
 Technical Report Documentation Page
 1. Report No.
FHWA/TX-07/0-5003-2

 2. Government Accession No.

 3. Recipient's Catalog No.

 5. Report Date
September 2006
Resubmitted: February 2007
Published: April 2007

 4. Title and Subtitle
TESTING FOR COMPLIANCE TO NTCIP STANDARDS

 6. Performing Organization Code

 7. Author(s)
Robert De Roche

 8. Performing Organization Report No.
Report 0-5003-2
10. Work Unit No. (TRAIS)

 9. Performing Organization Name and Address
Texas Transportation Institute
The Texas A&M University System
College Station, Texas 77843-3135

11. Contract or Grant No.
Project 0-5003

13. Type of Report and Period Covered
Technical Report:
September 2005-August 2006

12. Sponsoring Agency Name and Address
Texas Department of Transportation
Research and Technology Implementation Office
P.O. Box 5080
Austin, Texas 78763-5080

14. Sponsoring Agency Code

15. Supplementary Notes
Project performed in cooperation with the Texas Department of Transportation and the Federal Highway
Administration.
Project Title: Development of TxDOT Procedures and Specifications for Testing Device Compliance to
NTCIP Standards
URL: http://tti.tamu.edu/document/0-5003-2.pdf
16. Abstract
The objectives of this two-year project are to define a framework for testing conformance to National
Transportation Communications for ITS Protocol (NTCIP) standards, identify an approach to describe the
extent to which testing is needed, and recommend the appropriate documentation for such testing activities.
To meet the objectives, the first year’s report included a summary of past and current efforts by various
groups and organizations, a description of available testing tools, and the results of a survey undertaken to
understand Texas Department of Transportation’s (TxDOT’s) testing process and needs. These topics were
followed by discussions of the steps involved in conformance testing, how NTCIP requirements are
specified, current TxDOT testing processes, reporting results, and the mapping of requirements to tests. The
first year’s report concluded with an enumerated list of recommendations to establish a testing framework.

This second year report looks at the details of testing documentation, provides estimates for developing test
procedures for the various NTCIP-conformant field devices, discusses how to apply the procedures to the
TxDOT testing processes, and presents an outline for training classes. The main portion of the report
concludes with some additional recommendations to establish a testing framework. Appendices address
modifications to TxDOT Closed Circuit Television (CCTV) specifications, a template for a TxDOT
specification listing CCTV NTCIP requirements, a set of CCTV test procedures, test results reporting,
miscellaneous communications test procedures, and a preliminary set of traffic signal controller procedures.
17. Key Words
NTCIP, ITS, Testing

18. Distribution Statement
No restrictions. This document is available to the
public through NTIS:
National Technical Information Service
Springfield, Virginia 22161
http://www.ntis.gov

19. Security Classif.(of this report)
Unclassified

20. Security Classif.(of this page)
Unclassified

21. No. of Pages
494

22. Price

 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

http://tti.tamu.edu/document/0-5003-2.pdf
http://www.ntis.gov

TESTING FOR COMPLIANCE TO NTCIP STANDARDS

by

Robert De Roche
Senior Research Specialist

Texas Transportation Institute

Report 0-5003-2
Project 0-5003

Project Title: Development of TxDOT Procedures and Specifications for Testing Device
Compliance to NTCIP Standards

Performed in cooperation with the
Texas Department of Transportation

and the
Federal Highway Administration

September 2006
Resubmitted: February 2007

Published: April 2007

TEXAS TRANSPORTATION INSTITUTE
The Texas A&M University System
College Station, Texas 77843-3135

 v

DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation

(TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect

the views of the authors, who are responsible for the facts and the accuracy of the data presented

herein. The contents do not necessarily reflect the official view or policies of the FHWA or

TxDOT. This report does not constitute a standard, specification, or regulation. This report is not

intended for construction, bidding, or permit purposes. The research supervisor in charge of the

project was Robert De Roche.

The United States Government and the State of Texas do not endorse products or

manufacturers. Trade or manufacturers’ names appear herein solely because they are considered

essential to the subject of the report.

 vi

ACKNOWLEDGMENTS

The research of this project was performed under a cooperative program between the

Texas Transportation Institute (TTI), the Texas Department of Transportation, and the Federal

Highway Administration. The author wishes to thank the Project Monitoring Committee. Ms.

Carol Rawson served as the program coordinator, Mr. Fabian Kalapach served as the project

director, and Messrs. Charlie Farnham, David Danz, and Steve Barnettt served as the project

advisors. Mr. Wade Odell also served TxDOT research engineer.

Within TTI, the author wishes to thank Dr. Kevin Balke for reviewing and commenting

on the report and Mr. Jeremy Johnson for his invaluable help in developing scripts.

 vii

TABLE OF CONTENTS

Page

List of Figures.. xii
List of Tables .. xiii
List of Abbreviations and Symbols .. xiv
Glossary .. xviii

Chapter 1: Introduction .. 1
Project Objectives..1
Scope of Project...2
Organization of This Report..2

Chapter 2: NTCIP Testing Documentation... 5
Introduction ...5
CCTV Documentation...6

Special Specification CCTV Field Equipment ..7
Initial Requirements Traceability Matrix...8
Special Specification NTCIP for CCTV Equipment ...14
Expanded Requirements Traceability Matrix ..20
CCTV Test Procedures ..31
CCTV Test Results ..32

Communications Level Test Procedures...35
Application Level...35
Transport Level..36
Subnetwork Level ..36

Traffic Signal Controller Documentation..36
TxDOT Specifications for Traffic Signal Controllers ...36
Initial Requirements Traceability Matrix...37
Test Plan and Documentation ..59
Traffic Signal Controller Test Procedures ...60
Traffic Signal Controller Test Results ...60

Detector Requirements ..61

Chapter 3: Developing Additional Test Procedures ... 63
Introduction ...63
ITS Field Device Estimates...64

NTCIP 1103-TMP ...64
NTCIP 1201-GLO ...65
NTCIP 1202-ASC..65
NTCIP 1203-DMS...66
NTCIP 1204-ESS...66
NTCIP 1205-CCTV...66
NTCIP 1206-DCM...66
NTCIP 1207-RMC...67
NTCIP 1208-SW..67

 viii

NTCIP 1209-TSS...67
NTCIP 1210-FMS..67
NTCIP 1211-SCP...68
NTCIP 1213-ELMS...68

Chapter 4: Applying Testing Procedures .. 69
Testing Processes ..69
Internal TxDOT Testing Process...69

Prequalification Testing ...70
QPL Testing ...71
Configuration Testing ..72
Sample Environmental System Testing ...73
System Testing...73

Contractor Testing Process..73
Configuration Management and Version Control ...75

Chapter 5: Training... 77
Introduction ...77
Audience..77
Training Class Outlines ...79
Training Class Evaluation Form..87

Chapter 6: Recommendations .. 89
Testing Framework..89
Future Development ..89

ELMS Test Procedures ..89
Generic Database ...90

References.. 93

Appendix A: Special Specification for CCTV Equipment.. 97

References for Appendix A .. 106

Appendix B: Special Specification - NTCIP for CCTV Equipment107

References for Appendix B ...112

Appendix C: CCTV Test Procedures..113
Introduction ...113
Test Case Summary...113
Test Cases..119

CCTV PRL Information...120
Cabinet Alarm ..121
Enclosure Alarm...122
Video Loss Alarm ..123
Temperature Alarm ..124
Pressure Alarm ...125

 ix

Local Remote Alarm ..126
Washer Fluid Alarm ...127
Identify Device ...128
Identify Preset Position Range ...128
Identify Pan Limits ...129
True North Offset ...130
Identify Tilt Limits ...130
Identify Zoom Limit ...131
Identify Focus Limit ...131
Identify Iris Limit ...132
Identify Pan-Tilt Step Angle Minimum ...132
Identify Zone Functions ...133
Monitor Discrete Input ...133
Monitor Discrete Output ..135
Get Availability of Equipment ...137
Control Camera Power ...137
Control Heater Power...138
Control Wiper...138
Control Washer...139
Control Blower ...139
Delta Focus Motion ..140
Absolute Focus Motion ..141
Continuous Focus Motion with Timeout..142
Continuous Focus Motion with Stop..142
Retrieve Module Table...143
Global Set ID ..144
Delta Iris Motion ..145
Absolute Iris Motion ..146
Continuous Iris Motion with Timeout..147
Continuous Iris Motion with Stop ..148
Get and Set Label ...149
Display Camera Location...150
Get Availability of Lens Equipment ..151
Control Auto Iris ..151
Control Auto Focus ..152
Menu...153
Delta Pan Motion..154
Absolute Pan Motion..155
Continuous Pan Motion with Timeout ...156
Continuous Pan Motion with Stop ...157
Change Administrator Community Name..158
Change User Community Name...159
Delta Tilt Motion..162
Absolute Tilt Motion ..163
Continuous Tilt Motion with Timeout ...164
Continuous Tilt Motion with Stop..165

 x

Preset Position ..166
Get-Set Zone ..167
Move In and Out of Zone ...167
Delta Zoom Motion ..169
Absolute Zoom Motion ..169
Continuous Zoom Motion with Timeout..170
Continuous Zoom Motion with Stop..171

References for Appendix C .. 172

Appendix D: CCTV Protocol Implementation Conformance Specification 173
Introduction ...173
Interpreting Results ...173

References for Appendix D .. 190

Appendix E: Communications and Miscellaneous Test Procedures................................... 191
Introduction ...191
SNMP Test Cases..191
Transportation Transport Test Cases...195
Point to Multi-Point with RS232 Test Cases ..196
STMP Test Cases ..198
Response Time Test Case..199

References for Appendix E .. 201

Appendix F: Traffic Signal Controller Test Documentation... 203
Introduction ...203

References for Appendix F... 246

Appendix G: Traffic Signal Controller Test Procedures ... 247
Introduction ...247

Detector Operations..247
Test Case Summary...249
Test Cases..254

ASC PRL Information..254
Four-Phase Diamond Sequencing ..255
Four-Phase Diamond Detector Operations...283

Detector 1 Operations ..283
Detector 2 Operations ..288
Detector 3 Operations ..298
Detector 4 Operations ..309
Detector 5 Operations ..320
Detector 6 Operations ..324
Detector 7 Operations ..333

 xi

Detector 8 Operations ..344
Detector 9 Operations ..355
Detector 10 Operations ..362
Detector 11 Operations ..370
Detector 12 Operations ..380
Detector 13 Operations ..396
Detector 14 Operations ..404
Detector 15 Operations ..412
Detector 16 Operations ..422
Detector 17 Operations ..437
Detector 18 Operations ..453
Detector Operations Setup ...469
Detector Operations Teardown..470
Detector Delay ...470

References for Appendix G.. 475

 xii

LIST OF FIGURES

 Page

Figure 1. CCTV PRL Information Test Case Results... 33
Figure 2. CCTV Cabinet Alarm Test Case Results Form... 34
Figure 3. Test Results Indicating Critical Results. ... 61
Figure 4. TxDOT Testing Activities... 70
Figure 5. Contractor Testing Activities. ... 74
Figure 6. Instrumentation Testing Tool Information Example... 75

 xiii

LIST OF TABLES

 Page

Table 1. Requirements Traceability Matrix with NTCIP Objects. ... 9
Table 2. Requirements Traceability Matrix from NTCIP 1203-DMS.. 11
Table 3. Requirements Traceability Matrix with Test Procedures. .. 21
Table 4. TSC Requirements Traceability Matrix with Test Procedures....................................... 39
Table 5. NTCIP Standard Statistics and Test Procedure Efforts. ... 64
Table C-1. CCTV Test Case Summary... 114
Table E-1. SNMP Test Case Summary... 191
Table E-2. Transportation Transport Test Case Summary ... 195
Table E-3. PMPP with RS-232 Test Case Summary.. 196
Table E-4. STMP Test Case Summary ... 199
Table E-5. Response Time Test Case Summary... 200
Table G-1. Traffic Signal Controller Test Case Summary ... 249
Table G-2. Additional Traffic Signal Controller Test Case Summary 252

xiv

LIST OF ABBREVIATIONS AND SYMBOLS

AASHTO American Association of State Highway and Transportation Officials

ASC Actuated Signal Controller

ATMS Advanced Transportation Management System

BER Basic Encoding Rules

CCTV Closed Circuit Television

CHAP Challenge Handshake Authentication Protocol

CRC Cyclic Redundancy Check

DMS Dynamic Message Sign

DMS 11170-TSC DMS-11170, Fully Actuated, Solid-State Traffic Signal Controller

Assembly

DOT Department of Transportation

DUT Device Under Test

EIA Electronics Industry Alliance

ELMS Electrical and Lighting Management Systems

ESS Environmental Sensor Station

FDOT Florida Department of Transportation

FHWA Federal Highway Administration

FMS Field Management Station

FTP File Transfer Protocol

HAR Highway Advisory Radio

HDLC High-Level Data Link Control

HITL Hardware-in-the-Loop

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPI Initial Protocol Identifier

ISO International Organization for Standardization

ITE Institute of Transportation Engineers

ITL Interoperability Test Lab

ITS Intelligent Transportation Systems

xv

MIB Management Information Base

NEMA National Electrical Manufacturers Association

NIATT National Institute for Advanced Transportation Technology

NTCIP National Transportation Communications for ITS Protocol

NTCIP 1103-TMP NTCIP 1103 – Transportation Management Protocols

NTCIP 1201-GLO NTCIP 1201 – Global Object Definitions

NTCIP 1202-ASC NTCIP 1202 – Object Definitions for Actuated Traffic Signal Controller

Units

NTCIP 1203-DMS NTCIP 1203 – Object Definitions for Dynamic Message Signs (DMS)

NTCIP 1204-ESS NTCIP 1204 – Environmental Sensor Station Interface Standard

NTCIP 1205-CCTV NTCIP 1205 – Object Definitions for Closed Circuit Television (CCTV)

Camera Control

NTCIP 1206-DCM NTCIP 1206 – Object Definitions for Data Collection and Monitoring

(DCM) Devices

NTCIP 1207-RMC NTCIP 1207 – Object Definitions for Ramp Meter Control (RMC) Units

NTCIP 1208-SW NTCIP 1208 – Object Definitions for Closed Circuit Television (CCTV)

Switching

NTCIP 1209-TSS NTCIP 1209 – Data Element Definitions for Transportation Sensor

Systems

NTCIP 1210-FMS NTCIP 1210 – Field Management Stations - Part 1: Object Definitions

for Signal System Masters

NTCIP 1211-SCP NTCIP 1211 – Object Definitions for Signal Control and Prioritization

NTCIP 1213-ELMS NTCIP 1213 – Objects Definitions for Electrical and Lighting

Management Systems

NTCIP 2101-PMPP/RS232 NTCIP 2101 – Point to Multi-Point Protocol Using RS-232 Subnetwork

Profile

NTCIP 2102-PMPP/FSK NTCIP 2102 – Point to Multi-Point Protocol Using FSK Modem

Subnetwork Profile

NTCIP 2103-PPP NTCIP 2103 – Point-to-Point Protocol over RS-232 Subnetwork Profile

NTCIP 2104-Ethernet NTCIP 2104 – Ethernet Subnetwork Profile

NTCIP 2201-T2 NTCIP 2201 – Transportation Transport Profile

xvi

NTCIP 2202-ITP NTCIP 2202 – Internet (TCP/IP and UDP/IP)Transport Profile

NTCIP 2301-STMF NTCIP 2301 – Simple Transportation Management Framework

Application Profile

NTCIP 8007-TEST NTCIP 8007 – Testing and Conformity Assessment Documentation

within NTCIP Standards Publications

NTCIP 9012-TG NTCIP 9012 – Testing and Conformity Assessment User Guide for

NTCIP Field Devices and Center-to-Field Communications

NTCIP Guide NTCIP 9001 – The NTCIP Guide

OER Octet Encoding Rules

OID Object Identifier

PDF Portable Document Format

PDU Protocol Data Unit

PICS Protocol / Profile Implementation Conformance Specification

PMPP Point to Multi-Point Protocol

PPP Point-to-Point Protocol

PRL Protocol / Profile Requirements List

PTZ Pan, Tilt, and Zoom

QPL Qualified Products List

RFC Request for Comment

RS Recommended Standard

RTM Requirements Traceability Matrix

SFMP Simple Fixed Message Protocol

SNMP Simple Network Management Protocol

SS 6025 TxDOT 2004 Special Specification 6025 CCTV Field Equipment

SS 6026 TxDOT 2004 Special Specification 6026 National Transportation

Communications for ITS Protocol for Dynamic Message Signs

SS 6504 TxDOT 1993 Special Specifications 6504 – Testing, Training,

Documentation and Warranty
STMP Simple Transportation Management Protocol

TCL Tool Command Language

TCP Transmission Control Protocol

xvii

TERL Traffic Engineering Research Lab

TFTP Trivial File Transfer Protocol

TS Traffic Section

TTI Texas Transportation Institute

TxDOT Texas Department of Transportation

UDP User Datagram Protocol

UP Unnumbered Poll

V&V Validation and Verification

VIVDS Video Imaging Vehicle Detection Systems

xviii

GLOSSARY

Compliance Compliance is a condition that exists when an item meets all of the
requirements of a procurement specification.

Conformance Conformance is a condition that exists when an item meets all of the mandatory
requirements as defined by a formal standard.

Management
Application

A generic term for any computer-based software used to configure, control, or
monitor the operation of a field device or devices.

1

CHAPTER 1:
INTRODUCTION

PROJECT OBJECTIVES

The objectives of this two-year project are to define a framework for testing conformance

to National Transportation Communications for Intelligent Transportation Systems Protocol

(NTCIP) standards, identify the approaches used to describe the extent to which testing is

needed, and recommend appropriate documentation for such testing activities. This research

project will accomplish the following for TxDOT:

• Assist TxDOT in developing a comprehensive approach to testing Intelligent

Transportation Systems (ITS) -related hardware and software to ensure

conformance with national standards and compliance with TxDOT specifications.

• Identify TxDOT testing needs and available resources to meet those needs.

• Develop a framework, along with methodologies and procedures as needed, for

conducting both laboratory and field-testing of devices.

• Assist TxDOT in evaluating options for testing of ITS hardware and software as

part of procurement and construction projects.

• Assist TxDOT in developing procedures and reports for documenting the results of

the testing program.

• Develop outlines for training courses that convey how to use and interpret the

results of the testing program.

The goal of testing is to ensure that the design, implementation, and functionality of a

product meet user needs and requirements. NTCIP standards define a set of protocols associated

with communications technologies used in transportation-related products. These protocols

ensure systems that integrate NTCIP-conformant products can communicate using a common

language and describe information in a consistent manner. The goal of NTCIP testing is to

ensure that a product follows the protocol rules that define the common language and that the

information exchanged by the components of a system is meaningful and understood. The intent

of this project is to look at tasks involved and methods used to check conformance to NTCIP.

The intention is to look also at a means of integrating NTCIP testing into TxDOT’s current

testing program.

2

SCOPE OF PROJECT

The scope of this research is testing of conformance to NTCIP standards and compliance

to TxDOT specifications that reference NTCIP standards. NTCIP standards define common

methods and protocols that enable ITS devices to communicate. The standards also define the

language and words used when communicating. In some cases, no other standards exist that

define the meaning of the words or how the words relate to functionality; therefore, some NTCIP

standards also define the functionality of an ITS device. This research looks at the types of

testing involved in showing conformance to NTCIP standards and compliance to TxDOT

specifications, the resources available to accomplish the tasks, the specific needs for testing by

TxDOT, the current testing process within TxDOT, and the testing tools available to help in the

testing process.

ORGANIZATION OF THIS REPORT

In addition to this introduction chapter, this report contains five chapters and seven

appendices. Chapter 2 of this report discusses NTCIP testing documentation. Testing

documentation not only includes actual test procedures but also documentation that relates to

specifying NTCIP requirements and how testing verifies those requirements. Chapter 2 provides

a description of steps involved in creating testing documentation. By way of example, discussion

focuses on the full set documentation for CCTV camera controllers beginning with a description

of the modifications to TxDOT Special Specification 6025 (SS 6025) to reference NTCIP

requirements (1). Appendix A provides suggested changes to that specification. Since TxDOT

uses a separate document to define NTCIP requirements, a discussion of the content for a new

document titled NTCIP for CCTV Equipment ensues. This document cites what NTCIP

standards, what mandatory and optional conformance groups within the standards, and what

optional object definitions within the standards to reference. Appendix B contains a template for

the new TxDOT specification.

Chapter 2 also deals with a Requirements Traceability Matrix (RTM) that correlates the

requirements in TxDOT Special Specification 6025 to NTCIP Object Definitions and Test

Procedure Identifiers and presents an introduction and general description of the CCTV test

procedures. Appendix C of this report contains the actual procedures.

3

What follows is a discussion on reporting results. The researcher found that the clearest

means of reporting results is to use the Protocol/Profile Requirements List (PRL) that appears in

the NTCIP standards or the test procedure documentation. Appendix D contains a PRL that

shows test results. The CCTV Test Results part of Chapter 2 shows a sample of how a test

procedure can show test results.

The next section of Chapter 2 deals with traffic signal controller documentation. TxDOT

department material specification DMS-11170, Fully Actuated, Solid-State Traffic Signal

Controller Assembly (DMS 11170-TSC) contains NTCIP requirements (2). As such, the

researcher makes several suggestions for addressing communications. The next part discusses an

initial RTM based upon the requirements in DMS 11170-TSC (2). This is an initial RTM

because it only deals with the requirements in DMS 11170-TSC, individual objects definitions

from the relevant standards, and the limited number of traffic signal controller test procedures

that exist (2). Appendix E provides a description and listing of existing communications test

procedures that may be applicable to any NTCIP field device. Appendix F contains a Test

Design Specification for addressing all the functions of a traffic signal controller. It uses IEEE

Std. 829 – IEEE Standard for Software Test Documentation as a guide on the organization and

content (3).

Chapter 3 provides estimates for the level of effort needed to develop test procedures for

all NTCIP field devices. The estimates use statistics about the content of the NTCIP standards,

the researcher’s experience in developing test procedures, discussions with NTCIP working

group chairs and editors, and current NTCIP development plans.

 Chapter 4 deals with applying NTCIP testing procedures in TxDOT testing processes.

Discussions deal with TxDOT’s internal process consisting of Qualified Products List (QPL),

sample environmental, configuration, and system testing. It also deals with TxDOT’s external

process or contractor testing consisting of design approval, demonstration, stand-alone, and

system integration test steps. The discussions focus on how NTCIP testing might apply to each

of these processes and steps. Chapter 4 concludes with a brief discussion of configuration

management and version control.

Chapter 5 presents two training course outlines. The first looks at testing from an NTCIP

perspective, and the second outline examines testing from a TxDOT perspective. The first

explores the difference between conformance and compliance testing. Conformance testing

4

applies to the NTCIP standards, and compliance testing applies to TxDOT specifications. The

outline suggests that the training first look at background information and the two types of

standards: data dictionaries and protocols/profiles. It would then cover how to view the NTCIP

framework in order to understand how individual standards make up an actual implementation.

Topics on terminology and techniques and on how best to interpret and report the results follow.

The second outline in Chapter 5 looks at testing from the TxDOT perspective. It deals

with the how to balance a desire to fully test an implementation with the reality issues of lack of

resources and time. A discussion of risk management looks at how to minimize the testing effort

and still maintain a high level of confidence. Further topics cover what to test, the techniques to

use, and the various testing tools that are available. The chapter concludes with an outline of how

to address configuration management and includes a suggested evaluation form.

Chapter 6 of the report adds some additional recommendations on defining a framework

for the testing of conformance to NTCIP and integrating it into the current TxDOT testing

program. The recommendations are in addition to the 17 recommendations that the first year

report included.

5

CHAPTER 2:
NTCIP TESTING DOCUMENTATION

INTRODUCTION

A major component of any testing framework is supporting documentation. There must

be specific requirements or specifications, a document that correlates those requirements to a set

of test procedures for verifying the requirements, and documented test procedures to ensure that

the verification process is consistent. For any organization as large as TxDOT, consistent

reporting of results should also be a part of the framework.

By specifying conformance to NTCIP standards, one can assume that TxDOT shares the

view the standards promote:

• Compatibility

• Interoperability

• Interchangeability

System components should be compatible so that different components can share a

common communications infrastructure. There should also be interoperability between system

components so that components from different vendors can work together to provide the

necessary functionality. System components should also exhibit interoperability so that a system

component from one vendor can replace that of another without any change in functionality.

In the past, ITS field devices did not exhibit compatibility to any significant degree. Most

manufacturers used their own proprietary protocols to communicate, which made sharing of a

communications link by multiple manufacturers impossible. Management applications had to

develop drivers for each brand and type of device. Some projects did achieve a sense of

compatibility by mandating support for a system integrator’s protocol such as Protocol 90 or

Management Information System for Traffic (MIST). These protocols, however, are for use with

traffic signal controllers and not other ITS field devices. At the communications infrastructure

level, NTCIP protocols are device independent.

To achieve interoperability, the effort to standardize communications involved three

standards organizations: the American Association of State Highway and Transportation

Officials (AASHTO), the Institute of Transportation Engineers (ITE), and the National Electrical

Manufacturers Association (NEMA). These three organizations brought together public sector

6

representatives, consultants, and equipment manufacturers to work out a common language for

expressing information and sets of messages to exchange the information. By agreeing upon

these common protocols, management applications can send information to a type of field device

and have it understood by the device, as well as, receive information from the device and

understand what it is saying.

By defining the meaning of the words in the common language and their effect upon a

device, the NTCIP standards achieve interchangeability. The standards establish a minimum

level of common functionally. While a system and its components are free to go beyond the

common functionality, subscribing to the NTCIP standards ensures that a level of

interchangeability is always present.

For TxDOT to subscribe to NTCIP means that its specifications must specify

requirements for NTCIP standards. So far, TxDOT has a start in that direction in a number of

areas. After reviewing ITS field device specifications that appear on the TxDOT Expressway

webpage, the researcher found that the statewide use specifications for traffic signal controllers

and dynamic message signs have fully detailed requirements (4). Similar specifications for video

imaging vehicle detection systems (VIVDS) and spread spectrum radios also cite NTCIP

requirements, but only in general, with no details of what that entails. Other devices such as on-

street masters, closed circuit television, electrical lighting and management systems, and ramp

metering controller do not have any NTCIP requirements. This research further discusses that

transition by looking at the documentation to specify NTCIP requirements and then developing

test procedures to test for compliance to the NTCIP requirements.

CCTV DOCUMENTATION

This section looks at the documentation to add NTCIP requirements to TxDOT’s CCTV

specifications and test procedures to verify those requirements. Special Specification 6025 -

CCTV Field Equipment does not currently address NTCIP requirements (1). Suggested

modifications to that specification appear in Appendix A. The first part of this section presents

the reasoning behind those changes.

Before one can properly address specific NTCIP requirements, one needs to correlate the

general requirements (in SS 6025) to the object definitions and functionality in NTCIP standards

(1). The recommended method of ensuring that test procedures meet user needs and requirements

7

is through the use of an RTM. Text and examples illustrate the composition and elements of an

RTM. The text elaborates on the steps and process of creating an RTM. Table 3 then presents a

fully developed RTM for SS 6025 (1). While it simplifies the expression of user needs, the RTM

does map them to requirements and references in SS 6025, cites the relevant NTCIP objects, and

correlates these to specific test procedure identifiers. The test procedure identifiers relate to a set

of CCTV test procedures that appear in Appendix C.

With the NTCIP object definitions and functionality identified, one can proceed to

develop test cases and test procedures to ensure that a device implements the definitions and

functionality correctly. In some cases, this may be a simple process of reviewing test procedures

that are already in the public domain. In other cases, one may need to consider a formal test plan.

The first case applies to CCTV. A number of test procedures and test cases already exist.

A review of the procedures and test cases indicates where they apply. Assigning them test case

numbers and references allows a mapping to the RTM. In the case of the documentation for

traffic signal controllers, the process was the development of internal documentation that sets out

a plan, identifies test cases, and outlines individual test cases.

The last part of the testing documentation to consider is the presentation of the testing

results. While most testing tools produce some type of test report, the researcher believes that

such a report should include how a device was tested. The researcher presents an approach that

uses documentation that may appear in the NTCIP standards.

Special Specification CCTV Field Equipment

The current special TxDOT specification for CCTV equipment does not address NTCIP.

Appendix A is a modified version of the SS 6025 (1). The text written in italics or shown crossed

out illustrates modifications that come from other special specifications that include a reference

to NTCIP requirements.

The first modification is an additional sentence in the description clause, which is a

reference to another special specification dealing with the specifics of NTCIP requirements. The

typical wording that appears in other special specifications is:

The following special specifications is referenced in this specification: “National

Transportation Communications for ITS Protocol for CCTV Equipment”

8

The next modification deals with the clause describing the communications interface. The

exact wording may differ in particular special specifications. For SS 6025, however, the chances

consist of referencing the Special Specifications NTCIP for CCTV Equipment, removal of

optional data rates that are in conflict with NTCIP, and removal of any functional requirements

related to the protocol used (1).

Another change is the reference to “EIA-232 C/D port.” The term “RS (Recommended

Standard)-232 Serial port” generalizes the requirement so that specifics come from Special

Specifications NTCIP for CCTV Equipment. The change uses the term “RS” in place of “EIA”

because the formal definition of the 9-pin version of the RS-232 interface comes from EIA

(Electronics Industry Alliance)-574. The change drops the term C/D because the NTCIP

standards call for a newer version of EIA-232 standard (Version F).

Initial Requirements Traceability Matrix

Once there is a specification that defines the functional requirements, the next step is to

develop an RTM that maps the requirements to NTCIP object definitions. The purpose of the

RTM is to help ensure the functionality of the requirements maps to one or more NTCIP objects

that either define, control, or provide status related to that function. This ensures that NTCIP

conforms to the requirements and that requirements have NTCIP support.

A traceability matrix verifies that all stated and derived requirements are allocated to at

least one NTCIP object (forward tracing). The matrix lists the source of requirements (backward

tracing). While the RTM in this document focuses on NTCIP, a matrix can include tracing to

things other than NTCIP objects such as capabilities, physical requirements, test procedures, etc.

For example, a user need could be to operate outdoors and require equipment over a certain

temperature range.

Table 1 is the start of an RTM that references NTCIP objects. Table 3 is a fully expanded

RTM that adds references to test procedures.

The procedure for creating an RTM consists of:

• identifying user needs (nouns) that correspond to the names of functions,

• referencing the text that describes the action (verb) or usage of the user need,

• providing a cross-reference to an item or clause of the requirements document, and

• correlating the user need to the NTCIP standard or object that supports the need.

9

Table 1. Requirements Traceability Matrix with NTCIP Objects.

SS 6025 Closed Circuit Television NTCIP Requirements
Traceability Matrix

User Need Requirement TxDOT
SS 6025

Reference

NTCIP Object Support

Traceable to NTCIP 1205-CCTV
Provide Remote Control

Shutter
Speed

Provide remotely
selectable shutter speed

2.B.1 None

Zoom Provide a lens with
capabilities for remote
control of zoom operations

2.B.2 3.2.8 rangeZoomLimit
3.3.3 timeoutZoom
3.5.3 positionZoomLens
3.5.8 positionQueryZoom

Long-Term
Exposure

Provide control receivers
for Digital Signal
Processing (DSP) of long-
term exposure control

6. None

Auto-Focus Provide control receivers
for Digital Signal
Processing of auto-focus
control

6. 3.2.9 rangeFocusLimit
3.3.4 timeoutFocus
3.6.4 systemLensFeatureControl
3.6.5 systemLensFeatureStatus
3.6.6 systemLensEquipped

Auto/Manual
Focus
Control

Provide units with control
receivers for DSP
Function – auto/manual
focus control

6. 3.2.9 rangeFocusLimit
3.3.4 timeoutFocus
3.6.4 systemLensFeatureControl
3.6.5 systemLensFeatureStatus
3.6.6 systemLensEquipped

In the case of conformance and compliance related to NTCIP, the list of user needs is

limited to parameters, controls, and status information that relate to communications. For CCTV,

the needs primarily come from remote control. Any quantities, limits, or values (constraints) that

apply to the needs should also appear in the list. Examples of constraints are number of presets,

tilt limits, and label color choices. The next column in the RTM is for stating the requirement

with some action. This typically consists of a short sentence putting the user need in context. For

example, if the need is a zoom capability, then stating that zoom has to be controlled remotely

puts it in the context of NTCIP. The third column lists the reference to the item, clause, or

heading number in the specification from which user need and requirement is derived. This

provides the backward traceability.

10

To complete the RTM for this stage, one enters the object names from NTCIP Standards

that relate to user and requirement. The NTCIP object names usually include one or more of the

same words used to define the user needs. The NTCIP object description field may also contain a

reference. It is typical to cite the same NTCIP objects in many places. At this point, the RTM

should look similar to Table 1.

A number of NTCIP standards now include RTM information. Table 2 is part of an RTM

that appears in NTCIP 1203 – Object Definitions for Dynamic Message Signs (DMS) (NTCIP

1203-DMS) (5). While the RTM in that standard includes additional columns of information, the

functional requirement and object names that support the requirement are the essential items.

Even if an NTCIP standard includes an RTM, it is advisable to generate one based upon the

requirements defined in TxDOT specifications. The need to do this becomes apparent when one

realizes that the NTCIP standards may not provide support for all functional requirements in a

specification. NTCIP standards also may require some functionality that does not correspond to a

requirement in the specification. For example, the functional requirement to provide remotely

selectable shutter speed or control of long-term exposure in SS 6025 does not have object

support in NTCIP 1205 – Object Definitions for Closed Circuit Television (CCTV) Camera

Control (NTCIP 1205-CCTV) (1,6). NTCIP 1205-CCTV has support for remote on-screen menu

control that does not appear in SS 6025 (6,1).

11

Table 2. Requirements Traceability Matrix from NTCIP 1203-DMS.

FR ID Functional
Requirement

Interface
ID Interface Dialog ID Object ID Object

D.3.1.1 Determine Device Component Information D.4.2.1
 D.4.3.4.1 Module Table
 D.2.2 globalMaxModules
 D.4.3.4.2 Module
 D.2.3.1 moduleNumber
 D.2.3.2 moduleDeviceNode
 D.2.3.3 moduleMake
 D.2.3.4 moduleModel
 D.2.3.5 moduleVersion
 D.2.3.6 moduleType

After filling out the NTCIP object support column (see Table 1), the list of object names

will identify specific objects and conformance groups that an implementation needs to support

and suggest what a potential test procedure needs to address. The list will also indirectly identify

objects and requirements that may not be in the requirement specification. After generating an

RTM based solely upon the user needs and requirements in SS 6025, the following is the list of

objects or groups in NTCIP 1205-CCTV v01.10 that are traceable to a requirement defined in SS

6025 (1,6):

• 3.2.1 rangeMaximumPreset

• 3.2.2 rangePanLeftLimit

• 3.2.3 rangePanRangeLimit

• 3.2.4 rangePanHomePosition

• 3.2.6 rangeTiltUpLimit

• 3.2.7 rangeTiltDownLimit

• 3.2.8 rangeZoomLimit

• 3.2.9 rangeFocusLimit

• 3.2.10 rangeIrisLimit

• 3.2.11 rangeMinimumPanStepAngle

• 3.2.12 rangeMinimumTiltStepAngle

• 3.3.1 timeoutPan

• 3.3.2 timeoutTilt

• 3.3.3 timeoutZoom

• 3.3.4 timeoutFocus

• 3.3.5 timeoutIris

• 3.4.1 presetGotoPosition

• 3.4.2 presetStorePosition

• 3.4.3 presetPositionQuery

• 3.5.1 positionPan

• 3.5.2 positionTilt

• 3.5.3 positionZoomLens

12

• 3.5.4 positionFocusLens

• 3.5.5 positionIrisLens

• 3.5.6 positionQueryPan

• 3.5.7 positionQueryTilt

• 3.5.8 positionQueryZoom

• 3.5.9 positionQueryFocus

• 3.5.10 positionQueryIris

• 3.6.1 systemCameraFeatureControl

• 3.6.2 systemCameraFeatureStatus

• 3.6.3 systemCameraEquipped

• 3.6.4 systemLensFeatureControl

• 3.6.5 systemLensFeatureStatus

• 3.6.6 systemLensEquipped

• 3.7 CCTV Alarm Objects

• 3.9 CCTV Discrete Output Objects

• 3.11 CCTV Label Objects

Comparing the above list to the heading numbers and object names in NTCIP 1205-

CCTV, the following is a list of object names and groups in NTCIP 1205-CCTV v01.10 that do

not trace to a requirement defined in SS 6025 (6,1):

• 3.2.5 rangeTrueNorthOffset

• 3.8 CCTV Discrete Input Objects

• 3.10 CCTV Zone Objects

• 3.12 CCTV On-Screen Menu Control Objects

At this point, one may want to consider adding a user need or functional requirement in

the specification to address the functionality expressed by the objects. If one determines that they

are not necessary, the special specification that defines NTCIP for the specific equipment need

not require them even if the NTCIP standard indicates that they are mandatory. This gets at the

heart of the distinct difference between conformance to the NTCIP and compliance with a

TxDOT specification. To show conformance to a NTCIP standard, an implementation needs to

support mandatory objects and have tests run to determine if it is correct. To show compliance

with TxDOT specifications, an implementation does not need to support objects that have no

functional requirement, and one does not need to run tests on those objects.

One can also use an RTM to summarize user needs and requirements that have no

support within the NTCIP standard. These non-supported items would show up as a blank in the

NTCIP object support column of the RTM. The following requirements in TxDOT Special

Specification 6025 do not trace to an object name or group in NTCIP 1205-CCTV v01.10 (1,6):

13

• Shutter Speed

• Long-Term Exposure

• Remote White Balancing Control

• Auto and Manual White Balance Control

After identifying the unsupported needs and requirements, one may want to consider

whether they are truly required. If so, a manufacturer may support them through proprietary

objects. The manufacturer may also have a set of procedures that provide functional testing.

The next step is to determine if the TxDOT specification needs to address additional

objects. The following is the list of object names or groups referenced in NTCIP 1205 – Object

Definitions for Closed Circuit Television (CCTV) Camera Control (NTCIP 1205-CCTV) v01.10

(and defined in NTCIP 1201 – Global Object Definitions [NTCIP 1201-GLO]) that do not trace

to a requirement defined in SS 6025 (6,7,1):

• B.7 Global Configuration Conformance Objects

• B.8 Security Conformance Group

NTCIP 1205-CCTV does not address application, transport, and subnetwork-level

requirements (6). Even though the object definitions use the Simple Network Management

Protocol (SNMP) macro to describe them, there are several choices for encoding information and

exchanging it over different media. A discussion of these choices appears in the next section.

However, there may be objects and conformance groups that relate to the setup, control, and

status at the application, transport, or subnetwork-levels. Special specifications related to NTCIP

that include references to specific application, transport, and subnetwork-level requirements may

not be valid for statewide use. For example, one project may require an RS-232 interface while

another may require an Ethernet interface. The objects and conformance groups would be

different.

Based upon the general description of the communications protocols appearing in SS

6025, the assumption is that the application-level protocol is SNMP as defined in NTCIP 2301 –

Simple Transportation Management Framework Application Profile (NTCIP 2301-STMF) (1,8).

The following is the list of object names or groups referenced in NTCIP 2301:2001 that do not

trace to a requirement defined in SS 6025 (1,8):

14

• A.7.1.1 System Group

• A.7.1.2 SNMP Group

• A.5.4 SNMP Configuration Conformance Group

Since the communications protocol description does not mention a networking capability,

the assumption is that the transport-level protocol is the Null protocol as defined in NTCIP 2201

– Transportation Transport Profile (NTCIP 2201-T2). There are no objects or groups called for

in this standard (9).

From SS 6025’s description, the assumption is that the subnetwork-level protocol is the

point-to-multi-point protocol (PMPP) as defined in NTCIP 2101 – Point to Multi-Point Protocol

Using RS-232 Subnetwork Profile (NTCIP 2101-PMPP/RS232) (1,10). The following is the list

of object names or groups referenced in NTCIP 2101-PMPP/RS232 that do not trace to a

requirement defined in SS 6025 (10,1):

• A.7.1 HDLC (High-Level Data Link Control) Group

• A.7.2 RS232 Asynchronous Group

• A.7.3 HDLC Group Address Group

With the base specification put in the form of an RTM one can then address the language

that goes into a specific specification dealing with NTCIP related requirements. The completed

RTM (less the test procedure column) shown in Table 3 (see page 21) serves as the basis for a

specification for NTCIP for CCTV equipment.

Special Specification NTCIP for CCTV Equipment

Since TxDOT does not have a document that addresses NTCIP requirements related to

CCTV Equipment, Appendix B is the researcher’s suggestion for a TxDOT special specification

that deals with the particulars. Using TxDOT 2004 Specifications - Special Specification 6026 –

National Transportation Communications for ITS Protocol for Dynamic Message Signs (SS

6026) as a model for format and wording, the document in Appendix B covers the

communications protocol and data dictionary (object definitions) requirements that are specific

to CCTV equipment. Appendix B serves the purpose of discussion and provides suggested

wording (11).

In Appendix B, Item 1 - Description is typical boilerplate wording that TxDOT uses in

similar documents. Item 2 - Requirements begins with two paragraphs of boilerplate information.

15

Items 2.A through 2.G deal with specific NTCIP requirements as they relate to CCTV

equipment. Items 2.H through 2.J cover TxDOT specific values and ranges, an operational

requirement, and documentation requirements. Item 3- Testing and Verification and Item 4 -

Measurement and Payment are typical boilerplate information, as well.

 As in SS 6026, items 2.A though 2.G of Appendix B cover the communications protocol

and profile requirements (11). Functional requirements dictate the choices but NTCIP 9001 –

The NTCIP Guide (NTCIP Guide) provides a framework for how all the various protocols and

profiles fit together (12). As stated in the NTCIP Guide,

“To ensure a working system, deployers must specify and/or select an NTCIP protocol or

profile at each level.”

Item 2.A defines the subnetwork level profile requirements. Since the original SS 6025

references an interface through an EIA-232 C/D port, the NTCIP 2101-PMPP/RS232 standard is

now the reference (1,10). This is the standard that most CCTV manufacturers support. TxDOT

should understand that this standard might not be appropriate to all CCTV implementations.

Some may warrant a dial-up (NTCIP 2103 – Point-to-Point Protocol over RS-232 Subnetwork

Profile [NTCIP 2103-PPP]) or Ethernet (NTCIP 2104 – Ethernet Subnetwork Profile [NTCIP

2104-Ethernet]) subnetwork (13,18).

Item 2.B defines the transport level profile requirements. Since the original SS 6025 does

not mention any networking capability, NTCIP 2201-T2 serves as the reference (9). Most CCTV

manufacturers support this standard. NTCIP 2201-T2 addresses a multiplexing capability by

defining various parsing and encapsulation methods (9). The multiplexing scheme would permit

several different protocols to exist at the application level. Since CCTV devices do not appear to

need this functionality, the requirement only references parsing method 1 and encapsulation

method 1.

Item 2.C defines the application level profile requirements. The reference is to NTCIP

2301-STMF (8). This standard defines the use of SNMP as the industry standard protocol for

encoding data and exchanging the data between a management application and an ITS field

device. NTCIP 2301-STMF actually defines three different protocols: SNMP, Simple

Transportation Management Protocol (STMP), and Simple Fixed Message Protocol (SFMP) (8).

16

SNMP offers simplicity and flexibility but adds overhead with its encoding method. STMP

offers flexibility and compact encoding but is not simple to set up and use. SFMP offers

simplicity and compact encoding but does so by being less flexible as to what kind of

information it handles. Given the amount of information in the exchanges and the frequency of

the exchanges, Conformance Level 1 of NTCIP 2301-STMF (only the SNMP portion) is the

appropriate choice (8). Most CCTV manufacturers support this conformance level.

Items 2.D through 2.H define the information level profile requirements. These items

cover:

• basic configuration and control object definitions/data elements of a CCTV,

• two optional objects that relate to the position of the camera,

• two SNMP-related groups that identify the equipment and provide communications

troubleshooting information, and

• three PMPP-related configuration and communications troubleshooting information

groups.

Item 2.D identifies the mandatory and optional conformance groups with which the

CCTV equipment must comply to meet TxDOT specifications. These consist of:

• CCTV Configuration – covering limits, timeouts, and labels

• Extended Functions – covering features such as power, heater, focus, alarms, and I/O

• Motion Control – covering presets and positioning controls

• Configuration – covering manufacturer make and model information

The following is the list of objects names and conformance groups within NTCIP 1205-

CCTV that do not correspond to a requirement in SS 6025 and therefore have no reference in

Item 2.D (6,1):

• CCTV Discrete Input Objects (clause 3.8 of NTCIP 1205-CCTV)

• CCTV Zone Objects (clause 3.10 of NTCIP 1205-CCTV)

• CCTV On-Screen Menu Control Objects (clause 3.12 of NTCIP 1205-CCTV)

Item 2.E identifies two optional objects from the Motion Control Conformance Group

and another object from the Configuration Conformance Group. These three objects do not have

a specific requirement in SS 6025 but may be useful (1). The objects positionQueryFocus and

positionQueryIris can provide a user with current position information about focus and iris. The

17

globalSetIDParameter indicates any changes have been made to parameter type objects (objects

whose value is retained even if power is lost).

Item 2.F identifies three conformance groups that come from NTCIP 2301-STMF (8).

The first group is the System Conformance Group. This group is a set of generic object

definitions from Request for Comment (RFC) 1213 - Management Information Base for

Network Management of TCP/IP-based internets: MIB-II (RFC 1213) that apply to any device

implementing SNMP (14). They provide system identification, contact information, and other

general information about the equipment. The second group is SNMP Statistics. This group is

another set from RFC 1213 that provides counters that keep track of the number of messages

received, how many different types of messages there are, the number of errors, how many

messages had the wrong community name, and other counters related to SNMP operations (14).

The last group is a single object in the SNMP Configuration Conformance Group. The object,

snmp-maxPacketSize, defines how many bytes long a message may be at the application level.

Item 2.G defines three conformance groups that are mandatory requirements for devices

that are conformant to NTCIP 2101-PMPP/RS232 and support SNMP. The first group is the

HDLC Conformance Group (10). This group consists of two timers that control response timing,

two control parameters that define how many bytes long a message may be at the subnetwork-

level, and an identifier of the port number to which the parameters apply. The second group is

the RS232 Asynchronous Group. This group defines the port type and data rate at which the

interface operates. The group also has counters that keep track of any framing and overrun errors

that may occur. The last group is HDLC Group Address. This group defines a number of

addresses that a device would listen to for broadcast messages. For example, setting the time-of-

day is one example that might be a broadcast message.

Items 2.F and 2.G are information-level object definitions that are mandatory to support

if NTCIP 2301-STMF and NTCIP 2101-PMPP/RS232 are applicable (8,10). They are mandatory

if a CCTV Equipment is conformant to the NTCIP standards. For compliance to TxDOT

specifications, the researcher does not believe that HDLC Group Address Conformance Group is

a requirement.

TxDOT should consider whether all or parts of the SNMP Statistics, SNMP

Configuration, and HDLC Conformance Group require support. The researcher believes that

SNMP statistics would be helpful in analyzing the amount and type of messages and useful in

18

troubleshooting communications problems. However, their utility in a non-networked

environment is questionable. Entries in the Minimum Project Requirements table could replace

snmp-maxPacketSize in SNMP Configuration and several objects in the HDLC Group. From a

system’s perspective, if other types of devices use the same application and subnetwork level

profiles, the object support should be the same across all of them. For CCTV equipment,

however, they are not essential.

Items 2.A through 2.G cover the four profile/protocol levels. To ensure that a

specification identifies and addresses each level, the researcher recommends that item numbers

specifically identify each level. For example, adding the following item numbers would clearly

indicate and identify the requirements at each level:

• 2.1 Subnetwork-level requirements

• 2.2 Transport-level requirements

• 2.3 Application-level requirements

• 2.4 Information-level requirements

• 2.4 Project requirements and documentation

Item 2.H covers Minimum Project Requirements. The intent of NTCIP is to provide

communication and information standards that are applicable to the transportation industry as a

whole. The SYNTAX values that appear in numerous objects are more for purposes of

understanding the encoding size rather than any state or project specific values. The technique to

add state or project specific variances is to subrange the values. The typical means of expressing

the variances is through Minimum Project Requirements. The following is a discussion of the

value of each object in the table.

The minimum value of labelMaximum is 16. The object represents the minimum number

of labels that the CCTV equipment must support. SS 6025 does not define a value so this is an

arbitrary choice (1). One manufacturer supports 64.

The value for labelColor is white. NTCIP 1205-CCTV specifies this as the default color

that is mandatory to support. SS 6025 indicates that text should be white letters and black outline

(6,1).

The value of rangeMaximumPreset is 16. The object defines the minimum number of

preset positions that CCTV equipment must support. Presets include pan, tilt, zoom, and focus

19

values. SS 6025 does not define a value so this is an arbitrary choice (1). One manufacturer

supports 64.

The values for rangePanLeftLimit and rangePanRightLimit are both set to 35999. The

objects define the maximum angle that a camera can pan from the home position. SS 6025

specifies a horizontal movement of 360° full, contiguous rotation movement (1). If the

requirement is to have the CCTV continuously to the right or left without any limit, then this

value should be 65535.

The value of rangePanHomePosition is set to 0. The object defines an arbitrary point on a

circle from which to measure the left and right limits. The value of rangeTrueNorthOffset is set

to 65535. This means that there is no support for a true North offset from the home position. SS

6025 does not specify equivalent requirements (1).

The researcher has set the minimum requirement for rangeTiltUpLimit and

rangeTiltDownLimit to +4000 and -9000, respectively. These values correspond to the values in

SS 6025, 40 degrees up and 90 degrees down (1). In looking at several special specifications for

district use, the requirements ranged from 20 to 90 degrees up and from 90 to 110 degrees down.

The researcher has set the minimum requirement for rangeZoomLimit to 65535. This

corresponds to a scalar focus positioning value of telephoto. The values for rangeFocusLimit and

rangeIrisLimit are set to 0. A 0 value corresponds to non-support of the limits. The values for

rangeMimimumPanStepAngle and rangeMimimumTiltStepAngle are set at 10. This corresponds

to value of 0.1 degrees. SS 6025 does not define equivalent requirements (1). The value is

somewhat arbitrary but is one manufacturer’s supported value.

The value of systemCameraEquipped is set to 128 to indicate that the CCTV is only to

have controllable camera power. NTCIP 1205-CCTV allows for a controllable heater, wiper,

washer, and blower (6). However, SS 6025 does not list these as requirements and, therefore, the

value represents the required support (1).

The value of systemLensEquipped is set to 172 to indicate that the CCTV is to have

controllable Auto Iris and Auto Focus. SS 6025 defines the Auto Iris requirement in Item 2 and

the Auto Focus requirement in Item 6 (1).

The values for zoneMaximum, zoneCameraEquipped, and menuControl are set to N/A

(not applicable). SS 6025 does not require zones or on-screen menu control features (1).

20

The definition of the last two items in the Minimum Project Requirements table comes

from NTCIP 1201-GLO (7). The communityNamesMax value is set to 3. This corresponds to an

administrator having the ability to define three different community names (users) that could

allow different access rights to the information in a CCTV. For example, one user could have full

read-write access while another could be limited to just read-only access. It is manufacturer

specific how communityNameAccessMask would be set to do this.

Returning to discussion of the numbered items of Item 2, Item 2.I – Hardware

Limitations relates a general functional requirement of how SNMP operates. Since NTCIP 2301-

STMF covers this, the researcher does not feel its inclusion is necessary (8).

Item 2.J – Documentation discusses the requirements for supplying Management

Information Bases (MIBs). In the first year’s report on this project, the researcher recommended

that TxDOT create or define MIBs that reflect TxDOT specifications. This MIB should be the

one that a management application uses and the one used to perform any testing. One reason for

doing this is that changes in versions of any standards can introduce incompatibilities. For

example, NTCIP 1201-GLO Version 2 inadvertently made a change that introduced an

incompatibility with implementations built to Version 1 (7). If the testing of implementations of

Version 1 used the MIB defined in Version 1, there was no problem. If the testing of

implementations of Version 2 used the MIB defined in Version 2, there was no problem. The

problem was uncovered only when the versions were crossed.

Expanded Requirements Traceability Matrix

Once the specification of NTCIP for specific equipment is defined, test procedures that

verify that an implementation meets the specification are created and cross-referenced in an

RTM. Table 3 is the completed RTM.

21

Table 3. Requirements Traceability Matrix with Test Procedures.

SS 6025 Closed Circuit Television Requirements Traceability Matrix
User Need Requirement TxDOT

SS 6025
Reference

NTCIP Object Support Test Procedure Identifier

Traceable to NTCIP 1205-CCTV
Provide Remote Control
Shutter Speed Provide remotely selectable

shutter speed
2.B.1 None None

Zoom Provide a lens with
capabilities for remote control
of zoom operations

2.B.2 3.2.8 rangeZoomLimit
3.3.3 timeoutZoom
3.5.3 positionZoomLens
3.5.8 positionQueryZoom

Config-TC006
Zoom-TC003
Zoom-TC001
Zoom-TC002

Long-Term
Exposure

Provide control receivers for
Digital Signal Processing of
long-term exposure control

2.B.6 None None

Auto-Focus Provide control receivers for
Digital Signal Processing
function of auto-focus control

2.B.6 3.2.9 rangeFocusLimit
3.3.4 timeoutFocus
3.6.4 systemLensFeatureControl
3.6.5 systemLensFeatureStatus
3.6.6 systemLensEquipped

Config-TC007
Focus-TC003
Lens-TC002 and Lens-TC003
Lens-TC002 and Lens-TC003
Lens-TC001,
Lens-TC002, and
Lens-TC003

Auto/Manual
Focus Control

Provide units with control
receivers for DSP function of
auto/manual focus control

2.B.6 3.6.4 systemLensFeatureControl
3.6.5 systemLensFeatureStatus
3.6.6 systemLensEquipped

Lens-TC002 and Lens-TC003
Lens-TC002 and Lens-TC003
Lens-TC001,
Lens-TC002, and
Lens-TC003

I.D. Generator
Operation

Provide units with control
receivers for DSP function of
I.D. generator operation

2.B.6 3.11 CCTV Label Objects Label-TC001 and Label-
TC002

22

Table 3. Requirements Traceability Matrix with Test Procedures (continued).

SS 6025 Closed Circuit Television Requirements Traceability Matrix
User Need Requirement TxDOT

SS 6025
Reference

NTCIP Object Support Test Procedure Identifier

Alarm Function
Control

Provide units with control
receivers for DSP function of
alarm function control

2.B.6 3.7 CCTV Alarm Objects Alarm-TC001,
Alarm-TC002,
Alarm-TC003,
Alarm-TC004,
Alarm-TC005,
Alarm-TC006, and
Alarm-TC007,

Pan/Tilt Position
preset

Provide units with control
receivers for DSP function of
pan/tilt position preset

2.B.6 3.4.1 presetGotoPosition
3.4.2 presetStorePosition
3.4.3 presetPositionQuery

Zone-TC001
Zone-TC001
Zone-TC001

Pan Left Provide units with control
receivers for DSP function of
pan left

2.B.6 3.2.2 rangePanLeftLimit
3.2.4 rangePanHomePosition

3.2.11 rangeMinimumPanStepAngle
3.3.1 timeoutPan
3.5.1 positionPan

3.5.6 positionQueryPan

Config-TC003
Config-TC011 and
Pan-TC002
Config-TC009
Pan-TC003
Pan-TC001,
Pan-TC002,
Pan-TC003, and
Pan-TC004
Pan-TC002

23

Table 3. Requirements Traceability Matrix with Test Procedures (continued).

SS 6025 Closed Circuit Television Requirements Traceability Matrix
User Need Requirement TxDOT

SS 6025
Reference

NTCIP Object Support Test Procedure Identifier

Pan Right Provide units with control
receivers for DSP function of
pan right

2.B.6 3.2.3 rangePanRightLimit
3.2.4 rangePanHomePosition

3.2.11 rangeMinimumPanStepAngle
3.3.1 timeoutPan
3.5.1 positionPan

3.5.6 positionQueryPan

Config-TC003
Config-TC011 and
Pan-TC002
Config-TC009
Pan-TC003
Pan-TC001,
Pan-TC002,
Pan-TC003, and
Pan-TC004
Pan-TC002

Tilt Up Provide units with control
receivers for DSP function of
tilt up

2.B.6 3.2.6 rangeTiltUpLimit
3.2.12 rangeMinimumTiltStepAngle
3.3.2 timeoutTilt
3.5.2 positionTilt

3.5.7 positionQueryTilt

Config-TC005
Config-TC009
Tilt-TC003
Tilt-TC001,
Tilt-TC002,
Tilt-TC003, and
Tilt-TC004
Tilt-TC002

Tilt Down Provide units with control
receivers for DSP function of
tilt down

2.B.6 3.2.7 rangeTiltDownLimit
3.2.12 rangeMinimumTiltStepAngle
3.3.2 timeoutTilt
3.5.2 positionTilt

3.5.7 positionQueryTilt

Config-TC005
Config-TC009
Tilt-TC003
Tilt-TC001,
Tilt-TC002,
Tilt-TC003, and
Tilt-TC004
Tilt-TC002

24

Table 3. Requirements Traceability Matrix with Test Procedures (continued).

SS 6025 Closed Circuit Television Requirements Traceability Matrix
User Need Requirement TxDOT

SS 6025
Reference

NTCIP Object Support Test Procedure Identifier

Zoom and Focus
Position Preset

Provide units with control
receivers for DSP function of
zoom and focus position preset

2.B.6 3.4.1 presetGotoPosition
3.4.2 presetStorePosition
3.4.3 presetPositionQuery

Zone-TC001
Zone-TC001
Zone-TC001

Zoom In Provide units with control
receivers for DSP function of
zoom in

2.B.6 3.2.8 rangeZoomLimit
3.3.3 timeoutZoom
3.5.3 positionZoomLens

3.5.8 positionQueryZoom

Config-TC006
Zoom-TC0003
Zoom-TC001,
Zoom-TC002,
Zoom-TC003, and
Zoom-TC004
Zoom-TC002

Zoom Out Provide units with control
receivers for DSP function of
zoom out

2.B.6 3.2.8 rangeZoomLimit
3.3.3 timeoutZoom
3.5.3 positionZoomLens

3.5.8 positionQueryZoom

Config-TC006
Zoom-TC003
Zoom-TC001,
Zoom-TC002,
Zoom-TC003, and
Zoom-TC004
Zoom-TC002

Focus Near Provide units with control
receivers for DSP function of
focus near

2.B.6 3.5.4 positionFocusLens

3.5.9 positionQueryFocus

Focus-TC001,
Focus-TC002,
Focus-TC003, and
Focus-TC004
Focus-TC002

Focus Far Provide units with control
receivers for DSP function of
focus far

2.B.6 3.5.4 positionFocusLens

3.5.9 positionQueryFocus

Focus-TC001,
Focus-TC002,
Focus-TC003, and
Focus-TC004
Focus-TC002

25

Table 3. Requirements Traceability Matrix with Test Procedures (continued).

SS 6025 Closed Circuit Television Requirements Traceability Matrix
User Need Requirement TxDOT

SS 6025
Reference

NTCIP Object Support Test Procedure Identifier

Manual and
Auto Iris
Control

Provide units with control
receivers for DSP function of
manual and auto iris control

2.B.6 3.6.4 systemLensFeatureControl
3.6.5 systemLensFeatureStatus
3.6.6 systemLensEquipped

Lens-TC002 and Lens-TC003
Lens-TC002 and Lens-TC003
Lens-TC001,
Lens-TC002, and
Lens-TC003

Iris Open Provide units with control
receivers for DSP function of
iris open

2.B.6 3.2.10 rangeIrisLimit
3.3.5 timeoutIris
3.5.5 positionIrisLens

3.5.10 positionQueryIris

Config-TC008
Iris-TC003
Iris-TC001,
Iris-TC002,
Iris-TC003, and
Iris-TC004
Iris-TC002

Iris Close Provide units with control
receivers for DSP function of
iris close

2.B.6 3.2.10 rangeIrisLimit
3.3.5 timeoutIris
3.5.5 positionIrisLens
3.5.10 positionQueryIris

Config-TC008
Iris-TC003
Iris-TC001
Iris-TC002

Camera Power
(Latching)

Provide units with control
receivers for DSP function of
camera power (latching)

2.B.6 3.6.1 systemCameraFeatureControl
3.6.2 systemCameraFeatureStatus
3.6.3 systemCameraEquipped

Features-TC002
Features-TC002
Features-TC001

Remote White
Balancing
Control

Provide units with control
receivers for DSP function of
white balancing control

2.B.6 None

Auto and
Manual White
Balance Control

Provide units with control
receivers for DSP function of
auto and manual white balance
control

2.B.6 None

26

Table 3. Requirements Traceability Matrix with Test Procedures (continued).

SS 6025 Closed Circuit Television Requirements Traceability Matrix
User Need Requirement TxDOT

SS 6025
Reference

NTCIP Object Support Test Procedure Identifier

Auxiliary
Output

Provide units with control
receivers for DSP function of
one auxiliary output

2.B.6 3.9 CCTV Discrete Output Objects Discrete-TC002

Quantities, Limits, and Values
Label Color =
White with
Black Outline

Use Digital Signal Processing
(DSP) for built-in I.D.
Generator, with white letters
and black outline

B.1 3.11.2.5 labelColor Label-TC001 and PRL-
TC001

Tilt Angle =
+40° to -90°

Provide a unit with vertical
movement of +40° to -90°

B.4 3.2.6 rangeTiltUpLimit

3.2.7 rangeTiltDownLimit

Config-TC005 and PRL-
TC001
Config-TC005 and PRL-
TC001

Tilt Speed = 20°
per sec

Tilt speed must be 20° per sec B.4 3.5.2 positionTilt Tilt-TC001,
Tilt-TC002,
Tilt-TC003,
and PRL-TC001

Pan Angle = 360 Provide a unit with horizontal
movement of 360° full,
contiguous rotation movement

B.4 3.2.2 rangePanLeftLimit

3.2.3 rangePanRightLimit

Config-TC003 and PRL-
TC001
Config-TC003 and PRL-
TC001

Pan Speed =
100° per sec

The pan speed must be up to
100° per sec.

B.4 3.5.1 positionPan Pan-TC001 and PRL-TC001

Pan/Tilt Position
Presets = 1

Provide units with remote
control Pan/Tilt Position preset

B.6 3.2.1 rangeMaximumPreset Config-TC002 and PRL-
TC001

27

Table 3. Requirements Traceability Matrix with Test Procedures (continued).

SS 6025 Closed Circuit Television Requirements Traceability Matrix
User Need Requirement TxDOT

SS 6025
Reference

NTCIP Object Support Test Procedure Identifier

Zoom and Focus
Presets = 1

Provide units with remote
control of Zoom and Focus
position preset

B.6 3.2.1 rangeMaximumPreset Config-TC002 and PRL-
TC001

Auxiliary
Outputs = 1

Provide units with remote
control of one auxiliary output

B.6 3.9 CCTV Discrete Output Objects Discrete-TC002 and PRL-
TC001

Labels Provide the built-in I.D.
Generator that inserts camera
I.D.

B.7 3.11.1 labelMaximum Label-TC001 and PRL-
TC001

Non-identified needs but covered in NTCIP 1205-CCTV
Not Identified Provide a true north reference None 3.2.5 rangeTrueNorthOffset Config-TC004
Not Identified Provide units with remote

control of one auxiliary output
None 3.8 CCTV Discrete Output Objects Discrete-TC002

Not Identified Provide units with remote
control of heater

None 3.6.1 systemCameraFeatureControl
3.6.2 systemCameraFeatureStatus
3.6.3 systemCameraEquipped

Feature-TC003

Not Identified Provide units with remote
control of wiper

None 3.6.1 systemCameraFeatureControl
3.6.2 systemCameraFeatureStatus
3.6.3 systemCameraEquipped

Feature-TC004

Not Identified Provide units with remote
control of washer

None 3.6.1 systemCameraFeatureControl
3.6.2 systemCameraFeatureStatus
3.6.3 systemCameraEquipped

Feature-TC005

Not Identified Provide units with remote
control of blower

None 3.6.1 systemCameraFeatureControl
3.6.2 systemCameraFeatureStatus
3.6.3 systemCameraEquipped

Feature-TC006

Not Identified Provide units with remote
menuing

None 3.12.1 menuActivate
3.12.2 menuControl

Menu-TC001
Menu-TC001

28

Table 3. Requirements Traceability Matrix with Test Procedures (continued).

SS 6025 Closed Circuit Television Requirements Traceability Matrix
User Need Requirement TxDOT

SS 6025
Reference

NTCIP Object Support Test Procedure Identifier

Not Identified Provide units with remote
configuration, control, and
labeling of zones

None 3.10.3 zoneCameraEquipped
3.10.1 zoneMaximum
3.10.2 zoneTable
3.4.1 presetGotoPosition

3.4.2 presetStorePosition
3.4.3 presetPositionQuery

Config-TC010
Zone-TC002
Zone-TC002
Zone-TC001 and Zone-
TC003
Zone-TC001
Zone-TC001

Traceable to NTCIP 1201-GLO
Configuration

2.2.2 globalMaxModules Config-TC001 and
GlobalConfig-TC001

Not Identified Provide input and display of
manufacturer information

None

2.2.3 globalModuleTable
[2.2.3.1 moduleNumber
 2.2.3.2 moduleDeviceNode
 2.2.3.2 moduleMake
 2.2.3.2 moduleModel
 2.2.3.2 moduleVersion
 2.2.3.2 moduleType]

Config-TC001 and
GlobalConfig-TC001

Not Identified Provide indication of
configuration change

None 2.2.1 globalSetIDParmeter GlobalConfig-TC002

Security
Not Identified Provide administrative access

to all data and user password
definitions

None 2.7.1 communityNameAdmin Security-TC001

2.7.2 maxCommunityNames Security-TC002 Not Identified Provide user access passwords None
2.7.3 communityNameTable Security-TC002

29

Table 3. Requirements Traceability Matrix with Test Procedures (continued).

SS 6025 Closed Circuit Television Requirements Traceability Matrix
User Need Requirement TxDOT

SS 6025
Reference

NTCIP Object Support Test Procedure Identifier

 Traceable to NTCIP 2301-STMF
Standardized
Communications
Protocol

Provide communications
signals, data exchange
protocol and timing that is
compatible with the
communications equipment.

B.6 2.7.1 communityNameAdmin
2.7.2 maxCommunityNames
2.7.3 communityNameTable

Security-TC001
Security-TC002
Security-TC002
Note: Numerous SNMP
related functionality test
procedures would be
applicable to CCTV.

Not Identified Provide generic ID of
equipment and manufacturer

None A.5.2 System Conformance Group SNMP-TC041

Not Identified Provide information related to
application-level protocol
troubleshooting

None A.5.3 SNMP Statistics Conformance
Group

SNMP-TC011

Not Identified Accept a data exchange of at
least 484 bytes

None A.5.4 SNMP Configuration Group SNMP-TC005

Traceable to NTCIP 2201-T2
Standardized
Communications
Protocol

Provide communications
signals, data exchange
protocol and timing that is
compatible with non-
networked environment

None Basic functionality of NULL does
not require object support

Note: There are several
NULL protocol-related test
procedures. However, these
do not appear to be applicable
to CCTV.

Not Identified Provide for single application-
level protocol

None Basic functionality of NULL does
not require object support

30

Table 3. Requirements Traceability Matrix with Test Procedures (continued).

SS 6025 Closed Circuit Television Requirements Traceability Matrix
User Need Requirement TxDOT

SS 6025
Reference

NTCIP Object Support Test Procedure Identifier

Traceable to NTCIP 2101-PMPP/RS232
Standardized
Communications
Protocol

Provide communications
signals, data exchange
protocol, and timing that is
compatible with RS-232
Serial Port

None A.7.1 lapBAdminTable
A.7.1 lapBOperTable

232-TC025
232-TC025
Note: Numerous PMPP
related functionality test
procedures would be
applicable to CCTV.

Not Identified Provide information related to
subnetwork-level protocol
troubleshooting

None A.7.2 rs232AsyncPortTable 232-TC024

Programmable
Address

Provide each unit with a
unique programmable address

B.6 Basic functionality of PMPP does
not require object support

232-TC002

Group Address Provide each unit with
programmable group
addresses

None A.7.3 HDLC Group Address
Conformance Group

232-TC013 and 232-TC014

Asynchronous Data must be sent
asynchronously

 A.7.2 rs232PortTable 232-TC024

9600 Baud Use a minimum of 9600 Baud A.7.2 rs232PortTable 232-TC024

 31

CCTV Test Procedures

One objective of the research project is to assist TxDOT in developing procedures.

Appendix C provides a set of test procedures for testing CCTV pan, tilt, and zoom (PTZ)

controllers. The test procedures include a prequalification test case that looks at general object

support and supported values and 57 test cases that look at specific functionality expressed by

the objects.

The prequalification test case retrieves minimum project requirements and maximum

values, checks for whether the device implements the required objects, and performs a sampling

of the supported values. The minimum project requirements and maximum values relate to those

specified in the special specification on NTCIP for CCTV Equipment (Appendix B). These

correspond to such things as the number of labels and the limits of panning, tilting, and zooming.

The test case, as written, simply retrieves the value from a device. It does not make any value

judgment as to whether the object meets the minimum required value. Although the test

procedure could check for a specific minimum value, that interpretation is currently the

responsibility of the person reviewing the test results. The object presence or instantiation test

uses the information in a local MIB to indicate what objects should be present and then performs

a read or SNMP “get” of all possible object instances. Whereas most test procedures use an

SNMP “getNext” command to get the next object instantiated or “walk the MIB,” the test case

uses an SNMP “get” of specific instances. A management application would normally use an

SNMP “get” to access information and the test case emulates that operation. The sampling test

portion of the test uses an externally defined file of test values, and the test steps use a write or

SNMP “set” to store the test value in a device.

The sampling test portion of the test case uses the external file of test values to customize

the procedure to check compliance to TxDOT specifications rather than conformance to the

NTCIP standard. From a NTCIP perspective, a device may limit the number of instances of an

object. For example, the tilt up limit in NTCIP 1205-CCTV is 0 to 360 degrees. A manufacturer

can subrange that limit to 10 degrees and still be compliant to the NTCIP standard. The

requirement in SS 6025 is 40 degrees (1). To test conformance to a TxDOT specification, the test

procedure should use a test value of 40. Basing the test case on externally defined values also

allows districts to customize the test case to project-specific requirements.

 32

The functional test cases use the Enterprise CCTV Test Procedures as their model (15).

They test whether a device performs the function to which an NTCIP object maps. The

organization of the test cases is as follows:

• Alarms

• Camera Configuration (Camera)

• Discrete Input and Output

• Camera Features

• Focus

• Global Configuration

• Iris

• Label

• Lens

• Menu

• Pan

• Security

• Tilt

• Zoom

Some of the functional areas and test cases go beyond the requirements of SS 6025 (1).

The NTCIP standard addresses additional features that do not have a reference in the special

specification. The test cases in Appendix C address some the additional features because some

district and one-time use special specifications do reference those features.

The Global Configuration and Security test cases are not specific to CCTV. They would

apply to any type of field device that claims compliance to NTCIP. The discussion of the

communications and other test procedures appears in a separate section, and a listing appears in

Appendix E.

CCTV Test Results

One of the framework recommendations that appears in the first year’s report on this

project is to use an NTCIP Profile Requirements List as a format for reporting test results.

Appendix D is a filled out PRL showing the results of the Prequalification Test Case - TC001 in

Appendix C. The PRL from NTCIP 1205:2001 v01.08 Amendment 1 v10 serves as the basic

template, but with additional text, that clarifies some revision issues (6).

One of the purposes for including the PRL in NTCIP standards is to use it for selecting

appropriate tests to check conformance. A manufacturer and user can also use it as a detailed

indication of the capabilities of the implementation. NTCIP PRLs come with specific copyright

permission to use them for creating a Protocol Implementation Conformance Specification

(PICS). When a PRL includes specific object support and supported values information about an

implementation, it becomes a PICS. As the name implies, it is a specification of the features in

 33

an implementation. Figure 1 illustrates how the test script changes the object support entries or

adds supported values entries to the PRL to produce a PICS test report. Appendix D contains a

full PICS test report using the PRL from NTCIP 1205-CCTV (6).

