Technical Report Documentation Page

1. Report No. FHWA/TX-08/0-5210-5	2. Government Accession No.		3. Recipient's Catalog No.	
4. Title and Subtitle CRASH TESTING AND EVALUATION OF TXDOT BURN BAN SIGNS			5. Report Date December 2008 Published: August 2009	
			6. Performing Organization Code	
$\begin{aligned} & \text { 7. Author(s) } \\ & \text { Roger P. Bligh and Wanda L. Menges } \end{aligned}$			8. Performing Organization Report No. Report 0-5210-5	
9. Performing Organization Name and Address Texas Transportation Institute The Texas A\&M University System College Station, Texas 77843-3135			10. Work Unit No. 11. Contract or G Project 0-52	11. Contract or Grant No. Project 0-5210
12. Sponsoring Agency Name and Address Texas Department of Transportation Research and Technology Implementation Office P.O. Box 5080 Austin, Texas 78763-5080			13. Type of Report and Period Covered Technical Report: September 2004 - April 2008	
15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Roadside Crash Testing Program for Design Guidance and Standard Detail Development URL: http://tti.tamu.edu/documents/0-5210-5.pdf				
16. Abstract Texas counties expressed a d advisory signs on the roadside to alert the preferred method of implementat structures already installed along Tex In support of this request, Tx Texas slip base sign support system below the primary sign at a mounting support configurations was evaluated accordance with the requirements of incorporated a 24 inch $\times 24$ inch $\times 0$. with the burn ban signs mounted below Based on the satisfactory test existing slip base sign support system	esire to the rt motorist ion is to a xas highw DOT spon with a ligh g height le dhrough NCHRP R 080 inch ow. results re is consid	Department of a burn ban is in e burn ban no is project to eva composite bu 7 ft . The impa crash testing. 50. The confi minum confirm erein, the pract table for imple	sportation (Tx ct. For obvi tion signs to te the impact n sign appen rformance of crash testing ion selected n sign mount f appending tation.	T) to post onomic reaso ng sign suppo rmance of a the support urn ban sign performed in ting a height of 7 ban sign to
17. Key Words Sign Supports, Roadside Safety, Cra	sh Testing	18. Distribution S No restrictio public throug National Tec Springfield, http://www.n	This document TIS: Informatio nia 22161 ov	ailable to the ice
19. Security Classif.(of this report) Unclassified	20. Security Classif.(of this page) Unclassified		$\begin{gathered} \text { 21. No. of Pages } \\ 126 \end{gathered}$	22. Price

CRASH TESTING AND EVALUATION OF TXDOT BURN BAN SIGNS

by
Roger P. Bligh, P.E.
Research Engineer
Texas Transportation Institute
and
Wanda L. Menges
Research Specialist
Texas Transportation Institute
Report 0-5210-5
Project 0-5210
Project Title: Roadside Crash Testing Program
for Design Guidance and Standard Detail Development
Performed in cooperation with the
Texas Department of Transportation
and the
Federal Highway Administration

December 2008
Published: August 2009

TEXAS TRANSPORTATION INSTITUTE
The Texas A\&M University System
College Station, Texas 77843-3135

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data, and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official view or policies of the Texas Department of Transportation (TxDOT), Federal Highway Administration (FHWA), The Texas A\&M University System, or the Texas Transportation Institute. This report does not constitute a standard, specification, or regulation, and its contents are not intended for construction, bidding, or permit purposes. In addition, the above listed agencies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers. The engineer in charge of the project was Roger P. Bligh, P.E. (Texas, \#78550).

ACKNOWLEDGMENTS

This research project was conducted under a cooperative program between the Texas Transportation Institute, the Texas Department of Transportation, and the Federal Highway Administration. The TxDOT project director for this research was Rory Meza, P.E. (DES). Michael Chacon (TRF), Doug Skowronek (TRF), and Charlie Wicker (TRF) served on the project monitoring committee and were instrumental in formulating and guiding this research. The authors acknowledge and appreciate their assistance.

TABLE OF CONTENTS

Page
LIST OF FIGURES ix
LIST OF TABLES xi
CHAPTER 1. INTRODUCTION 1
Introduction 1
Background 1
Objectives/Scope of Research. 2
CHAPTER 2. CRASH TEST PROCEDURES 5
Test Facility 5
Crash Test Conditions 5
Evaluation Criteria 6
CHAPTER 3. CRASH TESTS ON 24 INCH $\times 24$ INCH BURN BAN SIGN 7
Test Article. 7
Test 452108-1 (NCHRP Report 350 Test 3-60) on the
Schedule 80 Steel Pipe Support With 24 inch $\times 24$ inch TXDOT Burn Ban Sign 11
Test Vehicle 11
Soil and Weather Conditions 11
Test Description 11
Damage to Test Installation 11
Vehicle Damage 16
Occupant Risk Factors 16
Assessment of Test Results. 16
Test 452108-2 (NCHRP Report 350 Test 3-61) on the
Schedule 80 Steel Pipe Support With 24 inch $\times 24$ inch TXDOT Burn Ban Sign 23
Test Vehicle 23
Soil and Weather Conditions 23
Test Description 23
Damage to Test Installation 23
Vehicle Damage 28
Occupant Risk Factors 28
Assessment of Test Results. 28
CHAPTER 4. CRASH TESTS ON 30 INCH $\times 36$ INCH BURN BAN SIGN 35
Test Article 35
Test 452108-3 (NCHRP Report 350 Test 3-61) on the Schedule 80
Steel Pipe Support With 30 inch $\times 36$ inch TXDOT Burn Ban Sign 39
Test Vehicle 39
Soil and Weather Conditions 39

TABLE OF CONTENTS (CONTINUED)

Page
Test Description 39
Damage to Test Installation 39
Vehicle Damage 44
Occupant Risk Factors 44
Assessment of Test Results 44
Test 452108-4 (NCHRP Report 350 Test 3-61) on the 10 Gauge Steel Pipe Support With 30 inch $\times 36$ inch TXDOT Burn Ban Sign 51
Test Vehicle 51
Soil and Weather Conditions 51
Test Description 51
Damage to Test Installation 51
Vehicle Damage 56
Occupant Risk Factors 56
Assessment of Test Results. 56
CHAPTER 5. SUMMARY AND CONCLUSIONS 63
Summary of Test Results 63
Schedule 80 Steel Pipe Support with 24 inch $\times 24$ inch Burn Ban Sign 63
Schedule 80 Steel Pipe Support with 30 inch $\times 36$ inch Burn Ban Sign 63
10 Gauge Steel Pipe Support with 30 inch $\times 36$ inch Burn Ban Sign 64
Conclusions 64
CHAPTER 6. IMPLEMENTATION STATEMENT 71
REFERENCES 75
APPENDIX A. CRASH TEST AND DATA ANALYSIS PROCEDURES 77
Electronic Instrumentation and Data Processing 77
Anthropomorphic Dummy Instrumentation 78
Photographic Instrumentation and Data Processing 78
Test Vehicle Propulsion and Guidance 78
APPENDIX B. TEST VEHICLE PROPERTIES AND INFORMATION 81
APPENDIX C. SEQUENTIAL PHOTOGRAPHS 93
APPENDIX D. VEHICLE ANGULAR DISPLACEMENTS AND ACCELERATIONS 99

LIST OF FIGURES

Figure Page
Figure 3.1. Details of the TxDOT 24 inch $\times 24$ inch Burn Ban Sign Installation 8
Figure 3.2. Details of the Slip Base Used in Tests 452108-1 and 2. 9
Figure 3.3. Test Article/Installation before Test 452108-1 and 2 10
Figure 3.4. Vehicle/Installation Geometrics for Test 452108-1 12
Figure 3.5. Vehicle before Test 452108-1. 13
Figure 3.6. After Impact Trajectory Path for Test 452108-1 14
Figure 3.7. Installation after Test 452108-1 15
Figure 3.8. Vehicle after Test 452108-1 17
Figure 3.9. Interior of Vehicle for Test 452108-1. 18
Figure 3.10. Summary of Results for NCHRP Report 350 Test 3-60 on the Schedule 80 Steel Pipe Support with 24 inch $\times 24$ inch TxDOT Burn Ban Sign 19
Figure 3.11. Vehicle/Installation Geometrics for Test 452108-2 24
Figure 3.12. Vehicle before Test 452108-2. 25
Figure 3.13. After Impact Trajectory Path for Test 452108-2. 26
Figure 3.14. Installation after Test 452108-2 27
Figure 3.15. Vehicle after Test 452108-2. 29
Figure 3.16. Interior of Vehicle for Test 452108-2. 30
Figure 3.17. Summary of Results for NCHRP Report 350 Test 3-61 on the Schedule 80 Steel Pipe Support with 24 inch $\times 24$ inch TxDOT Burn Ban Sign 31
Figure 4.1. Details of the TxDOT 30 inch $\times 36$ inch Burn Ban Sign Installation 36
Figure 4.2. Details of the Slip Base Used in Tests 452108-3 and 4. 37
Figure 4.3. Test Article/Installation before Test 452108-3 and 4 38
Figure 4.4. Vehicle/Installation Geometrics for Test 452108-3 40
Figure 4.5. Vehicle before Test 452108-3. 41
Figure 4.6. After Impact Trajectory Path for Test 452108-3. 42
Figure 4.7. Installation after Test 452108-3 43
Figure 4.8. Vehicle after Test 452108-3. 45
Figure 4.9. Interior of Vehicle for Test 452108-3. 46
Figure 4.10. Summary of Results for NCHRP Report 350 Test 3-61 on the Schedule 80 Steel Pipe Support with 30 inch $\times 36$ inch TxDOT Burn Ban Sign 47
Figure 4.11. Vehicle/Installation Geometrics for Test 452108-4 52
Figure 4.12. Vehicle before Test 452108-4. 53
Figure 4.13. After Impact Trajectory Path for Test 452108-4. 54
Figure 4.14. Installation after Test 452108-4 55
Figure 4.15. Vehicle after Test 452108-4. 57
Figure 4.16. Interior of Vehicle for Test 452108-4. 58
Figure 4.17. Summary of Results for NCHRP Report 350 Test 3-61 on the 10 Gauge Steel Pipe Support with 30 inch $\times 36$ inch Burn Ban Sign. 59

LIST OF FIGURES (CONTINUED)

Figure Page
Figure 6.1. Details of 24 inch $\times 24$ inch Burn Ban Sign Mounted to Texas Slip Base. 73
Figure 6.2. Details of 30 inch $\times 36$ inch Burn Ban Sign Mounted to Texas Slip Base. 74
Figure B1. Vehicle Properties for Test 452108-1 81
Figure B2. Vehicle Properties for Test 452108-2 84
Figure B3. Vehicle Properties for Test 452108-3 87
Figure B4. Vehicle Properties for Test 452108-4 90
Figure C1. Sequential Photographs for Test 452108-1 (Oblique and Perpendicular Views). 93
Figure C2. Sequential Photographs for Test 452108-2_(Perpendicular View) 95
Figure C3. Sequential Photographs for Test 452108-3 (Perpendicular View) 96
Figure C4. Sequential Photographs for Test 452108-4_(Oblique and Perpendicular Views). 97
Figure D1. Vehicle Angular Displacements for Test 452108-1 99
Figure D2. Vehicle Longitudinal Accelerometer Trace for Test 452108-1 (Accelerometer Located at Center of Gravity) 100
Figure D3. Vehicle Lateral Accelerometer Trace for Test 452108-1 (Accelerometer Located at Center of Gravity) 101
Figure D4. Vehicle Vertical Accelerometer Trace for Test 452108-1 (Accelerometer Located at Center of Gravity) 102
Figure D5. Vehicle Angular Displacements for Test 452108-2 103
Figure D6. Vehicle Longitudinal Accelerometer Trace for Test 452108-2 (Accelerometer Located at Center of Gravity) 104
Figure D7. Vehicle Lateral Accelerometer Trace for Test 452108-2 (Accelerometer Located at Center of Gravity) 105
Figure D8. Vehicle Vertical Accelerometer Trace for Test 452108-2 (Accelerometer Located at Center of Gravity) 106
Figure D9. Vehicle Angular Displacements for Test 452108-3 107
Figure D10. Vehicle Longitudinal Accelerometer Trace for Test 452108-3 (Accelerometer Located at Center of Gravity) 108
Figure D11. Vehicle Lateral Accelerometer Trace for Test 452108-3 (Accelerometer Located at Center of Gravity) 109
Figure D12. Vehicle Vertical Accelerometer Trace for Test 452108-3 (Accelerometer Located at Center of Gravity) 110
Figure D13. Vehicle Angular Displacements for Test 452108-4 111
Figure D14. Vehicle Longitudinal Accelerometer Trace for Test 452108-4 (Accelerometer Located at Center of Gravity) 112
Figure D15. Vehicle Lateral Accelerometer Trace for Test 452108-4 (Accelerometer Located at Center of Gravity) 113
Figure D16. Vehicle Vertical Accelerometer Trace for Test 452108-4 (Accelerometer Located at Center of Gravity) 114

