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CHAPTER 1.0  INTRODUCTION 
 
 
1.1  PURPOSE 
 
 The purpose of this project was to identify and investigate the count, speed, and 
occupancy accuracy of promising detectors that have the potential of replacing inductive 
loops and to determine how best to interface with the Texas Department of Transportation 
(TxDOT) Advanced Traffic Management System (ATMS).  
 
1.2 BACKGROUND 
 

Most vehicle detection today relies on inductive loop detectors; however, problems 
with installation and maintenance of loops have made it necessary to evaluate alternative 
vehicle detection systems. Several “non-intrusive” detection systems are becoming more 
prominent, being viewed as cost-effective replacements of inductive loops. Therefore, as new 
detectors are introduced or as existing detectors are improved, there needs to be continued 
research to investigate performance attributes. Past research indicates that testing needs to 
occur in a variety of traffic, weather, and lighting conditions to arrive at definitive 
conclusions that are useful to TxDOT.  
 

The Texas Transportation Institute (TTI) has been involved in detector research for 
more than 10 years, with research projects 0-1715, 0-1439, and 0-2119 making recent 
contributions to the detector knowledge base (1, 2, 3). Early TTI research focused primarily 
on inductive loops and video image detection systems. Then, TTI field-tested other devices 
in low-volume conditions, so continuing tests in the more demanding environment of I-35 in 
Austin, Texas, adds substantially to what was already known from previous research.   
 
1.3  OBJECTIVES 
 

The project objectives were to:  
 

• identify promising new or relatively untested detectors,  
 

• conduct field tests of selected detectors to identify prospects for implementation, and  
 

• determine the best means of interfacing with the TxDOT ATMS.  
 
1.4  ORGANIZATION OF THE REPORT 
  

This research report consists of six chapters organized by topic. Chapter 2 provides a 
summary of literature sources based on a recent review. Chapter 3 presents a summary of the 
improvements necessary to the test beds at S.H. 6 in College Station, Texas, and on I-35 near 
downtown Austin. Chapter 4 provides some of the results from field-testing, primarily at the 
I-35 test bed. Chapter 5 presents findings from the investigation of the most feasible interface 
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with the TxDOT ATMS. Chapter 6 presents conclusions and recommendations based on this 
research and provides input on implementation of the findings. Appendices A, B, and C 
contain the detector specification, the detector selection guide, and data plots, respectively. 

 
 
 

 



CHAPTER 2.0  LITERATURE REVIEW 
 
 

2.1  INTRODUCTION 
 
 Researchers updated the literature search for each year of the research project. The 
results reflect the latest in vehicle detection deemed appropriate for TxDOT freeway 
applications. The emphasis, in this case for other than the Background section below, was on 
the time interval from 2003 to 2006 since previous TxDOT-sponsored research documented 
earlier research.  
 
2.2 METHODOLOGY 
 

This task included a recent comprehensive literature search to complement the 
research team’s current knowledge base. It emphasized new research on this subject since 
recent research by TTI also included a literature search. Also, members of the TTI research 
team actively participated in networking activities throughout the course of the project to 
share research findings and learn from the experience of others, including involvement at 
conferences; e.g., the 2004 and 2006 North American Travel Monitoring and Exposition 
Conferences (NATMEC). Through these efforts of acquiring information, the research team 
was able to thoroughly evaluate both the existing and emerging detection systems.  
 
2.3  LITERATURE REVIEW 
 

Since the first known vehicle detector was introduced in 1928 at a signalized 
intersection, there have been hundreds of attempts to improve and create systems that 
monitor vehicle presence and passage at strategic locations on the nation’s streets and 
highways. Without accurate and reliable detectors, traffic management decisions based upon 
real-time or historical data are compromised. Many agencies use post processing for quality 
assurance as opposed to quality control. Quality assurance attempts to “fix the data” or 
identify defective data rather than ensuring the accuracy and reliability of the equipment. 
Quality control emphasizes good data by ensuring selection of the most accurate detector, 
then optimizing detector system performance. The latter applies more to this project than the 
former.  
 

Researchers organized the following findings on individual detectors by detection 
technology. The initial information comes primarily from other field-testing by the 
Minnesota Guidestar Program, the Hughes Aircraft study, and from earlier TTI research. The 
primary detection technologies are:  

 
• video image vehicle detection systems,  

 
• passive infrared,  

 
• active infrared,  
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• magnetic,  
 

• microwave radar,  
 

• passive acoustic, and  
 

• inductive loops.  
 

Detection technologies discussed below are primarily non-intrusive, although the section 
begins with loops because they are still the most prominent detection system used in Texas 
and elsewhere. 
 
2.3.1  Background  
 

The first known installation of a vehicle detection device occurred at a Baltimore 
intersection, forming the first semi-actuated signal installation.  The detector required drivers 
on the side street to sound their horn to activate the device, which consisted of a microphone 
mounted in a small box on a nearby utility pole.  Another device introduced at about this 
same time was a pressure-sensitive pavement detector using two metal plates acting as 
electrical contacts forced together by the weight of a vehicle passing.  This treadle-type 
detector proved more popular than the horn-activated detector, enjoying widespread use for 
over 30 years and becoming the primary means of vehicle detection at actuated signals (4). 
 

Ongoing problems with the contact plate detector led to the introduction of an electro-
pneumatic detector.  It was not a final solution either because of its cost to install.  Also, it 
was only capable of passage or motion detection.  Inductive loops were introduced as a 
vehicle detection system in the early 1960s and have become the most widespread detection 
system to date (4).  However, the well-documented problems with inductive loops have led to 
the introduction of numerous non-intrusive devices utilizing a variety of technologies to 
replace many of the failing inductive loops.   
 

By the late 1980s, video imaging detection systems were marketed in the U.S. and 
elsewhere, generating sufficient interest to warrant research to determine their viability as an 
inductive loop replacement.  In 1990, the California Polytechnic State University began 
testing 10 commercial or prototype video image processing systems that were available in the 
United States.  Evaluation results indicated that most systems generated vehicle count and 
speed errors of less than 20 percent over a mix of low, moderate, and high traffic densities 
under ideal conditions.  However, occlusion, transitional light conditions, and high-density, 
slow-moving traffic further reduced the accuracy of these new systems (5). 
 

Hughes Aircraft Company conducted an extensive test of non-intrusive sensors for 
the Federal Highway Administration (FHWA).  The objectives of the study, Detection 
Technology for IVHS (6), included determining traffic parameters and accuracy 
specifications, performing laboratory and field tests of non-intrusive detector technologies, 
and determining the needs and feasibility of establishing permanent vehicle detector test 
facilities.  This research went beyond testing of video imaging systems, testing a total of nine 
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detector technologies and including both freeway and surface street test sites in a variety of 
climatic and environmental conditions.  Conclusions indicated that video imaging systems 
were not one of the better performers in inclement weather.   
 

In another study sponsored by FHWA, the Jet Propulsion Laboratory (JPL) conducted 
research to identify the functional and technical requirements for traffic surveillance and 
detection systems in an Intelligent Transportation System (ITS) environment.  The report 
entitled Traffic Surveillance and Detection Technology Development, Sensor Development, 
(7), published in 1997, presented details on the development and performance capabilities for 
seven detection systems.  JPL focused on video imaging, radar, and laser detection systems 
and utilized the work performed by Hughes (6, 8) to assess current technology capabilities. 
 

The Minnesota Department of Transportation (MnDOT) and SRF Consulting Group, 
Inc. (SRF) conducted a two-year test of non-intrusive traffic detection technologies. This test, 
initiated by FHWA, had a goal of evaluating non-intrusive detection technologies under a 
variety of conditions. The researchers tested 17 devices representing eight technologies. The 
test site was an urban freeway interchange in Minnesota that provided signalized intersection 
and freeway main lane test conditions. Inductive loops provided baseline calibration. This 
initial test began in November 1995 and ended in January 1997 (9, 10, 11). A subsequent 
research project used this same site on I-394, investigating nine non-intrusive detectors from 
2000 to 2002. This report provides details on the more recent research activities in a later 
section.  
 

A critical finding of this MnDOT research was that mounting video detection devices 
is a more complex procedure than that required for other types of devices. Camera placement 
is crucial to the success and optimal performance of this detection device. Lighting variations 
were the most significant weather-related condition that impacted the video devices. 
Shadows from vehicles and other sources and transitions between day and night also 
impacted count accuracy (11).  
 

The Texas Transportation Institute has been involved in detector research for more 
than 10 years, with early research addressing inductive loops and more recent research 
emphasizing non-intrusive detectors. Most of the research included field investigations, and 
some also included a state-of-the-practice review to identify success stories.  Even though 
installation and maintenance practice for inductive loops should be well established due to 
product maturity, performance and service life attributes were still deficient at the outset of 
this series of research activities.  One of the early detector research projects developed a 
Traffic Signal Detector Manual primarily for inductive loop installers.  The manual presents 
installation procedures that ensure reliable performance and suggested practices to reduce 
loop installation time and maintenance costs (12).  Other TTI research investigated the use of 
acoustic and active infrared detectors at traffic signals for reducing stops and delays to 
trucks, finding that inductive loops were still more reliable for these applications, and 
especially in inclement weather and in poor lighting conditions (13, 14). 
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2.3.2  FY 2003-2004 Literature Findings  
 

More recent TTI research projects investigated the accuracy, reliability, cost, and 
user-friendliness of various non-intrusive detectors in seeking viable replacements for 
inductive loops. In Research Project 0-1715, TTI tested the Accuwave detector (microwave), 
the Nestor TrafficVision (VIVDS), the PIR-1 (passive infrared), the Electronics Integrated 
Systems, Inc. (EIS) Remote Traffic Microwave Sensor (RTMS) (microwave radar), and the 
SmartSonic (acoustic) detector at the S.H. 6 test bed. Tests on higher-volume urban freeways 
in Houston involved the Nestor TrafficVision (VIVDS), the Autoscope 2004 (VIVDS), and 
the RTMS (1). In Research Project 0-1439, TTI tested the VideoTrak-900® by Peek 
(VIVDS), the non-invasive microloop by 3M™ (magnetic), and the SAS-1 by SmarTek 
(acoustic) (2).  In Research Project 0-2119, TTI tested the Autoscope Solo Pro (VIVDS), 
Iteris Vantage (VIVDS), SAS-1, and RTMS (3). TTI usually began field-testing new devices 
in the low- to moderate-volume conditions at its freeway test bed on S.H. 6 in College 
Station with subsequent more demanding tests at another test bed on I-35 in Austin.  
 

This report also draws largely from another significant detector research effort 
conducted by MnDOT in two phases. Phase I was a two-year field test of non-intrusive 
detectors, completed in May 1997. The FHWA and MnDOT sponsored the research 
conducted by SRF Consulting. Phase I testing involved 17 sponsors and eight technologies 
and a variety of environmental and traffic conditions (freeway and intersection). Volume and 
speed data were the primary parameters tested, with classification tests also included on some 
devices. Both Phase I and Phase II tests used a site on I-394 near downtown Minneapolis. In 
order to improve on the facilities available in the first project, MnDOT built a permanent test 
shelter at the site. Following the completion of the structure in April 2001, the research team 
installed the data acquisition system, purchased the detectors to be tested, and pre-tested the 
detectors through the summer of 2001. The official freeway data collection lasted from 
October 2001 to early March 2002. They conducted the intersection test in late March 2002 
(9, 10, 11, 15). 
 
2.3.2.1  Inductive Loop Detectors   
 

More recent research activities related to detectors have built upon the early research 
covered in the background section of this report. Because this research focused on a variety 
of detectors, there should be a comparison of newer detectors with the most commonly used 
detector in current practice—the inductive loop. If non-intrusive detector accuracy compares 
favorably with loops and their costs and ease of use are similar, there are many agencies that 
would choose the non-loop option. Reasons for not choosing loops include difficulties in 
closing heavily traveled lanes for maintenance activities, hazardous exposure of workers to 
traffic, and in some cases long-term maintenance costs of loops. The Minnesota Guidestar 
project noted above (9, 10, 11) used six 6 ft by 6 ft loops installed in previous tests by 
Hughes for baseline comparison of counts and speed accuracy. Therefore, the inductive loops 
were only approximately four years old when Minnesota testing occurred. Initial loop 
accuracy tests showed that the loops in lanes 1 and 2 on the freeway undercounted by  
0.1 percent, while the high-occupancy vehicle (HOV) lane loops undercounted by  
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0.9 percent. Speed tests indicated that lane 1 loops underestimated true speed by 6.1 percent, 
and lane 2 loops underestimated speed by 1.9 percent.  
 

Peek ADR-6000. TTI initially tested the Peek ADR-6000 vehicle classification 
system (using Idris technology) in TxDOT Research Project 0-2119, partly because of its 
potential as a single device that could collect both planning data and real-time freeway traffic 
data. TxDOT is still interested in the ADR-6000 for both purposes, but it appeared to require 
further evaluation when Project 0-2119 came to an end. The ADR-6000 uses inductive loop 
signatures for its classification algorithm, so its speed, count, and classification results 
exceeded previous experience from the more typical classifiers using loops and axle sensors 
(e.g., piezoelectric sensors).  TTI designed the test site architecture in Project 0-2119 and in 
this project such that the Peek system contact closure output fed into a Local Control Unit 
(LCU), which in turn communicated with the Austin District Traffic Operations Center.  The 
ADR stored classification data internally to be downloaded later to a site computer or to 
other computers via the Internet using file transfer protocol (FTP) (3).   
 

The sites selected for the test were the I-35 test bed site near downtown Austin, which 
frequently experienced stop-and-go traffic, and the S.H. 6 test bed site in College Station. 
The S.H. 6 site offered free-flow conditions. TTI developed and equipped these two freeway 
test beds for this research and for future TxDOT-sponsored research with equipment such as 
equipment cabinets, computers, baseline inductive loops, charged couple display (CCD) 
cameras, Digital Subscriber Line (DSL) communication, and baseline inductive loops.   
 

Results in this section came from only the I-35 test bed. TTI findings indicated that 
the ADR-6000 was very accurate as a classifier, counter, and speed detection device, and as a 
generator of simultaneous contact closure output.  However, its recent introduction into the 
U.S. market and being adapted from a toll application are factors in its need for further 
refinement.  Table 1 shows the classification result for a dataset of 1923 vehicles, indicating 
only 21 errors and resulting in a classification accuracy of 99 percent (ignoring Class 2 and 3 
discrepancies).  This data sample occurred during the morning peak and included some stop-
and-go traffic.  For count accuracy, the Peek in this same dataset only missed one vehicle (it 
accurately accounted for vehicles changing lanes).  Figure 1 shows the close agreement of 
the ADR with two other test systems using one-minute speeds from the Peek, an overhead 
Doppler radar system, and an Autoscope Solo Pro. The graphic indicates discrepancies only 
at slow speeds (below about 15 mph) where the Doppler radar is known to drop out and the 
Autoscope speed accuracy decreases slightly. This research noted the need for Peek to 
continue refinements to the ADR-6000 to improve its stability in the harsh environment of a 
field equipment cabinet and to improve its user interface (3).   
 

Researchers expect the future of the ADR-6000 in Texas and elsewhere in similar 
applications to be a function of its cost, willingness of agencies to continue installing 
inductive loops, and willingness of multiple agencies to develop agreements to share 
maintenance responsibilities (e.g., for shared data). The fact that it can serve the dual role is 
expected to be a positive factor, especially at more demanding locations with extremely high 
volumes and where it can serve both the traffic operations and traditional data needs.  
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Table 1.  Peek ADR-6000 Classification Accuracy Comparison. 
Vehicle Classification 

  1 2 3 4 5 6 7 8 9 10 11 12 Total Errors

Lane 1 Count 0 330 118 1 9 0 0 2 15 0 1 0 476   
Errors 0 0 0 0 1 0 0 0 2 0 0 0   3 
                 
Lane 2 Count 0 299 84 0 16 3 1 11 23 0 1 0 438   
Errors 2 1   3 1       1         8 
                 
Lane 3 Count 2 306 96 1 11 3 0 7 6 0 0 0 432   
Errors   1     2 1     1         5 
                 
Lane 4 Count 0 312 88 1 14 1 0 4 2 0 0 0 422   
Errors     1 1 1 1               4 
                 
Lane 5 Count 0 106 36 0 5 3 0 0 5 0 0 0 155   
Errors   1                       1 
                 
Totals 4 1356 423 7 60 12 1 24 55 0 2 0 1923   
                 
Total Errors 2 3 1 4 5 2 0 0 4 0 0 0   21 
Source:  Reference (3). 
 
 
 
 
2.3.2.2  Video Image Vehicle Detection  Systems 
 

The Minnesota DOT and SRF Consulting completed a two-phase test of non-intrusive 
traffic detection technologies. The overall tests, initiated by FHWA, had a primary goal of 
providing useful evaluation on non-intrusive detection technologies under a variety of 
conditions. In phase I, researchers tested 17 devices representing eight different technologies, 
including VIVDS. The test site was an urban freeway interchange in Minnesota that provided 
both signalized intersection and freeway main lane test conditions. Inductive loops served as 
the baseline calibration system. Phase I of the tests ran from November 1995 to January 1996 
and Phase 2 ran from February 1996 to January 1997 (9, 10, 11).  
 

In Phase I, MnDOT researchers tested four VIVDS; the three included herein are: the 
Peek VideoTrak-900, the Autoscope 2004, and the Eliop Trafico EVA 2000. A critical 
finding of this research was that mounting video detection devices is a more complex 
procedure than that required for other types of devices. Camera placement is crucial to the 
success and optimal performance of the detection device. Lighting variations were the most 
significant weather-related condition that impacted the video devices.  Shadows from 
vehicles and other sources and transitions between day and night also impacted count 
accuracy (11). 
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Figure 1.  Speed Accuracy of the ADR-6000.  

 
 
 
 

The Peek Transyt VideoTrak-900 exhibited count accuracy at the freeway test site 
within 5 percent of the baseline. However, when the device was moved to the intersection, 
periodic failures began to occur and continued throughout the testing. Researchers also 
observed that overcounting occurred during the light transition periods from day to night and 
vice versa. Like the VideoTrak-900, the Autoscope 2004 also monitored input from up to 
four cameras and performed within 5 percent accuracy at both freeway and intersection test 
sites. Light changes during transition periods also resulted in undercounting by the 
Autoscope (11). 
 

Researchers found that the Eliop Trafico EVA 2000 had counts that were within 
1 percent of the baseline loop system. Calibration of this system was difficult due to a 
complicated user interface; however, the system was not adversely impacted by any weather 
condition and was the only video system that was not affected by light transitions. The EVA 
2000 was not tested at the intersection because it was not recommended for that use (11). 
 

Duckworth et al. (16) conducted tests of various traffic monitoring sensors on a 
highway near Boston.  The researchers found that VIVDS provided the best performance in 
the areas of detection, speed estimation, and vehicle classification.  However, they noted that 
VIVDS had limitations in poor lighting and certain weather conditions, and was the most 
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expensive sensor tested. In 1996, Courage et al. (17) assessed the state-of-the-art in video 
image detection technology and possible applications; however, they did not assess accuracy 
or cost. 
 

Autoscope 2004.  In Research Project 0-1715, TTI tested the Autoscope 2004 on the 
three eastbound lanes of U.S. 290 in Houston near Pinemont. Lane 1 Autoscope counts from 
6:00 a.m. to midnight during the five-day test period (February 1999) were generally within 
10 percent of baseline counts. Many of the 15-minute counts were within 5 percent of 
baseline. Counts after dark were the exception, with the Autoscope overcounting by as much 
as 30 to 40 percent. The lane 1 counts should have been the most accurate of the three lanes, 
and a better camera and an improved position closer to the lane should improve its accuracy. 
Lane 2 counts were more erratic than lane 1 counts. Daylight errors were both positive and 
negative in the range of +20 percent to -50 percent. Nighttime errors were even worse.  
Lane 3 daylight errors were in the +20 to -30 percent range, and nighttime errors were again 
worse (1).  

 
Autoscope Solo. The Autoscope Solo is a video imaging system whose cameras can 

be mounted either overhead or to the side of the road.  MnDOT tests of the Autoscope 30 ft 
over the center of the lanes indicated excellent performance. The absolute percent volume 
difference between the sensor data and loop data was under 5 percent for all three lanes.  The 
detector also performed well for speed detection. The absolute average percent difference 
was 7 percent in lane one, 3.1 percent in lane two, and 2.5 percent in lane three.  For other 
mounting locations beside the roadway, the detector performed best when mounted high and 
closest to the roadway (15). 

 
Autoscope Solo Pro.  At the time of this research, the Autoscope Solo Pro was the 

latest version of the integrated camera and processor. TTI tested this detector both in College 
Station on S.H. 6 (all low- to moderate-volume free-flow conditions) and in Austin on I-35 
(high-volume with some stop-and-go traffic).  The results reported in this section come from 
the I-35 test bed and are based on five-minute samples of count and speed data.  The I-35 site 
has five southbound lanes with lane 1 (the median lane) being farthest from the detector. For 
these tests, the Solo Pro was 35 ft above the pavement and 6 ft from the nearest lane (3).   

 
The Autoscope Solo Pro count accuracy was within 5 to 10 percent of the baseline 

counts during free-flow conditions, but it generally diminished in all lanes when 5-minute 
interval speeds dropped below 40 mph and especially during stop-and-go conditions.  On all 
four of the monitored lanes, it overcounted during free flow, but almost always within  
10 percent of baseline counts.  During the peak periods, however, it undercounted. On lane 1, 
its error was always within 10 percent.  On lane 2, its undercounts were about half within  
10 percent and half between 10 and 20 percent.  On lane 3 (closer to the camera), its 
undercounts were two-thirds within 10 percent and one-third between 10 to 20 percent of 
baseline counts.  On lane 4, the Autoscope had 9 out of 10 within 10 percent and one out of 
10 between 10 and 20 percent.  Speed and occupancy of the Solo Pro were the best of any 
non-intrusive devices tested by TTI in these evaluations.  Speeds were almost always within 
0 to 3 mph of the baseline system.  Its 15-minute cumulative occupancy values differed from 
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loops by as much as 3.9 percent, but during most intervals its difference was less than  
1 percent (3).   
 

Iteris Vantage. TTI tested the Iteris Vantage on I-35 in Austin as part of Research 
Project 0-2119 immediately following its initial release for freeway applications. It had the 
highest standard deviation during free flow of all test devices on both lanes 1 and 3. Overall, 
the Iteris count accuracy was not as dependent on prevailing freeway speeds as some other 
devices. It did not have a significant bias toward overcounting or undercounting. Its lane 1 
morning peak counts were between -1 and -22 percent during slow speeds (20 to 30 mph); 
then it overcounted by as much as 10 percent when speeds increased. It mostly overcounted 
in lane 1 during the afternoon peak with a range from -4 to +10 percent. Lane 2 Iteris 
morning peak counts were all within the range of 0 to -10 percent except one and that one 
was at +5 percent. In the afternoon, its range was -5 to +10 percent, and all but four of its 
intervals were within ±5 percent. Lane 3 Iteris morning peak counts were all within the range 
of +2 to -7 percent. In the afternoon peak, the Iteris was +5 to -10 percent. Lane 4 counts 
were not available (3).  
 
 For speed accuracy, the Iteris standard deviation was among the lowest of the devices 
tested on both lanes 1 and 3. Its mean values of speed differences were lowest on lane 3, 
perhaps indicating better calibration than on lane 1. The Iteris Vantage speed estimates were 
both higher and lower than the baseline speeds but usually within 5 mph in lane 1 during the 
morning peak. During the afternoon peak, it was always within 5 mph on lane 1. On lane 2, 
its morning peak speed estimates exceeded the baseline by as much as 15 mph. During the 
afternoon peak, it was always within 5 mph on lane 2. On lane 3 during the morning peak, its 
speeds were excellent in all intervals showing speeds within 0 to 2 mph of the baseline. 
During the afternoon peak, it was within 5 mph of the baseline. On lane 4, the Iteris was 
consistently within 5 mph of baseline during the morning peak. Speeds during the afternoon 
peak were not available (3).  
 

Of the three non-intrusive devices tested for occupancy output in lanes 3 and 4, the 
Iteris Vantage was the second most accurate. Its 15-minute cumulative occupancy values 
differed from loops by as much as 8.1 percent, but during most intervals its difference was 
less than 6 percent.  

