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Conversion Factors 

Inch/Pound to SI 

Multiply By To obtain 
Length 

inch (in.) 25.4 millimeter (mm) 
foot (ft) .3048 meter (m) 
mile (mi) 1.609 kilometer (km) 

Area 
square mile (mi2) 2.590 square kilometer (km2) 

Flow 
cubic feet per second (ft3/s) .02832 cubic meters per second (m3/s) 

SI to Inch/Pound


Multiply By To obtain 
Length 

millimeter (mm) 0.03937 inch (in.) 
meter (m) 3.281 foot (ft) 

Area 
square kilometer (km2) .3861 square mile (mi2) 

Flow 
cubic meters per second (m3/s) 35.31 cubic feet per second (ft3/s) 

Horizontal and Vertical Datums 
Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83). 
Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88). 

Conventions 

Acronyms and Computer Code Several acronyms are used in this report. With few exceptions these are typeset as a 
slightly larger, small caps version of the main document font (Times): gamma unit hydrograph (GUH). Computer code, 
specifically for the language R, which is shown both in figures or as in-line text, is typeset with variants of a monospaced 
font (Luximono) that changes in shape and weight with context. When code is listed in a figure, often it is necessary to 
break (wrap) lines of code. These breaks are shown by “ �” and “� ”, for pre- and post-line breaks, respectively. General ← →
keywords of the computer code generally are typeset in bold: optimize or sum. Code comments are typeset in oblique 
face: # this is a code comment. All other code is typeset in regular, upright face: Vfunc.K(). 

Footnotes and Technical Notes The purpose of footnotes, which are typeset at the bottom of the respective column, are to 
provide clarification or otherwise augment the context. In contrast, the purposes of the technical notes, which are provided 
at the back of the report, are to provide additional background information to the report or provide documention. Footnote 
numbers are shown in the text as a superscript; technical notes are shown as a lower-case alphabetical character in brackets. 

Universal Resource Locations (URL) Links to online resources are typeset, like computer code examples, in the Luximono 
font with application of highly specialized-line breaking rules. 



An Initial-Abstraction, Constant-Loss Model for 
Unit Hydrograph Modeling for Applicable 
Watersheds in Texas 

By William H. Asquith and Meghan C. Roussel 

Abstract 

Estimation of representative hydrographs from 
design storms, which are known as design hydrographs, 
provides for cost-effective, risk-mitigated design of 
drainage structures such as bridges, culverts, road
ways, and other infrastructure. During 2001–07, the 
U.S. Geological Survey (USGS), in cooperation with 
the Texas Department of Transportation, investigated 
runoff hydrographs, design storms, unit hydrographs, 
and watershed-loss models to enhance design hydro
graph estimation in Texas. Design hydrographs ideally 
should mimic the general volume, peak, and shape 
of observed runoff hydrographs. Design hydrographs 
commonly are estimated in part by unit hydrographs. 
A unit hydrograph is defined as the runoff hydrograph 
that results from a unit pulse of excess rainfall uni
formly distributed over the watershed at a constant rate 
for a specific duration. A time-distributed, watershed
loss model is required for modeling by unit hydro-
graphs. This report develops a specific time-distributed, 
watershed-loss model known as an initial-abstraction, 
constant-loss model. For this watershed-loss model, 
a watershed is conceptualized to have the capacity to 
store or abstract an absolute depth of rainfall at and 
near the beginning of a storm. Depths of total rain
fall less than this initial abstraction do not produce 
runoff. The watershed also is conceptualized to have 
the capacity to remove rainfall at a constant rate (loss) 
after the initial abstraction is satisfied. Additional 
rainfall inputs after the initial abstraction is satisfied 
contribute to runoff if the rainfall rate (intensity) is 
larger than the constant loss. The initial-abstraction, 

constant-loss model thus is a two-parameter model. 
The initial-abstraction, constant-loss model is inves
tigated through detailed computational and statisti
cal analysis of observed rainfall and runoff data for 
92 USGS streamflow-gaging stations (watersheds) in 
Texas with contributing drainage areas from 0.26 to 
166 square miles. The analysis is limited to a previ
ously described, watershed-specific, gamma distribu
tion model of the unit hydrograph. In particular, the 
initial-abstraction, constant-loss model is tuned to the 
gamma distribution model of the unit hydrograph. A 
complex computational analysis of observed rainfall 
and runoff for the 92 watersheds was done to deter
mine, by storm, optimal values of initial abstraction 
and constant loss. Optimal parameter values for a 
given storm were defined as those values that produced 
a modeled runoff hydrograph with volume equal to 
the observed runoff hydrograph and also minimized 
the residual sum of squares of the two hydrographs. 
Subsequently, the means of the optimal parameters 
were computed on a watershed-specific basis. These 
means for each watershed are considered the most 
representative, are tabulated, and are used in further 
statistical analyses. Statistical analyses of watershed-
specific, initial abstraction and constant loss include 
documentation of the distribution of each parameter 
using the generalized lambda distribution. The anal
yses show that watershed development has substan
tial influence on initial abstraction and limited influ
ence on constant loss. The means and medians of 
the 92 watershed-specific parameters are tabulated 
with respect to watershed development; although they 
have considerable uncertainty, these parameters can 
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be used for parameter prediction for ungaged water
sheds. The statistical analyses of watershed-specific, 
initial abstraction and constant loss also include devel
opment of predictive procedures for estimation of each 
parameter for ungaged watersheds. Both regression 
equations and regression trees for estimation of initial 
abstraction and constant loss are provided. The water
shed characteristics included in the regression analyses 
are (1) main-channel length, (2) a binary factor rep
resenting watershed development, (3) a binary factor 
representing watersheds with an abundance of rocky 
and thin-soiled terrain, and (4) curve number. Phys
ical interpretations of the regression coefficients are 
made. Finally, an evaluation of an initial-abstraction, 
constant-loss model for general application is made 
through four techniques of parameter estimation: the 
mean and median watershed-specific values, regres
sion equations, and regression trees. The results show 
that the four techniques have similar overall perfor
mance, but measurable differences exist. The four tech
niques, when combined, are shown to provide unbiased 
estimates of peak streamflow and reliably represent 
runoff volumes as well as times of peak streamflow 
occurrence with less uncertainty than any single tech
nique. The combined initial-abstraction, constant-loss 
model used with the gamma distribution model of the 
unit hydrograph is suggested for general application 
in Texas, and discussion in the context of practical 
applications is provided. 

Introduction 

Estimation of representative hydrographs [a] 1 from 
design storms [b] is an important goal of hydrologic 
engineering. The goal is important because these 
“design hydrographs,” in general, and the peak stream-
flow of a design hydrograph, in particular, are critical 
for cost-effective, risk-mitigated design of drainage 
structures such as bridges, culverts, roadways, and 
other infrastructure. 

During 2001–07, the U.S. Geological Survey 
(USGS), in cooperation with the Texas Department 
of Transportation (TXDOT) and in collaboration 

1Alphabetical superscripts [a] refer to Technical Notes located at back 
of report. 

(TXDOT Research Project 0–4193) with researchers 
at Texas Tech University,2 Lamar University,3 and 
University of Houston,4 investigated rainfall and 
runoff data from 92 USGS streamflow-gaging stations 
(watersheds) to enhance design hydrograph estimation 
for applicable watersheds [c] in Texas. The locations of 
the stations are shown in figure 1. Further background 
and results of the research program between the five 
agencies is in Asquith, Thompson, and others (2004), 
Asquith and others (2005), Asquith and others (2006), 
Thompson and others (2007), and references therein. 

Design hydrographs ideally should mimic the gen
eral volume, peak streamflow, and shape of observed 
runoff hydrographs. Design hydrographs commonly 
are estimated in part by unit hydrographs. A unit 
hydrograph is defined as the runoff hydrograph that 
results from a unit pulse of excess rainfall uniformly 
distributed over a watershed at a constant rate for 
a specific duration. Among other concepts, runoff 
hydrograph estimation by the unit hydrograph method 
requires (1) a rainfall hyetograph that represents rain
fall intensity of a storm over time on a watershed and 
(2) a method to convert this hyetograph into an appro
priate excess rainfall hyetograph.[d] The conversion is 
made by a watershed-loss model. 

There are two general classes of watershed-loss 
models: non-time distributed and time distributed. A 
non-time distributed model is appropriate when only 
total runoff volume and not an actual runoff hydro
graph is required for a particular application. This 
class effectively is not considered further in this report. 

Time-distributed, watershed-loss models are appli
cable when an analyst needs a design hydrograph. 
When the design storm hyetograph [e] is combined with 
a time-distributed, watershed-loss model, an excess 
rainfall hyetograph results. When this design excess 
rainfall hyetograph is convolved with the unit hydro
graph, the runoff hydrograph of the design storm is pro
duced. In particular, the time-distributed, watershed
loss model should be mathematically consistent in 
structure or general form with hypothesized processes 

2David B. Thompson, Research Supervisor on TXDOT Research 
Project 0–4193 (2001–07), Texas Tech University, Lubbock, Tex. at the 
time this work was done. 

3Xing Fang, Research Associate on TXDOT Research Project 0–4193 
(2001–07), Lamar University, Beaumont, Tex. 

4Theodore G. Cleveland, Research Associate on TXDOT Research 
Project 0–4193 (2001–07), University of Houston, Houston, Tex. 
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(depression and other macrostorage, infiltration, evap
oration, and other physical processes), which abstract 
or otherwise prevent rainfall from becoming runoff. 

Purpose and Scope 

The primary purpose of this report is to develop a 
specific time-distributed, watershed-loss model known 
as an initial-abstraction, constant-loss model for gen
eral use for watersheds that are believed to be hydro
logically similar to the 92 watersheds of this report. 
The development is made through detailed computa
tional and statistical analysis of observed rainfall and 
runoff data for the 92 watersheds with contributing 
drainage areas from 0.26 to 166 square miles. The 
analysis is limited to a previously described, watershed
specific, gamma distribution model of the unit hydro
graph based on the data for the watersheds (Asquith 
and others, 2005). A secondary purpose of this report 
is to explain how the initial-abstraction, constant-loss 
model and gamma distribution model of the unit hydro
graph would be practically implemented in hydrologic
engineering circumstances. The explanation is lim
ited to description of a combined initial-abstraction, 
constant-loss model, discussion of model bias, and dis
cussion of the mathematical implementation of the unit 
hydrograph with discrete time steps. 

Report Structure 

This report contains several major, but codepen
dent, elements: 

1. A comprehensive summary of the unit hydro
graph used for development of the watershed
loss model in the section titled “Unit Hydro
graphs for Applicable Watersheds in Texas.” 

2. A comprehensive statistical analysis of parame
ters for the watershed-loss model in the section 
titled “Analysis of Initial Abstraction and Con
stant Loss for 92 Watersheds in Texas.” 

3. A proposed watershed-loss model for general 
application in the section titled “An Initial-
Abstraction, Constant-Loss Model for Unit 
Hydrograph Modeling for Applicable Water
sheds in Texas.” 

Unit Hydrographs for Applicable Watersheds in Texas 

4. Five appendixes that present numerous support
ing details regarding the investigation. 

• Appendix 1 presents supporting computations 
and data from the section described for 
element 2. 

•	 Appendix 2 presents additional discussion 
and archival computations related to mate
rial presented in the section described for 
element 3. 

• Appendix 3 presents selected algorithms, 
which are intended to augment the applica
tion of the results reported here. 

• Appendix 4 presents mathematical derivation 
of a gamma hydrograph equation. 

•	 Appendix 5 presents example computations 
of prediction limits for four regression 
equations presented in this report. 
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Unit Hydrographs for Applicable 
Watersheds in Texas 

The unit hydrograph method is a well-known, text
book technique (Dingman, 2002) for estimating the 
runoff hydrograph given an excess rainfall hyetograph. 
Excess rainfall is a volume of rainfall per unit area 
(depth) after losses such as evaporation, infiltration, 
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depression storage, and others are subtracted. A unit 
hydrograph is defined as the runoff hydrograph that 
results from a unit pulse of excess rainfall uniformly 
distributed over a watershed at a constant rate for a 
specific duration (Chow and others, 1988, p. 213). 

To use a unit hydrograph, a watershed is assumed 
to function as a linear system in which the concepts 
superposition, proportionality, and time invariance are 
appropriate. 

SUPERPOSITION: The runoff hydrograph resulting 
from two consecutive pulses is computed using the 
addition of two unit hydrographs, separated by the 
effective duration of the first pulse. The duration of the 
unit hydrograph is equal to the time step of the rainfall 
pulses. 

PROPORTIONALITY: The runoff hydrograph 
resulting from two simultaneous pulses of unit rainfall 
of a specific duration has ordinates that are twice as 
large as those resulting from a single unit pulse of 
rainfall of the same duration. 