CCTV Configuration CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

3.2, 3.3 and
3.11 CCTV Configuration Conformance Group --- M YES ---- -----

3.2 CCTV Range Objects --- --- --- --- ---
 3.2.1 rangeMaximumPreset S 3.2 : M YES 0-255 64

 3.2.2 rangePanLeftLimit S 3.2 : M YES 0-35999 |
65535 35999

 3.2.3 rangePanRightLimit S 3.2 : M YES 0-35999 |
65535 35999

 3.2.4 rangePanHomePosition S 3.2 : M YES 0-35999 |
65535 0

 3.2.5 rangeTrueNorthOffset P 3.2 : M YES 0-35999 |
65535

PASSED:
0,1,18000,
35998,359
99,36000,
FAILED: -

1,
 3.2.6 rangeTiltUpLimit S 3.2 : M YES 0-35999 |

65535 1500

 3.2.7 rangeTiltDownLimit S 3.2 : M YES 0-35999 |
65535 27000

 3.2.8 rangeZoomLimit S 3.2 : M YES 0-65535 65535

Figure 1. CCTV PRL Information Test Case Results.

The results of the other test procedures and test cases listed in Appendix C would follow

the same principle of reusing existing documentation. Figure 2 shows how test case results of the

Cabinet Alarm test case would appear as a test result report. Reporting results in this manner not

only indicates what was tested and whether it passed or not but also documents the specifics of

how it was tested. (A future revision to the test script will add the test script revision number to

the report as well.)

 34

Test Case: Title: Cabinet Alarm
Alarm-TC001 Description: This test case tests the cabinet open alarm and the label

associated with it.
 Variables:
 Pass/Fail

Criteria:
The device under test (DUT) shall pass every verification step
included within the Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1 SET
 labelText.<alarmCLabIndex> = <alarmCLabText1>
 labelHeight.<alarmCLabIndex> = <alarmCLabHeight1>
 labelColor.<alarmCLabIndex> = <alarmCLabColor1>
 labelStartRow.<alarmCLabIndex> = <alarmCLabStartRow1>
 labelStartColumn.<alarmCLabIndex> =
<alarmCLabStartColumn1>

Pass

2 SET alarmLabelIndex.0 to <alarmCLabIndex> 00 00 00 00 00
00

Pass

3 USER VERIFY that no labels are being shown. Pass
4 SET alarmLatchClear.0 to 0x00 Pass
5 Turn on the alarm and USER VERIFY the label for the alarm is

shown.
Pass

6 GET alarmStatus.0 and alarmLatchStatus.0 Pass
7 VERIFY RESPONSE VALUE

 alarmStatus = 0x80
 alarmLatchStatus = 0x80

Pass

8 SET alarmLatchClear.0 to 0x00 Pass
9 GET alarmStatus.0 and alarmLatchStatus.0 Pass
10 VERIFY RESPONSE VALUE

 alarmStatus = 0x80
 alarmLatchStatus = 0x80

Pass

11 USER VERIFY the label for the alarm is shown and deactivate
the alarm.

Pass

12 USER VERIFY the label for the alarm is off. Pass
13 GET alarmStatus.0 and alarmLatchStatus.0 Pass
14 VERIFY Response Value

 alarmStatus = 0x00
 alarmLatchStatus = 0x80

Pass

15 USER VERIFY the label for the alarm is off. Pass
16 SET alarmLatchClear.0 to 0x00 Pass
17 GET alarmStatus.0 and alarmLatchStatus.0 Pass
18 VERIFY RESPONSE VALUE

 alarmStatus = 0x00
 alarmLatchStatus = 0x00

Pass

Test Case Results
Tested By: Jeremy Johnson Date

Tested:
4/22/06 Pass

Test Case Notes: Cohu I-Dome Camera with I-Control SSN 449497
Version History: V1.0 – Initial Draft 09/20/05

V1.1 – Removed deprecated labelFontType 11/03/05

Figure 2. CCTV Cabinet Alarm Test Case Results Form.

 35

COMMUNICATIONS LEVEL TEST PROCEDURES

In order to communicate, any specification of an ITS field device needs to address

requirements for the communications protocols and physical interfaces. For compliance to

NTCIP, this essentially consists of specifying one or more or the application, transport, and

subnetwork-level standards and the plant level physical interface. The NTCIP Guide provides

information on how to select the various standards from each level and the options to use (12).

All of the communications level standards include functional requirements. Some of them

also include object conformance groups. If these functional requirements and conformance

groups appear in a TxDOT specification, then there are test procedures that would apply. A

number of test procedures that relate to communications are already in the public domain. The

following sections provide general descriptions of what is available. Appendix E provides further

details on individual test cases.

Application Level

There are a number of test procedures that validate the proper operation of the SNMP

protocol that apply to an implementation conformant to NTCIP 2301-STMF (8). The functional

areas that they address are:

• General SNMP Commands

• Error Responses to Commands

• Community Name Validation

• Statistical Information

• Standard Data Type Encoding

• Opaque Ending

An implementation may incorporate the STMP protocol that NTCIP 2301-STMF

specifies (8). A number of test procedures are applicable if that is the case. The test procedures

address the Encoding and Decoding of the Data Types

 36

Transport Level

Several test procedures are available for the NTCIP 2201 – Transportation Transport

Profile (NTCIP 2201-T2) (9). These procedures address:

• Invalid Protocol Identifier

• Maximum Packet Size

• Support for the ipNetToMedia Conformance Group

Subnetwork Level

At the subnetwork-level, procedures for checking the functionality and objects in two

conformance groups may be applicable. The test procedures for PMPP as defined in NTCIP

2101-PMPP/RS232 are:

• Short Address Validation

• Long Address Support and Validation

• Broadcast and Polling

• Group Address Support and Validation

• Polling

• Control Byte

• Invalid Protocol Identifier

• Field Check Sum

• RS232 and HDLC Conformance Groups

• Frame Size and Buffering

• Data Rates and Response Time

TRAFFIC SIGNAL CONTROLLER DOCUMENTATION

TxDOT Specifications for Traffic Signal Controllers

TxDOT DMS 11170-TSC defines the general and the NTCIP specific requirements for

traffic signal controllers and their assemblies (2). It covers both the physical, environmental, and

functional requirements and the NTCIP requirements. The document devotes about one-tenth of

its material to NTCIP compliance. It follows the NTCIP Guide’s recommendations on how to

 37

spell out requirements. Besides referencing NTCIP 1202 – Object Definitions for Actuated

Signal Controller Units (NTCIP 1202-ASC), DMS 11170-TSC also includes an Object Range

Value table as suggested in the NEMA TS 2 Standard (16,2,17).

There are three suggestions for additions to DMS 11170-TSC:

• Reference communications-level conformance groups and object definitions.

• Refer to NTCIP 2103-PPP for dial-up communications (13).

• Refer to NTCIP 2104-Ethernet for Ethernet communications (18).

Several of the communications-level standards contain conformance groups and object

definitions that relate to parameters and status information at that level. The standards

themselves designate certain groups as being mandatory, but some implementations do not

include them. For example, there are object conformance groups related to system information,

SNMP statistics, and HDLC that may apply. Sections 2.F and 2.G of Appendix B provide

example wording of what to include. Please also keep in mind that different transport and

subnetwork-level protocols have different conformance groups.

DMS 11170-TSC references dial-up communications but does not cite any particular

standard to follow (2). NTCIP 2103-PPP defines the protocol for use in this type of point-to-

point communication (13). It also defines an authentication protocol that protects against

unauthorized access. The newest version of NTCIP 2103-PPP includes object definitions that

standardize the information related to modem initialization and phone numbers (13).

Although it is not required by any NTCIP standard, most current state-of-the-art traffic

signal controllers include an Ethernet interface. A number of recent projects involving DMSs and

CCTVs include a reference to Ethernet (19,20). While there may not be an immediate need to

address an Ethernet interface, DMS 11170-TSC could list it as optional (2).

Initial Requirements Traceability Matrix

Developing a full requirements traceability matrix for a traffic signal controller is beyond

the scope of this project. This is especially true if the RTM needs to include user needs and

provide cross references to a full set of test case identifiers. However, DMS 11170-TSC does

have a set of NTCIP requirements (2). This research prototyped some diamond-controller test

procedures, and other applicable procedures exist. Given these limitations and available

 38

information, the researcher does provide an initial RTM. A first-order RTM also provides some

insight into the work effort needed to develop a full set of test procedures.

In Table 4, an RTM enumerates the NTCIP requirements in DMS 11170-TSC, cites the

clause or heading defining the requirement, and lists the NTCIP objects that relate to the

requirement. In most cases, the test procedure identifier is blank. However, where one of the test

cases in Appendix G is applicable, the matrix cross-references it.

Several of the entries in the Test Procedure Identifier column add a prefix to some of the

test case identifiers. The prefix is a reference to the device type source. For example, the

globalMaxModules object lists (CCTV) Config-TC001 and (ASC) GloCon-TC001, which are

equivalent and equally applicable. The column entry lists both because, currently each group or

organization working on test procedures for a specific ITS field device is generating its own set

of procedures for the objects that appear in NTCIP 1201-GLO (7). The NTCIP working groups

are trying to resolve this duplication. However, TxDOT will have a similar situation. Is there a

single set of procedures that can apply to all field devices that implement part of NTCIP 1201-

GLO (7)? What about procedures for SNMP, RS-232, and the other communications level

standards that can apply to a number of ITS field devices? The researcher believes that there

should be a single set of procedures that test for compliance and/or conformance of the common

conformance groups and protocols. However, until there is research into whether this is possible,

each ITS field device may end up with its own set of test procedures.

39

Table 4. TSC Requirements Traceability Matrix with Test Procedures.

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier 1

Traceable to NTCIP 1202-ASC
Phase Conformance Group

maxPhases PRL-TC0012
 PRL-TC001
phaseNumber DetOps-TC001 –

DetOps-TC0183
phaseWalk
phasePedestrianClear
phaseMinimumGreen DetOps-TC001 –

DetOps-TC018
phasePassage DetOps-TC001 –

DetOps-TC018
phaseMaximum1 DetOps-TC001 –

DetOps-TC018
phaseMaximum2
phaseYellowChange DetOps-TC001 –

DetOps-TC018

 Implement all mandatory objects and
all mandatory conformance groups
defined in “Actuated Signal
Controller Object Definitions,”
NTCIP 1202:1996: Phase
Conformance Group

NTCIP
Compliance phaseTable

phaseRedClear DetOps-TC001 –
DetOps-TC018

1 Unless otherwise stated, the Test Procedure Identifier refers to those listed in Appendix G.
2 The Protocol/Profile Requirements test case also checks for support of all objects listed in the MIB.
3 The Detector Operations test cases do not test the phase intervals but rely on specific values.

40

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC

 Requirements Traceability Matrix
User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

 Not Required4 phaseRedRevert
phaseAddedInitial
phaseMaximumInitial

 Implement all mandatory objects and
all mandatory conformance groups
defined in “Actuated Signal
Controller Object Definitions,”
NTCIP 1202:1996: Phase
Conformance Group

phaseTimeBeforeReduction

 Not Required5 phaseCarsBeforeReduction
 Implement all mandatory objects and

all mandatory conformance groups
defined in “Actuated Signal
Controller Object Definitions,”
NTCIP 1202:1996: Phase
Conformance Group

phaseTimeToReduce

 Not Required 5 phaseReduceBy
 Implement all mandatory objects and

all mandatory conformance groups
defined in “Actuated Signal
Controller Object Definitions,”
NTCIP 1202:1996: Phase
Conformance Group

phaseMinimumGap

 Implement the following optional

phaseDynamicMaxLimit

4 Optional object not required by DMS 11170-TSC.
5 Optional object not required by DMS 11170-TSC.

41

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

objects as defined in the “Actuated
Signal Controller Object
Definitions,” NTCIP 1202:1996:
phaseDynamicMaxLimit and phase
DynamicMaxStep.

phaseDynamicMaxStep

phaseStartup DCT-T00016
phaseOptions
phaseRing
phaseConcurrency

maxPhaseGroups PRL-TC001
 PRL-TC001
phaseStatusGroupNumber
phaseStatusGroupReds IM-TC0001
phaseStatusGroupYellows IM-TC0001
phaseStatusGroupGreens DetOps-TC001 –

DetOps-TC018,
IM-TC0001

phaseStatusGroupDont
Walks

IM-TC0001

phaseStatusGroupPedClears IM-TC0001
phaseStatusGroupWalks IM-TC0001
phaseStatusGroupVehCalls IM-TC0001

 Implement all mandatory objects and
all mandatory conformance groups
defined in “Actuated Signal
Controller Object Definitions,”
NTCIP 1202:1996: Phase
Conformance Group phaseStatusGroup

Table

phaseStatusGroupPedCalls IM-TC0001

6 The dbCreateTransaction test case only looks at the phaseStartup intervals.

42

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

phaseStatusGroupPhaseOns Seg-TC001
DetOps-TC001 –
DetOps-TC018,
IM-TC0001

phaseStatusGroup
PhaseNexts

IM-TC0001

 PRL-TC001
phaseControlGroupNumber
phaseControlGroup
PhaseOmit

phaseControlGroupPedOmit
phaseControlGroupHold
phaseControlGroup
ForceOff

phaseControlGroupVehCall DetOps-TC001 –
DetOps-TC018

phaseStatus
ControlTable

phaseControlGroupPedCall
Detector

maxVehicleDetectors PRL-TC001
 PRL-TC001
vehicleDetectorNumber
vehicleDetectorOptions
vehicleDetectorCallPhase
vehicleDetectorSwitchPhase

 Implement all mandatory objects and
all mandatory conformance groups
defined in “Actuated Signal
Controller Object Definitions,”
NTCIP 1202:1996: Detector
Conformance Group

NTCIP
Compliance vehicleDetectorTable

vehicleDetectorDelay

43

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

vehicleDetectorExtend DetOps-TC001 –
DetOps-TC018

 Implement the following optional
objects as defined in the “Actuated
Signal Controller Object
Definitions,” NTCIP 1202:1996

vehicleDetectorQueueLimit

vehicleDetectorNoActivity
vehicleDetector
MaxPresence

 Implement all mandatory objects and

all mandatory conformance groups
defined in “Actuated Signal
Controller Object Definitions,”
NTCIP 1202:1996: Detector
Conformance Group

vehicleDetector
ErraticCounts

 Implement the following optional
objects as defined in the “Actuated
Signal Controller Object
Definitions,” NTCIP 1202:1996

vehicleDetectorFailTime

 Implement all mandatory objects and
all mandatory conformance groups
defined in “Actuated Signal
Controller Object Definitions,”
NTCIP 1202:1996: Detector
Conformance Group

vehicleDetectorAlarms

 Implement the following optional
objects as defined in the “Actuated
Signal Controller Object

vehicleDetectorReported
Alarms

44

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

Definitions,” NTCIP 1202:1996
vehicleDetectorReset

maxVehicle
Detector
StatusGroups

 PRL-TC001

 PRL-TC001
vehicleDetectorStatusGroup
Number

vehicleDetectorStatusGroup
Active

vehicleDetector
StatusGroupTable

vehicleDetectorStatusGroup
Alarms

maxPedestrian
Detectors

 PRL-TC001

 PRL-TC001
pedestrianDetectorNumber
pedestrianDetector
CallPhase

pedestrianDetector
NoActivity

pedestrianDetector
MaxPresence

pedestrianDetector
ErraticCounts

 Implement all mandatory objects and
all mandatory conformance groups
defined in “Actuated Signal
Controller Object Definitions,”
NTCIP 1202:1996: Detector
Conformance Group

pedestrian
DetectorTable

pedestrianDetector
Alarms

45

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

Volume Occupancy Report
volume
OccupancySequence

volume
OccupancyPeriod

activeVolume
OccupancyDetectors

 PRL-TC001
detectorVolume

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996:
Volume Occupancy Report
Conformance Group

NTCIP
Compliance

Volume
OccupancyTable

detectorOccupancy
Unit

unitStartUpFlash
unitAutoPedestrian
Clear

 Implement all mandatory objects of

all optional conformance groups as
defined in NTCIP 1202:1996: Unit
Conformance Group unitBackupTime

 Implement the following optional
objects as defined in the “Actuated
Signal Controller Object
Definitions,” NTCIP 1202:1996

unitRedRevert

unitControlStatus IM-TC0001
unitFlashStatus
unitAlarmStatus2

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996: Unit
Conformance Group

NTCIP
Compliance

unitAlarmStatus1

46

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

shortAlarmStatus IM-TC0001
unitControl
maxAlarmGroups

alarmGroupNumber

 Implement the following optional
objects as defined in the “Actuated
Signal Controller Object
Definitions,” NTCIP 1202:1996

alarmGroupTable

alarmGroupState
Special Function

maxSpecialFunction
Outputs

 PRL-TC001

 PRL-TC001
specialFunctionOutput
Number

specialFunctionOutput
Control

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996: Special
Function Conformance Group

NTCIP
Compliance

specialFunctionOutput
Table

specialFunctionOutput
Status

Coordination
coordOperational
Mode

coordCorrectionMode
coordMaximumMode
coordForceMode
maxPatterns
patternTableType

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996:
Coordination Conformance Group

NTCIP
Compliance

patternTable
patternNumber

47

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

patternCycleTime
patternOffsetTime
patternSplitNumber
patternSequence
Number

maxSplits PRL-TC001
 PRL-TC001
splitNumber
splitPhase
splitTime
splitMode

splitTable

splitCoordPhase
coordPatternStatus IM-TC0001
localFreeStatus
coordCycleStatus
coordSyncStatus
systemPatternControl
systemSyncControl

Time Base
timebaseAscPattern
Sync

maxTimebaseAsc
Actions

 PRL-TC001

 PRL-TC001

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996: Time
Base Conformance Group

NTCIP
Compliance

timebaseAscAction
Table timebaseAscActionNumber

48

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

timebaseAscPattern
timebaseAscAuxillary
Function

timebaseAscSpecial
Function

timebaseAscActionStatus
Preempt

maxPreempts PRL-TC001
 PRL-TC001
preemptNumber
preemptControl
preemptLink
preemptDelay

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996:
Preempt Conformance Group

preemptMinimumDuration
preemptMinimumGreen
preemptMinimumWalk

 Implement the following optional
objects as defined in the “Actuated
Signal Controller Object
Definitions,” NTCIP 1202:1996

preemptEnterPedClear

preemptTrackGreen
preemptDwellGreen
preemptMaximumPresence
preemptTrackPhase

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996:
Preempt Conformance Group

NTCIP
Compliance

preemptDwellPhase
 Not Required7 N/A

PreemptTable

preemptDwellPed

7 Optional object not required by DMS 11170-TSC

49

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996:
Preempt Conformance Group

preemptExitPhase

 Implement the following optional
objects as defined in the “Actuated
Signal Controller Object
Definitions,” NTCIP 1202:1996

NTCIP
Compliance

preemptState

preemptTrackOverlap
preemptDwellOverlap
preemptCyclingPhase
preemptCyclingPed
preemptCyclingOverlap
preemptEnterYellowChange
preemptEnterRedClear
preemptTrackYellow
Change

 Not Required8 N/A

preemptTrackRedClear
 PRL-TC001
preemptControlNumber

 Implement the following optional
objects as defined in the “Actuated
Signal Controller Object
Definitions,” NTCIP 1202:1996

NTCIP
Compliance

preemptControlTable

preemptControlState

Ring

8 These objects were added in NTCIP 1202 v02.18.

50

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

maxRings PRL-TC001
maxSequences PRL-TC001

 PRL-TC001
sequenceNumber
sequenceRingNumber

sequenceTable

sequenceData
maxRingControl
Groups

 PRL-TC001

 PRL-TC001
ringControlGroupNumber

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996: Ring
Conformance Group

ringControlGroupStopTime
ringControlGroupForceOff
ringControlGroupMax2

 Implement the following optional
objects as defined in the “Actuated
Signal Controller Object Definitions”
NTCIP 1202:1996

ringControlGroup
MaxInhibit

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996: Ring
Conformance Group

ringControlGroupPed
Recycle

ringControlGroupRedRest Not Required9

NTCIP
Compliance

ringControlGroup
Table

ringControlGroupOmitRed
Clear

 Not Required10 N/A ringStatusTable PRL-TC001

9 These optional objects are not required by DMS 11170-TSC.
10 This table and object were added in NTCIP 1202 v02.18.

51

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

ringStatus Seg-TC001
DetOps-TC001 –
DetOps-TC018,
IM-TC0001

Channel
maxChannels

 PRL-TC001
channelNumber
channelControlSource
channelControlType
channelFlash

channelTable

channelDim
maxChannelStatusGroups PRL-TC001

 PRL-TC001
channelStatusGroupNumber
channelStatusGroupReds
channelStatusGroupYellows

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996:
Channel Conformance Group

NTCIP
Compliance

channelStatusGroupTable

channelStatusGroupGreens
Overlap

maxOverlaps PRL-TC001
 PRL-TC001
overlapNumber
overlapType
overlapIncludedPhases

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996:
Overlap Conformance Group

NTCIP
Compliance overlapTable

overlapModifierPhases

52

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

overlapTrailGreen
overlapTrailYellow
overlapTrailRed

maxOverlapStatus
Groups

 PRL-TC001

 PRL-TC001
overlapStatusGroupNumber
overlapStatusGroupReds
overlapStatusGroupYellows

overlapStatusGroup
Table

overlapStatusGroupGreens DetOps-TC001 –
DetOps-TC018

TS 2 Port 1
maxPort1Addresses PRL-TC001

 PRL-TC001
port1Number
port1DevicePresent
port1Frame40Enable
port1Status

 Implement all mandatory objects of
all optional conformance groups as
defined in NTCIP 1202:1996: TS 2
Port 1 Conformance Group

NTCIP
Compliance port1Table

port1FaultFrame
Block Objects

ascBlockGetControl
ascBlockData

 Not Required11 N/A

ascBlockErrorStatus

11 These objects were added in NTCIP 1202 v02.18.

53

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

 Traceable to NTCIP 1201-GLO
Time Management

globalTme TAD-TC0001 Implement all mandatory objects of
all optional conformance groups as
defined in “Global Object
Definitions,” NTCIP 1201:1996:
Time Management Conformance
Group

globalDayLight
Savings

 TAD-TC0001

 Deprecated objects12

NTCIP
Compliance

globalLocalTimeDifferential TAD-TC0001
Time Base Event Schedule

 maxTimeBase
ScheduleEntries

 PRL-TC001

 PRL-TC001
timeBaseSchedule
Number

timeBaseScheduleMonth
timeBaseScheduleDay
timeBaseScheduleDate

 Implement all mandatory objects of
all optional conformance groups as
defined in “Global Object
Definitions,” NTCIP 1201:1996:
Timebase Event Schedule
Conformance Group

timeBaseSchedule
Table

timeBaseScheduleDayPlan
 Not Required13 N/A timeBaseSchedule

Table-status

12 This object was deprecated in NTCIP 1201 v02.26.
13 This object was added in NTCIP 1201 v02.26.

54

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

maxDayPlans PRL-TC001
maxDayPlanEvents PRL-TC001

 PRL-TC001
dayPlanEventNumber
dayPlanHour
dayPlanMinute

timeBaseDayPlan
Table

dayPlanActionNumber
OID

Implement all mandatory objects of
all optional conformance groups as
defined in “Global Object
Definitions,” NTCIP 1201:1996:
Timebase Event Schedule
Conformance Group

NTCIP
Compliance

dayPlanStatus
 Not Required14 controller-

standardTimeZone

 Not Required15

N/A

controller-localTime

TAD-TC0001

Database Management and Configuration Management
 Implement all mandatory objects of

all optional conformance groups as
defined in “Global Object
Definitions,” NTCIP 1201:1996:
Database Management Conformance
Group

dbCreateTransaction DCT-TC0001

dbErrorType
dbErrorID

 Deprecated objects16

NTCIP
Compliance

dbTransactionID

14 This object was added in NTCIP 1201 v02.26.
15 This object was added in NTCIP 1201 v02.26.
16 These objects were deprecated in NTCIP 1201:1996 v01.10.

55

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

 Implement the following optional
objects as defined in the “Global
Object Definitions,” NTCIP
1201:1996 17

dbMakeID

dbVerifyStatus Implement all mandatory objects of
all optional conformance groups as
defined in “Global Object
Definitions,” NTCIP 1201:1996:
Database Management Conformance
Group

dbVerifyError
DCT-TC0001

Configuration (Global)
globalSetIDParmeter (ASC)GloCon-

TC002

globalMaxModules (CCTV)Config-
TC001,
(ASC) GloCon-
TC001
PRL-TC001

 PRL-TC001
moduleNumber
moduleDeviceNode
moduleMake

 Implement all mandatory objects of
all mandatory conformance groups as
defined in the “Global Object
Definitions,” NTCIP 1201:1996:
Global Configuration Conformance
Group

NTCIP
Compliance

globalModuleTable

moduleModel

(ASC) GloCon-
TC001

17 This object was deprecated in NTCIP 1201:1996 v01.10.

56

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

moduleVersion
moduleType

 Not Required18 N/A controller-baseStandards
Report

maxEventLogConfigs PRL-TC001
 PRL-TC001
eventConfigID
eventConfigClass
eventConfigMode
eventConfigCompareValue
eventConfigCompareValue2

 Implement all mandatory objects of
all optional conformance groups as
defined in the “Global Object
Definitions,” NTCIP 1201:1996:
Report Conformance Group

eventConfigCompareOID
eventConfigLogOID Implement the following optional

objects as defined in the “Global
Object Definitions,” NTCIP
1201:1996

NTCIP
Compliance

eventConfigAction

 Not Required19 N/A

eventLogConfigTable

eventConfigStatus

RLD-TC001 –
RLD-TC0008

maxEventLogSize PRL-TC001
 PRL-TC001
eventLogClass
eventLogNumber
eventLogID
eventLogTime

 Implement all mandatory objects of
all optional conformance groups as
defined in the “Global Object
Definitions,” NTCIP 1201:1996:
Report Conformance Group

NTCIP
Compliance eventLogTable

eventLogValue

RLD-TC001 –
RLD-TC0008

18 This object was added in NTCIP 1201 v02.26.
19 This object was added in NTCIP 1201 v02.26.

57

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

maxEventClasses PRL-TC001
 PRL-TC001
eventClassNumber
eventClassLimit
eventClassClearTime

 Implement the following optional
objects as defined in the “Global
Object Definitions,” NTCIP
1201:1996

eventClassDescription

 Implement all mandatory objects of
all optional conformance groups as
defined in the “Global Object
Definitions,” NTCIP 1201:1996:
Report Conformance Group

eventClassTable

eventClassNumRowsInLog

RLD-TC001 –
RLD-TC0008

 Not Required20 N/A numEvents
STMP
 Implement all mandatory objects of

all optional conformance groups as
defined in the “Global Object
Definitions,” NTCIP 1201:1996:
STMF (STMP) Conformance Group

NTCIP
Compliance

dynamicObject
Persistence

20 This object was added in NTCIP 1201 v02.26.

58

Table 4. TSC Requirements Traceability Matrix with Test Procedures (continued).

DMS 11170-TSC
 Requirements Traceability Matrix

User
Need

Requirement TxDOT
DMS 11170
Reference

NTCIP Object Support Test Procedure
Identifier

PMPP

maxGroupAddresses

 PRL-TC001

hdlcGroupAddressIndex

 Implement all mandatory objects of
all optional conformance groups as
defined in the “Global Object
Definitions,” NTCIP 1201:1996:
PMPP Conformance Group

NTCIP
Compliance

hdlcGroupAddress
Table

hdlcGroupAddress

232-TC013 and
232-TC014

Security
communityName
Admin

 (ASC) Security-
TC001

communityNamesMax (ASC) Security-
TC002

communityNameIndex
communityNameUser

 Implement all mandatory objects of
all mandatory conformance groups as
defined in the “Global Object
Definitions,” NTCIP 1201:1996:
Security Conformance Group

None

communityNameTable

communityNameAccess
Mask

(ASC) Security-
TC002

 59

Test Plan and Documentation

Since a task of developing NTCIP test procedures for one of the ITS field devices can be

a significant project in and of itself, the researcher found that following some of the

recommendations in the Institute of Electrical and Electronics Engineers (IEEE) Std. 829 – IEEE

Standard for Software Test Documentation are useful (3). Prior to actually writing procedures,

the IEEE standard suggests the development of an overall plan, one or more test design

specifications, and test case specifications. The overall plan conveys the scope, approach,

resources, and schedule of testing activities. Its primary purpose is to present a high-level view

of the project to inform all interested parties. The test design specifications provide a more

detailed view of the testing project. A test engineer’s supervisor and any group such as a project

monitoring committee uses the test design specifications to make sure that a test engineer

understands the projects and is addressing what is needed. This serves as part of the validation

step in the project development. Test case specifications then outline individual test cases that

verify specific features and functions of an implementation undergoing testing. The test case

specifications provide additional oversight but primarily help a test engineer organize and plan

the specifics of each test case before committing to code or formal definition. These types of

documents address the planning aspects of a testing project.

Full development of these documents is beyond the scope of this TxDOT research

project. In the case of the CCTV test procedures, the researcher capitalized on test procedures

already in the public domain, and upfront planning did not appear to be necessary. For the traffic

signal controllers, the researcher had a test case specification from a previous project that was

appropriate. A previous test design specification was somewhat appropriate, and the researcher

believes that an update that references the TxDOT department material specification DMS

11170-TSC, Fully Actuated, Solid-State Traffic Signal Controller Assembly provides useful

information (2). Appendix F contains a Test Design Specification and a Test Case Specification

for addressing all the functions of a traffic signal controller. It uses IEEE Std. 829 – IEEE

Standard for Software Test Documentation as a guide on the organization and contents.

A number of state departments of transportation are adopting International Organization

for Standardization (ISO) 9000 in order to improve quality (21). The following test design

 60

specification and test case specification are two types of document examples that would satisfy

some of ISO 9000 requirements.

Traffic Signal Controller Test Procedures

Using the information in Appendix F as the basis for development, the researcher

provides the details of a limited set of test cases and their test procedures in Appendix G. The

following traffic signal controller test cases focus on:

• PRL Information

• Four-Phase Diamond Sequencing

• Four-Phase Diamond Detector Operations

• Global Configuration

• Security

Some additional test cases also look primarily at the functionality. These test cases are

based on user needs in that they look at what services a user would expect or perform on a

conformant device. These test cases consist of:

• Managing Phase Configuration and Initialization

• Retrieving Phase Status Information

• Retrieving Manufacturer Information

• Setting Up and Retrieving Log Data

• Retrieving System Status Information

• Setting Up and Executing Timebase Events

• Setting Time and Date

Traffic Signal Controller Test Results

The suggestion for reporting traffic signal controller test results is to use the same method

as illustrated for CCTV. The PRL from the NTCIP 1202-ASC standard serves as a template and

the ASC PRL Information prequalification test script (see Appendix G) outputs the results onto

that form (16). The completed test results would be similar to what appears in Appendix D. In

the case of other test procedures, the NTCIP test procedure itself serves as the template and the

related test script transcribes the results onto the template.

 61

The researcher’s definition of the traffic signal controller test procedures do not follow

the method as prescribed in NTCIP 8007 – Testing and Conformity Assessment Documentation

within NTCIP Standards Publications (NTCIP 8007-TEST) (22). After reviewing the result

reports for the CCTV test procedures, the researcher believes that showing results for every test

step does not enhance readability and may lead to overlooking something important. For

example, Figure 2 shows “Pass” for every test step. It may be clearer to show only “Pass” for the

critical steps as shown in Figure 3. Any test step that does fail would show a “Fail,” and the rest

of the indications in the test procedure template would be unchanged.

Test Step
Number

Test Procedure Results

1 SET
 labelText.<alarmCLabIndex> = <alarmCLabText1>
 labelHeight.<alarmCLabIndex> = <alarmCLabHeight1>
 labelColor.<alarmCLabIndex> = <alarmCLabColor1>
 labelStartRow.<alarmCLabIndex> = <alarmCLabStartRow1>
 labelStartColumn.<alarmCLabIndex> =
<alarmCLabStartColumn1>

2 SET alarmLabelIndex.0 to <alarmCLabIndex> 00 00 00 00 00
00

3 USER VERIFY that no labels are being shown. Pass
4 SET alarmLatchClear.0 to 0x00
5 Turn on the alarm and USER VERIFY the label for the alarm is

shown.

6 GET alarmStatus.0 and alarmLatchStatus.0
7 VERIFY RESPONSE VALUE

 alarmStatus = 0x80
 alarmLatchStatus = 0x80

Pass

8 SET alarmLatchClear.0 to 0x00 Pass

Figure 3. Test Results Indicating Critical Results.

DETECTOR REQUIREMENTS

During the course of developing test procedures for the four-phase detector operations as

defined in DMS 11170-TSC, the researcher ran across a situation where the requirements may

not be addressing an operational need (2). The description of how detectors 1 and 5 are to

operate does not address the situation in which there is a call for service on one of the left turns

when a controller is resting in the opposing through green. Signage and the physical geometry of

an actual intersection may explain it, but when an implementation follows the requirements, a

call does not register.

 63

CHAPTER 3:
DEVELOPING ADDITIONAL TEST PROCEDURES

INTRODUCTION

In order to provide TxDOT with a sense of the effort one needs to develop test

procedures, the researcher presents Table 5. The table references the standards that would require

test procedures, statistical information about the number of object definitions and tables to gauge

complexity, information about NTCIP efforts to develop test procedures, and the researcher’s

estimates to implement test procedures in a suitable TxDOT testing environment. The number of

object definitions and tables comes from Version 1 of each standard. Typically, Version 2 of

each standard contains more objects.

The estimates come from experience in deriving the test procedures in this report,

previous test procedure development in other projects, and conversations with several NTCIP

working group chairs, technical editors, and/or consultants. The test procedures under

consideration are not exhaustive. For example, virtually any object can trigger the logging of an

event. Rather than test all possible triggers, the procedures would look at typical objects of each

data type to gauge overall correctness of the function.

In general, read-only objects represent either preset values or status information with

status information correlating to the overall complexity. Preset values typically define the

number of instances associated with entries in a table. A test procedure to check presets is trivial.

Status information, on the other hand is relatively complex to test. This testing usually involves

the setup of conditions to invoke individual states of a status object. The number of status objects

is approximately equal to the number of read-only object definitions minus the number of tables.

 64

Table 5. NTCIP Standard Statistics and Test Procedure Efforts.

Object Definitions Standard

Read-Only Read-Write Total

Tables NTCIP Test

Procedures

Effort for Test

Procedures

1103-TMP 77 35 112 7 4-6 months

1201-GLO 46 27 73 8 Planned 2-3 months

1202-ASC 85 98 183 21 8-10 months

1203-DMS 79 53 132 7 2-4 months

1204-ESS 83 7 90 4 Planned 2 months

1205-CCTV 35 54 89 2 2.5 months

1206-DCM 151 79 230 30 8-10 months

1207-RMC 59 143 202 19 5-7 months

1208-SW 22 37 59 8 3 months

1209-TSS 27 18 45 8 4-6 months

1210-FMS 77 104 181 23 7-9 months

1211-SCP 43 5 48 4 Planned 2 months

1213-ELMS 26 63 89 9 3 months

ITS FIELD DEVICE ESTIMATES

The following sections provide a description of the individual estimates. The estimates do

not include any effort to locate and acquire an implementation in order to validate the test

procedures. One should also understand that additional hardware is often necessary to check the

functionality of an implementation. For example, a data collection and monitoring device would

need various types of sensors to produce valid or runtime-status information values. In the case

of signal control and prioritization, a system consists of a request generator, request server, and

traffic signal controller. All three components would need to be on hand to fully test a system.

NTCIP 1103-TMP

The NTCIP 1103 Transportation Management Protocols (NTCIP 1103-TMP) standard

contains statistical objects related to STMP and SFMP, STMP configuration objects, the event

 65

and report objects, and the community name objects (23). The effort to define test procedures for

the STMP statistical objects is moderate because it requires the creation of error conditions.

Although some related procedures exist, SFMP procedures will require design time.

Complicating the development of SFMP procedures is the fact that testing tools do not support

the protocol, and implementations are not apparent. Therefore, SFMP test procedures are not part

of the estimate. The estimate for the level of effort for STMP configuration objects is relatively

low because there has been preliminary development. This estimation assumes that the

procedures will address the encodings for only a sample of the various object types. A more

robust procedure that looks at several dozen possible typical messages would take considerably

longer. The effort for event and report objects test procedures is also relatively low because there

has been preliminary development. The trap management object that will appear in NTCIP 1103-

TMP Version 2 would double the effort and push the estimate out to the 6-month mark (23).

NTCIP 1201-GLO

The NTCIP 1201 – Global Object Definitions (NTCIP 1201-GLO) standard contains

objects that relate to general functions within ITS field devices (7). It covers non-device specific

functions like time and date, auxiliary input and output, and general scheduling information. The

effort for global objects procedures is relatively low because there has been some preliminary

development. There is a strong likelihood that an NTCIP working group will add these to the

standard itself. The researcher estimates the effort for developing NTCIP 1201-GLO test

procedures at 2 to 3 months.

NTCIP 1202-ASC

The effort to develop test procedures for NTCIP 1202 – Object Definitions for Actuated

Signal Controller Units (NTCIP 1202-ASC) ranges from 8 to 10 months (16). There are private

industry efforts to develop NTCIP 1202-ASC test procedures. However, there is some reluctance

to place these procedures in the public domain. A proposal to add them to the NTCIP standard

was not approved. Assuming these private industry procedures are not available, then the effort

will be somewhat lengthy. This estimate assumes a limited number of test cases wherein the

number of combinations and permutations is minimal. The estimate includes 1 month to address

three-phase diamond and dual four-phase operations. With these assumptions, the estimate for

NTCIP 1202-ASC test procedures is between 8 and 10 months.

 66

NTCIP 1203-DMS

The estimate for NTCIP 1203-DMS test procedures ranges from 2 to 4 months. The

unknown variable is support for Version 2 (5). Test procedures for Version 1 are already in the

public domain. Assuming these test procedures are acceptable and they simply need updating

and reformatting, then the effort is about 2 months. From a conversation with the editor of the

NTCIP-1203 standard, Version 2 test procedures may be currently under development as part of

a Virginia DOT project (5). If these are to serve as the basis for TxDOT procedures, the effort

estimate is 4 months.

NTCIP 1204-ESS

For NTCIP 1204 – Environmental Sensor Station Interface Standard (NTCIP 1204-ESS),

the estimate is 2 months (24). In a conversation with the NTCIP program manager on August 10,

2006, the NTCIP 1204-ESS working group has a notice-to-proceed with adding test procedures

to the standard (24). Assuming these are acceptable to TxDOT, then the effort will be translating

them into appropriate scripts. The researcher’s estimate for NTCIP 1204-ESS test procedures is 2

months.

NTCIP 1205-CCTV

This research report includes a set of test procedures for NTCIP 1205 – Object

Definitions for Closed Circuit Television (CCTV) Camera Control. Omitting the effort to locate

and acquire NTCIP compliant hardware to validate the procedures, the effort to reformat the

Enterprise test procedures into the NTCIP 8007 – Testing and Conformity Assessment

Documentation within NTCIP Standards Publications (NTCIP 8007-TEST) format and convert

them to SimpleTester™ 21 for NTCIP test scripts was approximately 2.5 months (22).

NTCIP 1206-DCM

NTCIP DCM working group chair’s estimate for test procedures related to NTCIP 1206 –

Object Definitions for Data Collection and Monitoring (DCM) Devices (NTCIP 1206-DCM) is

between 5 and 7 months (25). Given the number of status information objects, however, this

appears to be conservative. The researcher believes that describing and defining the test

21 SimpleTester™ is a trademark of SimpleSoft, Incorporated, Mountain View, California.

 67

conditions will take considerable effort. Even without a working knowledge of a DCM device,

the number of status information objects is almost double that of other devices with a high level

of complexity. For this reason, the researcher’s estimate is 3 months longer than the chair’s

estimate and is put at 8 to 10 months.

NTCIP 1207-RMC

The estimate for NTCIP 1207 – Object Definitions for Ramp Meter Control (RMC) Units

(NTCIP 1207-RMC) comes from the NTCIP RMC working group chair (26). When one

compares the number of status information objects to other standards, this estimate is somewhat

high. However, in the case of RMC devices, the researcher defers to the judgment of the working

group chair whose estimate is 5 to 7 months.

NTCIP 1208-SW

Given the least number of status information objects of any standard, the estimate for

NTCIP 1208 – Object Definitions for Closed Circuit Television (CCTV) Switching (NTCIP

1208-SW) is put at 3 months (27).

NTCIP 1209-TSS

The NTCIP 1209 – Data Element Definitions for Transportation Sensor Systems (NTCIP

1209-TSS) estimate is between 4 and 6 months (28). The number of objects in Table 5 comes

from Version 1 of NTCIP 1209-TSS. This number of objects is at the lower end of the scale

when considering other NTCIP standards. However, the working group chair cautions that

Version 2 is going to include additional object support for machine vision and vehicle

classification. Since these two areas are of interest to TxDOT, the upper end of the 4 to 6 month

estimate is for support of Version 2.

NTCIP 1210-FMS

The basis for the estimate of NTCIP 1210 – Field Management Stations - Part 1: Object

Definitions for Signal System Masters (NTCIP 1210-FMS) test procedures is the current

working group draft (29). Even though the final object count will likely change before Version 1

has full approval, the researcher and the FMS working group consultant are in general agreement

 68

on the amount of effort to develop a set of test procedures. The estimate for FMS test procedures

is 7 to 9 months.

NTCIP 1211-SCP

Even though the NTCIP 1211 – Object Definitions for Signal Control and Prioritization

(NTCIP 1211-SCP) standard deals with the potential for a system consisting of multiple physical

entities, the effort to implement a set of procedures for TxDOT should be relatively small (30).

This is because an NTCIP project plan to add them to the standard has approval. If these NTCIP

test procedures meet with TxDOT’s approval then the effort will be translating them into

appropriate scripts. This estimate is 2 months.

NTCIP 1213-ELMS

The estimate for NTCIP 1213 – Objects Definitions for Electrical and Lighting

Management Systems (NTCIP 1213-ELMS) is 3 months (31). This estimate comes from the

number of object definitions in the standard and a general discussion with the working group

chair. Given the small number of status information objects, defining the procedures should be

relatively easy. As stated in the introduction, however, the bigger issue will be to identify and

acquire field devices to verify the procedures.

 69

CHAPTER 4:
APPLYING TESTING PROCEDURES

TESTING PROCESSES

TxDOT documents and specifications describe two testing processes. Tex-1170-T –

Sampling and Environmental Testing of Traffic Signal Controller Assemblies: Traffic Signal

Controllers and Conflict Monitors (Tex-1170-T) defines an internal TxDOT process that applies

to traffic signal controllers and cabinets (32). The second process comes from Special

Specification 6504 – Testing, Training, Documentation and Warranty (SS 6504) (33). This

specification describes a testing process that is the responsibility of a contractor to perform. The

following headings describe the two processes and apply different testing techniques to each of

them. A draft information report, NTCIP 9012 – Testing and Conformity Assessment User

Guide for NTCIP Field Devices and Center-to-Field Communications (NTCIP 9012-TG)

provides general background and guidance to an agency defining a testing process/program for

testing devices that incorporate NTCIP Standards (34).

INTERNAL TxDOT TESTING PROCESS

Figure 4 illustrates the process in Tex-1170-T. For a bidder to provide equipment under a

contract, the equipment must usually be on TxDOT’s Qualified Products List. To qualify for the

list, equipment must pass QPL testing. Assuming that it is on the list, a bidder provides

equipment that meets any contract-specific specifications or provisions to the district office. The

district sends a sample of the equipment to the Traffic Operations Division for environmental

and, possibly, QPL testing. This round of QPL testing only takes place if the sample is not

already on the QPL list. At the same time, the district checks and configures the equipment for

its specific installation requirements. Once the equipment passes these checks, it undergoes a

field check to see if it operates properly in the system.

 70

QPL Testing

System
Testing

Configuration
Testing

QPL Testing

10% Sample

Sample
Environmental

Testing

Figure 4. TxDOT Testing Activities.

Prequalification Testing

Prior to performing QPL testing, a tester should review a manufacturer’s completed

Protocol/Profile Implementation Conformance Specification (PICS) or perform the

Protocol/Profile Requirements List Information Test Procedure in Appendix C to produce a

PICS. NTCIP standards that deal with object definitions for a device usually provide a PRL that

has one or more tables summarizing object definitions in the Management Information Base.

After filling out a PRL with the information about support for objects or features, indicating the

range of supported values, and showing values for indexed items, it becomes a PICS. Using the

PRL/PICS as the basis for a report produces a uniform and consistent manner in which to

compare similar devices.

The script of the PRL test procedure in Appendix C creates a PICS for a CCTV control

unit. The test procedure creates the PICS by:

• retrieving minimum project requirements values and indexing parameters,

• checking that all objects in a MIB can be read,

• performing a set operation on writeable objects with a sampling of values to check

an object’s range, and

• recording the information on a PRL that appears in the NTCIP standards.

 71

A SimpleTester TM for NTCIP script automates the process. The script for CCTV takes

only several minutes to run. Appendix D shows a sample completed PICS.

A review of a PICS serves the purpose of prequalification testing or one of the first steps

in QPL testing. One can use the PICS to determine if it is worth spending the time to test an

implementation extensively. If the PICS indicates that an implementation does not support a

required function or the required number of instances of an object, testing the functions and

objects that are implemented would not serve any purpose.

QPL Testing

The focus of QPL testing is compliance to TxDOT specifications for a specific device.

Compliance to the specification entails a 100 percent check of all requirements. It is exhaustive

and covers:

• hardware design,

• conformance to external standards,

• functionality, and

• documentation.

QPL testing uses a device’s specification as a guide to ensure that equipment meets all of

the requirements. While testing for compliance to NTCIP does not address hardware design and

documentation, it can address conformance to some external standards and functionality.

Compliance to TxDOT specifications does not necessarily have to be a separate process.

Consider the Absolute Pan Motion test procedure in Appendix C that tests one of the panning

motion functions defined in NTCIP 1205-CCTV. The procedure consists of:

1. Move the camera to a predefined position.

2. Ask the user to verify that the camera moved to that position.

3. Internally verify that the camera moved to that position.

4. Move the camera to another predefined position.

5. Ask the user to verify that the camera moved to that position.

6. Internally verify that the camera moved to that position.

The intent of the procedure is to check the conformance of three NTCIP objects. As it is

stated, the procedure could be suitable for all the phases of the TxDOT testing process. By

referencing externally defined positions, the procedure is suitable for statewide, district, and one-

 72

time use because the positions values are customizable to the individual requirements. The

means by which the user verifies the new positions could also customize it to TxDOT QPL or to

configuration and system testing. In the case of QPL, one could quantitatively measure the angle.

For example, during QPL, one could use a protractor to define reference points to measure

angular positions. For configuration and system testing, simply estimating the angle may be

sufficient.

Configuration Testing

The focus of configuration testing is on meeting project-specific requirements. Using an

approach where variables come from an external source allows a tester to customize the test

procedure to his or her needs. Using the CCTV Absolute Pan Motion test procedure, the test

could use pan position values that come from the project specification or the geometry of the

intended location.

During configuration testing, one common practice is to run a test repetitively to simulate

actual field operations and stress the unit. In this case, a simple modification to the procedure

might be to insert additional looping instructions. Using the CCTV Absolute Pan Motion test

procedure as an example, the procedure would look something like the following:

1. For N = 1 to predefined reiterations

1. Move the camera to a predefined position

2. If predefined reiterations = 1 then

i. Ask the user to verify that the camera moved to that position

3. Internally verify that the camera moved to that position

4. Move the camera to another predefined position

5. If predefined reiterations = 1 then

i. Ask the user to verify that the camera moved to that position

6. Internally verify that the camera moved to that position

2. Next reiteration

Defining the number of predefined reiterations as 1 makes it suitable for QPL testing

where a tester physically verifies the positions. Defining the number of predefined reiterations as

100 could make it more appropriate for configuration testing where the emphasis is on stressing

the equipment.

 73

Sample Environmental System Testing

During environmental testing, a test chamber subjects a device to temperature and line-

voltage extremes that may occur in actual field operation. The device should continue to run and

time intervals correctly under combinations of high and low environmental conditions. Although

NTCIP test procedures are not directly applicable to environmental tests, the browser functions

of one of the active testing tools could find usage in changing the configuration of a device

without having to enter the test chamber. A test procedure that checks a traffic signal controller’s

NTCIP 1202-ASC download features could configure a controller with a standard set of

configuration controls and interval times (16). There is nothing to prevent any NTCIP functional

test procedure from also being run while a device is in an environmental chamber.

System Testing

During system testing, a management application connects to a device either while the

device is still at a facility or after installation in the field location. NTCIP test procedures have

two uses during system testing. They can serve as a test of the management application to show

that it supports the functionality expressed by the NTCIP objects. An instrumentation testing tool

can also validate that a device responds correctly even though communications take place over

an agency’s communications infrastructure.

CONTRACTOR TESTING PROCESS

Figure 5 illustrates the process in SS 6504. During design approval testing, the contractor

either runs environmental tests directly or has an independent testing laboratory conduct them.

During demonstration testing (conducted prior to installation), the contractor performs a physical

inspection of the equipment and performs operational tests to ensure compliance to the

specifications (33). After the contractor installs the equipment but before connection to any other

components of the system, stand-alone testing verifies functional operations. After connection,

system integration testing demonstrates that all control and monitor functions are operating

properly. TxDOT personnel do not perform the tests, but a reserve clause in the specification

allows someone from TxDOT to observe the tests. The TxDOT engineer is responsible for

overall approval and final acceptance.

 74

Design Approval
Test

Demonstration
Test

Stand-Alone
Tests

System Integration
 Test

Figure 5. Contractor Testing Activities.

NTCIP test procedures find application in contractor testing in much the same way as

they do in the internal TxDOT testing process. NTCIP test procedures can add standardized

functional test procedures during the design approval testing. During the operation-testing

portion of the demonstration test, the NTCIP test procedures cover the functionality expressed by

the NTCIP object definitions. The NTCIP object definitions, in turn, cover most, if not all, the

functionality of a device. During the stand-alone test, the NTCIP test procedures provide not

only standardized tests but also a means to conduct the testing. Although NTCIP standards do

not formalize a set of test procedures as yet, the de facto procedures are undergoing peer review.

With testing tool support coming from many sources, contractors do not have to develop their

own software to conduct the test. There is also the benefit that by prescribing the use of NTCIP

procedures, the engineer gains a greater understanding of what is taking place. During system

integration testing, most of the communications driving the functionality of a device come from

a management application. The NTCIP test procedures would not apply in this case. However,

the instrumentation testing tools that support NTCIP could provide an independent means to

verify that a management application is issuing the proper commands and that the device is

responding correctly. SS 6504 also requires that contractors submit test procedures and data

forms to the TxDOT engineer prior to any actual testing for his or her approval. NTCIP test

 75

procedures provide more consistency in the documentation and are easier to understand (33).

Adopting the reporting format as suggested in this research should make it easier for engineers to

interpret the report and make the reports consistent across all contractors.

A TxDOT engineer or other TxDOT personnel could verify contractor testing by the use

of an instrumentation-testing tool. This type of testing tool can provide independent verification

that a contractor is performing the test procedures as described and that the results are as they

should be. The same information would also be available when used during system integration or

actual system operation. An instrument-testing tool provides a message view of exchanges

between two parties. The tool can show what a management or test application sends. It will also

show the responses from the device under test. Rather than showing a string of bytes that appear

on the wire, a tool can decode the bytes into human readable parameters that indicate the type of

command sent, the names of NTCIP objects involved, and the values of the objects. Figure 6 is

an example of how one instrument-testing tool presents information to a user.

Figure 6. Instrumentation Testing Tool Information Example.

The display shows the response of a traffic signal controller to a get request asking for a

description of the device. The response shows that the STMPv1 protocol is used, the community

name or access code was “administrator,” the packet type was a “get response,” and there were

no errors. The name of the NTCIP object that contains the description is “sysDescr” and that the

value is “ETCS EPAC300, 2070N, OS …” Those familiar with traffic signal controllers will

recognize this as an Eagle Traffic Control System – EPAC 300 series signal controller running

on ATC 2070N hardware.

CONFIGURATION MANAGEMENT AND VERSION CONTROL

As manufacturers implement the NTCIP standards and users deploy equipment in the

field, the standards development groups receive feedback about problems and requests for

enhancements. This invariably leads to a revision of the standards. Unless one takes specific

 76

steps to avoid the situation, it is possible to have systems consisting of equipment conformant to

different versions of a standard. For example, the initial attempts to define object definitions

related to time-of-day resulted in several alternate but valid ways of how to treat the objects. The

dates for implementing daylight saving time are now different. Revisions to the standard reflect

corrections and the new rules. Some manufacturers are implementing the newest versions of the

standard. Although NTCIP strives to make revisions backwards compatible, it is not always

possible. Unless a management application is up-to-date, it will not be able to deal with any

changes.

Any specification that references an NTCIP standard should specify the specific version

and revision date. Since some NTCIP standards deal with functionality applicable to all field

equipment (NTCIP 1201-GLO, for example), specifications of various equipment may need to

be consistent in this regard as well (7). If one specification calls for a specific version number,

interoperability problems may crop up if other specifications reference another version. An

agency should also maintain records containing location and version information. These two

steps will minimize incompatibility problems and help in understanding the impacts of any

future upgrade.

77

CHAPTER 5:
TRAINING

INTRODUCTION

This chapter presents two training course outlines. The first looks at testing from an

NTCIP perspective and the second outline looks at testing from a TxDOT perspective. The first

outline begins with an explanation of the difference between conformance testing in relation to

the NTCIP standards and compliance testing in relation to TxDOT specifications. The outline

then addresses background information on the NTCIP standards in order to put testing into

perspective. There is a discussion on the two types of standards: data dictionaries and

protocols/profiles. The background also covers two NTCIP standards related to testing, and there

is also a reference to the NTCIP framework on how to combine standards to build an

implementation. The next part of the first outline deals with terminology and techniques. The last

part covers how to interpret results. Different groups and organizations have different methods

for reporting test results. Testing tools also incorporate some type of report. If a large agency,

such as TxDOT, needs to examine these reports, it takes a bit of understanding to draw

meaningful conclusions.

The second outline looks at testing from the TxDOT perspective. Given enough time and

resources, one could fully test everything covered by NTCIP and the functionality associated

with the object definitions. However, there is usually a lack of resources, and time is always at a

premium. These limitations introduce the subject of risk management. Risk management looks at

techniques to minimize the amount of testing and still maintain a high level of confidence that an

implementation is correct. The outline then looks at what to test and the general techniques to

use. The next part examines various tools that are available. It explains the three types of tools:

active, emulator, and instrumentation and covers some of their characteristics. The last part of

the outline discusses configuration management. Without specifying specific standards versions,

one can expect interoperability issues. The chapter ends with a suggested evaluation form.

AUDIENCE

The level of detail in this training course is meant for someone responsible for planning

or carrying out testing activities. Most of the material is non-technical in nature. However, a

78

person may need to ensure that messages use the proper formatting, encoding, and NTCIP

protocols. This level of understanding may be especially important for someone monitoring

contractor testing or trying to isolate faults during system testing, as well as for someone

evaluating a testing tool. To provide a sufficient level of understanding, there is a technical

discussion about the fields of an encoded message.

79

TRAINING CLASS OUTLINES

1. Testing from the NTCIP Perspective
1.1. Introduction

1.1.1 Conformance testing versus compliance testing.

1.1.2 Conformance to NTCIP standards.

1.1.3 Compliance to TxDOT specifications.

1.2. Background Information

1.2.1 NTCIP standards promote interoperability, interchangeability, and
compatibility. Interoperable is desirable so that system components from
different vendors can work together. Interchangeable is desirable so that
there is no loss in functionality when replacing system components with
similar components from different vendors. Compatible is important so
that system components can share a common communications
infrastructure.

1.2.1.1 Data Dictionaries define the words, and there is one dictionary for
each field device.

1.2.1.1.1 Objects / Data elements define parameters, controls,
and status.

1.2.1.1.2 Conformance Groups are collections of objects that
together perform some specific function or task.

1.2.1.1.3 Management Information Base (MIB) is a collection of
objects related to field device. A MIB can come from
multiple dictionaries.

1.2.1.1.4 Protocol/Profile Requirements List (PRL) is a checklist
of object support.

1.2.1.1.4.1 PRL Object Types indicate what type of
tests may apply to the objects.

1.2.1.1.5 Requirements Traceability Matrices provide a
mapping between user needs/requirements and
objects that address them.

1.2.1.2 Communications Protocols define the rules for combining the
words and transmitting them over the media.

80

1.2.1.3 Application-level communications protocols handle interface
between end-application (e.g., Signal Controller) and transport-
level protocols.

1.2.1.3.1 Simple Network Management Protocol (SNMP)
commands are Get, Set, GetNext, and Trap and it
uses Basic Encoding Rules (BER) encoding rules.
The NTCIP Guide has several examples of SNMP
encoded messages.

1.2.1.3.2 Simple Transportation Message Protocol (STMP)
commands are Get, Set, and GetNext but it uses
Octet Encoding Rules (OER) encoding rules and is
limited to 13 predefined messages. The NTCIP Guide
has an example of STMP encoded messages.

1.2.1.3.3 Simple Fixed Management Protocol (SFMP) is the
same as SNMP but Object Identifiers (OIDs) use a
different node as a reference.

1.2.1.3.4 File Transfer Protocol (FTP) is the same as that used
on the Internet.

1.2.1.3.5 Trivial File Transfer Protocol (TFTP) is the same as
FTP but without all the directory commands and other
features.

1.2.1.4 Transport-level communications protocols handle end-end
connections and transfers as well as routing through networks.

1.2.1.4.1 Transportation Transport (T2) Profile is for non-
networked environments where throughput is a
concern.

1.2.1.4.2 User Datagram Protocol (UDP) is for a networked
environment with best effort delivery.

1.2.1.4.3 Transport Control Protocol (TCP) is for a networked
environment with guaranteed delivery.

1.2.1.4.4 Internet Protocol (IP) is for a networked environment
and handles routing.

1.2.1.5 Subnetwork level protocols handle point-to-point connections and
deal with issues related to putting information on media and
errors.

81

1.2.1.5.1 Point to Multi-Point Protocol (PMPP) uses rules that
are similar to the one that people use to dial into an
internet service provider like AOL but supports party
lining. There are separate standards for RS232 and
FSK modems.

1.2.1.5.2 Point-to-Point Protocol (PPP) is the one that people
use to dial into an internet service provider like AOL.
PPP specifies the Challenge Handshake
Authentication Protocol (CHAP) for authentication.

1.2.1.5.3 Ethernet Protocol is the same one used on office
computers. It provides high throughput and
robustness.

1.2.1.5.4 The NTCIP Guide has several examples of message
encoding over various protocols.

1.2.1.6 NTCIP standards do not define a standard method of encrypting
information. User access “passwords” are visible on the wire.

1.2.2 Other Standards

1.2.2.1 NTCIP 8007 – Testing and Conformity Assessment
Documentation within NTCIP Standards Publications (NTCIP
8007-TEST) prescribes format of test procedures using natural
language to describe test steps. The language includes basic
keywords.

1.2.2.2 NTCIP 9012 – Testing and Conformity Assessment User Guide
for NTCIP Field Devices and Center-to-Field Communications
(NTCIP 9012-TG) provides general testing information in the
context of ITS.

1.2.3 Implementations

1.2.3.1 An implementation consists of a combination of four levels of
standards: information, application, transport, and subnetwork.

1.2.3.2 The MIB that defines an implementation comes primarily from the
information-level data dictionary standards but can include objects
related to communications level – application, transport, and
subnetwork standards.

1.3. Testing Terminology and Techniques

1.3.1 Device Under Test (DUT) is the implementation that is undergoing the
test.

82

1.3.2 Positive Testing exercises a DUT in a manner that is consistent with its
normal operating conditions.

1.3.3 Negative Testing (a.k.a. Error Seeding) exercises a DUT in abnormal
operating conditions such as out-of-range variables, input errors, and
fault conditions.

1.3.4 Sampling is a technique that tests only a portion of the units with the
assumption that the others will perform in a similar manner.

1.3.5 Regression is the retesting of a previously tested program following
modification to ensure that faults have not been introduced.

1.3.6 Black-box Testing is based on an analysis of the specification of the
component without reference to its internal workings as in White-box
Testing.

1.3.7 Boundary Value Analysis is a selection of test values that surround the
“boundaries” of a parameter’s input range. Choices often include
maximum, minimum, and trivial values.

1.3.8 Stress Testing subjects a system to incorrect, abnormal, or unrealistic
inputs or conditions with the intention of producing a failure. It looks at
testing at or beyond the limits of its specified requirements.

1.3.9 Validation and Verification (V&V) - Verification is testing that determines
whether an implementation is built correctly whereas validation testing
checks whether the correct implementation was built.

1.4. Interpreting Results

1.4.1 NTCIP PRLs standards provide Yes / No for each object or function and
do not provide any additional guidance.

1.4.2 NTCIP test procedures use a Pass / Fail method and do not provide any
additional guidance other than a test case basis.

1.4.3 Battelle’s suggestion was to evaluate “critical” functions.

1.4.4 Non-TxDOT Test Procedures

1.4.4.1 Some Enterprise test procedures use a point scale with a
minimum passing value.

1.4.4.2 SimpleTester™ uses a scale of 1 to 4 and scores on a test case
basis.

83

1.4.5 Proposed TxDOT Test Procedures use NTCIP PRLs and test procedure
forms.

1.4.5.1 User determines what constitutes whether DUT is suitable.

1.4.6 Contractor Testing is unknown but likely varies by contractor.

84

2. Testing from the TxDOT Perspective
2.1. Risk Management

2.1.1 Do you have to try all possible values in an object acceptable range of
values?

2.1.2 Do you have to check all instances of an object if there are 16 duplicates
of the same thing?

2.1.3 If a DUT supports all the objects in the specifications but does not support
some object required by NTCIP, is it still acceptable to use?

2.1.4 If a DUT supports all the values of an object required for a project but fails
on some values that are called for in the specifications, is it still
acceptable to use?

2.1.5 Do all possible permutations and combinations need to be tested? For
example, in a traffic signal controller, is a detector call for service on
another phase entered when the current phase is green, yellow, and red?
Does the call register when a traffic signal controller is in red rest?

2.2. What to Test

2.2.1 Ensure that all required objects are readable.

2.2.2 Check whether value of objects that represent some limit or number of
instances meets or exceeds a required value.

2.2.3 Ensure that parameter objects accept the required range of values.

2.2.3.1 Perform boundary analysis with positive and negative range.

2.2.3.2 Perform sampling of mid-range values.

2.2.3.3 Perform sampling of multiple instance parameters.

2.2.4 Ensure that control objects can be set to the required range.

2.2.4.1 Goal is to test 100% of all values but tempered with realistic
permutations and combinations.

2.2.5 Verify that all status objects return the appropriate value when parameter
and control objects are set accordingly.

2.2.5.1 Goal is to check 100% of all values by creating scenarios that
produce status values.

2.2.6 Perform regression testing when software changes.

85

2.3. Testing Tools

2.3.1 Active tools simulate the operation of management application.

2.3.1.1 Tools range from device-specific, canned testers to fully
customizable, general-purpose tools.

2.3.1.2 Cost runs from free to mid four figures.

2.3.1.3 One should use caution in that it is best to verify that a tool does
what it says it does.

2.3.2 Emulator tools act like field devices.

2.3.2.1 Tools range from device-specific, canned emulators to general-
purpose that can be customized to simulate the entire system
consisting of many different types of field devices.

2.3.3 Instrumentation can monitor and analyze information exchanges.

2.3.3.1 Instrumentation can act as arbitrator when using other tools and
during systems testing. Project engineer can use it to verify
testing by contractors.

2.3.4 High-ended active and emulator tools have the ability to run user-defined
scripts (programs) that define tool operation.

2.3.4.1 Scripts are generally proprietary but one set of tools uses the Tool
Command Language (TCL), a common language in many testing
and simulation applications.

2.3.4.2 Some tools allow interface to other programs (e.g., hardware-in-
the-loop).

2.3.4.3 Once procedures are written and verified, the process of testing is
greatly simplified.

2.4. Configuration Management

2.4.1 Specify NTCIP standard version numbers.

2.4.1.1 Mentioning “or latest version” can lead to interoperability issues.

2.4.1.2 Management application and field devices should support same
version.

2.4.2 Configuration management consists of identification, change control,
configuration auditing, and reporting.

86

2.4.2.1 Identification involves enumerating what is currently being used to
establish baseline and describing new versions as to applicability
and what is changed.

2.4.2.2 Change control involves understanding the impact on
performance reliability and compatibility.

2.4.2.3 Configuration auditing involves identifying what components will
need updating.

2.4.2.4 Reporting involves making sure that everyone involved is kept
informed.

87

TRAINING CLASS EVALUATION FORM

NTCIP Testing Training Course
Evaluation Form

Location: __

Date: __

Your Agency: __

Your Position: __

Course Content

 Yes Somewhat No
1. Did the course meet your expectations?

Comments:

1 2 3

2. Was the material presented at the correct level of
difficulty?
Comments:

1 2 3

3. Were the presentation and guidebook appropriately
geared to providing you the information you needed?
Comments:

1 2 3

4. Do you feel the time spent on this course was
beneficial?
Comments:

1 2 3

General Observations

5. What did you like most about the course?

6. What did you like least about the course?

88

7. What can we do to improve this course in the future?

8. Do you have any other suggestions or comments?

Thank you for taking the time to complete this course evaluation form. Please
make sure the course instructor receives it before you leave.

89

CHAPTER 6:
RECOMMENDATIONS

TESTING FRAMEWORK

The following are additional researcher’s recommendations on defining a framework for

the testing of conformance to NTCIP and integrating it into the current TxDOT testing program.

1. Review the detector operation requirements for detectors 1 and 5 with respect to the four-

phase diamond operation that appears in DMS 11170-TSC. When the opposing through

movement is green, a call for service on these detectors does not register.

2. Reorganize special specifications titled National Transportation Communications for ITS

Protocol for Field Equipment so that they distinctly identify information, application,

transport, and subnetwork-level profiles and protocols requirements. Along with this,

consider whether the application, transport, and subnetwork-level profiles and protocols

requirements can be stand-alone documents.

3. Add wording in any specification that relates to NTCIP to address application, transport, and

subnetwork-level object conformance groups. Support for the object definitions could help

when experiencing communications problems.

4. Consider whether any planning for test documentation should follow the IEEE Standard for

Software Test Documentation. This would help in any transition to ISO certification.

FUTURE DEVELOPMENT

ELMS Test Procedures

The NTCIP 1213-ELMS standard has progressed to the stage where it includes a set of

dialogs that illustrate the exchange of information between a management application and a field

device (31). Text also describes how a management application would carry out the exchange of

information. What it lacks, however, is a standard set of procedures to verify a correct

implementation. There are no plans within the NTCIP development process to add test

procedures to the standard. Even though TxDOT representatives made significant contributions

to the development of the NTCIP ELMS standard, the TxDOT specifications for ELMS do not

reference any NTCIP requirements.

90

From the findings of this research project, the process and steps to follow for the

development of ELMS test procedures are in place. A research or implementation project that

focuses on ELMS would provide templates for TxDOT documentation that specifies NTCIP

requirements. A set of test procedures would create a ‘conformant management station’ as

defined in the NTCIP-1213 ELMS. A conformant management station would provide TxDOT

personnel with the means to test for conformance to the NTCIP standards and test for

compliance to the TxDOT specifications.

Generic Database

In the course of developing the four-phase diamond detector operations test procedures

for traffic signal controllers, it was necessary to load numerous timing parameters and set various

controls in order for the controller to perform as expected. In some cases, the loading and setting

involved four parameters for each of 16 phases. When considering other test procedures for

traffic signal controllers, there may be hundreds of parameters to be set in order to create suitable

test conditions. Other devices have similar complexity.

A test procedure can specify steps to retrieve and save the current parameter values,

download appropriate values for the test, and then restore the original values when the test is

complete. An alternate approach would be to develop a generic database for the purposes of

testing and configuring ITS field devices. The design of the database could use the self-

describing information in a Management Information Base that is part of every device standard.

A MIB names the parameters, controls, and status information of a device, defines data types and

constraints for data entries, provides a description of the data, and describes the structure or

organization of data. Organizing this information as a spreadsheet would provide an easy method

of entering test values and a convenient way of changing the parameters of a device in a test

procedure. This database would create a reusable utility and eliminate the need to hard code test

values in a test script.

Personnel at the Florida Traffic Engineering Research Lab (TERL) and at the Idaho

National Institute for Advanced Transportation Technology (NIATT) have expressed a need for

database utility in their testing activities. One of the AASHTO manufacturer representatives on

the NTCIP oversight committee believes that a generic database would also help companies that

do have device specific database support in their management application software. Any MIB-

91

based database would never have the ease of use, refined user interface, or understanding of the

relationships in the data that manufacturers build into their management application software.

Research into the definition of a generic MIB-based database has the potential to simplify the

task of defining data sets and providing access to device information when specific management

application software is not available.

 93

REFERENCES

1. Special Specification 6025 – CCTV Field Equipment. Published by TxDOT.

ftp://ftp.dot.state.tx.us/pub/txdot-info/cmd/cserve/specs/2004/spec/ss6025.pdf. Accessed
June 21, 2006.

2. DMS-11170, Fully Actuated, Solid-State Traffic Signal Controller Assembly,

Departmental Material Specifications 7-115, Section 19. Published by TxDOT.
http://manuals.dot.state.tx.us/dynaweb/colmates/dms/@ebt-
link;?target=idmatch(s070019). Accessed July 29, 2005.

3. IEEE Std 829-1998 – IEEE Standard for Software Test Documentation, Institute of
Electrical and Electronics Engineers, New York, New York, 1998.

4. TxDOT Specifications, http://www.dot.state.tx.us/business/specifications.htm. Accessed

August 21, 2006.

5. NTCIP 1203 – Object Definitions for Dynamic Message Signs (DMS), A Joint
Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1203. Accessed August 17, 2006.

6. NTCIP 1205 – Object Definitions for Closed Circuit Television (CCTV) Camera Control,
A Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1205. Accessed August 17, 2006.

7. NTCIP 1201 – Global Object Definitions, A Joint Publication of AASHTO, ITE, and
NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1201. Accessed August 17, 2006.

8. NTCIP 2301 – Simple Transportation Management Framework Application Profile, A
Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2301. Accessed July 25, 2005.

9. NTCIP 2201 – Transportation Transport Profile, A Joint Publication of AASHTO, ITE,

and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2101. Accessed August 17, 2006.

10. NTCIP 2101 – Point to Multi-Point Protocol Using RS-232 Subnetwork Profile, A Joint
Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2101. Accessed August 17, 2006.

 94

11. Special Specification 6026 – National Transportation Communications for ITS Protocol
for Dynamic Message Signs. Published by TxDOT. ftp://ftp.dot.state.tx.us/pub/txdot-
info/cmd/cserve/specs/2004/spec/ss6026.pdf. Accessed August 17, 2006.

12. NTCIP 9001 – The NTCIP Guide, A Joint Publication of AASHTO, ITE, and NEMA.

http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=9001. Accessed September 12, 2006

13. NTCIP 2103 – Point-to-Point Protocol over RS-232 Subnetwork Profile, A Joint

Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2103. Accessed August 17, 2006.

14. Rose, M., and K. McCloghrie, Management Information Base for Network Management
of TCP/IP-based internets: MIB-II, RFC 1213, Performance Systems International,
Hughes LAN Systems, March 1991.

15. Test Procedures for NTCIP-conformant Closed Circuit Television (CCTV) Camera

Controllers, Enterprise Consortium. http://enterprise.prog.org/ (document no longer
available). Accessed December 2002.

16. NTCIP 1202 – Object Definitions for Actuated Traffic Signal Controller Units, A Joint

Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1202. Accessed August 17, 2006.

17. TS 2-2003 – Traffic Controller Assemblies with NTCIP Requirements, National
Electrical Manufacturers Association, Rosslyn, Virginia.

18. NTCIP 2104 – Ethernet Subnetwork Profile, A Joint Publication of AASHTO, ITE, and
NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2104. Accessed June 27, 2006.

19. Travel Time Messaging on Dynamic Message Signs - Portland, OR. Published by the
Federal Highway Administration.
http://ops.fhwa.dot.gov/publications/travel_time_study/portland/portland_ttm.htm.
Accessed July 17, 2006.

20. The City of Palo Alto Uses GarrettCom Ethernet Products in Its Advanced Transportation

Management System (ATMS), A GarrettCom Application Note. Published by
GarrettCom, Inc. http://www.garrettcom.com/techsupport/appnotes/paloalto_appnote.pdf.
Accessed July 17, 2006.

 95

21. ISO 9000 and ISO 14000 – in brief, ISO 9000. http://www.iso.org/iso/en/iso9000-

14000/understand/inbrief.htm. Accessed August 16, 2006.

22. NTCIP 8007 – Testing and Conformity Assessment Documentation within NTCIP
Standards Publications, A Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=8007. Accessed August 17, 2006.