 
Traficon NV.  MnDOT Phase II tests mounted the Traficon VIVDS directly over the 

lanes at heights of 21 ft and 30 ft facing downstream.  The preferred orientation was facing 
oncoming vehicles, but site features precluded this orientation.  At the 21-ft height, the 
absolute percent difference between the sensor data and loop volume data was under 
5 percent for all three lanes. At the 30-ft height, its off-peak performance was similar but it 
undercounted during congested flow showing an absolute percent difference of some 
15-minute intervals from 10 percent to as high as 50 percent.  Reasons suspected for the 
reduced accuracy were snow flurries and sub-optimal calibration.  Its speed accuracy at 21 ft 
indicated good performance.  Its absolute average percent difference was 3 percent in lane 1, 
5.8 percent in lane 2, and 7.2 percent in lane 3. During the snowfall, its speed accuracy 
declined to a range of 8.9 percent to 13 percent (15).   
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VideoTrak-900 by Peek. TTI evaluated the Peek VideoTrak in 2000 as part of 
Research Project 1439. Count accuracy for the VideoTrak was significantly worse after dark 
compared to accuracy during daylight hours. Therefore, the results in Table 2 represent the 
time periods between 7:00 a.m. and 5:30 p.m. The drop in accuracy indicated by comparing 
Table 3 with Table 2 was likely due to wet pavement (headlight reflections) and not due to 
reduced visibility since the rainfall rate was low to moderate. Adjustments by Peek 
technicians via remote access still left it with consistent overcount errors at night in the right 
lane; they were as high as 40 percent even in dry weather (2).  

 
Speed results for the VideoTrak indicate a mean of +1.4 mph and a standard deviation 

of 6.9 mph. Because speed accuracy was significantly worse during nighttime hours (due 
probably to no street lighting), TTI did not provide data for those hours. The performance of 
the VideoTrak during rain was also worse than for periods of no rain. The speed data from 
the VideoTrak also indicated more dispersion about the sample mean than for other devices 
tested and a bias toward overestimating speeds (2).  

 
 

Table 2. VideoTrak Daytime Count Error Rates on S.H. 6 during Dry Weather. 
Lane  

Error Range (%) Left Right 
0 to 10 268 of 294 (91.2 %) 278 of 294 (94.6 %) 
10 to 20 22 of 294 (7.5 %) 16 of 294 (5.4 %) 
20 to 30 4 of 294 (1.3 %) 0 

 Source: Reference (2). 
 

 
Table 3. VideoTrak Daytime Count Error Rates on S.H. 6 during Wet Weather. 

Lane  
Error Range (%) Left Right 

0 to 10 6 of 18 (33.3 %) 9 of 20 (45.0 %) 
10 to 20 6 of 18 (33.3 %) 8 of 20 (40.0 %) 
20 to 30 6 of 18 (33.3 %) 2 of 20 (10.0 %) 
30 to 40 0 0 
40 to 50 0 1 of 20 (5.0 %) 

Source: Reference (2). 

 

2.3.2.3  Microwave Radar Detectors 
 

Minnesota Guidestar Phase I researchers tested one radar device, the RTMS X2 by 
Electronic Integrated Systems, Inc. This device can be mounted either overhead or in a 
sidefire position aimed perpendicular to traffic. The RTMS is easily mounted but requires a 
moderate amount of calibration to achieve optimal performance. MnDOT researchers found 
that rain affected the performance of the RTMS, although they attributed this degradation to 
water entering the device and not to limitations of the technology. When the RTMS was 
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mounted overhead, it undercounted vehicles by 2 percent or less at the freeway site. When it 
was in a sidefire orientation, it undercounted traffic by approximately 5 percent. Intersection 
tests did not include the RTMS (11). 
 

Results of TTI field tests at its I-35 test bed in Austin indicated that the RTMS X2 is 
much more accurate in both counts and speeds in the overhead position although it covers 
only one lane in that orientation. The more popular orientation is sidefire, so the following 
discussion focuses on its sidefire accuracy. In sidefire, the RTMS can generate speeds and 
counts for five lanes with reasonable accuracy. (The tests at the I-35 site used five lanes.) Its 
advantages also include ease of setup, being mounted only 17 ft above the roadway, and 
good user interface.  Its coverage and initial cost make the RTMS an economical means of 
monitoring several lanes.  In previous research, TTI found it to have the lowest life cycle cost 
for freeway applications of those detectors included in that research (3).   
 

More specifically, the TTI research found that the RTMS undercounted in all lanes 
during both peak and off-peak intervals. Its five-minute counts in lane 1 were all in the -10 to 
-25 percent range. (The detector location was nearest lane 5, so lane 1 was farthest away.) 
Researchers did not evaluate lane 2. In lane 3, 95 percent of the time intervals were within 
5 percent of baseline.  In lane 4, 98 percent of the time intervals were within 15 percent of 
baseline counts. These findings indicate that distance from the detector and occlusion 
affected count accuracy. Lane 1 was slightly worse than lane 3, and lane 4 was slightly worse 
than lane 3, suggesting either calibration differences or middle lanes naturally being better 
than either extreme. Aggregated speed estimates by the sidefire RTMS differed from baseline 
speeds by as much as 15 mph during peak periods, but it was usually within 5 to 10 mph of 
baseline speeds during the off-peak. This research did not include occupancy tests on the 
RTMS (14).   
 

In the overhead position, the RTMS was even more accurate in counting vehicles, but 
it only covers one lane. In TTI tests, the overhead RTMS (Doppler mode) generated excellent 
speeds until prevailing traffic speeds dropped below about 15 mph. It is a mature product and 
is not significantly affected by weather or lighting conditions (3). 
 

The Detector Evaluation and Testing Team (DETT) of the California Department of 
Transportation (18) tested two radar detectors, the RTMS X3 and the Wavetronix 
SmartSensor. The test site was the Caltrans test facility on I-405 near the University of 
California at Irvine, which uses the seven northbound lanes for tests. Traffic volume at this 
site is about 3 million vehicles per week. Another technology tested at this site was the 
Inductive Signature Technologies (IST) product that has the capability of tracking vehicles 
using inductive loop signatures. The team collected both 30-second and 5-minute aggregate 
data at this site. Results indicate that the ground truth inductive loops overcounted by 1.0 to 
1.5 percent. This overcounting is due at least in part to lane changers that cross sensors in 
two adjacent lanes.  

 
The California tests indicated that with proper installation and calibration either 

detector can deliver better than 95 percent overall vehicle count accuracy at 5-minute and  
30-second intervals and 95 percent speed accuracy at 5-minute intervals. Neither detector 
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was found to be suitable for determining occupancy based on a very strict Caltrans 
specification. One of the comments from researchers was that the RTMS requires 
considerable effort to achieve acceptable data accuracy, requiring expert know-how and a lot 
of time to set up and calibrate. According to the research team leader, the Wavetronix only 
required 15 to 20 minutes total to set up, whereas a factory representative took about one 
hour per lane for the RTMS. Also, the technology can be very accurate in the center of a 
roadway but the presence of trucks and heavy traffic can cause the detectors to miss vehicles 
as well as to create false readings in side lanes (18).  
 
2.3.2.4  Passive Acoustic Detectors 
 

In MnDOT phase I tests, the SmartSonic TSS-1 detectors were relatively easy to 
install and calibrate. Low temperatures and the presence of snow on the roadway, which may 
have muffled sound, were both correlated with undercounting by the devices. When mounted 
on the freeway bridge, SmartSonic devices undercounted daily traffic from 0.7 to  
26.0 percent. This undercounting was attributed in part to the echo-filled environment 
underneath the bridge. Researchers found that both SmartSonic devices undercounted 
vehicles during freeway testing and overcounted at intersection testing. In limited testing of 
speed accuracy, the acoustic detection system was ±10 percent when compared to inductive 
loop detection systems. Power requirements for the system are low, 5 to 6 watts, which allow 
the use of solar panels (11). 

 
MnDOT phase II tests included the SAS-1 by SmarTek. SRF Consulting bench-tested 

the sensor in the lab in March 2001, then mounted it on the sidefire tower in May 2001. 
These tests used a total of five heights and three offsets during the actual field tests between 
October 2001 and January 2002. Additional testing occurred at the intersection in  
March 2002. Results indicated that at the first base (15 ft from the first lane), the detector 
provided better results for lanes 2 and 3 than for lane 1. The 24-hour data show that the 
absolute percent differences for lanes 2 and 3 were under 8 percent at all heights, and 
between 12 percent and 16 percent for lane 1 with heights less than 30 ft. Results were good 
for free-flow traffic conditions, but the detector undercounted during congested flow when 
speeds dropped. Test data showed that 15-minute absolute percent differences were between 
0 and 5 percent during off-peak, and varied from 10 percent to 50 percent during congested 
periods, depending on site geometry. In speed detection, the detector performed well at base 
one. The absolute average percent differences were under 8 percent for most mounting 
heights and between 12 percent and 16 percent for lane 1 at heights less than 30 ft. Overall 
test results show that the detector performs best when mounted with equal height and 
horizontal offset between the detector and the centerline of multiple lanes (45-degree angle) 
(15).  

 
TTI tested two SmartSonic detectors at its S.H. 6 test bed in College Station as part of 

Research Project 0-1715. The detector usually overcounted vehicles between midnight and 
6:00 a.m. at an error rate as much as 50 percent higher than loop counts on six out of seven 
count days. On the day of undercounts, the magnitude of error was 35 to 50 percent during 
those same hours. Midday accuracy for the SmartSonic was usually within 5 percent of loop 
counts (1).  
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The first full test of the SAS-1 by TTI was at its S.H. 6 test bed as part of Research 

Project 1439 (2). The only factor found to affect the SAS-1 count accuracy in this series of 
tests was rainfall. The detector’s performance declined during wet weather, as indicated by a 
comparison of Tables 4 and 5 below. The vendor, who was involved on-site in the initial 
setup, discovered an error in the lane sensitivity setting that might have accounted for the 
undercounting that occurred during rain. Unfortunately, there was no other wet weather 
during these tests to verify the assumed improvement.   
 
 

Table 4. SAS-1 Count Error Rates on S.H. 6 during Dry Weather. 
Lane  

Error Range (%) Left Right 
0 to 10  353 of 378 (93.4 %) 376 of 378 (99.5 %) 
10 to 20  25 of 378 (6.6 %) 2 of 378 (0.5 %) 
20 to 30  0 0 

 Source: Reference (2). 
 
 
 
 

Table 5. SAS-1 Count Error Rates on S.H. 6 during Wet Weather. 
Lane  

Error Range (%) Left Right 
0 to 10  4 of 20 (20.0 %) 4 of 20 (20.0 %) 
10 to 20  12 of 20 (60.0 %) 3 of 20 (15.0 %) 
20 to 30  4 of 20 (20.0 %) 13 of 20 (65.0 %) 

Source: Reference (2). 
 
 

The second project at TTI to test the SmarTek SAS-1 detector was Research  
Project 0-2119. The initial equipping and setup of the I-35 test bed occurred in this project, 
requiring a significant expenditure of project resources, but creating an excellent site for this 
and future research endeavors pertaining to non-intrusive detectors. The SAS-1 height above 
the freeway was 35 ft and its offset from the nearest lane (lane 5) was 6 ft. Its count accuracy 
for lane 1 (farthest) dropped during congested flow compared to free flow, but on lane 3 the 
accuracy was similar for the two conditions. The SAS-1 generally undercounted almost all 
intervals. In lane 1 during the a.m. peak and while speeds were over 40 mph its count range 
was 0 to -10 percent. During slower speeds, its range was -12 to -32 percent. Its range for 
lane 1 afternoon peak intervals was +2 to -20 percent with all but two intervals between  
0 and -10 percent. The SAS-1 lane 2 ranges for the morning and afternoon peaks were +5 to 
-18 percent and 0 to -10 percent, respectively. Lane 3 counts fell in the range of +6 to  
-12 percent during the morning peak and -2 to -14 percent during the afternoon peak. In lane 
4, it undercounted during both the morning and afternoon peak by the range of -3 to  
-15 percent and 0 to -12 percent, respectively (3).  
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 The speed accuracy of the SAS-1 was similar in congested flow and free flow on  
lane 1. For lane 3, its mean and standard deviations indicate its accuracy was more consistent 
in free flow than in congested flow. The SAS-1 consistently overestimated speeds in lane 1 
during the morning peak by 5 to 10 mph. During the afternoon peak, it overestimated speed 
by as much as 20 to 25 mph during very slow speeds then improved to within 5 mph as 
speeds reached free-flow conditions. On lane 2 during both the morning and afternoon peaks, 
the SAS-1 was almost always over the baseline system by 0 to 5 mph with a maximum of 
10 mph. On lane 3 this detector was consistently within 2 to 5 mph of the baseline system. 
On lane 4, its morning peak speed estimates were consistently within 5 mph and its afternoon 
peak speed estimates were less consistent but still within ±5 mph (3).  
 

This research also compared the lane occupancy output of the SAS-1 with the 
baseline loop system in lanes 3 and 4. Its 15-minute cumulative occupancy values differed 
from loops by as much as 14.7 percent, but during most intervals the difference was less than 
4 percent (3).  
 
2.3.2.5 Active Infrared Detectors 
 

Preliminary testing by public agencies indicates very promising results for monitoring 
vehicle speeds and classifications. Active infrared systems appear to operate during day/night 
transitions and other lighting conditions without significant problems. Some infrared sensors 
can be placed at the roadside or overhead on sign structures. The only weather conditions that 
appear to be problematic are heavy fog and heavy dust. Disadvantages of infrared sensors 
include: cost; inconsistent beam patterns caused by changes in infrared energy levels due to 
passing clouds, shadows, fog, and precipitation; lenses used in some devices may be sensitive 
to moisture, dust, or other contaminants; and the system may not be reliable under high-
volume conditions. England uses infrared detectors extensively for both pedestrian 
crosswalks and signal control. Infrared detection systems are also used on the San Francisco-
Oakland Bay Bridge to detect presence of vehicles across all five lanes of the upper deck of 
the bridge, thereby providing a measure of occupancy (1). 
 

An active infrared device detects vehicle presence by emitting a laser beam toward 
the road surface and measuring the time required for the reflected signal to return. The 
presence of a vehicle will reduce the return time for the reflected signal to the detection unit. 
Phase I of the Minnesota Guidestar project evaluated one active infrared device, the Schwartz 
Electro-Optics (SEO) Autosense I, and the project only tested this detector on the freeway. In 
addition to detecting stationary and moving vehicles by presence, the Autosense I can obtain 
vehicle speed and vehicle profile (which researchers can use for classification) (11). 
 

The Autosense I system was very accurate at counting traffic at the freeway location; 
however, some weather conditions reduced its accuracy. Heavy snowfall, as well as rain and 
freezing rain, caused the detector to both overcount and undercount vehicles. During snow, 
the undercounting was attributed to vehicles traveling out of the detection zone, while 
overcounting was probably the result of falling snow reflecting the laser beams causing false 
detections. These discrepancies were attributed to the change in reflectivity properties of the 
pavement (11). 
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In research aimed at reducing the number of trucks stopping at isolated signalized 

intersections, TTI tested the SEO Autosense II as one of the options for detecting and 
classifying vehicles. One of the detector’s strengths was its ease of setup and being able to 
begin data collection immediately. However, one of its weaknesses was its lack of 
ruggedness for field applications. The Autosense II requires mounting almost directly over 
the lane, which may necessitate installing a special pole and mast arm (13). 
 
 The detector’s list price of $10,000 (purchased in 1995) for one lane of coverage may 
be a constraint for some agencies, but it should maintain its accuracy in most weather and 
lighting conditions. This statement regarding weather and lighting is based on known 
characteristics of the technology rather than on the specific sensor because TTI did not test 
this sensor during inclement weather. Its speed accuracy was not as consistent as desired for 
the intended application, and it demonstrated a consistent bias toward overestimating speeds 
compared to the baseline loop system. Its speed bias of approximately 6 mph can be adjusted 
through software but its data scatter is also undesirably high. Its standard deviation on speed 
for a sample size of 158 vehicles was 10 mph. The classification accuracy of the Autosense II 
detector was one of its strengths. In a sample of 160 vehicles, it only missed 3 percent and 
misclassified 7.5 percent (13). 
 
2.3.2.6  Passive Infrared Detectors 
 

Passive infrared devices use a measurement of infrared energy radiating from a 
detection zone to detect vehicle presence. Passive infrared technology performed well at both 
freeway and intersection testing locations in Minnesota and is a good technology for 
monitoring traffic in urban areas.  The passive infrared devices tested during the Guidestar 
test were the Eltec Models 833 and 842, and the ASIM IR 224. Although some atmospheric 
conditions can affect the amount of energy reaching the detector, it does not necessarily 
compromise a particular product’s accuracy. In fact, the Guidestar researchers found that 
passive infrared devices were not impacted by weather conditions and were very easy to 
mount, aim, and calibrate. However, there were significant differences in performances of the 
devices tested (11).   
 

The Eltec Models 833 and 842 are self-contained passive infrared detectors that are 
easy to mount and calibrate. The Eltec models, which are designed to be mounted either 
overhead or to the side of the roadway, can be used to monitor either oncoming or departing 
traffic. However, repeatability was an issue, and in some instances, it had significant 
fluctuations in count accuracy.  The best performance of the vehicle occurred during a  
24-hour test when the device counted within 1 percent of baseline data (11). 
 

The ASIM IR 224, which is designed to be mounted either overhead or slightly to the 
side of the roadway, must face oncoming traffic. The IR 224 was easy to mount and 
calibrate, and repeatability was good. One device was observed to undercount vehicles 
during snowfall; however, this miscounting may have been the result of vehicles traveling 
outside of the sensor’s detection zone. The results of this device during an optimal 24-hour 
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count period at both the freeway location (within 1 percent of baseline data) and the 
intersection (within 2 percent of baseline data) were among the best results obtained (11). 
 

Both the Hughes Aircraft Company (6) and Duckworth et al. (16) included passive 
infrared detectors in field tests. However, neither gave the detectors tested exceptionally high 
marks in their evaluations and conclusions. 

  
2.3.2.7 Microwave Detectors    
 

The MnDOT research tested four different Doppler microwave devices, but the 
research team presented detailed data for only two. All four devices were easily mounted and 
calibrated, and none of the devices seemed to be affected by weather conditions. The devices 
tested revealed differences in performance. Both the Peek PODD and the Whelen TDN-30 
required mounting overhead or slightly to the side of the roadway. Under optimal conditions, 
the Peek PODD was able to count vehicles at the freeway site within 1 percent of the 
baseline, provided that the device was properly aimed. During one of the procedures, it 
detected vehicles in the adjacent lane. The PODD was unable to collect good data for the 
intersection site. The primary role of the Whelen TDN-30 was to collect speed data, but it 
can also count vehicles.  It undercounted vehicles at the freeway site by approximately 
3 percent but was unable to collect meaningful data at the intersection site (8). 
 

In August 1998, TTI tested the Accuwave 150 LX detection accuracy on S.H. 6 (free-
flow traffic) even though it is designed for signalized intersections. TTI experienced two 
challenges in these tests. The first challenge was establishing an appropriate orientation of 
the detector in an attempt to capture only one lane. Installers finally had to count both lanes 
then use time stamps from other detectors to eliminate unwanted counts. The second problem 
concerned the sampling rate used by TTI’s National Instruments setup. Field engineers 
varied the sampling rate between 350 milliseconds (msec) and 450 msec to test its effect, and 
this sampling rate almost certainly affected accuracy. Moderate to heavy rain caused the 
Accuwave to experience continuous detections, so results were not accurate. The detector 
retuned itself after the rain stopped. During intervals with no rain during the midday period, 
Accuwave counts were usually within 10 percent of loop counts. During non-midday periods 
and no rain, its count error was in the 30 to 40 percent range (1).  
 
2.3.2.8  Pulse Ultrasonic Detectors 
 

The Minnesota research team tested two pulse ultrasonic devices, the Microwave 
Sensors TC-30 and the Novax Lane King. Overhead mounting of the device provides optimal 
signal return and vehicle detection; however, sidefire mounting is possible for some devices. 
Pulse ultrasonic devices are relatively easy to mount; however, the ease of calibration varies 
with devices.  Weather conditions did not impact the performance of the devices (11). 
 

The TC-30, which may be mounted either overhead or sidefire, was found to provide 
an accurate vehicle detection count at the freeway test site and a tendency to overcount at the 
intersection test site.  The TC-30 was easy to mount and calibrate.  Researchers observed that 
vehicles stopped in the detection area were counted multiple times, resulting in the 
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overcount. The Novax Lane King can also be mounted either overhead or in a sidefire 
configuration. The Lane King was easy to mount; however, calibration was extensive for 
optimum performance. The Lane King was extremely accurate in counting vehicles at the 
freeway site, but at the intersection site, overcounting occurred as the result of double 
counting. The two pulse ultrasonic devices interfered with one another when mounted next to 
each other (11). 
 
2.3.2.9  Magnetic Detectors 
 

There was other limited information on detectors or techniques being tested or 
implemented for monitoring traffic. These systems may be applicable in more limited 
situations where those discussed above might not be as appropriate.  
 

Passive magnetic devices measure the change in the earth’s magnetic flux created 
when a vehicle passes through the detection zone. For example, the 3M microloop detection 
system is a passive sensing system that is based on the earth’s magnetic field. When a vehicle 
passes through the detection zone, it temporarily distorts the earth’s magnetic field (15). A 
passive magnetic device must be relatively close to the vehicles it is detecting; therefore most 
applications require installation below the pavement.  The Minnesota Guidestar Phase I test 
device was the Safetran IVHS Sensor 232E, with two probes installed in conduit underneath 
the roadway. Operators can use the device’s output to generate volume, speed, and 
occupancy data. Installation of the passive magnetic devices was difficult and required 
several days. Probe performance appeared to be compromised by water in the conduit and in 
the handhold area. The erratic performance, observed during periods of intermittent rain, 
could be due to intermittent grounding problems. Vehicles straying from the normal lanes 
resulted in overcounting during periods of snow (11). 
 

The 3M magnetic detector system consisted of three components:  
 

• Canoga Model 702 Non-Invasive microloop probes,  

• Canoga C800 series vehicle detectors, and  

• 3M ITS Link Suite application software.  

 
The microloop probes can monitor traffic from a 3-inch non-metallic conduit 18 to 34 inches 
below the road surface or from underneath a bridge structure. Installers must use a 
magnetometer underneath bridges to determine proper placement of the probes; otherwise 
optimum performance requires a trial-and-error process. Probes installed in a “lead” and 
“lag” configuration under pavements or bridges can monitor speeds by creating speed traps 
in each lane. One of the requirements of this system is that the probes remain relatively 
vertical, so keeping the horizontal bores straight is critical. Probes placed in a non-vertical 
orientation can lead to speed errors. MnDOT tests under pavement indicated excellent 
volume and speed results. The absolute percent volume difference between sensor and 
baseline was under 2.5 percent, which is within the accuracy capability of the baseline loop 
system. For speeds, the test system generated 24-hour test data with absolute percent 
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difference of average speed between baseline and test system from 1.4 to 4.8 percent for all 
three lanes (15).   
 

TTI tested 3M microloops at its S.H. 6 test bed in College Station as part of Research 
Project 0-1439. At this relatively low- to moderate-volume site, TTI found that, for a six-day 
count period, 3M microloops were almost always within 5 percent of baseline counts. In the 
right lane, all except two 15-minute intervals out of the 330 total intervals were within  
5 percent of baseline counts. The remaining two were within 10 percent of baseline counts. 
Therefore, microloop counts were within 5 percent of baseline counts 99.4 percent of the 
time in the right lane (dual probes). In the left lane (single probes), 94.5 percent of the  
15-minute intervals were within 5 percent, 4.5 percent were between 5 and 10 percent, and in 
1.0 percent there was a more than 10 percent difference from baseline (2).   
 
2.3.2.10  Bicycle and Pedestrian Detectors  

MnDOT and FHWA sponsored yet another component of the Evaluation of Non-
Intrusive Technologies for Traffic Detection (19) to research and compare the effectiveness 
of non-intrusive detectors for detecting pedestrians and bicycles. Accurate detection can 
prevent potential crashes involving bicyclists or pedestrians with motorized vehicles. The 
bicycle and pedestrian detection project focused primarily on intersections that possessed 
crosswalks for bicyclists and pedestrians. This project included the following types of non-
motorized applications: curbside pedestrian detection, crosswalk pedestrian detection, 
intersection approach bicycle detection, and use of historical data.   
 
Project Objectives 
 
 The project had the following objectives: 
 

• identify the applications that could utilize non-motorized traffic detection, 
  
• identify similar projects that had been conducted in non-motorized traffic detection, 

and 
 

• conduct a field test to evaluate participating sensor performance. 
 

MnDOT/FHWA Research Methodology. This project involved a literature search as 
well as field tests to determine promising detection technologies for bicycle and pedestrian 
detection. Hughes and Huang (20) evaluated an automated pedestrian detection system that 
supplements the existing pushbutton crossing system to reduce conflicts between pedestrians 
and vehicles and inappropriate crossings at signalized intersections. There was a significant 
reduction both in vehicle-pedestrian conflicts and the likelihood of inappropriate pedestrian 
crossings when the automated system complemented the pushbutton system. There was no 
significant difference between microwave-based detectors and infrared-based detectors.  

