barrels 119
Table 3.2. TRAP Summary Data on Simulation with Flare and 400-Lb Sand Barrels. 123
Table 3.3. TRAP Summary Data of Simulation with Flare and Spread Out 700-Lb Barrels 127
Table 3.4. TRAP Summary Data for Simulation with Truck, Flare, and 700-Lb Barrels Spread Out behind Rail. 132
Table 3.5. TRAP Summary Data for Simulation of Truck, Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable around Post in Radius 138
Table 3.6. TRAP Summary Data for Simulation with Truck, Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable behind Post in Radius 145
Table 8.1. Performance Evaluation Summary for MASH Test 3-33 on the Short Radius Guardrail. 204
Table 8.2. Performance Evaluation Summary for MASH Test 3-32 on the Short Radius Guardrail. 205
Table 8.3. Performance Evaluation Summary for MASH Test 3-31 on the Short Radius Guardrail. 206
Table 8.4. Performance Evaluation Summary for MASH Test 3-35 on the Short Radius Guardrail. 207
Table 8.5. Performance Evaluation Summary for Repeat MASH Test 3-35 on the Short Radius Guardrail. 208
Table E1. Vehicle Properties for Test No. 467114-3 333
Table E2. Vehicle Parametric Measurements for Vertical CG for Test No. 467114-3. 334
Table E3. Exterior Crush Measurements for Test No. 467114-3 335
Table E4. Occupant Compartment Measurements for Test No. 467114-3 336
Table F1. Vehicle Properties for Test No. 467114-4 347
Table F2. Exterior Crush Measurements for Test No. 467114-4. 348
Table F3. Occupant Compartment Measurements for Test No. 467114-4. 349
Table G1. Vehicle Properties for Test No. 467114-5 361
Table G2. Vehicle Parametric Measurements for Vertical CG for Test No. 467114-5 362
Table G3. Exterior Crush Measurements for Test No. 467114-5. 363
Table G4. Occupant Compartment Measurements for Test No. 467114-5. 364
Table H1. Vehicle Properties for Test No. 467114-6. 375
Table H2. Vehicle Parametric Measurements for Vertical CG for Test No. 467114-6. 376
Table H3. Exterior Crush Measurements for Test No. 467114-6. 377
Table H4. Occupant Compartment Measurements for Test No. 467114-6. 378
Table I1. Vehicle Properties for Test No. 467114-7 389
Table I2. Vehicle Parametric Measurements for Vertical CG for Test No. 467114-7. 390
Table I3. Exterior Crush Measurements for Test No. 467114-7. 391
Table I4. Occupant Compartment Measurements for Test No. 467114-7 392

CHAPTER 1. INTRODUCTION

1.1. INTRODUCTION

When a roadway intersects a highway with restrictive features such as a bridge rail and canal, it becomes difficult to fit a guardrail with the proper length, transitions, and end treatment along the highway. Possible solutions include relocating the constraint, blocking the placement of the guardrail, shortening the designed guardrail length, or designing a curved guardrail.

Curved or short radius, guardrails typically present the most viable solution for these areas. However, no previously designed short radius guardrails meet National Cooperative Highway Research Program (NCHRP) Report 350 Test Level 3 (TL-3) guidelines (1). Now, the American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware (MASH) has updated crash testing criteria (2). The new guidelines supersede NCHRP Report 350 by increasing the size of test vehicles and changing the test matrices to include more impact conditions. Therefore, meeting new impact standards for short radius guardrails will be more challenging.

1.2. OBJECTIVES/SCOPE OF RESEARCH

The literature review sought to aid researchers in developing new design concepts for short radius guardrails. The review outlines challenges encountered by previous designs, promising design features of previous designs, the MASH TL-3 impact criteria, and short radius guardrail concepts.

1.3. LITERATURE REVIEW

1.3.1. Summary of Previous Crash Tests

Southwest Research Institute (SwRI) performed the first documented full-scale crash tests on short radius systems in 1989 (3). SwRI designed and tested a system in Yuma County, Arizona, which met the requirements of NCHRP Report 230 service level PL1 (4). In 1992, Texas A\&M Transportation Institute (TTI) tested a W-beam system (5) followed by a thrie beam system in 1994 (6). From 2000 to 2008, Midwest Roadside Safety Facility (MwRSF) tested several prototype short radius guardrails $(7,8,9)$ according to NCHRP Report No. 350 TL-3 guidelines. A summary of documented crash tests on short radius guardrails is given below.

1.3.1.1. \quad Southwest Research Institute for Yuma County, Arizona: 1989

1.3.1.1.1. Design Considerations

The short radius guardrail used for these tests consists of an 8 - ft radius curved section connected to an $18-\mathrm{ft}$ straight section on the primary road and a $12.5-\mathrm{ft}$ straight section on the secondary road. The primary side connects to a bridge rail while the secondary side ends with a modified breakaway cable terminal (BCT). The primary side consists of six control release terminal (CRT) posts, while the secondary side has one CRT post and one BCT post. The curved section has one CRT post at the centerline to support it and two freestanding CRT posts behind it. At the end of the bridge curb, a tapered curb was installed to minimize wheel snag. The
guardrail's performance was evaluated according to NCHRP Report Number 230, and the tests were conducted based on AASHTO Guide Specifications for Bridge Railings (10).

1.3.1.1.2. Test YC-1

The purpose of Test YC-1 was to test for vehicle spearing or vaulting caused by the guardrail when a pickup truck impacts the system in line with the bridge rail. The 5376-lb pickup impacted the system at a speed of 45 mph and an angle of 1.4° (refer to Figure 1.1). Figure 1.2 shows that the barrier successfully redirected the vehicle without any contact to the bridge rail. Post 5 was fractured, and posts 6 through 8 were deflected during impact. Only the first post on the primary side was fractured while the second, third, and fourth were displaced. The vehicle was deflected with minimal damage and acceptable values for occupant risk and ridedown acceleration. Therefore, the system was acceptable according to NCHRP Report 230 guidelines.

1.3.1.1.3. Test YC-2

The purpose of Test YC-2 was to test for vehicle spearing or vaulting caused by the guardrail when a small car impacts the system in line with the bridge rail. The 1978-lb car impacted the system at an impact speed of 50.3 mph and an impact angle of -0.7° (refer to Figure 1.3). Figure 1.4 shows the barrier successfully redirected the vehicle without any contact to the bridge rail. Both the barrier and vehicle experienced minimal damage, and values for occupant risk and ridedown acceleration remained within limits that NCHRP Report 230 specified. Therefore, the system was acceptable according to NCHRP Report 230 guidelines.

1.3.1.1.4. Test YC-3

The purpose of Test YC-3 was to determine whether a pickup truck would be contained if it strikes the system at the curved section, which was 12 ft from the edge of the roadway. The $5380-\mathrm{lb}$ truck impacted the rail at an impact speed of 44.8 mph and an impact angle of 19.7° (refer to Figure 1.5). Figure 1.6 shows sequential photographs of the crash test. The centerline post immediately fractured, and the rail deformed inward. The guardrail wrapped around the front and sides of the vehicle as it continued through the system. The end anchorage holding the rail in place fractured, which allowed the vehicle to continue without capture. The test was not successful according to NCHRP Report 230 because the system failed to contain the vehicle.

1.3.1.1.5. Test YC-4

After analyzing the results of Test YC-3, the guardrail on the secondary side was lengthened by 12.5 ft . This would increase the amount of energy the system could use to stop the vehicle. The purpose of Test YC-4 was to determine whether a pickup truck would be contained if it struck the modified system at the curved section, which was 12 ft from the edge of the roadway. The 5381-lb truck impacted the curved section of the rail at an impact speed of 44.9 mph and an impact angle of 20.1° (refer to Figure 1.7). Figure 1.8 shows sequential photographs of the crash test. The centerline post immediately fractured, and the rail deformed inward. The guardrail wrapped around the front and right side of the vehicle as it continued through the system. The uneven loading caused the vehicle to yaw counterclockwise. The vehicle turned toward the secondary side and stopped without making contact with the bridge
railing. The occupant risk factors and decelerations were within the guidelines of NCHRP Report 230 and the vehicle was successfully contained. Therefore, the system was considered acceptable.

Figure 1.1. Impact Conditions and System Damage for YC-1 (3).

Figure 1.2. Sequential Photographs for YC-1 (3).

Figure 1.3. Impact Conditions and System Damage for YC-2 (3).

Figure 1.4. Sequential Photographs for YC-2 (3).

Figure 1.5. Impact Conditions and System Damage for YC-3 (3).

Figure 1.6. Sequential Photographs for YC-3 (3).

Figure 1.7. Impact Conditions and System Damage for YC-4 (3).

Figure 1.8. Sequential Photographs for YC-4 (3).

1.3.1.1.6. Test YC-5

The purpose of Test YC-5 was to determine whether a small car would be contained if it strikes the modified system at the curved section that was 12 ft from the roadway. The 1980-lb
vehicle impacted the curved section of the rail at an impact speed of 44.2 mph and an impact angle of 20° (refer to Figure 1.9). Figure 1.10 shows the guardrail deformed, fracturing four posts on the primary side along with the centerline post and both freestanding posts. The vehicle maintained a constant trajectory, and stopped 12 ft past the impact position. The test was successful according to NCHRP Report 230 because the vehicle was contained with safe values for occupant impact velocities (OIV) and ridedown accelerations (RDA).

1.3.1.1.7. Test YC-6

The purpose of Test YC-6 was to check for wheel snag when a car impacts the system at the transition between the guardrail and bridge rail. The car impacted the system just before the transition from the guardrail to the bridge rail (refer to Figure 1.11). Figure 1.12 shows sequential photos of the crash test. It maintained contact with the system for 13 ft , then was redirected. After the test, tire marks were found on the tapered curb, which indicates that wheel snag occurred. The vehicle was redirected, but the lateral value for OIV was above the recommended limit specified in NCHRP Report 230. Therefore, the test indicated marginal performance according to NCHRP Report 230.

1.3.1.1.8. Test YC-7

The purpose of Test YC-7 was to check for wheel snag when the pickup truck impacts the system at the transition between the guardrail and bridge rail. The 5424-lb truck impacted the system just before the bridge rail at an impact speed of 45.2 mph and an impact angle of 20.7° (refer to Figure 1.13). Figure 1.14 shows sequential photographs of the crash test. The vehicle maintained contact with the system for 12 ft before being redirected. No evidence of wheel snag was found, no posts were fractured, and the values for OIV and RDA were within acceptable limits. Therefore, Test YC-7 was successful according to NCHRP Report 230 guidelines.

Figure 1.9. Impact Conditions and System Damage for YC-5 (3).

Figure 1.10. Sequential Photographs for YC-5 (3).

Figure 1.11. Impact Conditions and System Damage for YC-6 (3).

Figure 1.12. Sequential Photographs for YC-6 (3).

Figure 1.13. Impact Conditions and System Damage for YC-7 (3).

Figure 1.14. Sequential Photographs for YC-7 (3).

1.3.1.1.9. Primary Findings

Table 1.1 presents a summary of the pertinent test results for the Yuma County testing. The freestanding posts behind the curved section of the rail performed well. They slowed the vehicle down without causing too much damage. After test YC-3 failed because of a lack of tension in the system, the secondary side was lengthened. Researchers have determined that a
minimum length of 25 ft was necessary to maintain tension in the guardrail. This greatly improved the performance of the system by increasing the amount of energy the guardrail could absorb to slow the vehicle. Testing was done to ensure that wheel snag does not occur when a vehicle impacts the transition between the guardrail and bridge rail. These tests showed no indication of significant wheel snag occurring for this design. However, lateral velocity change was too high according to NCHRP Report 230. The researchers asserted that the design of the tapered curb, which started the bridge rail, needs improvement. Overall, this design satisfied the requirements of NCHRP Report 230 service level PL1.

Table 1.1. Summary of Crash Test Data for Yuma County (3).

Organization and Test Number	Guardrail Description	Test Vehicle (lb)	Impact Speed (mph)	Impact Angle (degrees)	OIV (ft/s) Longitudinal Lateral	RDA (Gs) Longitudinal Lateral	Vehicle Safely Redirected
SWRI: YC-1	8 ft radius, W-beam	$\begin{gathered} 5376 \\ \text { pickup } \end{gathered}$	45	1.4	$\begin{gathered} 14.4 \\ 7.8 \end{gathered}$	$\begin{aligned} & 2.7 \\ & 7.1 \end{aligned}$	Yes
SWRI: YC-2	YC-1	$\begin{gathered} 1978 \\ \mathrm{car} \end{gathered}$	50.3	0.7	$\begin{gathered} 9.4 \\ 16.0 \end{gathered}$	$\begin{aligned} & 0.7 \\ & 4.7 \end{aligned}$	Yes
SWRI: YC-3	YC-2	$\begin{gathered} 5380 \\ \text { pickup } \end{gathered}$	44.8	19.7	$\begin{gathered} 14.5 \\ 8.3 \end{gathered}$	$\begin{gathered} 6.5 \\ 4 \end{gathered}$	No
SWRI: YC-4	YC-3, lengthened secondary side by 12.5 ft	$\begin{gathered} 5381 \\ \text { pickup } \end{gathered}$	44.9	20.1	$\begin{aligned} & 20.1 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 2.9 \end{aligned}$	Yes
SWRI: YC-5	YC-4	$\begin{gathered} 1980 \\ \text { car } \end{gathered}$	44.2	20.0	$\begin{gathered} 27.8 \\ 7.3 \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ 3.3 \end{gathered}$	Yes
SWRI: YC-6	YC-4	$\begin{gathered} 1980 \\ \text { Car } \end{gathered}$	51.1	19.4	$\begin{gathered} 6.8 \\ 22.7 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 6.8 \end{aligned}$	Yes
SWRI: YC-7	YC-4	$\begin{gathered} 5424 \\ \text { pickup } \end{gathered}$	45.2	20.7	$\begin{aligned} & 2.2 \\ & 18.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.8 \\ & 8.9 \end{aligned}$	Yes

1.3.1.2. TTI W-Beam System: 1992 (5)

1.3.1.2.1. Design Considerations

The short radius guardrail consisted of a 14 -ft 3-inch radius curved section with a 31 -ft 5-inch straight segment parallel to the primary road and a $60-\mathrm{ft} 8$-inch section parallel to the secondary roadway. A TxDOT turndown terminated the secondary straight section. The guardrail was a 12 -gauge W -beam supported by 7 -inch diameter weakened wooden posts. The system contained two BCT anchors: one was located in the curved region and the other was located upstream of the transition. The transition section was a tubular W-beam, which is made from two pieces of W-beam welded back to back.

1.3.1.2.2. Test 1263-1

The purpose of this test was to evaluate the ability of the system to capture small vehicles impacting the curved section of the rail. The $1970-\mathrm{lb}$ car impacted the system near the center of its curved section at an impact speed of 58.4 mph and an impact angle of 20.5° (refer to Figure 1.15). Instead of fracturing, the CRT posts in the curved section of the guardrail were pulled from the ground. The BCT post also did not fracture as expected, so the cable anchor did not release properly. Each of these occurrences contributed to higher tension in the rail than anticipated and caused the vehicle to be stopped too quickly. The impact lifted the back end of the vehicle completely off the ground. This system was not adequate because the longitudinal impact velocity of $41.8 \mathrm{ft} / \mathrm{s}$ exceeded the limit according to NCHRP Report 230.

Figure 1.15. Sequential Photographs for Test 1263-1 (5).

1.3.1.2.3. Test 1263-2

After analyzing the results of Test 1263-1, changes were made to decrease the stiffness of the system. The downstream BCT assembly was replaced with a weakened CRT post in order to ensure the cable anchoring system properly releases. Also, the depth of all CRT posts was increased from 38 inches to 44 inches to raise the chance of fracturing instead of pulling out of the ground. The impact conditions for Test 1263-2 were the same as the impact conditions for Test 1263-1 (refer to Figure 1.16). The 1970-lb car impacted the curved section of the system at an impact speed of 59.0 mph and an impact angle of 20.4°. The CRT posts in the curved section of the guardrail fractured as expected. However, as the vehicle traveled through the system, a splice in the rail fractured. This caused the vehicle to travel much farther than the allowable stopping distance. Because the vehicle was not stopped within the intended distance, the system was considered inadequate according to NCHRP Report 230.

1.3.1.2.4. Test 1263-3

After analyzing the results of Test 1263-2, researchers made changes to increase the strength of the W-beam. To do this, two W-beams were placed one behind the other for the entire length of the system except for the transition and turndown section. The impact conditions
for Test 1263-3 were the same as the impact conditions for Test 1263-2 (refer to Figure 1.17). The $1970-\mathrm{lb}$ car impacted the system at an impact speed of 60.2 mph and an impact angle of 20.7°. The guardrail functioned as intended. The posts in the curved section fractured properly and the anchoring system released cleanly. The vehicle was stopped after traveling 14 ft , and the values for OIV and RDA were within acceptable limits. Therefore, the system was considered adequate according to NCHRP Report 230.

Figure 1.16. Sequential Photographs for Test 1263-2 (5).

Figure 1.17. Sequential Photographs for Test 1263-3 (5).

1.3.1.2.5. Test 1263-4

For this test, the radius of the curved portion was increased from 14 ft 3 inches to 16 ft . This change was made to simplify installation of the system. The purpose of this test was to evaluate the redirective performance of the system's transition region. The 4500-1b sedan impacted the straight section of the system 75 inches from the bridge rail at an impact speed of 57.1 mph and an impact angle of 24.7° (refer to Figure 1.18). Minimal wheel snagging occurred
at the transition region and the vehicle was safely redirected. The system was considered adequate according to NCHRP Report 230.

1.3.1.2.6. Test $\mathbf{1 2 6 3 - 5}$

The purpose of this test was to evaluate the ability of the system to capture large vehicles impacting the curved section of the rail. No modifications to the system we made between Tests $1263-4$ and 1263-5. The $4500-\mathrm{lb}$ sedan impacted the centerline of the guardrail at an impact speed of 58.5 mph and an impact angle of 26.8° (refer to Figure 1.19). The posts in the curved section of the rail fractured as intended and the guardrail deformed properly. However, after deflecting 16 ft , the guardrail slipped above the vehicle's bumper. It traveled over the hood of the vehicle and caused significant damage to the passenger compartment. Because the system did not capture the vehicle and the passenger compartment had an unacceptable amount of damage, it was considered inadequate according to NCHRP Report 230.

Figure 1.18. Sequential Photographs for Test 1263-4 (5).

Figure 1.19. Sequential Photographs for Test 1263-5 (5).

1.3.1.2.7. Test 1263-6

After analyzing the results of Test 1263-5, researchers made changes to prevent vehicle underride. The post at the beginning of the turndown was weakened. This would cause the post to fracture before the rail can ride up on the vehicle. The purpose of this test was to evaluate the redirective performance of the system when a vehicle impacts the curved section at a shallow angle. The centerline of the $4500-\mathrm{lb}$ sedan impacted the centerline of system's primary side at an impact speed of 58.3 mph and an impact angle of 2.0° (refer to Figure 1.20). The vehicle was redirected without snagging. Little damage was done to the vehicle, and the system and values for OIV and RDA were within recommended limits. Therefore, the system was considered adequate according to NCHRP Report 230.

Figure 1.20. Sequential Photographs for Test 1263-6 (5).

1.3.1.2.8. Primary Findings

Table 1.2 presents the pertinent test results for the TTI testing on the W-beam system. Weakened posts must be buried deep enough so they fracture instead of pulling out from the ground. If a BCT system is used, a proper cable release must occur or else the vehicle will decelerate too rapidly. Nested W-beams increase the load capacity of the system. However, nested W-beams are difficult to install because the splice holes in the two beams do not always line up. A thrie beam system should be evaluated because of its similar strength of a nested W-beam. Also, the increased width of the thrie beam will better capture the vehicle, reducing the chance of vehicle override or underride.

1.3.1.3. TTI Thrie-Beam System: 1994 (6)

1.3.1.3.1. Design Considerations

The short radius guardrail consisted of a 10-gauge thrie beam supported by weakened, round wooden posts with 6 -ft 3 -inch spacing. A thrie beam was used because of its advantages over a nested W-beam, which include improved vehicle capture, easier installation and maintenance, and is more cost-effective. The rail height was 31 inches, had a $16-\mathrm{ft}$ radius, extended 32 ft on the primary side, and extended 60 ft on the secondary side. A thrie to W-beam
transition was used at the bridge rail connection and before the turndown section on the secondary side.

Table 1.2. Summary of Crash Test Data of TTI W-Beam System (5).

$\begin{gathered} \text { Test } \\ \text { Number } \end{gathered}$	Guardrail Description	Test Vehicle (lb)	Impact Speed (mph)	Impact Angle (degrees)	OIV Longitudinal Lateral (ft/s)	RDA Longitudinal Lateral (Gs)	Vehicle Safely Captured/ Redirected
1263-1	14 ft 3 inch radius, W-beam	$\begin{gathered} 1970 \\ \mathrm{car} \end{gathered}$	58.4	20.5	$\begin{aligned} & 41.8 \\ & 10.7 \end{aligned}$	$\begin{gathered} 12.8 \\ 2.5 \end{gathered}$	No
1263-2	BCT assembly replaced by a CRT post, increased depth of all CRT posts	$\begin{gathered} 1970 \\ \mathrm{car} \end{gathered}$	59.0	20.4	$\begin{gathered} 27.1 \\ 4.2 \end{gathered}$	$\begin{gathered} 10.5 \\ 0.8 \end{gathered}$	No
1263-3	1263-2, two nested W-beams	$\begin{gathered} 1970 \\ \text { car } \end{gathered}$	60.2	20.7	$\begin{gathered} \hline 34.3 \\ 7.9 \end{gathered}$	$\begin{aligned} & 8.9 \\ & 3.5 \end{aligned}$	Yes
1263-4	1263-3, increased radius to 16 ft	$\begin{aligned} & 4500 \\ & \text { sedan } \end{aligned}$	57.1	24.7	$\begin{aligned} & 27.6 \\ & 25.4 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 7.7 \end{aligned}$	Yes
1263-5	1263-4	$\begin{aligned} & 4500 \\ & \text { sedan } \end{aligned}$	58.5	26.8	$\begin{gathered} \hline 20.3 \\ 6.2 \\ \hline \end{gathered}$	$\begin{aligned} & 7.6 \\ & 2.3 \end{aligned}$	No
1263-6	1263-4, weakened post at beginning of turndown	$\begin{aligned} & 4500 \\ & \text { sedan } \end{aligned}$	58.3	2.0	$\begin{aligned} & 10.7 \\ & 15.4 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 5.6 \end{aligned}$	Yes

1.3.1.3.1. Test 1442-1

The purpose of this test was to evaluate the redirective capability of the system when a vehicle strikes the bridge transition. The $4409-\mathrm{lb}$ pickup impacted the system at an impact speed of 60.9 mph and an impact angle of 26.0° (refer to Figure 1.21). The truck immediately contacted the concrete barrier and was pulled sharply to the left. The front end of the vehicle became airborne. After contacting the system for 15.7 ft , the vehicle exited the system at 41.5 mph at an angle of 2.5°. Because the vehicle was safely redirected and values for OIV and RDA were within recommended limits, the system is considered adequate according to NCHRP Report 350.

Figure 1.21. Sequential Photographs for Test 1442-1 (6).

1.3.1.3.2. Test 1442-2

No changes were made to the system between Test 1442-1 and 1442-2. The purpose of this test was to evaluate the ability of the system to contain a pickup truck, which impacts the centerline of the curved section. The 4409-lb vehicle impacted the centerline of the system at an impact speed of 63.0 mph and an impact angle of 25.6° (refer to Figure 1.22). Immediately after impact, the posts in the curved section rotated instead of fracturing as intended. This caused the rail to twist, and the vehicle began to climb the guardrail. The vehicle vaulted and overrode the barrier. Because the vehicle was not contained, the system is inadequate according to NCHRP Report 350.

Figure 1.22. Sequential Photographs for Test 1442-2 (6).

1.3.1.3.3. Test $1442-3$

After researchers analyzed the results of Test 1442-2, they replaced bolts with lag screws in each of the posts in the curved section of the guardrail. This change decreased the rotation of the guardrail by allowing the posts to release properly. The impact conditions for Test 1442-3 were the same as in Test 1442-2. The 4409-lb pickup impacted the centerline of the curved section at an impact speed of 63.0 mph and an impact angle of 24.6° (refer to Figure 1.23). The results of this test were nearly identical to the results of the previous test. Immediately after impact, the loading on the top portion on the rail combined with the low torsional stiffness of the thrie beam caused the rail to twist and the vehicle began to climb the guardrail. The vehicle vaulted and overrode the barrier. Because the vehicle was not contained, the system is inadequate according to NCHRP Report 350.

Figure 1.23. Sequential Photographs for Test 1442-3 (6).

1.3.1.3.4. Test 1442-4

After analyzing the results of Test 1442-3, researchers decided that the project would now focus on designing a system to be compliant with NCHRP Report 230 criteria. The system developed during this project could be used until a short radius system meeting NCHRP Report 350 criteria was designed and tested. The purpose of this test was to evaluate the ability of the system to capture a small car impacting the curved section of the system. The 1978-lb car impacted the centerline of the curved section at an impact speed of 60.1 mph and an impact angle of 19.1° (refer to Figure 1.24). Immediately after impact, the posts in the curved section fractured as intended, and the guardrail began to deform across the front of the vehicle. As the vehicle continued into the system, the rail slipped over the bumper and began to override the hood. Even though vehicle underride did occur, the system is adequate according to NCHRP Report 230 because the OIV and RDA values were within the limits and the vehicle was safely contained.

Figure 1.24. Sequential Photographs for Test 1442-4 (6).

1.3.1.3.5. Test 1442-5

No changes were made to the system between Tests 1442-4 and 1442-5. The purpose of this test was to evaluate the ability of the system to contain a large vehicle impacting at the centerline of the curved section. The $4500-\mathrm{lb}$ vehicle impacted the centerline of the curved section of the system at an impact speed of 60.4 mph and an impact angle of 24.5° (refer to Figure 1.25). Immediately after impact, the posts in the curved section fractured as intended and the rail deformed across the front of the vehicle. The vehicle came to a stop 21.3 ft into the system. Even though the end anchor failed before the vehicle came to a complete stop the test was not considered a failure because the vehicle was safely contained and the values for OIV and RDA were within recommended limits, the system is adequate according to NCHRP Report 230.

Figure 1.25. Sequential Photographs for Test 1442-5 (6).

1.3.1.3.6. Primary Findings

Table 1.3 presents the pertinent test results for the TTI testing on the thrie beam system. A thrie beam has strength and stiffness properties that are comparable to a nested W-beam, but the thrie is cheaper and easier to install. Because the depth of the thrie beam is greater than that of a W-beam, extra care must be taken to ensure vaulting caused by eccentric loading or improper fracturing of posts does not occur.

Table 1.3. Summary of Crash Test Data of TTI Thrie Beam System (6).

Test Number	Guardrail Description	Test Vehicle (lb)	Impact Speed (mph)	Impact Angle (degrees)	OIV (ft/s) Longitudinal Lateral	RDA (Gs) $\left.\begin{array}{c}\text { Longitudinal } \\ \text { Lateral }\end{array}\right]$	Vehicle Safely Captured/ Redirected
1442-1	4.78 ft radius, thrie beam	$\begin{gathered} 4409 \\ \text { pickup } \end{gathered}$	60.9	26.0	$\begin{aligned} & 24.1 \\ & 26.2 \end{aligned}$	$\begin{gathered} \hline 7.1 \\ 11.7 \end{gathered}$	Yes
1442-2	1442-1	4409 lb pickup	63.0	25.6	$\begin{gathered} 17.2 \\ 2.6 \end{gathered}$	$\begin{gathered} 10.4 \\ 5.6 \end{gathered}$	No
1442-3	1442-2, removed bolts from posts in curved section	$\begin{gathered} 4409 \\ \text { pickup } \end{gathered}$	63.0	24.6	$\begin{gathered} 16.5 \\ 3.3 \end{gathered}$	$\begin{aligned} & 6.17 \\ & 9.58 \end{aligned}$	No
1442-4	1442-3	$\begin{gathered} 1978 \\ \text { car } \end{gathered}$	60.1	19.1	$\begin{gathered} \hline 34.7 \\ 7.8 \\ \hline \end{gathered}$	$\begin{aligned} & 8.59 \\ & 3.02 \end{aligned}$	Yes
1442-5	1442-3	$\begin{gathered} 4500 \\ \text { town car } \end{gathered}$	60.4	24.5	$\begin{array}{r} 20 \\ 8.0 \end{array}$	$\begin{aligned} & 5.24 \\ & 2.75 \\ & \hline \end{aligned}$	Yes

1.3.1.4. Midwest Roadside Safety Facility Phase II: 2003 (8)

1.3.1.4.1. Design Considerations

Phase II of the project involved full-scale crash tests on the design developed in phase I (7). Phase I of the MwRSF project was a concept development based on previous short radius guardrail designs, FHWA recommendations, and state regulations. An 8 -ft radius was selected for this study
based on research, which concluded that smaller radius guardrails maintained tension better throughout the system. The smaller radius also reduces the overall size of the system, allowing it to be used at a variety of intersections. The radius was based on the constraint that bending in the nose of the rail would form a 90° angle between each leg. It was determined that the thrie beam had sufficient strength at the nose to prevent sagging, so a post at the centerline of the nose was not needed. Removing this post also reduces the risk of vaulting when vehicles impact the centerline of the curve. The curved section included a rail with slot tabs that should allow the rail to separate at impact and better capture the front of the vehicle.

1.3.1.4.2. Test SR-1

The test was conducted according to NCHRP Report 350 TL-3 test designation 3-33 using a 4473-lb 1995 GMC pickup truck. The centerline of the truck impacted the centerline of the nose section at an impact speed of 61.5 mph and an impact angle of 19.0° (refer to Figure 1.26). The bumper of the truck made initial contact with the middle hump of the thrie beam. As the beam deformed, the slot tabs did not tear, so the middle hump was pushed below the bumper and the lower hump of the beam was rolled over. Because of the impact orientation, the posts on the left side of the vehicle failed before those on the right side. This caused the left side of the rail to lose tension first, which caused the rail on the right side of the vehicle to lock. The vehicle yawed violently clockwise until it rolled over. Because the vehicle rolled and was not captured, the guardrail was deemed unacceptable according to NCHRP Report No. 350 criteria.

1.3.1.4.3. Test SR-2

As a result of Test SR-1, two CRT posts were added to the secondary side of the system. This should counteract the yaw of the truck by stiffening the side that lost tension. The test was conducted according to NCHRP Report 350 TL-3 designation 3-33 using a 4440-lb 1994 Chevrolet pickup truck. The centerline of the truck impacted the centerline of the nose section at 64.7 mph and an impact angle of 16.1° (refer to Figure 1.27). The bumper of the truck made initial contact with the middle hump of the thrie beam. As the rail deformed, the top and middle humps were pushed above the bumper and the lower hump was rolled over. As the vehicle continued into the system, the rail on the primary side deformed along the line of posts while the rail on the secondary side deformed at an angle. This uneven loading caused the vehicle to yaw clockwise. The combination of the yaw from the system and debris gathered on the vehicle's right side caused the pickup to roll over the guardrail. Because the vehicle rolled and was not captured, the guardrail was deemed unacceptable according to NCHRP Report 350 criteria.

1.3.1.4.4. Test SR-3

After reviewing the geometry of the system, the researchers at MwRSF decided that an impact with the centerline of the vehicle directly aligned with the primary side of the system would be more critical than the impact in NCHRP Report 350 test designation 3-31. Therefore, Test SR-3 was carried out as a modified NCHRP Report 350 test designation 3-31 where the truck impacts the primary side of the system at an impact angle of 0° rather than impacting the centerline of the nose at an angle of 0°. The vehicle used for the test was a 4489-lb 1995 Ford pickup truck. The truck impacted the rail at 63.9 mph and an angle of 0.9° (refer to Figure 1.28). The bumper of the truck made initial contact between the top two humps of the thrie beam,
which immediately tore the slot tabs between the top and middle humps. As the rail deformed, the top hump slid above the bumper while the middle and bottom humps were pushed beneath the bumper and the pickup truck rolled over. The vehicle buckled the first section of guardrail, but the second section flexed outward instead of buckling. This caused significant deformation to the front of the vehicle. The increased resistance from the rail along with the cable in the nose section locking above the front bumper caused the vehicle to pitch violently downward. The vehicle rolled to the right and yawed counterclockwise such that only the right front corner of the truck contacted the ground. Because the vehicle rolled and was not safely redirected, the guardrail was deemed unacceptable according to NCHRP Report 350 criteria.

1.3.1.4.5. Test SR-4

The failure to safely stop the vehicle in Tests SR-2 and SR-3 led to several design modifications for Test SR-4. Another section of thrie beam was added to the primary side. This increased the parabolic flare of the system and added four more CRT posts, bringing the total on the primary side to 13 posts. The extra section would allow the rail to absorb more energy, and the additional slotted rail would allow the rail to buckle more easily, reducing the vaulting that occurred in Test SR-3. The system was also raised by 2 inches to better capture the vehicle. The test was a repeat of Test SR-3 and the vehicle used was a 4420-lb 1997 GMC pickup truck. The truck impacted the rail at an impact speed of 66.1 mph and an impact angle of 1.8° (refer to Figure 1.29). The vehicle impacted the curved section of the guardrail. The first two posts were fractured, and the rail was pushed to the left of the vehicle. The loss of these posts eliminated most of the tension upstream of the truck, which led to little redirection by the system. At this point, the vehicle began to redirect slightly. Posts 3 through 8 were fractured, and then the rail slid off the left corner of the vehicle into the front wheels. As the rail snagged the front-left wheel, the vehicle decelerated rapidly and yawed counterclockwise. Because the system did not safely redirect the vehicle, it was deemed unacceptable according to NCHRP Report 350 criteria.

1.3.1.4.6. Primary Findings

Table 1.4 presents the pertinent test results for MwRSF phase II testing. The addition of parabolic flare and more slotted guardrail sections improved vehicle capture and gave the vehicle a larger distance to decelerate. Increasing the system height from 31.6 inches to 33.8 inches did not have a significant impact on test results and also caused compatibility issues with connecting bridge rails. It was also determined that an additional anchor on the primary side would be necessary to keep tension in the rail.

Table 1.4. Summary of MwRSF Phase II Crash Test Data (8).

Test Number	Guardrail Description	Test Condition	Test Vehicle (lb)	Impact Speed (mph)	Impact Angle (degrees)	OIV (ft/s) Longitudinal Lateral	RDA (Gs) Longitudinal Lateral	Vehicle Safely Redirected
SR-1	8 ft radius, thrie beam	NCHRP Report 350 Test 3-33	4473 pickup	61.5	19.0	20.6	9.28	No
SR-2	SR-1, two posts added on secondary side	NCHRP Report 350 Test 3-33	4440 pickup	64.7	16.1	23.6	7.89	
SR-3	No changes from SR-2	Modified NCHRP Report 350 Test 3-31	4489 pickup	63.9	0.9	29.0	8.6	No
SR-4	SR-2, added section on primary side, raised system to 33.8 inches	Modified Report 350 Test 3-31	4420 pickup	66.1	1.8	14.2	12.21	No

1.3.1.5. \quad Midwest Roadside Safety Facility Phase III: 2007 (11)

1.3.1.5.1. Design Considerations

The design of the short radius guardrail for these tests was based on research conducted in phase I and II of the project. Similar to that used in phase II, the system was also designed without a centerline post in the nose section. It also used a slotted thrie beam held by 13 posts on the primary side and eight posts on the secondary side. The parabolic flare on the primary side was kept after it was found to improve the system in Test SR-4. The radius was increased to 9 ft , which should better facilitate vehicle capture while remaining small enough to be used at a variety of intersections. A set of cables was attached to the back of the nose section between the top and middle humps of the thrie beam to contain vehicles if rail rupture occurs. A new anchorage system tangent to the primary side was added to maintain tension in the primary side when redirecting a vehicle. The new anchor needs to provide tension during redirection but must break away when the vehicle is to be captured. Therefore, a release lever was added in front of the curved section of the system.

1.3.1.5.2. Test SR-5

After reviewing the geometry of the system, the researchers at MwRSF decided that an impact with the centerline of the vehicle directly aligned with the primary side of the system would be more critical than the impact in NCHRP Report 350 test designation 3-31. Therefore, Test SR-3 was carried out as a modified NCHRP Report 350 test designation 3-31 where the truck impacts the primary side of the system at an impact angle of 0° rather than impacting the centerline of the nose at an impact angle of 0°. The test was conducted using a 4412-lb 1997 Ford pickup truck. The vehicle impacted the system slightly after the first primary post at an
impact speed of 63.3 mph and an impact angle of 0.9° (refer to Figure 1.30). The curved nose section deformed inward and wrapped around the front corner of the truck. By the time the vehicle fractured the second primary post, it began to redirect. The rail began to flatten as the vehicle was redirected. After the third post fractured, other posts only bent slightly as they continued to redirect the vehicle. The vehicle exited the system at post 7 at an exit speed of 53 mph and an exit angle of 12.6°. The secondary anchor remained in place for the test and successfully established the tension required to redirect the vehicle. The short radius guardrail system was adequate in safely redirecting the vehicle according to NCHRP Report 350 TL-3 performance criteria. There were no intrusions into the occupant compartment, the vehicle remained upright, and did not interfere with other lanes of traffic.

1.3.1.5.3. Test SR-6

After Test SR-5, concerns were raised over the location of the cable release mechanism because the current location in front of the guardrail would hinder mowing crews. As a result, the mechanism was eliminated and the cable system on the primary side redesigned. The cable was lengthened and reoriented so it ran from the first post on the primary side to the first post on the secondary side. The anchorage for the secondary side was relocated to post 2S. Test SR-6 was carried out according to NCHRP Report 350 test designation 3-30 with a 1969-lb 1996 Geo car. When the vehicle impacted the curved section of the guardrail, the right front quarter point of the car was aligned with the centerline of the curved nose section. The vehicle impacted the system while traveling at an impact speed of 61.8 mph at an impact angle of 0.8° (refer to Figure 1.31). The nose section buckled near its midpoint and deformed the hood of the car. The slot tabs began to tear as the car continued into the system. Buckle points formed adjacent to posts 1 P and 1S. By this time, the thrie beam spread across the entire front of the car. The rail then disengaged from post 3 P and was pushed up over the front of the vehicle, collapsing the hood and contacting the windshield. At 0.770 seconds (s), the car came to a stop. Though the system adequately contained the vehicle, the longitudinal occupant ridedown acceleration was above the maximum allowed value. Excessive deformations and intrusions into occupant compartment also occurred. Therefore, the system was deemed inadequate according to NCHRP Report 350 TL-3 criteria.

