

Product 0-6706-P1

Training Strategies and Materials

Published: June 2014

For TxDOT Project 0-6706: **DESIGN AND SCOPE OF IMPACT OF AUXILIARY LANES**

by

Yi Qi, Ph.D. Xiaoming Chen, Ph.D. Lei Yu, Ph.D., P.E. Jianing Wu Haixia Liu Guanqi Liu Yan Lu

Training Strategies and Materials

Prepared for TxDOT Project 0-6706:

DESIGN AND SCOPE OF IMPACT OF AUXILIARY LANES

by

Yi Qi, Ph.D. Xiaoming Chen, Ph. D. Lei Yu, Ph.D., P.E. Jianing Wu Haixia Liu Guanqi Liu Yan Lu

0-6706

Performed in Cooperation with the Texas Department of Transportation and the Federal Highway Administration

Published: June 2014

TEXAS SOUTHERN UNIVERSITY 3100 Cleburne Avenue Houston, Texas 77004

INTRODUCTION

TxDOT project 0-6706 "Design and Scope of Impact of Auxiliary Lanes" has developed guidelines for implementation of auxiliary lanes including general guidelines on the use of auxiliary lanes and design guidelines for auxiliary lanes. To facilitate the implementation of the guidelines developed by this project, training strategies and materials have been developed for providing a training session for personnel within TxDOT who are involved in the design of freeway interchanges and ramps.

This document consists of two parts. Part I "Training Strategies" provides details on the purpose, method, scheduling, and location for the training. Part II "Training Materials" provides a list of the developed training materials along with the printouts of these training materials.

This page replaces an intentionally blank page in the original. -- TxDOT Research Library Digitization Team

TRAINING STRATEGIES

Training Objectives and Contents

The goals of the proposed training section are to introduce to traffic engineers the developed guidelines and the use of these guidelines for implementing auxiliary lanes. The training session will cover the following topics:

- 1. General Guidelines on the Use of Auxiliary Lanes
- 2. Design Guidelines for Auxiliary Lane

Training Audience

The potential audience for the workshop will be the engineers who are involved in the design of freeway interchanges and ramps. It will include the personnel in TxDOT roadway design sections in different districts and traffic engineers in local Transportation Management Centers (TMCs).

Training Method

Researchers suggest a half-day, two-hour workshop for the proposed training. It is our belief that a half-day course at a TxDOT host district will encourage better participation considering the busy schedules of those individuals targeted to attend.

The workshop will introduce the general guidelines on the use of auxiliary lanes and design guidelines for auxiliary lanes. At the end of the workshop, a workshop evaluation form will be distributed to all attendees and will be reviewed after the workshop. The workshop agenda and materials will be refined, as appropriate, to capitalize on comments and suggestions that will improve the workshop in the future.

Training Scheduling and Coordination

The scheduling of workshops will be coordinated between the university workshop team leader, TxDOT project director, and TxDOT project advisor from the Human Resources Division. The project director will be responsible for coordinating workshops scheduling with TxDOT district training coordinators to ensure that district training facilities will be available for conducting workshops.

Training Location

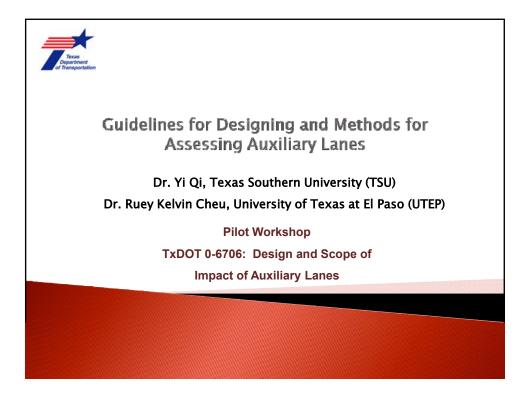
The workshops are planned to be held in a TxDOT facility within selected host districts. Location selection will be coordinated between the workshop team leader, project director, and project advisors.

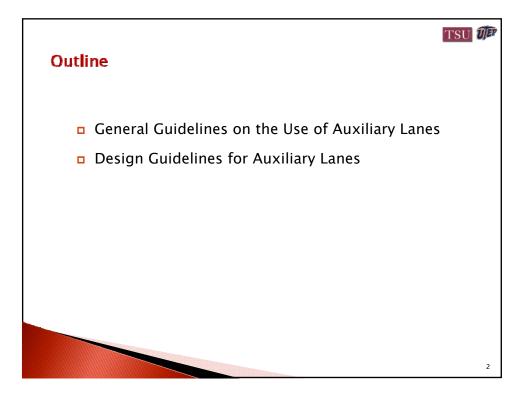
TRAINING MATERIALS

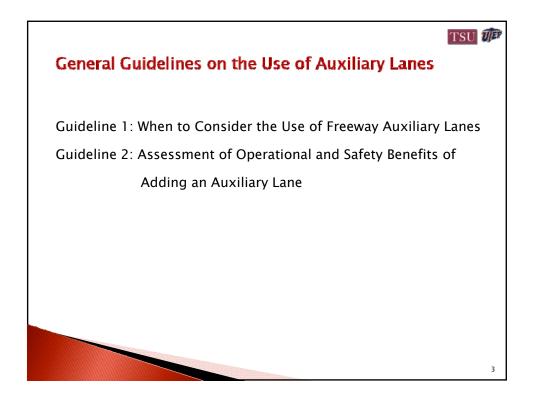
PowerPoint materials include:

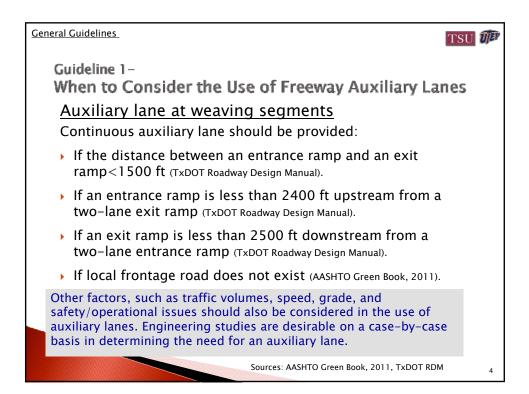
A presentation for introducing the guidelines developed for the implementation of auxiliary lanes.

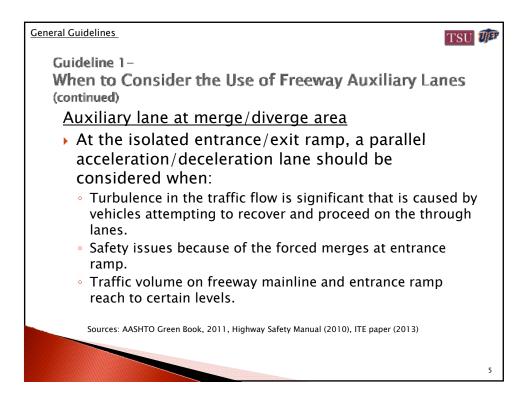
Workbook materials include:

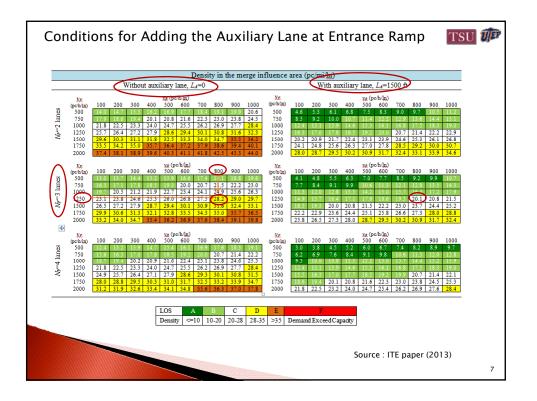

Detailed guidelines for the implementation of auxiliary lanes.

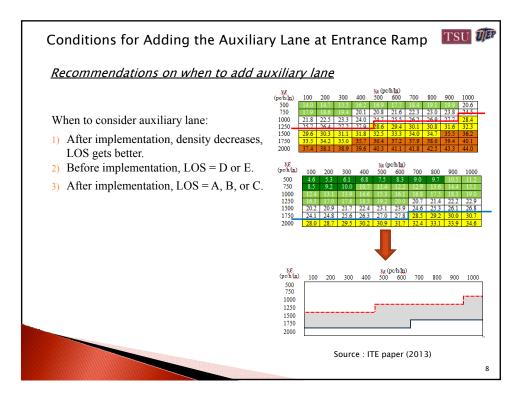

- General Guidelines on the Use of Auxiliary Lanes
- Design Guidelines for Auxiliary Lane

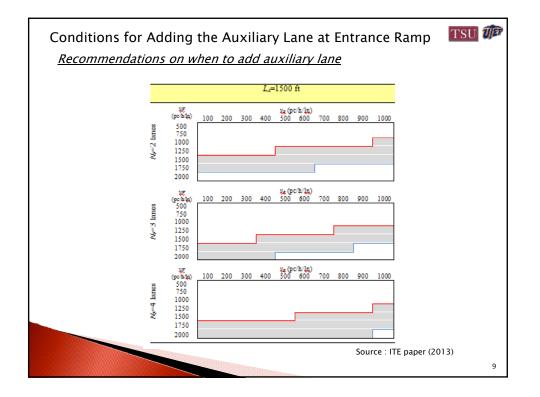

This page replaces an intentionally blank page in the original. -- TxDOT Research Library Digitization Team