LIST OF TABLES

Table Page
Table 5.1. Performance Evaluation Summary for NCHRP Report 350 Test 3-60 on the Schedule 80 Steel Pipe Support with 24 inch $\times 24$ inch Burn Ban Sign. 66
Table 5.2. Performance Evaluation Summary for NCHRP Report 350 Test 3-61 on the Schedule 80 Steel Pipe Support with 24 inch $\times 24$ inch Burn Ban Sign. 67
Table 5.3. Performance Evaluation Summary for NCHRP Report 350 Test 3-61 on the Schedule 80 Steel Pipe Support with 30 inch $\times 36$ inch Burn Ban Sign. 68
Table 5.4. Performance Evaluation Summary for NCHRP Report 350 Test 3-61 on the 10 Gauge Steel Pipe Support with 30 inch $\times 36$ inch Burn Ban Sign. 69
Table B1. Exterior Crush Measurements for Test 452108-1 82
Table B2. Occupant Compartment Measurements for Test 452108-1. 83
Table B3. Exterior Crush Measurements for Test 452108-2. 85
Table B4. Occupant Compartment Measurements for Test 452108-2. 86
Table B5. Exterior Crush Measurements for Test 452108-3. 88
Table B6. Occupant Compartment Measurements for Test 452108-3. 89
Table B7. Exterior Crush Measurements for Test 452108-4. 91
Table B8. Occupant Compartment Measurements for Test 452108-4. 92

CHAPTER 1. INTRODUCTION

INTRODUCTION

Small roadside signs provide important information to motorists. The proximity of these signs to the edge of traveled way makes them susceptible to being struck by errant vehicles that inadvertently encroach onto the roadside. To reduce the hazard associated with these crashes, the sign supports are designed to "breakaway" from their foundation upon impact with a vehicle. The crashworthiness of a sign support system must be evaluated before the design can be used on the nation's highways. This evaluation is typically accomplished through full-scale vehicle crash testing.

National Cooperative Highway Research Program (NCHRP) Report 350 contains the recommended procedures for testing and evaluating sign supports and other roadside safety features (1). This document contains the test matrices, impact conditions, evaluation criteria, and reporting requirements for assessing the impact performance of a breakaway support structure. If the design of a system is altered in response to changing needs in the highway environment, it may be necessary to reassess its compliance with current vehicle testing criteria.

BACKGROUND

It is not unusual for parts of Texas to experience hot, dry weather, particularly during the summer months. During periods of drought, Texas counties enact burn bans that prohibit any form of outside burning to help limit the risk of an uncontrolled fire. The counties expressed a desire to the Texas Department of Transportation (TxDOT) to post advisory signs on the roadside to alert motorists when a burn ban is in effect. For obvious economic reasons, the preferred method of implementation is to append the burn ban notification signs to existing sign support structures.

The most commonly used sign support system in Texas is the triangular slip base. It is a multi-directional breakaway design that uses three bolts tightened to a prescribed torque to clamp. One plate is attached to a rigid foundation and the other is attached to the bottom of the sign support through various methods. When the impact force applied by a vehicle exceeds the frictional clamping force, the upper plate "slips" relative to the lower plate and the support structure is "released" from its foundation. The released sign support system rotates over the impacting vehicle.

The Texas triangular slip base and its variations have been subjected to extensive crash testing and evaluation in accordance with NCHRP Report 350 guidelines (2,3,4,5,6). It has performed well in testing and has been used successfully in the field for many years.

TxDOT policy requires a minimum mounting height of 7 ft to the bottom of the sign panel. The Texas slip base system has traditionally been used for sign panels having an area
greater than 10 square feet. Less expensive sign support systems, such as a wedge anchor system, are typically used for smaller sign areas of 10 square feet or less.

The current Texas slip base system utilizes two different types of support posts: a 2-7/8-inch outside diameter (O.D.), 10 British Wire Gage (BWG) steel tube that has a nominal wall thickness of 0.134 inches and a $55,000 \mathrm{psi}$ minimum yield strength, and a $2-1 / 2$-inch nominal diameter (2-7/8-inch O.D.), schedule 80 pipe that has a nominal wall thickness of 0.276 inches and a minimum yield strength of $46,000 \mathrm{psi}$. The 10 BWG tube support can be used for sign areas up to 16 square feet, while the schedule 80 pipe support can be used for larger sign areas up to 32 square feet.

There are many variables that can affect the impact performance of a slip base sign support system (and breakaway supports in general). These variables include but are not limited to the size and weight of the sign substrate, the sign mounting height, and the type of support post. As the size, weight, and mounting height of a sign panel increase, the center of mass and mass moment of inertia of the combined sign support system also increase. The released support system will rotate about its center of mass, and the higher the center of mass the higher the probability that an impacting vehicle can travel under the rotating support without secondary contact to the roof or windshield. Increasing the mass moment of inertia decreases the rotational velocity of the support structure after activation, which can give an impacting vehicle more time to travel under the support before any secondary contact occurs.

Appending a burn ban sign to an existing slip base sign support at a height less than 7 ft can effectively lower the center of mass (i.e., point of rotation) of the sign support system and possibly degrade its impact performance. Use of a lightweight sign substrate can minimize the effect of the secondary sign on the overall properties of the sign support system. However, given that this practice could be adopted statewide, TxDOT decided that further research of the proposed burn ban sign application was needed.

OBJECTIVES/SCOPE OF RESEARCH

The objective of this research was to evaluate the impact performance of a Texas slip base sign support system with a burn ban sign appended to the support below the primary sign at a mounting height less than 7 ft . The impact performance of the burn ban sign support configurations was evaluated through full-scale crash testing. The crash testing was performed in accordance with the requirements of NCHRP Report 350.

To minimize the effect of the burn ban signs on the inertia properties of the sign support system, a lightweight aluminum composite material was chosen as the sign substrate. Two different sizes of burn ban signs were considered: a 24 inch $\times 24$ inch sign and a 30 inch \times 36 inch sign. The smaller 24 inch $\times 24$ inch sign is intended to simply communicate that a burn ban is in effect. The larger 30 inch $\times 36$ inch sign would additionally indicate the name of the county when needed.

As discussed earlier, the Texas slip base system is used with a wide range of signs on two different types of supports. To qualify the burn ban sign for use on most if not all slip base support systems installed across the state, the research plan included identifying and testing the most critical sign configuration. If successful, the burn ban sign could then be used on the tested configuration as well as any less critical configurations.

The most critical configuration would be the system incorporating the smallest, lightest primary sign, because the appended burn ban sign would have more influence on the overall inertia properties (e.g., center of mass) of that system. A review of district practices by the Traffic Operations Division noted that some districts were using the Texas slip base for all small signs, even those having an area less than 10 square feet. The motivation behind this practice was to reduce inventory associated with multiple types of supports and simplify maintenance training and operations. This being the case, the smallest, lightest sign panel used with the Texas slip base support is a 24 inch $\times 24$ inch aluminum confirmation sign.

The practice of using small confirmation signs on slip base supports raised some concerns. Researchers at the Texas Transportation Institute (TTI) are not aware of any crash testing of slip base supports with signs this small. The center of mass (i.e., point of rotation) of such a system would be significantly lower than those associated with most of the tested systems. The lower point of rotation could cause secondary contact with the roof and/or windshield that would not occur with systems incorporating larger sign panels. Thus, a secondary objective was to investigate the impact performance of the Texas slip base with sign panels having an area as small as 4 square feet.

The remaining chapters of this report describe the full-scale crash testing and evaluation of different sign support configurations with burn ban signs attached below the primary sign, and present recommendations regarding implementation and future work.

CHAPTER 2. CRASH TEST PROCEDURES

TEST FACILITY

The TTI Proving Ground is a 2000 -acre complex of research and training facilities located 10 miles northwest of the main campus of Texas A\&M University. The site, formerly an Air Force base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicleroadway interaction, durability and efficacy of highway pavements, and safety evaluation of roadside safety hardware. The site selected for construction and testing of the sign supports evaluated under this project was the edge of an out-of-service aircraft parking apron. The apron consists of an unreinforced jointed-concrete pavement in $12.5 \mathrm{ft} \times 15 \mathrm{ft}$ blocks nominally 8 to 12 inches deep. The apron is over 50 years old, and the joints have some displacement but are otherwise flat and level.

CRASH TEST CONDITIONS

The recommended test matrix for breakaway support structures, such as the Texas slip base, consists of two tests:

NCHRP Report 350 test designation 3-60: This test involves an 1808-lb passenger vehicle (820 C) impacting the support structure at a nominal speed of $22 \mathrm{mi} / \mathrm{h}$ and an angle ranging from 0-20 degrees. The purpose of this test is to evaluate the breakaway, fracture, or yielding mechanism of the support, as well as occupant risk.

NCHRP Report 350 test designation 3-61: This test involves an 1808-lb passenger vehicle (820 C) impacting the support structure at a nominal speed of $62 \mathrm{mi} / \mathrm{h}$ and an angle ranging from 0-20 degrees. The test is intended to evaluate vehicle and test article trajectory and occupant risk.

Researchers performed both the low-speed and high-speed tests on a slip base system with a 24 inch $\times 24$ inch burn ban sign attached below a 24 inch $\times 24$ inch confirmation sign. However, only the high-speed test was performed during subsequent evaluation of slip base systems with 30 inch $\times 36$ inch burn ban signs, as the high-speed test proved to be the more critical test.

All crash test, data analysis, and evaluation and reporting procedures followed under this project were in accordance with guidelines presented in NCHRP Report 350. Appendix A presents brief descriptions of these procedures.

EVALUATION CRITERIA

The crash tests performed under this project were evaluated in accordance with NCHRP Report 350. As stated in NCHRP Report 350, "Safety performance of a highway appurtenance cannot be measured directly but can be judged on the basis of three factors: structural adequacy, occupant risk, and vehicle trajectory after collision." Accordingly, researchers used the safety evaluation criteria from Table 5.1 of NCHRP Report 350 to evaluate the crash tests reported herein.

CHAPTER 3. CRASH TESTS ON 24 INCH $\times 24$ INCH BURN BAN SIGN

TEST ARTICLE

Figure 3.1 and Figure 3.2 show details of the test installation used for evaluation of the 24 inch $\times 24$ inch burn ban sign. The support post was a $2-1 / 2$-inch diameter (2.875 -inch O.D.) schedule 80 steel pipe with a minimum specified yield strength of $46,000 \mathrm{psi}$. This support was considered to be more critical in terms of evaluating occupant compartment deformation associated with secondary contact with the roof and windshield because of its greater mass and lower center of mass compared to the same system mounted on a 10 BWG steel tube. A 24 inch $\times 24$ inch $\times 0.080$ inch thick aluminum sign panel was attached to the schedule 80 support using two 2-1/2-inch sign bracket mounting clamps and 15/16-inch diameter $\times 1$ inch long bolts. The mounting height to the bottom of the confirmation sign was 7 ft .

A 24 inch $\times 24$ inch $\times 0.080$ inch thick lightweight composite burn ban sign panel was attached to the schedule 80 support in the same manner as the confirmation sign using two sign bracket mounting clamps spaced 18 inches apart. The composite sign consisted of a high-density polyethylene (HDPE) core sandwiched between two outer sheets of 0.010 -inch thick, 5052 aluminum. A 3-inch offset was used between the two sign panels, making the mounting height to the bottom of the burn ban sign $4 \mathrm{ft}-9$ inches.

The upper slip base assembly consists of an integral collar and triangular base plate cast from American Society for Testing and Materials (ASTM) A536 Grade 65-45-12 ductile iron. The 0.535 -inch thick collar is perpendicular to the base plate and has a 2.93 -inch diameter hole to accept the 2.875 O.D. pipe support. Additional details of the slip base casting can be found in Figure 3.2.

To help prevent the pipe from rotating inside the collar during service and the casting from slipping off the pipe during an impact, the slip base assembly is secured to the end of the schedule 80 pipe using three 0.625 -inch diameter set screws equally spaced around the perimeter of the collar and torqued to $65 \mathrm{ft}-\mathrm{lb}$ using a torque wrench with an Allen head adaptor.