 
Maki and Marshall (21) conducted a case study on bicycle detection using inductive 

loops of varying shapes and winding patterns. The combination deemed most appropriate, 
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developed by the 3M Company, could detect both bicycles and motorized vehicles. The 
configuration is an 8-ft by 8-ft square shape with wire running in three parallel diagonals.  

 
Noyce (22) conducted a study of bicycle and pedestrian detection in 2001. The 

research evaluated some ITS technologies that might serve the needs of their research, 
choosing the Autosense II. Field tests found that the Autosense II was very effective in 
detecting and classifying bicycles and detecting pedestrians. It correctly detected 97 percent 
of bicycles and 92 percent of pedestrians. The results also identified video imaging as a 
technology that is capable of detecting and classifying pedestrians and bicycles.  
 
 The study by SRF also identified other commercially available detection systems for 
bicycles and/or pedestrians, although it did not test most of them. Selected systems from the 
SRF list are as follows: 
 

• ASIM – Dynamic Pedestrian Detection: It can optimize traffic flow through green 
phase extension and monitor vehicle presence. The typical mounting location is atop 
a signal head and aimed to cover both the crosswalk and curbside waiting areas.  

 
• Microwave Sensors – Pedestrian Detection: MS Sedco markets a series of pedestrian 

detectors that can detect pedestrians in both the crosswalk and curbside areas. The 
products use two technologies—infrared and ultrasonic. Their mounting location can 
be overhead or beside the road.  

 
• PUFFIN – Automated Pedestrian System: Pedestrian User Friendly Intelligent 

Crossing (PUFFIN): This detection system came from AGD System Ltd in the United 
Kingdom, and it uses either an above-ground detection sensor (e.g., radar) or an in-
ground pressure-sensitive mat.   

 
• Traffic 2000 Limited – Pedestrian Detection: This system is a curbside pedestrian 

detector that uses a pressure-sensitive plate to detect pedestrians. The detection plate 
uses a screened piezoelectric cable transducer to sense pedestrians. 

 
Field Tests.  NIT Phase II began with development of an evaluation test plan in 2001. 

It also developed a vendor database that was useful in this study of bicycle and pedestrian 
detection. Researchers reviewed this database to select the sensors that should be able to 
detect bicycles or pedestrians. Another aspect was vendor willingness to participate. The 
result was five vendors who agreed to participate in the test, including one international 
vendor. With the addition of existing inductive loop detectors, the field test and evaluation 
involved a total of six detector types and five technologies. Table 6 lists the detectors 
involved and some information pertaining to them.  
 

Researchers determined the following most common applications for the detectors:  
 

• Curbside pedestrian detection: the detection of pedestrians at signalized intersections 
would automatically place a call to the traffic signal controller for a pedestrian 
WALK indication.  
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• Crosswalk pedestrian detection: the detection of pedestrians in the crosswalk of a 

signalized intersection can extend the pedestrian phase, improving safety. 
 

• Intersection approach bicycle detection: the detection of bicycles on an approach 
would supplement detection of motorized vehicles on the same approach.  

 
 

Table 6. Detectors Evaluated by MnDOT in Field Tests. 
Vendor 
Sensor 

Technology Pedestrian or 
Bicycle 

Detection 

Installation Power 
Requirement 

(volts) 
ASIM  
DT 272 

Passive Infrared/ 
Ultrasonic 

Pedestrian/ 
Bicycle 

Sidefire 12 – 24 (DC) 

Diamond 
TTC-4420 

Infrared Pedestrian/ 
Bicycle 

Sidefire Internal Power 
6 (DC) 

MS Sedco 
SmartWalk 1400 

Microwave Pedestrian/ 
Bicycle 

Sidefire 12 – 2  
(AC or DC) 

ISS/TCC 
Autoscope Solo 

Video Imaging Pedestrian/ 
Bicycle 

Sidefire 24 (AC for Solo)  
110 – 220 (AC) 

for 
Interface Panel 

3M 
Microloop 

Magnetic Metal Bicycle Under 
Pavement 

12 – 24 (DC) 

Inductive Loop 
Detector 

Inductance Metal Bicycle Under 
Pavement 

24 (DC) 

Source: Reference (22). 
 
 
 The test site for the field study was the Cedar Lake Trail, located within one-half mile 
of the NIT test site on I-394 (see Figure 2). This was a bicycle and pedestrian commuter 
facility with one pedestrian lane and two bicycle lanes. An existing loop detector count 
station provided a source of power and a cabinet to house data collection equipment. These 
same loop detectors served as another source of data for the tests.  
 

SRF engineers encountered some problems with the outdoor tests, requiring 
modifications to their initial test plan. The cold October weather was a factor that reduced the 
number of persons on the trail selected for the test. This factor required data collection 
personnel to provide the detections themselves by riding a bike, walking, or jogging through 
detection zones. The lack of security for detection systems was another factor requiring a 
shorter duration study during daylight only and collection of data only when SRF personnel 
were on-site. Due to these challenges, SRF developed a two-day test plan, using the first day 
to collect sample or trial data and the second day to collect official data. Test personnel 
collected approximately 300 observations. The tests involved two bicycles; one had a ferrous 
metal frame and the other had a non-ferrous metal frame. The tests involved 100 one-way 
trips through the detection zone with the ferrous metal bicycle, 51 one-way trips with the 
non-ferrous metal bicycle, and 100 one-way walk trips. 
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Figure 2. I-394 Test Site Used for MnDOT Detector Tests. 

 
 
 
 
Figure 3 indicates the field setup for the detector tests. Four detectors required a pole 

for mounting detectors beside the trail, and one required a reflector on the opposite side of 
the trail. The pole-mounted detectors used the same area for detection for comparison 
purposes. The Diamond TTC sensor used a 3-inch reflector on the top of a wood stick 
located on the opposite side of the trail to receive and reflect the infrared beam. Table 7 
summarizes the detector mounting locations and the technologies used by each. Tables 8, 9, 
and 10 show the results of these tests. The baseline data came from human observers.  
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Source: Reference (22). 

Figure 3. MnDOT Bike and Pedestrian Test Layout. 
 
 
 

Table 7. Sensor Mounting Locations. 
Detector Technology Mounting Height (ft) 

ASIM – DT 272 Passive IR/Ultrasonic 3 
Diamond – Traffic Counter Infrared 4 
MS Sedco – SmartWalk Microwave 10 
Autoscope Solo Video Image 12 
3M Microloop Magnetic In Pavement 
Inductive Loop Magnetic In Pavement 

Source: Reference (22). 
 
 
 

Table 8. Ferrous-Metal Bicycle Results. 
Test Device Baseline Sensor Count Percent Difference 

Loops 100 100 0 
Autoscope Solo 100 101 1 
MS Sedco – SmartWalk 100 96 4 
ASIM – DT 272 100 101 1 
Diamond – Traffic Counter 100 96 4 
3M – Microloop Lane 1 50 49 2 
Source: Reference (22). 
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Table 9. Non-Ferrous (Aluminum) Bicycle Results. 
Test Device Baseline Sensor Count Percent Difference 

Loops 51 51 0 
Autoscope Solo 51 51 0 
MS Sedco – SmartWalk 51 50 2 
ASIM – DT 272 51 51 0 

Source: Reference (22). 
 
 

Table 10. Pedestrian Results. 
Test Device Baseline Sensor Count Percent Difference 

Autoscope Solo 100 100 1 
MS Sedco – SmartWalk 100 100 0 
ASIM – DT 272 100 100 0 
Diamond – Traffic Counter 100 93 7 
Source: Reference (22). 

 
 
 
2.3.3  FY 2005-2006 Literature Findings  
 

To update the previous literature review, project staff reviewed primarily the 2005 
Transportation Research Board (TRB) 84th Annual Meeting Compendium of Papers 
CD-ROM (23). Another potential source was the FHWA Detector Clearinghouse, which the 
New Mexico State University hosts. Not all sources produced useful information. From these 
sources, the prominent topics included determining vehicle speeds from single inductive 
loops, vehicle re-identification using inductive loops and, to a lesser degree, performance of 
vehicle detectors.  

 
 Since a number of previous studies had compared aggregate data from one or more 
detectors to concurrent measurements from another device (perhaps a ground truth device), 
Coifman (24) chose to compare actuations of individual vehicles at one detector to 
concurrent measurements of the same vehicle at another detector. He used four inductive 
loop sensor models and the RTMS. More specifically, the research used the following loop 
detection units: Peek GP6 and Reno A&E Model 222 inductive loop detectors, along with the 
reportedly higher performing 3M and IST Model 222 detectors. The research used the 
Berkeley Highway Laboratory to collect data from all five of the detectors using Videosync, 
the software package developed by Caltrans Division of Research and Innovation, as the 
primary tool for data reduction. This software allows the direct comparison between 
concurrent detector and video data.   
 
 Each of the sensors exhibited problems. Study conclusions stated that agencies could 
identify and correct most of the problems with additional fine-tuning in the data processing 
by the controller or data aggregator, but most operating agencies do not attempt to 
accomplish the correction. Therefore, the study findings should represent conventional 
practice. Some of the errors could be corrected by improved controller logic, but some would 
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require a trip to the field to correct. The Reno detector tended to flicker on for short periods 
in absence of a vehicle in the detection zone, which could be correctable in the controller 
software. Other errors resulted from lane-changing maneuvers over the detection zone. IST 
and Peek tended to detect such vehicles in both lanes, while the Reno and 3M sensors tended 
to underestimate the on-time of vehicles changing lanes in one lane while not detecting them 
in the other. The RTMS showed systemic errors in its performance—manifested as 
differences between nearest (small detection zone) and farthest lanes (occlusion). This 
systematic change in on-time would be an important consideration for applications that rely 
on occupancy. Also, the RTMS count and on-time are typically noisier than loops, although 
pluses and minuses tend to cancel each other. Detection zone sizes varied across all detectors, 
from the larger detection zones of the RTMS and even across the four models of loop 
detectors whose in-pavement dimensions were the same. These variations will impact the 
values generated for occupancy. Of course, the sizes of loop detection areas are a function of 
sensitivity settings, but perhaps equally important are site-specific factors (24).  
 
 Another literature source by Coifman (25), again using the Berkeley Highway 
Laboratory, investigated aggregate data from the RTMS sensor. The study evaluated the 
performance of the RTMS in sidefire mode relative to loop detectors in the freeway setting.  
The documented results first reported the aggregated data by the RTMS using its internal 
controller emulation and compared these results with data from nearby dual-loop detectors. 
The RTMS measures of flow and occupancy are noisier than loop detectors, although the 
RTMS estimates for speeds are almost as good as those from single-loop detectors. The 
second aspect of the study considered aggregate measurements from contact closure data and 
compared RTMS results against the dual-loop detectors. For reference, the research also 
compared one loop against the adjacent loop in the same lane in a trap loop configuration. In 
the flow measurements, the RTMS was within 10 percent of values generated by the loops 
with the loops being within 3 percent of each other. Occupancies were not as accurate, 
ranging from 13 percent to 40 percent, again compared to the inductive loops.  
 
 A research project conducted by the Ohio Research Institute for Transportation and 
the Environment (ORITE) investigated the use of a custom-built trailer fitted with two 
microwave radar detectors to monitor traffic along selected segments of roadway. The trailer 
consisted of a steel frame with a solar panel plus battery box containing four deep-cycle gel 
batteries and a power controller. The solar unit was rated at 225 watts and outputs 12V DC; it 
was also equipped with a charge controller capable of regulating up to 15 amps of current. As 
equipped, the system can run for 8 days on batteries without sunlight. The trailer had two 
telescoping poles capable of reaching heights of 20 ft; it had four sockets so that the poles 
could be erected on either side of the trailer. It also had anti-theft devices such as detachable 
tongue and special lock-nuts on the wheels (26).  
 

During a traffic monitoring session, the ORITE trailer used one Wavetronix 
SmartSensor model SS105 attached to each pole, with each detector pointed in the same 
direction and operating in parallel. The available information did not specify the separation 
distance, but photos indicated a separation of about 8 ft. The available information also did 
not discuss the possibility of interference between the two detectors, which would likely 
occur at that spacing and orientation. ORITE typically operated both detectors in the sidefire 
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orientation. The trailer also housed a controller, which was a small computer used to collect 
the data from each sensor and combine the data into a single text file. Storage of the text file 
is on the computer’s hard drive and on a 256 MB flash memory card. Setup of the entire 
operation takes about 45 minutes—30 minutes for the trailer and about 15 minutes for the 
sensors (26).  

 
The data collected by the system include: time stamp, lane number, and moving 

average speed (based on the last 16 vehicles) from the first sensor followed by a similar 
dataset from the second sensor. Next came an average of the two running speeds, vehicle 
length, and speeds for each sensor. Vehicle classes for this research were: Class 0 (0 to 20 ft), 
Class 1 (21 to 40 ft), and Class 2 (at least 41 ft). A portion of the ground truth came from 
videotape with time-stamped video synchronized with the same laptop the radar units were 
synchronized with. The baseline vehicle speeds came from a Kustom Signals TR-6 radar unit 
(26).  
 
 Results indicate that the Wavetronix system misses some vehicles due to occlusion 
and it sometimes registers phantom vehicles from extraneous radar echoes (e.g., from a truck 
in an adjacent lane). On one of the test days, the number of phantoms was 7.03 percent, but 
on other days, the number of phantoms and misses was always less than 5 percent, and often 
under 1 percent. Speeds measured by the Wavetronix system (based on the moving average 
technique) usually correlated well with true speeds. These moving average speeds were a 
combination of the speeds detected by both sensors. The largest difference was 3 mph. The 
standard deviations in data measured by the trailer were always higher than those from the 
hand-held radar unit, generally by a factor of 2 to 3. The smallest difference was 0.1 mph 
(2.0 mph Wavetronix vs. 1.9 mph for radar), and the largest difference was 3.8 mph (4.2 mph 
Wavetronix vs. 1.1 mph radar) (26).  
 
 Other results based on vehicle length (or classification) were not as accurate. For 
example, one dataset had 8 percent true vehicles with lengths over 40 ft while the 
Wavetronix data indicated 21.4 percent with lengths over 40 ft. Some results were better and 
some were worse, but the authors conclude that the system does not reliably estimate the 
number of trucks in the traffic stream. Weather was not a factor in any of the tests, so no 
conclusions were available on the effects of weather on detector performance (26).  
 
 Cheung et al. (27) investigated the use of single wireless magnetic detectors as an 
alternative to inductive loops for traffic monitoring on freeways as well as at intersections. 
Their advantages appear to include cost, ease of deployment and maintenance, and enhanced 
measurement capabilities. Components of this magnetic detector include “sensor nodes,” 
which communicate with an “access point.” A sensor node is comprised of a magnetic 
sensor, a microprocessor, a radio, and a battery. A 5-inch diameter “smart stud” encases the 
sensor node or magnetic sensor, which is glued to the pavement in the center of a lane.  
 
 The paper covers two experiments, with the first and longer one being a two-hour 
monitoring session on Hearst Avenue in Berkeley, California, downstream of a signalized 
intersection. During this two-hour session, 332 vehicles passed through the detection zone. 
The single magnetic sensor achieved a detection accuracy of 99 percent (100 percent if 
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motorcycles are excluded), and average vehicle length and speed estimates that appear to 
exceed 90 percent (27).  
 
 For vehicle classification, a single dual-axis magnetic sensor measures the earth’s 
magnetic field in both the vertical direction and along the direction of the lane, each sampled 
at 64 Hz. A simple algorithm uses the information to classify the vehicle into six types: 
passenger vehicles, SUV, van, bus, mini-truck, and truck. Of the sampled vehicles, the 
detector correctly classified 24 out of 37 vehicles (63 percent). Combining classified vehicles 
into the FHWA classification scheme suggests an 83-percent accuracy rate for the FHWA 
scheme. The sample size was small, but the results appear to be promising. The sensor 
correctly classified all buses, vans, and passenger vehicles, but it had problems with SUVs 
and mini-trucks. Further experiments are needed to determine its accuracy with trucks. It is 
important to note that adding length as a measured feature of the single magnetic sensor 
would probably improve the classification accuracy (27).  
 
 This research compared this single magnetic detector and its capabilities with 
inductive loops. In comparison, measuring accurate lengths with loops requires two loops 
compared to only one magnetic detector. The magnetic detector is easily installed and 
measures the earth’s magnetic field, which is a three-dimensional vector. This detector 
records the changes in the field caused by different parts of the vehicle and that is how it can 
classify the vehicle. The size of an inductive loop, on the other hand, is larger, causing it to 
lose some of the distinctive features from the inductive signature. In other words, magnetic 
signatures provide more detail on the vehicle to improve its use as a classifier. Other 
advantages of magnetic detectors include the ability to install them on bridges, where 
sawcuts (for loops) would weaken the structure. Finally, wireless magnetic sensor networks 
should be much less expensive to maintain than inductive loops while providing more of the 
needed information (27).  
 
 The authors suggest that both the speed and classification accuracy could be 
improved significantly by using two magnetic detectors spaced a known distance apart. They 
predict vehicle classification accuracies in the 80-percent range would be likely. The authors 
plan on additional tests to further develop the classification accuracy (27).  
 

Martin and Feng (28) developed the traffic detector selection procedure shown in 
Figure 4. The figure references several tables, the number designations of which are in the 
referenced document. The selection procedure included the following technologies: inductive 
loops, magnetic, active infrared, passive infrared, microwave radar, ultrasonic, passive 
acoustic, and video image vehicle detection systems. This summary will focus on the 
technologies and the data types selected for Project 0-4750. The selection criteria included: 
general installation conditions, cost, data accuracy, reliability, and ease of installation and 
maintenance. Tables 11 through 14 summarize the information pertaining to the detectors of 
interest to TxDOT.  
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Table 11. Detector Cost Comparison. 

Technology/Sensor Device Cost Lanes d Mounting d

3M Microloop 2 ch. Canoga Detector $546 
4 ch. Canoga Detector $704 
702 Microloop Probe $160 
701 Microloop Probe $138 

Installation kit $114 
Carriers $355/pkg 

Cable: $0.39/ft 

S 3-inch conduit placed 
under roadway 

SmarTek SAS-1 $3500/unit M (5 lanes) S (25-40 ft) 
Autoscope Solo a

Single direction: $4900 
Autoscope 

Autoscope 2020 
Single direction: $4820 

M (32) b O/S 

Traficon $4000 per camera (camera, VIVDS, 
housing, lens, cables, surge protection, 

setup and training) c

M (24) b O/S (25-45 ft) 

Source: Adapted from Reference (28).  
a Autoscope solo has integrated camera and processor. 
b Maximum number of detection zones per camera. 
c A high resolution CCD black/white or color camera. The video camera should provide detailed video without 
lag, image retention, or geometric distortion.  
d S – Single lane detector, M – Multiple lane detector, O – Overhead, S – Sidefire.  
 
 

 
 

The Department of Civil and Environmental Engineering at the University of Hawaii 
at Manoa evaluated eight vehicle detectors (five non-intrusive) at several locations in 
portable and permanent installations (29). These systems are:  3M microloops, Spectra 
Research ORADS portable laser sensor, RTMS model X2, SmarTek SAS-1, and Wavetronix 
SmartSensor SS105.  The research retrieved data from these detectors using TrafInfo’s 
Trafmate satellite modem, TrafficWerks cellular system, and conventional 9600 baud 
modems.   

 
The 3M microloops and ORADS portable laser sensor require installations below or 

very near the road surface, respectively. Lane closures are not required but personnel are still 
exposed to traffic. The 3M microloops and Canoga 702 detector card provided excellent 
volume and speed results. They are expected to have a long life cycle but their initial cost and 
installation were expensive. The ORADS laser sensor from Spectra Research did well with 
volume counts but performed poorly in classification.  Researchers found that the ORADS 
laser sensor did not perform well on uneven pavement.   

 
The research included RTMS X2, SmarTek SAS-1, and SmartSensor SS105 in 

sidefire mode at various heights and distances from the roadway, and in inclement weather 
conditions. Researchers found that these three sensors could provide high-quality data at a 
low cost, with low energy consumption, and simple calibration. Installation required a pole at  
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Source: Reference (28). 
Figure 4. Detector Selection Procedure. 
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Source: Reference (28). 

Figure 4. Detector Selection Procedure (Continued). 
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Table 12.  Detector Error Rates. 
Sensor Mounting 

Location 
Count Speed a Evaluation 

Organization 
3M Microloop Pavement 2.5% 1.4%-4.8% MnDOT 
3M Microloop Bridge 1.2% 1.8% MnDOT 
3M Microloop Pavement 5% µ= -0.25 mph 

σ = 3.6 mph 
TTI 

SAS-1 Sidefire 8%-16% 4.8%-6.3% MnDOT 
SAS-1 Sidefire 4.0%-6.8% 3.4%-6.8% TTI 
SAS-1 Sidefire 10% µ = -0.5 mph 

σ = 4.8 mph 
TTI 

Autoscope Solo Sidefire 5% 8% MnDOT 
Autoscope Solo Overhead 5% 2.5%-7% MnDOT 
Autoscope Solo Sidefire 2.1%-3.5% 0.8%-3.1% TTI 

Traficon Sidefire 5% (45 ft) 2%-12% MnDOT 
Traficon Overhead 10%-15% (25-30 ft) 3%-7.2% MnDOT 

Source: Adapted from Reference (28). 
a µ = mean, σ = standard deviation. 
 
 

Table 13. Detector Ease of Installation and Reliability.  
Technology/Sensor Ease of Installation b Ease of Calibration b Reliability a

3M Microloop 0 1 2 
RTMS 2 1 1 
SmarTek SAS-1 2 2 2 
Autoscope Solo 2 1 2 
Traficon 2 1 2 
Source: Adapted from Reference (28). 
a Reliability level is based on the performance shown in tests.  
b 2: Performs satisfactorily in the stated condition; 1: Meets some but not all criteria for satisfactory 
performance; 0: Does not perform satisfactorily in the stated condition.  
 
 

Table 14. Estimated Life-Cycle Costs for a Typical Freeway Application. 
Detector Initial 

Cost 
Mounting Install. Cost Ann. Mtce. 

Cost 
System Life 

(yrs) 
Life-Cycle 

Cost/system a

3M Microloops $13,125 b $200 15 $1380 
O $2400 $1700 RTMS $6600 
S $400 

$200 7 
$1370 

SmarTek SAS-1 $7000 S $800 $400 7 $1700 
O $3000 $1980 Autoscope 

Solo Pro 
$9800 

S $1000 
$400 10 

$1730 
O $3000 $1760 Traficon $8000 
S $1000 

$400 10 
$1510 

Source: Adapted from Reference (28). 
a Costs are for a total of six freeway lanes, three per direction. 
b Total of 16 lanes and 32 probes. 
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least 20 ft tall, and offset at least 20 ft from the first lane. Researchers retrofitted a trailer-
based “light plant” with the sensors and deep-cycle batteries for power. They deployed this 
portable, stand-alone unit at various locations where sensor mounting options were limited.   

 
The baseline system for determining the volume, speed, and classification 

performance aspects of the sensors was usually pre-existing loops, supplemented in some 
cases with manual counts. Table 15 summarizes the values associated with some qualitative 
ratings of the detectors. Based on comparisons of volume counts and speeds, the non-
intrusive detectors rated as follows:   
 

• The count rating for the RTMS X2 and RTC data unit by EIS was good to very good.  
The speed rating for the X2 and RT data unit was very good to excellent. 

 
• The count rating for the SAS-1 acoustic sensor and SAS-CT board by SmarTek was 

good to very good.  The speed rating for the SAS-1 and SAS-CT board was very 
good to excellent. 

 
• The research did not rate the SmartSensor SS105 by Wavetronix by values from the 

table for either speeds or counts, but described its performance as similar to the 
RTMS unit.     
 
 

Table 15.  Sensor Performance Descriptions. 
Rating Volume/Classification 

(% error) 
Speed (mph) 

Excellent ±1 ±3 
Very Good ±3 ±6 
Good ±5 ±10 
Possibly Adequate ±10 ±15 
Inadequate > ±10 > ±15 

 
 
 
Researchers recommend the SmartSensor as the top sensor based on ease of setup, 

lower height requirement, and exceptional feedback and assistance from the vendor.  The 
SmartSensor’s auto-ranging and calibration features made it the quickest sensor to install.  
The researchers recommended both the SmartSensor and the RTMS for quiet rural locations 
with power already available.  They recommended the SAS-1 for battery or solar power 
operations due to its minimal power consumption.  The SAS-1 was able to detect bicycles in 
quiet locations, but loud music and other background noises caused the sensor to register a 
count. 
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CHAPTER 3.0  DETECTOR TEST PLAN 
 
 
3.1  INTRODUCTION 
 
 The detector test plan’s primary purpose was to guide researchers in selection of 
vehicle detection systems to test. It relied solely on loaned or donated detection units as there 
were no funds designated for purchasing the detectors. All vendors with equipment of 
primary importance to the project’s Project Monitoring Committee (PMC) were willing to 
loan equipment. Beyond the loaned equipment, all vendors were also anxious to monitor 
their equipment using the Internet and to provide firmware updates and other technical 
support to maintain a high level of operational accuracy.  
 