1.3.1.5.4. Primary Findings

Table 1.5 presents the pertinent test results for MwRSF phase III testing. The redesigned anchoring method used for Test SR-6 was adequate in maintaining tension in the primary side. A cable located behind the thrie beam will retain the vehicle in the event of rail rupture. The parabolic flared section continued to perform well when redirecting a vehicle. Care must be taken to keep the vehicle from traveling under the rail during impact in order to minimize occupant compartment damage.

TR No. 0-6711-1

Table 1.5. Summary of Midwest Roadside Safety Facility Phase III Crash Test (11).

Test Number	Guardrail Description	Test Condition	Test Vehicle (lb)	Impact Speed (mph)	Impact Angle (degrees)	OIV (ft/s) Longitudinal Lateral	RDA (Gs) Longitudinal Lateral	Vehicle Safely Redirected
SR-5	SR-4, added anchorage to primary side, lowered to 31 inches	Modified NCHRP Report 350 Test 3-31	4412 pickup	63.3	0.9	13.4	5.72	Yes
SR-6	SR-5, redesigned anchoring system	NCHRP Report 350 Test 3-33	1969 car	61.8	0.8	10.4	5.37	

1.3.1.6. Midwest Roadside Safety Facility Phase IV: 2008 (9)

1.3.1.6.1. Design Considerations

The design of the short radius guardrail for these tests was based on research conducted in phase I, II, and III of the project. The system is identical to the one tested in Test SR-6. The radius is 9 ft , with cables attached to the back of the nose section. The guardrail has 13 posts on the primary side and eight posts on the secondary side holding up a slotted thrie beam and no post on the centerline of the nose section.

1.3.1.6.2. Test SR-7

The test was conducted according to NCHRP Report 350 test designation 3-33 guidelines with a 4989-lb pickup truck. The centerline of the truck impacted the centerline of the curved section of the system at an impact speed of 62.3 mph and an impact angle of 18.1° (refer to Figure 1.32). As the truck traveled through the system, it began to turn toward the secondary side because the number of posts on the primary side offered more resistance. Tension was lost on the secondary side and the guardrail hit the ground in front of the vehicle. As the truck began to roll over the rail, the back right tire hit post 1 S , which raised the right-rear corner of the vehicle. Next, the vehicle's front left tire snagged on the sagging rail and pitched the vehicle downward. The truck pivoted about this point and rolled. Because the vehicle rolled over the guardrail and was not contained, the system is not adequate according to NCHRP Report 350 guidelines.

1.3.1.6.3. Test SR-8

After analyzing the results of Test SR-7, researchers made several design modifications. First, the holes in posts $1 \mathrm{P}, 1 \mathrm{~S}$, and 2 S were enlarged from 2.5 inches to 3 inches in diameter. This should ensure a cleaner release of the cable anchor and keep the posts from interfering with the vehicle as it travels through the system. Plate washers were added to the first four posts on each side. This will keep the posts attached to the guardrail after they fail so they do not interact with the vehicle as it travels through the system. Also, the slot tabs were reduced from 2 inches wide to 1 inch wide so that they would tear more easily. The centerline of the truck impacted the
centerline of the curved section of the system at an impact speed of 62.9 mph and an impact angle of 17.9° (refer to Figure 1.33). As the truck traveled through the system, it began to turn toward the secondary side because the primary side offered more resistance. By the time the truck became parallel with the secondary side, the guardrail was contacting the entire left side of the vehicle. This caused the vehicle to yaw about its front-left tire. The rail lost tension in the secondary side and the vehicle rolled over it. Because the truck rolled over the guardrail, the system is not adequate according to NCHRP Report 350 guidelines.

1.3.1.6.4. Primary Findings

Table 1.6 presents the pertinent test results for MwRSF phase IV testing. Though the system in Test SR-8 was not adequate, the modifications after Test SR-7 showed promise. Enlarging transverse holes in the first post on the primary side as well as two posts on the secondary side, reducing slot tab size in the nose section, and attaching the first three posts on each side to the guardrail with washers improved the overall performance of the system by minimizing the amount of debris that the vehicle encountered.

Table 1.6. Summary of Midwest Roadside Safety Facility Phase IV Crash Test Data (9).

Test Number	Guardrail Description	Test Condition	Test Vehicle (lb)	Impact Speed (mph)	Impact Angle (degrees)	$\begin{gathered} \text { OIV (ft/s) } \\ \text { Longitudinal } \\ \text { Lateral } \end{gathered}$	$\begin{aligned} & \text { RDA (Gs) } \\ & \text { Longitudinal } \\ & \text { Lateral } \end{aligned}$	Vehicle Upright Safely Redirected
SR-7	SR-6	NCHRP Report 350 Test 3-30	4989 pickup truck	62.3	18.1	$\begin{gathered} \hline 20.1 \\ 8.0 \end{gathered}$	$\begin{aligned} & 9.61 \\ & 5.55 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$
SR-8	SR-7, enlarged holes, added washers, reduced width of slot tabs	NCHRP Report 350 Test 3-33	5000 pickup truck	62.9	17.9	$\begin{aligned} & \hline 21.0 \\ & 10.2 \end{aligned}$	$\begin{aligned} & \hline 6.80 \\ & 4.12 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$

0.810 sec
 0.000 sec

1.3.2. Bullnose Guardrail Research and Testing

1.3.2.1. \quad A Need for the Universal Steel Breakaway Post (12)

CRT wood posts were originally used in the thrie-beam bullnose system that MwRSF developed between 1997 through 2000. The bullnose system was developed in order to protect errant vehicles from hazards in highway medians. Using CRT wood posts in this system met the criteria in NCHRP Report 350. However, wood posts can have several drawbacks. The quality of wood can largely vary based on factors such as knots, splints, and moisture content, making it difficult to maintain consistency. Two holes are drilled in the CRT wood posts to allow for breakaway capability. The holes allow raw exposure to the environment, which can lead to faster degradation of the post. In addition, the wood is treated with chemical preservatives, making it a hassle to dispose of according to environmental laws. The concerns of using CRT wood posts led to the development of the Universal Breakaway Steel Post (UBSP). The UBSP needed to mimic all breakaway properties of the CRT wood post so that it could serve as a replacement for the wood post in guardrails.

1.3.2.2. \quad Phase I: Investigating the Use of a New Universal Breakaway Steel Post: $2009(12,13)$

1.3.2.2.1. CRT Wood Post Breakaway Testing

To mimic the properties of CRT wood posts, the UBSP needed to match the bending capacities along the strong, weak, and diagonal axis under similar loading conditions. Also, the shape and mass of the UBSP needed to be comparable to a CRT wood post so it would have the same breakaway characteristics and rotational resistance in the soil. Nine tests were conducted with CRT wood posts in a rigid sleeve to determine dynamic properties of the posts. This provided parameters for the development of the UBSP. The averages of the results from the nine tests are listed in the table below. The tests used southern yellow pine at three impact angles. Table 1.7 presents a summary of results on the CRT wood post bogie tests. From these results and previous experience with CRT posts, MwRSF concluded the peak forces were $12 \mathrm{kips}, 8 \mathrm{kips}$, and 6 kips on the strong, diagonal, and weak axis, respectively.

Table 1.7. Summary of CRT Wood Post Bogie Test Results (13).

Test Number	Impact Angle (degrees)	Impact Velocity (mph)	Initial Peak Force		Energy at 5-inch Displacement Energy (kips-inch)	Final Total Energy	
			Displacement (inches)	Force (kips)		$\begin{array}{\|c} \hline \text { Displacement } \\ \text { (inches) } \end{array}$	Energy (kip-inch)
MNCRT-1, MNCRT-2, MNCRT-3	0	15.14	1.45	10.27	16.4	12.22	22.69
MNCRT-4, MNCRT-5, MNCRT-6	90	15.82	1.5	9.07	16.9	11.47	21.05
MNCRT-7, MNCRT-8, MNCRT-9	45	15.87	2.79	10.78	23.13	12.21	29.52

1.3.2.2.2. Concept Development of the UBSP

The difficult aspect of developing the UBSPs was using ductile steel to recreate the bending properties of brittle wood. Several concepts were originally introduced and narrowed down to five based on ease of production, cost, and potential to match the characteristics of the CRT wood post. The five concepts included:

- Steel tube in steel tube.
- Steel tube in steel tube with through bolt.
- Upper fiberglass reinforced plastic.
- Fracturing bolt base.
- Circular fillet weld.

In the first round of testing, the five concepts were narrowed down to the circular fillet weld and fracturing bolt concepts. This was based on the practicality and the performance of the five concepts during testing. The two concepts went on to a second round of testing. The fracturing bolt (slipbase) concept consists of two plates, one welded to the top of the base tube and the other welded to the bottom of the post. The two plates are then connected by four breakaway bolts. The design is intended to allow the bolts on the impact side to break in tension and the bolts on the non-impact side to break in shear. The circular fillet weld concept consists of a splice plate with circular holes on the front and back of the posts. The circular holes on the plate are fillet welded to the top post. The failure of the post is based on the failure of the welding.

During the second round of testing, researchers concluded that the fracturing bolt concept was the best option because the circular fillet weld concept depended too much on the variation of the welding.

Prior to a third round of testing for the fracturing bolt concept, researchers conducted a set of tests to evaluate the breakaway properties of a CRT wood post in soil. Earlier testing of breakaway properties was done with the post in a rigid sleeve. Table 1.8 summarizes the test results for the CRT wood posts in soil.

Table 1.8. Wood CRT in Soil (13).

Test Number	Impact Velocity (mph)	Impact Angle (degrees)	Peak Load (kips)	Expected Peak Loads from Previous Testing (kips)	Failure Type
UBSP-14	19.1	0	8.3	12	Post Failure
UBSP-15	20.5	0	5	12	Post Rotation
UBSP-16	20.2	90	4	6	Post Rotation
UBSP-17	20.6	90	5	6	Post Failure
UBSP-18	20.0	45	7	8	Post Rotation
UBSP-19	20.0	45	5	8	Post Rotation

The variation in the compaction and strength of soil was apparent in the results of the wood post in soil. This variation can be seen in Tests UBSP-15, UBSP-16, and UBSP-19 where the failure was due to post rotation and a smaller peak load than expected. Also, the large difference in the expected peak load and the experimental peak load in Test UBSP-14 demonstrates the variance in the quality of wood. At the breakaway point of the post in this test, there was a large knot in the wood.

A third round of testing was done with the fracturing bolt steel post to ensure it would match the breakaway properties as the wood posts in soil, and to test the post on the diagonal axis that had not been tested in round 2 . Table 1.9 summarizes the second and third rounds of tests of the fracturing bolt UBSP.

Table 1.9. Round 2 and 3 of Tests of Fracturing Bolt Steel Post (13).

Test Number	Impact Angle (degrees)	Peak Load (kips)	Soil Type	Description
UBSP-9 (round 2)	0	11	Standard strong soil	One of the impact side nuts stripped off instead of the bolt fracturing
UBSP-10 (round 2)	90	6.42	Standard strong soil	Bolts fractured in tension
UBSP-13 (round 2)	0	5	Standard strong soil	Did not break at expected force level, but did absorb significant energy
UBSP-20 (round 3)	0	10.8	Standard strong soil	Bolts fractured in tension
UBSP-21 (round 3)	45	8.3	Standard strong soil	Bolts fractured in tension and there was damage to the flange

In round two, there were two tests conducted at the same impact angle because in Test UBSP-9, one of the impact side nuts stripped off instead of the bolt fracturing. Test UBSP-13 was conducted to ensure that the behavior of the bolt would fracture instead of the nut stripping. This was done by replacing the double end stud with a hex bolt of the same size (refer to and). MwRSF contributed the small peak load in Test UBSP-13 to the poor impaction of the soil causing the post to rotate instead of breaking away.

Figure 1.34. Fracturing Bolt Steel Post Design (13).

Table 1.10. Details on Fracturing Bolt Steel Post (13).

Item No.	Quantity	Description	Material Spec
1a	4	$3 / 8$-inch diameter $\times 2^{1 / 2}$-inch long Hex	Grade 5
1b	1	$6 \times 8 \times 0.1875 \times 40$ Foundation Tube	A500
1c	16	$3 / 8$-inch Flat Washer	Grade 5
1d	4	$3 / 8$-inch Heavy Hex Nut	Grade 5
1e	1	$12 \times 7 \times 0.5$ Steel Plate	A36
1f	1	$12 \times 5.5 \times 0.75$ Steel Plate	A36
1g	1	W6 $\times 9 \times 30.75$	

1.3.2.2.3. Testing the Universal Steel Breakaway Post: UBSPN-1 (13)

The barrier design for this test consisted of 28 posts with 14 on each side of the system. On one side of the system, the first post was a BCT post. The next 11 posts were UBSPs and the final two were BCT posts with cable anchors. The other side was an exact mirror. Figure 1.35 shows a diagram of the system.

Figure 1.35. Barrier Design Detail of UBSPN-1 (13).
The test was conducted according to NCHRP Report 350 test designation 3-38. A 4473-lb pickup truck impacted the centerline of post 2 A at 63.2 mph and an angle of 22.6°.

At impact, the rail immediately began to deform, fracturing the posts near the impact point. It continued to penetrate the barrier even with the release of the cable anchor. As the truck neared the end of the slotted rail, the rail began to buckle, causing the rail to drop to the ground on the passenger side. The truck then began to ramp and override the rail. It made contact with the ground on the front left side, and the continuing momentum of the truck caused it to roll onto its roof. Figure 1.36 shows final displacement of the vehicle.

The truck had moderate damage mostly caused by the roll. The barrier had extensive damage with flattening and tearing. Most of the damage was done on the impact side (side A) with the first 8 posts fracturing. On side B, only posts 11 and 12 were damaged. The system was considered unacceptable according to NCHRP Report 350 because of the truck override and subsequent rollover. Figure 1.37 shows sequential photographs of the test.

Figure 1.36. Vehicle Final Position for Test UBSPN-1 (13).

Figure 1.37. Sequential Photographs for Test UBSPN-1 (13).

1.3.2.3. Phase II: Investigating the Use of a New Universal Breakaway Steel Post: 2010 (14)

1.3.2.3.1. UBSPN-2

Test UBSPN-1 was compared to previous NCHRP Report 350 test designation 3-38 crash tests with CRT wood posts and steel post bullnose systems to find the causes of failure. It was observed that in UBSPN-2, the fracturing bolt posts broke away more quickly than the CRT wood posts. Post 2 actually did not break away as quickly as expected, causing the truck to have greater redirection than in similar previous tests with CRT wood posts.

For this test, modifications were considered based on the occurrences in test UBSPN-1. They include:

- Changing the second post from a UBSP to a BCT breakaway wood post.
- Reducing the embedment depth for the UBSPs.
- Adding another section of slotted thrie beam to both sides.
- Increasing the strength of the fracturing-bolt steel post. Figure 1.38 shows a diagram of the new barrier design.

The test was conducted according to NCHRP Report 350 test designation 3-38. A 4470lbpickup truck impacted the centerline of post 2 at 62.9 mph and an angle of 21.7°.

At impact, the rail began to deform. The posts near the impact point fractured and the rail wrapped around the front of the truck, beginning to contain it. The truck continued to penetrate the system, making contact with the other side of the setup and coming to a stop. There was severe damage to the barrier on the impact side (side A) including guardrail buckling and
flattening, and posts 1 through 8 were all fractured. On side B , there was minimal damage where posts 1 through 3 were fractured. Since the vehicle was successfully captured and did not ramp or roll, the system was considered acceptable according to NCRHP Report 350. Figure 1.39 shows the final displacement of the vehicle and Figure 1.40 shows sequential photographs of the test.

Figure 1.38. Barrier Design Detail of UBSPN-2 (14).

Figure 1.39. Vehicle Final Position Test UBSPN-2 (14).

Figure 1.40. Sequential Photographs for Test UBSPN-2 (14).

1.3.2.4. Phase III: Investigating the Use of a New Universal Breakaway Steel Post: 2010 (15)

1.3.2.4.1. UBSPN-3

A 2024-lb car impacted the barrier at 63.3 mph and an angle of 0°. The system barrier design was the same as UBSPN-2. At impact, the rail immediately began to deform. On side A, the first three posts were fractured and post 4 was twisted. On side B, the first four posts were fractured, post 5 blockouts were rotated, and the rail-to-post bolts on post 6 were pulled out. There was no visible damage to posts 5 through 14 on side A and posts 7 through 14 on side B. The damage to the vehicle was moderate and the beam suffered from buckling, tearing, and flattening. The test was considered adequate because the vehicle was contained and the OIVs and RDAs of both directions were within the limits of NCHRP Report 350 test designation 3-30. Figure 1.41 shows final displacement of the vehicle, and Figure 1.42 shows sequential photos of the test.

Figure 1.41. Vehicle Final Position Test UBSPN-3 (15).

Figure 1.42. Sequential Photographs for Test UBSPN-3 (15).

1.3.2.4.2. UBSPN-3

A 4429-lb pickup truck impacted the barrier at 64.5 mph and an angle of 0°. The system barrier design was the same as UBSPN-2. At impact, the rail immediately began to deform. On Side A, posts 1 through 6 and post 8 were fractured and post 7 was bent and twisted. Posts 9 and 10 had $1 / 2$-inch soil gaps. On Side B, the first seven posts were fractured and post 8 was bent slightly. There was no visible damage to posts 11 through 14 on Side A and posts 9 through 14 on Side B. The damage to the vehicle was moderate, and the beam suffered from buckling, tearing, and flattening. The test was considered adequate because the vehicle was contained and the OIVs and RDAs of both directions were within the limits of NCHRP Report 350 test designation 3-31. Figure 1.43 shows final displacement of the vehicle, and Figure 1.44 shows sequential photographs of the test.

Side A
Figure 1.43. Vehicle Final Position UBSPN-4 (15).

Figure 1.44. Sequential Photographs for Test UBSPN-4 (15).

1.3.2.5. Primary Findings

From the full scale crash tests and the bogie tests, MwRSF confirms that the fracturing bolt UBSP is sufficient to replace CRT wood posts under similar conditions. Also, MwRSF believes the foundation tube and foundation plate can be reused as long as these do not display any deformation. During testing, MwRSF observed that replacing step washers with standard washers in the fracturing bolt post design allowed the bolts on the non-impact side of the post to break in shear instead of tension. Table 1.11 provides a summary of pertinent results from the bullnose barrier tests.

Table 1.11. Summary of Bullnose Barrier Tests (15).

Test Number	Guardrail Description	Test Condition	Test Vehicle (lb)	Impact Speed (mph)	Impact Angle (degrees)	OIV (ft/s) Longitudinal Lateral	RDA (Gs) Longitudinal Lateral	Vehicle Safely Redirected
UBSPN-1	First post was BCT anchor post	NCHRP Report 350 Test 3-38	4473	63.2	22.6	21.05	11.36	No
UBSPN-2	First two posts were BCT anchor posts	NCHRP Report 350 Test 3-38	4471	62.9	21.7	28.15	15.11	Yes
UBSPN-3	Same System as UBSPN-2	NCHRP Report 350 Test 3-38	2026	63.3	0	0.74	17.39	
UBSPN-4	Same System as UBSPN-2	NCHRP Report 350 Test 3-31	4429	64.5	0	21.75	7.84	Yes

1.3.3. Evaluation of Existing T-Intersection Guardrail Systems: 2010 (16)

TTI conducted a study to determine if previously tested short radius guardrail systems met NCHRP Report 350 TL-2 criteria. The focus was on the crash tests done in Yuma County, Arizona. Table 1.12 shows a summary of the NCHRP Report 350 test conditions required for TL-2.

Table 1.12. NCHRP Report 350 TL-2 Criteria (16).

Feature	Feature Type ${ }^{\text {a }}$	Test Designation	Impact Conditions		
			Vehicle	Nominal Speed (km/h)	Nominal Angle, θ (degrees)
Terminals and Redirective Crash Cushions	G/NG	2-30	820C	70	0
	G/NG	2-31	2000P	70	0
	G/NG	2-32	820 C	70	15
	G/NG	2-33	2000P	70	15
	NG	2-36	820 C	70	15
	NG	2-37	2000P	70	20
	NG	2-38	2000P	70	20
	G/NG	2-39	2000P	70	20

${ }^{a}$ G/NG-Test applicable to gating and nongating devices
NG-Test applicable to nongating devices
The researchers concluded that tests YC-5 and YC-6 passed on the test conditions for NCHRP Report 350 test designations 2-32 and 2-36, respectively, for the small car. Also, tests YC-4 and YC-7 passed for test conditions for NCHRP Report 350 test designations 2-33 and 2-37, respectively, for the pickup truck. Tests conditions for 2-30, 2-31, and 2-38 were satisfied by a cluster of Yuma County tests; and from engineering review, test 2-39 was considered
unnecessary. Based on these conclusions, an NCHRP Report 350 TL-2 T-intersection system was recommended. Figure 1.45 shows details of the recommended system.

The T-intersection system is a 27 -inch high rail system. The nose section of this T-intersection system consists of a $121 / 2 \mathrm{ft}$ curved W -beam segment, which has an 8 - ft radius. The curved section is attached to a straight W -beam section on the secondary road via common W-beam splicing details. The secondary road W-Beam should be 25 ft minimum and should be terminated with a positive anchor. Five CRT posts, spaced at 6.25 ft , were placed along the curved section and secondary road section. On the primary road direction, the curved section is spliced to a short W-beam segment (6.25 ft) at CRT post 7. The short W-beam section has also two posts measuring $77 / 8 \times 77 / 8 \times 72$ inches embedded 44 inches in soil.

Starting at post 9, a stiffer rail section is used as a transition to the bridge rail. The transition section consists of a W-beam guardrail, backed by an MC8 $\times 22.8$ structural steel channel that runs from post 9 to the bridge barrier. The transition has three timber posts, which measure $97 / 8 \times 97 / 8 \times 78$ inches. They are embedded 50 inches in soil. The five timber posts (post 8 to post 12) have $77 / 8 \times 77 / 8 \times 14$-inch wood blockouts.

Figure 1.45. Recommended NCHRP Report 350 TL-2 T-Intersection System (16).

CHAPTER 2. SHORT RADIUS CONCEPTS

2.1. SUMMARY OF PREVIOUS LITERATURE REVIEW

2.1.1. Primary Findings

The last short radius TL-3 test that MwRSF conducted showed promising performance (9). Enlarging transverse holes in the first post on the primary side, as well as two posts on the secondary side, reducing slot tab size in the nose section, and attaching the first three posts on each side to the guardrail with washers improved the overall performance of the system by minimizing the amount of debris that the vehicle encountered. However, aside from not passing AASHTO MASH criteria, the pickup truck required a substantial working width behind the short radius rail, as shown in Figure 2.1 and Figure 2.2. This working width (67.5 ft along the primary road and 38.3 ft along the secondary road) is not available in most intersection locations due to site geometrical constraints.

Figure 2.1. Final Vehicle Position for MwRSF Test SR-8 (9).

Figure 2.2. Working Width for MwRSF Test SR-8 (9).

2.1.2. Recommended Test Matrix

The test matrices that MASH defined are broken down into tests for terminals and tests for crash cushions. However, a short radius guardrail acts as a both a terminal and a crash cushion, so deciding which recommended tests are critical poses a significant challenge. Investigation of the geometry of a short radius system suggests the critical tests will be 3-30, 3-31, 3-32, 3-33, and 3-35. Table 2.1 lists the test parameters, and Figure 2.3 shows their impact locations.

Table 2.1. MASH TL-3 Recommended Test Matrix.

Test Number	Vehicle Designation	Impact Speed	Impact Angle	Impact Tolerance (KE)
$3-30$	1100 C	62 mph	0°	$\geq 288 \mathrm{kip}-\mathrm{ft}$
$3-31$	2270 P	62 mph	0°	$\geq 594 \mathrm{kip}-\mathrm{ft}$
$3-32$	1100 C	62 mph	$5-15^{\circ}$	$\geq 288 \mathrm{kip}-\mathrm{ft}$
$3-33$	2270 P	62 mph	$5-15^{\circ}$	$\geq 594 \mathrm{kip}-\mathrm{ft}$
$3-35$	2270 P	62 mph	25°	$\geq 106 \mathrm{kip-ft}$

Test 3-35
Figure 2.3. MASH TL-3 Recommended Test Matrix.

2.2. BASE (TEMPLATE) SHORT RADIUS SYSTEM

The template short radius system used for initial concepts and modeling simulations is based on the NCHRP Report 350 TL-2 short radius system (16) and TxDOT standard 31-inch transition details. Both the NCHRP Report 350 TL-2 short radius design and the TxDOT transition are shown in Figure 2.4 and Figure 2.5, respectively. The intersection system is comprised of a $12.5-\mathrm{ft}$ curved W -beam section with an 8 - ft radius. This section is attached to a W -beam for the secondary road measuring a minimum of $25-\mathrm{ft}$, and is terminated with a positive anchor, allowing
the beam to rotate. The primary road is connected to the curved section with a spliced short W-beam segment measuring 6.25 ft . Along this spliced section, two posts measuring $77 / 8 \times 77 / 8 \times$ 72 inches are embedded 44 inches into the soil.

2.3. CONCEPT ANALYSES

Some simplifications were made during the concept development as needed for efficient simulation. Multiple sections of the rail were bolted together in the real system but were made into one continuous rail with uniform cross-sectional area and inertia throughout the simplified model. The W-beams were simplified to a rectangular cross section of equivalent inertia to that of the original rail. A rail height of 31 inches was selected to account for the increased MASH TL-3 vehicular center of gravity. Also, the soil under the system was not included in the model but springs were used instead to simulate the elasticity of the soil. Basic boundary conditions were used in lieu of rail end treatments and simple connections were incorporated instead of bolts.

2.3.1. Baseline Simulation

This model was used as a benchmark for subsequent simulations. It has no attenuators or energy-absorbing systems behind the curved section of the rail. It was used to determine the effectiveness of subsequent design concepts. Figure 2.6 provides several sequential images of the model run. Table 2.2 lists the outcome of the Test Risk Assessment Program (TRAP), which is used for calculating occupant impact velocity, ridedown acceleration, and other pertinent results.

Figure 2.4. Base Short Radius System (16).

Figure 2.5. TxDOT Transition Detail GF (31) TR-11.

Figure 2.6. Sequential Images of Truck Impact with Baseline System.

Table 2.2. Baseline Simulation.

TL 3-33 Chevy Silverado	
Impact Speed, mph	62.2
Impact Angle, degrees	15.0
Initial Kinetic Energy of Vehicle, ft-lb	631,515
Kinetic Energy of Vehicle at End of Run, ft-lb	337,349 (47\% reduction)
X-Velocity of Vehicle at End of Run, ft/s	63.57
Max Occupant Impact Velocity (OIV), ft/s	15.09
Ridedown Acceleration, Gs	11.0
Maximum Angle Movement, degrees	17.9 (pitch)

The results for this test proved that the system without any attenuators would absorb very little energy, and the vehicle was still moving at a relatively high velocity when the simulation ended. These findings were used as a foundation for comparing the results of design concepts and the efficiency of each system.

2.3.2. Sliding Posts

Sliding posts were implemented for this system. Figure 2.7 shows the sliding posts. Figure 2.8 depicts the whole system. Figure 2.9 presents sequential images of the truck impact. There were no CRT posts in the nose section for this concept. Five W6 $\times 9$ steel posts were placed in the nose section and weighted to create friction due to the contact between the soil and the sled bases. As a result, energy would ideally be absorbed from friction instead of fracture on impact. Results revealed that the sled did not actually absorb any significant initial energy from the collision. Modeling this concept provided the findings given in Table 2.3.

This concept intended for the sleds to stay in contact with the ground to provide resistance to the vehicle impact on the system; however, it can be seen from the images of the model run that this was not the case. In order for the concept to be effective, the posts would need to be heavier to create enough friction for energy absorption. The necessary weight for this to work proved that constructing the sliding posts from steel would be impractical.

Figure 2.7. Sliding Post Models.

Figure 2.8. Short Radius Design with Sliding Posts.

Figure 2.9. Sequential Images of Truck Impact with Sliding Posts System.

Table 2.3. Sliding Posts System.

TL 3-33 C2500	
Impact Speed, mph	62.2
Impact Angle, degrees	15.0
Initial Kinetic Energy of Vehicle, ft-lb	524,578
Kinetic Energy of Vehicle at End of Run, ft-lb	40,418 (92\% reduction)
X-Velocity of Vehicle at End of Run, ft/s	-1.75
Max OIV, ft/s	32.48
Ridedown Acceleration, Gs	12.7
Maximum Angle Movement, degrees	211.3 (yaw)

2.3.3. Parallel Cable to Post

The concept of parallel cables uses the initial TTI T-intersection system with two additional cables behind the nose of the guardrail to help contain the vehicle. The cables behind the system were $1 / 2$-inch in diameter, and a CRT post was placed at the center of the curved guardrail section. Figure 2.10 shows a visual representation of the concept. Several systems were modeled using 3, 4, 5, and 6 cables. However, the results revealed that only the cables perpendicular to the point of impact were effective because they were the only ones that were placed in tension upon contact. The two-cable system was modeled and yielded the results shown in Table 2.4. Figure 2.11 presents sequential images of the truck impact.

$\xrightarrow{2 x} x$
Figure 2.10. Short Radius Design with Parallel Cables Attached to Posts.

Two Parallel Cables
Time $=0.02 \mathrm{~s}$

Time $=0.255 \mathrm{~s}$

Two Parallel Cables
Time $=0.53 \mathrm{~s}$

Two Parallel Cables
Time $=0.8 \mathrm{~s}$

Figure 2.11. Sequential Images of Truck Impact with Parallel Cables Attached to Posts.

Table 2.4. Parallel Cables to Post.

TL 3-33 Chevy Silverado	
Impact Speed, mph	62.2
Impact Angle, degrees	15.0
Initial Kinetic Energy of Vehicle, ft-lb	631,516
Kinetic Energy of Vehicle at End of Run, ft-lb	44,229 (93 \% reduction)
X-Velocity of Vehicle at End of Run, ft/s	15.8
Max OIV, ft/s	24.28
Ridedown Acceleration, Gs	7.7
Maximum Angle Movement, degrees	76.3 (yaw)

According to the results, this concept was considered promising because the vehicle did not override the system. It was at a complete stop at the end of the run, and the system absorbed almost twice the amount of internal energy as the base system. The TRAP results also revealed that the occupant impact velocity and ridedown acceleration would pass the safety requirements of NCHRP Report 350 TL-3.

2.3.4. Stacked Parallel Cables

When the cable concept was tested, the cables were attached to the posts rather than the rail. Attaching the cables to the rail would be the realistic situation and Figure 2.12 illustrates this concept. A model test was run to determine the consequence of attaching the cables to the rail rather than to the posts. The results from this test proved that there was little difference between attaching cables to the rail and previous analyses based on attaching cables to the posts.
However, the cables will need to be attached to the rail when detailed simulations and crash tests are performed.

2.3.5. Four Stacked Cables Attached to Rail

Based on the effectiveness of the two-cable system at absorbing energy, it seemed logical to double the cables behind the system. This two-cable concept was the first that brought the vehicle to a stop without exceeding OIV or ridedown acceleration. The vehicle did not override the system, and there was almost no roll or pitch during the simulation. Figure 2.13 shows a visual representation of the system, and Table 2.5 gives the TRAP results for this concept.

Figure 2.12. Short Radius Design with Parallel Cables Attached to Rail.

Figure 2.13. Four Stacked Parallel Cables to Rail.

Table 2.5. Four Stacked Cables Attached to Rail.

TL 3-33 Chevy Silverado	
Impact Speed, mph	62.2
Impact Angle, degrees	15.0
Initial Kinetic Energy of Vehicle, ft-lb	631,516
Kinetic Energy of Vehicle at End of Run, ft-lb	22,100 (97\% reduction)
X-Velocity of Vehicle at End of Run, ft/s	1.98
Max OIV, ft/s	24.93
Ridedown Acceleration, Gs	18.4
Maximum Angle Movement, degrees	156 (yaw)

2.3.6. Sand-Filled Barrels

Steel barrels filled with sand were used for a crash cushion design to absorb kinetic energy from the vehicle impact. The idea came from the use of traditional crash attenuators. The number of barrels and back connectivity was varied for multiple simulations to determine what setup would be the most effective. Figure 2.14 shows an example of this concept.

Figure 2.14. Short Radius Design with Sand-Filled Barrels.

2.3.6.1. \quad 5-Barrel System with Back Rail

A crash cushion was simulated with five barrels behind the guardrail held in place by a back rail. Figure 2.15 presents sequential images of the truck impact. Table 2.6 gives the results for this concept. The results from the model show that the occupant impact velocity (indicated in red) was too high for NCHRP Report 350 recommended values.

Cushion 5 Barrels and a Back

Figure 2.15. Sequential Images of Truck Impact with 5-Barrel System with Back Rail.

Table 2.6. 5-Barrel System with Back Rail.

TL 3-33 Chevy Silverado	
Impact Speed, mph	62.2
Impact Angle, degrees	15.0
Initial Kinetic Energy of Vehicle, ft-lb	631,518
Kinetic Energy of Vehicle at End of Run, ft-lb	20,245 (97\% reduction)
X-Velocity of Vehicle at End of Run, ft/s	2.66 (0.81)
Max OIV, ft/s	51.51
Ridedown Acceleration, Gs	9.0
Maximum Angle Movement, degrees	46.3 (yaw)

2.3.6.2. \quad-Barrel System with Two Cables

The 5-barrel crash cushion was kept in place with two cables instead of a back rail. Table 2.7 gives the TRAP results for this model. Figure 2.16 depicts sequential images of the truck impact. Using the cables instead of a back rail had very little effect on the results. The vehicle did not override the system or pitch upward significantly. In addition, the vehicle was almost brought to a complete stop by the system. However, the occupant impact velocity was still very high, violating MASH TL-3 OIV criterion limit.

Table 2.7. 5-Barrel System with Two Cables.

TL 3-33 Chevy Silverado	
Impact Speed, mph	62.2
Impact Angle, degrees	15.0
Initial Kinetic Energy of Vehicle, ft-lb	631,519
Kinetic Energy of Vehicle at End of Run, ft-lb	11,251 (98\% reduction)
X-Velocity of Vehicle at End of Run, ft/s	2.61
Max OIV, ft/s	52.17
Ridedown Acceleration, Gs	-10.5
Maximum Angle Movement, degrees	36.4 (yaw)

Cushion 5 Barrels and 2 Cables
Time $=0.02 \mathrm{~s}$

Cushion 5 Barrels and 2 Cables

Cushion 5 Barrels and 2 Cables

Cushion 5 Barrels and 2 Cables
Time $=0.515 \mathrm{~s}$

Figure 2.16. Sequential Images of Truck Impact with 5-Barrel System with Two Cables.

2.3.6.3. 15-Barrel System

The system that was modeled and analyzed was comprised of a 15-barrel system with a back rail. Table 2.8 gives the results for the 15 -barrel system with a back rail. Figure 2.17 presents sequential images of the truck impact

The results from the model show that the occupant impact velocity (indicated in red) was too high for NCHRP Report 350 recommended values due to the extremely high mass of the 15-barrel system.

Table 2.8. 15-Barrel System.

TL 3-33	
Impact Speed, mph $(\mathrm{km} / \mathrm{h})$	62.2
Impact Angle, degrees	15.0
Initial Kinetic Energy of Vehicle, ft-lb	524,578
Kinetic Energy of Vehicle at End of Run, ft-lb	13,593 (97\% reduction)
X-Velocity of Vehicle at End of Run, ft/s	8.45
Max OIV, ft/s	52.82
Ridedown Acceleration, Gs	9.0
Maximum Angle Movement, degrees	35.3 (yaw)

2.3.6.4. 3-Barrel System with Stacked Rail

The number of barrels was reduced and a rubrail was added to decrease the vehicle's chance of overriding the system. Figure 2.18 shows a visual representation of the system. Table 2.9 provides the TRAP results for this simulation.

The addition of the second rail aided in maintaining rail height and the vehicle did not override the system. The vehicle was almost brought to a complete stop but did pitch up significantly. Although the impact velocity for this run was less than in previous crash cushion tests, it was slightly too high to meet $N C H R P$ Report 350 standards.

Cushion 15 Barrels and Back Rail
Time $=0.019999 \mathrm{~s}$

Cushion 15 Barrels and Back Rail
Time $=0.25 \mathrm{~s}$

Cushion 15 Barrels and Back Rail
Time $=0.525 \mathrm{~s}$

Cushion 15 Barrels and Back Rail
Time $=0.8 \mathrm{~s}$

Figure 2.17. Sequential Images of Truck Impact with 15-Barrel System.

Figure 2.18. Short Radius Design of 3-Barrel System with Stacked Rail.
Table 2.9. 3-Barrel System with Stacked Rail.

TL 3-33	
Impact Speed, mph	62.2
Impact Angle, degrees	15.0
Initial Kinetic Energy of Vehicle, ft-lb	631,520
Kinetic Energy of Vehicle at End of Run, ft-lb	17,610 (97\% reduction)
X-Velocity of Vehicle at End of Run, ft/s	-2.80
Max OIV, ft/s	53.48
Ridedown Acceleration, Gs	9.0
Maximum Angle Movement, degrees	32.9 (yaw)

2.3.6.5. 3-Barrel System with Reinforcement

This concept was comprised of a 3-barrel crash cushion behind the rail. The barrels are placed on top of sleds in order to help absorb more energy. Figure 2.19 shows the sleds that were used for this system, and Figure 2.20 shows the guardrail system for this model. Figure 2.21 provides sequential images of the model run. Table 2.10 presents the TRAP results.

The vehicle was almost brought to a complete stop; however, the occupant impact velocity was slightly high to meet NCRHP Report 350 requirements. The vehicle did not override the system and the vehicle experienced almost no pitch or roll (less than 8° at any point).

Figure 2.19. Sleds for Barrels.

Figure 2.20. Short Radius Design of Three Barrels with Sled Reinforcement.

Cushion 3 Barrels and Sleds/No Cables Time $=0.11 \mathrm{~s}$

Cushion 3 Barrels and Sleds/No Cables
Time $=0.8 \mathrm{~s}$

Figure 2.21. Sequential Images of Truck Impact with 3-Barrel System with Sled Reinforcement.

Table 2.10. 3-Barrel System with Sled Reinforcement.