23. NTCIP 1103 – Transportation Management Protocols, A Joint Publication of AASHTO,
ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1103. Accessed August 17, 2006.

24. NTCIP 1204 – Environmental Sensor Station Interface Standard, A Joint Publication of
AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1204. Accessed August 17, 2006.

25. NTCIP 1206 – Object Definitions for Data Collection and Monitoring (DCM) Device, A
Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1206. Accessed August 17, 2006.

26. NTCIP 1207 – Object Definitions for Ramp Meter Control (RMC) Units, A Joint
Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1207. Accessed August 17, 2006.

27. NTCIP 1208 – Object Definitions for Closed Circuit Television (CCTV) Switching, A
Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1208. Accessed August 17, 2006.

28. NTCIP 1209 – Data Element Definitions for Transportation Sensor Systems, A Joint
Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1209. Accessed August 17, 2006.

29. NTCIP 1210 – Field Management Stations - Part 1: Object Definitions for Signal System
Masters, A Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1210. Accessed August 17, 2006.

30. NTCIP 1211 – Object Definitions for Signal Control and Prioritization, A Joint
Publication of AASHTO, ITE, and NEMA.

 96

http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1211. Accessed August 17, 2006.

31. NTCIP 1213 – Objects Definitions for Electrical and Lighting Management Systems, A
Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1213. Accessed August 17, 2006.

32. Tex-1170-T, Sampling and Environmental Testing of Traffic Signal Controller
Assemblies: Traffic Signal Controllers and Conflict Monitors. Published by TxDOT.
ftp://ftp.dot.state.tx.us/pub/txdot-info/cst/TMS/1100-T_series/pdfs/tsi1170.pdf. Accessed
July 29, 2005.

33. Special Specifications 6504 – Testing, Training, Documentation and Warranty. Published

by TxDOT.
ftp://ftp.dot.state.tx.us/pub/txdot-info/cmd/cserve/specs/1993/spec/es6504.pdf. Accessed
June 30, 2005.

34. NTCIP 9012 – Testing and Conformity Assessment User Guide for NTCIP Field
Devices and Center-to-Field Communications, A Joint Publication of AASHTO, ITE,
and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=9012. Accessed August 31, 2006.

 97

APPENDIX A
SPECIAL SPECIFICATION FOR CCTV EQUIPMENT

The following is a modified version of the TxDOT 2004 Special Specification 6025 –

CCTV Field Equipment (1). The modification to the specification consists of adding a reference

to another special specification defining the details of the NTCIP requirements, updating

wording to be consistent with requirements in the NTCIP standards, and removing requirements

that would be in conflict with or superseded by NTCIP requirements.

Italics highlight the additions to the document and strikethrough highlights the deleted

wording.

SPECIAL SPECIFICATION
6025 (Modified for NTCIP Requirements)

CCTV Field Equipment

1. Description. Furnish and install closed circuit television (CCTV) field equipment.

The following special specification is referenced in this specification: “National
Transportation Communications for ITS Protocol for CCTV Equipment”

2. Materials. Provide new, corrosion resistant materials in accordance with the details shown
on the plans and this item.

Provide CCTV field equipment including, but not limited to, the following:
• Color video camera units.
• Camera lenses, filters, control circuits and accessories.
• Camera housings.
• Medium duty pan and tilt units.
• Camera control receivers.
• Video and camera control and power cable harnesses, connectors and coaxial cable.
• Equipment for accommodating presets.
• Source ID Generator.
• When shown on the plans, Local Control Panel.

A. Functional Requirements. Provide CCTV Cameras in accordance with NTSC and
EIA-170A. Conform the system limiting resolution to FCC regulations for broadcast
signals. Provide clear, low-bloom and low-lag video pictures under all conditions from

 98

bright sunlight to nighttime scene illumination of 0.1 ft.-candle (fc.). Maintain color
quality by a continuous through the lens automatic white balance for color temperatures
from 2850ºK to greater than 5100ºK with less than 10 IRE units unbalance.

Provide field equipment that operates in all weather conditions and able to withstand a
wind load of 80 mph without permanent damage to mechanical and electrical
equipment, unless otherwise shown on the plans.

Provide equipment from the same manufacturer at each field location.

B. Electrical and Mechanical Requirements.

1. Video Camera Unit. Provide color video cameras of solid state design, and
that meet the following requirements:

• Use Digital Signal Processing (DSP):
• For digital zoom;
• For Auto/Manual long-term integration (exposure) control, with built-in

frame buffer;
• For Auto-focus;
• For built-in I.D. Generator, with white letters and black outline.

• Image Pickup Device: 1/4 in. single chip interline transfer solid state color
matrix CCD microlens sensor

• Pickup Device Blemishes: When viewing a uniform white field, there must be
no blemishes for any iris opening producing any signal level between 7.5 and
100 IRE.

• Sensitivity: Maintain full p-p video with 0.1 fc. 3200°K incandescent
illumination on the image device face plate with AGC off.

• Resolution: > 350 lines vertical and > 460 lines horizontal, measured per EIA-
170A Standard.

• Over Exposure Protection: The camera must not sustain any permanent
damage when pointed directly at strong light sources, including the sun, for
brief periods of time.

• Encoded NTSC Video Signal Format: EIA-170A Standard, video output 1
Volt p-p composite. Must have up to 16 dB AGC.

• Output Impedance: 75 Ohms ± 5%.
• Aspect Ratio: 4:3.
• Geometric Distortion: Zero.
• Signal to Noise Ratio (AGC Off): 55 dB minimum (weighted at 4.5 MHz).
• Sensor with a minimum of 768(H) X 493(V) pixels.
• Lens must be integral to camera assembly.
• Electronic Shutter Speed: software selectable, remotely.

 99

2. Camera Lens. Provide an integral lens assembly for each camera with the
following features:

• An f/1.6 or better glass multi-coated zoom lens. The lens must have variable
focal length from 3.9 mm to 85.8 mm.

• Provide motorized iris control with manual override with each lens.

Provide a lens with capabilities for remote control of zoom, focus and iris
operations. Provide mechanical or electrical means to protect the motors from
overrunning in extreme positions. The lens and controller system must be capable
of both auto iris, and remote manual iris operation. Iris must be “motorized”, as
opposed to “auto iris” type, for system control compatibility.

3. Camera Housing. Furnish and install an environmental resistant and
tamperproof housing pressurized to 5 psi dry Nitrogen with Schrader purge
fitting and 20 psi relief valve for each camera.

Except for the viewing window, construct the enclosure from 6061-T6 standard
aluminum tubing with a wall thickness of 0.20 in. ± 0.03 in. Label internal wiring
properly. Use a gas-tight connector at the rear plate of the housing.

The internal humidity of the housing must be less than 10%, when sealed and
pressurized. Securely place desiccant packs inside the housing to absorb any
residual moisture and maintain internal humidity at 10% or less.

Provide a low pressure sensor in the camera to put a “low-pressure” annotation on
the video signal through the internal I.D. generator.

Construct the viewing window in such a way that unrestricted camera views can be
obtained at all camera and lens positions.

Provide a sun shield to shield the entire housing from direct sunlight and vertical
rainfall. Construct it in such a way as to allow the free passage of air between the
housing and the shield, but it must not form a “sail” to place an excessive load on
the pan/tilt unit in high winds.

Provide with an internal 15 W. low temperature heater with its own thermostat
control in each housing.

Provide lightning protection as shown on the plans in each housing.

4. Pan-Tilt Unit. Furnish and install a medium duty, anodized aluminum
weatherproof pan-and-tilt unit at each camera site on top of the camera pole.
Provide a mounting plate to install the unit on the pole. Design the mounting
for the camera housing and the pan-and-tilt unit to withstand the wind loading
specified in Section 2.A.

Provide a unit with vertical movement of + 40° to – 90° and horizontal movement
of 360° full, contiguous rotation movement. Tilt speed must be 20° per sec. and the
pan speed must be up to 100° per sec. Provide a unit that is capable of simultaneous
pan-and-tilt movements.

 100

Provide a unit with a load rating compatible with that of the camera housing,
camera and cabling under wind conditions specified in Section 2.A. and
acceleration/deceleration conditions specified. Provide analyses of the loading on
the pan-and-tilt assembly based on the above criteria.

Use Stepper motors.

Provide pan-and-tilt units that have seals and gaskets to protect the motors, gears,
and cables. Provide seals and gaskets that are resistant to ozone, ultraviolet
radiation, and other pollutants inherent to local environmental conditions.

5. Local Control Panel. Provide Local Control Panel that meet the following
specific requirements without use of a laptop:

• Pan Left.
• Pan Right.
• Tilt Up.
• Tilt Down.
• Zoom In.
• Zoom Out.
• Focus Near.
• Focus Far.
• Manual and Auto Iris control.
• Iris Open.
• Iris Close.
• Pan/Tilt Position preset.
• Camera Power (Latching).
• Remote white balance control.
• Auto and Manual white balance control.
• Zoom and focus position preset.

6. Control Receivers. Mount the camera control receiver inside the camera unit.
It must execute camera and lens functions and must also forward
communication of commands for the pan/tilt functions to the pan/tilt control
receiver. Mount the pan/tilt control receiver inside the pan/tilt unit. Provide
camera and pan/tilt functions that are operable via RS-422 serial
communications.

Provide control receivers that receive the command data from the camera controller
and decode the digital command data signals transmitted through the
communication transmission interface, perform error checking and act on valid data
to drive the pan/tilt unit and the camera controls. Detail the communications
transmission interface on the plans. Provide control receivers that are fully
compatible with the existing camera controller shown on the plans.

 101

Provide control receivers that meet the following specific requirements:
• Camera remote control functions: Provide units with, as a minimum, control

and drive circuits for the following functions:
• DSP Functions: Zoom, Long-Term Exposure, Auto-Focus, Auto/Manual

focus Control, I.D. Generator Operation, and Alarm function Control.
• Pan/Tilt Position preset.
• Pan Left.
• Pan Right.
• Tilt Up.
• Tilt Down.
• Zoom and focus position preset.
• Zoom In.
• Zoom Out.
• Focus Near.
• Focus Far.
• Manual and Auto Iris control.

• Iris Open.
• Iris Close.

• Camera Power (Latching).
• Remote white balance control.
• Auto and Manual white balance control.
• One auxiliary output (unless specified otherwise in the plans).

• Controller Address: Provide each unit with a unique programmable address.
Provide units that respond to the central command if and only if they are
addressed.

• Power Supplies: Provide power supplies required to operate the camera,
pan/tilt, and lens movements and include them with the housing, camera
control receiver, and pan/tilt unit.

• Communications Interface: Provide a camera control receiver that interfaces
to the communications backbone through an RS EIA-232 Serial C/D port and
shall be in accordance with special specification National Transportation
Communications for ITS Protocol for CCTV Equipment. When indicated on
the plans, provide communications signals, data exchange protocol and timing
that is compatible with the communications equipment and with the existing
master controller in the satellite building. Use a minimum 9600 Baud data rate.
Data must be sent asynchronously as either 8 bit with no parity. or 7 bit with
parity. Each block of data must include a camera identifier and be
accompanied by a checksum calculated on the entire block. Blocks with a bad
checksum must be NAKed. Block with a good checksum must be ACKed.
If the field unit must transmit data to the control unit at the Satellite Building,

 102

it must raise the RTS line and keep it raised until all data has been sent.
Provide a field unit that will not transmit data unless the CTS line from the
communications equipment is raised. Provide the camera control receiver
connectors and harness to connect to the communications equipment interface.
Supply complete hardware interface and protocol description to the
Department as part of the required documentation.

Provide RS-232 to RS-422 external powered converter that is an integral part
of the video communication junction box.

• Power Input: 115 VAC plus or minus 10%, 60 Hz ± 3 Hz, 50 W. Maximum.
• Connectors: Provide and install connectors which are compatible with the

communications equipment interface. Use Connectors for connections at the
pan/tilt mechanism. Make connections through a pigtail with a connector on it
coming out of the bottom center of the pan/tilt unit. Provide the connector on
the pigtail that is an AMP type connector. Provide connections down to the
pole to the transmission cables to this connector. Supply mating connectors.
Provide connector pins and mating connectors that are plated to ensure good
electrical connection and resist corrosion. Use pressure tight multi-conductor
MS-type cable connectors for camera connections.

7. Source ID Generator. Provide the built-in I.D. Generator that inserts camera
ID over each of the camera generated videos.

Submit a list of proposed camera identification text to the Engineer for approval
before the ID is programmed.

Once programmed, the programmed ID must automatically be displayed with its
associated video signal.

Provide the source ID generator that will automatically “pass through” video in
case of equipment failure.

When indicated on the plans, provide the source ID generator that is compatible
with the existing camera controller shown on the plans.

8. Video Communication Junction Box. Install the video communication
junction box in the CCTV equipment cabinet or in the surveillance cabinet, as
shown on the plan and as directed by the Engineer. Provide the video
communication junction box that contains the lightning protection devices for
data, power, and video. The junction box must be grounded very well to the
earth ground. Provide the junction box that has connectors for inputs and
outputs for data, power, and video. Make testing and connections to
communication devices through these external connectors.

9. Surge Protection. Provide the camera installation that meets the following
requirements:

• Pole mounting adapter -- Electrically bonded to pole.
• Pan/tilt mechanism -- Electrically bonded to adapter.

 103

• Camera housing -- Electrically bonded to pan/tilt unit.

10. Power and Control Cable Surge Protector. Protect each power conductor
and each control conductor (including return conductors) by the appropriate
surge protector. House the protective devices in each of the surveillance
cabinets.

11. Power Requirements. Provide CCTV field equipment that meets its specified
requirements when the input power is 115 VAC ± 10%, 60 Hz ± 3 Hz. The
maximum power required must not exceed 350 W.

Provide equipment operations that are not affected by the transient voltages, surges
and sags normally experienced on commercial power lines. Check the local power
service to determine if any special design is needed for the equipment. The extra
cost, if required, must be included in the bid of this item.

12. Primary Input Power Interruption. Provide CCTV field equipment that
meets the requirements in Section 2.1.4. “Power Interruption” of the NEMA
Standard TS2 for Traffic Control System.

13. Power Service Transients. Provide CCTV field equipment that meets the
requirements of Section 2.1.6., “Transients, Power Service” of the NEMA
Standard TS2.

14. Wiring. Provide wiring that meets the requirements of the National Electric
Code. Provide wires that are cut to proper length before assembly. Do not
doubled-back wire to take up slack. Lace wires neatly into cable with nylon
lacing or plastic straps. Secure cables with clamps. Provide service loops at
connections.

Provide coaxial cable between the camera and the communications equipment
interface that is of the RG-59 type with a stranded center conductor and 100%
shield coverage. Provide coaxial cable that has a cellular polyethylene dielectric.

15. Transient Suppression. Provide DC relays, solenoids and holding coils that
have diodes or other protective devices across the coils for transient
suppression.

16. Power Service Protection. Provide equipment that contains readily
accessible, manually resettable or replaceable circuit protection devices (such
as circuit breakers or fuses) for equipment and power source protection.

Provide and size circuit breakers or fuses such that no wire, component, connector,
PC board or assembly must be subjected to sustained current in excess of their
respective design limits upon the failure of any single circuit element or wiring.

17. Fail Safe Provision. Provide equipment that is designed such that the failures
of the equipment must not cause the failure of any other unit of equipment.

18. Modular Design. Provide CCTV field equipment that is modular in design to
allow major portions to be readily replaced in the field. Identify modules and

 104

assemblies clearly with name, model number, serial number and any other
pertinent information required to facilitate equipment maintenance.

19. Connectors and Harnesses. Provide external connections made by means of
connectors. Provide connectors that are keyed to preclude improper hookups.
Color code and/or appropriately mark wires to and from the connectors.

Provide connecting harnesses of appropriate length and terminated with matching
connectors for interconnection with the communications system equipment.

Provide pins and mating connectors that are plated to improve conductivity and
resist corrosion. Cover connectors utilizing solder type connections by a piece of
heat shrink tubing securely shrunk to insure that it protects the connection.

C. Environmental Design Requirements. Provide equipment that meets its specified
requirements during and after subjecting to any combination of the following
conditions.
• Ambient temperature range of 0°F to 140°F.
• Temperature shock not to exceed 30°F per hour during which the relative humidity

must not exceed 95%.
• Relative humidity range not to exceed 95% over the temperature range of 40°F to

110°F.
• Moisture condensation on exterior surfaces caused by temperature changes.

Provide camera and environmental housing assemblies that perform to stated
specifications over an ambient temperature range of –35°F to +130°F and a humidity
range of 0% to 100 % condensing. The camera must operate without sustaining damage
over temperature range of –35°F to 140°F.

3. Construction Methods.

A. General. Provide equipment that utilizes the latest available techniques for design and
construction with a minimum number of parts, subassemblies, circuits, cards, and
modules to maximize standardization and commonality.

Design the equipment for ease of maintenance. Provide component parts that are readily
accessible for inspection and maintenance. Provide test points that are for checking
essential voltages and waveforms.

B. Electronic Components. Provide electronic components in accordance with Special
Specification, “Electronic Components”.

C. Mechanical Components. Provide external screws, nuts and locking washers that are
stainless steel; no self-tapping screws will be used. Provide parts made of corrosion
resistant material, such as plastic, stainless steel, anodized aluminum or brass. Protect
materials from fungus growth and moisture deterioration. Separate dissimilar metals by
an inert dielectric material.

 105

4. Testing. Perform testing in accordance with Article 2, Special Specification, “Testing,
Training, Documentation, Final Acceptance, and Warranty”.

5. Training. Provide training in accordance with Article 3, Special Specification, “Testing,
Training, Documentation, Final Acceptance, and Warranty”.

6. Documentation. Provide documentation in accordance with Article 4, Special Specification,
“Testing, Training, Documentation, Final Acceptance, and Warranty”.

7. Warranty. Provide a warranty in accordance with Article 6, Special Specification, “Testing,
Training, Documentation, Final Acceptance, and Warranty”.

8. Measurement. This Item will be measured as each unit furnished, installed, and tested.

9. Payment. The work performed and materials furnished in accordance with this Item and
measured as provided under “Measurement” will be paid for at the unit price bid for “CCTV
Field Equipment”. This price is for equipment, cables and connectors; documentation and
testing; and labor, materials, warranty, training and incidentals.

 106

REFERENCES FOR APPENDIX A

1. Special Specifications 6025 – CCTV Field Equipment. Published by TxDOT.

ftp://ftp.dot.state.tx.us/pub/txdot-info/cmd/cserve/specs/2004/spec/ss6025.pdf. Accessed
June 21, 2006.

 107

APPENDIX B
SPECIAL SPECIFICATION - NTCIP FOR CCTV EQUIPMENT

The following is a template for the wording for a new TxDOT 2004 Specification that

defines NTCIP for CCTV equipment. The organization and content of this new specification is

modeled after TxDOT Special Specification 6026 (1). Chapter 2 of this report provides an

explanation of each item and the reasoning behind a number of choices. Also, please note the

specification of the transport and subnetwork communications protocols are “direct connect” and

based upon NTCIP 2101-PMPP/RS232 and NTCIP 2201-T2 (2,3). These protocols and

standards reference nonnetworked serial communications. Networked communications protocols

such as NTCIP 2104-Ethernet and NTCIP 2202-ITP are viable alternatives (4,5).

SPECIAL SPECIFICATION
XXXX

National Transportation Communications for ITS Protocol for CCTV
Equipment

1. Description. Provide Closed Circuit Television (CCTV) software that complies with the
National Transportation Communications for ITS Protocol (NTCIP).

2. Requirements. Ensure software complies with the NTCIP Standards when installed. Ensure

software complies with the relevant current NTCIP standards, including associated
amendments. The term “software” includes both software and firmware.

[Official printed copies of the NTCIP Joint Standards Publications referenced in this
specification may be purchased from Global Engineering Documents, phone 1-800-854-
7179, or http://www.global.ihs.com. They are also freely available in Adobe Acrobat PDF
format at http://www.ntcip.org/library/documents/.]

A. Ensure software complies with NTCIP 2101 – Point-to-Multi-Point Protocol Using RS-

232 Subnetwork Profile (2001) (direct connect).

B. Ensure software complies with NTCIP 2201 – Transportation Transport Profile (v01.14),
and shall meet the requirements of parsing method 1 and encapsulation method 1.

C. Ensure software complies with NTCIP 2301 – Simple Transportation Management

Framework – Application Profile (2001), and shall meet the requirements of
Conformance Level 1 (SNMP).

 108

D. Ensure software implements all mandatory objects of the mandatory and optional
conformance groups as defined in NTCIP 1205 – Object Definitions for Closed Circuit
Television (CCTV) Camera Control (v01.08a) as follows:
• CCTV Configuration with support for clauses 3.2, 3.3, and 3.11
• Extended Functions with support for clauses 3.6, 3.7, and 3.9
• Motion Control with support for clauses 3.4 and 3.5
• Configuration
• Security

E. Ensure software implements the following optional objects defined in NTCIP 1205 –
Object Definitions for Closed Circuit Television (CCTV) Camera Control (v01.08a) as
follows:
• positionQueryFocus
• positionQueryIris

F. Ensure software implements all mandatory objects of the mandatory conformance groups
as defined in NTCIP 2301 – Simple Transportation Management Framework –
Application Profile (2001):
• System Group
• SNMP Group
• SNMP Configuration

G. Ensure software implements the mandatory objects of the mandatory conformance groups

as defined in NTCIP 2101 – Point-to-Multi-Point Protocol Using RS-232 Subnetwork
Profile (2001):
• HDLC Group
• RS232 Asynchronous Group
• HDLC Group Address Group

H. Ensure that objects that are required to support this NTCIP requirement support all values

within its standardized range. Standardization range is defined by a size, range, or
enumerated listing indicated in the object’s SYNTAX field and/or through the descriptive
text in the object’s description field of the relevant standard.

 109

The following table provides the current listing of known variances for this project.

OBJECT MINIMUM PROJECT
REQUIREMENTS

NTCIP 1205

zoneMaximum 16

labelMaximum 16

labelColor 7 and 16

rangeMaximumPreset

rangePanLeftLimit 355 degrees

(SS 6860) 1

rangePanRightLimit

rangePanHomePosition

rangeTiltUpLimit +90 degrees (SS 6287, SS 6860)
+40 degrees (SS 6225)
+20 degrees (SS 6973)

rangeTiltDownLimit -90 degrees
(SS 6287, SS 6860, SS 6225)

-110 degrees (SS 6973)

rangeZoomLimit

rangeFocusLimit

rangeIrisLimit

rangeMinimumPanStepAngle

rangeMinimumTiltStepAngle

systemCameraEquipped

systemLensEquipped

zoneCameraEquipped

menuControl 1..9

1 Researcher’s Note: The SS XXXX numbers refer to TxDOT special specification numbers that define different
values for the parameter.

 110

Tilt Speed

3-4 degrees per second
(SS 6287, SS 6142, SS 6860)

20 degrees per second (SS 6225)
7 degrees per second (SS 6973)

Pan Speed

5-6 degrees per second
(SS 6287, SS 6142, SS 6860)

100 degrees per second (SS 6225)
10 degrees per second (SS 6973)

OBJECT MINIMUM PROJECT
REQUIREMENTS

NTCIP 1201

communityNamesMax 3

maxGroupAddresses 1

I. Hardware Limitations: Ensure that a “noSuchName” SNMP error (OID not supported)
will be returned by firmware for required objects that cannot be implemented due to
hardware limitations.

J. Documentation: Ensure software is supplied with full documentation, including a CD-

ROM containing ASCII versions of the following Management Information Base (MIB)
files in Abstract Syntax Notation 1 (ASN.1) format:
• The relevant version of each official standard MIB Module referenced by the device

functionality.
• A manufacturer-specific version of the official Standard MIB Module with the

supported range indicated in ASN.1 format in the SYNTAX field of the associated
OBJECT TYPE macro for devices that do not support the full range of any object
within a Standard MIB Module. Ensure the file name is identical to the Standard MIB
Module, except having the extension “.man”.

• A MIB containing any other objects supported by the device.

Allow unrestricted use of this documentation by any authorized party for systems
integration purposes, regardless of what parties are involved in the systems integration
effort.

Provide documentation of any procedural implementation details for function(s) shown in
the following table, wherever multiple objects are required to implement a feature
required by the CCTV Specification. The following table enumerates which objects are
used and any special procedures or required sequences to implementing that feature of
function. Submit this table for approval prior to implementation.

 111

Function Objects Procedures to Implementation

Example: Function X Object T
Object Y
Object Z

Get object T then send objects Y
and Z if T>0.

Pan

Tilt
Zoom
Focus
Iris
Presets
Camera Feature Control
Camera Zones and Labels
Camera Timeouts
Camera Range
Camera Alarms
NTCIP Security
Retrieve Module Table

3. Testing and Verification. Demonstrate conformance to the applicable sections of NTCIP

using approved test software. Ensure that conformance testing is performed by a qualified
independent testing firm and witnessed and certified by a Professional Engineer. Executable
code and documentation for the test procedures shall be available upon request from:

Mr. Carlos A. Lopez, P.E.
Director, Traffic Operations Division
Texas Department of Transportation
125 E. 11th Street
Austin, Texas 78701-2483

The department reserves the right to have a representative witness all conformance tests. Test
results will be compared to the requirements specified in this item. Failure to meet these
requirements will be counted as a defect, and the software and associated hardware will be
rejected. Final inspection and acceptance of software and associated hardware will be made
after installation and performance testing at the designated locations as shown on the plans,
unless otherwise directed.

4. Measurement and Payment. No direct measurement or payment will be made for the work
performed and materials furnished in order to provide Closed Circuit Television (CCTV)
software that complies with the National Transportation Communications for ITS Protocol
(NTCIP) in accordance with this specification.

 112

REFERENCES FOR APPENDIX B

1. Special Specifications 6026 – National Transportation Communications for ITS Protocol

for Dynamic Message Signs. Published by TxDOT. ftp://ftp.dot.state.tx.us/pub/txdot-
info/cmd/cserve/specs/2004/spec/ss6026.pdf. Accessed June 21, 2006.

2. NTCIP 2101– Point to Multi-Point Protocol Using RS-232 Subnetwork Profile, A Joint

Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2101. Accessed June 27, 2006.

3. NTCIP 2201 – Transportation Transport Profile, A Joint Publication of AASHTO, ITE,

and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2201. Accessed June 27, 2006.

4. NTCIP 2104 – Ethernet Subnetwork Profile, A Joint Publication of AASHTO, ITE, and

NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2104. Accessed July 25, 2005.

5. NTCIP 2202 – Internet (TCP/IP and UDP/IP) Transport Profile, A Joint Publication of

AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2202. Accessed July 25, 2005.

 113

APPENDIX C:
CCTV TEST PROCEDURES

INTRODUCTION

This appendix contains a set of test procedures for NTCIP conformant CCTV field

equipment. Except for the prequalification test, the procedures are organized alphabetically by

function and do not reflect any preferred sequence of execution.

TEST CASE SUMMARY

A summary of the test procedures and test cases for the features and/or functional areas

derived from NTCIP 1205-CCTV is provided in Table C-1 (1). Two procedures, Global

Configuration and Security, have a reference in NTCIP 1205-CCTV but the object definitions

appear in NTCIP 1201-GLO (1,2). The majority of these test cases are derived from the

Enterprise test procedures but are formatted to conform to NTCIP 8007-TEST (3,4). Some of the

test procedures and/or test cases may not be applicable to CCTV field equipment that complies

with TxDOT specifications because there is no TxDOT requirement for the feature or function.

The test procedures do not address all the functional requirements of the TxDOT specification in

that NTCIP does not support some of the TxDOT features or functions. Some test procedures

also address features or functions that do not have a TxDOT specification requirement.

 114

Table C-1. CCTV Test Case Summary.

CCTV Test Cases

ID Title Description

Prequalification

TC001 CCTV PRL Information This procedure retrieves minimum project
requirements and maximum values, checks for
whether the required objects are implemented, and
performs a sampling of the supported values.

Alarms

TC001 Cabinet Alarm Tests cabinet open alarm and label associated with
it

TC002 Enclosure Alarm Tests enclosure alarm and label associated with it
TC003 Video Loss Alarm Tests video loss alarm and label associated with it
TC004 Temperature Alarm Tests temperature alarm and label, thresholds, and

current value associated with it
TC005 Pressure Alarm Tests the pressure alarm and label, thresholds, and

current value associated with it
TC006 Local Remote Alarm Tests the local-remote alarm and label associated

with it
TC007 Washer Fluid Alarm Tests washer fluid alarm and label, thresholds, and

current value associated with it

Configuration

TC001 Identify Device Tests whether device under test (DUT) contains
valid information for the module make, model, and
version number

TC002 Identify Preset Position Range Ensures that device indicates that it supports the
required number of preset positions.

TC003 Identify Pan Limits Identifies and verifies the left and right panning
limits and the home position of the device

TC004 True North Offset Ensures that the user can configure the true north
setting in the camera

TC005 Identify Tilt Limits Ensures that the device indicates that it supports up
and down tilting limits of the device

TC006 Identify Zoom Limits Ensures that the device indicates that it supports the
required zoom limit

TC007 Identify Focus Limits Ensures that the device indicates that it supports the
required focus limit

 115

Table C-1. CCTV Test Case Summary (continued).

CCTV Test Cases

ID Title Description

TC008 Identify Iris Limits Ensures that the device indicates that it supports the
required iris limit

TC009 Identify Pan-Tilt Step Angle
Minimum

Ensures that the device indicates that it supports the
pan and tilt step angle minimum

TC010 Identify Zone Functions Ensures that the device indicates whether it supports
zones, zone labels, and control within a zone

Discrete Input and Output

TC001 Monitor Discrete Input Verifies the state of discrete inputs and associated
label

TC002 Monitor Discrete Output Verifies the state of discrete outputs and associated
label

Features

TC001 Get Availability of Equipment Identifies and verifies the availability of attached
equipment to the camera

TC002 Control Camera Power Enables and disables camera power while the user
verifies

TC003 Control Heater Power Enables and disables heater while user verifies
TC004 Control Wiper Enables and disables wiper while user verifies
TC005 Control Washer Enables and disables washer while user verifies
TC006 Control Blower Enables and disables blower while user verifies

Focus

TC001 Delta Focus Motion Tests the delta focus motion of the camera by
moving the camera with two different speeds and
directions and allowing the user to verify them

TC002 Absolute Focus Motion Tests the absolute focus motion of the camera by
moving the camera with several different speed and
direction parameters and allowing the user to verify
them

TC003 Continuous Focus Motion with
Timeout

Tests the continuous focus motion of the camera by
moving the camera with the continuous command
using the timeout parameter to stop the camera

 116

Table C-1. CCTV Test Case Summary (continued).

CCTV Test Cases

ID Title Description

TC004 Continuous Focus Motion with
Stop

Tests the continuous focus motion of the camera by
moving the camera and using the stop command to
stop movement

Global Configuration

TC001 Retrieve Module Table This procedure retrieves the module table, and
allows the tester to verify that the DUT reports the
proper type of device, manufacturer, model, and
version.

TC002 Global Set ID This procedure ensures that a change to a static
database object produces a change in
globalSetIDParmeter.

Iris

TC001 Delta Iris Motion Tests the delta iris motion of the camera by moving
the camera with the continuous command using the
timeout parameter to stop the camera

TC002 Absolute Iris Motion Tests the absolute iris motion of the camera by
moving the camera with two different speeds and
directions and allowing the user to verify them

TC003 Continuous Iris Motion with
Timeout

Tests the continuous iris motion of the camera by
moving the camera with the continuous command
using the timeout parameter to stop the camera

TC004 Continuous Iris Motion with
Stop

Tests the continuous iris motion of the camera by
moving the camera and using the stop command to
stop movement

Label

TC001 Get and Set Label Verifies the number of labels the device can store.
Test labels are stored in the device to verify storage
capabilities

TC002 Display Camera Location Tests the capability of the device to display a text
label on the video output

 117

Table C-1. CCTV Test Case Summary (continued).

CCTV Test Cases

ID Title Description

Lens

TC001 Get Availability of Lens
Equipment

Identifies and verifies the availability of equipment
attached to the camera

TC002 Control Auto Iris Enables and disables the auto iris while the user
verifies

TC003 Control Auto Focus Enables and disables the auto focus while the user
verifies

Menu

TC001 Menu Tests the sending of menu commands to the CCTV
while user verifies

Pan

TC001 Delta Pan Motion Tests the delta panning motion of the camera by
moving the camera with two different speeds and
direction and allowing the user to verify them

TC002 Absolute Pan Motion Tests the absolute panning motion of the camera by
moving the camera with two different speeds and
directions allowing the user to verify them

TC003 Continuous Pan Motion with
Timeout

Tests the continuous panning motion of the camera
by moving the camera with the continuous
command using the timeout parameter to stop the
camera

TC004 Continuous Pan Motion with
Stop

Tests the continuous panning motion of the camera
by moving the camera and using the stop command
to stop movement

Security

TC001 Change Administrator
Community Name

Verifies that the administrator can change the
administrator community name stored in the DUT
and properly affects operations

TC002 Change User Community Name Verifies that the administrator can change the user
community names and their masks stored in the
DUT and properly affects operations

 118

Table C-1. CCTV Test Case Summary (continued).

CCTV Test Cases

ID Title Description

Tilt

TC001 Delta Tilt Motion Tests the delta tilt motion of the camera by moving
the camera with two different speeds and directions
and allowing the user to verify them

TC002 Absolute Tilt Motion Tests the absolute tilt motion of the camera by
moving the camera with two different speeds and
directions and allowing the user to verify them

TC003 Continuous Tilt Motion with
Timeout

Tests the continuous tilt motion of the camera by
moving the camera twice with the continuous
command using the timeout parameter to stop the
camera

TC004 Continuous Tilt Motion with
Stop

Tests the continuous tilting motion of the camera by
moving the camera twice while using the stop
command to stop movement

Zone

TC001 Preset Position Tests ability of the camera to store and move to
preset camera positions

TC002 Get-Set Zone Tests ability of the camera to store camera zones
TC003 Move In and Out of Zone Tests the labeling capability of zones by moving to

areas within zones

Zoom

TC001 Delta Zoom Motion Tests the delta zoom motion of the camera by
moving the camera with two different speeds and
directions and allowing the user to verify them

TC002 Absolute Zoom Motion Tests the absolute zoom motion of the camera by
moving the camera with two different speeds and
directions and allowing the user to verify them

TC003 Continuous Zoom Motion with
Timeout

Tests the continuous zoom motion of the camera by
moving the camera twice with the continuous
command using the timeout parameter to stop the
camera

 119

Table C-1. CCTV Test Case Summary (continued).

CCTV Test Cases

ID Title Description

TC004 Continuous Zoom Motion with
Stop

Tests the continuous zoom motion of the camera by
moving the camera twice using the stop command
to stop movement

TEST CASES

The details of each test case follow. The basic format of the test cases comes from the

template that appears in NTCIP 8007-Test. As presented here the test case format has additional

fields identifying constants and version history.

 120

CCTV PRL Information

Test Case: Title: CCTV PRL Information
PRL-TC001 Description: This procedure retrieves minimum project requirements and

maximum values, checks for whether the required objects are
implemented, and performs a sampling of the supported values
for P and C objects.

 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. CONFIGURE a list <CCTV Max and Static OIDs> that identifies
read-only objects that either define maximum values that affect the
indexes of tables or static variables that affect limits on other
variables

2. CONFIGURE COMMUNITY NAME OUT = "administrator"
3. FOR ObjectName = each objectName in < CCTV Max and Static

OIDs>

4. GET ObjectName Pass/Fail
5. Record the value on the PRL
6. NEXT ObjectName
7.
8. CONFIGURE a list of objectNames that must be supported
9. FOR [objectName = each objectName in Supported objectName List
10. FOR all possible [instance values]
11. GET [objectName].instance

Note: This loop performs the equivalent of a MIB Walk but uses
GET instead of GET-NEXT.

Pass/Fail

12. NEXT [instance value]
13. NEXT [objectName]
14. CONFIGURE a list <CCTV Test Values> that identifies instances of

objects to test and a value in which to test the object with

15. FOR [objectNameInstance] = each objectNameInstance in <CCTV
Test Values>

16. GET [objectNameInstance] Pass/Fail
17. RECORD RESPONSE VALUE in [currentValue]
18. FOR [testValue] = each objectNameValue in <CCTV Test

Values>

19. SET [objectNameInstance] = [testValue] Pass/Fail
20. Record ObjectName, TestValue, and errorStatus
21. NEXT TestValue
22. SET [objectNameInstance] = [currentValue] Pass/Fail
23. NEXT ObjectName
24. RECORD responses on NTCIP PRL and note any anomalies

Test Case Results

Tested By: Date
Tested:

 Pass/Fail

Test Case Notes:
Version History: V1.0 09/20/05 Initial Draft – RDR

V1.1 02/27/06 Implemented script and proofed – JJ

 121

Cabinet Alarm

Test Case: Title: Cabinet Alarm
Alarm-TC001 Description: This Test Case tests the cabinet open alarm and label

associated with it.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. SET
 labelText.<alarmCLabIndex> = <alarmCLabText1>
 labelHeight.<alarmCLabIndex> = <alarmCLabHeight1>
 labelColor.<alarmCLabIndex> = <alarmCLabColor1>
 labelStartRow.<alarmCLabIndex> = <alarmCLabStartRow1>
 labelStartColumn.<alarmCLabIndex> =
<alarmCLabStartColumn1>

Pass/Fail

2. SET alarmLabelIndex.0 to <alarmCLabIndex> 00 00 00 00 00
00

Pass/Fail

3. USER VERIFY that no labels are being shown Pass/Fail
4. SET alarmLatchClear.0 to 0x00 Pass/Fail
5. Turn on the alarm and USER VERIFY the label for the alarm is

shown
Pass/Fail

6. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
7. VERIFY RESPONSE VALUE

 alarmStatus = 0x80
 alarmLatchStatus = 0x80

Pass/Fail

8. SET alarmLatchClear.0 to 0x00 Pass/Fail
9. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
10. VERIFY RESPONSE VALUE

 alarmStatus = 0x80
 alarmLatchStatus = 0x80

Pass/Fail

11. USER VERIFY the label for the alarm is shown and deactivate
the alarm

Pass/Fail

12. USER VERIFY the label for the alarm is off Pass/Fail
13. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
14. VERIFY Response Value

 alarmStatus = 0x00
 alarmLatchStatus = 0x80

Pass/Fail

15. USER VERIFY the label for the alarm is off Pass/Fail
16. SET alarmLatchClear.0 to 0x00 Pass/Fail
17. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
18. VERIFY RESPONSE VALUE

 alarmStatus = 0x00
 alarmLatchStatus = 0x00

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:
Version History: V1.0 09/20/05 Initial Draft – RDR

V1.1 11/03/05 Removed deprecated labelFontType – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

 122

Enclosure Alarm

Test Case: Title: Enclosure Alarm
Alarm-TC002 Description: This Test Case tests the enclosure alarm and label associated

with it.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. SET
 labelText.<alarmELabIndex> = <alarmELabText1>
 labelHeight.<alarmELabIndex> = <alarmELabHeight1>
 labelColor.<alarmELabIndex> = <alarmELabColor1>
 labelStartRow.<alarmELabIndex> = <alarmELabStartRow1>
 labelStartColumn.<alarmELabIndex> =
<alarmELabStartColumn1>

Pass/Fail

2. SET alarmLabelIndex.0 to 00 <alarmELabIndex> 00 00 00 00
00

Pass/Fail

3. USER VERIFY that no labels are being shown Pass/Fail
4. SET alarmLatchClear.0 to 0x00 Pass/Fail
5. Turn on the alarm and USER VERIFY the label for the alarm is

shown
Pass/Fail

6. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
7. VERIFY RESPONSE VALUE

 alarmStatus = 0x40
 alarmLatchStatus = 0x40

Pass/Fail

8. SET alarmLatchClear.0 to 0x00 Pass/Fail
9. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
10. VERIFY RESPONSE VALUE

 alarmStatus = 0x40
 alarmLatchStatus = 0x40

Pass/Fail

11. USER VERIFY the label for the alarm is shown and deactivate
the alarm

Pass/Fail

12. USER VERIFY the label for the alarm is off Pass/Fail
13. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
14. VERIFY RESPONSE VALUE

 alarmStatus = 0x00
 alarmLatchStatus = 0x40

Pass/Fail

15. USER VERIFY the label for the alarm is off Pass/Fail
16. SET alarmLatchClear.0 to 0x00 Pass/Fail
17. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
18. VERIFY RESPONSE VALUE

 alarmStatus = 0x00
 alarmLatchStatus = 0x00

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Removed deprecated labelFontType – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

 123

Video Loss Alarm

Test Case: Title: Video Loss Alarm
Alarm-TC003 Description: This Test Case tests the video loss alarm and label associated

with it.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. SET
 labelText.<alarmVLabIndex> = <alarmVLabText1>
 labelHeight.<alarmVLabIndex> = <alarmVLabHeight1>
 labelColor.<alarmVLabIndex> = <alarmVLabColor1>
 labelStartRow.<alarmVLabIndex> = <alarmVLabStartRow1>
 labelStartColumn.<alarmVLabIndex> =
<alarmVLabStartColumn1>

Pass/Fail

2. SET alarmLabelIndex.0 to 00 00 <alarmVLabIndex> 00 00 00
00

Pass/Fail

3. USER VERIFY that no labels are being shown Pass/Fail
4. SET alarmLatchClear.0 to 0x00 Pass/Fail
5. Turn on the alarm and USER VERIFY the label for the alarm is

shown
Pass/Fail

6. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
7. VERIFY RESPONSE VALUE

 alarmStatus = 0x20
 alarmLatchStatus = 0x20

Pass/Fail

8. SET alarmLatchClear.0 to 0x00 Pass/Fail
9. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
10. VERIFY RESPONSE VALUE

 alarmStatus = 0x20
 alarmLatchStatus = 0x20

Pass/Fail

11. USER VERIFY the label for the alarm is shown and deactivate
the alarm

Pass/Fail

12. USER VERIFY the label for the alarm is off Pass/Fail
13. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
14. VERIFY RESPONSE VALUE

 alarmStatus = 0x00
 alarmLatchStatus = 0x20

Pass/Fail

15. USER VERIFY the label for the alarm is off Pass/Fail
16. SET alarmLatchClear.0 to 0x00 Pass/Fail
17. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
18. VERIFY RESPONSE VALUE

 alarmStatus = 0x00
 alarmLatchStatus = 0x00

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Removed deprecated labelFontType – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

 124

Temperature Alarm

Test Case: Title: Temperature Alarm
Alarm-TC004 Description: This Test Case tests the temperature alarm and label,

thresholds, and current value associated with it.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. SET
 labelText.<alarmTLabIndex> = <alarmTLabText1>
 labelHeight.<alarmTLabIndex> = <alarmTLabHeight1>
 labelColor.<alarmTLabIndex> = <alarmTLabColor1>
 labelStartRow.<alarmTLabIndex> = <alarmTLabStartRow1>
 labelStartColumn.<alarmTLabIndex> =
<alarmTLabStartColumn1>

Pass/Fail

2. SET alarmLabelIndex.0 to 00 00 00 <alarmTLabIndex> 00 00 00 Pass/Fail
3. SET alarmTemperatureHighLowThreshold.0 to

<temperatureThreshold>
Pass/Fail

4. USER VERIFY that no labels are being shown Pass/Fail
5. SET alarmLatchClear.0 to 0x00 Pass/Fail
6. Turn on the alarm and USER VERIFY the label for the alarm is

shown
Pass/Fail

7. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
8. VERIFY RESPONSE VALUE

 alarmStatus = 0x10
 alarmLatchStatus = 0x10

Pass/Fail

9. SET alarmLatchClear.0 to 0x00 Pass/Fail
10. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
11. VERIFY RESPONSE VALUE

 alarmStatus = 0x10
 alarmLatchStatus = 0x10

Pass/Fail

12. USER VERIFY the label for the alarm is shown and deactivate
the alarm

Pass/Fail

13. USER VERIFY the label for the alarm is off Pass/Fail
14. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
15. VERIFY RESPONSE VALUE

 alarmStatus = 0x00
 alarmLatchStatus = 0x10

Pass/Fail

16. USER VERIFY the label for the alarm is off Pass/Fail
17. SET alarmLatchClear.0 to 0x00 Pass/Fail
18. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
19. VERIFY RESPONSE VALUE

 alarmStatus = 0x00
 alarmLatchStatus = 0x00

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Removed deprecated labelFontType – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

 125

Pressure Alarm

Test Case: Title: Pressure Alarm
Alarm-TC005 Description: This Test Case tests the pressure alarm and label, thresholds,

and current value associated with it.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. SET
 labelText.<alarmPLabIndex> = <alarmPLabText1>
 labelHeight.<alarmPLabIndex> = <alarmPLabHeight1>
 labelColor.<alarmPLabIndex> = <alarmPLabColor1>
 labelStartRow.<alarmPLabIndex> = <alarmPLabStartRow1>
 labelStartColumn.<alarmPLabIndex> =
<alarmPLabStartColumn1>

Pass/Fail

2. SET alarmLabelIndex.0 to 00 00 00 00 <alarmPLabIndex> 00
00

Pass/Fail

3. SET alarmPressureHighLowThreshold.0 to
<pressureThreshold>

Pass/Fail

4. USER VERIFY that no labels are being shown Pass/Fail
5. SET alarmLatchClear.0 to 0x00 Pass/Fail
6. Turn on the alarm and USER VERIFY the label for the alarm is

shown
Pass/Fail

7. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
8. VERIFY RESPONSE VALUE

 alarmStatus = 0x08
 alarmLatchStatus = 0x08

Pass/Fail

9. SET alarmLatchClear.0 to 0x00 Pass/Fail
10. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
11. VERIFY RESPONSE VALUE

 alarmStatus = 0x08
 alarmLatchStatus = 0x08

Pass/Fail

12. USER VERIFY the label for the alarm is shown and deactivate
the alarm

Pass/Fail

13. USER VERIFY the label for the alarm is off Pass/Fail
14. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
15. VERIFY RESPONSE VALUE

 alarmStatus = 0x00 and alarmLatchStatus = 0x08
Pass/Fail

16. VERIFY the label for the alarm is off Pass/Fail
17. SET alarmLatchClear.0 to 0x00 Pass/Fail
18. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
19. VERIFY RESPONSE VALUE

 alarmStatus = 0x00
 alarmLatchStatus = 0x00

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Removed deprecated labelFontType – RDR
V1.2 07/27/06 Implemented script and proofed – JJ

 126

Local Remote Alarm

Test Case: Title: Local Remote Alarm
Alarm-TC006 Description: This Test Case tests the local-remote alarm and label

associated with it.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. SET
 labelText.<alarmLLabIndex> = <alarmLLabText1>
 labelHeight.<alarmLLabIndex> = <alarmLLabHeight1>
 labelColor.<alarmLLabIndex> = <alarmLLabColor1>
 labelStartRow.<alarmLLabIndex> = <alarmLLabStartRow1>
 labelStartColumn.<alarmLLabIndex> =
<alarmLLabStartColumn1>

Pass/Fail

2. SET alarmLabelIndex.0 to 00 00 00 00 00 <alarmLLabIndex> 00 Pass/Fail
3. USER VERIFY that no labels are being shown Pass/Fail
4. SET alarmLatchClear.0 to 0x00 Pass/Fail
5. Turn on the alarm and USER VERIFY the label for the alarm is

shown
Pass/Fail

6. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
7. VERIFY RESPONSE VALUE

 alarmStatus = 0x04
 alarmLatchStatus = 0x04

Pass/Fail

8. SET alarmLatchClear.0 to 0x00 Pass/Fail
9. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
10. VERIFY RESPONSE VALUE

 alarmStatus = 0x04
 alarmLatchStatus = 0x04

Pass/Fail

11. USER VERIFY the label for the alarm is shown and deactivate
the alarm

Pass/Fail

12. USER VERIFY the label for the alarm is off Pass/Fail
13. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
14. VERIFY RESPONSE VALUE

 alarmStatus = 0x00
 alarmLatchStatus = 0x04

Pass/Fail

15. USER VERIFY the label for the alarm is off Pass/Fail
16. SET alarmLatchClear.0 to 0x00 Pass/Fail
17. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
18. VERIFY RESPONSE VALUE

 alarmStatus = 0x00
 alarmLatchStatus = 0x00

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Removed deprecated labelFontType – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

 127

Washer Fluid Alarm

Test Case: Title: Washer Fluid Alarm
Alarm-TC007 Description: This Test Case tests the washer fluid alarm and label,

thresholds, and current value associated with it.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. SET
 labelText.<alarmWFLabIndex> = <alarmWFLabText1>
 labelHeight.<alarmWFLabIndex> = <alarmWFLabHeight1>
 labelColor.<alarmWFLabIndex> = <alarmWFLabColor1>
 labelStartRow.<alarmWFLabIndex> =
<alarmWFLabStartRow1>
 labelStartColumn.<alarmWFLabIndex> =
<alarmWFLabStartColumn1>

Pass/Fail

2. SET alarmLabelIndex.0 to 00 00 00 00 00 00
<alarmWFLabIndex>

Pass/Fail

3. SET alarmWasherFluidHighLowThreshold.0 to
<washerThreshold>

Pass/Fail

4. USER VERIFY that no labels are being shown Pass/Fail
5. SET alarmLatchClear.0 to 0x00 Pass/Fail
6. Turn on the alarm and USER VERIFY the label for the alarm is

shown
Pass/Fail

7. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
8. VERIFY RESPONSE VALUE

 alarmStatus = 0x02
 alarmLatchStatus = 0x02

Pass/Fail

9. SET alarmLatchClear.0 to 0x00 Pass/Fail
10. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
11. VERIFY RESPONSE VALUE

 alarmStatus = 0x02
 alarmLatchStatus = 0x02

Pass/Fail

12. USER VERIFY the label for the alarm is shown and deactivate
the alarm

Pass/Fail

13. USER VERIFY the label for the alarm is off Pass/Fail
14. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
15. VERIFY RESPONSE VALUE

 alarmStatus = 0x00
 alarmLatchStatus = 0x02

Pass/Fail

16. USER VERIFY the label for the alarm is off Pass/Fail
17. SET alarmLatchClear.0 to 0x00 Pass/Fail
18. GET alarmStatus.0 and alarmLatchStatus.0 Pass/Fail
19. VERIFY RESPONSE VALUE

 alarmStatus = 0x00 and alarmLatchStatus = 0x00
Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:
Version History: V1.0 09/20/05 Initial Draft – RDR

V1.1 11/03/05 Removed deprecated labelFontType – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

 128

Identify Device

Test Case: Title: Identify Device
Config-TC001 Description: This Test Case ensures that the DUT contains valid information

for the module make, model, and version number as well as
other related information.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET globalMaxModules.0 = [globalMaxModules] Pass/Fail
2. VERIFY RESPONSE VALUE >= <req_globalMaxModules> Pass/Fail
3. FOR moduleIndex = 1 TO [globalMaxModules]
4. GET

moduleDeviceNode.moduleIndex,
moduleMake.moduleIndex,
moduleModel.moduleIndex,
moduleVersion.moduleIndex, and
moduleType.moduleIndex.

Pass/Fail

5. VERIFY moduleDeviceNode.moduleIndex returns
1.3.6.1.4.1.1206.4.2.7

Pass/Fail

6. USER VERIFY RESPONSE VALUE
 moduleMake.moduleIndex = correct manufacturer name,
 moduleModel.moduleIndex = correct module number,
 moduleVersion.moduleIndex = correct version, and
 moduleType.moduleIndex = correct type of the tested device.

Note: Make, Model, and Version are text descriptions. There
should be at least 2 Types: hardware and software.

Pass/Fail

7. NEXT moduleIndex
Test Case Results

Tested By: Date
Tested:

 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

Identify Preset Position Range

Test Case: Title: Identify Preset Position Range
Config-TC002 Description: This Test Case ensures that the device indicates that it supports

the required number of preset positions.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeMaximumPreset.0 Pass/Fail
2. VERIFY RESPONSE VALUE >= <req_rangeMaxPreset> Pass/Fail

 129

Test Case Results

Tested By: Date
Tested:

 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

Identify Pan Limits

Test Case: Title: Identify Pan Limits
Config-TC003 Description: This Test Case identifies and verifies the left and right panning

limits and the home position of the device.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangePanRightLimit.0 = [rangePanRightLimit] and
rangePanLeftLimit.0 = [rangePanLeftLimit]

Pass/Fail

2. VERIFY RESPONSE VALUE rangePanRightLimit >=
<req_rangePanRightLimit>

Pass/Fail

3. VERIFY RESPONSE VALUE rangePanLeftLimit <=
<req_rangePanLeftLimit>

Pass/Fail

4. SET positionPan.0 to Mode: 2 (Absolute), Speed:
<absolutePanSpeed>, Position: 0, which is hex value 02
<absolutePanSpeed> 00 00

Pass/Fail

5. SET positionTilt.0 to Mode: 2 (Absolute), Speed:
<absolutePanSpeed>, Position: 0, which is hex value 02
<absolutePanSpeed> 00 00

Pass/Fail

6. Make note current position of camera as Home position
7. SET positionPan.0 to Mode: 2 (Absolute), Speed: -

<absolutePanSpeed>, Position: [rangePanLeftLimit], which is
hex value 02 -<absolutePanSpeed> [rangePanLeftLimit]

Pass/Fail

8. USER VERIFY camera panned to its left limit. Pass/Fail
9. SET positionPan.0 to Mode: 2 (Absolute), Speed:

<absolutePanSpeed>, Position:0, which is hex value
02 <absolutePanSpeed> 00 00

Pass/Fail

10. USER VERIFY camera moved back to its home position Pass/Fail
11. SET positionPan.0 to Mode: 2 (Absolute), Speed:

<absolutePanSpeed>, Position:[rangePanRightLimit], which is
hex value 02 <absolutePanSpeed> [rangePanRightLimit]

Pass/Fail

12. USER VERIFY camera panned to its right limit Pass/Fail
Test Case Results

Tested By: Date
Tested:

 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

 130

True North Offset

Test Case: Title: True North Offset
Config-TC004 Description: This Test Case ensures that the user can configure the true

north setting in the camera.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeTrueNorthOffset.0 and record value to
[rangeTrueNorthOffset]

Pass/Fail

2. SET rangeTrueNorthOffset.0 to <valid_rangeTrueNorthOffset>
3. VERIFY RESPONSE ERROR = noError Pass/Fail
4. SET rangeTrueNorthOffset.0 to

<alternate_rangeTrueNorthOffset>

5. VERIFY RESPONSE ERROR = badValue Pass/Fail
6. SET rangeTrueNorthOffset.0 to [rangeTrueNorthOffset] Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

Identify Tilt Limits

Test Case: Title: Identify Tilt Limits
Config-TC0005 Description: This Test Case ensures that the device indicates that it supports

up and down tilting limits of the device.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeTiltDownLimit.0 and rangeTiltUpLimit.0 Pass/Fail
2. VERIFY RESPONSE VALUE

rangeTiltUpLimit >= <req_rangeTiltUpLimit>
Pass/Fail

3. VERIFY RESPONSE VALUE
rangeTiltDownLimit <= <req_rangeTiltDownLimit>

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

 131

Identify Zoom Limits

Test Case: Title: Identify Zoom Limits
Config-TC006 Description: This Test Case ensures that the device indicates that it supports

the required zoom limit.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeZoomLimit.0. Pass/Fail
2. VERIFY RESPONSE VALUE >= <req_rangeZoomLimit> Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

Identify Focus Limits

Test Case: Title: Identify Focus Limits
Config-TC007 Description: This Test Case ensures that the device indicates that it supports

the required focus limit.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeFocusLimit.0 Pass/Fail
2. VERIFY RESPONSE VALUE >= <req_rangeFocusLimit> Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

 132

Identify Iris Limit

Test Case: Title: Identify Iris Limit
Config-TC008 Description: This test ensures that the device indicates that it supports the

required iris limit.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeIrisLimit.0 Pass/Fail
2. VERIFY RESPONSE VALUE >= <req_rangeIrisLimit> Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

Identify Pan-Tilt Step Angle Minimum

Test Case: Title: Identify Pan-Tilt Step Angle Minimum
Config-TC009 Description: This Test Case ensures that the device indicates that it supports

the pan and tilt step angle minimum of the device.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeMinimumPanStepAngle.0 and
rangeMinimumTiltStepAngle.0

Pass/Fail

2. VERIFY RESPONSE VALUE
rangeMinimumPanStepAngle <=
<req_rangeMinimumPanStepAngle>

Pass/Fail

3. VERIFY RESPONSE VALUE
rangeMinimumTiltStepAngle <=
<req_rangeMinimumTiltStepAngle>

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

 133

Identify Zone Functions

Test Case: Title: Identify Zone Functions
Config-TC010 Description: This test ensures that the device indicates that it supports the

required zone functions.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET zoneCameraEquipped.0 Pass/Fail
2. VERIFY RESPONSE VALUE AND

<req_zoneCameraEquipped> = <req_zoneCameraEquipped>
Pass/Fail

Test Case Results
Tested By: Date

Tested
 Pass/Fail

Test Case Notes:

Version History: V1.0 02/07/06 Initial Draft – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

Monitor Discrete Input

Test Case: Title: Monitor Discrete Input
Discrete-TC001 Description: This Test Case verifies the state of discrete inputs and label

associated with it.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. SET
 labelText.<inputLabelIndex1> = <inputLabText1>
 labelHeight.<inputLabelIndex1> = <inputLabHeight1>
 labelColor.<inputLabelIndex1> = <inputLabColor1>
 labelStartRow.<inputLabelIndex1> = <inputLabStartRow1>
 labelStartColumn.<inputLabelIndex1> =
<inputLabStartColumn1>

Pass/Fail

2. SET byte <input1> of inputLabelIndex.0 to <inputLabelIndex1> Pass/Fail
3. Turn off inputs and USER VERIFY no labels for the

corresponding inputs are shown
Pass/Fail

4. SET inputLatchClear.0 to 0x00 Pass/Fail
5. Turn on the input and USER VERIFY the label for the input is

shown
Pass/Fail

6. GET inputStatus.0 and inputLatchStatus.0 Pass/Fail
7. VERIFY RESPONSE VALUE

 inputStatus & 2^(<input1>-1) = inputStatus
 inputLatchStatus & 2^(<input1>-1) = inputLatchStatus

Note:
 This test will verify that bits <input1> are on.

Pass/Fail

8. USER VERIFY the label for the corresponding input is on Pass/Fail
9. SET inputLatchClear.0 to 0x00 Pass/Fail
10. GET inputStatus.0 and inputLatchStatus.0 Pass/Fail

 134

11. VERIFY RESPONSE VALUE
 inputStatus & 2^(<input1>-1) = inputStatus
 inputLatchStatus & 2^(<input1>-1) = inputLatchStatus

Note:
 This test will verify that bits <input> are on.

Pass/Fail

12. USER VERIFY the label for the input is shown and deactivate
the input

Pass/Fail

13. GET inputStatus.0 and inputLatchStatus.0 Pass/Fail
14. VERIFY RESPONSE VALUE

 inputStatus & 2^(<input1>-1) = 0
 inputLatchStatus & 2^(<input1>-1) = inputLatchStatus

Note:
 This test will verify that bits <input1> are on (1) or off (0).

Pass/Fail

15. USER VERIFY the label for the input is off Pass/Fail
16. SET inputLatchClear.0 to 0x00. Pass/Fail
17. GET inputStatus.0 and inputLatchStatus.0 Pass/Fail
18. VERIFY RESPONSE VALUE

 inputStatus & 2^(<input1>-1) = 0
 inputLatchStatus & 2^(<input1>-1) = 0

Note:
 This test will verify that bits <input1> are off.

Pass/Fail

19. USER VERIFY the label for the input is off Pass/Fail
Test Case Results

Tested By: Date
Tested:

 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Removed deprecated labelFontType
 Corrected comparison values for inputStatus and inputLatchStatus – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

 135

Monitor Discrete Output

Test Case: Title: Monitor Discrete Output
Discrete-TC002 Description: This Test Case verifies the state of discrete outputs and label

associated with it.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET
 labelText.<outputLabelIndex1> = [labelText1]
 labelHeight.<outputLabelIndex1> = [labelHeight1]
 labelColor.<outputLabelIndex1> = [labelColor1]
 labelStartRow.<outputLabelIndex1> = [labelStartRow1]
 labelStartColumn.<outputLabelIndex1> = [labelStartColumn1]

Pass/Fail

2. GET
 labelText.<outputLabelIndex2> = [labelText2]
 labelHeight.<outputLabelIndex2> = [labelHeight2]
 labelColor.<outputLabelIndex2> = [labelColor2]
 labelStartRow.<outputLabelIndex2> = [labelStartRow2]
 labelStartColumn.<outputLabelIndex2> = [labelStartColumn2]

Pass/Fail

3. SET
 labelText.<outputLabelIndex1> = <outputLabText1>
 labelHeight.<outputLabelIndex1> = <outputLabHeight1>
 labelColor.<outputLabelIndex1> = <outputLabColor1>
 labelStartRow.<outputLabelIndex1> = <outputLabStartRow1>
 labelStartColumn.<outputLabelIndex1> =
<outputLabStartColumn1>

Pass/Fail

4. SET
 labelText.<outputLabelIndex2> = <outputLabText2>
 labelHeight.<outputLabelIndex2> = <outputLabHeight2>
 labelColor.<outputLabelIndex2> = <outputLabColor2>
 labelStartRow.<outputLabelIndex2> = <outputLabStartRow2>
 labelStartColumn.<outputLabelIndex2> =
<outputLabStartColumn2>

Pass/Fail

5. SET outputControl.0 to 0x0000 Pass/Fail
6. SET byte <output1> and <output2> of outputLabelIndex.0 to

<outputLabelIndex1> and <outputLabelIndex2>
Pass/Fail

7. SET outputControl.0 to 0xXX 0x10

Note:
 The first byte, 0xXX, should be the value where only the bit

for <output1> is on. For example 0x04 for output1 = 3.

Pass/Fail

8. USER VERIFY that <output1> is on Pass/Fail
9. GET outputStatus.0 Pass/Fail
10. VERIFY RESPONSE VALUE AND (2^<output1>-1) =

(2^<output1>-1)

Note:
 This test will verify that bit <output1> is on.

Pass/Fail

11. SET outputControl.0 to 0xXX 0x10

Note:
 The first byte, 0xXX, should be the value where only the bit

Pass/Fail

 136

for <output2> is on
12. USER VERIFY that <output2> is on Pass/Fail
13. GET outputStatus.0 Pass/Fail
14. VERIFY RESPONSE VALUE (2^<output2>-1) = (2^<output2>-

1).

Note:
 This test will verify that bit <output2> is on.

Pass/Fail

15. SET outputControl.0 to 0x0000 Pass/Fail
16. USER VERIFY that all outputs are off Pass/Fail
17. GET outputStatus.0 Pass/Fail
18. VERIFY RESPONSE VALUE AND (2^<output1>-1) +

(2^<output2>-1) = 0
Pass/Fail

19. SET
 labelText.<outputLabelIndex1> = [labelText1]
 labelHeight.<outputLabelIndex1> = [labelHeight1]
 labelColor.<outputLabelIndex1> = [labelColor1]
 labelStartRow.<outputLabelIndex1> = [labelStartRow1]
 labelStartColumn.<outputLabelIndex1> = [labelStartColumn1]

Pass/Fail

20. SET
 labelText.<outputLabelIndex2> = [labelText2]
 labelHeight.<outputLabelIndex2> = [labelHeight2]
 labelColor.<outputLabelIndex2> = [labelColor2]
 labelStartRow.<outputLabelIndex2> = [labelStartRow2]
 labelStartColumn.<outputLabelIndex2> = [labelStartColumn2]

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Removed deprecated labelFontType – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

 137

Get Availability of Equipment

Test Case: Title: Get Availability of Equipment
Features-TC001 Description: This Test Case identifies and verifies the availability of attached

equipment to the camera.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. User Enter the available equipment and store it to
<req_systemCameraEquipped>

2. GET systemCameraEquipped.0 Pass/Fail
3. VERIFY RESPONSE VALUE = <req_systemCameraEquipped> Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/27/06 Implemented script and proofed – JJ

Control Camera Power

Test Case: Title: Control Camera Power
Features-TC002 Description: This Test Case enables and disables this feature while the user

verifies.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET systemCameraEquipped.0 Pass/Fail
2. VERIFY that the camera supports controlling camera power Pass/Fail
3. GET systemCameraFeatureControl.0 Pass/Fail
4. SET systemCameraFeatureControl.0 to 0x8080 Pass/Fail
5. DELAY 3 seconds
6. GET systemCameraFeatureStatus.0 Pass/Fail
7. VERIFY that bit 7 is on and camera power is ON Pass/Fail
8. SET systemCameraFeatureControl.0 to 0x8000 Pass/Fail
9. DELAY 3 seconds
10. GET systemCameraFeatureStatus.0 Pass/Fail
11. VERIFY that bit 7 is off and camera power is OFF Pass/Fail
12. SET systemCameraFeatureControl.0 = 0x8080 Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Corrected systemCameraFeatureControl settings – RDR
V1.2 01/31/06 Added Delay to test – RDR
V1.3 02/27/06 Implemented script and proofed – JJ

 138

Control Heater Power

Test Case: Title: Control Heater Power
Features-TC003 Description: This Test Case enables and disables this feature while the user

verifies.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET systemCameraEquipped.0 Pass/Fail
2. VERIFY that the camera supports controlling heater power Pass/Fail
3. GET systemCameraFeatureControl.0 = [systemFeatureControl] Pass/Fail
4. SET systemCameraFeatureControl.0 to 0x40800 Pass/Fail
5. GET systemCameraFeatureStatus.0 Pass/Fail
6. VERIFY that bit 6 is on and heater power is ON Pass/Fail
7. SET systemCameraFeatureControl.0 to 0x4000 Pass/Fail
8. GET systemCameraFeatureStatus.0 Pass/Fail
9. VERIFY that bit 6 is off and heater power is OFF Pass/Fail
10. SET systemCameraFeatureControl.0 = [systemFeatureControl] Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Corrected systemCameraFeatureControl settings – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

Control Wiper

Test Case: Title: Control Wiper
Features-TC004 Description: This Test Case enables and disables this feature while the user

verifies.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET systemCameraEquipped.0 Pass/Fail
2. VERIFY that the camera supports controlling wiper Pass/Fail
3. GET systemCameraFeatureControl.0 = [systemFeatureControl] Pass/Fail
4. SET systemCameraFeatureControl.0 to 0x2080 Pass/Fail
5. GET systemCameraFeatureStatus.0 Pass/Fail
6. VERIFY that bit 5 is on and wiper is ON Pass/Fail
7. SET systemCameraFeatureControl.0 to 0x2000 Pass/Fail
8. GET systemCameraFeatureStatus.0 Pass/Fail
9. VERIFY that bit 5 is off and wiper is OFF Pass/Fail
10. SET systemCameraFeatureControl.0 = [systemFeatureControl] Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

 139

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Corrected systemCameraFeatureControl settings – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

Control Washer

Test Case: Title: Control Washer
Features-TC005 Description: This Test Case enables and disables this feature while the user

verifies.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET systemCameraEquipped.0 = [systemCameraEquipped] Pass/Fail
2. VERIFY that the camera supports controlling washer Pass/Fail
3. GET systemCameraFeatureControl.0 Pass/Fail
4. SET systemCameraFeatureControl.0 to 0x1080 Pass/Fail
5. GET systemCameraFeatureStatus.0 Pass/Fail
6. VERIFY that bit 4 is on and washer is ON Pass/Fail
7. SET systemCameraFeatureControl.0 to 0x1000 Pass/Fail
8. GET systemCameraFeatureStatus.0 Pass/Fail
9. VERIFY that bit 4 is off and washer is OFF Pass/Fail
10. SET systemCameraFeatureControl.0 =

[systemCameraEquipped]
Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Corrected systemCameraFeatureControl settings – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

Control Blower

Test Case: Title: Control Blower
Features-TC006 Description: This Test Case enables and disables this feature while the user

verifies.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET systemCameraEquipped.0 Pass/Fail
2. VERIFY that the camera supports controlling blower Pass/Fail
3. GET systemCameraFeatureControl.0 = [systemFeatureControl] Pass/Fail
4. SET systemCameraFeatureControl.0 to 0x0880 Pass/Fail
5. GET systemCameraFeatureStatus.0 Pass/Fail
6. VERIFY that bit 3 is on and blower is ON Pass/Fail
7. SET systemCameraFeatureControl.0 to 0x0800 Pass/Fail

 140

8. GET systemCameraFeatureStatus.0 Pass/Fail
9. VERIFY that bit 3 is off and blower is OFF Pass/Fail
10. SET systemCameraFeatureControl.0 = [systemFeatureControl] Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Corrected systemCameraFeatureControl settings – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

Delta Focus Motion

Test Case: Title: Delta Focus Motion
Focus-TC001 Description: This Test Case tests the delta focus motion of the camera by

moving the camera with several different speed and direction
parameters and allowing the user to verify them.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeFocusLimit.0 Pass/Fail
2. VERIFY camera supports focus limits Pass/Fail
3. GET systemLensFeatureControl.0 =

[systemLensFeatureControl]
Pass/Fail

4. SET systemLensFeatureControl.0 to 0x4000 Pass/Fail
5. SET positionFocusLens.0 to 01 <deltaFocusMoveSpeed>

<deltaFocusMovement>
Pass/Fail

6. USER VERIFY the camera lens moved towards far focus at the
movement and speed specified by the test variables
<deltaFocusMoveSpeed> and <deltaFocusMovement>

Pass/Fail

7. SET positionFocusLens.0 to 01 -<deltaFocusMoveSpeed>
<deltaFocusMovement>

Pass/Fail

8. USER VERIFY the camera lens moved towards near focus at
the movement and speed specified by the test variables
<deltaFocusMoveSpeed> and <deltaFocusMovement>

Pass/Fail

9. SET systemLensFeatureControl.0 =
[systemLensFeatureControl]

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/06/06 Added step to turn auto focus on/off for test – JJ
V1.2 02/13/06 Added test for support of focus limits – JJ
V1.3 02/27/06 Implemented script and proofed – JJ

 141

Absolute Focus Motion

Test Case: Title: Absolute Focus Motion
Focus-TC002 Description: This Test Case tests the absolute focus motion of the camera

by moving the camera with several different speed and direction
parameters and allowing the user to verify them.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeFocusLimit.0 Pass/Fail
2. VERIFY camera supports focus limits Pass/Fail
3. SET positionFocusLens.0 to 02 00 00 Pass/Fail
4. GET systemLensFeatureControl = [systemLensFeatureControl] Pass/Fail
5. SET systemLensFeatureControl.0 to 0x4000 Pass/Fail
6. SET positionFocusLens.0 to 02 <absoluteFocusSpeed>

<absoluteFocusPosition>
Pass/Fail

7. USER VERIFY the camera moved to the position defined by
<absoluteFocusPosition>

Pass/Fail

8. GET positionQueryFocus.0 Pass/Fail
9. VERIFY RESPONSE VALUE = <absoluteFocusPosition> Pass/Fail
10. SET positionFocusLens.0 to 02 <absoluteFocusSpeed>

<absoluteFocusPosition2>
Pass/Fail

11. USER VERIFY the camera moved to the position defined by
<absoluteFocusPosition2>

Pass/Fail

12. GET positionQueryFocus.0 Pass/Fail
13. VERIFY RESPONSE VALUE = <absoluteFocusPosition2> Pass/Fail
14. SET systemLensFeatureControl.0 =

[systemLensFeatureControl]
Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Added test for positionQueryFocus – JJ
V1.2 02/06/06 Added step to turn auto focus on/off for test – RDR
V1.3 02/13/06 Added test for support of focus limits
 Added step to set position to Home position to test absolute movements
 – JJ
V1.4 02/27/06 Implemented script and proofed – JJ

 142

Continuous Focus Motion with Timeout

Test Case: Title: Continuous Focus Motion with Timeout
Focus-TC003 Description: This Test Case tests the continuous focus motion of the camera

by moving the camera with the continuous command using the
timeout parameter to stop the camera.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET systemLensFeatureControl = [systemLensFeatureControl] Pass/Fail
2. SET systemLensFeatureControl.0 to 0x4000 Pass/Fail
3. GET timeoutFocus.0 = [timeoutFocus] Pass/Fail
4. SET timeoutFocus.0 to <alt_contFocusTimeout> Pass/Fail
5. SET positionFocusLens.0 to 03 <conFocusSpeed> 00 00 Pass/Fail
6. USER VERIFY the camera lens stops moving in a far focus

direction after <alt_contFocusTimeout> milliseconds
Pass/Fail

7. SET positionFocusLens.0 to 03 -<conFocusSpeed> 00 00 Pass/Fail
8. USER VERIFY the camera lens stops moving in a near focus

direction after <alt_contFocusTimeout> milliseconds
Pass/Fail

9. SET timeoutFocus.0 back = [timeoutFocus] Pass/Fail
10. SET systemLensFeatureControl.0 =

[systemLensFeatureControl]
Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/06/06 Added step to turn auto focus on/off for test – JJ
V1.2 02/27/06 Implemented script and proofed – JJ

Continuous Focus Motion with Stop

Test Case: Title: Continuous Focus Motion with Stop
Focus-TC004 Description: This Test Case tests the continuous focus motion of the camera

by moving the camera and using the stop command to stop
movement.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET systemLensFeatureControl = [systemLensFeatureControl] Pass/Fail
2. SET systemLensFeatureControl.0 to 0x4000 Pass/Fail
3. GET timeoutFocus.0 = [timeoutFocus] Pass/Fail
4. SET timeoutFocus.0 to 0 Pass/Fail
5. SET positionFocusLens.0 to 03 <conFocusSpeed> 00 00 Pass/Fail
6. DELAY <alt_contFocusTimeout> milliseconds
7. SET positionFocusLens.0 to 00 00 00 00 Pass/Fail
8. USER VERIFY the camera stops moving Pass/Fail
9. SET positionFocusLens.0 to 03 -<conFocusSpeed> 00 00 Pass/Fail

 143

10. DELAY <alt_contFocusTimeout> milliseconds.
11. SET positionFocusLens.0 to 00 00 00 00 Pass/Fail
12. USER VERIFY the camera stops moving Pass/Fail
13. SET timeoutFocus.0 back = [timeoutFocus] Pass/Fail
14. SET systemLensFeatureControl.0 =

[systemLensFeatureControl]
Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/06/06 Added step to turn auto focus on/off for test – JJ
V1.2 02/27/06 Implemented script and proofed – JJ

Retrieve Module Table

Test Case: Title: Retrieve Module Table
GloCon-TC001 Description: This Test Case retrieves the module table, and allows the tester

to verify that the DUT reports the proper type of device,
manufacturer, model, and version.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET globalMaxModules.0 = [globalMaxModules] Pass/Fail
2. FOR N = 1 TO [globalMaxModules]
3. GET the following objects:

 moduleNumber.N,
 moduleDeviceNode.N,
 moduleMake.N,
 moduleModel.N,
 moduleVersion.N, and
 moduleType.N

Pass/Fail

4. VERIFY RESPONSE VALUE for moduleNumber.N = N Pass/Fail
5. VERIFY RESPONSE VALUE for moduleDeviceNode.N =

<OID for device type>

Note: Per NTCIP 8004 v01.37, the following are <OID for
device type> values:

signal controller = 1.3.6.1.4.1.1206.4.2.1
ramp controller = 1.3.6.1.4.1.1206.4.2.2
dms = 1.3.6.1.4.1.1206.4.2.3
tss = 1.3.6.1.4.1.1206.4.2.4
ess = 1.3.6.1.4.1.1206.4.2.5
cctv = 1.3.6.1.4.1.1206.4.2.7
cctvSwitch = 1.3.6.1.4.1.1206.4.2.8
dcm = 1.3.6.1.4.1.1206.4.2.9
ssm = 1.3.6.1.4.1.1206.4.2.10
scp = 1.3.6.1.4.1.1206.4.2.11
network Camera = 1.3.6.1.4.1.1206.4.2.12
elms = 1.3.6.1.4.1.1206.4.2.13

Pass/Fail

 144

6. USER VERIFY RESPONSE VALUE for moduleMake.N
indicates the manufacturer of the module

Note: This might be the manufacturer of the hardware if the
moduleType.N is hardware, or the developer of the software,
if the moduleType.N is software.