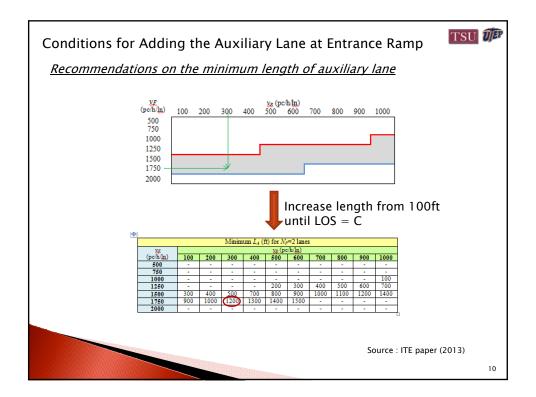

Guidelines for Designing and Methods for Assessing Auxiliary Lanes

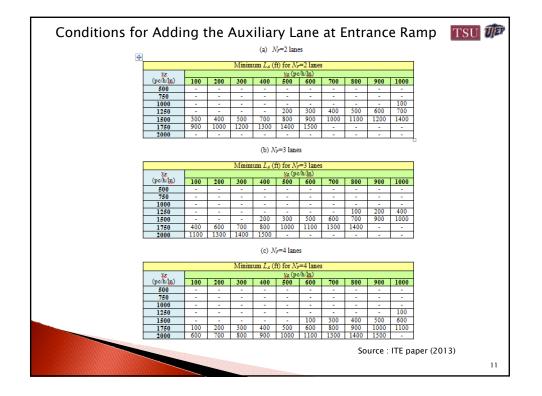

PowerPoint Presentation for Workshop

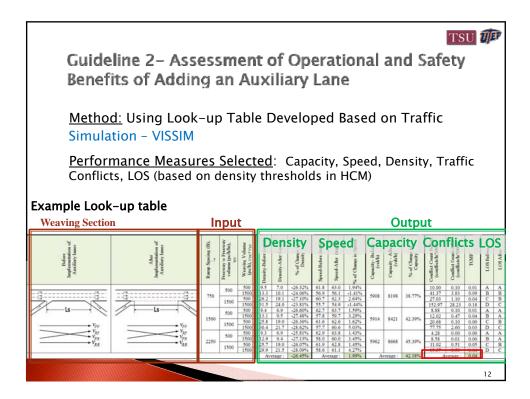


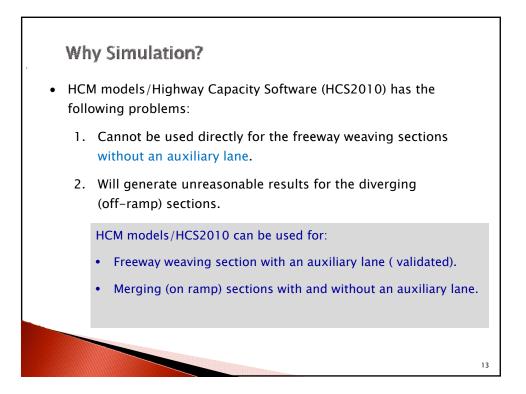


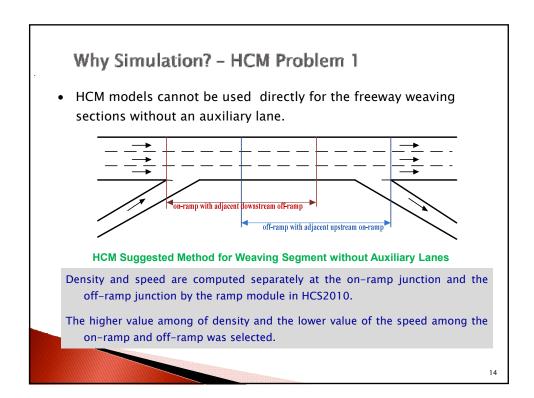


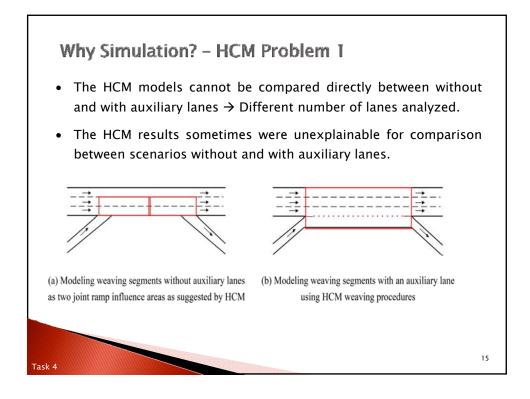


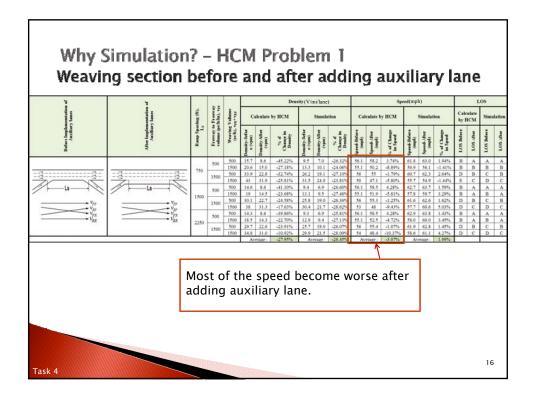

Conditions for	Addii	ng t	he /	Aux		'y La [=2 lane		at E	ntr	anc	e Ra	amp 🚺	SU 🕼
4				10.1			21					1	
				Mmm	um L_A (f								
	(pc/h/ln)	100				y _k (po					1000		
	500	100	200	300	400	500	600	700	800	900	1000	-	
I –	750	-	-	-	-	-	-	-	-	-	-	-	
	1000	-	-	-	-			-	-	-	100	-	
	1250		-	-	-	200	300	400	500	600	700	1	
	1500	300	400	500	700	800	900	1000	1100	1200	1400		
	1750	900	1000	1200	1300	1400	1500	-	-	-	-		
	2000	-			-			-	-	-	-		
L	2000											6	
					(b) N	⊱=3 lane	s						
				Minim	um L_A (f	t) for N _F	=3 lanes					1	
	NE.					yg (po	/h/ln)						
	(pc/h/ln)	100	200	300	400	500	600	700	800	900	1000		
	500	-	-	-	-	-	-	-	-	-	-		
	750	-	-	-	-	-	-	-	-	-	-		
	1000	-	-	-	-	-	-	-	-	-	-		
	1250	-	-	-	-	-	-	-	100	200	400		
	1500	-	-	-	200	300	500	600	700	900	1000		
	1750	400	600	700	800	1000	1100	1300	1400	-	-		
	2000	1100	1300	1400	1500	-	-	-	-	-	-		
				Minim	(c) N um L_4 (f	F=4 lane						1	
-	VE					yg (po		<u> </u>					
	(pc/h/ln)	100	200	300	400	500	600	700	800	900	1000		
	500	-	-	-	-	-	-	-	-	-	-	1	
	750	-	-	-	-	-	-	-	-	-	-	1	
	1000	-	-	-	-	-	-	-	-	-	-		
	1250	-	-	-	-	-	-	-	-	-	100		
	1500	-	-	-	-	-	100	300	400	500	600		
	1750	100	200	300	400	500	600	800	900	1000	1100		
	2000	600	700	800	900	1000	1100	1300	1400	1500	-	J	
									S	ource	: ITE p	aper (2013)	6

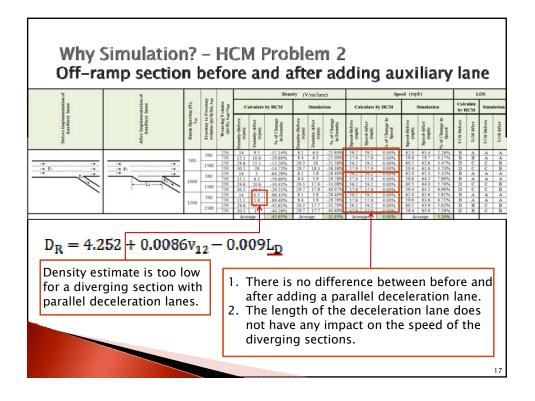


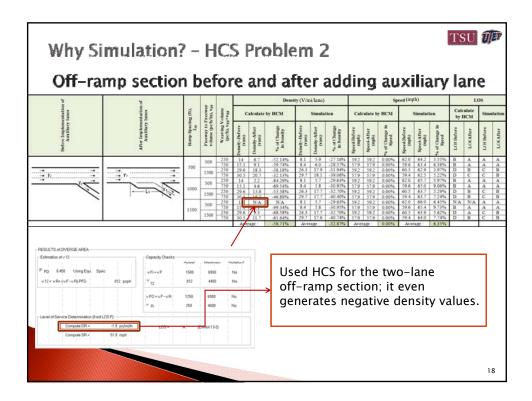


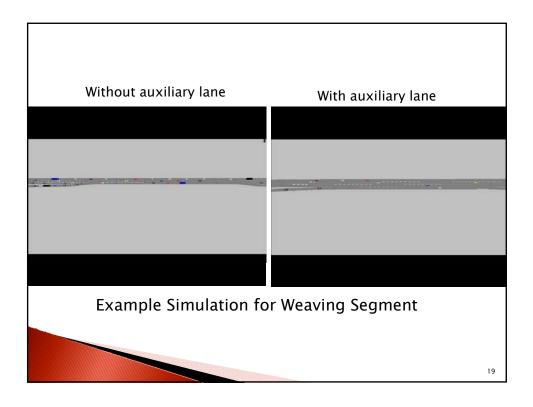


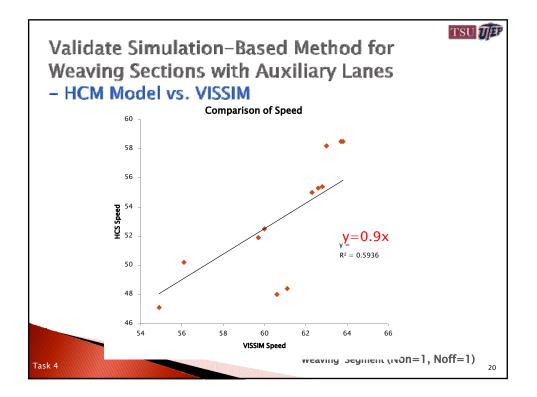


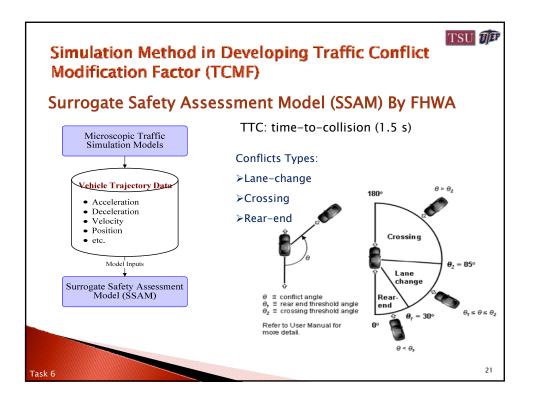


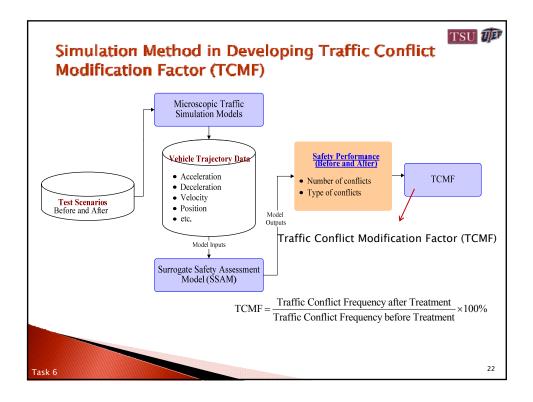


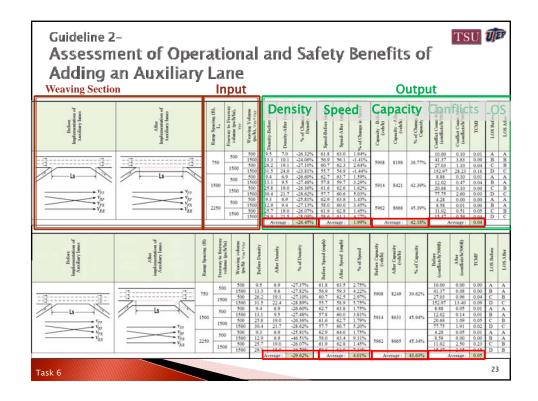


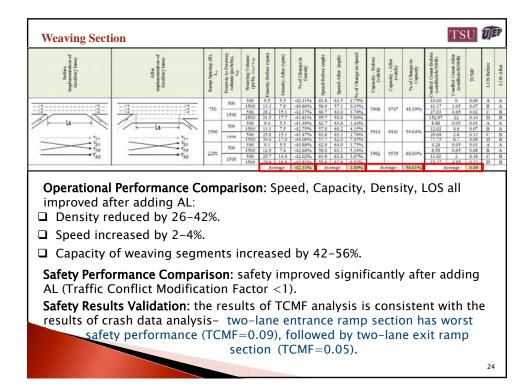


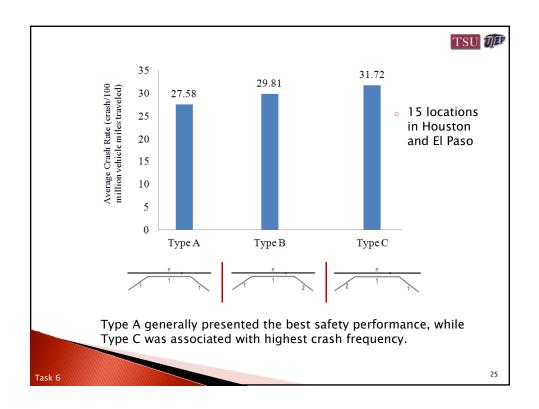


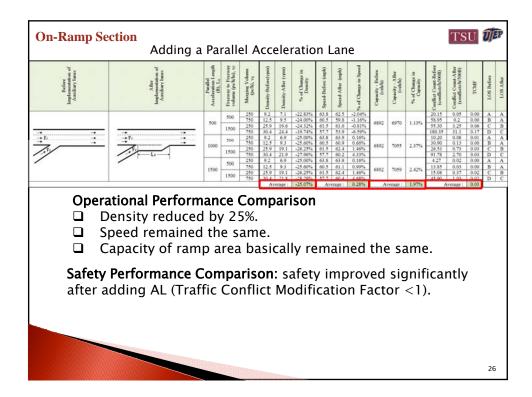


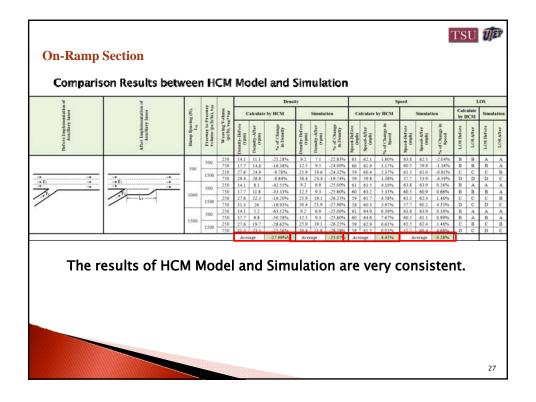


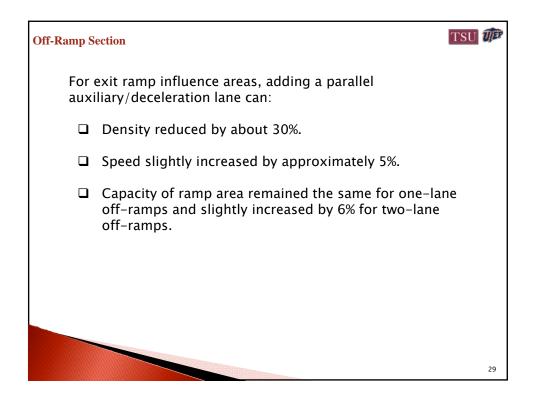


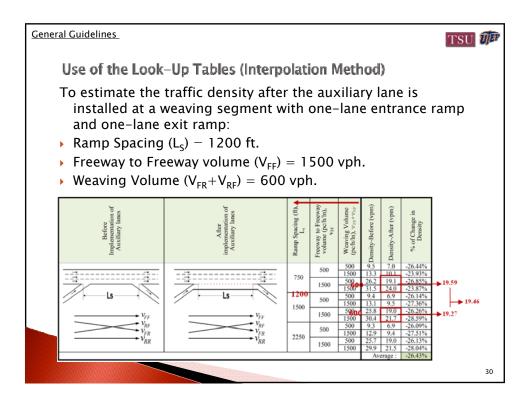


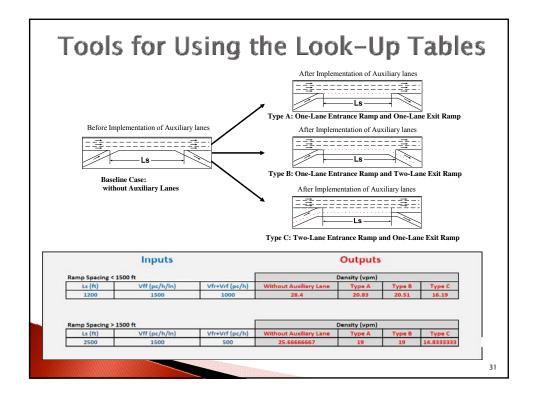


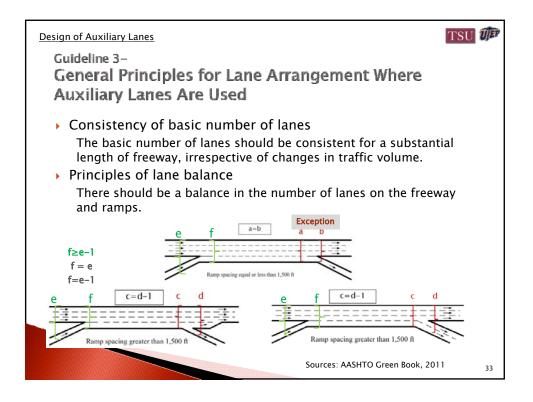


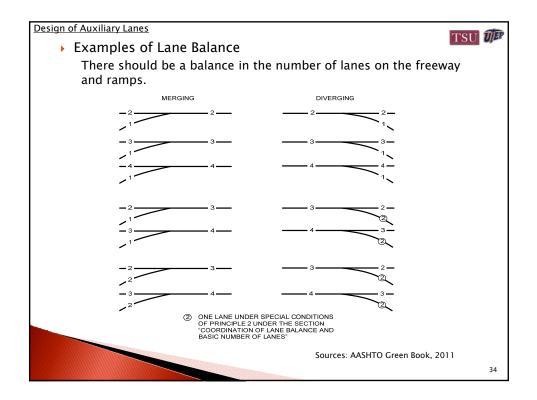


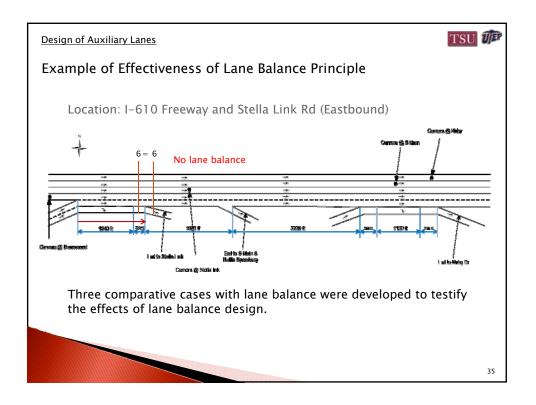


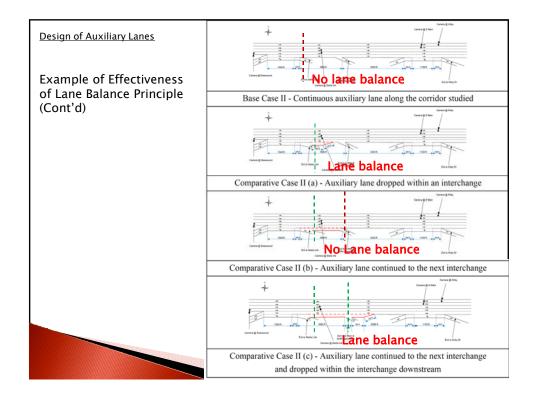


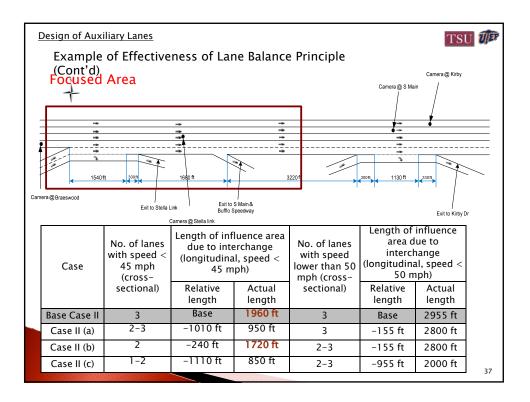


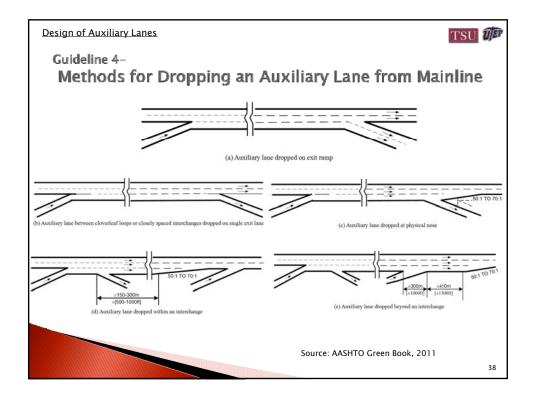

Adding		_	_	_	-	_	-	_	-	-	1	-		-	-	_	
Indementation of Auciliary lanes	After Implementation of Auxiliary lance	Parallel	Deceleration Length (ft), L _G Freeway to Freeway	-			% of Change in Density	Speed-Before (mph)	Speed-After (mph)	% of Change in Speed	Capacity - Before (veh/h)	Capacity - After (velvh)	% of Change in Capacity	Conflict Count-Before (conflicts/h/500ft)	Conflict Count-After (conflicts/h/500ft)	TCMF	LOS Before
		5	00 50	75	0 8.4	6.3 3. 18	-25.939 -25.009 -31.569 -38.389	% 59.6 % 60.5	59.7 62.6	2.26% 0.17% 3.47% 3.70%	6584	6636	0.79%	0.05 0.00 2.10 2.50	0.00 0.00 1.30 1.25	0.00 N/A 0.62 0.50	ACC
	<u>;</u> ,	10	000 50	75	0 8.4	1 5.9 3 17.6		% 59.6 % 60.5	64.3 64.0	5.32% 7.89% 5.79% 6.90%	6584	6637	0.80%	0.03 0.00 1.05 1.25	0.00 0.00 0.60 1.00	0.00 N/A 0.57 0.80	A A C C
~		15	500 500	75	0 8.4 0 26. 0 20.	5.9	-28.401 -29.763 -32.701	% 59.6 % 60.5	65.6 63.6	5.81% 6.71% 5.62% 7.58% 5.10%	6584	6640		0.02 0.00 0.70 0.63	0.00 0.00 0.37 0.65 Average	0.00 N/A 0.52 0.42	A
Batine Batine Anothiny lanes	After Beglensensten of Anthrey tases	ngth	500 150 R F	0 75 25 75	0 8.4	1 5.9 3 17.7 7 17.7	-28.401 -29.763 -32.701	% 59.6 % 60.5 % 40.4	65.6 63.6 63.9 63.9	6.71% 5.62% 7.52% 5.10%	6584	Average		0.00 0.70 0.81	0.00 0.37 0.65 Average	N/A 0.52	LOS Befeer
Indexe Regulationalision of Auxiliary Janes	After Ingelencentation of Austifiery Janes	Peralici Deceleration Length (ft), Lo.	500 150	0 75 10 25 10 75 10 10 10	0 8.4 0 26.) 0 39 (mt/sefore(vbm) 8.1 8.4	1 5.9 3 17.7 2 17.7 2 17.7 2 17.7 2 17.7 3 17.7 5.9 6.0	-28.40% -29.76% -32.70% -31.04% -31.04% -31.04% -31.04% -31.04%	14 59.6 15 60.5 16	65.6 63.6 63.9 63.9 63.9 63.9 63.9 63.9 63	6.71% 5.62% 7.52% 7.52% 7.52% 7.52% 7.52%	(cpacity - Before (veh/h)	Capasity - After (veh/h)	4. of Change in Capacity	0 0 Conflict Count-Before 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conflict Count-After (conflict Count-After (conflicted \$500ft)	N/A 0.52 0.42 0.42	> > LOS Befere 0 0 > > >
Ingle	After After Atter	Parallel Deceleration Length (0), 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Fiteway to Freeway volume (publin) , vo	0 75 0 225 0 75 0 250 0 75 0 250 0 750 250 750 250 250 250 250	0 8.4 0 26.5 0 30 2 (mdA)sogger 8.1 8.4 26.3 29.7 8.1	1 5.9 3 17.7 3 17.7 4 17.7	28, 40% -29, 60 -29, 60 -29, 60 -20, 00 -20, 00 -20	59.6 59.6 5 60.5 5 50.4 60.5 59.4 60.5 59.6 60.5 59.6 60.5 59.4 60.5 59.4 62.0 62.0	65.6 63.6 63.9 63.9 63.9 63.9 63.9 63.9 63	6.71% 5.62% 7.60% 4.10% 4.10% 5.55% 3.38% 2.25% 9.77%	typesity - Before (vebh) 1925	(vehh) (vehh)	4 of Change in Capacity Capacity	000 000 000 000 000 000 000 000 000 00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	N/A 0.52 0.42 0.42 0.42	> 0 0 > > > 105 Before 0 > > >
Aux	After Inglements Autiliary	Peralici Deceleration Length (ft), Lo.	500 150 A Stream of the Stream	0 75 0 75 0 25 0 75 0 75	0 8.4 0 26. 0 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	(unda) any V-Ageneration (unda) any V-Agenerat	004.82- 07.262 07.262 07.262 07.262 07.262 07.262 07.265 07.26	(thin) assign (the first of the	(http://www.com/com/ 63.6 63.6 63.9 63.9 64.2 5 65.7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	6.71% 5.62% 7.50% 5.10% 5.10% 5.10% 7.55% 335% 97% 5.55% 335% 97% 0.06% 22% 9.22%	typesity - Before (vebh) 1925	Capasity - After (veh/h)	4. of Change in Capacity	00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	00.0 37 30 37 30 37 37 37 37 37 37 37 37 37 37	N/A 0.52 0.42 0.42 0.00 N/A 0.43 0.24 0.00 N/A 0.43 0.24 0.00 N/A	0.0 > > 0.0 > > LOS Before
Ingle	After Inglements Autiliary	Parallel Deceleration Length (0), 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	500 150 150 150 1500 1500 1500	0 75 0 225 0 75 0 250 750 250 750 250 750 250 750 250 750 250 750 250 750 250 750 250 750 250 750 250 750 750 750 750 750 750 750 7	0 8.4 0 26. 0 26. 0 20. 4 (und)ang)ag-fijuang 8.1 8.4 26.3 29.7 8.1 8.4 26.3	(unda) angly Agreed to the second sec	vi 400 425 420 420 420 420 420 420 420 420 420 420	59.6 59.6 50.8 50.6 50.8 50.6 50.8 50.6 60.5 50.6 60.5 50.6 60.5 50.6 60.5 50.6 60.5 6 50.6 6 50.6 6 50.6 6 50.6 6 50.6 6 50.6 6 50.6 6 60.5 6 50.6 6 60.5 6 60.5 6 60.5 6 60.5 6	65.6 63.6 63.9 63.9 63.9 63.9 63.9 63.9 63	6.71% 5.62% 7.52% 7.52% 7.52% 5.10% 8.10% 9.10% 9.7% 9.7% 9.7% 9.7% 9.22% 9.2% 9.	6584 (vtbh) (vtbh) 6584 6584	(vehh) (vehh)	4 of Change in Capacity Capacity	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.	00.0 Conflict Country After (ontflicts p. 2000) (conflicts p. 2000) 00.0	N/A 0.52 0.42 0.42 0.42 0.43 0.24 0.04 0.43 0.24 0.038	C > > C C > > LOS Before

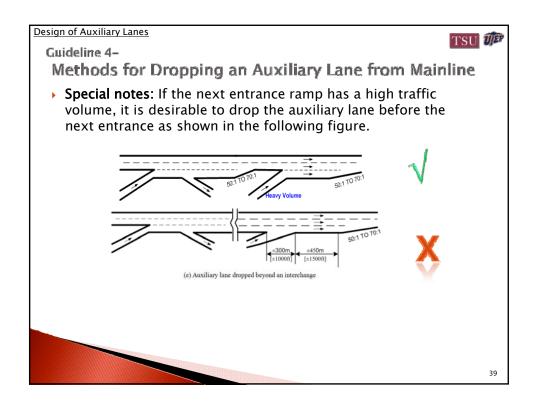


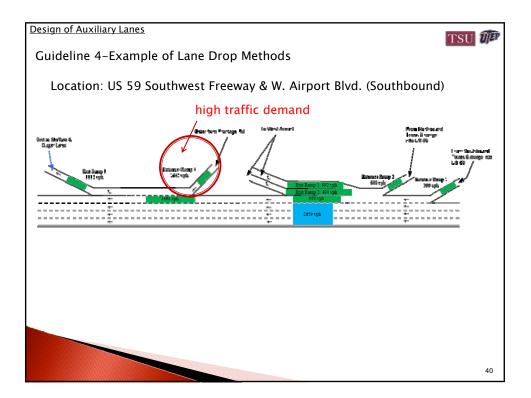


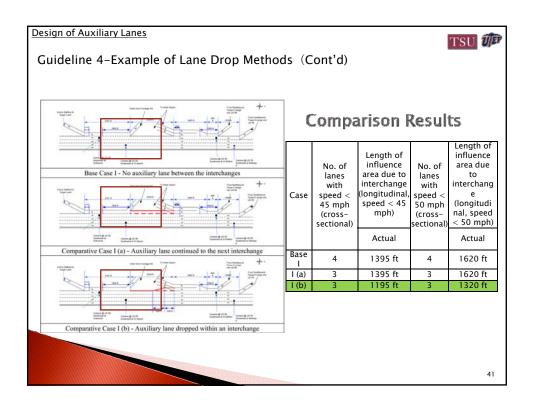


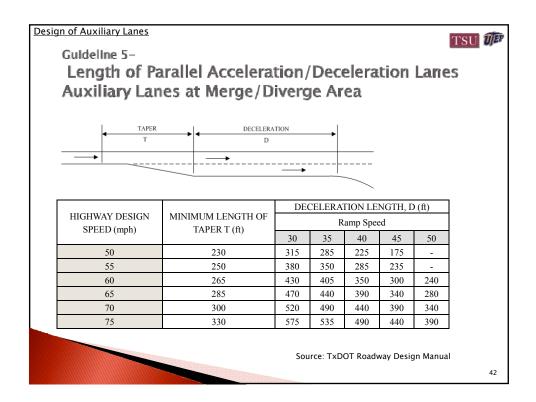


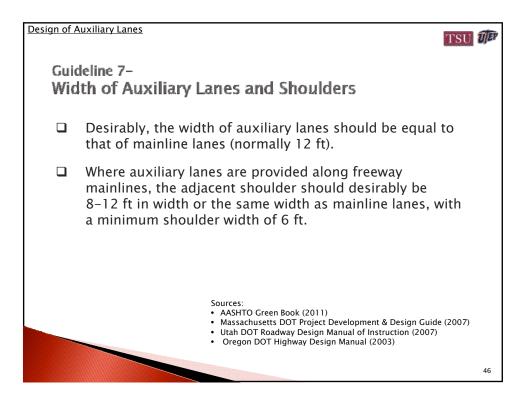


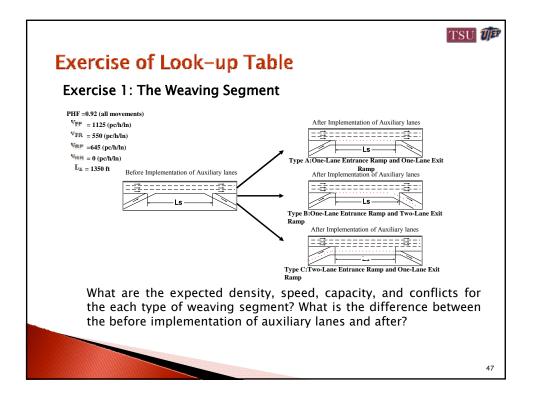


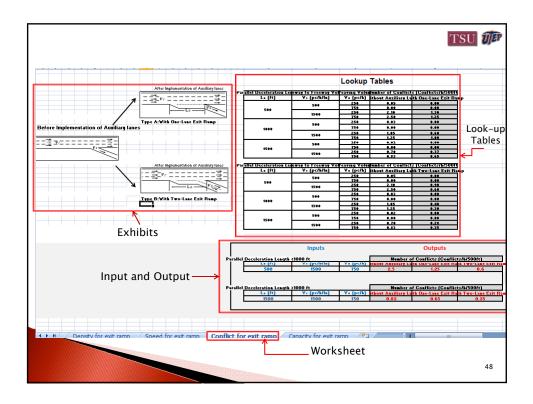


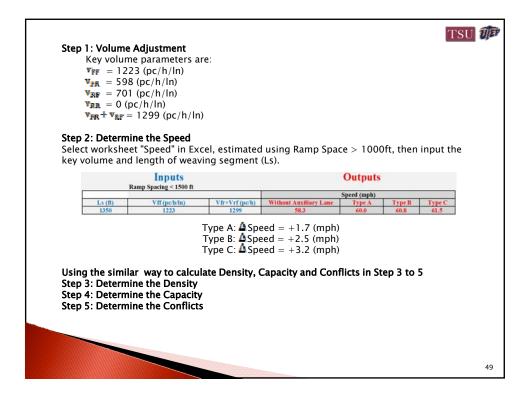


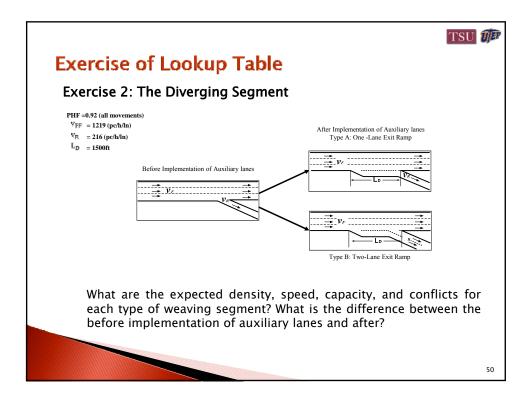


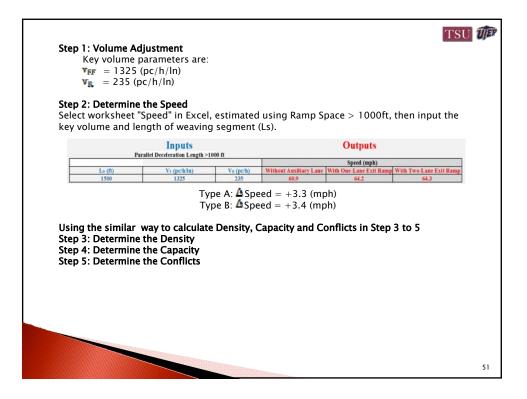


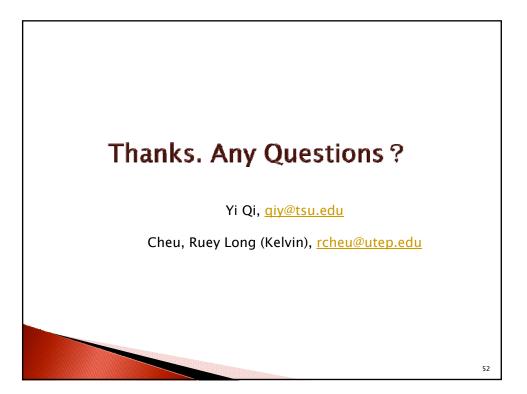



Guideline 5- Length of P	arallel Accelei	ratio	n/D)ece	lera	tior	ı Lai	nes	
	nes at Merge/		-						
,							,		
\rightarrow						→	_		
	ACCELERATION		Т	APER					
	A			Т	-				
			А	CCELE	RATIO	N LENO	GTH, A	(ft)	
HIGHWAY DESIGN	MINIMUM LENGTH OF			COLLE		ng Speed		(11)	
SPEED (mph)	TAPER T (ft)	15	20	25	30	35	40	45	50
50	230	660	610	550	450	350	130	-	-
55	250	900	810	780	670	550	320	150	-
60	265	1140	1100	1020	910	800	550	420	18
65	285	1350	1310	1220	1120	1000	770	600	37
70	300	1560	1520	1420	1350	1230	1000	820	58
75	330	1730	1630	1580	1510	1420	1160	1040	78









This page replaces an intentionally blank page in the original. -- TxDOT Research Library Digitization Team

Guidelines for Designing and Methods for Assessing Auxiliary Lanes

Workbook Materials for Workshop

GUIDELINES FOR DESIGNING AND METHODS FOR ASSESSING AUXILIARY LANES

The purpose of this document is to present guidelines for the conditions under which auxiliary lanes should be considered and guidelines for the geometric design of auxiliary lanes. These guidelines were developed based on the results of the literature review, the survey of traffic engineers, and the traffic simulation and crash data analysis.

1 FRAMEWORK OF DEVELOPED GUIDELINES

The proposed guidelines include two parts: (1) general guidelines on the use of auxiliary lanes, and (2) guidelines for design of auxiliary lanes. The recommended guidelines were highlighted in shaded text boxes for easy reference.

2 GENERAL GUIDELINES ON THE USE OF AUXILIARY LANES

This part of the guidelines aims to provide general guidelines regarding the conditions under which the use of auxiliary lanes is suggested.

Guideline 1 – When to Consider the Use of Freeway Auxiliary Lanes:

Auxiliary lane at weaving segments

- If the distance between an entrance ramp and an exit ramp is less than 1500 ft, a continuous auxiliary lane is strongly recommended.
- If an entrance ramp is less than 2400 ft upstream from a two-lane exit ramp, a continuous auxiliary lane between the entrance and the exit should be provided.
- If an exit ramp is less than 2500 ft downstream from a two-lane entrance ramp, a continuous auxiliary lane between the entrance and the exit should be provided.
- If a local frontage road does not exist, a continuous auxiliary lane is strongly recommended.

Auxiliary lane as parallel acceleration/deceleration lanes

If interchanges are widely spaced (e.g., greater than 2500 ft in length), continuous auxiliary lanes between them might not be practical or necessary. In this case, parallel acceleration/ deceleration should be considered when

- Turbulence is significant in the traffic flow because it is caused by vehicles attempting to recover and proceed on the through lanes.
- Safety issues arise because of the forced merges at an entrance ramp.
- Traffic volumes on freeway mainline and entrance ramp meet the conditions provided in Table 1.

Generally, traffic volumes, speed, grade, and safety/operational issues should be analyzed to determine the need for auxiliary lanes. Engineering studies are desirable on a case-by-case basis in determining the need for an auxiliary lane.

Auxiliary Lane at Weaving Segments

Generally, according to AASHTO Green Book (2011), operations may be improved by using a continuous auxiliary lane between the entrance and exit ramps where (1) interchanges are closed spaced, (2) the distance between the end of the taper on the entrance terminal taper and the beginning of the taper on the exit terminal taper is short, and/or (3) a local frontage road does not exist. Note that the first two conditions are related to the <u>weaving distance</u>. Several state DOT designs provide more specific guidelines regarding the desired weaving distance for the use of auxiliary lanes as follows:

- According to the *TxDOT Roadway Design Manual (2010)*, the provision regarding auxiliary lanes is a major determinant of the spacing required between an entrance ramp and a following exit ramp. It suggests the minimum spacing shall be 2000 ft (600 m) without an auxiliary lane and 1500 ft (450 m) with an auxiliary lane. Therefore, an auxiliary lane is desirable for a spacing of <u>1500 ft.</u>
- The Arizona DOT Roadway Design Guidelines (2007) suggest that, within the metropolitan areas and all other urban/suburban areas throughout the state, mainline auxiliary lanes should be provided on controlled-access highways between ramp entrances and exits of nominally <u>one mile (5280 ft).</u>
- The *California DOT Highway Design Manual (2001)* states that auxiliary lanes should be provided in all cases when the weaving distance is less than <u>2000 ft (600 m)</u>.
- The Illinois DOT Bureau of Design and Environment Manual (2010), the Ohio DOT Location and Design Manual (2011), and the Minnesota DOT Roadway Design Manual (2001) suggest that an auxiliary lane should be provided where the distance between the taper end of the entrance terminal and the beginning taper of the exit terminal is less than 1500 ft.
- According to the *Montana DOT Road Design Manual (2007)*, an auxiliary lane should be provided where the distance between the end of the entrance terminal and the beginning of an exit terminal is less than <u>1600 ft</u>.

Based on the literature, it is strongly recommended that, if the distance between a one-lane entrance ramp and a one-lane exit ramp is less than 1500 ft, an auxiliary lane be used.

In addition, according to the *TxDOT Roadway Design Manual (2010)*, if an entrance ramp is less than 2400 ft upstream from a two-lane exit ramp, an auxiliary lane should be continuous between the entrance and the exit. If an exit ramp is less than 2500 ft downstream from the two-lane entrance ramp, an auxiliary lane should be continuous between the entrance and the exit.

Moreover, according to the design manuals of some state DOTs, several other factors, including traffic volume, grade, speed, etc., should be analyzed to determine the need for auxiliary lanes. The *Illinois DOT Bureau of Design and Environment Manual (2010)*, Indiana DOT's *Indiana Design Manual (2011)* and the *Montana DOT Road Design Manual (2007)* recommend that

traffic volumes be analyzed to determine the need for auxiliary lanes. The *California DOT Highway Design Manual (2001)* requires analyzing grade when considering auxiliary lanes.

Furthermore, in the nationwide survey performed in this project, other factors were identified that should be involved in the decision on use of auxiliary lanes. They included traffic density, safety or operational issues, percentage of trucks, and Level of service (LOS).

Auxiliary Lane as Parallel Acceleration/Deceleration Lanes

When interchanges are widely spaced (e.g., greater than 2,500 ft in length), it might not be practical or necessary to extend the auxiliary lane from one interchange to the next. Under such circumstances, parallel acceleration/deceleration lanes are needed if turbulence is significant in the traffic flow caused by vehicles attempting to recover and proceed on the through lanes (AASHTO Green Book, 2011).

In addition, the AASHTO Highway Safety Manual (2010) indicated that the installation of parallel acceleration lanes at an entrance ramp could improve the safety performance. Therefore, a parallel acceleration lane is preferable when there are traffic safety issues because of forced merges that already exist at the entrance ramp. Furthermore, according to a newly published literature (Wang et al., 2011), traffic volume conditions for adding an auxiliary lane (parallel acceleration lane) with minimum required length at an entrance ramp were provided in Table 1. In this table, the row index v_F is the traffic volume on the freeway mainline (pc/h/ln) and the column index v_R is the traffic volume on the entrance ramp (pc/h/ln). The cells correspondent to these two indexes indicate, under the given traffic volume conditions, if an auxiliary lane (a parallel acceleration lane) is needed or not and how long it should be. A cell with the actual number indicates that an auxiliary lane (parallel acceleration lane) at this ramp.

			Minimu	$m L^*$ (ff	(1) for $N_{\rm p}$	$* = 2 \ln \theta$	20			
v_F^*			IVIIIIIII III	L_A (II	v_R^* (p					
(pc/h/ln)	100	200	300	400	500	600	700	800	900	1000
500	-	-	-	-	-	-	-	-	-	-
750	-	-	_	-	-	-	-	-	_	-
1000	-	-	-	-	-	-	-	-	-	100
1250	-	-	-	-	200	300	400	500	600	700
1500	300	400	500	700	800	900	1000	1100	1200	1400
1750	900	1000	1200	1300	1400	1500	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-
			Minimu	L_A (ft	t) for N_F	= 3 lane	S			
v_F					v_R (pc	:/h/ln)				
(pc/h/ln)	100	200	300	400	500	600	700	800	900	1000
500	-	-	-	-	-	-	-	-	-	-
750	-	-	-	-	-	-	-	-	-	-
1000	-	-	-	-	-	-	-	-	-	-
1250	-	-	-	-	-	-	-	100	200	400
1500	-	-	-	200	300	500	600	700	900	1000
1750	400	600	700	800	1000	1100	1300	1400	-	-
2000	1100	1300	1400	1500	-	-	-	-	-	-
			Minimu	um L _A (ft	t) for N_F	= 4 lane	S			
v_F					v_R (pc	:/h/ln)				
(pc/h/ln)	100	200	300	400	500	600	700	800	900	1000
500	-	-	-	-	-	-	-	-	-	-
750	-	-	-	-	-	-	-	-	-	-
1000	-	-	-	-	-	-	-	-	-	-
1250	-	-	-	-	-	-	-	-	-	100
1500	-	-	-	-	-	100	300	400	500	600
1750	100	200	300	400	500	600	800	900	1000	1100
2000	600	700	800	900	1000	1100	1300	1400	1500	-

 Table 1: Traffic Volume Conditions for Adding an Auxiliary Lane with Minimum Required Length

* N_{F} : Number of lanes on freeway (mainline).

- * $L_{A:}$ Length of auxiliary lane.
- * v_{F} : Volume on freeway(mainline).
- * $v_{R:}$ Volume on on-ramp.

Generally, these guidelines are useful rules of thumb to trigger the consideration for an auxiliary lane. For a specific application, engineering studies are desirable on a case-by-case basis in the final decision on the use of auxiliary lanes.

<u>Guideline 2 – Assessment of Operational and Safety Benefits of Adding an Auxiliary</u> <u>Lane:</u>

Look-up tables presented in Table 2 to Table 7 can be used to preliminarily analyze the operational and safety impacts of adding an auxiliary lane.

To facilitate analysis performed by engineers, a set of look-up tables was developed in this project. The tables covered a wide range of combinations of typical geometric and traffic conditions. They allowed the users to perform a preliminary analysis without having to conduct the complex calculation (such as Highway Capacity Manual [HCM] procedures) or a detailed traffic simulation-based analysis.

Note that the results of this study showed that the HCM methods might be limited in analyzing a weaving segment without an auxiliary lane for following two reasons:

- The HCM model for weaving segments is only for the segments with an auxiliary lane and it yields results (e.g., density and speed) for all lanes within the weaving segment (please see Figure 1[b]). For the weaving segments without auxiliary lanes, the HCM suggested modeling them as two joint ramp influence areas (please see Figure 1[a]). However, this approach yielded results (e.g., density and speed) only for the two mainline lanes next to the shoulder (i.e., two ramp influence areas). Thus, the modeling results of these two cases cannot be compared directly.
- The results (e.g., density and speed) of Case A (without auxiliary lanes, modeled as two joint ramp influence areas) sometimes were better than those of Case B (with auxiliary lanes, modeled by HCM standard method), which is not reasonable because installing an auxiliary lane should not make the segment performance become worse and the two outer lanes next to the shoulder should be affected more by the diverging and merging traffic than the inner lanes.

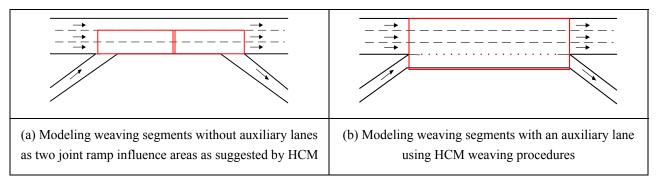


Figure 1: HCM Analysis for Weaving Segment without and with an Auxiliary Lane

Therefore, in this study, the traffic simulation-based approach was used to develop the look-up tables for analyzing the operational and safety impacts of adding an auxiliary lane. Please note, for developing the proposed look-up tables, there were several assumptions implicitly used in the simulation studies, besides the traffic and geometric conditions shown in Tables 2 to 7. Considerations should be given to adjust the estimates of the performance measures listed in the look-up tables for a specific case that deviates from these assumptions. These assumptions include: Peak hour factor = 1.0; Percentage for heavy-vehicle = 0 percent; Lane width and auxiliary lane width = 12 ft; Grade = 0; Driver population is assumed as regular commuters.

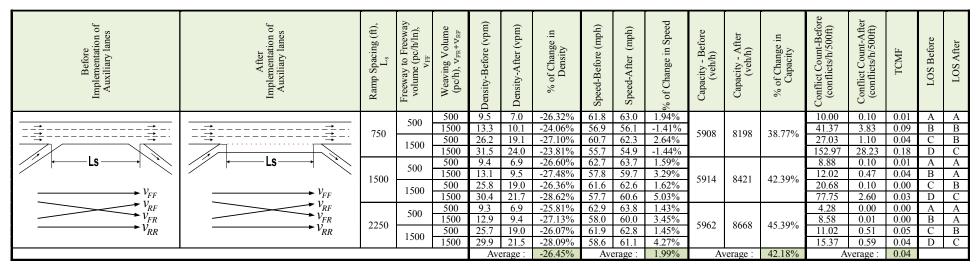


Table 2: Look-Up Table for Weaving Segments (One-Lane Entrance Ramp and One-Lane Exit Ramp)

Note: Weaving Volume=Volume of Ramp to Freeway + Volume of Freeway to Ramp

Table 3: Look-Up Table for Weaving Segments (One-Lane Entrance Ramp and Two-Lane Exit Ramp)

Before Implementation of Auxiliary lanes	After implementation of Auxiliary lanes	Ramp Spacing (ft)	Freeway to freeway volume (pc/h/ln)	Weaving volume (pc/h) V _{FR} +V _{RF}	Before Density	After Density	% of Density	Before Speed (mph)	After Speed (mph)	% of Speed	Before Capacity (veh/h)	After Capacity (veh/h)	% of Capacity	Before (conflicts/h/500ft)	After (conflicts/h/500ft)	TCMF	LOS Before	LOS After
			500	500	9.5	6.9	-27.37%	61.8	63.5	2.75%				10.00	0.00	0.00	A	A
_		750		1500	13.3	9.6	-27.82%	56.9	59.3	4.22%	5908	8249	39.62%	41.37	0.08	0.00	В	A
$\begin{array}{c} - \rightarrow \\ - \rightarrow \\ \rightarrow \end{array}$	$- \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} - \cdot$		1500	500	26.2	19.1	-27.10%	60.7	62.5	2.97%				27.03	0.96	0.04	C	B
				1500	31.5	22.4	-28.89%	55.7	58.9	5.75%				152.97	13.40	0.09	D	C
Ls			500	500	9.4	6.9	-26.60%	62.7	63.8	1.75%				8.88	0.05	0.01	A	A
		1500		1500	13.1	9.5	-27.48%	57.8	60.0	3.81%	5914	8631	45.94%	12.02	0.14	0.01	B	A B
	$\longrightarrow V_{FF}$		1500	500 1500	25.8	19.0 21.7	-26.36% -28.62%	61.6 57.7	62.7	5.20%				20.68 77.75	1.09	0.05		В
V _{RF}	\sim V_{RF}			500	30.4 9.3		-28.02%	62.9	60.7 64.0					4.28	1.91 0.05	0.02		
\sim V_{FR}	$\sim V_{FR}$		500	1500	9.5	6.9 6.9	-46.51%	58.0	63.4	1.75% 9.31%				4.28	0.00	0.01	B	A
$\rightarrow V_{RR}$	$\longrightarrow V_{RR}$	2250		500	25.7	19.0	-26.07%	61.9	62.8	1.45%	5962	8665	45.34%	11.02	2.50	0.00	C	B
			1500	1500	29.9	19.0	-36.79%	58.6	62.9	7.34%				15.37	2.35	0.15	D	B
	1	I		1200		verage :	-29.62%		erage :	4.01%	A	verage :	43.63%		verage :	0.05		

Note: Weaving Volume=Volume of Ramp to Freeway + Volume of Freeway to Ramp

46

Before Implementation of Auxiliary lanes	After implementation of Auxiliary lanes	Ramp Spacing (ft), Ls	Freeway to Freeway volume (pc/h/ln), v _{FF}	Weaving Volume (pc/h), v _{FR} +v _{RF}	Density-Before (vpm)	Density-After (vpm)	% of Change in Density	Speed-Before (mph)	Speed-After (mph)	% of Change in Speed	Capacity - Before (veh/h)	Capacity - After (veh/h)	% of Change in Capacity	Conflict Count-Before (conflicts/h/500ft)	Conflict Count-After (conflicts/h500ft)	TCMF	LOS Before	LOS After
	→		500	500	9.5	5.5	-42.11%	61.8	63.5	2.75%				10.00	0	0.00	A	A
$\begin{array}{c} - \rightarrow \\ - \rightarrow \\ - \rightarrow \\ - \rightarrow \end{array}$		750		1500 500	13.3 26.2	7.9	-40.60% -42.37%	56.9 60.7	57.1 63.0	0.35%	5908	8767	48.39%	41.37 27.03	3.05 0.65	0.07	B	B
			1500	1500	31.5	17.7	-43.81%	55.7	59.6	7.00%				152.97	22	0.02	D	B
Ls			500	500	9.4	5.5	-41.49%	62.7	63.6	1.44%				8.88	0.05	0.01	A	A
		1500	500	1500	13.1	7.5	-42.75%	57.8	60.2	4.15%	5914	9441	59.64%	12.02	0.8	0.07	В	Α
. 12	- 12	1300	1500	500	25.8	15.1	-41.47%	61.6	63.3	2.76%	3914	9441	39.04%	20.68	2.6	0.13	С	В
	$\sim V_{FF}$		1500	1500	30.4	17.0	-44.08%	57.7	62.0	7.45%				77.75	6.7	0.09	D	В
V _{RF}	V _{RF}		500	500	9.3	5.5	-40.86%	62.9	64.0	1.75%				4.28	0.05	0.01	A	A
\sim		2250		1500	12.9	/4	-42.64%	58.0	61.1	5.34%	5962	9539	60.00%	8.58	0.65	0.08	B	A
	- V _{RR}		1500	500 1500	25.7 29.9	14.9	-42.02% -43.81%	61.9 58.6	63.8 62.6	3.07% 6.83%				<u>11.02</u> 15.37	2 4.95	0.18		B B
		1		1500		16.8 rage :	-42.33%		erage :	3.89%	Av	/erage :	56.01%		verage :	0.32		

Table 4: Look-Up Table for Weaving Segments (Two-Lane Entrance Ramp and One-Lane Exit Ramp)

Note: Weaving Volume=Volume of Ramp to Freeway + Volume of Freeway to Ramp

Before Implementation of Auxiliary lanes	After Implementation of Auxiliary lanes	Parallel Acceleration Length (ft), L _A	Freeway to Freeway volume (pc/h/ln), v _F	Merging Volume (pc/h), v _R	Density - Before (vpm)	Density - After (vpm)	% of Change in Density	Speed - Before (mph)	Speed - After (mph)	% of Change in Speed	Capacity - Before (veh/h)	Capacity - After (veh/h)	% of Change in Capacity	Conflict Count-Before (conflicts/h/500ft)	Conflict Count-After (conflicts/h/500ft)	TCMF	LOS Before	LOS After
			500	250	9.2	7.1	-22.83%	63.8	62.5	-2.04%				20.15	0.05	0.00	A	A
		500		750	12.5	9.5	-24.00%	60.5	59.8	-1.16%	6892	6970	1.13%	58.95	0.2	0.00	B	A
			1500	250	25.9	19.6	-24.32%	61.5	61.0	-0.81%				55.30	3.25	0.06	C	B
\rightarrow \rightarrow	→			750	30.4	24.4	-19.74%	57.7	53.9	-6.59%				180.35	31.1	0.17	D	C
$\rightarrow \mathcal{V}_F \rightarrow$	$\rightarrow V_F$		500	250	9.2	6.9	-25.00%	63.8	63.9	0.16%				10.20	0.08	0.01	A	A
\rightarrow \rightarrow		1000		750	12.5	9.3	-25.60%	60.5	60.9	0.66%	6892	7055	2.37%	30.90	0.13	0.00	В	A
V _R	V _R		1500	250	25.9	19.1	-26.25%	61.5	62.4	1.46%				26.53	0.73	0.03	С	В
				750	30.4	21.9	-27.96%	57.7	60.2	4.33%				91.78	2.70	0.03	D	C
			500	250	9.2	6.9	-25.00%	63.8	63.9	0.16%				4.27	0.02	0.00	A	A
		1500	200	750	12.5	9.3	-25.60%	60.5	61.1	0.99%	6892	7059	2.42%	13.85	0.03	0.00	В	A
			1500	250	25.9	19.1	-26.25%	61.5	62.4	1.46%	0072		2270	15.08	0.37	0.02	С	В
				750	30.4	21.8	-28.29%	57.7	60.4	4.68%				45.90	1.03	0.02	D	С
					Av	erage :	-25.07%	Ave	erage :	0.28%	A	verage :	1.97%	A	verage :	0.03		

Table 5: Look-Up Table for Merge Segments with a One-Lane Entrance Ramp

Before Implementation of Auxiliary lanes	After Implementation of Auxiliary lanes	Parallel Deceleration Length (ft), L _D	Freeway to Freeway volume (pc/h/ln), v _F	Diverging Volume (pc/h), v _R	Density - Before (vpm)	Density - After (vpm)	% of Change in Density	Speed - Before (mph)	Speed - After (mph)	% of Change in Speed	Capacity - Before (veh/h)	Capacity - After (veh/h)	% of Change in Capacity	Conflict Count - Before (conflicts/h/500ft)	Conflict Count - After (conflicts/h/500ft)	TCMF	LOS Before	LOS After
			500	250	8.1	6	-25.93%	62.0	63.4	2.26%				0.05	0.00	0.00	A	A
		500		750	8.4	6.3	-25.00%	59.6	59.7	0.17%	6584	6636	0.79%	0.00			A	A
			1500	250	26.3	18	-31.56%	60.6	62.6	3.30%				2.10			C	B
→ → →	→			750	29.7	18.3	-38.38%	60.6	61.6	1.65%				2.50			C	B
$\rightarrow V_F$	$\rightarrow V_F$		500	250	8.1	5.8	-28.40%	62.0	65.3	5.32%				0.03			A	A
		1000		750	8.4	5.9	-29.76%	59.6	64.3	7.89%	6584	6637	0.80%	0.00			A	A
			1500	250	26.3	17.6	-33.08%	60.6	64.0	5.61%				1.05			C	В
				750	29.7	17.8	-40.07%	60.6	63.5	4.79%				1.25			C	В
			500	250	8.1	5.8	-28.40%	62.0	65.6	5.81%				0.02			A	A
		1500		750	8.4	5.9	-29.76%	59.6	63.6	6.71%	6584	6640	0.85%	0.00	0.00		A	A
			1500	250	26.3	17.7	-32.70%	60.6	63.9	5.45%				0.70		L H H H H H H H H H H H H H H H H H H H	C	В
				750	29.7	17.7	-40.40%	60.6	63.9	5.45%				0.83	0.65		C	В
					Ave	erage :	-31.95%	Ave	erage :	4.53%	Av	/erage :	0.82%	A	verage :	0.42		

Table 6: Look-Up Table for Diverge Segments with a One-Lane Exit Ramp

Before Implementation of Auxiliary lanes	After Implementation of Auxiliary lanes	Parallel Deceleration Length (ft), L _D	Freeway to Freeway volume (pc/h/ln) , $v_{\rm F}$	Diverging Volume (pc/h),v _R	Density - Before(vpm)	Density - After (vpm)	% of Change in Density	Speed - Before (mph)	Speed - After (mph)	% of Change in Speed	Capacity - Before (veh/h)	Capacity - After (veh/h)	% of Change in Capacity	Conflict Count - Before (conflicts/h/500ft)	Conflict Count - After (conflicts/h/500ft)	TCMF	LOS Before	LOS After
			500	250 750	8.1	5.9	-27.16%	62.0	64.2	3.55%				0.05	0.00	0.00	A	A
		500		250	8.4 26.3	6.0 17.9	-28.57% -31.94%	59.6 60.5	63.4 62.9	6.38% 3.97%	6584	6995	6.24%	0.00 2.10	0.00	N/A 0.43	A	A B
			1500	750	20.3	17.9	-39.06%	59.4	62.5	5.22%				2.10	0.90	0.43	C	B
→→	\rightarrow			250	8.1	5.7	-29.63%	62.0	65.7	5.97%				0.03	0.00	0.24	Δ	A
$\rightarrow V_F \rightarrow \rightarrow$	$\rightarrow \mathcal{V}_F \rightarrow \rightarrow$		500	750	8.4	5.8	-30.95%	59.6	65.0	9.06%				0.00	0.00	0.00 N/A	A	A
		1000		250	26.3	17.7	-32.70%	60.5	63.7	5.29%	6584	6995	6.24%	1.05	0.40	0.38	C	B
			1500	750	29.7	17.7	-40.40%	59.4	63.7	7.24%				1.25	0.30	0.24	C	В
			500	250	8.1	5.7	-29.63%	62.0	66.0	6.45%				0.02	0.00	0.00	A	Α
		1500	500	750	8.4	5.8	-30.95%	59.6	65.4	9.73%	(594	(005	(240/	0.00	0.00	N/A	Α	Α
		1500	1500	250	26.3	17.7	-32.70%	60.5	63.9	5.62%	6584	6995	6.24%	0.70	0.28	0.40	С	В
			1300	750	29.7	17.6	-40.74%	59.4	64.0	7.74%				0.83	0.35	0.42	С	В
					Ave	erage :	-32.87%	Av	erage :	6.35%	Av	/erage :	6.24%	A	verage :	0.23		

Table 7: Look-Up Table for Diverge Segments with a Two-Lane Exit Ramp

Example for Using the Look-up Tables

Interpolated values may be used for a rough estimation based on the tables. For the following instance:

- Ramp Spacing $(L_S) = 1200$ ft.
- Freeway to Freeway volume $(V_{FF}) = 1500$ vph.
- Weaving Volume $(V_{FR}+V_{RF}) = 600$ vph.

Assuming an analyst needs to estimate the traffic density after the auxiliary lane is installed at a weaving segment with a one-lane entrance ramp and a one-lane exit ramp, Table 2 can be used as shown in Figure 2.

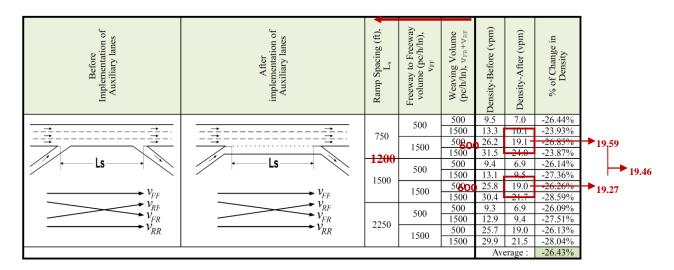


Figure 2: Demo of Analyzing the Weaving Segment Performance without and with an Auxiliary Lane Based on the Look-Up Tables

Since the ramp spacing is given as 1200 ft, the freeway-to-freeway volume is given as 1500 vph, and the weaving volume is 600 vph, the analyst should look at the two red-outlined areas. The interpolated values of the percentage of changes should be calculated by the following equation:

$$y = y_0 + (x - x_0)\frac{y_1 - y_0}{x_1 - x_0}$$

Where: y_1 is the upper bound performance measure (e.g., density, speed, capacity, or conflicts).

 y_0 is the lower bound performance measure.

 x_I is the upper bound input variable (e.g., $L_{S_i} V_{FF \text{ or }} V_{FR} + V_{RF}$).

 x_0 is the lower bound input variable.

The interpolated value is calculated based on the values of the input variables listed from the right to left in the look up table. Therefore, for the Weaving Volume $(V_{FR}+V_{RF}) = 600 \text{ vph}$, Freeway to Freeway volume $(V_{FF}) = 1500 \text{ vph}$, Ramp Spacing $(L_S) = 750 \text{ ft}$, the interpolated traffic density after installing auxiliary lane is equal to:

$$19.1 + (600-500)*(24-19.1)/(1500-500) = 19.59$$
 vpm

Likewise, for the Weaving Volume $(V_{FR}+V_{RF}) = 600 \text{ vph}$, Freeway to Freeway volume $(V_{FF}) = 1500 \text{ vph}$, Ramp Spacing $(L_S) = 1500 \text{ ft}$, the interpolated traffic density after installing auxiliary lane is equal to:

$$19+(600-500)*(21.7-19.0)/(1500-500) = 19.27$$
 vpm

Finally, for Weaving Volume ($V_{FR}+V_{RF}$) = **600 vph**, Freeway to Freeway volume (V_{FF}) = 1500 vph, Ramp Spacing (LS) = **1200 ft**, the interpolated value can be calculated as follows:

$$19.27 + (1200-750)*(19.59-19.27)/(1500-750) = 19.46$$
 vpm

3 GUIDELINES FOR DESIGN OF AUXILIARY LANES

This part of the guidelines aims to synthesize and recommend guidelines regarding geometric design of auxiliary lanes. For guidelines regarding design of signage and pavement marking, please refer to the latest version of the *TXDOT Freeway Signing Handbook* and the *Texas Manual on Uniform Traffic Control Devices (TMUTCD - Chapter 3)*.

<u>Guideline 3 – General Principles for Lane Arrangement where Auxiliary Lanes Are</u> <u>Used:</u>

Two basic principles are generally recommended to balance the traffic load and maintain a uniform level-of-service along the freeway with an auxiliary lane:

- Consistency of basic number of lanes
- Principles of lane balance

These two general principles were recommended based on the AASHTO Green Book (2011).

Consistency of Basic Number of Lanes

The basic number of lanes is the minimum number of traffic lanes designated and maintained over a significant length of a freeway. It is often determined based on the traffic demand on freeway mainlines. According to the *AASHTO Green Book (2011)*, the basic number of lanes should be consistent for a substantial length of freeway, irrespective of changes in traffic volume and lane balance needs.

Principles of Lane Balance

To realize efficient traffic operation through and beyond an interchange, the *AASHTO Green Book (2011)* recommends that there be a balance in the number of lanes on the freeway and ramps. The *Roadway Design Manuals* of Illinois, Indiana, Massachusetts, Minnesota, Montana, Nevada, Ohio, Utah, and Washington explicitly mention that the principles of lane balance should be followed.

For auxiliary lanes less than 1,500 ft in length (e.g., between closely spaced interchanges or between the loop ramp entrance and the loop ramp exit of a cloverleaf interchange), lane balance principles permit the termination of the auxiliary lane with a one-lane exit ramp as shown in Figure 3.

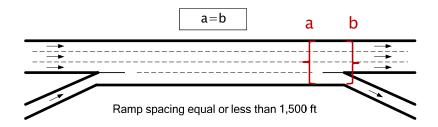
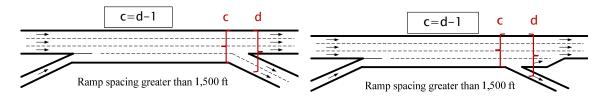



Figure 3: Principles of Lane Balance for Ramp Spacing Less than 1,500 ft

(Source: AASHTO Green Book, 2011)

Condition 2: For auxiliary lanes greater than 1,500 ft in length, lane balance principles state that the number of approach lanes on the freeway must be equal to the number of lanes on the freeway beyond the exit plus the number of lanes on the exit, minus one, as shown in Figure 4.

Under Condition 2, the auxiliary lane may be terminated by one of two methods shown in Figures 4 (a) and 4 (b). The first method, shown in Figure 4 (a), drops the auxiliary lane with a two-lane exit. In this configuration, traffic in the auxiliary lane must exit. Traffic in the basic lane to the left of the auxiliary lane may exit or may proceed along the mainline. The second method, shown in Figure 4 (b), provides a one-lane exit ramp, but carries the auxiliary lane through the exit before it is tapered into the through roadway. This design provides a recovery lane for drivers who inadvertently remain in the discontinued lane.

(a) Auxiliary lane terminated with two-lane exit ramp

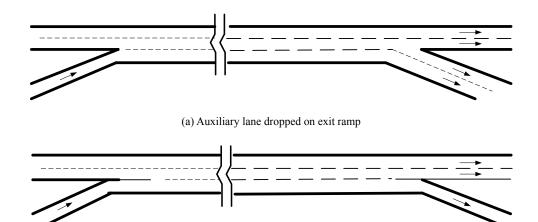
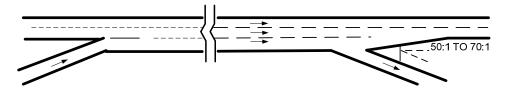
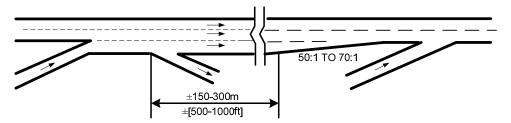
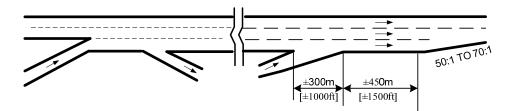

(b) Auxiliary lane terminated with downstream taper

Figure 4: Principles of Lane Balance for Ramp Spacing Greater than 1,500 ft


(Source: AASHTO Green Book, 2011)

Guideline 4 – Methods for Dropping an Auxiliary Lane from Mainline:


When it is not practical or necessary to extend the auxiliary lane from one interchange to the next, the following alternative methods can be considered for dropping an auxiliary lane from the mainline as shown in Figure 5.


(b) Auxiliary lane between cloverleaf loops or closely spaced interchanges dropped on single exit lane

(c) Auxiliary lane dropped at physical nose

(d) Auxiliary lane dropped within an interchange

(e) Auxiliary lane dropped beyond an interchange

Figure 5: Alternative Methods to Drop Auxiliary Lanes

(Source: AASHTO Green Book, 2011)

Please note, the findings of this project showed that extending the auxiliary lane beyond an interchange (Figure 5 [e]) is preferable only if the entrance ramp downstream has a low

traffic volume or volume-of-capacity. If the next entrance ramp has a high traffic volume, it is desirable to drop the auxiliary lane before the next entrance as shown in Figure 6.

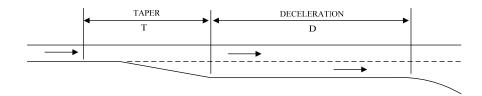


Figure 6: Scenario when Auxiliary Lane Dropped within an Interchange Is Preferred

<u>Guideline 5 – Length of Parallel Acceleration/Deceleration Lanes Auxiliary Lanes at</u> <u>Merge/Diverge Area:</u>

Refer to Figure 7 for lengths of taper and parallel acceleration/deceleration lanes, where design speed represents the mainline speed and entrance-curve design speed represents the desired speed at the street-ramp junction.

For parallel acceleration/deceleration lanes, the lengths can be determined based on the provisions in the *TxDOT Roadway Design Manual (2010)*.

		DEC	CELERA	TION LE	45 175 235 300 340 390	D (ft)
HIGHWAY DESIGN SPEED (mph)	MINIMUM LENGTH OF TAPER T (ft)		R	amp Spee	ed	
		30	35	40	45	50
50	230	315	285	225	175	-
55	250	380	350	285	235	-
60	265	430	405	350	300	240
65	285	470	440	390	340	280
70	300	520	490	440	390	340
75	330	575	535	490	440	390

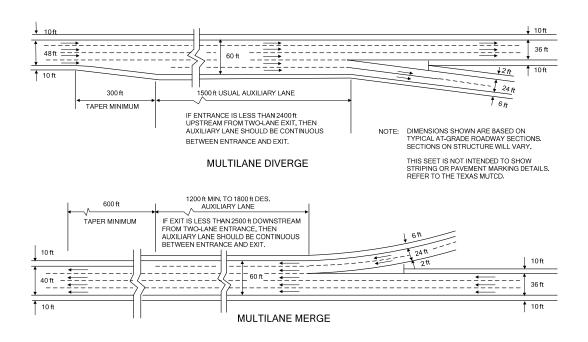

HIGHWAY DESIGN	MINIMUM LENGTH OF		A	CCELEI		N LENC	,	(ft)	
SPEED (mph)	TAPER T (ft)				Enterm	<u>s spece</u>	•		
		15	20	25	30	35	40	45	50
50	230	660	610	550	450	350	130	-	-
55	250	900	810	780	670	550	320	150	-
60	265	1140	1100	1020	910	800	550	420	180
65	285	1350	1310	1220	1120	1000	770	600	370
70	300	1560	1520	1420	1350	1230	1000	820	580
75	330	1730	1630	1580	1510	1420	1160	1040	780

Figure 7: Lengths of Parallel Acceleration/Deceleration Lanes at Entrance/Exit Ramp

(Source: TxDOT Roadway Design Manual)

Guideline 6 – Design of Auxiliary Lanes at Two-Lane Ramps:

- Where operational problems are caused by high entrance/exit ramp demand, a two-lane entrance/exit ramp is recommended to increase the capacity for the merging/diverging vehicles.
- If a two-lane entrance ramp is installed because of high merging traffic demand and the next ramp that is within the 2500 ft distance with low or moderate traffic volume, it is recommended to extend the auxiliary lane that originated from the two-lane entrance ramp beyond the next ramp.
- For parallel acceleration/deceleration lanes at two-lane ramps, the design of auxiliary lanes can refer to Figure 8 (*TxDOT Roadway Design Manual, 2010*).