The lower slip base plate was welded to a 36-inch length of 3-inch nominal diameter schedule 40 pipe. The pipe stub was embedded in a 12 -inch diameter $\times 42$-inch deep concrete footing installed in NCHRP Report 350 standard soil. The distance from the ground surface to the top face of the lower triangular slip plate was 3.5 inches. The triangular slip base was oriented such that the upstream side was perpendicular to the direction of impact. A 30 gauge galvanized steel keeper plate was placed between the upper and lower slip plates. A washer was placed between the bolt keeper plate and upper slip plate to reduce the contact area between the plates. The two slip plates were clamped together using three 0.625 inch diameter $\times 2.5$-inch long, ASTM A325 bolts that were tightened to a prescribed torque of $40 \mathrm{ft}-\mathrm{lb}$. High strength washers were used under both the head and nut of each bolt. Photographs of the completed sign support installation are shown in Figure 3.3.

Figure 3.1. Details of the TxDOT 24 inch $\times 24$ inch Burn Ban Sign Installation.

Figure 3.2. Details of the Slip Base Used in Tests 452108-1 and 2.

Figure 3.3. Test Article/Installation before Test 452108-1 and 2.

TEST 452108-1 (NCHRP REPORT 350 TEST 3-60) ON THE SCHEDULE 80 STEEL PIPE SUPPORT WITH 24 INCH $\times 24$ INCH TXDOT BURN BAN SIGN

Test Vehicle

A 1995 Geo Metro, shown in Figures 3.4 and 3.5, was used for the crash test. Test inertia weight of the vehicle was 1784 lb , and its gross static weight was 1953 lb . The height to the lower edge of the vehicle bumper was 15.75 inches, and the height to the upper edge of the vehicle bumper was 20.25 inches. Figure B1 in Appendix B gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system and was released to be free-wheeling and unrestrained just prior to impact.

Soil and Weather Conditions

The test was performed on the morning of March 5, 2008. A total of 0.8 inches of rainfall was recorded three days prior to the test. Moisture content of the NCHRP Report 350 standard soil in which the sign support system was installed was 8.6 percent. Weather conditions at the time of testing were as follows: Wind speed: $16 \mathrm{mi} / \mathrm{h}$; Wind direction: 190 degrees with respect to the vehicle (vehicle was traveling in a northerly direction); Temperature: $60^{\circ} \mathrm{F}$; Relative humidity: 59 percent.

Test Description

The 1995 Geo Metro, traveling at an impact speed of $21.7 \mathrm{mi} / \mathrm{h}$, impacted the 2-1/2-inch diameter schedule 80 support 6 inches from the vehicle centerline offset to the driver's side. At 0.012 s , the support began to move toward the field side, and the front bumper was crushed to the front edge of the hood. The top slip plate began to move at 0.054 s , and the support lost contact with the lower slip plate at 0.066 s . The support began to rotate counterclockwise in front of the vehicle at 0.069 s . At 0.241 s , the vehicle lost contact with the support while traveling forward at a speed of $17.6 \mathrm{mi} / \mathrm{h}$. As the vehicle continued forward, the top of the sign panel contacted the top of the windshield at 0.405 s , and the support remained in this position until the vehicle went out of view of the camera. Figure C1 in Appendix C shows sequential photographs of the test period.

Damage to Test Installation

Damage to the sign support installation is shown in Figures 3.6 and 3.7. The base showed no movement in the ground. The keeper plate and one bolt remained at the base, one bolt came to rest 12.5 ft downstream of impact, and the third was resting 57.5 ft downstream of impact. The sign panels and support came to rest under the vehicle, which came to rest 92.5 ft downstream from the point of impact.

Figure 3.4. Vehicle/Installation Geometrics for Test 452108-1.

Figure 3.5. Vehicle before Test 452108-1.

Figure 3.6. After Impact Trajectory Path for Test 452108-1.

Figure 3.7. Installation after Test 452108-1.

Vehicle Damage

Figures 3.8 and 3.9 show the damage to the exterior and interior of the vehicle, respectively. The front bumper, hood, radiator, and radiator support were deformed. The windshield was cracked near the roof line, but there was no hole. Maximum exterior crush to the vehicle was 6.3 inches on the front of the vehicle at a point 6 inches left (toward the driver side) of centerline. No occupant compartment deformation occurred. Exterior crush and occupant compartment measurements are shown in Appendix B, Tables B1 and B2, respectively.

Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was $5.6 \mathrm{ft} / \mathrm{s}(1.7 \mathrm{~m} / \mathrm{s})$ at 0.415 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was 0.2 g from 0.440 to 0.450 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -3.0 g between 0.018 and 0.068 s . In the lateral direction, the occupant impact velocity was $0.7 \mathrm{ft} / \mathrm{s}(0.2 \mathrm{~m} / \mathrm{s})$ at 0.415 s , the highest 0.010 -s occupant ridedown acceleration was 0.2 g from 0.428 to 0.438 s , and the maximum 0.050 -s average acceleration was $-0.4 g$ between 0.062 and 0.112 s . Figure 3.10 presents these data and other pertinent information from the test. Figures D1 through D4 in Appendix D present vehicle angular displacements and accelerations versus time traces.

Assessment of Test Results

An assessment of the test based on the applicable NCHRP Report 350 safety evaluation criteria is provided below.

Structural Adequacy

B. The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.

Result: The slip base sign support with 24 inch $\times 24$ inch burn ban sign readily activated by slipping away at the base as designed. (PASS)

Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformation of, or intrusions into, the occupant compartment that could cause serious injuries should not be permitted.

Result: The detached sign support traveled with the vehicle and came to rest under the vehicle. The support did not penetrate nor show potential for penetrating the vehicle, or to present undue hazard to others in the area. No occupant compartment deformation occurred. (PASS)

Figure 3.8. Vehicle after Test 452108-1.

Figure 3.9. Interior of Vehicle for Test 452108-1.

21.7
0

17.6
0

5.6
0.7
6.2

0.2
0.2
0.3
0.26

-3.0
-0.4
-1.3

Figure 3.10. Summary of Results for NCHRP Report 350 Test 3-60
on the Schedule 80 Steel Pipe Support with 24 inch $\times 24$ inch TxDOT Burn Ban Sign.
on the Schedule 80 Steel Pipe Support with 24 inch $\times 24$ inch TxDOT Burn Ban Sign.

Impact Conditions
Texas Transportation Institute
452108-1
2008-03-05
Exit Conditions
Angle (deg)
Occupant Risk Values
Lateral
THIV (km/h)
Ridedown Accelerations (g)
Ridedown Accelerations (g)
Lateral ..
PHD (g)....
Max. 0.050-s Average (g)
Lateral

Sign Support
TxDOT Slip Base with Burn Ban Sign
7 ft to bottom of top sign
2-1/2-inch schedule 80 pipe support with
slip base and two 24×24 inch aluminum
Kug 'ilos prepuets
820C
1995 Geo Metro
윽 억 융

$$
\begin{aligned}
& \text { General Information } \\
& \text { General Information } \\
& \begin{array}{l}
\text { Test Agency. } \\
\text { Test No. }
\end{array} \\
& \text { Date } \\
& \begin{array}{l}
\text { Type... } \\
\text { Name }
\end{array} \\
& \begin{array}{l}
\text { Name ... } \\
\text { Installation Height (ft)................. } \\
\text { Material or Key Elements }
\end{array} \\
& \begin{array}{l}
\text { Name ... } \\
\text { Installation Height (ft)................. } \\
\text { Material or Key Elements }
\end{array}
\end{aligned}
$$

Soil Type and Condition.............
Test Vehicle
Soil Type and Condition.............
Test Vehicle

Curb...............
Test Inertia
Dummy... Gross Static.
Dummy
1762

n
F. The vehicle should remain upright during and after collision although moderate roll, pitching, and yawing are acceptable.

Result: The 820 C vehicle remained upright and stable throughout the collision period. (PASS)
H. Occupant impact velocities should satisfy the following:

Longitudinal and Lateral Occupant Impact Velocity - m/s
$\frac{\text { Preferred }}{3[9.8 \mathrm{ft} / \mathrm{s}]} \quad \frac{\text { Maximum }}{5[16.8 \mathrm{ft} / \mathrm{s}]}$

Result: Longitudinal occupant impact velocity was $5.6 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $0.7 \mathrm{ft} / \mathrm{s}$. (PASS)
I. Occupant ridedown accelerations should satisfy the following: Longitudinal and Lateral Occupant Ridedown Accelerations - g

Preferred
15
Maximum
20

Result: Longitudinal ridedown acceleration was 0.2 g , and lateral occupant ridedown acceleration was 0.2 g . (PASS)

Vehicle Trajectory

K. After collision, it is preferable that the vehicle's trajectory not intrude into adjacent traffic lanes.

Result: The 820C vehicle did not intrude into adjacent traffic lanes. (PASS)
N. Vehicle trajectory behind the test article is acceptable.
Result: \quad The vehicle came to rest 92.5 ft downstream (behind) the test installation. (PASS)

The following supplemental evaluation factors and terminology, as presented in the Federal Highway Administration (FHWA) memo entitled "ACTION: Identifying Acceptable Highway Safety Features," were used for visual assessment of test results (7). Factors underlined below pertain to the results of the crash test reported herein.

Passenger Compartment Intrusion

1. Windshield Intrusion
a. No windshield contact
b. Windshield contact, no damage
c. Windshield contact, no intrusion
d. Device embedded in windshield, no significant intrusion
2. Body Panel Intrusion
e. Complete intrusion into passenger compartment
f. Partial intrusion into passenger compartment
yes or no

Loss of Vehicle Control

1. Physical loss of control
2. Perceived threat to other vehicles
3. Loss of windshield visibility
4. Debris on pavement

Physical Threat to Workers or Other Vehicles

1. Harmful debris that could injure workers or others in the area
2. Harmful debris that could injure occupants in other vehicles

No threat to others in area.

Vehicle and Device Condition

1. Vehicle Damage
a. None
d. Major dents to grill and body panels
b. Minor scrapes, scratches or dents
e. Major structural damage
c. Significant cosmetic dents
2. Windshield Damage
a. None
b. Minor chip or crack
c. Broken, no interference with visibility
d. Broken or shattered, visibility restricted but remained intact
e. Shattered, remained intact but partially dislodged
f. Large portion removed
g. Completely removed
3. Device Damage
a. None
b. Superficial
d. Substantial, replacement parts needed for repair
c. Substantial, but can be straightened
e. Cannot be repaired

TEST 452108-2 (NCHRP REPORT 350 TEST 3-61) ON THE SCHEDULE 80 STEEL PIPE SUPPORT WITH 24 INCH $\times 24$ INCH TXDOT BURN BAN SIGN

Test Vehicle

A 1998 Geo Metro, shown in Figures 3.11 and 3.12, was used for the crash test. Test inertia weight of the vehicle was 1812 lb , and its gross static weight was 1980 lb . The height to the lower edge of the vehicle bumper was 15.75 inches, and the height to the upper edge of the vehicle bumper was 20.25 inches. Figure B2 in Appendix B gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system and was released to be free-wheeling and unrestrained just prior to impact.

Soil and Weather Conditions

The test was performed on the afternoon of March 5, 2008. A total of 0.8 inches of rainfall was recorded three days prior to the test. Moisture content of the NCHRP Report 350 standard soil in which the sign support system was installed was 8.6 percent. Weather conditions at the time of testing were as follows: Wind speed: $13 \mathrm{mi} / \mathrm{h}$; Wind direction: 180 degrees with respect to the vehicle (vehicle was traveling in a northerly direction); Temperature: $72^{\circ} \mathrm{F}$; Relative humidity: 41 percent.

Test Description

The 1998 Geo Metro, traveling at an impact speed of $62.6 \mathrm{mi} / \mathrm{h}$, impacted the $2-1 / 2$-inch diameter schedule 80 support 6 inches from the vehicle centerline offset to the driver's side. At 0.005 s , the support began to move toward the field side, and the front bumper was crushed to the front edge of the hood. The top slip plate began to move at 0.012 s , and the support lost contact with the lower slip plate at 0.020 s . At 0.081 s , the vehicle lost contact with the support while traveling at a speed of $61.1 \mathrm{mi} / \mathrm{h}$. As the vehicle continued forward, both sign panels contacted the roof just above the windshield at 0.108 s . The pipe support contacted the roof at 0.113 s and began to crush the roof at 0.118 s . At 0.187 s , the pipe support lost contact with the roof of the vehicle. Figure C2 in Appendix C shows sequential photographs of the test period.

Damage to Test Installation

Damage to the installation is shown in Figures 3.13 and 3.14. The base showed no movement in the ground. The keeper plate came to rest 28.5 ft downstream from impact and 30 inches to the right of centerline. One bolt remained at the base, one bolt came to rest 12.5 ft downstream of impact, and the third was resting 51 ft downstream of impact. The confirmation sign panel separated from the support came to rest near the support and confirmation sign panel, which came to rest 150 ft downstream from impact.