Pass/Fail

7. USER VERIFY RESPONSE VALUE for moduleModel.N
indicates the correct model number of the component

Pass/Fail

8. USER VERIFY RESPONSE VALUE for moduleVersion.N
indicates the correct version number for the component

Pass/Fail

9. USER VERIFY RESPONSE VALUE for moduleType.N
indicates the correct type

Note: Values correspond to the following:
 other (1)
 hardware (2)
 software (3)

Pass/Fail

10. NEXT
Test Case Results

Tested By: Date
Tested:

 Pass/Fail

Test Case Notes:

Version History: V1.0 Original as defined in NTCIP 8007 v01.20 - B.3.2 Retrieve Module Table
V2.0 02/22/06 Reformatted to use FOR and NEXT and simplified a number of

steps.
Changed “Change” to CONFIGURE
Changed OID for device type to <OID for device type>
Removed “Temporary community name” from Variables field and adopted
convention of using [name of variable] for the text description of local
variables and using <name> for externally defined constants
Added list of moduleDeviceNodes from NTCIP 8004 – RDR

V2.1 02/22/06 Implemented script and proofed – JJ

Global Set ID

Test Case: Title: Global Set ID
GloCon-TC002 Description: This procedure ensures that a change in a static database

object produces a change in globalSetIDParmeter.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET globalSetIDParmeter.0 = [globalSetIDParameter] Pass/Fail
2. GET <setOctStringParameterOID> = [octStringOriginalValue]

Note: The <setOctStringParameterOID> can be any object with
SYNTAX of OCTET STRING that is also is static database
object.

Pass/Fail

3. SET <setOctStringParameterOID> =
<setOctStringParameterValue>

Pass/Fail

4. DELAY 120 Seconds

 145

Note: The exact frequency for updating the
globalSetIDParmeter.0 is manufacturer specific. The delay may
have to be adjusted accordingly.

5. GET globalSetIDParmeter.0 Pass/Fail
6. VERIFY RESPONSE VALUE ≠ [globalSetIDParameter] Pass/Fail
7. SET <setOctStringParameterOID> = [octStringOriginalValue] Pass/Fail
8. GET globalSetIDParmeter.0 = [globalSetIDParameter] Pass/Fail
9. GET <setIntegerParameterOID> = [integerOriginalValue]

Note: The <setIntegerParameterOID> can be any object with
SYNTAX of Integer that is also is static database object.

Pass/Fail

10. SET <setIntegerParameterOID> = <setIntegerParameterValue> Pass/Fail
11. DELAY 120 seconds

Note: The exact frequency for updating the
globalSetIDParmeter.0 is manufacturer specific. The delay may
have to be adjusted accordingly.

12. GET globalSetIDParmeter.0 Pass/Fail
13. VERIFY RESPONSE VALUE ≠ [globalSetIDParameter] Pass/Fail
14. SET <setIntegerParameterOID> = [integerOriginalValue] Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 02/10/06 Initial procedure defined – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

Delta Iris Motion

Test Case: Title: Delta Iris Motion
Iris-TC001 Description: This Test Case tests the delta iris motion of the camera by

moving the camera with the delta command.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeIrisLimit.0 Pass/Fail
2. VERIFY camera supports iris limits Pass/Fail
3. GET systemLensFeatureControl = [systemLensFeatureControl] Pass/Fail
4. SET systemLensFeatureControl.0 to 0x8000 Pass/Fail
5. SET positionIrisLens.0 to 01 <deltaIrisMoveSpeed>

<deltaIrisMovement>
Pass/Fail

6. USER VERIFY the camera lens moved towards a closed
position at the movement and speed specified by the test
variables <deltaIrisMoveSpeed> and <deltaIrisMovement>

Pass/Fail

7. SET positionIrisLens.0 to 01 -<deltaIrisMoveSpeed>
<deltaIrisMovement>

Pass/Fail

8. USER VERIFY the camera lens moved towards an open
position at the movement and speed specified by the test
variables <deltaIrisMoveSpeed> and <deltaIrisMovement>

Pass/Fail

9. SET systemLensFeatureControl.0 =
[systemLensFeatureControl]

Pass/Fail

 146

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/06/06 Added step to turn auto iris on/off for test – RDR
V1.2 02/13/06 Added test for support of iris limits – RDR
V1.3 02/27/06 Implemented script and proofed – JJ

Absolute Iris Motion

Test Case: Title: Absolute Iris Motion
Iris-TC002 Description: This Test Case tests the absolute iris motion of the camera by

moving the camera with several different speed and direction
parameters and allowing the user to verify them.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeIrisLimit.0 Pass/Fail
2. VERIFY camera supports iris limits. Pass/Fail
3. GET systemLensFeatureControl = [systemLensFeatureControl] Pass/Fail
4. SET systemLensFeatureControl.0 to 0x8000 Pass/Fail
5. SET positionIrisLens.0 to 02 <absoluteIrisSpeed>

<absoluteIrisPosition>
Pass/Fail

6. USER VERIFY the camera moved to the position defined by
<absoluteIrisPosition>

Pass/Fail

7. GET positionQueryIris.0 Pass/Fail
8. VERIFY RESPONSE VALUE = <absoluteIrisPosition> Pass/Fail
9. SET positionIrisLens.0 to 02 <absoluteIrisSpeed>

<absoluteIrisPosition2>
Pass/Fail

10. USER VERIFY the camera moved to the position defined by
<absoluteIrisPosition2>

Pass/Fail

11. GET positionQueryIris.0 Pass/Fail
12. VERIFY RESPONSE VALUE = <absoluteIrisPosition2> Pass/Fail
13. SET systemLensFeatureControl.0 =

[systemLensFeatureControl]
Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Added tests for positionQueryIris – RDR
V1.2 02/06/06 Added step to turn auto iris on/off for test – RDR
V1.3 02/13/06 Added test for support of iris limits – RDR
V1.4 02/27/06 Implemented script and proofed – JJ

 147

Continuous Iris Motion with Timout

Test Case: Title: Continuous Iris Motion with Timeout
Iris-TC003 Description: This Test Case tests the continuous iris motion of the camera by

moving the camera with the continuous command using the
timeout parameter to stop the camera.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET systemLensFeatureControl = [systemLensFeatureControl] Pass/Fail
2. SET systemLensFeatureControl.0 to 0x8000 Pass/Fail
3. GET timeoutIris.0 = [timeoutIris] Pass/Fail
4. SET timeoutIris.0 to <alt_contIrisTimeout> Pass/Fail
5. SET positionIrisLens.0 to 03 <conIrisSpeed> 00 00 Pass/Fail
6. USER VERIFY the camera lens stops moving towards a closed

position after <alt_contIrisTimeout> milliseconds
Pass/Fail

7. SET positionIrisLens.0 to 03 -<conIrisSpeed> 00 00 Pass/Fail
8. USER VERIFY the camera lens stops moving towards an open

position after <alt_contIrisTimeout> milliseconds
Pass/Fail

9. SET timeoutIris.0 = [timeoutIris] Pass/Fail
10. SET systemLensFeatureControl.0 =

[systemLensFeatureControl]
Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/06/06 Added step to turn auto iris on/off for test – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

 148

Continuous Iris Motion with Stop

Test Case: Title: Continuous Iris Motion with Stop
Iris-TC004 Description: This Test Case tests the continuous iris motion of the camera by

moving the camera and using the stop command to stop
movement.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET systemLensFeatureControl.0 =
[systemLensFeatureControl]

Pass/Fail

2. SET systemLensFeatureControl.0 to 0x8000 Pass/Fail
3. GET timeoutIris.0 = [timeoutIris] Pass/Fail
4. SET timeoutIris.0 to 0 Pass/Fail
5. SET positionIrisLens.0 to 03 <conIrisSpeed> 00 00 Pass/Fail
6. DELAY <alt_contIrisTimeout> milliseconds
7. SET positionIrisLens.0 to 00 00 00 00 Pass/Fail
8. USER VERIFY the camera iris stops moving to a closed position Pass/Fail
9. SET positionIrisLens.0 to 03 -<conIrisSpeed> 00 00 Pass/Fail
10. DELAY <alt_contIrisTimeout> milliseconds
11. SET positionIrisLens.0 to 00 00 00 00 Pass/Fail
12. USER VERIFY the camera iris stops moving to an open position Pass/Fail
13. SET timeoutIris.0 = [timeoutIris] Pass/Fail
14. SET systemLensFeatureControl.0 =

[systemLensFeatureControl]
Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/20/06 Added step to turn auto iris on/off for test – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

 149

Get and Set Label

Test Case: Title: Get and Set Label
Label-TC0001 Description: This Test Case verifies the number of labels the device can

store. Test labels are stored in the device to verify storage
capabilities.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET and Store labelMaximum.0 = [labelMaximum]
2. VERIFY RESPONSE VALUE >= <req_labelMaximum> Pass/Fail
3. FOR labelIndex = 1 TO [labelMaximum]
4. GET and Store

 labelText.labelIndex = [labelText1],
 labelHeight.labelIndex = [labelHeight1],
 labelColor.labelIndex = [labelColor1],
 labelStartRow.labelIndex = [labelStartRow1],
 labelStartColumn.labelIndex = [labelStartColumn1]

5. SET
 labelText.labelIndex = <alt_labelText>,
 labelHeight.labelIndex = <alt_labelHeight>,
 labelColor.labelIndex = <alt_labelColor>,
 labelStartRow.labelIndex = <alt_labelStartRow>,
 labelStartColumn.labelIndex = <alt_labelStartColumn>

Pass/Fail

6. GET
 labelText.labelIndex,
 labelHeight.labelIndex,
 labelColor.labelIndex,
 labelStartRow.labelIndex,
 labelStartColumn.labelIndex

7. VERIFY RESPONSE VALUE
 labelText = <alt_labelText>,
 labelHeight = <alt_labelHeight>,
 labelColor = <alt_labelColor>,
 labelStartRow = <alt_labelStartRow>,
 labelStartColumn = <alt_labelStartColumn>

Pass/Fail

8. SET
 labelText.labelIndex = [labelText1],
 labelHeight.labelIndex = [labelHeight1],
 labelColor.labelIndex = [labelColor1],
 labelStartRow.labelIndex = [labelStartRow1],
 labelStartColumn.labelIndex = [labelStartColumn1]

Pass/Fail

9. NEXT labelIndex
Test Case Results

Tested By: Date
Tested:

 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Removed deprecated labelFontType from test – RDR
V1.2 11/08/05 Removed labelStatus, Read Only object – RDR
V1.3 02/10/06 Implemented script and proofed – JJ

 150

Display Camera Location

Test Case: Title: Display Camera Location
Label-TC0002 Description: This Test Case tests the capability to display a text label on the

video output.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET and Store labelMaximum.0 = [labelMaximum]
2. FOR labelIndex = 1 TO [labelMaximum]
3. GET and Store

 labelText.labelIndex = [labelText1],
 labelHeight.labelIndex = [labelHeight1],
 labelColor.labelIndex = [labelColor1],
 labelStartRow.labelIndex = [labelStartRow1],
 labelStartColumn.labelIndex = [labelStartColumn1]

4. SET
 labelText.labelIndex = “Index: labelIndex”,
 labelHeight.labelIndex = <alt_locLabelHeight>,
 labelColor.labelIndex = <alt_locLabelColor>,
 labelStartRow.labelIndex = <alt_locLabelStartRow>,
 labelStartColumn.labelIndex = <alt_locLabelStartColumn>

Pass/Fail

5. SET labelLocationLabel.0 to labelIndex Pass/Fail
6. SET labelEnableTextDisplay.0 to 0x80 Pass/Fail
7. USER VERIFY that the label is displayed Pass/Fail
8. SET labelEnableTextDisplay.0 to 0x00 Pass/Fail
9. USER VERIFY that the no labels are displayed Pass/Fail
10. SET labelEnableTextDisplay.0 to 0x80 Pass/Fail
11. USER VERIFY that the label is displayed Pass/Fail
12. SET labelLocationLabel.0 to 0 Pass/Fail
13. USER VERIFY that the label is not displayed Pass/Fail
14. SET

 labelText.labelIndex = [labelText1],
 labelHeight.labelIndex = [labelHeight1],
 labelColor.labelIndex = [labelColor1],
 labelStartRow.labelIndex = [labelStartRow1],
 labelStartColumn.labelIndex = [labelStartColumn1]

Pass/Fail

15. NEXT labelIndex
Test Case Results

Tested By: Date
Tested:

 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Removed deprecated labelFontType from test – RDR
V1.2 11/08/05 Removed labelStatus, Read Only
 Altered labelText to change for each index – RDR
V1.3 02/10/06 Implemented script and proofed – JJ

 151

Get Availability of Lens Equipment

Test Case: Title: Get Availability of Lens Equipment
Lens-TC001 Description: This Test Case identifies and verifies the availability of attached

equipment to the camera.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. Enter the available equipment and store it to
[req_systemLensEquipped]

2. GET systemLensEquipped.0 Pass/Fail
3. VERIFY Response equals [req_systemLensEquipped] Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/27/06 Implemented script and proofed – JJ

Control Auto Iris

Test Case: Title: Control Auto Iris
Lens-TC002 Description: This Test Case enables and disables this feature while the user

verifies.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET systemLensEquipped.0 = [systemLens] Pass/Fail
2. VERIFY that the camera supports Auto Iris Pass/Fail
3. GET systemLensFeatureControl.0 Pass/Fail
4. SET systemLensFeatureControl.0 to 0x8080 Pass/Fail
5. GET systemLensFeatureStatus.0 Pass/Fail
6. VERIFY that bit 7 is on and Auto Iris is ON Pass/Fail
7. SET systemLensFeatureControl.0 to 0x8000 Pass/Fail
8. GET systemLensFeatureStatus.0 Pass/Fail
9. VERIFY that bit 7 is off and Auto Iris is OFF Pass/Fail
10. SET systemLensFeatureControl.0 = [systemLens] Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Corrected systemLensFeatureControl – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

 152

Control Auto Focus

Test Case: Title: Control Auto Focus
Lens-TC003 Description: This Test Case enables and disables this feature while the user

verifies.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET systemLensEquipped.0 = [systemLens] Pass/Fail
2. VERIFY that the camera supports Auto Iris Pass/Fail
3. GET systemLensFeatureControl.0 Pass/Fail
4. SET systemLensFeatureControl.0 to 0x4080 Pass/Fail
5. GET systemLensFeatureStatus.0 Pass/Fail
6. VERIFY that bit 7 is on and Auto Focus is ON Pass/Fail
7. SET systemLensFeatureControl.0 to 0x4000 Pass/Fail
8. GET systemLensFeatureStatus.0 Pass/Fail
9. VERIFY that bit 7 is off and Auto Focus is OFF Pass/Fail
10. SET systemLensFeatureControl.0 = [systemLens] Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Corrected systemLensFeatureControl – RDR
V1.2 02/27/06 Implemented script and proofed – JJ

 153

Menu

Test Case: Title: Menu
Menu-TC001 Description: This Test Case sends menu commands to the CCTV.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. SET menuActivate.0 to 255 Pass/Fail
2. USER VERIFY that the menu is displayed Pass/Fail
3. SET menuControl.0 to 1 (pageDown) Pass/Fail
4. USER VERIFY that the menu moved down a page Pass/Fail
5. SET menuControl.0 to 2 (pageUp) Pass/Fail
6. USER VERIFY that the menu moved up a page Pass/Fail
7. SET menuControl.0 to 4 (cursorDown) Pass/Fail
8. USER VERIFY that the cursor moved down Pass/Fail
9. SET menuControl.0 to 3 (cursorUp) Pass/Fail
10. USER VERIFY that the cursor moved up Pass/Fail
11. User Input: Is the cursor in a position to move right?

 If Yes GOTO Step 14
 If No GOTO Step 12

12. SET menuControl.0 to 3,4 or 9 depending on user input Pass/Fail
13. GOTO Step 11
14. SET menuControl.0 to 5 (cursorRight) Pass/Fail
15. USER VERIFY that the cursor moved right Pass/Fail
16. SET menuControl.0 to 6 (cursorLeft) Pass/Fail
17. USER VERIFY that the cursor moved left Pass/Fail
18. User Input: Is the cursor in a position to enter a value?

 If Yes GOTO Step 21
 If No GOTO Step 19

19. SET menuControl.0 to 3,4,5,6 or 9, depending on user input Pass/Fail
20. GOTO Step 18
21. SET menuControl.0 to 7 (incrementValue) Pass/Fail
22. USER VERIFY the value has been incremented Pass/Fail
23. SET menuControl.0 to 8 (decrementValue) Pass/Fail
24. USER VERIFY the value has been decremented Pass/Fail
25. SET menuControl.0 to 9 (enterValue) Pass/Fail
26. USER VERIFY the value has been entered Pass/Fail
27. SET menuActivate.0 to 0 Pass/Fail
28. USER VERIFY the menu has been deactivated Pass/Fail
29. SET menuActivate.0 to <activateMenuTimeout> Pass/Fail
30. USER VERIFY that the menu is displayed Pass/Fail
31. Delay <activateMenuTimeout> +1 second
32. USER VERIFY the menu has been deactivated Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

 154

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/28/05 – Changed options in step 11 to give user more choices – JJ
V1.2 02/27/06 Implemented script and proofed – JJ

Delta Pan Motion

Test Case: Title: Delta Pan Motion
Pan-TC001 Description: This Test Case tests the delta panning motion of the camera by

moving the camera with several different speed and direction
parameters and allowing the user to verify them.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangePanLeftLimit.0 and rangePanRightLimit.0 Pass/Fail
2. VERIFY camera supports panning and pan limits Pass/Fail
3. SET positionPan.0 to Mode: 1 (Delta), Speed:

<deltaPanMoveSpeed>, Position: <deltaPanMovement>, which
is hex value 01 <deltaPanMoveSpeed> <deltaPanMovement>

Pass/Fail

4. USER VERIFY the camera moved in a clockwise direction at the
movement and speed specified by <deltaPanMovement> and
<deltaPanMoveSpeed>

Pass/Fail

5. SET positionPan.0 to Mode: 1 (Delta), Speed: -
<deltaPanMoveSpeed>, Position: <deltaPanMovement>, which
is hex value 01 -<deltaPanMoveSpeed> <deltaPanMovement>

Pass/Fail

6. USER VERIFY the camera moved in a counterclockwise
direction at the movement and speed specified by
<deltaPanMovement> and <deltaPanMoveSpeed>

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/11/05 Added instructions to test script to help user execute test – JJ
V1.2 02/13/06 Added test for support of panning and pan limits – JJ
V1.3 02/22/06 Implemented script and proofed – JJ

 155

Absolute Pan Motion

Test Case: Title: Absolute Pan Motion
Pan-TC002 Description: This Test Case tests the absolute panning motion of the camera

by moving the camera with several different speed and direction
parameters and allowing the user to verify them.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangePanLeftLimit.0 and rangePanRightLimit.0 Pass/Fail
2. VERIFY camera supports panning and pan limits Pass/Fail
3. GET rangePanHomePosition.0 = [rangePanHomePostion] Pass/Fail
4. SET positionPan.0 to Mode:2 (Absolute), Speed:

<absolutePanSpeed>, Position: [rangePanHomePostion], which
is hex value 02 <absolutePanSpeed> [rangePanHomePostion]

Pass/Fail

5. Note that current position as the Home position
6. SET positionPan.0 to Mode: 2(Absolute), Speed:

<absolutePanSpeed>, Position: <absolutePanPosition>, which
is hex value 02 <absolutePanSpeed> <absolutePanPosition>.

Pass/Fail

7. USER VERIFY the camera moved to the position
<absolutePanPosition>

Pass/Fail

8. GET positionQueryPan.0 Pass/Fail
9. VERIFY RESPONSE VALUE = <absolutePanPosition> Pass/Fail
10. SET positionPan.0 to Mode: 2(Absolute), Speed:

<absolutePanSpeed>, Position: [rangePanHomePostion], which
is hex value 02 <absolutePanSpeed> [rangePanHomePostion]

Pass/Fail

11. USER VERIFY the camera moved back to Home Position Pass/Fail
12. SET positionPan.0 to Mode: 2(Absolute), Speed:

<absolutePanSpeed>, Position: <absolutePanPosition2>, which
is hex value 02 <absolutePanSpeed> <absolutePanPosition2>.

Pass/Fail

13. USER VERIFY the camera moved to the position
<absolutePanPosition2>

Pass/Fail

14. GET positionQueryPan.0 Pass/Fail
15. VERIFY RESPONSE VALUE = <absolutePanPosition2> Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/04/05 Added test for positionQueryPan – JJ
V1.2 11/11/05 Added steps to set position to Home position to test absolute
movements – JJ
V1.3 01/30/06 Added step to move back to Home after first absolute test – JJ
V1.4 02/13/06 Added test for support of panning and pan limits – JJ
V1.5 02/22/06 Implemented script and proofed – JJ

 156

Continuous Pan Motion with Timeout

Test Case: Title: Continuous Pan Motion with Timeout
Pan-TC003 Description: This Test Case tests the continuous panning motion of the

camera by moving the camera with the continuous command
using the timeout parameter to stop the camera.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangePanLeftLimit.0 and rangePanRightLimit.0 Pass/Fail
2. VERIFY camera supports panning and pan limits Pass/Fail
3. GET timeoutPan.0 = [timeoutPan] Pass/Fail
4. SET timeoutPan.0 to <alt_contPanTimeout> Pass/Fail
5. SET positionPan.0 to Mode: 3(Continuous), Speed:

<conPanSpeed>, Position: 0, which is hex value
03 <conPanSpeed> 00 00

Pass/Fail

6. USER VERIFY the camera stops moving in a clockwise
direction after <alt_contPanTimeout> milliseconds

Pass/Fail

7. SET positionPan.0 to Mode: 3(Continuous), Speed: -
<conPanSpeed>, Position: 0, which is hex value
03 -<conPanSpeed> 00 00

Pass/Fail

8. USER VERIFY the camera stops moving in a counterclockwise
direction after <alt_contPanTimeout> milliseconds

Pass/Fail

9. SET timeoutPan.= [timeoutPan] Pass/Fail
Test Case Results

Tested By: Date
Tested:

 Pass/Fail

Test Case Notes:
Version History: V1.0 09/20/05 Initial Draft – RDR

V1.1 11/11/05 Added instructions to test script to help user execute test – JJ
V1.2 02/13/06 Added test for support of panning and pan limits – JJ
V1.3 02/22/06 Implemented script and proofed – JJ

 157

Continuous Pan Motion with Stop

Test Case: Title: Continuous Pan Motion with Stop
Pan-TC004 Description: This Test Case tests the continuous panning motion of the

camera by moving the camera and using the stop command to
stop movement.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangePanLeftLimit.0 and rangePanRightLimit.0 Pass/Fail
2. VERIFY camera supports panning and pan limits Pass/Fail
3. GET timeoutPan.0 = [timeoutPan] Pass/Fail
4. SET timeoutPan.0 to 0 Pass/Fail
5. SET positionPan.0 to Mode: 3(Continuous), Speed:

<conPanSpeed>, Position: 0, which is hex value 03
<conPanSpeed> 00 00

Pass/Fail

6. DELAY <alt_contPanTimeout> milliseconds
7. SET positionPan.0 to 00 00 00 00 Pass/Fail
8. USER VERIFY the camera stops moving Pass/Fail
9. SET positionPan.0 to Mode: 3(Continuous), Speed: -

<conPanSpeed>, Position: 0, which is hex value 03 -
<conPanSpeed> 00 00

Pass/Fail

10. DELAY <alt_contPanTimeout> milliseconds
11. SET positionPan.0 to 00 00 00 00 Pass/Fail
12. USER VERIFY the camera stops moving Pass/Fail
13. SET timeoutPan.0 = [timeoutPan] Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:
Version History: V1.0 09/20/05 Initial Draft – RDR

V1.1 02/13/06 Added test for support of panning and pan limits – JJ
V1.2 02/22/06 Implemented script and proofed – JJ

 158

Change Administrator Community Name

Test Case: Title: Change Administrator Community Name
Security-TC0001 Description: This Test Case verifies that the administrator can change the

administrator community name stored in the DUT and that the
change properly affects the operation of the device.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. As a part of the project-specific Test Plan, define a
<temp_communityName> to use for testing the administrator
community name. This must be a different name than the
current communityNameAdmin and communityNameUser(s)
values, which will be referred to as the original community
name.

Note: Valid administrator community names are between 8 and
16 characters long, inclusive and may contain any ASCII
character, including non-printable characters.

2. CONFIGURE COMMUNITY NAME OUT =
<current_communityName>

3. GET communityNameAdmin.0 = [communityNameAdmin] Pass/Fail
4. VERIFY RESPONSE VALUE= COMMUNITY NAME OUT Pass/Fail
5. SET communityNameAdmin.0 = <temp_communityName> Pass/Fail
6. GET communityNameAdmin.0 and VERIFY that either:

 1. No response is received or
2. The RESPONSE ERROR is 2 (noSuchName) and the
RESPONSE INDEX is 1

Pass/Fail

7. CONFIGURE COMMUNITY NAME OUT =
<temp_communityName>

8. GET communityNameAdmin.0 Pass/Fail
9. VERIFY RESPONSE VALUE = COMMUNITY NAME OUT Pass/Fail
10. SET communityNameAdmin.0 = [communityNameAdmin] Pass/Fail
11. GET communityNameAdmin.0 and VERIFY that either:

 1. No response is received or
2. The RESPONSE ERROR is 2 (noSuchName) and the
RESPONSE INDEX is 1

Pass/Fail

12. CONFIGURE COMMUNITY NAME OUT =
[communityNameAdmin]

13. GET communityNameAdmin.0 Pass/Fail
14. VERIFY RESPONSE VALUE = COMMUNITY NAME OUT Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:
Version History: V1.0 02/13/06 Original as defined in NTCIP 8007 v01.20 - B.3.4 Change

Administrator Community Name – RDR
V2.0 02/15/06 Changed “Change” to CONFIGURE

Removed “Temporary community name” from Variables field and adopted
convention of using [name of variable] for the text description of local
variables and using <name> for externally defined constants – RDR

V2.1 02/22/06 Implemented script and proofed – JJ

 159

Change User Community Name

Test Case: Title: Change User Community Name
Security-TC002 Description: This Test Case verifies that the administrator can change the

user community names and their masks stored in the DUT and
that the changes properly affect the operation of the device.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. PRE-CONDITION: Ensure that the DUT is configured such that
the user community names are something other than “NTCIP
USER #”, where # is the row number in the community name
table.

When set to 0, the communityNameAccessMask effectively
changes the any object with read-write access to ready only.
The object to test is <maskReadWriteOID>. The default value of
the OID in the set up file is sysName.0. However, one may
replace these with any other object OID supported by the DUT
that that has similar characteristics and is read-write.

2. GET globalMaxModules.0

Note: This object is referenced throughout this procedure. A
Test Plan may replace all references to this object in this Test
Case with a reference to any other object supported by the DUT
that will have a constant value for the duration of the Test Case.
The globalMaxModules is used in this procedure because most
every device supports it.

Pass/Fail

3. RECORD the RESPONSE VALUE = [globalMaxModules]
4. GET communityNamesMax.0 Pass/Fail
5. RECORD the RESPONSE VALUE = [communityNamesMax]
6. VERIFY RESPONSE VALUE >= <req_communityNamesMax> Pass/Fail
7. FOR N = 1 TO [communityNamesMax]

Note: This loop tests the original community names, to make
sure that they work and then SETs them to new values and
ensures that the new values work.

8. GET the following objects:
 communityNameUser.N,
 communityNameAccessMask.N

Pass/Fail

9. RECORD the RESPONSE VALUES =
[communityNameUser(N)] and
[communityNameAccessMask(N)] for each object indicating
which instance of N is being used

10. CONFIGURE COMMUNITY NAME OUT =
[communityNameUser(N)]

11. GET globalMaxModules.0 Pass/Fail
12. VERIFY RESPONSE VALUE = [globalMaxModules] Pass/Fail
13. GET <maskReadWriteOID> Pass/Fail
14. RECORD the RESPONSE VALUE =

[temp_maskReadWriteOIDValue]

15. SET <maskReadWriteOID> = Pass/Fail

 160

[temp_maskReadWriteOIDValue]

Note: This ensures that communityNameAccessMask.N is
not blocking the normal read-write access of
<maskReadWriteOID>.

16. CONFIGURE COMMUNITY NAME OUT = administrator
community name

17. SET the following objects to the values as shown:
communityNameUser.N to the string "NTCIP USER #"
where # is the row number N,
 communityNameAccessMask.N to the value of zero (0)

Pass/Fail

18. GET the following objects:
communityNameUser.N,
communityNameAccessMask.N

Pass/Fail

19. VERIFY RESPONSE VALUE
communityNameUser.N = "NTCIP USER #"

Pass/Fail

20. VERIFY that the RESPONSE VALUE
communityNameAccessMask.N = 0

Pass/Fail

21. Change the COMMUNITY NAME OUT to "NTCIP USER #"
where # is the row number N

22. GET globalMaxModules.0 Pass/Fail
23. VERIFY RESPONSE VALUE = [globalMaxModules] Pass/Fail
24. SET <maskReadWriteOID> = <maskReadWriteOIDValue>

and VERIFY RESPONSE ERROR is 2 (noSuchName) and
the RESPONSE INDEX is 1

Note: This ensures that changing the access mask to 0 SETs
the access of <maskReadWriteOID> = readOnly.

Pass/Fail

25. CONFIGURE the COMMUNITY NAME OUT to the
administrator community name

26. NEXT N
27. FOR N = 1 TO [communityNamesMax]

Note: This loop tests the original community names, to make
sure that they no longer work.

28. CONFIGURE COMMUNITY NAME OUT =
[communityNameUser(N)] previously recorded

29. GET globalMaxModules.0 and VERIFY that either:
1. No response is received or
2. The RESPONSE ERROR is 2 (noSuchName) and the
 RESPONSE INDEX is 1

Pass/Fail

30. NEXT N
31. FOR N = 1 TO [communityNamesMax]

Note: This loop tests the original community names once
restored to the DUT to make sure that they work.

32. CONFIGURE COMMUNITY NAME OUT to the <original
administrator community name

33. SET the following objects to the values as shown:
communityNameUser.N = [communityNameUser(N)],
communityNameAccessMask.N =
[communityNameAccessMask(N)]

Pass/Fail

34. GET the following objects:
communityNameUser.N,
communityNameAccessMask.N

Pass/Fail

 161

35. VERIFY RESPONSE VALUE
communityNameUser.N = [communityNameUser(N)]

Pass/Fail

36. VERIFY RESPONSE VALUE
communityNameAccessMask.N =
[communityNameAccessMask(N)]

Pass/Fail

37. Change the COMMUNITY NAME OUT to the
[communityNameUser(N)]

38. GET globalMaxModules.0 Pass/Fail
39. VERIFY RESPONSE VALUE = [globalMaxModules] Pass/Fail
40. NEXT N
41. FOR N = 1 TO [communityNamesMax]

Note: This loop tests the temporary community names
created during this Test Case to make sure that they no
longer work.

42. CONFIGURE COMMUNITY NAME OUT = "NTCIP USER
#", where # is the row number N

43. GET globalMaxModules.0 and VERIFY that either:
 1. No response is received or
2. The RESPONSE ERROR is 2 (noSuchName) and the
RESPONSE INDEX is 1

Pass/Fail

44. NEXT N
45. CONFIGURE COMMUNITY NAME OUT = administrator

community name

46. PRE-CONDITION: Ensure that the DUT is configured such that
the user community names are something other than “NTCIP
USER #”, where # is the row number in the community name
table.

When set to 0, the communityNameAccessMask effectively
changes the any object with read-write access to ready only.
The object to test is <maskReadWriteOID>. The default value of
the OID in the setup file is sysName.0. However, one may
replace these with any other object OID supported by the DUT
that has similar characteristics and is read-write.

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes: If the Test Case fails, one or more of the user community names in the DUT may
be “NTCIP USER#”, where # is the row number in the user community name table.

Version History: V1.0 02/13/06 Original as defined in NTCIP 8007 v01.20 - B.3.6 Change User
Community Name

V2.0 02/15/06 Reformatted to use FOR and NEXT and simplified a number of
steps.
High-lighted potential invalid response to GET of globalMaxModules.0
Added last step to restore COMMUNITY NAME OUT
Add steps to check that setting of communityNameAccessMasks = 0
changes access to read-only.
Changed “Change” to CONFIGURE
Removed “Temporary community name” from Variables field and adopted
convention of using [name of variable] for the text description of local
variables and using <name> for externally defined constants. – RDR

V2.1 02/22/06 Implemented script and proofed – JJ

 162

Delta Tilt Motion

Test Case: Title: Delta Tilt Motion
Tilt-TC001 Description: This Test Case tests the delta tilt motion of the camera by

moving the camera with several different speed and direction
parameters and allowing the user to verify them.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeTiltDownLimit.0 and rangeTiltUpLimit.0 Pass/Fail
2. VERIFY camera supports tilt limits Pass/Fail
3. SET positionTilt.0 to Mode: 1 (Delta), Speed:

<deltaTitlMoveSpeed>, Position: <deltaTiltMovement>, which is
hex value 01 <deltaTitlMoveSpeed> <deltaTiltMovement>

Pass/Fail

4. USER VERIFY the camera moved in a up direction at the
movement and speed specified by <deltaTiltMoveSpeed> and
<deltaTiltMovement>

Pass/Fail

5. SET positionTilt.0 to Mode: 1 (Delta), Speed: -
<deltaTiltMoveSpeed>, Position: <deltaTiltMovement>, which is
hex value 01 -<deltaTiltMoveSpeed> <deltaTiltMovement>

Pass/Fail

6. USER VERIFY the camera moved in a down direction at the
movement and speed specified by <deltaTiltMoveSpeed> and
<deltaTiltMovement>

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/13/06 Added test for support of tilt limits – JJ
V1.2 02/22/06 Implemented script and proofed – JJ

 163

Absolute Tilt Motion

Test Case: Title: Absolute Tilt Motion
Tilt-TC002 Description: This Test Case tests the absolute tilt motion of the camera by

moving the camera with several different speed and direction
parameters and allowing the user to verify them.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeTiltDownLimit.0 and rangeTiltUpLimit.0 Pass/Fail
2. VERIFY camera supports tilt limits Pass/Fail
3. SET positionTilt.0 to Mode: 2 (Absolute), Speed: 0, Position: 0,

which is hex value 02 00 00 00
Pass/Fail

4. SET positionTilt.0 to Mode: 2 (Absolute), Speed:
<absoluteTiltSpeed>, Position: <absoluteTiltPosition>, which is
hex value 02 <absoluteTiltSpeed> <absoluteTiltPosition>

Pass/Fail

5. USER VERIFY the camera moved to the position defined by
<absoluteTiltPosition>

Pass/Fail

6. GET positionQueryTilt.0 Pass/Fail
7. VERIFY RESPONSE VALUE = <absoluteTiltPosition> Pass/Fail
8. SET positionTilt.0 to Mode: 2 (Absolute), Speed: 0, Position: 0,

which is hex value 02 00 00 00
Pass/Fail

9. SET positionTilt.0 to Mode: 2 (Absolute), Speed:
<absoluteTiltSpeed>, Position: <absoluteTiltPosition2>, which is
hex value 02 <absoluteTiltSpeed> <absoluteTiltPosition2>

Pass/Fail

10. USER VERIFY the camera moved to the position defined by
<absoluteTiltPosition2>

Pass/Fail

11. GET positionQueryTilt.0 Pass/Fail
12. VERIFY RESPONSE VALUE = <absoluteTiltPosition2> Pass/Fail
13. SET positionTilt.0 to Mode: 2 (Absolute), Speed: 0, Position: 0,

which is hex value 02 00 00 00
Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Added test for positionQueryTilt – JJ
V1.2 02/03/06– Added step to set position to Home (zero) before testing absolute
movement – JJ
V1.3 02/13/06 Added test for support of tilt limits – JJ
V1.4 02/22/06 Implemented script and proofed – JJ

 164

Continuous Tilt Motion with Timeout

Test Case: Title: Continuous Tilt Motion with Timeout
Tilt-TC003 Description: This Test Case tests the continuous tilt motion of the camera by

moving the camera with the continuous command using the
timeout parameter to stop the camera.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET timeoutTilt.0 = [timeoutTilt] Pass/Fail
2. SET timeoutTilt.0 to <alt_contTiltTimeout> Pass/Fail
3. SET positionTilt.0 to Mode: 3 (Continuous), Speed:

<conTiltSpeed>, Position: 0, which is hex value
03 <conTiltSpeed> 00 00

Pass/Fail

4. USER VERIFY the camera moves up and stops after
<alt_contTiltTimeout> milliseconds

Pass/Fail

5. SET positionTilt.0 to Mode: 3 (Continuous), Speed: -
<conTiltSpeed>, Position: 0, which is hex value
03 -<conTiltSpeed> 00 00

Pass/Fail

6. USER VERIFY the camera moves down and stops after
<alt_contTiltTimeout> milliseconds

Pass/Fail

7. SET timeoutTilt.0 = [timeoutTilt] Pass/Fail
Test Case Results

Tested By: Date
Tested:

 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

 165

Continuous Tilt Motion with Stop

Test Case: Title: Continuous Tilt Motion with Stop
Tilt-TC0004 Description: This Test Case tests the continuous tilting motion of the camera

by moving the camera and using the stop command to stop
movement.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET timeoutTilt.0 = [timeoutTilt] Pass/Fail
2. SET timeoutTilt.0 to 0 Pass/Fail
3. SET positionTilt.0 to Mode: 3 (Continuous), Speed:

<conTiltSpeed>, Position: 0, which is hex value
03 <conTiltSpeed> 00 00

Pass/Fail

4. DELAY <alt_contTiltTimeout> milliseconds
5. SET positionTilt.0 to Mode: 0, Speed: 0, Position: 0, which is

hex value 00 00 00 00
Pass/Fail

6. USER VERIFY the camera stops moving Pass/Fail
7. SET positionTilt.0 to Mode: 3 (Continuous), Speed: -

<conTiltSpeed>, Position: 0, which is hex value 03 -
<conTiltSpeed> 00 00

Pass/Fail

8. DELAY <alt_contTiltTimeout> milliseconds
9. SET positionTilt.0 to Mode: 0, Speed: 0, Position: 0, which is

hex value 00 00 00 00
Pass/Fail

10. USER VERIFY the camera stops moving Pass/Fail
11. SET timeoutTilt.0 = [timeoutTilt] Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/22/06 Implemented script and proofed – JJ

 166

Preset Position

Test Case: Title: Preset Position
Zone-TC001 Description: This Test Case stores and moves the camera to preset camera

positions.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. SET positionPan.0 to 02 <presetMovementSpeed>
<presetPanPosition1> and positionTilt.0 to 02
<presetMovementSpeed> <presetTiltPosition1>

Pass/Fail

2. Note current camera position as position 1.
3. SET presetStorePosition.0 to <presetStore1> Pass/Fail
4. SET positionPan.0 to 02 <presetMovementSpeed>

<presetPanPosition2> and positionTilt.0 to 02
<presetMovementSpeed> <presetTiltPosition2>

Pass/Fail

5. Note current camera position as position 2.
6. SET presetStorePosition.0 to <presetStore2> Pass/Fail
7. SET presetGotoPosition.0 to <presetStore1> Pass/Fail
8. USER VERIFY the camera moved to position 1 Pass/Fail
9. GET presetPositionQuery.0 Pass/Fail
10. VERIFY RESPONSE VALUE = 1 Pass/Fail
11. SET presetGotoPosition.0 to <presetStore2> Pass/Fail
12. USER VERIFY the camera moved to position 2 Pass/Fail
13. GET presetPositionQuery.0 Pass/Fail
14. VERIFY RESPONSE VALUE = 2 Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Added test for presetPositionQuery.0 – JJ
V1.2 02/27/06 Implemented script and proofed – JJ

 167

Get-Set Zone

Test Case: Title: Get-Set Zone
Zone-TC002 Description: This Test Case tests the storage of camera zones.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET zoneMaximum.0 = [zoneMaximum] Pass/Fail
2. VERIFY zoneMaximum.0 >= <req_ZoneMaximum> Pass/Fail
3. FOR zoneIndex = 1 to [zoneMaximum]
4. GET

zoneLabel.zoneIndex = [zonelabel],
zonePanRightLimit.zoneIndex = [zonePanRightLimit],
zoneTiltUpLimit.zoneIndex = [zoneTiltUpLimit],
zoneTiltDownLimit.zoneIndex = [zoneTiltDownLimit],
zonePanLeftLimit.zoneIndex = [zonePanLeftLimit]

Pass/Fail

5. SET
zoneLabel.zoneIndex = <alt_zoneLabel>,
zonePanRightLimit.zoneIndex = <alt_zonePanRightLimit>,
zoneTiltUpLimit.zoneIndex = <alt_zoneTiltUpLimit>,
zoneTiltDownLimit.zoneIndex = <alt_zoneTiltDownLimit>,

 zonePanLeftLimit.zoneIndex = <alt_zonePanLeftLimit>

Pass/Fail

6. SET
zoneLabel.zoneIndex = [zonelabel],
zonePanRightLimit.zoneIndex = [zonePanRightLimit],
zoneTiltUpLimit.zoneIndex = [zoneTiltUpLimit],
zoneTiltDownLimit.zoneIndex = [zoneTiltDownLimit],

 zonePanLeftLimit.zoneIndex = [zonePanLeftLimit]

Pass/Fail

7. NEXT zoneIndex
Test Case Results

Tested By: Date
Tested:

 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/27/06 Implemented script and proofed – JJ

Move In and Out of Zone

Test Case: Title: Move In and Out of Zone
Zone-TC003 Description: This Test Case tests the labeling capability of zones by moving

to areas within zones.
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET
 zoneLabel.<indexZone> = [zoneLabel]
 zonePanRightLimit.<indexZone> = [zonePanRightLimit],
 zoneTiltUpLimit.<indexZone> = [zoneTiltUpLimit],
 zoneTiltDownLimit.<indexZone> = [zoneTiltDownLimit],

Pass/Fail

 168

 zonePanLeftLimit. <indexZone> = [zonePanLeftLimit]
2. SET

 zoneLabel. <indexZone>= <alt_zoneLabel>,
 zonePanRightLimit.<indexZone>= <alt_zonePanRightLimit>,
 zoneTiltUpLimit.<indexZone>= <alt_zoneTiltUpLimit>,
 zoneTiltDownLimit.<indexZone>= <alt_zoneTiltDownLimit>,
 zonePanLeftLimit.<indexZone>= <alt_zonePanLeftLimit>

Pass/Fail

3. GET
 labelText.< indexZone > = [labelText],
 labelHeight.< indexZone > = [labelHeight],
 labelColor.< indexZone > = [labelColor],
 labelStartRow.< indexZone > = [labelStartRow],
 labelStartColumn.< indexZone > = [labelStartColumn],
 labelStatus.< indexZone > = [labelStatus]

Pass/Fail

4. SET
 labelText.< indexZone > = <alt_ZlabelText>,
 labelHeight.< indexZone > = <alt_ZlabelHeight>,
 labelColor.< indexZone > = <alt_ZlabelColor>,
 labelStartRow.< indexZone > = <alt_ZlabelStartRow>,
 labelStartColumn.< indexZone > = <alt_ZlabelStartColumn>,
 labelStatus.< indexZone > = <alt_ZlabelStatus>

Pass/Fail

5. SET
 positionPan.0 to 02 <zoneMoveSpeed> (<alt_zoneRightLimit>-
1) and
 positionTilt.0 to 02 <zoneMoveSpeed> (<alt_zoneUpLimit>-1)

Pass/Fail

6. USER VERIFY that the label for the current zone is correctly
displayed, as set in step 2

Pass/Fail

7. SET
 positionPan.0 to 02 <zoneMoveSpeed>
(<alt_zoneRightLimit>+1) and
 positionTilt.0 to 02 <zoneMoveSpeed> (<alt_zoneUpLimit>+1)

Pass/Fail

8. USER VERIFY that the label for the current zone is not
displayed

Pass/Fail

9. SET
 zoneLabel.<indexZone> = [zoneLabel],
 zonePanRightLimit.<indexZone> = [zonePanRightLimit],
 zoneTiltUpLimit.<indexZone> = [zoneTiltUpLimit],
 zoneTiltDownLimit.<indexZone> = [zoneTiltDownLimit],
 zonePanLeftLimit.<indexZone> = [zonePanLeftLimit]

Pass/Fail

10. SET
 labelText.< indexZone > = [labelText],
 labelHeight.< indexZone > = [labelHeight],
 labelColor.< indexZone > = [labelColor],
 labelStartRow.< indexZone > = [labelStartRow],
 labelStartColumn.< indexZone > = [labelStartColumn],
 labelStatus.< indexZone > = [labelStatus]

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Removed labelFontType, deprecated – JJ
V1.2 02/27/06 Implemented script and proofed – JJ

 169

Delta Zoom Motion

Test Case: Title: Delta Zoom Motion
Zoom-TC001 Description: This Test Case tests the delta zoom motion of the camera by

moving the camera with several different speed and direction
parameters and allowing the user to verify them.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeZoom.0 Pass/Fail
2. VERIFY camera supports zoom limits Pass/Fail
3. SET positionZoomLens.0 to Mode: 1(Delta), Speed:

<deltaZoomMoveSpeed>, Position: <deltaZoomMovement>,
which is hex value 01 <deltaZoomMoveSpeed>
<deltaZoomMovement>

Pass/Fail

4. USER VERIFY the camera lens moved towards a telephoto
position at the movement and speed specified by the test
variables <deltaZoomMoveSpeed> and <deltaZoomMovement>

Pass/Fail

5. SET positionZoomLens.0 to Mode: 1(Delta), Speed: -
<deltaZoomMoveSpeed>, Position: <deltaZoomMovement>,
which is hex value 01 -<deltaZoomMoveSpeed>
<deltaZoomMovement>

Pass/Fail

6. USER VERIFY the camera lens moved towards a wide angle
position at the movement and speed specified by the test
variables <deltaZoomMoveSpeed> and <deltaZoomMovement>

Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 02/13/06 Added test for support of zoom limits – JJ
V1.2 02/27/06 Implemented script and proofed – JJ

Absolute Zoom Motion

Test Case: Title: Absolute Zoom Motion
Zoom-TC002 Description: This Test Case tests the absolute zoom motion of the camera

by moving the camera with several different speed and direction
parameters and allowing the user to verify them.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET rangeZoomt.0 Pass/Fail
2. VERIFY camera supports zoom limits Pass/Fail
3. SET positionZoomLens.0 to 02 00 00 00 Pass/Fail
4. SET positionZoomLens.0 to 02 <absoluteZoomSpeed>

<absoluteZoomPosition>
Pass/Fail

5. VERIFY the camera moved to the position defined by
<absoluteZoomPosition>

Pass/Fail

 170

6. GET positionQueryZoom.0 Pass/Fail
7. VERIFY RESPONSE VALUE = <absoluteZoomPosition> Pass/Fail
8. SET positionZoomLens.0 to 02 00 00 00 Pass/Fail
9. SET positionZoomLens.0 to 02 <absoluteZoomSpeed>

<absoluteZoomPosition2>
Pass/Fail

10. VERIFY the camera moved to the position defined by
<absoluteZoomPosition2>

Pass/Fail

11. GET positionQueryZoom.0 Pass/Fail
12. VERIFY RESPONSE VALUE = <absoluteZoomPosition2> Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:

Version History: V1.0 09/20/05 Initial Draft – RDR
V1.1 11/03/05 Added tests for positionQueryZoom – JJ
V1.2 02/13/06 Added steps to set position to Home position to test absolute

movements. Added test for support of zoom limits – JJ
V1.3 02/27/06 Implemented script and proofed – JJ

Continuous Zoom Motion with Timeout

Test Case: Title: Continuous Zoom Motion with Timeout
Zoom-TC003 Description: This Test Case tests the continuous zoom motion of the camera

by moving the camera with the continuous command using the
timeout parameter to stop the camera.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET timeoutZoom.0 = [timeoutZoom] Pass/Fail
2. SET timeoutZoom.0 to <alt_contZoomTimeout> Pass/Fail
3. SET positionZoomLens.0 to 03 <conZoomSpeed> 00 00 Pass/Fail
4. USER VERIFY the camera lens stops moving towards a

telephoto position after <alt_contZoomTimeout> milliseconds
Pass/Fail

5. SET positionZoomLens.0 to 03 -<conZoomSpeed> 00 00 Pass/Fail
6. USER VERIFY the camera lens stops moving towards a wide

angle position after <alt_contZoomTimeout> milliseconds
Pass/Fail

7. SET timeoutZoom.0 = [timeoutZoom] Pass/Fail
Test Case Results

Tested By: Date
Tested:

 Pass/Fail

Test Case Notes:
Version History: V1.0 09/20/05 Initial Draft – RDR

V1.1 02/27/06 Implemented script and proofed – JJ

 171

Continuous Zoom Motion with Stop

Test Case: Title: Continuous Zoom Motion with Stop
Zoom-TC004 Description: This Test Case tests the continuous zooming motion of the

camera by moving the camera and using the stop command to
stop movement.

 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. GET timeoutZoom.0 = [timeoutZoom] Pass/Fail
2. SET timeoutZoom.0 to 0 Pass/Fail
3. SET positionZoomLens.0 to 03 <conZoomSpeed> 00 00 Pass/Fail
4. DELAY <alt_contZoomTimeout> milliseconds
5. SET positionZoomLens.0 to 00 00 00 00 Pass/Fail
6. USER VERIFY the camera stops moving Pass/Fail
7. SET positionZoomLens.0 to 03 -<conZoomSpeed> 00 00 Pass/Fail
8. DELAY <alt_contZoomTimeout> milliseconds
9. SET positionZoomLens.0 to 00 00 00 00 Pass/Fail
10. USER VERIFY the camera stops moving Pass/Fail
11. SET timeoutZoom.0= [timeoutZoom] Pass/Fail

Test Case Results
Tested By: Date

Tested:
 Pass/Fail

Test Case Notes:
Version History: V1.0 09/20/05 Initial Draft – RDR

V1.1 02/27/06 Implemented script and proofed – JJ

 172

REFERENCES FOR APPENDIX C

1. NTCIP 1205 – Object Definitions for Closed Circuit Television (CCTV) Camera Control, A

Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standard=1
205. Accessed August 17, 2006.

2. NTCIP 1201 – Global Object Definitions, A Joint Publication of AASHTO, ITE, and

NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standard=1
201. Accessed August 17, 2006.

3. Test Procedures for NTCIP-conformant Closed Circuit Television (CCTV) Camera

Controllers, Enterprise Consortium. http://enterprise.prog.org/ (document no longer
available) Accessed December 2002.

4. NTCIP 8007 – Testing and Conformity Assessment Documentation within NTCIP Standards

Publications, A Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standard=8
007. Accessed August 17, 2006.

173

APPENDIX D:
CCTV

PROTOCOL IMPLEMENTATION CONFORMANCE SPECIFICATION

INTRODUCTION

This appendix contains a Protocol Implementation Conformance Specification (PICS) for

a specific camera and controller that was tested using the Prequalification Test Case - TC001

appearing in Appendix C. By adding indications that an implementation has support for a

feature, an NTCIP Profile Requirements List (PRL) becomes a PICS. In the context of NTCIP

testing, the PRL provides a standardized format to record test results that check for object

support, maximum or limit values, index values, and the range of supported values.

NTCIP 1205 - Object Definitions for Closed Circuit Television (CCTV) Camera Control

(NTCIP 1205-CCTV) dictates the format of the PICS (1). NTCIP 1205-CCTV grants specific

copyright permission to use Annex B of that standard for creating a PICS (1). Except for the

object support and supported values column entries, the format comes from the original PRL as

it appears in the standard. The researcher indicate changes made in Amendment 1 v10 versus

NTCIP 1205 v01.08 by highlighting them in bold-italics (1).

INTERPRETING RESULTS

For use in reporting test results, the words in all uppercase letters in the object support

column indicate the results of specific object tests. A “YES” in the support column indicates that

a retrieval operation did not return an error and, therefore, has support. Words appearing in

mixed case in the object support column (for example, “Yes” or “Yes / No”) indicate the absence

of any specific test and appear as in the original. A single value in the supported values column

(for example, “64”) indicates a constant value supplied by the implementation. A set of passed or

failed values in the supported values column (for example, “PASSED: 0, 1, FAILED: -1,”

indicates the implementation’s responses to test values that were sent to the object. The test

script that implements the Prequalification Test Case records the results directly onto the form.

 Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
 Page B-1

Used by Permission Original text ©2001 – 2005 AASHTO / ITE / NEMA
174

Annex B
INFORMATION PROFILE

(Informative)1

Notice – PRL excerpted from a draft document containing preliminary information that is subject to
change. Object names in bold-italics have additional information indicating changes between Version
01.08 and Amendment 1.

A Conformance Group is a basic unit of conformance and is used to specify a collection of related
managed objects. The Conformance Group designation applied to a set of objects provides a systematic
means for determining which objects are required to support a function. If a device has multiple functions,
a Conformance Group will be defined for each function. Conformance Group definitions will be found in
the NTCIP Object Definition Standard documents. The Object Definition Standard may define a
Conformance Group with objects that are not in lexicographic order and only apply to devices of that type.

The related managed objects of a Conformance Group may include mandatory and/or optional objects.
Mandatory objects within a Conformance Group shall be implemented. Optional objects shall be
implemented only if a defined function of the device requires that particular object.

For example, assume a device implements an asynchronous RS-232 interface. It must implement all the
mandatory objects in the Asynchronous Conformance Group of the RS-232 MIB. It would not have to
implement the Synchronous Conformance Group of objects unless it also provided a synchronous
interface.

Assume also that the Asynchronous Conformance Group has a CRC error counter object that is optional.
The CRC error counter object would not have to be implemented unless the device used CRC checking
on the asynchronous interface.

Conformance Groups are defined as either mandatory or optional. If a Conformance Group is mandatory,
all of the objects with STATUS "mandatory" that are part of the Conformance Group shall be present for a
device to claim conformance to the Conformance Group. If a Conformance Group is optional, all of the
objects that are part of the Conformance Group with the STATUS "mandatory" shall be present if the
device supports the Conformance Group. Objects with the STATUS "optional" may be supported.

When a table is included in a Conformance Group, all objects contained in the table are included by
reference. This is because a table is defined as a SEQUENCE OF {SEQUENCE}. Thus, all objects listed
in the sequence are defined as an integral part of the table. Tables are defined as either mandatory or
optional. If a table is mandatory, all of the objects with STATUS "mandatory" shall be present. If a table
is optional, all of the objects with the STATUS "mandatory" shall be present if the device supports the
table. Objects in the table with the STATUS "optional" may be supported.

1 Copyright release of Annex B Information Profile: Users of this standard may freely reproduce this Annex so that it may be

used for its intended purpose and may further publish the completed Information Profile.

Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
Page B-2

Original text ©2001 – 2005 AASHTO / ITE / NEMA Used by Permission
 175

B.1 NOTATION

The following notations and symbols are used to indicate status and conditional status within this
standard.

B.1.1 TYPE Symbols
The following symbols are used to indicate type:

Symbol Type
C Control Object - use of 'dbCreateTransaction' in

NTCIP 1201 Clause 2.3.1 shall NOT delay a SET
to this object.

P Parameter Object - use of 'dbCreateTransaction'
in NTCIP 1201 Clause 2.3.1 to SET this object is
optional.

P2 Parameter Object - use of 'dbCreateTransaction'
in NTCIP 1201 Clause 2.3.1 to SET this object is
mandatory.

S Status / Information Object - this object is read
only therefore a SET is not permitted.

B.1.2 Status Symbols
The following symbols are used to indicate status:

Symbol Status
M Mandatory

M.<n> Support of every item of the group labeled by the
same numeral <n> required, but only one is active
at time.

O Optional
O.<n> Optional, but support of at least one of the group

of options labeled by the same numeral <n> is
required

C Conditional
D Deprecated

N/A Non-applicable (i.e., logically impossible in the
scope of the profile)

X Excluded or prohibited

B.1.3 Conditional Status Notation
The following predicate notation is used:

Notation Status
<predicate>: M Item is conditional on the <predicate>.

The <predicate>: notation means that the Status following it applies only when the feature or features
identified by the predicate are supported. In the simplest case, <predicate> is the identifying tag of a
single item.

B.1.4 Support Column
This section is in the form of a PICS and, therefore, includes a support column. An implementer claims
support of an item by circling the appropriate answer (Yes or No) in the support column:

 Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
 Page B-3

Used by Permission Original text ©2001 – 2005 AASHTO / ITE / NEMA
176

B.2 CCTV CAMERA CONTROL REQUIREMENTS

The Conformance Group definitions for CCTV Camera Control devices are defined in this clause. A
CCTV Switch has multiple functions; thus, Conformance Groups are defined for each function.

The following table lists functional requirements for a CCTV Camera Control device, and asks if the listed
features have been implemented.

Ref Areas Clause of Profile Status Support

B.3 CCTV Configuration Conformance Group NTCIP 1205 – 3.2, 3.3 and 3.11 M YES
B.4 CCTV Extended Functions Conformance Group NTCIP 1205 – 3.6, 3.7, 3.8, 3.9 and 3.10 O YES
B.5 CCTV Motion Control Conformance Group NTCIP 1205 – 3.4 and 3.5 O YES
B.6 CCTV On-Screen Menu Control NTCIP 1205 – 3.12 O YES

B.7 Configuration Conformance Group NTCIP 1201 v01, Amendment 1 M Yes
B.8 NTCIP Security Conformance Group NTCIP 1201 v01, Amendment 1 M Yes

CCTV Camera Control devices shall adhere to the conformance requirements specified in the above
table as a minimum to claim compliance to this standard. Additional objects or groups may be supported
without being non-compliant with CCTV Camera Control objects or NTCIP.

Minimum and maximum ranges of objects that differ from the values of the object’s SYNTAX field may be
enforced by an application running on a device.

A device which enforces range limits within the bounds specified by the values of the object’s SYNTAX
field shall not be categorized as being non-compliant with CCTV Camera Control objects or NTCIP.

A device which supports a subset of objects with enumerated values shall not be categorized as being
non-compliant with CCTV Camera Control objects or NTCIP.

Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
Page B-4

Original text ©2001 – 2005 AASHTO / ITE / NEMA Used by Permission
 177

B.3 CCTV CONFIGURATION CONFORMANCE GROUP

The CCTV Configuration Conformance Group consists of the following objects:

CCTV Configuration CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

3.2, 3.3 and
3.11 CCTV Configuration Conformance Group --- M YES ---- -----

3.2 CCTV Range Objects --- --- --- --- ---
 3.2.1 rangeMaximumPreset S 3.2 : M YES 0-255 64

 3.2.2 rangePanLeftLimit S 3.2 : M YES 0-35999 |
65535 35999

 3.2.3 rangePanRightLimit S 3.2 : M YES 0-35999 |
65535 35999

 3.2.4 rangePanHomePosition S 3.2 : M YES 0-35999 |
65535 0

 3.2.5 rangeTrueNorthOffset P 3.2 : M YES 0-35999 |
65535

PASSED:
0,1,18000,
35998,359
99,36000,
FAILED: -

1,
 3.2.6 rangeTiltUpLimit S 3.2 : M YES 0-35999 |

65535 1500

 3.2.7 rangeTiltDownLimit S 3.2 : M YES 0-35999 |
65535 27000

 3.2.8 rangeZoomLimit S 3.2 : M YES 0-65535 65535
 3.2.9 rangeFocusLimit S 3.2 : M YES 0-65535 0
 3.2.10 rangeIrisLimit S 3.2 : M YES 0-65535 0
 3.2.11 rangeMinimumPanStepAngle S 3.2 : M YES 0-35999 |

65535 10

 3.2.12 rangeMinimumTiltStepAngle S 3.2 : M YES 0-35999 |
65535 10

3.3 CCTV Timeout Objects --- --- --- --- ---

 3.3.1 timeoutPan P 3.3 : M YES 0-65535

PASSED:
1, FAILED:

-
1,0,32767,
65535,655

36,

 3.3.2 timeoutTilt P 3.3 : M YES 0-65535

PASSED:
1, FAILED:

-
1,0,32767,
65535,655

36,

 3.3.3 timeoutZoom P 3.3 : M YES 0-65535

PASSED:
1, FAILED:

-
1,0,32767,
65535,655

36,

 3.3.4 timeoutFocus P 3.3 : M YES 0-65535

PASSED:
1, FAILED:

-
1,0,32767,
65535,655

36,

 3.3.5 timeoutIris P 3.3 : M YES 0-65535

PASSED:
1, FAILED:

-
1,0,32767,
65535,655

 Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
 Page B-5

Used by Permission Original text ©2001 – 2005 AASHTO / ITE / NEMA
178

CCTV Configuration CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

36,
3.11 CCTV Label Objects --- --- --- --- ---
 3.11.1 labelMaximum S 3.11 : M YES 0-255 80
 3.11.2 labelTable --- 3.11 : M YES --- ---
 labelEntry --- 3.11 : M YES --- ---
 3.11.2.1 labelIndex S 3.11 : M YES 0-255

 3.11.2.2 labelText P 3.11 : M YES String

PASSED:
"","012345
6789ABCD
EFGHIJ","
KLMNOPQ
RSTUVWX

YZ:./'",
 3.11.2.3 labelFontType (Deprecated in Amend v1.08) P 3.11 : D YES 0-255

 3.11.2.4 labelHeight P 3.11 : M YES 0-255

PASSED:
256,

FAILED:
0,1,127,25

5,
 3.11.2.5 labelColor P 3.11 : M YES 1-16 PASSED:

0,7,17,
 blue(1) --- --- Yes / No --- ---
 green(2) --- --- Yes / No --- ---
 cyan(3) --- --- Yes / No --- ---
 red(4) --- --- Yes / No --- ---
 magenta(5) --- --- Yes / No --- ---
 brown(6) --- --- Yes / No --- ---
 white(7) --- --- YES --- ---
 grey(8) --- --- Yes / No --- ---
 lightBlue(9) --- --- Yes / No --- ---
 lightGreen(10) --- --- Yes / No --- ---
 lightCyan(11) --- --- Yes / No --- ---
 lightRed(12) --- --- Yes / No --- ---
 lightMagenta(13) --- --- Yes / No --- ---
 yellow(14) --- --- Yes / No --- ---
 brightWhite(15) --- --- Yes / No --- ---
 black(16) --- --- Yes / No --- ---

 3.11.2.6 labelStartRow P 3.11 : M YES 0-255

PASSED: -
1,1,256,
FAILED:

0,127,254,
255,

 3.11.2.7 labelStartColumn P 3.11 : M YES 0-255

PASSED: -
1,1,256,
FAILED:

0,127,254,
255,

 3.11.2.8 labelStatus S 3.11 : M YES String
 bit 7 – Label is Valid for Display --- --- Yes --- ---
 bit 6 – Display Status of Label --- --- Yes --- ---
 bit 5 – Reserved --- --- --- --- ---
 bit 4 – Reserved --- --- --- --- ---
 bit 3 – Reserved --- --- --- --- ---
 bit 2 – Reserved --- --- --- --- ---
 bit 1 – Reserved --- --- --- --- ---
 bit 0 – Reserved --- --- --- --- ---

 3.11.2.9 labelActive (Added in Amend v1.08) P 3.11 : M YES String

PASSED:
0x00,0x80,
0x7F,0x00

00,
 bit 7 – Display Label --- --- Yes --- ---
 bit 6 – Reserved --- --- --- --- ---

Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
Page B-6

Original text ©2001 – 2005 AASHTO / ITE / NEMA Used by Permission
 179

CCTV Configuration CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

 bit 5 – Reserved --- --- --- --- ---
 bit 4 – Reserved --- --- --- --- ---
 bit 3 – Reserved --- --- --- --- ---
 bit 2 – Reserved --- --- --- --- ---
 bit 1 – Reserved --- --- --- --- ---
 bit 0 – Reserved --- --- --- --- ---

 3.11.2.9 labelFontNumber (Added in Amend v1.08) P 3.11 : M YES 1-255
PASSED:

0,1,2,3,254
,255,256,

 3.11.3 labelLocationLabel P 3.11 : M YES 0-255

PASSED: -
1,0,1,2,255
, FAILED:

256,

 3.11.4 labelEnableTextDisplay P 3.11 : M YES String

PASSED:
0x00,0x80,

0x0000,
FAILED:

0x7F,
 bit 7 – Display All Labels at Once --- --- YES --- ---
 bit 6 – Reserved --- --- --- --- ---
 bit 5 – Reserved --- --- --- --- ---
 bit 4 – Reserved --- --- --- --- ---
 bit 3 – Reserved --- --- --- --- ---
 bit 2 – Reserved --- --- --- --- ---
 bit 1 – Reserved --- --- --- --- ---
 bit 0 – Reserved --- --- --- --- ---

 Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
 Page B-7

Used by Permission Original text ©2001 – 2005 AASHTO / ITE / NEMA
180

B.4 CCTV EXTENDED FUNCTIONS CONFORMANCE GROUP

The CCTV Extended Functions Conformance Group consists of the following objects:

CCTV Extended Functions CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

3.6, 3.7, 3.8,
3.9 and 3.10

CCTV Extended Functions Conformance
Group --- O YES --- ---

3.6 CCTV System Feature Control Objects --- --- --- --- ---

 3.6.1 systemCameraFeatureControl C 3.6 : M YES String

PASSED:
0x8000,0x

0080,
FAILED:

0x4000,0x
2000,0x10
00,0x0800,

0x037F,
 Byte 1, bit 7 – Camera Power Select --- --- Yes --- ---
 Byte 1, bit 6 – Heater Power Select --- --- Yes --- ---
 Byte 1, bit 5 – Wiper Select --- --- Yes --- ---
 Byte 1, bit 4 – Washer Select --- --- Yes --- ---
 Byte 1, bit 3 – Blower Select --- --- Yes --- ---
 Byte 1, bit 2 – Reserved --- --- --- --- ---
 Byte 1, bit 1 – Reserved --- --- --- --- ---
 Byte 1, bit 0 – Reserved --- --- --- --- ---
 Byte 2, bit 7 – Activation and Deactivation of

the Camera Component --- --- Yes --- ---

 Byte 2, bit 6 – Reserved --- --- --- --- ---
 Byte 2, bit 5 – Reserved --- --- --- --- ---
 Byte 2, bit 4 – Reserved --- --- --- --- ---
 Byte 2, bit 3 – Reserved --- --- --- --- ---
 Byte 2, bit 2 – Reserved --- --- --- --- ---
 Byte 2, bit 1 – Reserved --- --- --- --- ---
 Byte 2, bit 0 – Reserved --- --- --- --- ---
 3.6.2 systemCameraFeatureStatus S 3.6 : M YES String
 bit 7 – Camera Power Status --- --- Yes --- ---
 bit 6 – Heater Power Status --- --- Yes --- ---
 bit 5 – Wiper Status --- --- Yes --- ---
 bit 4 – Washer Status --- --- Yes --- ---
 bit 3 – Blower Status --- --- Yes --- ---
 bit 2 – Reserved --- --- --- --- ---
 bit 1 – Reserved --- --- --- --- ---
 bit 0 – Reserved --- --- --- --- ---
 3.6.3 systemCameraEquipped S 3.6 : M YES String 0x80
 bit 7 – Camera Power Available --- --- Yes --- ---
 bit 6 – Heater Power Available --- --- Yes --- ---
 bit 5 – Wiper Available --- --- Yes --- ---
 bit 4 – Washer Available --- --- Yes --- ---
 bit 3 – Blower Available --- --- Yes --- ---
 bit 2 – Reserved --- --- --- --- ---
 bit 1 – Reserved --- --- --- --- ---
 bit 0 – Reserved --- --- --- --- ---

 3.6.4 systemLensFeatureControl C 3.6 : M YES String

PASSED:
0x0000,0x
8000,0x40
00,0x0080,

FAILED:
0x3F7F,

 Byte 1, bit 7 – Auto Iris Select --- --- Yes --- ---
 Byte 1, bit 6 – Auto Focus Select --- --- Yes --- ---
 Byte 1, bit 5 – Reserved --- --- --- --- ---
 Byte 1, bit 4 – Reserved --- --- --- --- ---
 Byte 1, bit 3 – Reserved --- --- --- --- ---
 Byte 1, bit 2 – Reserved --- --- --- --- ---

Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
Page B-8

Original text ©2001 – 2005 AASHTO / ITE / NEMA Used by Permission
 181

CCTV Extended Functions CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

 Byte 1, bit 1 – Reserved --- --- --- --- ---
 Byte 1, bit 0 – Reserved --- --- --- --- ---
 Byte 2, bit 7 – Activation and