3.2  METHODOLOGY 
 

The research utilized Project Monitoring Committee meetings scheduled near the 
beginning of each new fiscal year to discuss the detectors that warranted testing in Texas. 
Researchers came to these meetings prepared with a list of possible detectors to include in 
the test plan along with enough information about each system to make a decision, allowing 
the PMC to decide which ones were worthy of field tests at one or both of the field test 
facilities. The test plan also included improvements to the two test beds to facilitate 
implementation of the test plan. 
 
3.3  FY 2003-2004 DETECTOR TEST PLAN  
 

Based upon the literature search, researcher knowledge and experience, and vendor 
information, TTI researchers developed a tentative detector test plan for discussion by the 
Project Monitoring Committee. Researchers discussed the pros and cons of each selected 
detector and encouraged discussion by PMC members regarding including each detector. The 
information provided below begins with the “year one” plan, which means the plan for the 
first 18 months of the project. There was some delay near the beginning of this 3 ½ year 
study due to other activities that preceded selection of test detectors. A similar meeting 
occurred prior to the start of year two field tests (FY 2005) and to start year three (FY 2006) 
tests, again, to establish which detectors to include in field tests.  

 
The first project meeting in which the detector test plan was an agenda item for the 

PMC occurred on May 1, 2003. Researchers had already implemented parts of the test plan 
for the first 18-month period based on activities in Research Project 0-2119. The test plan for 
project 0-4750 involved testing detectors both at the Austin I-35 test site and at the College 
Station S.H. 6 test site. As of November 2003, researchers had installed, calibrated, and 
begun field-testing the detectors listed in Table 16.  

 
Researchers discussed one other detector as a possible test system—the RTMS X3, 

especially since TTI had tested the X2 in the previous research project. TTI contacted 
Electronic Integrated Systems, Inc. and requested their participation by a loaned unit, but the 
company failed to provide the unit. The baseline system for both sites was the Peek 
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ADR-6000, but it was also included as part of the test plan because of its fairly recent 
introduction into the U.S. market and due to earlier problems in its operation. TTI also 
monitored the Peek ADR-6000 for lanes 2, 3, 4, and 5 (a loop failed in lane 1) in Austin.  

 
 

Table 16. FY 2004 Detector Test Plan. 
Test Location (No. Lanes)  

Detector 
 

Technology Austin  College Station  
3M Microloops Magnetic Site TBDa None 
Autoscope Solo Pro Video Imaging I-35 (5 lanes) S.H. 6 (2 lanes) 
Peek ADR-6000 Inductive Loop I-35 (5 lanes) S.H. 6 (4 lanes) 
SAS-1 Acoustic I-35 (5 lanes) S.H. 6 (2 lanes) 
SmartSensor Radar I-35 (5 lanes) S.H. 6 (4 lanes) 

a TBD: To be determined.  
 

Efforts to acquire the latest Iteris Vantage VIVDS for both locations were 
unsuccessful early on, but the vendor later provided a unit for installation in Austin on  
March 25, 2004. Also, Wavetronix provided a second SmartSensor for the S.H. 6 site. There 
were no tests of 3M microloops due to problems in finding a suitable site to replace the 
originally targeted U.S. 290 site. Other systems discussed during the May 1, 2003, meeting 
were single-lane detectors (e.g., for ramps), and wireless detection systems. However, the 
two wireless systems installed as part of Research Project 0-2119 utilized detectors that have 
not been the best performers—the RTMS and the SAS-1. Therefore, this research project did 
not use the wireless units. 

  
In preparation for FY 2005 detector tests, the research supervisor and the project 

director scheduled a meeting of the PMC for July 20, 2004. During this meeting, the PMC 
only recommended one new detector in addition to the current list of test devices; it was the 
Traficon VIVDS. The Iteris video imaging detector became available before this July 
meeting, but only a short time before the meeting. The tentative plan was to test the Iteris at 
both test sites. The test plan for FY 2005 also included detectors remaining from previous 
tests to provide more of a long-term evaluation. There was also discussion regarding testing 
3M microloops, possibly on a high-volume roadway in the Austin area.  

 
3.3.1  FY 2003-2004 Improvements to Test Beds  
 

Improvements to the test beds occurred largely to follow the detector test plan. The 
Austin test bed originated in Research Project 0-2119, and the College Station test bed 
originated several years prior to that. TTI made several improvements to both test beds 
during the early months of this research. Figures 5 and 6 show schematics of the two test 
beds. The following list provides some of the major updates or improvements to the two test 
beds during the FY 2003-2004 period. It does not include minor maintenance items.   
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Figure 5. Layout of I-35 Site. 
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Figure 6. Layout of the S.H. 6 Site. 

 
 
 

Some of the major activities related to the FY 2003-2004 test plan follow in 
chronological order.  
 

• During the week of August 11 through August 15, 2003, TTI replaced a failed CCD 
camera, replaced a damaged coaxial cable, did maintenance work on the weather 
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station, set up the firewall, DSL modem, and keyboard video mouse (KVM) switch 
for the College Station test bed.  
 

• During the week of August 18, 2003, TTI worked with a road boring contractor to 
install a 3-inch conduit under the full width of S.H. 6.  
 

• During the weeks of September 8 and September 15, TTI made several additional 
improvements to the S.H. 6 test bed. TTI installed 3M Canoga ITS link, PcAnywhere, 
and Peek Traffic Operations and Planning SoftwareTM (TOPS) software on a field 
computer to collect data with the Peek ADR-3000. Finally, TTI installed the repaired 
weather station and set up the software and network connections for remote access 
and weather data acquisition.  

 
• From September 30 through October 2, TTI provided support for a crew from the 

Transportation Planning and Programming Division (TPP) to install four inductive 
loops per lane for the Peek ADR-6000 in all four lanes on S.H. 6. A Peek 
representative was on-site to configure the ADR-6000 loop amplifiers and system. 
The Peek representative and a TTI engineer then went to the Austin I-35 test site to 
reinstall the ADR-6000 on October 3. The Peek technician then configured the 
ADR-6000 loop amplifier and system.  

 
• During the week of October 6 through October 10, TTI set up new Internet Protocol 

(IP) addresses for the S.H. 6 test bed, configured the firewall, weather station, and 
remote power switch with new IP addresses. Another activity was attempting to get 
the Peek TOPS version 3.4 to poll data from the ADR-6000. Upon contacting Peek 
software support, technicians learned they would have to wait for version 3.5.  
 

• During the week of October 20, TTI installed Peek TOPS version 3.5 on the S.H. 6 
computer and on one of the Austin computers. They also checked the DSL and 
configured the firewall, APC remote power switch, and computer and connected the 
PC to the ADR-6000, the Autoscope Solo Pro, the SAS-1, and the Wavetronix 
SmartSensor.  

 
• During November 2003, TTI made adjustments to the surveillance camera and 

cleaned the lens to improve its image.  
 

• During January 2004, TTI reinstalled Peek TOPS software on the industrial computer 
at S.H. 6 due to a problem with the software. TOPS software is essential for 
collecting bin data with the ADR-6000.  

 
• During February and March 2004, TTI contacted Peek by telephone several times and 

e-mailed the classification table asking Peek to modify its ADR-6000 classification 
algorithm to accommodate the Texas 6 classification scheme.  

 
• In February 2004, TTI researchers discovered a problem with the ADR-6000 in 

College Station based on it misclassifying large trucks in lane 3. It was not until June 
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2004 that Peek’s service department finally concluded that the count error in lane 3 
was due to the axle detector for lanes 1 and 2 not communicating, causing the 
ADR-6000 processor to recycle back to lanes 1 and 2 several times before proceeding 
to lane 3. TTI removed the axle detector and sent it to Peek’s service department for 
repair. Peek repaired and returned the axle detector within two weeks and TTI 
immediately installed and configured it (July 1) with the support of Peek technicians 
on the telephone. 

 
• In March 2004, TTI researchers ran 3/4-inch rigid conduit for power from the new 

cabinet on I-35 to the power distribution panel at the base of the sign bridge. They 
also ran 2-inch rigid conduit between the small existing cabinet and the new larger 
cabinet.   

 
• In May 2004, researchers removed the weather station in Austin due to ongoing 

problems and found that most of the weather sensors were not working. TTI 
disassembled all the weather sensors, finding that the weather station wiring was 
defective and the sensors needed calibration. TTI sent the temperature, humidistat, 
wind speed detectors to the weather station manufacturer for calibration and re-
cabling. Upon receiving the sensors and other components, TTI reassembled the 
weather station and tested it before reinstalling it in Austin. TTI researchers also 
checked the S.H. 6 weather station rain gauge and found that it was not functioning 
properly due to dirt accumulation in the funnel for the tipping bucket. TTI cleaned the 
rain gauge and verified its accuracy by comparing it with another gauge. 
 

• Also in May 2004, researchers configured a new industrial computer with a scan 
converter, video capture card, Windows 2000, and TOPS software and installed it in 
the I-35 test bed cabinet. TTI configured the hardware firewall for the new computer 
and found that one computer could not run all five detector applications and 
simultaneously stream video to the Internet.  

 
3.4  FY 2005 DETECTOR TEST PLAN  
 

Based upon the literature search, researcher knowledge and experience, and vendor 
information, TTI researchers developed a tentative detector test plan for FY 2005 for 
discussion by the Project Monitoring Committee. Researchers discussed the pros and cons of 
each selected detector and encouraged discussion by PMC members regarding including each 
detector. The information provided below involves only the “year two” plan (FY 2005), 
which means the 12-month period beyond the first 18 months of the project. The test plan 
involved testing detectors both at the Austin I-35 test site and at the College Station S.H. 6 
test site. As of January 2005, researchers had installed and calibrated, and had begun field-
testing of detectors listed in Table 17.  

 
The baseline system for both sites was the Peek ADR-6000, but it was also included 

as part of the test plan because of earlier problems in its operation. TTI monitored the 
ADR-6000 for lanes 2, 3, 4, and 5 (the failed loop in lane 1 had not been repaired at that 
time) in Austin and on all four lanes at S.H. 6 in College Station.  
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Table 17. FY 2005 Detector Test Plan. 
Test Location (No. Lanes)  

Detector 
 

Technology Austin  College Station  
3M Microloops Magnetic TBD None 
Autoscope Solo Pro Video Imaging I-35 (4 lanes) a S.H. 6 (2 lanes) 
Iteris Video Imaging I-35 (4 lanes) S.H. 6 (2 lanes) 
Peek ADR-6000 Inductive Loop I-35 (4 lanes) S.H. 6 (4 lanes) 
SAS-1 Acoustic I-35 (4 lanes) S.H. 6 (2 lanes) 
SmartSensor Radar I-35 (3 lanes) b S.H. 6 (4 lanes) 
Traficon Video Imaging I-35 (4 lanes) S.H. 6 (2 lanes) 

a The I-35 site has a total of five southbound lanes, but lane 1 has a failed inductive loop. 
b The mounting pole was too close to lane 5, so the SmartSensor could only monitor three lanes. 

 
 
 
3.4.1  FY 2005 Improvements to Test Beds  
 

Improvements to the test beds occurred largely to follow the detector test plan. TTI 
made a few modest improvements during this reporting period to both the S.H. 6 test bed in 
College Station and to the I-35 test bed in Austin as indicated below.  
 

• In September 2004, the license for RealPlayer software used to stream video from test 
beds expired so TTI changed to the free Microsoft Media Encoder to stream video 
from test beds.  

 
• Researchers brought the two industrial computers used to stream video from the 

Austin and College Station test beds to TTI offices for maintenance.  
 

• Researchers reinstalled, repaired, and calibrated the weather station at the Austin test 
bed.   
 

• Researchers installed 2-inch conduit between the three S.H. 6 cabinets to improve 
connectivity between cabinets.  

 
• Researchers added new power receptacles in Austin and reworked the wiring to 

equipment in the cabinet near the end of January 2005. 
 
3.5  FY 2006 DETECTOR TEST PLAN  
 

Changes to the existing detector test plan are a result of decisions by TxDOT to add 
or remove detectors at the most recent PMC meeting. This plan included installing Sensys 
Networks magnetometers at both test beds. TTI installed these detectors in lanes 1 and 2 at 
the I-35 test bed and on lanes 3 and 4 on S.H. 6 in College Station. Researchers investigated 
two locations on recently opened sections of U.S. 290 (Ben White Boulevard) in Austin for 
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installing 3M microloops. Challenges with the site included finding nearby connections to 
power, not having an equipment cabinet on site, and the fact that only one lane of traffic was 
open. These issues were not resolved by the end of the project so there were no tests of the 
3M microloops on a high-volume freeway during this project. Other detectors already 
installed at the two test beds remained, as indicated in Table 18.  
 
 

Table 18. FY 2006 Detector Test Plan. 
Test Location (No. Lanes)  

Detector 
 

Technology Austin  College Station  
3M Microloops Magnetic TBD None 
Autoscope Solo Pro Video Imaging I-35 (5 lanes) a S.H. 6 (2 lanes) 
Iteris Video Imaging I-35 (5 lanes) S.H. 6 (2 lanes) 
Peek ADR-6000 Inductive Loop I-35 (5 lanes) S.H. 6 (4 lanes) 
SAS-1 Acoustic I-35 (5 lanes) S.H. 6 (2 lanes) 
Sensys Networks Magnetometer I-35 (2 lanes) S.H. 6 (2 lanes) 
SmartSensor Radar I-35 (4 lanes) b S.H. 6 (4 lanes) 
Traficon Video Imaging I-35 (5 lanes) S.H. 6 (2 lanes) 

a The I-35 site has a total of five southbound lanes, but lane 1 has a failed inductive loop. 
b The mounting pole was too close to lane 5, so the SmartSensor could only monitor three lanes. 

 
 
 
3.5.1  FY 2006 Improvements to Test Beds  
 
 The list below provides information on some of the major activities related to test bed 
improvements or upgrades during FY 2006.  
 

• On November 15, 2005, TTI and the TPP Division repaired the broken loop in Austin 
in lane 1 and installed Sensys Networks magnetometers in lanes 1 and 2. 

 
• On December 28, 2005, the ADR-6000 in Austin had stopped collecting data, but a 

simple reboot and reset of its clock remedied the problem.  
 

• On January 3, 2006, TTI discovered that the uninterrupted power supply (UPS) for 
the Wavetronix servers in the TransLink® Lab had stopped working. Removing the 
UPS and restoring power fixed the problem.  

 
• On May 30, 2006, TTI discovered a problem with the ADR-6000 in College Station. 

An investigation revealed that the heat sink, which had been glued onto the central 
processing unit (CPU), had fallen off and was no longer serving the intended 
function. This problem led to failure of the CPU, requiring returning the entire unit to 
Peek. Peek returned the repaired unit on July 7, 2006, and TTI reinstalled it on 
July 10.  
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• On April 28, 2006, communication with the S.H. 6 test bed failed due to a network 
switch locking up. Technicians reset the switch to resolve the issue.  

 
• On July 3, 2006, TTI discovered that all communication with the I-35 test bed had 

been lost over the weekend due to a faulty network switch. TTI replaced the switch 
on July 7 to solve the problem.  

 
• On about August 2, 2006, pavement milling and resurfacing operations along I-35 

destroyed all baseline loops and SenSys Networks magnetometers at the test bed.  
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CHAPTER 4.0  FIELD TEST RESULTS 
 
 
4.1  INTRODUCTION 
 

Field tests are based upon the detector test plan that originated at the May 1, 2003, “kick-
off” meeting and was discussed again in subsequent PMC meetings. The result was updates to 
the test plan early in FY 2005 and early in FY 2006. Test results are available on most of the 
detectors from the test beds in Austin and College Station. Detectors were available or 
functioning properly for differing periods of time throughout the research period. Some detectors 
were already available for this research from a previous detector project (Research Project  
0-2119) so, in some cases, TTI requested the latest updates and had to do little in the way of 
preparation for the start of field tests. However, some installations required contacting the 
vendors to acquire detectors and completely install the detectors. This section focuses on the 
field tests, whereas activities related to test bed improvements can be found elsewhere in this 
report.  
 
4.2  METHODOLOGY 
 
 The methodology for the field tests was similar throughout the project. In general, TTI 
installed detectors with assistance from TxDOT and vendors, with subsequent technical support 
as needed from vendors. Replacement and some maintenance activities also required assistance 
from TxDOT, usually in the form of a bucket truck. The data analysis followed data collection 
followed by posting on the project website. This process used Excel spreadsheets for data 
analysis and graphics development. Each vendor provided replacement units if failures occurred 
or if new firmware or hardware became available. The exception to the modification scenario 
was the Peek ADR-6000, which was not modified during the course of this research. There were 
occasional problems with both units, but Peek made the necessary repairs and returned the 
components or the entire system each time their attention was needed.  
 

Tables 19 and 20 provide a summary of major repairs or problems for each detector 
system that are also covered in the more detailed list of bulleted items that follows the table. The 
overall goal was to keep all systems operating during the full duration of the project; however, 
some of the problems caused disruptions in data collection for all detectors. These major 
problems included power supply issues, site communication fluctuations, and failures in the 
baseline ADR-6000 system. Examples of simpler day-to-day and week-to-week maintenance 
that typically took systems off line for a shorter interval included synchronizing the internal 
clocks of all systems, cleaning camera lenses of video imaging systems, replacing or maintaining 
individual power supplies, and calibration. The ADR-6000 clock drifted, and required resetting 
and synchronizing with other systems a minimum of twice a week. Researchers also periodically 
performed Microsoft and antivirus security updates on all field computers used for streaming 
video and connected to ADR-6000 systems on a regular basis.   
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Table 19. Field Test Summary for I-35. 
I-35 Detector Data Summary 

  FY2004 FY2005 FY2006 
Detector  S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A 

Autoscope Solo 
Pro (VIVDS)     * * * * * * * * * * * * * *   *   * * * * * * * * * * * * * * * * * 
Iteris Vantage 
(VIVDS)                 * * * * * * * *       * * * * * * * * * * * * * * * * * 
Peek ADR-6000 
(Inductive Loop)     * * * * * * * * * * * * *         * * * *     * * * * * * * * * *   
SAS-1  
(Acoustic)     * * * * * * * * * * * *   *       * * * * *   * *   * * *     * * * 
Sensys 
(Magnetometer)                                                         * * * *   * *   
SmartSensor 
(Micro. Radar)     * * * * * * * * * * * * * * *     * * * * * * * * * * *   * *   * * 
Traficon  
(VIVDS)                                   * * * * * * * * * *   *   * * * * * * 

 
Table 20. Field Test Summary for S.H. 6. 

S.H. 6 Detector Data Summary 
 FY2004 FY2005 FY2006 

Detector S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A 
Autoscope Solo  
Pro (VIVDS)    *  * * * * * * *  * * * * * * * * * * * * * * * * *  * * * * * 
Iteris Vantage  
(VIVDS)                  * * * * * * * * *           
Peek ADR-6000  
(Inductive Loop)    *  * * * * * * *  * * * * * * * * * *  * * * * * *     * * 
SAS-1  
(Acoustic)    *  * * * * * * *  *  * * * * * * * *   * * * * *    * * * 
Sensys  
(Magnetometer)                             * * * * * * * * 
Smartsensor  
(Micro. Radar)    *  * * * * * * *  * * * * * * * * * * * * * * * * * * *   * * 
Traficon  
(VIVDS)                  * * * * * * * * * * * * *    * * * 

 
  = Good Compiled Data   = Data Not Available * = Raw Data Available   = Not Installed / No Data Collection 
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 The following chronological list provides an indication of major activities required to 
keep the various systems operating.  
 

• In October 2003, TTI replaced the communication and power cable and the power supply 
for the S.H. 6 Wavetronix SS105 in the forward fire mode.  

 
• On October 28, 2003, while making some test bed improvements in Austin, TTI installed 

new SmartSensor Manager 2.0 software on the computer connected to the sensor but was 
unable to make the sensor function properly. 

 
• During November 2003, TTI installed a new sidefired Wavetronix SmartSensor SS105 at 

the I-35 test bed.  
 

• On November 11, 2003, the ADR-6000 stopped collecting data in lane 1 (I-35) due to a 
broken inductive loop. 

 
• In January 2004, TTI discovered a glitch in the Autoscope Version 6 software and had to 

upgrade to Version 7. Econolite promised to provide a new Solo Pro II soon with a self-
cleaning lens and that it would loan one for the Austin test bed when the new units 
became available.  

 
• In early February 2004, the TxDOT Bryan District provided a bucket truck and operator 

to clean the Autoscope Solo Pro lens at the S.H. 6 test bed.  
 

• In February 2004, the ADR-6000 was misclassifying large trucks in the northbound lanes 
of S.H. 6. Finally, in June, Peek identified the problem. TTI sent the unit to Peek for 
repair. It was back within two weeks and TTI installed and configured it with the support 
of Peek technicians on the telephone. 

 
• In March 2004, Iteris replaced the existing video unit on I-35 with a new Rack Vision 

system and a new wide-angle camera (covers five lanes) moved to the outside edge of 
lane 5.  
 

• In early May 2004, TTI and TxDOT replaced the Autoscope Solo Pro at the I-35 test bed 
and at the S.H. 6 test bed with a new Solo Pro II detector from Econolite and upgraded 
software to version 7.0.3.  

 
• In September 2004, researchers replaced the two S.H. 6 Wavetronix SS105 units with 

new models—one sidefire and one overhead. TTI replaced the SAS-1 and SS105 in 
Austin with new models, also at the manufacturer’s request.  

 
• In October 2004, TTI researchers noticed that all SmartSensors were missing data at 

random time intervals. Technicians at Wavetronix guided TTI in correcting the problem 
by making changes in the sensor setup.  
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• In November 2004, after very heavy rain, both SAS-1 sensors temporarily stopped 
detecting vehicles. The manufacturer solved the problem by modifying the material 
covering the microphones. 
 

• In December 2004, the Austin ADR-6000 stopped working properly, as indicated by the 
system constantly rebooting. Researchers found that the power supply was defective and 
shipped it to Peek for repair. In February 2005, TTI reinstalled the ADR-6000. After a 
short while, this unit still exhibited problems with the power supply so TTI had to ship it 
to Peek again. TTI reinstalled the repaired unit on February 4.  

 
• In January 2005, TTI installed two Iteris cameras at S.H. 6. TTI also installed two 

Traficon systems in Austin and one in College Station. One I-35 Traficon camera was for 
incident detection and the other was for count and speed detection.  

 
• In January 2005, TTI replaced the SAS-1 systems in Austin and in College Station with a 

newer model that should work in heavy rain.  
 

• Later in January 2005, researchers discovered that the Austin Traficon cameras were not 
working at night. In March 2005, the vendor discovered that the problem was electrical 
noise induced from the luminaire when lights were on. Insulating the cameras from the 
noise solved the problem.  

 
• On February 10, 2005, TTI calibrated the Iteris speeds in College Station by driving a car 

through each detection zone at a known speed and adjusting the detector speeds to match. 
 

• In early February 2005, the ADR-6000 in Austin had problems so TTI removed it and 
sent it to Peek for repair. After reinstallation in May 2005, it ran a few weeks and then 
stopped working again. Researchers checked the power supply voltage in the unit and 
found it was too low to operate. Adjusting the 5-volt processor power supply solved the 
problem. It was operational again on April 7.  
 

• In May 2005, TTI loaded new Autoscope software upgrades.  
 

• On May 26, 2005, TTI adjusted the Austin ADR-6000 power supply voltage. 
 

• On June 1, 2005, the ADR-6000 in College Station stopped responding.  The issue was 
resolved by tightening loose connections from the power supply. 

 
• On October 19, 2005, Sensys Networks installed four model VSN240 wireless 

magnetometers at the S.H. 6 test bed—two in lane 3 and two in lane 4. This installation 
included an Access Point for communications. One of the original prototype sensors 
installed there failed after about two weeks of operation.  

 
• On October 21, 2005, the S.H. 6 Traficon camera was readjusted because strong winds 

blew it out of position.  The Iteris camera was also adjusted after discovering water in the 
enclosure. 
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• In October 2005, Sensys Networks installed six new model VSN240 wireless 

magnetometers at the S.H. 6 test bed—three in each of lanes 3 and 4 (southbound lanes).  
 

