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DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts
and the accuracy of the data published herein.  The contents do not necessarily reflect the official
view or policies of the Federal Highway Administration (FHWA) and/or the Texas Department of
Transportation (TxDOT).  This report does not constitute a standard, specification, or regulation.
It is not intended for construction, bidding, or permit purposes.  The engineer in charge of the project
was James Bonneson, P.E. #67178.

NOTICE

The United States Government and the State of Texas do not endorse products or
manufacturers.  Trade or manufacturers’ names appear herein solely because they are considered
essential to the object of this report.
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CHAPTER 1.  INTRODUCTION

OVERVIEW

This report describes a procedure for estimating the safety associated with a specified
roadway segment or intersection, as may be influenced by their design elements.  In this application,
“safety” is defined to be the expected injury (plus fatal) crash frequency for the segment or
intersection.   The procedure combines the best elements of regression models with before-after
study results and historical crash data to yield a “best estimate” of safety.  It is based on, and closely
follows, the procedure developed by Harwood et al. (1).  It is envisioned that the procedure will be
used with the tools provided in the Interim Roadway Safety Design Workbook (Workbook) (2) to
evaluate alternative design configurations.  

Conditions Where the Procedure May Be Helpful

The safety evaluation procedure described in this report can be used throughout the
geometric design process.  However, the insights provided through its use will be most helpful in
situations where the choice among design elements is not obvious or the trade-offs are not readily
apparent (e.g., where atypical conditions exist, the design is complex, or construction costs are high).
In this manner, the procedure will facilitate the thoughtful and balanced consideration of both safety
and operational benefits as well as the costs associated with construction, maintenance, and
environmental impacts.

Experience indicates that several “key” design elements oftentimes have a relatively
important relationship with safety.  These design elements can be characterized as being:
(1) associated with the “controlling criteria” that dictate the need for a design exception or have a
known effect on safety, and (2) frequently used in situations where atypical conditions exist, the
design is complex, or construction costs are high.  The controlling criteria for new location and
reconstruction projects are identified in the Roadway Design Manual (3) and include:

! design speed,
! lane width,
! shoulder width,
! bridge width,
! structural capacity,
! horizontal alignment,
! vertical alignment,
! grade, 
! stopping sight distance,
! cross slope,
! superelevation, and
! vertical clearance.
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Additional design elements that may also be considered as “key” because of their known
effect on safety include:  a turn bay at an intersection, a median treatment, and the clear zone (i.e.,
horizontal clearance).  For non-key design elements, the traditional design process (i.e., compliance
with design criteria and warrants) will likely provide an acceptable level of safety. 

The implementation of this procedure will add time to the design process.  However, by
limiting the evaluation of safety to primarily “key” design elements and complex conditions, it is
hoped that the additional time required will be kept to a minimum and incurred only where it is likely
to provide some return in terms of improved safety, lower construction cost, or both.  This added
time represents an immediate and direct cost to the design process.  However, it also represents a
more cost-effective approach to design because additional benefit will be derived through fewer
crashes and lower construction costs (by not over-designing some design elements).

Emphasis on Injury Crash Frequency

Differences in crash reporting threshold among agencies can introduce uncertainty in crash
data analysis and regional comparison of crash trends.  A majority of the crashes that often go
unreported (or, if reported, not filed by the agency) are those identified as “property-damage-only.”
In contrast, crashes with an injury or fatality tend to be more consistently reported across
jurisdictions.  Thus, safety relationships tend to be more transferrable among jurisdictions when they
are developed using only injury (plus fatal) crash data.  In recognition of this benefit, this document
is focused on models applicable to injury (plus fatal) crashes.  Unless explicitly stated otherwise, all
references to “crash frequency” refer to injury (plus fatal) crash frequency.  

An injury crash is a crash wherein one or more of the persons involved is injured.  The injury
severity is reported as “possible,” “non-incapacitating,” or “incapacitating.”

ORGANIZATION

This report consists of three main parts.  Each of these parts is presented as a separate
chapter.  The first part, presented in Chapter 2, describes the methodology that underlies the safety
prediction procedure.  It presents the basic concepts, the rationale, and the models that are used in
the procedure.  The second part, presented in Chapter 3, describes the procedure for estimating the
safety of a specific roadway segment, or an entire roadway section.  The last part, presented in
Chapter 4, describes several models that have been developed since the publication of the Workbook.
They are intended to replace their counterparts published in the Workbook.
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(1)

(2)

CHAPTER 2.  SAFETY PREDICTION METHODOLOGY

OVERVIEW

This chapter describes a methodology for estimating the safety of a roadway facility
component (i.e., roadway segment, intersection, or interchange ramp).  In many cases, the safety of
an individual segment or intersection is of interest, and it is the sole subject of evaluation.  In other
cases, the safety of an entire roadway “section” is of interest, where a section typically consists of
one or more segments and intersections.  In this case, the procedure is separately applied to each
segment and intersection that comprises the section and the estimated safety effects summed to yield
an estimate of roadway section safety.

The chapter consists of four main parts.  The first part describes the safety prediction model
as well as the role of the base model and various accident modification factors (AMFs) in it.  The
second part describes how a base model can be used to predict the expected annual crash frequency
for a typical roadway segment, intersection, or interchange ramp.  The third part describes how
AMFs for various design-related elements can be used to adjust the estimate obtained from the base
model to yield an expected crash frequency consistent with the geometric and traffic control
characteristics of a given segment, intersection, or ramp.  The last part describes how the safety
prediction model can be modified to include information about the crash history for a project
location.  Inclusion of this information increases the accuracy of the estimated expected crash
frequency. 