TL 3-33	
Impact Speed, mph	62.2
Impact Angle, degrees	15.0
Initial Kinetic Energy of Vehicle, $\mathrm{ft}-\mathrm{lb}$	631,517
Kinetic Energy of Vehicle at End of Run, ft-lb	8,231 (99\% reduction)
X-Velocity of Vehicle at End of Run, ft/s	-7.90
Max OIV, ft/s	48.6
Ridedown Acceleration, Gs	9.4
Maximum Angle Movement, degrees	74.4 (yaw)

2.3.7. Short Radius with Cable Barrier

Some recent concepts were developed after evaluating the results from the previously described concepts. Since the cable concepts showed some success, a standard cable median barrier system was put in place behind the guardrail system to aid in absorbing additional kinetic energy. Figure 2.22 shows the system for this concept. A test was performed on this new concept by impacting the system at 25° relative to the primary roadway to determine the energy absorption abilities in a shorter segment. Results demonstrated that this could be a feasible option as long as the slope behind the guardrail is not an issue. The cable median was beneficial for absorbing additional energy out of the system. It was also determined that the cables themselves absorbed a significant amount of kinetic energy in the form of internal energy.

Figure 2.22. Short Radius Design with Cable Median behind Rail.

The concept was considered an inapplicable design for this situation. The cable would be too far behind the guardrail to be sufficiently effective and would only work if the system was on a level corner, which is not the case for this condition.

2.3.8. Short Radius with Added Nose Mass

This concept used thin rectangular containers placed behind the posts and filled with sand to aid in attenuating some of the kinetic energy through momentum transfer. Figure 2.23 shows the system. Figure 2.24 shows sequential images of truck impact. The rectangular tubes were made of polystyrene because it is inexpensive, easy to form, and has brittle properties that allow fracturing upon impact. Results of the model indicate that the vehicle would override this system and the back right wheel would snag on the guardrail. Table 2.11 provides the TRAP results for the run.

Figure 2.23. Short Radius Design with Free Mass.

Figure 2.24. Sequential Images of Truck Impact with Free Mass System.

Table 2.11. Free Mass System Results.

TL 3-33 Chevy Silverado	
Impact Speed, mph	62.2
Impact Angle (degrees)	15.0
Initial Kinetic Energy of Vehicle, ft-lb	631,523
Kinetic Energy of Vehicle at End of Run, ft-lb	72,105 (89\% reduction)
X-Velocity of Vehicle at End of Run, ft/s	27.9
Max OIV, ft/s	33.14
Ridedown Acceleration, Gs	13.7
Maximum Angle Movement, degrees	50.6 (yaw)

2.4. DETAILED MODELING

Design requests required a base model to be developed in full detail. Modifications were implemented to analyze the most applicable concepts for this project. The images below represent these concepts. The system consists of 6 -inch $\times 8$-inch CRT breakaway posts, 10 -gauge W-beams, a rotating deadman anchor, a rail height of 31 inches, ASTM A307 button head bolts, and TxDOT metal beam guard fence transition. The rotating anchor is simulated in the model with the use of a fixed rigid cylinder that allows the rail to rotate.

2.4.1. Double Rail System

The double rail concept is a detailed model composed of two attached rails. The double rail was used because the top rail was raised to 31 inches. The lower rail was implemented to prevent a small vehicle from snagging on the upper rail, which could shear off the top of the car. The system was run with a Chevy Silverado truck even though the concept was created as a precaution for small vehicle impact. Figure 2.25 shows the system. The x-direction runs along the primary roadway. The y-direction runs along the secondary roadway or driveway. Figure 2.26 presents sequential images of the truck impact. Table 2.12 provides the TRAP results for this model.

Figure 2.27 depicts the longitudinal velocity of the vehicle from the initial state of the test to the end of the run. Figure 2.28 visually represents the distance that the vehicle traveled from the initial state to the point of zero velocity. The graph in Figure 2.29 provides the x and y displacement from the initial position of the truck at time zero until the end of the run. The displacement values on the y-axis are given in feet and the x-axis is in seconds (s). The truck approached zero velocity at time 0.745 s . The x and y displacements at this time were 36.6 ft and 15.8 ft .

Primary Roadway

Figure 2.25. Short Radius Design with Detailed Double Rail.

Table 2.12. Detailed Double Rail System.

TL 3-33 Chevy Silverado	
Impact Speed, mph	62.2
Impact Angle, degrees	15.0
Initial Kinetic Energy of Vehicle, ft-lb	631,523
Kinetic Energy of Vehicle at End of Run, ft-lb	18,634 (97\% reduction)
X-Velocity of Vehicle at End of Run, ft/s	-2.24
Max OIV, ft/s	26.57
Ridedown Acceleration, Gs	11.6
Maximum Angle Movement, degrees	100.6 (yaw)

Figure 2.26. Sequential Images of Truck Impact with Detailed Double Rail System.

Figure 2.27. Longitudinal Velocity of the Pickup Impacting the Double Rail System.

Figure 2.28. Vehicle Displacement of Detailed Double Rail System.

Figure 2.29. Vehicle Trajectory of Detailed Double Rail System.

2.4.2. Double Rail System with Free Mass

This was the first detailed model for the double rail system with the free mass attenuators. There were three posts at the mid-section, each filled with approximately 100 lb of sand. Figure 2.30 shows the system. The x -axis runs along the primary roadway and the y -axis runs along the secondary roadway. Figure 2.31 presents sequential images of the truck impact. Table 2.13 gives the TRAP results.

Primary Roadway
Figure 2.30. Short Radius Design of Detailed Rail with Free Mass.

Figure 2.31. Sequential Images of Truck Impact with Double Rail System with Free Mass.

Table 2.13. Double Rail System with Free Mass.

TL 3-33 Chevy Silverado	
Impact Speed, mph	62.2
Impact Angle (degrees)	15.0
Initial Kinetic Energy of Vehicle, ft-lb	631,518
Kinetic Energy of Vehicle at End of Run, ft-lb	3,580 (99\% reduction)
X-Velocity of Vehicle at End of Run, ft/s	0.23
Max OIV, ft/s	26.9
Ridedown Acceleration, Gs	12.0
Maximum Angle Movement, degrees	116.2 (yaw)

The results from the simulation revealed a maximum total kinetic energy of $674,121 \mathrm{ft}-\mathrm{lb}$. The maximum kinetic energy of the free mass component of the system was $24,707 \mathrm{ft}-\mathrm{lb}$. The free mass component of the system only absorbed 3.65 percent of the kinetic energy from impact.

In Figure 2.32, the graph represents the x-velocity of the vehicle from the initial state of the test to the end of the run. Figure 2.33 visually represents the distance the vehicle traveled from the initial state to the time of zero velocity. The graph in Figure 2.34 represents the x and y displacement from the initial position of the truck at time zero until the end of the run. The truck approached zero velocity at 0.695 s . The x-displacement at this time was 34.1 ft and y -displacement was 15.8 ft .

Figure 2.32. X-Velocity of Double Rail System with Free Mass.

Figure 2.33. Vehicle Displacement of Double Rail System with Free Mass.

Figure 2.34. Vehicle Trajectory of Double Rail System with Free Mass.

2.4.3. Double Rail with Freestanding Mass and Posts

The system was a modification of the detailed double rail with free mass. Freestanding posts with 100 lb of sand were added behind the system to absorb more kinetic energy. Figure 2.35 shows the system. The x -axis runs along the primary roadway and the y -axis runs along the secondary roadway. Figure 2.36 depicts sequential images of the run. Table 2.14 provides the TRAP analysis results.

The results from the model run revealed a maximum total kinetic energy of $673,723 \mathrm{ft}-\mathrm{lb}$. The maximum kinetic energy of the free mass component of the system was $45,686 \mathrm{ft}-\mathrm{lb}$. The free mass component of the system absorbed only 6.78 percent of the kinetic energy from impact.

Figure 2.35. Short Radius Design of Detailed Rail with Additional Posts.

Table 2.14. Double Rail with Additional Posts.

TL 3-33 Chevy Silverado	
Impact Speed, mph	62.2
Impact Angle (degrees)	15.0
Initial Kinetic Energy of Vehicle, ft-lb	631,532
Kinetic Energy of Vehicle at End of Run, $\mathrm{ft}-\mathrm{lb}$	3,338 (99\% reduction)
X-Velocity of Vehicle at End of Run, ft / s	-4.84
Max OIV, ft/s	32.2
Ridedown Acceleration, Gs	10.6
Maximum Angle Movement, degrees	116.3 (yaw)

Double Rail with Free Mass and Posts
Time $=0.22 \mathrm{~s}$

Double Rail with Free Mass and Posts
Time $=1.0 \mathrm{~s}$

Figure 2.36. Sequential Images of Truck Impact with Double Rail System with Additional Posts.

The results for this model show that the guardrail was more effective in containing the vehicle and the rail did not tear away from the posts. Figure 2.37 represents the x-velocity of the vehicle from the initial state of the test to the end of the run. The vehicle displacement from the initial state to zero velocity is visually represented in Figure 2.38, and the displacement is depicted graphically in Figure 2.39. The vehicle only traveled about 29.5 ft in the x-direction until it reached zero velocity at 0.77 s . This x -displacement value was less than the previous model, thus proving that the additional posts aided in vehicle containment.

2.4.4. Summary for Double Rail Analysis

The aforementioned simulations point to a potential short radius design that can pass MASH evaluation criteria, yet perform within the site constraint of most of these intersection locations. The rail along the primary roadway will have additional details including the rest of the transition and the bridge rail end. More simulations and calculations are required to determine the optimum position and number of steel posts in this segment. The rail along the secondary roadway will be shortened because the current length was not fully utilized during this impact simulation It is evident that the inertial contribution from the sand mass as seen in the last system in Figure 2.35 aided in reducing the vehicle trajectory. Additional simulations and calculations are planned to optimize the sand's mass and position within the system to bring the vehicle to a complete stop within the desired site constraint and MASH evaluation criteria. Figure 2.40 to Figure 2.43 depict the details of the prototype short radius system under evaluation.

Figure 2.37. X-Velocity of Double Rail System with Additional Posts.

Figure 2.38. Vehicle Displacement of Double Rail System with Additional Posts.

Figure 2.39. Vehicle Trajectory of Double Rail System with Additional Posts.

Figure 2.40. Overhead View of the Short Radius System.

Figure 2.41. Isometric View of the Short Radius System.

Figure 2.42. Close-Up View of the Short Radius System.

Figure 2.43. Field Side View of the Short Radius System.

2.5. EXPERIMENTAL EVALUATION OF NEEDED ENERGY

The sand inertial system was the attenuator chosen to increase the energy dissipation of the system. To find the optimum combination of barrels and masses, several simulations were run. Simplified vehicles were modeled to decrease the run time on the simulations. Figure 2.44 and Figure 2.45 show the simplified vehicles that were used.

Figure 2.44. Simplified Car Model.

Figure 2.45. Simplified Truck Model.
Once the last few barrel layouts were being chosen, the simulations were run with the Yaris model and Silverado model instead of the simplified vehicle models. Physical experiments were then performed on the most promising barrel layouts. These tests served as a calibration and baseline for the simulations. There was very good correlation between the simulation and physical experiment results.

2.5.1. Summary of Simplified Simulations

Table 2.15 and Table 2.16 are summaries of the previous simulations done to investigate the use of sand barrels as an attenuator in the short radius system. Table 2.15 consists of all the simulations that were run with the simplified car and simplified truck and the tests results. Table 2.16 is a summary of the simulations run for the Yaris (small car) and the Silverado truck models.

2.5.2. Dimensions of Barrel Layouts

The simulations and the experiments mentioned below have the dimensions shown in Figure 2.46. The barrels' radius is 36 inches.

The only changes made to the barrels are to their weights. Throughout this report, the weights of the barrels are presented in the order that the vehicle encounters them. Figure 2.47 shows an example of a $400-\mathrm{lb}, 400-\mathrm{lb}$, and $700-\mathrm{lb}$ barrel layout.
Table 2.15. Summary of Simulations with Simplified Car and Truck Models.

CASE	DESCRIPTION				RESULTS FOR	PERCENT LOSS IN	EXTRA
	First Row	Second Row	Third Row	Spacing (between rows)	MASH	KINETIC ENERGY	INFORMATION
Simplified Car: One Row							
Case 1	Two barrels: $200 \mathrm{lb}(90 \mathrm{~kg})$	N/A	N/A	N/A	Pass	36.51\%	N/A
Case 2	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	N/A	N/A	N/A	Pass	50.83\%	N/A
Simplified Car: Two Rows							
Case 1	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	N/A	13 inches (330 mm)	Violates	73.56\%	N/A
Case 2	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320 \mathrm{~kg})$	N/A	13 inches (330 mm)	Pass	82.52\%	N/A
Case 3	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	N/A	24 inches (610 mm)	Pass	73.91\%	N/A
Simplified Car: Three Rows							
Case 1	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320$	1st to 2nd: 13 inches (330 mm) 2nd to 3rd: 43 inches (1086 mm)	Pass	89.70\%	N/A
Simplified Truck: Two Rows							
Case 1	Two barrels: 400 lb (180 kg)	Two barrels: 400 lb (180 kg)	N/A	13 inches (330 mm)	Pass	50.79\%	N/A
Case 2	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320 \mathrm{~kg})$	N/A	13 inches (330 mm)	Violates	60.28\%	N/A
Simplified Truck: Three Rows							
Case 1	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320$	1st to 2nd: 13 inches (330 mm) 2nd to 3rd: 43 inches (1086 mm)	Pass	71.24\%	N/A

Table 2.16. Summary of Simulations with Small Car and Truck Models.

CASE		DESCRIPTION				RESULTS FOR	PERCENT LOSS IN	EXTRA
		First Row	Second Row	Third Row	Spacing (between rows)	MASH	KINETIC ENERGY	INFORMATION
Actual Car: Three Rows								
	Case 1	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320$	1st to 2nd: 24 inches (610 mm) 2nd to 3rd: 24 inches (610 mm)	Pass	78.67\%	N/A
	Case 2	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320$	1st to 2nd: 24 inches (610 mm) 2nd to 3rd: 24 inches (610 mm)	Pass	74.37\%	$\begin{gathered} \hline \text { Finer Mesh } \\ \text { Failure }=0.015 \\ \hline \end{gathered}$
	Case 3	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320$	1st to 2nd: 24 inches (610 mm) 2nd to 3rd: 24 inches (610 mm)	Pass	80.98\%	$\begin{gathered} \hline \text { Finer Mesh } \\ \text { Failure }=0.015 \\ \hline \end{gathered}$
	Case 4	Two barrels: $700 \mathrm{lb}(320 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320$	1st to 2 nd : 24 inches (610 mm) 2nd to 3rd: 24 inches (610 mm)	Pass	82.87\%	Finer Mesh Failure $=0.015$
Actual Truck: Three Rows								
	Case 1	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: 700 lb (320	1st to 2nd: 24 inches (610 mm) 2nd to 3rd: 24 inches (610 mm)	Pass	67.16\%	N/A
	Case 2	Two barrels: 400 lb (180 kg)	Two barrels: $400 \mathrm{lb}(180 \mathrm{~kg})$	Two barrels: 700 lb (320	1st to 2nd: 24 inches (610 mm) 2nd to 3rd: 24 inches (610 mm)	Pass	67.81\%	Finer Mesh Failure $=0.015$
	Case 3	Two barrels: 400 lb (180 kg)	Two barrels: $700 \mathrm{lb}(320 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320$	1st to 2nd: 24 inches (610 mm) 2nd to 3rd: 24 inches (610 mm)	Pass	70.53\%	Finer Mesh Failure $=0.015$
	Case 4	Two barrels: $700 \mathrm{lb}(320 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320 \mathrm{~kg})$	Two barrels: $700 \mathrm{lb}(320$	1st to 2nd: 24 inches (610 mm) 2nd to 3rd: 24 inches (610 mm)	Pass	75.24\%	Finer Mesh Failure $=0.015$

Figure 2.46. Dimensions of Barrel Layout.

Figure 2.47. Weight Example for Barrel Layout Naming Convention.

2.5.3. Simulation-Car: $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout

Two simulations were done with the $400-\mathrm{lb}, 400-\mathrm{lb}$, and $700-\mathrm{lb}$ barrel layout. In the second run, two changes made were a finer mesh and a lower material failure. These changes were done to better simulate how the barrels broke into pieces during the physical experiment, which is discussed later. Figure 2.48 shows that these changes did not affect the results in a significant way.

Figure 2.49 shows the kinetic energy of the car in the simulation. The results are from the larger mesh and material failure that were used since more data points were available. The correspondence between the different meshes implies that the results will be similar. The car lost 78.67 percent of its initial kinetic energy.

Table 2.17 presents the TRAP results of this simulation. The small car passed the MASH criteria for this barrel layout.

Since this barrel layout passes the MASH criteria but just exceeds the preferred limit in OIV, it was chosen for a physical experiment. The purpose of this physical experiment is to serve
as a comparison for the simulations. How well the simulation compares to the experiment will speak to the validity of the simulation's results.

Figure 2.48. Comparison of Simulations with 400-Lb, 400-Lb, and 700-Lb Barrel Layout.

Figure 2.49. Kinetic Energy of the Yaris for $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout.

Table 2.17. TRAP Results for Yaris with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and 700-Lb Barrel Layout.

TRAP Results: Car with 400-lb, 400-Ib, 700-lb Barrel					
Layout		$	$	Impact Velocity, mph	02.2
:---:	:---:				
Impact Angle (degrees)					
Occupant Risk Factors					
Impact Velocity (ft/s)	29.9				
x-direction					
y-direction	0.3				
Ridedown Accelerations (Gs)	x-direction				
y-direction	9.9				
Max Roll, Pitch, and Yaw Angles (degrees)	2.3				
Roll	1.7				
Pitch	-5.7				
Yaw	-1.5				

2.5.4. Physical Experiment-Car: $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and 700-Lb Barrel Layout.

Figure 2.50 shows the kinetic energy of the car during the physical experiment. The car lost 77.55 percent of its initial kinetic energy in this experiment. Recall that in the simulation, the car lost 78.67 percent of its initial kinetic energy. Therefore, the percent difference between the simulation and the experiment is 1.44 percent.

Figure 2.50. Kinetic Energy of Car with 400-Lb, 400-Lb, and 700-Lb Barrel Layout Experiment.

While the numbers matched well between the experiment and the simulation, the barrels in the simulation did not break into pieces as they did in the experiment (Figure 2.51). To create more frangible simulated barrels, a finer mesh and smaller material failure value were defined for the barrels. As previously shown, this did not impact the results of the simulation. However, these adjustments did help the modeled barrels break apart more like they did in the physical experiment (Figure 2.52).

Table 2.18 shows the TRAP results for the car in the physical experiment with the $400-\mathrm{lb}$, $400-\mathrm{lb}$, and $700-\mathrm{lb}$ barrel layout. The car passed the MASH criteria in both OIV and ridedown accelerations. Since this barrel layout passed, more barrel layouts with increased weights will be simulated. The most promising of these heavier layouts will become a second physical experiment. Figure 2.53 shows the correspondence between the simulation and the physical experiment.

Figure 2.51. Pieces of Barrel after Experiment.

Figure 2.52. Pieces of Barrels during Simulation.

Table 2.18. TRAP Results for Car with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout Experiment.

TRAP Results: Car with 400-Ib, 400-lb, 700-lb Barrel Layout-Experiment	
Impact Velocity, mph	62.6
Impact Angle (degrees)	0
Occupant Risk Factors	
Impact Velocity (ft/s)	
x -direction	26.2
y-direction	1.3
Ridedown Accelerations (Gs)	
x-direction	13.0
y-direction	2.3
Max Roll, Pitch, and Yaw Angles (degrees)	
Roll	-6.1
Pitch	4.1
Yaw	-6.7

Figure 2.53. Simulation and Physical Experiment Comparison with 400-Lb, 400-Lb, and 700-Lb Layout.

2.5.5. Simulation-Car: 400-Lb, 700-Lb, and 700-Lb Barrel Layout

Figure 2.54 shows the kinetic energy loss throughout the simulation. The car lost 80.98 percent of its initial kinetic energy. Table 2.19 shows the TRAP results for the Yaris in the simulation with the $400-\mathrm{lb}, 700-\mathrm{lb}$, and $700-\mathrm{lb}$ barrel layout. The $M A S H$ criteria are all met. The OIV in the x-direction just surpassed the preferred limit of $29.53 \mathrm{ft} / \mathrm{s}$ at $34.1 \mathrm{ft} / \mathrm{s}$.

Figure 2.54. Kinetic Energy of the Yaris for $400-\mathrm{Lb}$, $700-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout.

Table 2.19. TRAP Results for Yaris with $400-\mathrm{Lb}, 700-\mathrm{Lb}$, and 700-Lb Barrel Layout.

\left.| TRAP Results: Car with 400-lb, 700-Ib, 700-lb Barrel | |
| :--- | :---: |
| Layout | |$\right]$| Impact Velocity, mph | 62.2 |
| :--- | :---: |
| Impact Angle (degrees) | 0 |
| Occupant Risk Factors | |
| Impact Velocity (ft/s) | |
| x-direction | 34.1 |
| y-direction | 0.3 |
| Ridedown Accelerations (Gs) | |
| x-direction | 8.4 |
| y-direction | 2.4 |
| Max Roll, Pitch, and Yaw Angles (degrees) | |
| Roll | 2.5 |
| Pitch | -2.6 |
| Yaw | -2.6 |

2.5.6. Simulation-—Car: $700-\mathrm{Lb}, 700-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Impact

Figure 2.55 shows the kinetic energy of the car during the simulation with the $700-1 \mathrm{lb}$, $700-\mathrm{lb}$, and $700-\mathrm{lb}$ barrel layout. The car lost 82.87 percent of its initial kinetic energy. Table 2.20 presents the TRAP results for the Yaris when simulated with the $700-\mathrm{lb}, 700-\mathrm{lb}$, and $700-\mathrm{lb}$ barrel layout. The MASH criteria were met during this simulation. The OIV in the x-direction just
exceeded the preferred limit of $29.53 \mathrm{ft} / \mathrm{s}$ at $33.5 \mathrm{ft} / \mathrm{s}$. Since this barrel layout passed the MASH criteria, a second physical experiment was performed using the same layout.

Figure 2.55. Kinetic Energy of the Yaris for 700-Lb, 700-Lb, and 700-Lb Barrel Layout.

Table 2.20. TRAP Results for the Yaris with 700-Lb, 700-Lb, and 700-Lb Barrel Layout.

TRAP Results: Car with 700-lb, 700-lb, and 700-lb Barrel Layout	
Impact Velocity, mph	62.2
Impact Angle (degrees)	0
Occupant Risk Factors	
Impact Velocity (ft/s)	
x-direction	33.5
y-direction	0.0
Ridedown Accelerations (Gs)	x-direction
y-direction	9.7
Max Roll, Pitch, and Yaw Angles (degrees)	3.5
Roll	1.7
Pitch	-4.0
Yaw	-0.9

2.5.7. Physical Experiment-Car: 700-Lb, 700-Lb, and 700-Lb Barrel Layout

Figure 2.56 presents the kinetic energy of the car throughout the experiment. The car lost 86.30 percent of its initial kinetic energy. Recall that in the simulation, the car lost 82.87 percent of its kinetic energy that equates to a 4.0 percent difference between the experiment and the simulation. Therefore, the correlation between the simulation and experiment is still acceptable.

Figure 2.56. Kinetic Energy of Car with 700-Lb, 700-Lb, and 700-Lb Barrel Layout Experiment.

Table 2.21 displays the TRAP results for the physical experiment. The OIV and ridedown accelerations passed the MASH criteria. Therefore, the weight of the barrels that will be used in the short radius system will be $700-\mathrm{lb}$ sand barrels. Figure 2.57 displays the correspondence between the simulation and the physical experiment.

Table 2.21. TRAP Results for Car with 700-Lb, 700-Lb, and 700-Lb Barrel Layout Experiment.

TRAP Results: Car with 700-Ib, 700-Ib, and 700-Ib Barrel Layout Experiment	
Impact Velocity, mph	62.4
Impact Angle (degrees)	0
Occupant Risk Factors	
Impact Velocity (ft/s)	
x -direction	33.8
y-direction	1.0
Ridedown Accelerations (Gs)	
x-direction	11.3
y-direction	1.5
Max Roll, Pitch, and Yaw Angles (degrees)	
Roll	-5.0
Pitch	-3.9
Yaw	-1.9

Figure 2.57. Simulation and Physical Experiment Comparison with 700-Lb, 700-Lb, and 700-Lb Layout.

2.5.8. Simulation-Truck: $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout

Figure 2.58 displays the kinetic energy of the truck throughout the run with the $400-\mathrm{lb}$, $400-\mathrm{lb}$, and $700-\mathrm{lb}$ barrel layout. The truck lost 67.81 percent of its initial kinetic energy in this simulation. Table 2.22 presents the TRAP results. The truck passed the MASH criteria.

Figure 2.58. Kinetic Energy of the Truck with $400-\mathrm{Lb}$, $400-\mathrm{Lb}$, and 700-Lb Barrel Layout.
Table 2.22. TRAP Results for Truck with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and 700-Lb Barrel Layout.

TRAP Results: Truck With 400-Ib, 400-lb, and 700-lb Barrel Layout	
Impact Velocity, mph	62.2
Impact Angle (degrees)	0
Occupant Risk Factors	
Impact Velocity (ft/s)	
x -direction	26.2
y -direction	0.0
Ridedown Accelerations (Gs)	
x -direction	8.6
y-direction	1.9
Max Roll, Pitch, and Yaw Angles (degrees)	
Roll	1.5
Pitch	-3.1
Yaw	0.2

2.5.9. Physical Experiment-Truck: $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and $700-\mathrm{Lb}$ Barrel Layout

Figure 2.59 depicts the kinetic energy during the truck's experiment. The truck lost 61.67 percent of its initial kinetic energy in the physical experiment. Recall that during the simulation, the truck lost 67.81 percent of its initial kinetic energy. Therefore, this is about a 6 percent difference between the experiment and the simulation. Note that in the experiment, the truck hit the first row at 64.4 mph , a higher velocity than the simulation.

Figure 2.59. Kinetic Energy of Truck with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and 700-Lb Barrel Layout Experiment.

Table 2.23 shows the TRAP results for the truck during this run. The truck passed all criteria. Figure 2.60 displays the correlation between the simulations and the physical experiment.

Table 2.23. TRAP Results for Truck with $400-\mathrm{Lb}, 400-\mathrm{Lb}$, and 700-Lb Barrel Layout Physical Experiment.

TRAP Results: Truck With 400-Ib, 400-lb, and 700-lb Barrel Layout—Physical Experiment	
Impact Velocity, mph	64.4
Impact Angle (degrees)	0
Occupant Risk Factors	
Impact Velocity (ft/s)	
x -direction	24.3
y-direction	0.3
Ridedown Accelerations (Gs)	
x-direction	11.2
y-direction	2.1
Max Roll, Pitch, and Yaw Angles (degrees)	
Roll	1.5
Pitch	-2.6
Yaw	0.8

Figure 2.60. Simulation and Physical Experiment Comparison with 400-Lb, 400-Lb, and 700-Lb Layout.

2.5.10. Simulation-Truck: 400-Lb, 700-Lb, and 700-Lb Barrel Layout

Figure 2.61 shows the kinetic energy of the truck during the simulation with the $400-\mathrm{lb}$, $700-\mathrm{lb}$, and $700-\mathrm{lb}$ barrel layout. The truck lost 70.53 percent of its initial kinetic energy. Table 2.24 displays the TRAP results for this simulation. The truck passed the MASH criteria.

Figure 2.61. Kinetic Energy of the Truck with $400-\mathrm{Lb}$, 700-Lb, and 700-Lb Barrel Layout.

Table 2.24. TRAP Results for Truck with $400-\mathrm{Lb}, 700-\mathrm{Lb}$, and 700-Lb Barrel Layout.

| TRAP Results: Truck with 400-lb, 700-lb, and 700-lb Barrel |
| :--- | :---: |
| Layout |$|$| Impact Velocity, mph | 62.2 |
| :---: | :---: |
| Impact Angle (degrees) | 0 |
| Occupant Risk Factors | 29.2 |
| Impact Velocity (ft/s) | |
| x -direction | |
| y-direction | 0.0 |
| Ridedown Accelerations (Gs) | 8.6 |
| y-direction | 2.3 |
| y-direction | |
| Max Roll, Pitch, and Yaw Angles (degrees) | 1.0 |
| Roll | -2.0 |
| Pitch | 0.3 |
| Yaw | |

2.5.11. Simulation-Truck 700-Lb, 700-Lb, and 700-Lb Barrel Layout

Figure 2.62 shows the kinetic energy of the truck through the simulation. The truck lost 75.24 percent of its initial kinetic energy. Table 2.25 presents the TRAP results for the truck. The OIV and ridedown accelerations pass the preferred MASH limits.

Figure 2.62. Kinetic Energy of Truck with 700-Lb, 700-Lb, and 700-Lb Barrel Layout.

Table 2.25. TRAP Results for Truck with 700-Lb, 700-Lb, and 700-Lb Barrel Layout.

TRAP Results: Truck with 700-lb, 700-Ib, and 700-lb BarrelLayout	
Impact Velocity, mph	62.2
Impact Angle (degrees)	0
Occupant Risk Factors	
Impact Velocity (ft/s)	
x -direction	30.5
y -direction	0.0
Ridedown Accelerations (Gs)	
x -direction	6.3
y -direction	1.3
Max Roll, Pitch, and Yaw Angles (degrees)	
Roll	0.3
Pitch	-3.0
Yaw	-0.3

2.5.12. Physical Experiment—Truck: 700-Lb, 700-Lb, and 700-Lb Barrel Layout

Figure 2.63 displays the dissipation of the kinetic energy of the truck throughout the physical experiment. The truck lost 74.43 percent of its initial kinetic energy in the physical experiment. Recall that during the simulation, the truck lost 75.24 percent of its initial kinetic energy. Therefore, this is about a 1 percent difference between the experiment and the simulation. In the physical experiment, the truck impacted the initial row of barrels at 63.5 mph .

Table 2.26 presents the $M A S H$ criteria for the physical experiment. All criteria were passed. Figure 2.64 shows the correlation between the simulation and the physical experiment. Since the 700-lb barrels attenuated almost 75 percent of the trucks energy while not causing the car to fail OIV and RDA, this is the mass that will be placed in the short radius system.

Figure 2.63. Kinetic Energy of Truck with 700-Lb, 700-Lb, and 700-Lb Barrel Layout Experiment.

Table 2.26. TRAP Results for Truck with 700-Lb, 700-Lb, and 700-Lb Barrel Layout Physical Experiment.

TRAP Results: Truck With 700-Ib, 700-lb, and 700-Ib Barrel Layout—Physical Experiment	
Impact Velocity, mph	63.5
Impact Angle (degrees)	0
Occupant Risk Factors	
Impact Velocity (ft/s)	
x-direction	32.8
y-direction	-0.3
Ridedown Accelerations (Gs)	
x -direction	16.0
y-direction	2.1
Max Roll, Pitch, and Yaw Angles (degrees)	
Roll	2.6
Pitch	-4.2
Yaw	-5.5

Figure 2.64. Simulation and Physical Experiment Comparison with 700-Lb, 700-Lb, and 700-Lb Layout.

2.6. UPDATED MODEL

The updated model has a few changes from the last model. The two W-beams were replaced with a single thrie beam for the entire model. This was done to help improve the over-and under-riding of the truck and car, respectively. Freestanding barrels weighing 700 lb each were placed behind the radius to act as an attenuator. Figure 2.65 shows an example of this layout.

Figure 2.65. Most Recent Model.

2.7. EARLIER SYSTEMS

Figure 2.66 displays the last system that was modeled and run earlier. Figure 2.67 displays the primary roadway in this older system. There is a W -beam and rub rail in the radius for about half of the primary roadway side, and then, there is a transition to a thrie beam. Figure 2.68 shows the secondary roadway with the W-beam and rubrail. An anchor post ends this section of the rail.

Figure 2.66. Whole System with Two W-Beams.

Figure 2.67. Primary Roadway Side View.

Figure 2.68. Primary Secondary Roadway Side View.

Figure 2.69 shows the progression of the impact. The last picture of the set depicts the truck beginning to separate the two rails. If this is a problem for the truck, the car will probably separate the rails as well. There were also concerns about the height of the rail from the ground. It was thought that this short distance above the ground would exacerbate the vehicle, either
separating the rails or overriding the system. Therefore, the W-beam and rubrail were changed to a single thrie beam in the system design under consideration.

Figure 2.69. Progression of Truck Impact.

2.8. CURRENT SHORT RADIUS SYSTEM DESIGN

Figure 2.70 shows the current system that was modeled and run with the MASH 2270P vehicle.

Figure 2.70. Current System under Investigation.

The system has a short driveway rail to accommodate the right-of-way (ROW) consideration while still providing positive anchor. Figure 2.71 and Figure 2.72 show the anchor chosen as a rotating post design. The TTI research team has identified two design options for this anchor.

Figure 2.71. Rotating Anchor Design Option 1.

Figure 2.72. Rotating Anchor Design Option 2.

2.9. SIMULATION OF MASH TEST 3-33; TRUCK IMPACTING SHORT RADIUS WITHOUT SAND BARRELS

The research team began to evaluate the single thrie beam system design through simulations. Figure 2.73 depicts the whole system. Figure 2.74 shows the side view of the primary roadway. This side contains a cable anchor in the rail section right after the curve. There is also a nested thrie beam where the steel posts transition to quarter spacing. An endshoe and concrete parapet represents the stiffer portion of the rail. Figure 2.75 represents the side view of the secondary roadway. A rigid post in the simulation anchored this end. The truck impacted this system in the center of the radius at a 15° angle.

Figure 2.73. Entire System.

Figure 2.74. Side View of Primary Roadway.

Figure 2.75. Side View of Secondary Roadway.
Figure 2.76 shows the truck's velocity during the simulation. The initial slope is gradual and followed by a steeper slope. The gradual slope represents the initial impact with the radius. In this simulation, there are no additional objects to absorb the kinetic energy (i.e., sand barrels) upon impact. As the simulation continues, the rail gets stretched and tension increases in the system. Furthermore, the stiffer portion of the system is engaged and increased tension in the rail causes more energy to be absorbed. The negative velocity indicates that the truck experiences a
slight rebound toward the end of the simulation. The truck was experiencing dynamic instability at the end of the simulation. It is apparent that the truck would probably roll over the system as time progressed.

Figure 2.76. X-Velocity in Mph.

Figure 2.77 shows sequential images of the simulation upon impact. The first image shows initial contact with the rail and is followed by two images of the truck interacting with the rail. The last image displays the end state of the simulation. At time equal to 0.245 s and 0.545 s , the rail shows good containment of the truck, displaying little yaw, roll, and pitch. The last image shows the truck with a high yaw and roll, and potential to override the rail or flip.

Figure 2.78 shows the plastic strain. The areas of interest that show potential for tearing are enlarged. The rail begins to twist, as shown in the bottom right figure, just before the primary roadway transitions to quarter spacing on the steel posts and a nested thrie beam. This behavior and other areas of high strain distribution may point to the failure of the W-beam, and therefore a lack of containment of the vehicle.

The maximum dynamic deflection of the rail along the primary roadway is 28.2 ft . The maximum dynamic deflection of the rail along the secondary roadway is 21.8 ft .

Figure 2.77. Sequential Images of Simulation.

Figure 2.78. Plastic Strain.

Figure 2.79 displays the maximum dynamic deflection of the rail. Table 2.27 shows the TRAP results for this simulation. The OIV and ridedown accelerations passed the criteria but the yaw, roll, and pitch are a concern in this run.

Figure 2.79. Total Displacement.

Table 2.27. TRAP Results for MASH Test 3-33 without Barrels.

TRAP Results: TL 3-33 Silverado	
Impact Velocity, mph	
Impact Angle (degrees)	62.2
Occupant Risk Factors	
Impact Velocity (ft/s)	
x-direction	15
y-direction	19.03
Ridedown Accelerations (Gs)	
x-direction	10.84
y-direction	13.4
Max Roll, Pitch, and Yaw Angles (degrees)	
Roll	49.1
Pitch	-17.0
Yaw	-128.3

2.10. SIMULATION OF MASH TEST 3-33; TRUCK IMPACTING SHORT RADIUS WITH SAND BARRELS

Four 700-lb barrels were placed immediately behind the radius in this system. This addition is shown in multiple views in Figure 2.80.

Figure 2.81 is a graph of the x-velocity of the truck during the simulation. The initial steep slope in this plot represents the time period where the sand barrels behind the rail are absorbing the energy of the impact. The next section, which has a more gradual slope, denotes the part of the simulation when the rail is absorbing the kinetic energy of the crash. The final steeper section of the graph signifies when the stiffer part of the rail is engaged in absorbing the kinetic energy. The truck then passes through zero velocity before rebounding back, hence the section of negative velocity.

Figure 2.82 to Figure 2.85 display the interaction of the truck and the system throughout the simulation. Figure 2.82 shows when the first impact occurs.

Figure 2.83 represents the point on the x-velocity curve where the first steep portion ends. The barrels have less impact on velocity attenuation from this point forward. The rail will continue to absorb kinetic energy, which denotes the milder slope section on the velocity curve.

Figure 2.84 shows the time in the run when the stiffer portion of the rail is engaged and helping to absorb kinetic energy. This corresponds to the second steep slope in the velocity plot. Figure 2.85 shows the truck at the time of zero velocity before it begins to rebound. Figure 2.86 shows the plastic strain in the rail. There are several areas where the rail may rupture.

Figure 2.80. Entire System with Barrels (Front, Back, and Top Views).

Figure 2.81. X-Velocity in Mph.

Figure 2.82. Time $=\mathbf{0 . 0 2} \mathrm{s}$ when Impact Begins.

Figure 2.83. Time $=\mathbf{0 . 1 2} \mathbf{~ s}$, after Barrels Have Had Their Greatest Impact.

Figure 2.84. Time $=0.445 \mathrm{~s}$, after the System Has Had Its Impact.

Figure 2.85. Time $=\mathbf{0 . 6 4 5} \mathrm{s}$, when Vehicle Reaches Zero Velocity.