Figure 3.11. Vehicle/Installation Geometrics for Test 452108-2.

Figure 3.12. Vehicle before Test 452108-2.

Figure 3.13. After Impact Trajectory Path for Test 452108-2.

Figure 3.14. Installation after Test 452108-2.

Vehicle Damage

Damage to the vehicle is shown in Figure 3.15. The front bumper, grill, hood, radiator, and radiator support were deformed. Maximum exterior crush in the frontal plane at the front bumper was 9.8 inches. The windshield was shattered downward from the roofline, but there was no loss of visibility. Two small cuts were noted in the roof, the largest measuring $0.6 \times$ 1.6 inches. The roof was deformed downward a maximum of 5.1 inches on the exterior of the vehicle and deformed into the occupant compartment 5.0 inches. Photographs of the interior of the vehicle are shown in Figure 3.16. Exterior crush and occupant compartment measurements are shown in Appendix B, Tables B3 and B4, respectively.

Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was $5.2 \mathrm{ft} / \mathrm{s}$ at 0.443 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was 0.4 g from 0.444 to 0.454 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -3.1 g between 0.001 and 0.051 s . In the lateral direction, the occupant impact velocity was $2.3 \mathrm{ft} / \mathrm{s}$ at 0.443 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was 0.7 g from 0.844 to 0.854 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -0.6 g between 0.026 and 0.076 s . Figure 3.17 presents these data and other pertinent information from the test. Figures D5 through D8 in Appendix D present vehicle angular displacements and accelerations versus time traces.

Assessment of Test Results

An assessment of the test based on the applicable NCHRP Report 350 safety evaluation criteria is provided below.

Structural Adequacy

B. The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.

Result: \quad The slip base sign support system with 24 inch $\times 24$ inch burn ban sign readily activated by slipping away at the base as designed. (PASS)

Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformation of, or intrusions into, the occupant compartment that could cause serious injuries should not be permitted.

Figure 3.15. Vehicle after Test 452108-2.

Figure 3.16. Interior of Vehicle for Test 452108-2.

Result: The detached sign support traveled with the vehicle and came to rest along the path of the vehicle. The support did not penetrate nor show potential for penetrating the vehicle, or to present undue hazard to others in the area. Maximum occupant compartment deformation was 5.0 inches in the roof area. (PASS)
F. The vehicle should remain upright during and after collision although moderate roll, pitching, and yawing are acceptable.

Result: The 820 C vehicle remained upright and stable during and after the collision event. (PASS)
I. Occupant impact velocities should satisfy the following:

Longitudinal and Lateral Occupant Impact Velocity - m/s
$\frac{\text { Preferred }}{3[9.8 \mathrm{ft} / \mathrm{s}]} \quad \frac{\text { Maximum }}{5[16.8 \mathrm{ft} / \mathrm{s}]}$

Result: Longitudinal occupant impact velocity was $5.2 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $2.3 \mathrm{ft} / \mathrm{s}$. (PASS)
I. Occupant ridedown accelerations should satisfy the following:

$$
\begin{gathered}
\frac{\text { Longitudinal and Lateral Occupant Ridedown Accelerations }-g}{\frac{\text { Preferred }}{16}} \frac{\frac{\text { Maximum }}{20}}{20}
\end{gathered}
$$

Result: Longitudinal ridedown acceleration was 0.4 g , and lateral ridedown acceleration was 0.7 g . (PASS)

Vehicle Trajectory

K. After collision, it is preferable that the vehicle's trajectory not intrude into adjacent traffic lanes.

Result: The vehicle did not intrude into adjacent traffic lanes. (PASS)
$N . \quad V e h i c l e ~ t r a j e c t o r y ~ b e h i n d ~ t h e ~ t e s t ~ a r t i c l e ~ i s ~ a c c e p t a b l e . ~$
Result: The vehicle came to rest behind the test installation. (PASS)
The following supplemental evaluation factors and terminology, as presented in the FHWA memo entitled "ACTION: Identifying Acceptable Highway Safety Features," were used for visual assessment of test results. Factors underlined below pertain to the results of the crash test reported herein.

Passenger Compartment Intrusion

1. Windshield Intrusion
a. No windshield contact
b. Windshield contact, no damage
c. Windshield contact, no intrusion
d. Device embedded in windshield, no significant intrusion
2. Body Panel Intrusion
e. Complete intrusion into passenger compartment
f. Partial intrusion into passenger compartment
yes or no

Loss of Vehicle Control

1. Physical loss of control
2. Perceived threat to other vehicles
3. Loss of windshield visibility
4. Debris on pavement

Physical Threat to Workers or Other Vehicles

1. Harmful debris that could injure workers or others in the area
2. Harmful debris that could injure occupants in other vehicles

No threat to others in area.

Vehicle and Device Condition

1. Vehicle Damage
a. None
b. Minor scrapes, scratches or dents
c. Significant cosmetic dents
2. Windshield Damage
a. None
e. Shattered, remained intact but
b. Minor chip or crack
c. Broken, no interference with visibility
d. Broken or shattered, visibility restricted but remained intact
3. Device Damage
a. None
b. Superficial
c. Substantial, but can be straightened
d. Substantial, replacement parts needed for repair
e. Cannot be repaired
d. Major dents to grill and body panels
e. Major structural damage partially dislodged
f. Large portion removed
g. Completely removed

CHAPTER 4. CRASH TESTS ON 30 INCH $\times 36$ INCH BURN BAN SIGN

TEST ARTICLE

Figure 4.1 and Figure 4.2 show details of the test installation used for evaluation of the 30 inch $x 36$ inch burn ban sign. The type of support post differed in the two tests. In test 452018-3, the support was a 2-1/2-inch diameter (2.875-inch O.D.) schedule 80 steel pipe with a minimum specified yield strength 46,000 psi. This support was initially considered to be the more critical of the two supports in terms of evaluating occupant compartment deformation associated with secondary contact with the roof and windshield because of its greater mass and lower center of mass. In test 452018-4, the support was a $2-7 / 8$-inch outside diameter (O.D.), 10 British Wire Gage (BWG) steel tube with a 55,000 psi minimum yield strength. Because of its lower mass moment of inertia, this support will have a greater rotational velocity, which could possibly result in a higher impact force at a point more forward on the vehicle.

In both tests, a 24 inch $\times 24$ inch $\times 0.080$ inch thick aluminum sign panel was attached to the support using two $2-1 / 2$-inch sign bracket mounting clamps and $15 / 16$-inch diameter $\times 1$-inch long bolts. The mounting height to the bottom of the confirmation sign was 7 ft .

A 30 inch wide $\times 36$ inch tall $\times 0.080$ inch thick lightweight composite burn ban sign panel was attached to the support in the same manner as the confirmation sign using two sign bracket mounting clamps spaced 18 inches apart. The composite sign consisted of a high-density polyethylene (HDPE) core sandwiched between two outer sheets of 0.010 -inch thick, 5052 aluminum. A 3-inch offset was used between the two sign panels, making the mounting height to the bottom of the burn ban sign $3 \mathrm{ft}-9$ inches.

The upper slip base assembly consists of an integral collar and triangular base plate cast from ASTM A536 Grade 65-45-12 ductile iron. The 0.535 -inch thick collar is perpendicular to the base plate and has a 2.93 -inch diameter hole to accept the 2.875 O.D. support. Additional details of the slip base casting can be found in Figure 4.2.

To help prevent the pipe from rotating inside the collar during service and the casting from slipping off the pipe during an impact, the slip base assembly is secured to the end of the schedule 80 pipe using three 0.625 -inch diameter set screws equally spaced around the perimeter of the collar and torqued to $65 \mathrm{ft}-\mathrm{lb}$ using a torque wrench with an Allen head adaptor.

The lower slip base plate was welded to a 36-inch length of 3-inch nominal diameter schedule 40 pipe. The pipe stub was embedded in a 12 -inch diameter $\times 42$-inch deep concrete footing installed in NCHRP Report 350 standard soil. The distance from the ground surface to the top face of the lower triangular slip plate was 3.5 inches. The triangular slip base was oriented such that the upstream side was perpendicular to the direction of impact. A 30 gauge galvanized steel keeper plate was placed between the upper and lower slip plates. A washer was placed between the bolt keeper plate and upper slip plate to reduce the contact area between the plates. The two slip plates were clamped together using three 0.625 -inch diameter $\times 2.5$-inch long, ASTM A325 bolts that were tightened to a prescribed torque of $40 \mathrm{ft}-\mathrm{lb}$. High strength washers were used under both the head and nut of each bolt. Photographs of the completed sign support installations for tests 452108-3 and 452108-4 are shown in Figure 4.3.

Figure 4.1. Details of the TxDOT 30 inch $\times 36$ inch Burn Ban Sign Installation.

Figure 4.2. Details of the Slip Base Used in Tests 452108-3 and 4.

Figure 4.3. Test Article/Installation before Test 452108-3 and 4.

TEST 452108-3 (NCHRP REPORT 350 TEST 3-61) ON THE SCHEDULE 80 STEEL PIPE SUPPORT WITH 30 INCH $\times 36$ INCH TXDOT BURN BAN SIGN

Test Vehicle

A 1997 Geo Metro, shown in Figures 4.4 and 4.5, was used for the crash test. Test inertia weight of the vehicle was 1865 lb , and its gross static weight was 2035 lb . The height to the lower edge of the vehicle bumper was 15.75 inches, and the height to the lower edge of the vehicle bumper was 20.25 inches. Figure B3 in Appendix B gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system and was released to be free-wheeling and unrestrained just prior to impact.

Soil and Weather Conditions

The test was performed on the morning of March 24, 2008. A total of 1.3 inches of rainfall was recorded six days prior to the test. Moisture content of the NCHRP Report 350 standard soil in which the sign support system was installed was 8.9 percent. Weather conditions at the time of testing were as follows: Wind speed: 3-6 mi/h; Wind direction: 80 degrees with respect to the vehicle (vehicle was traveling in a northerly direction); Temperature: $56^{\circ} \mathrm{F}$; Relative humidity: 36 percent.

Test Description

The 1997 Geo Metro, traveling at an impact speed of $62.0 \mathrm{mi} / \mathrm{h}$, impacted the 2-1/2-inch diameter schedule 80 support 6 inches from the vehicle centerline offset to the driver's side. Shortly after contact, the support began to deform/move toward the field side. At 0.009 s , the top slip plate began to move, and the support lost contact with the lower slip plate at 0.0660 s . The support began to rotate counterclockwise in front of the vehicle at 0.019 s . At 0.060 s , the vehicle lost contact with the support while traveling at a speed of $58.3 \mathrm{mi} / \mathrm{h}$. As the vehicle continued forward, the upper sign panel contacted the roof at 0.090 s . The support lost contact with the vehicle at 0.170 s . Figure C3 in Appendix C shows sequential photographs of the test period.

Damage to Test Installation

Damage to the installation is shown in Figures 4.6 and 4.7. The base showed no movement in the ground. The keeper plate and bolts came to rest near the base. The 30 inch \times 36 inch burn ban sign panel separated from the support and came to rest 58 ft downstream of impact and 28 ft to the left of centerline. The $24 \mathrm{inch} \times 24$ inch confirmation sign panel and support came to rest 149 ft downstream of and directly in line with the point of impact. The brakes on the vehicle were applied 160 ft behind the test installation, and the vehicle subsequently came to rest 322 ft downstream from impact.

Figure 4.4. Vehicle/Installation Geometrics for Test 452108-3.

Figure 4.5. Vehicle before Test 452108-3.

Figure 4.6. After Impact Trajectory Path for Test 452108-3.

Figure 4.7. Installation after Test 452108-3.

Vehicle Damage

Figures 4.8 and 4.9 show the damage to the exterior and interior of the vehicle, respectively. The front bumper, hood, radiator, and radiator support were deformed. The windshield was cracked near the roof line, but there was no hole. Maximum exterior crush in the frontal plane at the front bumper was 6.0 inches at a point, 6 inches to the left (toward the driver's side) of centerline. Maximum occupant compartment deformation was 5.6 inches in the roof area. Exterior crush and occupant compartment measurements are shown in Appendix B, Tables B5 and B6, respectively.