SAFETY PREDICTION MODEL

The expected crash frequency for a facility component with specified attributes is computed
using a safety prediction model.  This model represents the combination of a “base” model and one
or more AMFs.  The base model is used to estimate the expected crash frequency for a typical
segment or intersection.  The AMFs are used to adjust the base estimate when the attributes of the
specific component are not considered typical.  The basic form of the safety prediction model is
shown in Equation 1.

where,
E[N] = expected crash frequency, crashes/yr;

E[N]b = expected base crash frequency, crashes/yr; and
AMFi = accident modification factor for geometry or traffic control variable i (i = 1, 2, ..., n).

Equation 1 yields the expected crash frequency for one facility component.  It would be used
to compute a similar estimate for each component of interest.  If it is used for all m components that
comprise a roadway section, then the expected crash frequency for the entire section is computed as:
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(3)

where,
E[N]s = expected crash frequency for entire roadway section, crashes/yr; and
E[N]j = expected base crash frequency for segment (or intersection) j, crashes/yr.

To illustrate the use of Equation 2, consider a section of two-lane highway that consists of
two intersections and a 0.5 mi segment of highway between the two intersections.  Equation 1
indicates that the expected crash frequency for one intersection is 1.5 crashes/yr, and that for the
other intersection is 2.2 crashes/yr.  Application of Equation 1 to the highway segment indicates that
its expected crash frequency is 0.3 crashes per year.  The expected crash frequency for the entire
highway section is 4.0 crashes/yr (= 1.5 + 2.2 + 0.3).

BASE MODEL

This part of the chapter describes how a base model is used to predict the expected annual
crash frequency for a typical roadway segment, intersection, or interchange ramp. A generalized base
model for each facility component is summarized in the three subsequent sections.  Calibrated
versions of these models are provided in the Workbook (2).

Road Segments

The generalized base model form for roadway segments is:

where,
E[N]b = expected base crash frequency, crashes/yr;

a, b = calibration coefficients;
ADT = average daily traffic volume, veh/d; 

L = highway segment length, mi; and
f = local calibration factor.

The segment base models in the Workbook have coefficient b equal to 1.0. When this coefficient is
equal to 1.0, then the coefficient a in Equation 3 is effectively equal to the crash rate, with units of
“crashes per million vehicle-miles.”  Chapter 4 describes a replacement base model for rural two-
lane highways.  This model should be used instead of the one published in the Workbook.

The local calibration factor f is included in the base model to allow it to be calibrated to local
conditions.  Various calibration methods are available; however, the one described by Harwood et
al. (1) does not require sophisticated statistical techniques and is recommended for practical
applications.  The models described in Chapter 4 have been calibrated with data from Texas and
should not require further calibration.
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(4)

(5)

(6)

Intersections

Two variations of Equation 3 are used to estimate the expected crash frequency for
intersections, where the AMFs included in it are applicable to intersection design elements.  A
common form for the intersection base model is:

where,
a, b1, b2 = calibration coefficients;
ADTmajor = average daily traffic volume on the major road, veh/d; and
ADTminor = average daily traffic volume on the minor road, veh/d.

This model form predicts 0.0 crashes when either ADT variable is equal to 0.0.  This
boundary condition is illogical because some types of crashes (e.g., rear-end) are still likely to occur
when one of the ADT variables is 0.0 and the other is nonzero.  An alternative form for the
intersection base model that does not share this limitation is:

The intersection base models in the Workbook use the form shown in Equation 5 with the coefficient
b equal to 1.0.  In this situation, the coefficient a is effectively equal to the crash rate, with units of
“crashes per million entering vehicles.”

The selected intersection base model form is typically used for all intersection configurations
(i.e., three-leg, four-leg, etc.) and control types (i.e., signalized, two-way stop control, etc.).
However, the model is separately calibrated for each configuration and control type combination.
This approach yields unique calibration coefficients for each combination.

Interchange Ramps

The generalized base model form for interchange ramps is:

where,
E[N]b = expected base crash frequency, crashes/yr; and
ADTr = average daily traffic volume on the ramp, veh/d.

The interchange ramp base model in the Workbook uses the form shown in Equation 6 with the
coefficient b equal to 1.0.  In this situation, the coefficient a is effectively equal to the crash rate,
with units of “crashes per million vehicles.”  Conceivably, ramp length could be added to
Equation 6; however, research to date has not demonstrated this relationship.
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ACCIDENT MODIFICATION FACTOR

AMFs are used to adjust the expected crash frequency estimate obtained from the base
model.  As suggested by Equation 1, this adjustment is multiplicative.  The adjustment is needed
when a facility component of interest has one or more characteristics that are atypical.  Through this
adjustment, the resulting expected crash frequency more accurately reflects the geometric and traffic
control characteristics for the given component. 

By definition, an AMF represents the relative change that occurs in crash frequency when
a particular geometric design component is added or removed, or when a design element is changed
in size.  An AMF is sometimes calculated as the quotient of the expected crash frequency during the
“after” period divided by the expected crash frequency during the “before” period, where the change
in design exists only during the after period.  AMFs typically range in value from 0.5 to 2.0, with a
value of 1.0 representing no effect of the design change.  AMFs less than 1.0 indicate that the design
change is associated with fewer crashes.  

The term AMF is a relatively new term that is closely related to the more familiar crash
reduction factor (CRF) used in various hazard elimination programs.  Mathematically, the
relationship between the AMF and CRF is defined as:

In spite of their mathematical similarities, the techniques used to quantify the two factors
using crash data are quite different.  CRFs have historically been developed using “simple” before-
after studies that to not control for various sources of bias.  In fact, research has shown that the use
of the simple before-after study method to develop a CRF often leads to biased values that overstate
the true effectiveness of an improvement (4).  Recent advances in statistical analysis methods have
made it possible to minimize these sources of bias.  Researchers using these new methods report
their findings using the term “AMF” to avoid any confusion.  These new methods were used to
develop the AMFs described in this chapter.