MASH 3-33 Truck into Short Radius (Sand Barrels)
Time $=1.2$
Contours of Effective Plastic Strain
max IP. value
min $=0$, at elem\# 8132375

Fringe Levels max IP. value
$\min =0$, at elem\# 8132375
$\max =2.65654$, at elem\# 8207649
$3.000 \mathrm{e}-01$ $2.700 \mathrm{e}-01$ 2.400e-01 _ $2.100 \mathrm{e}-01$ $1.800 \mathrm{e}-01$ $1.500 \mathrm{e}-01$ $1.200 \mathrm{e}-01$ _ $9.000 \mathrm{e}-02$ $6.000 \mathrm{e}-02$ $3.000 \mathrm{e}-02$ $0.000 \mathrm{e}+00$ _

Figure 2.86. Plastic Strain on Entire Rail.

Figure 2.87 zooms in on part of the radius and primary roadway that contained most of the areas where rail rupture may occur. This zoomed-in section is encircled by an oval in Figure 2.86.

Figure 2.87. Plastic Strain in Several Problem Areas.
Figure 2.88 displays the maximum dynamic deflection of the primary and secondary roadways. The maximum deflection of the rail along the primary roadway was 24.4 ft , and 18.6 ft along the secondary roadway. The maximum deflection along the primary roadway for the same system without sand barrels was 28.2 ft . The maximum deflection along the secondary roadway for the same system without sand barrels was 21.8 ft . The added mass had a significant impact on decreasing the velocity of the truck within a shorter distance while maintaining MASH criteria for OIV and ridedown accelerations.

Figure 2.88. Total Displacement.

Table 2.28 displays the TRAP results for the simulation. This simulation passed all of the MASH criteria and just surpassed the preferred limit for the x-direction OIV.

Table 2.28. TRAP Results for MASH Test 3-33 with Barrels.

TRAP Results: TL 3-33 Silverado	
Impact Velocity, mph	62.2
Impact Angle (degrees)	15
Occupant Risk Factors	
Impact Velocity (ft/s)	
x-direction	33.14
y-direction	6.56
Ridedown Accelerations (Gs)	
x-direction	6.9
y-direction	7
Max Roll, Pitch, and Yaw Angles (degrees)	
Roll	4.6
Pitch	-3.8
Yaw	-88.7

2.11. CONCLUSIONS

The change to a single thrie beam instead of the two W-beams helped improve the interaction of the vehicle with the rail system. Adding the sand barrels to the new system not only helped dissipate more energy but also helped improve the behavior of the truck with the system as well.

The system without sand barrels had vehicular instabilities. At the end of the simulation, the truck looked as if it was going to flip over. The sand barrels mitigated this behavior. Therefore, the yaw, pitch, and roll in the simulation with the sand barrels were significantly less than those in the system without mass. The roll was reduced from 49.1° to 4.6°. The yaw was reduced from 128.3° to 88.7°. The pitch of the vehicle was also reduced by adding sand barrels to the system, but the vehicle's pitch was not critical for either simulation.

For the simulation without the sand barrels, the truck remained under the preferred OIV and ridedown accelerations. The simulation with the sand barrels slightly exceeded the preferred limits for the OIV in the x-direction. All other areas remained under the preferred criteria for the simulation with the sand barrels.

Adding the four 700-lb sand barrels to the rail system decreased the deflection of the rail along the primary roadway by 4 ft and the deflection of the rail along the secondary roadway by 3 ft . In the simulation for the system with the sand mass, the vehicle came to a stop before the last post along the secondary roadway failed. In the system without sand, the vehicle was still rolling on its right side when the rail was wrapping around the anchor post at the end of the rail on the secondary roadway. Therefore, the sand barrels significantly helped to attenuate the energy of the impact.

The system with sand barrels had less overall distribution of high plastic strain areas within the rail element. The system without sand barrels had more high plastic strain areas in the radius of the rail. Additionally, a section of the rail along the primary roadway began to twist in the simulation without barrels. This occurred just before the steel post spacing switched from half to quarter spacing.

2.12. RECOMMENDATION

The research team recommended further evaluation of the latest design through enhanced modeling and detailed simulations due to its promising performance. The system has accepted test evaluation criteria while maintaining a functional performance in terms of reduced overall displacement into the back side of the short radius design.

CHAPTER 3. SIMULATION OF RECOMMENDED DESIGN CONCEPTS

3.1. SIMULATION OF MASH TEST 3-32 SMALL CAR IMPACTING SHORT RADIUS WITHOUT FLARE AND WITHOUT SAND BARRELS

Figure 3.1 presents the system used in this simulation. The system had no flare and no sand barrels. In summary, this system adequately stopped the truck within the MASH Impact Severity criteria and within appropriate overall displacement behind the system. The purpose of this simulation is to show that the system can adequately contain the small car without surpassing the MASH Impact Severity criteria.

Figure 3.1. No Flare and No Sand Barrels.

Figure 3.2 presents the progression of the small car in this simulation. The car remains stable during the simulation. The rail and deformation of the front of the car seem to progress into the windshield of the car, which may not pass the penetration or intrusion/deformation limits.

Figure 3.3 plots the x -velocity of the car throughout the simulation. The system brought the vehicle to zero velocity and then the vehicle began to rebound.

The maximum dynamic displacement of the rail was 21.8 ft in the x -direction along the primary roadway. The maximum dynamic y-displacement along the secondary roadway is 17 ft . Figure 3.4 depicts the maximum dynamic displacement of the rail.

Figure 3.2. Sequential Images of Simulation with No Flare and No Sand Barrels.

Figure 3.3. X-Velocity in Mph in Simulation with No Flare and No Sand Barrels.

Figure 3.4. Total Displacement in Simulation with No Flare and No Sand Barrels.

Table 3.1 shows that the small car passed the MASH impact severity criteria. The car surpassed the preferred limit for the OIV in the x-direction but was under the maximum limit. Since the small car is close to surpassing the OIV limit without sand barrels in this system, a simulation was run with $400-\mathrm{lb}$ barrels clustered in the radius section. It was thought that the 700-lb barrels used in previous truck runs would cause the car to surpass the OIV limit if clustered in the radius.

Table 3.1. TRAP Summary Data in Simulation with No Flare and No Sand Barrels.

| TRAP Results: TL 3-32 (Small Car) No Flare and No Sand |
| :--- | :---: |
| Barrels |$|$| Impact Velocity, mph | 62.2 |
| :--- | :---: |
| Impact Angle (degrees) | 15 |
| Occupant Risk Factors | |
| Impact Velocity (ft/s) | |
| x-direction | 33.5 |
| y-direction | 2.3 |
| Ridedown Accelerations (Gs) | |
| x-direction | 8.1 |
| y-direction | 8.7 |
| Max Roll, Pitch, and Yaw Angles (degrees) | |
| Roll | -15.7 |
| Pitch | -16.3 |
| Yaw | -41.2 |

3.2. SIMULATION OF MASH TEST 3-32 SMALL CAR IMPACTING SHORT RADIUS WITH FLARE AND 400-LB SAND BARRELS

Figure 3.5 presents the system layout for this simulation. As mentioned before, since the OIV was close to being over the acceptable limit in the last run without barrels, $400-\mathrm{lb}$ barrels were added behind the rail in the radius. This is a reduced mass from the 700-1b barrels that were clustered in the radius in the truck simulation.

Figure 3.5. Flare and 400-Lb Sand Barrels Behind the Radius.

The other change to the system included a linear 4° flare added to the primary roadway to help with the TL 3-31 crash condition, which is presented and discussed later.

Figure 3.6 displays sequential images of the car throughout this simulation. The car remained stable. The rail and the deformation of the front of the car did not pass as far into the windshield as it did in the previous run, suggesting that the penetration or intrusion/deformation limits are more likely to be passed.

Figure 3.7 shows the x-velocity of the small car throughout the simulation. The car reached zero velocity and began to rebound. The steeper slope at the beginning of the velocity curve represents where the small car is impacting the sand barrels and experiencing greater energy attenuation. Once the car's interaction with the barrels is complete, the slope flattens out.

Figure 3.6. Sequential Images of Simulation with Flare and 400-Lb Sand Barrels.

Figure 3.7. X-Velocity in Mph on Simulation with Flare and 400-Lb Sand Barrels.

The maximum dynamic deflection of the rail was 19.8 ft in the x -direction along the primary roadway. This is a reduction of 2 ft compared to the last simulation of the system without sand barrels and without a flare. The maximum dynamic displacement was 17.6 ft in the y-direction along the secondary roadway, which is an increase of 0.6 ft from the last system.
Figure 3.8 depicts the displacement of the rail in the system. The sand and the barrels have been hidden from the total displacement figure for clarity.

Figure 3.8. Total Displacement on Simulation with Flare and 400-Lb Sand Barrels (Sand Hidden).

The small car did not pass the MASH impact severity criteria. Table 3.2 shows that the car failed to fall under the x-direction OIV limit. The barrel layout will be assessed and changed before the next simulation.

Table 3.2. TRAP Summary Data on Simulation with Flare and 400-Lb Sand Barrels.

TRAP Results: TL 3-32 (Small Car) Flare and 400-Ib					
Barrels		$	$	Impact Velocity, mph	62.2
:---	:---:				
Impact Angle (degrees)	15				
Occupant Risk Factors					
Impact Velocity (ft/s)					
x-direction	40.7				
y-direction	4.6				
Ridedown Accelerations (Gs)					
x-direction	9.1				
y-direction	7.0				
Max Roll, Pitch, and Yaw Angles (degrees)					
Roll					
Pitch	-4.8				
Yaw	-2.0				

3.3. SIMULATION OF MASH TEST 3-32 SMALL CAR IMPACTING SHORT RADIUS WITH FLARE AND 700-LB SAND BARRELS SPREAD OUT ALONG RAIL

The x -velocity in the last run was over the limit by approximately $1 \mathrm{ft} / \mathrm{s}$. To keep the OIV below the limit, the barrels were spread out behind the rail system instead of clustered behind the radius. With the barrels spread out behind the system, the car will see less mass at any single given moment in the simulation. The barrel mass was increased to 700 lb from 400 lb since spreading out the barrels would help mitigate the severity of the impact. Figure 3.9 shows the system tested in this simulation. Two barrels were grouped closely together along the primary roadway: one barrel in the center of the radius, and one barrel approximately halfway up the secondary roadway.

Figure 3.9. Flare and Spread Out 700-Lb Barrels.

Figure 3.10 presents sequential images of the simulation to summarize the behavior of the vehicle. The car remained stable. Figure 3.11 presents the x -velocity of the small car throughout the simulation. The car reaches zero velocity at approximately 0.74 s and then begins to rebound.

The maximum dynamic deflection of the rail was 18.7 ft in the x -direction along the primary roadway and 16.5 ft in the y-direction along the secondary roadway. The x -direction deflection was reduced by 1 ft compared to the previous simulation of the system with a flare and the four $400-\mathrm{lb}$ barrels clustered behind the radius. The y-direction deflection was reduced by about 1 ft as compared to the previous system. Figure 3.12 shows the car's displacement within the whole system. The sand and the barrels have been hidden from the total displacement figure for clarity.

Figure 3.10. Sequential Images of Simulation with Flare and Spread Out 700-Lb Barrels.

Figure 3.11. X-Velocity in Mph of Simulation with Flare and Spread Out 700-Lb Barrels.

Maximum Dynamic Deflection
X-direction $=18.7$ feet
Y-direction $=16.5$ feet

Figure 3.12. Total Displacement of Simulation with Flare and Spread Out 700-Lb Barrels (Sand Hidden).

Table 3.3 shows that the small car passed the $M A S H$ impact severity criteria in this simulation. Therefore, the $700-\mathrm{lb}$ barrels spread out behind the rail is the promising barrel layout for the short radius system. This layout is run with the truck in the next simulation to see how the system performs in the TL 3-33 case.

Table 3.3. TRAP Summary Data of Simulation with Flare and Spread Out 700-Lb Barrels.

TRAP Results: TL 3-32 (Small Car) Flare and 700-lb					
Barrels		$	$	Impact Velocity, mph	62.2
:---	:---:				
Impact Angle (degrees)	15				
Occupant Risk Factors					
Impact Velocity (ft/s)					
x-direction					
y-direction	37.4				
Ridedown Accelerations (Gs)					
x-direction	4.6				
y-direction	12.2				
Max Roll, Pitch, and Yaw Angles (degrees)					
Roll	-2.1				
Pitch	-1.8				
Yaw	-30.0				

3.4. SIMULATION OF MASH TEST 3-33 TRUCK IMPACTING SHORT RADIUS WITH FLARE AND SAND BARRELS

The following changes were made to the system in response to the simulations of the short radius system with the small car presented above. There are four 700-lb barrels in the system used in this simulation, spread out from the radius along the primary and secondary roadways. Spreading out the barrels adequately attenuated the severity of the small car's OIV and ridedown acceleration. The goal of this simulation is to affirm that the truck is adequately captured within an acceptable distance behind the rail. Figure 3.13 shows the system used in this simulation.

Figure 3.14 plots the x-velocity of the truck throughout the simulation. The vehicle reached zero velocity at approximately 0.68 s and began to rebound at the end of the simulation. Figure 3.15 depicts the truck throughout the simulation. The truck remained stable during the simulation and is adequately contained by the system.

Figure 3.13. Flare and Spread Out 700-Lb Barrels.

Figure 3.14. X-Velocity in Mph of Simulation with Truck, Flare, and Spread Out 700-Lb Barrels.

Figure 3.15. Sequential Images of Simulation with Truck, Flare, and Spread Out 700-Lb Barrels.

The previous simulation with the truck and the system that was not flared and had 700-lb barrels clustered in the radius had a maximum dynamic deflection in the x -direction of 24.4 ft and 18.6 ft in the y -direction. The maximum dynamic deflection in the x -direction of the flared system with the spread out $700-\mathrm{lb}$ barrels is 27 ft , and the maximum dynamic deflection in the y -direction is 23 ft .

Figure 3.16 depicts the maximum dynamic deflection of the rail. The sand and barrels have been hidden from the following figure for clarity.

Figure 3.16. Total Displacement in Simulation with Truck, Flare, and 700-lb Sand Barrels (Sand Hidden).

The truck passed the MASH impact severity criteria. Table 3.4 presents the TRAP results. The $700-\mathrm{lb}$ spread out barrel layout captured the truck within an acceptable displacement while also bringing the car to a stop at adequate OIV and ridedown acceleration. Therefore, this barrel layout will be used in the final system.

3.5. SIMULATION OF MASH TEST 3-31 TRUCK IMPACTING SHORT RADIUS WITH FLARE AND 700-LB SAND BARRELS SPREAD OUT ALONG RAIL

This test case aligns the truck parallel with the primary roadway. Figure 3.17 shows the system used in this simulation and the alignment of the truck within the system. The system contains the spread out $700-\mathrm{lb}$ sand barrel layout as well as the 4° flare.

Figure 3.17. Flare and 700-Lb Barrels Spread Out behind Rail.

Figure 3.18 displays the truck in sequential images throughout the simulation. The first BCT post along the primary roadway after the radius breaks and the cable loses its tension capacity. After the tension cable loses its capacity, the rail begins to turn down and the driverside front wheel begins to ride up onto the rail at approximately 0.12 s . The truck becomes unstable as early as 0.17 s .

Figure 3.18. Sequential Images of Simulation with Truck, Flare, and 700-Lb Barrels Spread Out behind Rail.

Figure 3.19 shows the velocity of the truck throughout the simulation. The truck passed the MASH impact severity criteria but was unstable at the end of the run, and therefore did not pass. Table 3.4 shows the TRAP summary.

Figure 3.19. X-Velocity in Mph of Simulation with Truck, Flare, and 700-Lb Barrels Spread Out behind Rail.

Table 3.4. TRAP Summary Data for Simulation with Truck, Flare, and 700-Lb Barrels Spread Out behind Rail.

TRAP Results: TL 3-31 (Truck) Flare and Spread Out 700-lb
Barrels
:---:
Impact Angle (degrees)
Occupant Risk Factors
Impact Velocity (ft/s)
x-direction
y-direction
Ridedown Accelerations (Gs)
x-direction
y-direction
Max Roll, Pitch, and Yaw Angles (degrees)
Roll
Pitch
Yaw

Since the instability problem arose from the BCT post breaking and the tension cable losing its capacity, a new system design, which would allow the cable to remain in tension despite the BCT post on the primary roadway breaking, will be simulated next.

3.6. SIMULATION OF MASH TEST 3-31 TRUCK IMPACTING SHORT RADIUS WITH FLARE, SPREAD OUT 700-LB SAND BARRELS, AND TENSION CABLE AROUND POST IN RADIUS

The following simulation includes the updated tension cable design. This new design moved the cable anchor from the upper valley of the thrie beam to the lower valley of the thrie. This design reduces the angle at which the tension cable must be oriented to get to the ground by the first BCT post on the primary roadway. The tension cable runs under the angle attached at ground level to the BCT post on the primary roadway. The cable then runs along the ground and under the angle attached to the BCT post at the center of the radius. The tension cable passes along the ground and terminates at the BCT post on the secondary roadway. Figure 3.20 and Figure 3.21 depict the new tension cable design that is described above. Figure 3.22 and Figure 3.23 provide a back and front view, respectively, of the tension cable from the simulation. The sand barrels are hidden from the last two figures for clarity.

Figure 3.24 depicts the truck alignment with the system. The centerline of the truck is aligned with the traffic face of the concrete parapet located on the primary roadway.

Figure 3.20. Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable around Post in Radius.

Figure 3.21. Anchor Cable Angle Attachment to BCT Post.

Figure 3.22. Back View of Tension Cable (Sand Hidden).

Figure 3.23. Front View of Cable (Sand Hidden).

Figure 3.24. Alignment of Truck with System.

Figure 3.25 shows sequential images depicting the performance of the system. The first BCT post on the primary roadway breaks at 0.045 s . The cable maintains tension capacity and is still under the angle attached to the steel tube of the broken BCT post. The tire begins to ride along the cable at 0.09 s . By 0.12 s , the front left truck tire has passed from riding along the cable to riding up the rail. The front left truck tire leaves the rail before 0.245 s and the truck is unstable. From studying the behavior of the tire riding along the tension cable, it became evident that the cable was behaving more like a rod than a wire cable. Therefore, before running another simulation with the tension cable, researchers will calculate the wire cable's moment of inertia in order to have better behavioral representation of the wire cable.

Figure 3.25. Sequential Images of Simulation of Truck, Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable around Post in Radius (Sand Hidden).

Figure 3.26 shows how the front left tire rides up the cable onto the rail and becomes unstable, causing the truck to roll. Figure 3.27 zooms in on the interaction between the tire and the cable. Notice how as the tire pushes the rail into the field side of the system, it begins to ride along the cable. To make them stand out, the cable and cable bracket have been colored lime green and aqua, respectively.

Figure 3.28 shows the velocity of the truck. There was less reduction in velocity in this simulation than the previous simulation. Table 3.5 displays the truck passed the MASH impact severity criteria. However, the truck was not stable at the end of the simulation, and therefore, the system did not pass the test.

The next system to be simulated will test a tension cable design that is set farther back into the field side of the short radius system. This will help to attenuate the interaction of the cable with the vehicle's tires while still maintaining the tension in the cable for the redirection test cases.

Time $=0.14$ seconds
Time $=0.245$ seconds

Figure 3.26. Sequential Images of Tire and Cable Interaction (Sand Hidden).

Figure 3.27. Tire and Cable Interaction (Sand Hidden).

Figure 3.28. X-Velocity in Mph of Simulation of Truck, Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable around Post in Radius.

Table 3.5. TRAP Summary Data for Simulation of Truck, Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable around Post in Radius.

TRAP Results: TL 3-31 (Truck) Flare, Spread Out 700-lb Sand Barrels, and Tension Cable Around Post in Radius	
Impact Velocity, mph 62.2 Impact Angle (degrees) Occupant Risk Factors Impact Velocity (ft/s) x-direction 25 y-direction 14.8 Ridedown Accelerations (Gs) 8.2 y-direction 1.7 Max Roll, Pitch, and Yaw Angles (degrees) 2.8 Roll 24.9 Pitch 7.4 Yaw 5.7	

3.7. SIMULATION OF MASH TEST 3-31 TRUCK IMPACTING SHORT RADIUS WITH FLARE, SPREAD OUT 700-LB SAND BARRELS, AND TENSION CABLE BEHIND POST IN RADIUS

The following simulation includes the promising tension cable design. To help prevent the tire and cable from interacting during the redirection tests, researchers moved the angle to the back of the BCT post on the primary roadway. Now the cable passes from the bottom valley of the thrie beam to underneath the angle that has been moved to the back of the BCT post. From this post, the cable passes along the ground to be captured beneath the angle on the front of the BCT post, which is in the center of the radius. The blockout has been removed from this center post in the radius in order to cause the geometry to allow the cable to bear on all BCT posts. Then the cable continues along the ground to end at the first BCT post on the secondary roadway. The simulation and new cable layout can be seen in Figure 3.29. Figure 3.30 and Figure 3.31 show the tension cable design described above from the back and front of the rail, respectively.

For the TL 3-31 test, the truck was parallel to the primary roadway. The center of the truck was aligned with the traffic face of the concrete parapet at the end of the primary roadway. Figure 3.32 shows the truck's alignment with the system.

Figure 3.33 shows the impact from the front of the rail. The truck remained stable throughout the impact, which was one goal of the new cable design. The sand barrels have been hidden from the following images for clarity.

Figure 3.29. Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable behind Post in Radius.

Figure 3.30. Back View of Rail (Sand Hidden).

Figure 3.31. Front View of Rail (Sand Hidden).

Figure 3.32. Alignment of Truck with System.

Figure 3.33. Sequential Images of Simulation from Front of Rail (Sand Hidden).

The sequential images in Figure 3.34 show the truck's interaction with the rail from the back of the rail. The sand has been hidden from these images in order to better see the rail and truck interaction.

The sequential images in Figure 3.35 zoom in on the interaction of the tire and the cable. In Figure 3.35, the sand barrels have been hidden and the cable bracket and cable have been colored for clarity. The first BCT on the primary roadway breaks at 0.025 s . At 0.075 s , the front driver side tire passes over the bottom of the broken BCT post on the primary roadway. The cable is still under the angle on the BCT post at this point in the simulation. At 0.13 s , the truck has pushed the rail into the interior of the system and the cable moves out from beneath the angle on the broken BCT post on the primary roadway. The cable maintains tension capacity. At 0.15 s , the BCT post at the center of the radius breaks. The cable still has tension capacity in this design. By 0.4 s , the truck has been redirected and its interaction with the system is complete. At this point in the simulation, the cable is still held under the angle on the BCT post at the center of the radius.

Figure 3.36 zooms in on the tire and cable interaction. As the tire pushes the rail back, the tire does not ride along the cable. The cable and the cable bracket are colored lime green and aqua in the figure to help them stand out.

Figure 3.34. Sequential Images of Simulation from Back of Rail (Sand Hidden).

Figure 3.35. Sequential Images of Truck and Cable Interaction (Sand Hidden).

Figure 3.36. Tire and Cable Interaction (Sand Hidden).
Figure 3.37 depicts the final displacement of the vehicle; the sand has been hidden for clarity. Figure 3.38 portrays the velocity of the truck throughout the simulation. The truck is redirected at 25 percent of its initial velocity.

Figure 3.37. Final Displacement of the Truck (Sand Hidden).

Figure 3.38. X-Velocity in Mph of Simulation with Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable behind Post in Radius.

The truck passed the MASH impact severity criteria that can be seen in Table 3.6. Since the truck also remained stable throughout the simulation, the truck passed the TL 3-31 test with this new tension cable design, which passes behind the first BCT post on the primary roadway.

Design checks were done following this phase of simulation in order to check certain aspects of the final short radius system that would be used in the physical crash tests.

Table 3.6. TRAP Summary Data for Simulation with Truck, Flare, Spread Out 700-Lb Sand Barrels, and Tension Cable behind Post in Radius.

TRAP Results: TL 3-31 (Truck) Spread 700-Ib Sand Barrel, Flare, and Tension Cable Behind Post

Impact Velocity, mph	
Impact Angle (degrees)	62.2
Occupant Risk Factors	
Impact Velocity (ft/s)	
x-direction	0
y-direction	15.4
Ridedown Accelerations (Gs)	10.5
x-direction	7.0
y-direction	7.3
Max Roll, Pitch, and Yaw Angles (degrees)	
Roll	-6.2
Pitch	-4.9
Yaw	15.2

CHAPTER 4. CRASH TEST MATRIX

This chapter briefly explains the purpose behind each MASH TL-3 tests in the test matrix. The promising short radius system and the respective alignment of the vehicles with the system are also pictured for each case. The following test cases chosen are all originally applied to terminals or crash cushions. They have been modified in accordance with their original intent.

4.1. MASH TEST 3-31

MASH Test 3-31 is intended to show whether the system is capable of safely and stably decelerating a 2270 P vehicle to a stop. For this system, the 2270P vehicle should be redirected or safely captured when the impact is parallel to one of the sides of the system. In gating systems, like this one, the test will evaluate the occupant impact risk and vehicle trajectory criteria. In this system, the truck was aligned parallel to the primary of the roadway. The centerline of the truck was aligned with the traffic face of the concrete parapet at the end of the system. Figure 4.1 shows the chosen alignment described.

Figure 4.1. Alignment of Truck with System for MASH Test 3-31.

4.2. MASH TEST 3-32

MASH Test 3-32 examines the behavior of the short radius system during an oblique impact on the nose of the system. Occupant risk and vehicle trajectory are the main concerns with regard to this test. The 1100 C vehicle impacts the center of the radius of the system at a 15° angle. Figure 4.2 shows the alignment of the car with the system.

Figure 4.2. Alignment of Car with System for MASH Test 3-32.

4.3. MASH TEST 3-33

This test examines the behavior of the short radius system during an oblique impact on the nose of the system. Occupant risk and vehicle trajectory are the main concerns with regard to this test. The 2270 P vehicle impacts the center of the radius of the system at a 15° angle. Figure 4.3 shows the alignment of the truck with the system.

Figure 4.3. Alignment of Truck with System for MASH Test 3-33.

4.4. MASH TEST 3-35

MASH Test 3-35 case was simulated to determine the rail's capacity for containing or redirecting the truck. The impact location is defined in MASH as the beginning of length of need at a 25° angle. The truck impacted the system at a 25° angle in the first section of guardrail along the primary roadway after the radius. This location is near where the rail behavior changes from capturing to redirecting. Figure 4.4 shows the alignment of the truck with the system.

Figure 4.4. Alignment of Truck with System for MASH Test 3-35.

CHAPTER 5. SYSTEM DETAILS

5.1. TEST ARTICLE DESIGN AND CONSTRUCTION

5.1.1. Test Installation for Test Nos. 467114-3 through 467114-6

Each test installation consisted of a 31-inch tall, 58 -ft 10-inch long, thrie-beam short radius guardrail system constructed with a $27 \mathrm{ft} 71 / 4$ inch long primary-road leg (as measured along the guardrail) that transitioned to a section of bridge parapet, and an 18 -ft 9 -inch long secondary-road leg that terminated with a rounded thrie-beam end section (RTE02a). The curved 12 -ft 6-inch (post-to-post) arc length thrie-beam section (RTM02a) was rolled to an 8 - $\mathrm{ft}-4 \frac{1}{2}$-inch inside radius. The primary-road side thrie-beam of the system was flared to the field side $4 \frac{1}{4}{ }^{\circ}$ from the tangent line of the parapet face, and the secondary-roadside thrie-beam was perpendicular to the parapet face tangent. Four sand barrels were strategically placed on the inboard, field side of the installation. The end anchor on the secondary roadway and the modified BCT foundation tube were analyzed and designed to withstand expected loads due to vehicular impact. The simulated parapet section was not designed for direct impact by a vehicle. Details of the analysis process are shown in Appendix A. See Appendix B, Sheets 1, 2, and 3 for overall installation details.

The spacing for posts 1 to 2 , posts 2 to 3 , and posts 3 to 4 was 6 ft 3 inches. Posts 4 to 5 and posts 5 to 6 were spaced at 6 ft 3 inches as measured along the arc of the curved thrie-beam. The spacing for posts 6 to 7 was 6 ft 3 inches, and posts 7 to 11 were each spaced at $3 \mathrm{ft} 1 \frac{1}{2}$ inches. Posts 11 to 16 were equally spaced at $1 \mathrm{ft} 63 / 4$ inches. Post 16 to the end face of the concrete parapet was approximately $121 / 2$ inches. See Appendix B, Sheet 3 for details.

Several sections comprised the guardrail. Beginning with a rounded thrie-beam End Section (RTE02a) attached to post 1, a 75-inch-long thrie-beam anchor rail connected post 1 to post 2 . A standard thrie-beam, 8 -space, 12 -ft 6 -inch span (RTM08) connected posts 2,3 , and 4. Posts 4,5 and 6 supported the aforementioned curved 12-ft 6-inch (post-to-post) arc length radiused thrie-beam section (RTM02a). Another 75-inch thrie-beam anchor rail spanned between posts 6 and 7 . A single $9-\mathrm{ft} 41 / 2$-inch-long thrie-beam section spanned between post 7 and post 10 , and a doubled $12-\mathrm{ft} 6$-inch-long thrie-beam section spanned between post 10 and post 16 and the parapet (i.e., two sections of thrie-beam were nested one within the other). At post 10 , the upstream single thrie-beam section was attached between the post and nested double thrie-beams on the traffic side, and all three layers were bolted to post 10. Finally, a thrie-beam terminal connector (RTE01b) completed the transition from the guardrail to the parapet. All guardrail sections were galvanized standard 12-gauge material.

Post 1 at the thrie-beam End Section was comprised of an 8 -inch Schedule 80 pipe ($85 / 8$ inch OD, $1 / 2$ inch wall) installed in a 10 -inch square tube socket (HSS $10 \times 10 \times 1 / 2$ inch wall A500 Grade B) embedded in a concrete foundation. The post was 80 inches tall with a 10 -inch \times 10 -inch $\times 1 / 2$-inch thick ASTM A36 square support collar welded to it at $213 / 4$ inches below the top. The post was inserted into the 72 -inch long square tube, and its support collar rested on top of the square tube, which was $93 / 4$ inches above grade. Thus, the top of the post was $31 \frac{1}{2}$ inches above grade. The square tube was void of concrete and included a $91 / 4$-inch square plate on the bottom. See Appendix B, Sheets 8, 15, and 16 for post 1 details.

Post 1's square tube socket was embedded $62 \frac{1}{4}$ inches deep into a 96 -inch deep $\times 30$-inch diameter steel reinforced concrete foundation. The foundation contained a concentric 24 -inch diameter reinforcing bar cage. Each rebar cage was fabricated using eight 24 -inch diameter \#3 ($3 / 8$-inch) rings vertically spaced at 12 inches, and eight 91 -inch long \#5 ($5 / 8$-inch) vertical bars. The vertical bars were equally spaced circumferentially inside the rings. Concrete cover over rebar at the top of the foundation was 2 inches, and the top of the foundation was at grade level. See Attachment A, Sheet 8 of 22 for details.

Post 1 was connected to the thrie-beam anchor rail with two sets of BCT anchor cable assemblies (FCA01), guardrail anchor brackets (FPA01), and eight associated $5 / 8$-inch diameter \times 2-inch long A307 Grade 5 hex bolts, washers, and recessed guardrail nuts. Each of the two $3 / 4$-inch (6×19) galvanized wire rope anchor cables was $6 \mathrm{ft} 63 / 4$ inches end to end, inclusive of terminal fittings. Each termination consisted of a standard swaged fitting with a 1 -inch diameter threaded stud, washer, and nut; the swage was specified to exceed the breaking strength of the wire rope. The upstream ends of the anchor cables were inserted through post 1 via two sets of holes on $75 / 8$-inch vertical centerlines in the post: two $13 / 4$-inch diameter holes on the downstream or swage side, and two $11 / 4$-inch diameter holes on the upstream or threaded side. The swage stud nuts were tightened such that all slack was removed from the cable. See Appendix B, Sheets 7 and 15 for details.

Post 2 was a modified BCT timber post (PDF01) $51 / 2$ inches $\times 7 \frac{1}{2}$ inches $\times 481 / 4$ inches long. A $2^{1 / 2}$ inch diameter weakening hole was located $30^{3 / 4}$ inches from the top near grade. A $7 / 8$-inch diameter hole was located $331 / 4$ inches from the top through which a strut bolt was installed as described below. Post 2 's foundation tube was a 6 -inch $\times 8$-inch $\times \frac{3}{} / 16$-inch thick ASTM A500 grade B steel HSS structural tube (PTE05), 72 inches long and embedded approximately 70 inches deep into drilled holes with compacted strong soil as per MASH. Two ${ }^{13} / 16$-inch diameter holes were located 1 inch below the top of the tube (centered in the lateral direction) to secure the timber post in the tube and accommodate the strut bolt.

The post 1 tube socket and the post 2 foundation tube were joined at grade level with two (1 field side, 1 traffic side; legs outward) C 4×7.25 ASTM A36 channel struts, each $71 \frac{1}{2}$ inches long. A strut bracket made of C 8×11.5 ASTM A36 channel, 4 inches long, was bolted with two $1 / 2 \times 11 / 2$ inch A307 Grade 5 hex bolts and nuts to the downstream face of the tube socket. The ends of the struts were bolted to the strut bracket and the foundation tube and post with one $5 / 8 \times$ 10 -inch A307 Grade 5 hex bolt and nut on each end. See Appendix B, Sheets 7 and 20 for details.

Post 3 was a modified CRT timber post (PDE09) 6 inches $\times 8$ inches $\times 72$ inches long. Two $31 / 2$-inch diameter weakening holes were located at 32 inches (grade level) and $44 \frac{1}{2}$ inches below the top. The guardrail was attached to post 3 via a 6 -inch $\times 8$-inch $\times 22$-inch tall thrie-beam timber blockout (PDB02a) and two $5 / 8 \times 18$-inch guardrail bolts (FBB04) and recessed guardrail nuts. Post 3 was installed in a drilled hole with compacted strong soil as per MASH without a foundation tube.

Post 4 was a modified BCT timber post (PDF01) $51 / 2$ inches $\times 7 \frac{1}{2}$ inches $\times 481 / 4$ inches long. A $2^{1 / 2}$ inch diameter weakening hole was located $303 / 4$ inches from the top near grade. A $7 / 8$-inch diameter hole was located $331 / 4$ inches from the top through which a $5 / 8$-inch $\times 10$-inch A307 Grade 5 hex bolt, flat washer, recessed guardrail nut were installed to secure the post in
the foundation tube. Post 4's foundation tube was a 6 -inch $\times 8$-inch $\times 3 / 16$-inch thick ASTM A500 grade B steel HSS structural tube (PTE05), 72 inches long and embedded approximately 70 inches deep in a drilled hole with compacted strong soil as per MASH. Two ${ }^{13} / 16$-inch diameter holes were located 1 inch below the top of the tube (centered in the lateral direction) to secure the timber post in the tube as described above. The guardrail was attached to post 4 via a thrie-beam timber blockout (PDB02a) and two $5 / 8 \times 18$-inch guardrail bolts (FBB04) and recessed guardrail nuts.

Post 5 was a modified BCT timber post (PDF01) $51 / 2$ inches $\times 71 / 2$ inches $\times 481 / 4$ inches long. A $2^{1 / 2}$ inch diameter weakening hole was located $303 / 4$ inches from the top near grade. A $7 / 8$-inch diameter hole was located $331 / 4$ inches from the top through which a $5 / 8$-inch $\times 10$-inch A307 Grade 5 hex bolt, flat washer, and recessed guardrail nut were installed to secure the post in the foundation tube. Post 5's foundation tube was a 6 -inch $\times 8$-inch $\times \frac{3}{16}$-inch thick ASTM A500 grade B steel HSS structural tube (PTE05), 72 inches long and embedded approximately 70 inches deep into a drilled hole with compacted strong soil as per MASH. Two ${ }^{13} / 16$-inch diameter holes were located 1 inch below the top of the tube (centered in the lateral direction) to secure the timber post in the tube as described above. Additionally, an anchor cable bearing saddle made from half of a 4 -inch Schedule 40 pipe ($41 / 2$ inches $\mathrm{OD} \times 0.2375$-inch wall thickness) was welded (U-side up) to, and protruded 2 inches from, the external traffic side of the foundation tube. See Appendix B, Sheet 21 for details. The guardrail was attached directly to post 5 with two $5 / 8$-inch $\times 10$-inch guardrail bolts (FBB03) and recessed guardrail nuts.

Post 6 was a modified BCT timber post (PDF01) $51 / 2$ inches $\times 7 \frac{1}{2}$ inches $\times 481 / 4$ inches long. A $2^{11 / 2}$-inch diameter weakening hole was located $303 / 4$ inches from the top near grade. A $7 / 8$-inch diameter hole was located $331 / 4$ inches from the top through which a $5 / 8 \times 10$-inch A307 Grade 5 hex bolt, flat washer, and recessed guardrail nut were installed to secure the post in the foundation tube. Post 6's foundation tube was a 6 -inch $\times 8$-inch $\times{ }^{3} / 16$-inch thick ASTM A500 grade B steel HSS structural tube (PTE05), 72 inches long and embedded approximately 70 inches deep into a drilled hole with compacted strong soil as per MASH. Two ${ }^{13} / 16$-inch diameter holes were located 1 inch below the top of the tube (in the lateral direction) to secure the timber post in the tube as described above. Additionally, an anchor-cable-bearing saddle made from half of a 4 -inch Schedule 40 pipe ($41 / 2$ inches $\mathrm{OD} \times 0.2375$-inch wall thickness) was welded (U-side up) to, and protruded 2 inches from, the external field side of the foundation tube. See Appendix B, Sheet 21 for details. The guardrail was attached to post 6 via a thrie-beam timber blockout (PDB02a) and two $5 / 8 \times 18$-inch guardrail bolts (FBB04) and recessed guardrail nuts.

Posts 7 and 8 were modified CRT timber posts (PDE09) 6 inches $\times 8$ inches $\times 72$ inches long. Two $31 / 2$ inch diameter weakening holes were located at 32 inches (grade level) and $441 / 2$ inches from the top. The guardrail was attached to each of posts 7 and 8 via a thrie-beam timber blockout (PDB02a) and two $5 / 8$-inch $\times 18$-inch guardrail bolts (FBB04) and recessed guardrail nuts. Posts 7 and 8 were installed 40 inches deep into a drilled hole with compacted strong soil as per MASH without a foundation tube.

Posts 9 and 10 were $\mathrm{W} 6 \times 8.5$ flange guardrail posts (PWE06), 72 inches long. The guardrail was attached to each of posts 9 and 10 via a thrie-beam timber routered blockout (6 inches $\times 8$ inches $\times 18$ inches tall; with a $41 / 2$-inch wide $\times 3 / 8$-inch deep relief, similar ro a

PDB02) and two $5 / 8$-inch $\times 10$-inch guardrail bolts (FBB03) and recessed guardrail nuts. Posts 9 and 10 were installed 40 inches into a drilled hole with compacted strong soil as per MASH. See Appendix B, Sheets 5 and 19 for details.