TIME INVARIANCE: A unit hydrograph has a spec
ified time period (step), and this time step is the dura
tion of the time-invariant (uniform-intensity) excess 
rainfall. As a result, the magnitude of runoff within 
each time step is uniform. The temporal input-response 
relation is fixed for a given watershed. The duration of 
the unit hydrograph should be specified in the name of 
the unit hydrograph. For this investigation, a 5-minute 
time step exclusively was used. 

The relation between excess rainfall, the unit 
hydrograph, and the runoff hydrograph is algebraically 
straightforward. The discrete convolution for a lin
ear system is used to generate the runoff hydrograph 
given an excess rainfall and a unit hydrograph. The 
convolution is 

n≤M 

Qn = ∑ PmUn−m+1, (1) 
m=1 

where Qn is runoff, in cubic feet per second, which 
is estimated or modeled from the excess rainfall (Pm), 
in watershed inches; Un−m+1 are the ordinates of the 
unit hydrograph, in cubic feet per unit time; M is the 
number of excess rainfall pulses; and m and n are 
integers. 

Unit Hydrographs for Applicable Watersheds in Texas 

Gamma Unit Hydrographs for Applicable 
Watersheds 

Asquith and others (2005) document four separate 
lines of inquiry into unit hydrographs for the 92 water
sheds. These unit hydrographs were developed using 
an extensive database of USGS rainfall and runoff data 
for Texas. Almost all the database is summarized 
in Asquith, Thompson, and others (2004), and the 
remainder of the data are on file at the USGS Water 
Science Center, Austin, Tex. One of those lines of 
inquiry (Gamma Unit Hydrograph Analysis System, 
GUHAS) involved an algebraically straightforward, 
analyst-directed approach for 5-minute unit hydro-
graph estimation based on the unit hydrograph having 
the form of a gamma distribution (Evans and others, 
2000). The results of GUHAS provide a starting point 
for this report. A unit hydrograph from GUHAS is 
referred to as the gamma unit hydrograph (GUH). The 
mathematics of the GUH are now described. 

The structural form of the GUH used with GUHAS 
is discussed by Haan and others (1994). The GUH 
can attain shapes that mimic the general shape of 
many observed runoff hydrographs (unit or otherwise). 
The GUH has two unique parameters that can be var
iously expressed, but are expressed here in terms of 
watershed-depth peak streamflow (qp) in inches over 
the watershed per hour (watershed inches per hour) 
and time to peak (Tp) in hours. The third parameter 
is a shape parameter (K) that is dependent on qp and 
Tp. Expression and analysis of unit hydrographs in 
terms of qp and Tp are important because the magni
tude and timing of peak streamflow (Qp) in cubic feet 
per second are critical for many designs. 

Because of the importance of Qp estimation in 
hydrologic-engineering practice, the optimal qp and 
Tp values for GUHAS were selected for each storm 
by precisely matching the modeled peak streamflow 
(Qmodel) in cubic feet per second and time of modeled p 

ppeak streamflow (T Qmodel 
) to observed values of peak 

streamflow (Qobs) in cubic feet per second and time of p 

pobserved peak streamflow (T Qobs 
) for 1,984 individual 

storm peaks (Asquith and others, 2005, p. 29). The 
storm peaks come from datafile-by-datafile, graphical 
interpretation of the database described in Asquith, 
Thompson, and others (2004). GUHAS also permitted 
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individual (discrete) analysis of multiple Qp values 
within a single storm if the storm had peaks that were 
substantially separate in time. 

The equation defining a gamma hydrograph (unit 
or otherwise) is � �K q(t)

= 
t 

e1−( T
t
p 
) , (2)

qp Tp 

where qp is watershed-depth peak streamflow in water
shed inches per hour, Tp is time to peak in hours, K is 
a shape parameter that is dependent on qp and Tp, and 
q(t) is streamflow in watershed inches per hour at time 
t in hours. This equation produces q(t) ordinates of a 
GUH. 5 The relation between qp and Qp as well as q(t) 
and Qn is 

Q = 645.33× q × A, (3) 

where Q is streamflow in cubic feet per second, q is in 
watershed inches per hour, A is drainage area in square 
miles, and 645.33 is a units conversion factor. 

Although three parameters (qp, Tp, and K) are 
shown in equation 2, in practice, K is a function of qp 

and Tp, and total runoff volume (V ), or alternatively 
any two parameters will yield the third because V = 1 
(unit volume) for a unit hydrograph. The V of a gamma 
hydrograph is computed by 

V = qpTpΓ(K) 
�e(1) 

K 

�K , (4) 

where Γ(K) is the complete gamma function 
(Abramowitz and Stegun, 1964) for K. The time 
scale of the unit hydrograph is represented by Tp, but 
Tp does not represent the time base (Tb) or overall 
width in time of a runoff hydrograph. A numerical 
root solver or function minimizer6 is required to 
compute one of the three parameters from the other 
two in equation 4. The R environment for statistical 
computing (R Development Core Team, 2006) can 
be used as well. A listing of minimal7 code to solve 
equation 4 for K is shown in figure 2. 

5The derivation of the gamma hydrograph equation from the gamma 
distribution is shown in appendix 4. 

6Popular spreadsheets, such as NeoOffice-Calc (http://www. 
neooffice.org), generally provide a “Goal Seek” function, and the natu
ral logarithm of the gamma function is the software function gammaln(). 

7Minimal in this context assumes familiarity with the R environment. 

Asquith and others (2005) provide equations to 
estimate the GUH for applicable Texas watersheds 
based on 92 of the 93 watersheds shown in figure 1. 
The streamflow-gaging station at Seminary South 
Shopping Center (fig. 1) was not used in Asquith and 
others (2005) and also was not used for this report 
because critical basin characteristics were indetermi
nate. The equations of K and Tp from Asquith and 
others (2005) are reproduced here in equations 5 and 
11 and collectively are referred to as K�Tp equations. 
A GUH set by these equations is referred to as a K�Tp 
GUH. The K�Tp -GUHs are deemed appropriate for 
investigation of the watershed-loss model in this report 
on the basis of lines of reasoning in Asquith and others 
(2005, p. 14–15, 59–64) and supported by conclusions 
from independent modeling techniques described by 
Cleveland and others (2006). 

To summarize, the K�Tp equations were derived 
by Asquith and others (2005) from multiple-linear 
regression analysis (Helsel and Hirsch, 2002; Maindon
ald and Braun, 2003; Montgomery and others, 2001). 
For the equations, the mean shape parameters K and Tp 

for each watershed (Asquith and others, 2005, table 3) 
were used as regressor variables, and watershed char

qp <- 0.3; # in watershed inches per hour 
Tp <- 4.0; # in hours 

# build an objective function for the �←
� shape parameter, which minimizes at �→ ←
� zero when the gamma hydrograph has �→ ←
� volume of 1 (a gamma unit hydrograph) →

Vfunc.K <- function(K) { return( abs(qp �* ←
� Tp gamma(K) * (exp(1)/K)^K - 1) ) } * → 

# minimize the objective function by �←
� specifying the function and the �→ ←
� interval of shape parameter in which �→ ←
� to search.→

optimize( Vfunc.K, interval = c(0.01,10) ) 

$minimum 
[1] 5.253242 

$objective 
[1] 4.339262e-07 
# for qp and Tp, the K is about 5.25. 

Figure 2. Listing of R code for solution of equation 4 given 
qp and Tp values. 

http://www.neooffice.org
http://www.neooffice.org
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acteristics of main-channel length (L), dimensionless 
main-channel slope (S), and watershed development 
(D) were used as predictor variables. These character
istics are listed in Asquith and others (2005, table 2) 

Unit Hydrographs for Applicable Watersheds in Texas 

level. The symbol ⊕ in this report9 designates the 
vector of the watershed characteristics or predictor 
variables for a given prediction. 

The lower and upper limits are computed by 
as well as listed in appendix 1 (table 1.1).


⎡
 ⎤


↓Kα/2 = 10log10(K )−t[α/2,df] σ
[K] 1+h[K] 

⊕ ⊕ and (7)⊕
Estimation of Gamma Unit Hydrograph


↑Kα/2 = 10log10(K )+t[α/2,df] σ
[K] 1+h[K] 

⊕ ⊕ , (8)⊕Shape


where K⊕ is the prediction from equation 5, t[α/2,df] is 
the upper tail of the t-distribution for df[K] degrees of 
freedom at the α significance level, σ [K] is the residual 
standard error of equation 5, and h[K] is the leverage of ⊕
the prediction for the watershed. 

The leverage h[K] for a prediction for a watershed ⊕
from equation 5 is important for estimation of the pre
diction limits of the equation. Leverage h is a mea⊕
sure of influence on the regression—in other words, 
h is a measure of distance that the predictor variables ⊕
are from the center of the parameter space on which an 
equation is based. The h[K] calculation requires matrix ⊕
multiplication and the inverted covariance matrix of 
the linear-regression model. The computation of h[K] 

⊕
is 

h[K] 
⊕ = 1 log10(L⊕) D⊕ ×


The regression equation for the GUH shape param
eter (Asquith and others, 2005, eq. 26) is 

K = 100.560−0.249DL0.142, (5) 

where K is shape parameter, D = 0 for undeveloped 
watersheds and D = 1 for developed watersheds,8 and 
L is main-channel length of the watershed in miles. 
The equation has 88 degrees of freedom (df[K] = 88), a 
residual standard error (σ [K]) of 0.2052log10(K) units, 
and an adjusted R-squared of 0.292. The maximum 
leverage (h[K] 

max) is about 0.132, which can be useful in 
assessing applicability of equation 5. 

Weighted mean K (no log10 transformation) with
out regard to watershed development is about 3.9, and 
weighted mean values with regard to watershed devel
opment are 5.2 and 2.9 for undeveloped and developed 
watersheds, respectively. These values bracket the

equivalent K value of 3.77 for a gamma dimensionless 0.10599
 −0.10349 −0.03134
⎢⎣


⎥⎦
hydrograph equivalent to the Natural Resources Con
 −0.10349 0.13156 0.00859
 ×

servation Service (2006) dimensionless hydrograph. A
 (9)
−0.03134


1


0.00859 0.04502

larger shape parameter for undeveloped watersheds
 ⎡
 ⎤ ⎥⎦

implies that undeveloped watersheds tend to have

more-symmetrical dimensionless hydrographs than


⎢⎣
log10(L )⊕ ,

developed watersheds (Asquith and others, 2005, 
fig. 3), and the Natural Resources Conservation 
Service dimensionless hydrograph lies between them. 

The prediction limits of K from equation 5 can be 
useful for expressing uncertainty when the equation 
is used. The limits for the 100 × (1− α) prediction 
interval are shown as 

↓Kα/2 ≤ K⊕ ≤ ↑Kα/2, (6)⊕ ⊕ 

where down (up) arrow signifies the lower (upper) pre
diction limit for the prediction K at the α significance ⊕ 

8D as a concept and regressor variable is formally described on 
page 16. 

D⊕ 

where L⊕ and D⊕ are watershed-specific values, and 
the 3× 3 matrix is the inverted covariance matrix of 
the regression. The prediction limits (interval) of K⊕
will increase (expand) as the watershed characteristics 
become farther away from those used (the parameter 
space) to develop equation 5. Equation applicability 
can be roughly assessed by the maximum leverage of 
the regression. In general, a regression equation is 
judged applicable for a given watershed if the leverage 

9The literature commonly uses a subscripted symbol o, but the authors 
use the ⊕ symbol (similar to a “target”) to visually reinforce the concept 
of prediction. 
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for a prediction is about 
h[Tp] 
⊕ = 1 log10(L⊕) log10(S⊕) D⊕ × 

h[K] ≤ h[K] 
max = 0.132. (10)⊕ 

⎡ ⎤ 
1.34775 0.16646 0.67709 −0.01451 
0.16646 0.19025 0.14719 0.01225 
0.67709 0.14719 0.36919 0.00918 

⎢⎢⎢⎣ 

⎥⎥⎥⎦×Estimation of Gamma Unit Hydrograph Time

−0.01451 

1 
log10(L )⊕

0.01225 0.00918 0.04524to Peak
 ⎡ ⎤ ⎥⎥⎥⎦⎢⎢⎢⎣ (15)
The regression equation for the GUH timing param ,

log10(S )⊕eter (Asquith and others, 2005, eq. 34) is


D⊕ 

Tp = 10−1.49−0.354DL0.602S−0.672, (11) 

where Tp is time to peak in hours, D = 0 for undevel
oped watersheds and D = 1 for developed watersheds, 
L is main-channel length of the watershed in miles, 
and S is dimensionless main-channel slope. The equa
tion has 87 degrees of freedom (df[Tp] = 87), a residual 
standard error (σ [Tp]) of 0.1383log10(Tp) units, and an 
adjusted R-squared of 0.858. The maximum leverage 
(h[Tp] 

max) is about 0.136, which can be useful in assessing 
applicability of equation 11. 