Deactivation of the Lens Component --- --- Yes --- ---

 Byte 2, bit 6 – Reserved --- --- --- --- ---
 Byte 2, bit 5 – Reserved --- --- --- --- ---
 Byte 2, bit 4 – Reserved --- --- --- --- ---
 Byte 2, bit 3 – Reserved --- --- --- --- ---
 Byte 2, bit 2 – Reserved --- --- --- --- ---
 Byte 2, bit 1 – Reserved --- --- --- --- ---
 Byte 2, bit 0 – Reserved --- --- --- --- ---
 3.6.5 systemLensFeatureStatus S 3.6 : M YES String
 bit 7 – Auto Iris Status --- --- Yes --- ---
 bit 6 – Auto Focus Status --- --- Yes --- ---
 bit 5 – Reserved --- --- --- --- ---
 bit 4 – Reserved --- --- --- --- ---
 bit 3 – Reserved --- --- --- --- ---
 bit 2 – Reserved --- --- --- --- ---
 bit 1 – Reserved --- --- --- --- ---
 bit 0 – Reserved --- --- --- --- ---
 3.6.6 systemLensEquipped S 3.6 : M YES String 0xc0
 bit 7 – Auto Iris Available --- --- Yes --- ---
 bit 6 – Auto Focus Available --- --- Yes --- ---
 bit 5 – Reserved --- --- --- --- ---
 bit 4 – Reserved --- --- --- --- ---
 bit 3 – Reserved --- --- --- --- ---
 bit 2 – Reserved --- --- --- --- ---
 bit 1 – Reserved --- --- --- --- ---
 bit 0 – Reserved --- --- --- --- ---
3.7 CCTV Alarm Objects --- --- --- --- ---
 3.7.1 alarmStatus S 3.7 : M YES String
 bit 7 – Cabinet Alarm Status --- --- Yes --- ---
 bit 6 – Enclosure Alarm Status --- --- Yes --- ---
 bit 5 – Video Loss Alarm Status --- --- Yes --- ---
 bit 4 – Temperature Alarm Status --- --- Yes --- ---
 bit 3 – Pressure Alarm Status --- --- Yes --- ---
 bit 2 – Local/Remote Alarm Status --- --- Yes --- ---
 bit 1 – Washer Fluid Alarm Status --- --- Yes --- ---
 bit 0 – Reserved --- --- --- --- ---
 3.7.2 alarmLatchStatus S 3.7 : M YES String
 bit 7 – Cabinet Alarm Latch Status --- --- Yes --- ---
 bit 6 – Enclosure Alarm Latch Status --- --- Yes --- ---
 bit 5 – Video Loss Alarm Latch Status --- --- Yes --- ---
 bit 4 – Temperature Alarm Latch Status --- --- Yes --- ---
 bit 3 – Pressure Alarm Latch Status --- --- Yes --- ---
 bit 2 – Local/Remote Alarm Latch Status --- --- Yes --- ---
 bit 1 – Washer Fluid Alarm Latch Status --- --- Yes --- ---
 bit 0 – Reserved --- --- --- --- ---

 3.7.3 alarmLatchClear P 3.7 : M YES String

PASSED:
0x00,0x80,
0x40,0x20,
0x10,0x08,
0x04,0x02,
FAILED:

0x01,
 bit 7 – Cabinet Alarm Latch Clear --- --- Yes --- ---
 bit 6 – Enclosure Alarm Latch Clear --- --- Yes --- ---
 bit 5 – Video Loss Alarm Latch Clear --- --- Yes --- ---
 bit 4 – Temperature Alarm Latch Clear --- --- Yes --- ---
 bit 3 – Pressure Alarm Latch Clear --- --- Yes --- ---
 bit 2 – Local/Remote Alarm Latch Clear --- --- Yes --- ---

 Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
 Page B-9

Used by Permission Original text ©2001 – 2005 AASHTO / ITE / NEMA
182

CCTV Extended Functions CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

 bit 1 – Washer Fluid Alarm Latch Clear --- --- Yes --- ---
 bit 0 – Reserved --- --- --- --- ---

 3.7.4 alarmTemperatureHighLowThreshold P 3.7 : M YES String

PASSED:
0x0000,0x
0028,0x80
7F,0x0000

00,
 Byte 1 – Low Temperature Threshold --- --- Yes --- ---
 Byte 2 – High Temperature Threshold --- --- Yes --- ---
 3.7.5 alarmTemperatureCurrentValue S 3.7 : M YES String
 Byte 1 – Current Temperature Value --- --- Yes --- ---

 3.7.6 alarmPressurehighLowThreshold P 3.7 : M YES String

PASSED:
0x0000,0x
0528,0x00
14,0x0000

00,
 Byte 1 – Low Pressure Threshold --- --- Yes --- ---
 Byte 2 – High Pressure Threshold --- --- Yes --- ---
 3.7.7 alarmPressureCurrentValue S 3.7 : M YES String
 Byte 1 – Current Pressure Value --- --- Yes --- ---

 3.7.8 alarmWasherFluidHighLowThreshold P 3.7 : M YES String

PASSED:
0x0000,0x
0A5A,0x05
55,0x0000

00,
 Byte 1 – Low Washer Fluid Threshold --- --- Yes --- ---
 Byte 2 – High Washer Fluid Threshold --- --- Yes --- ---
 3.7.9 alarmWasherFluidCurrentValue S 3.7 : M YES String
 Byte 1 – Current Washer Fluid Value --- --- Yes --- ---

 3.7.10 alarmLabelIndex P YES

 FAILED:
0x0000000
0000000,0
x01020304
050607,0x
070605040
30201,0xF
FFFFFFFF
FFFFF,0xF
FFFFFFFF
FFFFFFF,

 Byte 1 – Cabinet Alarm Label Number --- --- Yes --- ---
 Byte 2 – Enclosure Alarm Label Number --- --- Yes --- ---
 Byte 3 – Video Loss Alarm Label Number --- --- Yes --- ---
 Byte 4 – Temperature Alarm Label Number --- --- Yes --- ---
 Byte 5 – Pressure Alarm Label Number --- --- Yes --- ---
 Byte 6 – Local/Remote Alarm Label Number --- --- Yes --- ---
 Byte 7 – Washer Fluid Alarm Label Number --- --- Yes --- ---

 3.7.11 alarmLabelSource (Added in Amend v1.08) P 3.7 : M YES String

PASSED:
0x00,0x54,
0xFF,0x00

00,
 bit 7 – Cabinet Alarm Latch Status --- --- Yes --- ---
 bit 6 – Enclosure Alarm Latch Status --- --- Yes --- ---
 bit 5 – Video Loss Alarm Latch Status --- --- Yes --- ---
 bit 4 – Temperature Alarm Latch Status --- --- Yes --- ---
 bit 3 – Pressure Alarm Latch Status --- --- Yes --- ---
 bit 2 – Local/Remote Alarm Latch Status --- --- Yes --- ---
 bit 1 – Washer Fluid Alarm Latch Status --- --- Yes --- ---
 bit 0 – Reserved --- --- --- --- ---
3.8 CCTV Discrete Input Objects --- --- --- --- ---

3.8.1 inputStatus S 3.8 : M YES String
 bit 7 – Discrete Input 8 Active Status --- --- Yes --- ---

Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
Page B-10

Original text ©2001 – 2005 AASHTO / ITE / NEMA Used by Permission
 183

CCTV Extended Functions CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

 bit 6 – Discrete Input 7 Active Status --- --- Yes --- ---
 bit 5 – Discrete Input 6 Active Status --- --- Yes --- ---
 bit 4 – Discrete Input 5 Active Status --- --- Yes --- ---
 bit 3 – Discrete Input 4 Active Status --- --- Yes --- ---
 bit 2 – Discrete Input 3 Active Status --- --- Yes --- ---
 bit 1 – Discrete Input 2 Active Status --- --- Yes --- ---
 bit 0 – Discrete Input 1 Active Status --- --- Yes --- ---
3.8.2 inputLatchStatus S 3.8 : M YES String
 bit 7 – Discrete Input 8 Latch Status --- --- Yes --- ---
 bit 6 – Discrete Input 7 Latch Status --- --- Yes --- ---
 bit 5 – Discrete Input 6 Latch Status --- --- Yes --- ---
 bit 4 – Discrete Input 5 Latch Status --- --- Yes --- ---
 bit 3 – Discrete Input 4 Latch Status --- --- Yes --- ---
 bit 2 – Discrete Input 3 Latch Status --- --- Yes --- ---
 bit 1 – Discrete Input 2 Latch Status --- --- Yes --- ---
 bit 0 – Discrete Input 1 Latch Status --- --- Yes --- ---

3.8.3 inputLatchClear C 3.8 : M YES String

PASSED:
0x00,0xFF,
0x55,0x00

00,
 bit 7 – Discrete Input 8 Latch Clear --- --- Yes --- ---
 bit 6 – Discrete Input 7 Latch Clear --- --- Yes --- ---
 bit 5 – Discrete Input 6 Latch Clear --- --- Yes --- ---
 bit 4 – Discrete Input 5 Latch Clear --- --- Yes --- ---
 bit 3 – Discrete Input 4 Latch Clear --- --- Yes --- ---
 bit 2 – Discrete Input 3 Latch Clear --- --- Yes --- ---
 bit 1 – Discrete Input 2 Latch Clear --- --- Yes --- ---
 bit 0 – Discrete Input 1 Latch Clear --- --- Yes --- ---

3.8.4 inputLabelIndex P 3.8 : M YES String

 FAILED:
0x000000,
0x010203,
0xFFFFFF,
0x0102030

4,
 Byte 1 – Discrete Input 1 Label Number --- --- Yes --- ---
 Byte 2 – Discrete Input 2 Label Number --- --- Yes --- ---
 Byte 3 – Discrete Input 3 Label Number --- --- Yes --- ---
 Byte 4 – Discrete Input 4 Label Number --- --- Yes --- ---
 Byte 5 – Discrete Input 5 Label Number --- --- Yes --- ---
 Byte 6 – Discrete Input 6 Label Number --- --- Yes --- ---
 Byte 7 – Discrete Input 7 Label Number --- --- Yes --- ---
 Byte 8 – Discrete Input 8 Label Number --- --- Yes --- ---

3.8.5 inputPresetIndex (Added in Amend v1.08) P 3.8 : M YES String

PASSED:
0x0000000
000000000
,0x010203
040506070
8,0x08070
605040302
01,0xFFFF
FFFFFFFF

FFFF,
 Byte 1 – Discrete Input 1 Preset Number --- --- Yes --- ---
 Byte 2 – Discrete Input 2 Preset Number --- --- Yes --- ---
 Byte 3 – Discrete Input 3 Preset Number --- --- Yes --- ---
 Byte 4 – Discrete Input 4 Preset Number --- --- Yes --- ---
 Byte 5 – Discrete Input 5 Preset Number --- --- Yes --- ---
 Byte 6 – Discrete Input 6 Preset Number --- --- Yes --- ---
 Byte 7 – Discrete Input 7 Preset Number --- --- Yes --- ---
 Byte 8 – Discrete Input 8 Preset Number --- --- Yes --- ---

3.8.6 inputLabelSource (Added in Amend v1.08) P 3.8 : M YES String PASSED:
0x00,0xFF,

 Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
 Page B-11

Used by Permission Original text ©2001 – 2005 AASHTO / ITE / NEMA
184

CCTV Extended Functions CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

0x0000,
 bit 7 – Discrete Input 8 Label Source --- --- Yes --- ---
 bit 6 – Discrete Input 7 Label Source --- --- Yes --- ---
 bit 5 – Discrete Input 6 Label Source --- --- Yes --- ---
 bit 4 – Discrete Input 5 Label Source --- --- Yes --- ---
 bit 3 – Discrete Input 4 Label Source --- --- Yes --- ---
 bit 2 – Discrete Input 3 Label Source --- --- Yes --- ---
 bit 1 – Discrete Input 2 Label Source --- --- Yes --- ---
 bit 0 – Discrete Input 1 Label Source --- --- Yes --- ---
3.9 CCTV Discrete Output Objects --- --- --- --- ---

3.9.1 outputStatus S 3.9 : M YES String
 bit 7 – Discrete Output 8 Active Status --- --- Yes --- ---
 bit 6 – Discrete Output 7 Active Status --- --- Yes --- ---
 bit 5 – Discrete Output 6 Active Status --- --- Yes --- ---
 bit 4 – Discrete Output 5 Active Status --- --- Yes --- ---
 bit 3 – Discrete Output 4 Active Status --- --- Yes --- ---
 bit 2 – Discrete Output 3 Active Status --- --- Yes --- ---
 bit 1 – Discrete Output 2 Active Status --- --- Yes --- ---
 bit 0 – Discrete Output 1 Active Status --- --- Yes --- ---

3.9.2 outputControl C 3.9 : M YES String

PASSED:
0x0000,0x
FFFF,0x00

0000,
 Byte 1, bit 7 – Discrete Output 8 Control --- --- Yes --- ---
 Byte 1, bit 6 – Discrete Output 7 Control --- --- Yes --- ---
 Byte 1, bit 5 – Discrete Output 6 Control --- --- Yes --- ---
 Byte 1, bit 4 – Discrete Output 5 Control --- --- Yes --- ---
 Byte 1, bit 3 – Discrete Output 4 Control --- --- Yes --- ---
 Byte 1, bit 2 – Discrete Output 3 Control --- --- Yes --- ---
 Byte 1, bit 1 – Discrete Output 2 Control --- --- Yes --- ---
 Byte 1, bit 0 – Discrete Output 1 Control --- --- Yes --- ---
 Byte 2, bit 7 – Discrete Output 8 Active --- --- Yes --- ---
 Byte 2, bit 6 – Discrete Output 7 Active --- --- Yes --- ---
 Byte 2, bit 5 – Discrete Output 6 Active --- --- Yes --- ---
 Byte 2, bit 4 – Discrete Output 5 Active --- --- Yes --- ---
 Byte 2, bit 3 – Discrete Output 4 Active --- --- Yes --- ---
 Byte 2, bit 2 – Discrete Output 3 Active --- --- Yes --- ---
 Byte 2, bit 1 – Discrete Output 2 Active --- --- Yes --- ---
 Byte 2, bit 0 – Discrete Output 1 Active --- --- Yes --- ---

3.9.3 outputLabelIndex P 3.9 : M YES String

 FAILED:
0x0000000
000000000
,0x010203
040506070
8,0x08070
605040302
01,0xFFFF
FFFFFFFF
FFFF,0xFF
FFFFFFFF
FFFFFFFF

,
 Byte 1 – Discrete Output 1 Label Number --- --- Yes --- ---
 Byte 2 – Discrete Output 2 Label Number --- --- Yes --- ---
 Byte 3 – Discrete Output 3 Label Number --- --- Yes --- ---
 Byte 4 – Discrete Output 4 Label Number --- --- Yes --- ---
 Byte 5 – Discrete Output 5 Label Number --- --- Yes --- ---
 Byte 6 – Discrete Output 6 Label Number --- --- Yes --- ---
 Byte 7 – Discrete Output 7 Label Number --- --- Yes --- ---
 Byte 8 – Discrete Output 8 Label Number --- --- Yes --- ---
3.10 CCTV Zone Objects --- --- --- --- ---

Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
Page B-12

Original text ©2001 – 2005 AASHTO / ITE / NEMA Used by Permission
 185

CCTV Extended Functions CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

3.10.1 zoneMaximum S 3.10 : M YES 0-255 16
3.10.2 zoneTable --- 3.10 : M YES --- ---

 zoneEntry --- 3.10 : M YES --- ---
 3.10.2.1 zoneIndex S 3.10 : M YES 0-255

 3.10.2.2 zoneLabel P 3.10 : M YES 0-255

PASSED:
0,8,255,

FAILED: -
1,256,

 3.10.2.3 zonePanLeftLimit P 3.10 : M YES 1-35999 |
65535

PASSED:
0,35999,65

536,
FAILED: -

1,35600,65
535,

 3.10.2.4 zonePanRightLimit P 3.10 : M YES 1-35999 |
65535

PASSED:
0,35999,36
000,65535,
FAILED: -
1,65536,

 3.10.2.5 zoneTiltUpLimit P 3.10 : M YES 1-35999 |
65535

PASSED: -
1,36000,65

536,
FAILED:

0,35999,65
535,

 3.10.2.6 zoneTiltDownLimit P 3.10 : M YES 1-35999 |
65535

PASSED: -
1,36000,65

536,
FAILED:

0,35999,65
535,

 3.10.2.7 zoneVideoControl (Added in Amend v1.08) C 3.10 : M YES String

 FAILED:
0x00,0x80,
0x7F,0x00

00,
 bit 7 – Video Signal Output Control --- --- Yes --- ---
 bit 6 – Reserved --- --- --- --- ---
 bit 5 – Reserved --- --- --- --- ---
 bit 4 – Reserved --- --- --- --- ---
 bit 3 – Reserved --- --- --- --- ---
 bit 2 – Reserved --- --- --- --- ---
 bit 1 – Reserved --- --- --- --- ---
 bit 0 – Reserved --- --- --- --- ---

3.10.3 zoneCameraEquipped (Added in Amend
v1.08) S 3.10 : M YES String 0xe0

 bit 7 – Zones Availability --- --- Yes --- ---
 bit 6 – Zone Labels Availability --- --- Yes --- ---
 bit 5 – Video Signal Control Availability --- --- Yes --- ---
 bit 4 – Reserved --- --- --- --- ---
 bit 3 – Reserved --- --- --- --- ---
 bit 2 – Reserved --- --- --- --- ---
 bit 1 – Reserved --- --- --- --- ---
 bit 0 – Reserved --- --- --- --- ---

B.5 CCTV MOTION CONTROL CONFORMANCE GROUP

The CCTV Motion Control Conformance Group shall consist of the following objects:

CCTV Motion Control CONFORMANCE GROUP

 Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
 Page B-13

Used by Permission Original text ©2001 – 2005 AASHTO / ITE / NEMA
186

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

3.4 and 3.5 CCTV Motion Control Conformance Group --- O YES ---- -----
3.4 CCTV Preset Objects --- --- --- --- ---

3.4.1 presetGotoPosition C 3.4 : M YES 1-255

PASSED:
1,10,

FAILED: -
1,0,256,

3.4.2 presetStorePosition P 3.4 : M YES 1-255

PASSED:
1,10,

FAILED: -
1,0,256,

3.4.3 presetPositionQuery (Added in Amend v1.08) S 3.4 : M YES 0-255
3.5 CCTV Positioning Objects --- --- --- --- ---

3.5.1 positionPan C 3.5 : M YES String

PASSED:
0x0000000
000,0x000
00000,0x0
0000001,0
x00008C9
F,0x033F0
000,0x037
F0000,0x0
3BF0000,0
x03FF000
0,0x01013
A98,0x017
F3A98,0x0
1B13A98,0
x01FF3A9
8,0x02013
A98,0x027
F3A98,0x0
2B13A98,0
x02FF3A9
8,0x04000

000,

3.5.2 positionTilt C 3.5 : M YES String

PASSED:
0x0000000
000,0x000
00000,0x0
0000001,0
x00008C9
F,0x033F0
000,0x037
F0000,0x0
3BF0000,0
x03FF000
0,0x01013
A98,0x017
F3A98,0x0
1B13A98,0
x01FF3A9
8,0x02013
A98,0x027
F3A98,0x0
2B13A98,0
x02FF3A9
8,0x04000

000,

3.5.3 positionZoomLens C 3.5 : M YES String

PASSED:
0x0000000
000,0x000
00000,0x0
0000001,0
x00008C9
F,0x033F0

Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
Page B-14

Original text ©2001 – 2005 AASHTO / ITE / NEMA Used by Permission
 187

CCTV Motion Control CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

000,0x037
F0000,0x0
3BF0000,0
x03FF000
0,0x01013
A98,0x017
F3A98,0x0
1B13A98,0
x01FF3A9
8,0x02013
A98,0x027
F3A98,0x0
2B13A98,0
x02FF3A9
8,0x04000

000,

3.5.4 positionFocusLens C 3.5 : M YES String

PASSED:
0x0000000
000,0x000
00000,0x0
0000001,0
x00008C9
F,0x033F0
000,0x037
F0000,0x0
3BF0000,0
x03FF000
0,0x04000

000,
FAILED:

0x01013A
98,0x017F
3A98,0x01
B13A98,0x
01FF3A98,
0x02013A
98,0x027F
3A98,0x02
B13A98,0x
02FF3A98,

3.5.5 positionIrisLens C 3.5 : M YES String

PASSED:
0x0000000
000,0x000
00000,0x0
0000001,0
x00008C9
F,0x033F0
000,0x037
F0000,0x0
3BF0000,0
x03FF000
0,0x04000

000,
FAILED:

0x01013A
98,0x017F
3A98,0x01
B13A98,0x
01FF3A98,
0x02013A
98,0x027F
3A98,0x02
B13A98,0x
02FF3A98,

 Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
 Page B-15

Used by Permission Original text ©2001 – 2005 AASHTO / ITE / NEMA
188

CCTV Motion Control CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

3.5.6 positionQueryPan (Added in Amend v1.08) S 3.5 : M YES 1-35999 |
65535

3.5.7 positionQueryTilt (Added in Amend v1.08) S 3.5 : M YES 1-35999 |
65535

3.5.8 positionQueryZoom (Added in Amend v1.08) S 3.5 : M YES 1-65535
3.5.9 positionQueryFocus (Added in Amend v1.08) S 3.5 : O YES 1-65535
3.5.10 positionQueryIris (Added in Amend v1.08) S 3.5 : O YES 1-65535

B.6 CCTV ON-SCREEN MENU CONTROL CONFORMANCE GROUP

The CCTV On-Screen Menu Control Conformance Group shall consist of the following objects:

CCTV On-Screen Menu Control CONFORMANCE GROUP

NTCIP 1205
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

3.12 CCTV On-Screen Menu Control Conformance
Group --- O YES ---- -----

3.12 CCTV On-Screen Camera Menu Objects --- --- --- --- ---

 3.12.1 menuActivate P 3.12 : M

YES
0-255

PASSED:
0,1,254,25
5, FAILED:

-1,256,
 3.12.2 menuControl C 3.12 : M YES 1-255
 pageDown(1) --- --- Yes / No --- ---
 pageUp(2) --- --- Yes / No --- ---
 cursorUp(3) --- --- Yes / No --- ---
 cursorDown(4) --- --- Yes / No --- ---
 cursorRight(5) --- --- Yes / No --- ---
 incrementValue(7) --- --- Yes / No --- ---
 decrementValue(8) --- --- Yes / No --- ---
 enterValue(9) --- --- Yes / No --- ---
 noMenu(255) --- --- Yes / No --- ---

Based on NTCIP 1205:2001 v01.08 Amendment 1 v10 PRL
Page B-16

Original text ©2001 – 2005 AASHTO / ITE / NEMA Used by Permission
 189

B.7 GLOBAL CONFIGURATION CONFORMANCE GROUP

The Global Configuration Conformance Group shall consist of the following objects:

Global Configuration CONFORMANCE GROUP

NTCIP 1201
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

2.2 Global Config Objects --- M Yes --- ---
2.2.1 globalSetIDParmeter S 2.2 : O Yes / No 0-65535
2.2.2 globalMaxModules S 2.2 : M Yes 0-255
2.2.3 globalModuleTable --- 2.2 : M Yes --- ---

 moduleTableEntry --- 2.2 : M Yes --- ---
2.2.3.1 moduleNumber S 2.2 : M Yes 1-255
2.2.3.2 moduleDeviceNode S 2.2 : M Yes OID
2.2.3.3 moduleMake S 2.2 : M Yes String
2.2.3.4 moduleModel S 2.2 : M Yes String
2.2.3.5 moduleVersion S 2.2 : M Yes String
2.2.3.6 moduleType S 2.2 : M Yes 1-3
 other(1) --- --- Yes / No --- ---
 hardware(2) --- --- Yes / No --- ---
 software(3) --- --- Yes / No --- ---

B.8 NTCIP SECURITY CONFORMANCE GROUP

The NTCIP Security Conformance Group shall consist of the following objects:

Security CONFORMANCE GROUP

NTCIP 1201
Amend 1
Clause

Object
Name

Object
Type

Object
Status

Object
Support

Allowed
Values

Supported
Values

A.10 Security Conformance Group -- M Yes ---- ---
A.10.1 adminCommunityName C A.10 : M Yes String
A.10.2 maxCommunityNames C A.10 : M Yes 1..255
A.10.3 communityNameTable -- A.10 : M Yes --- ---
 communityNameTableEntry -- A.10 : M Yes --- ---

A.10.3.1 communityNameIndex S A.10 : M Yes 1..255
A.10.3.2 communityNameUser S A.10 : M Yes String
A.10.3.3 communityNameAccessMask S A.10 : M Yes Gauge

§

 190

REFERENCES FOR APPENDIX D

1. NTCIP 1205 – Object Definitions for Closed Circuit Television (CCTV) Camera

Control, A Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1205. Accessed July 25, 2005.

191

APPENDIX E:
COMMUNICATIONS AND MISCELLANEOUS TEST PROCEDURES

INTRODUCTION

This appendix describes several sets of test procedures that may be applicable to NTCIP

conformant field devices. The test procedures include procedures for checking the Simple

Network Management Protocol (SNMP), the Transportation Transport Profile, the Point to

Multi-Point Protocol with RS232 Profile, the Simple Transportation Management Protocol

(STMP), and serial communication’s data rates. The original basis of the test cases was the

requirements in NTCIP 2001 – Class B Profile (1). The NTCIP standards group has subsequently

rescinded the original standard and replaced it with several others. The documentation and

summaries come from the NTCIP Laboratory Testing for Actuated Signal Controllers summary

report (2). Test scripts implementing the test procedures are available at www.itstestlab.org.

SNMP TEST CASES

Table E-1 summarizes a set of test cases for checking implementations supporting the

SNMP. Except for the SNMP Conformance Group test case, the procedures check the functional

aspects of SNMP and are not object related. The test cases are generic but require support of an

object with a specific syntax and constraint that may not be available in all field devices.

Table E-1. SNMP Test Case Summary.

SNMP Test Cases

ID Title Description

General

TC001 Setup General setup for testing SNMP
TC002 MIB Walk This test ensures that GETNEXT requests are properly

functioning.
TC003 Get and Set an Object This test ensures that GET and SET operations return

a valid value and do not produce errors.
TC004 Get and Set Multiple Objects This test ensures that multiple objects can be set

correctly with SET operation.

www.itstestlab.org

192

Table E-1. SNMP Test Case Summary (continued).

SNMP Test Cases

ID Title Description

Error Responses

TC005 Error In Get of Multiple
Objects (tooBig)

This test ensures that GET function returns a tooBig
error when a response protocol data unit (PDU)
exceeds snmp-maxPacketSize.

TC006 Error in Set (badValue) This test ensures that a bad (Invalid) value is not set
using SET function.

TC007 Error in Set (readOnly) This test ensures that SET function cannot change
value of a ‘readOnly’ object.

TC008 Error in Set (noSuchName) This test ensures that a value cannot be set for a non-
existing object.

TC009 Error in Setting Multiple
Objects (badValue)

This test ensures that while setting multiple objects, if
one object is set to a bad value then other valid values
are not changed for the other objects.

Community Name

TC010 Invalid Community Name This test ensures that if community name is invalid
then no object is returned with SET function.

Statistics Conformance Group

TC011 SNMP Conformance Group This procedure tests whether 2 objects in the SNMP
(Statistics) Conformance Group are instantiated.

Encoding

TC012 INTEGER Encoding Check whether an object with “SYNTAX INTEGER”
can accept an instance value of 0 when the length byte
is set to 1, 2, 3, 4, and 5 bytes using the “short definite
form” and when the “long definite form” is used. Also
checks setting values of >2147483647.

TC013 INTEGER (0..255) Encoding Check whether an object with “SYNTAX INTEGER
(0..255)” can accept an instance value of 0 when the
length byte is set to 1 and 2 bytes using the “short
definite form” and when the “long definite form” is
used.

193

Table E-1. SNMP Test Case Summary (continued).

SNMP Test Cases

ID Title Description

TC014 INTEGER (0..65535)
Encoding

Check whether an object with SYNTAX INTEGER
(0..65535) can accept an instance value of 0 when the
length byte is set to 3 bytes using both the “short
definite form” and the “long definite form.”

TC015 INTEGER (0..4294967295)
Encoding

Check whether an object with SYNTAX INTEGER
(0..4294967295) [INTEGER Tag 02] can accept an
instance value of 0 when the length byte is set to 3
bytes using both the short definite form and the long
definite form.

TC016 INTEGER Wrong Tag
Encoding

Check whether an object as SYNTAX INTEGER
(0..255) [INTEGER Tag 02] would can accept an
instance value with an incorrect Tag (OCTET
STRING, OBJECT IDENTIFIER, SEQUENCE,
IpAddress, Counter, Gauge, TimeTicks, Opaque).

TC017 OCTET STRING Encoding Check whether an object with OCTET STRING [Tag
0x04] can accept an instance value of NULL [Tag
0x05], a 4 character string using the short definite
length form, an 127 character string using the short
definite length form, and a 2 each - 4 character strings
using the long definite length form.

TC018 OCTET STRING
Constrained Encoding

Check whether an object with SYNTAX OCTET
STRING [Tag 0x04] and a size constraint is processed
correctly.

TC019 Object Identifier and Null
Encoding

Check whether an object with SYNTAX OBJECT
IDENTIFIER [Tag 0x06] would accept as an instance
value of NULL [Tag 0x05] and a valid length.

TC021 Counter Encoding Check whether an object with SYNTAX Counter [Tag
0x41] is processed correctly.

TC022 Counter (0..255) Encoding Check whether an object with SYNTAX Counter
(0..255) [Tag 0x41] is processed correctly.

TC023 Counter (0..65535) Encoding Check whether an object with SYNTAX Counter
(0..65535) [Tag 0x41] is processed correctly.

TC024 Gauge Encoding Check whether an object with SYNTAX Gauge [Tag
0x42] is processed correctly.

TC025 Gauge (0..255) Encoding Check whether an object with SYNTAX Gauge
(0..255) [Tag 0x42] is processed correctly.

TC026 Gauge (0..65535) Encoding Check whether an object with SYNTAX Gauge
(0..65535) [Tag 0x42] is processed correctly.

194

Table E-1. SNMP Test Case Summary (continued).

SNMP Test Cases

ID Title Description

TC027 TimeTicks Encoding Check whether an object with SYNTAX TimeTicks
[Tag 0x43] is processed correctly.

Opaque Encoding

TC028 Opaque Encoding – Setup This procedure performs a general setup prior to
executing any of the specific Opaque Encoding Test
Procedures.

TC029 Opaque Encoding –
INTEGER

Check whether an object with SYNTAX Opaque [Tag
0x44] that encodes an instance of INTEGER is
processed correctly.

TC030 Opaque Encoding -
INTEGER (0..255)

Check whether an object with SYNTAX Opaque [Tag
0x44] that encodes an instance of INTEGER (0..255)
is processed correctly.

TC031 Opaque Encoding -
INTEGER (0..65535)

Check whether an object with SYNTAX Opaque [Tag
0x44] that encodes an instance of INTEGER
(0..65535) is processed correctly.

TC032 Opaque Encoding -
INTEGER (0..4294967295)

Check whether an object with SYNTAX Opaque [Tag
0x44] that encodes an instance of INTEGER
(0..4294967295) is processed correctly.

TC033 Opaque Encoding -
INTEGER (Constrained)

Check whether an object with SYNTAX Opaque [Tag
0x44] that encodes an instance of INTEGER
(Constrained) is processed correctly.

TC034 Opaque Encoding - OCTET
STRING

Check whether an object with SYNTAX Opaque [Tag
0x44] that encodes an instance of OCTET STRING is
processed correctly.

TC035 Opaque Encoding - OBJECT
IDENTIFIER

Check whether an object with SYNTAX Opaque [Tag
0x44] that encodes an instance of OBJECT
IDENTIFIER is processed correctly.

TC036 Opaque Encoding -
IpAddress

Check whether an object with SYNTAX Opaque [Tag
0x44] that encodes an instance of IpAddress is
processed correctly.

TC037 Opaque Encoding - Counter Check whether an object with SYNTAX Opaque [Tag
0x44] that encodes an instance of Counter is processed
correctly.

TC038 Opaque Encoding - Gauge Check whether an object with SYNTAX Opaque [Tag
0x44] that encodes an instance of Gauge is processed
correctly.

195

Table E-1. SNMP Test Case Summary (continued).

SNMP Test Cases

ID Title Description

TC039 Opaque Encoding -
TimeTicks

Check whether an object with SYNTAX Opaque [Tag
0x44] that encodes an instance of TimeTicks is
processed correctly.

TC040 Opaque Encoding - Tear
Down

This procedure performs a general restore after
executing any of the specific Opaque Encoding Test
Procedures.

TRANSPORTATION TRANSPORT TEST CASES

Table E-2 summarizes several test cases for checking implementations supporting the

NTCIP 2201 – Transportation Transport Profile (3). The first two test cases test the functionality

of the protocol. The Net to Media Support test case relates to an object conformance group but

the group is mandatory only if an IP Address scheme is used.

Table E-2. Transportation Transport Test Case Summary.

Transportation Transport Profile

ID Title Description

NULL

TC001 Unknown IPI This test checks whether a device under test (DUT)
accepts an upper layer Protocol Data Unit with an
invalid Initial Protocol Identifier.

TC002 Max Protocol Data Unit This procedure checks whether a DUT supports the
required Protocol Data Unit size.

TC003 Net to Media Support This procedure checks for support of the
ipNetToMedia conformance group.

196

POINT TO MULTI-POINT WITH RS232 TEST CASES

Table E-3 summarizes a set of test cases for checking implementations supporting the

NTCIP 2101 – Point to Multi-Point Protocol Using RS-232 Subnetwork Profile (4). Except for

the RS232 Conformance Group and the LapB Conformance Group test cases, the procedures

check the functional aspects of PMPP and are not object related.

Table E-3. PMPP with RS-232 Test Case Summary.

PMPP with RS-232

ID Title Description

Short Address

TC001 Setup General setup for PMPP Procedures
TC002 Short Address - Positive Test

1
This procedure checks whether a DUT responds to a
valid short address.

TC003 Short Address - Negative
Test 1

This procedure checks whether a DUT responds to
another DUT’s address.

TC004 Short Address - Positive Test
2

This procedure checks whether a DUT responds to
another valid short address.

TC005 Short Address - Negative
Test 2

This procedure checks whether a DUT responds to
another DUT’s short address.

TC006 Restore Default Address This test ensures that the default address is restored
properly.

Long Address

TC007 Long Single Address -
Positive Test

This procedure checks whether a DUT responds to a
valid long address.

TC008 Large Single Address -
Negative Test #1

This procedure checks whether a DUT responds to
another DUT’s long address.

TC009 Large Single Address -
Negative Test #2

This procedure checks whether a DUT responds to an
invalid long address.

TC010 Restore Default Address This test ensures that the default address is restored
properly.

Broadcast and Polling

TC011 Broadcast Message This procedure checks whether a DUT responds to a
broadcast message or not.

197

Table E-3. PMPP with RS-232 Test Case Summary (continued).

PMPP with RS-232

ID Title Description

TC012 Poll Message This test ensures that previous broadcast message’s
response is buffered and then sent if Unnumbered Poll
(UP) is sent to the DUT.

Group Address

TC013 Setting Group Address This test ensures that the group address is set properly.
TC014 Group Address - Positive

Test
This procedure checks whether a DUT does not
respond to a GET with a valid group address but
buffers the response and returns that buffered response
upon a UP.

TC015 Group Address - Negative
Test

This procedure checks whether a DUT responds to a
GET with an invalid group address.

TC016 Large Group Address -
Positive Test

This procedure checks whether a DUT responds to a
GET with a valid large group address.

TC017 Large Group Address -
Negative Test

This procedure checks whether a DUT responds to a
GET with an invalid large group address

Polling

TC018 Request Without Poll Bit This procedure checks whether a DUT responds to
GET request to valid single address but without the
Poll Bit set.

TC019 Poll This procedure checks whether a DUT responds with
the buffered response from the Request Without Poll
Bit procedure when a UP is sent.

Control Byte

TC020 Changed Control Byte This procedure checks whether a DUT responds to a
PDU with an invalid Control Byte.

Initial Protocol Identifier (IPI)

TC021 Unknown IPI This procedure checks whether a DUT responds to a
PDU with an invalid IPI.

Field Check Sum

198

Table E-3. PMPP with RS-232 Test Case Summary (continued).

PMPP with RS-232

ID Title Description

TC022 Invalid Cyclic Redundancy
Check (CRC)

This procedure checks whether a DUT responds to a
PDU with an invalid CRC on good data.

TC023 Changed Data This procedure checks whether a DUT responds to a
PDU with a valid CRC on bad data.

RS232 and HDLC Conformance Groups

TC024 RS232 Conformance Group This procedure checks whether a DUT responds to
one of the objects in the RS232 Conformance Group.

TC025 HDLC Conformance Group This procedure checks whether a DUT responds to
one of the objects in the HDLC Conformance Group.

Frame Size and Buffering

TC026 Frame Size This procedure checks whether a DUT can accept and
send a PDU that is the largest that must be supported.

TC027 Byte Stuffing This procedure checks whether the DUT can support a
PDU where 5% of the octets are byte-stuffed.

STMP TEST CASES

Table E-4 summarizes a set of test cases for checking implementations supporting the

Simple Transportation Management Protocol (STMP), whose definition appears in

NTCIP 1103 – Transportation Management Protocols and whose profile requirements appear in

NTCIP 2301 – Simple Transportation Management Framework Application Profile (5,6). The

procedure defines a set of dynamic object messages that encode the various data types and then

checks that the encoded data type values are valid. The documentation and test scripts for these

procedures are only partially complete. However, they do provide a starting point and approach

to testing the functional aspects of STMP protocol.

199

Table E-4. STMP Test Case Summary.

STMP Test Cases

ID Title Description

TC001 General Setup This procedure clears out or invalidates any
previous dynamic object definitions.

TC002 Set Up Dynamic Objects 1 To
11 to a Single Variable

This procedure defines a set of dynamic messages
consisting of a single variable.

TC003 Define Compare Values This procedure defines a set of compare values
objects for use in the single variable test.

TC004 Compare STMP results This procedure compares the values of the single
variable messages test returned using STMP with
those returned using SNMP.

TC005 Set Up Dynamic 12 to 11
Variables

This procedure defines a single dynamic message
consisting of 11 variables.

TC006 Compare STMP Object 12
Results

This procedure compares the values of the 11
variable dynamic messages returned using STMP
with those returned using SNMP.

TC007 General Clean Up This procedure invalidates the dynamic objects
definitions.

RESPONSE TIME TEST CASE

Table E-5 summarizes a test case for checking support of the various data rates as defined

in NTCIP 2101 – Point to Multi-Point Protocol Using RS-232 Subnetwork Profile and in NTCIP

2102 – Point to Multi-Point Protocol Using FSK Modem Subnetwork Profile (4,7). By repeating

a message exchange multiple times, one can make an evaluation of the response time or length of

time that an implementation takes to process a message.

200

Table E-5. Response Time Test Case Summary.

PMPP Data Rates and Response Times

ID Title Description

TC001 Response Time The purpose of this test procedure is to evaluate
response time and test for support of various data rates
defined in NTCIP 2101 and 2103. NTCIP 2101
requires 1200 bps and lists 2400, 4800, 9600, 19.2K,
38.4K, 57.6K, and others as optional. NTCIP 2102 is
1200 bps by definition. NTCIP 2103 requires support
for 2400, 4800, 9600, 19.2K bps and states that higher
data rates are optional.

201

REFERENCES FOR APPENDIX E

1. NTCIP 2001 – Class B Profile, A Joint Publication of AASHTO, ITE, and NEMA.

http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2001. Accessed August 16, 2006.

2. NTCIP Laboratory Testing for Actuated Signal Controllers, Summary Report for

ASSHTO Project 475070. Published by Texas Transportation Institute.
http://tti.tamu.edu/documents/TTI-2006-1.pdf. Accessed June 7, 2006.

3. NTCIP 2201 – Transportation Transport Profile, A Joint Publication of AASHTO, ITE,

and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=
no&standard=2201. Accessed July 25, 2005.

4. NTCIP 2101– Point to Multi-Point Protocol Using RS-232 Subnetwork Profile, A Joint

Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2101. Accessed June 27, 2006.

5. NTCIP 1103 – Transportation Management Protocols, A Joint Publication of AASHTO,

ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1103. Accessed June 27, 2006.

6. NTCIP 2301– Simple Transportation Management Framework Application Profile, A

Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2301. Accessed June 27, 2006.

7. NTCIP 2102– Point to Multi-Point Protocol using FSK Modem Subnetwork Profile, A

Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=2102. Accessed June 27, 2006.

 203

APPENDIX F:
TRAFFIC SIGNAL CONTROLLER TEST DOCUMENTATION

INTRODUCTION

Since the task of developing NTCIP test procedures for one of the ITS field devices can

be a significant project in and of itself, the researcher found that following some of the

recommendations in the Institute of Electrical and Electronics Engineers (IEEE) Std. 829 – IEEE

Standard for Software Test Documentation are useful (1). Prior to actually writing procedures,

the IEEE standard suggests the development of an overall plan, one or more test design

specifications, and test case specifications. The overall plan conveys the scope, approach,

resources, and schedule of testing activities. Its primary purpose is to present a high-level view

of the project to inform all interested parties. The test design specifications provide a more

detailed view of the testing project. A test engineer’s supervisor and any group such as a project

monitoring committee uses the test design specifications to make sure that a test engineer

understands the projects and is addressing what is needed. The design specification serves as part

of the validation step in the project development. Test case specifications then outline individual

test cases that verify specific features and functions of an implementation undergoing test. The

test case specifications provide additional oversight but primarily help a test engineer organize

and plan the specifics of each test case before committing to code or formal definition. These

types of documents address the planning aspects of a testing project.

Full development of these documents is beyond the scope of this TxDOT research

project. In the case of the CCTV test procedures, the researchers capitalized on test procedures

already in the public domain, and upfront planning did not appear to be essential. For the traffic

signal controllers, however, the researcher felt that it would be helpful to have a test design

specification and test case specification that organizes and outlines the approach to testing the

requirements that would apply to TxDOT department material specification DMS-11170, Fully

Actuated, Solid-State Traffic Signal Controller Assembly (2). A test design specification and test

case specification from a previous project were somewhat appropriate and can serve to convey

the makeup of such documents (3).

 204

A number of state departments of transportation are adopting International Organization

for Standardization (ISO) 9000 standards in order to improve quality (4). The following test

design specification and test case specification are two types of document examples that would

satisfy most of the ISO 9000 requirements. The following embedded specifications, initially

prepared under another research project, have been modified to put them in the context of this

research.

 TDS-TSC v1.02

 205

Test Design Specification

NTCIP Conformant
Traffic Signal Controller

TDS-TSC v1.02

August 31, 2006

REVISION HISTORY

Revision Date Version Number Description of Change
03/08/06 v1.01 Initial draft by R. De Roche
08/31/06 v1.02 Revised for inclusion in TxDOT project 0-5003

 TDS-TSC v1.02

 206

1 Test Design Specification

1.0 INTRODUCTION

This test design specification outlines the requirements for testing NTCIP compliant traffic signal
controllers. This specification identifies the features and/or general functions to be tested. This
specification also details the test approach, proposes a rationale for the definitions of the test cases, and
establishes pass/fail criteria.

This test design specification defines the elements and approach to show compliance to the NTCIP
related requirements of TxDOT DMS-11170, Fully Actuated, Solid-State Traffic Signal Controller
Assembly (2). This document identifies the elements to test and those that will not. The test design
specification also identifies the test cases and subsequent test procedures. A test case specification
documents the actual values used in the testing process. The test case specification also identifies
constraints on the test procedures. Test cases are separate from test designs so that test cases can
apply to one or more design specifications and have application in other test plans. A test procedure
identifies the specific steps involved in executing a test case. By their nature, test procedures go into
detail about a systematic process. Test procedures are in a separate document so that they do not
burden the other documents with extraneous detail.

To meet the first objective, tests will be designed to evaluate a DUT's conformance to the appropriate
NTCIP Standards. The current versions of the standards convey requirements in the form of a Profile or
Protocol Requirement List (PRL). The testing results will be primarily conveyed to participants in the Test
Bed Project by recording the results on the PRL and, thus, turning it into a Profile or Protocol
Implementation Conformance Specification.

To meet the second objective, tests will be designed to evaluate a DUT's compliance to additional
requirements that might be imposed when a device is used in a system. These additional requirements
are defined within this document and will be summarized in the form of a Device Requirements List (DRL)
as defined in Annex A. The testing results will be primarily conveyed to participants in the Test Bed
Project by recording the results on the DRL and, thus, turning it into a Device Implementation
Conformance Specification.

This document’s organization and content uses IEEE Std. 829 – IEEE Standard for Software Test
Documentation as a guide (1). The purpose of the IEEE standard is to define a basic set of testing
documentation that provides a common point of reference for discussion and understanding for all parties
involved in the testing process. The design of the contents serves as a completeness checklist.

1.1 TEST DESIGN SPECIFICATION IDENTIFICATION

The Test Design Specification Identifier is TDS-TSC.

1.2 FEATURES TO BE TESTED

The TxDOT specification DMS-11170, Fully Actuated, Solid-State Traffic Signal Controller Assembly
defines the requirements for traffic signal controllers and other components in a signal cabinet. The
organization of requirements in that specification that relate specifically to controller units is:

• Hardware Design Requirements – NEMA Controller
• Time Clock
• Clock-Calendar Programming

o Structure and Interrelationship of Programs
• Programming Requirements

o Phase Operation

 TDS-TSC v1.02

 207

o Pedestrian Timing
o Coordination

• Time Base Coordination
• Diamond Operation

o Program Requirements
o Four-Phase Operation
o Concurrent Timing Requirements
o Diamond Detector Operation
o Three-Phase Operation

• Coordination-Control Hierarchy
• Preemption
• Closed-Loop Operation and Monitoring Software
• NTCIP Compliance

This version of the test design specification focuses specifically on:

• NTCIP Compliance
• Four-Phase Operation

NOTE – Other than Diamond Four-Phase Operation, this test design specification does not cover test
cases for the functional requirements of a signal controller.

The basic features and functions associated with the NTCIP Compliance requirements of DMS-11170
are:

• Object support for mandatory objects defined in:
o Phase Conformance Group
o Detector Conformance Group
o Volume Occupancy Report Conformance Group
o Unit Conformance Group
o Special Function Conformance Group
o Coordination Conformance Group
o Time Base Conformance Group

 Time Management
 Time Base Event Schedule

o Preempt Conformance Group
o Ring Conformance Group
o Channel Conformance Group
o Overlap Conformance Group
o TS 2 Port 1 Conformance Group
o Configuration Conformance Group
o Database Management Conformance Group
o Report Conformance Group
o PMPP Conformance Group
o STMF Conformance Group

 SNMP Conformance Group
 STMP Conformance Group

o Security Conformance Group
o HDLC Group Address Conformance Group

• Object support for miscellaneous optional objects defined in
o NTCIP 1201-GLO
o NTCIP 1202-ASC

• Support Standardized Ranges
• Specific Values Defined in Minimum Project Requirements
• Null Protocol
• PMPP Protocol using an RS-232 Physical Interface
• PMPP Protocol using an FSK Modem Interface

 TDS-TSC v1.02

 208

Additional features and functions not defined within DMS-11170 but considered relevant to controller
operation:

• Block Object Conformance Group
• Systems Conformance Group
• SNMP Statistics Conformance Group
• RS232 Conformance Group
• HDLC Conformance Group

1.3 FEATURES NOT TO BE TESTED

The following features and functions do not appear as requirements in DMS-11170 and appear in NTCIP
1202 as optional. They are not essential to controller operation and, therefore, will not be included:

• Auxiliary I/O Group
• SFMP Group
• Logical Name Group
• Trap Management Group
• Interfaces Group
• IP Group
• ICMP Group
• TCP Group
• UDP Group
• Ethernet Group

1.4 APPROACH REFINEMENTS

1.4.1 Conformance Group, Optional Objects, Standardized Ranges, and Project Requirements
For the following three test cases, one or more MIBs will consolidate all the required objects and
eliminate non-required objects.

1.4.1.1 Conformance Group and Optional Object Support
For testing support of the conformance groups and optional objects, a test case will perform a “MIB
Walk.” This MIB walk, however, will be somewhat different from what others consider to be a MIB walk.
The traditional MIB walk uses SNMP Get Next operations to step through the objects that an
implementation supports. The Get Next operation returns the object identifier of the next object in logical
sequence. Comparing this object identifier value to what appears in a MIB can indicate what objects are
present or missing. The Get Next operation also “discovers” any additional objects. While this is a good
method for determining what an implementation supports and checking the Get Next operation, it does
not use a MIB as the reference point or use Get operations. From the perspective of an agency
purchasing equipment, the primary concern is whether equipment implements their requirements.
Knowing about additional objects can be useful but the required ones are the concern. The normal
operational method of retrieving object values is through the Get operation.

Given these reasons, the basis of the MIB Walk will be Get operations. Applying potential instance value
extensions to the list of object names in the MIB will generate a hierarchical set of object identifiers to use
in the Get operation. By stepping through each object identifier, a test procedure can determine an
implementation’s object support.

NOTE – This test case will only check for the presence of objects and will not check the functionality
expressed by them.

1.4.1.2 Supported Values of Instantiated Objects
For testing the supported values, a test case will rely on an external list of sample test values to use. Test
cases that perform a 100% check of all the possible values are relatively easy to define. However, when

 TDS-TSC v1.02

 209

one considers that a controller contains tens of thousands of objects and the typical value range of these
objects is 0 to 255, the time it takes to perform a test becomes an issue. Rather than use this approach,
the test case will use a sampling technique. For every read-write object that corresponds to a parameter
or control, the external list will define the objects to test. The objects will also have both positive and
negative test values to use on the objects.

Each object that has only a single instance will appear in the external list. At least one instance of an
object that appears multiple times in a table structure should also appear in the external list. Along with
the actual test value to use, there is an indication of whether the value a positive or negative test value.

NOTE – The supported values test case will only check whether an object can be set to specific values. It
does not check that the written values are actually used or the controller performs the functionality
expressed by a value.

1.4.1.3 Specific Values Defined in Minimum Project Requirements
The Object Range Value for Actuated Signal Controllers table in DMS-11170 refers to two types of
objects: “max” objects or constants and status objects that indicate values that correspond to states of the
controller. For max objects, a test case will use Get operations to retrieve the value in the implementation
and then compare the value against the required value in DMS-11170. To make this test case reusable
for testing equipment other than signal controllers, it will use an external list of object identifiers to
determine which objects values to retrieve. Associated with each object will be the minimum project
requirement value for comparison.

NOTE – The max object test case will only check for the value of the max objects. The test case will not
check the functionality expressed by them. In most cases, a max object defines a number of instances.
For example, the maxPhases object defines the number of phases that a controller supports. Checking
the value of maxPhases does not determine whether a controller implements that number of phases.

Status objects are more difficult to validate. Status objects take on a specific value only when the
controller is in a specific state. For each status object, a test case will create the conditions that produce
each state. The test case will then either verify the correct state through independent means or assume
some time for the controller to reach the state. The test case will then Get the value of the status object
and compare to the appropriate value.

NOTE – The status object test case will test the functionality expressed by the status object either directly
or indirectly.

1.4.2 SNMP Protocol
The conformance testing of the SNMP protocol will involve a number of test cases. The test cases will
have the following organization:

• General
• Error Responses
• Community Name
• SNMP Statistics Conformance Group
• BER Encoding
• Opaque Encoding

1.4.3 STMP Protocol
The conformance testing of the STMP protocol will consist of defining twelve dynamic messages to
retrieve object definitions that require different Octet Encoding Rules (OER). The intent is to check the
encoding of the following SYNTAX types:

• INTEGER [unconstrained]
• INTEGER (0..255)
• INTEGER (0..65535)

 TDS-TSC v1.02

 210

• INTEGER (0..4394967295)
• INTEGER (-43200..43200)
• OCTET STRING [unconstrained]
• OBJECT IDENTIFIER
• IpAddress
• Counter
• Gauge
• TimeTicks

The first eleven messages will consist of a single variable corresponding to one of the syntaxes. The
twelfth message will consist of eleven objects corresponding to all of the syntax types.

NOTE – The conformance tests will not address the OER encoding of the syntax Opaque.

1.4.4 Null Protocol
The conformance testing of the Null Protocol (now referred to as the Transportation Transport Profile) will
involve three test cases. These will consist of:

• Unknown IPI
• Max Protocol Data Unit
• Net to Media Support

1.4.5 PMPP Protocol Using an RS-232 Physical Interface
The conformance testing of the Point-to-Point Protocol using an RS-232 will be broken down into ten
areas. These areas consist of:

• Short Address
• Long Address
• Broadcast and Polling
• Group Address
• Polling
• Control Byte
• Initial Protocol Identifier
• Field Check Sum
• RS232 and HDLC Conformance Groups
• Frame Size and Buffering

1.4.6 PMPP Protocol Using an FSK Modem Interface
The conformance testing related to the use of an FSK modem will consist of using a line impairment
device to simulate worst-case conditions of the transmission line and then checking for errors. The name
of the test case will be:

• Bell 202T Modem Characteristics

1.4.7 Diamond Four-Phase Operation
The test cases for diamond four-phase operation will consist of two types. The first type will address
sequencing, and the second type will address detector operations.

The sequencing test cases will cycle the controller through the possible sequence patterns. In that four-
phase sequence there are 6 primary movements or states: 2+5, 3+5, 4+5, 1+6, 1+7, and 1+8. This
equates to 15 permutations of one state transitioning to another. The first part of the sequence test will be
to put the controller in one state and by means of detector calls, get it to change to another state and then
back again. Table 1 lists the initial state, detector calls that are active, and the resulting sequence.

 TDS-TSC v1.02

 211

Table 1. Sequence Table with Return to Initial State

State Calls Sequence Remarks
2+5 2, 3 3+5, 2+5 →
2+5 2, 4 4+5, 2+5 →
2+5 2, 6 5+9, 1+6, 1+13, 2+5 →
2+5 2, 7 5+9, 1+7, 2+15, 2+5 →
2+5 2, 8 5+9, 1+8, 2+16, 2+5 →
3+5 3, 4 4+5, 3+5 →
3+5 3, 6 6+11, 1+6, 1+13, 3+5 →
3+5 3, 7 5+9, 1+7, 1+13, 3+5 →
3+5 3, 8 5+9, 1+8, 1+13, 3+5 →
4+5 4, 6 6+12, 1+6, 1+13, 4+5 →
4+5 4, 7 5+9, 1+7, 1+13, 4+5 →
4+5 4, 8 5+9, 1+8, 1+13, 4+5 →
1+6 6, 7 1+7, 1+6 →
1+6 6, 8 1+8, 1+6 →
1+7 7, 8 1+8, 1+7 →

1.4.8 Diamond Four-Phase Detector Operations
The detector operations test cases will address each detector in turn. Since most of the detectors
operations involve switching, calling, and extending, test cases will create conditions that represent the
states of the controller, activate the detector input, and then monitor the status of the traffic signal
controller for the proper response.

1.4.9 Additional Test Cases
The following test cases from the Test Bed Project will be applied to the controller, with time permitting:

• Retrieve Log Data
• Timebase Schedule of Event
• Database Upload/Download
• System Performance Testing

1.5 TEST IDENTIFICATION

The test case specifications associated with this Test Design Specification is TCS-TSC.

1.6 FEATURE PASS FAIL CRITERIA

The Conformance Group, Optional Objects, Standardized Ranges, and Project Requirements pass-fail
criteria depend upon individual test parameters. The procedures will use the NTCIP 1202-ASC Profile
Requirements List (Annex A) to record results.

The other test cases will define any specific pass-fail criteria but in general, the device under test must
perform the stated operation or return the expected results to “pass.”

 TCS-TSC v01.10

 212

Test Bed Project
Test Case Specifications

Actuated Signal Controller

ITL-TCS-TBP-ASC v1.10

August 31, 2006

REVISION HISTORY

Revision Date Version Number Description of Change
4/17/03 v1.01 Initial draft for review by C. Herrick
5/20/03 v1.02 Incorporated various comments from C. Herrick
6/2/03 v1.03 Various updates to most clauses
1/26/04 v1.04 Updated title and added document organization
4/6/04 v1.05 Changed title and ID, segmented test cases into their own

sections
6/2/04 v1.06 Added filename at end and miscellaneous edits

Correct Identifier
7/1/04 v1.07 Added J. Johnson's corrections
7/9/04 v1.08 Completely revised Retrieve
8/14/06 v1.09 Revised for TxDOT Project 0-5003
8/31/06 v1.10 Removed copyright

 TCS-TSC v01.10

 213

Test Case Specification

A Test Case Specification describes precisely what is to be tested. It requires identification for each test
case, a description of the test items, a reference to the functions to be tested, the inputs and expected
outputs, and the test case dependencies.

This organization of documents in the IEEE Std. 829 is:

• Test Plan
• Test Design Specification
• Test Case Specification
• Test Procedure Specification

1.7 TEST CASE SPECIFICATION IDENTIFIER

This Test Case Specification Identifier is: ITL-TCS-TBP-ASC

This Test Case Specification addresses each of the major test cases as defined in the Test Design
Specification (ITL-TDS-TBP-ASC). The major test cases are:

• Object Instantiation of NTCIP 1202 and 1201
• Supported Values of Instantiated Objects
• SNMP Protocol
• Null Protocol
• PMPP using RS-232
• PMPP using FSK Modem
• System Operational Scenarios
• Retrieve Log Data - Optional Operational Scenario
• Timebase Schedule of Event and Database Upload/Download - Optional System Operational

Scenarios
• System Performance Testing

Each specific test case is covered in a separate section of this document. Additional and supporting
documentation appears as Annexes.

 TCS-TSC v01.10

 214

Object Instantiated Test Case

1.8 TEST ITEMS

This test case applies to devices that implement the data elements defined within NTCIP 1202 Object
Definitions for Actuated Signal Controllers. While NTCIP 1202 is, technically, an information profile that
defines the functional data elements related to an Actuated Signal Controller, it also enumerates other
data elements that would be instantiated in a fully conformant implementation. For example, NTC1202
references data elements for RS-232 interfaces and Ethernet interfaces. While data elements related to
these elements are not mandatory, if a device supports the functionality expressed by them, then they
should be supported. This test case specification only deals with the objects that are defined in the MIB.
All MIB defined objects are checked for instantiation and the range of values supported.

1.8.1 Requirement Specifications
The requirements specifications are defined in NTCIP 1202 and are summarized in NTCIP 1202 v02.18 -
Annex A. The following appears at the beginning of Annex A:

Conformance Groups are defined as either mandatory or optional. If a Conformance Group is
mandatory, all of the objects with STATUS "mandatory" that are part of the Conformance Group shall
be present for a device to claim conformance to the Conformance Group. If a Conformance Group is
optional, all of the objects that are part of the Conformance Group with the STATUS "mandatory"
shall be present if the device supports the Conformance Group. Objects with the STATUS "optional"
may be supported.

When a table is included in a Conformance Group, all objects contained in the table are included by
reference. This is because a table is defined as a SEQUENCE OF {SEQUENCE}. Thus, all objects
listed in the sequence are defined as an integral part of the table. Tables are defined as either
mandatory or optional. If a table is mandatory, all of the objects with STATUS "mandatory" shall be
present. If a table is optional, all of the objects with the STATUS "mandatory" shall be present if the
device supports the table. Objects in the table with the STATUS "optional" may be supported.

The following statements appear in Clause A.2:

Additional objects or groups may be supported without being non-compliant with ASC objects or
NTCIP. Minimum and maximum ranges of objects that differ from the values of the object’s SYNTAX
field may be enforced by an application running on a device.

A device which enforces range limits within the bounds specified by the values of the object’s
SYNTAX field shall not be categorized as being non-compliant with ASC objects or NTCIP.

A device which supports a subset of objects with enumerated values shall not be categorized as
being non-compliant with ASC objects or NTCIP.

The table in Clause A.2 indicates that the following conformance groups defined within NTCIP 1202 shall
be supported:

• Phase Conformance Group
• Detector Conformance Group

The table in Clause A.2 indicates that the following conformance groups defined within other standards
shall be supported:

• Configuration Conformance Group
• Database Management Conformance Group

 TCS-TSC v01.10

 215

• SNMP Group
• Systems Group
• Security Group

Clause A.2 also indicates that the following conformance groups defined within NTCIP 1202 may be
optionally supported:

• Volume Occupancy Report Conformance Group
• Unit Conformance Group
• Special Function Conformance Group
• Coordination Conformance Group
• Time Base Conformance Group
• Preempt Conformance Group
• Ring Conformance Group
• Channel Conformance Group
• Overlap Conformance Group
• TS 2 Port 1 Conformance Group
• Block Object Conformance Group

Clause A.2 also indicates that the following conformance groups defined within other standards may be
optionally supported:

• Report Conformance Group
• PMPP Group
• STMP Group
• Logical Name Group
• Trap Management Group
• RS232 Group
• HDLC Group
• Interfaces Group
• IP Group
• ICMP Group
• TCP Group
• UDP Group
• Ethernet Group

The purpose of this test case is to determine what data elements (objects definitions) are supported
(instantiated) in an implementation. While NTCIP 1202 is, technically, an information profile that defines
the data elements related to an Actuated Signal Controller, it also enumerates other data elements that
would be instantiated in a fully conformant implementation. For example, NTC1202 references data
elements for RS-232 and Ethernet Interfaces. NTCIP 1202 does not define these but does reference
them. While the data elements for RS-232 and Ethernet are not mandatory, if a device supports the
functionality expressed by them, then they should be supported. This test case specification not only
deals with the objects that are defined in the NTCIP 1202 MIB but also those referenced in other
standards.

1.8.2 Design Specifications
There are two perspectives to this test case. What objects does a DUT support and what objects defined
in NTCIP 1202 are supported by a DUT.

1. In the context of SNMP, a "MIB Walk" can be used to discover what objects a DUT supports. This set
of objects would include not only NTCIP 1202 defined data elements but also "any" data element, be it
either NTCIP defined or not. A "Get Next" of the root Object Identifier that defines NTCIP objects can
determine what objects are supported. Comparing this list of supported objects to those defined in the
standard verifies whether an object is instantiated or not.

 TCS-TSC v01.10

 216

2. Given the Object Identifiers of the data elements defined in the standard and the values defined in a
DUT to indicate the number of "rows" in certain tables, a list of fully indexed Object Identifiers can be
created. A "Get" of each object identifier in the list can verify whether each object is instantiated.

A set of test procedures are to be developed using both of these methods. The test procedures for using
the "Get Next" approach shall be referred to as the MIB Walk test case. The procedures using the "Get"
approach shall be referred to as the "MIB Check" test case. Since the test procedures are equivalent,
either one may be used to verify object instantiation.

1.8.3 User Guide
1.8.4 Operators Guide
1.8.5 Installation Guide

1.9 INPUT SPECIFICATIONS

The requirements as stated in NTCIP 1202 imply that the data elements within appropriate groups shall
be instantiated. However, some of the groups and individual data elements are not mandatory.

In NTCIP 1202 v02.18 - Annex A, the table in Clause A.2 indicates whether a conformance group is
mandatory or optional. The tables in Clauses A.3 through A.35 enumerate the objects in each
conformance group and indicate which specific objects are mandatory or optional.

Note that the list does not add the ".0" in the case of leaf objects or the ".1 .. .X" in the case of columnar
objects. Annex B of this document contains a list of objects that contain max values. These objects serve
to define the number of rows in various tables. The value of X in the ".1 .. .X" extensions shall match the
appropriate max value.

In the case of the MIB Walk test case, there are no input specifications per se. Get Next operations are
performed until a noSuchName error is returned.

In the case of the MIB check test case, the input specification is a MIB compiler "tree output" containing
all the potential objects that may be supported by the DUT.

1.10 OUTPUT SPECIFICATIONS

The output specification of object instantiation is a "GetResponse" with an Error-Status of noError when a
GetRequest of OID is sent to the device under test. A GetResponse with an Error-Status of noSuchName
indicates that the object is not supported and should be duly noted.

1.11 ENVIRONMENTAL NEEDS

1.11.1 Hardware
The following is the hardware needed to conduct this test case:

• Actuated Traffic Signal Controller that supports NTCIP 1202 Object Definitions,
• Test software that is capable of generating SNMP GetRequests and SetRequests with the OIDs

and values as delineated above, and .
• Test software that is capable of parsing and displaying the values contained in an SNMP

GetResponse.

Note - The term "Test software," as used above, is generic. The NTCIP Exerciser, SimpleSoft's
SimpleTester™, or another software package that has the ability to generate the interpret SNMP
Message may be used.

 TCS-TSC v01.10

 217

1.11.2 Software
The communications software in the DUT must be compliant with the communications used in the Test
Software.

1.11.3 Other
The following is the configuration of the hardware components:

Test Software Traffic Signal
Controller

Protocol
Analyzer

The use of a protocol analyzer is optional.

1.12 SPECIAL PROCEDURAL REQUIREMENTS

There are no special procedural requirements related to this test case.

1.13 INTERCASE DEPENDENCIES

There are no intercase dependencies related to this test case. The only requirement for reading data is
use of the appropriate Community Name. To ensure access to all objects, the community name as
defined in communityNameAdmin should be used.

 TCS-TSC v01.10

 218

2 Supported Values Test Case

2.0 TEST ITEMS

This test case applies to devices that implement the data elements defined within NTCIP 1202-ASC.
While NTCIP 1202-ASC is, technically, an information profile that specifies all of the data elements to be
implemented in an ASC device, this test case specification only deals with the objects that are defined in
the MIB. All MIB defined objects are checked for instantiation and the range of values supported.

2.0.1 Requirement Specifications
The requirements specifications are defined in NTCIP 1202 and are summarized in NTCIP 1202 v02.19-
Annex A. The following appears at the beginning of Annex A:

Conformance Groups are defined as either mandatory or optional. If a Conformance Group is
mandatory, all of the objects with STATUS "mandatory" that are part of the Conformance Group shall
be present for a device to claim conformance to the Conformance Group. If a Conformance Group is
optional, all of the objects that are part of the Conformance Group with the STATUS "mandatory"
shall be present if the device supports the Conformance Group. Objects with the STATUS "optional"
may be supported.

When a table is included in a Conformance Group, all objects contained in the table are included by
reference. This is because a table is defined as a SEQUENCE OF {SEQUENCE}. Thus, all objects
listed in the sequence are defined as an integral part of the table. Tables are defined as either
mandatory or optional. If a table is mandatory, all of the objects with STATUS "mandatory" shall be
present. If a table is optional, all of the objects with the STATUS "mandatory" shall be present if the
device supports the table. Objects in the table with the STATUS "optional" may be supported.

The following statements appear in Clause A.2:

Additional objects or groups may be supported without being non-compliant with ASC objects or
NTCIP. Minimum and maximum ranges of objects that differ from the values of the object’s SYNTAX
field may be enforced by an application running on a device.

A device which enforces range limits within the bounds specified by the values of the object’s
SYNTAX field shall not be categorized as being non-compliant with ASC objects or NTCIP.

A device which supports a subset of objects with enumerated values shall not be categorized as
being non-compliant with NTCIP 1202-ASC objects or NTCIP.

The table indicates that the individual data elements in the following conformance groups defined within
NTCIP 1202 shall be supported:

• Phase Conformance Group
• Detector Conformance Group

The table also indicates that the individual data elements in the following conformance groups defined
within NTCIP 1202 may be optional supported:

• Volume Occupancy Report Conformance Group
• Unit Conformance Group
• Special Function Conformance Group
• Coordination Conformance Group
• Time Base Conformance Group
• Preempt Conformance Group
• Ring Conformance Group

 TCS-TSC v01.10

 219

• Channel Conformance Group
• Overlap Conformance Group
• TS 2 Port 1 Conformance Group
• Block Object Conformance Group

It is assumed that test cases and procedures for the other Conformance Groups (and their data
elements) are covered in other documents.

2.0.2 Design Specifications
2.0.3 User Guide
2.0.4 Operators Guide
2.0.5 Installation Guide

2.1 INPUT SPECIFICATIONS

The requirements as stated in NTCIP 1202 imply that the data elements within the appropriate group
shall be instantiated and that the range or a subrange shall be supported.

A manufacturer's completed PICS should be included in the Test Item Transmittal Report. It should list
the upper and lower bounds of an object's supported value range.

Annex B of this document contains some clarification on how to interpret what may be listed in a
manufacturer's PICS.

2.2 OUTPUT SPECIFICATIONS

The output specification of the checks for supported values is a "GetResponse" with an Error-Status of
noError when a "SetRequest" of the OID is sent to the device under test. Any other Error-Status
indicates the value.

2.3 ENVIRONMENTAL NEEDS

2.3.1 Hardware
The following is the hardware needed to conduct this test case:

• Actuated Traffic Signal Controller that supports NTCIP 1202 Object Definitions.
• Test software that is capable of generating SNMP GetRequests and SetRequests with the OIDs

and values as delineated above.
• Test software that is capable of parsing and displaying the values contained in an SNMP

GetResponse.

2.3.2 Software
The communications software in the DUT must be compliant with that used in the Exerciser.

2.3.3 Other
The following is the configuration of the hardware components:

 TCS-TSC v01.10

 220

Test Software Traffic Signal
Controller

Protocol
Analyzer

The use of a protocol analyzer is optional.

2.4 SPECIAL PROCEDURAL REQUIREMENTS

There are no special procedural requirements related to this test case.

2.5 INTERCASE DEPENDENCIES

The intercase dependency related to this test case specification is support of the Database Management
Conformance Group whose data elements are defined in NTCIP 1201. Testing of "P2" Object Types
requires support of dbCreateTransaction.

 TCS-TSC v01.10

 221

3 SNMP Protocol Test Case

3.0 TEST ITEMS

The overall purpose of this test case is to verify conformance to the SNMP Protocol. The SNMP items
and features to be exercised by this test case include:

• getNextRequest
• getRequest
• setRequest
• getResponse
• Multiple Variable Binding in a setRequest
• Multiple Variable Binding in a getRequest
• Errors

o badValue
o readOnly
o noSuchName
o badValue in multiple variable binding

• Invalid communityName
• Data Elements in SNMP Conformance Group

3.1 INPUT SPECIFICATIONS

The inputs specifications for this test case are defined in the General, Get and Set Commands, SNMP
Errors, Encoding Rules, and SNMP Configuration Group Sessions of the VDOT- SNMP Test Procedures
Report - Rev 1.doc.

3.2 OUTPUT SPECIFICATIONS

The output specifications for this test case are defined in the General, Get and Set Commands, SNMP
Errors, Encoding Rules, and SNMP Configuration Group Sessions of the VDOT- SNMP Test Procedures
Report - Rev 1.doc.

3.3 ENVIRONMENTAL NEEDS

3.3.1 Hardware
The following is the hardware needed to conduct this test case:

• Actuated Traffic Signal Controller that supports the SNMP portions of NTCIP 2301 Simple
Transportation Management Framework Application Profile.

• Test software that is capable of generating SNMP GetRequests and SetRequests with the OIDs
and values as delineated above.

• Test software that is capable of parsing and displaying the values contained in an SNMP
GetResponse.

3.3.2 Software
The communications software in the DUT must be compliant with that used in the Exerciser.

3.3.3 Other
The following is the configuration of the hardware components:

 TCS-TSC v01.10

 222

Test Software Traffic Signal
Controller

Protocol
Analyzer

The use of a protocol analyzer is optional.

3.4 SPECIAL PROCEDURAL REQUIREMENTS

There are no specific special procedural requirements associated with this test case.

3.5 INTERCASE DEPENDENCIES

There are no specific intercase dependencies associated with this test case.

 TCS-TSC v01.10

 223

4 Null Protocol Test Case

4.0 TEST ITEMS

The items and features to be exercised by this test case include:
• Handling of Initial Protocol Identifier

4.1 INPUT SPECIFICATIONS

The inputs specifications for this test case are defined in HDLC Errors Session of the VDOT- SNMP Test
Procedures Report - Rev 1.doc.

4.2 OUTPUT SPECIFICATIONS

The output specifications for this test case are defined in HDLC Errors Session of the VDOT- SNMP Test
Procedures Report - Rev 1.doc.

4.3 ENVIRONMENTAL NEEDS

4.3.1 Hardware
The following is the hardware needed to conduct this test case:

• Actuated Traffic Signal Controller that supports NTCIP 1202 Object Definitions.
• Test software that is capable of generating SNMP GetRequests and SetRequests with the OIDs

and values as delineated above.
• Test software that is capable of parsing and displaying the values contained in an SNMP

GetResponse.

4.3.2 Software
The communications software in the DUT must be compliant with that used in the Exerciser.

4.3.3 Other
The following is the configuration of the hardware components:

Test Software Traffic Signal
Controller

Protocol
Analyzer

The use of a protocol analyzer is optional.

 TCS-TSC v01.10

 224

4.4 SPECIAL PROCEDURAL REQUIREMENTS

There are no specific special procedural requirements associated with this test case.

4.5 INTERCASE DEPENDENCIES

There are no specific intercase dependencies associated with this test case.