(US CUSTOMARY)

Figure 8: Lengths of Parallel Acceleration/Deceleration Lanes at Entrance/Exit Ramp

(Source: TxDOT Roadway Design Manual)

This guideline is based on the AASHTO Green Book (2011) and the TxDOT Roadway Design Manual (2010) - Chapter 3. In addition, the results of the simulation analysis in this study

indicated that operational benefits were achieved by extending two-lane entrance ramp to the next ramp if they are closely spaced. For parallel acceleration/deceleration lanes at two-lane ramps, the design of auxiliary lanes can refer to Figure 8 (*TxDOT Roadway Design Manual, 2010*).

Guideline 7 – Width of Auxiliary Lanes and Shoulders:

- Desirably, the width of auxiliary lanes should be equal to that of mainline lanes (normally 12 ft).
- Where auxiliary lanes are provided along freeway mainlines, the adjacent shoulder should desirably be 8–12 ft in width or the same width as mainline lanes, with a minimum shoulder width of 6 ft.

This guideline is based on the AASHTO Green Book (2011), as well as the Massachusetts DOT Project Development & Design Guide (2007), the Utah DOT Roadway Design Manual of Instruction (2007), and the Oregon DOT Highway Design Manual (2003).

According to the *AASHTO Green Book (2011)*, where auxiliary lanes are provided along freeway main lanes, the adjacent shoulder should desirably be 8 ft–12 ft wide, with a minimum 6-ft-wide shoulder considered.

REFERENCES

A Policy on Geometric Design of Highways and Streets. American Association of State Highway and Transportation Officials. Washington, D.C., 2011.

Arizona Department of Transportation, Roadway Design Guidelines, 2007.

California Department of Transportation, Highway Design Manual, 2001.

Highway Safety Manual, First Edition. American Association of State Highway and Transportation Officials. Washington, D.C., 2010.

Illinois Department of Transportation, Bureau of Design and Environment Manual, 2010.

Indiana Department of Transportation, The Indiana Design Manual, 2011.

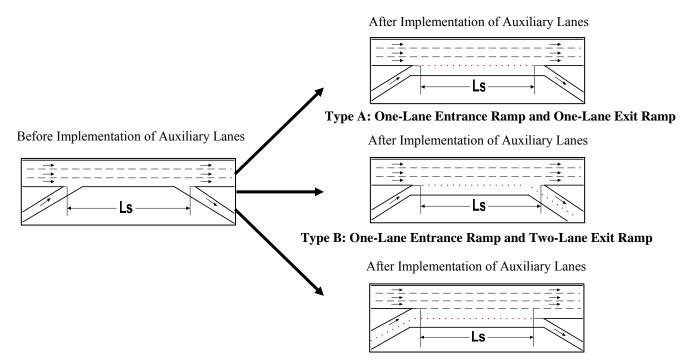
Massachusetts Department of Transportation, Project Development & Design Guide, 2007.

Minnesota Department of Transportation, Roadway Design Manual, 2001.

Montana Department of Transportation, Road Design Manual, 2007.

Ohio Department of Transportation, ODOT Location and Design Manual, 2011.

Oregon Department of Transportation, Highway Design Manual, 2003.


Texas Department of Transportation, Roadway Design Manual, 2010.

Texas Department of Transportation, *Texas Manual of Uniform Traffic Control Devices* PART 3: MARKINGS. Austin, 2006.

Utah Department of Transportation, Roadway Design Manual of Instruction, 2007.

Wang, Y., R. Cheu, Y. Qi, and X. Chen. *Use of Auxiliary Lanes at Isolated Freeway On-Ramp Junctions*. Accepted to be published at *Journal of Transportation of ITE*, 2013.

Exercise 1:

Type C: Two-Lane Entrance Ramp and One-Lane Exit Ramp

The Weaving Segment

What are the expected density, speed, capacity, and conflicts for the each type of weaving segment? What is the difference between the before implementation of auxiliary lanes and after?

The Facts

 $\begin{array}{l} \text{PHF =}0.92 \text{ (all movements)} \\ \text{v}_{\text{FF}} = 1125 \text{ (pc/h/ln)} \\ \text{v}_{\text{FR}} = 550 \text{ (pc/h/ln)} \\ \text{v}_{\text{RF}} = 645 \text{ (pc/h/ln)} \\ \text{v}_{\text{RR}} = 0 \text{ (pc/h/ln)} \\ \text{L}_{\text{s}} = 1350 \text{ f} \end{array}$

Step 2: Volume Adjustment

Key volume parameters are: $v_{FF} = 1223 \text{ (pc/h/ln)}$ $v_{FR} = 598 \text{ (pc/h/ln)}$ $v_{RF} = 701 \text{ (pc/h/ln)}$ $v_{RR} = 0 \text{ (pc/h/ln)}$ $v_{FR} + v_{RF} = 1299 \text{ (pc/h/ln)}$

Step 3: Determine the Speed

Select worksheet "Speed" in Excel , estimated using Ramp Space < 1500ft , then input the key volume and length of weaving segment (L_s).

	Inputs			Outputs		
F	Ramp Spacing < 1500 ft					
				Speed (mph)		
Ls (ft)	Vff (pc/h/ln)	Vfr+Vrf (pc/h)	Without Auxiliary Lane	Туре А	Type B	Type C
1350	1223	1299	58.3	60.0	60.8	61.5
		Type A: ΔS	Speed = $+1.7 \text{ (mph)}$			
		Type B: ΔS	Speed = $+2.5 \text{ (mph)}$			
		T	$1 + 1 = 122(\dots 1)$			

Type C: Δ Speed = +3.2 (mph)

Step 4: Determine the Density

Select worksheet "Density" in Excel, estimated using Ramp Space < 1500ft, then input the key volume and length of weaving segment (L_s).

R	Inputs amp Spacing < 1500 ft			Outputs		
			De	nsity (vpm)		
Ls (ft)	Vff (pc/h/ln)	Vfr+Vrf (pc/h)	Without Auxiliary Lane	Type A	Type B	Type C
1350	1223	1299	25	18	18	14

Type B: $\Delta Density = -7$ (vpm) Type C: $\Delta Density = -11$ (vpm)

Step 5: Determine the Capacity

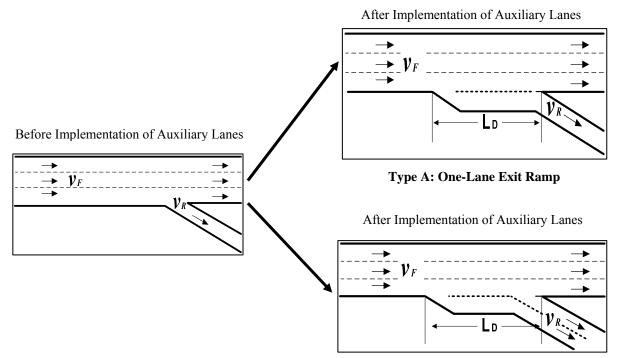
Select worksheet "Capacity" in Excel , estimated using Ramp Space < 1500ft , then input the key volume and length of weaving segment (L_s).

I	Inputs Ramp Spacing < 1500 ft		(Dutput	S	
			Capaci	ty (veh/h)		
Ls (ft)	Vff (pc/h/ln)	Vfr+Vrf (pc/h)	Without Auxiliary Lane	Туре А	Type B	Type C
1350	1223	1299	5913	8376	8555	9306
	•	P_{PP} A: ΔCapacity = +				

Type B: Δ Capacity= +2642 (veh/h) Type C: Δ Capacity = +3393 (veh/h)

Step 6: Determine the Conflicts

Select worksheet "Conflicts" in Excel , estimated using Ramp Space < 1500ft , then input the key volume and length of weaving segment (L_s).


Inputs Ramp Spacing < 1500 ft			Outputs							
		Number of C	Conflicts (Conflic	cts/h/500ft)						
Vff (pc/h/ln)	Vfr+Vrf (pc/h)	Without Auxiliary Lane	Type A	Type B	Type C					
1223	1299	61.3	4.8	2.6	6.2					
Number of Conflicts (Conflicts/h/500ft) Ls (ft) Vff (pc/h/ln) Vfr+Vrf (pc/h) Without Auxiliary Lane Type A Type B Type C										
	Ramp Spacing < 1500 ft Vff (pc/h/ln) 1223 Ty	Vff (pc/h/ln) Vfr+Vrf (pc/h) 1223 1299	Number of C Vff (pc/h/ln) Vfr+Vrf (pc/h) Without Auxiliary Lane 1223 1299 61.3 Type A: ΔDensity= -56.5 (conflicts/h/500	Number of Conflicts (Conflict Vff (pc/h/ln) Vfr+Vrf (pc/h) Without Auxiliary Lane Type A 1223 1299 61.3 4.8	Number of Conflicts (Conflicts/h/500ft) Vff (pc/h/ln) Vfr+Vrf (pc/h) Without Auxiliary Lane Type A Type B 1223 1299 61.3 4.8 2.6					

Type B: $\Delta Density = -58.7$ (conflicts/h/500ft) Type C: $\Delta Density = -55.1$ (conflicts/h/500ft)

Exercise 2:

The Weaving Segment

The weaving segment that is the subject of this example problem is show in Exhibit-2.

Type B: Two-Lane Exit Ramp

Exhibit-2

What are the expected density, speed, capacity and conflicts for the each type of weaving segment? What is the difference between the before implementation of auxiliary lanes and after?

The Facts

 $\begin{array}{l} PHF = 0.92 \mbox{ (all movements)} \\ v_F = 1219 (pc/h/ln) \\ v_R = 216 (pc/h/ln) \\ L_D = 1500 \mbox{ ft} \end{array}$

Step 1: Volume Adjustment

Key volume parameters are: $v_F = 1325 \text{ (pc/h/ln)}$ $v_R = 235 \text{ (pc/h/ln)}$

Step 2: Determine the Speed

Select worksheet "Speed" in Excel, estimated using Ramp Space > 1000ft, then input the key volume and length of weaving segment (L_s).

rallel Deceleration Length >1000 ft			Outputs Speed (mph)		
1325	235	60.8	64.2	64.2	
	>1000 ft	>1000 ft Vr (pc/h/n) Vκ (pc/h) 1325 235	>1000 ft Vr (pc/h/n) Vπ (pc/h) Without Auxiliary Lane	Vr (pc/h/n) V _π (pc/h) Without Auxiliary Lane With One-Lane Exit Ramp 1325 235 60.8 64.2	

Step 3: Determine the Density

Select worksheet "Density" in Excel, estimated using Ramp Space > 1000ft, then input the key volume and length of weaving segment (L_s) .

Percelled Decidencian Length > 10	Inputs			Outputs		
Parallel Deceleration Length >10	00 11			Density (vpm)		
L _D (ft)	Vr (pc/h/ln)	VR (pc/h)	Without Auxiliary Lane	With One-Lane Exit Ramp	With Two-Lane Exit Ramp	
1500	1325	235	23.0	15.6	15.6	
	and the second se	235				

Step 4: Determine the Capacity

Select worksheet "Capacity" in Excel, estimated using Ramp Space > 1000ft, then input the key volume and length of weaving segment (L_s) .

Pa	Inputs Parallel Deceleration Length > 1000 ft			Outputs		
				Capacity (veh/h)		
Lo (ft)	Vr (pc/h/ln)	Vg (pc/h)	Without Auxiliary Lane	With One-Lane Exit Ramp	With Two-Lane Exit Ramp	
1500	1325	235	6584	6640	6995	

Type A: Δ Capacity = +56 (veh/h)

Type B: Δ Capacity= +441 (veh/h)

Step 5: Determine the Conflicts

Select worksheet "Conflicts" in Excel , estimated using Ramp Space > 1000ft , then input the key volume and length of weaving segment (L_s) .

Inputs Parallel Deceleration Length >1000 ft			Outputs			
				Number of Conflicts (Conflicts/h/500ft)		
Lp (ft)	Vr (pc/h/ln)	VR (pc/h)	Without Auxiliary Lane	With One-Lane Exit Ramp	With Two-Lane Exit Ramp	
1500	1325	235	0.6	0.3	0.2	

Type A: $\Delta Density= -0.3$ (conflicts/h/500ft) Type B: $\Delta Density= -0.4$ (conflicts/h/500ft)