Table 1 lists the AMFs provided in the Workbook.  These AMFs were derived from research
findings documented in the literature.  They reflect the influence of many, but not all, design
elements.  The AMFs provided in the Workbook were developed to have a value of 1.0 when used
to evaluate roadways with typical design and traffic characteristics, as defined by Texas design
practice.  A table of “base conditions” is provided in each chapter of the Workbook to identify these
typical characteristics.
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Table 1.  AMFs Provided in the Workbook.
Facility Component Application Accident Modification Factor
Freeway Geometric design Grade Lane width

Outside shoulder width Inside shoulder width
Median width Shoulder rumble strips

Roadside design Utility pole offset
Rural highway Geometric design Horizontal curve radius Spiral transition curve

Grade Lane width
Outside shoulder width Inside shoulder width
Median width Shoulder rumble strips
Centerline rumble strip TWLTL median type 1

Superelevation Passing lane
Roadside design Horizontal clearance Side slope

Utility pole offset Bridge width
Access control Driveway density

Urban street Geometric design Horizontal curve radius Lane width
Shoulder width Median width
TWLTL median type Curb parking

Roadside design Utility pole offset
Access control Driveway density
Street environment Truck presence

Interchange ramp Geometric design Only base models for various ramp configurations are available.
Rural intersections -
signalized

Geometric design Left-turn lane Right-turn lane
Number of lanes Alignment skew angle

Access control Driveway frequency
Other Truck presence

Rural intersections-
unsignalized

Geometric design Left-turn lane Right-turn lane
Number of lanes Shoulder width
Median presence Alignment skew angle
Intersection sight distance

Access control Driveway frequency
Other Truck presence

Urban intersections-
signalized

Geometric design Left-turn lane Right-turn lane
Number of lanes Lane width

Urban intersections-
unsignalized

Geometric design Left-turn lane Right-turn lane
Number of lanes Lane width
Shoulder width Median presence

Note:
1 - TWLTL: two-way left-turn lane.

EMPIRICAL BAYES ADJUSTMENT

This part of the chapter describes how the expected crash frequency obtained from a safety
prediction model can be modified to include information about the crash history for a project
location.  Inclusion of this information in the analysis increases the accuracy of the estimated
expected crash frequency.
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Need for Adjustment

Consider a segment of highway for which the ADT, length, geometry, and traffic control is
known.  Equation 1 can be used to estimate the expected crash frequency for the typical segment
(with similar properties) before any changes are made to its geometry (= E[N]).  A change in
geometry is proposed and Equation 1 is used a second time to estimate the expected crash frequency
for the typical segment (with similar properties) after the change (= E[N]after).  The difference
between these two values is a good estimate of the expected change in crash frequency for the
subject segment (i.e., ∆N = E[N]after ! E[N]).

Now consider the situation where the crash history is available for the subject highway
segment.  This crash history indicates that X crashes were reported for the previous y years.  The ratio
X/y represents the average crash frequency for this segment.  This average is similar to the value that
was obtained from Equation 1, identified previously as E[N], but they will rarely be equal because
(1) the subject segment will have one or two unique properties that distinguish it from the typical
segment and (2) the reported crash frequency X is a random variable and it may be randomly high
(or low) during the y years.  Thus, the expected crash frequency for the subject segment E[N|X] is
obtained by taking a weighted average of E[N] and X/y.  To complete the analysis, Equation 1 is
used a second time to estimate E[N]after (reflecting conditions after the change).  Then, the value
E[N|X] is multiplied by the ratio E[N]after /E[N] to obtain the best estimate of the expected crash
frequency for the subject segment after the change E[N|X]after.  The product of this additional
analysis effort is a better estimate of the expected change in crash frequency for the subject segment
(i.e., ∆N = E[N|X]after ! E[N|X]).

The empirical Bayes (EB) adjustment is applicable if the facility component (i.e., road
segment, intersection, or interchange ramp) being evaluated is not undergoing major physical
changes (e.g., changes to its basic number of through lanes, being relocated as part of a major
highway realignment project, changes in the number of intersection legs, etc.).  The reason for this
restriction is that the available crash history is not likely to be representative of a newly constructed
highway facility that undergoes major changes.

In summary, if a facility component is not undergoing major physical changes and if its crash
history is available for a recent two to three year period, then the aforementioned adjustments will
increase the accuracy of the estimated expected crash frequency.  The nature of the adjustment
procedure is described in the next section. 

Adjustment Procedure

Methods developed by Hauer (4) form the basis for the adjustment procedure.  The procedure
consists of a series of calculations that are used to establish the values of the variables on the right-
hand side of Equation 8.  Once established, Equation 8 can be used to obtain the EB-adjusted
estimate of a facility component’s expected crash frequency.
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(9)

(10)

where,
E[N|X] = expected crash frequency for the analysis period given that X crashes were reported,

crashes/yr;
E[N] = expected crash frequency for the analysis period based on ADT and geometry present

during this period, crashes/yr;
E[N]t = expected crash frequency for the previous time period t based on ADT and geometry

present during this period, crashes/yr; and
E[N|X]t = expected crash frequency for the previous time period t given that X crashes were

reported in this period, crashes/yr.

To apply Equation 8, the safety prediction model (i.e., Equation 1) is applied twice; once to
estimate E[N] and a second time to estimate E[N]t.  The first estimate is based on the ADT and
geometric conditions present during the analysis period (typically the current year).  The second
estimate is based on the ADT and geometric conditions present during the time period t
corresponding to  the crash data.