 TCS-TSC v01.10

 225

5 PMPP Using RS-232 Test Case

5.0 TEST ITEMS

The items and features to be exercised by this test case include:
• address field

o one byte form
o two byte form

• broadcast
• group address

o one byte form
o two byte form

• control field
• HDLC errors

o unknown IPI
o Invalid CRC value
o Invalid data stream

• data elements in RS-232 Conformance Group
• data elements in LapB Conformance Group

5.1 INPUT SPECIFICATIONS

The input specifications for this test case are defined in VDOT- Class B Test Procedures - Rev 1.doc.

5.2 OUTPUT SPECIFICATIONS

The output specifications for this test case are defined in VDOT- Class B Test Procedures - Rev 1.doc.

5.3 ENVIRONMENTAL NEEDS

5.3.1 Hardware
The following is the hardware needed to conduct this test case:

• Actuated Traffic Signal Controller that supports NTCIP 1202 Object Definitions.
• Test software that is capable of generating SNMP GetRequests and SetRequests with the OIDs

and values as delineated above.
• Test software that is capable of parsing and displaying the values contained in an SNMP

GetResponse.

5.3.2 Software
The communications software in the DUT must be compliant with that used in the Exerciser.

5.3.3 Other
The following is the configuration of the hardware components:

 TCS-TSC v01.10

 226

Exerciser
Traffic Signal

Contoller

Protocol
Analyzer

The use of a protocol analyzer is optional.

5.4 SPECIAL PROCEDURAL REQUIREMENTS

There are no specific special procedural requirements associated with this test case.

5.5 INTERCASE DEPENDENCIES

There are no specific intercase dependencies associated with this test case.

 TCS-TSC v01.10

 227

6 PMPP Using FSK Modem Test Case

The tests conducted with respect to the Point-to-Multipoint Protocol using an FSK Modem Interface shall
consist of conducting the System Operational Scenarios with a 1200 Bps FSK Modem (see Subclause
1.4.7). This test is contingent upon DUT support of the NTCIP 2102 (PMPP using FSK Modem).

6.0 TEST ITEMS

The items and features to be exercised by this test case include:
• FSK Modem

6.0.1 Requirements specifications
Execution of this test case requires the DUT to support an FSK Modem interface.

6.1 INPUT SPECIFICATIONS

6.2 OUTPUT SPECIFICATIONS

6.3 ENVIRONMENTAL NEEDS

6.3.1 Hardware
The following is the hardware needed to conduct this test case:

• Actuated Traffic Signal Controller that supports NTCIP 1202 Object Definitions and an FSK
Modem Interface.

• An external FSK Modem to be connected to the test software computer.
• Test software that is capable of generating SNMP GetRequests and SetRequests with the OIDs

and values as delineated above.
• Test software that is capable of parsing and displaying the values contained in an SNMP

GetResponse.

6.3.2 Software
The communications software in the DUT must be compliant with that used in the Exerciser.

6.3.3 Other
The following is the configuration of the hardware components:

Test Software Traffic Signal
Controller

Protocol
Analyzer

Modem

 TCS-TSC v01.10

 228

The use of a protocol analyzer is optional.

6.4 SPECIAL PROCEDURAL REQUIREMENTS

There are no specific special procedural requirements associated with this test case.

6.5 INTERCASE DEPENDENCIES

There are no specific intercase dependencies associated with this test case.

 TCS-TSC v01.10

 229

7 System Operational Scenarios Test Cases

7.0 TEST ITEMS

The items and features to be exercised by this test case include:
• Setting and verifying the time and date
• Setting up several Dynamic Objects
• Retrieving data typically used to display an intersection map
• Retrieving the status of an eight intersection system
• Two channel operation

7.0.1 Requirements specifications

A. For setting and verifying the time and date, the following NTCIP 1202 objects will be checked for

proper operation:
• globalTime
• controller-localTime
• globalDaylightSavings
• controller-standardTimeZone

B. For setting up several Dynamic messages, two dynamic objects will be defined that correspond to the

objects used in the following:
• intersection map
• eight intersection system

C. To simulate an eight-phase intersection map, the following NTCIP 1202 objects will be retrieved:

• channelStatusGroupGreens (Group 1)
• channelStatusGroupYellows (Group 1)
• vehicleDetectorStatusGroupActive (Group 1)
• phaseStatusGroupPedCall (Group 1)
• cordPatternStatus
• unitControlStatus
• shortAlarmStatus
• ringStatus (sequenceRingNumber 1&2)

 If the DUT supports more than 8 phases, the following objects will be retrieved:

• channelStatusGroupGreens (Groups 1&2)
• channelStatusGroupYellows (Groups 1&2)
• vehicleDetectorStatusGroupActive (Groups 1&2)
• phaseStatusGroupPedCalls (Group 1)
• cordPatternStatus
• unitControlStatus
• shortAlarmStatus
• ringStatus (sequenceRingNumber 1&2)

D. For the status of an eight-intersection system, the following NTCIP 1202 objects will be retrieved from

each intersection:
• channelStatusGroupGreens (Group 1)
• vehicleDetectorStatusGroupActive (Group 1)
• shortAlarmStatus

 TCS-TSC v01.10

 230

E. Two-channel operation is a test of a management application and therefore will not be included in this

test case.

7.0.2 Design Specifications
7.0.3 User Guide
7.0.4 Operators Guide
7.0.5 Installation Guide
7.1 INPUT SPECIFICATIONS

7.2 OUTPUT SPECIFICATIONS

7.3 ENVIRONMENTAL NEEDS

7.3.1 Hardware
The following is the hardware needed to conduct this test case:

• Actuated Traffic Signal Controller that supports NTCIP 1202 Object Definitions.
• Management software that is capable of generating SNMP GetRequests and SetRequests with

the OIDs and values as delineated above.
• Management software that is capable of parsing and displaying the values contained in an SNMP

GetResponse.

Note - The term "Management software," as used above, is generic. It refers to any PC Software package
that has the ability to generate and interpret SNMP messages in the manner described above.

7.3.2 Software
The communications software in the DUT must be compliant with that used in the Management Software.

7.3.3 Other
The following is the configuration of the hardware components:

Management
Software

Traffic Signal
Controller

Protocol
Analyzer

The use of a protocol analyzer is optional.

7.4 SPECIAL PROCEDURAL REQUIREMENTS

There are no specific special procedural requirements associated with this test case.

 TCS-TSC v01.10

 231

7.5 INTERCASE DEPENDENCIES

There are no specific intercase dependencies associated with this test case.

 TCS-TSC v01.10

 232

8 Optional System Operational Scenarios Test Cases - Retrieving Log Data

8.0 TEST CASE SPECIFICATION IDENTIFICATION

8.1 TEST ITEMS

8.1.1 Requirements Specifications
A. For setting and verifying the time and date, the following NTCIP 1202 objects will be checked for

proper operation:
maxEventClasses
eventClassTable
eventClassEntry
 eventClassNumber
 eventClassLimit
 eventClassClearTime
 eventClassDescription
 eventClassNumRowsInLog
 eventClassNumEvents
maxEventLogConfigs
eventLogConfigTable
eventLogConfigEntry
 eventConfigID
 eventConfigClass
 eventConfigMode
 eventConfigCompareValue
 eventConfigCompareValue2
 eventConfigCompareOID
 eventConfigLogOID
 eventConfigAction
 eventConfigStatus
maxEventLogSize
eventLogTable
eventLogEntry
 eventLogClass
 eventLogNumber
 eventLogID
 eventLogTime
 eventLogValue
numEvents

8.1.2 Design Specifications

A. The following are the pre-conditions:

• maxEventClasses shall support a minimum value of 6.
• The controller is configured a standard 8-phase quad.
• Controller is cycling through all 8 phases and cycle time should be 100 seconds.
• All eventConfigAction.X are set = disabled(2).
• 5 < phaseMinimumGreen.1 > 15.

B. Configure the time management entries as follows:

globalTime.
0

globalDaylightSaving.0 controller-standardTimeZone.0

local time
+ 21600

enableUSDST - 21600 (CST = 6 hours)

Note: This sets controller-localTime to current TOD.

 TCS-TSC v01.10

 233

C. Configure the entries in the eventClassTable as follows:

eventClassNumbe
r

eventClassLimi
t

eventClassClearTime eventClassDescription

1 2 controller-localTime "Class 1, Limit 2, onChange"
2 3 controller-localTime "Class 2, Limit 3, greaterThan"
3 4 controller-localTime "Class 3, Limit 4, smallerThan"
4 5 controller-localTime "Class 4, Limit 5, hystereis"
5 6 controller-localTime "Class 5, Limit 6, periodic"
6 7 controller-localTime "Class 6, Limit 7, andWith"

Note: Setting eventClassClearTime = controller-localTime clears any previous events

D. Configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

1 1 onChange(2) n/a n/a phaseMinimumGreen.1 phaseMinimum
Green.1

disabled
(2)

2 2 greaterThan(3) 0x44 10 phaseStatusGroupGreens.1 phaseStatus
GroupGreens.1

disabled
(2)

3 3 smallerThan
(4)

0x88 10 phaseControlGroupHold.1 phaseControl
GroupHold.1

disabled
(2)

4 4 hysteresis (5) 6 7 phaseMinimumGreen.1 phaseMinimum
Green.1

disabled
(2)

5 5 Periodic (6) 10 n/a globalTime.0 coordCycle
Status.0

disabled
(2)

6 6 andedWith (7) 0x11 n/a phaseStatusGroupPhase
Ons.1

phaseStatus
GroupPhase
Ons.1

disabled
(2)

Note: After configuration and having the controller complete 2 complete cycles, is a check of the logs
should indicate that they are cleared.

E. For Class 1 Events, configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

1 1 onChange(2) n/a n/a phaseMinimumGreen.1 phaseMinimum
Green.1

log (2)

Then perform the following:

Set phaseMinimumGreen.1= phaseMinimumGreen.1 + 1
Wait 15 seconds
Set phaseMinimumGreen.1= phaseMinimumGreen.1
Verify eventClassNumEvents.ClassNumber = 2
Verify numEvents.0 = 2
Verify that:

eventLogClas
s

eventLogNumbe
r

eventLogID eventLogTime eventLogValue

1 1 1 ~current local Time -
15

phaseMinimumGreen.
1 + 1

1 2 1 ~current local Time phaseMinimumGreen.
1

 TCS-TSC v01.10

 234

Configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

1 1 onChange(2) n/a n/a phaseMinimum
Green.1

phaseMinimum
Green.1

disabled(2)

Configure the entries in the eventClassTable as follows:
eventClassNumber eventClassLimit eventClassClearTime eventClassDescription
1 2 current-localTime "Class 1, Limit 2, onChange"

Verify eventClassNumEvents.1 = 0

F. For Class 2 Events, configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

2 2 greaterThan(3) 0x44 10 phaseStatusGroup
Greens.1

phaseStatus
GroupGreens.1

log (3)

Then perform the following:

Wait 330 Seconds
Verify eventClassNumEvents.2 = 3
Verify that:

eventLogClas
s

eventLogNumbe
r

eventLogID eventLogTime eventLogValue

2 1 2 0x88
2 2 2 > eventLogTime.1 0x88
2 3 2 > eventLogTime.2 0x88

Configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

2 2 greaterThan(3) 0x44 2 phaseStatusGroup
Greens.1

phaseStatusGroup
Greens.1

Disabled
(2)

Configure the entries in the eventClassTable as follows:
eventClassNumber eventClassLimit eventClassClearTime eventClassDescription
2 3 current-localTime "Class 2, Limit 3,

greaterThan"

Verify eventClassNumEvents.2 = 0

G. For Class 3 Events, configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

3 3 smallerThan
(4)

0x01 10 phaseControlGroup
Hold.1

phaseControlGroup
Hold.1

log (3)

Then perform the following:

Wait 15 seconds

 TCS-TSC v01.10

 235

Set phaseControlGroupHold.1 = 0x01
Wait 15 seconds
Set phaseControlGroupHold.1 = 0x00
Wait 15 seconds
Verify eventClassNumEvents.3 = 3
Verify that:

eventLogClas
s

eventLogNumbe
r

eventLogID eventLogTime eventLogValue

3 1 3 ~current local Time -35 0x00
3 2 3 ~current local Time -20 0x01

3 3 3 ~current local Time – 5 0x00

Configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

3 3 smallerThan
(4)

0x88 10 phaseControlGroup
Hold.1

phaseControlGroup
Hold.1

disabled(2)

Configure the entries in the eventClassTable as follows:

eventClassNumber eventClassLimit eventClassClearTime eventClassDescription
3 4 current localTime "Class with limit of 4."

Verify eventClassNumEvents.3 = 0

H. For Class 4 Events, configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

4 4 hysteresis (5) 5 15 phaseMinimum
Green.1

phaseMinimum
Green.1

log (3)

Then perform the following:

Set phaseMinimumGreen.1= 0x04
Wait 15 Seconds
Set phaseMinimumGreen.1= 0x10
Wait 15 Seconds
Set phaseMinimumGreen.1= original value
Wait 15 seconds
Verify eventClassNumEvents.3 = 2
Verify that:

eventLogClas
s

eventLogNumbe
r

eventLogID eventLogTime eventLogValue

4 1 4 ~current local Time -
20

0x04

4 2 4 ~current local Time - 5 0x10

Configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

4 4 hysteresis (5) 6 7 phaseMinimum
Green.1

phaseMinimum
Green.1

disabled(2)

 TCS-TSC v01.10

 236

Configure the entries in the eventClassTable as follows:

eventClassNumber eventClassLimit eventClassClearTime eventClassDescription
4 4 current localTime "Class with limit of 5."

Verify eventClassNumEvents.4 = 0

I. For Class 5 Events, configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

5 5 periodic (6) 10 n/a globaltime.0 coordCycle
Status.0

log (3)

Then perform the following:

Wait 125 seconds
Verify eventClassNumEvents.3 = 6
Verify that:

eventLogClas
s

eventLogNumbe
r

eventLogI
D

eventLogTime eventLogValue

5 1 5 ~current local Time - 55 ~current local Time - 55
5 2 5 ~current local Time - 45 ~current local Time - 45
5 3 5 ~current local Time - 35 ~current local Time - 35
5 4 5 ~current local Time - 25 ~current local Time - 25
5 5 5 ~current local Time - 15 ~current local Time - 15
5 6 5 ~current local Time - 5 ~current local Time - 5

Configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

5 5 periodic (6) 10 n/a globalTime.0 coordCycle
Status.0

disabled(2)

Configure the entries in the eventClassTable as follows:

eventClassNumber eventClassLimit eventClassClearTime eventClassDescription
5 4 current localTime "Class with limit of 5."

Verify eventClassNumEvents.4 = 0

J. For Class 6 Events, configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

6 6 andedWith (7) 0x11 n/a phaseStatusGroup
PhaseOns.1

phaseStatusGroup
PhaseOns.1

log (3)

 TCS-TSC v01.10

 237

Then perform the following:
Wait 5 minutes
Verify eventClassNumEvents.6 = 6
Verify that:

eventLogClas
s

eventLogNumbe
r

eventLogID eventLogTime eventLogValue

6 1 6 n/a 0x11
6 2 6 n/a 0x11
6 3 6 n/a 0x11
6 4 6 n/a 0x11
6 5 6 n/a 0x11
6 6 6 n/a 0x11

Configure the entries in eventLogConfigTable as follows:

ID Class Mode Compare

Value
Compare
Value2

CompareOID Log
OID

Action

6 6 andedWith (7) 0x11 n/a phaseStatusGroup
PhaseOns.1

phaseStatusGroup
PhaseOns.1

disabled
(3)

Configure the entries in the eventClassTable as follows:

eventClassNumber eventClassLimit eventClassClearTime eventClassDescription
6 6 current localTime "Class with limit of 6."

Verify eventClassNumEvents.4 = 0

Note that the test case of retrieving log data requires support of the NTCIP 1202 v2 Block Object
Conformance Groups and the Block Data Type and ID requirements.

 TCS-TSC v01.10

 238

9 Optional System Operational Scenarios Test Cases - Retrieving Log Data

9.0 TEST CASE SPECIFICATION IDENTIFICATION

The test case of setting up a timebase schedule of events requires support of the NTCIP 1202 v2
TimeBlock Object Conformance Groups and the Block Data Type and ID requirements.

The test case of performing the database upload and download requires support of the NTCIP 1202 v2
Block Object Conformance Groups and the Block Data Type and ID requirements.

9.0.1 Design Specifications
9.0.2 User Guide
9.0.3 Operators Guide
9.0.4 Installation Guide
9.1 INPUT SPECIFICATIONS

9.2 OUTPUT SPECIFICATIONS

9.3 ENVIRONMENTAL NEEDS

9.3.1 Hardware
The following is the hardware needed to conduct this test case:

• Actuated Traffic Signal Controller that supports NTCIP 1202 Object Definitions.
• Management Software that is capable of generating SNMP GetRequests and SetRequests with

the OIDs and values as delineated above.
• Management Software that is capable of parsing and displaying the values contained in an

SNMP GetResponse.

9.3.2 Software
The communications software in the DUT must be compliant with that used in the Exerciser.

 TCS-TSC v01.10

 239

9.3.3 Other
The following is the configuration of the hardware components:

Management
Software

Traffic Signal
Controller

Protocol
Analyzer

The use of a protocol analyzer is optional.

9.4 SPECIAL PROCEDURAL REQUIREMENTS

There are no specific special procedural requirements associated with this test case.

9.5 INTERCASE DEPENDENCIES

There are no specific intercase dependencies associated with this test case.

 TCS-TSC v01.10

 240

10 System Performance Testing Test Case

10.0 TEST CASE SPECIFICATION IDENTIFICATION

10.1 TEST ITEMS

The items and features to be exercised by this test case include:
• Operation of Six-Intersection System using 1200 BPS
• Operation of Six-Intersection System using 9600 BSP

One or more test cases will be defined to maximize the number of messages that can be exchanged
when the Subnetwork operates at 1200 BPS. The mix of messages should include single addressed gets
and sets and one or more group addressed sets. Given the throughput limitations of 1200 BPS, the
STMP Protocol will be used.

One or more test cases will be defined to maximize the number of messages that can be exchanged
when the Subnetwork operates at 9600 BPS. The mix of messages should include single addressed gets
and sets and one or more group addressed sets. Both the SNMP and STMP Protocols will be used to
conduct these tests.

10.1.1 Requirements specifications
One or more test cases will be defined to maximize the number of messages that can be exchanged
when the Subnetwork operates at 1200 BPS. The mix of messages should include single addressed gets
and sets and one or more group addressed sets. Given the throughput limitations of 1200 BPS, the
STMP Protocol will be used.

One or more test cases will be defined to maximize the number of messages that can be exchanged
when the Subnetwork operates at 9600 BPS. The mix of messages should include single addressed gets
and sets and one or more group addressed sets. Both the SNMP and STMP Protocols will be used to
conduct these tests.

10.1.2 Design Specifications
The message used in the Phoenix and Lakewood system will be used:

• Once per second status poll (long and short)
• Command timing plan and special functions
• Upload/download system time and DST flag
• Polling for Detector volume and Occupancy

10.1.3 User Guide
10.1.4 Operators Guide
10.1.5 Installation Guide
10.2 INPUT SPECIFICATIONS

NTCIP 1202 does not define specific requirements in terms of throughput and response time. However,
the initial installation of the NTCIP Conformant Traffic Signal Controllers provides some guidance on a
systems integrator's expectation. Transcore's "NTCIP Lessons or Making NTCIP Work" (see Lessons
Learned Transcore v1.doc) provides specifics about typical messages and timing.

 TCS-TSC v01.10

 241

10.3 OUTPUT SPECIFICATIONS

10.4 ENVIRONMENTAL NEEDS

10.4.1 Hardware
The following is the hardware needed to conduct this test case:

• Actuated Traffic Signal Controller that supports NTCIP 1202 Object Definitions.
• Management software that is capable of generating SNMP GetRequests and SetRequests with

the OIDs and values as delineated above.
• Management software that is capable of parsing and displaying the values contained in an SNMP

GetResponse.
• A suitable modem or RS-232 converters capable of simulating multi-drop.

Depending on the configuration of the DUT, an external modem may be required.

10.4.2 Software
The communications software in the DUT must be compliant with that used in the Exerciser.

10.4.3 Other
The following are two possible configurations for the hardware components of this test case.
Figure 1 represents the case where the Traffic Signal Controllers all share a common multi-drop
interface.

Management
Software

Traffic Signal
Contoller

Protocol
Analyzer

Modem

Traffic Signal
Contoller

Figure 1

Figure 2 represents an alternate were the RS-232 Interface on the Traffic Signal Controllers is used but
converted to multi-drop by some means such as RS-232 to RS-485 Converters.

 TCS-TSC v01.10

 242

Management
Software

Traffic Signal
Controller

Protocol
Analyzer

Traffic Signal
Controller

Multi-drop
Converter

Multi-drop
Converter

Multi-drop
Converter

Figure 2

The use of a protocol analyzer is optional.

10.5 SPECIAL PROCEDURAL REQUIREMENTS

There are no specific special procedural requirements associated with this test case.

10.6 INTERCASE DEPENDENCIES

There are no specific intercase dependencies associated with this test case.

 TCS-TSC v01.10

 243

ASC Object Identifiers and Names

The following is a list of the Object Identifiers and Object Names that are defined or referenced in NTCIP
1202v02.19.

<Include the latest mib.out file from the SMICng Compiler>

 TCS-TSC v01.10

 244

ASC Max Value Object Identifiers

The following is a list of the Object Names defined or referenced in NTCIP 1202 that specify the upper
bound or max values for various table indexes. These objects serve to define the number of rows in
various tables. For columnar objects, the maximum value of the instance identifiers added to the Object
Identifiers for columnar objects shall not exceed the max value.

The following max values are defined in NTCIP 1202:

• maxPhases
• maxPhaseGroups
• maxVehicleDetectors
• maxVehicleDetectorStatusGroups
• maxPedestrianDetectors
• maxAlarmGroups
• maxSpecialFunctionOutputs
• maxPatterns
• maxSplits
• maxTimeBaseScheduleEntries
• maxDayPlans
• maxDayPlanEvents
• maxTimebaseAscActions
• maxPreempts
• maxRings
• maxSequences
• maxRingControlGroups
• maxChannels
• maxChannelStatusGroups
• maxOverlaps
• maxOverlapStatusGroups
• maxPort1Addresses

The following max values are defined in NTCIP 1201 - Global Object Definitions:

• globalMaxModules
• maxTimeBaseScheduleEntries
• maxDayPlans
• maxDayPlanEvents
• maxEventLogConfigs
• maxEventLogSize
• maxEventClasses
• maxGroupAddress

The following max values are defined in NTCIP 1103 - Transportation Management Protocol:

• logicalNameTranslationTable-maxEntries
• communityNamesMax

The following max values are defined in NTCIP 2103 - PPP Subnetwork Profile:

• chapMaxSecrets

The following max values are defined in NTCIP 2202 (RFC 1213) - Internet Transport Profile:

• tcpMaxConn
• ifNumber

 TCS-TSC v01.10

 245

The following max values are defined in NTCIP 2101 and 2102 (RFC 1317) - PMPP with RS-232 and
FSK Subnetwork Profiles:

• rs232Number

Note: A number of SNMPv1 Interface MIBs do not follow the MIB-II (RFC 1213) convention for
identifying table indexes that contain parameters associated with interfaces. Basically, MIB-II
assumes that the maximum value of ifIndex is the total number of physical interfaces supported. The
value of ifIndex is used to point to one and only one physical interface.

For example, a hypothetical traffic signal controller could have three interfaces that support NTCIP
protocols. It might have a RS-232 Interface as its system communications port, an RS-485 Interface
as its intra-cabinet communications port, and an Ethernet Interface as its console or laptop
communications port. The functionally of the RS-232 and RS-485 interfaces is expressed in RFC
1317 - Definitions of Managed Objects for RS-232-like Hardware Devices. The functionality of the
Ethernet Interface is expressed in RFC 1643 - Definitions of Managed Objects for Ethernet-like
Interface Types.

In the Ethernet MIB, ifIndex is used as the index in various tables that point to parameters associated
with that type of interface. There is no object definition that defines the total number of Ethernet
interfaces. In the RS-232 MIB, however, rs232Number defines the total number of ports covered by
the MIB and is used as the index into various tables. When RS-232 MIB was re-written to support
SNMPv2, however an object still defines the number of ports covered by the MIB but the index into
the various tables was changed to ifIndex.

What this means is that even though there could be two RS-232-like interfaces in the hypothetical
traffic signal controller, the ifIndex 1 could point to the RS-485 Interface, ifIndex 2 could point to the
Ethernet Interface, and ifIndex 3 could point to the RS-232 Interface. There is no NTCIP object
definition that maps the ifIndex to the rs232Number. Unless the definition of rs232PortIndex is
revised, the value used could be confused with the value of ifIndex.

 246

REFERENCES FOR APPENDIX F

1. IEEE Std 829-1998 – IEEE Standard for Software Test Documentation, Institute of

Electrical and Electronics Engineers, New York, New York, 1998.

2. DMS-11170, Fully Actuated, Solid-State Traffic Signal Controller Assembly,

Departmental Material Specification, Texas Department of Transportation, August 2006,
http://manuals.dot.state.tx.us/dynaweb/colmates/dms/@ebt-
link;?target=idmatch(s070019). Accessed July 29, 2006.

3. NTCIP Laboratory Testing for Actuated Signal Controllers, Summary Report for

ASSHTO Project 475070. Published by Texas Transportation Institute.
http://tti.tamu.edu/documents/TTI-2006-1.pdf. Accessed June 7, 2006.

4. ISO 9000 and ISO 14000 – in brief, ISO 9000, http://www.iso.org/iso/en/iso9000-

14000/understand/inbrief.htm. Accessed August 16, 2006.

 247

APPENDIX G:
TRAFFIC SIGNAL CONTROLLER TEST PROCEDURES

INTRODUCTION

This appendix contains a limited set of test procedures for use with NTCIP conformant

traffic signal controller field devices. One intent of this research project is to develop a limited

set of test procedures for ITS field devices using NTCIP standards to provide cost and effort

estimates for creating them for devices in the remaining standardized application areas. Due to

the scope and complexity of procedures for traffic signal controllers, the researcher’s

development focused on procedures that directly relate to TxDOT requirements that would not

be part of any outside development. Per agreement with the project monitoring committee, the

focus of the research was on testing procedures for the four-phase diamond sequencing and

detector operations. Only the details of the prequalification, the four-phase diamond sequencing,

and the four-phase detector operations appear after the test case summary. Table G-1 summarizes

the test procedure that are a part this research effort.

Table G-2 summarizes some additional test procedures that may be applicable to traffic

signal controller testing. However, their development was part of an AASHTO research project

(1). The Test Design Specification and Test Case Specification in Appendix F includes general

background and planning information that relates to development of the these test procedures.

Detector Operations

It is worthy to comment on two issues with respect to the detector operations test

procedures. The first issue is that NTCIP does not provide a means to activate detector inputs

prior to the operations in a controller that may operate on them. The NTCIP 1202-ASC object

phaseControlGroupVehCall places a call for service on a particular phase, but there is no object

that acts as a control to activate a detector input (2). Detector inputs may undergo memory,

switching, delay, and extending operations prior to their routing to a phase. Since the detector

operations tests involve phase switching, automating the testing process would be impossible

without a means of activating detector inputs through software. A test script interface to the

Hardware-in-the-Loop (HITL) software resolves the issue (3).

A “Set HITL Detector Input X = On/Off” instruction in the test procedures, sends an

operating system inter-processor communications command to the HITL software to activate or

 248

deactivate a detector input. The HITL software, in turn, sends the command to the software that

controls a TS2 Test Box. The TS2 Test Box uses the Port 1 communication interface of a

controller to activate the detector input of the traffic signal controller. There are delays and

timing issues to consider when using a HITL interface, but it does provide a solution. The

potential for using HITL in testing to provide independent verification of controller operation is

worthy of further research. One does not have to rely on visual inspection or retrieval of NTCIP

status information to confirm that some action takes place.

The second issue with the detector operations test procedures relates to risk management.

A requirement for most of the four-phase diamond detectors is that they operate as both calling

and extending detectors. In this operating mode, a detector extends, for example phase 1, when

phase 1 is green. The detector also places a call on phase 1 when it is not in phase 1 green. Not in

phase 1 means that it could be in phase 2, 3, 4, 5, 6, 7, or 8, for example. Rather than developing

a test procedure that samples only some of the other possible states, the test procedures in this

appendix look at all of the other intervals. In the case of the four-phase diamond operation, there

are 12 distinct states. To ensure that 10 calling detectors operate correctly in the 11 other

possible states requires 110 tests. If one considers that a phase can be in one of three possible

substates (green, yellow, and red), there could be 330 possible states.

For the purpose of this research project, the researcher chose the more extensive 110-test

approach rather that a sampling approach. One test procedure addresses the substates but the rest

look at operation during the green only. The number of resulting test steps illustrates the impact

of full coverage testing. Of the 183 pages needed to document the 110-test approach, a test

procedure that chooses just one of the possible 11 phase states randomly would have reduced the

documentation and resulting effort to implement the tests by at least 75%.

A sampling approach runs the risk of not detecting a potential problem in some

situations. The probability is that in the long term, it would show up after some number of testing

sessions. As it turns out, the extensive testing approach did uncover a problem immediately. Two

detectors fail to call the designated phase when in the green of one particular other phase. Both

detectors operate per the requirements. The physical geometry of an intersection or signage may

preclude the need to call the designated phase in this particular situation. In the testing, however,

it does not appear to be correct. A recommendation of the research is to investigate this further.

 249

TEST CASE SUMMARY

Table G-1 provides a summary of the traffic signal controller test procedures and test

cases organized by feature or functional area derived from NTCIP 1202-ASC and DMS 11170-

TSC (2,4). Two procedures, Global Configuration and Security, have a reference in NTCIP

1202-ASC, but the object definitions appear in NTCIP 1201-GLO (2,5). The test procedures do

not address all the functional requirements in DMS 11170-TSC (4).

Table G-1. Traffic Signal Controller Test Case Summary.

Traffic Signal Controller Test Cases

ID Title Description

Prequalification (PRL)
TC001 ASC PRL Information This procedure retrieves minimum project

requirements and maximum values, checks for
whether the required objects are implemented, and
performs a sampling of the supported values.

Four-Phase Diamond Sequencing (Seq)
TC001 Sequencing Tests sequencing of all transitions from one state to

another using vehicle calls (not detector calls).

Four-Phase Diamond Detector Operations (DetOps)
TC001 Detector 1 Operations Verifies the operation of Detector 1 to call Phase 6

under specific conditions and extend intervals
2516B, 2517B, 2518B, 4517B, 4518B, 1517B, and
3518B.

TC002 Detector 2 Operations Verifies the operation of Detector 2 to call and
extend Phase 2. The test for the two-second delay is
in TC021.

TC003 Detector 3 Operations Verifies the operation of Detector 3 to call and
extend Phase 3 under specific conditions and to
extend interval 3516B. The test for the two-second
delay is in TC021.

TC004 Detector 4 Operations Verifies the operation of Detector 4 to call and
extend Phase 4 under specific conditions and extend
interval 4516B. The test for the two-second delay is
in TC021.

TC005 Detector 5 Operations Verifies the operation of Detector 5 to call Phase 2
under specific conditions and extend intervals
1625B, 1635, 1645B, 1735B, 1745B, 1835B, and
1845B.

 250

Table G-1. Traffic Signal Controller Test Case Summary (continued).

Traffic Signal Controller Test Cases

ID Title Description
TC006 Detector 6 Operations Verifies the operation of Detector 6 to call and

extend Phase 6. The test for the two-second delay is
in TC021.

TC007 Detector 7 Operations Verifies the operation of Detector 7 to call and
extend Phase 7 under specific conditions and extend
interval 1725B. The test for the two-second delay is
in TC021.

TC008 Detector 8 Operations Verifies the operation of Detector 8 to call and
extend Phase 8 under specific conditions and extend
interval 1825B. The test for the two-second delay is
in TC021.

TC009 Detector 9 Operations Verifies the operation of Detector 9 to call Phase 6
under specific conditions, extend Phase 2 under
specific conditions, and extend intervals 2516B,
2517B, 2518B, 3517B, 3518B, 4517B, and 4518B.

TC010 Detector 10 Operations Verifies the operation of Detector 10 to call Phase 6
under specific conditions, extend Phase 2 under
specific conditions, and extend intervals 2516B,
2517B, 2518B, 3517B, 3518B, 4517B, and 4518B.

TC011 Detector 11 Operations Verifies the operation of Detector 11 to call and
extend Phase 2 under specific conditions

TC012 Detector 12 Operations Verifies the operation of Detector 12 to call and
extend Phase 4 under specific conditions and extend
interval 4516B (6+12).

TC013 Detector 13 Operations Verifies the operation of Detector 13 to call Phase 2
under specific conditions, extend Phase 6 under
specific conditions, and extend intervals 1625B,
1635B, 1645B, 1735B, 1745B, 1835B, and 1845B.

TC014 Detector 14 Operations Verifies the operation of Detector 14 to call Phase 2
under specific conditions, extend Phase 6 under
specific conditions, and extend intervals 1625B,
1635B, 1645B, 1735B, 1745B, 1835B, and 1845B.

TC015 Detector 15 Operations Verifies the operation of Detector 15 to call and
extend Phase 6 under specific conditions.

TC016 Detector 16 Operations Verifies the operation of Detector 16 to call and
extend Phase 8 under specific conditions and extend
interval 1825B.

TC017 Detector 17 Operations Verifies the operation of Detector 17 to call and
extend Phase 3 under specific conditions and extend
interval 3516B.

 251

Table G-1. Traffic Signal Controller Test Case Summary (continued).

Traffic Signal Controller Test Cases

ID Title Description
TC018 Detector 18 Operations Verifies the operation of Detector 18 to call and

extend Phase 7 under specific conditions and extend
interval 1725B.

TC019 Detector Operations Setup This procedure performs general setup of controller
parameters to facilitate testing and provide
consistent operation.

TC020 Detector Operations Teardown This procedure restores original controller
parameters after executing Detector Operation
Setup – TC001.

TC021 Detector Delay Verifies that, when programmed, Detectors 2, 3, 4,
6, 7, and 8 delay entering a call for the parent phase
when the parent phase is red.

Global Configuration (GloCon)
TC001 Retrieve Module Table This procedure retrieves the module table, and

allows the Tester to verify that the device under test
(DUT) reports the proper type of device,
manufacturer, model, and version.

TC002 Global Set ID This procedure ensures that a change to a static
database object produces a change in
globalSetIDParmeter.

Security
TC001 Change Administrator

Community Name
Verifies that the administrator can change the
administrator community name stored in the DUT
and properly affects operations.

TC002 Change User Community Name Verifies that the administrator can change the user
community names and their masks stored in the
DUT and properly affects operations.

The details of the Global Configuration and Security test cases can be found in Appendix

C of this report.

Some additional test procedures that may be applicable to traffic signal controller testing

are summarized in Table G-2. However, these test procedures were developed as part of an

AASHTO research project (1). The details of each procedure and the associated test scripts are

available at www.itstestlab.org. The Test Design Specification and Test Case Specification in

Appendix F include discussion on the premise and background information on these test

procedures.

 252

Table G-2. Additional Traffic Signal Controller Test Case Summary.

Additional Traffic Signal Controller Test Cases

ID Title Description
dbCreateTransaction (DCT)

TC0001 dbCreateTransaction Verifies that the dbCreateTransaction transitions
from all states to another properly, object values
are buffered when in the transaction state, and a
consistency check is performed.

Intersection Map (IM)
TC0001 Intersection Map Tests whether controller can produce the phase

related parameters of a typical eight-phase, dual
ring controller.

Global Configuration (GloCon)
TC0001 Retrieve Module Table This procedure retrieves the module table, and

allows the Tester to verify that the DUT reports the
proper type of device, manufacturer, model, and
version.

TC0002 Global Set ID This procedure ensures that a change to a static
database object produces a change in
globalSetIDParmeter.

Retrieve Log Data (RLD)
TC0001 Setup Classes and Configure

Events
This procedure checks whether objects are
instantiated, sets up the eventClassTable and the
eventLogConfigTable.

TC0002 Check Class 1 Events This procedure checks for proper functioning of the
“onChange” eventLogConfig.Mode and whether
the resulting log entries are produced.

TC0003 Check Class 2 Events This procedure checks for proper functioning of the
“greaterThan” eventLogConfig.Mode and whether
the resulting log entries are produced.

TC0004 Check Class 3 Events This procedure checks for proper functioning of the
“smallerThan” eventLogConfig.Mode and whether
the resulting log entries are produced.

TC0005 Check Class 4 Events This procedure checks for proper functioning of the
“hysteresis” eventLogConfig.Mode and whether
the resulting log entries are produced.

TC0006 Check Class 5 Events This procedure checks for proper functioning of the
“periodic” eventLogConfig.Mode and whether the
resulting log entries are produced.

TC0007 Check Class 6 Events This procedure checks for proper functioning of the
“andedWith” eventLogConfig.Mode and whether
the resulting log entries are produced.

 253

Table G-2. Additional Traffic Signal Controller Test Case Summary (continued).

Additional Traffic Signal Controller Test Cases

ID Title Description
TC0008 Class Events Cleanup This procedure clears the events in the logs and

resets the eventClassDescriptions to null.
System Map (SM)
TC0001 System Map The purpose of this test procedure is to demonstrate

and verify the retrieval of status information that
would typically be viewed in a system map display.

Timebase Schedule of Events (TBE)
TC0001 Setup1 This procedure is used to set up a scheduling

configuration.
TC0002 Trigger Scheduled Events This procedure tests whether the schedule of events

occurs.
Database Upload and Download (DUD)
TC0001 Setup This procedure verifies that the DUT supports the

ascBlock objects, verifies that the administrator can
change the administrator community name stored
in the DUT, and properly affects operations.

TC0002 Upload ascBlocks This procedure verifies that a single block of all 21
types can be uploaded.

TC0003 Download ascBlocks This procedure verifies that a single block of all 21
types can be downloaded.

TC0004 Upload Multiple ascBlocks This procedure verifies that multiple blocks of all
21 types can be uploaded.

TC0005 Download Multiple ascBlocks This procedure verifies that multiple blocks of all
21 types can be downloaded.

Time and Date (TAD)
TC0001 Time and Date1 The following procedures check for proper

operation in regard to setting and displaying time
and date, whether time is expressed as a counter
(sign bit is ignored and unit transitions from 0x7F
FF FF FF to 0x80 00 00 00). These procedures also
check for proper operation when daylight savings is
not enabled and when it is. Both transitions (spring
ahead and fall back) are checked. Finally, the
procedure checks that time zone value has the
appropriate effect on controller local time.
Since the overflow condition, transitioning from
0xFF FF FF FF to 0x00 00 00 00 occurs in the next
century, it is not checked.

1 Scripts for both globalLocalTimeDifferential and controllStandardTimeZone are available.

 254

TEST CASES

The details of the four-phase diamond sequencing and detector operations test cases

follow. The basic format of the test cases comes from the template that appears in NTCIP 8007 –

Testing and Conformity Assessment Documentation within NTCIP Standards Publications (6).

As presented here the test case format has additional fields for clarity and version control.

ASC PRL Information

Test Case: Title: ASC PRL Information
TC001 Description: This procedure retrieves minimum project requirements and

maximum values, checks for whether the required objects are
implemented, and performs a sampling of the supported values
for P and C objects.

 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

1. (Static
Values)

CONFIGURE a list <ASC Max and Static OIDs> that identifies read-
only objects that define either maximum values that affect the
indexes of tables or static variables that affect limits on other
variables

2. CONFIGURE COMMUNITY NAME OUT = “administrator“
3. FOR ObjectName = each objectName in < ASC Max and Static

OIDs>

4. GET ObjectName Pass/Fail
5. Record the value on the PRL
6. NEXT ObjectName
7. (Object

Support)
CONFIGURE a list of objectNames that must be supported

8. FOR [objectName = each objectName in Supported objectName List
9. FOR all possible [instance values]
10. GET [objectName].instance

Note: This loop performs the equivalent of a MIB Walk but uses
GET instead of GET-NEXT.

Pass/Fail

11. NEXT [instance value]
12. NEXT [objectName]
13. (Range

Support)
CONFIGURE a list <ASC Test Values> that identifies instances of
objects to test and a value in which to test the object with

14. FOR [objectNameInstance] = each objectNameInstance in <CCTV
Test Values>

15. GET [objectNameInstance] Pass/Fail
16. RECORD RESPONSE VALUE in [currentValue]
17. FOR [testValue] = each objectNameValue in <ASC Test Values>
18. SET [objectNameInstance] = [testValue] Pass/Fail
19. Record ObjectName, TestValue, and errorStatus
20. NEXT [testValue]

 255

21. SET [objectNameInstance] = [currentValue] Pass/Fail
22. NEXT ObjectName
23. RECORD responses on the associated NTCIP PRL and note any

anomalies.

Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes>
Version History: v1.00 04/05/06 Initial draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/19/06 Implemented script and proofed – JJ

Four-Phase Diamond Sequencing

Test Case: Title: Sequencing
TC001 Description: Tests sequencing of all transitions from one state to another

using vehicle calls (not detector calls).
 Constants: None
 Variables: [currentMinGrn.Phase]

[currentPassage.Phase]
[currentMax1.Phase]

 Pass/Fail
Criteria:

The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
1. CONFIGURE the controller for:

1. 4-phase diamond operation with Phase 3 and 7 in sequence
2. Connection to TS 2 Tester Box (BIU’s enabled)
3. Vehicle and Pedestrian Recalls are all off
4. Default data loaded

Note: The setup for different manufacturer controllers will be
different. Reference should be made to a document containing such
information.
Eagle Configuration Notes:

Unit Data – Startup & Misc – Alt Sequence = 16
Unit Data – Port 1 Data = Enable T&F 1=4, DET 1-4,
and Malfunction Unit
Phase Data – Initialization & N.A. Response Phase 4 and 7 =
Change “Dark“ TO “Inactive“

Naztec Configuration Notes:

Econolite Notes:

2. FOR Phase = 1 TO 16
3. GET phaseMinimumGreen.Phase, phasePassage.Phase, and

phaseMaximum1.Phase

 256

4. RECORD RESPONSE VALUE in [currentMinGrn.Phase],
[currentPassage.Phase] and [currentMax1.Phase]

Note: These values will be restored at the end of the test case.

5. SET phaseMinimumGreen.Phase = 1, phasePassage.Phase =
10, and phaseMaximum1.Phase = 5

6. NEXT Phase
Sequence from 2+5 with Calls on 2 and 3 = 3+5 and 2+5

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 2+5 Green Rest.

20. Set HITL Detector Input 3 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x12 AND

phaseStatusGroupPhaseOns.2= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND

Note: Wait until a change from 2+5.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1=
0x14 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 3+5.

Pass/Fail

28. Set HITL Detector Input 3 = Off
29. DELAY .2 Seconds
30. Set HITL Detector Input 2 = On
31. DELAY .2 Seconds
32. IF phaseStatusGroupPhaseOns.1≠ 0x14 OR

 257

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 3+5 then restore original values and then
exit.

33. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
34. WHILE phaseStatusGroupPhaseOns.1 = 0x14 AND

phaseStatusGroupPhaseOns.2 = 0x00

35. DELAY 1 Second
36. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

37. WEND

Note: Wait until a change from 3+5.

38. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1=
0x12 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 2+5.

Pass/Fail

39. Set HITL Detector Input 2 = Off
40. DELAY .2 Seconds
41. IF phaseStatusGroupPhaseOns.1≠ 0x12 OR

phaseStatusGroupPhaseOns.1≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 2+5 then restore original values and then
exit.

Sequence from 2+5 with Calls on 2 and 4 = 4+5 and 2+5
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 2+5 Green Rest.

20. Set HITL Detector Input 4 = On

 258

21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x12 AND

phaseStatusGroupPhaseOns.1= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 2+5.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x18 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 4+5.

Pass/Fail

28. Set HITL Detector Input 4 = Off
29. DELAY .2 Seconds
30. Set HITL Detector Input 2 = On
31. DELAY .2 Seconds
32. IF phaseStatusGroupPhaseOns.1 ≠ 0x18 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN EXIT (Procedure)

Note: If it does not go to 4+5, then restore original values and exit.

33. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
34. WHILE phaseStatusGroupPhaseOns.1 = 0x18 AND

phaseStatusGroupPhaseOns.2 = 0x00

35. DELAY 1 Second
36. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

37. WEND

Note: Wait until a change from 4+5.

38. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1≠
0x12 AND phaseStatusGroupPhaseOns.1≠ 0x00

Note: When it does change, it should be to 2+5.

Pass/Fail

39. Set HITL Detector Input 2 = Off
40. DELAY .2 Seconds
41. IF phaseStatusGroupPhaseOns.1≠ 0x12 OR

phaseStatusGroupPhaseOns.1≠ 0x00 THEN GOTO Termination
Restore

Note: If it does not go to 2+5, then restore original values and then
exit.

Sequence from 2+5 with Calls on 2 and 6 = 5+9, 1+6, 1+13, and 2+5
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

 259

phaseStatusGroupPhaseOns.2 ≠ 0X00
10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 2+5 Green Rest.

20. Set HITL Detector Input 6 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x12 AND

phaseStatusGroupPhaseOns.1= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 2+5.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x10 AND phaseStatusGroupPhaseOns.2 = 0x01

Note: When it does change, it should change to 5+9.

Pass/Fail

28. IF phaseStatusGroupPhaseOns.1 ≠ 0x10 OR
phaseStatusGroupPhaseOns.2 ≠ 0x01 THEN GOTO
TerminationRestore

Note: If it does not go to 5+9 then restore original values and then
exit.

29. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
30. WHILE phaseStatusGroupPhaseOns.1= 0x10 AND

phaseStatusGroupPhaseOns.1= 0x01

31. DELAY 1 Second
32. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

33. WEND
Note: Wait until a change from 5+9.

34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x21 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+6.

Pass/Fail

35. Set HITL Detector Input 6 = Off
36. DELAY .2 Seconds
37. Set HITL Detector Input 2 = On
38. DELAY .2 Seconds
39. IF phaseStatusGroupPhaseOns.1 ≠ 0x21 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

 260

Note: If it does not go to 1+6 then restore original values and then
exit.

40. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
41. WHILE phaseStatusGroupPhaseOns.1 = 0x21 AND

phaseStatusGroupPhaseOns.2 = 0x00

42. DELAY 1 Second
43. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

44. WEND

Note: Wait until a change from 1+6.

45. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1≠
0x01 AND phaseStatusGroupPhaseOns.1≠ 0x10

Note: When it does change, it should be to 1+13.

Pass/Fail

46. IF phaseStatusGroupPhaseOns.1≠ 0x01 OR
phaseStatusGroupPhaseOns.1≠ 0x10 THEN GOTO
TerminationRestore

Note: If it does not go to 1+13 then restore original values and then
exit.

47. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
48. WHILE phaseStatusGroupPhaseOns.1 = 0x01 AND

phaseStatusGroupPhaseOns.2 = 0x10

49. DELAY 1 Second
50. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

51. WEND

Note: Wait until a change from 1+13.

52. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1≠
0x12 AND phaseStatusGroupPhaseOns.1≠ 0x00

Note: When it does change, it should be to 2+5.

Pass/Fail

53. Set HITL Detector Input 2 = Off
54. DELAY .2 Seconds
55. IF phaseStatusGroupPhaseOns.1≠ 0x12 OR

phaseStatusGroupPhaseOns.1≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 2+5 then restore original values and then
exit.

Sequence from 2+5 with Calls on 2 and 7 = 5+9, 1+7, 2+15, and 2+5
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

 261

phaseStatusGroupPhaseOns.2 ≠ 0X00
10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 2+5 Green Rest.

20. Set HITL Detector Input 7 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x12 AND

phaseStatusGroupPhaseOns.1= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 2+5.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x10 AND phaseStatusGroupPhaseOns.2 = 0x01

Note: When it does change, it should change to 5+9.

Pass/Fail

28. IF phaseStatusGroupPhaseOns.1 ≠ 0x10 OR
phaseStatusGroupPhaseOns.2 ≠ 0x01 THEN GOTO
TerminationRestore

Note: If it does not go to 5+9 then restore original values and then
exit.

29. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
30. WHILE phaseStatusGroupPhaseOns.1= 0x10 AND

phaseStatusGroupPhaseOns.1= 0x01

31. DELAY 1 Second
32. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

33. WEND
Note: Wait until a change from 5+9.

34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x41 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+7.

Pass/Fail

35. Set HITL Detector Input 7 = Off
36. DELAY .2 Seconds
37. Set HITL Detector Input 2 = On
38. DELAY .2 Seconds
39. IF phaseStatusGroupPhaseOns.1 ≠ 0x41 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

 262

Note: If it does not go to 1+7 then restore original values and then
exit.

40. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
41. WHILE phaseStatusGroupPhaseOns.1 = 0x41 AND

phaseStatusGroupPhaseOns.2 = 0x00

42. DELAY 1 Second
43. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

44. WEND

Note: Wait until a change from 1+7.

45. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1≠
0x02 AND phaseStatusGroupPhaseOns.1≠ 0x40

Note: When it does change, it should be to 2+15.

Pass/Fail

46. IF phaseStatusGroupPhaseOns.1≠ 0x02 OR
phaseStatusGroupPhaseOns.1≠ 0x40 THEN GOTO
TerminationRestore

Note: If it does not go to 2+15 then restore original values and then
exit.

47. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
48. WHILE phaseStatusGroupPhaseOns.1 = 0x02 AND

phaseStatusGroupPhaseOns.2 = 0x40

49. DELAY 1 Second
50. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

51. WEND

Note: Wait until a change from 2+15.

52. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1≠
0x12 AND phaseStatusGroupPhaseOns.1≠ 0x00

Note: When it does change, it should be to 2+5.

Pass/Fail

53. Set HITL Detector Input 2 = Off
54. DELAY .2 Seconds
55. IF phaseStatusGroupPhaseOns.1≠ 0x12 OR

phaseStatusGroupPhaseOns.1≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 2+5 then restore original values and then
exit.

Sequence from 2+5 with Calls on 2 and 8 = 5+9, 1+8, 2+16, and 2+5
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

 263

phaseStatusGroupPhaseOns.2 ≠ 0X00
10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 2+5 Green Rest.

20. Set HITL Detector Input 8 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x12 AND

phaseStatusGroupPhaseOns.1= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 2+5.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x10 AND phaseStatusGroupPhaseOns.2 = 0x01

Note: When it does change, it should change to 5+9.

Pass/Fail

28. IF phaseStatusGroupPhaseOns.1 ≠ 0x10 OR
phaseStatusGroupPhaseOns.2 ≠ 0x01 THEN GOTO
TerminationRestore

Note: If it does not go to 5+9 then restore original values and then
exit.

29. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
30. WHILE phaseStatusGroupPhaseOns.1 = 0x10 AND

phaseStatusGroupPhaseOns.1 = 0x01

31. DELAY 1 Second
32. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

33. WEND
Note: Wait until a change from 5+9.

34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x81 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+8.

Pass/Fail

35. Set HITL Detector Input 8 = Off
36. DELAY .2 Seconds
37. Set HITL Detector Input 2 = On
38. DELAY .2 Seconds
39.
40. IF phaseStatusGroupPhaseOns.1 ≠ 0x81 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO Termination

 264

Restore

Note: If it does not go to 1+8 then restore original values and then
exit.

41. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
42. WHILE phaseStatusGroupPhaseOns.1 = 0x81 AND

phaseStatusGroupPhaseOns.2 = 0x00

43. DELAY 1 Second
44. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

45. WEND

Note: Wait until a change from 1+8.

46. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1=
0x02 AND phaseStatusGroupPhaseOns.1= 0x80

Note: When it does change, it should be to 2+16.

Pass/Fail

47. IF phaseStatusGroupPhaseOns.1≠ 0x02 OR
phaseStatusGroupPhaseOns.1≠ 0x80 THEN GOTO
TerminationRestore

Note: If it does not go to 2+16 then restore original values and then
exit.

48. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
49. WHILE phaseStatusGroupPhaseOns.1 = 0x02 AND

phaseStatusGroupPhaseOns.2 = 0x80

50. DELAY 1 Second
51. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

52. WEND

Note: Wait until a change from 2+16.

53. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1=
0x12 AND phaseStatusGroupPhaseOns.1 = 0x00

Note: When it does change, it should be to 2+5.

Pass/Fail

54. Set HITL Detector Input 2 = Off
55. DELAY .2 Seconds
56. IF phaseStatusGroupPhaseOns.1≠ 0x12 OR

phaseStatusGroupPhaseOns.1≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 2+5 then restore original values and then
exit.

Sequence from 3+5 with Calls on 3 and 4 = 4+5 and 3+5
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2

 265

9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND
phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 3+5 Green Rest.

20. Set HITL Detector Input 4 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x14 AND

phaseStatusGroupPhaseOns.1= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 3+5.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
 0x18 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 4+5.

Pass/Fail

28. Set HITL Detector Input 4 = Off
29. DELAY .2 Seconds
30. Set HITL Detector Input 3 = On
31. DELAY .2 Seconds
32. IF phaseStatusGroupPhaseOns.1 ≠ 0x18 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 4+5 then restore original values and then
exit.

33. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
34. WHILE phaseStatusGroupPhaseOns.1 = 0x18 AND

phaseStatusGroupPhaseOns.2 = 0x00

35. DELAY 1 Second
36. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

37. WEND
Note: Wait until a change from 4+5.

38. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x14 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 3+5.

Pass/Fail

39. Set HITL Detector Input 3 = Off
40. DELAY .2 Seconds

 266

41. IF phaseStatusGroupPhaseOns.1 ≠ 0x14 OR
phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 3+5 then restore original values and then
exit.

Sequence from 3+5 with Calls on 3 and 6 = 6+11, 1+6, 1+13, and 3+5
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 3+5 Green Rest.

20. Set HITL Detector Input 6 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x14 AND

phaseStatusGroupPhaseOns.2= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 3+5.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x20 AND phaseStatusGroupPhaseOns.2 = 0x04

Note: When it does change, it should change to 6+11

Pass/Fail

28. IF phaseStatusGroupPhaseOns.1 ≠ 0x20 OR
phaseStatusGroupPhaseOns.2 ≠ 0x04 THEN GOTO
TerminationRestore

Note: If it does not go to 6+11 then restore original values and then
exit.

29. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2

 267

30. WHILE phaseStatusGroupPhaseOns.1= 0x20 AND
phaseStatusGroupPhaseOns.2= 0x04

31. DELAY 1 Second
32. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

33. WEND
Note: Wait until a change from 6+11

34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x21 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+6.

Pass/Fail

35. Set HITL Detector Input 6 = Off
36. DELAY .2 Seconds
37. Set HITL Detector Input 3 = On
38. DELAY .2 Seconds
39. IF phaseStatusGroupPhaseOns.1 ≠ 0x21 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 1+6 then restore original values and then
exit.

40. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
41. WHILE phaseStatusGroupPhaseOns.1= 0x21 AND

phaseStatusGroupPhaseOns.2= 0x00

42. DELAY 1 Second
43. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

44. WEND
Note: Wait until a change from 1+6.

45. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x01 AND phaseStatusGroupPhaseOns.2 = 0x10

Note: When it does change, it should change to 1+13.

Pass/Fail

46. IF phaseStatusGroupPhaseOns.1 ≠ 0x01 OR
phaseStatusGroupPhaseOns.2 ≠ 0x10 THEN GOTO
TerminationRestore

Note: If it does not go to 1+13 then restore original values and then
exit.

47. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
48. WHILE phaseStatusGroupPhaseOns.1= 0x01 AND

phaseStatusGroupPhaseOns.2= 0x10

49. DELAY 1 Second
50. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

51. WEND
Note: Wait until a change from 1+13.

52. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x14 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 3+5.

Pass/Fail

53. Set HITL Detector Input 3 = Off
54. DELAY .2 Seconds
55. IF phaseStatusGroupPhaseOns.1 ≠ 0x14 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO

 268

TerminationRestore

Note: If it does not go to 3+5 then restore original values and then
exit.

Sequence from 3+5 with Calls on 3 and 7 = 5+9, 1+7, 1+13, and 3+5
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 3+5 Green Rest.

20. Set HITL Detector Input 7 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x14 AND

phaseStatusGroupPhaseOns.2= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 3+5.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x10 AND phaseStatusGroupPhaseOns.2 = 0x01

Note: When it does change, it should change to 5+9.

Pass/Fail

28. IF phaseStatusGroupPhaseOns.1 ≠ 0x10 OR
phaseStatusGroupPhaseOns.2 ≠ 0x01 THEN GOTO
TerminationRestore

Note: If it does not go to 5+9 then restore original values and then
exit.

29. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
30. WHILE phaseStatusGroupPhaseOns.1= 0x10 AND

phaseStatusGroupPhaseOns.2= 0x01

 269

31. DELAY 1 Second
32. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

33. WEND
Note: Wait until a change from 5+9.

34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x41 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+7.

Pass/Fail

35. Set HITL Detector Input 7 = Off
36. DELAY .2 Seconds
37. Set HITL Detector Input 3 = On
38. DELAY .2 Seconds
39. IF phaseStatusGroupPhaseOns.1 ≠ 0x41 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 1+7 then restore original values and then
exit.

40. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
41. WHILE phaseStatusGroupPhaseOns.1= 0x41 AND

phaseStatusGroupPhaseOns.2= 0x00

42. DELAY 1 Second
43. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

44. WEND
Note: Wait until a change from 1+7.

45. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x01 AND phaseStatusGroupPhaseOns.2 = 0x10

Note: When it does change, it should change to 1+13.

Pass/Fail

46. IF phaseStatusGroupPhaseOns.1 ≠ 0x01 OR
phaseStatusGroupPhaseOns.2 ≠ 0x10 THEN GOTO
TerminationRestore

Note: If it does not go to 1+13 then restore original values and then
exit.

47. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
48. WHILE phaseStatusGroupPhaseOns.1= 0x01 AND

phaseStatusGroupPhaseOns.2= 0x10

49. DELAY 1 Second
50. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

51. WEND
Note: Wait until a change from 1+13.

52. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x14 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 3+5.

Pass/Fail

53. Set HITL Detector Input 3 = Off
54. DELAY .2 Seconds
55. IF phaseStatusGroupPhaseOns.1 ≠ 0x14 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

 270

Note: If it does not go to 3+5 then restore original values and then
exit.

Sequence from 3+5 with Calls on 3 and 8 = 5+9, 1+8, 1+13, and 3+5
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 3+5 Green Rest.

20. Set HITL Detector Input 8 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x14 AND

phaseStatusGroupPhaseOns.2= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 3+5.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x10 AND phaseStatusGroupPhaseOns.2 = 0x01

Note: When it does change, it should change to 5+9.

Pass/Fail

28. IF phaseStatusGroupPhaseOns.1 ≠ 0x10 OR
phaseStatusGroupPhaseOns.2 ≠ 0x01 THEN GOTO
TerminationRestore

Note: If it does not go to 5+9 then restore original values and then
exit.

29. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
30. WHILE phaseStatusGroupPhaseOns.1= 0x10 AND

phaseStatusGroupPhaseOns.2= 0x01

31. DELAY 1 Second
32. GET phaseStatusGroupPhaseOns.1,

 271

phaseStatusGroupPhaseOns.2
33. WEND

Note: Wait until a change from 5+9.

34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x81 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+8.

Pass/Fail

35. Set HITL Detector Input 8 = Off
36. DELAY .2 Seconds
37. Set HITL Detector Input 3 = On
38. DELAY .2 Seconds
39. IF phaseStatusGroupPhaseOns.1 ≠ 0x81 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 1+8 then restore original values and then
exit.

40. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
41. WHILE phaseStatusGroupPhaseOns.1= 0x81 AND

phaseStatusGroupPhaseOns.2= 0x00

42. DELAY 1 Second
43. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

44. WEND
Note: Wait until a change from 1+8.

45. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x01 AND phaseStatusGroupPhaseOns.2 = 0x10

Note: When it does change, it should change to 1+13.

Pass/Fail

46. IF phaseStatusGroupPhaseOns.1 ≠ 0x01 OR
phaseStatusGroupPhaseOns.2 ≠ 0x10 THEN GOTO
TerminationRestore

Note: If it does not go to 1+13 then restore original values and then
exit.

47. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
48. WHILE phaseStatusGroupPhaseOns.1= 0x01 AND

phaseStatusGroupPhaseOns.2= 0x10

49. DELAY 1 Second
50. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

51. WEND
Note: Wait until a change from 1+13.

52. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x14 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 3+5.

Pass/Fail

53. Set HITL Detector Input 3 = Off
54. DELAY .2 Seconds
55. IF phaseStatusGroupPhaseOns.1 ≠ 0x14 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 3+5 then restore original values and then
exit.

 272

Sequence from 4+5 with Calls on 4 and 6 = 6+12, 1+6, 1+13, and 4+5
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 4+5 Green Rest.

20. Set HITL Detector Input 6 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x18 AND

phaseStatusGroupPhaseOns.2= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 4+5.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x20 AND phaseStatusGroupPhaseOns.2 = 0x08

Note: When it does change, it should change to 6+12.

Pass/Fail

28. IF phaseStatusGroupPhaseOns.1 ≠ 0x20 OR
phaseStatusGroupPhaseOns.2 ≠ 0x08 THEN GOTO
TerminationRestore

Note: If it does not go to 6+12 then restore original values and then
exit.

29. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
30. WHILE phaseStatusGroupPhaseOns.1= 0x20 AND

phaseStatusGroupPhaseOns.1= 0x08

31. DELAY 1 Second
32. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

33. WEND

 273

Note: Wait until a change from 6+12.
34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =

0x21 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+6.

Pass/Fail

35. Set HITL Detector Input 6 = Off
36. DELAY .2 Seconds
37. Set HITL Detector Input 4 = On
38. DELAY .2 Seconds
39. IF phaseStatusGroupPhaseOns.1 ≠ 0x21 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 1+6 then restore original values and then
exit.

40. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
41. WHILE phaseStatusGroupPhaseOns.1= 0x21 AND

phaseStatusGroupPhaseOns.2= 0x00

42. DELAY 1 Second
43. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

44. WEND
Note: Wait until a change from 1+6.

45. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x01 AND phaseStatusGroupPhaseOns.2 = 0x10

Note: When it does change, it should change to 1+13.

Pass/Fail

46. IF phaseStatusGroupPhaseOns.1 ≠ 0x01 OR
phaseStatusGroupPhaseOns.2 ≠ 0x10 THEN GOTO
TerminationRestore

Note: If it does not go to 1+13 then restore original values and then
exit.

47. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
48. WHILE phaseStatusGroupPhaseOns.1= 0x01 AND

phaseStatusGroupPhaseOns.2= 0x10

49. DELAY 1 Second
50. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

51. WEND
Note: Wait until a change from 1+13.

52. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x18 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 4+5.

Pass/Fail

53. Set HITL Detector Input 4 = Off
54. DELAY .2 Seconds
55. IF phaseStatusGroupPhaseOns.1 ≠ 0x18 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 4+5 then restore original values and then
exit.

Sequence from 4+5 with Calls on 4 and 7 = 5+9, 1+7, 1+13, and 4+5
1. GET ringStatus.1, ringStatus.2

 274

2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 4+5 Green Rest.

20. Set HITL Detector Input 7 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x18 AND

phaseStatusGroupPhaseOns.2= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 4+5.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x10 AND phaseStatusGroupPhaseOns.2 = 0x01

Note: When it does change, it should change to 5+9.

Pass/Fail

28. IF phaseStatusGroupPhaseOns.1 ≠ 0x10 OR
phaseStatusGroupPhaseOns.2 ≠ 0x01 THEN GOTO
TerminationRestore

Note: If it does not go to 5+9 then restore original values and then
exit.

29. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
30. WHILE phaseStatusGroupPhaseOns.1= 0x10 AND

phaseStatusGroupPhaseOns.2= 0x01

31. DELAY 1 Second
32. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

33. WEND
Note: Wait until a change from 5+9.

34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 = Pass/Fail

 275

0x41 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+7.

35. Set HITL Detector Input 7 = Off
36. DELAY .2 Seconds
37. Set HITL Detector Input 4 = On
38. DELAY .2 Seconds
39. IF phaseStatusGroupPhaseOns.1 ≠ 0x41 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 1+7 then restore original values and then
exit.

40. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
41. WHILE phaseStatusGroupPhaseOns.1= 0x41 AND

phaseStatusGroupPhaseOns.2= 0x00

42. DELAY 1 Second
43. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

44. WEND
Note: Wait until a change from 1+7.

45. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x01 AND phaseStatusGroupPhaseOns.2 = 0x10

Note: When it does change, it should change to 1+13.

Pass/Fail

46. IF phaseStatusGroupPhaseOns.1 ≠ 0x01 OR
phaseStatusGroupPhaseOns.2 ≠ 0x10 THEN GOTO
TerminationRestore

Note: If it does not go to 1+13 then restore original values and then
exit.

47. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
48. WHILE phaseStatusGroupPhaseOns.1= 0x01 AND

phaseStatusGroupPhaseOns.2= 0x10

49. DELAY 1 Second
50. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

51. WEND
Note: Wait until a change from 1+13.

52. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x18 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 4+5.

Pass/Fail

53. Set HITL Detector Input 4 = Off
54. DELAY .2 Seconds
55. IF phaseStatusGroupPhaseOns.1 ≠ 0x18 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 4+5 then restore original values and then
exit.

Sequence from 4+5 with Calls on 4 and 8 = 5+9, 1+8, 1+13, and 4+5
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second

 276

4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 4+5 Green Rest.

20. Set HITL Detector Input 8 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x18 AND

phaseStatusGroupPhaseOns.2= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 4+5.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x10 AND phaseStatusGroupPhaseOns.2 = 0x01

Note: When it does change, it should change to 5+9.

Pass/Fail

28. IF phaseStatusGroupPhaseOns.1 ≠ 0x10 OR
phaseStatusGroupPhaseOns.2 ≠ 0x01 THEN GOTO
TerminationRestore

Note: If it does not go to 5+9 then restore original values and then
exit.

29. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
30. WHILE phaseStatusGroupPhaseOns.1= 0x10 AND

phaseStatusGroupPhaseOns.2= 0x01

31. DELAY 1 Second
32. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

33. WEND
Note: Wait until a change from 5+9.

34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x81 AND phaseStatusGroupPhaseOns.2 = 0x00

Pass/Fail

 277

Note: When it does change, it should change to 1+8.
35. Set HITL Detector Input 8 = Off
36. DELAY .2 Seconds
37. Set HITL Detector Input 4 = On
38. DELAY .2 Seconds
39. IF phaseStatusGroupPhaseOns.1 ≠ 0x81 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 1+8 then restore original values and then
exit.

40. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
41. WHILE phaseStatusGroupPhaseOns.1= 0x81 AND

phaseStatusGroupPhaseOns.2= 0x00

42. DELAY 1 Second
43. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

44. WEND
Note: Wait until a change from 1+8.

45. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x01 AND phaseStatusGroupPhaseOns.2 = 0x10

Note: When it does change, it should change to 1+13.

Pass/Fail

46. IF phaseStatusGroupPhaseOns.1 ≠ 0x01 OR
phaseStatusGroupPhaseOns.2 ≠ 0x10 THEN GOTO
TerminationRestore

Note: If it does not go to 1+13 then restore original values and then
exit.

47. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
48. WHILE phaseStatusGroupPhaseOns.1= 0x01 AND

phaseStatusGroupPhaseOns.2= 0x10

49. DELAY 1 Second
50. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

51. WEND
Note: Wait until a change from 1+13.

52. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x18 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 4+5.

Pass/Fail

53. Set HITL Detector Input 4 = Off
54. DELAY .2 Seconds
55. IF phaseStatusGroupPhaseOns.1 ≠ 0x18 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 4+5 then restore original values and then
exit.

Sequence from 1+6 with Calls on 6 and 7 = 1+7 and 1+6
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

 278

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 1+6 Green Rest.

20. Set HITL Detector Input 7 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x21 AND

phaseStatusGroupPhaseOns.1= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 1+6.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x41 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+7.

Pass/Fail

28. Set HITL Detector Input 7 = Off
29. DELAY .2 Seconds
30. Set HITL Detector Input 6 = On
31. DELAY .2 Seconds
32. IF phaseStatusGroupPhaseOns.1 ≠ 0x41 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 1+7 then restore original values and then
exit.

33. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
34. WHILE phaseStatusGroupPhaseOns.1= 0x41 AND

phaseStatusGroupPhaseOns.2= 0x00

35. DELAY 1 Second
36. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

37. WEND
Note: Wait until a change from 1+7.

38. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 = Pass/Fail

 279

0x21 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+6.

39. Set HITL Detector Input 6 = Off
40. DELAY .2 Seconds
41. IF phaseStatusGroupPhaseOns.1 ≠ 0x21 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 1+6 then restore original values and then
exit.

Sequence from 1+6 with Calls on 6 and 8 = 1+8 and 1+6
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 1+6 Green Rest.

20. Set HITL Detector Input 8 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x21 AND

phaseStatusGroupPhaseOns.2= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 1+6.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x81 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+8.

Pass/Fail

28. Set HITL Detector Input 8 = Off
29. DELAY .2 Seconds

 280

30. Set HITL Detector Input 6 = On
31. DELAY .2 Seconds
32. IF phaseStatusGroupPhaseOns.1 ≠ 0x81 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 1+8 then restore original values and then
exit.

33. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
34. WHILE phaseStatusGroupPhaseOns.1= 0x81 AND

phaseStatusGroupPhaseOns.2= 0x00

35. DELAY 1 Second
36. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

37. WEND
Note: Wait until a change from 1+8.

38. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x21 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+6.

Pass/Fail

39. Set HITL Detector Input 6 = Off
40. DELAY .2 Seconds
41. IF phaseStatusGroupPhaseOns.1 ≠ 0x21 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 1+6 then restore original values and then
exit.

Sequence from 1+7 with Calls on 7 and 8 = 1+8 and 1+7
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

 281

Note: Wait for 1+7 Green Rest.
20. Set HITL Detector Input 8 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1= 0x41 AND

phaseStatusGroupPhaseOns.2= 0x00

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until a change from 1+ 7.

27. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x81 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+8.

Pass/Fail

28. Set HITL Detector Input 8 = Off
29. DELAY .2 Seconds
30. Set HITL Detector Input 7 = On
31. DELAY .2 Seconds
32. IF phaseStatusGroupPhaseOns.1 ≠ 0x81 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 1+8 then restore original values and then
exit.

33. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
34. WHILE phaseStatusGroupPhaseOns.1= 0x81 AND

phaseStatusGroupPhaseOns.2= 0x00

35. DELAY 1 Second
36. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

37. WEND
Note: Wait until a change from 1+ 8.

38. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1 =
0x41 AND phaseStatusGroupPhaseOns.2 = 0x00

Note: When it does change, it should change to 1+7.

Pass/Fail

39. Set HITL Detector Input 7 = Off
40. DELAY .2 Seconds
41. IF phaseStatusGroupPhaseOns.1 ≠ 0x41 OR

phaseStatusGroupPhaseOns.2 ≠ 0x00 THEN GOTO
TerminationRestore

Note: If it does not go to 1+7 then restore original values and then
exit.

Termination Restore
1.

(Termination
Restore)

FOR Phase = 1 TO 16

2. SET phaseMinimumGreen.Phase = [currentMinGrn.Phase],
phasePassage.Phase = [currentPassage.Phase], and
phaseMaximum1.Phase = [currentMax1.Phase]

3. NEXT Phase
4. Set HITL Detector Input 2, 3, 4, 6, 7, and 8 = Off
5. DELAY .2 Seconds

 282

Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes>
Version History: v1.00 04/07/06 Initial draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/24/06 Implemented script and proofed – JJ

 283

Four-Phase Diamond Detector Operations

The test cases check the operation of detector inputs 1 through 18 when a traffic signal

controller is configured for four-phase diamond operation. The test cases are defined upon the

Detector Operation Requirements appearing on page 18 of TxDOT DMS-11170, Fully Actuated,

Solid-State Traffic Signal Controller Assembly – dated August 2004 (4).

Detector 1 Operations

Test Case: Title: Detector 1 Operations
TC001 Description: Verifies the operation of Detector 1 to call Phase 6 if overlap A

is not green and there is no call on phase 7 or 8, and extends
intervals 2516B, 2517B, 2518B, 4517B, 4518B, 1517B, and
3518B.

 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 1 No Call on Phase 6 when Overlap A is Green

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2

 284

19. WEND

Note: Wait for 1+6 Green Rest.

20. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap A = 1+2+X.

21. IF RESPONSE ERROR = noError THEN
22. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x01 = 0x01

Note: Verifies that Overlap A = Green.

Pass/Fail

23. ENDIF
24. Set HITL Detector Input 1 = On
25. DELAY3 Seconds (3 full seconds)
26. GET phaseStatusGroupVehCalls.1
27. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x20 = 0x00

Note: Ensure that Phase 6 is not registering a Vehicle Call.