The prediction limits of Tp from equation 11 can 
be useful for expressing uncertainty when the equation 
is used. The limits for the 100 × (1− α) prediction 
interval are shown as 

↓T α/2 ≤ Tp⊕ ≤ ↑T α/2, (12)p⊕ p⊕ 

where down (up) arrow signifies the lower (upper) 
prediction limit for Tp at the α significance level. 

The lower and upper limits are computed by 

where L⊕, S⊕, and D⊕ are watershed-specific values, 
and the 4× 4 matrix is the inverted covariance matrix 
of the regression. The prediction limits (interval) 
of Tp⊕ will increase (expand) as the watershed 
characteristics become farther away from those 
used (the parameter space) to develop equation 11. 
Equation applicability can be roughly assessed by the 
maximum leverage of the regression. In general, a 
regression equation is judged applicable for a given 
watershed if the leverage for a prediction is about 

h[Tp] ≤ h[Tp] 
max = 0.136. (16)⊕ 

For the K�Tp equations, the general range of L for 
which the equations can be used is 1–50 miles, and the 
general range for S is 0.002–0.020 (Asquith and others, 
2005, figs. 15 and 16). 

Analysis of Initial Abstraction and 
Constant Loss for 92 Watersheds in 

[Tp] Texas 
↓T α/2 = 10log10(Tp⊕)−t[α/2,df] σ [Tp] 1+h

p⊕ and (13)
⊕ 

↑T α/2 = 10log10(Tp⊕)+t[α/2,df] σ [Tp] 1+h
[Tp] 
⊕ , (14)p⊕ 

where Tp⊕ is the prediction from equation 11, t[α/2,df] 

is the upper tail of the t-distribution for df[Tp] degrees of 
freedom at the α significance level, σ [Tp] is the residual 
standard error of equation 11, and h[Tp] is the leverage ⊕
of the prediction for the watershed. 

The leverage h[Tp] for a Tp⊕ prediction for a water⊕
shed from equation 11 is important for estimation of 
the prediction limits of the equation. The computation 
of h[Tp] is⊕ 

The initial-abstraction, constant-loss model 
(IA

�CL) for rainfall-runoff computations for the 
92 watersheds is analyzed in this section. Initial 
abstraction (IA) has units of length (watershed depth) 
or watershed inches. Constant loss (CL) has units 
of length (again, watershed depth) per unit time or 
watershed inches per hour. For the IA

�CL model, a 
watershed is conceptualized to have the capacity to 
store or abstract an absolute depth of rainfall at and 
near the beginning of a storm. Depths of rainfall less 
than this initial abstraction do not produce runoff. 
The watershed also is conceptualized to have the 
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capacity to remove rainfall at a constant rate (loss) 
after the initial abstraction is satisfied. Additional 
rainfall inputs after the initial abstraction is satisfied 
contribute to runoff if the rainfall rate (intensity) is 
larger than the constant loss. The IA

�CL model thus is 
a two-parameter model of watershed losses.10 

Values of CL, which have units of length per 
unit time, can be compared to infiltration rates. The 
watershed-loss model is structured to be mathemati
cally consistent with infiltration and other processes. 
The conceptualization of rainfall removal in this 
report primarily is as a (statistical) model of aggregate 
rainfall loss and not necessarily a model of infiltration 
that represents the actual physics of water movement 
in soil and other land-cover types. 

Analysis of Storm-Specific Initial Abstrac
tion and Constant Loss 

A complex computational analysis of the database 
of observed rainfall and runoff for the 92 watersheds 
was done in summer 2006 using custom-built software 
(Joseph Vrabel, U.S. Geological Survey, written com
mun., 2006; source code is available from report web 
site). The purpose of the software (labeled as �IA

��CL) 
was to compute optimal (storm-specific, �) parameter 
values (�IA and �CL) for each suitable storm [f] in the 
database. The analysis used the observed rainfall and 
runoff as computational input. The computations used 
a 5-minute time step; rainfall and runoff were linearly 
interpolated to 5-minute increments as needed. The 
GUH was estimated for each watershed by the K�Tp 

equations. This single “watershed-specific GUH” was 
considered a representative unit hydrograph for the 
watershed. The analysis successfully processed 1,620 
of about 1,660 storms inclusive of all watersheds and 
provided �IA and �CL values used in subsequent statis
tical analyses reported here.11 

The assumption that the GUH set by the K�Tp 

equations is representative for each watershed for the 
analysis of �IA and �CL is important. Although the 
“correctness” of this unit hydrograph is not ensured, 
the assumption implies that the IA

�CL model reported 
10The algorithm used to implement the IA

�CL model is described in 
appendix 3 (fig. 3.2). 

11Two examples of the graphical output from the �IA
��CL software are 

described and illustrated in appendix 1 (figs. 1.1 and 1.2). 

here is “tuned” against observed rainfall and runoff 
and K�Tp -GUH. Therefore, a complete framework in 
a conceptual and statistical sense is established. The 
IA
�CL model is linked to K�Tp -GUH, and in practice 

the two techniques are to be used together. 
Values for �IA and �CL were computed by the 

�IA
��CL software. These values are defined as those 

that generated an excess rainfall hyetograph, which 
when convolved with K�Tp -GUH, produced a mod
eled runoff hydrograph that has the same volume as the 
observed runoff hydrograph (V model = V obs) and a min
imized residual sum of squares between the observed 
and modeled runoff hydrographs. �IA and �CL were 
further constrained to be physically meaningful—that 
is, values greater than or equal to zero. Negative values 
for either parameter imply that the “loss model” con
tributes to the total runoff volume of a storm, which is 
a physically meaningless scenerio.[g] 

Values for �IA and �CL computationally were deter
mined by an adaptive grid search algorithm in which an 
initial grid of IA and CL with coarse resolution was used. 
Successive grids at finer resolutions and volume-match 
tolerance were used to arrive at a subset of parameter 
space (“candidate pairs”). The residual sum of squares 
between the observed and modeled runoff hydrograph 
was computed for each candidate pair, and the can
didate pair resulting in the smallest residual sum of 
squares was chosen as optimal. This approach cap
italizes on the fact that it is possible to determine if 
the volume-matching constraint is met for a particular 
parameter pair without making computationally expen
sive model runs involving convolution of the excess 
rainfall hyetograph and unit hydrograph (eq. 1). 

Subsequently, the means of �IA and �CL for each 
watershed were computed; the means (IA and CL) are 
referred to as watershed-specific. IA and CL for each 
watershed are considered the most representative and 
are used in further statistical analyses reported here. 
Mathematically these values are computed by 

∑
92 

IA = i=1 wi × �IA[i] and (17)
∑

92 
i=1 wi 

CL = 
∑

92 
i=1

∑

w
92 

i × �CL[i] , (18) 
i=1 wi 

where IA and CL are watershed-specific values, and wi 
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is the number of suitable storms processed for water
shed i for 1≤ i ≤ 92, and �IA[i] and �CL[i] are optimal 
values for the i th storm. The IA, CL, and wi for each 
watershed are listed in appendix 1 (table 1.1). 

Analysis of Watershed-Specific Initial 
Abstraction and Constant Loss 

Statistical analyses of IA and CL were done with 
the objectives of (1) documenting the parameter dis
tribution and (2) developing predictive procedures for 
each parameter. Results of the analyses, which will 
influence the preferred IA

�CL model at the conclusion 
of this report, are described in this section. 

Each successful model run for a storm produces 
a Qmodel (the single largest streamflow for the storm). p 

Each Qmodel can be compared to Qobs of the observed p p 

runoff hydrograph. The comparison between Qobs 
p 

and Qmodel for each modeled runoff hydrograph using p 
�IA

��CL values is made in figure 3. The figure contains 
1,620 data points (storms). An observed or modeled 
runoff hydrograph can contain more than one peak (a 
local maximum), but only one Qp (the global maxi
mum for the event) is used in the analysis. Also, the 
Qmodel might not represent the same Qobs in terms of p p 

timing or peak number in the case of multiple peaks.12 

The data points have no apparent tendency to plot 
above or below the equal value line. The standard 
deviation of Qmodel about the equal value line is about p 

0.20log10(cubic foot per second). It is concluded by 
interpretation of figure 3 that �IA

��CL coupled with 
K�Tp -GUH produces unbiased estimates of Qp. Val
ues for Qp often provide critical design criteria for 
drainage infrastructure, thus the observation of no bias 
is important. 

The importance and lasting ramifications of the 
graph in figure 3 are stressed. The graph shows that 
�IA

��CL and K�Tp -GUH produce reliable estimates of 
Qp distributed over a wide range of almost 4 orders 

12For example, see the observed and modeled (estimated) runoff hydro
graph for the multi-peak storm represented in appendix 2 (fig. 2.15). This 
figure shows that the text file providing the data contains no less than 
eight distinctively individual peaks. For the processing of the �IA

��CL 
software, only the Qobs 

p occurring at about 80 hours was matched. Note 
that the figure shows representative results for context of estimation at un
gaged locations described later in the report and not the results from storm-
specific analysis. Therefore, the observed and modeled hydrographs in the 
figure do not align on the global maximum seen at about 80 hours. 

Table 1. Common summary statistics of IA and CL 

(watershed-specific IA and CL) for the 92 watersheds. 
[Initial abstraction statistics in watershed inches; constant loss 
statistics in watershed inches per hour] 

Stan-
Min
imum 

First 
quartile Median Mean 

Third 
quartile 

Max
imum 

dard 
devia
tion 

Initial abstraction (IA) 

0.0157 0.504 0.821 0.876 1.14 1.910 0.4669 
Initial abstraction—undeveloped watersheds 

.336 .787 1.111 1.106 1.317 1.902 .4044 
Initial abstraction—developed watersheds 

.0157 .365 .564 .690 .955 1.910 .4331 
Constant loss (CL) 

.0251 .287 .517 .559 .764 2.883 .4088 
Constant loss—undeveloped watersheds 

.0251 .301 .481 .617 .823 2.883 .5087 
Constant loss—developed watersheds 

.0322 .274 .520 .512 .644 1.218 .3035 

of magnitude with no hint of nonlinearity and with 
constant relative error. The lack of bias is remarkable 
considering that �IA

��CL values were not optimized to 
match Qobs. In particular, the functional performance p 

of the complex �IA
��CL software is confirmed. 

Both the IA and CL for each of the 92 watersheds 
are listed in appendix 1 (table 1.1). Common summary 
statistics for IA and CL are listed in table 1. A distinc
tion between undeveloped and developed watersheds 
is made in each table. The statistics were computed by 
first subselecting the 1,620 storms into those storms for 
which the number of modeled peaks (peaks produced 
by the model) for each storm was less than or equal 
to six; the total number of storms after this filtering is 
1,603. For the 17 rejected storms, the modeled runoff 
hydrograph contained too many intermediate peaks for 
reliable assessment. 

The mean value of IA is about 1.11 watershed 
inches for an undeveloped watershed and about 0.69 
watershed inch for developed watersheds. The IA 

for undeveloped watersheds in the study typically are 
about 60 percent larger than IA for developed water
sheds. The mean value of CL is about 0.62 watershed 
inch per hour for an undeveloped watershed and about 
0.51 watershed inch per hour for developed watersheds. 
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Figure 3. Graph showing comparison of observed (Qobs) and modeled (Qmodel) peak streamflows estimated by the p p 
�IA

��CL and K�Tp -GUH models for the 92 watersheds. 

The CL for undeveloped watersheds in the study typi
cally are about 21 percent larger than CL for developed 
watersheds. 

The distributions of IA and CL represent the vari
ability associated with each parameter. The L-moment 
statistics Hosking (1990); Asquith (2007) of IA and CL 

of the two parameters are listed in table 2. A distinc
tion between undeveloped and developed watersheds 
is made in the table. 

The generalized lambda distribution (GLD) is a 
four-parameter distribution that can mimic a wide 
range of distributional forms (Karian and Dudewicz, 
2000). The GLD was selected to model the distribu
tions of IA and CL because the distribution has a simple 
and readily solved quantile function should the dis
tributions be needed for end-user applications. Other 
than presenting two fitted GLDs in this section, further 
consideration of the GLD is not made in this report. 