Equation 8 is used to account for any time lag that may exist between the analysis period and
that corresponding to the crash history.  Crash data obtained from agency databases often correspond
to a time period that occurs several years prior to the analysis period.  As a minimum, traffic volumes
are likely to have changed since this earlier time period.  Other changes in geometry may also have
occurred.  The effects of these changes on the expected crash frequency estimate are incorporated
into Equation 8 using the ratio E[N] /E[N]t.

Equation 8 is also used to estimate the expected crash frequency for the subject facility
component after any proposed changes to the component’s geometry are implemented.  In this
application, Equation 1 is used to estimate the expected crash frequency after the change E[N]after.
This value is then substituted for E[N] in the numerator of Equation 8, and this equation is used to
estimate the expected crash frequency for the subject component after the change (= E[N|X]after). 

The variable E[N|X]t is estimated using the following equations:

with,

where,
X = reported crash count for y years, crashes; 
y = time interval during which X crashes were reported, yr;
k = over-dispersion parameter, mi-1;
L = highway segment length, mi; and

weight = relative weight given to the prediction of expected crash frequency.

When Equation 10 is applied to an intersection or interchange ramp, the variable for segment length
L is equal to 1.0.
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The EB adjustment procedure cannot be used with the base models described in the
Workbook because the corresponding over-dispersion parameter is not known for these models.
However, this adjustment can be used with the calibrated models described in Chapter 4 of this
report because the over-dispersion parameter was derived as part of the re-calibration process.
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CHAPTER 3.  ANALYSIS PROCEDURES

OVERVIEW

This chapter describes a procedure for estimating the safety of a roadway facility component
(i.e., roadway segment, intersection, or interchange ramp).  The procedure consists of a series of
steps that, when completed, yield an estimate of the expected crash frequency for the component.
The procedure includes additional steps that facilitate the analysis of a roadway section that is
comprised of one or more segments or intersections.  The procedure is derived largely from a similar
procedure developed by Harwood et al. (1).

Also described in this chapter is a procedure for defining a roadway segment.  The segments
obtained from this procedure are intended to be homogeneous in the sense that their traffic,
geometric, and traffic control device characteristics are consistent for the length of the segment. 

SAFETY PREDICTION PROCEDURE

This part of the chapter describes the six steps that comprise the safety prediction procedure.
The steps are outlined in Table 2 and summarized thereafter.  At the completion of the procedure,
the analyst will have an estimate of the expected crash frequency for a facility component and, if
desired, for all components that comprise a roadway section.  This procedure would be repeated for
each design alternative being considered and the results used to determine the corresponding safety
benefit of each alternative, relative to the existing condition.

Table 2.  Overview of the Safety Prediction Procedure.
Step Title Description

1 Identify roadway section Define the limits of the roadway section of interest.

2 Divide section into separate
facility components

Divide the project into homogenous roadway segments, intersections, or
ramps.  Select one component for analysis.

3 Gather data for subject
component

Collect data describing the traffic, geometry, and traffic control devices
on the subject component.  Acquire crash history if available and
relevant.

4 Compute expected crash
frequency

Use the safety prediction model to estimate the expected crash
frequency for the subject facility component.

5 Repeat Steps 3 & 4 for
another facility component

Repeat the analysis for each facility component in the roadway section.

6 Aggregate results for roadway
section

Sum the expected crash frequency for each facility component in the
section.

The procedure is sufficiently general that it can be applied to any facility component.  For
those steps where the analysis varies by facility component, the procedure provides specific guidance
for each component.
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Step 1 - Identify Roadway Section

During this initial step, the analyst should identify the limits of the roadway section of
interest.  The section would consist of one or more facility components.  The section may be
represented by the limits of a design project, or it could be a portion of the highway with a possible
safety issue or concern. 

Step 2 - Divide Section into Facility Components

If needed, the section identified in Step 1 is divided into facility components during this step.
Each intersection and interchange ramp is defined to be a component and should be separately
analyzed.  If the component of interest is a length of roadway, then the roadway must be divided into
homogeneous segments.  In this situation, each segment is individually analyzed in Steps 3 and 4.
A procedure for dividing the roadway into homogeneous segments is described in the next part of
this chapter.

Step 3 - Gather Data for Subject Component

During this step, data that describe the traffic, geometry, and traffic control devices on the
subject component for the analysis year are collected.  The type of data needed will vary, depending
on the component type and corresponding base model and associated AMFs.  The analyst should
consult the relevant chapter of the Workbook (2) to identify the appropriate models and AMFs as
well as the associated input variables.

If the subject facility component exists and the empirical Bayes adjustment is desired, then
the analyst will need to acquire the crash history for the component.  Also, the analyst will need to
identify the time period corresponding to the crash data and then collect the traffic, geometry, and
traffic control device data for this time period as well.

If the subject component is an intersection and ADT is available for both opposing legs of
the intersection, then the two ADTs can be averaged and this average used in the base model. 

Step 4 - Compute Expected Crash Frequency

During this step, the analyst uses the safety prediction model (as provided in the Workbook)
to estimate the expected crash frequency for the subject component.  If the empirical Bayes-adjusted
estimate is desired, then Equations 8, 9, and 10 should also be used.

Step 5 - Repeat Steps 3 and 4 for Another Component

If additional facility components on the same roadway section are also being considered
during this evaluation, then Steps 3 and 4 should be repeated for each component.  One estimate of
expected crash frequency should be obtained for each component.
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Step 6 - Aggregate Results for Roadway Section

If all of the components in a roadway section have been analyzed, then the expected crash
frequency for each component should be added together, as shown previously in Equation 2.  The
estimate obtained in this manner represents an estimate of the expected crash frequency for the
roadway section.