Occupant Risk Factors

Data from the accelerometer located at the vehicle center of gravity were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was $3.9 \mathrm{ft} / \mathrm{s}(1.2 \mathrm{~m} / \mathrm{s})$ at 0.516 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was -0.2 g from 0.956 to 0.966 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -2.5 g between 0.000 and 0.050 s . In the lateral direction, the occupant impact velocity was $1.6 \mathrm{ft} / \mathrm{s}(0.5 \mathrm{~m} / \mathrm{s})$ at 0.516 s , the highest 0.010 -s occupant ridedown acceleration was 0.2 g from 0.638 to 0.648 s , and the maximum 0.050 -s average acceleration was -0.5 g between 0.130 and 0.180 s . Figure 4.10 presents these data and other pertinent information from the test. Figures D9 through D12 in Appendix D present vehicle angular displacements and accelerations versus time traces.

Assessment of Test Results

An assessment of the test based on the applicable NCHRP Report 350 safety evaluation criteria is provided below.

Structural Adequacy

B. The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.

Result: \quad The slip base sign support with 30 inch $\times 36$ inch burn ban sign readily activated by slipping away at the base as designed. (PASS)

Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformation of, or intrusions into, the occupant compartment that could cause serious injuries should not be permitted.

Result: The detached sign support traveled with the vehicle and came to rest along the vehicle path. The support did not penetrate nor show potential for penetrating the vehicle, or to present undue hazard to others in the area. The sign panel and support deformed the roof 5.6 inches into the occupant compartment. (PASS)

Figure 4.8. Vehicle after Test 452108-3.

Figure 4.9. Interior of Vehicle for Test 452108-3.

F. The vehicle should remain upright during and after collision although moderate roll, pitching, and yawing are acceptable.

Result: The 820 C vehicle remained upright and stable throughout the collision period. (PASS)
J. Occupant impact velocities should satisfy the following:

Longitudinal and Lateral Occupant Impact Velocity - m/s
$\frac{\text { Preferred }}{3[9.8 \mathrm{ft} / \mathrm{s}]} \quad \frac{\text { Maximum }}{5[16.8 \mathrm{ft} / \mathrm{s}]}$

Result: Longitudinal occupant impact velocity was $3.9 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $1.6 \mathrm{ft} / \mathrm{s}$. (PASS)
I. Occupant ridedown accelerations should satisfy the following: Longitudinal and Lateral Occupant Ridedown Accelerations - g

Preferred
17
Maximum
20

Result: Longitudinal ridedown acceleration was -0.2 g , and lateral occupant ridedown acceleration was 0.2 g . (PASS)

Vehicle Trajectory

K. After collision, it is preferable that the vehicle's trajectory not intrude into adjacent traffic lanes.

Result: The 820C vehicle did not intrude into adjacent traffic lanes. (PASS)
$N . \quad V e h i c l e ~ t r a j e c t o r y ~ b e h i n d ~ t h e ~ t e s t ~ a r t i c l e ~ i s ~ a c c e p t a b l e . ~$
Result: The vehicle came to rest 322 ft downstream (behind) the test installation. (PASS)

The following supplemental evaluation factors and terminology, as presented in the FHWA memo entitled "ACTION: Identifying Acceptable Highway Safety Features," were used for visual assessment of test results. Factors underlined below pertain to the results of the crash test reported herein.

Passenger Compartment Intrusion

1. Windshield Intrusion
a. No windshield contact
b. Windshield contact, no damage
c. Windshield contact, no intrusion
d. Device embedded in windshield, no significant intrusion
2. Body Panel Intrusion
e. Complete intrusion into passenger compartment
f. Partial intrusion into passenger compartment
yes or no

Loss of Vehicle Control

1. Physical loss of control
2. Perceived threat to other vehicles
3. Loss of windshield visibility
4. Debris on pavement

Physical Threat to Workers or Other Vehicles

1. Harmful debris that could injure workers or others in the area
2. Harmful debris that could injure occupants in other vehicles

No threat to others in area.

Vehicle and Device Condition

1. Vehicle Damage
a. None
d. Major dents to grill and body panels
b. Minor scrapes, scratches or dents
e. Major structural damage
c. Significant cosmetic dents
2. Windshield Damage
a. None
b. Minor chip or crack
c. Broken, no interference with visibility
d. Broken or shattered, visibility restricted but remained intact
3. Device Damage
a. None
b. Superficial
d. Substantial, replacement parts needed for repair
c. Substantial, but can be straightened
e. Cannot be repaired
e. Shattered, remained intact but partially dislodged
f. Large portion removed
g. Completely removed

TEST 452108-4 (NCHRP REPORT 350 TEST 3-61) ON THE 10 GAUGE STEEL PIPE SUPPORT WITH 30 INCH $\times 36$ INCH TXDOT BURN BAN SIGN

Test Vehicle

A 1998 Geo Metro, shown in Figures 4.11 and 4.12, was used for the crash test. Test inertia weight of the vehicle was 1812 lb , and its gross static weight was 1989 lb . The height to the lower edge of the vehicle bumper was 15.75 inches, and the height to the upper edge of the vehicle bumper was 20.25 inches. Figure B4 in Appendix B gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system and was released to be free-wheeling and unrestrained just prior to impact.

Soil and Weather Conditions

The test was performed on the afternoon of March 24, 2008. A total of 1.3 inches of rainfall was recorded six days prior to the test. Moisture content of the NCHRP Report 350 standard soil in which the sign support system was installed was 8.9 percent. Weather conditions at the time of testing were as follows: Wind speed: $9-10 \mathrm{mi} / \mathrm{h}$; Wind direction: 180 degrees with respect to the vehicle (vehicle was traveling in a northerly direction); Temperature: $64^{\circ} \mathrm{F}$; Relative humidity: 27 percent.

Test Description

The 1998 Geo Metro, traveling at an impact speed of $62.1 \mathrm{mi} / \mathrm{h}$, impacted the 2-7/8-inch O.D., 10 BWG steel tube support 6 inches from the vehicle centerline offset to the driver's side. Shortly after contact, the support began to move toward the field side, and the front bumper was crushed to the front edge of the hood. The top slip plate began to move at 0.004 s , and the support lost contact with the lower slip plate at 0.017 s . At 0.063 s , the vehicle lost contact with the support while traveling at a speed of $61.9 \mathrm{mi} / \mathrm{h}$. As the vehicle continued forward, both sign panels contacted the roof just above the windshield at 0.089 s , and the support contacted the roof at 0.097 s . At 0.175 s , the support lost contact with the roof of the vehicle. Figure C 4 in Appendix C shows sequential photographs of the test period.

Damage to Test Installation

Damage to the installation is shown in Figures 4.13 and 4.14. The base showed no movement in the ground. The keeper plate and bolts came to rest near the base. The 30 inch \times 36 inch burn ban sign panel separated from the support and came to rest 71 ft downstream of impact and 9 ft to the left. The 24 inch $\times 24$ inch confirmation sign panel and support came to rest 213 ft downstream of impact and 4 ft to the left of centerline. The vehicle came to rest 466 ft downstream and 37 ft to the left of the point of impact.

Figure 4.11. Vehicle/Installation Geometrics for Test 452108-4.

Figure 4.12. Vehicle before Test 452108-4.

Figure 4.13. After Impact Trajectory Path for Test 452108-4.

Figure 4.14. Installation after Test 452108-4.

Vehicle Damage

Damage to the vehicle is shown in Figure 4.15. The front bumper, grill, hood, radiator, and radiator support were deformed. Maximum exterior crush in the frontal plane at the front bumper was 5.9 inches. The windshield was shattered downward from the roofline, but there was no loss of visibility. The roof was deformed downward a maximum of 5.5 inches on the exterior of the vehicle and deformed into the occupant compartment 4.8 inches. Photographs of the interior of the vehicle are shown in Figure 4.16. Exterior crush and occupant compartment measurements are shown in Appendix B, Tables B7 and B8, respectively.

Occupant Risk Factors

Data from the accelerometer located at the vehicle center of gravity were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was $3.3 \mathrm{ft} / \mathrm{s}$ at 0.673 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was -0.2 g from 0.914 to 0.924 s , and the maximum 0.050 -s average acceleration was -1.5 g between 0.000 and 0.050 s . In the lateral direction, the occupant impact velocity was $0.0 \mathrm{ft} / \mathrm{s}$ at 0.673 s , the highest $0.010-\mathrm{s}$ occupant ridedown acceleration was 0.3 g from 0.760 to 0.770 s , and the maximum $0.050-\mathrm{s}$ average acceleration was -0.4 g between 0.128 and 0.178 s . Figure 4.17 presents these data and other pertinent information from the test. Figures D13 through D16 in Appendix D present vehicle angular displacements and accelerations versus time traces.

Assessment of Test Results

An assessment of the test based on the applicable NCHRP Report 350 safety evaluation criteria is provided below.

Structural Adequacy

B. The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.

Result: \quad The slip base with 2-7/8 inch O.D., 10 BWG steel tube sign support with 30 inch $\times 36$ inch burn ban sign readily activated by slipping away at the base as designed. (PASS)

Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformation of, or intrusions into, the occupant compartment that could cause serious injuries should not be permitted.

NOTE:

Still photographs were taken after vehicle was removed from test site. Movement jarred the windshield loose from the top of the windshield/roof frame.

Figure 4.15. Vehicle after Test 452108-4.

NOTE: Photographs were taken after vehicle was removed from test site. Movement jarred the windshield loose from the top of the windshield/roof frame.

Figure 4.16. Interior of Vehicle for Test 452108-4.

Result: The detached sign support traveled with the vehicle and came to rest along the vehicle path. The support did not penetrate nor show potential for penetrating the vehicle, or to present undue hazard to others in the area. The sign panel and support deformed the roof 4.8 inches into the occupant compartment. (PASS)
F. The vehicle should remain upright during and after collision although moderate roll, pitching, and yawing are acceptable.

Result: The 820C vehicle remained upright and stable during and after the collision event. (PASS)
K. Occupant impact velocities should satisfy the following:

Longitudinal and Lateral Occupant Impact Velocity - m/s
$\frac{\text { Preferred }}{3[9.8 \mathrm{ft} / \mathrm{s}]} \quad \frac{\text { Maximum }}{5[16.8 \mathrm{ft} / \mathrm{s}]}$

Result: Longitudinal occupant impact velocity was $3.3 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $0.0 \mathrm{ft} / \mathrm{s}$. (PASS)
I. Occupant ridedown accelerations should satisfy the following:

$$
\frac{\text { Longitudinal and Lateral Occupant Ridedown Accelerations }-g}{\frac{\text { Preferred }}{18}} \frac{\frac{\text { Maximum }}{20}}{20}
$$

Result: Longitudinal ridedown acceleration was -0.2 g , and lateral ridedown acceleration was 0.3 g . (PASS)

Vehicle Trajectory

K. After collision, it is preferable that the vehicle's trajectory not intrude into adjacent traffic lanes.

Result: The 820 C vehicle did not intrude into adjacent traffic lanes. (PASS)
$N . \quad V e h i c l e ~ t r a j e c t o r y ~ b e h i n d ~ t h e ~ t e s t ~ a r t i c l e ~ i s ~ a c c e p t a b l e . ~$
Result: The vehicle came to rest behind the test installation. (PASS)
The following supplemental evaluation factors and terminology, as presented in the FHWA memo entitled "ACTION: Identifying Acceptable Highway Safety Features," were used for visual assessment of test results. Factors underlined below pertain to the results of the crash test reported herein.

Passenger Compartment Intrusion

1. Windshield Intrusion
a. No windshield contact
b. Windshield contact, no damage
c. Windshield contact, no intrusion
d. Device embedded in windshield, no significant intrusion
2. Body Panel Intrusion
e. Complete intrusion into passenger compartment
f. Partial intrusion into passenger compartment
yes or no

Loss of Vehicle Control

1. Physical loss of control
2. Perceived threat to other vehicles
3. Loss of windshield visibility
4. Debris on pavement

Physical Threat to Workers or Other Vehicles

1. Harmful debris that could injure workers or others in the area
2. Harmful debris that could injure occupants in other vehicles

No threat to others in area.

Vehicle and Device Condition

1. Vehicle Damage
a. None
b. Minor scrapes, scratches or dents
c. Significant cosmetic dents
2. Windshield Damage
a. None e. Shattered, remained intact but
b. Minor chip or crack
c. Broken, no interference with visibility
d. Broken or shattered, visibility restricted but remained intact
3. Device Damage
a. None
b. Superficial
c. Substantial, but can be straightened
d. Substantial, replacement parts needed for repair
e. Cannot be repaired
d. Major dents to grill and body panels
e. Major structural damage partially dislodged
f. Large portion removed
g. Completely removed

CHAPTER 5. SUMMARY AND CONCLUSIONS

SUMMARY OF TEST RESULTS

Schedule 80 Steel Pipe Support with 24 inch $\times 24$ inch Burn Ban Sign

Two tests were performed on a slip base sign support system with a 2-1/2-inch nominal diameter schedule 80 steel pipe support, a 24 inch $\times 24$ inch $\times 0.080$ inch thick aluminum confirmation sign mounted at a height of 7 ft , and a 24 inch $\times 24 \mathrm{inch} \times 0.080$ composite burn ban sign mounted at a height of $4 \mathrm{ft}-9$ inches.