The quantile function of the GLD is 

x(F) = ξ + ψ[Fκ − (1− F)η ], (19) 

Table 2. L-moment statistics of IA and CL (watershed-
specific IA and CL) for the 92 watersheds. 
[Mean and L-scale are in inches for initial abstraction, and are in 
inches per hour for constant loss. --, dimensionless] 

Mean L-scale τ3 τ4 τ5 
(varies) (varies) (--) (--) (--) 

Initial abstraction (IA) 

0.875 0.267 0.0822 0.0795 0.0273 
Initial abstraction—undeveloped watersheds 

1.106 .230 .0699 .108 −.0245 
Initial abstraction—developed watersheds 

.690 .242 .182 .107 .0238 
Constant loss (CL) 

.559 .206 .209 .188 .127 
Constant loss—undeveloped watersheds 

.617 .248 .322 .225 .172 
Constant loss—developed watersheds 

.512 .173 .0668 .117 .0653 



12 An Initial-Abstraction, Constant-Loss Model for Unit Hydrograph Modeling for Applicable Watersheds in Texas 

where x(F) is the quantile for nonexceedance probabil
ity (cumulative probability) F , ξ is a location parame
ter with the same units as x, ψ is a scale parameter with 
the same units as x, κ is a dimensionless shape param
eter, and η is another dimensionless shape parameter. 

The parameters of the GLD can be fit by sev
eral techniques including the method of moments or 
method of percentiles (Karian and Dudewicz, 2000). 
The parameters also can be estimated by the method 
of L-moments, which uses the L-moments listed in 
table 2. The L-moments of the GLD in the context of 
application of the method of L-moments are summa
rized by Asquith (2007). 

Finally, the GLD models for distributions of IA 

and CL, respectively, are described in the next two 
sections. The primary objectives for providing the dis
tribution models are (1) to comprehensively document 
the results of the �IA

��CL software by watershed and 
(2) to accommodate potential usage of the two GLD 
models for advanced applications, such as simulation 
studies, that are outside of the scope of this report. 

Generalized Lambda Distribution Model of Initial 
Abstraction 

The GLD model for the distribution of IA is 

IA(F) = ξ [IA] + ψ [IA][Fκ [IA] − (1− F)η [IA]
], (20) 

where IA(F) is IA in watershed inches for nonex
ceedance probability F , and the four parameters are 
defined the same as for equation 19. The lack of mean 
notation (overline) on IA(F) is by design—the water
shed mean is implicit in the notation. The values for 
the parameters are listed in table 3. A distinction 
between undeveloped and developed watersheds is 
made in the table. The three GLD distributions of 
IA that correspond to the three parameter sets listed 
in table 3 are depicted in figure 4. These fitted distri
butions are acquired by substitution of the parameters 
listed in the table into equation 20. 

Two interpretations of the IA distributions shown 
in figure 4 are made. First, the GLD provides a reli
able parametric model of the distribution of the data. 
Second, the range or variation of IA estimates is moder
ately large and slightly asymmetrical (skewed). Criti
cally important for application, the distinction between 

Table 3. Parameters of generalized lambda distribution for 
IA for the 92 watersheds. 
[--, dimensionless] 

Location Scale Shape Shape 

ξ [IA] ψ [IA] κ [IA] η [IA] 

(inches) (inches) (--) (--) 

All 92 watersheds 

1.028 0.954 5.331 2.151 
Undeveloped watersheds (41 watersheds) 

.894 1.805 .0892 .248 
Developed watersheds (51 watersheds) 

1.015 .946 8.454 1.225 

undeveloped and developed watersheds has a large 
influence on IA magnitude. 

Specifically, IA generally is smaller by about 0.3– 
0.5 watershed inch when a watershed is classified as 
developed. This observation is consistent with gener
ally accepted understanding. A developed (urbanized) 
watershed is expected to have less capacity to store an 
absolute depth of rainfall than an undeveloped water
shed when other factors are equal. This conclusion is 
reinforced by analysis in the section titled “Estimation 
of Initial Abstraction.” 

Generalized Lambda Distribution Model of Constant 
Loss 

The GLD model for the distribution of CL is 

CL(F) = ξ [CL] +ψ
[CL][Fκ [CL ] −(1−F)η [CL ]

], (21) 

where CL(F) is CL in watershed inches per hour for 
nonexceedance probability F , and the four parameters 
are defined as for equation 19. As with the model for 
the distribution of IA, the lack of overline on CL(F) is 
by design because the watershed mean is implicit in 
the notation. The values for the parameters are listed 
in table 4. A distinction between undeveloped and 
developed watersheds is made in the table. The three 
GLD distributions of CL that correspond to the three 
parameter sets listed in table 4 are depicted in figure 5. 
These fitted distributions are acquired by substitution 
of the parameters listed in the table into equation 21. 

Two interpretations of the CL distributions shown 
in figure 5 are made. First, the GLD provides a reli
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Figure 4. Graph showing distribution of IA (watershed-specific IA) and fitted generalized lambda distribution models for 
the 92 watersheds. 

Table 4. Parameters of generalized lambda distribution for 
CL for the 92 watersheds. 
[--, dimensionless] 

Location Scale Shape Shape 

ξ [CL] ψ [CL] κ [CL] η [CL] 

(inches) (inches) (--) (--) 

All 92 watersheds 

0.337 −4.237 −0.0207 −0.0683 
Undeveloped watersheds (41 watersheds) 

.272 −2.051 −.0270 −.164 
Developed watersheds (51 watersheds) 

.636 .681 7.538 2.338 

able parametric model of the distribution of the data. 
Second, the range or variation of the CL estimates is 
moderately large and slightly asymmetrical (skewed). 

Potentially important for application, the distinc
tion between undeveloped and developed watersheds 
has limited influence on CL magnitude. However, for 
the right tail of the distributions (cumulative proba
bilities greater than about 60 percent), undeveloped 
watersheds have larger CL. The right tail of the distribu
tion for developed watersheds also curves to the right, 
which might indicate an upper limit on CL of about 
1.3 watershed inches per hour or slightly larger for 
the types of developed watersheds represented in the 
database. This observation is consistent with generally 
accepted understanding of urbanization of a watershed. 
Developed (urbanized) watersheds should generally 
have smaller CL values than undeveloped watersheds 
when other factors are equal. However, the effect appar
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Figure 5. Graph showing distribution of CL (watershed-specific CL) and fitted generalized lambda distribution models for 
the 92 watersheds. 

ently is slight. This conclusion is further discussed in 
the section titled “Estimation of Constant Loss.” 

A final comment about the GLD model for the dis
tribution of CL is needed because there are limitations 
on the fitted GLD. The CL(F) distributions defined 
in table 4 are negative in the far-left tail (cumulative 
probabilities less than about 2 percent). In applica
tions involving these CL distributions and predictions 
resulting in negative values, CL should be truncated at 
zero. 

Regression Equations and Regression Trees 
to Estimate Initial-Abstraction and Constant-
Loss Values 

Regression equations and regression trees to esti
mate IA and CL for applicable watersheds in Texas are 
developed in this section. For practical applications, 

estimation of IA and CL for ungaged watersheds is nec
essary. This estimation can be provided by regression 
between either IA or CL (each a regressor variable) and 
selected watershed characteristics (predictor variables). 
Two types of regression are described, and the result
ing equations and trees for the IA

�CL model are shown. 
As part of the regression process, two separate, but 
parallel, analyses of IA and CL were done. 

Several distinct watershed characteristics were 
evaluated as predictor variables for estimation of IA 

or CL for ungaged watersheds. Favorable characteris
tics are judged in part by their statistical significance 
in regression computations; characteristics are consid
ered significant at the 0.05 level (p-value 13 ≤ 0.05). 
The watershed characteristics for each of the 92 water

13P-values are shown in appendix 2 (figs. 2.3 and 2.4), under the label 
Pr(>|t|). 
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sheds were obtained from Asquith and others (2005) or 
determined (or computed) as necessary, as described 
as follows: 

1. Values for contributing drainage area A for each 
watershed were obtained from Asquith and oth
ers (2005, table 2) and are listed in appendix 1 
(column 6 of table 1.1). Preliminary analysis 
showed that A has predictive properties on IA 

and CL similar to those of main-channel length L. 
One reason for the similarity is the statistically 
significant relation between L and A (see appen
dix 1, eq. 1.1 and fig. 1.3). The authors decided 
not to use A for final regression computations in 
part because a dimensionless quantity (IA/L) can 
be formulated to directly express proportionality, 
or the time quantity (L/CL) can be formulated to 
express a duration. However, these two ratios are 
not discussed further in this report. 

2. Values for main-channel length L were obtained 
from Asquith and others (2005, table 2) and 
are listed in appendix 1 (column 7 of table 1.1). 
The L is defined as the length in stream-course 
miles of the longest defined channel shown in 
a 30-meter digital elevation model from the 
approximate watershed headwaters to the outlet. 
L is statistically significant for estimation of 
IA and CL and is used in the final regression 
computations. 

3. Values for dimensionless main-channel slope S 
were obtained from Asquith and others (2005, 
table 2) and are listed in appendix 1 (column 8 of 
table 1.1). The S is defined as the change in ele
vation in feet (ΔE) between the two end points 
of L divided by L in feet: S = ΔE/(5,280 × L). 
A 30-meter digital elevation model was used to 
compute S for this report. Preliminary analysis 
showed that S has statistically insignificant pre
dictive capabilities after the stronger prediction 
properties of L are accounted for by regression. 
The authors decided not to use S for final regres
sion computations. 

4. Natural Resources Conservation Service (2006) 
curve numbers (CN) were estimated. The CNs 

for each of the 92 watersheds are listed in appen
dix 1 (column 5 of table 1.1). The table lists CN 
to the nearest tenth, which reflects the value used 
in the analyses. However, the authors acknowl
edge that for a typical watershed, CN likely 
has measurable resolution no better than to the 
nearest integer. The CN is a parameter used in 
the Curve Number (CN) method to estimate 
the maximum potential retention of rainfall 
in a watershed (Natural Resources Conserva
tion Service, 2006) and reportedly accounts for 
differences between soil types, land-cover clas
sifications, and other hydrologic conditions of 
the land surface that affect watershed storage 
of rainfall. The CN method generally repre
sents a non-time-distributed, watershed-loss 
model. The CN method likely is one of the most 
common rainfall and runoff models for typical 
hydrologic-engineering applications. Because 
CN is well known, represents an overall capacity 
of a watershed to absorb rainfall, and is statisti
cally significant for estimation of IA and CL, 
CN is used for final regression computations. 

5. Soil types and textures were obtained from 
U.S. Geological Survey (2006). Exploratory 
analysis of the relations between IA and CL and 
soil types and textures indicated that various 
measures (sand, silt, clay, loam, hydraulic con
ductivity, and others) were inferior to the CN 
in terms of predictive capabilities. The authors 
decided not to use soil types and textures for 
final regression computations. The soil data are 
not listed in this report, and further details are 
not provided. 

6. Values of percentage impervious cover were 
obtained [h] from U.S. Geological Survey (2006). 
In a suburban to urban area, impervious cover 
includes roads, parking lots, and rooftops. 
Exploratory analysis of the relations between 
IA and CL indicates that percentage impervious 
cover was inferior to the combined predictive 
capabilities of CN and D. The authors acknowl
edge that differences between the time period 
of the percentage impervious cover data and the 
general period of data for the 92 watersheds exist. 
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The authors decided not to use percentage im
pervious cover for final regression computations. 
The values for percentage impervious cover are 
not listed in this report, and further details are 
not provided. 

7. The binary classification of D was considered. 
Values for D were obtained from Asquith and 
others (2005, table 1) and are listed in appendix 1 
(column 4 of table 1.1). The D factor (Asquith 
and others, 2005, table 1) is a state variable rep
resenting a binary classification of the state of 
development in a watershed (undeveloped and 
developed). The classification scheme parallels 
and accommodates the disparate discussion and 
conceptualization in more than 220 reports that 
provided the original data for the rainfall and 
runoff database (Asquith, Thompson, and others, 
2004). The classification scheme also is used 
in this report. The authors elected to use D, as 
it represents a highly generalized treatment of 
complex and potentially temporally changing 
watershed development. D is statistically signif
icant for estimation of IA and CL and is used in 
final regression computations. 

8. Another binary classification considered was 
whether the watershed is characteristized by 
rock-dominated terrain and thin soils, rock chan
nels, and karstic features,[i] such as the limestone 
in and around the Austin and San Antonio areas. 
The rock-classification factor (R) was obtained 
through local knowledge and geologic and soil 
data for the watersheds. The R for each of the 92 
watersheds is listed in appendix 1 (column 3 of 
table 1.1). R is statistically significant for estima
tion of IA and CL and is used in final regression 
computations. 

In summary, of the eight candidate watershed charac
teristics, the four characteristics of L, D, R, and CN 
were used in the final stages of linear regression (equa
tion) analysis. Further, these same characteristics were 
used for regression tree analysis. 