Posts 11 through 16 were $\mathrm{W} 6 \times 8.5$ wide flange guardrail posts (PWE07), 84 inches long. The guardrail was attached to each of posts 11 through 16 via a thrie-beam timber routed blockout (6 inches $\times 8$ inches $\times 18$ inches tall; with a $4 \frac{1}{2}$-inch wide $\times 3 / 8$-inch deep relief, similar to a PDB02) and two $5 / 8$-inch $\times 10$-inch guardrail bolts (FBB03 and recessed guardrail nuts. Posts 11 through 16 were installed 52 inches deep into a drilled hole with compacted strong soil as per MASH. See Appendix B, Sheets 5 and 19 for details.

A thrie-beam terminal connector (RTE01b) was used to connect and transition the thriebeam to parapet. Five A325 $7 / 8$-inch diameter hex bolts, nuts, and $13 / 4$-inch outside diameter hardened flat washers secured the connector to the parapet: three 14 -inch bolts in the upper, wider part of the parapet, and two 12 -inch bolts in the lower, narrower part of the parapet. The terminal connector and doubled thrie beam were joined with twelve sets of $5 / 8$-inch diameter \times 2-inch long guardrail bolts (FBB02), rectangular washers (FWR03), and recessed guardrail nuts. See Appendix B, Sheet 4 for details.

An anchor cable attached at post 4, wove around post 5 on the traffic side and around post 6 on the field side utilizing the anchor cable U-shaped bearing saddles installed near grade on the foundation tubes, and terminated on the thrie-beam near post 7 . The $3 / 4$-inch (6×19; or IWRC; AASHTO M-30; 46 kips min) galvanized wire rope was 18 ft 5 inches end to end, inclusive of terminal fittings. Each termination consisted of a standard swaged fitting with a 1 -inch diameter threaded stud, washer, and nut; the swage was specified to exceed the breaking strength of the wire rope. The post 4 weakening hole at grade contained a 2 -inch Schedule 40 (0.1535 -inch wall thickness) BCT post sleeve (FMM02a) through which one terminal end of the anchor cable was secured via a 8 -inch $\times 8$-inch $\times 5 / 8$-inch thick BCT bearing plate (FPB01), flat washer, and nut. The opposite end of the anchor cable was secured to the lower field side involute of the thrie-beam with a guardrail anchor bracket (FPA01). The swage stud nuts were tightened such that all slack was removed from the cable. See Appendix B, Sheets 4, 6, and 22 for details.

For this test installation, a reinforced concrete bridge parapet was constructed by adding on to the existing concrete runway apron. The parapet base tapered from 60 inches to $565 / 8$ inches wide at the guardrail attachment end (yielding a 2° offset angle) and was 8 ft long, 18 inches thick, and constructed of steel-reinforced TxDOT Class C concrete with a minimum specified strength of 3600 psi . All reinforcing steel was ASTM Grade 60, and unions of longitudinal, traverse, and vertical rebar were wire-tied on site. See Appendix B, Sheets 9 through 14 for details.

The parapet itself was 32 inches tall with a smooth vertical traffic side face and a stepped field side face. Its profile was $101 / 2$ inches wide at the base and transitioned with a $11 / 2$-inch chamfer to a 12 -inch wide top portion beginning $181 / 2$ inches above grade. Exposed edges were chamfered $3 / 4$-inch. The traffic side face conformed to the 2° offset and was 24 inches from the edge of the runway on the upstream end, and $205 / 8$ inches from the edge of the runway on the guardrail end. On the traffic side, the width of the parapet tapered from 12 inches to 10 inches over the final 12 inches on the guardrail attachment end. Five 1-inch diameter holes were cast
into the parapet at the time of the concrete pour to accommodate the thrie-beam terminal connector. See Appendix B, Sheet 9 for details.

Reinforcement in the parapet consisted of $161 / 2$-inch nominal diameter reinforcing steel (\#4 rebar) S-bars longitudinally spaced on 6-inch longitudinal centers and four 82-inch long \#4 bent bars vertically spaced on 8 -inch centers on the traffic side, and four 93 -inch long \#4 straight bars vertically spaced on 8 -inch centers on the field side. The parapet was tied to the base with fifteen $1 / 2$-inch nominal diameter reinforcing steel (\#4 rebar) U-bars longitudinally spaced on 6inch centers. Each $25 \frac{1}{2}$-inch-tall U-bar extended from the bottom base mat to 10 inches into the lower portion of the parapet.

The base was secured to the runway apron with six $5 / 8$-inch diameter ($\# 5$ rebar) $\times 24$-inch long tie bars located on 16 -inch horizontal centers. The tie bars were approximately 3 inches below the top surface, embedded 6 inches deep into holes drilled horizontally into the edge of the apron, and secured with Hilti RE200-A epoxy. See Appendix B, Sheet 11 for details.

Reinforcement in the base consisted of two mats of $5 / 8$-inch nominal diameter reinforcing steel (\#5 rebar) located approximately $1 \frac{1}{2}$ inches and 15 inches below the upper surface of the base. The upper mat rested on the new tie bars installed in the edge of the apron. The fifteen 53 -inch long upper transverse bars were spaced on 6 -inch centers and joined with seven 90 -inch long longitudinal bars on 8 -inch centers. The eight 53 -inch lower transverse bars were spaced on 12 -inch centers and joined with five 90 -inch longitudinal bars on 12 -inch centers. Five U-shaped support bars spaced on 18 -inch centers provided structure and continuity between the upper and lower mats on the field side of the base.

Four sand barrels (Energy Absorption Systems, Inc. "ENERGITE III" Model 640 barrel and 320 cone with lid) weighing 700 lb each were strategically placed on the field side of the thrie-beam. The distances from each outer shell to the back side of the rail at posts $3,5,7$, and 8 were 15, 10, 10, and 12 inches, respectively. See Attachment A, Sheet 3 of 22 for placement geometry.

Figure 5.1 and Figure 5.2 show the layout and overall details of the Short Radius Guardrail used in Test Nos. 467114-3 through 467114-6, and Figure 5.3 and Figure 5.4 present photographs of the complete installation. Appendix B provides further details.

Figure 5.1. Layout of the Short Radius Guardrail for Test Nos. 467114-3 through 467114-6.

Figure 5.2. Overall Details of the Short Radius Guardrail for Test Nos. 467114-3 through 467114-6.

Figure 5.3. Short Radius Guardrail (Overall, Secondary Road, and Radius) prior to Test Nos. 467114-3 through 467114-6.

Figure 5.4. Short Radius Guardrail (Primary Road) before Test Nos. 467114-3 through 467114-6.

5.1.2. Test Installation for Test No. 467114-7

The test installation for Test No. 467114-7 differed from that for Test Nos. 467114-3 through 467114-6 in that an extra post was added to the thrie-beam section between post 10 and the parapet, resulting in a total of 17 posts for the installation. Furthermore, a shorter blockout (14 inches versus 18 inches) was installed at posts 9,10 , and 11 . The following is a summary of the changes for Test No. 467114-7 from Tests 3-4-5-6 as described above:

Posts 7 to 10 were each spaced at $3 \mathrm{ft} 1 \frac{1}{2}$ inches. Posts 10 to 17 were equally spaced at $1 \mathrm{ft} 63 / 4$ inches. Post 17 to the end face of the concrete parapet was approximately $12 \frac{1}{2}$ inches. See Appendix C, Sheet 3 for details. At post 10, the upstream single thrie-beam section was sandwiched between the nested double thrie-beams (as opposed to behind them in Tests Nos. 467114-3 through 467114-6), and all three layers were bolted to post 10 .

Posts 9,10 , and 11 were $\mathrm{W} 6 \times 8.5$ wide flange guardrail posts (PWE01), 72 inches long. The guardrail was attached to each of posts 9,10 , and 11 via a timber routed blockout (PDB01b) (6 inches $\times 8$ inches $\times 14$ inches tall; with a $41 / 2$-inch wide $\times 3 / 8$-inch deep relief) and one $5 / 8$-inch $\times 10$-inch guardrail bolt (FBB03) and recessed guardrail nut. Posts 9,10 , and 11 were installed 40 inches into a drilled hole with compacted strong soil as per MASH. See Appendix C, Sheets 5 and 19 for details.

Posts 12 through 17 were $\mathrm{W} 6 \times 8.5$ wide flange guardrail posts (PWE07), 84 inches long. The guardrail was not attached to posts 12 and 13; however, a thrie-beam timber routed blockout (6 inches $\times 8$ inches $\times 18$ inches tall, with a $4 \frac{1}{2}$-inch wide $\times 3 / 8$-inch deep relief, similar to a PDB02) was attached to each post with two $5 / 8$-inch $\times 10$-inch guardrail bolts (FBB03) and recessed guardrail nuts. The guardrail was attached to each of posts 14 through 17 via a thrie-beam timber routed blockout (6 inches $\times 8$ inches $\times 18$ inches tall; with a $41 / 2$-inch wide $\times 3 / 8$-inch deep relief, similar to a PDB02) and two $5 / 8$-inch $\times 10$-inch guardrail bolts (FBB03) and recessed guardrail nuts. Posts 12 through 17 were installed 52 inches deep into a drilled hole with compacted strong soil as per MASH. See Appendix C, Sheets 5 and 19 for details.

Figure 5.5 and Figure 5.6 show the layout and overall details of the Short Radius Guardrail used in Test No. 467114-7, and Figure 5.7 and Figure 5.8 present photographs of the complete installation. Appendix C provides further details.

5.2. MATERIAL SPECIFICATIONS

The TxDOT Class C specified minimum unconfined compressive strength of the concrete for the parapet was 4000 psi and for the anchor post foundation was 5000 psi . The parapet was poured on July 1, 2014, and the anchor post foundation was poured on July 11, 2014. The compressive strengths of the concrete used for the parapet was 4126 psi (at 16 days age), and for the anchor post foundation measured an average of 5789 psi (at 6 days age).

ASTM A615 Grade 60 rebar with a specified minimum yield strength of 60 ksi that TTI fabricated on site comprised the reinforcement of the base and parapet. Appendix D contains mill certifications sheets and other certification documents for the materials used in the bridge deck test installation.

Figure 5.5. Layout of the Short Radius Guardrail for Test No. 467114-7.

Figure 5.6. Overall Details of the Short Radius Guardrail for Test No. 467114-7.

Figure 5.7. Short Radius Guardrail (Overall, Secondary Road, and Radius) prior to Test No. 467114-7.

Figure 5.8. Short Radius Guardrail (Primary Road) before Test No. 467114-7.

5.3. SOIL CONDITIONS

As stated previously, the test installation was set up in standard soil meeting AASHTO standard specifications for "Materials for Aggregate and Sol Aggregate Subbase, Base and Surface Courses," designated M147-65(2004), grading B.

In accordance with Appendix B of $M A S H$, soil strength was measured the day of the crash test. During installation of the Short Radius Guardrail for full-scale crash testing, two standard W 6×16 posts were installed in the immediate vicinity of the Short Radius Guardrail, using the same fill materials and installation procedures in the standard dynamic test.

As determined in the soil strength tests, the minimum post load required for deflections at 5 inches, 10 inches, and 15 inches, measured at a height of 25 inches, is $3940 \mathrm{lb}, 5500 \mathrm{lb}$, and 6540 lb , respectively (90 percent of static load for the initial standard installation). On the day of Test No. 467114-5, July 29, 2014, load on the post at deflections of 5 inches, 10 inches, and 15 inches was $11,868 \mathrm{lbf} ; 11,616 \mathrm{lbf}$; and $11,212 \mathrm{lbf}$, respectively. On the day of Test No. 467114-6, August 6, 2014, load on the post at deflections of 5 inches, 10 inches, and 15 inches was $7677 \mathrm{lbf}, 7525 \mathrm{lbf}$, and 7525 lbf , respectively. On the day of Test No. 467114-7, August 22, 2014, load on the post at deflections of 5 inches, 10 inches, and 15 inches was $7626 \mathrm{lbf}, 7525 \mathrm{lbf}$, and 7373 lbf , respectively.

The strength of the backfill material met minimum requirements.

CHAPTER 6. CRASH TEST PROCEDURES

6.1. TEST FACILITY

The full-scale crash test reported here was performed at the TTI Proving Ground, an International Standards Organization (ISO) 17025 accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing certificate 2821.01. The full-scale crash test was performed according to TTI Proving Ground quality procedures and according to the MASH guidelines and standards.

The TTI Proving Ground is a 2000 -acre complex of research and training facilities located 10 miles northwest of the main campus of Texas A\&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and safety evaluation of roadside safety hardware. The site selected for construction and testing of the TxDOT Short Radius Guardrail evaluated under this project was along the edge of an out-ofservice apron, which consists of an unreinforced jointed-concrete pavement in $12.5-\mathrm{ft} \times 15-\mathrm{ft}$ blocks nominally 6 inches deep. The aprons were constructed in 1942, and the joints have some displacement but are otherwise flat and level.

6.2. VEHICLE TOW AND GUIDANCE PROCEDURES

The test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A $2: 1$ speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released to be unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site, after which the brakes were activated to bring it to a safe and controlled stop.

6.3. DATA ACQUISITION SYSTEMS

6.3.1. Vehicle Instrumentation and Data Processing

The test vehicle was instrumented with a self-contained, onboard data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro that Diversified Technical Systems, Inc. produced. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536 . Once data are
recorded, internal batteries back these up inside the unit should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark as well as initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop at the test site. The TRAP software then processes the raw data to produce detailed reports of the test results. All TDAS Pro units are returned to the factory annually for complete recalibration. Accelerometers and rate transducers are also calibrated annually with traceability to the National Institute for Standards and Technology. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent ($k=2$).

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest $10-$ millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over $50-\mathrm{ms}$ intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a $60-\mathrm{Hz}$ digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001 -s intervals, then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent $(\mathrm{k}=2)$.

6.3.2. Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, $50^{\text {th }}$ percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the driver's position of the 1100C vehicle. The dummy was uninstrumented. Use of a dummy in the 2270P vehicle is optional according to MASH, and no dummy was used in the tests with the 2270 P vehicle.

6.3.3. Photographic Instrumentation and Data Processing

Photographic coverage of the test included three high-speed cameras:

- One overhead with a field of view perpendicular to the ground and directly over the impact point.
- One placed behind the installation at an angle.
- One placed to have a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb activated by pressure-sensitive tape switches was positioned on the impacting vehicle to indicate the instant of contact with the installation and was visible from each camera. The video from these high-speed cameras were analyzed on a computer-linked motion analyzer to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital video camera and still cameras recorded and documented conditions of the test vehicle and installation before and after the test.

CHAPTER 7. CRASH TEST RESULTS

7.1. MASH TEST 3-33 (CRASH TEST NO. 467114-3)

7.1.1. Test Designation and Actual Impact Conditions

MASH Test 3-33 involves a 2270 P vehicle weighing $5000 \mathrm{lb} \pm 110 \mathrm{lb}$ and impacting the test article at an impact speed of $62.2 \mathrm{mph} \pm 2.5 \mathrm{mph}$ and an angle of $15^{\circ} \pm 1.5^{\circ}$ relative to the traffic face of the concrete parapet. The target impact point was the centerline of the vehicle aligned with the nose of the radius. The 2008 Dodge Ram 1500 Quad Cab pickup truck used in the test weighed 5041 lb , and the actual impact speed and angle were 62.8 mph and 14.4°, respectively. The actual impact point was at the nose of the radius. Target impact severity (IS) was $43.0 \mathrm{kip}-\mathrm{ft}$, and actual IS was $41.1 \mathrm{kip}-\mathrm{ft}$ (-4 percent).

7.1.2. Test Vehicle

Figure 7.1 shows the 2008 Dodge Ram 1500 Quad Cab pickup truck used for the crash test. Test inertia weight of the vehicle was 5041 lb , and its gross static weight was 5041 lb . The height to the lower edge of the vehicle bumper was 15.25 inches, and it was 26.75 inches to the upper edge of the bumper. The height to the vehicle's center of gravity was 28.38 inches. Tables E1 and E2 in Appendix E give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 7.1. Vehicle/Installation Geometrics before Test No. 467114-3.

7.1.3. Weather Conditions

The test was performed on the morning of July 17, 2014. Weather conditions at the time of testing were as follows:

- Wind speed: 6 mph .
- Wind direction: 183° with respect to the vehicle (vehicle was traveling in a northwesterly direction).
- Temperature: $81^{\circ} \mathrm{F}$.
- Relative humidity: 75 percent.

7.1.4. Test Description

The 2008 Dodge Ram pickup truck, traveling at an impact speed of 62.8 mph , impacted the radius of the Short Radius Guardrail at an impact angle of 14.4° (relative to the traffic face of the parapet). At 0.024 s after impact, the front of the vehicle contacted the sand barrel in the center of the radius (barrel no. 2), and at 0.053 s , the vehicle began to yaw counterclockwise. The rail element contacted the sand barrel near post 3 (barrel no. 1) at 0.094 s , and the right front corner of the bumper contacted the sand barrel between posts 6 and 7 (barrel no. 3) at 0.109 s . At 0.110 s , the rail element began to push on barrel no. 1 , and at 0.113 s , the barrel began to tear. Barrel no. 3 began to tear at 0.121 s , and the barrel then contacted the sand barrel between post 7 and 8 (barrel no. 4) at 0.161 s . At 0.240 s , barrel no. 4 began to tear open. The vehicle began to roll clockwise at 0.599 s , and reached a maximum roll of 45° at 1.242 s . Brakes on the vehicle were not applied, and the vehicle subsequently came to rest upright. Figure E1 in Appendix E show sequential photographs of the test period. Figure 7.2 shows the vehicle at rest.

Figure 7.2. Vehicle/Installation after Test No. 467114-3.

7.1.5. Damage to Test Installation

Figure 7.3 shows damage to the Short Radius Guardrail installation. Post 1 rotated approximately 50° counterclockwise. Post 2 fractured at ground line and remained attached to the rail element. Post 3 fractured at ground line, and was resting 9 ft toward the field side of the rail and aligned with post 2 initial location. The soil around post 3 had been displaced 6 inches before the post fractured. Post 4 fractured at ground line and had deflected $1 / 2$-inch. Post 5 fractured at ground line and was resting 16 ft toward the field side and aligned with post 11 . The bolt head partially pulled through the sleeve and the sleeve was leaning toward the field side 4°. Post 6 deflected $5 / 8$ inch in the soil, fractured at ground line, and came to rest 25 ft toward the field side of the parapet and 6 ft downstream. Posts 7 and 8 deflected $1 / 4$ inch through the soil, fractured at ground line, and were resting 12 ft toward the field side of post 9 . The rail element in front of post 8 had a partial tear. Post 9 released from the rail element and was leaning 45° downstream. A partial tear of the rail element was also noted on the radius rail at the downstream splice. All of the sand barrels were torn into several pieces.

Maximum dynamic deflection during the test was 25.0 ft toward the field side of the traffic face of the parapet ('primary roadway') and 22.9 ft toward the field side from the 'secondary roadway' side. Working width was 25.1 ft relative to the 'primary road' and 22.9 ft
relative to the 'secondary roadway.' Vehicle intrusion was 25.2 ft relative to the 'primary roadway' and 23.4 ft relative to the 'secondary roadway.' Maximum permanent deformation of the rail element was 19.0 ft relative to the 'primary roadway' and 24.0 ft relative to the 'secondary roadway.'

Figure 7.3. Installation after Test No. 467114-3.

7.1.6. Vehicle Damage

Figure 7.4 shows the vehicle after the test. The front bumper, radiator and support, grill, hood, right front tire and wheel rim, right front fender, right front and rear doors, right rear exterior bed, and rear bumper were damaged. Maximum exterior crush to the vehicle was
7.75 inches in the front plane at the right front corner of the bumper at bumper height. No occupant compartment deformation was noted. Figure 7.5 shows the impact region of the interior of the vehicle after the test. Exterior crush and occupant compartment measurements are provided in Tables E3 and E4 of Appendix E.

Figure 7.4. Vehicle after Test No. 467114-3.

Figure 7.5. Interior of Vehicle after Test No. 467114-3.

7.1.7. Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was $28.5 \mathrm{ft} / \mathrm{s}$ at 0.129 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was 8.2 Gs from 0.129 to 0.139 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -9.9 Gs between 0.016 and 0.066 s . In the lateral direction, the occupant impact velocity was $5.9 \mathrm{ft} / \mathrm{s}$ at 0.129 s , the highest 0.010 -s occupant ridedown acceleration was 10.0 Gs from 0.131 to 0.141 s , and the maximum $0.050-\mathrm{s}$ average was -5.3 Gs between 0.104 and 0.154 s . Theoretical Head Impact Velocity (THIV) was $32.9 \mathrm{~km} / \mathrm{h}$ or $9.1 \mathrm{~m} / \mathrm{s}$ at 0.130 s ; Post-Impact Head Decelerations (PHD) was 12.6 Gs between 0.130 and 0.140 s ; and Acceleration Severity Index (ASI) was 0.86 between 0.041 and 0.091 s . Figure 7.6 summarizes these data and other pertinent information from the test. In Appendix E, Figures E2 through E8 show the vehicle angular displacements and accelerations versus time traces.

7.1.8. Assessment of Test Results

An assessment of the test based on the applicable MASH safety evaluation criteria is provided below.

7.1.8.1. \quad Structural Adequacy

A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
Results: The Short Radius Guardrail brought the 2270P vehicle to a controlled stop. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 25.0 ft relative to the "primary roadway" and 22.9 ft relative to the "secondary roadway." (PASS)

7.1.8.2. Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.
Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield $=\leq 3.0$ inches; side windows $=$ no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches).
Results: Some of the posts fractured and separated from the rail, and these and all other debris remained adjacent to the installation. These items did not penetrate, or show potential for penetrating the occupant compartment. The post and other debris traveled relatively close to the ground and remained near the installation, and thereby did not present undue hazard to others in the area. (PASS) No occupant compartment deformation or intrusion occurred. (PASS)
F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75°.
Results: The 2270 P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 45° and 10°, respectively. (PASS)
H. Occupant impact velocities should satisfy the following: Longitudinal and Lateral Occupant Impact Velocity
Preferred $30 \mathrm{ft} / \mathrm{s}$
$\frac{\text { Maximum }}{40 \mathrm{ft} / \mathrm{s}}$

Results: Longitudinal occupant impact velocity was $28.5 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $5.9 \mathrm{ft} / \mathrm{s}$. (PASS)
I. Occupant ridedown accelerations should satisfy the following:

Longitudinal and Lateral Occupant Ridedown Accelerations
$\frac{\text { Preferred }}{15.0 \mathrm{Gs}} \quad \frac{\text { Maximum }}{20.49 \mathrm{Gs}}$
Results: Maximum longitudinal occupant ridedown acceleration was 8.2 G , and maximum lateral occupant ridedown acceleration was 10.0 G . (PASS)

7.1.8.3. Vehicle Trajectory

For redirective devices, it is desirable that the vehicle be smoothly redirected and exit the barrier within the "exit box" criteria (not less than $32.8 f t$), and should be documented. Vehicle rebound distance and velocity should be reported for crash cushions.

Result: The vehicle did not exit the installation. No significant rebound occurred.

7.2. MASH TEST 3-32 (CRASH TEST NO. 467114-4)

7.2.1. Test Designation and Actual Impact Conditions

MASH Test 3-32 involves an 1100 C vehicle weighing $2420 \mathrm{lb} \pm 55 \mathrm{lb}$ and impacting the test article at an impact speed of $62.2 \mathrm{mph} \pm 2.5 \mathrm{mph}$ and an angle of $15^{\circ} \pm 1.5^{\circ}$ relative to the traffic face of the concrete parapet. The target impact point was the centerline of the vehicle aligned with the nose of the radius. The 2009 Kia Rio used in the test weighed 2424 lb , and the actual impact speed and angle were 62.1 mph and 14.8°, respectively. The actual impact point was at the nose of the radius. Target IS was $21.0 \mathrm{kip}-\mathrm{ft}$, and actual IS was $20.4 \mathrm{kip}-\mathrm{ft}$ (-3 percent).

7.2.2. Test Vehicle

Figure 7.7 shows the 2009 Kia Rio that was used for the crash test. Test inertia weight of the vehicle was 2424 lb , and its gross static weight was 2589 lb . The height to the lower edge of the vehicle bumper was 8.5 inches, and it was 21.5 inches to the upper edge of the bumper. Tables F1 and F2 in Appendix F give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

7.2.3. Weather Conditions

The test was performed on the morning of July 23, 2014. Weather conditions at the time of testing were as follows:

- Wind speed: 3 mph .
- Wind direction: 63° with respect to the vehicle (vehicle was traveling in a northwesterly direction).
- Temperature: $86^{\circ} \mathrm{F}$.
- Relative humidity: 71 percent.

Figure 7.7. Vehicle/Installation Geometrics before Test No. 467114-4.

7.2.4. Test Description

The 2009 Kia Rio, traveling at an impact speed of 62.1 mph , impacted the center of the radius of the Short Radius Guardrail at an impact angle of 14.8° (relative to the traffic face of the parapet). At approximately 0.024 s after impact, the vehicle began to yaw counterclockwise, and at 0.034 s , the front of the vehicle contacted the barrel in the center (barrel no. 2) of the radius near post 5 . The rail element contacted the side of barrel at post 3 (barrel no. 1) at 0.106 s , and the barrel began to move toward the field side at 0.127 s . At 0.189 s , the rail element contacted the barrel between post 6 and 7 (barrel no. 3), and at 0.230 s , the barrel began to move toward the field side. The side of barrel no. 3 contacted the barrel between posts 7 and 8 (barrel no. 4) at 0.276 s , and the blockout at post 7 contacted barrel no. 4 at 0.366 s . At 0.445 s , barrel no. 4 began to rotate clockwise and move toward the field side, and at 0.495 s , the rear of the vehicle contacted the rail element. Brakes on the vehicle were not applied, and the vehicle came to rest 14.0 ft toward the field side of the parapet ('primary roadway') and 14.6 ft toward the field side relative to the traffic face of the rail on the 'secondary roadway' side. Figures F1 and F2 in Appendix F show sequential photographs of the test period. Figure 7.8 shows the vehicle at final rest.

Figure 7.8. Vehicle/Installation after Test No. 467114-4.

7.2.5. Damage to Test Installation

Figure 7.9 shows the damage to the Short Radius Guardrail. The anchor plate between post 1 and 2 was pulled downstream 0.12 inch, and post 2 deflected through the soil 2.5 inches. Post 3 fractured at ground line and remained in place, but separated from the rail element. Post 4 fractured at ground line and was resting 32 ft toward the field side. Post 5 and 6 fractured at ground line and were resting at the left front tire and right front tire of the vehicle, respectively. Post 7 fractured at ground line and was resting 31 inches toward the field side. Post 8 displaced 0.25 inch toward the field side. Posts 9 and 10 were disturbed, and no movement was noted at the remaining posts.

Maximum dynamic deflection during the test was 16.3 ft toward the field side of the traffic face of the parapet ('primary roadway') and 16.4 ft toward the field side from the 'secondary road' side. Working width was 16.3 ft relative to the 'primary roadway' and 16.4 ft relative to the 'secondary road.' Vehicle intrusion was 15.8 ft relative to the 'primary roadway' and 16.1 ft relative to the 'secondary roadway.' Maximum permanent deformation of the rail element was 14.1 ft relative to the 'primary roadway' and 14.5 ft relative to the 'secondary roadway.'

7.2.6. Vehicle Damage

Figure 7.10 shows damage sustained by the vehicle. The front bumper, grill, radiator and support, hood, right and left front fenders, and right and left front doors were deformed. The windshield sustained stress fractures. Maximum exterior crush to the vehicle was 10.0 inches in the front plane just left of center front of the vehicle at bumper height. Maximum occupant compartment deformation was 0.5 inch in the right side front passenger door at hip height. Figure 7.11 shows the interior of the vehicle after the test. Exterior crush measurements and occupant compartment deformation are provided in Tables F2 and F3 in Appendix F.

7.2.7. Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was $36.4 \mathrm{ft} / \mathrm{s}$ at 0.105 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was 12.0 Gs from 0.108
to 0.118 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -13.5 Gs between 0.026 and 0.076 s . In the lateral direction, the occupant impact velocity was $3.6 \mathrm{ft} / \mathrm{s}$ at 0.105 s , the highest 0.010 -s occupant ridedown acceleration was 6.2 Gs from 0.131 to 0.141 s , and the maximum $0.050-\mathrm{s}$ average was -3.5 Gs between 0.091 and 0.141 s . THIV was $40.6 \mathrm{~km} / \mathrm{h}$ or $11.3 \mathrm{~m} / \mathrm{s}$ at 0.105 s ; PHD was 13.0 Gs between 0.108 and 0.118 s ; and ASI was 1.11 between 0.050 and 0.100 s . Figure 7.12 summarizes these data and other pertinent information from the test. In Appendix F, Figures F3 through F9 show the vehicle angular displacements and accelerations versus time traces.

Figure 7.9. Installation after Test No. 467114-4.

Figure 7.10. Vehicle after Test No. 467114-4.

Figure 7.11. Interior of Vehicle after Test No. 467114-4.

7.2.8. Assessment of Test Results

An assessment of the test based on the applicable MASH safety evaluation criteria is provided below.

7.2.8.1. \quad Structural Adequacy

A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
Results: The Short Radius Guardrail contained the 1100C vehicle and brought it to a controlled stop. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the rail element during the test was 16.3 ft relative to the "primary roadway" and 16.4 ft relative to the "secondary roadway." (PASS)

Figure 7.12. Summary of Results for MASH Test 3-32 on the Short Radius Guardrail.

7.2.8.2. Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.
Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield $=\leq 3.0$ inches; side windows $=$ no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches).
Results: All debris remained adjacent to the installation area and did not penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. (PASS)
Maximum occupant compartment deformation was 0.5 inches in the right front passenger area at hip height. (PASS)
F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75°.
Results: The 1100 C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 6° and 11°, respectively. (PASS)
H. Occupant impact velocities should satisfy the following:

Longitudinal and Lateral Occupant Impact Velocity
$\frac{\text { Preferred }}{30 \mathrm{ft} / \mathrm{s}} \quad \frac{\text { Maximum }}{40 \mathrm{ft} / \mathrm{s}}$

Results: Longitudinal occupant impact velocity was $36.4 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $3.6 \mathrm{ft} / \mathrm{s}$. (PASS)
I. Occupant ridedown accelerations should satisfy the following: Longitudinal and Lateral Occupant Ridedown Accelerations
$\frac{\text { Preferred }}{15.0 \mathrm{Gs}} \quad \frac{\text { Maximum }}{20.49 \mathrm{Gs}}$

Results: Maximum longitudinal occupant ridedown acceleration was 12.0 G , and maximum lateral occupant ridedown acceleration was 6.2 G. (PASS)

7.2.8.3. Vehicle Trajectory

For redirective devices, it is desirable that the vehicle be smoothly redirected and exit the barrier within the "exit box" criteria (not less than 32.8 ft), and should be documented. Vehicle rebound distance and velocity should be reported for crash cushions.
Result: The vehicle did not exit the installation. No significant rebound was noted.

7.3. MASH TEST 3-31 (CRASH TEST NO. 467114-5)

7.3.1. Test Designation and Actual Impact Conditions

MASH Test 3-31 involves a 2270 P vehicle weighing $5000 \mathrm{lb} \pm 110 \mathrm{lb}$ and impacting the test article at an impact speed of $62.2 \mathrm{mph} \pm 2.5 \mathrm{mph}$ and an angle of $0^{\circ} \pm 1.5^{\circ}$ relative to the traffic face of the concrete parapet. The target impact point was the centerline of the truck aligned with the traffic face of the parapet. The 2008 Dodge Ram 1500 Quad Cab pickup truck used in the test weighed 5023 lb and the actual impact speed and angle were 63.5 mph and 0.2°, respectively. The actual impact point was at the nose of the radius.

7.3.2. Test Vehicle

Figure 7.13 shows a 2008 Dodge Ram 1500 pickup that was used for the crash test. Test inertia weight of the vehicle was 5023 lb , and its gross static weight was 5023 lb . The height to the lower edge of the vehicle bumper was 16.0 inches, and it was 27.0 inches to the upper edge of the bumper. The height to the vehicle's center of gravity was 28.9 inches. Tables G1 and G2 in Appendix G give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 7.13. Vehicle/Installation Geometrics before Test No. 467114-5.

7.3.3. Weather Conditions

The test was performed on the morning of July 29, 2014. Weather conditions at the time of testing were as follows:

- Wind speed: 3 mph .
- Wind direction: 96° with respect to the vehicle (vehicle was traveling in a northerly direction).
- Temperature: $84^{\circ} \mathrm{F}$.
- Relative humidity: 69 percent.

7.3.4. Test Description

The 2008 Dodge Ram 1500 pickup, traveling at an impact speed of 63.5 mph , contacted the guardrail 39.7 inches upstream of post 6 at an impact angle of 0° relative to the face of the concrete parapet. At approximately 0.026 s after impact, the vehicle began to yaw clockwise, and at 0.043 s , the left front bumper contacted post 6 . The left front tire contacted post 6 at 0.054 s , and the rear of the guardrail contacted barrel 2 at 0.058 s . At 0.067 s , the rear of the guardrail contacted barrel 3, and at 0.069 s , the left front tire snagged on post 6 and blew out. The left front bumper of the vehicle contacted barrel 3 at 0.077 s , and post 7 began to deflect toward the field side at 0.104 s . The left front bumper contacted post 7,8 , and 9 at $0.111 \mathrm{~s}, 0.152 \mathrm{~s}$, and 0.185 s , respectively. At 0.282 s , the left rear tire snagged on post 7 and blew out; at 0.293 s , the rear of the vehicle contacted the guardrail. The vehicle lost contact with the guardrail at 0.366 s , and was traveling at an exit speed and angle of 54.8 mph and 7.8°. Brakes on the vehicle were applied at 2.1 s after impact, and the vehicle subsequently came to rest 42 ft downstream of impact and 32 ft toward traffic lanes. Figures G1 and G2 in Appendix G show sequential photographs of the test period. Figure 7.14 shows the vehicle at final rest.

Figure 7.14. Vehicle/Installation after Test No. 467114-5.

7.3.5. Damage to Test Installation

Figure 7.15 shows damage to the installation. Post 4 was leaning upstream 6°. Posts 5 and 6 fractured at ground level and were leaning upstream 12°, and toward the field side 8° and 12°, respectively. Posts 7 and 8 fractured below ground level and were leaning toward field side 13° and 5°, respectively. Post 7 had displaced through the soil by 0.75 inch and post 8 by 0.5 inch. The soil around post 9 was disturbed. A small amount of orange paint from post 6 was found on the left front tire, which separated from the vehicle and was resting 90 ft downstream of impact and 40 ft toward traffic lanes. Total length of contact with the rail element on the 'primary roadway' was 20.25 ft . Maximum dynamic deflection of the rail element during the test was 34.1 inches, and maximum permanent deformation of the rail element was 15.0 inches. Maximum working width was 36.0 inches, and maximum vehicle intrusion was 16.0 inches.

Figure 7.15. Installation after Test No. 467114-5.

7.3.6. Vehicle Damage

Figure 7.16 shows damage to the vehicle. The left front upper and lower ball joints, left upper and lower A-arms, left tie rod end, left frame rail, left rear U-bolts, and drive shaft were damaged. Also damaged were the front bumper, left front fender, left front and rear doors, left rear exterior bed, left front tire and wheel rim, and left rear tire and wheel rim. Maximum exterior crush to the vehicle was 9.0 inches in the side plane at the left front corner at bumper height. Maximum occupant compartment deformation was 0.5 inch in the left kick panel area near the driver's feet. Figure 7.17 shows the interior damage to the vehicle.

Figure 7.16. Vehicle after Test No. 467114-5.

Figure 7.17. Interior of Vehicle after Test No. 467114-5.

7.3.7. Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was $9.2 \mathrm{ft} / \mathrm{s}$ at 0.186 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was 5.4 Gs from 0.306 to 0.316 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -3.1 Gs between 0.026 and 0.056 s . In the lateral direction, the occupant impact velocity was $10.5 \mathrm{ft} / \mathrm{s}$ at 0.186 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was 4.5 Gs from 0.204 to 0.214 s , and the maximum $0.050-\mathrm{s}$ average was 3.0 Gs between 0.040 and 0.090 s . THIV was $15.0 \mathrm{~km} / \mathrm{h}$ or $4.2 \mathrm{~m} / \mathrm{s}$ at 0.179 s ; PHD was 6.5 Gs between 0.301 and 0.311 s ; and ASI was 0.37 between 0.040 and 0.090 s . Figure 7.18 summarizes these data and other pertinent information from the test. In Appendix G, Figures G3 through G9 show the vehicle angular displacements and accelerations versus time traces.

Figure 7.18. Summary of Results for MASH Test 3-31 on the Short Radius Guardrail.

7.3.8. Assessment of Test Results

An assessment of the test based on the applicable MASH safety evaluation criteria is provided below.

7.3.8.1. \quad Structural Adequacy

A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
Results: The Short Radius Guardrail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 34.1 inches. (PASS)

7.3.8.2. Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.
Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield $=\leq 3.0$ inches; side windows $=$ no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches).
Results: Several posts fractured, but remained attached to the rail element. No other detached elements, fragments, or other debris were present to penetrate or to show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. (PASS)
Maximum occupant compartment deformation was 0.5 inch in the left front kick panel are near the driver's feet. (PASS)
F. \quad The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75°.
Results: The 2270 P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 13° and 12°, respectively. (PASS)
H. Occupant impact velocities should satisfy the following: Longitudinal and Lateral Occupant Impact Velocity $\frac{\text { Preferred }}{30 \mathrm{ft} / \mathrm{s}} \quad \frac{\text { Maximum }}{40 \mathrm{ft} / \mathrm{s}}$
Results: Longitudinal occupant impact velocity was $9.2 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $10.5 \mathrm{ft} / \mathrm{s}$. (PASS)
I. Occupant ridedown accelerations should satisfy the following:

Longitudinal and Lateral Occupant Ridedown Accelerations
Preferred
15.0 Gs
Maximum
20.49 Gs

Results: Maximum longitudinal occupant ridedown acceleration was -5.4 G, and maximum lateral occupant ridedown acceleration was 4.5 G . (PASS)

7.3.8.3. Vehicle Trajectory

For redirective devices, it is desirable that the vehicle be smoothly redirected and exit the barrier within the "exit box" criteria (not less than 32.8 ft), and should be documented. Vehicle rebound distance and velocity should be reported for crash cushions.
Result: \quad The 2270 P vehicle exited within the exit box criteria.