In the low-speed test, the support readily activated by slipping away at the base as designed. The released sign support traveled with the vehicle and came to rest under the vehicle. The support did not penetrate nor show potential for penetrating the vehicle or to present undue hazard to others in the area. No occupant compartment deformation occurred. The 820 C vehicle remained upright and stable throughout the collision period. Occupant risk factors were within the preferred limits specified in NCHRP Report 350. The vehicle came to rest 92.5 ft downstream (behind) the test installation and did not intrude into adjacent traffic lanes.

In the high-speed test, the support also readily activated by slipping away at the base as designed. The released sign support traveled with the vehicle and came to rest along the path of the vehicle. The support did not penetrate nor show potential for penetrating the vehicle or to present undue hazard to others in the area. Maximum occupant compartment deformation was 5.0 inches in the roof area resulting from secondary contact with the released sign support system. The 820 C vehicle remained upright and stable during and after the collision event. Again, occupant risk factors were with the preferred limits specified in NCHRP Report 350. The vehicle came to rest behind the test installation and did not intrude into adjacent traffic.

After analyzing the results of the testing on the slip base sign support system with 24 inch x 24 inch x 0.080 composite burn ban sign, the researchers determined that the high-speed test was the more critical test. Therefore, only this test was performed on the remaining burn ban sign support configurations that were evaluated.

Schedule 80 Steel Pipe Support with 30 inch $\times 36$ inch Burn Ban Sign

In a high-speed test (NCHRP Report 350 Test 3-61) of a slip base sign support system with a $2-1 / 2$-inch nominal diameter schedule 80 steel pipe support, a 24 inch $\times 24$ inch \times 0.080 inch thick aluminum confirmation sign mounted at a height of 7 ft , and a 30 inch $\times 36$ inch $\times 0.080$ inch composite burn ban sign mounted at a height of $3 \mathrm{ft}-9$ inches, the system readily activated by slipping away at the base as designed. The released sign support traveled with the vehicle and came to rest along the vehicle path. The support did not penetrate nor show potential for penetrating the vehicle or to present undue hazard to others in the area. The sign panel and support deformed the roof 5.6 inches into the occupant compartment. The 820 C vehicle remained upright and stable throughout the collision period. Occupant risk factors were within
the preferred limits specified in NCHRP Report 350. The 820 C vehicle came to rest 322 ft downstream (behind) the test installation and did not intrude into adjacent traffic lanes.

10 Gauge Steel Pipe Support with 30 inch $\times 36$ inch Burn Ban Sign

In a high-speed test (NCHRP Report 350 Test 3-61) of a slip base sign support system with a $2-7 / 8$-inch outside diameter, 10 BWG steel tube support, a 24 inch $\times 24$ inch $\times 0.080$ inch thick aluminum confirmation sign mounted at a height of 7 ft , and a $30 \mathrm{inch} \times 36$ inch \times 0.080 inch composite burn ban sign mounted at a height of $3 \mathrm{ft}-9$ inches, the system readily activated by slipping away at the base as designed. The released sign support traveled with the vehicle and came to rest along the vehicle path. The support did not penetrate nor show potential for penetrating the vehicle or to present undue hazard to others in the area. The sign panel and support deformed the roof 4.8 inches into the occupant compartment. The 820C vehicle remained upright and stable during and after the collision event. Occupant risk factors were within the preferred limits specified in NCHRP Report 350. The 820 C vehicle came to rest behind the test installation and did not intrude into adjacent traffic lanes.

CONCLUSIONS

As summarized in Tables 5.1 through 5.4, the slip base sign support systems with attached burn ban signs satisfied the impact performance evaluation criteria of NCHRP Report 350.

In the three high-speed tests performed on different burn ban sign configurations, secondary contact of the sign support system with the roof resulted in substantial deformation of the occupant compartment ranging in magnitude from 4.8 inches to 5.6 inches. These deformation levels are less than the 6 -inch roof deformation threshold established by FHWA based on accepted testing of various breakaway sign support and luminaire poles. However, they are significantly greater than roof deformations typically associated with impacts of slip base sign support systems.

After examination of the test results, the extent of roof deformation is primarily attributed to the use of a slip base with a small, 4 square foot aluminum confirmation sign rather than the addition of the burn ban signs to these systems. It was concluded that the small size and light weight of the confirmation sign substrate decreased the height of the center of mass and mass moment of inertia of the support system. This adversely influenced the trajectory of the support post and increased the severity of interaction with the vehicle by lowering the point of rotation and increasing the rotational velocity of the released support post.

Historically, and primarily due to economic considerations, slip base sign supports have only been used for larger sign panels (e.g., area greater than 10 square feet). With an increase in the size of the sign panel, there is a corresponding increase in the sign panel weight and length of the support post, both of which tend to increase the height of the center of mass and mass moment of inertia. This increases the height of the point of rotation and decreases the rate of
rotation of the released support, which tends to shift the point of secondary contact further rearward on the vehicle and decrease the severity of this contact. In tests of the Texas slip base with a 16 square foot plywood sign panel mounted at a height of 7 ft from the ground to the bottom of the sign, the released sign support system rotated above the impacting vehicle without any secondary contact at all $(3,4)$.

A recent review of district practices by the Traffic Operations Division noted that some districts were using the Texas slip base for all small signs, even those having an area less than 10 square feet. The motivation behind this practice was to reduce inventory associated with multiple types of supports and simplify maintenance training and operations. Thus, the smallest, lightest sign panel being used with the Texas slip base support is a 24 inch $\times 24$ inch aluminum confirmation sign. Until this project, TTI researchers were not aware of any crash testing of slip base supports with signs this small.

Although the slip base support with 24 inch $\times 24$ inch aluminum confirmation sign was found to satisfy NCHRP Report 350 impact performance requirements, it may be appropriate to limit the minimum sign area on slip base supports to achieve a reduction in occupant compartment deformation caused by secondary contact of the released support system with the roof of the impacting vehicle. It is recommended that an expanded investigation using engineering modeling and full-scale crash testing be undertaken to more fully examine the performance limits of slip base sign supports in terms of sign panel size, mass, and mounting height. The compatibility of other vehicle types (e.g., pickup truck) with the slip base with small signs could also be evaluated.
Table 5.1. Performance Evaluation Summary for NCHRP Report 350 Test 3-60
on the Schedule 80 Steel Pipe Support with 24 inch $\times 24$ inch Burn Ban Sign.

Test Agency: Texas Transp	-		Test No.: 452108-1	Test Date: 2008-03-05
NCHRP Report 350 Test 3-60 Evaluation Criteria				Assessment
Structural Adequacy				
B. The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.			The 2-1/2-inch diameter schedule 80 steel sign support with 24 inch $\times 24$ inch burn ban sign readily activated by slipping away at the base as designed.	Pass
Occupant Risk				
D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment that could cause serious injuries should not be permitted.			The detached sign support traveled with the vehicle and came to rest under the vehicle. The support did not penetrate nor show potential for penetrating the vehicle or to present undue hazard to others in the area. No occupant compartment deformation occurred.	Pass
F. The vehicle should remain upright during and after collision although moderate roll, pitching, and yawing are acceptable.			The 820 C vehicle remained upright and stable throughout the collision period.	Pass
Occupant impact velocities should satisfy the following:			Longitudinal occupant impact velocity was $5.6 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $0.7 \mathrm{ft} / \mathrm{s}$.	
Occupant Velocity Limits (m / s)				
Component	Preferred	Maximum		Pass
Longitudinal	3 [9.8 f/s]	$5[16.8 \mathrm{ft} / \mathrm{s}]$		
Occupant ridedown accelerations should satisfy the following:			Longitudinal ridedown acceleration was 0.2 g , and lateral occupant ridedown acceleration was 0.2 g .	
Occupant Ridedown Acceleration Limits (g)				Pass
Component	Preferred	Maximum		
Longitudinal and lateral	15	20		
Vehicle Trajectory				
K. After collision, it is preferable that the vehicle's trajectory not intrude into adjacent traffic lanes.			The vehicle did not intrude into adjacent traffic lanes.	Pass
N. Vehicle trajectory behind the test article is acceptable.			The vehicle came to rest 92.5 ft downstream (behind) the test installation.	Pass

Table 5.2. Performance Evaluation Summary for NCHRP Report 350 Test 3-61
on the Schedule 80 Steel Pipe Support with 24 inch $\times 24$ inch Burn Ban Sign.

Test Agency: Texas Transportation Institute			Test No.: 452108-2 Test Date: 2008-03-05		
NCHRP Report 350 Test 3-61 Evaluation Criteria					
Structural Adequacy					
B. The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.			The $2-1 / 2$-inch diameter schedule 80 steel pipe sign support with 24 inch $\times 24$ inch burn ban sign readily activated by slipping away at the base as designed.	Pass	
Occupant Risk					
D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment that could cause serious injuries should not be permitted.			The detached sign support traveled with the vehicle and came to rest along the path of the vehicle. The support did not penetrate nor show potential for penetrating the vehicle or to present undue hazard to others in the area. Maximum occupant compartment deformation was 5.0 inches in the roof area.	Pass	
F. The vehicle should remain upright during and after collision although moderate roll, pitching, and yawing are acceptable.			The 820 C vehicle remained upright and stable during and after the collision event.	Pass	
Occupant impact velocities should satisfy the following:			Longitudinal occupant impact velocity was $5.2 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $2.3 \mathrm{ft} / \mathrm{s}$.		
Occupant Velocity Limits (m / s)				Pass	
Component	Preferred	Maximum		Pass	
Longitudinal	3 [$9.8 \mathrm{f} / \mathrm{s}$]	$5[16.8 \mathrm{ft} / \mathrm{s}]$			
Occupant ridedown accelerations should satisfy the following:			Longitudinal ridedown acceleration was 0.4 g , and lateral ridedown acceleration was 0.7 g .		
Occupant Ridedown Acceleration Limits (g)				Pass	
Component	Preferred	Maximum			
Longitudinal and lateral	15	20			
Vehicle Trajectory					
K. After collision, it is preferable that the vehicle's trajectory not intrude into adjacent traffic lanes.			The vehicle did not intrude into adjacent traffic lanes.	Pass	
N. Vehicle trajectory behind	test article	ceptable.	The vehicle came to rest behind the test installation.	Pass	

Table 5.3. Performance Evaluation Summary for NCHRP Report 350 Test 3-61 on the Schedule 80 Steel Pipe Support with 30 inch $\times 36$ inch Burn Ban Sign.

Table 5.4. Performance Evaluation Summary for NCHRP Report 350 Test 3-61 on the 10 Gauge Steel Pipe Support with 30 inch $\times 36$ inch Burn Ban Sign. Test Date: 2008-03-24

NCHRP Report 350 Test 3-61 Evaluation Criteria			Test Results	Assessment
Structural Adequacy				
B. The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.			The 2-1/2-inch diameter 10 gauge steel pipe sign support with 30 inch $\times 36$ inch burn ban sign readily activated by slipping away at the base as designed.	Pass
Occupant Risk				
D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment that could cause serious injuries should not be permitted.			The detached sign support traveled with the vehicle and came to rest along the vehicle path. The support did not penetrate nor show potential for penetrating the vehicle or to present undue hazard to others in the area. The sign panel and support deformed the roof 4.8 inches into the occupant compartment.	Pass
F. The vehicle should remain upright during and after collision although moderate roll, pitching, and yawing are acceptable.			The 820C vehicle remained upright and stable during and after the collision event.	Pass
H. Occupant impact velociti	hould satisfy	following:	Longitudinal occupant impact velocity was $3.3 \mathrm{ft} / \mathrm{s}$, and lateral occupant impact velocity was $0.0 \mathrm{ft} / \mathrm{s}$.	
Occupant Velocity Limits (m / s)				Pass
Component	Preferred	Maximum		Pass
Longitudinal	3 [9.8 f/s]	5 [16.8 ft/s]		
Occupant ridedown accelerations should satisfy the following:			Longitudinal ridedown acceleration was $-0.2 g$, and lateral ridedown acceleration was 0.3 g .	
Occupant Ridedown Acceleration Limits (g)				Pass
Component	Preferred	Maximum		
Longitudinal and lateral	15	20		
Vehicle Trajectory				
K. After collision, it is preferable that the vehicle's trajectory not intrude into adjacent traffic lanes.			The 820C vehicle did not intrude into adjacent traffic lanes.	Pass
Vehicle trajectory behind the test article is acceptable.			The vehicle came to rest behind the test installation.	Pass

CHAPTER 6. IMPLEMENTATION STATEMENT

Texas counties expressed a desire to TxDOT to post advisory signs on the roadside to alert motorists when a burn ban is in effect. For obvious economic reasons, the preferred method of implementation is to append the burn ban notification signs to existing sign support structures already installed along Texas highways.