Regression trees (Faraway, 2006, chapter 13, 
“Trees”) result from an alternative method of regres
sion (sometimes termed recursive partitioning) when 

compared to regression that produces equations. The 
tree is constructed such that partitions (branches) are 
determined by an algorithm that seeks to split and 
minimize residual sum of squares. The R environment 
(R Development Core Team, 2006) coupled with 
the rpart package (Therneau and Atkinson, 2006) 
was used for regression tree construction. Modest 
“pruning” of the limbs was made to mitigate for 
over-partitioning to small sample sizes (small number 
of watersheds per terminal branch). Specifically, a 
weighted partition was used in which the number of 
suitable storms provided the basis for the weights. 
For the regression trees presented in this report, the 
vertical extent (length) of the branches is proportional 
to the amount of variability explained by each 
partition. 

The regression equation computations were done 
using the R environment (R Development Core Team, 
2006). The general form of the IA

�CL equations re
ported here is 

Y = a + bLϕ + cD + dR + eCN, (22) 

where Y is the predictor variable (IA or CL), and the 
five coefficients (a, b, c, d, and e) are estimated by 
weighted-least-squares regression in which the weights 
were chosen on the basis of the number of suitable 
storms listed in appendix 1 (table 1.1) for each water
shed. The power transformation factor (ϕ) is deter
mined independently from the least-squares procedure 
by a process referred to as “PRESS minimization.” The 
process entails the minimization of the PRESS statistic 
of a candidate regression by iterative refinement of ϕ 
values. 

The PRESS statistic is a validation statistic that 
measures the performance of the equation in predict
ing new values. Small PRESS values are desirable. 
Helsel and Hirsch (2002, p. 247) state that, “Minimiz
ing PRESS means that the equation produces the least 
error when making new predictions.” An example of 
PRESS minimization in an annual peak streamflow 
context with source code is available in Asquith and 
Thompson (2005). 

An algorithm for PRESS minimization is shown 
in figure 6 using the IA equation for illustration. The 
code listing assumes that IA (IA), L (L), D (DU), R (RK), 
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PRESS <- function(model) { 
res <- weighted.residuals(model) 
hats <- hatvalues(model) # "leverages" 
return( sum((res/(1-hats))^2 ) / 

length(hats)) # PRESS 
} 
makeIAeq <- function(phi.b, phi.e, 

phi.stp) {

minpress <- 10000; minphi <- 10000

minwls <- 0 # the model of min PRESS

for(phi in seq(phi.b, phi.e,


by=phi.stp)) { 
if(phi == 0) next # skip power=0 
my.L <- L^phi # transform 
aWLS <- lm(IA~my.L+DU+RK+CN, 

weights=W) # fit a linear �←
� model, see eq. 22 → 

press <- PRESS(aWLS.OUT) # compute it 
if(press < minpress) { 

minpress <- press; minphi <- phi 
minwls <- aWLS # a better model 

} 
} 
return(list(PHI=minphi, PRESS=minpress, 

EQUATION=aWLS)) 
} 

Figure 6. Listing of R code that represents the algorithm 
used for PRESS minimization in a weighted-least-squares 
context. 

CN (CN), and the regression weights w (W), already 
are available. The values phi.b, phi.e, and phi.stp 

represent the starting, ending, and step interval for 
candidate values of ϕ . 

Intermediate results of the exploratory transforma
tion research are not reported here. However, these 
results indicated that one watershed (08158825 Lit
tle Bear Creek at Farm to Market 1826, Manchaca, 
Tex.) should be dropped, in part, from further analysis 
because only one storm was available. This watershed 
is not used for the final regression equations and trees 
reported here. Therefore, it is implicit in subsequent 
discussion that this watershed is not used; although 
for consistency, the text will continue to refer to 92 
(not 91) watersheds.14 Finally, for the CL regression, 
D was not used because watershed development was 

14Exceptions to this practice are the residual plots in appendix 2, fig
ures 2.6 and 2.7 (regression equations) and figures 2.13 and 2.14 (regres
sion trees) in which the residual for station 08158825 is computed and 
shown. 

not statistically significant. This conclusion is rein
forced by figure 5—for the 92 watersheds, watershed 
development apparently has no substantial influence 
on CL. 

The final results of the PRESS minimization show 
that Lϕ transformation provides marginally better 
performance (smaller PRESS) than a more-common 
log10(L) transformation. The ϕ coefficients are each 
labeled as ϕ [IA] and ϕ [CL] for the respective IA and CL 

equations. The results are 

IA : log10(L) PRESS= 0.1052 ϕ [IA] PRESS= 0.1036 
CL : log10(L) PRESS= 0.0744 ϕ [CL] PRESS= 0.0743 

Additional evaluation of model preference is made 
with the Akaike Information Criterion (AIC) in which 
smaller values for IA and CL indicate a preferable 
model: 

IA : log10(L) AIC= 74.81 ϕ [IA] AIC= 73.18 
CL : log10(L) AIC= 48.17 ϕ [CL] AIC= 48.12 

The PRESS and AIC results indicate that the power 
transformation on L has a larger benefit for IA esti
mation because the PRESS and AIC statistics show 
more reduction relative to any potential benefit for CL. 
This conclusion was confirmed by visual comparison 
of the residual plots (fitted values on horizontal axis 
and residual on vertical axis). Some curvature existed 
in the IA : log10(L) residual plots (not shown in this 
report), and this curvature was removed by the IA : ϕ [IA] 

transformation (residual plots are shown in appendix 2, 
figs. 2.6 and 2.7). 

Estimation of Initial Abstraction 

The regression equation15 for estimation of IA has 
ϕ [IA] = −0.9041 and is 

IA = 2.045 − 0.5497L−0.9041 − 0.1943D 
(23)

+ 0.2414R − 0.01354CN, 

where IA is initial abstraction in watershed inches, L is 
main-channel length of the watershed in miles, D = 0 
for undeveloped watersheds and D = 1 for developed 
watersheds, R = 0 for non-rocky watersheds and R = 1 
for rocky watersheds, and CN is the curve number. 

15The equation and other ancillary information about the IA equation 
are shown in appendix 2 (fig. 2.3). 



� 

�


� � 

18 An Initial-Abstraction, Constant-Loss Model for Unit Hydrograph Modeling for Applicable Watersheds in Texas 

The equation has 86 degrees of freedom (df[IA] = 86), a 
residual standard error (σ [IA]) of 0.3025 watershed inch, 
and an adjusted R-squared of 0.345. The maximum 
leverage (h[IA] 

max ) is about 0.272, which can be useful in 
assessing applicability of equation 23. 

The prediction limits of IA from equation 23 can 
be useful for expressing uncertainty when the equation 
is used. The limits for the 100 × (1− α) prediction 
interval are shown as 

↓IA
α

⊕ 
/2 ≤ IA⊕ ≤ ↑IA

α

⊕ 
/2, (24) 

where down (up) arrow signifies the lower (upper) 
prediction limit for IA at the α significance level. 

The lower and upper limits are computed by 

applicability can be roughly assessed by the maximum 
leverage of the regression. In general, a regression 
equation is judged applicable for a given watershed if 
the leverage for a prediction is about 

h[IA] ≤ h[IA] = 0.272. (28)⊕ max 

However, this rule of thumb might be insufficient in 
the context here, and more discussion is provided in 
the section titled “General Discussion of the IA

�CL 

Equations.” 

The IA regression tree (IA tree) for estimation of 
IA is shown in figure 7. Each value for IA is shown in 
bold type, and the number of samples n and residual 
standard error σ also are listed. For example, a hypo
thetical watershed with CN = 83 and L = 4 miles has 

↓Iα/2 1+ h[IA] 
A⊕ = IA⊕− t[α/2,df] σ

[IA] 
⊕ 

an IA of 0.75± 0.0830 watershed inch. The database 
has 12 watersheds meeting the criteria of the hypotheti
cal watershed. Unlike for the IA equation, D apparently 
does not have substantial predictive properties for IA 

in a regression-tree context. Therefore, conclusions 
based on which parameters are important can be influ
enced by model structure; the IA equation and IA tree 
are structurally distinct. 

With respect to results of the IA tree, it might 
appear counterintuitive that, for the right branch of 
the first test (CN > 80), watersheds with R = 1 have 
larger IA (IA = 1.17 watershed inches) than watersheds 
with R = 0 (IA = 0.924 watershed inch). The authors 

and (25)


↑Iα/2 1+ h[IA] 
A⊕ = IA⊕ + t[α/2,df] σ

[IA] 
⊕ , (26) 

where IA⊕ is the prediction from equation 23, t[α/2,df] 

is the upper tail of the t-distribution for df[IA] degrees of 
freedom at the α significance level, σ [IA] is the residual 
standard error of equation 23, and h[IA] is the leverage ⊕
of the prediction for the watershed. 

The leverage h[IA] for an IA⊕ prediction for a water⊕
shed from equation 23 is important for estimation of 
the prediction limits of the equation. The computation 
of h[IA] is⊕ 

h[IA] 
1 L−0.9041= ⊕ ⊕ hypothesize that the nature of the limestone (karst)
D R CN⊕ ×⊕ ⊕⎡ ⎤

watersheds of the Austin and San Antonio areas is the
2.38000 0.17571 0.21256 −0.04512 −0.03106 
0.17571 0.40497 0.00579 −0.01074 −0.00348 
0.21256 0.00579 0.06893 −0.01141 −0.00304 
−0.04512 −0.01074 −0.01141 0.04742 0.00042 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

cause. These watersheds during periods lacking insuf

× 

ficient or abundant rainfall have substantial capacity 
to store an absolute depth of rainfall early in a storm
⎤−0.03106 

1 
L−0.9041 
⊕ 

−0.00348 −0.00304 0.00042 0.00041 ⎡ ⎢⎢⎢⎢⎢⎢⎣ 

event. As previously described, the assignment of the
⎥⎥⎥⎥⎥⎥⎦ 

R value is specific to rock-dominated watersheds in the

Central Texas area; extrapolation of the rock classifica
(27)
D ,
⊕ 

R⊕ 

tion to other “rocky” watersheds, such as watersheds
CN⊕ 

dominated by outcrops of granite, might not be appro-

where L⊕, D⊕, R⊕, and CN⊕ are watershed-specific 

priate.

values, and the 5× 5 matrix is the inverted covariance 
matrix of the regression. The prediction limits (inter- Finally, the residuals of the IA tree are shown in 
val) of IA⊕ will increase (expand) as the watershed appendix 2 (fig. 2.13). The residuals are evenly dis
characteristics become farther away from those used tributed, although with only six unique fitted values, to 
(the parameter space) to develop equation 23. Equation the residuals for the IA equation in appendix 2 (fig. 2.6). 
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Figure 7. Diagram showing regression tree of IA (the IA 

tree) for estimation of IA. 

interval are shown as 

↓CL
α

⊕ 
/2 ≤ CL⊕ ≤ ↑CL

α

⊕ 
/2, (30) 

where down (up) arrow signifies the lower (upper) 
prediction limit for IA at the α significance level. 

The lower and upper limits are computed by 

↓Cα/2 1+ h[CL] andL⊕ = CL⊕− t[α/2,df] σ
[CL] 

⊕ 

(31)


↑Cα/2 1+ h[CL] 
L⊕ = CL⊕ + t[α/2,df] σ

[CL] 
⊕ , (32) 

where CL⊕ is the prediction from equation 29, t[α/2,df] 

is the upper tail of the t-distribution for df[CL] degrees 
of freedom at the α significance level, σ [CL] is the 
residual standard error of equation 29, and h[CL] is the ⊕
leverage of the prediction for the watershed. 

The leverage h[CL] for a CL⊕ prediction for a water⊕
shed from equation 29 is important for estimation of 
the prediction limits of the equation. The computation 
of h[CL] is⊕ 

h[CL] 
1 L0.2312 

⊕ = ⊕ R CN⊕ ×⊕
Estimation of Constant Loss
 ⎡ ⎤ 

2.79336 −0.45089 −0.01554 −0.02600 
−0.45089 0.17984 0.00375 0.00222 
−0.01554 0.00375 0.04538 −0.00011 

⎢⎢⎢⎣ 

⎥⎥⎥⎦The regression equation16 for estimation of CL has 
ϕ [CL] = 0.2312 and is 

× 

⎤−0.02600 

1 

0.00222 −0.00011 0.00028 ⎡CL = 2.535 − 0.4820L0.2312 + 0.2271R 

− 0.01676CN,

(29)
 ⎢⎢⎢⎣ 

L0.2312 
⊕ 

R⊕ 

CN⊕ 

⎥⎥⎥⎦ ,
 (33)


where CL is constant loss in watershed inches per hour, 
L is main-channel length of the watershed in miles, 
R = 0 for non-rocky watersheds and R = 1 for rocky 
watersheds, and CN is curve number. The equation has 
87 degrees of freedom (df[CL] = 87), a residual standard 
error (σ [CL]) of 0.2649 watershed inch per hour, and an 
adjusted R-squared of 0.301. The maximum leverage 
(h[CL] 

max ) is about 0.183, which can be useful in assessing 
applicability of equation 29. 

The prediction limits of CL from equation 29 can 
be useful for expressing uncertainty when the equation 
is used. The limits for the 100 × (1− α) prediction 

16The equation and other ancillary information about the CL equation 
are shown in appendix 2 (fig. 2.4). 

where L⊕, R⊕, and CN⊕ are the watershed-specific 
values, and the 4× 4 matrix is the inverted covariance 
matrix of the regression. The prediction limits (inter
val) of CL⊕ will increase (expand) as the watershed 
characteristics become farther away from those used 
(the parameter space) to develop equation 29. Equation 
applicability can be roughly assessed by the maximum 
leverage of the regression. In general, a regression 
equation is judged applicable for a given watershed if 
the leverage for a prediction is about 

h[CL] ≤ h[CL] = 0.183. (34)⊕ max 
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However, this criteria might be insufficient in the con
text here, and more discussion is provided in the next 
section. 

The CL regression tree (CL tree) for estimation of 
CL is shown in figure 8. Each value for CL is shown 
in bold type, and the number of samples n and resid
ual standard errors σ also are listed. For example, a 
hypothetical watershed with CN = 63 and L = 4 miles 
has a CL of 0.862 ± 0.101 watershed inch per hour. 
The database has 12 watersheds meeting the criteria of 
the hypothetical watershed. As shown for the IA tree 
(fig. 7), D does not have substantial predictive prop
erties for the CL tree, which is consistent with the CL 

equation. 
The residuals of the CL tree are shown in appen

dix 2 (fig. 2.14). The residuals are evenly distributed, 
although with only five unique fitted values, to the 
residuals for the CL equation in appendix 2 (fig. 2.7). 

Visual comparison of the IA and CL trees is infor
mative. The vertical length of the branches for the 
CL tree (fig. 8) are more similar than those for the IA 

tree (fig. 7). In particular, the initial branch for the IA 

tree (CN > 80) is much longer than the other branches. 
Thus, CN has an appreciably longer influence on IA 

than subsequent branches of the IA tree. 

General Discussion of the Regression Equations 

Discussion of the IA
�CL equations (eqs. 23 and 29) 

in the context of physical interpretations is useful for 
reliable implementation of the results reported here. 
The ϕ [IA] and ϕ [CL] coefficients were each derived 
by PRESS minimization. The authors are uncertain 
whether ϕ is intrinsically important or whether the 
fact that ϕ [IA] and ϕ [CL] differ in magnitude and sign 
is important for further interpretation. In particular 
for the IA equation, the ϕ [IA] transformation removes 
apparent curvature in the regression residuals relative 
to a more common log10 transformation. 

For the IA equation, the coefficient on D is 
−0.1943 watershed inch, which means that developed 
watersheds generally have about 1/5-inch less initial 
rainfall storage than undeveloped watersheds. 

The coefficients on R for IA and CL are +0.2414 
and +0.2271 watershed inch and watershed inch per 
hour, respectively. The positive signs mean that rock
dominated, thin-soiled watersheds tend to have larger 
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Figure 8. Diagram showing regression tree of CL (the CL 

tree) for estimation of CL. 

rainfall losses. This observation appears logically con
sistent with many watersheds in the Austin and San 
Antonio areas. In general, rock-dominated, thin-soiled, 
karst watersheds represented by R = 1 in the database 
have about 1/4-inch larger IA or 1/4-inch per hour larger 
CL than other watersheds. 

The coefficients on CN for IA and CL are −0.01354 
and −0.01676 watershed inch and watershed inch per 
hour, respectively. The negative signs show that rain
fall losses decrease as CN increases. This is consistent 
with the broadly understood definition of CN. In gen
eral, an increase of 10 units of CN represents about 
−1/7-inch of IA and represents about −1/6-inch per 
hour of CL. 

Description and interpretation of the influence of 
L on IA and CL is more complex than for the other 
three regressor variables. Further, L values are less 
constrained than values for the other characteristics, 
which can result in physically inconsistent predictions 
from the IA

�CL equations. Specifically, mathemati
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cal analysis of the IA equation for a “worst-case sce
nario” (D = 1, R = 0, and CN = 100) shows that 
L � 1.12 miles to maintain IA ≥ 0 (physical con
sistency). Further mathematical analysis of the CL 

equation for another worst-case scenario (R = 0 and 
CN = 100) shows that L � 12.5 miles to maintain 
CL ≥ 0. Therefore, the most restrictive limits on L are 
about 1.12 � L � 12.5; however, less restrictive limits 
of L exist for other combinations of D, R, and CN. 

Some users might want to compare the L restric
tions to a typical value of A for a given watershed, 
given L. Equation 1.1 (appendix 1) can be used to 
estimate a typical value of A, which is denoted as Apred. 
The approximate A range of the most restrictive L val
ues is 0.44 � Apred � 24 square miles. This length 
and area information, used in conjunction with the h[IA] 

⊕ 

and h[CL] values, can be used to assess equation appli⊕
cability for a given watershed. In general, the IA

�CL 

equations likely are not applicable, or at least have 
questionable applicability, for very small watersheds 
(A � 0.4) or for watersheds greater than about several 
tens of square miles, unless other combinations of L 
and remaining parameters are used. 

Now that generalized limits of L are established, 
interpretation of effects of L on IA and CL can be made. 
For the IA equation, ϕ [IA] is negative so as L increases, 
its influence on the prediction of IA decreases. The 
coefficient on L is negative, therefore, IA increases as 
L (or watershed size) increases. The increase of IA 

approaches a limit as L becomes large. Conversely, 
for the CL equation, ϕ [CL] is positive so as L increases, 
its influence on the prediction of CL increases. The 
coefficient on L is negative, therefore, CL decreases 
as L increases. Although it seems logical that larger 
watersheds should have larger IA, it is not clear what 
effect watershed size, as expressed by L (and A; see 
eq. 1.1), should have on CL. 

Mathematical analysis of the approximate global 
limits for the IA

�CL equations is informative. The 
most restrictive limits on L (1.12 � L � 12.5 miles) 
provide a convenient starting point. CN in the range 
of 10 ≤ CN ≤ 100 are considered in this analysis. For 
this analysis the following combinations of watershed 
characteristics were used to compute smallest and high
est loss-parameter values: L = 1.12|12.5, D = 0|1, 
R = 0|1, and CN = 10|100, where the | symbol rep

resents the distinction between watershed develop
ment (D = 0 | D = 1). The analysis shows that the 
approximate global limits of IA are 0 � IA � 2 water
shed inches, and the approximate limits for CL are 
0 � CL � 1.9 watershed inches per hour. For both 
IA and CL equations these limits are consistent with 
the general limits of the actual data shown in fig
ures 4 and 5. 

Comparison of the Initial Abstraction Equation to the 
Curve Number Method 

The CN method involves a computation of initial 
abstraction. The equation is 

IA 
[CN] = 0.2Smax, (35) 

where IA 
[CN] is the IA of the CN method, Smax is known 

as maximum potential retention, and 0.2 represents an 
empirical coefficient known as the “best approxima
tion from observed data” (Pilgrim and Cordery, 1993, 
p. 9.22). The relation between Smax and CN is 

1000
Smax = 

CN 
− 10. (36) 

The CN method is widely used by hydrologic engi
neers and others. Therefore, comparison of the IA 

predicted from the CN method to those predicted from 
a representative solution (representative watershed) 
of the IA equation likely is of interest to practition
ers. Listed in table 5 are IA values predicted by each 
method. The IA 

[CN] ranges from 0 to 18 watershed 
inches; whereas, the IA equation yields a much smaller 
range from 0.56 to 1.8 watershed inches. These ranges 
are distinctively different. The range of CN for the 92 
watersheds used for the IA equation is between about 
65 and 90; therefore, considerable CN space is not 
represented by the watersheds. 

By this relative comparison listed in table 5, the IA 

equation and, by association, the IA tree do not produce 
very large IA values for small CN—larger V model values 
and larger Qmodel values are expected when either the p 

IA equation or IA tree is used. It is not known how 
reliable the IA equation or, by association, the IA tree 
is for watersheds with small CN. However, the authors 
argue that the IA estimation methods described in this 
report are expected to provide reliable estimates of 
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Table 5. Comparison of IA as predicted by the curve 
number (CN) method and the IA equation. 
[For this table and the IA equation (eq. 23) and the curve number 
(CN, IA 

[CN]) equation (eq. 35), the authors have assumed L = 5 
miles, R = 0, and D = 0. --, dimensionless] 

Table 6. Common summary statistics of peak streamflow 
error (εQp ) for the 92 watersheds. 
[All values are in log10(cubic feet per second).] 

Stan-
Min
imum 

First 
quartile Median Mean 

Third 
quartile 

Max
imum 

dard 
devia
tion 

IA
�CL model (1,276 storms) 

−2.31 −0.204 0.047 
ǏA
�ČL model (1,319 storms) 

0.100 0.340 3.06 0.536 

−2.38 −.249 .007 .049 
IA
�CL equations (1,342 storms) 

.287 5.04 .546 

−2.28 −.187 .045 
IA
�CL trees (1,350 storms) 

.093 .305 4.09 .533 

−2.39 −.203 .049 .079 
Combined IA

�CL model (1,232 storms) 

.311 2.35 .494 

−2.34 −.226 .013 .001 .253 1.68 .408 

where the | symbol represents the distinction between 
watershed development (D = 0 | D = 1). The units of 
IA and CL are watershed inches and watershed inches 
per hour, respectively. 

As part of evaluation of the four techniques, three 
types of error are defined. The error between the 
observed and modeled Qp is defined as 

ε
Qp = log10(Q

obs) − log10(Q
model), (37)p p 

where εQp is the peak streamflow error in log10(cubic 
feet per second), Qobs is the observed peak stream-p 

flow, and Qmodel is the peak streamflow from a context-p 

specific model. The error for runoff volume (εV ) 
in watershed inches and the time difference of peak 
streamflow (εTQp ) in hours are similarly defined, but 
log10 transformations are not used. 

The �IA
��CL software was modified to implement 

the four techniques with the primary purpose of eval
uating the IA

�CL equations and IA
�CL trees, but the 

other two techniques (the IA
�CL and ǏA

�ČL models) 
also were included. As a result, all storms in the 
database for the 92 watersheds were reprocessed four 
separate times.17 The εQp , εV , and εTQp values for each 
storm were computed. Common summary statistics of 
εQp , εV , and εTQp , respectively, are listed in tables 6–8. 

17A storm-specific processing example using the IA
�CL equations is 

shown in appendix 2 (fig. 2.15). 

CN I[CN] 
A IA equation CN I[CN] 

A IA equation 

(--) (inches) (inches) (--) (inches) (inches) 

10 18 1.8 60 1.3 1.1 
20 8.0 1.7 70 .86 .97 
30 4.7 1.5 80 .50 .83 
40 3.0 1.4 90 .22 .70 
50 2.0 1.2 100 0 .56 

IA (as a concept) because the methods were explicitly 
developed to predict IA. It is unknown how reliable the 
0.2Smax formulation implicit in the CN method is for 
the 92 watersheds. 

An Initial-Abstraction, Constant-
Loss Model for Unit Hydrograph 
Modeling for Applicable Water
sheds in Texas 

An IA
�CL model for watershed-loss estimation 

for applicable watersheds in Texas is evaluated and 
discussed in the context of practical applications in 
this section. The IA

�CL equations (eqs. 23 and 29) 
are shown with statistically significant variables, but 
those variables only explain about 30–34 percent of 
the variation in the IA and CL values. The IA

�CL trees 
explain a similar percentage. Therefore, the mean or 
median of IA and CL (table 1), with respect to D, also 
could be reasonable estimates for a watershed. Thus, 
four techniques are identified for general estimation 
for ungaged watersheds. The four techniques are 
abbreviated as 

IA
�CL model (means) IA 

CL 

= 1.106 | 0.690 
= 0.617 | 0.512 

, 

ǏA
�ČL model (medians) ǏA 

ČL 

= 1.111 | 0.564 
= 0.481 | 0.520 

, 

IA
�CL equations (eqs. 23 and 29) , and 

IA
�CL trees (figs. 7 and 8) , 
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Table 7. Common summary statistics of runoff hydrograph 
volume error (εV ) for the 92 watersheds. 
[All values are in watershed inches.] 

Stan-
Min

imum 
First 

quartile Median Mean 
Third 

quartile 
Max
imum 

dard 
devia
tion 

IA
�CL model (1,276 storms) 

−2.77 −0.156 0.148 
ǏA
�ČL model (1,319 storms) 

0.293 0.525 8.00 0.882 

−2.83 −.252 .090 .214 
IA
�CL equations (1,342 storms) 

.465 7.10 .863 

−2.27 −.158 .135 
IA
�CL trees (1,350 storms) 

.253 .538 9.17 .874 

−2.33 −.167 .109 .243 
Combined IA

�CL model (1,232 storms) 

.526 9.27 .850 

−2.55 −.210 .100 .237 .489 8.38 .864 

Specifically, the values are listed in the first four entry 
lines of the three tables. (The last entry is the topic 
of the section titled “The Combined IA

�CL Model.”) 
Storms with no modeled runoff, which occasionally 
occurred because the estimated losses were greater 
than observed rainfall, were not used for the statistical 
summary. The reported numbers of storms in the three 
tables thus are less than 1,620 and also are not equal 
among the four techniques. 

To augment presentation of the statistics listed in 
tables 6–8, selected statistics are graphically depicted 
in figure 9. The statistics in tables 6–8 require further 
discussion. The minimum and maximum errors are 
large; however, all storms processed in the statistical 
computations were retained without regard to the spe
cific nature of the rainfall and runoff data. Highly com
plex patterns of rainfall and runoff are in the database, 
which contribute to the magnitude of the smallest and 
largest errors. Of more general interest for the dis
cussion here is the interquartile range (third quartile 
minus first quartile). The interquartile range is small 
compared to the minimum and maximum range, which 
indicates that the errors have much smaller variation. 
The central tendency, as indicated by the median and 
mean, require residual-specific discussion. 

For εQp the medians are slightly greater than 
zero, and the means are between about 0.05log10 and 

0.10log10(cubic foot per second). The authors con
clude that nearly unbiased estimates of Qp result from 
each of the four techniques. The standard deviations of 
εQp all are about 0.54log10(cubic foot per second), 
much larger than the 0.20log10(cubic foot per sec
ond) in figure 3. The variations in εQp for each tech
nique are about 2.5 times larger than the Qp variation. 
Although Qp estimation results are nearly unbiased, 
the approximate equality of the standard deviations of 
εQp contributes to considerable ambiguity regarding 
which technique is preferable for watershed-loss esti
mation. The preferable technique could be that with 
the smallest standard deviation of εQp . 

Both the medians and means for εV are greater 
than zero and large enough to conclude that somewhat 
biased estimates of V result from each of the four tech
niques. The bias is between about 0.1 and 0.3 inch. 
The positive sign on the medians and means in table 7 
indicates that V is being underestimated. Therefore, 
the authors suggest that between about 1/10 and 1/4 
inch be added to V model after application of the water
shed losses and the unit hydrograph. If done in a 
practical application, the addition only occurs to the 
total runoff produced by the excess rainfall and unit 
hydrograph computations. The additional volume is 
not to be distributed across the excess rainfall hyeto
graph because that would result in an increase in the 
modeled Qp; such an increase is contrary to the con
clusion that nearly unbiased estimates of Qp already 
occur. 

For ε
TQp the medians and means are less than zero 

but are small enough to conclude that generally unbi
ased estimates of T Qp result. However, specific inter
pretation of the medians and means indicates that T Qp 

is overestimated by about 15 minutes. 

The Combined IA
�CL Model 

There is ambiguity as to which of the four tech
niques is preferable for watershed-loss estimation. In 
particular for Qp, the results in table 6 indicate that 
each of the four techniques has similar bias and similar 
standard deviations of error. Therefore, a judgement 
was made to combine all four techniques—the com
bined IA

�CL model. The combined Qp, denoted as Q̊p, 
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ǏA
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Figure 9. Whisker diagrams showing distribution of error statistics for each of the four techniques and the combined 
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�CL model from numerical values listed in tables 6–8. 
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Table 8. Common summary statistics of time difference of 
peak streamflow (εTQp ) for the 92 watersheds. 
[All values are in hours. The equalities of the minimum, first 
quartile, third quartile, and maximum columns have been verified.] 

Stan-
Min

imum 
First 

quartile Median Mean 
Third 

quartile 
Max
imum 

dard 
devia
tion 

IA
�CL model (1,276 storms) 

−70.4 −0.750 −0.333 −0.295 0.250 55.8 6.44 
ǏA
�ČL model (1,319 storms)


−70.4 −.750 −.333 −.292 .250 55.8 6.24

IA
�CL equations (1,342 storms) 

−70.4 −.750 −.292 −.162 .250 55.8 6.39 
IA
�CL trees (1,350 storms) 

−70.4 −.750 −.250 −.244 .250 55.5 6.40 
Combined IA

�CL model (1,232 storms) 

−70.4 −.729 −.292 −.273 .250 55.8 6.18 

is defined as the arithmetic mean 

Q̊p = 
1 

QI
p
A
�CL model + QI

p 
Ǎ
�ČL model +

4 

QIA
�CL equations + QIA

�CL trees . (38)p p 

Other quantities representing combined V , denoted as

V̊ , and combined T Qp , denoted as T̊ Qp , are defined as


V̊ = 
1 

V IA
�CL model +V ǏA

�ČL model+

4


V IA
�CL equations +V IA

�CL trees and (39) 

T̊ Qp 
1 

T IA
�CL model + T ǏA

�ČL model += 
4 

T IA
�CL equations + T IA

�CL trees . (40) 

The common summary statistics of the residuals 
for the combined IA

�CL model are listed in the last row 
of tables 6–8. In particular the Qp estimation clearly 
is unbiased, and the standard deviation is reduced sub
stantially. Specifically, these two statistics are much 
closer to zero and unbiased (mean) or smaller (standard 
deviation) than those listed for the four techniques. The 

approximate 0.41log10(cubic foot per second) stan
dard deviation (last row, last column of table 6) is about 
105 percent larger than the 0.20log10(cubic foot per 
second) for the Qmodel for �IA

��CL and K�Tp -GUH inp 

the graph of figure 3. The bias and standard deviations 
of εV and εTQp for the combined IA

�CL model remain 
similar to those for the other four techniques. The 
authors recognize that sample size differences could 
influence the computations and thus the conclusions, 
but the sample sizes are large enough that concern is 
mitigated. 

To demonstrate the application of the combined 
IA
�CL model, a comparison between Q̊p and Qobs isp 

shown in figure 10. The figure contains 1,232 data 
points. The relation demonstrates that Q̊p effectively 
are unbiased estimates of Qobs. The variability of the p 

data in figure 10 clearly is larger than the variability in 
figure 3; the larger variability is reflected by the larger 
standard deviation about the equal value line. There is 
evidence of larger variance for the smallest Qobs values, p 

the source of which is not identified. 

As with the graph in figure 3, the importance 
and lasting ramifications of the graph in figure 10 are 
stressed. The graph shows that the combined IA

�CL 

model and K�Tp -GUH likely will perform reliably for 
the 92 watersheds. Therefore, the combined IA

�CL 

model and K�Tp -GUH likely will perform reliably for 
similar, that is, applicable ungaged watersheds. 

The Combined IA
�CL Model in Practical 

Applications 

The combined IA
�CL model is preferred over indi

vidual methods of the four techniques for circum
stances involving design of drainage infrastructure. 
For applicable watersheds, the analyst makes four 
separate computations using a single K�Tp -GUH as 
the unit hydrograph. The computations will use the 
IA
�CL model, ǏA

�ČL model, IA
�CL equations, and 

IA
�CL trees as four individual—although not mutu

ally independent—watershed-loss models. The arith
metic mean (eqs. 38–40) of the specific values of Q̊p, 
V̊ , and T̊ Qp represent the best available estimates of 
these three important factors in hydrologic-engineering 
design. Analysts might consider adding between about 
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Figure 10. Graph showing comparison of observed (Qobs) and modeled (Q̊p) peak streamflows from the combined IA
�CLp

and K�Tp -GUH model for the 92 watersheds. 

1/10 and 1/4 inch to the V̊ to compensate for expected 
underestimation of V by the combined IA

�CL model 
and K�Tp -GUH. Finally, analysts should expect T̊ Qp 

to be on average about 15 minutes too late.[j] 

For circumstances in which no runoff results from 
one, two, or three of the four models, then each of 
those models should be dropped from equations 38– 
40, and the integer in the denominators accordingly 
changed. In other words, zero runoff conditions are 
ignored. If the models of all four techniques produce 
no runoff, then it follows that no runoff for the design 
storm hyetograph is produced by the combined IA

�CL 

model. 

Finally, if a single IA
�CL model must be identified 

as the most favorable, the authors prefer the IA
�CL 

trees. The IA
�CL trees are preferred because the trees 

produce the lowest standard deviation of εQp (see col
umn 7, table 6). The authors recognize, however, that 
the other residual statistics for each of the four tech
niques (tables 6–8) are similar. In general, the IA

�CL 

trees are easier to use than the IA
�CL equations and 

have six or fewer unique outcomes—the trees provide 

unambiguous IA and CL estimates. On the other hand, 
the IA and CL equations offer a wider range of outcomes 
and, as a result, offer interpolation (or extrapolation) to 
watershed types well (or not well) represented by the 
characteristics of the 92 watersheds. The IA

�CL equa
tions also provide a means to estimate prediction limits 
for an arbitrary watershed, and the prediction limits in 
turn provide a measure of equation applicability to an 
arbitrary watershed. 

Further Discussion 

INHERENT MODEL BIAS: The combined IA
�CL 

model and K�Tp -GUH are based on rainfall and runoff 
data for the 92 watersheds. Storms for which no runoff 
occurred are not represented in the database. At times 
some storms with a given depth and duration produce 
no runoff; however, at other times an apparently similar 
storm will produce runoff. The difference in watershed 
response can be attributed in part to errors in areal and 
temporal distribution of the rainfall as represented by 
the rainfall data for the 92 watersheds and temporal dif
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ferences in antecedent moisture condition. Antecedent 
moisture condition is a measure of the potential for 
runoff based on history of rainfall in the watershed. 
During periods of abundant rainfall, the potential for 
runoff is greater than during periods of below-average 
rainfall. Regardless of the sources of storm-to-storm 
variations in rainfall and runoff relations, from an over
all perspective of runoff potential, the combined IA

�CL 

model underestimates watershed losses. The underesti
mation occurs because the computational analysis is 
biased by the fact that only runoff-producing storms 
were analyzed, or could be analyzed. 

MODELING TIME STEP: The combined IA
�CL 

model and K�Tp -GUH are each derived from computer 
models using 5-minute time steps. This is a small time 
increment. However, in hydrologic-engineering prac
tice the size of rainfall time steps, and hence rainfall
runoff models using unit hydrographs, commonly is 
tens of minutes to several hours. Attention is required 
by analysts in the specification of qp, Tp, and K of the 
GUH so that the Qmodel is not underestimated because p 

Tp obtained from equation 11 is unattainable. This 
condition occurs because the modeling time steps are 
not integer multiples of the Tp. For example, sup
pose Tp = 7.5 hours from equation 11 and the analyst 
requires 1-hour increments for modeling. The 1-hour 
unit hydrograph potentially peaks at 7 or 8 hours, but 
not 7.5 hours. The magnitude of Qmodel will be under-p 

estimated. This is not a problem specific with the GUH, 
but an artifact of the mathematical implementation of 
a unit hydrograph with discrete time steps. Therefore, 
the authors suggest the following algorithm for param
eter computation to compensate for the influence of 
modeling time step. The boxed symbols for qp, Tp, 
and K represent final values. 

1. Compute K (dimensionless) by equation 5 and 
Tp in hours by equation 11. 

2. Compute by equation 4 using K and Tp from 
step 1. (This qp is regarded as the “true peak” 
streamflow, which this algorithm seeks to pre

qp 

serve.) 

3. Determine a convenient time step δ (such as 
15, 30, 60, 120, . . . ) for which 5 minutes is 

an integer divisor and for which 5 to about 16 
time steps prior to the peak are obtained. This 
computation is 

5≤ int(60Tp/δ ) ≤ 16, 

where int(x) is a function that returns an integer 
of the argument x, and 60 accounts for an hours-
to-minutes conversion. The quantity between 
the inequalities is labeled ℵ; this value is to be 
determined by the analyst. 

4. Compute = δ × ℵ/60.Tp 

5. Compute K by equation 4 using andqp Tp 

from steps 2 and 4. This step adjusts the shape 
of the GUH so that is honored yet occurs at qp 

Tp , which is a time that is consistent with the 
modeling time step δ . 