7.4. MASH TEST 3-35 (CRASH TEST NO. 467114-6)

7.4.1. Test Designation and Actual Impact Conditions

MASH Test 3-35 involves a 2270P vehicle weighing $5000 \mathrm{lb} \pm 110 \mathrm{lb}$ and impacting the test article at an impact speed of $62.2 \mathrm{mph} \pm 2.5 \mathrm{mph}$ and an angle of $25^{\circ} \pm 1.5^{\circ}$ relative to the traffic face of the concrete parapet. The target impact point was post 9. The 2008 Dodge Ram 1500 Quad Cab pickup truck used in the test weighed 5016 lb , and the actual impact speed and angle were 62.6 mph and 25.1°, respectively. The actual impact point was at post 9 . Target impact severity (IS) was 115.1 kip-ft, and actual IS was 118.2 kip- ft (+3 percent).

7.4.2. Test Vehicle

Figure 7.19 shows the 2008 Dodge Ram 1500 pickup that was used for the crash test. Test inertia weight of the vehicle was 5016 lb , and its gross static weight was 5016 lb . The height to the lower edge of the vehicle bumper was 15.5 inches, and it was 27.0 inches to the upper edge of the bumper. The height to the vehicle's center of gravity was 28.88 inches. Tables H1 and H2 in Appendix H give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be free-wheeling and unrestrained just prior to impact.

7.4.3. Weather Conditions

The test was performed on the morning of August 6, 2014. Weather conditions at the time of testing were as follows:

- Wind speed: 6 mph .
- Wind direction: 217° with respect to the vehicle (vehicle was traveling in a northwesterly direction).
- Temperature: $83^{\circ} \mathrm{F}$.
- Relative humidity: 71 percent.

Figure 7.19. Vehicle/Installation Geometrics before Test No. 467114-6.

7.4.4. Test Description

The 2008 Dodge Ram 1500 pickup, traveling at an impact speed of 62.6 mph , contacted the Short Radius Guardrail 12 inches upstream of post 9 at an impact angle of 25.1°. At approximately 0.016 s after impact, posts 9 and 10 began to deflect toward the field side; at 0.023 s , the vehicle began to redirect and post 11 began to deflect toward the field side. Post 12 through post 14 began to deflect toward the field side at 0.029 s , and the left front corner of the bumper contacted post 10 at 0.033 s . The bumper reached posts 11 and post 12 at 0.062 s and 0.075 s , respectively. At 0.091 s , the rail element began to buckle at the upstream side of post 15 , and the bumper reached post 13 at 0.095 s . At 0.115 s , post 15 began to deflect toward the field side and the bumper reached post 14 . The bumper reached post 14 and post 15 at 0.146 s and 0.170 s , respectively. At 0.187 s , the left front corner of the bumper reached the upstream end of the concrete parapet; at 0.194 s , the vehicle was traveling parallel with the parapet. The rear of the vehicle contacted the rail 0.211 s . At 0.410 s , the vehicle began to roll clockwise, rolled three complete revolutions, and came to rest upright 145 ft downstream of impact and 85 ft toward traffic lanes. Figures H1 and H2 in Appendix H show sequential photographs of the test period. Figure 7.20 shows the vehicle at final rest relative to the Short Radius Guardrail.

Figure 7.20. Vehicle/Installation after Test No. 467114-6.

7.4.5. Damage to Test Installation

Figure 7.21 shows damage to the Short Radius Guardrail. Post 7 was pulled downstream 0.25 inch and displaced through the soil toward the field side 0.12 inch. Post 8 was pulled downstream 0.25 inch and displaced through the soil toward the field side 0.5 inch. Post 9 was leaning toward field side 7° and displaced through the soil toward the field side 0.5 inch. Posts 10 through 14 rotated 45° clockwise, leaning downstream 25°, and the top guardrail bolt pulled through the rail element. Post 15 rotated 20° clockwise and leaned downstream 10°. Post 16 was displaced through the soil 0.12 inch toward the field side. Total length of contact of the vehicle with the guardrail was 15 ft . Maximum dynamic deflection during the test was 21.1 inches, and maximum permanent deformation was 16.25 inches. Working width was 24.1 inches, and vehicle intrusion was 29.6 inches.

7.4.6. Vehicle Damage

Figure 7.22 shows damage to the vehicle. The front bumper, radiator and support, hood, grill, left front fender, left front tire and wheel rim, left upper and lower ball joints, left rear door, left rear exterior bed, and rear bumper were damaged in the impact with the Short Radius Guardrail. The remaining damage was sustained in the rollover. Maximum exterior crush to the vehicle was 24.0 inches at the left front corner at bumper height. Maximum occupant compartment deformation related to the impact with the Short Radius Guardrail was 3.25 inches in the lateral area across the cab in the driver side kickpanel area. Maximum occupant compartment deformation related to the rollover was 9.5 inches in the floor to roof area in the left rear occupant compartment. Table H3 and Table H4 in Appendix H present the vehicle exterior crush and occupant compartment deformation measurements, respectively.

7.4.7. Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was $25.3 \mathrm{ft} / \mathrm{s}$ at 0.114 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was 10.8 Gs from 0.142 to 0.152 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -9.8 Gs between 0.079 and 0.129 s . In the lateral direction, the occupant impact velocity was $23.3 \mathrm{ft} / \mathrm{s}$ at 0.114 s , the highest 0.010 -s occupant ridedown acceleration was 10.0 Gs from 0.142 to 0.152 s , and the maximum $0.050-\mathrm{s}$ average was 9.3 Gs between 0.081 and 0.131 s . THIV was $36.2 \mathrm{~km} / \mathrm{h}$ or $10.0 \mathrm{~m} / \mathrm{s}$ at 0.110 s ; PHD was 14.7 Gs between 0.142 and 0.152 s ; and ASI was 1.28 between 0.086 and 0.136 s . Figure 7.23 summarizes these data and other pertinent information from the test. In Appendix H, Figures H3 through H8 show the vehicle angular displacements and accelerations versus time traces.

Figure 7.21. Installation after Test No. 467114-6.

Figure 7.22. Vehicle after Test No. 467114-6.

7.4.8. Assessment of Test Results

An assessment of the test based on the applicable MASH safety evaluation criteria is provided below.

7.4.8.1. \quad Structural Adequacy

A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
Results: The Short Radius Guardrail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the guardrail was 21.1 inches. (PASS)

7.4.8.2. Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.
Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield $=\leq 3.0$ inches; side windows $=$ no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches).
Results: No detached elements, fragments, or other debris was present to penetrate or to show penetration of the occupant compartment, or to show hazard to others in the area. (PASS)
Maximum occupant compartment deformation related to the impact with the Short Radius Guardrail was 3.25 inches in the lateral area across the cab in the driver side kickpanel area. Maximum occupant compartment
deformation related to the rollover was 9.5 inches in the floor to roof area in the left rear occupant compartment. (FAIL)
F. \quad The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75°.
Results: The 2270P vehicle rolled three revolutions after exiting the installation. (FAIL)
H. Occupant impact velocities should satisfy the following: Longitudinal and Lateral Occupant Impact Velocity
$\frac{\text { Preferred }}{30 \mathrm{ft} / \mathrm{s}} \quad \frac{\text { Maximum }}{40 \mathrm{ft} / \mathrm{s}}$

Results: Longitudinal occupant impact velocity was $25.3 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $23.3 \mathrm{ft} / \mathrm{s}$. (PASS)
I. Occupant ridedown accelerations should satisfy the following: Longitudinal and Lateral Occupant Ridedown Accelerations $\frac{\text { Preferred }}{15.0 \mathrm{Gs}} \quad \frac{\text { Maximum }}{20.49 \mathrm{Gs}}$
Results: Maximum longitudinal occupant ridedown acceleration was 10.8 G , and maximum lateral occupant ridedown acceleration as 10.0 G . (PASS)

7.4.8.3. Vehicle Trajectory

For redirective devices, it is desirable that the vehicle be smoothly redirected and exit the barrier within the "exit box" criteria (not less than $32.8 f t$), and should be documented. Vehicle rebound distance and velocity should be reported for crash cushions.
Result: The vehicle exited the exit box too soon.

7.5. MASH TEST 3-35 (CRASH TEST NO. 467114-7)

After the 2270P vehicle rolled in Test No. 467114-6, the test installation was modified and MASH Test 3-35 was repeated. The test installation for Test No. 467114-7 differed from that for Test Nos. 467114-3 through 467114-6 most notably in that an extra post was added to the thrie-beam section between post 10 and the parapet, resulting in a total of 17 posts for the installation. At post 10, the upstream thrie-beam section was sandwiched between the nested double thrie-beams, and all three layers were bolted to post 10. Section 6.1.2 and Appendix B provide further details.

Figure 7.23. Summary of Results for MASH Test 3-35 on the Short Radius Guardrail.

7.5.1. Test Designation and Actual Impact Conditions

MASH Test 3-35 involves a 2270P vehicle weighing $5000 \mathrm{lb} \pm 110 \mathrm{lb}$ and impacting the test article at an impact speed of $62.2 \mathrm{mph} \pm 2.5 \mathrm{mph}$ and an angle of $25^{\circ} \pm 1.5^{\circ}$ relative to the traffic face of the concrete parapet. The target impact point was post 9. The 2008 Dodge Ram 1500 Quad Cab pickup truck used in the test weighed 5014 lb , and the actual impact speed and angle were 64.5 mph and 25.2°, respectively. The actual impact point was at post 9 . Target impact severity (IS) was 115.1 kip-ft, and actual IS was 126.4 kip- ft (+9 percent).

7.5.2. Test Vehicle

Figure 7.24 shows the 2008 Dodge Ram 1500 pickup that was used for the crash test. Test inertia weight of the vehicle was 5014 lb , and its gross static weight was 5041 lb . The height to the lower edge of the vehicle bumper was 15.5 inches, and it was 27.0 inches to the upper edge of the bumper. The height to the vehicle's center of gravity was 28.0 inches. Tables I1 and I2 in Appendix I give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 7.24. Vehicle/Installation Geometrics for Test No. 467114-7.

7.5.3. Weather Conditions

The test was performed on the morning of August 22, 2014. Weather conditions at the time of testing were as follows:

- Wind speed: 8 mph .
- Wind direction: 182° with respect to the vehicle (vehicle was traveling in a northerly direction).
- Temperature: $91^{\circ} \mathrm{F}$.
- Relative humidity: 59 percent.

7.5.4. Test Description

The 2008 Dodge Ram 1500 pickup truck, traveling at an impact speed of 64.5 mph , impacted the Short Radius Guardrail at post 9 at an impact angle of 25.2°. Shortly after impact, post 9 began to deflect toward the field side, and at 0.011 s , post 10 began to deflect toward the field side. Posts 10,11 , and 12 began to deflect toward the field side at $0.011 \mathrm{~s}, 0.018 \mathrm{~s}$, and 0.026 s , respectively. At 0.032 s , the left front corner of the bumper contacted post 10 and post 13 began to deflect toward the field side. At 0.037 s , the vehicle began to redirect and post 13 began to deflect toward the field side. The bumper contacted post 11 at 0.044 s , and post 14 began to deflect toward the field side at 0.048 s . At 0.057 s , the front bumper contacted post 12, and at 0.071 s , the left front tire and wheel assembly separated from the vehicle. The bumper contacted post 13 at 0.073 s , and post 15 began to deflect toward the field side at 0.077 s . At 0.088 s , the bumper contacted post 14 and post 16 began to deflect toward the field side. The bumper contacted post 15,16 , and 17 at $0.104 \mathrm{~s}, 0.132 \mathrm{~s}$, and 0.157 s , respectively. The bumper reached the end of the parapet at 0.143 s , and the rear of the vehicle contacted the guardrail at 0.186 s . At 0.208 s , the vehicle was traveling parallel with the parapet, and at 0.423 s , the vehicle began to roll counterclockwise. The vehicle lost contact with the parapet at 0.451 s and was traveling at an exit speed and angle of 40.6 mph and 31.1°. Brakes on the vehicle were applied at 2.5 s after impact, and the vehicle subsequently came to rest upright 160 ft downstream of impact and 58 ft toward traffic lanes from the traffic face of the parapet. Figures I1 and I2 in Appendix I show sequential photographs of the test period. Figure 7.25 shows the vehicle at final rest relative to the Short Radius Guardrail.

Figure 7.25. Vehicle/Installation after Test No. 467114-7.

7.5.5. Damage to Test Installation

Figure 7.26 shows the Short Radius Guardrail after the test. The soil around posts 4 through 7 was disturbed. Post 8 was leaning toward the field side 2° and had deflected through the soil 16 inches. Post 9 was leaning toward the field side 5° and had deflected through the soil 1.5 inches. Posts 10 and 11 were leaning toward field side 15°, and post 11 rotated clockwise 30°. Posts 12 and 13 were leaning toward field side 18° and both rotated clockwise 15°. Post 14 was leaning toward the field side 10° and had deflected through the soil 3 inches. Post 15 was leaning toward the field side 5° and had deflected through the soil 0.5 inch. Post 16 was leaning
toward the field side 3°, and the soil around post 17 was disturbed. Total length of contact of the vehicle with the guardrail was 12.5 ft . Maximum dynamic deflection during the test was 14.3 inches, and maximum permanent deformation was 9.0 inches. Working width was 16.9 inches, and vehicle intrusion was 23.7 inches.

Figure 7.26. Installation after Test No. 467114-7.

7.5.6. Vehicle Damage

Figure 7.27 shows the vehicle after the test. The left upper and lower ball joints, left frame rail, and left rear U-bolts were damaged. Also damaged were the front bumper, radiator and support, left front tire and wheel rim, left front and rear doors, left rear exterior bed, left rear tire and wheel rim, rear tailgate, and rear bumper. Maximum exterior crush to the vehicle was
24.0 inches in the front and side planes at the left front corner at bumper height. Maximum occupant compartment deformation was 2.5 inches in the left firewall area near the toe pan.

Figure 7.27. Vehicle after Test No. 467114-7.

7.5.7. Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was $25.3 \mathrm{ft} / \mathrm{s}$ at 0.107 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was 7.5 Gs from 0.132 to 0.142 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -10.3 Gs between 0.046 and 0.096 s . In the lateral direction, the occupant impact velocity was $26.2 \mathrm{ft} / \mathrm{s}$ at 0.107 s , the highest 0.010 -s occupant ridedown acceleration was 8.5 Gs from 0.139 to 0.149 s , and the maximum $0.050-\mathrm{s}$ average was 11.4 Gs between 0.051 and 0.101 s . THIV was $38.8 \mathrm{~km} / \mathrm{h}$ or $10.8 \mathrm{~m} / \mathrm{s}$ at 0.103 s ; PHD was 10.9 Gs between 0.132 and 0.142 s ; and ASI was 1.53 between 0.081 and 0.131 s . Figure 7.28 summarizes these data and other pertinent information from the test. In Appendix I, Figures I3 through I9 show the vehicle angular displacements and accelerations versus time traces.

7.5.8. Assessment of Test Results

An assessment of the test based on the applicable MASH safety evaluation criteria is provided below.

7.5.8.1. \quad Structural Adequacy

A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
Results: The Short Radius Guardrail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 14.3 inches. (PASS)

7.5.8.2. Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.
Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield $=\leq 3.0$ inches; side windows $=$ no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches).
Results: No detached elements, fragments, or other debris were present to penetrate or show potential to penetrate the occupant compartment, or to present undue hazard to others in the area. (PASS)
Maximum occupant compartment deformation was 2.0 inches in the left side kick panel area near the driver's feet. (PASS)
F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75°.
Results: The 2270 P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 32° and 11°, respectively. (PASS)
H. Occupant impact velocities should satisfy the following: Longitudinal and Lateral Occupant Impact Velocity
$\frac{\text { Preferred }}{30 \mathrm{ft} / \mathrm{s}} \quad \frac{\text { Maximum }}{40 \mathrm{ft} / \mathrm{s}}$

Results: Longitudinal occupant impact velocity was $25.3 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $26.2 \mathrm{ft} / \mathrm{s}$. (PASS)
I. Occupant ridedown accelerations should satisfy the following: Longitudinal and Lateral Occupant Ridedown Accelerations

Preferred 15.0 Gs

Maximum
20.49 Gs

Results: Maximum longitudinal occupant ridedown acceleration was 7.5 G , and maximum lateral occupant ridedown acceleration was 8.5 G . (PASS)

7.5.8.3. Vehicle Trajectory

For redirective devices, it is desirable that the vehicle be smoothly redirected and exit the barrier within the "exit box" criteria (not less than 32.8 ft), and should be documented. Vehicle rebound distance and velocity should be reported for crash cushions.
Result: The 2270P vehicle exited the exit box too soon.

CHAPTER 8. SUMMARY AND CONCLUSIONS

8.1. ASSESSMENT OF TEST RESULTS

8.1.1. MASH Test No. 3-33 (Crash Test No. 467114-3)

The Short Radius Guardrail brought the 2270P vehicle to a controlled stop. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 25.0 ft relative to the "primary roadway" and 22.9 ft relative to the "secondary roadway." Some of the posts fractured and separated from the rail, and these and all other debris remained adjacent to the installation. These items did not penetrate, or show potential for penetrating the occupant compartment. The post and other debris traveled relatively close to the ground and remained near the installation, and thereby did not present undue hazard to others in the area. No occupant compartment deformation or intrusion occurred. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 45° and 10°, respectively. Occupant risk factors were within the preferred limits specified in $M A S H$. The vehicle did not exit the installation. No significant rebound occurred. Table 8.1 gives a summary of the test.

8.1.2. MASH Test No. 3-32 (Crash Test No. 467114-4)

The Short Radius Guardrail contained the 1100 C vehicle and brought it to a controlled stop. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the rail element during the test was 16.3 ft relative to the 'primary roadway' and 16.4 ft relative to the 'secondary roadway.' All debris remained adjacent to the installation area and did not penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 0.5 inches in the right front passenger area at hip height. The 1100 C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 6° and 11°, respectively. Occupant risk factors were within the limits specified in $M A S H$. The vehicle did not exit the installation. No significant rebound was noted. Table 8.2 gives a summary of the test.

8.1.3. MASH Test No. 3-31 (Crash Test No. 467114-5)

The Short Radius Guardrail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 34.1 inches. Several posts fractured, but remained attached to the rail element. No other detached elements, fragments, or other debris were present to penetrate or to show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. Maximum occupant compartment deformation was 0.5 inch in the left front kick panel area near the driver's feet. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 13° and 12°, respectively. Occupant risk factors were within the preferred limits specified in MASH. The 2270P vehicle exited within the exit box criteria. Table 8.3 gives a summary of the test.

8.1.4. MASH Test No. 3-35 (Crash Test No. 467114-6)

The Short Radius Guardrail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the guardrail was 21.1 inches. No detached elements, fragments, or other debris were present to penetrate or to show penetration of the occupant compartment, or to show hazard to others in the area. Maximum occupant compartment deformation related to the impact with the Short Radius Guardrail was 3.25 inches in the lateral area across the cab in the driver side kickpanel area. Maximum occupant compartment deformation related to the rollover was 9.5 inches in the floor to roof area in the left rear occupant compartment. The 2270P vehicle rolled three revolutions after exiting the installation. Occupant risk factors were within the limits specified in $M A S H$. The vehicle exited the exit box too soon. Table 8.4 gives a summary of the test.

8.1.5. Repeat MASH Test No. 3-35 (Crash Test No. 467114-7)

The Short Radius Guardrail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 14.3 inches. No detached elements, fragments, or other debris were present to penetrate or show potential to penetrate the occupant compartment, or to present undue hazard to others in the area. Maximum occupant compartment deformation was 2.0 inches in the left side kick panel area near the driver's feet. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 32° and 11°, respectively. Occupant risk factors were within the preferred limits specified in MASH. Table 8.5 gives a summary of the test.

8.2. CONCLUSIONS

When a roadway intersects a highway with restrictive features, such as a bridge rail and canal, it becomes difficult to fit a guardrail with the proper length, transitions, and end treatment along the highway. Possible solutions include relocating the constraint blocking the placement of the guardrail, shortening the designed guardrail length, or designing a curved guardrail. Curved, or short radius, guardrails typically present the most viable solution for these areas. However, no previously designed short radius guardrails meet NCHRP Report 350 TL-3 guidelines. Now, crash testing criteria have been updated by AASHTO MASH. The new guidelines supersede NCHRP Report 350 by increasing the size of test vehicles and changing the test matrices to include more impact conditions. Therefore, meeting new impact standards for short radius guardrails has become more challenging.

During the execution of this project, high fidelity simulations were conducted that accurately predicted the performance of the subsequent full-scale crash tests. The final short radius system that was simulated and crash tested consisted of a thrie beam that is 18 ft 9 inches long placed along the secondary roadway. The radius itself is 8 ft 4 inches and connects to the thrie beam on the primary roadway, which is 27 ft 5 inches long. The primary road rail section includes a transition section to connect the rail to the concrete parapet design. A combination of BCT and CRT wood posts are utilized to provide quick post releases for the capture impacts. A tension cable begins on the primary roadway and runs across the nose section along the ground and anchored on the secondary roadway. This tension cable helps to maintain the tension in the rail for impacts such as MASH test 3-35 and MASH test 3-31. Frangible sand barrels were spaced
behind the rail to help slow the vehicle down without violating OIV and ridedown acceleration thresholds while maintaining a desired stopping distance behind the rail.

The system described above and detailed in the report was successfully crash tested under the MASH tests 3-32, 3-33, 3-31, and 3-35 test conditions.
Table 8.1. Performance Evaluation Summary for MASH Test 3-33 on the Short Radius Guardrail.

Test Agency: Te	Test No.: 467114-3	Test Date: 2014-07-17
MASH Test 3-33 Evaluation Criteria	Test Results	Assessment
Structural Adequacy A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The Short Radius Guardrail brought the 2270P vehicle to a controlled stop. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 25.0 ft relative to the 'primary roadway' and 22.9 ft relative to the 'secondary roadway.'	Pass
Occupant Risk D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	Some of the posts fractured and separated from the rail; these and all other debris remained adjacent to the installation. These items did not penetrate or show potential for penetrating the occupant compartment, and did not present undue hazard to others in the area.	Pass
Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	No occupant compartment deformation or intrusion occurred.	Pass
F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75°.	The 2270P vehicle remained upright during and after the collision event. Maximum roll was 45° and maximum pitch was 10°.	Pass
H. Longitudinal and lateral occupant impact velocities should fall below the preferred value of $30 \mathrm{ft} / \mathrm{s}$, or at least below the maximum allowable value of $40 \mathrm{ft} / \mathrm{s}$.	Longitudinal occupant impact velocity was $28.5 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $5.9 \mathrm{ft} / \mathrm{s}$.	Pass
I. Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Maximum longitudinal occupant ridedown acceleration was 8.2 G , and maximum lateral occupant ridedown acceleration was 10.0 G .	Pass

Table 8.2. Performance Evaluation Summary for MASH Test 3-32 on the Short Radius Guardrail.

Test Agency: Texas A\&M Transportation Institute	Test No.: 467114-4 T	Test Date: 2014-07-23
MASH Test 3-32 Evaluation Criteria	Test Results	Assessment
Structural Adequacy A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The Short Radius Guardrail contained the 1100C vehicle and brought it to a controlled stop. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the rail element during the test was 16.3 ft relative to the 'primary roadway' and 16.4 ft relative to the 'secondary roadway.'	Pass
Occupant Risk D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	All debris remained adjacent to the installation area and did not penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area.	Pass
Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Maximum occupant compartment deformation was 0.5 inches in the right front passenger area at hip height.	Pass
F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75°.	The 1100 C vehicle remained upright during and after the collision event. Maximum roll was 6° and maximum pitch was 11°.	Pass
H. Longitudinal and lateral occupant impact velocities should fall below the preferred value of $30 \mathrm{ft} / \mathrm{s}$, or at least below the maximum allowable value of $40 \mathrm{ft} / \mathrm{s}$.	Longitudinal occupant impact velocity was $36.4 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $3.6 \mathrm{ft} / \mathrm{s}$.	Pass
I. Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Maximum longitudinal occupant ridedown acceleration was 12.0 G , and maximum lateral occupant ridedown acceleration was 6.2 G .	Pass

Table 8.3. Performance Evaluation Summary for MASH Test 3-31 on the Short Radius Guardrail.

Test Agency: Texas A\&M Transportation Institute	Test No.: 467114-5	Test Date: 2014-07-29
MASH Test 3-31 Evaluation Criteria	Test Results	Assessment
Structural Adequacy A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The Short Radius Guardrail contained and redirected the 2270 P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 34.1 inches.	Pass
Occupant Risk D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	Several posts fractured, but remained attached to the rail element. No other detached elements, fragments, or other debris were present to penetrate or to show potential for penetrating the occupant compartment, or to present undue hazard to others.	Pass
Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Maximum occupant compartment deformation was 0.5 inch in the left front kick panel area near the driver's feet.	Pass
F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75°.	The 2270P vehicle remained upright during and after the collision event. Maximum roll was 13° and maximum pitch was 12°.	Pass
H. Longitudinal and lateral occupant impact velocities should fall below the preferred value of $30 \mathrm{ft} / \mathrm{s}$, or at least below the maximum allowable value of $40 \mathrm{ft} / \mathrm{s}$.	Longitudinal occupant impact velocity was $9.2 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $10.5 \mathrm{ft} / \mathrm{s}$.	Pass
I. Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Maximum longitudinal occupant ridedown acceleration was -5.4 G , and maximum lateral occupant ridedown acceleration was 4.5 G .	Pass

Table 8.4. Performance Evaluation Summary for MASH Test 3-35 on the Short Radius Guardrail.
Test Date: 2014-08-06

MASH Test 3-35 Evaluation Criteria	Test Results	Assessment
Structural Adequacy A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The Short Radius Guardrail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the guardrail was 21.1 inches.	Pass
Occupant Risk D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	No detached element, fragment, or other debris was present to penetrate or to show penetration of the occupant compartment, or to present undue hazard to others in the area.	Pass
Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Maximum occupant compartment deformation related to the rollover was 9.5 inches in the floor to roof area in the left rear occupant compartment.	Fail
F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75°.	The 2270P vehicle rolled three revolutions after exiting the installation.	Fail
H. Longitudinal and lateral occupant impact velocities should fall below the preferred value of $30 \mathrm{ft} / \mathrm{s}$, or at least below the maximum allowable value of $40 \mathrm{ft} / \mathrm{s}$.	Longitudinal occupant impact velocity was $25.3 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $23.3 \mathrm{ft} / \mathrm{s}$.	Pass
I. Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs .	Maximum longitudinal occupant ridedown acceleration was 10.8 G , and maximum lateral occupant ridedown acceleration as 10.0 G .	Pass

Table 8.5. Performance Evaluation Summary for Repeat MASH Test 3-35 on the Short Radius Guardrail.

Test Agency: Texas A\&M Transportation Institute	Test No.: 467114-7	Test Date: 2014-08-22
MASH Test 3-35 Evaluation Criteria	Test Results	Assessment
Structural Adequacy A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The Short Radius Guardrail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 14.3 inches.	Pass
Occupant Risk D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	No detached element, fragment, or other debris was present to penetrate or show potential to penetrate the occupant compartment, or to present undue hazard to others in the area.	Pass
Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Maximum occupant compartment deformation was 2.0 inches in the left side kick panel area near the driver's feet.	Pass
F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75°.	The 2270 P vehicle remained upright during and after the collision event. Maximum roll was 32° and maximum pitch was 11°.	Pass
H. Longitudinal and lateral occupant impact velocities should fall below the preferred value of $30 \mathrm{ft} / \mathrm{s}$, or at least below the maximum allowable value of $40 \mathrm{ft} / \mathrm{s}$.	Longitudinal occupant impact velocity was $25.3 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $26.2 \mathrm{ft} / \mathrm{s}$.	Pass
I. Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Maximum longitudinal occupant ridedown acceleration was 7.5 G , and maximum lateral occupant ridedown acceleration was 8.5 G .	Pass

CHAPTER 9. IMPLEMENTATION STATEMENT

This new short radius system requires a placement footprint of 34 ft 10 inches along the primary road and 29 ft 3 inches along the secondary road. This 32 -inch tall short radius system is MASH TL-3 complaint, and hence can be used on primary roads where TL-3 (or lower) safety features are recommended. It is critical that the primary rail maintain a 4 percent flare with the primary roadway. The secondary rail with the rigid rotating anchor is designed for driveways or roadways with speeds less than 30 mph . However if TL-2 compliance is needed on the secondary roadway, the system can be configured to accommodate that by removing the rigid anchor and extending the secondary rail with the needed LON and a TL-2 complaint terminal.

The system requires a graded flat ground behind it at a slope of $1 \mathrm{~V}: 10 \mathrm{H}$ or flatter. However, a steeper slope break can be placed outside a $25-\mathrm{ft} \times 25-\mathrm{ft}$ square area bordered by both the primary and the secondary rails.

REFERENCES

1. Ross, H.E., D.L. Sicking, R.A. Zimmer, and J.D. Michie, Recommended Procedures for the Evaluation of Highway Features, NCHRP Report No. 350, 1993, Transportation Research Board: Washington, D.C.
2. AASHTO, Manual for Assessing Safety Hardware, 2009, American Association of State Highway and Transportation Officials: Washington, D.C.
3. Mayer, J.B., Full-Scale Crash Testing of Approach Guardrail for Yuma County Public Works Department, 1989, Southwest Research Institute: San Antonio, Texas.
4. Michie, J.D., Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances, NCHRP Report No. 230, 1981, Transportation Research Board: Washington, D.C.
5. Ross, H.E., R.P. Bligh, and C.B. Parnell, Bridge Railing End Treatments at Intersecting Streets and Drives, 1992, Texas Transportation Institute: College Station, Texas.
6. Bligh, R.P., H.E. Ross, and D.C. Alberson, Short-Radius Thrie Beam Treatment for Intersecting Streets and Drives, 1994, Texas Transportation Institute: College Station, Texas.
7. Bielenberg, R.W., J.D. Reid, R.K. Faller, J.R. Rohde, D.L. Sicking, E.A. Keller, Concept Development of a Short-Radius Guardrail System for Intersecting Roadways, 2000, Midwest States Regional Pooled Fund Program: Lincoln, Nebraska.
8. Bielenberg, R.W., R.K. Faller, J.C. Holloway, J.D. Reid, J.R. Rohde, and D.L. Sicking, Phase II Development of a Short-Radius Guardrail for Intersecting Roadways, 2003, Midwest Roadside Safety Facility: Lincoln, Nebraska.
9. Stolle, C.S., K. A. Polivka, J.D. Reid, J.R. Rohde, R.W. Bielenberg, R.K. Faller, D.L. Sicking, Phase IV Development of a Short-Radius Guardrail for Intersecting Roadways, 2008, Midwest Roadside Safety Facility: Lincoln, Nebraska.
10. AASHTO, Guide Specifications for Bridge Railings, 1989, American Association of State Highway and Transportation Officials: Washington, D.C.
11. Stolle, C.S., D.L. Sicking, J.D. Reid, J.R. Rohde, K.A. Polivka, R.K. Faller, R.W. Bielenberg, Phase III Development of a Short-Radius Guardrail for Intersecting Roadways, 2007, Midwest Roadside Safety Facility: Lincoln, Nebraska.
12. Arens, S.W., R.K. Faller, J.R. Rohde, K.A. Polivka, Dynamic Impact Testing of CRT Wood Posts in a Rigid Sleeve, 2008, Midwest Roadside Safety Facility: Lincoln, Nebraska.
13. Arens, W.W., D.L. Sicking, J.D. Reid, J.R. Rohde, R.K. Faller, R.W. Bielenberg, K.A. Lecchtenberg, Investigating the Use of a New Universal Breakaway Steel Post, 2009, Midwest Roadside Safety Facility: Lincoln, Nebraska.
14. Schmidt, J.D., R.K. Faller, R.W. Bielenberg, D.L. Sicking, J.D. Reid, K.A. Lechtenberg, Investigating the Use of a New Universal Breakaway Steel Post-Phase 2, 2010, Midwest Roadside Safety Facility: Lincoln, Nebraska.
15. Schmidt, J.D., D.L. Sicking, R.K. Faller, J.D. Reid, R.W.Bielenberg, K.A. Lechtenberg, Investigating the Use of a New Universal Breakaway Steel Post-Phase 3, 2010, Midwest Roadside Safety Facility: Lincoln, Nebraska.
16. Abu-Odeh, A.Y., K. Kim, and D.C. Alberson, Evaluation of Existing T-Intersection Guardrail Systems for Equivalency with NCHRP Report 350 TL-2 Test Conditions, 2010, Texas Transportation Institute: College Station, Texas.

APPENDIX A. ENGINEERING ANALYSIS OF END ANCHORS AND CABLE BEARING ON BCT

A.1. FOUNDATION OF CONCRETE PARAPET ON THE PRIMARY ROADWAY

The parapet segment is detailed to follow TxDOT standards and it was not designed to withstand any direct load or impact during the crash testing phase. This parapet is a short section with sole function to simulate a bridge parapet end section to connect to the thrie-beam transition. Therefore it was deemed unnecessary to check the parapet with a yield line analysis and cantilever failure action of fully functional bridge parapets. Figure A. 1 shows the parapet and foundation.

Figure A.1. Parapet and Foundation.

A.2. BCT AND CRT AREA MOMENT OF INERTIA CALCULATIONS

The moments of inertia for the BCT and CRT posts were calculated through the cross section, which contains that complete diameter of the hole. Equation A.1. shows the general equation used to calculate the area moment of inertia.

$$
I=\frac{b h^{3}}{12}
$$

A.3. WIRE AREA MOMENT OF INERTIAL CALCULATIONS

To better model the behavior of the tension cable passing around the nose, the area moment of inertia was estimated. This was deemed necessary since the cable does have some moment capacity that will affect its interaction with the vehicle if they come into contact.

To get the effective area of steel, the mass of the cable per meter was acquired from the model. The density of steel is known. Researchers used the relationship between mass, density, and volume to calculate the area of steel in the cable. This calculation is shown in Equation A.2.

$$
\begin{gathered}
\text { mass }(\text { per meter })=\text { density } * \text { volume } \\
\text { mass }(\text { per meter })=\text { density } * \text { length } * \text { area } \\
\text { mass }(\text { per meter })=\text { density } * 1 \text { meter } * \text { area } \\
1.4137 \mathrm{~kg}=\left(7.85 * 10^{-9} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) * 1 \mathrm{~m} * A \\
A=180.089 \mathrm{~mm}^{2}
\end{gathered}
$$

The effective radius of the steel wire cable was then calculated according to Equation A.3.

$$
\begin{equation*}
A=\pi r^{2} \tag{A. 3}
\end{equation*}
$$

The radius was equal to 7.57 mm and was then used to calculate the polar moment of inertia of the cable cross section. The wire cable used in the system is a $3 / 4$-inch diameter 6×19 independent wire rope core (IWRC). This cable is composed of seven groups of smaller wires. For ease of calculation, it was assumed that each of the seven groups of wires had the same effective area of steel. This was calculated by dividing the total effective area of steel above by 7. Therefore, each group of steel had an individual effective area of $25.73 \mathrm{~mm}^{2}$. The radius of each of the seven groups of wires was estimated by dividing the total radius calculated above by 3. This gave a radius for each of the individual wire groups of 2.52 mm . Figure A. 2 depicts the actual wire section used to make these estimations and assumptions on the left. On the right in Figure A.2, the red circles depict the seven approximated areas of steel.

Figure A.2. 6×19 IWRC Steel Wire Cable Section and Approximation.

The individual polar moment of inertia for each of the seven groups of wires was calculated in Equation A.4:

$$
\begin{gathered}
J_{\text {ind }}=\frac{\pi r^{4}}{2} \\
J_{\text {ind }}=\frac{\pi * 2.52^{4}}{2}=63.35 \mathrm{~mm}^{4}
\end{gathered}
$$

For the six groups of wires surrounding the center group, the parallel axis theorem was applied. The area of each of these individual groups is $25.73 \mathrm{~mm}^{2}$ and the distance from the center of the whole section to the center of each individual group was calculated as twice the radius, which is equal to 5.04 mm . The total polar moment of inertia for the section is calculated in Equation A.5:

$$
\begin{gathered}
J_{t o t}=\sum \frac{\pi r^{4}}{2}+\sum A d^{2} \\
J_{t o t}=7 * 63.35+6 *\left(25.73 * 5.04^{2}\right) \\
J_{t o t}=4364.93 \mathrm{~mm}^{4}
\end{gathered}
$$

The estimated polar moment of inertia for the 6×19 IWRC section is 85 percent of the polar moment of inertia for a rod with the same effective radius of steel equal to 7.57 mm . The moments of inertia about the horizontal and vertical axes were calculated by dividing the polar moment of inertia by 2 . This reduction in the moment of inertia for the simulated cable will better physically represent actual cable behavior as opposed to rod-like behavior.

A.4. BCT POST CHECK ON PRIMARY ROADWAY

Several components of the BCT post on the primary roadway were checked for adequacy. From calculation and geometry of the model, the vertical forces imparted by the tension in the cable on the half pipe section is 13 kips when the cable has 40 kips of tension and 16.5 kips when the cable has 50 kips of tension. The following components were checked with these forces in mind.

With the half section of pipe welded to the BCT post, failure of the bolt is not a concern since the bolt is not in contact with the cable. Figure A. 3 depicts the welded half pipe section on the 6 - ft foundation tube.

Figure A.3. Modified 6-Ft Foundation Tube.