In support of this request, TxDOT sponsored this project to evaluate the impact performance of a Texas slip base sign support system with a burn ban sign appended to the support below the primary sign at a mounting height less than 7 ft . The impact performance of the burn ban sign support configurations was evaluated through full-scale crash testing. The crash testing was performed in accordance with the requirements of NCHRP Report 350.

To qualify the burn ban sign for use on most if not all slip base support systems installed across the state, the research plan included identifying and testing the most critical sign configuration. The configuration selected for testing incorporated a 24 inch $\times 24$ inch \times 0.080 inch thick aluminum confirmation sign mounted at a height of 7 ft , with the burn ban signs mounted below.

Two different sizes of burn ban signs were considered: a 24 inch $\times 24$ inch sign and a 30 inch $\times 36$ inch sign. The smaller 24 inch $\times 24$ inch sign is intended to simply communicate that a burn ban is in effect. The larger 30 inch $\times 36$ inch sign will additionally indicate the name of the county when needed.

Based on the satisfactory test results reported herein, the practice of appending a burn ban sign to an existing slip base sign support system is considered suitable for implementation. The burn ban signs should be fabricated from 0.080 -inch thick lightweight composite sheeting consisting of a high-density polyethylene (HDPE) core sandwiched between two thin outer sheets of aluminum and should be no larger than 30 inches $\times 36$ inches in size.

The burn ban signs may be attached to any slip base sign support system having a primary sign panel that is 24 inches $\times 24$ inches or larger mounted at a height of 7 ft or greater from the ground to the bottom of the sign. Both the $2-1 / 2$-inch nominal diameter schedule 80 steel pipe support and 2-7/8-inch outside diameter, 10 BWG steel tube support are acceptable support post options. The mounting height of the burn ban sign should not be less than $3 \mathrm{ft}-9$ inches from the ground to the bottom of the bottom of the composite sign. Further details for mounting composite burn ban signs to slip base sign support systems are presented in Figure 6.1 and 6.2.

It should be noted that slip base sign supports have traditionally been used for signs having an area of 10 square feet or more. However, some districts are now using the Texas slip base with signs as small as 4 square feet. In full-scale tests of this configuration, secondary contact of the released sign support system with the roof resulted in roof deformation ranging in magnitude from 4.8 inches to 5.6 inches. While this level of deformation is considered acceptable by FHWA, it is significantly greater than roof deformations typically associated with
impacts of slip base sign support systems that use larger sign panels. It is recommended that additional research be performed to more fully understand the performance limits of slip base sign supports in terms of sign panel size, mass, and mounting height, and determine whether or not a minimum sign area should be established for slip base support. The compatibility of other vehicle types (e.g., pickup truck) with the slip base with small signs could also be evaluated.

Figure 6.1. Details of 24 inch $\times 24$ inch Burn Ban Sign Mounted to Texas Slip Base.

Figure 6.2. Details of $\mathbf{3 0}$ inch $\times \mathbf{3 6}$ inch Burn Ban Sign Mounted to Texas Slip Base.

REFERENCES

1. H. E. Ross, Jr., D. L. Sicking, R. A. Zimmer and J. D. Michie. Recommended Procedures for the Safety Performance Evaluation of Highway Features. National Cooperative Highway Research Program Report 350, Transportation Research Board, National Research Council, Washington, D.C., 1993.
2. R.P. Bligh, H.E. Ross, Jr., W.L. Menges, and S.K. Schoeneman. Development and Evaluation of New Small Sign Support Systems. Report No. 7-1971. Texas Transportation Institute, Texas A\&M University, College Station, Texas, April 2001.
3. R.P. Bligh and W.L. Menges. NCHRP Report 350 Testing of the Southwest Pipe Sign Support. Report No. 405481. Texas Transportation Institute, Texas A\&M University, College Station, Texas, June 1996.
4. R.P. Bligh, A.G. Arnold, and W.L. Menges. Safety Performance Evaluation of Southwest Pipn Sign Support Systems in Weak Soil. Report No. 405851-1F. Texas Transportation Institute, Texas A\&M University, College Station, Texas, February 1997.
5. R.P. Bligh, D.L. Bullard, Jr., W.L. Menges, and S.K. Schoeneman. Testing and Evaluation of Slip Base Sign Supports. Report No. 0-1792-5. Texas Transportation Institute, Texas A\&M University, College Station, Texas, May 2001.
6. R.P. Bligh, C.E. Buth, W.L. Menges, and B.G. Butler. Evaluation of Design and Retrofit Concepts for Slip-Base Sign Support Systems. Report No. 3911-S. Texas Transportation Institute, Texas A\&M University, College Station, Texas, February 2001.
7. Federal Highway Administration Memorandum from the Director, Office of Engineering, entitled: "ACTION: Identifying Acceptable Highway Safety Features," dated July 25, 1997.

APPENDIX A. CRASH TEST AND DATA ANALYSIS PROCEDURES

The crash test and data analysis procedures were in accordance with guidelines presented in NCHRP Report 350. Brief descriptions of these procedures are presented as follows.

ELECTRONIC INSTRUMENTATION AND DATA PROCESSING

The test vehicle was instrumented with three solid-state angular rate transducers to measure roll, pitch, and yaw rates; a triaxial accelerometer near the vehicle center of gravity (c.g.) to measure longitudinal, lateral, and vertical acceleration levels; and a backup biaxial accelerometer in the rear of the vehicle to measure longitudinal and lateral acceleration levels. These accelerometers were ENDEVCO ${ }^{\circledR}$ Model 2262CA, piezoresistive accelerometers with a $\pm 100 \mathrm{~g}$ range.

The accelerometers are strain gage type with a linear millivolt output proportional to acceleration. Angular rate transducers are solid state, gas flow units designed for high-"g" service. Signal conditioners and amplifiers in the test vehicle increase the low-level signals to a ± 2.5 volt maximum level. The signal conditioners also provide the capability of a resistive calibration (R-cal) or shunt calibration for the accelerometers and a precision voltage calibration for the rate transducers. The electronic signals from the accelerometers and rate transducers are transmitted to a base station by means of a 15 -channel, constant bandwidth, Inter-Range Instrumentation Group (I.R.I.G.), FM/FM telemetry link for recording and for display. Calibration signals from the test vehicle are recorded before the test and immediately afterwards. A crystal-controlled time reference signal is simultaneously recorded with the data. Wooden dowels actuate pressure-sensitive switches on the bumper of the impacting vehicle prior to impact to indicate the elapsed time over a known distance to provide a measurement of impact velocity. The initial contact also produces an "event" mark on the data record to establish the instant of contact with the installation.

The multiplex of data channels, transmitted on one radio frequency, is received and demultiplexed onto a $\mathrm{TEAC}^{\circledR}$ instrumentation data recorder. After the test, the data are played back from the TEAC ${ }^{\circledR}$ recorder and digitized. A proprietary software program (WinDigit) converts the analog data from each transducer into engineering units using the R-cal and pre-zero values at 10,000 samples per second per channel. WinDigit also provides Society of Automotive Engineers (SAE) J211 class 180 phaseless digital filtering and vehicle impact velocity.

All accelerometers are calibrated annually according to the SAE J211 4.6.1 by means of an ENDEVCO ${ }^{\circledR}$ 2901, precision primary vibration standard. This device and its support instruments are returned to the factory annually for a National Institute of Standards Technology (NIST) traceable calibration. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel, per SAE J211. Calibrations and evaluations are made any time data are suspect.

The Test Risk Assessment Program (TRAP) uses the data from WinDigit to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10 -millisecond (ms) average ridedown acceleration. WinDigit calculates change in vehicle velocity at the end of a given impulse period. In addition, WinDigit computes maximum average accelerations over $50-\mathrm{ms}$ intervals in each of the three directions. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a $60-\mathrm{Hz}$ digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001 -s intervals and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact.

ANTHROPOMORPHIC DUMMY INSTRUMENTATION

An Alderson Research Laboratories Hybrid II, $50^{\text {th }}$ percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the driver's position of the 820 C vehicle. The dummy was uninstrumented. Use of a dummy in the 2000P vehicle is optional according to NCHRP Report 350, and there was no dummy used in the tests with the 2000P vehicle.

PHOTOGRAPHIC INSTRUMENTATION AND DATA PROCESSING

Photographic coverage of the test included three high-speed cameras: one overhead with a field-of-view perpendicular to the ground and directly over the impact point; one placed behind the installation at an angle; and a third placed to have a field-of-view parallel to and aligned with the installation at the downstream end. A flash bulb activated by pressure-sensitive tape switches was positioned on the impacting vehicle to indicate the instant of contact with the installation and was visible from each camera. The films from these high-speed cameras were analyzed on a computer-linked Motion Analyzer to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A mini-DV camera and still cameras were used to record and document conditions of the test vehicle and installation before and after the test.

TEST VEHICLE PROPULSION AND GUIDANCE

The test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2-to-1 speed ratio between the test and tow vehicle
existed with this system. Just prior to impact with the installation, the test vehicle was released to be free-wheeling and unrestrained. The vehicle remained free-wheeling, i.e., no steering or braking inputs, until the vehicle cleared the immediate area of the test site, at which time the vehicle's brakes were activated to bring it to a safe and controlled stop.

APPENDIX B. TEST VEHICLE PROPERTIES AND INFORMATION

- Denotes accelerometer location.

NOTES:

Engine Type: 3 cylinder
Engine CID:
Transmission Type:

 ptional Equipment:
Dummy Data:
Type:
$\frac{95^{\text {th }} \text { Percentile Male }}{\frac{169 \mathrm{lb}}{\text { Front Passenger }}}$

Geometry: inches

Mass Distribution:

lb :
LF: \qquad
RF: \qquad

LR: 360
RR: \qquad 346

Figure B1. Vehicle Properties for Test 452108-1.

Table B1. Exterior Crush Measurements for Test 452108-1.

Note: Measure C_{1} to C_{6} from Driver to Passenger side in Front or Rear impacts - Rear to Front in Side Impacts.

Specific Impact Number	Plane* of C-Measurements	Direct Damage		$\begin{gathered} \text { Field } \\ L^{* *} \end{gathered}$	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	\pm D
		$\begin{gathered} \text { Width** } \\ \text { (CDC) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Max*** } \\ \text { Crush } \\ \hline \end{gathered}$								
1	Front bumper	3.9	6.3	11.8	-1.6	1.2	2.4	6.3	2.0	0.8	5.9
	All measurements										
	in inches										

${ }^{1}$ Table taken from National Accident Sampling System (NASS).
*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc.
Record the value for each C-measurement and maximum crush.
**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).
***Measure and document on the vehicle diagram the location of the maximum crush.
Note: Use as many lines/columns as necessary to describe each damage profile.

Table B2. Occupant Compartment Measurements for Test 452108-1.
Vehicle Inventory Number: \qquad 765

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

A1	56.7	56.7
A2	79.1	79.1
A3	56.2	56.2
B1	37.9	37.9
B2	35.4	35.4
B3	37.8	37.8
B4	34.8	34.8
B5	35.3	35.3
B6	34.8	34.8
C1	22.0	22.0
C2	----	----
C3	22.0	22.0
D1	9.6	9.6
D2	3.7	3.7
D3	9.4	9.4
E1	47.8	47.8
E2	46.4	46.4
F	47.6	47.6
G	47.6	47.6
H	40.6	40.6
I	40.6	40.6
J*	47.2	47.2

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT Before (inches)

After (inches)

Vehicle Inventory Number:

Date:	2008-03-05	Test No.:	452108-2	VIN No.:	2C1MR2263W6717581
Year:	Make:	Chevrolet	Model:	Metro	

Tire Inflation Pressure: $\quad 32 \mathrm{psi}$ Odometer: 175399 Tire Size: $\quad 155 / 80 \mathrm{R} 13$

Describe any damage to the vehicle prior to test: \qquad

- Denotes accelerometer location.

NOTES: \qquad
\qquad
Engine Type: 3 cylinder

Transmission Type:
1her

Geometry: inches

Mass Distribution:

lb :
LF: 578
RF: 542
LR: 370
RR: \qquad
Figure B2. Vehicle Properties for Test 452108-2.

Table B3. Exterior Crush Measurements for Test 452108-2.