Pass/Fail

28. Set HITL Detector Input 1 = Off
29. DELAY .2 Seconds

Detector 1 No Call on Phase 6 when Overlap A is not Green and a Call on Phase 7
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap A = 1+2+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x01 = 0x00

Note: Verifies that Overlap A = NOT Green

Pass/Fail

18. ENDIF
19. Set HITL Detector Input 4 = On
20. DELAY .2 Seconds

 285

21. Set HITL Detector Input 7 = On
22. DELAY 2 Seconds (2 full seconds)
23. Set HITL Detector Input 1 = On
24. DELAY 2 Seconds (2 full seconds)
25. GET phaseStatusGroupVehCalls.1
26. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x20 = 0x00

Note: Ensure that Phase 6 is not registering a Vehicle Call.

Pass/Fail

27. Set HITL Detector Input 1 = Off, 7 = Off, and 4 = Off
28. DELAY .2 Seconds

Detector 1 No Call on Phase 6 when Overlap A is not Green and a Call on Phase 8
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap A = 1+2+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x01 = 0x00

Note: Verifies that Overlap A = NOT Green

Pass/Fail

18. ENDIF
19. Set HITL Detector Input 4 = On
20. DELAY .2 Seconds
21. Set HITL Detector Input 8 = On
22. DELAY 2 Seconds (2 full seconds)
23. Set HITL Detector Input 1 = On
24. DELAY 2 Seconds
25. GET phaseStatusGroupVehCalls.1
26. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x20 = 0x00

Note: Ensure that Phase 6 is not registering a Vehicle Call.

Pass/Fail

27. Set HITL Detector Input 1 = Off, 8 = Off, and 4 = Off
28. DELAY .2 Seconds

 286

Detector 1 calls Phase 6 when Overlap A is not Green and no Calls on Phase 7 or Phase 8
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap A = 1+2+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x01 = 0x00

Note: Verifies that Overlap A = NOT Green

Pass/Fail

18. ENDIF
19. Set HITL Detector Input 1 = On
20. DELAY 2 Seconds (2 full seconds)
21. GET phaseStatusGroupVehCalls.1
22. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x20 = 0x20

Note: Check for call on Phase 6.

Pass/Fail

23. Set HITL Detector Input 1 = Off
24. DELAY .2 Seconds

Detector 1 extends Phase 9 when Phase 9 is Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

 287

phaseStatusGroupPhaseOns.2
12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. Set HITL Detector Input 1 = On
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0X01

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND
Note: Wait until controller reaches 5+9.

24. GET ringStatus.1
25. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
26. DELAY 1 Second
27. GET ringStatus.1
28. WEND

Note: Wait for Max Out Indication.

Ring 1 = 2, 3, 4, 9, 11, & 12
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

29. GET phaseStatusGroupPhaseOns.2
30. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x01 = 0x01

Note: Ensure that Max Out occurred on Phase 9.

Pass/Fail

31. Set HITL Detector Input 1 = Off and 7 = Off
32. DELAY .2 Seconds

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes>
Version History: v1.00 04/12/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/20/06 Implemented script and proofed – JJ

 288

Detector 2 Operations

Test Case: Title: Detector 2 Operations
TC002 Description: Verifies the operation of Detector 2 to call and extend Phase 2
 Constants:
 Variables: currentRedClear

currentYellowChange
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 2 calls Phase 2 during 1+6 Green

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY 2 Seconds (2 full seconds)
17. GET phaseStatusGroupVehCalls.1
18. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x00

Note: Ensure that Phase 2 is NOT registering a Vehicle Call during 6
Green without a Detector 2 Call.

Pass/Fail

19. Set HITL Detector Input 2 = On
20. DELAY 2 Seconds (2 full seconds)
21. GET phaseStatusGroupVehCalls.1
22. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x02

Note: Ensure that Phase 2 is registering a Vehicle Call during the
Green of Phase 6 with a Detector 2 Call.

Pass/Fail

23. Set HITL Detector Input 6 and Input 2 = Off
24. DELAY 2 Seconds (2 full seconds)

 289

25. GET phaseStatusGroupVehCalls.1
26. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x00

Note: Ensure that Phase 2 is NOT registering a Vehicle Call after
Detector 2 Call is removed.

Pass/Fail

27. GET phaseRedClear.6 = [currentRedClear] and
phaseYellowChange.6 = [currentYellowChange]

28. SET phaseRedClear.6 = 70 and phaseYellowChange.6 = 70

Note: Increase Red Clear and Yellow Change time to ensure enough
time for vehicle calls to register on controller during those phases.

29. Set HITL Detector Input 7 = On

Note: This causes 1+6 to advance to Yellow.

30. DELAY 2 Seconds
31. Set HITL Detector Input 7 = Off
32. DELAY .2 Seconds
33. GET ringStatus.2
34. WHILE ringStatus.2 AND 0x07 ≠ 0x04
35. DELAY 1 Second
36. GET ringStatus.2
37. WEND

Note: Wait for 6 Yellow.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

38. GET phaseStatusGroupVehCalls.1
39. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x00

Note: Ensure that Phase 2 is NOT registering a Vehicle Call during
Phase 6 Yellow without a Detector 2 Call.

Pass/Fail

40. Set HITL Detector Input 2 = On
41. DELAY 2 Seconds (Give it some time to make sure it is registered)
42. GET phaseStatusGroupVehCalls.1
43. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x02

Note: Ensure that Phase 2 is registering a Vehicle Call during Phase
6 Yellow with a Detector 2 Call.

Pass/Fail

44. Set HITL Detector Input 2 = Off
45. DELAY 2 Seconds (Give it some time to make sure it is cleared)
46. GET phaseStatusGroupVehCalls.1
47. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x00

Note: Ensure that Phase 2 is NOT registering a Vehicle Call after
Detector 2 Call is removed.

Pass/Fail

48. GET ringStatus.2
49. WHILE ringStatus.2 AND 0x07 ≠ 0x05
50. DELAY 1 Second
51. GET ringStatus.2

 290

52. WEND

Note: Wait for 6 Red (CBS = xxxxx101).
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

53. GET phaseStatusGroupVehCalls.1
54. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x00

Note: Ensure that Phase 2 is NOT registering a Vehicle Call during
Phase 6 Red without a Detector 2 Call.

Pass/Fail

55. Set HITL Detector Input 2 = On
56. DELAY 2 Seconds (Give it some time to make sure it is registered)
57. GET phaseStatusGroupVehCalls.1
58. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x02

Note: Ensure that Phase 2 is registering a Vehicle Call during the
Phase 6 Red with a Detector 2 Call.

Pass/Fail

59. Set HITL Detector Input 2 = Off
60. DELAY 2 Seconds (Give it some time to make sure it is cleared)
61. GET phaseStatusGroupVehCalls.1
62. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x00

Note: Ensure that Phase 2 is NOT registering a Vehicle Call after the
Detector 2 Call is removed.

Pass/Fail

63. SET phaseRedClear.6 = [currentRedClear] and
phaseYellowChange.6 = [currentYellowChange]

Detector 2 calls Phase 2 during 1+7 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches or is in 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY 2 Seconds (2 full seconds)
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

 291

18. WHILE phaseStatusGroupGreens.1 = 0x41 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x41 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 1+7 green.

Pass/Fail

23. Set HITL Detector Input 2 = Off
24. DELAY .2 Seconds

Detector 2 calls Phase 2 during 1+8 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x81 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x81 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 1+8 Green.

Pass/Fail

23. Set HITL Detector Input 2 = Off
24. DELAY .2 Seconds

Detector 2 calls Phase 2 during 1+13 Green
1. GET ringStatus.1, ringStatus.2

 292

2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND
Note: Wait until controller reaches 1+13.

22. Set HITL Detector Input 3 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 2 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x01 AND
phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x01 AND

phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 1+13
Green.

Pass/Fail

32. Set HITL Detector Input 2 = Off
33. DELAY .2 Seconds

Detector 2 calls Phase 2 during 3+5 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2

 293

5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x14 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x14 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 3+5 Green.

Pass/Fail

23. Set HITL Detector Input 2 = Off
24. DELAY .2 Seconds

Detector 2 calls Phase 2 during 4+5 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On

 294

16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x18 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x18 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 4+5 Green.

Pass/Fail

23. Set HITL Detector Input 2 = Off
24. DELAY .2 Seconds

Detector 2 calls Phase 2 during 6+12 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND
Note: Wait until controller reaches 6+12.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 2 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

 295

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 6+12
Green.

Pass/Fail

32. Set HITL Detector Input 2 = Off
33. DELAY .2 Seconds

Detector 2 calls Phase 2 during 6+11 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND
Note: Wait until controller reaches 6+11.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 2 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

 296

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 6+11
Green.

Pass/Fail

32. Set HITL Detector Input 2 = Off
33. DELAY .2 Seconds

Detector 2 calls Phase 2 during 5+9 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
21. WEND

Note: Wait until controller reaches 5+9.

22. Set HITL Detector Input 7 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 2 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

 297

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x10 AND

phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 5+9 Green.

Pass/Fail

32. Set HITL Detector Input 2 = Off
33. DELAY .2 Seconds

Detector 2 extends Phase 2 when Phase 2 is Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 6 = On
14. DELAY .2 Seconds
15. GET ringStatus.1
16. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
17. DELAY 1 Second
18. GET ringStatus.1
19. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

20. GET phaseStatusGroupPhaseOns.1
21. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x02 = 0x02

Note: Ensure that Max Out occurred on Phase 2.

Pass/Fail

22. Set HITL Detector Input 2 = Off and 6 = Off
23. DELAY .2 Seconds

 298

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes>
Version History: v1.00 04/12/06 Initial Draft (Calls during Yellow and Red are only tested for Phase

6) – RDR
v1.01 07/05/06 Updated notes – RDR
v1.02 07/20/06 Implemented script and proofed – JJ

Detector 3 Operations

Test Case: Title: Detector 3 Operations
TC003 Description: Verifies the operation of Detector 3 to call and extend Phase 3

under specific conditions and to extend interval 3516B.
 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 3 calls Phase 3 when Phase 3 and Phase 11 are not Green (In 1+6 Green)

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

 299

18. WHILE phaseStatusGroupGreens.1 = 0x21 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x21 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 1+6 Green.

Pass/Fail

23. Set HITL Detector Input 3 = Off
24. DELAY .2 Seconds

Detector 3 calls Phase 3 when Phase 3 and Phase 11 are not Green (In 1+7 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x41 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x41 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 1+7 Green.

Pass/Fail

23. Set HITL Detector Input 3 = Off
24. DELAY .2 Seconds

 300

Detector 3 calls Phase 3 when Phase 3 and Phase 11 are not Green (In 1+8 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x81 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x81 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 1+8 green.

Pass/Fail

23. Set HITL Detector Input 3 = Off
24. DELAY .2 Seconds

Detector 3 calls Phase 3 when Phase 3 and Phase 11 are not Green (In 2+16 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second

 301

11. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+16.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 3 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 2+16
green.

Pass/Fail

32. Set HITL Detector Input 3 = Off
33. DELAY .2 Seconds

Detector 3 calls Phase 3 when Phase 3 and Phase 11 are not Green (In 2+15 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second

 302

11. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+15.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 3 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 2+15
Green.

Pass/Fail

32. Set HITL Detector Input 3 = Off
33. DELAY .2 Seconds

Detector 3 calls Phase 3 when Phase 3 and Phase 11 are not Green (In 1+13 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second

 303

11. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+15.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 3 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 2+15
green.

Pass/Fail

32. Set HITL Detector Input 3 = Off
33. DELAY .2 Seconds

Detector 3 calls Phase 3 when Phase 3 and Phase 11 are not Green (In 2+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second

 304

11. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x12 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x12 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 2+5 Green.

23. Set HITL Detector Input 3 = Off Pass/Fail
24. DELAY .2 Seconds

Detector 3 calls Phase 3 when Phase 3 and Phase 11 are not Green (In 4+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x18 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

19. DELAY 1 Second

 305

20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,
phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x18 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 4+5 Green.

Pass/Fail

23. Set HITL Detector Input 3 = Off
24. DELAY .2 Seconds

Detector 3 calls Phase 3 when Phase 3 and Phase 11 are not Green (In 6+12 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 6+12.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 3 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

 306

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 6+12
Green.

Pass/Fail

32. Set HITL Detector Input 3 = Off
33. DELAY .2 Seconds

Detector 3 calls Phase 3 when Phase 3 and Phase 11 are not Green (In 5+9 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 5+9.

22. Set HITL Detector Input 7 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 3 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND

 307

31. VERIFY phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 5+9 Green.

32. Set HITL Detector Input 3 = Off
33. DELAY .2 Seconds

Detector 3 extends Phase 3 during Phase 3
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 6 = On
14. DELAY .2 Seconds
15. GET ringStatus.1
16. WHILE ringStatus.1 AND 0x10 ≠= 0x10 (xxx1xxxx = maxout)
17. DELAY 1 Second
18. GET ringStatus.1
19. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

20. GET phaseStatusGroupPhaseOns.1
21. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x04 = 0x04

Note: Ensure that Max Out occurred on Phase 3

22. Set HITL Detector Input 3 = Off and 6 = Off
23. DELAY .2 Seconds

Detector 3 extends Phase 11 during Phase 11
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds

 308

8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 6+11.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 3 = On
25. DELAY .2 Seconds
26. Set HITL Detector Input 4 = On
27. DELAY .2 Seconds
28. GET ringStatus.1
29. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
30. DELAY 1 Second
31. GET ringStatus.1
32. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

33. GET phaseStatusGroupPhaseOns.2
34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x04 = 0x04

Note: Ensure that Max Out occurred on Phase 11

35. Set HITL Detector Input 3 = Off and 4 = Off
36. DELAY .2 Seconds

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes>
Version History: v1.00 04/14/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/19/06 Implemented script and proofed – JJ

 309

Detector 4 Operations

Test Case: Title: Detector 4 Operations
TC004 Description: Verifies the operation of Detector 4 to call and extend Phase 4

under specific conditions and to extend interval 4516B.
 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 4 calls Phase 4 when Phase 4 and Phase 12 are not Green (In 1+6 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 4 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x21 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x21 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 1+6 Green.

Pass/Fail

23. Set HITL Detector Input 4 = Off
24. DELAY .2 Seconds

 310

Detector 4 calls Phase 4 when Phase 4 and Phase 12 are not Green (In 1+7 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 4 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x41 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x41 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 1+7 Green.

Pass/Fail

23. Set HITL Detector Input 4 = Off
24. DELAY .2 Seconds

Detector 4 calls Phase 4 when Phase 4 and Phase 12 are not Green (In 1+8 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second

 311

11. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 4 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x81 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x81 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 1+8 Green.

Pass/Fail

23. Set HITL Detector Input 4 = Off
24. DELAY .2 Seconds

Detector 4 calls Phase 4 when Phase 4 and Phase 12 are not Green (In 2+16 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 312

21. WEND

Note: Wait until controller reaches 2+16.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 4 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 2+16.
Green.

Pass/Fail

32. Set HITL Detector Input 4 = Off
33. DELAY .2 Seconds

Detector 4 calls Phase 4 when Phase 4 and Phase 12 are not Green (In 2+15 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 313

21. WEND

Note: Wait until controller reaches 2+15.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 4 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 2+15
Green.

Pass/Fail

32. Set HITL Detector Input 4 = Off
33. DELAY .2 Seconds

Detector 4 calls Phase 4 when Phase 4 and Phase 12 are not Green (In 1+13 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 314

21. WEND

Note: Wait until controller reaches 1+13.

22. Set HITL Detector Input 3 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 4 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x01 AND
phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x01 AND

phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 1+13
Green.

Pass/Fail

32. Set HITL Detector Input 4 = Off
33. DELAY .2 Seconds

Detector 4 calls Phase 4 when Phase 4 and Phase 12 are not Green (In 2+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 4 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x12 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

19. DELAY 1 Second

 315

20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,
phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x12 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 2+5 Green.

Pass/Fail

23. Set HITL Detector Input 4 = Off
24. DELAY .2 Seconds

Detector 4 calls Phase 4 when Phase 4 and Phase 12 are not Green (In 3+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 4 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x14 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x14 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 3+5 Green.

Pass/Fail

23. Set HITL Detector Input 4 = Off
24. DELAY .2 Seconds

Detector 4 calls Phase 4 when Phase 4 and Phase 12 are not Green (In 6+11 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2

 316

5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 6+11.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 4 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 6+11
Green.

Pass/Fail

32. Set HITL Detector Input 4 = Off
33. DELAY .2 Seconds

Detector 4 calls Phase 4 when Phase 4 and Phase 12 are not Green (In 5+9 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2

 317

5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 5+9.

22. Set HITL Detector Input 7 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 4 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x10 AND

phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 5+9 Green.

Pass/Fail

32. Set HITL Detector Input 4 = Off
33. DELAY .2 Seconds

Detector 4 extends Phase 4 during Phase 4
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2

 318

5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 6 = On
14. DELAY .2 Seconds
15. GET ringStatus.1
16. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
17. DELAY .2 Second
18. GET ringStatus.1
19. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

20. GET phaseStatusGroupPhaseOns.1
21. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x08 = 0x08

Note: Ensure that Max Out occurred on Phase 4.

Pass/Fail

22. Set HITL Detector Input 4 = Off and 6 = Off
23. DELAY .2 Seconds

Detector 4 extends Phase 12 during Phase 12
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On

 319

16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 6+12.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 4 = On
25. DELAY .2 Seconds
26. Set HITL Detector Input 3 = On
27. DELAY .2 Seconds
28. GET ringStatus.1
29. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
30. DELAY 1 Second
31. GET ringStatus.1
32. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

33. GET phaseStatusGroupPhaseOns.2
34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x04 = 0x04

Note: Ensure that Max Out occurred on Phase 12.

Pass/Fail

35. Set HITL Detector Input 4 = Off and 3 = Off
36. DELAY .2 Seconds

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

Test Case Notes:
Version History: v1.00 04/14/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/20/06 Implemented script and proofed – JJ

 320

Detector 5 Operations

Test Case: Title: Detector 5 Operations
TC005 Description: Verifies the operation of Detector 5 to call Phase 2 under

specific conditions and extend intervals 1625B, 1635, 1645B,
1735B, 1745B, 1835B, and 1845B.

 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 5 No Call on Phase 2 when Overlap B is Green

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 3+5 Green Rest.

20. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap B = 5+6+X.

21. IF RESPONSE ERROR = noError THEN
22. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x02 = 0x02

Note: Verifies that Overlap B = Green.

23. END IF

 321

24. Set HITL Detector Input 5 = On
25. DELAY 3 Seconds
26. GET phaseStatusGroupVehCalls.1, phaseStatusGroupVehCalls.2
27. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x00.

Note: Verifies that no call in entered on Phase 2.

Pass/Fail

28. Set HITL Detector Input 5 = Off
29. DELAY .2 Seconds

Detector 5 No Call on Phase 2 when Overlap B is not Green and a Call on Phase 3
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap B = 5+6+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x02 = 0x00

Note: Verifies that Overlap B = NOT Green

Pass/Fail

18. END IF
19. Set HITL Detector Input 3 = On
20. DELAY 2 Seconds
21. Set HITL Detector Input 5 = On
22. DELAY 2 Seconds
23. GET phaseStatusGroupVehCalls.1
24. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x00

Note: Verifies that no call in entered on Phase 2.

Pass/Fail

25. Set HITL Detector Input 5 = Off and 3 = Off
26. DELAY .2 Seconds

Detector 5 No Call on Phase 2 when Overlap B is not Green and a Call on Phase 4
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03

 322

3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap B = 5+6+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x02 = 0x00

Note: Verifies that Overlap B = NOT Green

18. END IF
19. Set HITL Detector Input 4 = On
20. DELAY 2 Seconds
21. Set HITL Detector Input 5 = On
22. DELAY 2 Seconds
23. GET phaseStatusGroupVehCalls.1
24. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x00

Note: Ensure that Phase 2 is not registering a Vehicle Call.

Pass/Fail

25. Set HITL Detector Input 4 = Off and 5 = Off
26. DELAY .2 Seconds

Detector 5 calls Phase 2 when Overlap B is not Green and no Calls on Phase 3 or Phase 4
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

 323

phaseStatusGroupPhaseOns.2
12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap B = 5+6+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x02 = 0x00

Note: Verifies that Overlap B = NOT Green

18. END IF
19. Set HITL Detector Input 5 = On
20. DELAY .2 Seconds
21. GET phaseStatusGroupVehCalls.1
22. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x02

Note: Checks for call on Phase 2

Pass/Fail

23. Set HITL Detector Input 5 = Off
24. DELAY .2 Seconds

Detector 5 extends Phase 13 when Phase 13 is Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 4 = On
16. DELAY .2 Seconds
17. Set HITL Detector Input 5 = On
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

21. DELAY 1 Second

 324

22. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

23. WEND

Note: Wait until controller reaches 1+13.

24. GET ringStatus.2
25. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
26. DELAY 1 Second
27. GET ringStatus.2
28. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

29. GET phaseStatusGroupPhaseOns.1
30. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x10 = 0x10

Note: Ensure that Max Out occurred on Phase 13.

Pass/Fail

31. Set HITL Detector Input 5 = Off and 4 = Off
32. DELAY .2 Seconds

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes>
Version History: v1.00 04/12/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/20/06 Implemented script and proofed – JJ

Detector 6 Operations

Test Case: Title: Detector 6 Operations
TC006 Description: Verifies the operation of Detector 6 to call and extend Phase 6.
 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 6 calls Phase 6 during 2+5 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2

 325

5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x12 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x12 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 2+5 Green.

Pass/Fail

23. Set HITL Detector Input 6 = Off
24. DELAY .2 Seconds

Detector 6 calls Phase 6 during 3+5 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off

 326

14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x14 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x14 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 3+5 Green.

Pass/Fail

23. Set HITL Detector Input 6 = Off
24. DELAY .2 Seconds

Detector 6 calls Phase 6 during 4+5 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x18 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND

 327

22. VERIFY phaseStatusGroupGreens.1 = 0x18 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 4+5 Green.

Pass/Fail

23. Set HITL Detector Input 6 = On
24. DELAY .2 Seconds

Detector 6 calls Phase 6 during 5+9 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 5+9.

22. Set HITL Detector Input 7 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 6 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND

 328

31. VERIFY phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 5+9 Green.

Pass/Fail

32. Set HITL Detector Input 6 = Off
33. DELAY .2 Seconds

Detector 6 Calls Phase 6 during 1+7 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches or is in 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x41 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x41 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 1+7 Green.

Pass/Fail

23. Set HITL Detector Input 6 = Off
24. DELAY .2 Seconds

Detector 6 calls Phase 6 during 1+8 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

 329

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x81 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x81 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 1+8 Green.

Pass/Fail

23. Set HITL Detector Input 6 = Off
24. DELAY .2 Seconds

Detector 6 calls Phase 6 during 2+16 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds

 330

17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+16.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 6 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 2+16
Green.

Pass/Fail

32. Set HITL Detector Input 6 = Off
33. DELAY .2 Seconds

Detector 6 calls Phase 6 during 2+15 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2

 331

18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND
phaseStatusGroupPhaseOns.2 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+15.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 6 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 2+15
Green.

Pass/Fail

32. Set HITL Detector Input 6 = Off
33. DELAY .2 Seconds

Detector 6 calls Phase 6 during 1+13 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2

 332

18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND
phaseStatusGroupPhaseOns.2 ≠ 0x10

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 1+13.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 6 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x01 AND
phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x01 AND

phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 1+13
Green.

Pass/Fail

32. Set HITL Detector Input 6 = Off
33. DELAY .2 Seconds

Detector 6 extends Phase 6 during 1+6
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 7 = On
14. DELAY .2 Seconds
15. GET ringStatus.2
16. WHILE ringStatus.2 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
17. DELAY 1 Second
18. GET ringStatus.2

 333

19. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

20. GET phaseStatusGroupPhaseOns.1
21. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x20 = 0x20

Note: Ensure that Max Out occurred on Phase 6.

Pass/Fail

22. Set HITL Detector Input 6 = Off and 7 = Off
23. DELAY .2 Seconds

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

Test Case Notes:
Version History: v1.00 05/05/06 Initial Draft – RDR

v1.01 07/05/06 Added 5+9, 2+16, 2+15, and 1+13. Updated notes – RDR
v1.02 07/20/06 Implemented script and proofed – JJ

Detector 7 Operations

Test Case: Title: Detector 7 Operations
TC007 Description: Verifies the operation of Detector 7 to call and extend Phase 7

under specific conditions and extend interval 1725B.
 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 7 calls Phase 7 when Phase 7 and Phase 15 are not Green (In 1+6 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 334

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x21 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x21 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 1+6 Green.

Pass/Fail

23. Set HITL Detector Input 7 = Off
24. DELAY .2 Seconds

Detector 7 calls Phase 7 when Phase 7 and Phase 15 are not Green (In 1+8 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = On
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x81 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

 335

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x81 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 1+8 Green.

Pass/Fail

23. Set HITL Detector Input 7 = Off
24. DELAY .2 Seconds

Detector 7 calls Phase 7 when Phase 7 and Phase 15 are not Green (In 2+16 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+16.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 7 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND Pass/Fail

 336

phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 2+16
Green.

32. Set HITL Detector Input 7 = Off
33. DELAY .2 Seconds

Detector 7 calls Phase 7 when Phase 7 and Phase 15 are not Green (In 1+13 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 1+13.

22. Set HITL Detector Input 3 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 7 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x01 AND
phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x01 AND

phaseStatusGroupGreens.2 = 0x10 AND
Pass/Fail

 337

phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 1+13
Green.

32. Set HITL Detector Input 7 = Off
33. DELAY .2 Seconds

Detector 7 calls Phase 7 when Phase 7 and Phase 15 are not Green (In 2+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x12 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x12 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 2+5 Green.

Pass/Fail

23. Set HITL Detector Input 7 = Off
24. DELAY .2 Seconds

Detector 7 calls Phase 7 when Phase 7 and Phase 15 are not Green (In 3+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On

 338

7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x14 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x14 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 3+5 Green.

Pass/Fail

23. Set HITL Detector Input 7 = Off
24. DELAY .2 Seconds

Detector 7 calls Phase 7 when Phase 7 and Phase 15 are not Green (In 4+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

 339

phaseStatusGroupVehCalls.1
18. WHILE phaseStatusGroupGreens.1 = 0x18 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x18 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 4+5 Green.

Pass/Fail

23. Set HITL Detector Input 7 = Off
24. DELAY .2 Seconds

Detector 7 calls Phase 7 when Phase 7 and Phase 15 are not Green (In 6+12 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 6+12.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 7 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND

 340

phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 6+12
Green.

Pass/Fail

32. Set HITL Detector Input 7 = Off
33. DELAY .2 Seconds

Detector 7 calls Phase 7 when Phase 7 and Phase 15 are not Green (In 6+11 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 6+11.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 7 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x04 AND

 341

phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40
28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 6+11
Green.

Pass/Fail

32. Set HITL Detector Input 7 = Off
33. DELAY .2 Seconds

Detector 7 calls Phase 7 when Phase 7 and Phase 15 are not Green (In 5+9 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 8 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 5+9.

22. Set HITL Detector Input 8 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 7 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

 342

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x10 AND

phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 5+9 Green.

Pass/Fail

32. Set HITL Detector Input 7 = Off
33. DELAY .2 Seconds

Detector 7 extends Phase 7 during Phase 7
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 8 = On
14. DELAY .2 Seconds
15. GET ringStatus.2
16. WHILE ringStatus.2 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
17. DELAY .2 Second
18. GET ringStatus.2
19. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

20. GET phaseStatusGroupPhaseOns.1
21. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x40 = 0x40

Note: Ensure that Max Out occurred on Phase 7.

Pass/Fail

22. Set HITL Detector Input 7 = Off and 8 = Off
23. DELAY .2 Seconds

Detector 7 extends Phase 15 during Phase 15
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

 343

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+15.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 7 = On
25. DELAY .2 Seconds
26. Set HITL Detector Input 3 = On
27. DELAY .2 Seconds
28. GET ringStatus.2
29. WHILE ringStatus.2 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
30. DELAY 1 Second
31. GET ringStatus.2
32. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

33. GET phaseStatusGroupPhaseOns.2
34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x40 = 0x40

Note: Ensure that Max Out occurred on Phase 15.

Pass/Fail

35. Set HITL Detector Input 7 = Off and 3 = Off
36. DELAY .2 Seconds

 344

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

Test Case Notes:
Version History: v1.00 05/05/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/20/06 Implemented script and proofed – JJ

Detector 8 Operations

Test Case: Title: Detector 8 Operations
TC008 Description: Verifies the operation of Detector 8 to call and extend Phase 8

under specific conditions and extend interval 1825B.
 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 8 calls Phase 8 when Phase 8 and Phase 16 are not Green (In 1+6 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 8 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x21 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

 345

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x21 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 1+6 Green.

Pass/Fail

23. Set HITL Detector Input 8 = Off
24. DELAY .2 Seconds

Detector 8 calls Phase 8 when Phase 8 and Phase 16 are not Green (In 1+7 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = On
14. DELAY .2 Seconds
15. Set HITL Detector Input 8 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x41 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x41 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 1+7 Green.

Pass/Fail

23. Set HITL Detector Input 8 = Off
24. DELAY .2 Seconds

Detector 8 calls Phase 8 when Phase 8 and Phase 16 are not Green (In 2+15 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second

 346

4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+15.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 8 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 2+15
Green.

Pass/Fail

32. Set HITL Detector Input 8 = Off
33. DELAY .2 Seconds

Detector 8 calls Phase 8 when Phase 8 and Phase 16 are not Green (In 1+13 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2

 347

5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 1+13.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 8 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x01 AND
phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x01 AND

phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 1+13
Green.

Pass/Fail

32. Set HITL Detector Input 8 = Off
33. DELAY .2 Seconds

Detector 8 calls Phase 8 when Phase 8 and Phase 16 are not Green (In 2+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

 348

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 8 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x12 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x12 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 2+5 Green.

Pass/Fail

23. Set HITL Detector Input 8 = Off
24. DELAY .2 Seconds

Detector 8 calls Phase 8 when Phase 8 and Phase 16 are not Green (In 3+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds

 349

15. Set HITL Detector Input 8 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x14 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x14 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 3+5 Green.

Pass/Fail

23. Set HITL Detector Input 8 = Off
24. DELAY .2 Seconds

Detector 8 calls Phase 8 when Phase 8 and Phase 16 are not Green (In 4+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 8 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x18 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x18 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Pass/Fail

 350

Note: Ensure that Phase 8 registers a Vehicle Call during 4+5 Green.
23. Set HITL Detector Input 8 = Off
24. DELAY .2 Seconds

Detector 8 calls Phase 8 when Phase 8 and Phase 16 are not Green (In 6+12 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 6+12.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 8 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 6+12
Green.

Pass/Fail

 351

32. Set HITL Detector Input 8 = Off
33. DELAY .2 Seconds

Detector 8 calls Phase 8 when Phase 8 and Phase 16 are not Green (In 6+11 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 6+11.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 8 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 6+11
Green.

Pass/Fail

32. Set HITL Detector Input 8 = Off

 352

33. DELAY .2 Seconds
Detector 8 calls Phase 8 when Phase 8 and Phase 16 are not Green (In 5+9 Green)

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 5+9.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 8 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x10 AND

phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 5+9 Green.

Pass/Fail

32. Set HITL Detector Input 8 = Off
33. DELAY .2 Seconds

 353

Detector 8 extends Phase 8 during Phase 8
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 7 = On
14. DELAY .2 Seconds
15. GET ringStatus.2
16. WHILE ringStatus.2 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
17. DELAY .2 Second
18. GET ringStatus.2
19. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

20. GET phaseStatusGroupPhaseOns.1
21. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x40 = 0x40

Note: Ensure that Max Out occurred on Phase 8.

Pass/Fail

22. Set HITL Detector Input 8 = Off and 7 = Off
23. DELAY .2 Seconds

Detector 8 extends Phase 16 during Phase 16
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 354

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+16.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 8 = On
25. DELAY .2 Seconds
26. Set HITL Detector Input 3 = On
27. DELAY .2 Seconds
28. GET ringStatus.2
29. WHILE ringStatus.2 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
30. DELAY 1 Second
31. GET ringStatus.2
32. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

33. GET phaseStatusGroupPhaseOns.2
34. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x40 = 0x40

Note: Ensure that Max Out occurred on Phase 16.

Pass/Fail

35. Set HITL Detector Input 8 = Off and 3 = Off
36. DELAY .2 Seconds

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

Test Case Notes:
Version History: v1.00 05/08/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/21/06 Implemented script and proofed – JJ

 355

Detector 9 Operations

Test Case: Title: Detector 9 Operations
TC009 Description: Verifies the operation of Detector 9 to call Phase 6 under

specific conditions, extend Phase 2 under specific conditions,
and extend intervals 2516B, 2517B, 2518B, 3517B, 3518B,
4517B, and 4518B.

 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 9 No Call on Phase 6 when Overlap A is Green

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 1+6 Green Rest.

20. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap A = 1+2+X.

Pass/Fail

21. IF RESPONSE ERROR = noError THEN
22. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x01 = 0x01

Note: Verifies that Overlap A = Green.

Pass/Fail

 356

23. ENDIF
24. Set HITL Detector Input 9 = On
25. DELAY 2 Seconds (2 full seconds)
26. GET phaseStatusGroupVehCalls.1, phaseStatusGroupVehCalls.2
27. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x00 AND phaseStatusGroupVehCalls.2 = 0x00

Note: Verify that controller does not register call.

Pass/Fail

28. Set HITL Detector Input 9 = Off
29. DELAY .2 Seconds

Detector 9 No Call on Phase 6 when Overlap A is not Green and a Call on Phase 7
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap A = 1+2+X.

Pass/Fail

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x01 = 0x00

Note: Verifies that Overlap A = NOT Green

Pass/Fail

18. ENDIF
19. Set HITL Detector Input 7 = On
20. DELAY .2 Seconds
21. Set HITL Detector Input and 9 = On
22. DELAY 2 Seconds (2 full seconds)
23. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x20 = 0

Note: Checks for no call on Phase 6

Pass/Fail

24.
25. Set HITL Detector Input 9 = Off and 7 = Off
26. DELAY .2 Seconds

Detector 9 No Call on Phase 6 when Overlap A is not Green and a Call on Phase 8
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03

 357

3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap A = 1+2+X.

Pass/Fail

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x01 = 0x00

Note: Verifies that Overlap A = NOT Green

Pass/Fail

18. ENDIF
19. Set HITL Detector Input 8 = On
20. DELAY .2 Seconds
21. Set HITL Detector Input 9 = On
22. DELAY 2 Seconds (2 full seconds)
23. GET phaseStatusGroupVehCalls.1
24. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x20 = 0

Note: Checks for no call on Phase 6

Pass/Fail

25. Set HITL Detector Input 9 = Off and 8 = Off
26. DELAY .2 Seconds

Detector 9 Calls Phase 6 when Overlap A is not Green and no Calls on Phase 7 or Phase 8
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 358

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap A = 1+2+X.

Pass/Fail

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x01 = 0x00

Note: Verifies that Overlap A = NOT Green.

Pass/Fail

18. ENDIF
19. Set HITL Detector Input 9 = On
20. DELAY 2 Seconds (2 full seconds)
21. GET phaseStatusGroupVehCalls.1
22. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x20 = 0x20

Note: Checks for call on Phase 6

Pass/Fail

23. Set HITL Detector Input 9 = Off
24. DELAY .2 Seconds

Detector 9 does not Extends Phase 2 when Phase 2 is Green and there are no Calls on Phase 3 or
Phase 4

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 9 = On

Note: To possible extend

16. DELAY .2 Seconds
17. Set HITL Detector Input 2 = On

Note: To force extensions

18. DELAY .2 Seconds

 359

19. Set HITL Detector Input 8 = On

Note: When opposing call exists

20. DELAY .2 Seconds
21. Set HITL Detector Input 2 = Off

Note: To check whether possible extensions are due to Detector 9.

22. DELAY .2 Seconds
23. GET ringStatus.1
24. WHILE ringStatus.1 AND 0x08 ≠ 0x08 (xxxx1xxx = gap out)
25. DELAY 1 Second
26. GET ringStatus.1, ringStatus.2
27. WEND

Note: Wait for Gap Out indication on Ring 1.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

28. GET phaseStatusGroupPhaseOns.1
29. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x02 = 0x02

Note: Verify that Gap Out indication occurred on Phase 2.

Pass/Fail

30. Set HITL Detector Input 8 and 9 = Off
31. DELAY .2 Seconds

Detector 9 extends Phase 2 when Phase 2 is Green and a Call on Phase 3
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 9 = On

Note: To possible extend

16. DELAY .2 Seconds
17. Set HITL Detector Input 2 = On

Note: To force extensions

18. DELAY .2 Seconds

 360

19. Set HITL Detector Input 3 = On

Note: When opposing call exists

20. DELAY .2 Seconds
21. Set HITL Detector Input 2 = Off

Note: To check whether possible extensions are due to Detector 9.

22. DELAY .2 Seconds
23. GET ringStatus.1
24. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
25. DELAY 1 Second
26. GET ringStatus.1
27. WEND

Note: Wait for Max Out Indication on Ring 1.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

28. GET phaseStatusGroupPhaseOns.1
29. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x02 = 0x02

Note: Verify that Max Out indication occurred on Phase 2

Pass/Fail

30. Set HITL Detector Input 3 and 9 = Off
31. DELAY .2 Seconds

Detector 9 extends Phase 2 when Phase 2 is Green and a Call on Phase 4
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 9 = On

Note: To possible extend

16. DELAY .2 Seconds
17. Set HITL Detector Input 2 = On

Note: To force extensions

18. DELAY .2 Seconds

 361

19. Set HITL Detector Input 4 = On

Note: When opposing call exists

20. DELAY .2 Seconds
21. Set HITL Detector Input 2 = Off

Note: To check whether possible extensions are due to Detector 9.

22. DELAY .2 Seconds
23. GET ringStatus.1
24. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
25. DELAY 1 Second
26. GET ringStatus.1
27. WEND

Note: Wait for Max Out Indication on Ring 1
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

28. GET phaseStatusGroupPhaseOns.1
29. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x02 = 0x02

Note: Verify that Max Out indication occurred on Phase 2

Pass/Fail

30. Set HITL Detector Input 4 and 9 = Off
31. DELAY .2 Seconds

Detector 9 extends Phase 9 when Phase 9 is Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. Set HITL Detector Input 9 = On
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0X01

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 362

23. WEND
Note: Wait until controller reaches 5+9.

24. Set HITL Detector Input 7 = Off
25. DELAY .2 Seconds
26. GET ringStatus.1
27. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
28. DELAY 1 Second
29. GET ringStatus.1
30. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

31. GET phaseStatusGroupPhaseOns.2
32. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x01 = 0x01

Note: Ensure that Max Out occurred on Phase 9.

Pass/Fail

33. Set HITL Detector Input 9 = Off
34. DELAY .2 Seconds

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes>
Version History: v1.00 05/09/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/17/06 Implemented script and proofed – JJ

Detector 10 Operations

Test Case: Title: Detector 10 Operations
TC010 Description: Verifies the operation of Detector 10 to call Phase 6 under

specific conditions, extend Phase 2 under specific conditions,
and extend intervals 2516B, 2517B, 2518B, 3517B, 3518B,
4517B, and 4518B.

 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 10 No Call on Phase 6 when Overlap A is Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second

 363

4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 1+6 Green Rest.

20. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap A = 1+2+X.

21. IF RESPONSE ERROR = noError THEN
22. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x01 = 0x01

Note: Verifies that Overlap A = Green

Pass/Fail

23. END IF
24. Set HITL Detector Input 10 = On
25. DELAY 2 Seconds
26. GET phaseStatusGroupVehCalls.1, phaseStatusGroupVehCalls.2
27. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x00 AND phaseStatusGroupVehCalls.2 = 0x00

Note: Verify that controller does not register call.

Pass/Fail

28. Set HITL Detector Input 10 = Off
29. DELAY .2 Seconds

Detector 10 No Call on Phase 6 when Overlap A is not Green and a Call on Phase 7
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2

 364

9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND
phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap A = 1+2+X

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x01 = 0x00

Note: Verifies that Overlap A = NOT Green.

Pass/Fail

18. END IF
19. Set HITL Detector Input 7 = On
20. DELAY .2 Seconds
21. Set HITL Detector Input 10 = On
22. DELAY 2 Seconds
23. GET phaseStatusGroupVehCalls.1
24. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x20 = 0

Note: Checks for no call on Phase 6

Pass/Fail

25. Set HITL Detector Input 10 = Off and 7 = Off
26. DELAY .2 Seconds

Detector 10 No Call on Phase 6 when Overlap A is not Green and a Call on Phase 8
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds

 365

15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap A = 1+2+X

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x01 = 0x00

Note: Verifies that Overlap A = NOT Green.

Pass/Fail

18. END IF
19. Set HITL Detector Input 8 = On
20. DELAY .2 Seconds
21. Set HITL Detector Input 10 = On
22. DELAY 2 Seconds
23. GET phaseStatusGroupVehCalls.1
24. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x20 = 0

Note: Checks for no call on Phase 6

Pass/Fail

25. Set HITL Detector Input 10 = Off and 8 = Off
26. DELAY .2 Seconds

Detector 10 Calls Phase 6 when Overlap A is not Green and no Calls on Phase 7 or Phase 8
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap A = 1+2+X

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x01 = 0x00

Note: Verifies that Overlap A = NOT Green.

Pass/Fail

18. END IF
19. Set HITL Detector Input 10 = On
20. DELAY 2 Seconds

 366

21. GET phaseStatusGroupVehCalls.1
22. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x20 = 0x20

Note: Checks for call on Phase 6

Pass/Fail

23. Set HITL Detector Input 10 = Off
24. DELAY .2 Seconds

Detector 10 does not Extends Phase 2 when Phase 2 is Green and there are no Calls on Phase 3
or Phase 4

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 10 = On

Note: To possible extend

16. DELAY .2 Seconds
17. Set HITL Detector Input 2 = On

Note: To force extensions

18. DELAY .2 Seconds
19. Set HITL Detector Input 8 = On

Note: When opposing call exists

20. DELAY .2 Seconds
21. Set HITL Detector Input 2 = Off

Note: To check whether possible extensions are due to Detector 10.

22. DELAY .2 Seconds
23. GET ringStatus.1
24. WHILE ringStatus.1 AND 0x08 ≠ 0x08 (xxxx1xxx = gap out)
25. DELAY 1 Second
26. GET ringStatus.1, ringStatus.2
27. WEND

Note: Wait for Gap Out indication on Ring 1
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

 367

28. GET phaseStatusGroupPhaseOns.1
29. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x02 = 0x02

Note: Verify that Gap Out indication occurred on Phase 2

Pass/Fail

30. Set HITL Detector Input 8 and 9 = Off
31. DELAY .2 Seconds

Detector 10 extends Phase 2 when Phase 2 is Green and a Call on Phase 3
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 10 = On

Note: To possible extend

16. DELAY .2 Seconds
17. Set HITL Detector Input 2 = On

Note: To force extensions

18. DELAY .2 Seconds
19. Set HITL Detector Input 3 = On

Note: When opposing call exists

20. DELAY .2 Seconds
21. Set HITL Detector Input 2 = Off

Note: To check whether possible extensions are due to Detector 10.

22. DELAY .2 Seconds
23. GET ringStatus.1
24. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
25. DELAY 1 Second
26. GET ringStatus.1
27. WEND

Note: Wait for Max Out Indication on Ring 1
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

28. GET phaseStatusGroupPhaseOns.1

 368

29. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1
AND 0x02 = 0x02

Note: Verify that Max Out indication occurred on Phase 2

Pass/Fail

30. Set HITL Detector Input 3 and 9 = Off
31. DELAY .2 Seconds

Detector 10 extends Phase 2 when Phase 2 is Green and a Call on Phase 4
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 10 = On

Note: To possible extend

16. DELAY .2 Seconds
17. Set HITL Detector Input 2 = On

Note: To force extensions

18. DELAY .2 Seconds
19. Set HITL Detector Input 4 = On

Note: When opposing call exists

20. DELAY .2 Seconds
21. Set HITL Detector Input 2 = Off

Note: To check whether possible extensions are due to Detector 10

22. DELAY .2 Seconds
23. GET ringStatus.1
24. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
25. DELAY 1 Second
26. GET ringStatus.1
27. WEND

Note: Wait for Max Out Indication on Ring 1
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

28. GET phaseStatusGroupPhaseOns.1

 369

29. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1
AND 0x02 = 0x02

Note: Verify that Max Out indication occurred on Phase 2

Pass/Fail

30. Set HITL Detector Input 4 and 9 = Off
31. DELAY .2 Seconds

Detector 10 extends Phase 9 when Phase 9 is Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. Set HITL Detector Input 10 = On
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND

Note: Wait until controller reaches 5+9.

24. Set HITL Detector Input 7 = Off
25. DELAY .2 Seconds
26. GET ringStatus.1
27. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
28. DELAY 1 Second
29. GET ringStatus.1
30. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

31. GET phaseStatusGroupPhaseOns.2

 370

32. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2
AND 0x01 = 0x01

Note: Ensure that Max Out occurred on Phase 9

Pass/Fail

33. Set HITL Detector Input 10 = Off
34. DELAY .2 Seconds

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

Test Case Notes:
Version History: v1.00 05/09/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/19/06 Implemented script and proofed – JJ

Detector 11 Operations

Test Case: Title: Detector 11 Operations
TC011 Description: Verifies the operation of Detector 11 to call and extend Phase 2

under specific conditions
 Constants:
 Variables: currentExtendValue
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 11 calls Phase 2 when Phase 2 not Green (In 3+5 Green)

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 11 = On

 371

16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x14 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x14 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 3+5 Green.

Pass/Fail

23. Set HITL Detector Input 11 = Off
24. DELAY .2 Seconds

Detector 11 calls Phase 2 when Phase 2 not Green (In 4+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 11 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x18 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x18 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 4+5 Green.

Pass/Fail

23. Set HITL Detector Input 11 = Off

 372

24. DELAY .2 Seconds
Detector 11 calls Phase 2 when Phase 2 not Green (In 6+12 Green)

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND
Note: Wait until controller reaches 6+12.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 11 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 6+12
Green.

Pass/Fail

32. Set HITL Detector Input 11 = Off
33. DELAY .2 Seconds

 373

Detector 11 calls Phase 2 when Phase 2 not Green (In 6+11 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND
Note: Wait until controller reaches 6+11.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 11 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 6+11
Green.

Pass/Fail

32. Set HITL Detector Input 11 = Off
33. DELAY .2 Seconds

Detector 11 calls Phase 2 when Phase 2 not Green (In 5+9 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03

 374

3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND
Note: Wait until controller reaches 5+9.

22. Set HITL Detector Input 7 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 11 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x10 AND

phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 5+9 Green.

Pass/Fail

32. Set HITL Detector Input 11 = Off
33. DELAY .2 Seconds

Detector 11 calls Phase 2 when Phase 2 not Green (In 1+6 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

 375

Note: Loop until controller rests somewhere.
6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 11 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x21 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x21 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 1+6 Green.

Pass/Fail

23. Set HITL Detector Input 11 = Off
24. DELAY .2 Seconds

Detector 11 calls Phase 2 when Phase 2 not Green (In 1+7 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 11 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

 376

phaseStatusGroupVehCalls.1
18. WHILE phaseStatusGroupGreens.1 = 0x41 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x41 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 1+7 Green.

Pass/Fail

23. Set HITL Detector Input 11 = Off
24. DELAY .2 Seconds

Detector 11 calls Phase 2 when Phase 2 not Green (In 1+8 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 11 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x81 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x81 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 1+8 Green.

Pass/Fail

23. Set HITL Detector Input 11 = Off
24. DELAY .2 Seconds

 377

Detector 11 calls Phase 2 when Phase 2 not Green (In 1+13 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND
Note: Wait until controller reaches 1+13.

22. Set HITL Detector Input 3 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 11 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x01 AND
phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x02 ≠ 0x02

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x01 AND

phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x02 = 0x02

Note: Ensure that Phase 2 registers a Vehicle Call during 1+13
Green.

Pass/Fail

32. Set HITL Detector Input 11 = Off
33. DELAY .2 Seconds

 378

Detector 11 extends Phase 2 when Phase 2 is Green until a gap in Detector 11 activity occurs at
which time Detector 11 becomes inactive until Phase 2 Yellow

1. GET vehicleDetectorExtend.11 and RECORD RESPONSE VALUE
in [currentExtendValue]

2. SET vehicleDetectorExtend.11 = 40

Note: Set Detector 11 extend time = 4 seconds.

3. GET ringStatus.1, ringStatus.2
4. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
5. DELAY 1 Second
6. GET ringStatus.1, ringStatus.2
7. WEND

Note: Loop until controller rests somewhere.

8. Set HITL Detector Input 6 = On
9. DELAY .2 Seconds
10. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
11. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

12. DELAY 1 Second
13. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

14. WEND
Note: Wait until controller reaches 1+6.

15. Set HITL Detector Input 6 = Off
16. DELAY .2 Seconds
17. Set HITL Detector Input 11 = On (To call and then extend Phase 2)
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND
Note: Wait until controller reaches 2+5.

24. Set HITL Detector Input 7 = On (Detector 11 will extend Phase 2
when there is an opposing call)

25. DELAY .2 Seconds
26. GET ringStatus.1
27. WHILE ringStatus.1 AND 0x07 ≠ 0x01 (xxxxx001 = extension)
28. DELAY .1 Second
29. GET ringStatus.1
30. WEND

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

31. GET phaseStatusGroupPhaseOns.1
32. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x02 = 0x02

Note: Verify that the extensions are on Phase 2.

Pass/Fail

33. Set HITL Detector Input 11 = Off

 379

34. DELAY 3 Seconds
35. Set HITL Detector Input 11 = On
36. DELAY .2 Seconds
37. Set HITL Detector Input 11 = Off
38. DELAY 2.8 Seconds
39. GET ringStatus.1
40. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Ring 1 = 2, 3, 4, 9, 11, 12, & 1
 Ring 2 = 15, 16, 5, 6, 7, 8, & 13

41. GET phaseStatusGroupPhaseOns.1
42. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x02 = 0x02

Note: Verify that extensions are still timing on Phase 2 because call
was entered < 4 seconds later.

Pass/Fail

43. Set HITL Detector Input 11 = On
44. DELAY .2 Seconds
45. Set HITL Detector Input 11 = Off
46. DELAY 4.8 Seconds

Note: Since the time between actuations is now 5 seconds, the timer
will gap and therefore disable Detector 11 from putting in any further
extensions.

47. Set HITL Detector Input 11 = On
48. DELAY .2 Seconds
49. GET ringStatus.1
50. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 = 0x04

(xxxxx100 = Yellow Change)

Note: Verify that the Yellow Change is on Phase 2 because call was
entered > 4 seconds later.
 Ring 1 = 2, 3, 4, 9, 11, 12, & 1
 Ring 2 = 15, 16, 5, 6, 7, 8, & 13

51. GET phaseStatusGroupPhaseOns.1, ringStatus.1,
phaseStatusGroupVehCalls.1

52. WHILE (phaseStatusGroupPhaseOns.1 AND 0x02 = 0x02) AND
(ringStatus.1 AND 0x07 = 0x04) AND (phaseStatusGroupVehCalls.1
AND 0x02 ≠ 0x02)

53. DELAY 1 Second
54. GET phaseStatusGroupPhaseOns.1, ringStatus.1,

phaseStatusGroupVehCalls.1

55. WEND
56. VERIFY (phaseStatusGroupPhaseOns.1 AND 0x02 = 0x02) AND

(ringStatus.1 AND 0x07 = 0x04) AND (phaseStatusGroupVehCalls.1
AND 0x02 = 0x02)

Note: Ensure that Phase 2 registers a Vehicle Call during 2 Yellow.

Pass/Fail

57. Set HITL Detector Input 7 = Off and 11 = Off
58. DELAY .2 Seconds
59. SET vehicleDetectorExtend.11 = [currentExtendValue],

Note: Restore original values.

 380

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes> Test Case 12 does not pass an equivalent
Version History: v1.00 05/09/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/12/06 Implemented script and proofed – JJ

Detector 12 Operations

Test Case: Title: Detector 12 Operations
TC012 Description: Verifies the operation of Detector 12 to call and extend Phase 4

under specific conditions and extend interval 4516B (6+12).
 Constants:
 Variables: currentExtendValue
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 12 calls Phase 4 when Phase 4 not Green (In 6+12 Green)

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03

 381

17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 4+5 Green Rest.

20. Set HITL Detector Input 6 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x08

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until controller reaches 6+12.

27. Set HITL Detector Input 6 = Off
28. DELAY .2 Seconds
29. Set HITL Detector Input 12 = On
30. DELAY .2 Seconds
31. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

32. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

33. DELAY 1 Second
34. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

35. WEND
36. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 6+12
Green.

Pass/Fail

37. Set HITL Detector Input 12 = Off
38. DELAY .2 Seconds

Detector 12 calls Phase 4 when Phase 4 not Green (In 6+11 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 382

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 3+5 Green Rest.

20. Set HITL Detector Input 6 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x04

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until controller reaches 6+11.

27. Set HITL Detector Input 6 = Off
28. DELAY .2 Seconds
29. Set HITL Detector Input 12 = On
30. DELAY .2 Seconds
31. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

32. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

33. DELAY 1 Second
34. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

35. WEND
36. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 6+11
Green.

Pass/Fail

37. Set HITL Detector Input 12 = Off
38. DELAY .2 Seconds

Detector 12 calls Phase 4 when Phase 4 not Green (In 5+9 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2

 383

9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND
phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 3+5 Green Rest.

20. Set HITL Detector Input 7 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until controller reaches 5+9.

27. Set HITL Detector Input 7 = Off
28. DELAY .2 Seconds
29. Set HITL Detector Input 12 = On
30. DELAY .2 Seconds
31. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

32. WHILE phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

33. DELAY 1 Second
34. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

35. WEND
36. VERIFY phaseStatusGroupGreens.1 = 0x10 AND

phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 5+9 Green.

Pass/Fail

37. Set HITL Detector Input 12 = Off
38. DELAY .2 Seconds

Detector 12 calls Phase 4 when Phase 4 not Green (In 1+6 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

 384

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 12 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x21 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x21 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 1+6 Green.

Pass/Fail

23. Set HITL Detector Input 12 = Off
24. DELAY .2 Seconds

Detector 12 calls Phase 4 when Phase 4 not Green (In 1+7 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 12 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

 385

18. WHILE phaseStatusGroupGreens.1 = 0x41 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x41 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 1+7 Green.

Pass/Fail

23. Set HITL Detector Input 12 = Off
24. DELAY .2 Seconds

Detector 12 calls Phase 4 when Phase 4 not Green (In 1+8 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 12 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x81 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x81 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 1+8 Green.

Pass/Fail

23.
24. Set HITL Detector Input 12 = Off
25. DELAY .2 Seconds

Detector 12 calls Phase 4 when Phase 4 not Green (In 2+16 Green)

 386

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 1+8 Green Rest.

20. Set HITL Detector Input 2 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x80

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND

Note: Wait until controller reaches 2+16.

27. Set HITL Detector Input 2 = Off
28. DELAY .2 Seconds
29. Set HITL Detector Input 12 = On
30. DELAY .2 Seconds
31. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

32. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

33. DELAY 1 Second
34. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

35. WEND

 387

36. VERIFY phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 2+16
Green.

Pass/Fail

37. Set HITL Detector Input 12 = Off
38. DELAY .2 Seconds

Detector 12 calls Phase 4 when Phase 4 not Green (In 2+15 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 1+7 Green Rest.

20. Set HITL Detector Input 2 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x40

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until controller reaches 2+15.

27. Set HITL Detector Input 2 = Off
28. DELAY .2 Seconds
29. Set HITL Detector Input 12 = On
30. DELAY .2 Seconds
31. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

32. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

 388

33. DELAY 1 Second
34. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

35. WEND
36. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 2+15
Green.

Pass/Fail

37. Set HITL Detector Input 12 = Off
38. DELAY .2 Seconds

Detector 12 calls Phase 4 when Phase 4 not Green (In 1+13 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. GET ringStatus.1, ringStatus.2
16. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
17. DELAY 1 Second
18. GET ringStatus.1, ringStatus.2
19. WEND

Note: Wait for 1+8 Green Rest.

20. Set HITL Detector Input 3 = On
21. DELAY .2 Seconds
22. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
23. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

24. DELAY 1 Second
25. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

26. WEND
Note: Wait until controller reaches 1+13.

27. Set HITL Detector Input 3 = Off
28. DELAY .2 Seconds
29. Set HITL Detector Input 12 = On
30. DELAY .2 Seconds

 389

31. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,
phaseStatusGroupVehCalls.1

32. WHILE phaseStatusGroupGreens.1 = 0x01 AND
phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

33. DELAY 1 Second
34. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

35. WEND
36. VERIFY phaseStatusGroupGreens.1 = 0x01 AND

phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 1+13
Green.

Pass/Fail

37. Set HITL Detector Input 12 = Off
38. DELAY .2 Seconds

Detector 12 calls Phase 4 when Phase 4 not Green (In 2+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 12 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x12 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x12 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 2+5 Green.

Pass/Fail

23. Set HITL Detector Input 12 = Off

 390

24. DELAY .2 Seconds
Detector 12 calls Phase 4 when Phase 4 not Green (In 3+5 Green)

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 12 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x14 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x14 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x08 = 0x08

Note: Ensure that Phase 4 registers a Vehicle Call during 3+5 Green.

Pass/Fail

23. Set HITL Detector Input 12 = Off
24. DELAY .2 Seconds

Detector 12 extends Phase 4 until Phase 6 call exists and Detector 12 gaps and Phase 6 call
continues

1. GET vehicleDetectorExtend.12 and RECORD RESPONSE in
[currentExtendValue]

2. SET vehicleDetectorExtend.12 = 40

Note: Set Detector 12 extend time = 4 seconds so that actuations
less than 4 seconds apart keep the phase extending.

3. GET ringStatus.1, ringStatus.2
4. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
5. DELAY 1 Second
6. GET ringStatus.1, ringStatus.2
7. WEND

Note: Loop until controller rests somewhere.

 391

8. Set HITL Detector Input 8 = On
9. DELAY .2 Seconds
10. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
11. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

12. DELAY 1 Second
13. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

14. WEND
Note: Wait until controller reaches 1+8.

15. Set HITL Detector Input 8 = Off
16. DELAY .2 Seconds
17. Set HITL Detector Input 12 = On (To call and then extend Phase 4
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND
Note: Wait until controller reaches 4+5.

24. Set HITL Detector Input 6 = On (Detector 12 will extend Phase 4
when there is an opposing call)

25. DELAY .2 Seconds

Note: This should get Phase 4 to start timing extensions and sets up
conditional logic.

26. GET ringStatus.1
27. WHILE ringStatus.1 AND 0x07 ≠ 0x01 (xxxxx001 = extension)
28. DELAY .1 Second
29. GET ringStatus.1
30. WEND

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

31. GET phaseStatusGroupPhaseOns.1
32. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x08 = 0x08

Note: Verify that the extensions are on Phase 4.

Pass/Fail

33. Set HITL Detector Input 12 = Off
34. DELAY 3 Seconds
35. Set HITL Detector Input 12 = On
36. DELAY .2 Seconds
37. Set HITL Detector Input 12 = Off
38. DELAY 2.8 Seconds
39. GET ringStatus.1
40. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Ring 1 = 2, 3, 4, 9, 11, 12, & 1
 Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

 392

41. GET phaseStatusGroupPhaseOns.1
42. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x08 = 0x08

Note: Verify that extensions are still timing on Phase 4 because call
was entered < 4 seconds later.

Pass/Fail

43. Set HITL Detector Input 12 = On
44. DELAY .2 Seconds
45. Set HITL Detector Input 12 = Off
46. DELAY 2.8 Seconds
47. GET ringStatus.1
48. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Ring 1 = 2, 3, 4, 9, 11, 12, & 1
 Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

49. GET phaseStatusGroupPhaseOns.1
50. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x08 = 0x08

Note: Verify that extensions are still timing on Phase 4 because call
was entered < 4 seconds later.

Pass/Fail

51. Set HITL Detector Input 12 = On
52. DELAY .2 Seconds
53. Set HITL Detector Input 12 = Off
54. DELAY 4.8 Seconds

Note: Since the time between actuations is now 5 seconds, the timer
will gap and therefore disable Detector 12 from putting in any further
extensions.

55. Set HITL Detector Input 12 = On
56. DELAY .2 Seconds
57. GET ringStatus.1
58. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 ≠ 0x01

(xxxxx001 = extension)

Note: Verify that Phase 4 is no longer timing extensions.
 Ring 1 = 2, 3, 4, 9, 11, 12, & 1
 Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

59. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupVehCalls.1
60. WHILE (phaseStatusGroupPhaseOns.1 AND 0x08 = 0x08) AND

(phaseStatusGroupVehCalls.1 AND 0x08 ≠ 0x08)

61. DELAY 1 Second
62. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupVehCalls.1

63. WEND
64. VERIFY (phaseStatusGroupPhaseOns.1 AND 0x08 = 0x08) AND

(phaseStatusGroupVehCalls.1 AND 0x08 = 0x08)

Note: Ensure that Phase 4 registers a Vehicle Call.

Pass/Fail

65. Set HITL Detector Input 6 = Off and 12 = Off
66. DELAY .2 Seconds
67. POST-CONDITION The Detector 12 vehicleDetectorExtend is still

set to 4 seconds

 393

Detector 12 extends Phase 4 until Phase 6 call exists and Detector 12 gaps but not if Phase 6 call
disappears
 PRE-CONDITION This procedure assumes that Detector 12

vehicleDetectorExtend is still set to 4 seconds

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 12 = On (To call and then extend Phase 4)
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND
Note: Wait until controller reaches 4+5.

22. Set HITL Detector Input 6 = On
23. DELAY .2 Seconds

Note: Detector 12 will extend Phase 4 when there is an opposing
call.

24. GET ringStatus.1
25. WHILE ringStatus.1 AND 0x07 ≠ 0x01 (xxxxx001 = extension)
26. DELAY .1 Second
27. GET ringStatus.1
28. WEND

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

29. GET phaseStatusGroupPhaseOns.1
30. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x08 = 0x08

Note: Verify that the extensions are timing on Phase 4.

Pass/Fail

31. Set HITL Detector Input 12 = Off
32. DELAY 3 Seconds

 394

33. Set HITL Detector Input 12 = On
34. DELAY .2 Seconds
35. Set HITL Detector Input 12 = Off
36. DELAY 2.8 Seconds
37. GET ringStatus.1
38. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 = 0x01

(xxxxx001 = extension)

Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

39. GET phaseStatusGroupPhaseOns.1
40. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x08 = 0x08

Note: Verify that extensions are still timing is on Phase 4.

Pass/Fail

41. Set HITL Detector Input 12 = On
42. DELAY .2 Seconds
43. Set HITL Detector Input 12 = Off
44. DELAY 2.8 Seconds
45. GET ringStatus.1
46. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Ring 1 = 2, 3, 4, 9, 11, 12, & 1
 Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

47. GET phaseStatusGroupPhaseOns.1
48. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x08 = 0x08

Note: Verify that extensions are still timing on Phase 4.

Pass/Fail

49. Set HITL Detector Input 12 = On
50. DELAY .2 Seconds
51. Set HITL Detector Input 12 = Off, 4 = On, 6 = Off and 7 = On

Note: Setting Detector 4 on will keep extending Phase 4 irrespective
of Detector 12, no call on Phase 6 will reset Detector 12 gap
function, and the call on Phase 7 will enable extensions to time.

52. DELAY 4.8 Seconds

Note: This would have the effect of allowing the extend timer to gap
and therefore disable detector 12 but since Phase 6 no longer has a
call, another activation of Detector 12 will continue to extend Phase
4.

53. Set HITL Detector Input 12 = On and 4 Off
54. DELAY .2 Seconds
55. Set HITL Detector Input 12 = Off
56. DELAY .2 Seconds
57. GET ringStatus.1
58. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 = 0x01

(xxxxx001 = extension)
Pass/Fail

59. GET phaseStatusGroupPhaseOns.1

 395

60. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1
AND 0x08 = 0x08

Note: Verify that extensions are still timing on Phase 4 because even
though call was > 4 seconds later, the absence of call on phase 6
allowed phase 4 to continue.

Pass/Fail

61. Set HITL Detector Input 7 = Off
62. DELAY .2 Seconds
63. SET vehicleDetectorExtend.12 = [currentExtendValue]

Note: Restore original values.

Detector 12 extends Phase 12 when Phase 12 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 12 = On
16. DELAY .2 Seconds
17. Set HITL Detector Input 6 = On
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0X08

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND
Note: Wait until controller reaches 6+12.

24. Set HITL Detector Input 6 = Off
25. DELAY .2 Seconds
26. GET ringStatus.1
27. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
28. DELAY 1 Second
29. GET ringStatus.1

 396

30. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

31. GET phaseStatusGroupPhaseOns.2
32. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x08 = 0x08

Note: Ensure that Max Out occurred on Phase 12.

Pass/Fail

33. Set HITL Detector Input 12 = Off
34. DELAY .2 Seconds

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes>
1. The section on “Detector 12 extends Phase 4 until Phase 6 call exists and
Detector 12 gaps and Phase 6 call continues“ is not the equivalent as the last steps
in TC011 and TC015. This may be due to a timing issue.

Version History: v1.00 05/09/06 Initial Draft – RDR
v1.01 07/05/06 Updated notes – RDR
v1.02 07/31/06 Implemented script and proofed – JJ

Detector 13 Operations

Test Case: Title: Detector 13 Operations
TC013 Description: Verifies the operation of Detector 13 to call Phase 2 under

specific conditions, extend Phase 6 under specific conditions,
and extend intervals 1625B, 1635B, 1645B, 1735B, 1745B,
1835B, and 1845B.

 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 13 No Call on Phase 2 when Overlap B is Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On

 397

7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY 2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap B = 5+6+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x02 = 0x02

Note: Verifies that Overlap B = Green.

Pass/Fail

18. END IF
19. Set HITL Detector Input 13 = On
20. DELAY 2 Seconds
21. GET phaseStatusGroupVehCalls.1, phaseStatusGroupVehCalls.2
22. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x00 AND phaseStatusGroupVehCalls.2 = 0x00

Note: Checks for no call on Phase 2 or anywhere

Pass/Fail

23. Set HITL Detector Input 13 = Off
24. DELAY .2 Seconds

Detector 13 No Call on Phase 2 when Overlap B is not Green and a Call on Phase 3
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds

 398

15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap B = 5+6+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x02 = 0x00

Note: Verifies that Overlap B = NOT Green.

Pass/Fail

18. END IF
19. Set HITL Detector Input 3 = On
20. DELAY 2 Seconds
21. Set HITL Detector Input 13 = On
22. DELAY 2 Seconds
23. GET phaseStatusGroupVehCalls.1
24. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1

AND 0x02 = 0x00

Note: Checks for no call on Phase 2

Pass/Fail

25. Set HITL Detector Input 3 = Off
26. DELAY .2 Seconds
27. Set HITL Detector Input 13 = Off
28. DELAY .2 Seconds

Detector 13 No Call on Phase 2 when Overlap B is not Green and a Call on Phase 4
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap B = 5+6+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x02 = 0x00

Note: Verifies that Overlap B = NOT Green.

18. END IF

 399

19. Set HITL Detector Input 4 = On
20. DELAY 2 Seconds
21. Set HITL Detector Input 13 = On
22. DELAY 2 Seconds
23. GET phaseStatusGroupVehCalls.1
24. VERIFY that RESPONSE VALUE AND 0x02 = 0

Note: Checks for no call on Phase 2

Pass/Fail

25. Set HITL Detector Input 13 = Off
26. DELAY .2 Seconds
27. Set HITL Detector Input 4 = Off
28. DELAY .2 Seconds

Detector 13 calls Phase 2 when Overlap B is not Green and no Calls on Phase 3 or Phase 4
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap B = 5+6+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x02 = 0x00

Note: Verifies that Overlap B = NOT Green.

Pass/Fail

18. END IF
19. Set HITL Detector Input 13 = On
20. DELAY 2 Seconds
21. GET phaseStatusGroupVehCalls.1
22. VERIFY that RESPONSE VALUE AND 0x02 = 0x02

Note: Checks for call on Phase 2

Pass/Fail

23. Set HITL Detector Input 13 = Off
24. DELAY .2 Seconds

 400

Detector 13 does not extend Phase 6 when Phase 6 is Green and there are not Calls on Phase 7 or
Phase 8

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 13 = On

Note: To possible extend

16. DELAY .2 Seconds
17. Set HITL Detector Input 6 = On

Note: To force extensions

18. DELAY .2 Seconds
19. Set HITL Detector Input 2 = On

Note: When opposing call exists

20. DELAY .2 Seconds
21. Set HITL Detector Input 6 = Off

Note: To check whether possible extensions are due to Detector 13.

22. DELAY .2 Seconds
23. GET ringStatus.2
24. WHILE ringStatus.1 AND 0x08 ≠ 0x08 (xxxx1xxx = gap out)
25. DELAY 1 Second
26. GET ringStatus.2
27. WEND

Note: Wait for Gap Out indication on Ring 2.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

28. GET phaseStatusGroupPhaseOns.1
29. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x20 = 0x20

Note: Verify that Gap Out indication occurred on Phase 6.

Pass/Fail

30. Set HITL Detector Input 2 and 13 = Off
31. DELAY .2 Seconds

 401

Detector 13 extends Phase 6 when Phase 6 is Green and there is a Call on Phase 7
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 13 = On

Note: To possible extend

16. DELAY .2 Seconds
17. Set HITL Detector Input 6 = On

Note: To force extensions

18. DELAY .2 Seconds
19. Set HITL Detector Input 7 = On

Note: When conflicting call exists and satisfy conditions

20. DELAY .2 Seconds
21. Set HITL Detector Input 6 = Off

Note: To check whether possible extensions are due to Detector 13.

22. DELAY .2 Seconds
23. GET ringStatus.2
24. WHILE ringStatus.2 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
25. DELAY 1 Second
26. GET ringStatus.2
27. WEND

Note: Wait for Max Out Indication on Ring 2.

Ring 1 = 2, 3, 4, 9, 11, & 12
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

28. GET phaseStatusGroupPhaseOns.1
29. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x20 = 0x20

Note: Verify that Max Out indication occurred on Phase 6.

Pass/Fail

30. Set HITL Detector Input 7 and 13 = Off
31. DELAY .2 Seconds

 402

Detector 13 extends Phase 6 when Phase 6 is Green and there is a call on Phase 8
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 13 = On

Note: To possible extend

16. DELAY .2 Seconds
17. Set HITL Detector Input 6 = On

Note: To force extensions

18. DELAY .2 Seconds
19. Set HITL Detector Input 8 = On

Note: When opposing call exists

20. DELAY .2 Seconds
21. Set HITL Detector Input 6 = Off

Note: To check whether possible extensions are due to Detector 13.

22. DELAY .2 Seconds
23. GET ringStatus.2
24. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
25. DELAY 1 Second
26. GET ringStatus.2
27. WEND

Note: Wait for Max Out Indication on Ring 2.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

28. GET phaseStatusGroupPhaseOns.1
29. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x20= 0x20

Note: Verify that Max Out indication occurred on Phase 6.

Pass/Fail

30. Set HITL Detector Input 8 and 13 = Off
31. DELAY .2 Seconds

 403

Detector 13 extends Phase 13 when Phase 13 is Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. Set HITL Detector Input 13 = On
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND

Note: Wait until controller reaches 1+13.

24.
25. Set HITL Detector Input 3 = Off
26. DELAY .2 Seconds
27. GET ringStatus.2
28. WHILE ringStatus.2 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
29. DELAY 1 Second
30. GET ringStatus.2
31. WEND

Note: Wait for Max Out Indication on Ring 2.
Ring 1 = 2, 3, 4, 9, 11, & 12
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

32. GET phaseStatusGroupPhaseOns.2
33. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x10 = 0x10

Note: Ensure that Max Out occurred on Phase 13.

Pass/Fail

34. Set HITL Detector Input 13 = Off
35. DELAY .2 Seconds

 404

Detector 13 Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

Test Case Notes:
Version History: v1.00 04/12/06 Initial Draft – RDR

v1.01 07/05/06 Deleted strikethroughs, moved initial detector turnoff point,
corrected detector number in some cases, and updated notes – RDR

v1.02 07/13/06 Implemented script and proofed – JJ

Detector 14 Operations

Test Case: Title: Detector 14 Operations
TC014 Description: Verifies the operation of Detector 14 to call Phase 2 under

specific conditions, extend Phase 6 under specific conditions,
and extend intervals 1625B, 1635B, 1645B, 1735B, 1745B,
1835B, and 1845B.