A.5. CHECK BENDING CAPACITY OF PIPE SECTION

The bending capacity for the half section of a 4 -inch diameter schedule 40 pipe is calculated. The moment of inertia of the half section of pipe about the x-axis passing through what would be the center of the full pipe section is calculated in Equation A.6:

$$
\begin{gathered}
I_{\text {section }}=I_{R}-I_{r} \\
I_{\text {section }}=\left(\frac{\pi}{8}-\frac{8}{9 \pi}\right) *\left(R^{4}-r^{4}\right) \\
I_{\text {section }}=\left(\frac{\pi}{8}-\frac{8}{9 \pi}\right) *\left(2.25^{4}-2.013^{4}\right) \\
I_{\text {section }}=1.01
\end{gathered}
$$

A. 6

The maximum stress will occur at the outermost fiber of the pipe section. The distance from the horizontal axis about which the moment of inertia was taken to the outermost fiber is 2.25 inches. The elastic section modulus is calculated in Equation A.7:

$$
\begin{gathered}
S=\frac{I}{c} \\
S=\frac{1.01}{2.25}=0.449 \mathrm{inch}^{3}
\end{gathered}
$$

Assuming that the yield strength of the pipe section is 36 ksi , the moment capacity of the half pipe section is calculated in Equation A.8:

$$
\begin{gather*}
M=f_{y} * S \tag{A. 8}\\
M=36 \mathrm{ksi} * 0.449 \text { inch }^{3}=16.2 \mathrm{k} * \text { inch }
\end{gather*}
$$

Assuming that the moment arm is half of the length of the 2-inch half pipe section, the vertical force the pipe can withstand is 16.2 kips. This is very close to the force exerted on the half pipe section when the cable has 50 kips of tension. According to the geometry of the cable, a more realistic moment arm is 0.55 inch. At this lever arm, the pipe section can resist a force of 29 kips, which is well under the force that the cable exerted in 50 kips of tension.

Equation A. 9 computes the moment capacity when the yield strength of the pipe is 35 ksi :

$$
\begin{gather*}
M=f_{y} * S \tag{A. 9}\\
M=35 \mathrm{ksi} * 0.449 \text { inch }^{3}=15.7 \mathrm{k} * \text { inch }
\end{gather*}
$$

With a 1-inch lever arm, this half pipe section will not be adequate if the tension force in the cable is equal to 50 kips. At the more realistic lever arm of 0.55 inches, the force that the section can withstand is 28.5 kips. Therefore, the section is adequate at the more realistic moment arm.

A.6. CHECK CAPACITY OF WELD

The weld was checked for its shear capacity. The strength of the weld was matched to the pipe having a yield strength of 36 ksi. This means that the strength of the weld material can be either 60 ksi or 70 ksi . To be conservative, researchers used a strength of 60 ksi in the calculations. It was assumed that the weld would have equal length legs. Equation A. 10 calculated the effective throat of the weld:

$$
\begin{gather*}
t_{e}=0.707 a \tag{A. 10}\\
t_{e}=0.707 * 0.25=0.177 \text { inch }
\end{gather*}
$$

The fillet weld runs the entire perimeter, along both sides, of the half pipe section. The length of the weld is calculated in Equation A.11:

$$
\begin{gather*}
L_{w}=P_{\text {outer }}+P_{\text {inner }}+2 t \tag{A. 11}\\
L_{w}=\frac{\pi * 4.5}{2}+\frac{\pi * 4.026}{2}+2 * 0.237
\end{gather*}
$$

$$
L_{w}=13.87 \text { inches }
$$

The strength of the weld is calculated in Equation A.12:

$$
\begin{gather*}
F=F_{w} A_{w} \\
F=(0.6 * 60 \mathrm{ksi}) *(0.177 \text { inch } * 13.87 \text { inches }) \tag{A. 12}\\
F=88.4 \mathrm{kips}
\end{gather*}
$$

This force is well over the 16.5 kips that the tension cable will exert on the half pipe section. Therefore, the weld is adequate.

A.7. ANCHOR POST ON SECONDARY ROADWAY

The anchor at the end of the secondary roadway was checked for adequacy. Figure A. 4 shows this anchor post assembly. This check was done by making sure each component could withstand an 80 -kip force individually. However, it is highly unlikely that the components will have to individually withstand the entire 80 -kip load. The components in the anchor assembly that were checked include:

- The thrie beam.
- The cables.
- The tubular section of the anchor post.

Figure A.4. Anchor Post System on Secondary Roadway.

A.8. TENSILE CAPACITY OF THRIE BEAM

The capacity of the thrie beam was calculated in the following manner. The total cross-sectional area of the 12 -gauge thrie beam is $2000 \mathrm{~mm}^{2}$. The thickness of the thrie beam is 2.77 mm . The capacity calculation was determined at the cross section containing the six splice bolt holes. The height of these holes is 24 mm . The nominal area is calculated in Equation A. 13 for the capacity of the rail.

$$
\begin{gathered}
A_{\text {nom }}=A_{\text {total }}-A_{\text {holes }} \\
A_{\text {nom }}=2000-6 *(24 * 2.77) \\
A_{\text {nom }}=1601 \mathrm{~mm}^{2}
\end{gathered}
$$

The capacity of the rail was calculated in Equation A.14. A yield strength of 50 ksi was assumed for a lower end yield strength that would provide a conservative estimate. The nominal area in square inches is equal to 2.48 .

$$
\begin{align*}
F_{\text {rail }} & =A_{\text {nom }} * f_{y} \tag{A. 14}\\
F_{\text {rail }} & =2.48 * 50 \\
F_{\text {rail }} & =124 \text { kips }
\end{align*}
$$

Assuming that the impact will cause a load of 80 kips on the system; the rail has the capacity to take the load.

A.9. CAPACITY OF THE TWO CABLES

The next check was for the two cables used in the anchor system. The $3 / 4$-inch diameter 6×19 IWRC has a capacity of 29.4 tons, which is 58.8 kips. The two cables have a total capacity of 117.6 kips, and therefore, have enough capacity to withstand the 80 -kip load by themselves.

A.10. MOMENT CAPACITY OF PIPE SECTION

The tubular section's bending capacity was checked next. Figure A. 5 depicts the pipe referred to in this section.

Figure A.5. Anchor Post.

The pipe is schedule 80 . The area moment of inertia of the 8 -inch diameter tubular section is equal to 106 in 4. The maximum moment will occur at the extreme fiber of the pipe cross section. Therefore, c is equal to the diameter divided by 2 . This makes c equal to 4.31 inches. Equation A. 15 calculates the moment capacity of the section. It was assumed that the tubular section's yield strength was 50 ksi .

$$
\begin{gather*}
\sigma=\frac{M c}{I} \\
M=\frac{\sigma I}{c} \tag{A. 15}\\
M=\frac{50 * 106}{4.31} \\
M=1229 k * \text { inches }
\end{gather*}
$$

If one force of 80 kips is located at half the height of the tubular section above the ground, the moment arm is 11 inches. Dividing the moment capacity calculated above by the moment arm gives the force, which the tubular section can withstand. This force is equal to 111 kips, which is greater than 80 kips. Therefore, the section can withstand a single force of 80 kips applied at half of the post's height above the ground.

The tubular section's capacity was also checked with two 40-kip forces applied at the height of the bolt holes on the tubular post. Equation A. 16 shows the calculation of this moment:

$$
\begin{gathered}
M_{2 \text { Forces }}=40 \text { kips } * 7 \text { inches }+40 \text { kips } * 14.625 \text { inches } \\
M_{2 \text { Forces }}=865 k * \text { inches }
\end{gathered}
$$

Therefore, the tubular section has the capacity to withstand two 40-kip forces located at the bolt holes of the tubular section as well. Furthermore, The A307 bolt and the hex nut are chosen to match or exceed the expected load.

APPENDIX B. DETAILS OF THE TEST ARTICLE FOR TEST NOS. 467114-3

 THROUGH 467114-6.

$\underset{\text { (Elevation View) }}{\text { Rebar Details-1 }}$

Rebar Details-2

$\underset{\text { (End View) }}{\text { Rebar Details-3 }}$

Anchor Cable for Short Radius Rail

APPENDIX C. DETAILS OF THE TEST ARTICLE FOR TEST NO. 467114-7.

Isometric View

$\underset{\text {（Elevation View）}}{\text { Rebar Details }}$

（てし

Rebar Details-2

Rebar Details-3

[^0]
13a. All rebar is grade 60.

18" Routered Blockout for Thrie-beam

 Drawn By GES

Modified BCT Timber Post
Elevation Views

APPENDIX D. CERTIFICATION DOCUMENTATION

17/03/201301:50:03
Paye $70 F 1$

As of: 5/15/14

$$
\begin{aligned}
& \text { Certified Analysis }
\end{aligned}
$$

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT \& STEEL CO.
 126 MILL STREET

ROCKFORD, K. 61101
815-968-0514 FAX H 815-988-3111

WE HEREBY CERTIFY THE ABOVE PARTS HAVE BEEN MANUFACTURED IN THE USA, WITH DOMESTIC STEEL. WE FURTHER CERTIFY THAT THIS DATA E A TRUE REPRESENTATION OF INFORMATION PROVDEO BY THE MATERIALS SUPPLER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT OUALTY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENTS PER ABOVE SPECIFICATION

STATE OF KLUNOIS
COUNTY OF WINNEBAGO
SIGNED BEFORE ME ON THIS
LODZ DAY OF OCTOBER

32886

-VISUAL TNSPECTION TM ACCORDANCE WITH ASTH ABZ5-10 5 PLSS. SAMPLED LOT PASSED

$R 54672$

c	Mn	\checkmark	S	$\stackrel{5}{5}$	$\stackrel{\rho}{9}$	00	Cr	N	Mo	A	cb
0.37%	0.818	0.003\%	0.248	0.02\%	0.000%	0.17\%	0.11%	0.06\%	0028	0.002\%	0.003\%
$\stackrel{\mathrm{Pb}}{\mathrm{a}, 000 \%}$	$\begin{gathered} \mathrm{s} \\ 0.00 \% \end{gathered}$	$\begin{gathered} c a \\ 0.000 \times x \end{gathered}$	$\begin{gathered} 8 \\ \text { a.soces } \end{gathered}$	$\begin{gathered} n \\ 0,012 \end{gathered}$							

Roduction futio $210: 1$
Specificosion Comment: Casye Grin Prxetite


```
8. STandCowt Las accucitalion cerl sumiable upon request
```

Chemistry Forifiestion Checkn
Puxtin-5008_28325

Chucked Ex	Data
Recaiving 0x: 797	$7-13$
cortifications as: 325	2-1-1

Nப돔 NUCOR CORPORATION NUCOR STEEL TEXAS

Sold To
KLOECKNER METALS CORP SOO COLONIAL GENTER PARKWAY SUITE 500 ROSWEL, GA $30076-0000$ $678) 259-8817$ Fax: $(678) 259-8894$

Mill Certification 5/2/2014

Ship Ta: KLOECKNER METALS
2560 SOUTH LOOP 4
BUDA TX 78810
$(512) 472-5533$
(512) $472-5533$

Customer P.O.	6785017	Sales Order	201632.1
Product Group	Merchard Bar Ouality	Part Number	2504007248010 WO
Grade	NUCOR MULTIGRADE	Lot $\#$	JW14 10049551
Size	$4 \times 7.25 \#$ Channel	Heat \#	JW14100495
Product	$4 \times 7.25 \#$ Channel 40^{1} NUCOR MULTIGRADE	B.L. Number	J1-670004
Description	NUCOR MULTIGRADE	Lead Number	J1-274104
Customer Spec		Customer Part $\#$	C4725STRMA360480

Roll Date: 1/24/2014 Nelt Date: 1/19/2014 Qty Shipped LBS: 10,440 Qty Shlpped Pcs: 36

\bigcirc	Mn	p	S	S	Cu	Ni	Cr	Mo	V	Cb	Sn
0.12\%	0.85\%	0.012\%	0.035\%	0.22\%	0.32\%	0.15\%	0.17\%	0.045\%	0.0357\%	0.001\%	0.013\%
$\begin{aligned} & \text { CE } 4020 \\ & 0.34 \% \end{aligned}$	$\begin{aligned} & \text { CEA529 } \\ & 0.38 \% \end{aligned}$										

CE4020: C. E. CSA G4020 AASHTO M270 CEAS29: A529 CARBON EQUIVALENT

Yield 1: $53,200 \mathrm{psi}(367 \mathrm{MPa})$	Tensile 1:72,300psi (498MPa)	Elangation: 20% in $8^{\prime \prime}(\%$ in 203.3 mm$)$
Yield 2: $54,700 \mathrm{psi}(377 \mathrm{MPa})$	Tensile 2: 73,500psi (507MPa)	Elongation 22% in $8^{\prime \prime}(\%$ in 203.3 mm$)$

Specification Comments: NUCOR MULTIGRADE MEETS THE REOUIREMENTS OF: ASTM A36/A38M-08, A529/529M-05(2009)

Comments: E-mail: websales@instexas.com ALL MANUFACTURING PROCESSES OF THE STEEL MATERIALS IN THIS PRODUCT, INCLUDING MELTING, HAVE OCCURREO WITHIN
THE UNITED STATES. ALH PRODUCTS PRODUCED ARE WELD FREE. MERCURY, IN ANY FORM, HAS NOT BEEN USED IN THE
PRODUCTION OR TESTING OF THIS MATERIAL. PRODUCTION OR TESTINGOF THIS MATERIAL.

Tfre Uuthenol

Page 5 of 6

708-563-1950	T-628 P0012/0021 F-838
6226 W. 74th St	independencetube.com
Chicsao il 60638	itctube.com
	Certificats Number: MAR 117562

Purchase Order No: 6756003
Soles Ordar No: MAR 253817-2
Bill of Lading No: MAR 147919-2 Shipped: 1/7/2014
Invoice No: Invoiced:

CERTIFICATE of ANALYSIS and TESTS Customer Part No: 002 TUBING A500 GRADE BfC) $10^{\prime \prime}$ SQ X $5 / 8^{\prime \prime} \times 40^{\circ}$								Certiflcate No: MAR 117562 Test Date: 1/3/2014		
									$\begin{array}{r} \text { teces } \\ 1 \end{array}$	Total Weight 3,053
Heat \#: U61800 Yield: $53,840 \mathrm{psi}$			Tensile: $65,790 \mathrm{psi}$		Elangation; 37.2 \%		Y/T Ratio: 0,8184 C		Eq: 0.3	3303
C	Mn	P	S	\$i	AI	Cu	Cr	Mo	V	Ni
0.2000	0.7100	0.0060	0.0130	0.0150	0.0340	0.0200	0.0400	0.0090	0.0010	0.0100
Bundie Tag Pieces Weight 794466 1 3,053										
TIR FAX										
,										
Test Reper Clark MELTED IN U.S.A.										
Certification:										
I certify that the above results are a true and correct copy of records prepared and maintained by Independence Tubs Corporation. Sworn this day, 1/3/2014										
WE PROUDLY MANUFACTURE ALL OF OUR HSS IN THE USA. INDEPENDENCE TUBE PRODUCT IS MANUFACTURED, TESTED, AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS.										
A500/A500M-10a										

Tinity Highway Products, LLC 2548 N.E. 28 sth St.

Ft Worth, TX 7611

$$
\begin{array}{ll}
\text { Customer: } & \text { SAMPLES,TESTING,TRAINING MTRLS } \\
& 2525 \text { STEMMONS FRWY }
\end{array}
$$

$\begin{array}{ll} & \text { DALLAS, TX 75207 } \\ \text { Project: } & \text { TxDOT Short Radius }\end{array}$

Qty	Part ${ }^{\text {\# }}$	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	C	Mn	P	S	Si	Ca	Cb	Cr	Vn ACW
8	3000 G	CBL 3/4X6'6/DBL	HW			100800												
16	3900 G	1" ROUND WASHER F844	HW			P35176												
16	3910G	1" HEX NUT AS63	HW			P35185												

TL - 3 or TL-4 COMPLIANT when installed according to manufactures specifications
Upon delivery, all materials subject to Trinity Highway Products, LLC Storage Stain Policy No. LG-002. ALL STEEL USED WAS MEL TED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT" ALL GALVANIZED MATERIAL CONFORMS WITH ASTM-123 (US DOMESTIC SHIPMENTS)
ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A123 \& ISO 1461 (INTERNATIONA

ALL GALVANIZED MATERLAL CONFORMS WITH ASTM A123 \& ISO 1461 (INTERNATIONAL SHIPMENTS)
FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED
BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED
NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.
WASHERS COMPLY WITH ASTMF-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTM F-2329.
W/4" DIA CABLE 6 X 19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M 30 , TYPE $I I$ BREAKING STRENGTH - 46000 LB

Assembly Specialty Products, Inc.

14700 Brookpark Road Cleveland, OH 44135

CERTIEICATE OF COMPLIANCE

```
Date; June 12, 2014
To: Trinity Highway Products, LLC
    P.O. Box }56602
    Dallas, TX 75356
```

We certify that our system and procedures for the control of quality assures that all items furnished on the order will meet applicable tests, requirements and inspection requirements as required by the purchase order and applicable specifications and drawings.

PURCHASE ORDER H: 162390
DATE SHIPPED: June 11, 2014
ASPI SALES ORDER H: 100800
MANUFACTURER: ASSEMBLY SPECIALTY PRODUCTS. INC.
QTY \& DESCRJPTION: $\quad 500$ pcs. P/N $3000 G_{i}(\mathrm{C}-2028)$ Wire Rope Assembly
ATTACHMENTS
Eaton Steel CondHercules Stect: Heal \#: 396689 (ArcelorMittal USA) [Swage Fitting]
Keystone Threaded Products: Heat \#: 10285360 (Taubensee Steel \& Chatter Steel) [Threwded Rod]
Wirerope Works: Reel 44176426 : [Wire Rope]
Heat If: T125968, B128726 (Gerdau)
Hest \#: 10226000, 10241290,10207730 (Charter Steel)
Art Galvanizing Works: Galvanizing [Swage Fitting \& Threaded Rod Assermbly]
MINIMUM BRIEAKING STRENGTH: 46,000 lbs.
WIRE ROPE MANUFACTURED IN ACCORDANCE WITH AASHTO DESIGNATION: M30-02 and ASTM A741 TYPE 2, CLASS A

FITTINGS GALVANIZED IN ACCORDANCE WITH ASTM A-153 CLASS C.
REMARKS: Ship to: Plant \#16
Steel used to manufacture these items was melted \& manufactured in the United States of America All manufacturing processes supplied by or performed by Assembly Specialty Products, Inc. took place in the United States of America

Tracking Number(s)
2962597923
NO RETURNS AFTER 30 DAYS. ALL RETURNS MUST BE AUTHORIZED AND MAY BE SUBUECT TO A RESTOGKING CHARGE.

30006

Eaton Steel Bat Company Corporate Hierarchy

EART NGMGER: 1005437

WATRRIAL IS PREE FROM SURFACE KRRCURY CQNTAMINATION AS OF THE TIME DF SHIRMENT BAEED ON PRESENT METHODS S BQUIPMENT FOR DETECTION OF TMIS KIND OF CONTAMINATYON.
THIS NATERYAL HAS GECEIVAD NO WELD RGPAIR.
MATERIAL MEETS AUSTENTTXC ORAIA SIZE REQUIREMSNT OF S OR FINER
THIS STREL IS WARRANTED TO MRET OX EXCEED MACRO/RATING ON " S4 R4 C4
THIS GTEEG IS FARRANEED TO WEET OR EXCQED WYCROCYEANDINESS/ RATING OF " $55-05$ "
RRODUCT WAS ROLEED AT ARCELORMITTAL EAST CHLCAGO, INDIANA, DSA
FROM CONTINOOUSLY BTLXET CAST, ELECTRIC ARC PURNACE STEEL
MRLTED AT ARCELORMITTAL EAST CHXCAGO, INDIANAG UBA.
-者

ASSEMBLY SPECIALTS PRODUCTS, NC.	
14700 BROOKPARK ROAD	RECEIVED
CLEVELAND, OH 44135	APR 242014

mank 103510
Page 1 of 1

MATERIAE CERTIFICATION
7600 HUB PARKWAY ALLEY VEW OHIO 44125

SPECIAL STUDS - ROLIED THREAD
9673 19cs. $1^{14}-8 \times 8$ 8 $8 / 4^{\prime \prime}$

PART NO, C-1681

STEEL NELTED AND MANOFACTURED IN THE U.S.A.

30006

gAGE 1

TAUBENBEE STEBL \& WIRE COMPANY 60090
 RIVE WHEELING, $(847) 459-5100$

MATERIAI ANALYSIS CERTIFICATION

Quality Technician

ASSEMBLY SPECAATY PRODUGTS, ENE 14700 BROOKAaR'C ROAD CLEVELAid; w 44135

ASSEMBEY SPEGALIY FRODUCTS; NC .
14700 BRODSPARIK ROAD
GLEVELAND, OH AA33S

DELIVERY CORY

FILE

Melted in USA Manufactured In USA

Taubensee Steel 8 Wire-
600 Diens Drive
Wheeling ${ }^{2}$ L-60090 Kind Attri Lymin Arendt

Cust P,O.	74424
Customer Part	11045-207
Charter Sales, Order	30067069
Heat \#	10285360
Ship Lot	1111338
Grade	1045 A SK EGCFQ 1
Process	Hर
Finish Size	1
Ship date	$15-\mathrm{NOV}-13$

 these raquirements. The recording of false, fictificus and faudulent statements of andres on thls daciument may be punishable as a fevony under federal statute:

Specitications:	Manufacturde per Charter Sisel Qually Mancral Piev Date - $/ 12 / 12$ Meets ovstioner specifications with any applicable charter Stepl axceptions for the following cuistotier documen Gustomer Dpeument $=1045$-207 Pawiction = C Datad $=$

Gustomer Decumente 4045 207 Rowsion $=C$ Datod $=$

$$
\begin{aligned}
& \text { ASSEMBEY SPECIALTY PRODUOTG, IN: } \\
& \text { TGTOO BROOMPARK ROAD } \\
& \text { BLEVELAND DH QAYS5 }
\end{aligned}
$$

Charter Slael Saukvie, Wh USA			This MTR supersedes al previously dated Minte for thls order
			mard
			Maneger of Ouality Assurneme
Rem: Lnadl, Faxo,Matio.		Testinp Luberatory	
		Page 1 of 2	

The following statements are applicable to the material described on the front of tuis Test Raport:

1. Except as noted, the steal supplied for this order was metted, rofled and processed in the United States meeting DFARs complianoe.
2. Metcury was not used duting the manufaclure of this product nor was the steel contaminated with mercury during processing.
3. Uness dfected by the customer there are no welds in any of the coils prodeced for the order.
4. The taboratory that generated the analytical or kest results can be identiled by the following key:

$\begin{aligned} & \text { Cerlificate } \\ & \text { Number } \end{aligned}$	Lab Code	Labaratory		Address
0358-01	7388	CSSM	Charler Steel Melling Division	1653 Cold Springs Roadd, Saukville, Whl 530 BO
0350-02	8711	Csser Cssp	Charter Steel Rolling? Processiny Divisiom	1658 Cold Springs Road, Saukville, Wh 53080
0358-03	123833	CSFP	Charter Stee Ohio Processing Diviston	6255 US Highway 23, Risingsum OH 43457
0358\%04	125544	$\begin{aligned} & \text { CSCM } \\ & \text { CSCR } \end{aligned}$	Chatter Stcel Cleveland	4300 E. 49th St., Cxyahoga Heights OH $44125-1004$
:	*	-*	Subconuactad test perlormed by laboratory not in Charler Sted system	

5. When ran by 8 Charter Steei laboratary, the following tesis were performed actording to the latest revisions of the specifications listed betow; as noled in the Chater Steel Laborblory Quality Manval:

Test	Specification	$\operatorname{css} M$	CSSR/CSSP	CSFP	CScm/GScr
Chemistry Analysis	ASTM E415: ASTM E1019	X			X
Macroetch	ASTM E3B1	X			X
Wardenablity (Jominy)	ASTAA A255; SAE J405; JIS G056	X			X
Grain Size	ASTADET12	X	X	X	X
Tensite Test	ASTM E8; ASTM A 370		x	\boldsymbol{K}	x
Rockuell Hardness	ASTM E7B ASTMA370	X	X	x	X
Microstructure (spheroldization)	ASTM A892		X	x	
nelusion Content Methots A, El	ASTM EIS		X		X
- Decarbuization	ASTME1077		X	8	X

Chater Stei has been accreduted to perform all of the above tests by the American Assoctation for Laboratory Accreditation (A2LA). These accredhations explee $01 / 31 / 13$.
At odher tost resuts assotiated with a Chanter Steol laboratory thal appear on the front of this report if any, were performed according to documented procedures developed by Charter Steel and are nol accradited by A2LA.
. The test results on the front of this repert are the true values ineasured on the samples taken from the prodection tol. They do nol apply lo any other sample.
7. This test repont cannot be reproduced or distribued except in full withouthe whtern permission of Chater Steel. The primary customer whose name and address appear on the front of this form may reproduce this test repert subject to the following restrations: milnay be distituted only to their customers bolh sides of dill pages must be reproduced in fulf
8. This centification is ghen subject to the terms and conditions of sale provided in Charle Steets acknowledgement (designated by our Salas Order number) to the rustomeris purchase order. Both order numbers appear on the fron page of his Repont.
9. Where the custoner has provided a speciftction the results on the fiont of this test report conforin to that specification untess otherwise hoted on this test repolt.

$$
\begin{aligned}
& \text { ASSEMELY SFCRAEFY PRODUCTS, ANC } \\
& \text { W7COEROOKPARK ROAD }
\end{aligned}
$$

AOCAKDSTE
AOGMEDSTE
etis 9316:9317:9318

Wirerope Warks, the 100 Maynard St williamspont PA 17701
Manufacturer of Bethlehem Wire Rope ${ }^{\circ}$
"Our Qualliy Management Sysfems are registered to ISO 9001: 2008. and API-Q1"

GERTIFICATE OF COMPLIANCE

CUSTOREE: ASSEMBLY SPEGIALTY
CLST PO\# 33876 WW FILE NAME 176426

WW ORDER\# 225966 LINE 5 + 225957 LINES I THRU 3

REEL\# 4176426
DESCRIPTION: 3/40 0619 W GAIPS RR SAC GALVANIZED WIRE ROPE IN ACCORDANCE WITH AASHTO DESIGNATION PH3O-02

ACTUAL TEST RESULTS
ACTUAL BREAKING STRENGTH: 59,500 LBS REQUIRED BREAKING STRENGTH 42,800 LBS

MINIMUM MAASS OF COATING:
WIRE DIAMAETER MAINWIRES
054" MINIMUM GLASS A COATING; 40- AGTUAL RANGE .501 .59 oz/fi2 . 040° MINIMUM CLASS A COATING . 40 - ACTUAL RANGE . 511,71 OZ/fl2

STEEL GERTIFICATES FOR ROD MANUFAGTURER ARE ATTACHED
The foilowintg are heat numbers and wire diameters as shown on the Steol Certificatos.
.054" HEAT \# T125968- E128726-1022600
.040 HEAT\# 10241290
061^{n} HEAT\# B128726
.046" HEAT\# 10207730
ALL MATERIALS "MELTEO AND MANUFACTURED IN THE USA"
fothelvatbiun DATE: 2107H4 GERTIFICATE\# AA30062
PATTI WATKINS, InV, Control/QA Customer Coordinetor
Per the authority of, ROGER GILLILAND, DIRECTOR OF ENGINEERING
30006

CHARTER STEEL TEST REPORT Reverse Has Text And Coedes

1658 Cold Springs Road
Saukvilie, Wisconsln 530 日0
(262) 2688-2400

1-800-437-8789
FAX (262) 268-2570

Wirerope Works, linc.
100 Maynard St,
Roger Gilliland
WilliamspotiPA-17764
Kind AthtRoger Eliliand

Cust PO.	089981-2
Customer Part	600210
Charter Sates Order	70036212
Heal	\$30226000
Ship Lot	1082024
Grade	$1055 \mathrm{KSKCGHEC} 7 / 32$
Process	HR
Finish Size	$7 / 32$

 below ind on the jeverse slde, and thatit solisies theso requhrements.

Lab Cade: 738 . CHEA	6	NN	Tert kesilts of heat Loty 10230000								
			P	S.	5 5)	N	CR	MO	CJ	SNA	v
\% Ws		. 64	. 009	. 009	.220	. 04	. 6.	d ${ }^{2}$	10	0008.	. 602
	AL 003	N ;0070	E 0.01	T_{001}	$\begin{aligned} & \mathrm{Ne} \\ & \mathrm{Nat} \end{aligned}$						

CHEM DEVIRTION EXT GREEN:

	Cof Tests	Test kesta Nin Value	ilith Lot 10 Max Value	Man Vroue	$\begin{aligned} & \text { TENSTLE } \angle A B=1358-02 \\ & \text { RA: } A B B=0350-02 \end{aligned}$
TENSUE	2	178.4	+22.6	120.5	
REDUCTIONOF AREA	2	59	69	59	
ROOSİE.		214	222	. 220	
RDD OUT OF ROUND	3	.004	.065:	. 005	
REDUCTIDN RATIO = BOET1					
Specifteallons:	 Custonter Dacument $=$ oto 0 Revision $=0$ Dated = $12-\mathrm{AUO}-\mathrm{D} \$$				
Additiorial Commants:	Motted ang Manutaplurelt in the Untted States of Amerto.				

> ASSEMBIY SPECIALTY PRODUGTS, NC
> 14700 BFOOKPARK ROAD CLEVELAND OH 44335

Chartur Stoet Souvinl wh ush Reme Landl, Faxa, Mailo		This mTr supersedes al previouish dined MriRs for this wider Conimich kano Manager of Qually Assurance 11/1212012

The following statements are applicable to the matetial described on the fron of this Test Report:

1. Except as noted, the steel supplied for thls order Was melled, yolled, and processed in tha Uniled States
meeling OFAR's complance.
2. Mercury was not used sifing the manufacture of this produci, nor was the sleal tontarinated wilt mercury during prosessing.
3. Uniests drected by the customer, there are no welds in any of the calls produced for thls order,
4. The faboratory that generaled the analytical or test results can be fodentifed by the following key

$\begin{aligned} & \text { Cerminate } \\ & \text { Number } \end{aligned}$	Lab Code		L.aluratory	Address:
0358-01	7388	CSSM	Chater Stee Melting Divlsion	1653 Cold Springs Rosd, Saukitie wi 53080
0350-02	8173	$\begin{aligned} & \operatorname{css} \mathrm{I} \\ & \cos \mathrm{p} \end{aligned}$	Charter Steel Rolling Processing Division	1658 Cold Springs rioad, Saukville, WI 53080
.0358-03	123633	CSFP	Chater Stee Ohio Processlag Division	6255 US Highway 23, Risingsim, OH 43457
0358-04	126544	CSCNA CSCR	Chater Steel Gleveland	$4300 \mathrm{E}, 49 \mathrm{~h}$ St. Cuyahoga Heloghts, OH $44125-1004$
*	*	---	Subicontracted test perfurmed ty laboratory nol in Charler Steel system	

5. When run by a Chater steel fatoratory, the following tests were pefiormed according to the fatest revisions of the specificalions listed below, as roted in we Charter Steal Laboratory Quallity Manual:

Test	Specification	CSSM	CSSR/CSSP	CSFP	CSCMYCSCR
Chemistry Analysis	ASTME E1S: ASTM E1019	X			x
thacroetch	ASTME381	X			X
Hardenabitily (Jominy)	ASTMA255; SAE 4405; 35S G056	X			X
Grain Size	ASTME112	k	X	x	X
Tensile Test	ASTM EB: ASTM A3/0		X	X	X
Rockwell Hardnass	ASTM E18; ASTH A379	X	X	\bar{x}	\bar{x}
Microsituctite (spheroidization)	ASTM A892		x	K	
nclusion Content (Melliodis A E)	ASTM E45		x		X
- Decarbuization	ASTM E707?		X	X	X

Chater Steet has been accredited to perform all of the above tests by the American Association for Laboratory Accrediation (AZLA). These eccredialions expice 01/31/11.
All oher rest results associated with a Charter Stoel haboratory that appsar on the from of this report, il aity, were performed actofding to docyunented procedures developed by Chafter Steel and are not atcredited by A2LA.
6. The lest resulas on the fron of the ceport are the true values measured on the samples taxen firm the produetion tow, They do tion spply to eny olter sample.
7. This test repon carnot be raproduced or distribulted except in full without the witten permission of Charter Steel. The primary customer whose name and address appear on the front of this torm may reproduce Luis: test report stbject lo the following restidions:
plt may be distributed ontiy to their customers
Both sides of all pages must be reproduced in full
B. This cemblation is given subject to the terms and condilions of sole provided in Chatter Steal's acknowledgement (designated by our Sales Oider number) to the aisibmer's purchase order. Both order numbiors appeer on the front page of this Report.
9. Where the customer has provided a specitiction, the results on the frant of this tesi repart contorm to that specificallan untess otherwise noted on this restreport.

EMAIL
1658 Cold Spings Road
Saukulte: WIsconsin 53080

```
Wirerape works, the.
100 Mayhard St.
Roger Gilliland
Roger Gilliand
Williamspork, PA-17701
Williamspork, PA-17701
Kind Att :Roger Gllfiland
```

CuskP.O.	090624-4
Customer Part	600276
Charler Sales Order	70038872
Heal \%	COL41290
Ship Lal	10859
Grade	1069 N SKCGHRO7/32
Process	HR
Finish Size	7732

 briow and on the reverse sids;and that it sathstlesthese requifernents.

Lab Catio: 7380	Test Rasults of Heat Loth 10263290										
	c	MN	p	s	51	NI	CR	MO	Cul	SN	V
\$Wt	, 70	, 65	.06\%	000	,200	. 01	, 05	. 01	, 07	0005	.002
	$\begin{gathered} 01 \\ .003 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \mathrm{NOCD} \end{gathered}$	$\begin{aligned} & \mathrm{B} \\ & , 0001 \end{aligned}$	$T_{.002}$	$\begin{gathered} \text { NB } \\ 0.00 \end{gathered}$						

CHEM. DEMATION EKT. GREEN:

	6 of Yasis	Test Rosinfs Mind Value	Unt Low 20 Wax Value	metan value	TENSLLE LAB $=0358-02$ RA LAB न- $033508-02$
TENSIL	-	144,3	158,4	154.4	
REDUCTHN OF AREA	4	51	58	54	
ROD SIIE	12	213	204	210	
gion out of raund	3.	.005	.006	0.06	
REDUCTIUN RAMTO - BOS:					
Speculitaliotis:	 Atects customor spiecificalions with ariy applycible Chirtor Steel eiceptions for tho foflowing cusforner documonts: Customer Document a 6 G000 Revision $\%$: Dited = 12-AUGTOA				
Adrutional Comtomst:	Wheted and Manufatured in the Unlued Statas of Amertica				

AGSEMBLY SPELIALT PRODUCTS, NO
T4700 BROOOG ARK RDAD
GLEVELAND, OM 44135

EMAIL
165 B Cold Springs Raad
Saukville, Wiscornsin 53080
(262) 268-2400

1-800-437-6789
FAX (262) 268-25\%
Wirerape Works, the.
100 Naynard St,
Roger Gilliand
Williamsport, PA-17701
Kind Aun Roger Gitfiand

CIHEM, DEUIATION EXT:-GREEN:

Charlersted Suntuile, WI USTA		Tide MiR supersedes of pratousiy Janice Earnard Managar of Quelity Assurance 07/25/2012
	Thayphat	
Remitoad ${ }_{2}$ FaxDMalla	Prage 1 of 1	

$$
\text { Heat \& } 10.20 \mathrm{~m} 3
$$

The following statenmens are applicable to the material descibed on the front of this Test Report:

1. Exceptas noted, the steel stppified for this order was melted, rolled, and processed in the United States
meting DFAR's compliance.
2. Merciny was nor used during the maniufacture of this producl, nor was lie steat conlaminated wiltr marcury during processing.
3. Unless directed by the customer, there ate no widds in any of the coils produced for this order.
4. The laboratary that generated the analytical or tesiresults can be identified by the fol) owing key:

Centmeate Number	tab Code	Latoratory		Address
0358-01	7388	CSSN:	Chater Steel Melting Division	1653 Cold Springs Road, Seukving, Wi 53080
0358-02	8171	$\begin{aligned} & \text { CSSN } \\ & \text { cssp } \end{aligned}$	Charler Steet Rofiling Processing Olution	1658 Cold Splings Road, Saukuille, Wi 53dend
0358-03	123633:	CSFP	Charter Steel Dhiñ Processing Division	6255 US Hillhway 23, Risingsum, OH 43967
0358-04	125544	$\begin{aligned} & \text { CSCM } \\ & \text { CSCR } \end{aligned}$	Chanter Steel Cleveland	$\begin{aligned} & 4300 \mathrm{E}, 49 \mathrm{Sh} \mathrm{St} \text {, Cuyanoge Heights, OH } \\ & 44125-1004 \end{aligned}$
*	*	--	Subicantracted test performed by iaboratory not in Charter Steel system	

5. When run by a Chater Steel laboraloryt the fotowing tests wiere performed according to the fatest, revisions of Uxe specifications isted below, as noted in the Charter Steel Laboratory Quality Manual:

Test	Specification	GSSM	CSSRICSSP	CSFP	csem/Cscr
Chemisiry Analysis	ASTM E475; ASTM E1019	X			X
Matroeth	ASTM ET30T	\underline{x}			X
Hardeutablly (Jominy)	ASTM A255; SAE JA06; JIS G056	x			X
Grain Size	ASTM E112	X	X	x	x
Tensile Test	ASTM EB; ASTM A370		x	K	x
Rockwell Hardness	ASTM E18; ASTM AIVO	X	x	X	X
Microstructure \{spferoldization)	ASTMAB92		X	X	
notuston Content (Mtehods A, E)	ASTME45		X		x
Decarburization	ASTM E1077		X	X	X

Chanter Stee has been accredifed to perform all of the above tests by the American Association for Laboratory Accreditation (A2!.A). These accredithations expire 01/31/33.
All other testesults associated with a Chater Stoel laboratory thal appear on the from of this repont if any. were performed acceroing io documented procedures developed by Chatior Sisel and ate not accrediled by AzLA:
6. The test results on the front of this report are the true values measured on the sumplas taken from the production lot. They to not apply to any other sample.
T. This test report cannot be feproduced or cistritived except in ful without tha wriluen permission of Cherier Steel. The primary cusiomer whose name and address appear on the front of this forn may reproduce this lestreport sublect to the fotlowing restricitions:
ath may be distifuted only to their customers

- Both sides of all pages must be reproduced in full
B. This tertification is given subject to the terms and conditions or sale provided in Charter Stret's acknowledgemient (designated by our Sales Order number) to the customer's pirchase order, Both order numpers appear an the from page of this Report.