• On November 15, 2005, TTI and Sensys Networks installed magnetometers in lanes 1 
and 2 of I-35 while the lanes were closed to repair the failed inductive loop. From the 
beginning the Access Point did not indicate a strong signal coming from the six 
magnetometers and eventually had to be replaced.  

 
• On December 9, 2005, Sensys Networks replaced the faulty Access Point. Once the new 

Access Point was configured with a static IP address for the test bed DSL and plugged 
into the Ethernet switch, it indicated good signal strength from all six magnetometers.  

 
• On May 10, 2006, Sensys Networks replaced the Access Point and power supply at the 

Austin I-35 test bed.   
 

• On May 16, 2006, TTI realigned the Sensys Access Point installed at S.H. 6.  The sensor 
was blown out of alignment by high winds.  The realignment restored communication 
with all magnetometers. 

 
• On May 30, 2006, TTI discovered that the ADR-6000 in College Station had stopped 

working.  This was due to a heatsink malfunction in the CPU module.  TTI sent the unit 
to Peek for repairs and then reinstalled the repaired unit on July 10.   

 
• On June 20, 2006, TTI, SmarTek, and Traficon worked on detectors at the Austin I-35 

test bed. The SAS-1 acoustic detector had failed, so the SAS representative replaced the 
detector and changed its orientation to reduce reflections from the median barrier wall. 
The Traficon representative installed new firmware on the Traficon units on this date as 
well and re-established communication.    

 
• On July 3, 2006, TTI and Paradigm installed a new Beta version of the Wavetronix 

microwave radar High-Definition (HD) SmartSensor on I-35. The sensor was simply 
swapped out and set to auto-configure.   

 
• On July 11, 2006, TxDOT Austin District personnel brought a bucket truck to the I-35 

test bed and cleaned Autoscope, Traficon, and Iteris camera lenses.  
 
4.3  WEBSITE 
 
 TTI’s communication group developed a project website for sharing project findings with 
a limited audience using password protection. The website afforded project management 
committee members the opportunity to view project findings primarily related to detector 
performance only a few days after collecting the actual data. Due to the availability of the data 
and graphics on the website, this document contains only summary findings. Figure 7 indicates 
the information that is available on the website. Several persons expressed an interest in being 
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able to view live video from each of the two test bed sites, so a link is available if the software 
program RealPlayer is available on the user’s PC.  
 
4.4  FIELD TEST RESULTS 
 

Given the space requirements necessary to show several lighting, weather, and traffic 
conditions and the corresponding accuracy of the selected detectors, TTI researchers chose to 
select one day from each of the following periods: FY 2003-2004, FY 2005, and FY 2006. The 
first period is about 14 months in length and the other two periods are each about 12 months in 
length. These figures span day-night, peak and off-peak, dawn, and dusk, and include lane 2 in 
all cases in the direct plots of data. Some of the summary statistics also show other lanes for 
comparison on the selected dates. Lane 2 results show the effects of occlusion and the presence 
of trucks. A lane restriction for trucks in Austin prohibited trucks from the median lane (lane 1). 
The primary dates selected for data display were: August 3, 2004, April 13, 2005, and July 29, 
2006. Other dates showed the effects of intense rainfall on detector performance and the 
accuracy of detectors in calculating occupancy.  
 

 
 
 

 
Figure 7. Screen Clip of Project Website. 

 
 

Table 21 summarizes the time intervals used for plotting the data by time of day (lighting 
conditions) and by traffic conditions. Early morning and late afternoon lighting conditions would 
naturally vary somewhat throughout the year, so the reader should use the actual hours, as 
appropriate, for the season of the year on the data graphics. 
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Table 21. Summary of Conditions Represented by the Sample Data. 
Time Interval Traffic Conditions Lighting Conditions 

6am – 7am Off-peak Dawn 
7am – 9am  Peak Daylight 
1pm – 4pm  Off-peak Daylight  
4pm – 8pm Peak Daylight/dusk 

9pm – midnight Off-peak Dark 
 

 
 
4.4.1  Example Speed and Count Field Data Results FY 2003-2004 
 

Figures 8 through 20 show graphical speed and count accuracy results for lane 2 on I-35 
from the selected date during the FY 2003-2004 period. This set of graphics shows only lane 2 
since it would be the most challenging for detectors mounted on the outside of the freeway (the 
lane 1 baseline system was not functional during this entire period). Similar plots for FY 2005 
and 2006 follow. Figures 8 through 14 show the speed accuracy, comparing speeds estimated by 
the test detectors against the baseline Peek ADR-6000 system (solid orange line). The figures 
that show the count accuracy also indicate the speed as measured by the baseline system (again 
with a solid orange line) because non-intrusive detector count accuracy is affected by vehicular 
speeds.  

 
 

 
Lane 2: 6-7AM Speed I-35 
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Figure 8. Detector Speed Accuracy I-35 6am-7am August 3, 2004. 
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Lane 2: 7-9AM Speed I-35, August 3, 2004 
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Figure 9. Detector Speed Accuracy I-35 7am-9am August 3, 2004. 

 
 

Lane 2: 9AM-1PM Speed  I-35, August 3, 2004 
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Figure 10. Detector Speed Accuracy I-35 9am-1pm August 3, 2004. 
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Lane 2: 1-4PM Speed  I-35, August 3, 2004 
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Figure 11. Detector Speed Accuracy I-35 1pm-4pm August 3, 2004. 

 
 

Lane 2: 4-8PM Speed I-35, August 3, 2004 
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Figure 12. Detector Speed Accuracy I-35 4pm-8pm August 3, 2004. 
 
 

53 



Lane 2: 8-9PM Speed I-35, August 3, 2004 
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Figure 13. Detector Speed Accuracy I-35 8pm-9pm August 3, 2004. 
 
 

Lane 2: 9-11PM Speed  I-35, August 3, 2004 
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Figure 14. Detector Speed Accuracy I-35 9pm-11pm August 3, 2004. 
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Lane 2: 7-9AM Count Error I-35, August 3, 2004 
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Figure 15. Detector Count Accuracy I-35 7am-9am August 3, 2004. 

 
 

Lane 2: 9AM-1PM Count Error I-35, August 3, 2004 
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Figure 16. Detector Count Accuracy I-35 9am-1pm August 3, 2004. 
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Lane 2: 1-4PM Count Error I-35, August 3, 2004 
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Figure 17. Detector Count Accuracy I-35 1pm-4pm August 3, 2004. 

 
 

Lane 2: 4-8PM Count Error I-35, August 3, 2004 
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Figure 18. Detector Count Accuracy I-35 4pm-8pm August 3, 2004. 
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Lane 2: 8-9 PM Count Error I-35, August 3, 2004 
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Figure 19. Detector Count Accuracy I-35 8pm-9pm August 3, 2004. 

 
 

Lane 2: 9-11 PM Count Error I-35 
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Figure 20. Detector Count Accuracy I-35 9pm-11pm August 3, 2004. 
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4.4.1.1 Formulas for Calculating the Detector Accuracy (Count Error and Speed Error) 
 
Accuracy can be expressed using one of the following two error quantity values: 
 

1. Mean Absolute Percent Error (MAPE) (see Eq. 1) or 
 

2. Root Mean Squared Error (RMSE) (see Eq. 2). 
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Where: x  = the detected data value,  i 
            xreference = the reference (baseline) value, and 
            n  = the total number of detected data values. 
 

Researchers interpreted the detector accuracy in terms of count error and speed error. The 
preferred metric for count error is the Mean Absolute Percent Error (MAPE, %) as its range of 
values is large. On the other hand, the speed error is within a much smaller range of values, so 
the analysis used Root Mean Squared Error (RMSE). These metrics allow an easy comparison of 
detectors since smaller values indicate less error compared to the baseline system.  
 
 Figures 21 through 24 summarize count and speed performance attributes of the detectors 
tested at I-35 during FY 2003-2004. For the sake of brevity in the body of this document, 
samples of data from S.H. 6 are in Appendix C. The figures utilize the MAPE and RMSE to 
describe these results. The reader should realize that the lane numbering at I-35 is from lane 1 
(median) through lane 5 (nearest the pole-mounted detectors). The actual lanes monitored 
through most of the project were lanes 2 through 5 except for the SmartSensor, which was too 
close to lane 5 to monitor that lane. For the S.H. 6 data from College Station, lanes 1 and 2 are 
the northbound lanes, and lanes 3 and 4 are southbound. Only the SmartSensor monitored the 
northbound lanes on S.H. 6. Most of the data samples were for dry weather. 
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Lane 2 RMSE for Speeds (AM Hours) (8/3/04)
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Figure 21. RMSE for Speeds during AM Hours August 3, 2004. 
 
 

Lane 2 RMSE for Speeds (PM Hours) (8/3/04)
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Figure 22. RMSE for Speeds during PM Hours August 3, 2004. 
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Lane 2 MAPE for Counts (AM Hours) (8/3/04)

0

5

10

15

20

25

30

35

40

45

50

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00

Time

M
A

P
E 

(%
)

Solo Smart Sensor SAS Iteris
 

Figure 23. MAPE for Counts during AM Hours August 3, 2004. 
  
 

Lane 2 MAPE for Counts (PM Hours) (8/3/04)
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Figure 24. MAPE for Counts during PM Hours August 3, 2004. 
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4.4.2  Example Count and Occupancy Field Data Results FY 2005 
 

Figures 25 through 34 show graphical count accuracy results for lane 2 on I-35 from the 
selected dates during the FY 2005 period. The previous section showed speed accuracy as well, 
but plots indicated much better performance for speeds compared to counts. Therefore, the speed 
accuracy plots are omitted in this section and the one following. This set of graphics shows only 
lane 2 as in the previous period. Again, the figures that show the count accuracy also indicate the 
speed as measured by the baseline system (with a solid orange line) because vehicular speeds 
affect non-intrusive detector count accuracy.  
 
 Figures 32 and 33 are the MAPE graphics corresponding to the FY 2005 count plots. 
They facilitate easy comparison of detector count accuracy throughout all hours of the selected 
date for lane 2. Figures 34 and 35 indicate occupancy results for the selected FY 2005 detectors 
on lanes 2 and 3, respectively, and Figure 36 indicates the effect of rainfall on these same 
detectors for lane 4 on S.H. 6. The “SS” label in Figures 34 and 35 represents the SmartSensor. 
 
 
 
 
 
 

Lane 2: 6-7AM Count Error I-35 
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Figure 25. Detector Count Accuracy I-35 6am-7am April 13, 2005. 
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Lane 2: 7-9AM Count Error I-35 
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Figure 26. Detector Count Accuracy I-35 7am-9am April 13, 2005. 
 

 
Lane 2: 9AM-1PM Count Error I-35 
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Figure 27. Detector Count Accuracy I-35 9am-1pm April 13, 2005. 
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Lane 2: 1-4PM Count Error I-35 
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Figure 28. Detector Count Accuracy I-35 1pm-4pm April 13, 2005. 
 
 

Lane 2: 4-8PM Count Error I-35 
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Figure 29. Detector Count Accuracy I-35 4pm-8pm April 13, 2005. 
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Lane 2: 8-9 PM Count Error I-35 
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Figure 30. Detector Count Accuracy I-35 8pm-9pm April 13, 2005. 
 
 

Lane 2: 9-11 PM Count Error I-35 
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Figure 31. Detector Count Accuracy I-35 9pm-11pm April 13, 2005. 
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Lane 2 MAPE for Counts (AM Hours) (4/13/05)
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Figure 32. MAPE for I-35 Test Detector Count Data AM Hours April 13, 2005. 
 
 

Lane 2 MAPE for Counts (PM Hours) (4/13/05)
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Figure 33. MAPE for I-35 Test Detector Count Data PM Hours April 13, 2005. 
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 Lane 2 Occupancy I-35 (7/28/05)
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Figure 34. I-35 Lane 2 Occupancy Data. 
 
 
 

Lane 3 Occupancy I-35 (7/28/05)
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Figure 35. I-35 Lane 3 Occupancy Data. 
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Lane 4 Count Error S.H. 6 (7/14/05) 
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Figure 36. S.H. 6 Lane 4 Rain Data. 

 
 
4.4.3  Example Count Field Data Results FY 2006 
 

Figures 37 through 43 show graphical count accuracy results for lane 2 from Saturday, 
July 29, 2006. The previous section for FY 2003-2004 showed speed accuracy as well, but plots 
indicated much better performance for speeds compared to counts. Therefore, the speed accuracy 
plots are omitted in this section. This set of graphics shows only lane 2 as in the previous years’ 
periods. Again, the figures that show the count accuracy also indicate the speed as measured by 
the baseline system (with a solid orange line) because non-intrusive detector count accuracy is 
affected by vehicular speeds.  
 
 Figures 44 and 45 are the MAPE graphics corresponding to the FY 2006 count plots. 
They facilitate easy comparison of detector count accuracy throughout all hours of the selected 
date for lane 2.  
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Lane 2: 6-7AM Count Error I-35 
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Figure 37. Detector Count Accuracy I-35 6am-7am July 29, 2006. 
 
 
 

Lane 2: 7-9AM Count Error I-35 
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Figure 38. Detector Count Accuracy I-35 7am-9am July 29, 2006. 
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Lane 2: 9AM-1PM Count Error I-35 
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Figure 39. Detector Count Accuracy I-35 9am-1pm July 29, 2006. 
 
 

Lane 2: 1-4PM Count Error I-35 
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Figure 40. Detector Count Accuracy I-35 1pm-4pm July 29, 2006. 
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Lane 2: 4-8PM Count Error I-35 
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Figure 41. Detector Count Accuracy I-35 4pm-8pm July 29, 2006. 
 
 

Lane 2: 8-9 PM Count Error I-35 
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Figure 42. Detector Count Accuracy I-35 8pm-9pm July 29, 2006. 
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Lane 2: 9-11 PM Count Error I-35 
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Figure 43. Detector Count Accuracy I-35 9pm-11pm July 29, 2006. 

 
 
 

Lane 2 MAPE for Counts (AM Hours) (7/29/06)
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Figure 44. MAPE for I-35 Test Detector Count Data AM Hours July 29, 2006. 
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Lane 2 MAPE for Counts (PM Hours) (7/29/06)

0

5

10

15

20

25

30

35

40

45

50

12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Time

M
A

PE
 (%

)

Solo Smart Sensor SAS Iteris Traficon Sensys
 

Figure 45. MAPE for I-35 Test Detector Count Data PM Hours July 29, 2006. 
 
 
4.4.4  Example Vehicle Length Measurement Field Data Results FY 2006 
 
 Figures 46 and 47 are histograms indicating the difference in length as measured by the 
Autoscope Solo Pro and the SmartSensor SS105, respectively, compared to the baseline ADR-
6000 for August 17, 2006. The resulting distribution resembles a bell-shaped curve, as expected, 
with a mean value near the zero point; again, as expected. Figures 48 and 49 are histograms 
indicating the difference in length as measured by the Autoscope Solo Pro and the Traficon, 
respectively, compared to the baseline ADR-6000 for August 24, 2006. Results indicate that at 
least the Traficon could improve with calibration. 
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Autoscope Length Histogram (8/17/2006)
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Figure 46. Autoscope Solo Pro Vehicle Length Histogram for August 17, 2006. 

 
 

Smartsensor Length Histogram (8/17/2006)
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Figure 47. SmartSensor Vehicle Length Histogram for August 17, 2006. 
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Autoscope Length Histogram (8/24/2006)
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Figure 48. Autoscope Solo Pro Vehicle Length Histogram for August 24, 2006. 

 
 

Traficon Length Histogram (8/24/2006)
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Figure 49. Traficon Vehicle Length Histogram for August 24, 2006. 
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4.4.5  Example Incident Detection Field Data Results FY 2006 
 
 Two of the detection systems (both VIVDS) included in this research claim to be able to 
detect incidents—the Autoscope Solo Pro and the Traficon. The two systems detect incidents in 
different ways as described below.  
 
4.4.5.1 Autoscope Solo Pro  
 

The Autoscope Solo Pro generates alarms based on certain user-specified criteria. The 
detector only generates an alarm if all criteria have been met. The first criterion must be satisfied 
before moving on to the second, and finally the third. The three parameters used to determine 
incidents are flow, severity, and persistence. The definitions of these parameters follow.  
  

1 Flow (vehicles per hour) – Defines the minimum vehicle flow required before the 
severity parameter is considered. 

 
2 Severity – Defines the minimum drop in speed (%) before the persistence parameter is 

considered. 
 
3 Persistence (seconds) – Defines the minimum duration of the drop in speed before the 

alarm status is changed to ON. 
 
This approach allows the user to “define” an incident by adjusting these traffic parameter 
thresholds.  The Autoscope actually detects the effects of an incident; that is, the drastic move 
from free-flow to non-free-flow conditions. A properly configured system can differentiate 
between congestion due to an incident and congestion during peak periods. 
 

TTI configured the Autoscope located at I-35 in Austin to test the unit’s incident 
detection capabilities. For testing purposes, researchers set the detection parameters to create 
alarms for incidents as well as the typical congestion during the morning and evening peak 
periods. Figures 50 and 51 show the incident alarms generated by the Autoscope on August 25 
and 26, respectively. The incident alarm is indicated by an Alarm Status of 1. The half-height 
indications are warning indicators.  
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I-35 Average Speeds and Incident Alarms (8/25/06)
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Figure 50. Autoscope Solo Pro Incident Detection August 25, 2006.  

 
 

I-35 Average Speeds and Incident Alarms (8/26/06)
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Figure 51. Autoscope Solo Pro Incident Detection August 26, 2006. 
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4.4.5.2 Traficon   
 

The Traficon VIP-I detector card can be configured to detect many types of incidents.  
The VIP-I monitors a user-defined area of roadway for specific incidents such as stopped 
vehicles, speed variations, reverse travel direction, or pedestrians in the roadway.   
 

Technicians configured the VIP-I located at I-35 in Austin to detect stopped vehicles, 
speed variations, and reverse travel directions. Traficon defined multiple detection zones to 
separate the main lanes from the access road. The VIP-I generates unique alarms that detail the 
location and type of incident. Figure 52 shows the Traficon VIP-I display with detected stopped 
vehicles in the main lanes of I-35. The unit highlights the stopped vehicles by a white box near 
the top of the viewing area. The VIP-I detector captures and stores video when an incident alarm 
is triggered.  
 
 

 
Figure 52. Traficon Screen Capture of Stopped Vehicles. 

 
 
 
4.5  SUMMARY OF FIELD TEST RESULTS  
 
 The data samples from each of the three data collection periods show some of the 
strengths and weaknesses of the detectors tested during the study. More results are available in 
Appendix C. The SmartSensor was too close to lane 5 in Austin to cover that lane, so its results 
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are only for lanes 2 through 4 and for lanes 1 through 4 after the lane 1 inductive loop was 
repaired. Table 22 provides a summary of the graphics presented earlier in this chapter.  
 
 
 

Table 22. Summary of Detector Performance. 
Count Error Summary (% difference) 

FY03-04 FY05 FY06 
Detector Peak a Off-Peak b Peak Off-Peak Peak Off-Peak 

Autoscope Solo Pro (VIVDS) 1.3% 2.7% 11.1% 9.3% 1.8% 3.8% 
Iteris Vantage (VIVDS) 2.4% 5.5% 2.1% 6.5% 7.8% 15.1% 
SAS-1 (Acoustic) 9.1% 7.5% 16.9% 10.8% 2.8% 4.8% 
Sensys (Magnetometer) - - - - 0.9% 1.5% 
SmartSensor (Microwave Radar) 1.9% 1.3% 1.7% 1.7% 1.2% 1.7% 
Traficon (VIVDS) - - 30.7% 5.0% 5.8% 4.7% 

Speed Error Summary (difference, mph) 
FY03-04 FY05 FY06 

Detector Peak Off-Peak Peak Off-Peak Peak Off-Peak 
Autoscope Solo Pro (VIVDS) 0.5 0.8 1.7 0.6 1.6 1.6 
Iteris Vantage (VIVDS) 3.9 1.4 4.4 3.1 1.8 0.9 
SAS-1 (Acoustic) 11.2 7.9 3.4 3.1 7.7 8.2 
Sensys (Magnetometer) - - - - 0.3 0.3 
SmartSensor (Microwave Radar) 1.1 1.0 1.1 0.6 5.7 5.4 
Traficon (VIVDS) - - 2.5 1.3 0.8 1.3 

Occupancy Error Summary (% error) 
FY03-04 FY05 FY06 

Detector Peak Off-Peak Peak Off-Peak Peak Off-Peak 
Autoscope Solo Pro (VIVDS)  -  - 7% 4% -  -  
Iteris Vantage (VIVDS)  -   - 81% 90% -  -  
SAS-1 (Acoustic) -  - 57% 40% -  -  
Sensys (Magnetometer) -   - - - -  -  
SmartSensor (Microwave Radar) -   - 10% 3% -  -  
Traficon (VIVDS) - - 19% 31% -  -  

a  Peak: 7 – 8 a.m. and 5 – 6 p.m. 
  b Off-peak: 9 – 10 a.m. and 2 – 3 p.m. 
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CHAPTER 5.0  INTERFACING WITH THE TXDOT ATMS 
 
 
5.1  INTRODUCTION 
 

As TxDOT transitions from its current Local Control Unit/System Control 
Unit/Advanced Traffic Management System (LCU/SCU/ATMS) architecture, it will need a 
mechanism to smoothly move to increased use of smart sensors. For this task, TTI originally 
proposed three stages in the process of developing a Smart Sensor Interface (SSI) with the 
TxDOT ATMS. In stage 1, TTI planned to continue testing the contact-closure interface 
provided by smart sensors to communicate with the ATMS system through the existing 
TxDOT LCU/SCU/ATMS architecture. In the second stage, TTI planned to assist willing 
traffic detector manufacturers to develop an SSI that provided traffic data generated by smart 
sensors to the ATMS system using the current SCU architecture. The SSI would have, on one 
side, interfaced with smart sensors to receive the data generated by the sensor and on the 
other side it was to interface with the ATMS system by emulating the LCU/SCU 
architecture. In the third stage, TTI planned to adapt the SSI developed in stage two to 
comply with the National Transportation Communications for Intelligent Transportation 
Systems Protocol (NTCIP) standards pertaining to “smart sensors” and Advanced Traffic 
Management Systems. In a parallel activity the Southwest Research Institute (SwRI) was 
working to determine the statewide needs of TxDOT in terms of interfacing smart sensors 
with a variety of platforms at traffic management centers. It was anticipated that the SwRI 
activity would probably reduce the need for TTI to explore similar ends.  
 
5.2  METHODOLOGY 
 
 Due to the development of a new system by Wavetronix to accomplish what TTI had 
originally planned to do in the three stages noted above, TTI requested a project modification 
to discontinue the original plan and focus on testing the new Wavetronix system. Then TTI 
proceeded to request a DataCollectorTM and the DataTranslatorTM from Wavetronix. After 
receiving the system, TTI, TxDOT, and Wavetronix engineers established a system of 
multiple vehicle detectors communicating with the Wavetronix system in the TransLink® 
laboratory in the Gibb Gilchrist Building on the campus of Texas A&M University. The 
entire test used the Wavetronix servers provided by Dell, although TxDOT would have 
preferred to do some of the testing using a more generic hardware platform. Wavetronix 
would have provided a software-only solution, but generic servers were not available during 
the test.  
 
5.3  WAVETRONIX DATA APPLIANCES 
 
 The Wavetronix data appliances allow real-time data collection from TxDOT district 
sensor network components (LCUs, SmartSensors, RTMS, and others) and provide an 
interface with the current TxDOT ATMS. TxDOT districts can use the DataTranslator to 
integrate multiple subsystems such as sensor data collection, data archiving, speed maps, and 
dynamic message signs into existing traffic management environments. The DataCollector 
can provide an interface to TxDOT’s LCUs today, but it can also accommodate future needs 
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by interfacing with newer sensor technologies without compromising data integrity or the 
advanced functionality that these smarter sensors offer.  
  

The Wavetronix system also provides the necessary transition to the next generation 
TxDOT ATMS system. It operates in a TCP/IP environment and can communicate data in 
eXtensible Markup Language (XML) format, the interface medium and protocol of the next 
generation system from TxDOT. In addition, the Wavetronix solution offers the ability to 
replace the legacy LCU/SCU subsystems in the current TxDOT ATMS environment by 
emulating the SCU and providing the ATMS with its data requirements directly. In addition, 
the Wavetronix solution offers the ability to perform real-time data translation into the 
proprietary SCU protocols of the current TxDOT environment.  
 