SEGMENTATION PROCEDURE

The analysis of a length of roadway requires that the roadway be divided into homogenous
segments.  In this regard, segments are homogeneous when their traffic, geometry, and traffic control
device characteristics are effectively the same for the length of the segment.  The following steps
outline the procedure for segmenting a roadway section.  

The segmentation procedure described in this part of the chapter does not apply to frontage-
road segments.  A frontage-road segment is defined as the length of frontage-road between two
crossroads.  Each segment begins with the frontage-road/crossroad terminal.  The crashes at these
terminals, and the ramp/frontage-road terminals, are not estimated by the frontage-road segment
safety prediction model. 

Step 1 - Define Initial Segments

For the roadway section of interest, as identified in Step 1 of the Safety Prediction Procedure,
obtain the necessary traffic and geometry information to apply the Segmentation Rules identified in
Table 3.  These rules represent conditions where a new segment must begin.  Segment boundaries
are defined by these rules because the associated design element is known to have a significant effect
on safety.  In contrast, the Subdivision Criteria listed in Table 3 (and discussed in Step 3) represent
conditions where a new segment should begin.  These criteria are used to identify situations where
the change in design element is sufficiently significant that it may have an effect on safety.

To define the initial segments, the analyst should proceed from the start of the roadway
section and work to the end of the section.  The first segment would start with the beginning of the
section and end when one or more of the rules in Table 3 indicates the need to start a new segment.

It should be noted that an intersection does not necessarily define the boundary of a segment.
One or more intersections may be located on a segment.  The segment safety prediction model
estimates only those crashes that are “segment-related.”  These crashes do not include crashes that
were identified on the crash report as being “at intersection” or “intersection-related.”  At-
intersection and intersection-related crashes are always separately estimated using the intersection
safety prediction model.  Although it is not necessary to define the beginning of a new segment at
an intersection, it may be necessary to do so if the ADT changes at the intersection by an amount that
exceeds the Rule specified for ADT in Table 3.
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Table 3.  Segmentation Rules and Subdivision Criteria.
Category Design Element Rule or Criterion

Segmentation
Rules

ADT Segment if change exceeds ± 5 percent.
Horizontal Curvature Segment at beginning and end of curve (or spiral, if present).

Include spiral transitions as part of the length of the curve.
Centerline Rumble Strips Segment at beginning and end.
Two-way left-turn lane Segment at beginning and end.
Passing lane Segment at beginning and end.

Segment
Subdivision
Criteria

Roadway grade 1 Subdivide at point of change if change $3 percent.
Lane width Subdivide at point of change if change $ ± 1 ft.
Outside shoulder width Subdivide at point of change if change $ ± 1 ft.
Horizontal clearance Subdivide at point of change if change $ ± 10 ft.
Side slope Subdivide at point of change if slope changes from one of the

following categories to another category:
! 1:3 or flatter
! steeper than 1:3

Utility pole offset Subdivide at point of change if offset changes from one of the
following categories to another category:
! 10 ft or greater
! 5 ft to 10 ft
! 2 ft to 5 ft
! 0 ft to 2 ft

Relative bridge width Subdivide at the beginning and end of a narrow bridge if the
bridge width is less than the traveled-way width plus 2 ft.

Note:
1 - If a segment is subdivided because of grade change, the new segment should begin at the point of inflection (PI).

Step 2 - Adjust Length of Short Segments

All segments defined in Step 1 should have a length of 0.1 mi or more due to the precision
of crash location reporting in Texas.  If a design element listed in Table 1 is used to define a segment
but the length of the element is less than 0.1 mi (e.g., a horizontal curve of 0.07 mi), then the
segment length should be increased to 0.1 mi.  Any segment that has its length increased in this
manner should be centered on the short design element.  The extra length for this segment would
come from the adjacent roadway segments.  The effective length of the design element for AMF
calculation would be 0.1 mi (not the actual length).  This concept is illustrated in Figure 1 where the
segment containing a 0.07 mi curve has its length increased to 0.1 mi.

Step 3 - Define Additional Segments

For all non-curved segments, apply the Subdivision Criteria identified in Table 3 to
determine if further subdivision of the initial segments is needed.  As noted in Step 2, all segments
should have a length of 0.1 mi or more due to the precision of crash location reporting in Texas.  If,
as a result of applying the subdivision criteria, a segment is less than 0.1 mi long, then it should be
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combined with an adjacent non-curved segment, if possible, to create a new segment that is at least
0.1 mi long. 

Figure 1.  Illustration of Segment Definition for Short Design Elements.

Step 4 - Define Segments Based on Judgment

If, after completing Steps 1, 2, and 3, the combination of changes in one or more design
elements in any one segment is believed likely to result in a net change in the roadway character,
then engineering judgement should be used to decide whether or not to further subdivide the
segment to accommodate these changes.  The changes considered can be in the design elements
listed in Table 3 as well as any other elements of the roadway or roadside environment believed to
have an influence on safety (e.g., driveway density, presence of shoulder rumble strips, etc.).

Supplemental Guidelines

Any design element dimension (e.g., lane width) that varies within a segment should be
averaged, and the average used as input to the appropriate AMF or base model.  A variation of this
guidance applies when grade changes within a section.  Specifically, if grade varies along a segment
and the change in grade at the point of inflection (PI) does not exceed 3.0 percent, then the value of
grade used in the grade AMF should equal the weighted average of the absolute value of the vertical
alignment tangent grades along the segment, where the weight used is the length of the tangent.  This
variation is illustrated by example in Figure 2.