 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 14 No Call on Phase 2 when Overlap B is Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY 2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap B = 5+6+X.

 405

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x02 = 0x02

Note: Verifies that Overlap B = Green.

Pass/Fail

18. END IF
19. Set HITL Detector Input 14 = On
20. DELAY 2 Seconds
21. GET phaseStatusGroupVehCalls.1, phaseStatusGroupVehCalls.2
22. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x00 AND phaseStatusGroupVehCalls.2 = 0x00

Note: Checks for no call on Phase 2 or anywhere

Pass/Fail

23. Set HITL Detector Input 14 = Off
24. DELAY .2 Seconds

Detector 14 No Call on Phase 2 when Overlap B is not Green and a Call on Phase 3
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap B = 5+6+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x02 = 0x00

Note: Verifies that Overlap B = NOT Green.

Pass/Fail

18. END IF
19. Set HITL Detector Input 3 = On
20. DELAY 2 Seconds
21. Set HITL Detector Input 14 = On
22. DELAY 2 Seconds
23. GET phaseStatusGroupVehCalls.1

 406

24. VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1
AND 0x02 = 0x00

Note: Checks for no call on Phase 2

Pass/Fail

25. Set HITL Detector Input 3 = Off
26. DELAY .2 Seconds
27. Set HITL Detector Input 14 = Off
28. DELAY .2 Seconds

Detector 14 No Call on Phase 2 when Overlap B is not Green and a Call on Phase 4
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap B = 5+6+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x02 = 0x00

Note: Verifies that Overlap B = NOT Green.

Pass/Fail

18. END IF
19. Set HITL Detector Input 4 = On
20. DELAY 2 Seconds
21. Set HITL Detector Input 14 = On
22. DELAY 2 Seconds
23. GET phaseStatusGroupVehCalls.1
24. VERIFY that RESPONSE VALUE AND 0x02 = 0

Note: Checks for no call on Phase 2

Pass/Fail

25. Set HITL Detector Input 14 = Off
26. DELAY .2 Seconds
27. Set HITL Detector Input 4 = Off
28. DELAY .2 Seconds

 407

Detector 14 calls Phase 2 when Overlap B is not Green and no Calls on Phase 3 or Phase 4
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. GET overlapStatusGroupGreens.1

Note: overlapStatusGroupGreens is optional and a GET may return
a noSuchName. This also assumes that Overlap B = 5+6+X.

16. IF RESPONSE ERROR = noError THEN
17. VERIFY that RESPONSE VALUE overlapStatusGroupGreens.1

AND 0x02 = 0x00

Note: Verifies that Overlap B = NOT Green

Pass/Fail

18. END IF
19. Set HITL Detector Input 14 = On
20. DELAY 2 Seconds
21. GET phaseStatusGroupVehCalls.1
22. VERIFY that RESPONSE VALUE AND 0x02 = 0x02

Note: Checks for call on Phase 2

Pass/Fail

23. Set HITL Detector Input 14 = Off
24. DELAY .2 Seconds

Detector 14 does not extend Phase 6 when Phase 6 is Green and there are not Calls on Phase 7 or
Phase 8

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second

 408

11. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 14 = On

Note: To possible extend

16. DELAY .2 Seconds
17. Set HITL Detector Input 6 = On

Note: To force extensions

18. DELAY .2 Seconds
19. Set HITL Detector Input 2 = On

Note: When opposing call exists

20. DELAY .2 Seconds
21. Set HITL Detector Input 6 = Off

Note: To check whether possible extensions are due to Detector 14.

22. DELAY .2 Seconds
23. GET ringStatus.2
24. WHILE ringStatus.1 AND 0x08 ≠ 0x08 (xxxx1xxx = gap out)
25. DELAY 1 Second
26. GET ringStatus.2
27. WEND

Note: Wait for Gap Out indication on Ring 2.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

28. GET phaseStatusGroupPhaseOns.1
29. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x20 = 0x20

Note: Verify that Gap Out indication occurred on Phase 6.

Pass/Fail

30. Set HITL Detector Input 2 and 14 = Off
31. DELAY .2 Seconds

Detector 14 extends Phase 6 when Phase 6 is Green and there is a Call on Phase 7
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second

 409

11. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 14 = On

Note: To possible extend

16. DELAY .2 Seconds
17. Set HITL Detector Input 6 = On

Note: To force extensions

18. DELAY .2 Seconds
19. Set HITL Detector Input 7 = On

Note: When conflicting call exists and satisfies conditions

20. DELAY .2 Seconds
21. Set HITL Detector Input 6 = Off

Note: To check whether possible extensions are due to Detector 14.

22. DELAY .2 Seconds
23. GET ringStatus.2
24. WHILE ringStatus.2 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
25. DELAY 1 Second
26. GET ringStatus.2
27. WEND

Note: Wait for Max Out Indication on Ring 2.

Ring 1 = 2, 3, 4, 9, 11, & 12
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

28. GET phaseStatusGroupPhaseOns.1
29. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x20 = 0x20

Note: Verify that Max Out indication occurred on Phase 6.

Pass/Fail

30. Set HITL Detector Input 7 and 14 = Off
31. DELAY .2 Seconds

Detector 14 extends Phase 6 when Phase 6 is Green and there is a call on Phase 8
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second

 410

11. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 14 = On

Note: To possible extend

16. DELAY .2 Seconds
17. Set HITL Detector Input 6 = On

Note: To force extensions

18. DELAY .2 Seconds
19. Set HITL Detector Input 8 = On

Note: When opposing call exists

20. DELAY .2 Seconds
21. Set HITL Detector Input 6 = Off

Note: To check whether possible extensions are due to Detector 14.

22. DELAY .2 Seconds
23. GET ringStatus.2
24. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
25. DELAY 1 Second
26. GET ringStatus.2
27. WEND

Note: Wait for Max Out Indication on Ring 2.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

28. GET phaseStatusGroupPhaseOns.1
29. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x20= 0x20

Note: Verify that Max Out indication occurred on Phase 6.

Pass/Fail

30. Set HITL Detector Input 8 and 14 = Off
31. DELAY .2 Seconds

Detector 14 extends Phase 13 when Phase 13 is Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second

 411

11. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. Set HITL Detector Input 14 = On
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND

Note: Wait until controller reaches 1+13.

24.
25. Set HITL Detector Input 3 = Off
26. DELAY .2 Seconds
27. GET ringStatus.2
28. WHILE ringStatus.2 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
29. DELAY 1 Second
30. GET ringStatus.2
31. WEND

Note: Wait for Max Out Indication on Ring 2.
Ring 1 = 2, 3, 4, 9, 11, & 12
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

32. GET phaseStatusGroupPhaseOns.2
33. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x10 = 0x10

Note: Ensure that Max Out occurred on Phase 13.

Pass/Fail

34. Set HITL Detector Input 14 = Off
35. DELAY .2 Seconds

Detector 14 Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

Test Case Notes:
Version History: v1.00 04/12/06 Initial Draft – RDR

v1.01 07/05/06 Deleted strikethroughs, moved initial detector turnoff point,
corrected detector number in some cases, and updated notes – RDR

v1.02 07/17/06 Implemented script and proofed – JJ

 412

Detector 15 Operations

Test Case: Title: Detector 15 Operations
TC015 Description: Verifies the operation of Detector 15 to call and extends phase 6

under specific conditions.
 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 15 calls Phase 6 during 2+5 Green

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 15 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x12 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x12 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 2+5 Green.

Pass/Fail

23. Set HITL Detector Input 15 = Off
24. DELAY .2 Seconds

 413

Detector 15 calls Phase 6 during 3+5 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 15 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x14 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x14 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 3+5 Green.

Pass/Fail

23. Set HITL Detector Input 15 = Off
24. DELAY .2 Seconds

Detector 15 calls Phase 6 during 4+5 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 414

12. WEND
Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 15 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x18 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x18 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 4+5 Green.

Pass/Fail

23. Set HITL Detector Input 15 = Off
24. DELAY .2 Seconds

Detector 15 calls Phase 6 during 5+9 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND
Note: Wait until controller reaches 5+9.

22. Set HITL Detector Input 7 = Off
23. DELAY .2 Seconds

 415

24. Set HITL Detector Input 15 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x10 AND

phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 5+9 Green.

Pass/Fail

32. Set HITL Detector Input 15 = Off
33. DELAY .2 Seconds

Detector 15 calls Phase 6 during 1+7 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 15 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x41 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x41 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 1+7 Green.

Pass/Fail

 416

23. Set HITL Detector Input 15 = Off
24. DELAY .2 Seconds

Detector 15 calls Phase 6 during 1+8 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 15 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x81 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x81 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 1+8 Green.

Pass/Fail

23. Set HITL Detector Input 15 = Off
24. DELAY .2 Seconds

Detector 15 calls Phase 6 during 2+16 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second

 417

11. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND
Note: Wait until controller reaches 2+16.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 15 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 2+16
Green.

Pass/Fail

32. Set HITL Detector Input 15 = Off
33. DELAY .2 Seconds

Detector 15 calls Phase 6 during 2+15 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 418

12. WEND
Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND
Note: Wait until controller reaches 2+15.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 15 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 2+15
Green.

Pass/Fail

32. Set HITL Detector Input 15 = Off
33. DELAY .2 Seconds

Detector 15 calls Phase 6 during 1+13 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND
Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off

 419

14. DELAY .2 Seconds
15. Set HITL Detector Input 4 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND
Note: Wait until controller reaches 1+13.

22. Set HITL Detector Input 4 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 15 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x01 AND
phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x20 ≠ 0x20

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x01 AND

phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x20 = 0x20

Note: Ensure that Phase 6 registers a Vehicle Call during 1+13
Green.

Pass/Fail

32. Set HITL Detector Input 15 = Off
33. DELAY .2 Seconds

Detector 15 extends Phase 6 when Phase 6 is Green until a gap in Detector 15 activity occurs at
which time Detector 15 becomes inactive until Phase 6 Yellow

1. GET vehicleDetectorExtend.15 and RECORD RESPONSE VALUE
in [currentExtendValue]

2. SET vehicleDetectorExtend.15 = 40

Note: Set Detector 15 extend time = 4 seconds.

3. GET ringStatus.1, ringStatus.2
4. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
5. DELAY 1 Second
6. GET ringStatus.1, ringStatus.2
7. WEND

Note: Loop until controller rests somewhere.

8. Set HITL Detector Input 2 = On
9. DELAY .2 Seconds
10. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
11. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

12. DELAY 1 Second

 420

13. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

14. WEND
Note: Wait until controller reaches 2+5.

15. Set HITL Detector Input 2= Off
16. DELAY .2 Seconds
17. Set HITL Detector Input 15 = On (To call and then extend Phase 6)
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND
Note: Wait until controller reaches 1+6.

24. Set HITL Detector Input 3 = On (So that Detector 15 will extend
Phase 6 when there is an opposing call)

25. DELAY .2 Seconds
26. GET ringStatus.2
27. WHILE ringStatus.2 AND 0x07 ≠ 0x01 (xxxxx001 = extension)
28. DELAY .1 Second
29. GET ringStatus.2
30. WEND

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

31. GET phaseStatusGroupPhaseOns.1
32. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x20 = 0x20

Note: Verify that the extensions are on Phase 6.

Pass/Fail

33. Set HITL Detector Input 15 = Off
34. DELAY 3 Seconds
35. Set HITL Detector Input 15 = On
36. DELAY .2 Seconds
37. Set HITL Detector Input 15 = Off
38. DELAY 2.8 Seconds
39. GET ringStatus.2
40. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Ring 1 = 2, 3, 4, 9, 11, 12, & 1
 Ring 2 = 15, 16, 5, 6, 7, 8, & 13

41. GET phaseStatusGroupPhaseOns.1
42. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x20 = 0x20

Note: Verify that extensions are still timing on Phase 6 because call
was entered < 4 seconds later.

Pass/Fail

43. Set HITL Detector Input 15 = On
44. DELAY .2 Seconds
45. Set HITL Detector Input 15 = Off

 421

46. DELAY 4.8 Seconds

Note: Since the time between actuations is now 5 seconds, the timer
will gap and therefore disable Detector 15 from putting in any further
extensions.

47. Set HITL Detector Input 15 = On
48. DELAY .2 Seconds
49. GET ringStatus.2
50. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 = 0x04

(xxxxx100 = Yellow Change)

Note: Verify that the Yellow Change is on Phase 6 because call was
entered > 4 seconds later.
 Ring 1 = 2, 3, 4, 9, 11, 12, & 1
 Ring 2 = 15, 16, 5, 6, 7, 8, & 13

51. GET phaseStatusGroupPhaseOns.1, ringStatus.2,
phaseStatusGroupVehCalls.1

52. WHILE (phaseStatusGroupPhaseOns.1 AND 0x20 = 0x20) AND
(ringStatus.2 AND 0x07 = 0x04) AND (phaseStatusGroupVehCalls.1
AND 0x20 ≠ 0x20)

53. DELAY 1 Second
54. GET phaseStatusGroupPhaseOns.1, ringStatus.2,

phaseStatusGroupVehCalls.1

55. WEND
56. VERIFY (phaseStatusGroupPhaseOns.1 AND 0x20 = 0x20) AND

(ringStatus.2 AND 0x07 = 0x04) AND (phaseStatusGroupVehCalls.1
AND 0x20 = 0x20)

Note: Ensure that Phase 6 registers a Vehicle Call during 6 Yellow.

Pass/Fail

57. Set HITL Detector Input 3 = Off and 15 = Off
58. DELAY .2 Seconds
59. SET vehicleDetectorExtend.15 = [currentExtendValue],

Note: Restore original values.

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes>
Version History: v1.00 05/05/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/12/06 Implemented script and proofed – JJ

 422

Detector 16 Operations

Test Case: Title: Detector 16 Operations
TC016 Description: Verifies the operation of Detector 16 to call and extend Phase 8

under specific conditions and extend interval 1825B (2+16).
 Constants:
 Variables: currentExtendValue
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 16 calls Phase 8 when Phase 8 not Green (In 2+16 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+16.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 16 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

 423

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x080

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 2+16
Green.

Pass/Fail

32. Set HITL Detector Input 16 = Off
33. DELAY .2 Seconds

Detector 16 calls Phase 8 when Phase 8 not Green (In 2+15 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+15.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 16 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

 424

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x080

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 2+15
Green.

Pass/Fail

32. Set HITL Detector Input 16 = Off
33. DELAY .2 Seconds

Detector 16 calls Phase 8 when Phase 8 not Green (In 1+13 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 1+13.

22. Set HITL Detector Input 3 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 16 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

 425

27. WHILE phaseStatusGroupGreens.1 = 0x01 AND
phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x080

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x01 AND

phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 1+13
Green.

Pass/Fail

32. Set HITL Detector Input 16 = Off
33. DELAY .2 Seconds

Detector 16 calls Phase 8 when Phase 8 not Green (In 2+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 16 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x12 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x12 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 2+5 Green.

Pass/Fail

23. Set HITL Detector Input 16 = Off
24. DELAY .2 Seconds

 426

Detector 16 calls Phase 8 when Phase 8 not Green (In 3+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 16 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x14 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x14 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 3+5 Green.

Pass/Fail

23. Set HITL Detector Input 16 = Off
24. DELAY .2 Seconds

Detector 16 calls Phase 8 when Phase 8 not Green (In 4+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second

 427

11. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 16 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x18 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x18 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 4+5 Green.

Pass/Fail

23. Set HITL Detector Input 16 = Off
24. DELAY .2 Seconds

Detector 16 calls Phase 8 when Phase 8 not Green (In 6+12 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 428

21. WEND

Note: Wait until controller reaches 6+12.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 16 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 6+12
Green.

Pass/Fail

32. Set HITL Detector Input 16 = Off
33. DELAY .2 Seconds

Detector 16 calls Phase 8 when Phase 8 not Green (In 6+11 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 429

21. WEND

Note: Wait until controller reaches 6+11.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 16 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 6+11
Green.

Pass/Fail

32. Set HITL Detector Input 16 = Off
33. DELAY .2 Seconds

Detector 16 calls Phase 8 when Phase 8 not Green (In 5+9 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 430

21. WEND

Note: Wait until controller reaches 5+9.

22. Set HITL Detector Input 7 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 16 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x10 AND

phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 5+9 Green.

Pass/Fail

32. Set HITL Detector Input 16 = Off
33. DELAY .2 Seconds

Detector 16 calls Phase 8 when Phase 8 not Green (In 1+6 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 16 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x21 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

 431

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x21 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80= 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 1+6 Green.

Pass/Fail

23. Set HITL Detector Input 16 = On
24. DELAY .2 Seconds

Detector 16 calls Phase 8 when Phase 8 not Green (In 1+7 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 16 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x41 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x41 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x80 = 0x80

Note: Ensure that Phase 8 registers a Vehicle Call during 1+7 Green.

Pass/Fail

23. Set HITL Detector Input 16 = Off
24. DELAY .2 Seconds

Detector 16 extends Phase 8 until Phase 2 call exists and Detector 16 gaps and Phase 2 call
continues

1. GET vehicleDetectorExtend.16 = [currentExtendValue]
2. SET vehicleDetectorExtend.16 = 40

Note: Set Detector 16 extend time = 4 seconds so that actuation less
than 4 seconds apart keep the phase extending.

 432

3. GET ringStatus.1, ringStatus.2
4. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
5. DELAY 1 Second
6. GET ringStatus.1, ringStatus.2
7. WEND

Note: Loop until controller rests somewhere.

8. Set HITL Detector Input 4 = On
9. DELAY .2 Seconds
10. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
11. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

12. DELAY 1 Second
13. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

14. WEND

Note: Wait until controller reaches 4+5 first so that Detector 16 can
call and extend Phase 8.

15. Set HITL Detector Input 4 = Off
16. DELAY .2 Seconds
17. Set HITL Detector Input 16 = On (To call and then extend Phase 8)
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND

Note: Wait until controller reaches 1+8.

24. Set HITL Detector Input 2 = On (Detector 16 will extend Phase 8
when there is an opposing call)

25. DELAY .2 Seconds

Note: This should get Phase 4 to start timing extensions and sets up
conditional logic.

26. GET ringStatus.2
27. WHILE ringStatus.2 AND 0x07 ≠ 0x01 (xxxxx001 = extension)
28. DELAY .1 Second
29. GET ringStatus.2
30. WEND

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

31. GET phaseStatusGroupPhaseOns.1
32. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x80 = 0x80

Note: Verify that the extensions are on Phase 8.

Pass/Fail

33. Set HITL Detector Input 16 = Off
34. DELAY 3 Seconds

 433

35. Set HITL Detector Input 16 = On
36. DELAY .2 Seconds
37. Set HITL Detector Input 16 = Off
38. DELAY 2.8 Seconds
39. GET ringStatus.2
40. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Ring 1 = 2, 3, 4, 9, 11, 12, & 1
 Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

41. GET phaseStatusGroupPhaseOns.1
42. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x80 = 0x80

Note: Verify that extensions are still timing on Phase 8 because call
was entered < 4 seconds later.

43. Set HITL Detector Input 16 = On
44. DELAY .2 Seconds
45. Set HITL Detector Input 16 = Off
46. DELAY 2.8 Seconds
47. GET ringStatus.2
48. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

49. GET phaseStatusGroupPhaseOns.1
50. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x80 = 0x80

Note: Verify that extensions are still timing on Phase 8 because call
was entered < 4 seconds later.

Pass/Fail

51. Set HITL Detector Input 16 = On
52. DELAY .2 Seconds
53. Set HITL Detector Input 16 = Off
54. DELAY 4.8 Seconds

Note: Since the time between actuations is now 5 seconds, the timer
will gap and therefore disable Detector 16 from putting in any further
extensions.

55. Set HITL Detector Input 16 = On
56. DELAY .2 Seconds
57. GET ringStatus.2
58. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 ≠ 0x01

(xxxxx001 = extension)

Note: Verify that Phase 8 is no longer timing extensions.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

59. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupVehCalls.1
60. WHILE (phaseStatusGroupPhaseOns.1 AND 0x80 = 0x80) AND

(phaseStatusGroupVehCalls.1 AND 0x80 ≠ 0x80)

61. DELAY 1 Second
62. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupVehCalls.1

 434

63. WEND
64. VERIFY (phaseStatusGroupPhaseOns.1 AND 0x80 = 0x80) AND

(phaseStatusGroupVehCalls.1 AND 0x80 = 0x80)

Note: Ensure that Phase 8 registers a Vehicle Call.

Pass/Fail

65. Set HITL Detector Input 2 = Off and 16 = Off
66. DELAY .2 Seconds

 POST-CONDITION The Detector 16 vehicleDetectorExtend is still
set to 4 seconds

Detector 16 extends Phase 8 until Phase 2 call exists and Detector 16 gaps but not if Phase 2 call
disappears
 PRE-CONDITION The Detector 16 vehicleDetectorExtend is still set

to 4 seconds

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 16 = On (To call and then extend 1+8)
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 1+8.

22. Set HITL Detector Input 2 = On
23. DELAY .2 Seconds

Note: Detector 12 will extend Phase 4 when there is an opposing
call.

24. GET ringStatus.2
25. WHILE ringStatus.2 AND 0x07 ≠ 0x01 (xxxxx001 = extension)
26. DELAY .1 Second
27. GET ringStatus.2

 435

28. WEND

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

29. GET phaseStatusGroupPhaseOns.1
30. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x80 = 0x80

Note: Verify that the extensions are timing on Phase 8.

Pass/Fail

31. Set HITL Detector Input 16 = Off
32. DELAY 3 Seconds
33. Set HITL Detector Input 16 = On
34. DELAY .2 Seconds
35. Set HITL Detector Input 16 = Off
36. DELAY 2.8 Seconds
37. GET ringStatus.2
38. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 = 0x01

(xxxxx001 = extension)

Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

39. GET phaseStatusGroupPhaseOns.1
40. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x80 = 0x80

Note: Verify that extensions are still timing on Phase 8.

Pass/Fail

41. Set HITL Detector Input 16 = On
42. DELAY .2 Seconds
43. Set HITL Detector Input 16 = Off
44. DELAY 2.8 Seconds
45. GET ringStatus.2
46. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

47. GET phaseStatusGroupPhaseOns.1
48. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x80 = 0x80

Note: Verify that extensions are still timing on Phase 8.

Pass/Fail

49. Set HITL Detector Input 16 = On
50. DELAY .2 Seconds
51. Set HITL Detector Input 16 = Off, 8 = On, 2 = Off and 3 = On

Note: Stop extending Phase 8 via Detector 16, turn on Detector 8 to
keep Phase 8 extending, turn off Detector 2 opposing demand as
part of the logic, and turn on Detector 3 to place opposing demand
Detector 8 will keep extending Phase 8 irrespective of Detector 16,
no call on Phase 2 will reset Detector 16 gap function, and the call
on Phase 3 will enable extensions to continue to time.

 436

52. DELAY 4.8 Seconds

Note: This would have the effect of allowing the extend timer to gap
and therefore disable detector 16 but since Phase 2 no longer has a
call, another activation of Detector 16 will continue to extend Phase
8.

53. Set HITL Detector Input 16 = On and 8 Off
54. DELAY .2 Seconds
55. Set HITL Detector Input 16 = Off
56. DELAY .2 Seconds
57. GET ringStatus.2
58. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

59. GET phaseStatusGroupPhaseOns.1
60. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x80 = 0x80

Note: Verify that extensions are still timing on Phase 8 because even
though call was > 4 seconds later, the absence of call on Phase 2
allowed Phase 8 to continue to continue to time extensions.

Pass/Fail

61. Set HITL Detector Input 3 = Off
62. DELAY .2 Seconds
63. SET vehicleDetectorExtend.16 = [currentExtendValue]

Note: Return Detector 16 extend time back to their original value.

Detector 16 extends Phase 16 when Phase 16 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 16 = On
16. DELAY .2 Seconds
17. Set HITL Detector Input 2 = On
18. DELAY .2 Seconds

 437

19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x80

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND

Note: Wait until controller reaches 2+16.

24. Set HITL Detector Input 2 = Off
25. DELAY .2 Seconds
26. GET ringStatus.2
27. WHILE ringStatus.2 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
28. DELAY 1 Second
29. GET ringStatus.2
30. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

31. GET phaseStatusGroupPhaseOns.2
32. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x80 = 0x80

Note: Ensure that Max Out occurred on Phase 16.

Pass/Fail

33. Set HITL Detector Input 16 = Off
34. DELAY .2 Seconds

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

Test Case Notes:
Version History: v1.00 05/09/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 07/12/06 Implemented script and proofed – JJ

Detector 17 Operations

Test Case: Title: Detector 17 Operations
TC017 Description: Verifies the operation of Detector 17 to call and extend Phase 3

under specific conditions and extend interval 3516B (6+11).
 Constants:
 Variables: currentExtendValue
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 17 calls Phase 3 when Phase 3 not Green (In 2+16 Green)

 438

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x0

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+16.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 17 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 2+16
Green.

Pass/Fail

32. Set HITL Detector Input 17 = Off
33. DELAY .2 Seconds

Detector 17 calls Phase 3 when Phase 3 not Green (In 2+15 Green)
1. GET ringStatus.1, ringStatus.2

 439

2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+15.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 17 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 2+15
Green.

Pass/Fail

32. Set HITL Detector Input 17 = Off
33. DELAY .2 Seconds

Detector 17 calls Phase 3 when Phase 3 not Green (In 1+13 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03

 440

3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 1+13.

22. Set HITL Detector Input 3 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 17 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x01 AND
phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x01 AND

phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 1+13
Green.

Pass/Fail

32. Set HITL Detector Input 17 = Off
33. DELAY .2 Seconds

Detector 17 calls Phase 3 when Phase 3 not Green (In 2+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second

 441

4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 17 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x12 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x12 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 2+5 Green.

Pass/Fail

23. Set HITL Detector Input 17 = Off
24. DELAY .2 Seconds

Detector 17 calls Phase 3 when Phase 3 not Green (In 4+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

 442

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 17 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x18 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x18 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 4+5 Green.

Pass/Fail

23. Set HITL Detector Input 17 = Off
24. DELAY .2 Seconds

Detector 17 calls Phase 3 when Phase 3 not Green (In 6+12 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 6+12.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds

 443

24. Set HITL Detector Input 17 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 6+12
Green.

Pass/Fail

32. Set HITL Detector Input 17 = Off
33. DELAY .2 Seconds

Detector 17 calls Phase 8 when Phase 8 not Green (In 6+11 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 6+11.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 17 = On

 444

25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 6+11
Green.

Pass/Fail

32. Set HITL Detector Input 17 = Off
33. DELAY .2 Seconds

Detector 17 calls Phase 3 when Phase 3 not Green (In 5+9 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 5+9.

22. Set HITL Detector Input 7 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 17 = On
25. DELAY .2 Seconds

 445

26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,
phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x10 AND

phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 5+9 Green.

Pass/Fail

32. Set HITL Detector Input 17 = Off
33. DELAY .2 Seconds

Detector 17 calls Phase 3 when Phase 3 not Green (In 1+6 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 17 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x21 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x21 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04= 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 1+6 Green.

Pass/Fail

23. Set HITL Detector Input 17 = On

 446

24. DELAY .2 Seconds
Detector 17 calls Phase 3 when Phase 3 not Green (In 1+7 Green)

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 17 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x41 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x41 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 1+7 Green.

Pass/Fail

23. Set HITL Detector Input 17 = Off
24. DELAY .2 Seconds

Detector 17 calls Phase 3 when Phase 3 not Green (In 1+8 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second

 447

11. GET phaseStatusGroupPhaseOns.1,
phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 17 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x81 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x81 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x04 = 0x04

Note: Ensure that Phase 3 registers a Vehicle Call during 1+8 Green.

Pass/Fail

23. Set HITL Detector Input 17 = Off
24. DELAY .2 Seconds

Detector 17 extends Phase 3 until Phase 6 call exists and Detector 17 gaps and Phase 6 call
continues

1. GET vehicleDetectorExtend.17 = [currentExtendValue]
2. SET vehicleDetectorExtend.17 = 40

Note: Set Detector 17 extend time = 4 seconds so that actuations < 4
seconds apart keep the phase extending.

3. GET ringStatus.1, ringStatus.2
4. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
5. DELAY 1 Second
6. GET ringStatus.1, ringStatus.2
7. WEND

Note: Loop until controller rests somewhere.

8. Set HITL Detector Input 8 = On
9. DELAY .2 Seconds
10. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
11. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

12. DELAY 1 Second
13. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

14. WEND

Note: Wait until controller reaches 1+8 first so that Detector 17 can
call and extend Phase 3.

15. Set HITL Detector Input 8 = Off
16. DELAY .2 Seconds
17. Set HITL Detector Input 17 = On (To call and then extend Phase 3)

 448

18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND

Note: Wait until controller reaches 3+5.

24. Set HITL Detector Input 6 = On (Detector 17 will extend Phase 3
when there is an opposing call)

25. DELAY .2 Seconds

Note: This should get Phase 3 to start timing extensions and sets up
conditional logic.

26. GET ringStatus.1
27. WHILE ringStatus.1 AND 0x07 ≠ 0x01 (xxxxx001 = extension)
28. DELAY .1 Second
29. GET ringStatus.1
30. WEND

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

31. GET phaseStatusGroupPhaseOns.1
32. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x04 = 0x04

Note: Verify that the extensions are on Phase 3.

Pass/Fail

33. Set HITL Detector Input 17 = Off
34. DELAY 3 Seconds
35. Set HITL Detector Input 17 = On
36. DELAY .2 Seconds
37. Set HITL Detector Input 17 = Off
38. DELAY 2.8 Seconds
39. GET ringStatus.1
40. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

41. GET phaseStatusGroupPhaseOns.1
42. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x04 = 0x04

Note: Verify that extensions are still timing on Phase 3 because call
was entered < 4 seconds later.

Pass/Fail

43. Set HITL Detector Input 17 = On
44. DELAY .2 Seconds
45. Set HITL Detector Input 17 = Off
46. DELAY 2.8 Seconds
47. GET ringStatus.1

 449

48. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 = 0x01
(xxxxx001 = extension)

Note: Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

49. GET phaseStatusGroupPhaseOns.1
50. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x04 = 0x04

Note: Verify that extensions are still timing on Phase 3 because call
was entered < 4 seconds later.

Pass/Fail

51. Set HITL Detector Input 17 = On
52. DELAY .2 Seconds
53. Set HITL Detector Input 17 = Off
54. DELAY 4.8 Seconds

Note: Since the time between actuations is now 5 seconds, the timer
will gap and therefore disable Detector 17 from putting in any further
extensions.

55. Set HITL Detector Input 17 = On
56. DELAY .2 Seconds
57. GET ringStatus.1
58. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 ≠ 0x01

(xxxxx001 = extension)

Note: Verify that Phase 3 is no longer timing extensions.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

59. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupVehCalls.1
60. WHILE (phaseStatusGroupPhaseOns.1 AND 0x04 = 0x04) AND

(phaseStatusGroupVehCalls.1 AND 0x04 ≠ 0x04)

61. DELAY 1 Second
62. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupVehCalls.1

63. WEND
64. VERIFY (phaseStatusGroupPhaseOns.1 AND 0x04 = 0x04) AND

(phaseStatusGroupVehCalls.1 AND 0x04 = 0x04)

Note: Ensure that Phase 3 registers a Vehicle Call.

Pass/Fail

65. Set HITL Detector Input 6 = Off and 17 = Off
66. DELAY .2 Seconds

 POST-CONDITION The Detector 17 vehicleDetectorExtend is still
set to 4 seconds

Detector 17 extends Phase 3 until Phase 6 call exists and Detector 17 gaps but not if Phase 6 call
disappears
 PRE-CONDITION The Detector 17 vehicleDetectorExtend is still set

to 4 seconds

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On

 450

7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 17 = On (To call and then extend Phase 3)
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 3+5.

22. Set HITL Detector Input 6 = On
23. DELAY .2 Seconds

Note: The Detector 17 call gets Phase 3 to start timing extensions
because of the opposing demand and sets up conditional logic.

24. GET ringStatus.1
25. WHILE ringStatus.1 AND 0x07 ≠ 0x01 (xxxxx001 = extension)
26. DELAY .1 Second
27. GET ringStatus.1
28. WEND

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

29. GET phaseStatusGroupPhaseOns.1
30. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x04 = 0x04

Note: Verify that the extensions are timing on Phase 3.

Pass/Fail

31. Set HITL Detector Input 17 = Off
32. DELAY 3 Seconds
33. Set HITL Detector Input 17 = On
34. DELAY .2 Seconds
35. Set HITL Detector Input 17 = Off
36. DELAY 2.8 Seconds
37. GET ringStatus.1

 451

38. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 = 0x01
(xxxxx001 = extension)

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

39. GET phaseStatusGroupPhaseOns.1
40. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x04 = 0x04

Note: Verify that extensions are still timing is on Phase 3.

Pass/Fail

41. Set HITL Detector Input 17 = On
42. DELAY .2 Seconds
43. Set HITL Detector Input 17 = Off
44. DELAY 2.8 Seconds
45. GET ringStatus.1
46. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

47. GET phaseStatusGroupPhaseOns.1
48. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x04 = 0x04

Note: Verify that extensions are still timing on Phase 3.

Pass/Fail

49. Set HITL Detector Input 17 = On
50. DELAY .2 Seconds
51. Set HITL Detector Input 17 = Off, 3 = On, 6 = Off and 7 = On

Note: Stop extending Phase 3 via Detector 17, turn on Detector 3 to
keep Phase 3 extending, turn off Detector 6 opposing demand as
part of the logic, and turn on Detector 7 to place opposing demand.
Detector 3 will keep extending Phase 3 irrespective of Detector 17,
no call on Phase 6 will reset Detector 17 gap function, and the call
on Phase 3 will enable extensions to continue to time.

52. DELAY 4.8 Seconds

Note: This would have the effect of allowing the extend timer to gap
and therefore disable Detector 17, but since Phase 6 no longer has a
call, another activation of Detector 17 will continue to extend Phase
3.

53. Set HITL Detector Input 17 = On and 3 Off
54. DELAY .2 Seconds
55. Set HITL Detector Input 17 = Off
56. DELAY .2 Seconds
57. GET ringStatus.1
58. VERIFY that RESPONSE VALUE ringStatus.1 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

59. GET phaseStatusGroupPhaseOns.1

 452

60. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1
AND 0x04 = 0x04

Note: Verify that extensions are still timing on Phase 3 because even
though call was > 4 seconds later, the absence of call on Phase 6
allowed Phase 3 to continue to time extensions.

Pass/Fail

61. Set HITL Detector Input 7 = Off
62. DELAY .2 Seconds
63. SET vehicleDetectorExtend.17 = [currentExtendValue]

Note: Return Detector 17 extend time back to its original value.

Detector 17 extends Phase 11 when Phase 11 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 17 = On
16. DELAY .2 Seconds
17. Set HITL Detector Input 6 = On
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x04

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND

Note: Wait until controller reaches 6+11.

24. Set HITL Detector Input 6 = Off
25. DELAY .2 Seconds
26. GET ringStatus.1
27. WHILE ringStatus.1 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
28. DELAY 1 Second
29. GET ringStatus.1

 453

30. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

31. GET phaseStatusGroupPhaseOns.2
32. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x04 = 0x04

Note: Ensure that Max Out occurred on Phase 11.

Pass/Fail

33. Set HITL Detector Input 17 = Off
34. DELAY .2 Seconds

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

Test Case Notes:
Version History: v1.00 05/09/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR
v1.02 08/01/06 Implemented script and proofed – JJ

Detector 18 Operations

Test Case: Title: Detector 18 Operations
TC018 Description: Verifies the operation of Detector 18 to call and extend Phase 7

under specific conditions and extend interval 1725B (2+15).
 Constants:
 Variables: currentExtendValue
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
 PERFORM Detector Operations Setup – TC019 if not already done

so.

Detector 18 calls Phase 7 when Phase 7 not Green (In 1+8 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 454

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 18 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x81 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x81 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 1+8 Green.

Pass/Fail

23. Set HITL Detector Input 18 = Off
24. DELAY .2 Seconds

Detector 18 calls Phase 7 when Phase 7 not Green (In 2+16 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 8 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND

phaseStatusGroupPhaseOns.2 ≠ 0x0

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+8.

13. Set HITL Detector Input 8 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x80

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 455

21. WEND

Note: Wait until controller reaches 2+16.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 18 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x80 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 2+16
Green.

Pass/Fail

32. Set HITL Detector Input 18 = Off
33. DELAY .2 Seconds

Detector 18 calls Phase 7 when Phase 7 not Green (In 2+15 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 456

21. WEND

Note: Wait until controller reaches 2+15.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 18 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x02 AND
phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x02 AND

phaseStatusGroupGreens.2 = 0x40 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 2+15
Green.

Pass/Fail

32. Set HITL Detector Input 18 = Off
33. DELAY .2 Seconds

Detector 18 calls Phase 7 when Phase 7 not Green (In 1+13 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 3 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x01 AND

phaseStatusGroupPhaseOns.2 ≠ 0x10

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 457

21. WEND

Note: Wait until controller reaches 1+13.

22. Set HITL Detector Input 3 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 18 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x01 AND
phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x01 AND

phaseStatusGroupGreens.2 = 0x10 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 1+13
Green.

Pass/Fail

32. Set HITL Detector Input 18 = Off
33. DELAY .2 Seconds

Detector 18 calls Phase 7 when Phase 7 not Green (In 2+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 2 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 2+5.

13. Set HITL Detector Input 2 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 18 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x12 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

19. DELAY 1 Second

 458

20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,
phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x12 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 2+5 Green.

Pass/Fail

23. Set HITL Detector Input 18 = Off
24. DELAY .2 Seconds

Detector 18 calls Phase 7 when Phase 7 not Green (In 3+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 18 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x14 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x14 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 3+5 Green.

Pass/Fail

23. Set HITL Detector Input 18 = Off
24. DELAY .2 Seconds

Detector 18 calls Phase 7 when Phase 7 not Green (In 4+5 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2

 459

5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 18 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x18 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x18 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 4+5 Green.

Pass/Fail

23. Set HITL Detector Input 18 = Off
24. DELAY .2 Seconds

Detector 18 calls Phase 7 when Phase 7 not Green (In 6+12 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off

 460

14. DELAY .2 Seconds
15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x08

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 6+12.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 18 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x08 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 6+12
Green.

Pass/Fail

32. Set HITL Detector Input 18 = Off
33. DELAY .2 Seconds

Detector 18 calls Phase 7 when Phase 7 not Green (In 6+11 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds

 461

15. Set HITL Detector Input 6 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x20 AND

phaseStatusGroupPhaseOns.2 ≠ 0x04

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 6+11.

22. Set HITL Detector Input 6 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 18 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x20 AND
phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x20 AND

phaseStatusGroupGreens.2 = 0x04 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 6+11
Green.

Pass/Fail

32. Set HITL Detector Input 18 = Off
33. DELAY .2 Seconds

Detector 18 calls Phase 7 when Phase 7 not Green (In 5+9 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests in green somewhere.

6. Set HITL Detector Input 3 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 3+5.

13. Set HITL Detector Input 3 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 7 = On

 462

16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x10 AND

phaseStatusGroupPhaseOns.2 ≠ 0x01

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 5+9.

22. Set HITL Detector Input 7 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 18 = On
25. DELAY .2 Seconds
26. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

27. WHILE phaseStatusGroupGreens.1 = 0x10 AND
phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

28. DELAY 1 Second
29. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

30. WEND
31. VERIFY phaseStatusGroupGreens.1 = 0x10 AND

phaseStatusGroupGreens.2 = 0x01 AND
phaseStatusGroupVehCalls.1 AND 0x40 = 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 5+9 Green.

Pass/Fail

32. Set HITL Detector Input 18 = Off
33. DELAY .2 Seconds

Detector 18 calls Phase 7 when Phase 7 not Green (In 1+6 Green)
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 6 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+6.

13. Set HITL Detector Input 6 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 18 = On
16. DELAY .2 Seconds

 463

17. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,
phaseStatusGroupVehCalls.1

18. WHILE phaseStatusGroupGreens.1 = 0x21 AND
phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupGreens.1, phaseStatusGroupGreens.2,

phaseStatusGroupVehCalls.1

21. WEND
22. VERIFY phaseStatusGroupGreens.1 = 0x21 AND

phaseStatusGroupGreens.2 = 0x00 AND
phaseStatusGroupVehCalls.1 AND 0x40= 0x40

Note: Ensure that Phase 7 registers a Vehicle Call during 1+6 Green.

Pass/Fail

23. Set HITL Detector Input 18 = On
24. DELAY .2 Seconds

Detector 18 extends Phase 7 until Phase 2 call exists and Detector 18 gaps and Phase 2 call
continues

1. GET vehicleDetectorExtend.18 = [currentExtendValue]
2. SET vehicleDetectorExtend.18 = 40

Note: Set Detector 18 extend time = 4 seconds so that actuations < 4
seconds apart keep the phase extending.

3. GET ringStatus.1, ringStatus.2
4. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
5. DELAY 1 Second
6. GET ringStatus.1, ringStatus.2
7. WEND

Note: Loop until controller rests somewhere.

8. Set HITL Detector Input 3 = On
9. DELAY .2 Seconds
10. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
11. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

12. DELAY 1 Second
13. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

14. WEND

Note: Wait until controller reaches 3+5.

15. Set HITL Detector Input 3 = Off
16. DELAY .2 Seconds
17. Set HITL Detector Input 18 = On (To call and then extend Phase 7)
18. DELAY .2 Seconds
19. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
20. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

21. DELAY 1 Second
22. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

23. WEND

Note: Wait until controller reaches 1+7.

 464

24. Set HITL Detector Input 2 = On (Detector 18 will extend Phase 4
when there is an opposing call)

25. DELAY .2 Seconds

Note: This should get Phase 7 to start timing extensions and sets up
conditional logic.

26. GET ringStatus.2
27. WHILE ringStatus.2 AND 0x07 ≠ 0x01 (xxxxx001 = extension)
28. DELAY .1 Second
29. GET ringStatus.2
30. WEND

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

31. GET phaseStatusGroupPhaseOns.1
32. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x40= 0x40

Note: Verify that the extensions are on Phase 7.

Pass/Fail

33. Set HITL Detector Input 18 = Off
34. DELAY 3 Seconds
35. Set HITL Detector Input 18 = On
36. DELAY .2 Seconds
37. Set HITL Detector Input 18 = Off
38. DELAY 2.8 Seconds
39. GET ringStatus.2
40. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

41. GET phaseStatusGroupPhaseOns.1
42. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x40 = 0x40

Note: Verify that extensions are still timing on Phase 7 because call
was entered < 4 seconds later.

Pass/Fail

43. Set HITL Detector Input 18 = On
44. DELAY .2 Seconds
45. Set HITL Detector Input 18 = Off
46. DELAY 2.8 Seconds
47. GET ringStatus.2
48. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

49. GET phaseStatusGroupPhaseOns.1
50. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x40 = 0x40

Note: Verify that extensions are still timing on Phase 7 because call
was entered < 4 seconds later.

Pass/Fail

51. Set HITL Detector Input 18 = On

 465

52. DELAY .2 Seconds
53. Set HITL Detector Input 18 = Off
54. DELAY 4.8 Seconds

Note: Since the time between actuations is now 5 seconds, the timer
will gap and therefore disable Detector 18 from putting in any further
extensions.

55. Set HITL Detector Input 18 = On
56. DELAY .2 Seconds
57. GET ringStatus.2
58. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 ≠ 0x01

(xxxxx001 = extension)

Note: Verify that Phase 7 is no longer timing extensions.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

59. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupVehCalls.1
60. WHILE (phaseStatusGroupPhaseOns.1 AND 0x40 = 0x40) AND

(phaseStatusGroupVehCalls.1 AND 0x40 ≠ 0x40)

61. DELAY 1 Second
62. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupVehCalls.1

63. WEND
64. VERIFY (phaseStatusGroupPhaseOns.1 AND 0x40 = 0x40) AND

(phaseStatusGroupVehCalls.1 AND 0x40 = 0x40)

Note: Ensure that Phase 7 registers a Vehicle Call.

Pass/Fail

65. Set HITL Detector Input 2 = Off and 18 = Off
66. DELAY .2 Seconds

 POST-CONDITION The Detector 18 vehicleDetectorExtend is still
set to 4 seconds

Detector 18 extends Phase 7 until Phase 2 call exists and Detector 18 gaps but not if Phase 2 call
disappears
 PRE-CONDITION The Detector 18 vehicleDetectorExtend is still set

to 4 seconds

1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2
5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 4 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 4+5.

13. Set HITL Detector Input 4 = Off

 466

14. DELAY .2 Seconds
15. Set HITL Detector Input 18 = On (To call and then extend Phase 7)
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 1+7.

22. Set HITL Detector Input 2 = On
23. DELAY .2 Seconds

Note: Detector 18 will extend Phase 7 to start timing extensions and
sets up conditional logic.

24. GET ringStatus.1
25. WHILE ringStatus.2 AND 0x07 ≠ 0x01 (xxxxx001 = extension)
26. DELAY .1 Second
27. GET ringStatus.2
28. WEND

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

29. GET phaseStatusGroupPhaseOns.1
30. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x40 = 0x40

Note: Verify that the extensions are timing on Phase 7.

Pass/Fail

31. Set HITL Detector Input 18 = Off
32. DELAY 3 Seconds
33. Set HITL Detector Input 18 = On
34. DELAY .2 Seconds
35. Set HITL Detector Input 18 = Off
36. DELAY 2.8 Seconds
37. GET ringStatus.2
38. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

39. GET phaseStatusGroupPhaseOns.1
40. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x40 = 0x40

Note: Verify that extensions are still timing is on Phase 7.

Pass/Fail

41. Set HITL Detector Input 18 = On
42. DELAY .2 Seconds
43. Set HITL Detector Input 18 = Off
44. DELAY 2.8 Seconds
45. GET ringStatus.2

 467

46. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 = 0x01
(xxxxx001 = extension)

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

47. GET phaseStatusGroupPhaseOns.1
48. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x40 = 0x40

Note: Verify that extensions are still timing on Phase 7.

Pass/Fail

49. Set HITL Detector Input 18 = On
50. DELAY .2 Seconds
51. Set HITL Detector Input 18 = Off, 7 = On, 2 = Off and 3 = On

Note: Stop extending Phase 7 via Detector 18, turn on Detector 7 to
keep Phase 7 extending, turn off Detector 2 opposing demand as
part of the logic, and turn on Detector 3 to place opposing demand.
Detector 7 will keep extending Phase 7 irrespective of Detector 18,
no call on Phase 2 will reset Detector 18 gap function, and the call
on Phase 3 will enable extensions to continue to time.

52. DELAY 4.8 Seconds

Note: This would have the effect of allowing the extend timer to gap
and therefore disable Detector 18, but since Phase 2 no longer has a
call, another activation of Detector 18 will continue to extend Phase
7.

53. Set HITL Detector Input 18 = On and 7 = Off
54. DELAY .2 Seconds
55. Set HITL Detector Input 18 = Off
56. DELAY .2 Seconds
57. GET ringStatus.2
58. VERIFY that RESPONSE VALUE ringStatus.2 AND 0x07 = 0x01

(xxxxx001 = extension)

Note: Wait for indication that extensions are timing.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

Pass/Fail

59. GET phaseStatusGroupPhaseOns.1
60. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.1

AND 0x40 = 0x40

Note: Verify that extensions are still timing on Phase 7 because even
though call was > 4 seconds later, the absence of call on phase 2
allowed phase 7 to continue to time extensions.

Pass/Fail

61. Set HITL Detector Input 3 = Off
62. DELAY .2 Seconds
63. SET vehicleDetectorExtend.18 = [currentExtendValue]

Note: Return Detector 18 extend time back to their original value.

Detector 18 extends Phase 15 when Phase 15 Green
1. GET ringStatus.1, ringStatus.2
2. WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
3. DELAY 1 Second
4. GET ringStatus.1, ringStatus.2

 468

5. WEND

Note: Loop until controller rests somewhere.

6. Set HITL Detector Input 7 = On
7. DELAY .2 Seconds
8. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
9. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0x00

10. DELAY 1 Second
11. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

12. WEND

Note: Wait until controller reaches 1+7.

13. Set HITL Detector Input 7 = Off
14. DELAY .2 Seconds
15. Set HITL Detector Input 2 = On
16. DELAY .2 Seconds
17. GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
18. WHILE phaseStatusGroupPhaseOns.1 ≠ 0x02 AND

phaseStatusGroupPhaseOns.2 ≠ 0x40

19. DELAY 1 Second
20. GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

21. WEND

Note: Wait until controller reaches 2+15.

22. Set HITL Detector Input 2 = Off
23. DELAY .2 Seconds
24. Set HITL Detector Input 18 = On
25. DELAY .2 Seconds
26. GET ringStatus.2
27. WHILE ringStatus.2 AND 0x10 ≠ 0x10 (xxx1xxxx = maxout)
28. DELAY 1 Second
29. GET ringStatus.2
30. WEND

Note: Wait for Max Out Indication.
Ring 1 = 2, 3, 4, 9, 11, 12, & 1
Ring 2 = 15, 16, 5, 6, 7, 8, & 13

31. GET phaseStatusGroupPhaseOns.2
32. VERIFY that RESPONSE VALUE phaseStatusGroupPhaseOns.2

AND 0x40 = 0x40

Note: Ensure that Max Out occurred on Phase 15.

Pass/Fail

33. Set HITL Detector Input 18 = Off
34. DELAY .2 Seconds

Teardown
 PERFORM Detector Teardown – TC020 if not proceeding to another

detector operation test case

Test Case Results

Tested By: Date
Tested

 469

Test Case Notes:
Version History: v1.00 05/09/06 Initial Draft – RDR

v1.01 07/03/06 Updated logic – RDR
v1.02 07/05/06 Updated notes – RDR
v1.03 08/17/06 Implemented script and proofed – JJ

Detector Operations Setup

Test Case: Title: Detector Operations Setup
TC019 Description: This procedure performs general setup of controller parameters

to facilitate testing and provide consistent operation.
 Constants:
 Variables: [currentMinGrn.Phase]

[currentPassage.Phase]
[currentMax1.Phase]

 Pass/Fail
Criteria:

The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Setup
1. CONFIGURE the controller for:

1. 4-phase diamond operation with Phase 3 and 7 in sequence
2. Connection to TS 2 Tester Box (BIU’s enabled)
3. Vehicle and Pedestrian Recalls are all off
4. Default data loaded
5. Call non-locking memory is set so that calls are not remembered

if a call is removed
6. Yellow clearances are set to at least 3.5 seconds
6. Red clearances are set to at least 1.5 seconds

Note: The setup for different manufacturer’s controllers will be
different. Reference should be made to a document containing such
information.
Eagle Configuration Notes:

Unit Data – Startup & Misc – Alt Sequence = 16
Unit Data – Port 1 Data = Enable T&F 1=4, DET 1-4,
and Malfunction Unit
Phase Data – Initialization & N.A. Response Phase 4 and 7 =
Change “Dark“ TO “Inactive“

Naztec Configuration Notes:

Econolite Notes:

2. FOR Phase = 1 TO 16
3. GET phaseMinimumGreen.Phase, phasePassage.Phase, and

phaseMaximum1.Phase

4. RECORD RESPONSE VALUE in [currentMinGrn.Phase],
[currentPassage.Phase] and [currentMax1.Phase]

Note: These values will be restored at the end of the test case.

 470

5. SET phaseMinimumGreen.Phase = 5, phasePassage.Phase = 0,
and phaseMaximum1.Phase = 25

Note: min = 5 second, passage = 4 seconds, and max = 25
seconds.

6. NEXT Phase
Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes>
Version History: v1.00 05/05/06 Initial Draft – RDR

v1.01 06/27/06 Updated test values – RDR
v1.02 07/05/06 Updated notes – RDR
v1.03 07/27/06 Implemented script and proofed – JJ

Detector Operations Teardown

Test Case: Title: Detector Operations Teardown
TC020 Description: This procedure restores original controller parameters after

executing Detector Operation Setup – TC001
 Constants:
 Variables:
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

Test Step
Number

Test Procedure Results

Teardown
1. FOR Phase = 1 TO 16
2. SET phaseMinimumGreen.Phase = [currentMinGrn.Phase],

phasePassage.Phase = [currentPassage.Phase],
phaseMaximum1.Phase = [currentMax1.Phase]

Pass/Fail

3. NEXT Phase
Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes>
Version History: v1.00 05/08/06 Initial Draft – RDR

v1.01 07/27/06 Implemented script and proofed – JJ

Detector Delay

Test Case: Title: Detector Delay
TC021 Description: Verifies that, when programmed, Detectors 2, 3, 4, 6, 7, and 8

delay entering a call for the parent phase when the parent
phase is red.

 Constants:
 Variables: currentDetectorDelay.2 (.4, 6, 7, and 8)
 Pass/Fail

Criteria:
The DUT shall pass every verification step included within the
Test Case in order to pass the Test Case.

 471

Test Step
Number

Test Procedure Results

Setup

 FOR DetectorNumber = 2, 3, 4, 6, 7, and 8
 GET vehicleDetectorDelay.DetectorNumber
 RECORD RESPONSE VALUE in

[currentDetectorDelay.DetectorNumber]

Note: These values will be restored at the end of the test case.

 SET vehicleDetectorDelay.DetectorNumber = 2 Pass/Fail
 NEXT Phase

Detector 2 Delay
 GET ringStatus.1, ringStatus.2
 WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
 DELAY 1 Second
 GET ringStatus.1, ringStatus.2
 WEND

Note: Loop until controller rests in green somewhere.

 Set phaseControlGroupVehCall.1 = 0x20
 DELAY .2 Seconds
 Set phaseControlGroupVehCall.1 = 0x00

 GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
 WHILE phaseStatusGroupPhaseOns.1 ≠ 0x21 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

 DELAY 1 Second
 GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 WEND
Note: Wait until controller reaches 1+6.

 Set HITL Detector Input 2 = On

 DELAY 1.9 Seconds
 GET phaseStatusGroupVehCalls.1
 VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x00

Note: Verify that detector call is not active yet.

Pass/Fail

 DELAY .2 Seconds
 GET phaseStatusGroupVehCalls.1
 VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x02

Note: Verify that detector call is now active.

Pass/Fail

 Set HITL Detector Input 2 = Off

 472

Detector 3 Delay
 GET ringStatus.1, ringStatus.2
 WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
 DELAY 1 Second
 GET ringStatus.1, ringStatus.2
 WEND

Note: Loop until controller rests in green somewhere.

 Set phaseControlGroupVehCall.1 = 0x40
 DELAY .2 Seconds
 Set phaseControlGroupVehCall.1 = 0x00

 GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
 WHILE phaseStatusGroupPhaseOns.1 ≠ 0x41 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

 DELAY 1 Second
 GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 WEND
Note: Wait until controller reaches 1+7.

 Set HITL Detector Input 3 = On

 DELAY 1.9 Seconds
 GET phaseStatusGroupVehCalls.1
 VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x00

Note: Verify that detector call is not active yet.

Pass/Fail

 DELAY .2 Seconds
 GET phaseStatusGroupVehCalls.1
 VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x04

Note: Verify that detector call is now active.

Pass/Fail

 Set HITL Detector Input 3 = Off

Detector 4 Delay
 GET ringStatus.1, ringStatus.2
 WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
 DELAY 1 Second
 GET ringStatus.1, ringStatus.2
 WEND

Note: Loop until controller rests in green somewhere.

 Set phaseControlGroupVehCall.1 = 0x80
 DELAY .2 Seconds
 Set phaseControlGroupVehCall.1 = 0x00

 GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2

 473

 WHILE phaseStatusGroupPhaseOns.1 ≠ 0x81 AND
phaseStatusGroupPhaseOns.2 ≠ 0X00

 DELAY 1 Second
 GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 WEND
Note: Wait until controller reaches 1+8.

 Set HITL Detector Input 4 = On

 DELAY 1.9 Seconds
 GET phaseStatusGroupVehCalls.1
 VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x00

Note: Verify that detector call is not active yet.

Pass/Fail

 DELAY .2 Seconds
 GET phaseStatusGroupVehCalls.1
 VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x08

Note: Verify that detector call is now active.

Pass/Fail

 Set HITL Detector Input 4 = Off

Detector 6 Delay
 GET ringStatus.1, ringStatus.2
 WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
 DELAY 1 Second
 GET ringStatus.1, ringStatus.2
 WEND

Note: Loop until controller rests in green somewhere.

 Set phaseControlGroupVehCall.1 = 0x02
 DELAY .2 Seconds
 Set phaseControlGroupVehCall.1 = 0x00

 GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
 WHILE phaseStatusGroupPhaseOns.1 ≠ 0x12 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

 DELAY 1 Second
 GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 WEND
Note: Wait until controller reaches 2+5.

 Set HITL Detector Input 6 = On

 DELAY 1.9 Seconds
 GET phaseStatusGroupVehCalls.1

 474

 VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =
0x00

Note: Verify that detector call is not active yet.

Pass/Fail

 DELAY .2 Seconds
 GET phaseStatusGroupVehCalls.1
 VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x20

Note: Verify that detector call is now active.

Pass/Fail

 Set HITL Detector Input 6 = Off

Detector 7 Delay
 GET ringStatus.1, ringStatus.2
 WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
 DELAY 1 Second
 GET ringStatus.1, ringStatus.2
 WEND

Note: Loop until controller rests in green somewhere.

 Set phaseControlGroupVehCall.1 = 0x04
 DELAY .2 Seconds
 Set phaseControlGroupVehCall.1 = 0x00

 GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
 WHILE phaseStatusGroupPhaseOns.1 ≠ 0x14 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

 DELAY 1 Second
 GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 WEND
Note: Wait until controller reaches 3+5.

 Set HITL Detector Input 7 = On

 DELAY 1.9 Seconds
 GET phaseStatusGroupVehCalls.1
 VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x00

Note: Verify that detector call is not active yet.

Pass/Fail

 DELAY .2 Seconds
 GET phaseStatusGroupVehCalls.1
 VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x40

Note: Verify that detector call is now active.

Pass/Fail

 Set HITL Detector Input 7 = Off

 475

Detector 8 Delay
 GET ringStatus.1, ringStatus.2
 WHILE ringStatus.1 ≠ 0x03 AND ringStatus.2 ≠ 0x03
 DELAY 1 Second
 GET ringStatus.1, ringStatus.2
 WEND

Note: Loop until controller rests in green somewhere.

 Set phaseControlGroupVehCall.1 = 0x04
 DELAY .2 Seconds
 Set phaseControlGroupVehCall.1 = 0x00

 GET phaseStatusGroupPhaseOns.1, phaseStatusGroupPhaseOns.2
 WHILE phaseStatusGroupPhaseOns.1 ≠ 0x18 AND

phaseStatusGroupPhaseOns.2 ≠ 0X00

 DELAY 1 Second
 GET phaseStatusGroupPhaseOns.1,

phaseStatusGroupPhaseOns.2

 WEND
Note: Wait until controller reaches 4+5.

 Set HITL Detector Input 8 = On

 DELAY 1.9 Seconds
 GET phaseStatusGroupVehCalls.1
 VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x00

Note: Verify that detector call is not active yet.

Pass/Fail

 DELAY .2 Seconds
 GET phaseStatusGroupVehCalls.1
 VERIFY that RESPONSE VALUE phaseStatusGroupVehCalls.1 =

0x80

Note: Verify that detector call is now active.

Pass/Fail

 Set HITL Detector Input 8 = Off

Teardown
 FOR DetectorNumber = 2, 3, 4, 6, 7, and 8
 SET vehicleDetectorDelay.DetectorNumber =

[currentDetectorDelay.DetectorNumber]

Note: Restore the original value.

Pass/Fail

 NEXT Phase
Test Case Results

Tested By: Date
Tested

 Pass/Fail

Test Case Notes: <notes>
Version History: v1.00 06/11/06 Initial Draft – RDR

v1.01 07/05/06 Updated notes – RDR

 476

REFERENCES FOR APPENDIX G

1. NTCIP Laboratory Testing for Actuated Signal Controllers, Summary Report for

ASSHTO Project 475070. Published by Texas Transportation Institute.
http://tti.tamu.edu/documents/TTI-2006-1.pdf. Accessed June 7, 2006.

2. NTCIP 1202 – Object Definitions for Actuated Traffic Signal Controller Units, A Joint

Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1202. Accessed June 21, 2006.

3. Balke, K., R. Engelbrecht, S. Sunkari, J. Charara, TTI’S Hardware-In-The-Loop Traffic

Signal Controller Evaluation System. Published by Texas Transportation Institute.
http://tti.tamu.edu/documents/5-1752-01-1.pdf. Accessed August 23, 2006.

4. DMS-11170, Fully Actuated, Solid-State Traffic Signal Controller Assembly,

Departmental Material Specifications 7-115, Section 19. Published by TxDOT.
http://manuals.dot.state.tx.us/dynaweb/colmates/dms/@ebt-
link;?target=idmatch(s070019). Accessed July 29, 2005.

5. NTCIP 1201 – Global Object Definitions. A Joint Publication of AASHTO, ITE, and

NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=1201. Accessed July 25, 2005.

6. NTCIP 8007 – Testing and Conformity Assessment Documentation within NTCIP

Standards Publications, A Joint Publication of AASHTO, ITE, and NEMA.
http://www.ntcip.org/library/standards/default.asp?documents=yes&qreport=no&standar
d=8007. Accessed July 25, 2005.

	Federal Title Page
	Author's Title Page
	Disclaimer
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations and Symbols
	Glossary
	Chapter 1: Introduction
	Project Objectives
	Scope of Project
	Organization of This Report

	Chapter 2: NTCIP Testing Documentation
	Introduction
	CCTV Documentation
	Special Specification CCTV Field Equipment
	Initial Requirements Traceability Matrix
	Special Specification NTCIP for CCTV Equipment
	Expanded Requirements Traceability Matrix
	CCTV Test Procedures
	CCTV Test Results

	Communications Level Test Procedures
	Application Level
	Transport Level
	Subnetwork Level

	Traffic Signal Controller Documentation
	TxDOT Specifications for Traffic Signal Controller
	Initial Requirements Traceability Matrix
	Test Plan and Documentation
	Traffic Signal Controller Test Procedures
	Traffic Signal Controller Test Results

	Detector Requirements

	Chapter 3: Developing Additional Test Procedures
	Introduction
	ITS Field Device Estimates
	NTCIP 1103-TMP
	NTCIP 1201-GLO
	NTCIP 1202-ASC
	NTCIP 1203-DMS
	NTCIP 1204-ESS
	NTCIP 1205-CCTV
	NTCIP 1206-DCM
	NTCIP 1207-RMC
	NTCIP 1208-SW
	NTCIP 1209-TSS
	NTCIP 1210-FMS
	NTCIP 1211-SCP
	NTCIP 1213-ELMS

	Chapter 4: Applying Testing Procedures
	Testing Processes
	Internal TxDOT Testing Process
	Prequalification Testing
	QPL Testing
	Configuration Testing
	Sample Environmental System Testing
	System Testing

	Contractor Testing Process
	Configuration Management and Version Control

	Chapter 5: Training
	Introduction
	Audience
	Training Class Outlines
	1. Testing from the NTCIP Perspective
	2. Testing from the TxDOT Perspective

	Training Class Evaluation Form

	Chapter 6: Recommendations
	Testing Framework
	Future Development
	ELMS Test Procedures
	Generic Database

	References
	Appendix A Specila Specification for CCTV Equipment
	Special Specification 6025 (Modified for NTCIP Requirements) CCTV Field Equipment
	1. Description
	2. Materials
	A. Functional Requirements
	B. Electrical and Mechanical Requirements
	C. Environmental Design Requirements

	3. Construction Methods

	References for Appendix A

	Appendix B Special Specification - NTCIP for CCTV Equipment
	Special Specification XXXX National Transportation Communications for ITS Protocol for CCTV Equipment
	1. Description
	2. Requirements
	3. Testing and Verification
	4. Measurement and Payment

	References for Appendix B

	Appendix C: CCTV Test Procedures
	Introduction
	Test Case Summary
	Test Cases
	CCTV PRL Information
	Cabinet Alarm
	Enclosure Alarm
	Video Loss Alarm
	Temperature Alarm
	Pressure Alarm
	Local Remote Alarm
	Washer Fluid Alarm
	Identify Device
	Indentify Preset Position Range
	Identify Pan Limits
	True North Offset
	Identify Tilt Limits
	Identify Zoom Limits
	Identify Focus Limits
	Identify Iris Limit
	Identify Pan-Tilt Step Angle Minimum
	Identify Zone Functions
	Monitor Discrete Input
	Monitor Discrete Output
	Get Availability of Equipment
	Control Camera Power
	Control Heater Power
	Control Wiper
	Control Washer
	Control Blower
	Delta Focus Motion
	Absolute Focus Motion
	Continuous Focus Motion with Timeout
	Continuous Focus Motion with Stop
	Retrieve Module Table
	Global Set ID
	Delta Iris Motion
	Absolute Iris Motion
	Continuous Iris motion with Timeout
	Continuous Iris Motion with Stop
	Get and Set Label
	Display Camera Location
	Get Availability of Lens Equipment
	Control Auto Iris
	Control Auto Focus
	Menu
	Delta Pan Motion
	Absolute Pan Motion
	Continuous Pan Motion with Timeout
	Continuous pan Motion with Stop
	Change Adminstrator Community Name
	Change User Community Name
	Delta Tilt Motion
	Absolute Tilt Motion
	Continuous Tilt Motion with Timeout
	Continuous Tilt Motion with Stop
	Preset Position
	Get-Set Zone
	Move in and Out of Zone
	Delta Zoom Motion
	Absolute Zoom Motion
	Continuous Zoom Motion with Timeout
	Continuous Zoom Motion with Stop

	References for Appendix C

	Appendix D: CCTV Protocol Implementation Confromance Specification
	Introduction
	Interpreting Results
	Annex B Information Profile
	B.1 Notation
	B.2 CCTV Camera control Requirements
	B.3 CCRV Configuration Conformance Group
	B.4 CCRV Extended Functions Conformance Group
	B.5 CCTV Motion Control Conformance Group
	B.6 CCTV On-Screen Menu Control Conformance Group
	B.7 Global configuration Conformance Group
	B.8 NTCIP Security Conformance Group

	References for Appendix D

	Appendix E: Communications and Mixcellaneous Test Procedures
	Introduction
	SNMP Test Cases
	Transportation Transport Test Cases
	Point to Multi-Point With RS232 Test Cases
	STMP Test Cases
	Response Time Test Case
	References for Appendix E

	Appendix F: Traffic Signal Controller Test Documentation
	Introduction
	Test Design Specification NTCIP Conformant Traffic Signal Controller TDS-TSC v1.02
	Test Design Specification
	Revision History
	1.0 Introduction
	1.1 Test Design Specification Identification
	1.2 Features to be Tested
	1.3 Features not to be Tested
	1.4 Approach Refintements
	1.4.1 Conformance Group, Optional Objects, Standardized Ranges, and project Requirements
	1.4.1.1 Conformance Group and Optional Object Support
	1.4.1.2 Supported Values of Instantiated Objects
	1.4.1.3 Specific Values Defined in Minimum Project Requirements

	1.4.2 SNMP Protocol
	1.4.3 STMP Protocol
	1.4.4 Null Protocol I changed box 21 from 186 to 188, added an S to Description of Mixtures on TOC in Chapter 6, Changed page number for T6.3, T6.4 & T6.5 on LOT.
	1.4.5 PMPP Protocol Using and RS-232 Physical Interface
	1.4.6 PMPP Protocol Using an FSK Modem Interface
	1.4.7 Diamond Four-Phase Operation
	1.4.8 Diamond Four-Phase Detector Operations
	1.4.9 Additional Test Cases

	1.5 Test Identification
	1.6 Feature Pass Fail Criteria

	Test Bed Project Test Case Specifications Actuated Signal Controller ITL-TCS-TBP-ASC v1.10
	Revision History
	Test Case Specification
	1.7 Test Case Specification Identifier

	Object Instantiated Test Case
	1.8 Test Items
	1.8.1 Requirement Specification
	1.8.2 Desing Specifications
	1.8.3 User Guide
	1.8.4 Operators Guide
	1.8.5 Installation Guide

	1.9 Input Specifications
	1.10 Output Spcifications
	1.11 Environmental Needs
	1.11.1 Hardware
	1.11.2 Software
	1.11.3 Other

	1.12 Special procedureal Requirements
	1.13 Intercase Dependencies

	Supported Values Test Case
	2.0 Test Items
	2.0.1 Requirement Specifications
	2.0.2 Design Specifications
	2.0.3 User Guide
	2.0.4 Operators Guide
	2.0.5 Installation Guide

	2.1 Input Specifications
	2.2 Output Specifications
	2.3 Environmental Needs
	2.3.1 Hardware
	2.3.2 Software
	2.3.3 Other

	2.4 Special procedureal Requirements
	2.5 Intercase Dependencies

	SNMP Protocol Test Case
	3.0 Test Items
	3.1 Input Specification
	3.2 Output Specifications
	3.3 Environmental Needs
	3.3.1 Hardware
	3.3.2 Software
	3.3.3 Other

	3.4 Special Procedural Requirements
	3.5 Intercase Dependencies

	Null Protocol Test Case
	4.0 Test Items
	4.1 Input Specifications
	4.2 Output Specifications
	4.3 Environmental Needs
	4.3.1 Hardware
	4.3.2 Software
	4.3.3 Other

	4.4 Special procedureal Requirements
	4.5 Intercase Dependencies

	PMPP Using RS-232 Test Case
	5.0 Test Items
	5.1 Input Specifications
	5.2 Output Specifications
	5.3 Environmental Needs
	5.3.1 Hardware
	5.3.2 Software
	5.3.3 Other

	5.4 Special Procedureal Requirements
	5.5 Intercase Dependencies

	PMPP Using FSK Modem Test Case
	6.0 Test Items
	6.0.1 Requirements Specifications

	6.1 Input Specifications
	6.2 Output Specifications
	6.3 Environmental Needs
	6.3.1 Hardware
	6.3.2 Software
	6.3.3 Other

	6.4 Special Procedureal Requirements
	6.5 Intercase Dependencies

	System Operational Scenarios Test Cases
	7.0 Test items
	7.0.1 Requirements Specification
	7.0.2 Design Specifications
	7.0.3 user Guide
	7.0.4 Operators Guide
	7.0.5 Installation Guide

	7.1 Input Specifications
	7.2 Output Specifications
	7.3 Environmental Needs
	7.3.1 Hardware
	7.3.2 Software
	7.3.3 Other

	7.4 Special procedureal Requirements
	7.5 Intercase Dependencies

	Optional Operational scenarios Test Cases - Retrieving Log Data
	8.0 Test Case Specification Identification
	8.1 Rest Items
	8.1.1 Requirements Specifications
	8.1.2 Design Specifications

	Optional System Operational Scenarios Test Cases - Treieving Log Data
	9.0 Test Case Specification Identification
	9.0.1 Design Specifications
	9.0.2 User Guide
	9.0.3 Operators Guide
	9.0.4 Installation Guide

	9.1 Input Specifications
	9.2 Output Specifications
	9.3 Environemental Needs
	9.3.1 Hardware
	9.3.2 Software
	9.3.3 Other

	9.4 Special Procedural Requirements
	9.5 Intercase Dependencies

	System Performance Testing Test Case
	10.0 Test Case Specification Identification
	10.1 Test Items
	10.1.1 Requirements Specifications
	10.1.2 Design Specification
	10.1.3 Users Guide
	10.1.4 Operators Guide
	10.1.5 Installation Guide

	10.2 Input Specifications
	10.3 Output Specifications
	10.4 Evnironmental Needs
	10.4.1 hardware
	10.4.2 Software
	10.4.3 Other

	10.5 Special procedural Requirements
	10.6 Intercase Dependencies

	ASC Object Identifiers and Names

	References for Appendix F

	Appendix G: Traffic Signal Controller Test Procedures
	Introduction
	Detector Operations

	Test Case Summary
	Test Cases
	ASC PRL Information
	Four-Phase Diamond Sequencing
	Four -Phase Diamond Detector Operations
	Detector 1 Operations
	Detector 2 Operations:
	Detector 3 Operations
	Detector 4 Operations
	Detector 5 Operations
	Detector 6 Operations
	Detector 7 Operations
	Detector 8 Operations
	Detector 9 Operations
	Detector 10 Operations
	Detector 11 Operations
	Detector 12 Operations
	Detector 13 Operations
	Detector 14 Operations
	Detector 15 Operations
	Detector 16 Ooperations
	Detector 17 Operations
	Detector 18 Operations
	Detector Operations Setup
	Detector Operations Teardown
	Detector Delay

	References for Appendix G