5.3.1 Existing Infrastructure 
 

Existing TxDOT district systems largely utilize inductive loops communicating 
contact closure data to a locally installed LCU. These LCUs receive input from a system of 
individual and trap loops. The LCUs are polled constantly by an SCU via RS-232 serial 
connection using a TxDOT proprietary communication protocol. The SCUs, located in either 
a Traffic Management Center (TMC) or in a satellite building, aggregate the data from 
multiple LCUs for delivery to the central ATMS controller. The networks for these 
communication links are often RS-232-over-fiber.  Figure 53 depicts a typical architecture 
for this existing infrastructure.  
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Source: Wavetronix. 

Figure 53. Existing Infrastructure.  
 
 
 

5.3.2  Interim System Expansions 
 
 When TxDOT expands its current system or when it replaces failed loops, it may 
choose to deploy newer generation traffic sensors such as microwave radar detectors. As 
Figure 54 indicates, TxDOT might convert the output from the newer detectors to contact 
closures that are sent to an LCU. The other way it might be done involves an LCU emulator. 
In both cases, much of the functionality of the newer detectors is lost. The illustrated solution 
has the advantage of rapid deployment, but the loss of functionality reduces the viability of 
this solution.  
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Source: Wavetronix. 

Figure 54. Interim System Expansions. 
 
 
 
 
 
5.3.3 Proposed Solution 
 

The proposed solution provides a transition between the existing TxDOT 
infrastructure and the next generation of TCP/IP communication over Ethernet, which could 
be wired or wireless. Figure 55 shows an architecture that allows for a managed growth 
process that expands traffic sensor networks without compromising the functionality of the 
newer detectors. The middle and right side of the drawing indicates that communication 
could be either “home run” serial-over-fiber to the TMC or serial-to-Ethernet conversion in 
the field, then Ethernet-over-fiber to the TMC. The Wavetronix DataCollector system would 
interface with the sensor devices and collect data via the Ethernet network. The output would 
be translated to SCU protocol and data format in the DataTranslator. In this configuration, 
the ATMS will receive data from the Wavetronix system as if it came from multiple SCUs.  
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Source: Wavetronix. 

Figure 55. Proposed Solution. 
 
 
 
5.3.4  TTI Research Application 
 

With support from the TxDOT Traffic Operations Division, TTI developed an 
operational LCU/SCU/ATMS system operating in the Translink® laboratory. Researchers 
installed the latest TxDOT ATMS software on research hardware and configured two SCUs 
with DIGI cards. Following is a brief narrative of key activities related to this endeavor.  

 
During the week of September 13, 2005, researchers installed Wavetronix 

DataCollector and DataTranslator servers in the TransLink Lab and worked with this system 
for several weeks. Wavetronix sent a factory representative to set up the DataCollector to 
collect data from the two test beds (S.H. 6 and I-35) using TCP/IP. The DataCollector polls 
the two SmartSensor radar detectors every 20 seconds and stores the data temporarily in a 
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Microsoft SQL Server database. A Wavetronix factory representative created a service in the 
DataTranslator to retrieve data from the DataCollector database and package it in the same 
message format the ATMS expects from an SCU.   

 
During the week of November 7, 2005, TTI researchers blanked out the detector 

database on the ATMS in the TransLink Lab to make a fresh start. The TTI ATMS was 
connected to a TxDOT SCU using DIGI port one on the SCU, and the Wavetronix 
DataTranslator was connected to serial port one of the ATMS computer using a terminal 
server. Researchers configured the ATMS detector database for a virtual LCU connected to 
the TxDOT SCU having eight lanes of trap detectors. The ATMS was then configured for 
four lanes of trap detectors on the hardware LCU connected to the same TxDOT SCU in the 
lab. Researchers connected the hardware LCU to relays simulating inductive loop contact 
closures generated by VISSIM running on another computer.   
 

TTI then configured a roadway in ATMS to monitor level of service. Once 
researchers confirmed that simulated data displayed correctly in ATMS, they configured a 
detector database for the Wavetronix SCU. By using the serial port analyzer, TTI determined 
that the Wavetronix SCU was not responding properly to 20-second data polls. Wavetronix 
modified its SCU DLL to respond correctly to the ATMS 20-second data request. 
 

Figures 56 and 57 show the Monitor Detectors screen from the ATMS system and the 
Configuration Display from the Wavetronix DataCollector, respectively, which provide a 
snapshot of 20-second data that was collected by the Wavetronix DataCollector and sent to 
the ATMS system through the Wavetronix DataTranslator. The difference in values between 
the Wavetronix DataCollector’s “Spd” column and the ATMS’s “Avg. Speed” column is due 
to the difference in the unit of speed measurement between the DataCollector (mph) and the 
ATMS (ft/sec). 
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Figure 56. Monitor Detectors Display from the TxDOT ATMS. 

 
 
 
 
 
5.3.5  Ft. Worth Application 
 

Before TTI requested the two data appliances from Wavetronix for tests, project 
personnel traveled to the Ft. Worth District (FTW) to learn about the installation of the 
system at the TransVision Traffic Management Center. One of the unique applications that 
the district was doing was using the Task Builder (a component of the Wavetronix system) to 
develop travel time algorithms. Figure 58 shows the architecture of this system.  
 

At the time of this visit, FTW had not verified the reliability of the data, but the 
district had experienced some relatively minor problems—perhaps related to the 
communication system.  FTW was using a wireless system to communicate from detectors in 
the field to the DataCollector units in satellite locations, which could be a source of error. 
FTW was focused on generating speeds at that time and not on counts or other variables. The 
only detectors being used for this system were the Wavetronix SS105 and EIS RTMS—both 
radar detectors.  
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Figure 57. Configuration Display for the Wavetronix DataCollector. 

 
 

TransVision currently has seven DataCollectors on-line and one DataTranslator. The 
district plan included two more DataCollectors for a total of nine by the time the system was 
scheduled for completion around the end of September 2006. The number of detectors 
connected to each DataCollector varies, but there could be as many as 100, and the total 
number of detectors currently on-line with this Wavetronix system is 170. The district is in 
the process of discontinuing all use of inductive loops. The price paid by FTW for both the 
DataCollector and the DataTranslator was about $57,500 each (licensed for 50 detectors per 
DataCollector). Since April 15, 2005, the price for a 100-sensor capacity DataCollector is 
$70,000 and a DataTranslator is $70,000.  
 

The Wavetronix DataCollector and DataTranslator system has been very stable for 
TransVision overall. The only problems that have been experienced have been induced by 
other activities and are not the fault of the Wavetronix system. On one occasion, the 
contractor did not backup the data tables before making a change, resulting in data loss. 
There have been minor glitches in software, but Wavetronix immediately addressed each 
problem. There have been some problems with the wireless communication components. 
High winds have caused movement in antennas resulting in loss of communication until the 
antennas could be re-oriented.  
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Source:  Wavetronix. 

Figure 58. Ft. Worth District DataCollector and DataTranslator Architecture. 
 
 

 
 

The flexibility of the Wavetronix appliances is a tremendous asset and is advanced 
well beyond comparison with TxDOT’s older ATMS system. One example of its flexibility 
is the local council of governments’ request for data on a decision pertaining to truck lane 
restrictions. Since each DataCollector stores data in a database format, the data can be 
retrieved for a variety of purposes and almost in real time. For the truck study, the 
SmartSensor has three vehicle length bins. The default settings are zero to 18 ft, 18 to 35 ft, 
and over 35 ft. FTW modified these settings because there was a desire for higher threshold 
for larger trucks. Another example of its flexibility was the need by FTW to link legacy 
station IDs in their proprietary Sybase database to data in the Wavetronix DataCollector 
Microsoft SQL database tables, requiring another column in the database beyond what was 
originally intended. Wavetronix was able to make the change in a timely manner.  
 

There are other attributes that FTW needs or that may become available. For 
example, FTW wants this system to report its health and status in real time. There has been 
talk of a third unit from Wavetronix called DataMonitor that would accomplish this task, 
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although FTW is currently using the Wavetronix DataTranslator to build a task that provides 
alerts about detector health and status.  
 

The DataTranslator serves a data transfer function by pulling data from the 
DataCollector which receives data from field detectors. Then, secondary tasks are built in the 
DataTranslator to provide services such as determining travel times. The DataCollector 
resolution is 30 seconds with a 60-second bucket, so FTW polls the data from the 
DataCollector twice each minute. This interval has resulted in no loss of data, so the district 
considers this to be an effective approach. The standard data aggregation level for data 
collection is by station (multiple lanes) and in one-minute bins. FTW does not currently 
archive data. The minimum block desired for future use is 15 minutes.  
 
5.4  FUTURE OF THE WAVETRONIX SYSTEM 
 

Based on installation in the TransLink lab, it seemed as if any major changes in the 
number and types of detectors might require a company representative to re-configure the 
Wavetronix system. The problem arises from the fact that the detector stations are configured 
on the ATMS side independent of the configuration of the sensors in the DataCollector. 
However, when the DataTranslator emulates the SCU to provide the ATMS system with 
detector station data, it has to provide the data in the order that the ATMS system is 
expecting. To bridge this gap between the two configurations, FTW has devised a solution 
that can be employed to resolve this problem in a system where the DataCollector and 
DataTranslator are used to provide the ATMS system with its detector data needs. The 
solution requires adding a field to the DataCollector Microsoft SQL database tables that 
includes the ATMS detector station IDs. At the same time, the SCU emulation task running 
on the Wavetronix DataTranslator must listen to the configuration messages sent by the 
ATMS server to the SCU that specify the order in which it is expecting the data to be 
reported.   
 
 The future of the Wavetronix system appears to be bright based on this research. TTI 
demonstrated that the system successfully communicates with multiple brands of detectors 
and provides the data in the proper format and sequence needed by the ATMS. It is viable as 
a state-of-the-art, flexible, scalable, off-the-shelf, and immediate solution to TxDOT’s need 
where a combination of its legacy components and contemporary detectors are being 
implemented side-by-side. Perceived negative factors include the cost of this system, which 
may appear to be high, and the fact that there is practically no competition at the present 
time. These factors may be short-term deterrents for some TxDOT decision-makers but they 
should not be for long. The Wavetronix system is an enterprise-quality hardware/software 
solution, currently marketed using Dell enterprise server hardware. Some TxDOT district 
needs would be better suited by Wavetronix providing a software-only solution that would 
run on a generic enterprise hardware platform. Wavetronix representatives have stated that 
they can provide a software-only option, but they request that Wavetronix be allowed to 
review the selected server for compliance with Wavetronix performance specifications. 
Based on this review, Wavetronix might ask TxDOT to ship the selected server to 
Wavetronix for testing and configuration before installation in a TxDOT facility.  
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CHAPTER 6.0  IMPLEMENTATION OF FINDINGS 
 

 
6.1  INTRODUCTION 
 
 Vehicle detection for freeways continues to evolve with existing detectors being 
modified on a regular basis and an occasional new detector being introduced. During this  
3 ½ year project, each manufacturer of selected detectors made changes to hardware and/or 
software. There was one new detector, the Sensys Networks magnetometer, introduced 
during the course of this research. Other detectors that became available were deemed not as 
suitable for TxDOT’s needs and were not included in field-testing.  
 

Appendix A contains a generic detector specification for the procurement of detectors 
for the following technologies: VIVDS, acoustic, microwave radar, and magnetic.  
Appendix B has the Detector Selection Guide for assisting TxDOT and others in selecting the 
most appropriate detector. Appendix C has additional data plots shown as Figures 62 through 
68 based on data collection from S.H. 6 not included in the main body of the report.  
 
6.2  SUMMARY OF FINDINGS 
 
 The organization of the findings begins with the literature, followed by field tests, and 
then interfacing with the TxDOT ATMS. This summary encapsulates the main points from 
Chapters 2, 4, and 5, respectively. For more details on these sources, the reader should go to 
the respective chapters.  
 
6.2.1 Literature Findings 
 
6.2.1.1  Acoustic Detectors 
 

MnDOT research on the SAS-1 indicated that, for the 24-hour data, the absolute 
percent differences for lanes 2 and 3 were under 8 percent at all mounting heights, and 
between 12 percent and 16 percent for lane 1 with heights less than 30 ft. At the first base 
(15 ft from the nearest lane [lane 1]), the detector provided better results for lanes 2 and 3 
than for lane 1. Overall test results show that the detector performs best when mounted with 
equal height and horizontal offset between the detector and the centerline of multiple lanes 
(45-degree angle) (15).  
 

For TTI tests at I-35, the SAS-1 height above the freeway was 35 ft and its offset 
from the nearest lane (lane 5) was 6 ft. Its count accuracy for lane 1 (farthest) dropped during 
congested flow compared to free flow, but on lane 3 the accuracy was similar for the two 
conditions. The SAS-1 generally undercounted almost all intervals. In lane 1 during the a.m. 
peak and while speeds were over 40 mph its count range was 0 to -10 percent. During slower 
speeds, its range was -12 to -32 percent.  
 

The SAS-1 consistently overestimated speeds in lane 1 during the morning peak by  
5 to 10 mph. During the afternoon peak, it overestimated speed by as much as 20 to 25 mph 
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during very slow speeds then improved to within 5 mph as speeds reached free-flow 
conditions. On lane 2 during both the morning and afternoon peaks, the SAS-1 was almost 
always over the baseline system by 0 to 5 mph with a maximum of 10 mph. On lane 3 this 
detector was consistently within 2 to 5 mph of the baseline system. On lane 4, its morning 
peak speed estimates were consistently within 5 mph and its afternoon peak speed estimates 
were less consistent but still within ±5 mph (3).  
 
6.2.1.2  Inductive Loop Detectors 
 

The inductive loops used by MnDOT were only approximately four years old when 
testing occurred on I-394. Initial loop accuracy tests showed that the loops in lanes 1 and 2 
on the freeway undercounted by 0.1 percent, while the HOV lane loops undercounted by 0.9 
percent. Speed tests indicated that lane 1 loops underestimated true speed by 6.1 percent, and 
the lane 2 loops underestimated speed by 1.9 percent.  
 
 TTI found that the Peek ADR-6000, which uses four inductive loops per lane, was 
extremely accurate for count, speed, and occupancy measurement at both of its freeway test 
beds. The classification results for a dataset of 1923 vehicles indicated only 21 errors, 
resulting in a classification accuracy of 99 percent (ignoring Class 2 and 3 discrepancies). 
This data sample occurred during the morning peak and included some stop-and-go traffic, 
which makes the result even more impressive. For count accuracy, the Peek in this same 
dataset only missed one vehicle (it accurately accounts for vehicles changing lanes). It only 
exhibited speed discrepancies at slow speeds (below about 15 mph) when compared with 
Doppler radar results. The future of the ADR-6000 in Texas and elsewhere in similar 
applications is expected to be a function of its cost, willingness of agencies to continue 
installing inductive loops, and multiple agencies being willing to develop agreements to 
share maintenance responsibilities (e.g., shared data). 
 
6.2.1.3  Magnetic Detectors 
 

MnDOT tests showed that the absolute percent volume difference between the 3M 
microloop sensor and the baseline was under 2.5 percent, which is within the accuracy 
capability of the baseline loop system. For speeds, the test system generated 24-hour test data 
with absolute percent difference of average speed between the baseline and the test system 
from 1.4 to 4.8 percent for all three lanes (15).  TTI tests at its S.H. 6 test bed showed that 
microloop counts were within 5 percent of baseline counts 99.4 percent of the time in the 
right lane (dual probes). In the left lane (single probes), 94.5 percent of the 15-minute 
intervals were within 5 percent, 4.5 percent were between 5 and 10 percent, and for  
1.0 percent there was a more than 10-percent difference from the baseline (2).   
 
6.2.1.4  Microwave Radar Detectors 
 

California tests indicated that with proper installation and calibration either the 
RTMS or the Wavetronix SS105 detector can deliver better than 95 percent overall vehicle 
count accuracy at 5-minute and 30-second intervals and 95 percent speed accuracy at  
5-minute intervals. The Wavetronix unit only required 15 to 20 minutes total to set up, 
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whereas a factory representative took about one hour per lane for the RTMS. Also, the 
technology can be very accurate in the center of a roadway but the presence of trucks and 
heavy traffic can cause the detectors to miss vehicles as well as to create false readings in 
side lanes (18). 
 

Coifman found that the RTMS count and on-time are typically noisier than loops, 
although pluses and minuses tend to cancel each other. In the flow measurements, the RTMS 
was within 10 percent of values generated by the loops with the loops being within 3 percent 
of each other. Occupancies were not as accurate, ranging from 13 percent to 40 percent, 
again compared to inductive loops (24).  
 

ORITE test results indicate that the Wavetronix SS105 misses some vehicles due to 
occlusion and it sometimes registers phantom vehicles from extraneous radar echoes (e.g., 
from a truck in an adjacent lane). On one of the test days, the number of phantoms was  
7.03 percent, but on other days, the number of phantoms and misses was always less than  
5 percent, and often under 1 percent. Speeds measured by the Wavetronix system (based on 
the moving average technique) usually correlated well with true speeds. The standard 
deviations in data measured by the trailer were always higher than those from the hand-held 
radar unit, generally by a factor of 2 to 3. The smallest difference was 0.1 mph (2.0 mph 
Wavetronix vs. 1.9 mph for radar), and the largest difference was 3.8 mph (4.2 mph 
Wavetronix vs. 1.1 mph radar) (26). 
 
6.2.1.5  VIVDS 
 

MnDOT tests of the Autoscope Solo 30 ft over the center of the lanes indicated 
excellent performance. The absolute percent volume difference between the sensor data and 
loop data were under 5 percent for all three lanes. The detector also performed well for speed 
detection with an absolute average percent difference of 7 percent in lane one, 3.1 percent in 
lane two, and 2.5 percent in lane three. For other mounting locations beside the roadway, the 
detector performed best when mounted high and closest to the roadway (15). TTI tests 
showed that the Autoscope Solo Pro count accuracy was within 5 to 10 percent of the 
baseline counts during free-flow conditions, but it generally diminished in all lanes when  
5-minute interval speeds dropped below 40 mph and especially during stop-and-go 
conditions. Speed and occupancy of the Solo Pro were the best of any non-intrusive devices 
tested by TTI in Project 0-2119.  Speeds were almost always within 0 to 3 mph of the 
baseline system. Its 15-minute cumulative occupancy values differed from loops by as much 
as 3.9 percent, but during most intervals its difference was less than 1 percent (3).  

 
Of the three non-intrusive systems tested, the Iteris Vantage was the second most 

accurate device for measuring occupancy. Its 15-minute cumulative occupancy values 
differed from loops by as much as 8.1 percent, but during most intervals its difference was 
less than 6 percent.  

 
MnDOT Phase II tests mounted the Traficon video image detector directly over the 

lanes at heights of 21 ft and 30 ft facing downstream.  The preferred orientation was facing 
oncoming vehicles, but site features precluded this orientation.  At the 21-ft height, the 
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absolute percent difference between the sensor data and loop volume data was under  
5 percent for all three lanes. At the 30-ft height, its off-peak performance was similar but it 
undercounted during congested flow showing an absolute percent difference of some  
15-minute intervals from 10 percent to as high as 50 percent. Reasons suspected for the 
reduced accuracy were snow flurries and sub-optimal calibration. Its speed accuracy at  
21 ft indicated good performance.  Its absolute average percent difference was 3 percent in 
lane one, 5.8 percent in lane two, and 7.2 percent in lane three. During the snowfall, its speed 
accuracy declined to a range of 8.9 percent to 13 percent (15).   
 

MnDOT research found that mounting video detection devices is a more complex 
procedure than that required for other types of devices. Camera placement is crucial to the 
success and optimal performance of this detection device. 
 
6.2.2 Field Test Findings 
 

The following field test results are based on the representative graphics shown in 
Chapter 4. These graphics only show speeds for FY 2003-2004 since speed compliance by 
these detectors was better than count compliance. Since lane 2 had baseline data for all years, 
this comparison uses lane 2 exclusively for all years represented in order to investigate trends 
that might show up from one year to the next. Most of the detectors demonstrated better 
results for closer lanes (lanes 3, 4, and 5).  
 
6.2.2.1  Acoustic Detectors 
 
 The only acoustic detector included in this research was the SmarTek SAS-1 and it 
was included during the full research period. During FY 2003-2004, its speed accuracy 
always showed a bias of about 10 mph faster than the baseline speed, but it tracked the 
baseline almost perfectly. Count errors are worse during slow speeds. About one-fourth of its 
counts were within ±5 percent and over half were in the -5 percent to -10 percent range. 
About 15 percent were in the -10 to -15 percent range.    
 

During FY 2005, the count errors for the SAS-1 were worse during congested periods 
compared to its accuracy during free-flow conditions. It almost always undercounted whether 
in free-flow or not. Many of the free-flow periods were within 5 to 10 percent of the baseline, 
but congested periods reached as high as 20 percent or greater.  

 
During FY 2006, there were no periods of highly congested flow on I-35. The SAS-1 

was usually within 5 percent of baseline counts but never more than 10 percent worse than 
the baseline.  
 
6.2.2.2  Inductive Loop Detectors 
 
 The Peek ADR-6000 was the only “test” of inductive loops, given that it uses loops 
for both speed detections and axle detections. For all tests conducted on speeds, its speeds 
were almost always exactly the same as lidar speeds and rarely 1 to 2 mph different from 
lidar speeds. There was no change detected throughout the course of the research project. 
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Both counts and classifications (ignoring class 2 and 3 differences) were always within  
99 percent of truth.  
 
6.2.2.3  Magnetic Detectors 
 

This research only included the Sensys Networks magnetometer during FY 2006 due 
to its recent availability. The test plan included the 3M microloops but there was not a 
suitable high-volume site for its tests. This detector was always within 5 percent of the 
baseline loops.  
 
6.2.2.4 Microwave Radar Detectors 
 

During FY 2003-2004, the Wavetronix SS105 was near-perfect on speeds. It showed 
no bias and tracked the baseline speeds best of all detectors included during this time period. 
Its count accuracy during this period for lane 2 was within ±5 percent of baseline counts with 
only one exception in 70 time intervals. During the FY 2005 period, the SS105 almost 
always counted within 5 percent of the baseline counts. There were two periods during very 
congested conditions when it overcounted by 15 percent. In FY 2006, the SmartSensor 
consistently demonstrated better than 5 percent count accuracy for all intervals.  
 
6.2.2.5  VIVDS 
 

Autoscope Solo Pro speeds during FY 2003-2004 were always within 5 mph of the 
baseline speeds and usually within 1 to 2 mph. Counts were within 5 percent until 8:45 p.m. 
through 10:45 p.m., perhaps due to changing light conditions. During FY 2005, the Solo Pro 
counts were generally worse but perhaps due to more congestion during that day compared to 
the day selected to represent the previous year. During free flow, its counts were typically 
within 10 percent of the baseline system, but during congested conditions its counts were as 
high as 15 percent and occasionally 20 percent different from the baseline. During FY 2006, 
the Solo Pro was consistently within 5 percent of the baseline counts with only three intervals 
slightly worse. This improvement compared to other years was perhaps because of the lack 
of highly congested conditions.  
 

During free flow in FY 2003-2004, the Iteris speeds tracked the baseline speeds well 
except during periods of mild to heavy congestion. These errors were between 5 and 10 mph 
different from the ADR-6000. The Iteris count accuracy was almost always within 10 percent 
of the baseline with a few midday intervals as high as 10 to 15 percent. In FY 2005, the Iteris 
usually counted within 10 percent of the baseline system but errors were as high as 
15 percent higher and lower than the baseline.  

 
The Traficon was not available in FY 2003-2004. In FY 2005, the Traficon counts 

were usually within 10 percent of the baseline counts but some count periods during 
congested flow differed from the baseline by more than 20 percent. In FY 2006, its counts 
were more high than low, but in the range of 5 to 20 percent on overcounts and usually 
within 5 percent on undercounts.  
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6.2.3 Interfacing with the TxDOT ATMS 
 

As TxDOT transitions from its current LCU/SCU/ATMS architecture, it will need a 
mechanism to smoothly move to increased use of smart sensors. The solution investigated by 
this research involved two data appliances from Wavetronix called the DataCollector and the 
DataTranslator. After receiving this system, TTI, TxDOT, and Wavetronix engineers 
established a system of multiple vehicle detectors communicating with the Wavetronix 
system in the TransLink® Lab in the Gibb Gilchrist Building on the campus of Texas A&M 
University. The entire test used the Wavetronix servers provided by Dell, although TxDOT 
would have preferred to do some of the testing using a more generic hardware platform. 
Wavetronix would have provided a software-only solution, but generic servers were not 
available during the test. 

 
The tests by TTI indicated that the Wavetronix system does what it is designed to do, 

although the early version provided to TTI still needed additional development resources.  
TTI demonstrated that the system successfully communicates with multiple brands of 
detectors and provides the data in the proper format and sequence needed by the ATMS. One 
remaining activity would be for Wavetronix to provide a software-only option, which should 
be evaluated by an independent party on servers provided by TxDOT.   
 
6.3  RECOMMENDATIONS 
 

Findings of this research indicate that the new detectors do not always operate as well 
as inductive loops. The ADR-6000 used inductive loops but its signal processing and, 
therefore, its accuracy are superior to a typical loop installation. The comparison being made 
here is with the more typical inductive loops. Presence detection (count) accuracies of 
standard inductive loops are typically in the 95 to 99 percent range if they have been installed 
properly and are well maintained. Loop speed accuracies are typically within 2 to 5 mph of 
true speeds, but again, proper installation and maintenance are critical. Sidefired microwave 
radar detectors in this research exhibited consistent speed accuracy, although limited tests of 
an overhead-mounted SmartSensor SS105 in its Doppler mode was even better (it can only 
cover one lane in Doppler mode). Therefore, the SmartSensor SS105 should be considered as 
an accurate speed detector for replacing loops with its orientation depending on site-specific 
accuracy needs. For a three-color urban speed map display, most of the detectors tested in 
this research have the needed speed accuracy.  
 
 The research findings indicate differences in accuracy of non-intrusive devices 
according to levels of congestion. When congestion reaches a point where the prevailing 
speed begins to drop, accuracy of most non-intrusive detectors will probably decline 
significantly. Even for freeways that do not currently reach those congestion levels on a 
recurring basis, TxDOT decision-makers must consider that incidents can happen anywhere 
and at any time. Minimizing the variety in types and brands of detectors is important from an 
inventory and training standpoint.  
 

Findings of this research indicate that, from a performance standpoint, microwave 
radar, magnetometers, and video image vehicle detection systems are probably all suitable 
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for freeway applications. VIVDS is more complex, requires periodic lens cleaning, and is 
usually more expensive, but a positive attribute is that it offers a view of the traffic stream. 
However, some limited weather and lighting conditions may affect the latest VIVDS 
although the manufacturers have reduced those impacts in recent models. The magnetometer 
that was included in this research is by Sensys Networks and warrants continued evaluation 
over a longer period of time. Its accuracy levels are noteworthy and, of course, it is not 
affected by weather, but its battery life needs to be verified in high-volume traffic. One 
negative attribute is that it is an intrusive device, requiring interference with traffic for 
installation. It is a promising replacement for loops since installation is faster. Finally, the 
SmartSensor SS105 (and its newer version, the HD) is a rugged device that:   
 

• does not interfere with traffic,  
 

• can be mounted on an existing pole,  
 

• automatically calibrates speed and configures lane positions for each lane monitored, 
 

• can cover up to eight lanes (10 lanes for the HD) in sidefire orientation, and  
 

• is apparently not affected by any weather or lighting conditions.  
 
The Wavetronix DataCollector/DataTranslator system appears to be very appropriate for 
interfacing with the TxDOT ATMS. It is viable as a state-of-the-art, flexible, scalable, off-
the-shelf, and immediate solution to TxDOT’s need where a combination of its legacy 
components and contemporary detectors are being implemented side-by-side. Negative 
factors include the perception that the system is expensive, but decision-makers should be 
careful not to dismiss this solution before carefully costing out the alternatives. There is little 
competition at the present time, but products from all other competitors only collect data 
from their brand of sensors and cannot export data to other databases. These factors may be 
short-term deterrents for some TxDOT decision-makers but they should not be for long.  
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SPECIAL SPECIFICATION 

XXXX 

Vehicle Sensing Device for Freeways (Generic Technology) 
 

1. Description.  Furnish and install vehicle detection system as shown in the plans, as 
detailed in the special specifications, and as directed. A “detection system” or “detector” 
in this special specification will conform to the following technologies: video image 
vehicle detection system (VIVDS), microwave radar, passive acoustic, or magnetic. The 
Detector Selection Guide (See Appendix B), which is a product of this research, 
provides information for decision-makers on selecting the appropriate detector. Ensure 
that each detector will be able to distinguish and monitor individual lanes as opposed to 
monitoring an area with no distinction to travel lanes.  Provide all equipment required to 
interface with an existing/proposed infrastructure as subsidiary.  

Ensure after the setup there are no external tuning controls of any kind, which will 
require an operator. 

Furnish all new equipment and component parts of the latest proven design and 
manufacture, and in an operable condition at the time of delivery and installation.  
Provide all parts that are of high quality workmanship. 

Provide design to prevent reversed assembly or improper installation of connectors, 
fasteners, etc.  Design each item of equipment to protect personnel from exposure to 
high voltage during equipment operation, adjustments, and maintenance. 

Include licenses for all equipment, where required, for any software or hardware in the 
detection system. 

Provide all detectors within a specified technology from the same manufacturer. 

Provide detector firmware that is upgradeable by external local or remote download. 

2. Materials.  Ensure the detector is easy to install and will automatically or with a human 
operator configure a minimum of five lanes (acoustic and VIVDS) or eight lanes 
(microwave radar), or the maximum number of lanes shown on the plans (whichever is 
less) by determining lane boundaries, concrete barriers, and detection thresholds.  Ensure 
the detector system detects vehicle volume, speed and occupancy in all weather 
conditions without performance degradation (performance defined later). Ensure that 
microwave radar operates in both sidefire and forward fire orientations. Ensure the 
detector is remotely accessible, provides multiple connectivity options for easy 
integration into the existing system, and supports the communications protocols 
identified in Section 2.D “Communication.”  Ensure the detector is manufactured to the 
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strictest industry standards to ensure product quality and minimizes the risk of unit 
failure.   
 
Provide a detector that requires less than 10 of the largest vehicles expected on the 
roadway to pass the detector and that is able to tune out stationary objects such as traffic 
barriers and retaining walls prior to completing the configuration.  
 
Provide documentation on the auto-configuration process (if applicable). 

Provide a detector that does not cause interference or alter the performance of any 
known equipment. 

A. Sensor Performance.  Ensure the detector provides accurate, real-time volume, 
average speed, and occupancy data. Ensure the detector provides user-configurable 
settings for a collection interval from 20 seconds to 15 minutes and polling intervals 
from 20 seconds to 1 hour. Ensure the detections are correctly categorized into a 
minimum of three user definable length-based classifications.  Ensure that sidefired 
microwave radar detectors monitor vehicle detections at a range of 9 ft to 200 ft 
from the detector. Ensure that magnetic detectors mounted in horizontal conduit 
under the pavement can accurately monitor vehicle passage from 36 inches below 
the surface. Ensure that magnetic detectors mounted flush with the surface (core-
drilled) are wireless and are self-powered with battery life of 10 years in any traffic 
conditions. Ensure the detector unit (any technology) or accompanying field 
equipment provides a minimum of three hours of local storage for detection interval 
settings of 20 seconds to 15 minutes in local storage to reduce data loss during 
communication outages. Ensure the detector or accompanying field equipment 
transfers locally stored data to the Traffic Management Center’s Transportation 
Sensor System (TSS) when communication is restored. 

 
Ensure microwave radar detectors provide two modes of operation: sidefire and 
forward fire.  When operating in sidefire mode, a single detector must 
simultaneously detect traffic in a maximum of eight lanes or the maximum number 
of lanes shown on the plans (whichever is less). In forward-fire mode, the detector 
must provide data for a minimum of one lane. 

 
Ensure the detector (any technology) maintains accurate performance in all weather 
conditions, including rain, freezing rain, snow, wind, dust, fog, and changes in 
temperature and light.  Ensure detector operation continues in rain or snow up to  
4 inches per hour, and the device will not experience degraded performance when 
encased in 1/2 inch of ice.   
 
Ensure microwave radar sidefire and forward-fire (acoustic sidefire) volume data 
are accurate within 5 percent of actual for any direction of travel in nominal 
conditions.  Ensure individual lane accuracy (any technology) is within 10 percent 
of actual during nominal conditions.  Nominal conditions exist when traffic is 
flowing at average 5-minute speeds greater than 15 miles per hour, with less than  
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10 percent truck traffic per lane, and at least 30 percent of each vehicle visible 
above roadway barriers for true sensor detection. 

 
Ensure VIVDS, magnetic, microwave radar (sidefire), and acoustic (sidefire) 
average speed data are accurate within 5 mph for any direction of traffic for all 
conditions involving more than 16 vehicles in an averaging interval.  Ensure speed 
accuracy for individual lanes is within 10 mph of actual for all traffic conditions and 
similar intervals.  Provide true speed detection without the requirement to enter 
average vehicle lengths for the speed calculation. 
 
For microwave radar, ensure forward-fire speed data are accurate for individual 
vehicle measurements.  Ensure 50 percent of all measurements are within 1 mph of 
actual, and 85 percent are within 5 mph. 
 
Ensure occupancy data are accurate within 10 percent of actual for any direction of 
travel when actual occupancy is less than 30 percent.  For example, if the true 
occupancy in a lane is 20 percent, the measured occupancy must be between  
18 percent and 22 percent.  Ensure lane occupancy is accurate within 20 percent in 
similar conditions.   

 
Ensure classification data based on vehicle length are accurately determined for  
90 percent of detected vehicles. Ensure detector measures at least three length 
intervals, one for small vehicles, one for mid-size vehicles, and one for large trucks 
and buses.  
 
Provide test data, using methods required in Section 3.F.3, demonstrating or proving 
performance. 

B. Maintaining Performance.  Provide detector that requires minimum cleaning or 
adjustment to maintain performance. For microwave radar, acoustic, and magnetic 
ensure that the detector requires no maintenance. For VIVDS, ensure that the only 
maintenance is lens cleaning at a rate of no more than twice per year. Ensure it does 
not rely on battery backup to store configuration information.  Ensure the detector, 
once calibrated, does not need recalibration to maintain performance unless the 
roadway configuration changes.  Provide remote connectivity to the detector to 
allow operators to change the unit’s configuration, update the unit’s firmware 
programming, and recalibrate the unit automatically from a centralized facility. 

C. Cabling.  Supply the detector with a connector cable of the appropriate length for 
each installation site. 

 
Ensure the connector meets the MIL-C-26482 specification.  Provide an 
environmentally sealed backshell that offers excellent immersion capability, and is 
designed to interface with the appropriate MIL-C-26482 connector.  Encase all 
conductors that interface with the connector in a single jacket and ensure the outer 
diameter of this jacket is within the backshell’s cable outside diameter range to 
ensure proper sealing. Ensure the backshell has a clampbar style strain relief with 
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enough strength to support the cable slack under extreme weather conditions. 
Provide the MIL-C-26482 connector that provides contacts for all data and power 
connection. 

 
If communication is conducted over the RS-485 or RS-232 bus, the communication 
cable must be Belden 9331 or an equivalent cable with the following specifications: 

 
• shielded, twisted pairs with a drain wire; 
• nominal Capacitance Conductor to Conductor @ 1Khz <= 26pF/Ft; 
• nominal Conductor DC Resistance @ 68°F <= 15 ohms/1000Ft; 
• single continuous run with no splices allowed; and 
• terminated only on the two farthest ends of the cable. 

D. Communication.  Ensure that the detector provides communication options that 
include RS-232, RS-485, or TCP/IP. Provide a detector that has the ability to 
support a variety of baud rates from 9600 to 115200. 

 
Ensure the detector provides RS-232, RS-485, and an internal serial communication 
port.   Each communication port must support all of the following baud rates:  9600, 
19200, 38400, 57600, and 115200.  Additionally, the RS-232 port must be full-
duplex and must support true Request to Send/Clear to Send (RTS/CTS) hardware 
handshaking for interfacing to various communication devices. 

Data Packets.  The detector must produce data packets containing, at a 
minimum:  

 
• one or more detection zones; 
• collection interval durations; 
• sensor ID; 
• 32-bit time stamps indicating end of collection interval; 
• total volume by detection zone; 
• average speed in each detection zone during the collection interval. Speed 

value units must be selectable as either miles per hour or kilometers per 
hour; 

• occupancy in each detection zone during the collection interval, reported in 
0.1 percent increments; and 

• a minimum of three vehicle classifications reported as number of vehicles 
of each classification identified in each detection zone during the collection 
interval. 

E. Operating System Software.  Provide the detector to also include graphical user 
interface software that displays all configured lanes and provides visual 
representation of all detected vehicles.  The graphical interface must operate on 
current department core operating system software.  The software must 
automatically select the correct baud rate and serial communication port from up to 
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15 serial communication ports.  The software must also operate over a TCP/IP 
connection and support a dial-up modem connection. 

 
The software must give the operator complete control over the configuration 
process. 

  
The operator must have the ability to save the configuration information to a file or 
reload the detector configuration from a file using the graphical user interface 
software. 

 
Using the installation software the operator must be able to:  
 

• easily change the baud rate on the sensor by selecting baud rates from a 
drop-down list, 

• add response delays for the communication ports,   
• switch between data pushing and data polling, and 
• change the detector’s settings for Flow Control from none to RTS/CTS and 

vice versa. 
 

The operator must be able to upload new firmware into non-volatile memory of the 
detector over any supported communication channel including TCP/IP networks.  

F. Software.  Provide all configuration and remote communication software required 
to support the detector system.  Install the configuration and remote communication 
software in the appropriate equipment at the time of acceptance testing. Complete 
and pass acceptance testing using a stable release of the configuration and software 
provided. 

Provide software update(s) free of charge during the warranty period. 

G. Manufacturing Requirements.   Ensure the assembly of the units adheres to 
industrial electronic assembly practices for handling and placement of components. 

 
The detector must undergo a rigorous sequence of operational testing to ensure 
product functionality and reliability.  Include the following tests: 
 
• functionality testing of all internal subassemblies, 
• unit level burn-in testing of 24 hours duration or greater, and 
• final unit functionality testing prior to shipment. 
 
Provide test results and all associated data for the above testing, for each purchased 
detector by serial number.  Additionally, maintain and make available manufacturing 
quality data for each purchased detector by serial number. 

 
Externally, the detector must be modular in design to facilitate easy replacement in 
the field.  Ensure the total weight of the detector does not exceed 15 lb. 
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Provide all external parts made of corrosion resistant material, and protect all 
materials from fungus growth and moisture deterioration. 

H. FCC.  Ensure the microwave radar detector has Federal Communications 
Commission (FCC) certification.  Display the FCC-ID number on an external label. 
Ensure each detector is FCC certified under CFR 47, Part 15, Section 15.245 as a 
field disturbance sensor.  Display this certification on an external label on each 
device according to the rules set out by the FCC. 

Provide the microwave radar detector system that is FCC certified under Part 15, 
Subpart C, Section 15.250 for low-power, unlicensed, continuous radio transmitter 
operation.  Assure that the detector system (any technology) will not cause harmful 
interference to radio communication in the area of installation.  If the operation of 
the detector system causes harmful interference, correct the interference at the 
Contractor’s expense.   

 
Provide the microwave radar detector that transmits in the 10.50 to 10.55 GHz or 
24.00 to 24.25 GHz frequency band and meets the power transmission requirements 
specified under Sections 15.245 and 15.249 of CFR 47.  

 
Provide documentation proving compliance to all FCC specifications. 

I. Support.  Ensure installers and operators of the detector (any technology) are fully 
trained in the installation, auto-configuration, and use of the device. 

 
The manufacturer must thoroughly train installers and operators to correctly perform 
the tasks required to ensure accurate detector performance.  The amount of training 
necessary for each project will be determined by the manufacturer (not less than  
4 hours) and must be included, along with training costs, in the manufacturer’s 
quote.  In addition, provide technical support to provide ongoing operator 
assistance. 

J. Power Requirements.  Provide the detector that operates either at 12 VDC to 
28 VDC or at 12 VAC to 24 VAC from a separate power supply to be provided as 
part of the bid item and ensure it does not draw more than 10 watts (VIVDS can be 
up to 25 watts) of power each.  

Provide the separate power supply or transformer that operates from 115 VAC  
±10 percent, 60 Hz ±3 Hz. 

Provide equipment operations that are not affected by the transient voltages, surges, 
and sags normally experienced on commercial power lines. Check the local power 
service to determine if any special design is needed for the equipment. The extra 
cost, if required, must be included in the bid of this item. 

Provide equipment that is designed such that failures of the equipment will not 
cause the failure of any other unit of equipment. Ensure automatic recovery from 
power failure will be within 15 seconds after resumption of power. 
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K. Wiring.  Provide wiring that meets the requirements of the National Electric Code. 
Provide wires that are cut to proper length before assembly. Provide cable slacks to 
facilitate removal and replacement of assemblies, panels, and modules.  Do not 
double-back wire to take up slack. Lace wires neatly into cable with nylon lacing or 
plastic straps. Secure cables with clamps. Provide service loops at connections. 

L. Transient Suppression.  Provide DC relays, solenoids, and holding coils that have 
diodes or other protective devices across the coils for transient suppression. 

M. Power Service Protection.  Provide equipment that contains readily accessible, 
manually re-settable or replaceable circuit protection devices (such as circuit 
breakers or fuses) for equipment and power source protection. 

Provide and size circuit breakers or fuses such that no wire, component, connector, 
PC board, or assembly must be subjected to sustained current in excess of their 
respective design limits upon the failure of any single circuit element or wiring. 

N. Fail Safe Provision.  Provide equipment that is designed such that failures of the 
equipment must not cause the failure of any other unit of equipment. Ensure 
automatic recovery from power failure will be within 15 sec. after resumption of 
power. 

O. Mechanical Requirements. For microwave radar and acoustic, enclose the detector 
in a Lexan polycarbonate, ultraviolet resistant material. Ensure that magnetometers 
in horizontal conduit are waterproof and that surface bored magnetometers are 
completely encased in waterproof epoxy. The unit (any technology) must be 
classified as watertight according to the NEMA 250 Standard. 
 
Ensure the enclosure is classified “f1” outdoor weatherability in accordance with 
UL 746C. 
 
The detector should withstand a drop of up to 5 ft without compromising its 
functional and structural integrity. 

Do not use silicone gels or any other material for enclosure sealing that will 
deteriorate under prolonged exposure to ultraviolet rays.  Ensure the overall 
dimensions of the box (microwave radar and acoustic), including fittings, do not 
exceed 13 in. by 11 in. by 9 in.  Ensure VIVDS camera dimensions do not exceed 
16 in. by 12 in. by 6 in.  Ensure the overall weight of the box (microwave radar and 
acoustic) or the VIVDS camera, including fittings, does not exceed 15 lb.  

Coat printed circuit boards with a clear-coat moisture and fungus resistant material 
(conformal coating). 

Ensure external connection for telecommunications and power be made by means of 
a single military style multi-pin connector, keyed to preclude improper connection. 

• Modular Design.  For any technology, provide equipment that is modular in 
design to allow major portions to be readily replaced in the field.  Ensure 
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modules of unlike functions are mechanically keyed to prevent insertion into the 
wrong socket or connector. 

Identify modules and assemblies clearly with name, model number, serial 
number, and any other pertinent information required to facilitate equipment 
maintenance. 

• Connectors and Harnesses.  For any technology, provide external connections 
made by means of connectors. Provide connectors that are keyed to preclude 
improper hookups. Color code and appropriately mark wires to and from the 
connectors. 

Provide connecting harnesses of appropriate length and terminated with 
matching connectors for interconnection with the communications system 
equipment. 

Provide pins and mating connectors that are plated to improve conductivity and 
resist corrosion. Cover connectors utilizing solder type connections by a piece 
of heat shrink tubing securely shrunk to ensure that it protects the connection. 

• Environmental Requirements.  For any technology, the detector must be 
capable of continuous operation over a temperature range of -35°F to +165°F 
and a humidity range of 5 percent to 95 percent (non-condensing). 

3. Construction.   

A. General.  For any technology, provide equipment that utilizes the latest available 
techniques for design and construction with a minimum number of parts, 
subassemblies, circuits, cards, and modules to maximize standardization and 
commonality. 

Design the equipment for ease of maintenance. Provide component parts that are 
readily accessible for inspection and maintenance. Provide test points that are for 
checking essential voltages and waveforms. 

B. Mounting and Installation.  For any technology, install the detector according to 
manufacturer’s recommendations to achieve the specified accuracy and reliability. 
 
Verify, with manufacturer assistance, the final detector placement if the detector is 
to be mounted near large planar surfaces (sound barrier, building, parked vehicles, 
etc.) that run parallel to the monitored roadway. 
 
Include, at a minimum, detector unit, enclosures, connectors, cables, junction box, 
mounting equipment and hardware, controller interface boards and assemblies, local 
and remote software, firmware, power supply units, and all other support, 
calibration, and test equipment for the detector system.  

Furnish the detector (microwave radar, acoustic, or VIVDS camera) with bracket or 
band designed to mount directly to a pole or overhead mast-arm or other structure.  
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Ensure the mounting assembly has all stainless steel, or aluminum construction, and 
supports the load of the detector.  Incorporate for the mounting assembly a 
mechanism that can be tilted in both axes then locked into place, to provide the 
optimum area of coverage.  Ensure the mounting bracket is designed and installed to 
prevent sensor re-positioning during 80 mph wind conditions. 
 
Proper placement, mounting height, and orientation of the detector systems are 
critical to the overall performance and accuracy of the systems and must conform to 
the manufacturer’s published requirements for the system provided.  Install the 
detector units as shown on the plans.  Analyze each proposed pole or other location 
to assure that the detector installation will comply with the manufacturer’s 
published installation instructions.  Advise the Engineer, before any trenching or 
pole installation has taken place, of any need to move the pole from the location 
indicated in the plans in order to achieve the specified detector performance.  
Confirm equipment placement with the manufacturer before installing any 
equipment. Ensure magnetic detectors remain vertical, symmetrically arranged, and 
centered in each lane.  
 
Ensure alignment, configuration, and any calibration of the detector takes less than 
60 minutes per lane once mounting hardware and other installation hardware are in 
place.  Install detector units such that each unit operates independently and that 
detectors do not interfere with other detector units or other equipment in the 
vicinity. 

C. Electronic Components.  Provide electronic components in accordance with 
Special Specification, “Electronic Components.” 

D. Mechanical Components.  Provide external screws, nuts, and locking washers that 
are stainless steel; no self-tapping screws will be used. Provide parts made of 
corrosion-resistant material, such as plastic, stainless steel, anodized aluminum, or 
brass. Protect materials from fungus growth and moisture deterioration. Separate 
dissimilar metals by an inert dielectric material. 

E. Documentation Requirements.  Provide documentation in accordance with 
Article 4, Special Specification, “Testing, Training, Documentation, Final 
Acceptance, and Warranty.” 

F. Testing. Perform testing in accordance with Article 2, Special Specification, 
“Testing, Training, Documentation, Final Acceptance, and Warranty.” Test all 
detectors to ensure compliance to all FCC and Department specifications. 

Supply a medical statement as to the safety of the unit to the general public 
(example: Pacemakers, etc.). 

Additional testing requirement is as follows: 
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1. NEMA 4X Testing.  The detector enclosure must conform to test criteria set 
forth in the NEMA 250 Standard for Type 4X enclosures.  Provide third party 
enclosure test results for each of the following specific Type 4X criteria: 

 
• External Icing (NEMA 250 Clause 5.6), 
• Hose-down (NEMA 250 Clause 5.7), 
• 4X Corrosion Protection (NEMA 250 Clause 5.10), and 
• Gasket (NEMA 250 Clause 5.14). 

2. NEMA TS2-1998 Testing.  The detector (any technology) must comply with 
the applicable standards stated in the NEMA TS2-1998 Standard. Provide third 
party test results for each of the following specific tests: 

 
• shock pulses of 10g, 11 ms half sine wave; 
• vibration of 0.5 Grms up to 30 Hz; 
• 300 V positive/negative pulses applied at 1 pulse per second at minimum 

and maximum DC supply voltage; 
• cold temperature storage at -49°F for 24 hours; 
• high temperature storage at +185°F for 24 hours; 
• low temp, low DC supply voltage at -30°F and 10.8 VDC; 
• low temp, high DC supply voltage at -30°F and 26.5 VDC; 
• high temp, high DC supply voltage at 165°F and 26.5 VDC; and 
• high temp, low DC supply voltage at 165°F and 10.8 VDC. 

3. Performance Testing.  Ensure the detector (any technology) meets functional 
performance requirements of Section 2.A by the following methods: 

Verify volume accuracy by comparing recorded video to the detections. Record 
the number of missed vehicles and false detections.  Calculate errors by 
dividing the difference between missed and false detections, obtained over a 
minimum of 24 hours, by the total number of vehicles.  To ensure low 
variability in performance, missed and false detections must not exceed  
10 percent.  Provide such performance analysis for the following environments: 
 
• free flowing traffic (speeds greater than 45 mph); 
• congested traffic (speeds from 15 to 40 mph); 
• traffic in lanes adjacent to a concrete barrier; 
• 20 ft and 200 ft lateral offset simultaneous performance (microwave radar); 

and 
• occluded vehicle error must not exceed 15 percent on roadways where the 

proportion of tall vehicles (e.g., large trucks) is 15 percent or less. 
 

Failure to meet these thresholds will result in the product being disqualified. 
Verify speed accuracy with laser speed gun or by video speed trap using the 
frame rate as a time reference. 
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G. Experience Requirements.  The contractor or subcontractor involved in the 
installation and testing of the detector must, as a minimum, meet the following 
experience requirements: 

• Two years continuous existence offering services in the installation of the 
specific detector systems being installed. 

• Two installed detectors where systems have been in continuously 
satisfactory operation for at least 1 year.  Submit as proof, photographs or 
other supporting documents, and the names, addresses, and telephone 
numbers of the operating personnel of the business or agency owning the 
system who can be contacted by the Department regarding the system. 

• Necessary documentation of contractor or subcontractor qualifications 
pursuant to contract award. 

H. Technical Assistance.  Ensure that a manufacturer’s technical representative is 
available on site to assist the Contractor’s technical personnel at each installation 
site and with equipment installation and communication system configuration. 

Do not execute the initial powering up of the detector without the permission of the 
manufacturer’s representative. 

I. Training.  Provide training in accordance with Article 3, Special Specification, 
“Testing, Training, Documentation, Final Acceptance, and Warranty.” 

J. Warranty.  Provide a warranty in accordance with Article 6, Special Specification, 
“Testing, Training, Documentation, Final Acceptance, and Warranty.” 

K. Maintenance.  Ensure that the manufacturer’s technical representative and product 
documentation clearly specify the required maintenance and the required intervals. 
This will include a troubleshooting guide to overcome problems specific to the 
technology.  

4. Measurement.  This Item will be measured as each unit is complete in place. 

5. Payment.  The work performed and material furnished in accordance with this Item and 
measured as provided under “Measurement” will be paid for at the unit price bid for 
“VIVDS Sensing Device,” “Acoustic Vehicle Sensing Device,” “Magnetic Vehicle 
Sensing Device (Surface Mounted),” “Magnetic Vehicle Sensing Device (Horizontal 
Bore),” or “Radar Vehicle Sensing Device.”  This price is full compensation for 
furnishing all equipment described under this Item with all cables, connectors, and 
mounting assemblies; all documentation and testing; and all labor, materials, tools 
training, warranty, equipment, and incidentals.  
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INTRODUCTION 
 

Accuracy, failure rate, ease of setup and maintenance, compatibility with existing 
detection systems, and life-cycle cost are important considerations to decision-makers in 
choosing the most appropriate detection system. Inductive loops are more mature than the 
newer detectors investigated in this research, but the newer mostly non-intrusive detectors 
have features that encourage their use and their accuracy has improved. The primary bases of 
the detector selection will be accuracy, ease of setup, and cost. Figure 59 lists several 
considerations for selecting the most appropriate detector technology and device to deploy.  
 

Step 1: Decide general detector environment 
• Directly over or beside the road 

o Camera image of traffic (VIVDS only) 
 Communication bandwidth 
 Surveillance cameras already available 
 VIVDS cameras generally fixed and have minimal coverage 

• In the pavement  
• Below the pavement  

o Horizontal bore 
o Under bridge 

Step 2: Consider power and communication requirements 
• Portable 
• Stationary 

Step 3: Consider data needs (type and accuracy) 
• Data Types 

o Speed 
o Count 
o Occupancy 
o Classification 

 Axle-based (FHWA Scheme F) 
 Length-based 

• Data Accuracy: a) stop-and-go and b) free-flow 
o Speed   
o Count  
o Occupancy 
o Classification 

 Axle-based (FHWA Scheme F) 
 Length-based 

Step 4: Consider user-friendliness 
• User interface 
• Maintenance requirements  
• Complexity 

o Number of settings to learn and amount of calibration 
o Amount affected by lighting and weather 
o How much of the setup is automatic 
o Health monitoring and status output 

Step 5: Consider life-cycle cost 
• Initial cost 
• Mean-time-between-failures (MTBF) 
• Complexity usually adds cost 

Figure 59. Freeway Detector Selection Considerations. 
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DETECTOR SELECTION 
 

The following text amplifies the major steps or considerations in determining the best 
detection system for a particular freeway application.  
 
Step 1: Decide general detector environment 
 
 Consider the best location for the detector(s) for the likely design period of several 
years. The options are:  
 

• directly over or beside the roadway,  
 

• in the pavement, or  
 

• below the pavement.  
 

VIVDS cameras mounted above and centered over the lanes they monitor perform 
better than cameras mounted beside the roadway. VIVDS systems also provide a view of the 
traffic stream and serve as a verification mechanism. However, decision-makers should 
realize that cameras perform best if aimed downward at about 30 to 45 degrees from 
horizontal and do not cover a long length of roadway. Also, they typically do not serve both 
surveillance and monitoring functions because changing from a monitoring to surveillance 
mode requires movement by pan-tilt-zoom control. The change from surveillance back to 
monitoring requires returning to the exact orientation and focal length so as not to disturb 
detector placement, which is typically not practical without significant additional expense. If 
surveillance cameras are already available, then installers might consider a less expensive 
alternative than VIVDS. Also, consider the higher bandwidth needs of video as opposed to 
the lower bandwidth data sent by other detector systems.  

 
If VIVDS is the technology of choice for monitoring freeway traffic, it is important 

that the installer know some critical information pertaining to placement of cameras. For 
TxDOT, the desired location is beside the roadway since placement over the roadway would 
require proper structures and, perhaps more importantly, would also require closing lanes for 
installation and maintenance. Proper positioning of the camera involves the right height and 
offset to minimize side-to-side occlusion. For measuring speed, this research project found 
that cameras mounted 30 to 35 ft above the roadway perform reasonably well throughout the 
range of speeds observed. However, vehicle counts and lane occupancies require higher 
cameras (or less offset) for achieving the desired accuracy. Finding an existing pole that is in 
the correct position and is tall enough for more than about three or four lanes is challenging. 
Installing a special pole for mounting cameras is costly, so the use of existing poles is 
desirable, at least to a point.  

 
To investigate the camera placement needs, research personnel utilized three-

dimensional visualization software and a two-dimensional occlusion calculator using 
Microsoft Excel to develop the results shown in Table 23. These results allow the camera to 
see half of the lane width plus 1 ft on the far side of each vehicle. For camera heights ranging 
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from 15 ft to 50 ft and offsets from zero to 35 ft, the tabulated values indicate the number of 
lanes that a camera could see and avoid practically all side-to-side occlusion. The zero offset 
position is the edge of the outside traffic lane, so increasing values of offset indicate 
movement away from the monitored lanes. These values used only passenger cars on lanes 
that are 12 ft wide. Some jurisdictions are using special 40-, 45-, or 50-ft poles along with, in 
some cases, camera lowering devices for camera maintenance especially in cases in which 
the jurisdiction does not have a large bucket truck. 

 
 

Table 23.  Maximum Number of Detectable Lanes with Only Cars. a 

Offset (ft) Camera 
Height 

(ft) 0 2 4 6 8 10 15 20 25 30 35 
50 7 6 6 6 6 6 5 5 5 4 4 
45 6 6 6 6 5 5 5 4 4 4 3 
40 6 5 5 5 5 5 4 4 3 3 3 
35 5 5 5 4 4 4 4 3 3 2 2 
30 4 4 4 4 4 4 3 3 2 2 1 
25 4 4 4 3 3 3 3 2 2 1 1 
20 3 3 3 3 3 2 2 1 1 1 1 
15 3 3 2 2 1 1 1 1 1 1 1 

a A lane is detectable if the camera view shows half or more of its width plus 1 ft with a 
passenger vehicle in the near adjacent lane.  
 

 
Typical heights for existing poles are in the 30 to 35 ft range, but they may not be 

located close enough to the lanes or equipped with a mast arm (e.g., luminaire poles) to get 
cameras to the zero offset position laterally. Therefore, the designer must sometimes either 
accept lower performance or install a taller pole. Figures 60 and 61 provide a visual 
comparison of the view from a 35-ft pole with the view from a 45-ft pole, clearly indicating 
the advantages of the taller pole. Both views position cameras at zero offset and hold the 
focal length and orientation constant. The large vehicle shown in both views replicates the 
size of a large truck (8.5 ft wide by 13.5 ft tall by 65 ft long) to indicate the amount of 
occlusion it might cause. It represents a “worst case” since not all large trucks are 13.5 ft tall 
for their entire length. For side-to-side occlusion with cars only, one guideline used by the 
industry is to provide at least half a lane width over the top of each vehicle (on the far side of 
each passenger vehicle). This appendix uses half the lane width plus 1 ft for cars. To 
illustrate, the nearest five lanes for a camera mounted at 35 ft as in Table 23 provide the 
required visible lane width but the lanes farther from the camera do not.  
 
 Of course, avoiding or minimizing occlusion due to trucks is not as easy and, in fact, 
may not be practical. This analysis differed by allowing the full lane beyond the truck to be 
occluded instead of about half the lane as before using cars only. The designer must decide 
based on the number of trucks in the traffic stream whether to accept the occlusion error or 
opt for a taller, more expensive pole. Table 24 summarizes the results indicating the 
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maximum number of detectable lanes where trucks are present given the same range of 
camera heights and offsets as before.  
 
  
 

 
Figure 60.  View from Camera Height of 35 ft and Offset of 0 ft. 

 
 

 
Figure 61.  View from Camera Height of 45 ft and Offset of 0 ft.  
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Table 24.  Maximum Number of Detectable Lanes with Trucks Present. a 

Offset (ft) Camera 
Height 

(ft) 0 2 4 6 8 10 15 20 25 30 35 
50 4 3 3 3 3 3 2 2 2 1 1 
45 3 3 3 3 3 2 2 2 1 1 1 
40 3 3 2 2 2 2 2 1 1 1 1 
35 2 2 2 2 2 2 1 1 1 1 1 
30 2 2 2 1 1 1 1 1 1 1 1 
25 2 1 1 1 1 1 1 1 1 1 1 
20 1 1 1 1 1 1 1 1 1 1 1 
15 1 1 1 1 1 1 1 1 1 1 1 

a Allows the truck to obscure the full lane width adjacent to and beyond the truck but limits 
occlusion to no more than one lane. 
 
 

Similar information for microwave radar and acoustic detectors is not necessary since 
at least one design mode for each technology relies on being mounted in a sidefire 
orientation. Mounting heights for microwave radar units typically range from 12 to 50 ft, 
whereas the desirable mounting height for the SAS-1 acoustic detector is 35 ft.  

 
Installing detectors in the pavement has been common practice for the past 40 years, 

specifically in the form of inductive loops and, for some data needs, in combination with axle 
sensors. In-pavement sensors weaken pavement, require expensive lane closures, cause 
traffic delays, and compromise safety by requiring installers to work in traffic.  
 

Installation under the roadway in this report involves magnetometers; the two models 
that were part of this research were 3M microloops and SenSys Networks magnetometers. 
The latter is one of the newest detectors and the most recent addition to the research test plan. 
Installation of this detector requires drilling and extracting a shallow core (about 5 inches in 
diameter) from the pavement surface and securing the detector in the slot with epoxy. Even 
though this detector requires lane closures, its installation only takes about 30 minutes per 
magnetometer. The other magnetometer is the 3M microloop, which is typically installed 
either under the pavement in a horizontal bore or under a bridge. Placement under a bridge 
may require fabricating a support system and a survey of the earth’s magnetic flux lines (due 
to bridge steel) to determine effective placement. Even though efforts to find a high-volume 
location to test 3M microloops in this research project were unsuccessful, researchers drew 
from other research findings and previous experience where microloop installation occurred 
on S.H. 6 in College Station in September 1999. These detectors are still operable and have 
required almost no maintenance as of 2006. 
 
Step 2: Consider power and communication requirements 
 
 Data collection falls in two categories—stationary and portable. This research only 
tested detectors in a stationary environment, but some of the findings also apply to portable 
data collection. For power, all of the systems included in this research used grid power for all 
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major components with the exception of the SenSys Networks magnetometers. The in-road 
detectors used internal battery power and communicated wirelessly with the roadside. For 
any detection technology, communication needs are usually a function of the bandwidth 
requirements of the technology. Again, VIVDS has more stringent requirements than the 
other technologies tested if it is transmitted at a high frame rate (e.g., 30 frames per second). 
Portable detectors reduce setup time by using wireless communications and by relying on 
solar panels combined with batteries for power. The technologies that would work best in a 
wireless mode from the roadside to a communications hub are microwave radar and acoustic. 
Some magnetometers also have low power requirements and can transmit wirelessly. They 
may also be a good choice for portable data collection if a suitable way can be found to 
install and remove them with little or no disruption to traffic.  
 
Step 3: Consider data needs (type and accuracy) 
 
 This research emphasized speed, count, and occupancy data types, but it also 
considered vehicle classification because the Peek ADR-6000 was part of the research. 
Excluding the ADR-6000 for the moment, the factors that seemed to affect detector 
performance most significantly were detector placement, occlusion, and congestion levels 
(and therefore prevailing speeds).   
 

For non-intrusive detectors, placement of the detection unit is crucial to achieving 
optimum results. TxDOT normally places freeway VIVDS cameras beside the lanes being 
monitored so the Project 0-4750 research test plan followed accordingly. While mounting 
over lanes gives better results, safety requires closing lanes for installation and repairs 
whereas mounting beside the roadway on an existing pole saves money and interferes 
minimally with traffic. For sidefired microwave radar and acoustic detectors, mounting on a 
pole beside the roadway is the intended option. Recommended mounting heights for radar are 
12 to 30 ft, so pole height is not as critical as it is for VIVDS. However, horizontal offset 
from the nearest lane is critical for radar and must be at least 9 ft (6 ft for the new 
SmartSensor HD). Its range may extend as far as 200 ft (250 ft for HD). Microwave radar is 
switchable to a Doppler mode to be used overhead, but then it only covers one lane. It 
becomes significantly more accurate as a speed monitor in Doppler mode, and it can still 
monitor the nearest lane from beside the roadway if the angle between the detector line-of-
sight and approaching traffic is small. The SAS-1 acoustic detector needs to be about 35 ft 
above the pavement for optimum performance. Concrete median barriers and other flat 
surfaces can be a deterrent to optimum performance for both radar and acoustic detectors.  

 
Magnetometer accuracy approaches that of inductive loops, but decision-makers need 

to consider several factors to ensure good performance. Placement for 3M magnetometers 
depends primarily on the depth below the surface of the roadway, either in a horizontal bore 
or under a bridge. Boring contractors are skeptical about boring at depths shallower than  
36 inches due to possible pavement damage, but vehicle detection for other than motorcycles 
is adequate at that depth. Many urban environments are not conducive to horizontal boring 
due to density of development along the roadway. Finally, there is a practical limit to the 
number of lanes that can be covered using 3M microloops since the probes are less likely to 
remain vertical with longer runs. The top of SenSys Networks magnetometers must be flush 
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or almost flush with the surface to be effective. Both types of magnetometers need to be 
centered in the lanes. Each type requires two stations placed a known distance apart to 
accurately determine speeds and vehicle lengths.  
 

Occlusion is a factor for all detectors investigated in this research except 
magnetometers and inductive loops. For VIVDS cameras mounted beside the roadway, side-
to-side occlusion occurs, and for VIVDS cameras mounted overhead front-to-back occlusion 
is more likely. In more congested conditions, occlusion seems to play an even larger role for 
any technology in reducing detector accuracy. None of the technologies included in this 
research project maintained their best detection accuracy (i.e., presence detection) during 
periods of highest congestion as characterized by stop-and-go conditions. However, even the 
standard TxDOT methods of counting and classifying vehicles using inductive loops (usually 
supplemented by axle sensors) are not accurate in these conditions.  

 
The Peek ADR-6000 uses more sophisticated methods to count and classify vehicles 

compared to standard classifiers and performed well in congested conditions. The ADR-6000 
accounts for lane changing and even for vehicles stopping over its pavement sensors. In 
multiple datasets using human observers and stop-action video, its count error was no worse 
than 1 in 2000 vehicles and its classification error was less than 1 percent in all congestion 
levels (ignoring Class 2 and 3 vehicles). Its occupancy measures were extremely accurate as 
well but required setting the unit to record “PVR” (per-vehicle record) data. This setting 
filled the memory buffers within a day or two (depending on traffic volume), causing the 
system to discontinue collecting data. Unless Peek modifies this feature, an agency could not 
leave the unit running continuously in the PVR mode. It is the best vehicle classifier tested 
thus far in TTI research and the only one known to adequately address highly congested 
conditions. Negative factors include its high cost, the PVR issue, and the intrusive nature of 
its detectors. The smaller axle loops require shallow depths, so pavement overlays require re-
cutting of loops. Vendors might reduce the cost per unit if an agency purchases multiples. 
Another consideration for reducing the effective cost of this system is to use one unit to serve 
the needs of both operations and planners simultaneously at one location, especially along 
high-volume freeways. 
 
 There are special cases where the usual guidelines for detector selection may not 
apply. One special case is depressed urban freeways, which often have paved side slopes. 
Both active and passive detectors may be affected by reflections from these flat surfaces. Of 
the detectors tested in Research Project 0-4750, the microwave radar and acoustic systems 
would likely experience problems. A better choice might be a VIVDS with one or two 
cameras per station (depending on the number of traffic lanes).  
 
Step 4: Consider user-friendliness 
 
 User-friendliness of detectors pertains to the user interface and the difficulty and time 
required to set up and calibrate the detector. VIVDS are generally more complex than other 
options and take more time to set up, especially for new installers. The SmartSensor SS105 is 
perhaps the fastest and easiest to install due to its auto-configuration routine, which senses 
the locations of traffic lanes and only requires that the detector be oriented in the general 
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direction of traffic. Its total setup time for each site should not exceed 30 minutes after 
pulling the wiring and getting all hardware loosely installed. Its user interface is intuitive and 
requires no special instructions, and its user manual is adequate. Both the acoustic and the 
SenSys Networks detectors are relatively easy to install as well, and their user manuals are 
adequate. VIVDS installation requires more than one person on site—one to orient the 
camera on the pole and one on the ground to monitor the image and guide the camera 
orientation. Once the camera is oriented, installers must use vendor-supplied software to 
draw detectors in the site field of view and then monitor these detectors for some period of 
time to determine need for adjustment. The VIVDS installation process can easily take a few 
hours to complete.  
 
Step 5: Consider life-cycle cost 
 
 This comparison of detector costs uses a six-lane freeway cross-section. It is based 
upon annualized life-cycle costs and a 5 percent rate of return on investment. Any such 
comparison requires several assumptions, especially for detectors that have not established a 
performance history such as the SenSys Networks magnetometers. 

For VIVDS cost, this analysis uses Autoscope because maintenance costs were 
readily available (although admittedly dated). The initial cost of the Autoscope Solo Pro II is 
similar to that of some other detectors in this project. Its maintenance costs could be higher, 
however, depending on how often lens cleaning is required. Lens cleaning frequency is a 
function of mounting height and nearby mobile and non-mobile air pollutant sources. The 
minimum frequency is twice per year. Research Project 0-1715 documented VIVDS 
maintenance costs for a large Autoscope system in Oakland County, Michigan (1). That 
project found that the average monthly cost for cameras and processors together was $31.76 
per month or $381.12 per year. The initial cost of an Autoscope Solo Pro II system for a six-
lane freeway (one unit covering six lanes of traffic) is $6500. This price includes the detector 
unit, video output, power supply, surge protector, and serial communication panel for one 
camera, but excludes installation, system integration, and testing. Using a life of 10 years, the 
annualized life-cycle cost would be $1222.  
 
 TTI spent $9900 for installation of a two-lane system of 3M microloops on S.H. 6 in 
1999. The installation used two horizontal bores with 3-inch Schedule 80 conduit spaced 
20 ft apart with two probes per station in one lane (four total in that lane) and one probe per 
station in the other lane. Based on a 2006 cost quote from a Texas distributor, the cost of the 
components for a six-lane freeway system would be $13,224. Boring would cost an estimated 
$22 per foot. This system would consist of three probes per lane at each of two locations in 
each lane spaced a known distance apart to be able to detect vehicle speeds. Three probes per 
lane are needed to detect motorcycles. Annual maintenance cost would be about $50 or less 
based on the S.H. 6 experience, and the life expectancy would be about 15 years. The 
annualized life-cycle cost for the microloop system would be $1945.  
 
 The initial cost of a SenSys Networks magnetometer system for a six-lane freeway 
would be $12,546. The freeway would require two detectors in each lane spaced a known 
distance apart and centered in the lane. Besides the 12 flush-mount detectors, the system 
would also require an “Access Point” communication node with Ethernet, mounting brackets, 
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a power supply, a battery-operated repeater, battery packs, and epoxy. The assumed average 
annual maintenance cost was $210 (assume one failed detector [$600] and cost of freeway 
lane closure [$1500] in 10 years) and the estimated detector life is 10 years. The annualized 
life-cycle cost would be $1834. Since this system is newer than others investigated in this 
research, the maintenance cost is not as well known. 
 
 The initial cost of a SmartSensor SS105 microwave radar detector is $6500. This cost 
includes one SS105 detector, a pole mounting bracket, a Click 200 surge protector, serial 
communication, Click 201 1A power supply, and 60 ft of cable. A six-lane freeway would 
only need one detector in most cases, although two units are sometimes needed for cross-
sections with taller median barriers (one per direction). This cost estimate assumes one 
detector. The annual maintenance cost would be about $50 per detector and the estimated life 
of the detector is 10 years. The annualized life-cycle cost for the SS105 would be $891.  
 
 The initial cost of a SmarTek SAS-1 acoustic detector is $2800 before the 
contractor’s markup, with a final cost of about $3500 per site (each side of the freeway). A 
six-lane freeway would require two detectors—one for each direction of traffic. The 
components needed in the installation would include the traffic sensor with a 50-ft RS-422 
pigtail, a mounting tube and flange, a shelf-mount cabinet termination, and communications 
cable. Based on historical data from the manufacturer in 2006, the annual maintenance cost 
would average about $50 or less and the estimated life of the detector would be 10 years. The 
annualized life-cycle cost for the SAS-1 would be $956.  
 
SUMMARY OF RESEARCH FINDINGS 
 
 Table 25 summarizes some typical accuracy and cost factors that should be 
considered for selecting specific detectors or detection technologies for freeway applications. 
The costs are life-cycle costs based on an assumed life for each detector and 5 percent rate of 
return. The count and speed accuracies shown reflect general trends. 

 
 Table 25. Quantitative Evaluation of Detectors on Freeways. a

 
Overhead Accuracy 

(%) 

 
Sidefire Accuracy b 

(%) 

 
 

Technology/Product 

 
Annualized 
Life-Cycle 

Cost   
Count 

 
Speed  

 
Count 

 
Speed 

 
Magnetometer – 3M  $1945 98 95 NA NA 
 
Magnetometer – SenSys $1834 98 98 NA NA 
 
Microwave Radar – SS105 

 
$891 

 
98 

 
98 

 
94 

 
92 

 
Passive Acoustic – SAS-1 

 
$956 

 
NA 

 
NA 

 
90 

 
80 

 
VIVDS – Autoscope Solo Pro 

 
$1222 

 
NA c

 
NA c

 
90 

 
82 

a Six-lane freeway with median barrier.  
b “Sidefire” means mounted on a structure beside the roadway. 
c Not evaluated in this research project. 
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Lane 3 S.H. 6 Southbound 6-7 AM Count Error 
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Figure 62.  Detector Count Accuracy S.H. 6 6am-7am July 15, 2006. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lane 3 S.H. 6 Southbound 7-9 AM Count Error 
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 Figure 63.  Detector Count Accuracy S.H. 6 7am-9am July 15, 2006. 
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Lane 3 S.H. 6 Southbound 9 AM - 1 PM Count Error 
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 Figure 64.  Detector Count Accuracy S.H. 6 9am-1pm July 15, 2006. 

 
 

Lane 3 S.H. 6 Southbound 1-4 PM Count Error 
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Figure 65.  Detector Count Accuracy S.H. 6 1pm-4pm July 15, 2006. 
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Lane 3 S.H. 6 Southbound 4-8 PM Count Error 
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Figure 66.  Detector Count Accuracy S.H. 6 4pm-8pm July 15, 2006. 

 
 

Lane 3 S.H. 6 Southbound 8-9 PM Count Error 
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Figure 67.  Detector Count Accuracy S.H. 6 8pm-9pm July 15, 2006. 
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Lane 3 S.H. 6 Southbound 9 - 11:45 PM Count Error 
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Figure 68.  Detector Count Accuracy S.H. 6 9pm-11:45pm July 15, 2006. 
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