The vertical alignment of a roadway is shown in Figure 2.  The grade change of 4.5 percent
at the crest curve exceeds 3.0 percent.  According to the segmentation subdivision criteria in Table 3,
segment A should end and Segment B should begin at the PI of this curve.  The grade to use in the
grade AMF for segment A should equal that of the vertical alignment tangent, which is 3.0 percent.
The grade change at the sag curve does not exceed 3.0 percent, so a new segment does not need to
begin at this PI.  However, at a point 300 ft beyond this PI, a change in cross section requires
segment B to end.  According to the aforementioned guidance, the grade to use in the grade AMF

0.07 mi 0.10 mi

Segment
Boundary

Highway Section
(plan view)
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for this segment is 1.3 percent.  This value is obtained as the length-weighted average of the two
grades (as shown in the figure).  It should be noted that the absolute value of each grade is used in
the calculation.

Figure 2.  Example Grade Calculation.

+3.0

-1.5%

change = 4.5%

+1.0

change = 2.5%

Segment A Segment B

Grade for AMF calculation = 3.0% Grade for AMF calculation = 1.3%  
                                             = (1.5 x 650  + 1.0 x 300)/(650 + 300)

650 ft 300 ft

Highway Section
(profile)
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CHAPTER 4.  SUPPLEMENTAL MODELS

OVERVIEW

This chapter summarizes safety evaluation tools developed subsequent to the publication of
the Workbook (2).  The summary is provided in the two main parts of the chapter.  The first part
summarizes the tools developed for rural frontage-road segments.  The second part summarizes the
tools developed for rural two-lane highways.  The tools developed include base models and AMFs.
The report by Bonneson et al. (5) documents the methods used to develop these tools.  It also
provides the findings from a sensitivity analysis as well as their comparison with similar models and
AMFs reported in the literature.

RURAL FRONTAGE ROADS 

This part of the chapter describes the development of quantitative tools for evaluating the
safety of rural frontage-road segments in Texas.  These tools include a base model for estimating the
crash frequency of typical frontage-road segments and two AMFs.  These tools do not address the
safety of ramp/frontage-road terminals or the safety of frontage-road/crossroad intersections.
Moreover, they do not directly address the safety of one-way frontage-road operation versus two-way
frontage-road operation.

Base Model

This section describes the base model for rural frontage-road segments.  A frontage-road
segment is defined as the length of frontage-road between two crossroads.  The model is applicable
to segments with either one-way or two-way operation.  Crashes that occur at the frontage-
road/crossroad terminals and at the ramp/frontage-road terminals are not included in the estimate
obtained from the base model.  The base model for frontage roads is:

where,
E[N]b = expected base crash frequency, crashes/yr;

ADT = average daily traffic volume, veh/d; and
L = segment length, mi.

Equation 11 predicts the crash frequency that would be estimated for a frontage-road segment
with 12 ft lanes and an average paved shoulder width of 1.5 ft.  In application, the crash frequency
predicted by Equation 11 would be multiplied by the AMFs for lane width and shoulder width
described in the next section to estimate the crash frequency for a given segment with a specified
lane and shoulder width.  

If this base model is used to obtain an EB-adjusted estimate of expected crash frequency, the
over-dispersion factor k to use for this purpose has a value of 1.37 mi-1.
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Equation 11 is compared in Figure 3 with the rural two-lane highway base model included
in the Workbook.  The Workbook model is based on an injury (plus fatal) crash rate of 0.20 cr/mvm.
The trend lines in the figure indicate that a frontage road experiences slightly more injury (or fatal)
crashes than a rural two-lane highway for ADTs less than 3500 veh/d.  The reverse trend applies for
ADTs greater than 3500 veh/d.  It is possible that the increased turning and weaving activity
associated with the frontage road (relative to the two-lane highway) may explain the slightly higher
crash frequency on frontage roads for ADTs less than 3500 veh/d.  As ADT exceeds 3500 veh/d,
there may be less opportunity for turning (i.e., fewer gaps) and the weaving activity may be more
constrained (i.e., lower speed) on the frontage road, such that frontage-road crash frequency is lower
than that found on two-lane highways.

Figure 3.  Comparison between Frontage-Road Segment Model
and Rural Two-Lane Highway Segment Model.

Accident Modification Factors

This section describes two AMFs that were derived from the frontage-road segment crash
data.  One AMF describes the relationship between lane width and crash frequency.  The second
AMF describes the relationship between shoulder width and crash frequency.

Lane Width AMF

The recommended AMF for frontage-road lane width is:

where,
AMFLW = lane width accident modification factor; and

Wl = average lane width, ft.
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The average lane width used in Equation 12 represents the total width of all through traffic
lanes on the frontage road divided by the number of through lanes.  The value of 12.0 in Equation 12
reflects the base, or typical, lane width condition.  By definition, it is associated with an AMF value
of 1.0. 

The graphical representation of the lane width AMF is shown in Figure 4.  The relationship
between lane width and AMF value shown in this figure suggests that crash frequency is reduced
about 17 percent for a 1 ft increase in lane width.  Based on the range of lane widths in the database,
the lane width AMF is applicable to lane widths ranging from 9 to 12 ft.

Figure 4.  AMF for Frontage-Road Lane Width.

Also shown in Figure 4 is the lane width AMF for rural two-lane highways from the
Workbook as well as the revised lane width AMF described in the next part of this chapter.  A
comparison of these AMFs with the lane width AMF for frontage roads suggests that lane width on
a frontage road has a greater impact on crash frequency than it does on a two-lane highway.  It is
possible that this trend stems from the relatively high percentage of turning traffic and the
considerable weaving activity that occurs on frontage roads (between the ramp terminals and the
crossroad intersection), relative to a two-lane highway.  Wider lanes on frontage-road segments may
provide some additional room for recovery when these turning and weaving-related conflicts occur.

Shoulder Width AMF

The recommended AMF for frontage-road shoulder width is:

where,
AMFSW = shoulder width accident modification factor; 

0.8

1.0

1.2

1.4

1.6

1.8

9.0 9.5 10.0 10.5 11.0 11.5 12.0

Lane Width, ft

A
cc

id
en

t M
od

ifi
ca

tio
n 

Fa
ct

or Rural Frontage-Road Segment

Rural Two-Lane Highway
Workbook AMF
Revised AMF (1.5 ft shoulder width)



20

Ws = average paved shoulder width (= [Ws,r + Ws,l]/2), ft;
Ws,r = paved shoulder width on the right side of the frontage road, ft; and
Ws,l = paved shoulder width on the left side of the frontage road, ft.

The average paved shoulder width used in Equation 13 represents the average of the left- and
right-side shoulder widths. The value of 1.5 in Equation 13 reflects the base, or typical, average
shoulder width condition for frontage roads.  By definition, it is associated with an AMF value of
1.0. 

The graphical representation of the shoulder width AMF is shown in Figure 5.  The
relationship between frontage-road shoulder width and the AMF value suggests that crash frequency
is reduced about 7 percent for a 1 ft increase in average shoulder width.  Based on the range of
shoulder widths in the database, the AMF is applicable to shoulder widths ranging from 0 to 5 ft.

Figure 5.  AMF for Frontage-Road Shoulder Width.

Also shown in Figure 5 is the shoulder width AMF for rural two-lane highways from the
Workbook as well as the revised shoulder width AMF described in the next part of this chapter.  The
base condition for the Workbook AMF has been changed to a shoulder width of 1.5 ft to facilitate
its comparison with Equation 13.  As suggested by the trend lines in this figure, shoulder width has
a slightly larger impact on frontage-road safety than on rural two-lane highways.  This trend is
consistent with that found for the lane width AMF.

RURAL TWO-LANE HIGHWAYS 

This part of the chapter summarizes the findings from research undertaken to re-calibrate the
existing safety prediction models for rural two-lane highways and intersections in Texas.  The
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existing models considered for re-calibration are described in the Workbook.  The models that are
summarized in this part include:

! highway segments (excluding intersections);
! three-leg intersections with two-way stop control;
! four-leg intersections with two-way stop control; and
! four-leg intersections with signal control.

Each model provides an estimate of the expected injury (plus fatal) crash frequency for the
associated component, given specified traffic volume and geometric design conditions.  However,
each model was initially calibrated using data from locations outside of Texas.  To ensure that the
estimate is not biased, the model was re-calibrated using data specific to Texas.  

In the first section to follow, re-calibrated base models are described for each of the
aforementioned facility components.  The second section describes AMFs for curve radius, lane
width, and shoulder width.

Base Models

Two-Lane Highway Segment

The re-calibrated base model for rural two-lane highway segments is:

where,
E[N]b = expected base crash frequency, crashes/yr;

ADT = average daily traffic volume, veh/d; and
L = highway segment length, mi.

Equation 14 predicts the crash frequency that would be estimated for a highway segment with
12 ft lanes, an 8 ft paved shoulder width, and other geometric conditions considered typical in Texas.
In application, the crash frequency predicted by Equation 14 would be multiplied by the AMFs in
Chapter 3 of the Workbook (except those replaced by the AMFs described in the next section) to
estimate the crash frequency for a given segment with specified geometric and traffic characteristics.

If this base model is used to obtain an EB-adjusted estimate of expected crash frequency, the
over-dispersion factor k to use for this purpose has a value of 15.3 mi-1.

The relationship between segment crash frequency and daily traffic volume is shown in
Figure 6.  The thick trend line corresponds to the re-calibrated model (i.e., Equation 14).  The thin
dashed trend line corresponds to the existing base model in the Workbook. 
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Figure 6.  Relationship between Volume and Segment Crash Frequency.

The two trend lines in Figure 6 indicate that the re-calibrated model and the existing model
yield similar estimates of crash frequency for ADTs of 5000 veh/d or less.  For ADTs above
5000 veh/d, the estimated crash frequency from the re-calibrated model exceeds that obtained from
the existing model. 

Three-Leg Unsignalized Intersection

The re-calibrated base model for three-leg unsignalized intersections is applicable to those
intersections on rural two-lane highways that have stop-control on the minor roadway.  The form of
this model is:

where,
E[N]3LST = expected crash frequency for a three-leg unsignalized intersection, crashes/yr;
ADTmajor = average daily traffic volume on the major road, veh/d; and
ADTminor = average daily traffic volume on the minor road, veh/d.

Equation 15 predicts the crash frequency that would be estimated for a three-leg intersection
having geometric conditions considered typical in Texas.  In application, the crash frequency
predicted by Equation 15 would be multiplied by the AMFs in Chapter 6 of the Workbook to estimate
the crash frequency for a given segment with specified geometric and traffic characteristics. 

If this base model is used to obtain an EB-adjusted estimate of expected crash frequency, the
over-dispersion factor k to use for this purpose has a value of 2.59.
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The re-calibration process for this model indicated that the re-calibrated model coefficients
were not significantly different from those in the existing model in the Workbook.  Thus, the existing
model was retained.  Equation 15 yields the same expected crash frequency as the existing model.

Four-Leg Signalized Intersection

The re-calibrated base model for four-leg signalized intersections is applicable to
intersections on rural two-lane highways.  The form of this model is:

where,
E[N]4LSG = expected crash frequency for a four-leg signalized intersection, crashes/yr.

Equation 16 predicts the crash frequency that would be estimated for a four-leg intersection
having geometric conditions considered typical in Texas.  In application, the crash frequency
predicted by Equation 16 would be multiplied by the AMFs in Chapter 6 of the Workbook to estimate
the crash frequency for a given segment with specified geometric and traffic characteristics. 

If this base model is used to obtain an EB-adjusted estimate of expected crash frequency, the
over-dispersion factor k to use for this purpose has a value of 3.15.

The relationship between intersection crash frequency and daily traffic volume is shown in
Figure 7.  The thick trend line corresponds to the re-calibrated model (i.e., Equation 16).  The thin
dashed trend line corresponds to the existing base model in the Workbook. 

Figure 7.  Relationship between Volume and Signalized Intersection Crash Frequency.
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The two trend lines in Figure 7 indicate that the re-calibrated model estimates larger crash
rates than the existing model yield for the full range of major-road volume.  This difference is
significant and illustrates the benefit of calibrating models developed using data from other states
to local conditions.

Four-Leg Unsignalized Intersection

The re-calibrated base model for four-leg unsignalized intersections is applicable to those
intersections on rural two-lane highways that have two-way stop control.  The form of this model
is:

where,
E[N]4LST = expected crash frequency for a four-leg unsignalized intersection, crashes/yr.

Equation 17 predicts the crash frequency that would be estimated for a four-leg intersection
having geometric conditions considered typical in Texas.  In application, the crash frequency
predicted by Equation 17 would be multiplied by the AMFs in Chapter 6 of the Workbook to estimate
the crash frequency for a given segment with specified geometric and traffic characteristics. 

If this base model is used to obtain an EB-adjusted estimate of expected crash frequency, the
over-dispersion factor k to use for this purpose has a value of 1.61.

The relationship between intersection crash frequency and daily traffic volume is shown in
Figure 8.  The thick trend line corresponds to the re-calibrated model (i.e., Equation 17).  The thin
dashed trend line corresponds to the existing base model in the Workbook. 

Figure 8.  Relationship between Volume and Unsignalized Intersection Crash Frequency.
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The two trend lines in Figure 8 indicate that the re-calibrated model estimates larger crash
rates than the existing model yield for the full range of major-road volume.  This difference is
significant and illustrates the benefit of calibrating models developed using data from other states
to local conditions.

Accident Modification Factors

This section describes two AMFs that were derived from using crash data for rural two-lane
highway segments in Texas.  One AMF describes the relationship between horizontal curve radius
and crash frequency.  A second AMF describes a relationship between lane width, shoulder width,
and crash frequency. 

Horizontal Curve Radius AMF

The recommended AMF for horizontal curve radius is:

where,
AMFcr = horizontal curve radius accident modification factor; 

Lc = horizontal curve length, mi; and
Rc = curve radius, ft.

This AMF replaces the horizontal curve AMF in Chapter 3 of the Workbook.  The radius used
in Equation 18 corresponds to the radius of the roadway centerline.  The AMF applies only to
circular curves and the circular portion of curves with spiral transitions.  The AMF for spiral
transition presence provided in the Workbook should be used with this AMF if spiral transitions are
present.  The AMF converges to a value of 1.0 as the radius approaches infinity.  Thus, the base, or
typical, condition is a tangent highway section. 

The ratio of curve length Lc to segment length L is included in Equation 18 to allow it to be
used on segments that are longer than the length of the curve.  This situation can occur when the
curve length is less than 0.1 mi and the segment length is 0.1 mi (as noted in Chapter 3, the
minimum segment length is 0.1 mi).  If the curve is less than 0.1 mi, then the segment length L is
set equal to 0.1 mi.  In this situation, the length ratio in Equation 18 adjusts the AMF such that it
does not overestimate the effect of the curve, relative to the full length of the segment.

The recommended revised AMF model is illustrated in Figure 9.  The values obtained from
this  model are shown with a solid trend line.  The values obtained from the horizontal curve AMF
in the Workbook are shown using two dashed lines.   The revised AMF is shown to indicate a larger
AMF value for all radii, relative to the Workbook AMF.
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Figure 9. AMF for Two-Lane Highway Curvature.

Combined Lane Width and Shoulder Width AMF

The recommended AMF for combined lane width and shoulder width is:

where,
AMFlw, osw = lane width and shoulder width accident modification factor;

Wl = lane width, ft; and
Ws = shoulder width.

This AMF replaces the lane width and outside shoulder width AMFs in Chapter 3 of the
Workbook, as applied to two-lane highways.  The AMF in Equation 19 replaces both the lane width
and the shoulder width AMFs in the Workbook.  It includes both variables in a single AMF because
of an interaction that was found between lane width and shoulder width.  Specifically, it suggests
that the effect of lane width on safety is lessened on roadways with wider shoulder widths, which
is logical.  The AMF reflects a base condition of 12 ft lane width and 8 ft shoulder width.  By
definition, a segment with this lane and shoulder width will have an AMF value of 1.0. 

The recommended revised AMF model is illustrated in Figure 10 for a range of lane widths.
The values obtained from Equation 19 are shown with a thick trend line.  The values obtained from
the lane width AMF in the Workbook are shown with a thin line.  The AMF values from the revised
model with an 8ft shoulder width are comparable to those in the Workbook.  The two thick trend
lines indicate that the relationship between AMF value and lane width varies, depending on the
shoulder width.  Lane width is indicated to have a larger effect on safety when the shoulder is
narrow, which is logical.
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Figure 10.  AMF for Two-Lane Highway Lane Width.

The revised AMF model is shown in Figure 11 for a range of shoulder widths.  The values
obtained from Equation 19 are shown with the two thick trend lines.  The thick dashed trend line
corresponds to shoulders adjacent to 10 ft lanes.  The thick solid trend line corresponds to shoulders
adjacent to 12 ft lanes.  The values obtained from the shoulder width AMF in the Workbook are
shown with a thin solid line. 

Figure 11.  AMF for Two-Lane Highway Shoulder Width.
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