9. Where the customer has provided a spaciliction, the results on the front of this test repon conform to that spectication untess oiherwise noxed on this lest repon.

$$
\begin{gathered}
\text { ASSEMGELY SFCOALTY PRODUCTS, ANC } \\
147 C O L A D O K P A R K ~ R D A D ~ \\
\text { CLLVELATD. O. } 44135
\end{gathered}
$$

PHONE: 815-968-0514 - FAXH 815-968-3111
E-MAlL: rocktordbol!@voycgernet
126 MILL STREET • ROCKFORD, LLINOSS 61101
STRAIGHT BILL OF LADING - SHORT FORM
Origtrel - Not Nugotiabta

*** Packing List * *

SHIP TC: 003144

TRINITY INDUSTRIES
2548 N.E, 28TH STREET
ATTN: SCOTT DEARTH
PLANT 16
FORT WORTH, TX 76111

Shipperf:	051138
Ship Dato:	$02 / 12 / 14$
Page\#t:	1
Sales Ordert:	241342

Purchate Ondor: 160452 FW Oqdered by:

SOLD TO:
TRINITY INDUSTRIES MAIL STOP: 7115 P O BOX 568887 DALLAS, TX 75356-8887

Attantion:

CERTIFICATE OF COMPLIANCE
 ROCKFORD BOLT A STEEL CO.
 126 MILL STREET
 ROCKFORD, IL 61101

QUANTITY AND DESCRIPTION:
2,385 PCS $1^{n \prime}$ STANDARD WASHER
P/N $3900 G$

WE HEREBY CERTIFY THE ABOVE PARTS HAVE bEEN MANUFACTUREDIN THE US.S. WITH DOMESTIC STEEL. WE FURTHER CERTIFY TKAT THIS DATA IS A TRUE PRERESENTATION OF INFORMATLON PRONADED GY THE MATERULS SUPPLUER, AND THAT OUR PROCEDURES FOA THE CONTROL OF PRODUCT QUALTY ASSURE THAT ALL TEMS FURNISHED ON THIS ORDER MEET OR EXGEED ALL APPUCABLE TESTS, PROCESS; AND INSPECTION REDUUREMENTS PER ABOVE SPECIFICATLIN:

STATE OFILLANOIS
countr of wannebago

129083
ROCKFORD BOLT AND STEEL. CO.
126 MILL STREET
ROCKFORD, IL 61101.1421

Purchase	Part	Date	Quantity
Order Number	Description	Shipped	Shipped
P35176	I"USS MG	MG	
		$11 / 2013$	26,500

We hereby eertify that the subject parts contorm to the equirements of the applicable specification indicated for the subject parts and are in complete confornance to your ordered specifications.

We hereby cerlify that all statutory requirements as to American Production and Labor Standards and all conditions of purchase applicable to the transaction have heen coinplied with and that the subject parts were manufactured in the U.S.A.

Truly yours,
Wrought Washer Mfg., Inc.

Paul Schafer
Q.C. Manager

Susan Miraouat

Sworn and subscribed before me on November 19, 2013 My commission expires April 24, 2017.
(049) ALL OTHER STD PRYDUKT

WROUGHT WASHER INTERNALUSE GO86420IMOIAKOIIS

ht 238705
mo 50960
D: 380043

hte 238705
D. 388043

1901 CHICOAY RD. - MOUNT PLEASANT, WI 53403 • PHONE (262) 554-9550 • FAX (262) 554-9584
RSs419
$3900 G$

$\frac{\text { MELTED AND AOULDIN THE USA }}{\text { THIS IS NOT A CERTIFIED TEST REPORT }}$

PLATECO INC. Certification

- 39700G Date: 11/13/2013 Entry Data; 11/08/2013

Page: 1 of 1

To:
WROUGHT WASHER MANUFACTURINg 2100 SOUTH BAY STREET

MILWAUKEE WI 53207

Purchase Order No.: 278640-01
Packing List No.: 060115
ID: 388043
Material: STEEL

We ere pleased to provide you with the following Certification

Ines. Type stele Minimum maximum Number Other
customertuonimmentis:
THICK ACHES
VISUAL NO
CHRON
Other
Plating performed in the USA
Aleqult:

HIGH . 00200
LOW . 00201
AVE. . 00244
Notes

CERTIFICATE OF COMPLIANCE

```
ROCKFORD BOLT & STEEL CO.
            126 MILLSTREET
            ROCKFORD, IL 61101
815-968-0514 FAX* B15-968-3141
```

CUSTOMER NAME:	TRINTTY INDUSTRIES	
CUSTOMER PO:	162763	
		SHIPPER \# 052014
INVOICE \#:	.	DATE SHIPPED; 05/30/2014
ROGKFORD BOLT LOT\%	P35185 R55947	
DECKER MFG, LOT\%:	13-44-012, 13-44-013	
SPECIFICATION:	ASTM A583, GRADE B	REQUIREMENT FOR GAREBON

COATHNG: ASTM A153, CLASS C HOT DIP GALVANIZATION
ROGERS BROS. GALVANIZE: 13-44-012, 13-44-013

CHEMICAL COMPOSITION

MILL	GRADE	HEATH	C	$M n$	B	S	S	
		1010	20264130	.09	.32	.007	.003	08
CHARTERSTEEL	1010	20201210	.09	.33	.000	.002	.06	
CHARTERSTEEL								

QUANTITY AND DESCRIPTION:
 351 PCS 1" HEXAGONAL NUT P/N 3910 G

 THAT THE DATA IS A TRUE REPREGENIATGN OF IH ORMATIOH PROVIDED BY THE MAIERIALS SUPPLIER, AND THAT OUR PROCEDUFES FOR THE CONTIROL OF PRODUCT QUA ITY ASSURE THAT ALL TTEMS FURNIGHED ON THIS ORDER MEET OR EXCEED ALL APPLICABIE TESTS, PROCESS, AND NSEPECHON RELUIREMENTS PER ABOVE SPEGIFICATON

[^1]
$$
39106
$$

EMAIL

CHARTER STEEL TEST REPORT
Reverse Has Text And Codes.

1658 Cold Spming Road Saukvilte. Wisconsin 53080 (262) 268-2400

$$
1-800-437-8789
$$

FAX (262) 268-2570

Decker Manufacturing Corp.
703 M. Clark St.

CustPC.	47987
Customer Patt 4	1.4061010
Chanter Sales Order	30059914
Heat	20264130
Stiploy	4206603
Grade	1010 RAK FG RHO 1-13132
Process	HRCC
Finish Size	1-13/32

I heneby cenity that the material deccrobed herem has been mantactured tn ectordance with the specifications and siandands hsted below and on the reverse stde,and that a satisfles these requirameras.

CHEM DEVATION EXT.-CREEN *

MOCKWELL8	- 5 Th Tests 3	Taxk Remblis of Roding Lag 20060	Mem Vador ब	R(LAB - 03seract
ROOStEE	4	1.404 3.474	1.460	
Ros our or modum	1	0.010 .010	. 610	
REDUCTIO RAYKO - 32:\%				
Specfications:	Manntactior wif pror Lieks curtiomer s Cuntorime Oocim	mione with ainy applicable Chwort Ste 5 Sin Azolazin- 12 Andision -	IThenginesis Datad is	following anstom $\mathrm{v}-72$

The following statements are applicable to the materlal described on the fort of this Test Roport

1. Except as noted, the steel slyppted for this under was mened, rofeni, end processed th the Urited Slaties meeting OFAR's comptance.
2. Nercury was not used during the manufacture of inis product nor was the steel tontomineted with mercury during procesting
3. Untess directed by une customer, there afe no waids in any of the coits prodiced for this arder.

CyThixiser	Lab Code		Laboratory	Adriess
0358-01	7398	cssm	Charter Steel Mabting Division	1653 Cold Springs Roso, Soukvine. Wh 53080
0358-02	6171	$\begin{aligned} & \operatorname{css} \mathrm{CH} \\ & \operatorname{csse} \end{aligned}$	Charter Steel Rolifing Processing Division	1658 Cold Springs Rioad, Soukvilie, W1 53080
0358-03	123633	CSFP	Charter Steel Ohio Processing Division	6255 US Highway 23. Risingsun, OH 43457
0358-04	125544	$\begin{aligned} & \text { CSCM } \\ & \text { CSC8 } \end{aligned}$	Chiater Steel Cleveland	$\begin{aligned} & 4300 \text { E. } 49 \ln \text { St. Cuyahoga Helghes, OH } \\ & 44125-1004 \end{aligned}$
-	-	--	Sutcontractid test peeformed by leboratory not in Charter Steel system	

5. When run Dy a Chwerter Steal baboratory, the foliowing tasts were parforrmed ticoording to tha latest

Test	Spucinicution	CSsim	cssptessp	csipp	cscmicsen
Chemistry Analysis	ASTM E415; ASTM E1019	\mathbf{X}			X
Macroetch	ASTM E381	X			X
Herdenabivicy (Jomary)	ASTM A255; SAE J406; JIS EO561	x			X
Gruan Size	ASTM E112	X	\mathbf{x}	X	X
Tensile Test	ASTM E8; ASTM A370		x	\times	X
Rockwell Harcheess	ASTM E1A: ASTM ATMD	X	X	X	\mathbf{x}
Microstructure (spheroinlization)	ASTM ABE2		X	X	
nclusion Content (Miothods A. E\}	ASTM E45		X		x
Decerburizetion	ASTM E1077		X	x	X

Charter Steel has been acoredited to pertorm all of we above tests by tha American Association for Laboratory Accreditation (A2LA). These eccreditailons explre 01/31/is.
All other lest resubs assoclated whin a Cherter Sloel laborstory that appear on the from of this repint if arry. were performed acconding to documented procedtres developed by Chartes Steel end ere not accredited by A2LA.
. The test rasults on the front of this report are the trua voluas measumed on the somples taken from the production lot. They do ret apply to any other sample.
7. This tesk neport cannot be reproduced or distributed except in full widhout the wathen permisisian of Cherter Stael. The priruary curtomer whose name and eddress appear out tha from of this form may reproduce this test raport subject to the following festrictionts:

Ht may be distribusid only to their customers
Both sides of as pages must be reprofuced in fuff
B. This certification is given subiact to the eerms and conditions of kisle provided in Charter Steet's acknowied gemert (detkriated by our Silles Ofter number) to the customer's purchase onfer. Boin order numbers appeay on the from page of ths Repori.
9. Where tha customer has provided a speacifiction, the results on the frove of this test report corform to that specisication uniess coherwise hoted on this test report.

DECKER

MANUFACTURING CORPORATION

MANUFACTURERS OF INOUSTRLAL FASTENERS \& PIPE PLUGS 703 North Clark Street Abion, Michigan 48224

Phore 517-629-303s
Fax 517-829-3535
Sume Fix 517.629-8424
Suse Fax $517-6 \times 9$

Pithed: 12218014 11:3000 AM January 22, 2014
ROCKFORD BOLT \& STEEL CO
126 MILL STREET
ROCIKORD, LL61401

PRODUCT MATERIAL CERTIFICATION

[^2] EMAIL

CHARTER STEEL TEST REPORT
Reverse Has Text And Codes

1658 Cold Springs Road
Saukvilie. Wisconsin 53080 (262) 268-2400

1-800-437-8789
FAX (262) 268-2570

thereby centify that the material described herem has been manutactured in accordance with the specificallons and standards fisted below and on the reverse side, and that it salisfies these requinemertis.

	Test nositis of hest Lent 20291210									
CHEM Conde: 12884.	M,	P	5	S	M	CR	± 0	Cu	54	V
¢in 00	315	2005	.09\%	. 0×0	. 01	. 05	01	. 09	005	.007
Mc .098	$\mathrm{M}_{0 \times 0}$	B .0302	$\begin{aligned} & 11 \\ & -001 \end{aligned}$	$\begin{aligned} & \text { R1S } \\ & \hline .001 \end{aligned}$						

CHEM. OTVMTKOW EXT. GREEE =

Adraidimel Commentr:

$$
39100
$$

The following stakemenfs are applicable to the materiad dascribed on the fron of this Tess Report: 1. Except ss noted, the treel suppiled for this order was metrad, rollad, and processed in the Untied States meating DFAR's corxpiancte.
2. Mercury was not used dering the manufecture of tius product, nor was the steel contaminated with mercury during processing.
3. Uijess drected by the custories, there are na welds in any of the coits produced for this order.
4. The inkertary that generitad the anatyical or most resinis can be ldentifed by the following key:

	Lab Coide		Leboratary	Adduas
0358-01	7388	csen	Chamer Streel Numand Divesion	1653 Cold Springs Road. Spatylle. WI 53080
0358-02	8171	$\begin{aligned} & \operatorname{Cssin} \\ & \operatorname{css} \end{aligned}$	Cherter Sieel Roingl Procasshag Division	1658 Cald Springs Rowd, Seukville, W 53060
0358-03	123633	CSFP	Charter Steel Ohio Processing Division	6255 US Higenwit 23, Rtsingsum, OH 43457
0358-04	125544	$\begin{aligned} & \text { CSCN } \\ & \text { CAPR } \end{aligned}$	Charter Steel Clevelsind	$\begin{aligned} & 4300 \mathrm{E}_{\mathrm{E}} 48 \mathrm{~h} \text { St. Cuyatrog Helghis. OH } \\ & 44125-1004 \end{aligned}$
$*$	*	--	Subiconcractied vest performed by laborstory not In Chenser Steel system	

5. When nut try a Charter Stueil habortury, the following tests were perfonnudd according to the fetert revigions of tha specifications listad bolow, ws noted in tha Charter Steel Laboratory Cually Manual:

Teit	Spucification	cssmm	CSSRACSSP	CsFP	Cscumestr
Chemustry Andysts	ASTM E4TS: ASTM E10t9	\%	!		X
Marroetch	ASTM E38?	X			X
Harderatainy (Jomity)	ASTM A255: SAE J408: JIS G0561	X			X
Grain Size	ASTM E.112	X	\bar{x}	\mathbf{X}	X
Tansie Test	ASTM EB; ASTM A370		X	\mathbf{X}	X
Fackwalu Harchess	ASTM E18: ASTM A 370	X	X	X	x
Microstructure (spheroldidecion)	ASTM A892		x	x	
ruclusion Conuenk Mrethods A E)	ASTM E45		X		X
Decarbirisetion	ASTM E197\%		X	\mathbf{X}	\mathbf{X}

Charter Stect hes been accredited to pertorm all of the above tests by the Americen Association for Laboratory Accredinaion (AZLA). Thess accreditations expire 01/31/15:
 were performed according to documerted procedares develaped by Cherter 5eeet and are not acoredinad by AZLA.
5. The fest resulits on tha front of this report are the true values meosired on the somples talken from the production iot. They do not apply to arry other sample.
7. This test report cannot be reproduced or distributed except in fuld without the wiluan permission of Charter Steel. The prinnary customar whose neme and address appear on the front of this form may rapioduce this test teport stribact to the followny rassitictions:

He may be distilunted onity to their customers
Both shoes of oll pages must be reproduced in ful
8. Ihis certicication is given sitject to the berms anid corxitions of sale provided in Charter Steels acknowdedgemert (designutled by our Sieles Order number) to the customer's puridzase order. Both ocder mumbers appear on the frona page of this Report.
9. Whare the austomer has providad a speciatiton, the resifts on the front of this test report conitorin to that specincation uniess otherwise noted on this temt report.

December 30, 2013

Decker Manufacturing Compration
703 N. Clark Street
Albion, MI 49224
To Whom It May Concern:
This is to cerdfy that the hot dip galvanizing of the following material on your Purchase Order number 48497 conforms to specification ASTM A-153. The following sizes and lot numbers comply with the coating, workmanship, finish, and appearance requirements of A5TM F2329 specifications. The hot dip galvanizing is ROHS compliant. The gelvanizing process was conducted in a temperature range of 830 F to 850 F .

8,625 pleces	*033-16DH-26	Lot ${ }^{\text {13-41-022 }}$	4.92 Avg M ${ }^{\text {M }}$
56,560 pieces	*026-1210-26	Lotil3-52-0.63	3.12 Avg. Mils
14,331 plexes	-021-1220-26	Latil3-52-060	3.34 Avt Mds
28,522 pieces	\$033-10DH-26	Lit13-42-041	3.93 Avx. Mdl
49,246 places	+033-10DH-26	Lot 13-42-040	3.36 Avg. Mila
11,237 preces	-026-1608-26	L0013-44-012	3.89 Avg. Mils
19,679 pleces	+026-1608-26	Lot 13-44-013 $\sqrt{ }$	2.91 Avg. Muls

This certfication in no way implies anything other than the quality of our hot dip galvanizing as it pertains to your order.

This product was galvanized in Rockford, IL USA
Yours very truly,
ROGERS BROTHIERS INC.
Aorraine Pstelburno
Lorraina P: Shelburne
Vice President

Certified Test Report

NORTH STAR BLUESCOPE STEEL LLC

 6767 County Road 9Delta, Onio 43515
4. 202

Mechanical Test Report

This material has been produced to conform to EN 10204:2005. This material has been produced and tested in accordance with each of the following applicable standards: ASTM E 1806-98, ASTM E 41S-99a, ASTM
 and hot-rolied (min. 3.1 reduction raing), entirely within the U.S.A at North Star BlueScope Steel LLC, Delta, Ohio. This material was nol exposed to Mercury or any alloy which is liquid at ambient temperature during
processing or while In North Star BhueScope Steel LLC possession. Test equipment calibration tertificates are available upon request. NiST traceability is established through teet equipment calibration certificales
which are avaitable upon request. Uncertainty catculations are calculated in accordance with NIST standards and are maintained at a 4:1 ratio in accordance with NIST standards. Uncertainty data is availabie upon
Date Issued: Mar 20, 201406:00:33
Revision\#: 01
Manager Quality Assurance and Technology

Tim Mitchell

Certified Test Report NORTH STAR BLUESCOPE STEEL LLC 6767 County Road 9

Telephone: (888) 822-2112
Customer: Trinity Industries
2525 Stemmons Freeway
Ordered Width (mm/in) $\quad 1504.950 / 59.250$
4/18/2014 19:39:32
1407248
Production Date/Time
Prod
范
Material Desc: 1018 CQ Modified, Guardrail Type 2
NbZ8L9L- \forall LOZ :O'd demorsns Cust ReffPart \#:

200212B
420
This report cerififies that the above test resuths are representative of those contained in the records of North Star BlueScope Steel LLC for the material identified in this fest report and is intended to comply with the requirements of the material description. North Star BlueScope Steel LLLC is not responsible for the inability of this material to meet specific applications.
Any modifications to this certification as provided negates ine validity of this test repor. Al reproducions must have he writen approval of North Siar ble This materfal was not exposed to Mercury or any alloy which is liquid at amblent temperature during processing or whise in North Star BlusScope Steel LLC possession. Test equipmert calloration certificates are available upon request NIST traceability is established through test equipment calioration certiricatas which are avaikble upon request
Uncertainty catculations are calculated in accordance with NIST standards and are maintained at a $4: 1$ ratio in accordance with NIST standards. Uncertainty data is avaliable upon request.

\section*{
 | Mechanical Test Report |
| :--- |
| \qquadYield Strength Tensile Strength \% E
 59,920 psi 79,090 psi |}

NORTH STAR GLUESCOPE STEEL LLC

STRAIGHT BILL OF LADING - SHORT FORM - ORIGINAL - NON NEGOTIABLE (Subject to all applicable laws, rules, and regulations)

No.: 734174
Ship Date: 6/31/14 08:16

Shopper: NORTH STAR BLUESCOPE STEEL LLC 6767 County Road 9 Delta, Ohio 43515

NORTH STAR BLUESCOPE STEEL LLD 6767 County Road 9 Delta, Ohio 43515

3	
	Trinity industries
L	2525 Stemmons Frowsy
0	
T	Dallas, TX 75207
0	

$\left[\begin{array}{cccc}\text { Permit Information } & \text { Max Gross(lb): } 154 & \text { Exp. Date: 8/26/2014 } & \text { Axles: } 8\end{array}\right]$

NOTE: Carriers to call for delivery appointment. All trucks must be scaled legal at North Star BlueScope Steel LLC
Driver acknowledges that the loading of the trailer and the securement of the load is histher responsibility.
The property described below, in apparent good order, except as noted (content and condition of contents of packaged unknown), marked, consigned, and destined as indicated below, whist said
company (the word company being understood throughout this contract ar meaning any perron or corporation in possession or the property under the contract) agrees fo cary bo is usual place of property over all or any portion of said route to destination, and as lo each patty at any time interested in all or any of said property, that avery service lo be performed hereunder shall bo subject to all the conditions not prohibited by law, whether grimed or written herein conlained, which are hereby agreed to by the shipper and accepted for himself and biz assigns.

Heat \#	C	Mn	P	S	Si	Al	Cu	Cr	NI	Mo	Sn	N	B	V	Nb	Ti	Ca
178336	0.19	0.72	0.013	0.003	0.01	0.03	0.13	0.06	0.04	0.01	0.01	0.007	0.0000	0.001	0.000	0.001	0.001

 subject on Section 7 of conditions, if this shipment is to be delivered to the consignee without recourse on the consignor, the consignor shall sign, the following statement:

If charges are to be prepaid, wite or stamp here, "To Be Prepaid." \qquad
NORTHSTAR BLUESGOPE STEEL LLD
LIndsey F \qquad CARRIER \qquad -

Load ID: $\mathbf{7 5 1 5 8 6}$
Carrier Name: K \& L TRUCKING INC

$08 / 2411$
 ${ }^{5 C P} 421$

Certification:
I certify that the above results are a true and correct copy of records prepared and maintained by Independence Tube Corporation. Swom this day, 1/30/2014
WE PROUDLY MANUFACTURE ALL OF OUR HSS IN THE USA. INDEPENDENCE TUBE PRODUCT IS MANUFACTURED, TESTED, AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS.t....................

CURRENT STANDARDS:

```
..............................A500/A500M-10a
```

..............................A500/A500M-10a
A252-98(2002)
A252-98(2002)
A847/A847M-11

```
A847/A847M-11
```


Sold By:
6226 W. 74th St
496-0380
Fax: 708-563-1950
Sold To:
PO. BOX 21119
8411 IRVINGTON
HOUSTON, TX 77022

APPENDIX E. INFORMATION FOR CRASH TEST NO. 467114-3

E1. TEST VEHICLE MEASUREMENTS AND INFORMATION

Table E1. Vehicle Properties for Test No. 467114-3.

Date: \quad 2014-07-14
Test No.: 467114-3
VIN No.: 1D7HA182085549506
Make: Dodge
Model: Ram 1500 Quad Cab
Year: 2008
Tire Size: P265/70R17
Tread Type: Highway
Tire Inflation Pressure:
35 psi
Odometer: 201042
Note any damage to the vehicle prior to test:
None

- Denotes accelerometer location.

NOTES: None

Engine Type:	V-8
Engine CID:	

Transmission Type:

x	Auto or	
$_$	FWD $\quad x \quad$ RWD	Manual $4 W D$

Optional Equipment: None

Dummy Data:
Type:
Mass:
Seat Position:

Geometry: inches

Mass Distribution:

lb
LF: 1449

$\frac{\text { Curb }}{2887}$
2046
4933

Test Inertial
2830
2211
5041

Gross Static
2830
2211
5041

\qquad RF: 1381
LR: \qquad RR: 1152

Table E2. Vehicle Parametric Measurements for Vertical CG for Test No. 467114-3.

Table E3. Exterior Crush Measurements for Test No. 467114-3.

Note: Measure C_{1} to C_{6} from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

Specific Impact Number	Plane* of C-Measurements	Direct Damage		Field$\mathrm{L}^{* *}$	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	\pm D
		Width** (CDC)	Мах*** Crush								
1	Front plane at bumper ht	30	7.75	48	4	4	7.5	4	2.75	1.5	-6
	Measurements recorded										
	in inches										

${ }^{1}$ Table taken from National Accident Sampling System (NASS).
*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.
${ }^{* *}$ Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).
***Measure and document on the vehicle diagram the location of the maximum crush.
Note: Use as many lines/columns as necessary to describe each damage profile.

Table E4. Occupant Compartment Measurements for Test No. 467114-3.

E2. SEQUENTIAL PHOTOGRAPHS

Figure E1. Sequential Photographs for Test No. 467114-3 (Overhead and Frontal Views).

Figure E1. Sequential Photographs for Test No. 467114-3 (Overhead and Frontal Views) (Continued).

E3. VEHICLE ANGULAR DISPLACEMENTS

E4. VEHICLE ACCELERATIONS

X Acceleration at CG
 Time (s)

- Time of OIV $(0.1292 \mathrm{sec})$	- SAE Class 60 Filter	$-50-\mathrm{msec}$ average
Figure E3. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-3		
(Accelerometer Located at Center of Gravity).		

(๑) иопеләәәээ૪ ןеu!pm!!!иоך

APPENDIX F. INFORMATION FOR CRASH TEST NO. 467114-4

F1. TEST VEHICLE MEASUREMENTS AND INFORMATION

Table F1. Vehicle Properties for Test No. 467114-4.

Date: 2014-07-23 Test No.: 467114-4 VIN No.: KNADE223296443375

Year: 2009 Make: \qquad Model: Rio

Tire Inflation Pressure: 32 psi \qquad Odometer: 105712 \qquad Tire Size: P185/65R14 Describe any damage to the vehicle prior to test: None

- Denotes accelerometer location.

NOTES: None

Engine Type:
Engine CID:
Transmission Type:
$\frac{x}{\frac{x}{x}}$ FWD or

Optional Equipment: \quad RWD \quad| Manual |
| :---: |
| OWD |

None

Dummy Data:

Type:	$50^{\text {th }}$ percentile male
Mass:	165 lb
Seat Position:	Rt front passenger

Geometry: inches

A	66.38	F	33.00
B	58.00	G	-----
C	165.75	H	35.56
D	34.00	I	8.50
E	98.75	J	21.50
Wheel Center Ht Front			11.00
GVWR Ratings:			Mass: lb
	Front	1918	$\mathrm{M}_{\text {front }}$
	Back	1874	$\mathrm{M}_{\text {rear }}$
	Total	3638	$\mathrm{M}_{\text {Total }}$

Mass Distribution: lb
 LF:
 \qquad

RF: \qquad LR: \qquad RR: \qquad

Gross Static
1642
947
2589

K	12.50
M	25.00
	57.75

N
${ } \mathrm{O} }$$\frac{57.12}{31.50}$
Curb

P	4.17
Q	22.19
R	15.38
S	7.75
T	66.12
Rear	11.00

Test Inertial
1551
873
2424

Table F2. Exterior Crush Measurements for Test No. 467114-4.

Date:	$2014-07-23$	Test No.:	467114-4	VIN No.:	KNADE223296443375
Year:	2009	Make:	Kia	Model:	Rio

VEHICLE CRUSH MEASUREMENT SHEET ${ }^{1}$

Note: Measure C_{1} to C_{6} from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

Specific Impact Number	Plane* of C-Measurements	Direct Damage		$\begin{gathered} \text { Field } \\ L^{* *} \end{gathered}$	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	\pm D
		Width** (CDC)	$\begin{gathered} \text { Max*** } \\ \text { Crush } \\ \hline \end{gathered}$								
1	Front plane at bumper ht	48	10	48	9.25	10	8.5	7.25	7.25	7.5	0
	Measurements recorded										
	in inches										

${ }^{1}$ Table taken from National Accident Sampling System (NASS).
*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc.
Record the value for each C-measurement and maximum crush.
**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).
***Measure and document on the vehicle diagram the location of the maximum crush.
Note: Use as many lines/columns as necessary to describe each damage profile.

Table F3. Occupant Compartment Measurements for Test No. 467114-4.

Date:	$2014-07-23$	Test No.:	467114-4	VIN No.:	KNADE223296443375
Year:	2009	Make:	Kia	Model:	Rio

*Lateral area across the cab from

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

Before
 (inches)

A1
A2
A3
B1
B2
B3
B4
B5

B6

C1
C2
C3
D1
D2
D3
E1
E2
F
G
H
I
J*

67.50	67.50
67.50	67.50
67.50	67.50
40.50	40.50
35.75	35.75
40.50	40.50
36.25	36.25
35.75	35.75
36.25	36.25
27.00	27.00
-----	-----
27.00	27.00
9.75	9.75
-----	-----
9.75	9.75
51.50	51.00
51.50	51.00
50.50	50.50
50.50	50.50
37.50	37.50
37.50	37.50
51.00	51.00

F2. SEQUENTIAL PHOTOGRAPHS

Figure F1. Sequential Photographs for Test No. 467114-4 (Overhead and Frontal Views).

Figure F1. Sequential Photographs for Test No. 467114-4 (Overhead and Frontal Views) (Continued).

Figure F2. Sequential Photographs for Test No. 467114-4
(Rear View).

F3. VEHICLE ANGULAR DISPLACEMENTS

F4. VEHICLE ACCELERATIONS
X Acceleration at CG

APPENDIX G. INFORMATION FOR CRASH TEST NO. 467114-5

G1. TEST VEHICLE MEASUREMENTS AND INFORMATION

Table G1. Vehicle Properties for Test No. 467114-5.

Date: 2014-07-29
Test No.: 467114-5
VIN No.: 1D7HA18N78S232225
Make: Dodge
Model: Ram 1500 Quad Cab
Year: 2008 \qquad
Tire Size: 265/70R17 \qquad Tire Inflation Pressure: 35 psi

Odometer: 157860
Tread Type: Highway
Note any damage to the vehicle prior to test:
None

- Denotes accelerometer location.

NOTES: None

Transmission Type:

Optional Equipment:
None

Dummy Data:
Type:
Mass:
Seat Position:

No dummy
NA
NA

Geometry: inches

Mass Distribution:

lb

$$
\text { LF: } \quad 1428
$$

RF: $\quad 1356$
LR: 1139
RR: $\quad 1100$

Table G2. Vehicle Parametric Measurements for Vertical CG for Test No. 467114-5.

Table G3. Exterior Crush Measurements for Test No. 467114-5.

Date:	2014-07-29	Test No.:	467114-5	VIN No.:	1D7HA18N78S232225
Year:	2008	Make:	Dodge	Model:	Ram 1500 Quad Cab
VEHICLE CRUSH MEASUREMENT SHEET ${ }^{1}$					
Complete When Applicable					
End Damage				Side Damage	
Undeformed end width				Bowing: B1 \qquad X1 \qquad B2 \qquad X2 \qquad	
Corner shift: A1					
			-		
	End shift	(CDC)		Bowing constant	
				$X 1+X 2$	
		<4 inches	-	2	\square
		4 inches	-		

Note: Measure C_{1} to C_{6} from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

Specific Impact Number	Plane* of C-Measurements	Direct Damage		FieldL**	C_{1}	C_{2}	C_{3}	C4	C_{5}	C_{6}	\pm D
		Width** (CDC)	Мах*** Crush								
1	Front plane at bumper ht	20.0	7.0	30	7	2	1	0.5	0.5	0	-15
2	Side plane at bumper ht	20.0	9.0	56	3.5	----	-----	-----	7	9	+72
	Measurements recorded										
	in inches										

${ }^{1}$ Table taken from National Accident Sampling System (NASS).
*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.
${ }^{* *}$ Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).
***Measure and document on the vehicle diagram the location of the maximum crush.
Note: Use as many lines/columns as necessary to describe each damage profile.

Table G4. Occupant Compartment Measurements for Test No. 467114-5.

G2. SEQUENTIAL PHOTOGRAPHS

0.000 s

0.060 s

0.120 s

0.180 s

Figure G1. Sequential Photographs for Test No. 467114-5
(Overhead and Rear Views).

Figure G1. Sequential Photographs for Test No. 467114-5 (Overhead and Rear Views) (Continued).

Figure G2. Sequential Photographs for Test No. 467114-5
(Rear View).

G3. VEHICLE ANGULAR DISPLACEMENTS

Roll, Pitch, and Yaw Angles

Figure G3. Vehicle Angular Displacements for Test No. 467114-5.

G4. VEHICLE ACCELERATIONS

X Acceleration at CG

APPENDIX H. INFORMATION FOR CRASH TEST NO. 467114-6

H1. TEST VEHICLE MEASUREMENTS AND INFORMATION

Table H1. Vehicle Properties for Test No. 467114-6.
Date: 2014-08-06
Test No.: 467114-6

Make: Dodge
VIN No.: 1D7HA18288S46845
Model: Ram 1500 Quad Cab
Year: 2008
Tire Size: 265/70R17 \qquad Tire Inflation Pressure: 35 psi

Odometer: 154771
Tread Type: Highway
Note any damage to the vehicle prior to test:
None

- Denotes accelerometer location.

NOTES: None

Transmission Type:

Optional Equipment:
None

Dummy Data:
Type:
Mass:
Seat Position:

None
NA
NA

Geometry: inches

Mass Distribution:

lb

$$
\text { LF: } \quad 1428
$$

RF: 1398
LR: 1103
RR: 1087

Table H2. Vehicle Parametric Measurements for Vertical CG for Test No. 467114-6.

Table H3. Exterior Crush Measurements for Test No. 467114-6.

Date:	2014-08-06	Test No.:	467114-6	VIN No.:	1D7HA18288S468451
Year:	2008	Make:	Dodge	Model:	Ram 1500 Quad Cab

VEHICLE CRUSH MEASUREMENT SHEET ${ }^{1}$

Complete When Applicable	
End Damage	Side Damage
Undeformed end width	Bowing: B1__ X1__
Corner shift: A1	B2 ___ $\mathrm{X} 2^{2}$
A2	
End shift at frame (CDC)	Bowing constant
(check one)	$X 1+X 2$
<4 inches	$2=$
≥ 4 inches	

Note: Measure C_{1} to C_{6} from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

Specific Impact Number	Plane* of C-Measurements	Direct Damage		$\begin{aligned} & \text { Field } \\ & \text { I*** } \end{aligned}$	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	\pm D
		Width** (CDC)	Мах*** Crush								
1	Front plane at bumper ht	-----	24	-----	-----	-----	-----	-----	-----	-----	-----
2	Side plane at bumper ht	-----	17	-----	--	--	-----	--	--	----	----
	Measurements recorded										
	in inches										

${ }^{1}$ Table taken from National Accident Sampling System (NASS).
*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.
${ }^{* *}$ Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).
***Measure and document on the vehicle diagram the location of the maximum crush.
Note: Use as many lines/columns as necessary to describe each damage profile.

Table H4. Occupant Compartment Measurements for Test No. 467114-6.

H2. SEQUENTIAL PHOTOGRAPHS

0.079 s

0.158 s

0.237 s

Figure H1. Sequential Photographs for Test No. 467114-6
(Overhead and Rear Views).

Figure H1. Sequential Photographs for Test No. 467114-6 (Overhead and Rear Views) (Continued).

H3. VEHICLE ANGULAR DISPLACEMENTS

H4. VEHICLE ACCELERATIONS

Z Acceleration at CG
 Time (s)
Figure H5. Vehicle Vertical Accelerometer Trace for Test No. 467114-6 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

Time (s)
Figure H6. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-6 (Accelerometer Located Rear of Center of Gravity).
(๑) ио!̣еләәәээ૪ ןеи!рпи!!ииоך
Y Acceleration Rear of CG

Time (s)
Figure H7. Vehicle Lateral Accelerometer Trace for Test No. 467114-6 (Accelerometer Located Rear of Center of Gravity).
(๑) ио!̣еләәәээ૪ ןеләңา
Z Acceleration Rear of CG

Time (s)
Figure H8. Vehicle Vertical Accelerometer Trace for Test No. 467114-6 (Accelerometer Located Rear of Center of Gravity).

APPENDIX I. INFORMATION FOR CRASH TEST NO. 467114-7

11. TEST VEHICLE MEASUREMENTS AND INFORMATION

Table I1. Vehicle Properties for Test No. 467114-7.

Date: $\underline{\text { 2014-08-22 }}$ \qquad VIN No.: 1D7HA18N68S575523
Make: Dodge \qquad Model: Ram 1500 Quad Cab
Year: 2008
Tire Size: 265/70R17 \qquad Tire Inflation Pressure: 35 psi

Odometer: 160282
Tread Type: Highway
Note any damage to the vehicle prior to test:
None

- Denotes accelerometer location.

NOTES: None

Transmission Type:

x	Auto or	
\square	FWD $\quad x \quad$ RWD	Manual $4 W D$

Optional Equipment:
None

Dummy Data:
Type:
Mass:
Seat Position:

No dummy used
NA
NA

Geometry: inches

Mass Distribution:

lb

$$
\text { LF: } 1450
$$

RF: 1358
LR: 1100
RR: 1106

Table I2. Vehicle Parametric Measurements for Vertical CG for Test No. 467114-7.

Table I3. Exterior Crush Measurements for Test No. 467114-7.

Note: Measure C_{1} to C_{6} from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

Specific Impact Number	Plane* of C-Measurements	Direct Damage		Field L**	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	\pm D
		Width** (CDC)	Мах*** Crush								
1	Front plane at bumper ht	30.0	24.0	29	24	20	11	6	2	1	-6
2	Side plane at bumper ht	30.0	24.0	60	2	5.5	---	-	20	24	+77
	Measurements recorded										
	in inches										

${ }^{1}$ Table taken from National Accident Sampling System (NASS).
*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.
${ }^{* *}$ Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).
***Measure and document on the vehicle diagram the location of the maximum crush.
Note: Use as many lines/columns as necessary to describe each damage profile.

Table I4. Occupant Compartment Measurements for Test No. 467114-7.

I2. SEQUENTIAL PHOTOGRAPHS

0.000 s

0.076 s

0.152 s

0.228 s

Figure I1. Sequential Photographs for Test No. 467114-7 (Overhead and Rear Views).

0.304 s

0.380 s

0.456 s

0.532 s

Camera turned off

Camera turned off

Figure I1. Sequential Photographs for Test No. 467114-7 (Overhead and Rear Views) (Continued).

Figure I2. Sequential Photographs for Test No. 467114-7
(Rear View).

13. VEHICLE ANGULAR DISPLACEMENTS

I4. VEHICLE ACCELERATIONS

Y Acceleration at CG

X Acceleration Rear of CG

$$
\text { - SAE Class } 60 \text { Filter }-50-\mathrm{msec} \text { average }
$$

Figure I7. Vehicle Longitudinal Accelerometer Trace for Test No. 467114-7 (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

\square Time of OIV $(0.1176 \mathrm{sec}) \quad-$ SAE Class 60 Filter $\quad-50-\mathrm{msec}$ average
Figure I8. Vehicle Lateral Accelerometer Trace for Test No. 467114-7
(Accelerometer Located Rear of Center of Gravity).
Z Acceleration Rear of CG

[^0]: Roadside Safety and

 | Project 467114-7 | Short Radius Guardrail | 2014-08-21 |
 | :--- | :--- | :--- | Drawn By GES Scale 1:12 Sheet 12 of 22 Rebar Details-3

[^1]:

[^2]:

