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NOMENCLATURE 
 
A Meander amplitude 
Aw Cross-sectional flow area 
β Correction factor in Mmax equation  
c1 Coefficient in τmax equation 
c2 Geometry-dependent coefficient in τmax equation 
D Pipe diameter 
D50 Mean particle diameter for the soil 
ε Average height of roughness elements  
ε/D Relative roughness 
f Friction factor obtained from Moody chart 
Fr Froude number 
Frc  Critical Froude number  
φ Bend angle  
g Gravitational acceleration 
h Water depth 
Hw  Water elevations  
Lt Project design life 
M Channel migration distance 

iM&  Initial erosion rate 
Mmax Maximum erosion distance 
μw Dynamic viscosity of water 
n Manning’s roughness coefficient 
νw  νw  = μw /ρw the kinematic viscosity of water (10

-6
m

2
/s at 20˚C) 

p Probability of exceedance 
P Wetted perimeter 
Q  Flow rate  
Q100, Q500 100/500 year flood 
θ Relative angle (0 ≤  θ ≤  φ) within each bend  
R Radius of curvature of the channel bend  
Re Reynolds number 
ρw Mass density of water  
s Channel bed slope  
Si Initial slope of the EFA curve  
t Time 
U Average flow velocity 
τ Shear stress  
τavg Depth average shear stress 
τc Critical shear stress 



 

xxi 

τmax Maximum shear stress 
τmax_max Maximum shear stress of a bend 
W Channel width  
z&  Erosion rate  
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EXECUTIVE SUMMARY 
INTRODUCTION 

Meander migration is a process in which water flow erodes soil on one bank and deposits it on 
the opposite bank. Therefore, a gradual shift of bank line occurs over time. Bank erosion 
undermines bridge piers and abutments, scours the foundations of parallel highways, and causes 
loss of useful land. For example, a recent meander migration threat for FM 787 at the Trinity 
River as shown in Figure 1 required $0.3 million for emergency countermeasures and $5.6 
million for replacement of the bridge. 
 
In order to avoid costly countermeasures for new bridges, TxDOT sponsored the project 
“Establish Guidance for Soils Properties–Based Prediction of Meander Migration Rate.” The 
research was conducted at Texas A&M University, College Station. The purpose of this project 
was to develop a methodology that can be used to do site-specific predictions of meander 
migration. The methodology selected to solve the problem of predicting the meander migration 
distance at the end of a project life was based on a combination of review of existing knowledge, 
large flume experiments in two different soil types (i.e., sand and clay), three-dimensional 
numerical simulations, a hyperbolic model, and a risk analysis. 
 

 
Figure 1. Trinity River at Highway 787 (Briaud et al., 2001). 
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LITERATURE REVIEW 

Researchers studied existing knowledge with respect to prediction of meander migration and 
summarized the knowledge by topic: meander migration predictions, meander migration flume 
tests, risk analysis for meander migration, and meander migration software. 
 
Meander migration can be predicted by using empirical equations (Keady and Priest, 1977; 
Hooke, 1980; Brice, 1982; Nanson and Hickin, 1983), fundamental modeling (Nagata et al., 
2000; Duan et al., 2001), or time-sequence maps and extrapolation (Lagasse et al., 2004b). 
 
The most remarkable set of flume tests on behavior of self-formed meandering rivers was 
conducted by the U.S. Army Corps of Engineers (1945) as shown in Figure 2. They conducted 
these flume tests in different conditions to investigate the effect of discharge, angle of attack, bed 
slope, initial cross section, material types, and not feeding sand at the entrance. These studies 
were not based on a quantitative approach but rather on a qualitative approach. 
 
A good example of risk analysis is the SRICOS-EFA (Scour Rate In Cohesive Soils-Erosion 
Function Apparatus) method (Briaud et al., 2003). This method predicts the scour depth in clay 
as a function of time by modeling the erosion process at the water-soil interface and projecting it 
into time by using future hydrographs. A number of equally possible future hydrographs are 
generated by the random number generating scheme and a probabilistic post-process provides a 
probability of the maximum scour depth with a certain confidence level. 
 
A computer program, RVR MEANDER, was developed to predict meander migration (Abad and 
Garcia, 2006). The RVR MEANDER program is a toolbox to assist in predicting meander 
migration. Two versions of the program were developed: stand-alone Microsoft Windows-based 
and geographical information system (GIS)-based versions. The main difference between these 
two versions is the input process of the coordinates of the river center lines. The GIS-based 
version provides an automatic import of the river geometry data from existing GIS line data 
within ESRI ArcMap. 
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(a) Initial Condition (b) After 4 hours 
Figure 2. Photos from Sand Flume Test with Feeding Sand at the Entrance (U.S. Army 

Corps of Engineers, 1945). 
 
RESEARCH OBJECTIVES 

The overall goal of this research is to develop soil-based guidelines to predict channel meander 
migration. The main objectives are as follows: 
 

• Apply a soil erosion model to estimate the channel migration distance. 
• Evaluate the factors that affect meander migration: channel geometry configurations, soil 

properties, and flow hydraulic conditions. 
• Develop a maximum shear stress equation from three-dimensional numerical simulations. 
• Develop prediction equations of maximum migration distance from large-scale flume tests 

in sand and clay. 
• Develop a risk analysis scheme and incorporate it into the new prediction method so that 

the prediction of meander migration can be made on a probabilistic approach. 
• Develop a computer program to integrate all the components. 
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METHODOLOGY 

Under a high flow rate, a river will erode its bankline and rework the flood plain continuously. 
The bankline displacement usually contains two components: cross-valley expansion and down-
valley translation. Both components make the river more sinuous and extend the length between 
two reference stations. The increasing channel length increases the friction force on the channel 
boundaries, decreases the velocity, and lessens the erosion process. As the river flow rate 
remains constant, it is expected that the river bankline displacement from its original place will 
attain an equilibrium state. A hyperbolic function was used to estimate the channel bankline 
erosion distance of a cross section. Two physical parameters, the initial migration rate and the 
maximum migration distance, were determined by numerical simulation with the EFA (Erosion 
Function Apparatus) test and large-scale physical models, repectively. 
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Figure 3. The Hyperbolic Model in Channel Bankline Migration Distance. 

 
NUMERICAL SIMULATION 

Similar to the maximum scour rate zmax in an earlier TXDOT project (Project 0-2105) same 
concept and procedure were applied to predict meander migration. The maximum shear stress 
τmax corresponds to a certain flow condition, soil property, and channel geometry. Numerical 
simulation calculates the maximum shear stress τmax along the channel under different flow and 
geometry conditions. Researchers quantitatively analyzed the influence of these factors on 
maximum shear stress and developed an empirical formula. Along with the EFA test results, the 
initial migration rate of a channel bankline can be determined. 
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Figure 4. Shear Stress Distribution Obtained from Numerical Simulations. 

 
FLUME TEST IN SAND 

A series of large-scale experiments were conducted in a basin that is 36.6 m (120 feet) long, 20.9 
m (69 feet ) wide, and 1.5 m (5 feet) deep located in the Haynes Coastal Engineering Laboratory 
at Texas A&M University. The test area is 27.4 m (90 feet) long, 13.7 m (45 feet) wide, and 0.30 
m (1 foot) deep in the basin, which was filled with sand. An idealized channel was molded from 
the sand bed to mimic the natural river erosion process. A trapezoidal cross section was chosen 
with bottom width of 40.0 cm (15.8 inches), top width of 74.6 cm (29.4 inches), bank slope of 
30°, and depth of 15.6 cm (6.1 inches). The experiments were run with different controlling 
variables: five different bend radius-to-channel width ratios, four different bend angles, and four 
different Froude numbers. Researchers found that the distribution of the maximum migration 
distance along the channel can be described by a Gaussian distribution function. Parameters of 
the Gaussian distribution function were also examined with the controlling variables. An 
equation of the maximum migration distance along the channel was proposed. 
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Figure 5. Water Basin and Flume Test Setup in Sand Test. 

 
FLUME TEST IN CLAY 

This second part of flume tests investigates the channel meander migration in clay by conducting 
physical modeling. The approach is to vary each primary parameter obtained from dimensional 
analysis while keeping the remaining parameters constant. The effect and impact of each 
individual parameter can therefore be examined to provide a basis for parametric study. The 
approach is similar to that in Chapter 5, except Grande clay was used. A total of eight cases 
including the three pre-tests were conducted in a large basin that is 22.0 m (72.6 feet) long, 10.0 
m (33.0 feet) wide, and 0.9 m (3 feet) deep located on the second floor of the Hydromechanics 
Laboratory at Texas A&M University. The initial cross section of the channel is of rectangular 
shape with a width of 60.0 cm (23.6 inches) and a depth of 12.0 cm (4.7 inches). Plywood plates 
were laid at the bottom of the channel so only the banks were erodible. The channel plan form 
evolution with respect to each factor was quantified and evaluated. The channel bankline 
displacement was modeled by a hyperbolic function with the inclusion of the initial migration 
rate and the maximum migration distance estimated in the model. It was found that the 
distributions of maximum migration distance along the channel display Pearson IV distributions. 
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Figure 6. Experimental Setup in the Hydromechanics Laboratory. 

 
RISK ANALYSIS 

A meander migrates at a rate controlled by the erosion rate of the soil at the interface between the 
water and the bank. The hydraulic shear stress imposed by the water is controlled by the velocity 
of the flow, which is dependent on the hydrograph of the river. A meander migration prediction 
process must therefore consider the hydrograph of the river. This hydrograph is not known 
because it will occur in the future during the design life of the bridge or highway embankment. 
Because it is not realistic to make a deterministic prediction of a future hydrograph, it is more 
desirable to make predictions of many equally possible hydrographs in a probabilistic manner. 
Each hydrograph then moves the river toward a predicted position of the meander and a 
probabilistic post-process provides a cumulative density function (CDF) map that shows the 
general trend of the meander migration of the river with the associated likelihood levels, as 
shown in Figure 7. In the figure, each line represents a certain probability that the initial river 
will move to the location of the line or further at the end of project life (e.g., 75 years). 
 
The common concern of meander migration problems might be a specific location as well as a 
direction of bank movement. Although the CDF map gives the global picture of the predicted 
migration movement over the chosen period, it is often insufficient information regarding a 
specific location and direction. Therefore, a separate CDF for a given location and direction is 
needed and is determined by interpolation of the CDF map. This feature will be very helpful for 
the bridge engineers when planning a new bridge. 
 

22 m 

10 m 

2 m
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Figure 7. Cumulative Density Function Map. 

 
MEANDER PROGRAM 

The MEANDER computer program implements all the methods developed in this project to 
predict meander migration. It consists of two major components: graphic user interface (GUI) 
and numerical implementation. This part gives a general view of the MEANDER program 
regarding GUI, some programming techniques, and implemented modules. These items are 
introduced in order. 
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Figure 8. Main Interface of the MEANDER Program. 
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CHAPTER 1. INTRODUCTION 
 
1.1 INTRODUCTION 

This report is the result of a project sponsored by the Texas Department of Transportation 
(TxDOT) to establish guidance for soils properties–based prediction of meander migration rate. 
 
Meander migration is a process in which water flow erodes soil on one bank and deposits it on 
the opposite bank. Therefore, a gradual shift of bankline occurs over time. Bank erosion 
undermines bridge piers and abutments, scours the foundations of parallel highways, and causes 
loss of useful land. Bridges crossing meandering rivers are often endangered due to the loss of 
pier or abutment foundations. This problem costs TxDOT millions of dollars to protect affected 
bridges and highway embankments. One recent meander migration threat at the Trinity River as 
shown in Figure 1.1 has required a $0.3 million emergency countermeasure and a $5.6 million 
replacement bridge. 
 

 

Figure 1.1. Trinity River at Highway 787 (Briaud et al., 2001). 
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In order to avoid costly countermeasures for new bridges, TxDOT sponsored the project 
“Establish Guidance for Soils Properties–Based Prediction of Meander Migration Rate.” The 
research was conducted at Texas A&M University, College Station. The purpose of this project 
was to develop a methodology which can be used to do site-specific predictions of meander 
migration. Using this methodology, piers and abutments of new bridges can be constructed away 
from risky locations. 
 
The methodology selected to solve the problem of predicting the meander migration distance at 
the end of project life was based on a combination of review of existing knowledge, large flume 
experiments in two different soil types (i.e., sand and clay), three-dimensional (3D) numerical 
simulations, selection of a hyperbolic model to describe meander migration versus time, and a 
risk analysis. 
 
1.2 RESEARCH OBJECTIVES 

This research is aimed at developing soil-based guidelines to predict meander migration. The 
main objectives are: 

• Apply a soil erosion model to estimate the channel migration distance. 
• Evaluate the factors that affect meander migration: channel geometry configurations, soil 

properties, and flow hydraulic conditions. 
• Develop a maximum shear stress equation from three-dimensional numerical simulations. 
• Develop prediction equations for the maximum migration distance from large-scale flume 

tests in sand and clay. 
• Develop a risk analysis scheme and incorporate it into the new prediction method so that 

the prediction of meander migration can be made on a probabilistic basis. 
• Develop a computer program to integrate all the components. 

 

1.3 FUNDAMENTAL CONCEPT OF MEANDER MIGRATION 

1.3.1 Channel Pattern and Stability 

Meander migration occurs as a response to natural or man-made disturbances of the fluvial 
system. Meander migration and related processes cause problems such as bridge scour, scour of 
highway foundations, and loss of land. In order to predict changes in channel morphology, 
location, and behavior, it is important to understand the relative stability of a channel, which is 
revealed by its patterns. 
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Alluvial channels are dynamic systems subject to changes of different types and at highly 
variable rates. Alluvial channel movements are the cumulative result of a combination of 
climatic, geological, topographic, hydrologic, and human disturbance factors. There are basically 
three types of channel patterns: straight, meandering, and braided. Rivers with different patterns 
behave differently; therefore, pattern identification should be the first step toward evaluation of 
river stability. 
 
Brice (1975) developed a descriptive classification of channel patterns for alluvial rivers. He 
selected the following channel properties as important for classification: the degree of sinuosity, 
braiding and anabranching, and the character of meandering, braided, and anabranched streams 
(Figure 1.2). 
 
Brice and Blodgett (1978) classified streams according to Figure 1.3, which is based on stream 
properties observable on aerial photographs and in the field. This figure is intended to facilitate 
the assessment of streams for engineering purposes, with particular regard to lateral stability. 
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Figure 1.2. Channel Pattern Classification (Brice, 1975).  
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Figure 1.3. Stream Properties for Classification and Stability Assessment  

(Brice and Blodgett, 1978). 



 

16 

Shen et al. (1981) presented five basic patterns (Figure 1.4) to aid highway engineers in 
establishing the relative stability of the channel and in identifying hazards that can affect bridge 
stability. Figure 1.4 is more meaningful than a purely descriptive classification of channels 
because it is based on cause and effect relations and it illustrates the differences to be expected 
when the type of sediment load, flow velocity, and other factors differ among rivers. 
 

 

Figure 1.4. Channel Classification Showing Stability and Types of Hazards Encountered 
with Each Pattern (Shen et al., 1981). 

 

1.3.2 Meander Migration 

It has been observed in many flume tests and in real rivers that bank erosion occurs by either a 
grain-by-grain movement or by mass movement (slumping or toppling). The following factors 
can cause mass failure: undercutting of the toe of the bank, steepening of the slope, surcharging 
the bank by construction or dumping, or seepage forces and pore water pressures related to 
increased water movement through bank sediment. Bank erosion in cohesionless materials 
usually involves the following processes as shown in Figure 1.5: 

1. bed scouring at the side bank; 
2. bank collapse due to instability of the scoured bank; 
3. deposition of the collapsed bank materials at the front of the bank; and 
4. transportation of the deposited materials. 
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Figure 1.5. Bank Erosion Process (Nagata et al., 2000).  

 
The removal of bank materials on one side is often accompanied by deposition of materials on 
the opposite bank and a shift of the river channel. If both banks erode at the same cross section, 
the channel widens. 
 
Meander growth involves a change in the dimensions of a meander. Meander amplitude and 
width increase as a meander enlarges. At the same time, the radius of curvature of the bend 
increases. Meander shift involves the displacement of the meander in a downstream direction. 
Although rare, some parts of the bend can actually shift upstream. Figure 1.6 shows the various 
modes of meander loop behavior. 
 

 
A. Extension, B. Translation, C. Rotation, D. Conversion to a Compound Loop, E. Neck Cutoff by Closure, F. 

Diagonal Cutoff by Chute, G. Neck Cutoff by Chute. 

Figure 1.6. Modes of Meander Loop Behavior (Brice, 1975). 
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1.4 FACTORS AFFECTING MEANDER MIGRATION 

Meander migration is an interactive process between water flow and soil erodibility. The 
conditions of the flow and the properties of the soil are major factors affecting meander 
migration. Significant research has been performed to identify influential factors. A list of such 
factors was prepared for previous TxDOT Project 0-2105 (Briaud et al., 2001b): 

• soil properties (soil erosion function), 
• flow condition (discharge, velocity, water depth), 
• meander geometry (width, depth, radius of curvature, sinuosity), 
• stream pattern (straight, meandering, braided), 
• free surface slope, 
• channel roughness (Manning’s roughness coefficient n, Darcy-Weisbach friction factor f), 
• sediment load, 
• vegetation, 
• debris problem, 
• channel relocation, and 
• human activities on the floodplain of river. 

 
Flow, soil, and geometry are considered to be the most important factors affecting meander 
migration and are addressed in detail in this study. 
 

1.5 MEANDER PARAMETERS TO DESCRIBE GEOMETRY 

Geometry of real rivers is often very complicated. In order to reduce the complexity to an 
acceptable level but with sufficient precision, channel bends are treated as arcs. The parameters 
to describe meander geometry are shown in Figure 1.7 and the definitions of these parameters are 
as follows: 
 A = meander amplitude 
 W = channel width 
 M = channel migration distance 
 R = radius of curvature 
 φ = bend angle 
 θ = relative angle (0 ≤ θ ≤ φ) within each bend 
 t = time 
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Figure 1.7. Parameters Defining Meander Geometry. 
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CHAPTER 2. LITERATURE REVIEW 
 
This chapter describes some of the existing knowledge on the prediction of meander migration. 
This information is divided into four categories: meander migration predictions, meander 
migration flume tests, risk analysis for meander migration, and meander migration software. 
 

2.1 MEANDER MIGRATION PREDICTIONS 

2.1.1 Keady and Priest (1977) 

Keady and Priest (1977) consider the rate of downstream migration to be a function of the free 
surface slope of the river, the meander amplitude, and the specific weight of water. They express 
this rate by the following formula: 
 

 ( )V s
gA

φ=  (2.1) 

 where, V = migration rate, (ft/yr) = dM/dt in Figure 1.7 
 g = acceleration of gravity, (ft/sec2) 
 A = meander amplitude, (ft) in Figure 1.7 
 s = free surface slope 
 φ = function of s given in Figure 2.1 
 
The graph presented in Figure 2.1 is based on data from the Red River in Arkansas and 
Louisiana, the Red Deer River in Alberta, Canada, and other rivers, as shown in Table 2.1. The 
points corresponding to the case histories in a previous study (Briaud et al., 2001b) are also 
plotted on the graph. 
 
The free surface slope is very close to the channel bed slope, which is determined by the slope of 
the terrain. Water flows to a lower elevation. The slope of the terrain provides potential energy to 
keep water flowing and determines how fast water flows. Keady and Priest (1977) correctly 
identified the importance of channel slope. But channel slope is not the only factor affecting flow 
condition. Rainfall is another important factor influencing flow conditions. Usually a large 
portion of the total migration distance occurs during a few big floods. Soil properties are another 
important issue ignored by the authors. Different rivers have neither the same precipitation nor 
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the same soil properties. The usefulness of this method is limited by the extent of the database 
used to develop it. 

Table 2.1. Data Used by Keady and Priest (1977). 
Identification Velocity of Migration (ft/yr) Meander Amplitude (ft) Slope 

Mississippi R (LA) 60 13,000 0.0000436 
Mississippi R (MS) 111 11,000 0.0000588 
Mississippi R (TN) 225 13,200 0.0000777 

Red R (ARK) 350 2,900 0.000132 
Pearl R (LA) 20 1,050 0.000200 

Red Deer R (Canada) 20 1,200 0.000275 
Tombigdee R (MS) 13 800 0.000421 

Buffalo R (MS) 17 1,560 0.000689 
 

 
Figure 2.1. Graph for Determining Rate of Meander Migration (Keady and Priest, 1977; 

Briaud et al., 2001b). 
 

2.1.2 Hooke (1980) 

Hooke (1980) proposed that the erosion rate is most closely related to the catchment area (as a 
surrogate of discharge and width). He determined rates of bank erosion from field measurements 
and historical maps for 11 streams in Devon, England. He then compared the rates of bank 
erosion with worldwide published rates in 43 streams. He derived the equation through multiple 
regression analyses using the 54 data points as follows: 
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 where, Y = bank erosion rate 
 A = catchment area 
 
Figure 2.2 shows the data and regression for Hooke’s equation. The data points from Briaud et 
al. (2001b) are added to this figure. 
 

 
Figure 2.2. Relationship between Catchment Area and Migration Rate  

(Hooke, 1980; Briaud et al., 2001b). 
 
The catchment area for a reach of a river is the area catching all the runoff going to that reach. 
Rainfall is an importance source of river flow. For the same amount of rainfall, the larger the 
catchment area, the larger the flow rate. For the same river, it is reasonable to assume that the 
migration rate of different reaches is related to their catchment area. For different rivers it might 
not be a good idea to relate migration rate to catchment area only and disregard varying 
precipitation levels. Rivers having the same catchment area might have quite different flow rates 
due to different amounts of precipitation. Soil properties are also ignored here. Although both 
axes in Figure 2.2 are in logarithmic scale, there is still significant scatter. 

2.1.3 Brice (1982) 

Brice (1982) proposed that the rate of bank migration increases with increasing channel width. 
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 0.01Y B=  (2.3) 
 where, Y = mean erosion rate, (m/yr) 
 B = channel width, (m) 
 
Brice’s data consisted of 43 data points from four different stream types (equiwidth, wide bend, 
braided point bar, braided) as shown in Figure 2.3. The data points from Briaud et al. (2001b) 
were added to Figure 2.3. There are several points for each site because there are several periods 
of observation for each site. 
 

 
Figure 2.3. Relationship between Migration Rate and Channel Width  

(Brice, 1982; Briaud et al., 2001b). 
 
This formula is very simple, probably too simple. Brice only related migration rate to channel 
width. Almost all the important factors are missing in this formula. Figure 2.3 shows the value 
0.01 is meaningful for only a few points in the data set. The migration rate is normally not 
constant along a river or over time. The ratio of migration rate to channel width is not constant 
either. The average ratio of migration rate to channel width can roughly predict the amount of 
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migration within a short period of time for the same river with no guarantee of precision. It is not 
likely that a universal formula like the author proposed can be applied to all rivers. 

2.1.4 Nanson and Hickin (1983) 

Nanson and Hickin (1983) showed that the ratio of radius of curvature of a bend (Rc) to channel 
width (W) influences the lateral migration rate of a meandering river. The relationship between 
channel migration rate (MR) and the ratio of radius of curvature to channel width for the Beatton 
River, Canada, and other rivers is shown in Figure 2.4. The normalized migration rate (MR/W) is 
highest when the ratio of radius of curvature to channel width (Rc/W) is about 3. Data points 
from a previous study (Briaud et al., 2001b) were added to the figure. The data from Nanson and 
Hickin (1983) conform, approximately, to the following relations: 
 

 
( )
( ) ( )1

(m/year) 0.2 /  for ( / ) 3

(m/year) 2.0 /  for / 3

c c

c c

MR R W R W

MR R W R W−

= <

= ≥
 (2.4) 

 where, MR = mean erosion rate, (m/year) 
 W = channel width, (m) 
 Rc = radius of curvature, (m) 
 
This relationship between migration rate and geometry is widely cited, but the data points are 
widely scattered and the best fit line is not obvious. Geometry is only one factor affecting 
meander migration. Other important factors such as velocity and soil properties were ignored in 
the authors’ conclusion. This study described the relation between migration rate and geometry 
qualitatively rather than quantitatively. 
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Figure 2.4. Relationship between Migration Rate and Geometry  
(Nanson and Hickin, 1983, 1986; Briaud et al., 2001b). 

 

2.1.5 Odgaard (1987) 

Odgaard (1987) solved constitutive equations by assuming that the rate of bank erosion is 
proportional to the difference between the near-bank depth-averaged mean velocity and the 
reach-averaged mean velocity at bank full discharge. The resulting equation indicates that the 
erosion rate correlates with channel characteristics such as width, depth, curvature, bend angle of 
channel center line, channel slope, friction factor, and degree of vegetation on the banks. The 
predictions using this equation agreed well with data measured using historical records (air 
photos, maps, and stream flow records), field measurements, and soil analysis in the East 
Nishnabotna River and Des Moines River in Iowa. 
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 e = erosion constant 
 α = 1.27 
 θ = Shields’ parameter (= 0.06) 
 m = friction parameter 
 k = Karman’s constant (= 0.40) 
 FDc = particle Froude number 
 b = bank-full width of channel (m) 
 rc = radius of curvature (m) 
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 φ = bend angle 
 β = angle from crossover to first outer bank erosion occurrence 
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 dc = center line flow depth 
 
In the calculations, two variables were assumed: the friction factor (m) was taken as 3 and 
particle Froude number (FDc) as 10 (Odgaard, 1987). In addition, the erosion constant was taken 
as e = 6.4×10-7 and e = 4.4×10-7 for the case of light or no vegetation and dense vegetation on 
outer bank, respectively. 
 
This method considers flow (u), soil (e), and geometry (b/rc). If the right erosion constant is 
picked, the predicted migration rate is close to the measured one. Although soil erodibility is a 
fundamental property of soil, it is treated as an empirical coefficient here. An e value can be 
chosen based on existing records, but there is no guarantee that the value will work for a true 
prediction case. Soil erodibility can be obtained using the erosion function apparatus (EFA) to 
test the erosion function of the soil (Briaud et al., 2001a). It would be worthwhile to study how to 
replace the erosion constant e here with the EFA function. 
 
The above method was a simplified version of a more complex solution developed by the same 
author (Odgaard, 1986). A modified version came later (Odgaard, 1989a). But unfortunately the 
answer is very sensitive to some parameters. In the example given in another article (Odgaard, 
1989b), the calculated migration rate of a hypothetical river is 11 m/yr. If the flux factor B is 
changed from 6 to 4.8, the migration rate will be 17 m/yr. If the factor f is changed from 0.08 to 
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0.07, the migration rate will be 12.1 m/yr. So this method, while more fundamentally sound, 
might not be good for practical use. 

2.1.6 Hudson and Kesel (2000) 

These authors examined the channel migration and meander-bend morphology for the lower 
Mississippi River between 1877 and 1924, prior to channel cutoffs, revetments, and change in 
sediment regime. The average migration rate was 45.2 m/yr in the upper alluvial valley and 
increased to 59.1 m/yr in the lower alluvial valley. The highest migration rate occurred when the 
ratio of radius of curvature to channel width was between 1.0 and 2.0. They did not proposed a 
prediction method. 

2.1.7 Ikeda et al. (1981) and Parker et al. (1982) 

Although these authors did not propose a method for predicting meander migration, they 
developed a theory explaining the formation of meanders. They identified alternate-bar 
instability as the cause of meander migration. Bend instability in sinuous channels is different 
from the instability of alternate bars in straight channels. These two mechanisms work at the 
same characteristic wavelengths. They developed an expansion technique involving the Stokes 
expansion for water waves to perform a nonlinear stability analysis, which explains the skewing 
and fattening and shows that the lateral and downstream migration rates are proportional to the 
bend amplitude. 

2.1.8 Blondeaux and Seminara ( 1985) 

These authors developed and applied a two-dimensional (2D) model of flow and bed topography 
in sinuous channels with erodible boundaries in order to study the mechanism of meander 
initiation. A “resonance” phenomenon uncovered by Ikeda et al., 1981) was detected when the 
values of relevant parameters fall within a certain range. It was proposed that resonance controls 
the bend growth and is connected with bar instability. Comparison with experimental 
observations showed that resonance is associated with meander formation. 

2.1.9 Pizzuto (1990) 

This author developed a 2D numerical model to predict the distribution of boundary shear stress, 
cross-channel sediment transport rates, and evolution of bed topography. The equilibrium values 
of a dimensionless depth increase as the bed slope decreases. 
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2.1.10 Darby and Thorne (1994, 1996), Darby et al. (1996) and Darby et al. (2002) 

Darby and Thorne (1994, 1996) solved the governing equations of flow continuity, flow 
resistance, conservation of flow momentum, sediment transport, bank stability, and conservation 
of sediment mass. A physically based 2D numerical model was developed to simulate channel 
widening. Comparison was made with a 13.5 km (8.44 mi) reach of the South Fork of the Forked 
Deer River in west Tennessee (Darby et al., 1996). Qualitative agreements were observed, but 
quantitative predictions are not reliable. 
 
Darby et al. (2002) developed a numerical model and tested river morphology for cohesive 
erodible banks. The model couples a 2D depth-averaged model of flow and bed topography with 
a mechanistic model of bank erosion. Deposition and removal of failed bank material were 
simulated. The authors also solved the governing conservation equations in a moving boundary 
fitted coordinate system. Model performance was encouraging in regard to agreements between 
simulations results with data from two flume tests and from a real river. 

2.1.11 Mosselman (1998) 

Mosselman’s (1998) prediction method consists of a 2D depth-averaged flow model and a bank 
erosion model. The prediction method is applied to a reach of the meandering gravel-bed River 
Ohre in the former state of Czechoslovakia. Poor agreement was observed. The author claims 
that inclusion of a 3D flow model, a sediment transport model, will improve the prediction 
results. 

2.1.12 Sun et al. (2001a, 2001b) 

Sun et al. (2001a, 2001b) used the linear theory of Johannesson and Parker (1989) to develop a 
2D computer model for meandering rivers that couples water flow, bed topography, and sorting 
of sediments with different grain sizes. The model for bed load sediment transport and sorting 
came from the theory of Parker and Andrews (1985). Simulation results showed that curvature-
related instability is a primary factor affecting the initial growth of meandering rivers and that 
alternate bars have little impact on the initial development of meander loops. 

2.1.13 Duan et al. (2001), Duan and Julien (2005) and Duan (2005) 

Duan et al. (2001), Duan and Julien (2005), and Duan (2005) developed a numerical-empirical 
model called Enhanced CCHE2D (EnCCHE2D) to simulate alluvial channel migration 
phenomena. The EnCCHE2D model is capable of predicting quasi-3D flow field and shear stress 
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distribution on the bed. The process of sediment transport and meander migration were predicted 
based on these quasi-3D flow solutions. The advance or retreat of bank is calculated by 
considering not only the hydraulic erosion of bank surface and toe but also the mass balance of 
sediment flux in the near-bank zone. 
 
The flow field was initially obtained by the 2D depth-averaged hydrodynamic model, CCHE2D. 
A set of empirical functions were then used to transform the flow and the bed shear stress field 
into quasi-3D ones. Details are explained in Duan (1998). 
 
The sediments consist of bed load and suspended load. The authors used the formula of Meyer-
Peter and Muller (1948) for bed load sediment transport. The primitive definition indicates that 
the volumetric sediment transport rate per unit width and length is equal to the integration of the 
product of velocity and concentration along the flow depth. They adopted the original formula of 
Rouse (1938) for calculating sediment concentration profile. Van Rijn’s formula (1989) was 
found to give the best results in computing the reference concentration. 
 
Basal erosion and bank failure occur in the process of bank erosion. Basal erosion caused by 
flow-induced shear stresses within the submerged part of the bank surface was calculated. Duan 
(2005) studied bank failure at a later time. The bank erosion rate is determined by the flow and 
sediment transport fluxes near the bank, and not just by the excessive velocity. After some 
improvements were made, this prediction model was used to simulate the inception of channel 
meandering (Duan et al., 2005a). 
 
Figure 2.5 is a simulation result showing that the channel widens and bars and pools form. 
Because flow field and bed profile measurements are not available, it is not possible to compare 
simulated flow field and bed configurations with experimental data. Good agreement was 
observed in the comparison of simulated bank lines with those measured, as shown in Figure 2.6. 
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Figure 2.5. Simulation of Meandering Channel Widening Due to Bank Erosion  

(Duan et al., 2001). 
 

 

Figure 2.6. Comparison of Experimental and Simulated Results (Duan et al., 2001). 
 
The authors demonstrated that the model is capable of predicting the alternate bars in a straight 
reach of channel and simulating the initiation process of a meandering channel. No quantitative 
comparison of the formation of bed form was made due to lack of data. The application of the 
model is still at the stage of experimental testing. 

2.1.14 Chen (2002) 

Chen (2002) used a Reynolds-Averaged Navier-Stokes (RANS) method together with a scour 
rate equation to calculate scour around simple piers. Unsteady RANS equations were solved in a 
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general curvilinear coordinate system. The same method is used to calculate maximum shear 
stress for the prediction of meander migration in this project. 

2.1.15 Olsen (2003) 

Olsen developed a 3D CFD model which was based on the finite volume method using an 
unstructured grid with dominantly hexahedral cells. The κ-ε model was used to predict 
turbulence. Sediment transport was computed as bed load in addition to solving the convection-
diffusion equation for suspended sediment transport. The CFD model computes the erosion as a 
function of the sediment transport formulas and the computed 3D flow field. 
 
Verification was done on a laboratory experiment conducted by another researcher. Figure 2.7 
displays how a straight channel developed into a meandering channel in the simulation. No 
comparison with the test results was made. 
 

 
Figure 2.7. Simulated Meandering Process of Laboratory Case (Olsen, 2003). 

 

2.1.16 Abad and Garcia (2004) 

Abad and Garcia (2004) introduced a simplified river model for predicting river 
morphodynamics processes, including river migration. The methodology consists of components 
such as designing stream restoration, linear and nonlinear analyses, and a plan form migration 
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model. The mean annual flood discharge was used for the verification of a real river. Partial 
agreement was observed. This method can be classified as a quasi-2D model. 

2.1.17 Rodriguez et al. (2004) 

Rodriguez et al. (2004) developed two high-resolution models to simulate the flow field: a depth-
averaged model with secondary flow correction and a full 3D computational fluid dynamics 
(CFD) model. Comparison with field data showed a successful simulation of the main flow 
features. 

2.1.18 Jang and Shimizu (2005) 

Jand and Shmizu (2005) modeled the flow field using the cubic interpolated pseudoparticle 
method. Secondary flow was considered in the sediment transport equation for the streamline 
and transverse transport to assess bed and bank evolution over time. In the 2D simulation, bank 
erosion occurs when the cross-sectional slope of the banks is larger than the submerged angle of 
repose. The model can reproduce phenomena such as bar growth and channel widening. It can 
also reproduce the features of braided rivers. Good agreements with laboratory experiments were 
observed. 
 

2.2 MEANDER MIGRATION FLUME TESTS 

2.2.1 U.S. Army Corps of Engineers (1945) 

The U.S. Army Corps of Engineers (1945) performed a series of flume tests on the behavior of 
self-formed meandering rivers as shown in Figure 2.8. The flume tests were conducted in 
different conditions to investigate the effects of not feeding sand at the entrance, discharge, the 
angle of attack, bed slope, the initial cross sections, and material types. However, the studies 
were not based on a quantitative approach but rather on a qualitative approach. 
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(a) Initial Condition (b) After 4 hours 

Figure 2.8. Photos from Sand Flume Test with Feeding Sand at the Entrance 
 (U.S. Army Corps of Engineers, 1945). 

 
The effect of not feeding sand at the entrance to balance the sediment transport was not 
noticeable at the beginning of the test. The lack of sediment supply at the entrance of the channel 
gradually caused the channel to flatten with decreasing velocity, so this change slowly 
progressed downstream as shown in Figure 2.9. 
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Figure 2.9. Photos from Sand Flume Test without Feeding Sand at the Entrance  
(U.S. Army Corps of Engineers, 1945). 

 
The size of the simulated meandering bends in the tests depends on the discharge and on the 
axial slope as shown in Figures 2.10 and 2.11: the higher the discharge or axial slope, the bigger 
the bends. This trend is reasonable since both discharge and slope are function of the energy of a 
stream. 
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Figure 2.10. Effect of Discharge on the Size of Bend (U.S. Army Corps of Engineers, 1945). 
 

 
Figure 2.11. Effect of Valley Slope on the Size of Bend  

(U.S. Army Corps of Engineers, 1945). 
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The effects of changes in the initiating angle of attack were studied by varying angles from 30° 
to 45°, and then to 60° (see Figure 2.12). All other conditions were the same. It is quite obvious 
that the larger attack angle created the larger meandering bend. 

 

Figure 2.12. Effect of Attack Angle on the Size of Bend 
 (U.S. Army Corps of Engineers, 1945). 

 

2.2.2 Nagata et al. (2000) 

Nagata et al. (2000) presented a numerical model to investigate bed deformation and bankline 
shifting in 2D plan form. The governing equations are composed of 2D continuity and 
momentum balance equations in a moving boundary-fitted coordinate system. The authors 
developed a sediment transport model that included the theory of non-equilibrium sediment 
transport proposed by Nakagawa and Tsujimoto (1980). An intermittent bank erosion model 
proposed by Hasegawa (1981) was used, in which a bank slide event with noncohesive materials 
is evaluated. 
 
The authors also conducted laboratory experiments to verify the model proposed. The 
experiments used a tilting flume which was 10 m (33 feet) long, 1 m (3.3 feet) wide and 0.2 m 
(0.7 feet) deep, as shown in Figure 2.13. The initial channel plan form in the experiments was set 
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as a sine-generated curve with 2 m (6.6 foot) wavelength and a 30° attack angle at the entrance 
of the channel. The cross-sectional shape was trapezoidal with 14 cm (5.5 inch) bottom width, 30 
cm (11.8 inch) top width and 4 cm (1.6 inch) bank height. Sediment was fed manually during the 
experiments from upstream. Temporal bankline variations and channel bed profiles were 
measured in the tests. 
 

 

Figure 2.13. Experimental Setup (Nagata et al., 2000). 
 
Figures 2.14 and 2.15 are the results of bankline evolutions and cross-section profiles in 
calculations and experiments. Comparison between the calculated and experimental results 
shows good agreement. 
 



 

39 

 
Figure 2.14. Temporal Changes in Plan Forms (Nagata et al., 2000). 

 

 
Figure 2.15. Temporal Changes in Cross-Sectional Profiles (Nagata et al., 2000). 
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2.3 RISK ANALYSIS FOR MEANDER MIGRATION 

2.3.1 Briaud et al. (2003) 

Briaud et al. (2003) developed the SRICOS-EFA method which predicts the scour depth in clay 
as a function of time. This is a fundamental modeling approach which consists of modeling the 
erosion process at the water-soil interface and projecting it into time by using future hydrographs 
(daily discharge versus time). This approach has the advantage of simulating the real 
phenomenon on a site-specific basis. It has the drawback of being more complicated because it 
requires site-specific measurement of soil properties and selection of future hydrographs. 
 
Since the future hydrograph is unknown and it is not realistic to make a deterministic prediction, 
they developed a new technique to generate equally possible future hydrographs in a 
probabilistic manner. This technique consists of using a past hydrograph, preparing the 
frequency distribution plot for all the floods within that hydrograph, sampling the distribution 
randomly, and preparing a future hydrograph, for the required period, which has the same mean 
and standard deviation as the measured hydrograph. This process is repeated 10,000 times and, 
for each hydrograph, a final scour depth (the depth reached after the design life) is generated. 
These 10,000 final depths of scour are organized in a frequency distribution plot with a mean and 
standard deviation, as shown in Figure 2.16. 
 

 
Figure 2.16. Probability Distribution of Scour Depth, d, for Different Lengths  

of the Project Life, Lt (Briaud et al., 2003). 
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This analysis can be used to estimate the probability of exceedance R associated with the choice 
of different design values of scour depth and project lives. By definition, R is the probability that 
the design conditions are exceeded in the course of the life of the structure. From the probability 
distribution of d (Figure 2.16) it is possible to determine the CDF of d (Figure 2.17). R is then 
estimated as the probability of exceedance (Figure 2.17). This analysis provides a statistical 
framework that can be used in a cost-benefit study of bridge foundation design. 
 

 

Figure 2.17. Risk Associated with Different Design Values of the Final Scour Depth, d, and 
Different Lengths of the Project Life, Lt (Briaud et al., 2003). 

 

2.3.2 Lagasse et al. (2003, 2004a, 2004b) 

Lagasse et al. (2003, 2004a, 2004b) conducted National Cooperative Highway Research Program 
(NCHRP) research Project 24-16. The principal product of this research was a stand-alone 
handbook for predicting stream meander migration using aerial photographs and maps. The 
handbook deals with the problem of incremental channel shift and provides a methodology for 
predicting the rate and extent of lateral channel shifting and down-valley migration of meanders. 
The methodology is basically on using time-sequence maps and extrapolation. First, circles at 
two different times are fitted for a given bend. Then, the location of the center and the magnitude 
of the radius are linearly extrapolated with respect to time. The direction of new migration 
increment can also be extrapolated based on the direction of the two previous increments. The 
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process is shown from Figure 2.18 to 2.20, and the equations for the extrapolation are Eqs. 2.6 to 
2.8. A program, “The Data Logger and Channel Migration Predictor,” was developed to assist 
this process. It is an ArcView extension and was written in Visual Basic for Application (VBA) 
for ArcView. 
 

 

Figure 2.18. Banklines and Circles Drawn along Outer Bankline Positions for a 
Hypothetical Channel in Three Different Years (Lagasse et al., 2004b). 

 

 
Figure 2.19. Diagram Defining the Outer Bank Radius of Curvature in Years 1, 2, and 3 

(Rc1, Rc2, and Rc3) and the Amount (DA and DB) and Direction (θA and θB) of Migration of 
Bend Centroid during Periods A and B (Lagasse et al., 2004b). 
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Figure 2.20. Predicted Position and Radius of Curvature of the Circle that Defines the 
Outer Bank of the Hypothetical Channel in Year 4 (Lagasse et al., 2004b). 
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As part of this study, a database of measured bend migration was generated and a statistical 
analysis was performed to develop guidance in estimating the normalized extension and 
translation migration with respect to the channel width for sites where aerial photos are not 
available. The procedures and guidance are in the form of a cumulative percentage plot, and two 
separate graphs are shown in Figures 2.21 and 2.22. There are four different categories of the 
channel such as Brice Class A, B1, B2, and C. For example, for meanders of the type Brice C 
sites, the probability of the normalized extension migration reaching 0.02 river width per year or 
less is 79 percent, according to Figure 2.21. For the same probability of 79 percent, the 
normalized translation migration according to Figure 2.22 is 0.036 river width per year. Figure 
2.23 shows example movements in percentages for a 30-year time period. This approach can be 
meaningful for the site at which the historical record is not available. The drawback of this 
method is that it cannot incorporate a change in soil condition and a future hydrograph different 
from the past hydrograph. The advantage is its simplicity and its field-scale soil specifications. 
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Figure 2.21. Cumulative Percentage of Extension Migration (Lagasse et al., 2004b). 

 

 

Figure 2.22. Cumulative Percentage of Translation Migration (Lagasse et al., 2004b). 
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Figure 2.23. Example Movement Percentages for a 30-Year Time Period 
 (Lagasse et al., 2004b). 

 
2.4 MEANDER MIGRATION SOFTWARE 

2.4.1 Abad and Garcia (2006) 

Abad and Garcia (2006) developed the RVR MEANDER program as a toolbox to assist the 
prediction of meander migration. The flowchart for the model is shown in Figure 2.24. Two 
versions of the program were developed: stand-alone Microsoft Windows-based and 
geographical information system GIS)-based versions. 
 
The stand-alone version as shown in Figure 2.25 was written in Microsoft Visual C++ and 
Microsoft Foundation Classes (MFC). The geometry input can be done by typing manually, 
utilizing a spreadsheet, or importing from an ArcMap-DXF file. 
 
The GIS-based version as shown in Figure 2.26 was written in Microsoft Visual C++ and MFC 
like the stand-alone version. In addition, Visual Basic and the ArcObjectsTM Developer Kit 
were used as well. The user can import the river geometry data from existing GIS line data 
within ESRI ArcMap. 
 
Figures 2.27 to 2.28 show the user input interfaces for the program, and the example result of the 
prediction of migration is shown in Figure 2.29. 
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Figure 2.24. Flow Chart of Model Processes (Abad and Garcia, 2006). 

 

 
Figure 2.25. Stand-Alone Windows-Based Version (Abad and Garcia, 2006). 
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Figure 2.26. GIS-Based Work Environment (Abad and Garcia, 2006). 

 

 
Figure 2.27. User Interface to Input Center line Coordinates (Abad and Garcia, 2006). 
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Figure 2.28. User Interface to Run Migration Module (Abad and Garcia, 2006). 
 

 
Figure 2.29. Output of Plan form Migration (Abad and Garcia, 2006). 
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CHAPTER 3. METHODOLOGY 
 
3.1 HYPERBOLIC MODEL FOR CHANNEL BANKLINE EROSION DISTANCE 

Under high flow rate, a river will erode its bankline and rework the flood plain continuously. The 
bankline displacement usually contains two components: cross-valley expansion and down-
valley translation. Both components make the river more sinuous and extend the length between 
two reference stations. The increasing channel length increases the friction force on the channel 
boundaries to counterbalance the stream power, so as to decrease river erodibility. As the river 
flowrate remains constant, it is expected that the river bankline displacement from its original 
place will attain an equilibrium state. A hyperbolic process is proposed to estimate the channel 
bankline migration distance of a cross section, 
 

 tM
a bt

=
+

 (3.1) 

 
where M is the bankline migration distance, t is the time, a and b are two constants. The distance 
increases quickly, responding to the higher stream power in the early stage, and the rate 
gradually decreases as the channel extends its length and produces larger friction. The two 
parameters, a and b, are the reciprocal of the initial erosion rate iM&  and the maximum erosion 
distance maxM , which is the maximum distance when the bankline attains its equilibrium state. 
 

 
0
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The two parameters, iM&  and maxM , in the hyperbolic model identify the initial erosion rate and 
the migration distance of a cross section of the channel as shown in Figure 3.1. Determination of 
these two parameters is crucial to the prediction of bankline movement. In this study, numerical 
simulation and EFA test were used to determine the initial migration rate iM& . Large-scale flume 
tests were also conducted to investigate the maximum migration distance maxM  of channel 
bankline. 
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Figure 3.1. Channel Bankline Migration Distance and Hyperbolic Model. 

 

3.2 NUMERICAL SIMULATION 

In the present study, the three-dimensional flow chimera RANS method in Chen (1995a, 1995b) 
and Chen et al. (1997) is used. The computational domain is first divided into a number of 
smaller grid blocks, which allow complex configurations and flow conditions to be modeled 
efficiently through the judicious selection of different block topology, flow solvers, and 
boundary conditions. The chimera domain decomposition technique was used to connect the 
overlapped grids together by interpolating information across the block boundaries. The 
Reynolds stresses were evaluated using the two-layer turbulence model of Chen and Patel 
(1988). The mean flow and turbulence quantities were calculated using the finite-analytical 
method of Chen et al. (1990). The SIMPLER/PISO pressure-velocity coupling approach of Chen 
and Patel (1989) and Chen and Korpus (1993) is used to solve for the pressure field. A detailed 
description of the multiblock and chimera RANS methods is given in Chen and Korpus (1993) 
and Chen et al. (1997). A useful summary of that method can be found in Nurtjahyo (2002). This 
summary discusses the governing equations including turbulence modeling (RANS equations), 
the boundary conditions for the channel bank surface, the river bottom, the outer boundaries, and 
the free water surface. A more detailed discussion is presented in Chapter 4 of this report. 
 

3.3 EFA TEST 

Soil erosion is an interactive process between soil and water occurring at the interface of soil and 
water. As velocity increases, the shear stress τ imposed by the water on the soil particles 
becomes large enough to overcome the gravity bonding forces. For coarse-grained soils erosion 



 

51 

occurs by rolling and sliding of particles. Fine-grained soils may erode particle by particle or 
block of particles by block of particles (electromagnetic and electrostatic forces play an 
important role) (Briaud et al., 2001a). The threshold shear stress at which erosion is initiated is 
called the critical shear stress τc. 
 
The EFA was invented by Jean-Louis Briaud at Texas A&M University in 1991 (U.S. Patent No. 
US6260409B1; July 17, 2001). Figure 3.2 shows the conceptual diagram and test section of the 
machine. The soil sample sits in an American Society for Testing and Materials (ASTM) 
standard Shelby tube with a 76.2 mm (0.30 inch) outside diameter (ASTM D1587). A piston 
pushes the sample until it protrudes by 1 mm (0.004 inches) into the flow. The protruding soil 
erodes under velocities varying from 0.2 m/s to 4 m/s. The procedure for an EFA test is as 
follows: 

1. Place the sample in the EFA, fill the pipe with water, and wait 1 hour. 
2. Set the velocity to 0.3 m/s. 
3. Push the soil 1 mm into the flow. 
4. Record how much time it takes for the 1 mm soil to erode. 
5. When the 1 mm of soil is eroded or after 1 hour of flow, whichever comes first, increase 

the velocity to 0.6 m/s and bring the soil back to a 1 mm protrusion. 
6. Repeat step 4. 
7. Next, repeat steps 5 and 6 for velocities equal to 1 m/s, 1.5 m/s, 2 m/s, 3 m/s, and 4 m/s. 

 

 

m

        
Figure 3.2. EFA Test: (a) Conceptual Diagram; (b) Photograph of Test Section  

(Briaud, et al., 2001a). 
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The test result is an erosion rate z&  versus velocity v curve. The erosion rate is the height of the 
soil eroded divided by the time taken to erode it. Shear stress cannot be measured directly and 
needs to be solved in an indirect manner. Shear stress at the soil-water interface is caused by the 
flow, and the magnitude is related to the roughness of soil surface. The pressure difference 
between points 2 and 3 (Figure 3.2(a)) is caused by the friction across the sample. By drawing a 
free body diagram, the shear stress can be calculated with reference to the pressure difference. 
But the pressure head difference is small and fluctuates. It was found that the best way to 
calculate shear stress is to use the Moody Chart (Moody, 1944; Figure 3.3). The shear stress τ is: 
 

 21
8

f vτ ρ=  (3.3) 

 
where τ is the shear stress on the wall, f the friction factor obtained from the Moody Chart, ρw 
mass density of water, and v mean flow velocity in the pipe. On the Moody Chart, Re is 
Reynolds number; μ w the dynamic viscosity of water, ν w = μ w /ρ w the kinematic viscosity of 
water (10-6 m2/s at 20°C), and D the pipe diameter. For non-circular shape, D = 4A w /P where A w 
= cross-sectional flow area and P = wetted perimeter. For a rectangular cross-section pipe, D = 
2ab/(a+b), where a and b are dimensions of the sides of the rectangle. ε is the average height of 
roughness elements. It is taken as (1/2)D50, where D50 is the mean particle diameter for the soil 
and ε/D a measure of relative roughness. Figure 3.4 is the result of a test on a clean coarse sand 
(D50 = 3.375 mm [0.01 inch]). The critical shear stress for this soil is τc = 3 N/m2. 
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Figure 3.3. Moody Chart (Munson et al., 1990). 

 

  
Figure 3.4. Erosion Curve for Coarse Sand (Briaud et al., 2001a). 

 
Many experiments have been done to establish relationships between the erosion function 
characteristics and common soil properties that can be easily obtained. The erosion function is a 
non-linear relationship between the erosion rate z&  and the shear stress τ . Critical shear stress τc 
and initial slope of the curve Si are two of the parameters involved. In order to find the 
correlation between erodibility and soil parameters, one could try to find the correlation between 
τc, Si, and soil parameters. For coarse-grained soils, τc is proportional to D50. For fine-grained 
soils, there is no such correlation. Experimental data also show weak correlation between τc, Si, 
and soil properties such as undrained shear strength, plasticity index, and percentage passing 
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#200 sieve, etc. So it is not realistic to obtain erodibility from common soil properties. A direct 
measurement with the EFA for a specific site is favored. 
 

3.4 FLUME TEST 

Flume tests are large-scale physical modeling to simulate bankline erosion of curve channels. 
Based on the physical considerations, the factors that affect the channel bankline migration 
distance M of any arbitrary position on the channel can be divided into four categories: 
geometry, hydraulic condition, soil properties, and others not included in the first three 
categories. Geometry consists of the channel width W, the radius of curvature of the channel 
bend R, the angle of the channel bend φ, and the channel bed slope s. The hydraulic condition 
includes the fluid density ρw, the fluid viscosity μw, the average flow velocity U, and the water 
depth h. The soil property is the relationship between the hydraulic shear stress τ and the soil 
erosion rate z& ; the critical shear stress τc at which erosion initiates plays a particularly important 
role. The other factors include external forcing, vegetation condition, artificial structures, etc. In 
this study, only the first three categories plus gravitational acceleration g were considered, and 
the functional relationship can be expressed as 
 
 0 ( ,  ,  ,  ,  ,  ,  ,  ,  ,  )w w cM f W R s U h gφ ρ μ τ=  (3.4) 
 
After performing the dimensional analysis, the functional relationship between the migration 
distance and the variables can be expressed as 
 

 1 2( ,  ,  , ,  ,  ,  )c

w

M R hf Fr s Re
W W W U

τφ
ρ

=  (3.5) 

 
where Re = ρwUh/μw is the Reynolds number and Fr = U/(gh)1/2 the Froude number. According 
to open-channel flow theories, it is known that the water depth h depends on the flow rate Q and 
the channel bed slope s. Under a constant flow rate and constant channel cross-section condition 
(and therefore a constant h and U) in the experiments, h can be obtained by adjusting s. This 
means that s is a dependent variable of U and h and thus can be crossed out in the present study. 
The Reynolds number is greater than 15,000 in the experiments so the effect of the fluid 
viscosity may be neglected. The water depth to channel width ratio h/W, was kept constant (h/W 
= 1/7.5) throughout the experiments with h being approximately one order of magnitude smaller 
than W. We assume such a ratio is close to that of a natural channel while accepting the limits of 
the physical dimensions in the tests (even though the tests are some of the largest worldwide). 
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The dimensionless critical shear stress τc/ρwU2 is converted into the critical Froude number Frc 
at which bank erosion is initiated. With these observations, the dimensionless equation is 
simplified to 
 

 2 ( ,  ,  ,  )M Rf Fr Frc
W W

φ=  (3.6) 

 
where R/W is the ratio between the radius of curvature of the channel center line and the channel 
width φ, the bend angle Fr, the flow Froude number, and Frc, the critical Froude number. 
Including the parameter θ to denote the position on the initial channel bankline, the final form of 
the dimensionless equation is 
 

 3 ( ,  ,  ,  ,  )M Rf Fr Frc
W W

θ φ
φ

=  (3.7) 

 
Note that only the initial value in each parameter was used in the study, and θ varies from 0 to φ 
within a curve bend. 
 

3.5 GEOMETRY STUDY 

From the previous section, it is known that migration distance M is a function of channel 
geometry, R/W, and φ. Before calculating the migration distance by applying the hyperbolic 
model, one needs to identify the local geometry of any point on the channel bankline. The 
purpose of geometry study is to curve fit a channel bankline into several segments with circles 
and straight lines. The circles is chosen to represent the bend shape due to its simplicity and its 
claimed effectiveness in literature. An automatic fitting process was also developed to repeat the 
procedure for a complex hydrograph. The geometry study consists of these steps: 

1. Develop a method to fit a circle for a given group of points. 
2. Calculate the radius of curvature of each point on the curve. 
3. Identify bends for which circles should be fitted. 
4. Find the best fit circle at a certain bend. 
5. Calculate the bend angle. 

A detailed discussion of this section will be described in Chapter 7 of this report. 
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3.6 APPLICATION OF SRICOS-EFA METHOD TO CHANNEL MIGRATION 

The SRICOS-EFA method was developed to determine the scour depth at a cylindrical bridge 
pier for a constant velocity flow and a uniform soil system (Briaud et al., 1999). The evolution of 
the pier scour depth with time is predicted by calculating the initial erosion rate and maximum 
scour depth. The method was adapted in this study by replacing the scour depth with the 
bankline migration distance. 
 
The major difference in this implementation is that for pier scour, velocity is the only changing 
parameter, whereas for meander migration, changing parameters also include channel geometry 
and water depth. If the velocity is constant, there is only one scour depth z versus time t curve for 
the prediction of pier scour. Scour depth after a certain time can be calculated in one step. For the 
prediction of meander migration, even though velocity is constant, the geometry and possibly 
water depth change with time. These parameters need to be updated after each time step. A long 
time constant velocity needs to be divided into a number of time steps. The migration distance of 
each step is accumulated, which is similar to using a hydrograph. 
 
A channel curve is simplified into circles and straight lines for easy analysis. The bends and the 
parts with reasonably large curvature are fitted with circles. The rest is treated as line segments. 
There might be tens of thousands of time steps for one hydrograph. Manual fitting would make a 
practical solution not possible. A huge amount of effort has been put into developing automatic 
fitting techniques and a computer program. 
 
Water depth changes with discharge, velocity, and channel cross section. The prediction needs 
the water depth at each time step for each point on the channel. It would be too complicated to 
obtain all these input data. Assumptions are made to simplify the problem. The cross section of 
the channel is assumed to be trapezoidal and remain the same in the migration process. The 
average velocity is treated as being the same throughout the channel. With these assumptions, the 
discharge or velocity versus water depth curve can be developed by running HEC-RAS. Then the 
needed water depth can be provided numerically. 
 

3.7 RISK ANALYSIS 

A meander migrates at a rate controlled by the erosion rate of the soil at the interface between the 
water and the bank. The hydraulic shear stress imposed by the water is controlled by the velocity 
of the flow, which depends on the hydrograph of the river. A meander migration prediction 
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process must therefore consider the hydrograph of the river. This hydrograph is not known since 
it will occur in the future during the design life of the bridge or of the highway embankment. 
Since it is not realistic to make a deterministic prediction of a future hydrograph, it is more 
desirable to make predictions of many equally possible hydrographs in a probabilistic manner. 
Each hydrograph then moves the river toward a predicted position of the meander and a 
probabilistic post-process provides a probability that the river will move to a given location at a 
given time. 
 

3.8 MEANDER PROGRAM 

With all the components described above, a computer program was developed as the last step of 
this project. To apply the methods developed in this research, a user-friendly computer program 
is necessary to assemble all the steps. The program includes the following components: 

• Geometry study. The user can read in the plan form coordinates of a river. The program 
automatically fits circles to each bend of the river. Radii of curvature and bend angles are 
obtained accordingly. If a hydrograph is applied, the automatic fitting process is repeated 
for each time step. 

• Input of soil properties. The EFA curves are input here. 
• Input of water data. The following information goes here: discharge vs. velocity curve, 

discharge vs. water depth curve, and hydrograph. The user can choose to do a risk analysis 
or not. Then the risk analysis period, a hydrograph or Q100, Q500 (100/500 year flood), are 
needed. 

• Implementation of the hyperbolic model. With the above information and the equations 
for τmax and maxM , the hyperbolic model is implemented. The code for risk analysis is also 
here. This process goes on behind the user interface. 

• Input Plots. This part graphically gives the user a chance to check whether the input data 
look correct. 

• Output Plots. The migrated channels for a single hydrograph or risk analysis are presented 
here. 
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CHAPTER 4. NUMERICAL SIMULATION 
 
Critical shear stress is the threshold to initiate erosion. When the shear stress within the channel 
exceeds this critical value, a certain erosion rate of the bottom and bank material is established. 
The numerical simulation calculates the shear stress distribution in the channel. With EFA tests 
of bank material, the initial migration rate iM&  of the hyperbolic model can be determined. 
 

4.1 INTRODUCTION 

In an earlier TxDOT pier scour project, τmax was defined as the maximum shear stress that occurs 
at the soil-water interface before the initialization of scour (Chen, 2002). With erosion 
progressing, scour depth increases gradually and shear stress decreases accordingly until it 
reaches the critical shear stress τc. Since it is not convenient to measure shear stress on the 
interface, numerical simulation is needed to develop the τmax equation. Numerical simulation can 
be considered as a computer version of “flume test.” A variety of parameters can be chosen and 
varied in small steps. Many more cases can be conducted in simulation than in actual flume tests. 
For pier scour, data reduction showed that the most influential factors that affect τmax are velocity 
and Reynolds number. 
 
The same concept and procedure can be applied to prediction of meander migration. The 
maximum shear stress τmax corresponds to a certain flow condition, soil property, and channel 
geometry. Numerical simulation calculates the maximum shear stress along the channel under 
different flow and geometry conditions. The influence of these factors on maximum shear stress 
is quantitatively analyzed and an empirical formula can thus be developed. 
 

4.2 EXAMPLE RUNS 

The geometry of three example runs is shown in Figure 4.1. These three cases have the same 
R/W (= 4) with 65°, 120°, and 240° bend angles, respectively. The simulation results of velocity 
vectors and shear stresses on the channel bank are shown in Figures 4.2 and 4.3. 
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Figure 4.1. Geometry of Numerical Simulation Runs. 
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Figure 4.2. Velocity Vectors Obtained in the Numerical Simulations. 
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Figure 4.3. Shear Stress Distribution Obtained in the Numerical Simulations. 

 
An example of the bank shear stress along the channel is shown in Figure 4.4. The channel 
geometry conditions are R/W = 4 and φ  = 180°. The extreme values at the two ends (i.e., channel 
inlet and exit) are due to the two boundary conditions of the simulation. On the other hand, the 
shear stresses in other bends have moderate magnitudes with a periodical pattern. Shear stresses 
on the alternate banks have the same distribution with an obvious phase angle. τmax on the graph 
is the maximum shear stress on the cross section of a bank. τavg is the depth average of the 
values. It can be seen from the figure that both shear stresses (τmax and τavg) have similar 
distributions along the channel. The line segments corresponding to θ /φ = [0 1] indicate the 
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location of occurrence of shear stress on a bend. θ denotes the relative location of a point on the 
bend, the angle between the inflection point and the point of interest. When θ = 0, it indicates the 
inflection point. When θ = φ/2, it indicates the middle point of the bend. It is observed from 
Figure 4.4 and other graphs that the peaks of τmax and τavg curves often occur at a location close 
to θ /φ = 1. A peak means the maximum τmax of a bend, also called τmax_max. 
 

 
Figure 4.4. Simulated Shear Stress along a Channel. 

 
4.3 ANALYSIS OF RESULTS 

The multiple regression involves variables v, R/W, φ, and θ. From dimensional analysis and past 
experience, it can be shown that the dimensionless shear stress τ /(ρv2) is a function of R/W, φ, 
and θ. The regression processes is divided into these steps: 

1. Find the relationship between τmax_max and R/W: τmax_max /ρv2 = f1(R/W). 
2. Find the relationship between τmax_max and φ: τmax_max /ρv2 = f2(φ). 
3. Find the relationship between the relative location of occurrence of τmax_max and R/W: θmax 

/φ = f3(R/W). 
4. Find the relationship between the relative location of occurrence of τmax_max and φ: θmax /φ 

= f4(φ). 
5. Fit the shear stress distribution of a bend, τmax/(ρv2) = f5(θ /φ, θmax/φ). 
6. Get the final equation: τmax/(ρv2) = f1(R/W) × f2(φ) × f5(θ /φ, f3 × f4). 
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Figure 4.5 shows the relationship between τmax_max and R/W at a constant φ angle of 180° and a 
velocity of 0.2 m/s. A curve fitting was done for the maximum shear stress. For R/W ≥ 2, the 
fitted and the original curves are fairly close. For R/W < 2, however, the fitted curve is far lower 
than the original data. As a matter of fact, geometry of R/W < 2 does not often happen in nature. 
The expression of the fitted curve is: 
 

 12
1( )

400( / )
max_max Rf

v W R W
τ

ρ
= =  (4.1) 
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Figure 4.5. Influence of R/W. 
 
Figure 4.6 shows the relationship between τmax_max and φ angle at a constant radius-to-width ratio 
of 4 and a velocity of 0.2 m/s. A parabolic curve can be fitted to the data. Since the difference 
between the maximum and minimum τmax_max values is about 25 percent, a straight line was used 
instead. So τmax_max was treated as independent of φ. The expression of function f2 is: f2(φ) = 1. 
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Figure 4.6. Influence of φ Angle. 
 
The shear stress distribution of one bend mostly has similar shapes when the influential factors 
change. It is possible and desirable to find an analytical curve which fits the distribution well. 
Based on comparison of different type of analytical curves, the probability density function 
(PDF) of extreme value distribution is found to be a good match for the calculated shear stress. 
The expression is: 
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Where, μ is the location parameter and σ is the scale parameter. The indicator of relative location 
on the bend is x = θ /φ. When x = μ, y reaches maximum value. σ determines the maximum value 
and the degree of spreading of the curve. Figure 4.7 displays an example of extreme value 
distribution with μ = 1 and σ = 0.37. 
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Figure 4.7. Extreme Value Distribution. 

 
Theoretically, σ should also be a function of R/W and φ angle. When σ = 0.37 the maximum 
value is close to 1 and the degree of spreading is similar to most cases of shear stress 
distribution. A constant value of σ = 0.37 is used for the purpose of simplicity while necessary 
precision is maintained. Figure 4.8 shows the calculated shear stress and fitted curves. A good fit 
can be observed. The shear stress distribution equation can be expressed as: 
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Figure 4.8. Simulated Shear Stress and Fitted Curves. 

 
The next step is to determine the location parameter μ, which is a function of R/W and φ angle. 
The influence of R/W on location parameter μ is shown in Figure 4.9. θmax/φ indicates relative 
location of the peak values. “tao_max” denotes the original data. For the original data, when 
there is a plateau or several peak values of similar magnitude on the same bend, the location of 
the peak value of the average shear stress curve is chosen. Curve fitting is a type of 
simplification. The fitted curve will represent the actual data in the prediction of meander 
migration. The relative location of the peak values of fitted curves is of greater interest. The 
relationship between this relative location and R/W is indicated by “Fitted” in Figure 4.9. The 
θmax/φ value corresponds to the peak of the extreme value distribution in Figure 4.8. A straight 
line is fitted with an R2 = 0.9156. The expression for the location parameter is: 
 

 3 ( ) 0.047( ) 1.05max R Rf
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Figure 4.9. Influence of R/W on Location Parameter. 
 
Figure 4.10 shows the relationship between θmax/φ and φ angle. The curve for the original data 
(“tao_max”) is obtained with the same method as shown in Figure 4.9. The relative location for 
the peaks of the fitted extreme value distribution changes very little when φ angle is less than 
120°. When φ angle is larger than or equal to 120°, it does not change at all. Thus, the location 
parameter is considered to be independent of φ angle. The expression of function f4 is f4(φ) = 1. 
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Figure 4.10. Influence of φ Angle on Location Parameter. 
 
In numerical simulation, the bank is considered to be perfectly smooth. To account for the 
roughness in reality, a constant coefficient of c1, which equals to 8 for sand and 13 for clay, is 
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used. It was also found that a geometry-dependent coefficient c2 will improve the prediction. 
Both c1 and c2 are determined by verification study. 
 
The last step is to combine the individual relationships and develop a unified equation for 
τmax/(ρv2) as a function of R/W, φ, and θ. The combined form is: 
 

 1 2 5 3 42 ( ) ( ) ( , )max Rf f f f f
v W

τ θφ
ρ φ

= × × ×  (4.5) 

 
By substituting corresponding equations, the final equation is expressed as: 
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The regression is done on a limited number of simulation cases. A systematic matrix will 
generate maximum shear stress under all possible combinations of conditions. Extreme value 
distribution is a good match for the shear stress distributions. In some cases the difference 
between the original data and the fitted curve is quite large. A better fit is suggested. 
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CHAPTER 5. FLUME TEST IN SAND 
 
From the hyperbolic model, two coefficients, the initial migration rate iM&  and the maximum 
migration distance Mmax, need to be determined. The maximum migration distance Mmax was 
obtained from conducting physical modeling. The flume tests described here and in next chapter 
are two separate yet equally important sets of experiments in non-cohesive and cohesive types of 
soil, respectively. Based on the dimensional analysis derived in the previous chapter, the 
maximum migration distance Mmax is a function of channel geometry, hydraulic conditions, and 
soil property. Therefore Mmax is evaluated by varying these three controlling parameters. 
 

5.1 EXPERIMENTAL SETUP 

The experiments were conducted in a large basin that is 36.6 m (120 feet) long, 20.9 m (68.5 
feet) wide, and 1.5 m (5 feet) deep located in the Haynes Coastal Engineering Laboratory at 
Texas A&M University. The test area is 27.4 m (90 feet) long, 13.7 m (45 feet) wide, and 0.30 m 
(1 foot) deep in the basin, which was filled with sand. An idealized channel molded from the 
sand bed mimicked the natural river erosion process. A constant-head reservoir connected to the 
entrance of the idealized channel provided the desired constant flowrate. A weir at the end of the 
channel controlled the water depth in the channel (see Figure 5.1). In order to reduce the scale 
effect, the channel was designed to maximize the scale while containing at least three curved 
bends. A straight channel was connected to each end of the curved channel with a transition, 
which is a curved bend of one-half of the bend angle, φ. The straight section was long enough so 
the flow became fully developed before it entered the first curved bend. The channel has a 
constant initial cross section in the form of a trapezoid. The cross section has a bottom width of 
40.0 cm (15.7 inches), top width of 74.6 cm (29.47 inches), bank slope of 30°, and depth of 15.6 
cm (6.1 inches). One typical channel geometry and cross-sectional configuration are shown in 
Figures 5.2 and 5.3. The parameter θ in the figure is the variable representing the angle and 
varies from 0 to φ in each band. The channel slope was carefully controlled by adjusting the 
slope of the sand bed to maintain a constant initial water depth of h = 10 cm (3.9 inches) along 
the channel with a maximum discrepancy less than 1.0 cm (0.4 inches) (10 percent of the design 
depth) in each test case. 
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Figure 5.1. Water Basin and Flume Test Setup. 
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Figure 5.2. Curved Channel Geometry. 
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Figure 5.3. Initial Cross-Sectional Configuration. 
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5.2 SOIL PROPERTIES 

Uniform and fine sand with a median grain diameter D50 = 0.32 mm was used in the tests to 
minimize the inhomogeneity of material. The curve for grain size distribution obtained from a 
sieve analysis of the soil samples is shown in Figure 5.4. EFA was developed to measure the 
erodibility of a soil sample in order to predict the scour depth at bridge piers (Briaud et al., 
1999). The test results including the relationships of the soil erosion rate with the mean velocity 
U and the shear stress τ are shown in Figures 5.5 and 5.6. From these two curves, the critical 
Froude number Frc was then estimated as 0.14. Note that Frc represents the minimum Froude 
number to initiate bankline erosion in the tests. 
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Figure 5.4. Grain Size Distribution. 
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Figure 5.5. EFA Test Results: Soil Erosion Rate versus Mean Velocity. 
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Figure 5.6. EFA Test Results: Soil Erosion Rate versus Shear Stress. 
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5.3 TEST MATRIX 

Five different radius-to-width ratios (R/W) and four different bend angles (φ) were used in the 
tests. The hydraulic condition featured four different flow rates; therefore four different Froude 
numbers (Fr) were varied in the experiments. All the Froude numbers are in the subcritical 
range. The test matrix with different geometric and hydraulic parameters is shown in Table 5.1. 
Note that the parameters in Table 5.1 refer to the initial test condition only and do not reflect the 
later changes due to channel evolution. Also, the last case (case 12) is the repeatability case with 
the same testing conditions as in case 03. Figure 5.7 plots the designed channel plan forms of all 
test cases. 
 

Table 5.1.  Experimental Conditions. 

Case No. R/W φ Fr Frc Case No. R/W φ Fr Frc 

01 2 65° 0.30 0.14 07 4 180° 0.30 0.14 

02 3 65° 0.30 0.14 08 4 220° 0.30 0.14 

03 4 65° 0.30 0.14 09 4 120° 0.25 0.14 

04 6 65° 0.30 0.14 10 4 120° 0.34 0.14 

05 8 65° 0.30 0.14 11 4 120° 0.36 0.14 

06 4 120° 0.30 0.14 12 4 65° 0.30 0.14 
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Figure 5.7. Designed Channel Plan forms of All Test Cases. 
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5.4 TEST PREPARATION 

Before the designed curve channel was molded from the sand bed, the channel bed slope was 
carefully adjusted in order to reach a uniform initial water depth condition along the channel. 
Manning’s equation was used to estimate the necessary channel bed slope. Since Manning’s 
equation calculates the channel bed slope of a straight channel, a sluice gate installed at the 
channel exit  adjusted water depth. 
 

5.5 TEST PROCEDURE AND MEASUREMENTS 

The test procedure was standardized in all test cases. The steps in the procedure are listed as 
follows: 

1. Record initial bankline of both banks. 
2. Turn on the pump and adjust the flowrate to the target value. 
3. Adjust the sluice-gate to reach a uniform initial water depth along the channel. 
4. Take pictures of the initial running conditions. 
5. Record channel bankline of both banks. 
6. Measure water surface elevation along the channel. 
7. Measure cross-section profile. 

 
The tests were run at a 10 cm (3.9 inch) initial water depth and 5.6 cm (2.2 inch) free board on 
the channel banks. The channel bankline and the channel width were defined and measured at the 
water-bank interfaces and were recorded several times during each test. The measurements were 
taken with relatively short time steps in the early stage of the tests to resolve the intensive 
movement of the bankline. In addition to the measurements of bankline, several cross sections 
were chosen along the channel and the bed profiles mapped. Water elevation was measured at 
the middle of these cross sections. Each test case was run nonstop until an overflow occurred at 
any reach of the channel or the bankline movements were less than 1.0 cm (0.4 inches) between 
consecutive measurements. 
 

5.6 RESULTS 

The morphological behavior of a curved channel undergoing a constant flowrate is demonstrated 
in both the spatial and temporal aspects. Figure 5.8 shows the plan form variations of case 03 
(R/W = 4, φ = 65°, Fr = 0.30) with the bankline at several different instants. In the spatial aspect, 
the channel bankline expands laterally and translates downstream. The channel migration thus 
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features two components: cross-valley movement and down-valley movement. The bankline 
shift starts from the first half of the leading outer bend (0.0 < θ/φ < 0.5) and ends on the second 
half of the following inner bend (1.5 < θ/φ < 2.0). A large displacement occurs behind the apex 
of the outer bend (θ/φ = 0.5) with a phase lag to the channel curvature. Both banks have a similar 
but alternate erosion pattern. In the temporal aspect, the movement of the channel bankline in 
Figure 5.8 shows that the bankline has a relative large migration rate at the beginning of the test; 
the rate decreases as the test progresses. Not only did the migration elongate the channel length, 
it also increased the “sinuosity” of the channel, defined as the ratio of channel length to valley 
length. Figures 5.9 and 5.10 are the plan form variations of case 06 (R/W = 4, φ = 120°, Fr = 
0.30) and case 08 (R/W = 4, φ = 220°, Fr = 0.30), respectively. 
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Figure 5.8. Plan form Variations of Case 03: (a) Initial Channel Bankline and Bankline  

at 51 hours; (b) Banklines of 2nd and 3rd Bends. 
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Figure 5.9. Plan form Variations of Case 06: (a) Initial Channel Bankline and Bankline  

at 30 hours; (b) Banklines of 2nd and 3rd Bends. 
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Figure 5.10. Plan form Variations of Case 08: (a) Initial Channel Bankline and Bankline  

at 147 hours; (b) Banklines of 2nd and 3rd Bends. 
 
Figure 5.11 is a plot of three cross-sectional profiles (A-A’, B-B’, and C-C’) within the second 
and the consecutive third bends as marked in Figure 5.8(b) (looking downstream). It reveals that 
all the cross sections have deep pools in front of the toes of the channel outer banks (A’, B’, and 
C) and have sand deposits as point bars along the channel inner banks (A, B, and C’). Sediment 
coming from the upstream and from the collapse of the banks contributes to the increase in bed 
elevation. Since a relatively high and constant flowrate was used in this study (similar to having 
a flood lasting for months), the bankline on both sides of the band moved outward and widened 
with a much greater distance at the outer bank. If the flow rate was reduced in the tests after the 
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high flowrate, such as in the dry season for a natural channel, the water would flow in the deeper 
part of the channel and the water-bank interfaces would shift toward the outer bank and expose 
the inner sand bars. In nature, vegetation may grow and strengthen the soil above the water line 
in the channel during the dry season and make it harder to erode in the next wet season. The 
width of the river therefore may not widen as shown in the experiments. This is a feature that 
these experiments did not reproduce. 
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Figure 5.11. Cross-Sectional Profiles of Case 03. 

 
The mean velocities (U) and water elevations (Hw) in different time steps of three selected cross 
sections are shown in Figure 5.12. In this study, the mean velocity U was calculated as U = Q/Aw 
with Aw being the wetted cross-sectional area; the water elevation Hw was measured at the middle 
of the cross section. In the figure, the mean velocity of each cross section decreased and 
gradually reached a constant value as the bankline erosion process continued. Sediment transport 
from the upstream and bank collapse caused the water elevation to rise. Interestingly, the 
elevations among the three cross sections were approximately the same. With the variations of 
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mean velocity and water elevation, the energy slope along the channel, defined as the total head 
loss over the associated channel length, decreased as the flow continued to erode the channel 
bankline and elongate the channel. Eventually, an equilibrium state of the channel bankline is 
expected to be reached. At that time, the displacement of channel bankline should attain 
maximum value. 
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Figure 5.12. Case 03: (a) Mean Velocities, and (b) Water Elevations. 
 
Figure 5.13 shows the channel plan form variations of the four other cases with different R/W 
values, corresponding to cases 01, 02, 04, and 05 in Table 5.1. The other two parameters, φ and 
Fr, were kept constant in these cases. It is found that the channel bankline in the larger R/W cases 
(R/W = 6 and 8) migrates in both the cross- and down-valley directions. On the contrary, the 
channel bankline movement in the smaller R/W cases (R/W = 2 and 3) is mainly in the down-
valley direction. Such a mechanism straightens the channel. 
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Figure 5.13. Plan Form Evolutions of Different R/W: (a) Case 01; (b) Case 02; (c) Case 04; 
(d) Case 05. Lines Are Measurements Taken from t = 0 to t = (a) 18 hr, (b) 42 hr,  

(c) 92 hr, (d) 66 hr. 
 
The bend angle φ is another important parameter affecting channel geometry. For channels with 
the same R/W, the one with a greater bend angle φ has a longer channel length. Figure 5.14 
shows the bank movement for four different bend angles while keeping R/W and Fr constant. 
(cases 03, 06, 07, and 08 in Table 5.1) The results show that the channel migration distance and 
phase lag decrease with the increase in the bend angle. The decrease in phase lag makes the 
bankline displacement appear more uniform and symmetric for the larger bend angle cases. 
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Figure 5.14. Plan form Evolutions of Different φ: (a) Case 03; (b) Case 06; (c) Case 07;  
(d) Case 08. Lines Are Measurements Taken from t = 0 to t = (a) 51 hr, (b) 30 hr,  

(c) 86 hr, (d) 147 hr. 
 
Figure 5.15 compares the channel plan form variations among four different Froude numbers 
while keeping R/W and φ constant (cases 09, 06, 10, and 11 in Table 5.1). The channel bankline 
demonstrates a very similar pattern among the four cases. The channel bankline movement 
clearly increases with the Froude number, as expected. 
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Figure 5.15. Plan form Evolutions of Different Fr: (a) Case 09; (b) Case 06; (c) Case 10;  
(d) Case 11. Lines Are Measurements Taken from t = 0 to t = (a) 56 hr, (b) 30 hr,  

(c) 39 hr, (d) 23 hr. 
 
5.7 DATA DEDUCTION 

The channel migration distance was measured in the direction perpendicular to the initial channel 
bank. Using case 03 in Figure 5.8 as an example, the migration distance at five different 
positions on the right bank is shown in Figure 5.16. Note that when θ/φ becomes greater than 1 
(e.g., 1.0 < θ/φ < 2.0), it denotes a position in the following inner bend. The figures show that the 
channel migration rate (slope) is the highest at the early stage of the test, meaning that the 
channel migration distance increases rapidly within a short period of time. As the flow continues 
to erode the channel bankline, the rate decreases gradually. A maximum value of the migration 
distance is expected when the channel reaches an equilibrium state at t → ∞. The data points in 
Figure 5.16 were then fitted with a hyperbolic function. From the figure, it can be seen that the 
hyperbolic function is a good approximation in describing the temporal evolution of the bankline 
migration. The hyperbolic function is expressed in the form: 
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bta

tM
+

=  (5.1) 

 
where M is the channel migration distance, t is time, and a and b are constant. The reciprocals of 
the two constants in the hyperbolic function are the initial slope at t = 0 (1/a) and the asymptotic 
value of the hyperbolic curve at t → ∞ (1/b). Therefore, the initial migration rate iM&  and the 
maximum migration distance Mmax at a given cross section can be expressed as 1/iM a=&  and 

1/maxM b= . In the experiments, the units of M and t are in centimeters and hours, respectively, 
and the units of iM&  and Mmax are in centimeters per hour and centimeters, respectively. 
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Figure 5.16. Channel Migration Distance at Five Different Cross Sections in Case 03.  
(a) θ /φ = 0.0, (b) θ /φ = 0.5, (c) θ /φ = 1.0, (d) θ /φ = 1.5, (e) θ /φ = 2.0. Solid Lines Are 

Hyperbolic Fits. 
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The maximum migration distance Mmax at each cross section along the channel was obtained by 
curve fitting the measured data using the hyperbolic function, as indicated by the solid lines in 
Figure 5.16. In the experiments, the data from the second outer bank of the channel and the 
following third inner bank were used. This is to ensure that the fully developed secondary current 
in the channel was accounted for and the backwater effect from the channel exit was negligible. 
The non-dimensional results for case 03 are shown in Figure 5.17. Note that in the figure Mmax is 
normalized by the initial channel width W. The result shows that Mmax along the channel has the 
peak value behind the channel apex (θ/φ = 0.5) and there exists a phase lag to the channel 
curvature. Since Mmax displays the Gaussian distribution, a Gaussian distribution function is used 
to model the magnitude of Mmax along the channel bend: 
 

 
2ˆ/ˆ exp 0.5

ˆ
maxM A

W
θ φ μ

σ
⎡ ⎤−⎛ ⎞= −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 (5.2) 

 
where Â  is the maximum value of the distribution, θ/φ is the normalized angle, μ̂  is the location 
of the maximum value in terms of θ/φ, and σ̂  is the standard deviation of θ/φ in terms of θ/φ. 
Note that θ/φ > 1 means a location in the inner bank beyond the target outer bank. 
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Figure 5.17. Mmax Distribution along the Channel in Case 03. 

 
In the present study, one case (case 03) was repeated (case 12) to test the repeatability of the 
experiments. The value of Mmax, determined by fitting the hyperbolic function, is fitted with the 
Gaussian function distribution and compared in Figure 5.18. The differences between the two 
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tests are 0.7 percent for Â , 2.2 percent for μ̂ , and 4.7 percent for σ̂ . The relatively small 
variations demonstrate that the experiment is repeatable and the methodology using the 
hyperbolic function and Gaussian distribution function may be suitable. 
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Figure 5.18. Comparison in Mmax between Case 03 and Case 12 for Repeatability Test. 

 
For a large bend angle φ, the maximum migration distance Mmax along the curved bend shows a 
“dual-peak” distribution. There are two high value zones for maximum migration distance Mmax 
in the leading outer bank and the following inner bend as shown in Figures 5.19 and 5.20. The 
dual zones of high shear stresses appear in the cases with a bend angle 120° or larger. The 
second peak is not apparent in the cases with a 65° bend angle. When the flow enters the curved 
bend, the primary and secondary flows create high shear stresses when the secondary flow is 
fully developed. If the bend angle is large enough (or the channel length is long enough), the 
induced helical flow first dissipates its energy and then has enough time and room to regain 
energy before the flow enters the next bend. After the flow passes the inflection point, the 
curvature of the following bend induces a centrifugal force in the opposite direction and results 
in a momentum exchange. This strong momentum exchange creates a second zone of high shear 
stress in the channel. 
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Figure 5.19. Mmax Distribution along the Channel in Case 06. 
 

0.0

1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

W
M max

φθ /
 

Figure 5.20. Mmax Distribution along the Channel in Case 08. 
 
In order to model the dual-peak behavior, a superposition of two Gaussian distribution functions 
was used to fit the values for Mmax along the channel. The formulas can be expressed as: 
 

 
2 2

1 2
1 2

1 2

ˆ ˆ/ /ˆ ˆexp 0.5 exp 0.5
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σ σ
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 (5.3) 

 
where the subscripts 1 and 2 denote the first and second Gaussian distributions. 
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5.8 PROPOSED EQUATIONS 

There are six coefficients in Equation 5.3 that need to be determined. These coefficients are 
obtained by correlating with the three controlling parameters, R/W, φ, Fr and the critical Froude 
number Frc. From physical considerations and investigations, the near-bank velocity in a cross 
section is more strongly related to the channel bankline migration than is the mean velocity. A 
correction parameter β represents the magnitude of the near-bank velocity in terms of the mean 
velocity. Numerical simulation results show that the correction parameter β is affected by the 
channel radius curvature R. For the same undisturbed approaching velocity, the centrifugal force 
in a small R/W channel generates larger near-bank velocity than a large R/W channel. A simple 
equation to estimate the value of the correction parameter β is shown as follows: 
 

 1
/
1

+=
WR

β  (5.4) 

 
With the correction coefficient β being used, the controlling parameters, R/W, Fr, and Frc, can 
be combined and presented as a single variable βFr-Frc. The effect of R/W is then implicit in the 
correction coefficient β. 
 
Figure 5.21 shows the relation among the coefficients and βFr-Frc. Note that the band angle is 
kept at 65° for those cases plotted in the figure so there exists only a single Gaussian distribution, 
as indicated in Figure 5.17 and Equation 5.2. The results demonstrate the peak value of Â  occurs 
at βFr-Frc = 0.46, where R/W = 4, and decreases as βFr-Frc and R/W get either smaller or 
larger. This means a channel has the largest maximum migration distance Mmax when R/W = 4. 
Note that the migration direction in the present study is defined as the cross-sectional direction 
from the center of curvature and perpendicular to the channel initial bankline. The displacement 
at a given point on the channel bankline contains two components: the lateral expansion (the y-
direction displacement in the experiments) and the down-valley translation (the x-direction 
displacement in the experiments). For channels with a small radius of curvature (such as R/W = 
2), the channel bankline displacement is dominated by a down-valley translation with little 
lateral expansion. As a result, the migration distance remains small as the channel bankline 
continues to straighten. A similar straightening phenomenon for the large βFr-Frc (small R/W) 
cases was observed for the location of the peak μ̂  in Figure 5.21(b). The coefficient μ̂  decreases 
as βFr-Frc increases, which means that the location of the peak moves downstream as R/W 
decreases. It indicates that the following inner bend may have a large migration rate and a large 
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migration distance. The standard deviation σ̂  has a relatively small variation in all the cases, as 
shown in Figure 5.21(c). The average value is close to 0.5. 
 

0.00

0.50

1.00

1.50

2.00

0.00 0.25 0.50 0.75 1.00β Fr-Frc
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Figure 5.21. Coefficients of Gaussian Distributions versus βFr-Frc. 
 
The maximum migration distance Mmax is also influenced by the channel bend angle φ, as shown 
in Figure 5.22. As φ increases, the amplitude of the first peak ( 1Â ) decreases; the location of the 
first peak ( 1μ̂ ) moves upstream toward the front of the outer bank. The second Gaussian 
distributions for the all bend angles have relatively small and nearly constant peak values except 
for the 65° case, in which the peak value 2Â  = 0. The ratio of the second peak 2Â  to the first peak 

1Â  demonstrates a linearly increasing trend with respect to the bend angle. Similar to the results 
in Figure 5.21, the first standard deviation 1σ̂  remains somewhat constant. In the large bend 
angle cases (φ = 120°, 180°, and 220°), the μ̂  values for the second Gaussian distribution ( 2μ̂ ) 
are less than 2.0, indicating the second peak is within the same channel bend. The location of the 
second peak ( 2μ̂ ) moves upstream with a slight increase in standard deviation ( 2σ̂ ) when the 
channel bend angle increases. As the effect from the second peak becomes more obvious (i.e., 
φ becomes greater), the bankline displacement becomes more uniform and symmetric. 
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Figure 5.22. Coefficients of Gaussian Distributions versus φ. 

 
Based on the results in Figures 5.21 and 5.22, each coefficient in the Mmax equation (Equation 
5.3) is a function of R/W, φ, Fr and Frc, and can be obtained using regression analysis with the 
measured data. The final formulas for these coefficients in the Gaussian distribution functions 
are expressed as: 
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 (5.5) 

 
Equations 5.2 to 5.5 are therefore the prediction equations for the maximum meander migration. 
Note that Equation 5.2 should be used if the band angle φ is equal or less than 65° (in which only 
the first Gaussian distribution is needed and 2Â  = 0). For φ greater than 65°, Equation 5.3 should 
be applied. 
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CHAPTER 6. FLUME TEST IN CLAY 
 
This chapter investigates channel meander migration in clay by conducting physical modeling. 
The approach is to vary each primary parameter obtained from dimensional analysis while keep 
the remaining parameters constant. The effect and impact of each individual parameter can 
therefore be examined to provide a basis for parametric study. The approach is similar to that in 
Chapter 5 except clay is used. 
 

6.1 EXPERIMENTAL SETUP 

The meander experiments in clay were conducted in a large basin that is 22.0 m (72.6 feeet) 
long, 10.0 m (33 feet) wide, and 0.9 m (3 feet) deep located on the second floor of the 
Hydromechanics Laboratory at Texas A&M University (Figure 6.1). The basin was filled with 
approximately 200 tons of sand left from the previous flume tests in order to not only save on 
clay cost but also to minimize the maintenance effort of keeping moisture on the clay. 
 

 
Figure 6.1. Experimental Setup in the Hydromechanics Laboratory. 

 
A guide channel in the sand bed was carved to put the clay banks along the predetermined 
channel and form the channel geometry in each case. In order to reduce the scale effect, the 

22 m 

10 m 

2 m 
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channel was designed to maximize the scale ratio while containing at least three curved bends. 
Figure 6.2 sketches the channel configuration. A straight channel was connected to each end of 
the curved channel with a transition, which is a curved bend of one-half of the bend angle, φ. The 
straight section was kept long enough so the flow became fully developed before it entered the 
first curved bend. The initial cross section of the channel is of rectangular shape that has a width 
of 60.0 cm (23.6 inches) and a depth of 12.0 cm (4.7 inches) (Figure 6.3). Plywood plates were 
laid at the bottom of the channel so only the banks are erodible. 
 
During the first pre-test with a trapezoidal cross section of the channel, we observed almost no 
erosion on the side walls along the channel and no lateral movement of the river. Instead we 
observed erosion of the bottom of the channel. This was attributed to the relatively low shear 
stress on the walls compared to the higher shear stress on the bottom of the channel. In the 
second pre-test, we changed the cross-sectional shape from a trapezoidal to a rectangular channel 
(vertical wall on both sides) to increase the shear stress on the side walls so that the lateral 
movement of the river could be simulated. This remedy did induce side wall erosion along the 
channel. However, there was still excessive bottom erosion as well, and this required a huge 
amount of bottom clay to accommodate this bottom erosion. Since the clay cost and preparation 
time for the bottom layer were prohibitive, we decided to use a non-erodible bottom such as a 
thin plastic sheet. In the third pre-test, we changed the bottom material to the plastic sheets. We 
found the roughness of the plastic was too low compared to that of the clay. As a result, local 
flow velocity on the bottom increased, causing vibration of the plastic and turbulent flow as well. 
Therefore, we decided to replace the bottom layer with treated plywood to match the roughness 
of clay and increase the stiffness to avoid excessive vibration. 
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Figure 6.2. Channel Configurations. 
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Figure 6.3. Cross Section of the Clay Channel. 
 
The channel slope was carefully controlled by adjusting the slope of the sand bed to maintain a 
constant initial water depth of h = 10 cm (3.9 inches) along the channel with a maximum 
discrepancy less than 1.0 cm (0.4 inch) (10 percent of the design depth) in each test case. The 
water circulation system consisted of a pump, a constant-head tank, piping system, a sump in the 
basement, a clay channel, and two reservoirs before the entrance of the channel and after the exit 
of the channel. A sluice gate after the downstream reservoir controlled the water depth in the 
channel. The pump was located on the ground floor, while the basin was on the second floor. 
Water pumped from the sump in the basement into the constant-head tank through the piping 
system flowed down to the channel, passing the upstream reservoir (Figure 6.4). A diverting pipe 
eliminated the excessive pumping capacity. In addition, an overflow pipe located at about 3/4 of 
the height of the water tank kept the elevation head constant. 
 

 
Figure 6.4. Upstream Reservoir and Water Tank. 
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Figure 6.5. Carrier with Laser Sliding on the Bridge for Transverse Coordinate (y-

direction) Measurement. 
 
Data acquisition during the test included the flowrate, water depth, geometries of the banklines, 
water surface elevation profile, and water velocity. The same flow meter from the previous sand 
experiments measured the flow rate in the pipe that directly connected to the upstream reservoir. 
The flow meter was calibrated before the use. Water depth was measured at the channel center 
line using a ruler. For the geometry of two banklines, a laser coordinate-measurement system 
was used, as shown in Figure 6.5. An instrument bridge spanning the flume over the test section 
mounted the coordinate-measurement system. Two coordinate locating systems were installed 
with one on one of the side walls for the x direction and the other on the bridge for the y 
direction. Once the bridge moved to a pre-designated x-coordinate position, the y coordinate was 
obtained by sliding the carrier on the bridge to the interfaces between the clay banks and water. 
 
The water surface elevations were measured for several designated cross sections at certain time 
intervals. A plumb bob and a digital level measured the changes in water surface elevation 
throughout the tests, as shown in Figure 6.6. A voltage meter connected to two electrical wires 
detected current changes between the plumb bob and the wires through the ground when the tip 
of the plumb bob touched the water surface. In addition, the digital level was used to take 
readings of relative changes in the elevation from a scale attached to one of the wires. This 
system avoided possible extensive calibration work since all readings are independent of the 
measurement locations. 
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(a) Attached Scale and Plumb Bob (b) Digital Level 
Figure 6.6. Water Elevation Measurement Instrument. 

 
Acoustic Doppler velocimetry (ADV) uses acoustic frequency changes to measure the water 
velocity at a given point. An ADV probe was installed on a frame on which a tape measure was 
attached to trace the location of the measurement points within the channel (Figure 6.7). 
 

 
(a) Installed ADV probe on Frame 

 
(b) Data Acquisition Computer Connected to ADV probe 
Figure 6.7. Water Velocity Measurement Instrument. 
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6.2 SOIL PROPERTIES 

The maximum mean velocity from the water supply system was about 55 cm/s due to the limited 
height of the water tank (525 gallons). Therefore, a more erodible clay type was chosen to 
initiate the erosion process under the experimental setup. “Grande” clay is the most erodible clay 
type among the available clays from our clay supplier (located in Austin), so it was used for all 
the flume tests. 

6.2.1 Index List 

Grain size distribution analysis including a hydrometer test for the Grande clay was carried out 
according to the ASTM standard. The result is shown in Figure 6.8. 
 

0

20

40

60

80

100

0.0010.010.11 Grain size (mm)

Pe
rc

en
ta

ge
 p

as
sin

g 
(%

)

 
Figure 6.8. Grain Size Distribution Curve of Grande Clay. 

 

6.2.2 Engineering Properties 

Geotechnical tests were conducted according to the ASTM standard to obtain the engineering 
properties of Grande clay. The obtained properties are tabulated in Table 6.1. The vane shear test 
was also conducted and is shown in the table. 
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Table 6.1. Geotechnical Properties of Grande Clay. 
Liquid Limit 

(LL) 
Plastic Limit 

(PL) 
Plastic Index 

(PI) 
Shear Strength 

(kPa) 
28.40% 14.55% 13.85% 8.2 

 

6.2.3 Erosion Properties 

EFA was developed to measure the erodibility of a soil sample for predicting the scour depth at 
bridge piers (Briaud et al., 1999). The test results include the relationships of the soil erosion rate 
(mm/hr) with the mean velocity (m/s) and the shear stress (Pa). The results of the EFA test for 
Grande clay are shown in Figures 6.9 and 6.10. From the figures, the critical Froude number Frc 
is estimated as 0.48. The critical Froude number is the minimum Froude number that initiates the 
bankline erosion in the tests 
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Figure 6.9. Erosion Rate versus Velocity from the EFA Test. 
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Figure 6.10. Erosion Rate versus Shear Stress from the EFA Test. 

 
6.3 TEST MATRIX 

A total of eight flume tests cases were conducted with the parameters shown in Table 6.2. The 
first three cases are the preliminary tests performed for finding the optimal experimental 
conditions regarding to the slope of the channel and the cross-sectional shape. After the 
preliminary tests, five cases were conducted to vary the radius-to-width ratio (R/W) and the bend 
angle (φ). The parameters are defined in Figure 6.2(a) and the geometries of the channel for all 
cases are plotted in Figure 6.11. The variable θ in the figure represents the angle and varies from 
0 to φ in each bend. Note that the parameters in Table 6.2 refer to the initial test condition and do 
not reflect later changes. We did not vary the Froude number in the tests because the critical 
Froude number is very high and previous tests found the Froude number effect on the maximum 
meander distance is insignificant (see Chapter 5). 



 

101 

Table 6.2. Test Matrix in Clay Tests. 

Case No. R/W φ Fr Fr-Frc 

01 4 120˚ 0.50 0.02 
02 4 120˚ 0.50 0.02 
03 6 65˚ 0.50 0.02 

04 4 65˚ 0.50 0.02 

05 6 65˚ 0.50 0.02 

06 2 65˚ 0.50 0.02 

07 4 120˚ 0.50 0.02 

08 4 220˚ 0.50 0.02 

 

22.0 m

2 m

9.8 m

X

Y

 
Figure 6.11. Sketches of Plan Forms of All Test Cases. 

 
6.4 TEST PREPARATION 

The required channel slope for maintaining a constant water depth along the channel varies case 
by case since it mainly depends on the geometry of the channel. Therefore, the first step in test 
preparation is leveling the sand bed. This step includes drawing two reference lines on each 
flume side wall marking the bed level, flooding the entire test area, and leveling the sand bed by 
draining water gradually. Once the leveling work was done, the water inside the sand was 
drained. To make the sand bed more stable, we dug a couple of holes and pumped the water out. 
Subsequently, the contour of the guide channel in the sand bed was drawn and the sand channel 
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was carved using a mold and shovels. Figure 6.12 shows the carved guide channel in the sand 
bed. 
 

 

Figure 6.12. Carved Guide Channel in the Sand Bed. 
 
Plywood plates were cut according to the shape of the guide channel and laid on the bottom of 
the channel. This means only the banks were erodible. The Grande clay was delivered in blocks 
of 25 cm (9.8 inches) × 18 cm (7.1 inches) × 18 cm (7.1 inches). Each block was in a sealed 
plastic bag. The clay blocks were laid on both sides of the channel using a wooden mold placed 
on the middle of the channel (Figure 6.13). The finished clay banks were covered with soaked 
cloths to maintain moisture inside the clay. The cloths were sprayed frequently to retain moisture 
until the tests started. 
 

 

Figure 6.13. Laying the Clay Blocks along the Channel. 
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6.5 TEST PROCEDURES AND MEASUREMENTS 

All the flume tests in clay were conducted according to the following procedure: 
1. Measure the initial geometry of both banklines (left and right). 
2. Turn on the pump and adjust the flow rate to the predetermined value. 
3. Adjust the sluice gate to obtain the desired constant water depth of 10 cm (3.9 inches) in 

the channel. 
4. Take pictures of the initial running conditions. 
5. Measure the initial water velocity on several predetermined stations. 
6. Measure the water surface elevation along the channel. 
7. At the next time step, take pictures of the running conditions and shut down the 

experiment. 
8. Measure the geometry of both banklines. 
9. Take pictures of the drained channel. 
10. Re-start the experiment and measure the water velocity, the water depth, and water 

surface elevation. 
11. Repeat steps 7 to 10 until the experiment is completed. 
12. After finish the experiment, measure the cross-sectional profiles. 

For each case, the primary measurements were the geometry of the banklines, the water velocity, 
the water depth, and the water surface elevation. 
 

6.6 RESULTS 

The test results of case 08 are presented in this chapter as an example. All the test results for 
other cases are shown in Appendix B. Two photos in Figure 6.14 show the initial and final 
conditions of the test. In the photos, most parts of the outer banks were eroded, while the inner 
banks were mostly intact. This phenomenon can be clearly seen in Figure 6.15, which depicts the 
measured initial geometry and final geometry on both banklines. The plan form evolution of the 
second and third bends at several different instants is shown in Figure 6.16. The figure shows the 
channel bankline expands laterally and translates downstream. The channel migration thus 
contains two components: cross-valley movement and down-valley movement. The bankline 
shift starts from the first half of the leading outer bend (0.0 < θ/φ < 0.5) and ends on the second 
half of the following inner bend (1.5 < θ/φ < 2.0). A large displacement occurs behind the apex 
of the outer bend (θ/φ = 0.5) with a phase lag to the channel curvature. Both banks have a similar 
but alternate erosion pattern. 
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Three cross-sectional profiles looking downstream at stations 1, 4, and 6 are plotted in Figure 
6.18. The locations of these stations are shown in Figure 6.17. It reveals that most erosion 
occurred in the outer banks as expected and the coarse particles in the Grande clay deposited 
along the inner banks in the channel, although the amount was relatively small in comparison 
with that in the sand flume tests. Note that Grande clay contains approximately 30 percent fine 
sand particles as shown in the grain size distribution curve (Figure 6.8). Therefore, some of the 
sandy particles that are heavier than the clay particles deposited at the inner banks where the 
velocity is relatively lower, while the finer particles were suspended in the water and carried 
downstream along the channel. 

(a) Initial Condition at t = 0 hr 

(b) Final Condition at t = 336 hr 

Figure 6.14. Photos of Clay Test Case 08 (R/W = 4, φ = 220o, Fr = 0.50). 
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Initial & Final Channel Geometries (Clay Test Case 08_R/W  =4, φ =220, Fr  =0.50)
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Figure 6.15. Channel Geometry at the Initial Stage and Final (336 hr) Stage (Clay Test 

Case 08). 
 

 

Plan Form Evolution (Clay Test Case 08_R/W  =4, φ =220, Fr  =0.50)
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Figure 6.16. Plan Forms Evolution at t = 0, 24, 48, 72, 96, 120, 150, 180, 210, 240  

and 336 hr (Clay Test Case 08). 
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Figure 6.17. Locations of the Predetermined Stations. 

 

(a) 

Clay Test Case 08 Cross-Sectional Profile at ST1
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(b) 

Clay Test Case 08 Cross-Sectional Profile at ST4
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(c) 

Clay Test Case 08 Cross-Sectional Profile at ST4
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Figure 6.18. Evolution of Cross-Sectional Profiles at Three Stations. 
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The mean velocities and water elevations in different time intervals at the predetermined stations 
are shown in Figures 6.19 and 6.20. In this study, the mean velocity U is calculated as U = Q/Aw, 
with Aw being the wetted cross-section area. The water elevation Hw was measured at the middle 
of the cross section. In the figure, the mean velocity of each station decreased as the bankline 
erosion process continued. With the variations of mean velocity and water elevation, the energy 
slope along the channel, which is defined as the total head loss over the associated channel 
length, decreased as the flow continued to erode the channel bankline and elongate the channel. 
Eventually, an equilibrium state of the channel bankline is expected to be reached. The 
displacement of channel bankline is expected to attain the maximum value at that time. 
 

Mean Water Velocity Profile (Clay Test Case 08_R/W  =4,φ  =220, Fr  =0.50)
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Figure 6.19. Mean Water Velocity Profile (Clay Test Case 08). 

 

Water Surface Elevation Profile (Clay Test Case 08_R/W  =4,φ  =220, Fr =0.50)
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Figure 6.20. Water Surface Elevation Profile (Clay Test Case 08). 



 

108 

6.7 DATA DEDUCTION 

The channel migration distance was measured in the direction perpendicular to the initial channel 
bank. Using case 08 as an example, the migration distance at a cross section on the right bank is 
shown in Figure 6.21. Note that when θ/φ becomes greater than 1 (e.g., 1.0 < θ/φ < 2.0), it 
denotes a position in the following inner bend. The figure shows that the channel migration rate 
(slope) is the greatest at the early stage of the test, meaning that the channel migration distance 
increases rapidly within a short period of time. As the water continues to erode the channel 
banks, the migration rate tends to decrease gradually. A maximum value of the migration 
distance is expected when the channel reaches an equilibrium state at t → ∞. The data points in 
Figure 6.22 were then fitted with a hyperbolic function. Alternatively, the t/M can be plotted 
versus the time and then the data can be fitted with a linear equation as shown in Figure 6.21. 
From these two figures, it can be seen that the hyperbolic function is a good approximation in 
describing the temporal evolution of channel migration. The hyperbolic function is of the form: 
 

 1M
a bt

=
+

 (6.1) 

 
where M is the channel migration distance, t is time, and a and b are constant. The reciprocals of 
the two constants in the hyperbolic function are the initial slope at t = 0 (1/a) and the asymptotic 
value of the hyperbolic curve at t → ∞ (1/b). Therefore, the initial migration rate iM&  and the 
maximum migration distance Mmax at a given cross section can be expressed as aM i /1=&  and 

1/maxM b= . In the experiment, the units of M and t are in centimeters and hours, respectively, 
and the units of iM&  and Mmax are in centimeters per hour and centimeters, respectively. 
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M vs. Time
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Figure 6.21. Migration Distance versus Time in Clay Test Case 08 (R/W = 4, φ = 220°, Fr = 

0.50, θ/φ = 0.69). 
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Figure 6.22. T/M versus Time in Clay Test Case 08  (R/W = 4, φ = 220°, Fr = 0.50, θ/φ = 

0.69). 
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Spatial Distribution of Mmax (Clay Test Case 08)
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Figure 6.23. Mmax Distributions along the Channel for Clay Test Case 08. 

 
The maximum migration distance Mmax at each cross section along the channel was obtained by 
curve fitting the measured data points using the hyperbolic function.  The resulting Mmax is 
shown in Figure 6.23. Note that Mmax is normalized by the initial channel width, W. In the 
experiments, data taken from the second outer bank to the following third inner bank were used 
in analysis. This is to ensure that the fully developed secondary current in the channel is 
accounted for and the backwater effect from the channel exit is negligible. The result shows that 
Mmax along the channel has the peak value behind the channel apex (θ/φ = 0.5) and there exists a 
phase lag to the channel curvature. Although Mmax in the flume tests in sand displays the 
Gaussian distribution (see Chapter 5), the typical shape of distribution in the clay tests is 
somewhat different. A distinct difference is the skewed bell shape of the distribution. To 
accommodate the skewness, the Pearson IV distribution function is employed: 
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where a is the maximum value of Mmax/W, θ/φ the normalized angle, b the location (in terms of 
θ/φ) of the maximum value, c and d the coefficients controlling the bandwidth of the distribution, 
and e the coefficient controlling the skewness of the distribution. It turns out that the Pearson IV 
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function could represent the distribution of Mmax well in all the cases, shown in Figures 6.24 to 
6.28. 
 

Distribution of Mmax (Clay Test Case 04_R/W =4 φ =65 Fr  =0.50)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0
θ / φ

Mmax / W

Experiemntal Data

Pearson IV Distribution Fitting

 
Figure 6.24. Experimental Data and Fitted Curve for Mmax in Clay Test Case 04. 

 

Distribution of Mmax (Clay Test Case 05_R/W =6 φ =65 Fr  =0.50)
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Figure 6.25. Experimental Data and Fitted Curve for Mmax in Clay Test Case 05. 
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Distribution of Mmax (Clay Test Case 06_R/W =2 φ =65 Fr  =0.50)
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Figure 6.26. Experimental Data and Fitted Curve for Mmax in Clay Test Case 06. 

 

Distribution of Mmax (Clay Test Case 07_R/W =4 φ =120 Fr  =0.50)
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Figure 6.27. Experimental Data and Fitted Curve for Mmax in Clay Test Case 07. 
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Distribution of Mmax (Clay Test Case 08_R/W =4 φ =220 Fr  =0.50)
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Figure 6.28. Experimental Data and Fitted Curve for Mmax in Clay Test Case 08. 

 
6.8 PROPOSED EQUATIONS 

There are five undetermined coefficients in the proposed prediction equation (Equation 6.2). 
These coefficients are found by correlating the measurements with the three controlling 
parameters, R/W, φ, Fr and the critical Froude number Frc. The correction parameter β is 
employed here to relate the near-bank velocity and the mean velocity as described in Chapter 5. 
 
The correlations among the five coefficients and βFr-Frc were shown in Figure 6.29. The result 
shows the maximum peak value of Mmax occurs at βFr-Frc = 1.02 where R/W = 2 and decreases 
as βFr-Frc decreases. This means a channel has the largest maximum migration distance Mmax 
when R/W = 2. The similar conclusion has been reported by various researchers such as Hickin 
and Nanson (1975), even though their concern is the meander migration rate versus R/W. The 
coefficient b decreases as βFr-Frc increases, which means that the peak location of Mmax moves 
downstream as R/W increases. This indicates that the following inner bend may have a greater 
migration rate and migration distance. The coefficient c has a relatively small variation in all the 
cases in Figure 6.29(c). The coefficient d increases as βFr-Frc increases, as shown in Figure 
6.29(d), which implies that meander migration in a channel with a large βFr-Frc (or R/W) occurs 
over a longer channel length along the outer bankline. The skewness, controlled by the 
coefficient e in the Mmax distribution, reaches maximum value at βFr-Frc = 1.02 (R/W = 2) and 
decreases as βFr-Frc decreases. Note that the distribution becomes more symmetric when βFr-
Frc = 0.35 where R/W = 2. 
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Figure 6.29. Five Coefficients in the Pearson IV Equation versus (βFr-Frc). 
 
The distribution of Mmax is also influenced by the channel bend angle φ, as shown in Figure 6.30. 
As φ increases, the peak value of Mmax decreases; the location of the peak moves upstream 
toward the front of the outer bank. The coefficients c and d show similar trends to those in the 
correlation plots with R/W. In other words, the coefficient c is somewhat constant (Figure 
6.30(c)), while the coefficient d increases as R/W increases, as shown in Figure 6.30(d). This 
means that the migration in a channel with a small R/W occurs over a localized channel length 
along the outer bankline. The skewness in the Mmax distribution also shows a similar trend; it 
reaches maximum value at φ = 65° and decreases as φ increases. Note that the distribution 
becomes more symmetric when φ reaches 220°. 
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Figure 6.30. Five Coefficients in the Pearson IV Equation versus φ. 
 
Based on the results in Figures 6.29 and 6.30, each of the five coefficients in the Mmax equation is 
a function of βFr-Frc and φ and can be obtained using regression analysis with the measured 
data from the flume tests. The final prediction equation with the five coefficients in the Pearson 
IV distribution function is as follows: 
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 where, 

( ) ( ) 226.0291.0325.4 −−= φβ FrcFra  

( ) ( )[ ] 846.0414.0 592.100430.0273.1 +−−= φβ FrcFrb  

( )[ ] ( )[ ] 213.1899.0 356.000111.0130.0325.0234.4 +−+−= φβ FrcFrc  

( )[ ] ( )[ ] 090.1962.0 95.000233.0375.0846.0284.1 +−+−= φβ FrcFrd  

( )[ ] ( )[ ] 630.0774.1 656.000296.0487.0637.1100.2 +−−−= φβ FrcFre  

Note: 1
/
4

+=
WR

β , and e = 0, if R/W > 6 or φ >220° 
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CHAPTER 7. GEOMETRY STUDY 
 
7.1 FIT A CIRCLE FOR A GIVEN GROUP OF POINTS 

7.1.1 A Traditional Method 

The equation of a circle is: 
 
 (x – xc)

2 + (y – yc)
2 = R2 (7.1) 

 
To fit a circle for n given points, a traditional least-squares method would tend to minimize one 
of the following error terms: 
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In these terms, xc, yc, R* are unknowns and Ri = (x – xc)

2 + (y – yc)
2]1/2. To achieve the minimum 

value of an error term, the following equations must be solved: 
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Error term E1 gives the simplest form among the three, as shown in what follows: 
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Since there are three unknowns and three equations, these equations are theoretically solvable. 
This method is called a direct solution (Moura and Kitney, 1991). The advantage of this method 
is that it is straightforward. The disadvantage is that it is not easy to obtain a solution and the 
computation is time consuming. 

7.1.2 Apply the Optimization Toolbox of Matlab 

The search for the best circle can also be treated as an optimization problem. The target is to find 
a circle which gives minimum error. The object function can be any one of Equations 7.2 to 7.4. 
Equation 7.2 proved to be the most efficient. The optimization toolbox of Matlab has a good 
solution. Function x = fminunc(fun, x0, options) was used to find a minimum of an unconstrained 
multivariable function “fun” whose variables were valid in the range of (–∞,+∞). x0 here 
indicates the coordinates of the starting point for searching the center of the circle. No searching 
range needs to be specified. Function x = fmincon(fun, x0, A, b, Aeq, Beq, lb, ub) was used to find 
a minimum of a constrained multivariable function “fun.” x0 has the same meaning as above. The 
ranges or constraints of the variables (lb = lower boundary, ub = upper boundary) need to be set, 
which also constitute a searching range. These two functions have given very precise solutions. 
They can also fit a very large circle to a group of points in a straight line, as shown in Figure 7.1. 
Straight line segments are not unusual in river banks. It is not surprising that a regular program 
would collapse trying to fit a circle to a straight line. Matlab can handle this problem very well. 
The difference between the solutions of these two functions is tiny. The advantage of this 
approach is that Matlab is widely available and no complicated programming is needed. 
However, it is not fast enough. These functions were used until a much better method was found. 
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Figure 7.1. Using Matlab to Fit a Circle for a Straight Line. 

 

7.1.3 Linear Least Square Fitting 

Rewrite the equation of a circle Equation 7.1 in this form: 
 
 2xcx + 2ycy + R2 – xc

2 – yc
2 = x2 + y2 (7.7) 

 
Let a = 2xc, b = 2yc, c = R2 – xc

2 – yc
2, z = x2 + y2, the equation can be simplified as: 

 
 ax + by + c = z (7.8) 
 
Plug in the coordinates of the n given points: 
 

 

1 1 1

2 2 2

                   
n n n

ax by c z
ax by c z

ax by c z

+ + ≈⎧
⎪ + + ≈⎪
⎨
⎪
⎪ + + ≈⎩

M M M M M M M M M M
 (7.9) 
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There are three unknowns and n equations. This is a typical linear least-squares or linear 
optimization problem. The equations can be expressed in a matrix form: 
 

 

1 1 1

2 2 2

1
1

1n n n

x y z
a

x y z
b
c

x y z

⎡ ⎤ ⎧ ⎫
⎧ ⎫⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎢ ⎥ ≈⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭ ⎪ ⎪⎣ ⎦ ⎩ ⎭

M M M M
, or (7.10) 

 ZAX ≈  (7.11) 
 
The sign “≈” indicates it is not an exact linear equation set but an optimization problem. A 
typical way to solve this problem is to first time the transpose of matrix X to the left side of XA 
and Z. Then XTX is a 3 by 3 matrix, and XTZ is a 3 by 1 vector. Thus A = [a b c]T can be solved: 
 

 
T

T
X ZA
X X

a
b
c

⎧ ⎫
⎪ ⎪= =⎨ ⎬
⎪ ⎪
⎩ ⎭

 (7.12) 

 
Once we solve for a, b, c, we can get xc = a/2, yc = b/2, R = [c + (a2 + b2)/4]1/2. This method is 
used in the program. 
 
A straightforward way to solve this linear optimization problem is to explicitly express the error 
terms and to find the minimum sum square. 
 

 

1 1 1 1

2 2 2 2

                    
n n n n

ax by c z e
ax by c z e

ax by c z e

+ + = +⎧
⎪ + + = +⎪
⎨
⎪
⎪ + + = +⎩

M M M M M M M M M M
, or (7.13) 

 [ ]T
1 2e XA Z ,  ,   ne e e= − = LL  (7.14) 

 
T denotes matrix transpose operation. The sum square of the error terms is expressed as: 
 

 2 2

1 1
( )

n n

i i i i
i i

E e ax by c z
= =

= = + + −∑ ∑  (7.15) 
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Parameters a, b, and c will be obtained by solving equations / 0,  / 0,  / 0E a E a E c∂ ∂ = ∂ ∂ = ∂ ∂ = . 
A simpler solution can be achieved by applying Gauss’s principle of least squares, which states 
that the parameters A = [a b c]T that make term (Equation 7.15) reach minimum value can also 
make this term reach minimum value: 
 

 1J eTe
2

=  (7.16) 

 
Substituting Equation 7.14 for e into Equation 7.16 yields: 
 

 1J J(A) (ATXT(XA)-2ZTXA+ZTZ)
2

= =  (7.17) 

 
In Equation 7.17, ZTXA= (ZTXA)T =ATXTZ because they are scalars. If there exist the required 
parameters A = [a b c]T, these requirements need to be satisfied: 
 

1. Necessary condition 

 T T
A

J /
J J / X XA-X Z 0

J /

a
b
c

∂ ∂⎡ ⎤
⎢ ⎥∇ = ∂ ∂ = =⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

 (7.18) 

 
2. Sufficient condition 

 
2

2 T
A T

JJ X X
A A
∂

∇ = =
∂ ∂

 (7.19) 

 
must be positive definite. AJ∇  is the Jacobian and 2

AJ∇  is the Hessian. Any matrix B which 
satisfies 
 
 Tz Bz 0≥  (7.20) 
 
for all z 0≠  is called positive semi-definite. Let h = Xz be a column vector. It can be easily 
obtained if the scalar 2 T T Th h h z X Xz 0= = ≥ . So XTX is always positive semi-definite. It 
becomes positive definite when its n column vectors are independent, which is not satisfied here. 
This explains why circles cannot be fit for some cases, say points on a straight line. 
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From the necessary condition, we can obtain the solution 
 
 T -1 TA (X X) X z=  (7.21) 
 
which is exactly the same as solution (Equation 7.12). The above clearly shows the correctness 
of this simple and efficient method used in the program and also explains why the method fails 
for some cases. When such a condition occurs, the program was designed to report the error and 
go on to the next fitting. 
 
In deriving the equations listed above, the following matrix calculus differentiation rules 
(Crassidis and Junkins, 2004) were used: 
 

 (Ax) A
x
∂

=
∂

 (7.22) 

 T T(a Ab) ab
A
∂

=
∂

 (7.23) 

 T T T(a A b) ba
A
∂

=
∂

 (7.24) 

 T T T T(Ax+b) C(Dx+e) A C(Dx+e)+D C (Ax+b)
x
∂

=
∂

 (7.25) 

 T T(x Cx) (C+C )x
x
∂

=
∂

 (7.26) 

 
7.2 CALCULATE RADIUS OF CURVATURE OF EACH POINT ON A CURVE 

7.2.1 Obtaining Coordinates of the Banks 

The channel curves come from digitized aerial photos and maps. Coordinates are obtained by 
using the free program WinDIG to digitize the scanned photos and maps. These scanned files are 
the best clue one can get about the geometry of the channel. The user is encouraged to capture 
detailed geometry features retained on the electronic image files. The spacing of the digitized 
points is often uneven and the curves are not smooth. A zigzag can have a big impact on the 
curvature of the points around it, which may cause fluctuation of curvature in that region. This 
problem is partially solved by evenly distributing the points. Figure 7.2 shows the smoothing 
effect. 
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Figure 7.2. Comparison between Original Curve and Smoothed Curve. 
 
The principle of distribution is to maintain a constant total length of the original line segments 
between two adjacent new points. First calculate total length (L0) of the original curve. Then 
determine the number of segments (N) the original curve will be divided into. Start from the first 
point and travel along the original curve. Stop at distance L0/N and record the coordinates of this 
point, which is the second point of the new curve. Then travel a distance of L0/N again, and the 
third point will be obtained. Repeat this procedure until the end of the original curve. Since L0/N 
is the length along the original curve and may be the summation of several segments, it is not the 
spacing of the new curve in normal cases. 

7.2.2 Equations 

For a continuous curve, the equations for the radius of curvature and the curvature are: 
 

 
2 3

2 3

(1 ) 1,  
(1 )

y yR c
y R y

′ ′′+
= = =

′′ ′+
 (7.27) 

 
where, R is the radius of curvature, c the curvature, y the ordinate of the curve, d / dy y x′ = , 
and 2 2d / dy y x′′ = . In civil engineering, when the deflection of a structural element is very small, 
y′  is close to 0. Thus in this case the radius of curvature and curvature can be reasonably 
approximated as: 
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 1 1,  R c y
y R

′′= = =
′′

 (7.28) 

 
For a bank curve consisting of discrete points, these simplified equations do not apply because 
the first derivative y′  cannot be ignored and sometimes may reach infinity. 

7.2.3 Curve Fitting and Important Parameters 

The discrete points can be fitted with an analytical curve whose curvature is treated as that of the 
corresponding points. A long river bank can be fitted with one high-order parabolic curve. The 
fitting error can be small and an analytical expression of curvature is available for the whole 
curve. Figure 7.3 shows one of the initial banks of flume test and two fitted parabolic curves of 
5th and 7th orders. It is obvious that the higher the order, the closer the fitting will be. However, if 
the order is higher than 7, the improvement in closeness is hardly noticeable. This can also be 
seen in Figure 7.4, which shows how the average fitting error decreases with increasing fitting 
order. But the decreasing trend almost stops after order 7. 
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Figure 7.3. Comparison of Parabolic Fittings of Different Orders. 
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Figure 7.4. Comparison of Errors of Polynomial Fitting of Different Orders. 

 
The idea of using one analytical expression to describe a long channel is tempting. If this goal 
was achieved, most geometric features of a curve would have been obtained and the task of 
geometry study can be considered as completed. Figure 7.5 displays a troublesome picture which 
may diminish this hope. Several orders of parabolic fittings were done to a perfect arc. Although 
the closeness increases with the order, the fluctuation of radius of curvature increases with the 
order too. According to the graph, quadratic fitting (2nd order) gives the most stable and closest 
result. More data points are needed for a high-order parabolic fitting than a quadratic fitting. This 
means quadratic fitting focuses more on local curvature, which is more suitable to a point in the 
middle. When the channel curve is not a single-value function of the x coordinate, it has to be 
broken into several segments in order to be fitted with parabolic curves. Since what is needed is 
the curvature of each point and high-order parabolic fitting does not provide good results, 
quadratic fitting is chosen for the calculation. 
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Figure 7.5. Comparison of Rs of Different Fitting Orders. 

 
A single point alone does not have curvature. Its curvature is determined by a segment that 
extends from the point in both directions by a certain length (from point A to point B in Figure 
7.2). A quadratic curve is fitted to this chosen segment. The curvature of the corresponding point 
on the fitted curve is treated as that of the point of interest. This process is repeated for each 
point on the bank. 
 
Before fitting a quadratic curve, two parameters need to be determined. The first is the spacing 
used to distribute the points; the other is the length of the curve segment for which a quadratic 
curve is to be fitted, called segment length. The curvature of a river is often related to its average 
width. These parameters are non-dimensionalized by river width, which can make them 
independent of a certain case. The spacing coefficient (spacing/width) and segment length 
coefficient (segment length/width) are therefore used. 
 
With spacing and segment length ready, the number of points “m” contained in that segment is 
determined accordingly. One segment is defined for each point with (m – 1)/2 points to the left 
and (m – 1)/2 points to the right. For the first and last (m – 1)/2 points, this fitting cannot be 
carried out. Normally, there is a straight segment at the beginning and at the end. The nearest 
available radius of curvature can be reasonably assigned to these points. Then each point has a 
radius of curvature and a curve of the ratio of radius of curvature to channel width (R/W) versus 
channel lengthwise distance can be drawn. If m is not an odd number, use m + 1 in the program. 
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It can be imagined that large spacing in redistribution can cause the curve to lose local curvature. 
Very small spacing, on the other hand, has not been found to cause any problem except that it 
takes more computing time. In cases where an optimum spacing cannot be determined, it would 
be conservative to pick a small number. In here, 0.1 times the channel width (0.1W) is suggested 
if no experience is available. 
 
Segment length directly affects the quality of the calculated curvature. If it is too short, local 
curvature dominates, which is sometimes drastically different from the curvature of a reasonably 
larger range. If it is too long, global curvature dominates and some local curvature may be lost. 
Then the radius of curvature of an inflection point might be only several times larger than that of 
other points, although theoretically it should be infinity. The following discussion will show that 
the major function of the R/W vs. channel length curve is to help identify the approximate range 
of a bend. A good choice of segment length should make the bends stand out on the R/W curve. 
 
The case of Guadalupe River, Texas, is used for demonstration. The coordinates of a section of 
the river are processed using the procedures described above. The corresponding average river 
width is 37.7 m (124.4 feet). As can be seen in Figure 7.6, when segment length is too short 
(1.1W), it is hard to tell where the bends are. Figure 7.8 shows that when segment length is very 
long (12.1W) the R/W vs. channel length curve is much smoother and flatter, but the individual 
bends are still recognizable. Figure 7.7 is the result of using an appropriate segment length of 
4.0W. Comparing this chart with the original bank geometry shown in Figure 7.15, it can be 
observed that each significant bend is represented by an arc-shaped curve segment of different 
size. Therefore, a relatively large segment length can be chosen when not enough knowledge is 
available for making a decision. Here, 4.0W is suggested. 
 
In these figures, MBL stands for minimum bend length, which means that only when the 
identified bend is longer than MBL will it be considered as a bend. 
 



 

128 

 
Figure 7.6. R/W vs. Channel Length, Segment Length = 1.1W. 

 

 
Figure 7.7. R/W vs. Channel Length, Segment Length = 4.0W. 
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Figure 7.8. R/W vs. Channel Length, Segment Length = 12.1W. 

 
7.3 IDENTIFY BENDS FOR WHICH CIRCLES WILL BE FITTED 

It is easy for human eyes to tell whether a curve segment is curvy or straight. A computer cannot 
“see” things this way. Mathematical features about the curve need to be discovered and criteria 
need to be developed for the computer to make a judgment based on simple logic. 
 
The R/W vs. channel length curve shows clear features which are related to the bends on the 
original bank. It is desired to fit circles for those bends. The choice of the portion of a bend for 
fitting the circle is critical. Before pinpointing the exact segments for fitting those circles, the 
approximate ranges of the bell-shaped curves need to be identified. Three methods are described 
below. 

7.3.1 Manual Method with AutoCAD 

The user directly specifies the region of a bend in AutoCAD. In the early stage of developing this 
method, it was first thought that the bank needed to be fitted with circles only. Later, the research 
team decided to do curve fitting for each time step to take into account the importance of 
geometry. This method was abandoned because the work needs to be repeated thousands of 
times for a long hydrograph. A human being is not capable of this. 
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Figure 7.9. Case Showing Sensitivity of Criterion Lines. 

 

7.3.2 Criterion Line Method 

The R vs. length curve for an arc is a horizontal line. When a bend on a bank can be reasonably 
fitted with a circle, its radius of curvature vs. length curve is smooth and of bell shape. The 
closer the bend is to an arc, the closer the bell-shaped curve is to a horizontal line. Therefore, if a 
curve segment is found to be of bell shape facing up or down, it most likely corresponds to an 
obvious bend on the river bank. This method uses three criterion lines (six symmetric lines, as a 
matter of fact) to identify the bell-shaped segments on the R/W vs. length curve. As shown in 
Figure 7.10, six lines of R/W = ±3, ±5, ±8 were drawn on the graph. In the first loop, all 
continuous segments between R/W = 0 and R/W = ±3 were identified. These segments should be 
of bell shape and indicate the existence of bends. These segments were marked so that they 
would not be looked at again in the next loop. In the second loop, the continuous segments left 
between R/W = 0 and R/W = ±5 were identified. This procedure was repeated for R/W = ±8. For 
each loop there might be new bends identified. The outcome is sometimes very sensitive to the 
choice of these criterion lines. Figure 7.9 shows a tiny change in the criterion line could lead to 
quite different result. What is shown is the R/W vs. length curve of a well-behaved bend. But the 
criterion line of R/W = –2 divides it into two arcs, which would cause a problem. If R/W = –2.2, 
this problem can be avoided. So far no method has been developed to decide on the appropriate 
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numbers. In order to guarantee the inclusion of the desired boundary, the range should be 
extended by a certain percentage of the bend length. 
 

 
Figure 7.10. Criterion Line Method. 

 

7.3.3 Second Derivative Method 

This method identifies the bends by using the curve d2R/ds2 vs. channel length, as shown in 
Figure 7.11. A continuous segment very close to the x axis is considered as a bend. The logic 
behind this method is that for each bend, the R vs. channel length curve segment is of parabolic 
shape (bell shape). In parabolic equation y = ax2 + bx + c, ‘a’ value is extremely small for these 
curves. So d2R/ds2 value is close to 0. The range obtained this way also needs to be extended. 
When two bends of different radius are right next to each other, this method will fail because 
there is almost no change in d2R/ds2 at the intersection point. 
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Figure 7.11. The Second Derivative of R vs. Channel Length. 
 

7.3.4 Change of Sign Method 

The initial channel of the flume tests consists of tangent perfect arcs, while the migrated channels 
can be fitted with tangent arcs. On the R/W versus channel length curve, large values occur once 
or twice around the inflection point. The change of sign can clearly indicate the separation of 
bends. This method is applicable only when the bends are tangent to each other. 
 
All methods can produce good results in this case. The criterion line method is suggested for its 
efficiency. The identified range is a two-point boundary. A circle can be fitted to these points. 
But there is no guarantee that this circle fits the bend best. Further work is needed to pick the 
best one. 
 
7.4 FIND THE BEST FIT CIRCLE AT A CERTAIN BEND 

7.4.1 Producing a Set of Circles for Making a Choice 

For a certain bend, dozens of circles can be fitted by using different curve segments. Among 
them, only one or a few circles really fit the bend. Any of these good circles is called the best fit 
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circle. The arc segment of a best fit circle is supposed to ideally represent the geometry of the 
bend. To achieve this goal, one should be able to identify which circle is the best before asking 
the computer to make the same decision. Due to the indistinct boundaries of the bend, there is 
not an easy formula ready that can tell which circle is the best. Before a sound criterion is 
established, human vision provides the only judgment whether a fit is good or not. The criteria to 
be developed will match the visual judgment so that a computer can come up with the same or 
very close result. It is possible that different people would select different best circles. But it was 
found that in general people give surprisingly close if not the same estimation about the global 
closeness between a fitted circle and the original bend. 
 
In Figure 7.12, four out of many circles for that bend were picked for comparison. Circle (a) is a 
very close fitting regarding the segment used. But only a portion of the bend is used for fitting. It 
does not reflect the global geometry feature of the bend. Circle (d) reflects more global features 
but the closeness is not good. Circles (b) and (c) maintain a good balance between bend coverage 
and closeness. The two circles are so close that it is hard to tell which one is better than the other. 
Since they are identified using human vision, either one of these two can be called the visually 
best circle. 
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Figure 7.12. Visual Comparison of Fittings. 

 
Figure 7.13 is the R/W vs. length curve for the bend shown in Figure 7.12. It helps explain how 
the set of circles for the bend were obtained. Point A and B were identified by the Criterion Line 
Method. Then they were extended in both directions by a certain percentage of curve length AB 
and with the condition that R/W should not be larger than 10. Thus, point A was extended to the 
region from C to E, in which the first correct boundary point was supposed to fall. The second 
correct boundary point would fall in the region from D to F. The next step was to pick one point 
from each region and fit a circle. There are 15 points from C to E and 14 points from D to F. So 
there are 15 × 14 = 210 circles which must include the best fit circle. The R/W vs. length curve is 
almost symmetric to the vertical line passing the lowest point, which indicates the bend can also 
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be symmetric to the point corresponding to the lowest point in Figure 7.13. In the process of 
producing the set of circles, it is reasonable to pick approximately symmetric points. By starting 
from point C and D and moving up one point on each side one time, only 15 circles were 
produced. The computing time was thus greatly shortened without compromising the precision. 
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Figure 7.13. Extension of Bend Boundaries. 
 
Finding the best fit circle is the ultimate goal of the geometry study. The challenge is how to 
numerically describe the visually best circles so that they can be identified by a computer. 
Several methods have been developed for this goal. 

7.4.2 Least Square Error Method 

The first method is to make a judgment based on least square error. The most common error term 
is: 
 

 
2( )iR R

ER
n

∗ −
= ∑  (7.29) 
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where R* is the radius of the fitted circle, Ri the distance between the center of the fitted circle, 
and n the number of points used to fit the circle, which is also a measure of bend angle. This 
error term always tends to pick the shortest possible segment, very likely segments of three 
points. A circle like the one in Figure 7.12(a) or smaller ones is very likely to be selected. An 
ideal circle should have a small error (high degree of closeness) and a large n value (for 
accommodating global geometric features of the bend). The smaller the error is and the larger n 
value is, the better the circle will be. However, there is a tradeoff between small error and large n 
value. That is to say if the n value is increased, the error increases accordingly. The degree of 
closeness should be well balanced against the n value so that a good circle can be produced. 
Equation 7.29 is not a well-balanced expression, where too much weight is given to the error 
value. By considering giving some weight to n, this error term is generated: 
 

 
2( )

,  1iR R
ER

nα α
∗ −

= >∑  (7.30) 

 
If this error term works, there is an optimum α value associated with each bend, and it may vary 
with bends. Unfortunately, in many cases no α value is available that could produce a best fit 
circle. 

7.4.3 Criterion Line Method 

The second method is to use the criterion lines. As described in previous section, three well-
placed criterion lines can help identify most of the bends. In some cases good circles can be 
fitted to the identified bends. The good results normally come from trial and error. A criterion 
line good for this river may not be suitable for the next river or for the next migrated river. Right 
now there is no way to calculate the right criterion lines for a river. If this method has to be used, 
the criterion lines are chosen based on experience and applied to migrating channels. A popular 
R/W range is from 3 to 8. 

7.4.4 Second Derivative Method 

The third method is to apply the d2R/ds2 vs. channel length curve to identify the exact 
boundaries. Similar to the Criterion Line Method, this method can identify both the region of the 
bend and the boundaries for best fit circle. In Figure 7.11, the second derivative of R is close to 
the x axis for a bend. At the two ends of the bend, the second derivative does not change 
gradually. There is a sudden jump. The inflection points here happen to be the boundary points 
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that are looked for. The way to find these segments is the same as using criterion lines. But the 
criterion lines here have fixed values that are good for most rivers. Two criterion lines are set 
with d2R/ds2 = 0.3 and d2R/ds2 = 0.8. This method works well for the case shown in Figure 7.11. 
The inherent drawbacks would make it fail for other cases. When the channel curve is not 
smooth, d2R/ds2 fluctuates, causing the result to be unreliable. When two bends of different 
radius are next to each other or are very close, the method can hardly tell which is which. 

7.4.5 Balanced Method 

The fourth method is to balance the least error against bend angle with a numerical expression. 
The expression is: 
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where, α is the target term, ϕ the bend angle, Ri the distance between point i and the center, R* 
the radius of the fitted circle, n is the number of points used to fit the circle, and b is an empirical 
coefficient.  
 
In Equation 7.31, α is a combination of the bend angle term and the term of fitting error. The 
larger the bend angle ϕ is, the smaller α is; the smaller the fitting error is, the smaller α is. The 
circle with the smallest α will be treated by Equation 7.31 as the best circle and can be called the 
numerically best circle. The coefficient b plays a critical role in balancing bend angle and fitting 
error. A good choice of b would make the numerically best circle the same or very close to the 
visually best circle. 
 
Figure 7.14 are graphs for the relationship between α value and R. Different b values make the 
minimum α value to occur at different R. According to visual observation of Figure 7.12 and 
additional graphs, there are several best fitting circles. The range of radius is from 61 to 64. The 
b values that make the minimum α value fall in this range are the values being looked for. For 
this bend, b = 30 and b = 50 make this happen. If Equation 7.31 does work at some bends, the 
best b value will differ from bend to bend. So far no other properties of the bend have been 
associated with the best b values. The determination of b is empirical at this stage. It was found 
that b = 100 gives a relatively good result for many cases. In Figure 7.14, b = 100 produces a 
result of R = 54 (R/W = 54/37.7 = 1.4). The ideal R/W is 62/37.7 = 1.6. The difference in R/W 
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ratio is (1.6 – 1.4)/1.6 = 12.5 percent. For some bends, either term of α or α itself has more than 
one value corresponding to a single R. Although this makes it hard to find the minimum value, 
the outcome is acceptable. This situation can be avoided by using the ordinal number of the 
circles as the  abscissa. Further work still needs to be done to optimize the solution. 
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Figure 7.14. Influence of Parameter b. 
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Figure 7.15. Same b Coefficient Applied to All Bends. 
 

7.5 CALCULATE BEND ANGLE 

When the best fit circle is available, the bend angle can be calculated based on the two boundary 
points and the center of the circle. In some cases, the bend angle calculated based on the two 
straight lines connected with the bend looks more appropriate. The former method was used in 
the program. 
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CHAPTER 8. RISK ANALYSIS 
 
8.1 INTRODUCTION 

A meander migrates at a rate controlled by the erosion rate of the soil at the interface between the 
water and the bank. The hydraulic shear stress imposed by the water is controlled by the velocity 
of the flow, which is dependent on the hydrograph of the river. A meander migration prediction 
process must therefore consider the hydrograph of the river. This hydrograph is not known 
because it will occur in the future during the design life of the bridge or of the highway 
embankment. Because it is not realistic to make a deterministic prediction of a future 
hydrograph, it is more desirable to make predictions of many equally possible hydrographs in a 
probabilistic manner. Each hydrograph then moves the river toward a predicted position of the 
meander and a probabilistic post-process provides a probability that the river will move to a 
given location at a given time. 
 

8.2 FUTURE HYDROGRAPH 

8.2.1 Distribution of Daily Discharge 

In order to extract the statistical properties of an existing hydrograph, the type of distribution of 
the hydrograph should be determined first. It has been observed that a hydrograph fits reasonably 
well a lognormal distribution. Figure 8.1 is the hydrograph of the Guadalupe River gauge station 
08176500 at Victoria, Texas, from December 1, 1934, to September 30, 2002. Figure 8.2 is the 
probability density function (PDF) of the original data and fitted distribution. Figure 8.3 is the 
cumulative density function (CDF) of the original data and fitted distribution. These curves show 
that the daily discharge data can be roughly considered as a log-normally distributed random 
variable. 
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Guadalupe River Gauge 08176500 (12-1-1934 ~ 9-30-2002)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

12/1/1934 11/13/1945 10/26/1956 10/9/1967 9/21/1978 9/3/1989 8/16/2000
Time

D
is

ch
ar

ge
 (m

3 /s
)

 

Figure 8.1. Hydrograph of Guadalupe River Gauge Station 08176500. 
 

0 100 200 300 400 500 600 700 800 900 1000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Discharge m3/s

D
en

si
ty

Probability Density Function: Original vs. Fitted

Original Data
Lognormal Fit

 
Figure 8.2. PDF of Original Data and Fitted Distribution – Guadalupe River. 
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Figure 8.3. CDF of Original Data and Fitted Distribution – Guadalupe River. 

 
Figure 8.4 is the hydrograph from the Potomac River near Washington D.C. Little Falls Pump 
Station, U.S. Geological Survey (USGS) gage number 01646500. In order to consider the 
discharge through the Woodrow Wilson Bridge not far downstream, the original flow rate was 
multiplied by 1.03. The recorded daily flow is from March 1, 1930, to September 30, 2003. 
Figures 8.5 and 8.6 demonstrate that log-normal distribution fits these data better than the 
Guadalupe River. 
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Figure 8.4. Hydrograph of Woodrow Wilson Bridge. 
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Figure 8.5. PDF of Original Data and Fitted Distribution - Woodrow Wilson Bridge. 
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Figure 8.6. CDF of Original Data and Fitted Distribution - Woodrow Wilson Bridge. 

 
Assume Y is a normal random variable. Then Q = eY has a lognormal distribution. The 
probability density function of Q, the flow rate, is: 
 

 
2

2
(ln )

21( | ,  )
2

Q

f Q e
Q

μ
σμ σ

σ π

− −

=  (8.1) 

 
Where μ, σ are the mean and standard deviation of Y, the normal random variable. Let m, s be 
the mean and standard deviation of Q, the lognormal random variable. The following formulas 
can be derived: 
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 (8.5) 

 
The lognormal fitting is performed using Matlab version 7.0.1. The fitted means and standard 
deviations of the normal random variable Y and lognormal random variable Q for both cases are 
listed in Table 8.1. For a confidence level of 99%, the ranges of these two parameters for 
Guadalupe River are: 
 

μY ∈ [3.399, 3.432], σY ∈ [0.982, 1.008] 

 
The ranges for Woodrow Wilson Bridge are: 
 

μY ∈ [5.214, 5.248], σY ∈ [1.049, 1.073] 

 
This shows that the fitting criteria are well met. Table 8.1 shows a detailed comparison of the 
mean and standard deviation of the original data and fitted distribution for these two cases. 
 

Table 8.1. Comparison of Statistical Parameters (Unit: m3/s). 
Guadalupe River Woodrow Wilson Bridge  Original Data Fitted Distribution Original Data Fitted Distribution 

μY 3.087 3.415 5.244 5.231 
σY 1.358 0.996 1.057 1.061 
mQ 55.1 49.9 331.330 328.255 
sQ 127.2 65.1 475.347 473.746 

 
μY and σY are the mean and standard deviation for the normal variable Y. mQ and sQ are the mean 
and standard deviation for the lognormal variable Q. mQ and sQ for the original data are 
calculated using standard formulas. μY and σY for the original data are calculated using Equations 
8.4 and 8.5. The difference of standard deviation sQ for Guadalupe River is about 50 percent and 
for Woodrow Wilson Bridge is about 0.3 percent. The hydrograph of Woodrow Wilson Bridge is 
closer to a lognormal distribution. The fitted parameters for Guadalupe River should be used 
with caution. The fitting results show that not all hydrographs fit a lognormal distribution. The 
compromise on the good fit is compensated by the simplicity of the process. The MEANDER 
program uses mQ and sQ for the original data to generate future hydrographs. 
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8.2.2 Definition of the 100/500-Year Flood 

The term “100-year flood” is somewhat misleading. Many people mistakenly think it is a 
description of the flood that occurs once every 100 years. Instead, it describes a flood elevation 
that has a 1 percent chance of being equaled or exceeded in any one year. Therefore, “500-year 
flood” is a flood elevation that has a 0.2 percent (1/500) chance of being equaled or exceeded in 
any one year. To calculate the probability for a 100-year flood to be equaled or exceeded within 
a certain period of time, say N years, this formula can be used: 
 
 p = 1 – (1 – 1/100)N (8.6) 
 
(1 – 1/100) is the probability for a 100-year flood not to occur in one year. (1 – 1/100)N is the 
probability for a 100-year flood not to occur in N years. So p = 1 – (1 – 1/100)N is the probability 
for a 100-year flood to be equaled or exceeded in N years. The design life of a new bridge is 
about 75 years, during which the probability for a 100-year flood to occur is p = 52.9 percent. If 
N = 100 years, p = 63.4 percent. 
 
What is the probability for a 100-year flood to be equaled or exceeded in one day? Assume one 
year has 365 days. Let px denote the unknown. This problem can be solved using Equation 8.6. 
The probability for the flood to be equaled or exceeded in one day is px. The probability for a 
100-year flood to be equaled or exceeded in 365 days (one year) is 1/100. The equation can be 
written as: 
 
 1/100 = 1 – (1 – px)365 (8.7) 
 
The solution is px = (1/100) × (1/363.2), very close to (1/100) × (1/365). The probability for a 
500-year flood to occur in one day is px = (1/500) × (1/364.6), very close to (1/500) × (1/365). 
With this comparison in mind, the approximate values can be used. 

8.2.3 Compute Discharge Distribution Based on 100/500-Year Flood 

If an existing hydrograph is given, the distribution of daily discharge can be obtained by two 
methods. One is to do a lognormal fitting and obtain the parameters of mean and standard 
deviation. The other is to calculate the mean and standard deviation of the hydrograph with the 
assumption that it follows a lognormal distribution. The latter is used for simplicity and 
reasonable precision. 
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In some other cases a hydrograph is not available and only 100-year flood and 500-year flood are 
provided. The lognormal distribution (μ, σ) needs to be solved based on this information. The 
two corresponding probabilities of exceedance for a 100-year flood and a 500-year flood have 
been given in the previous section. For the CDF equation of an analytical lognormal distribution, 
there are two unknowns and two equations. So the unknowns can be solved as shown below. The 
CDF of Q can be expressed as: 
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The term erf indicates the error function. The definition of the error function and inverse error 
function is as follows: 
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The inverse error function is: 
 
 [ ( )] ( 1 1)x erf inv y y= ⋅⋅⋅ − < <  (8.11) 
 
Thus, the cumulative distribution function of a lognormal distribution can be written as: 
 

 ln[ (2 1)]
2

qerf inv P μ
σ
−

− =  (8.12) 

 
There are two applications for this formula:  

1. Given the distribution (μ, σ) and the probabilities, P1(Q ≤ q1) and P2(Q ≤ q2), the 
corresponding discharges q1 and q2 can be found. This can be used to find Q100 and Q500, 
which will be discussed in the next section.  

2. Given two points (q1, P1), (q2, P2) on the CDF curve, the lognormal distribution (μ, σ) 
can be solved. Here (Q100, P100), (Q500, P500) are given. The data of the distribution are 
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daily average discharge. The CDF curve based on these data gives the probability for a 
certain level of discharge not to be exceeded in one day. It makes more sense to use the 
probability for a 100-year flood (500-year flood) to occur in one day instead of one year. 
So in the above equations: 

 
P100 = 1 – (1/100) × (1/365), P500 = 1 – (1/500) × (1/365) 

 
Define: 
 

 100
100 100

ln 2 [ (2 1)] 4.03417Qu erf inv Pμ
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Likewise, 
 

 500
500 500
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The inverse error function can be solved using any pertinent numeric recipe or Matlab. 
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500 100 100

1 ln( )Q
u u Q

σ =
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 (8.15) 

 100 100ln( )Q uμ σ= − ⋅  (8.16) 
 
Once the mean and standard deviation of the normal variate Y are obtained, the lognormal 
random variable is determined to be Q = eY. 

8.2.4 Determination of 100-Year Flood and 500-Year Flood 

The determination of the 100-year flood and 500-year flood can be based on an existing 
hydrograph which contains sufficient data. The more data are available, the more accurate the 
result will be. 
 
Continuous PDF and CDF curves for a hydrograph can be drawn as shown in Figure 8.2 and 
Figure 8.3. The probability of exceedance curve, which is also called survivor function, is 
obtained by subtracting CDF from 1, as shown in Figure 8.7. A point (Q, PQ) means the 
probability for discharge Q to be equaled or exceeded during a unit of time is PQ. The unit of 
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time is the duration of a single Q value. If Q is daily average discharge, the unit of time is one 
day. The probability for a 100-year flood to be equaled or exceeded in one day is 1/(100 × 365), 
and the probability for a 500-year flood to be equaled or exceeded in one day is 1/(500 × 365). 
On an ideal daily flow probability of exceedance curve, the corresponding discharges Q100, Q500 
are the unknown to be calculated. 
 
A probability of exceedance curve can come from a hydrograph and can also be determined by a 
given distribution (μ, σ). Lognormal fitting generates μ and σ. The original data also have μ and 
σ, which are normally different from the fitted results. Figure 8.7 shows these three probability 
of exceedance curves of Guadalupe River. Any point on the curve of the original data denotes a 
concept of percentile rather than probability since everything has happened. The other two 
curves predict the probability for the occurrence of a certain event. Thus, two sets of 100/500-
year flood can be obtained and compared. 
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Figure 8.7. Probability of Exceedance Curves - Guadalupe River. 

 
For the hydrograph of Guadalupe River gage station 08176500, if the fitted distribution is used, 
the 100-year flood and 500-year flood are found to be: 
 

Q100 = 1692 m3/s, Q500 = 2429 m3/s 
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If the lognormal distribution based on the original µ and σ is used, the 100-year flood and 500-
year flood are: 
 

Q’100 = 5251 m3/s, Q’500 = 8601 m3/s 
 
The maximum recorded discharge is 8693 m3/s. According to the fitted curve, the probability for 
this flow to be equaled or exceeded is 6.8×10-9 = (1/400,782) × (1/365), which is a 400,782-year 
flood. According to the distribution based on the original μ and σ, the probability for the 
maximum recorded discharge to be equaled or exceeded is 5.3×10-6 = (1/518) × (1/365), which is 
a 518-year flood. It can be seen in Figure 8.7 the curve based on the original μ and σ fits the data 
record much better when the discharge is larger than 200 m3/s. Its Q100 and Q500 are more 
reasonable. 
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Figure 8.8. Probability of Exceedance Curves – Woodrow Wilson Bridge. 
 
For the case of Guadalupe River the method of using fitted distribution drastically 
underestimates high-risk floods, which makes this method undesirable. On the hydrograph plot, 
the maximum flood is a single spike with a magnitude much larger than other peak floods. 
Spikes like this are critical in estimating 100/500-year flood of the river but are of little 
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importance to the fitting process, which treats each daily flow equally. This explains why good 
results were not produced by this method. 
 
If the fitted distribution is used for the hydrograph of Woodrow Wilson Bridge, the 100-year 
flood and 500-year flood are found to be: 
 

Q100 = 13,513 m3/s, Q500 = 19,865 m3/s 
 
If the lognormal distribution based on the original μ and σ is used, the 100-year flood and 500-
year flood are: 
 

Q’100 = 13,487 m3/s, Q’500 = 19,799 m3/s 
 
The maximum recorded discharge is 12,425 m3/s. According to the fitted distribution, the 
probability for this flow to occur is 3.826×10-5 = (1/71.6) × (1/365). If the distribution based on 
the original µ and σ is considered, the probability for this flow to occur is 3.801×10-5 = (1/72.1) 
× (1/365). The closeness of this comparison can also be seen in Figure 8.8. These two curves 
almost overlap and they fit the original data well. This shows that this hydrograph follows 
closely the lognormal distribution. 

8.2.5 Random Number Generation 

With the analytical lognormal distribution function ready, the extraction of the statistical 
properties of the original data is finished. The next step is to produce future hydrographs by 
using a random number generation (RNG) technique. 
 
The generation of lognormal random numbers can be a sampling process done on the CDF curve 
of a lognormal distribution. First, uniformly distributed random numbers in the range of 0 to 1 
are generated. Then, these uniform random numbers are applied to the y axis (cumulative 
probability) of the CDF curve and the corresponding x values (discharge) are the random 
numbers to be found. An analytical solution can be obtained from Equation 8.12. Given μ, σ, and 
P, solve for q. This method directly solves the lognormal CDF function and can be easily 
understood. The drawback is that an inverse error function needs to be solved for each random 
number, which makes it not efficient even with high-performance computers. Alternatives have 
been developed to generate random numbers for a normal distribution Y. Lognormal random 
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numbers are simply eY, e = 2.71828. The following is a description of the methods used in this 
research for generating uniform random numbers and normal random numbers. 
 
Linear congruential generators are most commonly used for generating random numbers of 
uniform distribution. The form is: 
 

Xn = a * xn-1 + b mod M, n = 1, 2, 3…, given x0. 
 
“mod M” means the right-hand side is first divided by M and then is replaced by the remainder. 
Let a = 351, b = 42, M = 100, and x1 = 81. A series of random numbers can be obtained: 81, 73, 
65, 57, 49, 41, 33, 25, 17, 9, 1, 93, 85, 77, 69, 61, 53, 45, 37, 29, 21, 13, 5, 97, 89, 81···.The 
random numbers start to repeat at a certain point. These numbers are in the range of [0 100]. To 
obtain random numbers in a given range, transformation is needed. For example, divide each of 
the random numbers by M = 100 to obtain random numbers in the range of [0 1]. Parameters a, 
b, and M determine the characteristics of the random number generator. The choice of x0 
determines the particular sequence of random numbers that is generated. In the MEANDER 
program, the values used are: a = 663608941, b = 0, and M = 232. 
 
Normal random number generators are mostly based on Box-Muller transformation. Box-Muller 
transformation transforms a two-dimensional continuous uniform distribution into a two-
dimensional bivariate normal distribution. If x1 and x2 are uniformly and independently 
distributed between 0 and 1, then z1 and z2 as defined below have a normal distribution with 
mean μ = 0 and variance σ2 = 1. Detailed information can be found at 
http://mathworld.wolfram.com/Box-MullerTransformation.html. 
 

 1 1 22 ln cos(2 )z x xπ= −  (8.17) 

 2 1 22 ln sin(2 )z x xπ= −  (8.18) 

 
Given two uniform variates generated by the uniform random number generator, two normal 
variates can be obtained. Free implementation code in C or Fortran language is available on the 
Internet. 
 
For the two RNGs introduced here, the C RNG (RNG written in C language) is better than the 
one that directly solves lognormal CDF. Matlab also has a lognormal random number generator 
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that applies the cutting edge technique in this field. It is used as a benchmark to test the 
reliability of other two RNGs. Table 8.2 compares the results of four runs of these random 
number generators. The maximum difference for Q100 and Q500 between C RNG and Matlab 
RNG are only 2.45 percent and 4.57 percent, respectively. C RNG is used in the program to 
avoid calling Matlab code. 
 

Table 8.2. Comparison of Random Number Generators. 

Result Error Result Error Result Error Result Error
μY 4.9894 0.20% 4.998 0.04% 4.9908 0.18% 4.9919 0.16%
σY 0.9998 0.02% 1.0012 0.12% 1.0027 0.27% 0.9991 0.09%
μQ 241.3 2.43% 245.1 2.43% 242.5 0.82% 241.7 1.02%
σQ 312.6 4.11% 319.3 0.66% 308.8 4.57% 303.3 1.17%
μY 4.9994 -0.01% 5.0117 0.23% 5.002 0.04% 4.976 -0.48%
σY 0.9958 -0.42% 1.0047 0.47% 1.0036 0.36% 0.9954 -0.46%
μQ 244.5 -1.96% 249.2 1.44% 244.9 -1.11% 236.5 -3.04%
σQ 332.8 0.28% 321.4 -4.95% 310.4 -2.74% 311.7 4.22%
μY 5.0011 0.02% 5.0009 0.02% 5.0101 0.20% 4.9851 0.30%
σY 1.0011 0.11% 1.0049 0.49% 1.0061 0.61% 1.0024 0.24%
μQ 247.3 251.2 244.5 244.2
σQ 326.0 317.2 295.3 306.9

Notes:
1.

2. Input μY=5, σY=1; Result is the μY, σY, μQ, σQ of generated random numbers;
3. Q=eY, Q is the flow, Y is the normally distributed variate.
4. 10,000 random numbers are generated.
5. In "Solve CDF RNG", the most current μQ, σQ from Matlab RNG are used to calculate
the error term for μQ, σQ, not the values listed in this table.

C RNG

Matlab
RNG

Run 1 Run 2

Solve CDF
RNG

Run 3 Run 4Methods Items

MTRNGQMTRNGQCRNGQerrorQ

InputYInputYRNGYerrorY

/)(

/)(

−−−−

−−−−

μμ−μ=μ

μμ−μ=μ

 
 
8.3 GENERATE CUMULATIVE DENSITY FUNCTION (CDF) MAP 

A number of equally possible future hydrographs are generated by the random number 
generating scheme as described in the previous section. For each hydrograph, the MEANDER 
program predicts the migrated location of the river at the end of the project life. In other words, if 
1000 future hydrographs are generated, 1000 rivers are simulated at the different locations 
according to each hydrograph as shown in Figure 8.9. In the figure, the dotted line represents the 
initial geometry of the river and the solid lines are the predicted locations of the rivers after a 
given project life. 
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Figure 8.9. Generated Rivers According to the Future Hydrographs. 

 
Once a number of different river geometries are generated as shown above, a post-processing 
scheme generates the probabilistic information of the prediction results. An independent module 
for this process using a relatively simple but quite reasonable approach was developed and then 
incorporated into the MEANDER program. The new methodology of risk analysis in this study 
can be described by the following steps. 
 
First, a number of reference lines normal to the initial river geometry are generated, and then 
many small grids along each reference line are created as shown in Figure 8.10. These reference 
lines and grids on the lines can be used as a domain for calculating the probabilities associated 
with the predicted locations of the river. The size of each grid is 0.1W and the length of the 
reference line is 4W in total, indicating that it is extended to 2W in both directions (i.e., right and 
left) from the initial river. Second, the generated rivers from the previous step are superimposed 
on the domain as shown in Figure 8.11, and the numbers of crossings of the rivers in each grid 
are counted. This becomes the probability density function for each reference line. Next, the 
cumulative distribution function for each reference line can be determined from the PDF 
obtained in the previous step. Then, all the points that have the same level of probability value 
(e.g., 1, 10, 30, and 50 percent) on every reference line along the river are connected as shown in 
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Figure 8.12. The connected line represents a certain probability that the initial river will move to 
the location of the line or further at the end of project life (e.g., 75 years). A series of these lines 
with the initial geometry of the river can show the general trend of the meander migration of the 
river with the associated likelihood levels. This is called the CDF map, which is similar to a 
contour map. 
 

 
 Figure 8.10. Generated Reference Lines along the Initial River. 
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Figure 8.11. Superimposed Rivers on the Domain. 
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Figure 8.12. Cumulative Density Function Map. 

 
8.4 CALCULATE CUMULATIVE DENSITY FUNCTION FOR A GIVEN BRIDGE 
DIRECTION 

As mentioned in the previous chapter, meander migration can undermine bridge piers and 
abutments, scour the foundations of parallel highways, and cause loss of useful land. The 
common concern of these problems might be a specific location as well as a direction of the bank 
movement. Although the CDF map gives the global picture of the predicted migration movement 
over the choosen period, it is often insufficient information regarding a specific location and 
direction. Therefore, a separate CDF for a given location and direction is needed and is  
determined by interpolation of the CDF map: the x and y coordinates of two end points of 
interest are specified as input data (Figure 8.12), and then the new CDF is calculated by 
interpolating the values of two adjacent points on the reference lines. This CDF is plotted with a 
log scale on the y axis in a new screen so that the user can easily read the associated numbers on 
the plot as shown in Figure 8.13. In the figure, the highlighted point is read as follows: there is a 
1 percent probability that the river will move 82.5 m or further in this direction over the design 
life of the bridge (e.g., 75 years). 
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Figure 8.13. CDF Plot for a Given Bridge Direction. 
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CHAPTER 9. MEANDER PROGRAM 
 
9.1 INTRODUCTION 

The MEANDER computer program implements all the methods developed in this project to 
predict meander migration. It consists of two major components: graphic user interface and 
numerical implementation. The graphic user interface was adapted from the SRICOS-EFA 
program. In the SRICOS-EFA program, the GUI takes user input and forms a source data file. 
Then a FORTRAN program reads the data file, does the computation, and generates output data 
file. The GUI reads the output file and shows the result graphically. The MEANDER program 
does all of these things in a more efficient way. The GUI and the implementation of the model 
are written in C++ and are seamlessly linked together. The part of the geometry study and 
graphic output are written in Matlab. The Matlab program is compiled and linked to the C++ 
program so that one executable program is composed of different parts. Transferring data from 
one module to another is not through a hard drive but through much faster computer memory. 
Implementation of the model is the kernel of the MEANDER program.  
 
In this chapter a general view of the MEANDER program is given regarding graphic user 
interface, some programming techniques, and implemented modules. These items will be 
introduced in order: 

• Input and output user interfaces 
• Mixed language programming—C++ and Matlab 
• Overview of the whole program 

o Implementation of Geometry Study 
o Implementation of the Hyperbolic Model 
o Implementation of the Risk Analysis Module 

 

9.2 GRAPHIC USER INTERFACE (GUI) 

Graphic user interface is indispensable to modern computer programs. A lot of resources have 
been invested into development of the GUI of SRICOS-EFA. The engine of this code is reused 
with some moderate modifications and additions. A consistent appearance is maintained and 
programming time is reduced. Figure 9.1 is the main interface of the MEANDER program, 
which has a look similar to that of the SRICOS-EFA program. All the user interfaces and 
functions can be accessed either through the menu or the buttons. The user buttons from left to 
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right correspond to these interfaces: Units, Geometry input, Soil input, Water input, Table input, 
Plot input, Run function, and Plot output. 
 

 

Figure 9.1. Main Interface of the MEANDER Program. 
 
Figure 9.2 shows the unit input dialog. It allows the user to choose a unit system for the 
computation. There are two unit systems: metric system and U.S. Customary System (English 
system). The user should be consistent in the units being used. If metric units are chosen, all the 
input data are implied to have metric units and output is the same. There is an exception for 
English units: the EFA curve is always in metric units. 
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Figure 9.2. Choose Unit. 
 

 
Figure 9.3. Digitize River Banklines with WinDIG Program. 

 
Figure 9.4 is the Geometry Input dialog. The data for the geometry study are entered here. The 
user needs to input the average river width and the path of coordinate file. Coordinate files can 
be obtained by digitizing river images with the WinDIG program, which is free software as 
shown in Figure 9.3. The channel curve will be drawn immediately after the coordinate file is 
loaded. The given default values for the parameters are based on experience. Adjustments are 
needed for certain cases. If the “Fit Circles” button is clicked, circles will be fitted and drawn on 
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the dialog. A better version of figures is shown in two new windows. One is the original channel 
and fitted circles as shown in Figure 9.5. The other is the R/W versus channel lengthwise distance 
curve as shown in Figure 9.6. These two graphs are drawn by compiled Matlab code, which has a 
lot of advantages over graphs drawn by C++ code. Besides excellent quality of figures, the user 
can zoom and pan the graph. It can be exported to any format of raster image or vector image. 
The coordinates of any point can be displayed at the user’s choice. 
 
Before curve fitting is done, the center line or bank of the river is evenly divided into many 
segments. Spacing is the distance between two adjacent points. Spacing Coefficient is the ratio of 
the spacing to the river width. A default value of 0.2 is given. Reducing the spacing coefficient 
will smooth the R/W vs. channel length curve, but the computation time increases as a result. 
 
Segment length is the length used to calculate the radius of curvature of the middle point. 
Segment Length Coefficient is the ratio of segment length to the river width. It is recommended 
to use 5. If the segment length coefficient is too small, the bends may not be distinguishable on 
the R/W versus channel length curve. If this value is increased, the bends will become more 
obvious but the computation time will become longer. 
 
When the length of an identified bend is shorter than a certain value, no circle will be fitted. This 
value is called minimum bend length. Minimum Bend Length Coefficient is the ratio of minimum 
bend length to the river width. A value of 2 is suggested here. The smaller the value is, the more 
circles will be generated. If the value is too large, many significant bends will be excluded. 
 
Another way to eliminate an identified bend with a small curvature is to calculate the average 
distance from a point on the bend to the baseline which connects the first and last point of the 
bend. If this average distance is smaller than a certain limit, it will be treated as a straight line. 
The limit is called Straightness Limit. If a value of 0 is given, this parameter will be ignored. If 
the user wants to eliminate some unwanted circles, a number around 5 can be picked. The final 
desired value can be determined by trial and error. 
 
It is useful to show the channel lengthwise distance on the channel. For this, the user needs to 
specify the Tick Spacing. The given default values come from experience and may not apply to 
all cases. The values of the criterion line 1 to 3 should be in ascendance order, or it will be 
ignored. X0 and Y0 on the dialogue are the coordinates of the point for which a migration versus 
time curve will be drawn. It is chosen by the user on the graph of fitted circles as shown in the 
third circle of Figure 9.5. 
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If the default settings do not produce a good fit, the user can first adjust the criterion lines based 
on Figure 9.6. On the R/W versus channel length curve, a well-behaved bend appears to be a 
plateau or a parabolic curve with its vertex close to the horizontal axis (R/W = 0). The criterion 
lines should be adjusted in such a way that the segment between a criterion line and the 
horizontal axis is longer than the minimum bend length. 
 
Further adjustments that can improve fitting quality include reducing spacing and increasing 
segment length. Smaller spacing leads to longer computation time, but the R/W versus channel 
length curve becomes smoother. Increasing segment length has the same effect and can 
effectively reduce sudden jumps on the curve. A very small bend could be better fitted as a part 
in a larger bend. Setting a reasonable minimum bend length coefficient will help the fitting of the 
larger bend. Perfect straight lines are rare in river channels; however, not all segments with a 
curvature need to be fitted with a circle. Choosing a straightness limit can help eliminate the 
segments that have a reasonable curvature but look straight. 
 

 

Figure 9.4. Geometry Input. 
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Figure 9.5. Original Channel and Fitted Circles for the Center Line of Flume Test  

Case 06 in Sand. 
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Figure 9.6. R/W versus Channel Lengthwise Distance for the Center Line of Flume Test 
Case 06 in Sand. 
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Figure 9.7 is the soil data input interface. The first item is critical shear stress, which corresponds 
to a scour rate of 1 mm/hr. The number of points on an EFA curve needs to be specified so that 
enough space will be allocated on the table. Conventionally, scour rate is in metric units. When 
looking up a scour rate based on shear stress, linear interpolation is used. Data shown on the 
dialogue box are for the sand used in the new Coastal Engineering Laboratory. Since the Mmax 
equations for sand and clay are different as described in Chapters 5 and 6, the two options for 
choosing the type of soil are also provided. 
 

 
Figure 9.7. Soil Data Input. 

 
The interface for entering flow conditions is shown in Figure 9.8. The flow can be in terms of 
discharge or velocity. For a prediction, three types of analyses are available: constant flow, 
hydrograph, and risk analysis. The hydrograph used here can be a file directly downloaded from 
USGS website www.usgs.gov or an edited single-column data file. Each row in a hydrograph has 
the average flow during one time step, which is specified in the dialog and is normally one day 
(24 hours). Risk analysis takes as input either a hydrograph or a 100-year and 500-year flood. 
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Either choice can be used to calculate the probability associated with a certain migration 
movement of the river over a certain period of time. The Velocity versus Water depth table is 
used to find the water depth corresponding to a velocity. If the input is discharge, the Discharge 
versus Velocity table and Discharge versus Water depth table are required. All these tables are 
obtained from HEC-RAS simulation. 
 

 
Figure 9.8. Water Data Input. 

 
Figure 9.9 is a dialog box showing previously entered data in a tabular format for easy checking. 
If a mistake is found, the user can go back to make corrections. Figure 9.10 provides an easier 
way to check the correctness of the data. Abnormal data can be easily identified on a graph. 
After the data are entered and checked, the computation process can be started. Upon hitting the 
“Run” button, the program starts the prediction process. 
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Figure 9.9. Input Tables. 

 

 
Figure 9.10. Input Plots. 

 



 

170 

 
Figure 9.11. Output Table. 

 
Figure 9.11 is the output table that shows the coordinates of the initial channel and the final 
channel. Accumulated migration distance of each point is on the last column. 
 
The Output Plots dialog box (Figure 9.12) contains four buttons: “Center Line or One Bank”, 
“Both Banks, Risk Analysis”, and “M vs. t for one point”. All these functions were realized in 
Matlab. The first button is for showing the migrated channel of each step for the center line or a 
bank. The third button is to show initial banks, predicted final banks, and measured final banks if 
data are available. The second button is to run a risk analysis, which requires a specific direction 
of interest such as a bridge. For the direction of a bridge, the coordinates of two end points on the 
right and left side from the initial channel need to be specified in the bridge coordinates box. The 
last button is for showing the migration versus time curve of a selected point. 
 
The trace of a migrating process is shown in Figure 9.13. The black dashed line is the initial 
center line. Figure 9.14 shows a comparison between predicted and measured final banks. The 
Center Line Method mentioned in the title will be discussed in detail in the next section. 
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Figure 9.12. Output Plots Dialogue. 
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Figure 9.13. Trace of a Migrating Center Line. 
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Figure 9.14. Predicted and Measured Banklines Using Center Line Method. 

 
The migration process of an important point along the river is of great interest. The coordinates 
of this point are entered on the Geometry Input dialog box. The user can obtain the coordinates 
of a point by clicking the “Data Cursor” button on the Matlab figure and then clicking on the 
point of interest in any one of Figure 9.5, Figure 9.13, or Figure 9.14. On the Output Plot dialog 
box, the user first chooses the right unit for time by clicking the appropriate button and then hits 
the “M vs. t for One Point” button. A curve similar to the one shown in Figure 9.15 will pop up. 
The location of the chosen point is indicated by a tiny circle in Figure 9.14. At this stage, if the 
Migration vs. Time curve is needed for another point, the calculation has to be done all over 
again. 
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Figure 9.15. Migration versus Time Plot for a Certain Point. 

 
9.3 CENTER LINE METHOD VERSUS BANK METHOD 

The initial channel of all flume tests has a well-defined center line. The geometry of a center line 
is referred as that of the channel because of its constant radius-to-width ratio for all bends. It is 
natural to use the center line to represent the channel and to do the prediction of migration. 
However, the model does not have any difficulty in predicting the migration of a single bank. 
Two approaches are thus available to the user. To distinguish one from the other, when the center 
line is used it is called Center Line Method. The other method is called Bank Method. 
 
For the Center Line Method the river width has to be assumed as constant since the equations 
can not predict the change of river width. Channel widening was a common phenomenon in the 
flume tests. The migration of a bend often goes beyond its two inflection points. The migration 
of a point on a center line is considered as the superposition of the migration vectors of the two 
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corresponding bank points. In the calculations, a point on the center line can have two or more 
migration vectors. One is caused by the bend it is on; the others can be caused by the bend before 
it or after it. The advantage of this method is that it can simulate that a straight channel can 
migrate into a sinusoidal channel. The disadvantage of this method is that sometimes 
superposition can cause a false appearance that the maximum migration is almost reached. The 
reason is that the difference of the magnitude of two large opposite migration vectors is small. If 
two consecutive bends are too close, the migration on either sides of the inflection point are of 
opposition direction, causing the transition part to be more and more distorted from a perfect arc. 
Thus, the effectiveness of curve fitting decreases with increasing migration. Another difficulty 
with this method is that it is hard to obtain the center line of a real river. Figure 9.13 shows the 
trace of predicted center lines coming from an application of the Center Line Method. The 
predicted banks in Figure 9.14 were obtained by offsetting the center line by a half channel width 
in both directions. 
 
The Bank Method only calculates the migration of the outer bends. The calculation for one bank 
is normally done on every other bend of the bank. The influence of an outer bend usually does 
not go beyond adjacent inner bends. Superposition is not likely to occur for this method. Figure 
9.16 shows migrated banks at each time step. Figure 9.17 is a simplified version of Figure 9.16, 
where only banks of the last time step are kept and highlighted. For the left bank in Figure 9.16, 
the first, third, and fifth bends are considered to be the active cause of migration. Migration of 
the second and fourth bend is passively caused by the outer bends next to them. For the right 
bank in Figure 9.16, the second and fourth bends are considered to be the active cause of 
migration. Migration of the first, third, and fifth bends is passively caused by the second or 
fourth bend. Migration of a channel is the result of migration of both banks and not of an 
imaginary center line. This method simulates the migration phenomenon that really happens in 
experimental tests and in real rivers. The widening effect can be verified or predicted as shown 
in Figure 9.17. Without superposition, the calculation can produce more stable results. The 
disadvantage of this method is that twice the computation time is needed to do a complete 
prediction. 
 
Development of the Mmax equation was based on a multiple regression process. The migration of 
the outer bank and the geometry of the initial center line are used for developing the Mmax 
equation. Since the migration of an outer bank can be treated as that of the corresponding center 
line, the Mmax equation is the right one for the Center Line Method. In preparing the geometry for 
a flume test, a bank is obtained by offsetting the center line by half the channel width. The left 
bank, center line, and the right bank of a bend share the same center but have different radii. The 
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difference from one to the next is half the channel width. Figure 9.18 shows the geometry of the 
left bank of flume test case 06 in sand, which can be compared to Figure 9.5 for the center line of 
the same test. For an ideal situation, the radius of the outer bank is 3.5 and the radius of the inner 
bank is 2.5. The fitting is not perfect but is very close. To apply the same Mmax equation for the 
outer bank, the radius-to-width ratio should be decreased by 0.5. The inner bank remains 
unchanged, as it has no active migration. 
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Figure 9.16. Trace of Migrating Banklines. 
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Figure 9.17. Predicted and Measured Banklines Using Bank Method. 
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Figure 9.18. Original Channel and Fitted Circles for the Left Bank of Flume  
Test 15 in Sand. 

 
9.4 MIXED LANGUAGE PROGRAMMING—C++ AND MATLAB 

This program could have been written completely in Matlab. Then the GUI code from SRICOS-
EFA could not be used and a new GUI would have had to be written in Matlab. It could also 
have been written completely in C++. Then the code for Geometry Study, which had been 
written in Matlab, could not be used. The advantages of Matlab, such as a strong functionality in 
graphic output, debugging, and numerous built-in numerical recipes, etc., would not be utilized. 
For the MEANDER program, the GUI is in C++ with the application Microsoft Foundation 
Class (MFC). The implementation of the Hyperbolic Model is in regular C++. The 
implementation of Geometry Study, Risk Analysis, and graphic output are in Matlab. The 
program development environment is Visual C++ 6.0 and Matlab 7.0.4 (service pack 2). 
 
Integration of Matlab with C++ is not routine C++ programming or Matlab programming. A 
good understanding of both languages is extremely helpful. Much time was also spent on solving 
abnormal problems due to incomplete documentation of Matlab on this issue. Matlab Compiler is 
an independent module which differs from version to version. The functionality and 
documentation are also progressing. It is worthwhile to give an explanation from a user’s point 
of view so that later programmers can compile complicated Matlab programs more smoothly. 
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Matlab is a type of interpreting language. Unlike compiling languages like C, C++, or 
FORTRAN, it is executed line by line when running and has a lower efficiency. A Matlab file 
has an extension of “m,” also called “M-file.” M-files cannot run without the Matlab 
environment. Matlab Compiler takes M-files as input and generates redistributable, stand-alone 
applications or software components. The resulting applications can be independent of the 
Matlab environment. The latest version at the time of the study (version 4, going with Matlab 
7.0.4) of the Matlab Compiler can support all functionalities of Matlab. The Matlab Compiler 
can generate these kinds of applications or components: 

• Stand-alone applications 
• C and C++ shared libraries (dynamically linked libraries (DLLs) on Microsoft Windows) 
• Excel add-ins 
• Com objects 

 
C++ shared libraries are generated for the MEANDER program. Besides generating the DLL 
files, The Matlab Compiler also produces an interface function which passes on the input data for 
the Matlab program and returns the results. A special data type class mwArray was created to do 
this job. The programmer first converts C++ variables into mwArray type and then converts the 
results in mwArray type back into C++ type. This process is often written as a user-defined C++ 
interface function. This function can be called and shared as a regular C++ function. 
 
Conversion of data from one type to the other is the major task of this function. For a scalar or a 
vector, the conversion is straightforward. For a 2D or 3D array, caution should be taken because 
C/C++ and Matlab store multiple-dimensional arrays differently. In physical memory a multiple-
dimensional array is stored in a column of continuous memory cells. There are two methods to 
map the one-dimensional (1D) physical index to the multiple-dimensional array index at 
computer language level. The first method is to store data from row to row, as what C/C++ does. 
The other is to store data from column to column, which is used by Matlab. Class mwArray has a 
method SetData to read data from a C/C++ variable and pass it to a mwArray variable. The data 
are read from a single column physical memory. Then the Matlab mapping method assigns it to 
an array of Matlab type. A 3D array of dimensions M × N × L in C/C++ will be converted into a 
3D array of dimensions L × N × M in Matlab. However, their storage in the physical memory is 
of the same order. The GetData method of class mwArray also uses the Matlab mapping method 
to assign data from a Matlab array to a physical memory, which is for a C/C++ variable. 
 
It is helpful to list a step by step procedure explaining the process of integration. Assume Matlab 
7 and Visual C++ 6 are installed. The main MFC project is in folder “Z:\_WW\MEANDER\.” 
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The subproject in Visual C++ 6 for compiled Matlab program is called GeoRndPrj, which is in 
folder “Z:\_WW\MEANDER\GeoRndPrj\.” The interface “GeoRndUI” is a part of the 
“GeoRndPrj” project. 
 
If it is the first time that the Matlab program is compiled, run the following commands in the 
Matlab command window first and choose the appropriate C compiler. Here VC++ 6 is used. 
Then follow the steps listed below. 

1. mex –setup. 
2. mbuild –setup. 
3. Change Matlab work directory to the folder holding the m files. If a file named 

“mccpath” exists, delete it. 
4. Run this command: mcc -W cpplib:libGeoRnd -T link:lib AutoFit_Run_InVC.m 

PlotRiver1Curve.m PlotRiverBanks_Main.m PlotMvsT.m plotMgrtForOneFlow.m 
mLognrnd.m MeshGeneration.m -v -d ‘<path>\Meander\GeoRndPrj.’ (If a new matlab 
file is to be added to the work, first copy that file to the current matlab work directory, 
and include that matlab file in the list of matlab file sin the above command. Next update 
the GeoRndUI.cpp and GeoRndUI.hpp to contain the interfaces to the added matlab files. 
Note that the matlab files need to contain functions rather than scripts for it to compile.) 
Words in italic characters are names decided by the user. “-v” means verbose, which 
outputs intermediate results in detail. “-d” switch sends output files to the folder after it. 

5. Add a static library project to MFC application (MEANDER), GeoRndPrj in here. If “-d” 
option is not used in step 2, copy generated files libGeoRnd.* to folder 
“.\MEANDER\GeoRndPrj\.” 

6. Copy/Move libGeoRnd.ctf and libGeoRnd.dll to folder “.\MEANDER\.” 
7. Add two files to the subproject “GeoRndPrj.” They are “libGeoRnd.lib” and “<Matlab 

Root>\extern\lib\win32\microsoft\msvc60\mclmcrrt.lib.” Build subproject “GeoRndPrj” 
and GeorndPrj.lib will be generated. 

8. Add GeoRndPrj.lib to MEANDER project. In VC++ 6 environment, add “<Matlab 
Root>\extern\include\” to INCLUDE folder and add “<Matlab 
Root>\extern\WIN32\MICROSOFT\MSVC60” to LIBRARY folder. 

9. Build MEANDER project. The linking process will be done automatically. 
 
9.5 AN OVERVIEW OF THE IMPLEMENTATION OF THE PROGRAM 

All the methods have been introduced in previous chapters. The implementation is a description 
of the same idea in computer languages. A flow chart is an overview of the computer code. 
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About 14,000 lines of code have been written and checked line by line over a long period of 
time. Flow charts help introduce important modules, steps, and their functionalities in natural 
language. Figure 9.19 is the flow chart of the entire MEANDER program. Figure 9.19 gives a 
good idea about prediction process and what the program can do. To further understand how a 
specific task is implemented, a more detailed flow chart is needed. Figure 9.20 is the flow chart 
for the Geometry Study. Figure 9.21 also explains the Geometry Study but from a different 
perspective. The task is outlined in a problem-solving manner. The major difficulties of certain 
steps are briefly described. The code that applies the Hyperbolic Model is based on Figure 9.22. 
The shaded item “One Hydrograph” is a sub-function whose flow chart is Figure 9.23. The 
function OneHydrograph calculates the migration caused by each time step of a hydrograph and 
comes up with an accumulated distance. The shaded item “One Flow” in Figure 9.24 is a sub-
function of function OneHydrograph( ). “One Flow” calculates the migration of the whole 
channel caused by the flow of one time step. The flow chart of function OneFlow( ) is shown in 
Figure 9.24. 
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Figure 9.19. Flow Chart of the MEANDER Program. 
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Figure 9.20. Flow Chart of Geometry Study. 
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Calculate radius of curvature
Problem: Best segment length for each bend/point

Identify bends, produce many circles in 
which the best circle is.

Methods: 1. criterion lines 2. Least square error 3. second 
derivative 4. Method 5 Combination

Visually determine: 1. Which circle is the best. 
2. In some cases two or more circles can be 

equally good.

Numerically describe the visually best circle. Use 
these criteria to find the circle we want.

Calculate bend angle

Essential Procedures for Geometry Study

 

Figure 9.21. Essential Procedures for Geometry Study. 
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Figure 9.22. Flow Chart of Implementation of the Hyperbolic Model. 
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Implementation of Function OneHydrograph( )

One Hydrograph

for i=1 to nTimeStep

Fit circles

Exception Handling

One Flow

Migration for 
next time step is 

negligible?

i=i+1

End

No

Yes

 
Figure 9.23. Flow Chart of Function OneHydrograph( ). 
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Implementation of Function OneFlow( )

One Flow

Forward influence coefficient 
InflCoef=

Fr; Q V

for i=1 to nBend

Prepare R/W, 

Calculate A, µ, for Mmax equation

Calculate backward influence coefficient 
InflCoef2= M/Mmax=

Calculate area affected

Calculate migration 
increment for each point

Assign the sign of Rbend_i to 
migration distance

Add up migration distance for each point

for i=1 to nBend

Move point i base on sign of 
migration distance

End  
Figure 9.24. Flow Chart of Function OneFlow( ). 
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CHAPTER 10. EXAMPLE PROBLEMS 
 
10.1 EXAMPLE 1: CONSTANT VELOCITY OPTION 

Given: 
1. Initial coordinates of the Brazos River center line in 1958 digitized from the map  

(Figure 10.1), as Figure 10.2: 
 

  

NORTH

 
Figure 10.1. Map of the Brazos River (Example 1). 
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Figure 10.2. Digitized Coordinates of the Brazos River Center Line in 1958 (Example 1). 
 
2. EFA Results shown in Figure 10.3: 
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Figure 10.3. Assumed EFA Curve for the Brazos River (Example 1). 
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3. Constant Flowrate: 200 m3/s from 1958 to 1959. 
 
4. Discharge versus Water depth curve obtained from the HEC-RAS simulation (Figure 10.4): 
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Figure 10.4. Discharge versus Water Depth Curve for the Brazos River (Example 1). 

  
5. Discharge versus Velocity curve obtained from HEC-RAS simulation (Figure 10.5): 
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Figure 10.5. Discharge versus Velocity Curve for the Brazos River (Example 1). 
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Find: 
1. Predict the new location of the center line of the Brazos River in 1959. 
2. Migration versus Time curve for the SH105 bridge location. 
 
Solution from the MEANDER program:  
 
Use the constant flow option in the MEANDER program. 
 
Results:  
 
After a 1-year period of the flood, the new location of the center line of the Brazos River is 
shown in Figure 10.6. The exact coordinates of the new and initial locations are generated as a 
table as shown in Figure 10.7. In the table, the last column shows the accumulated migration 
distance at each point. The river migrated at the SH105 bridge location toward south by 
approximately 45 m during one year as shown in Figure 10.8. 
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Figure 10.6. Output Plot (Example 1). 
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Figure 10.7. Output Table (Example 1). 

 

 
Figure 10.8. Migration versus Time Curve (Example 1). 
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10.2 EXAMPLE 2: HYDROGRAPH OPTION 

Given:  
1. Initial coordinates of the Guadalupe River center line in 1959 digitized from the map (Figure 

10.9), as Figure 10.10. Note that the US59 bridge has not migrated much since it was located 
on the straight portion of the river. Therefore, a new bridge location is assumed for Example 
2 as shown in Figure 10.10. 
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Figure 10.9. Map of the Guadalupe River (Example 2). 
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Figure 10.10. Digitized Coordinates of the Guadalupe River Center Line in 1959  
(Example 2). 

 
2. EFA Results shown in Figure 10.11: 
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Figure 10.11. Assumed EFA Curve for Guadalupe River (Example 2). 
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3. Hydrograph of the Guadalupe River at the new bridge location is given in Figure 10.12: 
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Figure 10.12. Hydrograph of Guadalupe River at the New Bridge Location in 1959. 

 
4. Discharge versus Water depth curve obtained from HEC-RAS simulation (Figure 10.13): 
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Figure 10.13. Discharge versus Water Depth Curve for the Guadalupe River (Example 2). 
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5. Discharge versus Velocity curve obtained from HEC-RAS simulation (Figure 10.14): 
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Figure 10.14. Discharge versus Velocity Curve for the Guadalupe River (Example 2). 
 
Find:  
1. Predict the new location of the center line of the Guadalupe River at the end of 1963. 
2. Migration versus Time curve for the new bridge location during 5-year period. 
 
Solution from the MEANDER program:  
 
Use the hydrograph option in the MEANDER program. 
 
Results:  
 
The migrated location of the center line of Guadalupe River according to the given hydrograph is 
shown in Figure 10.15. The exact coordinates of the new and initial locations are tabulated in 
Figure 10.16. In the table, the accumulated migration distance at each point is shown in the last 
column. The river migrated at the new bridge location toward south by approximately 11.8 m 
during five years as shown in Figure 10.17. In the figure, the effect of the hydrograph is obvious 
such that the low flow rate do not cause any migration movement while the big flood moves the 
river significantly. 
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Figure 10.15. Output Plot for Example 2. 

 

 
Figure 10.16. Output Table for Example 2. 
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Figure 10.17. Migration versus Time Curve for Example 2. 

 
10.3 EXAMPLE 3: RISK ANALYSIS OPTION 

Given:  
1. Use the same initial coordinates of the Brazos River center line given in Example 1 (Figure 

10.2). 
2. Use the same EFA result given in Example 1 (Figure 10.3). 
3. Generate the future hydrographs using the following values: Q100 = 6000 m3/s and Q500 = 

9000 m3/s. 
4. Use the same Discharge versus Water depth curve given in Example 1 (Figure 10.4). 
5. Use the same Discharge versus Velocity curve given in Example 1 (Figure 10.5). 
 
Find:  
1. Generate the CDF map to show the general trend of the meander migration of the Brazos 

River with the associated likelihood levels after 180 days. 
2. Predict the migration distance at the SH105 bridge location with a 1 percent probability that 

the river will move to the predicted location or further after 180 days. 
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Solution from the MEANDER program:  
 
Use the risk analysis option in the MEANDER program. 
 
Results:  
 
The CDF map generated by the MEANDER program is shown in Figure 10.18 and the location 
of the SH105 bridge is represented by a thick straight line in the same figure. The predicted 
migration distances at the bridge location after 180 days are shown in Figure 10.19 (CDF plot). 
According to the CDF plot, the river will migrate 45 m or further in the direction of the bridge 
with a 1 percent probability. In other words, the river has a 99 percent probability to move 45 m 
or closer. 
 

 
Figure 10.18. CDF Map for the Brazos River (Example 3). 
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Figure 10.19. CDF Plot for the SH105 Bridge Direction (Example 3). 
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CHAPTER 11. CONCLUSIONS AND RECOMMENDATIONS 
 
11.1 CONCLUSIONS 

This project is to investigate river bankline migration and develop a soil-based guideline for 
predicting such migration as a function of time. A hyperbolic curve was chosen to estimate the 
migration displacement with time. This curve is characterized by two parameters: initial 
migration rate and maximum migration distance. These quantities were to be determined in this 
project. Numerical simulations with a 3D fluid model were used to obtain the maximum shear 
stress on the channel boundaries; the erosion function generated by EFA test on the soil material 
on the site was used to calculate the critical shear stress and the soil erosion rate corresponding to 
the shear stress. With the results of these two parameters (shear stress from the numerical 
simulation and EFA test erosion function), the channel bankline initial migration rate was 
determined. Large-scale flume tests were conducted in the laboratory to simulate real river 
meander processes and determine the maximum migration distance of the channel bankline 
needed in the hyperbolic model. Equations for different soils (sand and clay) were thus proposed 
for the maximum migration distance. 
 
A risk analysis approach and a computer program were also developed in the project. Future 
hydrographs of the channel flowrate are generated and the corresponding risk is evaluated for the 
channel bankline movement in a probability approach. The risk that the river bank will reach a 
given structure can be determined in that fashion. In the last part of this project, all modules were 
combined in a computer program. User-friendly screens were used in the Windows environment, 
and documents and examples were attached in the help menu of the program. 
 

11.2 RECOMMENDATIONS 

Full-scale verification was not conducted because of limited budget and time. Therefore, full-
scale verification which involves sampling work at several river sites for the EFA tests is highly 
recommended for further validation of the new prediction method. 
 
The input data for the MEANDER program consists of three parts; erodibility of the soil from 
the EFA test, digitized river coordinates, and hydrograph at a river. Among three input data, 
digitizing the geometries of the rivers and obtaining the hydrographs at the rivers are time-
consuming tasks, especially the digitization work. Therefore, it will be very helpful for the 
bridge engineers to run the MEANDER program if there are pre-developed databases of 
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digitized coordinates and hydrographs for the rivers which have a relatively high potential for 
large migration in Texas. 
the Instantaneous Model approach was considered but not completed. The researchers highly 
recommend that this method be completed and compared with the Hyperbolic Model approach 
against the full-scale data to choose the better prediction model for meander migration. 
 
The current version of the MEANDER program was developed in the mixed language 
programming such as Visual C++ and Matlab. If the MEANDER program can be re-written in 
one language environment, it will be much easier for the future researchers to improve or modify 
it if necessary. 
 
The run time with a risk analysis option in the MEANDER program might be extremely long if a 
long time length or a large number of future hydrographs being generated is specified. This 
might be a problem of the current version of the MEANDER program from a practical 
standpoint. Therefore, it is highly recommended to optimize the algorithm to reduce computation 
time. 
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APPENDIX A – FLUME TESTS IN SAND 
 
PHOTOGRAPHS OF THE PREPARATION: 
 

 
Figure A.1. Filling Sand into the Previous Channel for Next Test. 

 

 
Figure A.2. Leveling Sand Bed. 

 



 

210 

 
Figure A.3. Sketching Channel Contour on the Sand Bed. 

 

 
Figure A.4. Digging Sand Channel. 
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Figure A.5. Completion of the Sand Channel. 

 

 
Figure A.6. Channel Initial Geometry with Water. 
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PHOTOGRAPHS OF THE FLUME TESTS: 
 

(a) Initial (b) Final (t = 42 hr) 
Figure A.7. Sand Test Case 02 (R/W = 3, φ = 65˚, Fr = 0.30). 

 

(a) Initial (b) Final (t = 92 hr) 
Figure A.8. Sand Test Case 04 (R/W = 6, φ = 65˚, Fr = 0.30). 
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(a) Initial (b) Final (t = 30 hr) 
Figure A.9. Sand Test Case 06 (R/W = 4, φ = 120˚, Fr = 0.30). 

 

 
Figure A.10. Initial Plan Form of Sand Test Case 08 (R/W = 4, φ = 220˚, Fr = 0.30). 
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Figure A.11. 147 hr Plan Form of Sand Test Case 08 (R/W = 4, φ = 220˚, Fr = 0.30). 

 

(a) Initial (b) Final (t = 56 hr) 
Figure A.12. Sand Test Case 09 (R/W = 4, φ = 120˚, Fr = 0.25). 
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(a) Initial (b) Final (t = 23 hr) 
Figure A.13. Sand Test Case 11 (R/W = 4, φ = 120˚, Fr = 0.36). 
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FLUME TEST RESULTS: 
 

Initial & Final Channel Geometries (Sand Test Case 01_R /W  = 2, φ  = 65˚, Fr  = 0.30)
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Figure A.14. Channel Geometry at the Initial and Final (18 hr) Stages. 

 
Plan Forms Evalution (Sand Test Case 01_R /W  = 2, φ  = 65˚, Fr = 0.30) 
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Figure A.15. Plan Forms Evolution at t = 0, 3, 6, 9 and 18 hr. 
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Figure A.16. Channel Cross-Section Profiles (Sand Test Case 01). 
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Mean Velocity Profile (Sand Test Case 01_R /W  = 2, φ  = 65˚, Fr  = 0.30)
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Water Elevation Profile (Sand Test Case 01_R /W  = 2, φ  = 65˚, Fr  = 0.30)
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Figure A.17. Mean Velocity and Water Elevation Measurement Results. 
 



 

219 

Initial & Final Channel Geometries (Sand Test Case 02_R /W  = 3, φ  = 65˚, Fr  = 0.30)
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Figure A.18. Channel Geometry at the Initial and Final (42 hr) Stages. 

 
Plan Forms Evalution (Sand Test Case 02_R /W  = 3, φ  = 65˚, Fr  = 0.30)

0

100

200

300

400

500

400 600 800 1000 1200 1400x (cm)

y (cm)

 
Figure A.19. Plan Forms Evolution at t = 0, 3, 6, 9, 15, 24, 33 and 42 hr. 
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Figure A.20. Channel Cross-Section Profiles (Sand Test Case 02). 
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Water Elevation Profile (Sand Test Case 02_R /W  = 3, φ  = 65˚, Fr  = 0.30)
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Water Elevation Profile (Sand Test Case 02_R /W  = 3, φ  = 65˚, Fr  = 0.30)
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Figure A.21. Mean Velocity and Water Elevation Measurement Results. 
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Initial & Final Channel Geometries (Sand Test Case 03_R /W  = 4, φ  = 65˚, Fr  = 0.30)
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Figure A.22. Channel Geometry at the Initial and Final (39 hr) Stages. 

 
Plan Forms Evalution (Sand Test Case 03_R /W  = 4, φ  = 65˚, Fr  = 0.30)
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Figure A.23. Plan Forms Evolution at t = 0, 3, 6, 9, 15, 21 and 39 hr. 
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Figure A.24. Channel Cross-Section Profiles (Sand Test Case 03). 
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Water Elevation Profile (Sand Test Case 03_R /W  = 4, φ  = 65˚, Fr  = 0.30)
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Water Elevation Profile (Sand Test Case 03_R /W  = 4, φ  = 65˚, Fr  = 0.30)
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Figure A.25. Mean Velocity and Water Elevation Measurement Results. 
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Initial & Final Channel Geometries (Sand Test Case 04_R /W  = 6, φ  = 65˚, Fr  = 0.30)
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Figure A.26. Channel Geometry at the Initial and Final (92 hr) Stages. 

 
Plan Forms Evalution (Sand Test Case 04_R /W  = 6, φ  = 65˚, Fr  = 0.30)
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Figure A.27. Plan Forms Evolution at t = 0, 3, 6, 9, 15, 22, 34, 45, 69 and 92 hr. 
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Figure A.28. Channel Cross-Section Profiles (Sand Test Case 04). 
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Water Elevation Profile (Sand Test Case 04_R /W  = 6, φ  = 65˚, Fr  = 0.30)
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Water Elevation Profile (Sand Test Case 04_R /W  = 6, φ  = 65˚, Fr  = 0.30)
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Figure A.29. Mean Velocity and Water Elevation Measurement Results. 
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Initial & Final Channel Geometries (Sand Test Case 05_R /W  = 8, φ  = 65˚, Fr  = 0.30)
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Figure A.30. Channel Geometry at the Initial and Final (66 hr) Stages. 

 
Plan Forms Evalution (Sand Test Case 05_R /W  8, φ  = 65˚, Fr  = 0.30)

0

100

200

300

400

500

600

700

900 1100 1300 1500 1700 1900 2100 2300 2500x (cm)

y (cm)

 
Figure A.31. Plan Forms Evolution at t = 0, 3, 6, 9, 15, 24, 42 and 66 hr. 
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Figure A.32. Channel Cross-Section Profiles (Sand Test Case 05). 
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Water Elevation Profile (Sand Test Case 05_R /W  = 8, φ  = 65˚, Fr  = 0.30)
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Water Elevation Profile (Sand Test Case 05_R /W  = 8, φ  = 65˚, Fr  = 0.30)
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Figure A.33. Mean Velocity and Water Elevation Measurement Results. 
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Initial & Final Channel Geometries (Sand Test Case 06_R /W  = 4, φ  = 120˚, Fr  = 0.30)
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Figure A.34. Channel Geometry at the Initial and Final (30 hr) Stages. 

 
Plan Forms Evalution (Sand Test Case 06_R /W  = 4, φ  = 120˚, Fr  = 0.30)
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Figure A.35. Plan Forms Evolution at t = 0, 3, 6, 12, 18, 24 and 30 hr. 
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Figure A.36. Channel Cross-Section Profiles (Sand Test Case 06). 
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Water Elevation Profile (Sand Test Case 06_R /W  = 4, φ  = 120˚, Fr  = 0.30)
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Water Elevation Profile (Sand Test Case 06_R /W  = 4, φ  = 120˚, Fr  = 0.30)
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Figure A.37. Mean Velocity and Water Elevation Measurement Results. 
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Initial & Final Channel Geometries (Sand Test Case 07_R /W  = 4, φ  = 180˚, Fr  = 0.30)
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Figure A.38. Channel Geometry at the Initial and Final (86 hr) Stages. 

 
Plan Forms Evalution (Sand Test Case 07_R /W  = 4, φ  = 180˚, Fr  = 0.30)
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Figure A.39. Plan Forms Evolution at t = 0, 3, 6, 15, 24, 36, 48, 66 and 86 hr. 
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Figure A.40. Channel Cross-Section Profiles (Sand Test Case 07). 
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Water Elevation Profile (Sand Test Case 07_R /W  = 4, φ  = 180˚, Fr  = 0.30)
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Water Elevation Profile (Sand Test Case 07_R /W  = 4, φ  = 180˚, Fr  = 0.30)
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Figure A.41. Mean Velocity and Water Elevation Measurement Results. 
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Initial & Final Channel Geometries (Sand Test Case 08_R /W  = 4, φ  = 220˚, Fr  = 0.30)
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Figure A.42. Channel Geometry at the Initial and Final (147 hr) Stages. 

 
Plan Forms Evalution (Sand Test Case 08_R /W  = 4, φ  = 220˚, Fr  = 0.30)
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Figure A.43. Plan Forms Evolution at t = 0, 3, 9, 18, 30, 48, 69, 96, 123 and 147 hr. 
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Figure A.44. Channel Cross-Section Profiles (Sand Test Case 08). 
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Water Elevation Profile (Sand Test Case 08_R /W  = 4, φ  = 220˚, Fr  = 0.30)
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Figure A.45. Mean Velocity and Water Elevation Measurement Results. 
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Initial & Final Channel Geometries (Sand Test Case 09_R /W  = 4, φ  = 120˚, Fr  = 0.25)
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Figure A.46. Channel Geometry at the Initial and Final (56 hr) Stages. 

 
Plan Forms Evalution (Sand Test Case 09_R /W  = 4, φ  = 120˚, Fr  = 0.25)

0

100

200

300

400

500

600

700

800 1000 1200 1400 1600 1800 2000 2200x (cm)

y (cm)

 
Figure A.47. Plan Forms Evolution at t = 0, 4, 10, 16, 24, 32, 44 and 56 hr. 
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Figure A.48. Channel Cross-Section Profiles (Sand Test Case 09). 
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Water Elevation Profile (Sand Test Case 09_R /W  = 4, φ  = 120˚, Fr  = 0.25)
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Water Elevation Profile (Sand Test Case 09_R /W  = 4, φ  = 120˚, Fr  = 0.25)
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Figure A.49. Mean Velocity and Water Elevation Measurement Results. 
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Initial & Final Channel Geometries (Sand Test Case 10_R /W  = 4, φ  = 120˚, Fr  = 0.34)
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Figure A.50. Channel Geometry at the Initial and Final (39 hr) Stages. 

 
Plan Forms Evalution (Sand Test Case 10_R /W  = 4, φ  = 120˚, Fr  = 0.34)
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Figure A.51. Plan Forms Evolution at t = 0, 3, 6, 9, 15, 21, 27 and 39 hr. 
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Water Elevation Profile (Sand Test Case 10_R /W  = 4, φ  = 120˚, Fr  = 0.34)
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Water Elevation Profile (Sand Test Case 10_R /W  = 4, φ  = 120˚, Fr  = 0.34)
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Figure A.52. Mean Velocity and Water Elevation Measurement Results. 
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Initial & Final Channel Geometries (Sand Test Case 11_R /W  = 4, φ  = 120˚, Fr  = 0.36)
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Figure A.53. Channel Geometry at the Initial and Final (23 hr) Stages. 
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Figure A.54. Plan Forms Evolution at t = 0, 2, 5, 9, 14 and 23 hr. 
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Figure A.55. Channel Cross-Section Profiles (Sand Test Case 11). 
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Water Elevation Profile (Sand Test Case 11_R /W  = 4, φ  = 120˚, Fr  = 0.36)
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Water Elevation Profile (Sand Test Case 11_R /W  = 4, φ  = 120˚, Fr  = 0.36)
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Figure A.56. Mean Velocity and Water Elevation Measurement Results. 
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Initial & Final Channel Geometries (Sand Test Case 12_R /W  = 4, φ  = 65˚, Fr  = 0.30)
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Figure A.57. Channel Geometry at the Initial and Final (45 hr) Stages. 
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Figure A.58. Plan Forms Evolution at t = 0, 3, 6, 9, 15, 21, 33 and 45 hr. 
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Figure A.59. Channel Cross-Section Profiles (Sand Test Case 12). 
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Water Elevation Profile (Sand Test Case 12_R /W  = 4, φ  = 65˚, Fr  = 0.30)
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Figure A.60. Mean Velocity and Water Elevation Measurement Results. 
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APPENDIX B – FLUME TESTS IN CLAY 
 
PHOTOGRAPHS OF THE PREPARATION: 
 

 
Figure B.1. Retrieving Clay from the Previous Test. 

 
 

 
Figure B.2. Filling the Sand Channel. 
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Figure B.3. Leveling the Sand Bed. 

 
 

 
Figure B.4. Completion of Leveling Work. 
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Figure B.5. Drawing the Contour of the Sand Channel. 

 
 

 
Figure B.6. Digging the Sand Channel. 
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Figure B.7. Placing the Clay Banks and Covering with Wet Cloth. 

 
 

 
Figure B.8. Sprinkling the Clay Banks. 
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Figure B.9. Completion of the Clay Channel. 
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Figure B.10. Trial Cross Ssections: (a) Case 01, (b) Case 02, (c) Case 03, and  
(d) Final. Adapted Cross Section in the Clay Tests. 
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PHOTOGRAPHS OF THE FLUME TESTS: 
 

 
(a) Initial  (b) Final (t = 20 hr) 

Figure B.11. Clay Test Case 01 (R/W = 4, φ = 120˚, Fr = 0.50). 
 
 

 

Figure B.12. Initial Condition of Clay Test Case 02 (R/W = 4, φ = 120˚, Fr = 0.50). 
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Figure B.13. Final Condition of Clay Test Case 02 (t = 106.5 hr). 
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Figure B.14. Initial Condition of Clay Test Case 03 (R/W = 6, φ = 65˚, Fr = 0.50). 
 
 

 
Figure B.15. Final Condition of Clay Test Case 03 (t = 163.5 hr). 
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Figure B.16. Initial Condition of Clay Test Case 04 (R/W = 4, φ = 65˚, Fr = 0.50). 
 
 

 
Figure B.17. Final Condition of Clay Test Case 04 (t = 268 hr). 
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Figure B.18. Initial Condition of Clay Test Case 05 (R/W = 6, φ = 65˚, Fr = 0.50). 
 
 

 
Figure B.19. Final Condition of Clay Test Case 05 (t = 184 hr). 
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Figure B.20. Initial Condition of Clay Test Case 06 (R/W = 2, φ = 65˚, Fr = 0.50). 
 
 

 
Figure B.21. Final Condition of Clay Test Case 06 (t = 180 hr). 
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Figure B.22. Initial Condition of Clay Test Case 07 (R/W = 4, φ = 120˚, Fr = 0.50). 
 
 

 
Figure B.23. Final Condition of Clay Test Case 07 (t = 192 hr). 
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Figure B.24. Initial Condition of Clay Test Case 08 (R/W = 4, φ = 220˚, Fr = 0.50). 
 
 

 
Figure B.25. Final Condition of Clay Test Case 08 (t = 336 hr). 
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FLUME TEST RESULTS: 
 
 

Initial & Final Channel Geometries (Clay Test Case 04_R/W  =4,φ =65, Fr  =0.50)
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Figure B.26. Channel Geometry at the Initial and Final (268 hr) Stages  

 (Clay Test Case 04). 
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Figure B.27. Plan Forms Evolution at t = 0, 48, 96, 126, 156, 186, 220, and 268 hr  
(Clay Test Case 04). 
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Figure B.28. Cross-Sectional Measurement Results  
 (Clay Test Case 04). 
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Mean Water Velocity Profile (Clay Test Case 04_R/W  =4,φ =65, Fr =0.50)
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Water Surface Elevation Profile (Clay Test Case 04_R/W  =4,φ =65, Fr  =0.50)
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Figure B.29. Mean Velocity and Water Elevation Measurement Results  
 (Clay Test Case 04). 
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Initial & Final Channel Geometries (Clay Test Case 05_R/W  =6,φ =65, Fr  =0.50)
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Figure B.30. Channel Geometry at the Initial and Final (260 hr) Stages  

 (Clay Test Case 05). 
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Figure B.31. Plan Forms Evolution at t = 0, 36, 60, 90, 120, 150, 184, 220, and 260 hr  

(Clay Test Case 05). 
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Figure B.32. Cross-Sectional Measurement Results  
 (Clay Test Case 05). 
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Mean Water Velocity Profile (Clay Test Case 05_R/W  =6,φ =65, Fr =0.50)
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Water Surface Elevation Profile (Clay Test Case 05_R/W  =6,φ =65, Fr =0.50)
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Figure B.33. Mean Velocity and Water Elevation Measurement Results  
 (Clay Test Case 05). 
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Initial & Final Channel Geometries (Clay Test Case 06_R/W  =2,φ =65, Fr  =0.50)
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Figure B.34. Channel Geometry at the Initial and Final (192 hr) Stages  

 (Clay Test Case 06). 
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Figure B.35. Plan Forms Evolution at t = 0, 24, 48, 72, 96, 120, 144, and 180 hr  

(Clay Test Case 06). 
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Figure B.36. Cross-Sectional Measurement Results  
 (Clay Test Case 06). 
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Mean Water Velocity Profile (Clay Test Case 06_R/W  =2,φ =65, Fr  =0.50)
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Figure B.37. Mean Velocity and Water Elevation Measurement Results  
 (Clay Test Case 06). 
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Initial & Final Channel Geometries (Clay Test Case 07_R/W  =4, φ =120, Fr =0.50)
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Figure B.38. Channel Geometry at the Initial and Final (192 hr) Stages  

 (Clay Test Case 07). 
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Figure B.39. Plan Forms Evolution at t = 0, 24, 48, 72, 96, 120, 144, 168, and 192 hr  

(Clay Test Case 07) 
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Figure B.40. Cross-Sectional Measurement Results  
 (Clay Test Case 07). 
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Figure B.41. Mean Velocity and Water Elevation Measurement Results  
 (Clay Test Case 07). 
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Figure B.42. Channel Geometry at the Initial and Final (336 hr) Stages  

 (Clay Test Case 08). 
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Figure B.43. Plan Forms Evolution at t = 0, 24, 48, 72, 96, 120, 150, 180, 210, 240 and 336 hr  

 (Clay Test Case 08). 
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Figure B.44. Cross-Sectional Measurement Results  
 (Clay Test Case 08). 
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Mean Water Velocity Profile (Clay Test Case 08_R/W  =4,φ  =220, Fr  =0.50)
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Figure B.45. Mean Velocity and Water Elevation Measurement Results  
 (Clay Test Case 08). 
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APPENDIX C – EXAMPLE RUNS OF NUMERICAL SIMULATION 
 

 

Figure C.1. Simulation Bank Shear Stress (R/W = 1, φ = 180°). 
 

 
Figure C.2. Shear Stress Distribution on Both Banks along the Channel (R/W = 1, φ = 180°). 
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Figure C.3. Simulation Bank Shear Stress (R/W = 2, φ = 180°). 
 

 
Figure C.4. Shear Stress Distribution on Both Banks along the Channel (R/W = 2, φ = 180°). 
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Figure C.5. Simulation Bank Shear Stress (R/W = 4, φ = 65°). 
 

 
Figure C.6. Shear Stress Distribution on Both Banks along the Channel (R/W = 4, φ = 65°). 
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Figure C.7. Simulation Bank Shear Stress (R/W = 4, φ = 120°). 
 

 
Figure C.8. Shear Stress Distribution on Both Banks along the Channel (R/W = 4, φ = 120°). 
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Figure C.9. Simulation Bank Shear Stress (R/W = 4, φ = 180°). 
 

 
Figure C.10. Shear Stress Distribution on Both Banks along the Channel  

(R/W = 4, φ = 180°). 
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Figure C.11. Simulation Bank Shear Stress (R/W = 4, φ = 240°). 
 

 
Figure C.12. Shear Stress Distribution on Both Banks along the Channel  

(R/W = 4, φ = 240°). 
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Figure C.13. Simulation Bank Shear Stress (R/W = 6, φ = 180°). 
 

 
Figure C.14. Shear Stress Distribution on Both Banks along the Channel  

(R/W = 6, φ = 180°). 
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Figure C.15. Simulation Bank Shear Stress (R/W = 8, φ = 180°). 
 

 
Figure C.16. Shear Stress Distribution on Both Banks along the Channel  

(R/W = 8, φ = 180°). 
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Figure C.17. Free Surface Elevation Contours;  

R/W = 4, φ = 65°, 120°, 180° and 240°. 
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Figure C.18. Free Surface Velocity Magnitude Contours;  
R/W = 4, φ = 65°, 120°, 180° and 240°. 
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Figure C.19. Shear Stress Contours on Channel Banks;  

R/W = 4, φ = 65°, 120°, 180° and 240°. 
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Figure C.20. Free Surface Elevation Contours;  

R/W = 1, 2, 4, 6, 8 and φ = 180°. 
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Figure C.21. Free Surface Velocity Magnitude Contours;  

R/W = 1, 2, 4, 6, 8 and φ = 180°. 
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APPENDIX D – MEANDER PROGRAM USER’S MANUAL 
 
Introduction 

The MEANDER program is a product of the TxDOT-sponsored project: Establish 
Guidance for Soils Properties–Based Prediction of Meander Migration Rate. The program 
consists of: graphic interface for data input, implementation of the prediction model, and graphic 
interface for data output. The code was written in Visual C++ and Matlab. The Matlab code was 
compiled and seamlessly linked with Visual C++ code. 

The program takes the data of soil, water, and geometry and calculates the migration of a 
river after a certain period of time. The flow can be a constant discharge or a hydrograph. The 
output plots include the migrated channel and the original channel and the migration versus time 
curve for a selected point. The prediction can also be made based on a probabilistic approach 
where a hydrograph or a 100-year flood and a 500-year flood is needed to provide the risk level. 
The output plot shows the probability of a selected point reaching a certain location and further. 

Installation 

Because of the amount of computation involved, a high-performance computer (1 GB 
RAM, 2.8 GHz central processing unit [CPU] or better) is recommended. The operating system 
should be Windows XP or a newer version.  The installation folder contains the following files: 
libGeoRnd.ctf 
libGeoRnd.dll 
MCRInstaller.exe 
MEANDER.exe 
UserManual.mht 
Tutorial.mht 
Meander Report.pdf 
ReadMe.txt 

The two files “libGeoRnd.ctf” and “libGeoRnd.dll” are the run-time libraries for the 
compiled Matlab code. “MCRInstaller.exe” enables the program to run independent of Matlab 
and needs to be installed before the program can run. “UserManual.mht” is the user manual for 
this program. “Tutorial.mht” is a step by step example for the case of Brazos River. “Meander 
Report.pdf” is the final report for this project. 

It is required to build a folder named “Data” in the same directory as these files. Output 
data files will go here. Once the program is running, the folder “libGeoRnd_mcr” will be 
generated, which contains some required libraries for the program. This folder needs to be 
deleted when the executable (i.e., Meander.exe) is replaced by a newer version. 
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Starting a New Project 

This is a process of entering all the needed input data, running the program, and getting 
output results. Each time the program starts, the main interface as shown in Figure D.1 pops up 
and a new project is opened.  

Method is a pull down list control. If the center line of a river is used to calculate 
migration, it is called Center Line Method. If a bank is used, it is called Bank Method. There are 
three items on the list: Center, Right, and Left. The default setting is Center Line Method. If the 
user wants to use Bank Method, Right or Left needs to be chosen. 

The project name should be formatted in order to facilitate easy graphic output. If the 
coordinates of measured migrated channels are available, the project name should start with a 
number between 1 and 99. If the Center Line Method is used, the name ends with letter “C.” 
Otherwise, the name ends with “L” or “R.” In this case, a project name looks like “15C” or 
“15L.” The corresponding coordinate files should be in the following file names and be in the 
“Data” folder: 
T15C_Initial.txt 
T15R_Initial.txt 
T15L_Initial.txt 
T15R_Final.txt (measured coordinates) 
T15L_Final.txt 

If no measured final channels are available, the project name should start with letter “P” 
and followed by a number between 1 and 999. The last letter is “C” if the Center Line Method is 
used and is “L” or “R” if the Bank Method is used. In this case, a project name looks like 
“P101C” or “P101L.” The coordinate files for the initial channel should be in the following 
names and be in the “Data” folder: 
P101C_Initial.txt 
P101L_Initial.txt 
P101R_Initial.txt 

If the user does not have the data, the files are still needed, but the two column 
coordinates can be for any points close to the channel. 
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Figure D.1. Main Interface. 

Units 

Figure D.2 shows the unit input dialog. It allows the user to choose a unit system for the 
computation. There are two unit systems: metric system and U.S. Customary System (English 
system). The user should be consistent in the units being used. If metric units are chosen, all the 
input data are implied to have metric units and output is the same. There is an exception for 
English units,  that the EFA curve is always in metric units. 
 

 
Figure D.2. Choose a Unit. 
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Geometry 

Figure D.3 shows the interface for geometry input. The coordinates of the channel and 
the parameters needed for fitting circles are entered here. The coordinates should be in the order 
of from upstream to downstream. Getting to know something about the geometry study is helpful 
in understanding the parameters listed here. A set of default values for the parameters are given. 
The Copy button allows copying the fitted plot to other documents such as a Microsoft Word 
file. 

The purpose of geometry study is to simplify the geometry of a real river into arcs and 
lines. The first step is to obtain the coordinates of a channel. The curve can be smoothed by 
redistributing the points (Figure D.4). A single point (Point C) alone does not have curvature. Its 
curvature is determined by a segment that is extended from the point in both directions by a 
certain length (from C to A and from C to B). A quadratic curve is fitted to this chosen segment 
AB, the length of which is called segment length. The curvature of the corresponding point on 
the fitted curve is treated as that of the point of interest (Point C). This process is repeated for 
each point on the bank. 

Spacing Coefficient is the ratio of spacing to river width, while spacing is the distance 
between two adjacent points. A default value of 0.2 is given. Reducing the spacing coefficient 
increases the performance to some degree, but the computation time also increases as a result. 

Segment Length Coefficient is the ratio of segment length to river width. It is 
recommended to use 5. If the segment length coefficient is too small, the bends may not be 
distinguishable on the R/W versus channel length curve. If this value is increased, the bends 
become more obvious but the computation time increases. 

When the length of an identified bend is shorter than a certain value, no circle will be 
fitted. This value is called minimum bend length. Minimum Bend Length Coefficient is the ratio 
of minimum bend length to river width. A value of 2 is suggested here. The smaller the value is, 
the more bends are generated. If the value is too large, many significant bends are excluded. 

Another way to eliminate an identified bend with small curvature is to calculate the 
average distance from a point on the bend to the baseline which connects the first and last point 
of the bend. If this average distance is smaller than a certain limit, it is treated as a straight line. 
The limit is called Straightness Limit. If a value of 0 is given, this parameter is ignored. If the 
user wants to eliminate some unwanted circles, a value around 5 can be picked. The final desired 
value can be determined by trial and error. 

It is nice to show channel lengthwise distance on the channel. Then the user needs to 
specify Tick Spacing. 
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Figure D.3. Geometry Interface. 
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Figure D.4. Redistribute the Points. 
 

Three fitting methods are used in this program. Figure D.1 shows how the Criterion Line 
Method is implemented. The R vs. length curve for an arc is a horizontal line. When a bend on a 
bank can be reasonably fitted with a circle, its radius of curvature vs. length curve is smooth and 
of bell shape. The closer the bend is to an arc, the closer the bell-shaped curve is to a horizontal 
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line. Therefore, if a curve segment is found to be of bell shape facing up or down, it most likely 
corresponds to an obvious bend on the river bank. This method uses three criterion lines (six 
symmetric lines, as a matter of fact) to identify the bell-shaped segments on the R/W vs. length 
curve. As shown in Figure D.5, six lines of R/W = ±3, ±5, ±8 were drawn on the graph. In the 
first loop, all continuous segments between R/W = 0 and R/W = ±3 were identified. These 
segments should be of bell shape and indicate the existence of bends. These segments were 
marked so that they will not be looked at again in the next loop. In the second loop, the 
continuous segments left between R/W = 0 and R/W = ±5 were identified. This procedure was 
repeated for R/W = ±8. For each loop there might be new bends identified. So far the choice of 
the numbers is based on experience. The values of the criterion line 1 to 3 should be in 
ascendance order, or it will be ignored. 
 

 
Figure D.5. Criterion Line Method. 

 
The Balanced Method is applied to achieve a balance between closeness of fitting and the 

length of the arc. A best fit circle is found when the following α term reaches a minimum value. 
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Where, 
 α: Target term 
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 φ: Bend angle 
 b: Empirical coefficient 
 Ri: The distance between point i and the center 
 R*: Radius of the fitted circle 
 n: Number of points used to fit the circle 
 

The Change of Sign Method is good for flume tests. The initial channel of flume tests 
consists of tangent perfect arcs, while the migrated channels can be fitted with tangent arcs. On 
the R/W versus channel length curve, large values occur once or twice around the inflection 
point. The change of sign can clearly indicate the separation of bends. This method is applicable 
only when the bends are tangent to each other. 

X0 and Y0 on the dialog are the coordinates of the point for which a migration versus 
time curve will be drawn. It is chosen by the user on the graph of fitted circles as shown in the 
third circle of Figure D.6. 

If the Fit Circles button is clicked, fitted circles will be plotted on the Geometry dialogue 
and plots of Figure D.6 and Figure D.7 will be generated. The user can adjust the parameters 
based the output. 
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Figure D.6. Original Channel and Fitted Circles. 
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Figure D.7. R/W versus Channel Length. 
 

If default settings do not produce good fitting results, the user can first adjust criterion 
lines based on the Figure D.7. On the R/W versus channel length curve, a well-behaved bend 
appears to be a plateau or a parabolic curve with its vertex close to the horizontal axis (R/W = 0). 
The criterion lines should be adjusted in such a way that the segment between a criterion line and 
the horizontal axis is longer than the minimum bend length. 

Further adjustments that can improve fitting quality include reducing spacing and 
increasing segment length. Smaller spacing leads to longer computation time, but the R/W versus 
channel length curve becomes smoother. Increasing segment length has the same effect and can 
effectively reduce sudden jumps on the curve. A very small bend could be better fitted as a part 
in a larger bend. Setting a reasonable minimum bend length coefficient will help the fitting of the 
larger bend. Perfect straight lines are rare in river channels; however, not all segments with a 
curvature are good to be fitted with a circle. Choosing a straightness limit can help eliminate the 
segments that have a reasonable curvature but look straight. 
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Soil Data 

Figure D.8 is the soil data input interface. The first item is critical shear stress, which 
corresponds to a scour rate of 1 mm/hour. The number of points on an EFA curve needs to be 
specified so that enough space will be allocated on the table. Conventionally, scour rate is in 
metric units. When looking up a scour rate based on shear stress, linear interpolation is used. 
Finally, an appropriate type of the soil needs to be specified (sand or clay). 
 

 

Figure D.8. Soil Data Input. 
 

Water Data 

The interface for entering flow conditions is shown in Figure D.9 to Figure D.16. The 
expression for the critical Froude number is: 
 

c
c

vFr
gy

=  

Where, 
 Frc: Critical Froude number 
 vc: Critical velocity 
 g: Acceleration of gravity 
 y: Water depth 
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The flow can be in discharge or velocity. For doing a prediction, three types of analyses 
are available: constant flow (Figure D.9), hydrograph (Figure D.10), and risk analysis (Figure 
D.11 and Figure D.12). The hydrograph used here can be a file directly downloaded from USGS 
website www.usgs.gov or an edited single-column data file. Each row in a hydrograph has the 
average flow during one time step which is specified in the dialog and is normally one day (24 
hours). Risk analysis takes as input either a hydrograph (Figure D.11) or a 100-year and 500-year 
flood (Figure D.12). Either choice can be used to calculate the risk level a river underwent during 
a certain period of time in history. It is assumed that the river will be at the same risk level 
during the predicted period in the future. The Velocity versus Water depth table is used to find 
the water depth corresponding to a velocity. If the input is discharge the Discharge versus 
Velocity table and Discharge versus Water depth table are required. All these tables are obtained 
from HEC-RAS simulation. The input of flow can also be in velocity as shown in Figure D.13. 
 

 
Figure D.9. Water Data: Discharge and Constant Flow. 
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Figure D.10. Water Data: Discharge and Hydrograph. 
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Figure D.11. Water Data: Discharge and Risk with Hydrograph. 
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Figure D.12. Water Data: Discharge and Risk with Q100, Q500. 
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Figure D.13. Water Data: Constant Velocity. 

 

Input Tables and Plots 

Figure D.14 is a dialog showing previously entered data in a tabular format for easy 
check. If a mistake is found, the user can go back to make corrections. Figure D.15 provides an 
easier way to check the correctness of the data. Abnormal data can be easily identified on a 
graph. After the data are entered and checked, the computation process can be started. Upon 
hitting the Run button, the program starts the prediction process. 
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Figure D.14. Input Tables. 

 

 
Figure D.15. Input Plots. 

 



 

310 

Output Table 

 
Figure D.16 is the output table that shows the coordinates of the initial channel and the 

final channel. Accumulated migration distance of each point is on the last column. 
 

 
Figure D.16. Output Table. 

 
Output Plots 
 

The Output Plots dialog Figure D.17 contains four buttons: Center Line or One Bank, 
Both Banks, Risk Analysis, and M vs. t for one point. All these functions were realized in Matlab. 
The first button is for showing the migrated channel of each step for the center line or a bank 
(Figure D.18). The second button is to show initial banks, predicted final banks, and measured 
final banks if data are available (Figure D.19 and Figure D.20). The third button is to run a risk 
analysis, which requires a specific direction of interest such as a bridge. For the direction of a 
bridge, the coordinates of two end points on the right and left side from the initial channel need 
to be specified in the bridge coordinates box. The right side is the right side of a person looking 
downstream. Once the button is hit, the simulation will took several minutes depending on the 
number of the future hydrographs. For the output of the risk analysis, two separate screens will 
be generated as shown in Figures 21 and 22. The last button is for showing the migration versus 
time curve of a selected point (Figure D.23). Note that this function does not work for a risk 
analysis option. 
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Figure D.17. Interface of Output Plots. 
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Figure D.18. Migrated Channel of Each Step. 
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Figure D.19. Initial and Final Banks, Center Line Method. 
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Figure D.20. Initial and Final Banks, Bank Method. 
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Figure D.21. CDF Map. 
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Figure 22. CDF Plot for a Given Bridge Direction. 
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Figure D.23. Migration versus Time of a Selected Point. 
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