Note: Measure C_{1} to C_{6} from Driver to Passenger side in Front or Rear impacts - Rear to Front in Side Impacts.

Specific Impact Number	Plane* of C-Measurements	Direct Damage		$\begin{gathered} \text { Field } \\ \text { L** } \\ \hline \end{gathered}$	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	\pm D
		$\begin{gathered} \text { Width** } \\ \text { (CDC) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Max*** } \\ \text { Crush } \\ \hline \end{gathered}$								
1	Front bumper	3.9	9.8	11.8	6.3	7.1	9.8	8.3	4.7	3.5	6.3
	All measurements										
	in inches										

${ }^{1}$ Table taken from National Accident Sampling System (NASS).
*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc.
Record the value for each C-measurement and maximum crush.
**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).
***Measure and document on the vehicle diagram the location of the maximum crush.
Note: Use as many lines/columns as necessary to describe each damage profile.

Table B4. Occupant Compartment Measurements for Test 452108-2.
Vehicle Inventory Number: 760

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

A1	56.7	56.7
A2	78.8	78.8
A3	56.3	56.3
B1	38.0	36.8
B2	35.5	32.9
B3	37.6	37.4
B4	34.8	29.8
B5	35.1	30.1
B6	34.8	32.9
C1	22.0	22.0
C2	----	--
C3	22.0	22.0
D1	9.5	9.5
D2	4.4	4.4
D3	9.6	9.6
E1	47.8	47.8
E2	46.3	46.3
F	47.6	47.6
G	47.6	47.6
H	40.6	40.6
1	40.6	40.6
J*	47.2	47.2

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT Before (inches)

After (inches)

Vehicle Inventory Number: 766

Date:	2008-03-24	Test No.:	452108-3	VIN No.:	2C1MR2291V6709028
Year:	Make:	Chevrolet	Model:	Metro	

Tire Inflation Pressure: 32 psi Odometer: 159411 Tire Size: 155 80R13

Describe any damage to the vehicle prior to test: \qquad

- Denotes accelerometer location.

NOTES: \qquad
\qquad
Engine Type: 4 cylinder
Engine CID:
1.3 liter

Transmission Type:

$\frac{x}{\frac{x}{x} \text { FWD }}$| Futo |
| :--- |
| Optional Equipment: |\quad| Manual |
| :---: |
| RWD |\quad 4WD

Dummy Data:	
Type:	
Mass:	$95^{\text {th }}$ percentile male
Seat Position:	

Geometry: inches

a	62.6	f	31.1	k	11.8	p	4.7	u	16.5
b	55.9	g		1	25.8	q	22.4	v	21.6
C	147.8	h	32.9	m	54.5		14.5	w	37.4
d	23.6	i	15.7	n	53.5	S	12.0	x	95.3
e	93.1	j	20.3	0	25.6	t	60.2		
Wheel Center Ht Front			10.2	Wheel Center Ht Rear			10.8		
GVWR Ratings:			Mass: lb	Curb			Test Inertial	Gross Static	
Front	1433		$\mathrm{M}_{\text {front }}$	1208			1206	1292	
Back	1234		$\mathrm{M}_{\text {rear }}$	668			659	743	
Total	2623		$\mathrm{M}_{\text {Total }}$	1876			1865	2035	

Mass Distribution:

lb :
LF: 595
RF: 611
LR: \qquad RR: \qquad 326

Figure B3. Vehicle Properties for Test 452108-3.

Table B5. Exterior Crush Measurements for Test 452108-3.
Vehicle Inventory Number: 766

Date:	2008-03-24	Test No.:	452108-3	VIN No.:	2C1MR2291V6709028
Year:	1997	Make:	Chevrolet	Model:	Metro

VEHICLE CRUSH MEASUREMENT SHEET ${ }^{1}$

Complete When Applicable	
End Damage	Bowing: B1
Undeformed end width	
Corner shift: A1	
A2	$\mathrm{B} 2 \ldots \mathrm{X} 1$
End shift at frame (CDC)	
(check one)	
<4 inches	
≥ 4 inches	

Note: Measure C_{1} to C_{6} from Driver to Passenger side in Front or Rear impacts - Rear to Front in Side Impacts.

Specific Impact Number	Plane* of C-Measurements	Direct Damage		$\begin{gathered} \text { Field } \\ L^{* *} \end{gathered}$	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	\pm D
		$\begin{gathered} \text { Width** } \\ \text { (CDC) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Max*** } \\ \text { Crush } \\ \hline \end{gathered}$								
1	Front bumper	5.9	5.9	15.7	0.6	1.6	5.1	5.5	3.5	1.6	-3.9
	All measurements										
	in inches										

${ }^{1}$ Table taken from National Accident Sampling System (NASS).
*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc.
Record the value for each C-measurement and maximum crush.
${ }^{* *}$ Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).
***Measure and document on the vehicle diagram the location of the maximum crush.
Note: Use as many lines/columns as necessary to describe each damage profile.

Table B6. Occupant Compartment Measurements for Test 452108-3.
Vehicle Inventory Number: 766

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

A1	56.8	56.8
A2	79.1	79.1
A3	56.1	56.1
B1	37.8	34.6
B2	35.0	30.3
B3	37.6	36.8
B4	34.7	29.1
B5	34.9	29.8
B6	34.7	31.3
C1	21.8	21.6
C2	----	----
C3	21.6	21.6
D1	9.2	9.2
D2	3.7	3.7
D3	9.4	9.4
E1	47.8	47.8
E2	46.5	46.5
F	47.2	47.2
G	47.2	47.2
H	40.6	40.6
1	40.6	40.6
J*	47.2	47.2

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT Before (inches)

After
(inches)

Vehicle Inventory Number: 734

Date:	2008-03-24	Test No.:	452108-4	VIN No.:	2C1MR1160W6705754
Year: 1998	Make:	Chevrolet	Model:	Metro	

Tire Inflation Pressure: 32 psi Odometer: 105744 Tire Size: 155 80R13

Describe any damage to the vehicle prior to test: \qquad

- Denotes accelerometer location.

NOTES: \qquad

Engine CID: 3 cylinder

Transmission Type:
1 liter
Auto or $\frac{x}{\frac{x}{2}}$ FWD Manual
Optional Equipment:

Dummy Data:	
Type:	
Mass:	$95^{\text {th }}$ percentile male
Seat Position:	Front passenger

Geometry: inches

a	62.6	f	31.1	k	11.8	p	4.7	u	16.5
b	55.9	g		1	25.8	q	22.4	V	21.6
c	147.8	h	49.4	m	54.5	r	14.5	w	37.4
d	23.6	i	15.7	n	53.5	S	12.0	X	95.3
e	93.1	j	20.3	0	25.6	t	60.2		

Wheel Center Ht Front
10.2

Wheel Center Ht Rear \qquad

GVWR Ratings:		Mass: lb	Curb	Test Inertial	Gross Static
Front	1400	$\mathrm{M}_{\text {front }}$	1102	1116	1204
Back	1235	$\mathrm{M}_{\text {rear }}$	670	696	785
Total	2590	$\mathrm{M}_{\text {Total }}$	1772	1812	1989

Mass Distribution:

lb:
LF: 580
RF: 536
LR: 361
RR: \qquad 335

Figure B4. Vehicle Properties for Test 452108-4.

Table B7. Exterior Crush Measurements for Test 452108-4.

Note: Measure C_{1} to C_{6} from Driver to Passenger side in Front or Rear impacts - Rear to Front in Side Impacts.

Specific Impact Number	Plane* of C-Measurements	Direct Damage		$\begin{gathered} \text { Field } \\ L^{* *} \end{gathered}$	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	\pm D
		$\begin{gathered} \text { Width** } \\ \text { (CDC) } \\ \hline \end{gathered}$	Max*** Crush								
1	Front bumper	5.9	5.9	15.7	1.2	2.0	5.5	5.5	3.9	2.0	-7.1
	All measurements										
	in inches										

${ }^{1}$ Table taken from National Accident Sampling System (NASS).
*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc.
Record the value for each C-measurement and maximum crush.
**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).
***Measure and document on the vehicle diagram the location of the maximum crush.
Note: Use as many lines/columns as necessary to describe each damage profile.

Table B8. Occupant Compartment Measurements for Test 452108-4.
Vehicle Inventory Number: \qquad 734

A1	56.6	56.6
A2	79.1	79.1
A3	56.1	56.1
B1	37.9	33.7
B2	35.4	30.6
B3	37.8	37.0
B4	35.0	31.1
B5	35.2	31.4
B6	35.0	33.2
C1	22.4	22.4
C2	----	----
C3	22.4	22.4
D1	9.6	9.6
D2	3.5	3.5
D3	9.4	9.4
E1	47.8	47.8
E2	46.3	46.3
F	47.2	47.2
G	47.2	47.2
H	40.6	40.6
1	40.6	40.6
J*	47.2	47.2

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT Before (inches) After (inches)

APPENDIX C. SEQUENTIAL PHOTOGRAPHS

0.000 s

0.061 s

0.122 s

0.184 s

Figure C1. Sequential Photographs for Test 452108-1 (Oblique and Perpendicular Views).

Figure C1. Sequential Photographs for Test 452108-1 (Oblique and Perpendicular Views) (continued).

Figure C2. Sequential Photographs for Test 452108-2
(Perpendicular View).

Figure C3. Sequential Photographs for Test 452108-3
(Perpendicular View).

0.000 s

0.024 s

0.048 s

0.072 s

Figure C4. Sequential Photographs for Test 452108-4 (Oblique and Perpendicular Views).

Figure C4. Sequential Photographs for Test 452108-4 (Oblique and Perpendicular Views) (continued).

APPENDIX D. VEHICLE ANGULAR DISPLACEMENTS AND ACCELERATIONS

Figure D1. Vehicle Angular Displacements for Test 452108-1.

Figure D2. Vehicle Longitudinal Accelerometer Trace for Test 452108-1
(Accelerometer Located at Center of Gravity).
Y Acceleration at CG

Figure D3. Vehicle Lateral Accelerometer Trace for Test 452108-1
(Accelerometer Located at Center of Gravity).

Figure D4. Vehicle Vertical Accelerometer Trace for Test 452108-1
Roll, Pitch, and Yaw Angles

Figure D5. Vehicle Angular Displacements for Test 452108-2.
(sәәдбәр) sәןбич

Figure D6. Vehicle Longitudinal Accelerometer Trace for Test 452108-2 (Accelerometer Located at Center of Gravity).
(әэлол-б) ио!!
Y Acceleration at CG

Figure D7. Vehicle Lateral Accelerometer Trace for Test 452108-2 (Accelerometer Located at Center of Gravity).

- Time of OIV $(0.4428 \mathrm{sec}) \quad$ - SAE Class 60 Filter

—— Time of OIV $(0.4428 \mathrm{sec}) \quad$ SAE Class 60 Filter (Accelerometer Located at Center of Gravity). (Accerometer Located at Ceter of Gravity).
Z Acceleration at CG

Figure D8. Vehicle Vertical Accelerometer Trace for Test 452108-2
(Accelerometer Located at Center of Gravity).
Vehicle Vertical Accelerometer Trace for Test 452108-2
(Accelerometer Located at Center of Gravity).
- SAE Class 60 Filter

Roll, Pitch, and Yaw Angles

Figure D9. Vehicle Angular Displacements for Test 452108-3.
X Acceleration at CG

$\square \quad$ Time of OIV $(0.5164 \mathrm{sec}) \quad$ - SAE Class 60 Filter
Figure D10. Vehicle Longitudinal Accelerometer Trace for Test 452108-3 (Accelerometer Located at Center of Gravity).

Y Acceleration at CG

Figure D11. Vehicle Lateral Accelerometer Trace for Test 452108-3 (Accelerometer Located at Center of Gravity).

Z Acceleration at CG

(әэлол-б) ио!!еләәәээ ן ןэ!

Roll, Pitch, and Yaw Angles

Figure D13. Vehicle Angular Displacements for Test 452108-4.

Figure D14. Vehicle Longitudinal Accelerometer Trace for Test 452108-4 (Accelerometer Located at Center of Gravity). - (Accelerometer Located at Center of Gravity).
Y Acceleration at CG

Figure D15. Vehicle Lateral Accelerometer Trace for Test 452108-4 (Accelerometer Located at Center of Gravity).

$$
\text { Time of OIV }(0.6726 \mathrm{sec})
$$

(Accelerometer Located at Center of Gravity).

Z Acceleration at CG

- SAE Class 60 Filter
Figure D16. Vehicle Vertical Accelerometer Trace for Test 452108-4 (Accelerometer Located at Center of Gravity).
(әэлол-б) ио!!еләәээ૪ ןээ!৷әл