6. Apply the combined IA
�CL model with a GUH 

defined by equation 2 using Tp , and K .qp , 

This algorithm is suggested for general application 
of the results reported here and also is applicable to the 
other unit hydrographs. For example, the algorithm 
could be used for the unit hydrographs described by 
Asquith and others (2005). 

FINAL REMARKS: In conclusion, after 7 years of 
research of rainfall and runoff data in the context of 
design storms and resulting runoff context, a reliable 
framework for estimation of design hydrographs using 
a unit hydrograph with the structure of a gamma distri
bution and time-distributed, watershed-loss model is 
available. Both the unit hydrograph and the watershed
loss models are tuned to Texas hydrology. The authors 
suggest the term “Texas Unitgraph Method Type G” 
to collectively encompass the combined IA

�CL model 
and K�Tp -GUH set in accordance with the algorithm 
to ensure proper estimation of Qp because of subtle 
mathematical characteristics of finite time-step model
ing. The “Type G” is appended because alternative unit 
hydrographs, coupled with alternative watershed-loss 
models could emerge by other studies of the subject. 
The Texas Unitgraph Method Type G contributes to the 
state-of-the-practice (2007) for applicable watersheds 
in Texas. 
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Summary 

Estimation of representative hydrographs from 
design storms, which are known as design hydrographs, 
provides for cost-effective, risk-mitigated design of 
drainage structures such as bridges, culverts, road
ways, and other infrastructure. During 2001–07, the 
U.S. Geological Survey (USGS), in cooperation with 
the Texas Department of Transportation, investigated 
runoff hydrographs, design storms, unit hydrographs, 
and watershed-loss models to enhance design hydro
graph estimation. 

Design hydrographs ideally should mimic the gen
eral volume, peak streamflow (Qp), and shape of 
observed runoff hydrographs. Design hydrographs 
commonly are estimated in part by unit hydrographs. 
A unit hydrograph is defined as the runoff hydrograph 
that results from a unit pulse of excess rainfall uni
formly distributed over a watershed at a constant rate 
for a specific duration. A time-distributed, watershed
loss model is required for modeling by unit hydro-
graphs. In particular, the time-distributed, watershed-
loss model should be mathematically consistent in 
structure or general form with hypothesized processes 
(depression and other macrostorage, infiltration, evap
oration, and other physical processes), which prevent 
rainfall from becoming runoff. This report devel
ops a specific time-distributed, watershed-loss model 
known as an initial-abstraction, constant-loss model 
(IA

�CL). 

For the IA
�CL model, a watershed is conceptual

ized to have the capacity to store or abstract an absolute 
depth of rainfall at and near the beginning of a storm. 
Depths of rainfall less than this initial abstraction do 
not produce runoff. The watershed also is concep
tualized to have the capacity to remove rainfall at a 
constant rate after the initial abstraction is satisfied. 
Additional rainfall inputs after the initial abstraction is 
satisfied contribute to runoff if the rainfall rate (inten
sity) is larger than the constant loss. The IA

�CL model 
thus is a two-parameter model of watershed losses. 
The IA

�CL model is developed through detailed com
putational and statistical analysis of observed rainfall 
and runoff data for 92 USGS streamflow-gaging sta
tions (watersheds) in Texas with contributing drainage 
areas from 0.26 to 166 square miles. 

For the development of the IA
�CL model, 

the unit hydrograph is limited to a previously 
described, watershed-specific, gamma-distribution, 
unit-hydrograph model (GUH). The procedures for 
computation of GUH are reproduced and extensively 
discussed. The GUH was taken from a previous report, 
which documents a unit hydrograph investigation for 
the same 92 watersheds. The GUH has two unique 
parameters that can be variously expressed, but are 
considered in terms of watershed-depth peak stream
flow (qp) and time to peak (Tp). The third parameter 
is a shape parameter (K) that is dependent on qp and 
Tp. 

The equations to estimate K and Tp of GUH for 
applicable Texas watersheds are collectively referred 
to as the K�Tp equations, and the GUH set by these 
equations is referred to as K�Tp -GUH. The K�Tp -
GUH is deemed appropriate for development of the 
IA
�CL model. 

To initiate IA
�CL model development, a complex 

computational analysis of the database of observed 
rainfall and runoff for the 92 watersheds was done 
using custom-built software (labeled as �IA

��CL). The 
computations used a 5-minute time step; rainfall and 
runoff values were linearly interpolated to 5-minute 
increments as needed. The purpose of the software 
was to compute optimal (storm-specific, �) parame
ter values (�IA and �CL) for each suitable storm in the 
database. The GUH was estimated for each watershed 
by the K�Tp equations. This “watershed-specific GUH” 
was considered a representative unit hydrograph for 
the watershed. The analysis successfully processed 
1,620 of about 1,660 storms and provided �IA and �CL 

values used in later statistical analyses. 
The assumption that the GUH set by the K�Tp 

equations is representative for each watershed for 
the analysis of �IA and �CL is important. Although 
the “correctness” of K�Tp -GUH is not ensured, the 
assumption implies that the IA

�CL model reported is 
“tuned” against observed rainfall and runoff and K�Tp 
GUH. Therefore, the IA

�CL model is linked to K�Tp 
GUH, and in practice the two techniques are to be used 
together. 

Values for �IA and �CL were computed by the 
�IA

��CL software. Those values were used to generate 
an excess rainfall hyetograph (time series of rainfall 



intensity) and when convolved with the GUH, pro
duced a modeled runoff hydrograph that has the same 
volume as the observed runoff hydrograph and a mini
mized residual sum of squares between the observed 
and modeled runoff hydrographs. The means of �IA 

and �CL for each watershed were computed; the means 
(IA and CL) are referred to as watershed-specific. IA 

and CL for each watershed are considered the most 
representative and are used in further statistical analy
ses. 

Statistical analyses of IA and CL were done with 
the objectives of (1) documenting the parameter dis
tribution and (2) developing predictive procedures of 
each parameter for ungaged watersheds. The statis
tical analyses of IA and CL document the distribution 
for each parameter. The four-parameter generalized 
lambda distribution (GLD) was used as a parametric 
model, which was fit by the method of L-moments. 
The L-moments and corresponding GLD parameters 
for both IA and CL are tabulated. The analyses show 
that watershed development has substantial influence 
on IA and limited influence on CL. The mean and 
median watershed-specific values are tabulated with 
respect to watershed development. Although consid
erable variability exists, these values are used in later 
analyses to develop procedures for IA and CL estima
tion for ungaged watersheds. 

The statistical analyses also document predictive 
procedures for estimation of IA and CL for ungaged 
watersheds with respect to watershed development. 
Both regression equations and regression trees for esti
mation of IA and CL are provided. The watershed 
characteristics included in the regressions are main-
channel length (L), watershed development (a binary 
factor D = 0 | 1), abundance of rocky terrain with thin 
soils and limestone and karst features (a binary factor 
R = 0 | 1), and curve number (CN). Other characteris
tics assessed were dimensionless main-channel slope, 
soil types and textures, and percentage impervious 
cover. 

The regression equations for IA and CL are accom
panied by mathematical results to assess equation 
applicability and prediction limits. Physical interpreta
tions of the regression coefficients are made. In sum
mary, the coefficient on D for the IA equation implies 
that developed watersheds generally have about 1/5
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inch less initial rainfall storage than undeveloped 
watersheds. The coefficients on R imply that rock-
dominated, thin-soiled watersheds as represented by 
some of the 92 watersheds have about 1/4-inch larger 
IA and about 1/4-inch per hour larger CL than other 
watersheds. The coefficients on CN are consistent with 
the broadly understood definition of CN. An increase 
of 10 units of CN represents about −1/7-inch of IA and 
represents about −1/6-inch per hour of CL. Description 
and interpretation of the influence of L on IA and CL is 
more complex than for D, R, and CN. 

Regression trees result from an alternative method 
of regression (sometimes termed recursive partitioning) 
when compared to regression that produces equations. 
A tree is constructed such that partitions (branches) 
are determined by an algorithm that seeks to split and 
minimize residual sum of squares. A tree lists at each 
terminal branch the value for IA or CL, the number of 
samples, and residual standard error. Unlike for the 
IA equation, D apparently does not have substantial 
predictive properties for IA in a regression-tree context. 
Therefore, conclusions based on which parameters are 
important can be influenced by model structure; the IA 

equation and IA tree are structurally distinct. 

Subsequent to the regression analyses, an IA
�CL 

model for watershed-loss estimation for applicable 
watersheds in Texas is evaluated. The IA

�CL equa
tions with statistically significant variables explain 
about 30–34 percent of the variation in the IA and 
CL values. The IA

�CL trees explain a similar amount. 
Therefore, the mean or median of IA and CL, with 
consideration of watershed development, also could 
be reasonable estimates for a watershed. Four tech
niques are identified for general estimation for ungaged 
watersheds. The four techniques are abbreviated as 
IA
�CL (mean values), ǏA

�ČL (median values), IA
�CL 

equations, and IA
�CL trees. The units on IA and CL 

are watershed inches and watershed inches per hour, 
respectively. 

The �IA
��CL software was modified to implement 

the four techniques for the 92 watersheds. As a result, 
all storms in the database for each of the 92 water
sheds were reprocessed four separate times. With each 
reprocessing, the (1) Qp error, (2) runoff volume error, 
and (3) time difference of Qp were computed for each 
suitable storm. Analysis of the three error types was 
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made. The analysis of the Qp error indicates that nearly 
unbiased estimates of Qp result from each of the four 
techniques. The variations of the Qp errors for each 
technique are about 2.5 times larger than the Qp varia
tion. The analysis of the runoff volume error indicates 
that generally biased estimates result from each of the 
four techniques. The bias is between about 0.1 and 0.3 
inch. The positive values indicate that runoff volume 
is being underestimated. A method to compensate for 
the underestimation is suggested. The analysis of the 
time difference of Qp indicates that generally unbiased 
estimates result. However, specific interpretation indi
cates that time of Qp occurrence is overestimated by 
about 15 minutes. 

The analysis of the three error types shows that 
there is ambiguity as to which single technique is 
preferable for watershed-loss estimation. In partic
ular for Qp, the results indicate that each of the four 
techniques has similar bias and approximately equal 
standard deviations of error. Therefore, a judgement 
was made to combine all four techniques—the com
bined IA

�CL model. 

The combined IA
�CL model uses the arithmetic 

mean of Qp, volume, and time of Qp occurrence. These 
averages provide better estimates than each technique 
individually. In particular the Qp estimation clearly is 
unbiased, and the standard deviation is reduced sub
stantially. Specifically, the mean Qp error for the com
bined model is closer to zero, and the standard devi
ation is smaller than the corresponding statistics for 
the four techniques. The approximate 0.41log10(cubic 
foot per second) standard deviation of the Qp error 
is about 105 percent larger than the 0.20log10(cubic 
foot per second) for optimal �IA and �CL. The bias and 
standard deviations of the volume and time difference 
of Qp for the combined model remain similar to those 
from the four techniques. 

The combined IA
�CL model and K�Tp -GUH are 

based on paired rainfall and runoff data. Therefore 
storms for which no runoff occurred are not repre
sented in the database. At times some storms with 
a given depth and duration produce no runoff; how
ever, at other times an apparently similar storm will 
produce runoff. The difference in watershed response 
can be attributed in part to temporal differences in 
antecedent moisture condition. The combined IA

�CL 

model is conservative, which means that from an over
all perspective of runoff potential, watershed losses 
are underestimated. The underestimation occurs 
because the computational analysis is biased by the 
fact that only runoff-producing storms were analyzed, 
or could be analyzed. An algorithm to compensate for 
subtle mathematical characteristics of the unit hydro
graph method in regard to the influence of modeling 
time step is suggested for general application of the 
combined IA

�CL model and K�Tp -GUH. 
The authors suggest the term “Texas Unitgraph 

Method Type G” to collectively encompass the com
bined IA

�CL model and K�Tp -GUH set in accordance 
with the algorithm to ensure proper estimation of Qp 

because of subtle mathematical characteristics of finite 
time-step modeling. The Texas Unitgraph Method 
Type G contributes to the state-of-the-practice (2007) 
for applicable watersheds in Texas. 
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Examples of Graphical Output From the �IA
��CL Software 

Two examples of direct graphical output from the �IA
��CL software (Joseph Vrabel, U.S. Geological Survey, 

written commun., 2006; source code is available from report web site) are shown in this section. The output for a 
storm that occurred on May 4, 1969, for station 08042700 is shown in figure 1.1, and the output for a storm on 
June 3, 1973, for station 08048530 is shown in figure 1.2. The numerous intermediate results are shown in the 
upper-left corner of each figure; these results served the purposes of quality control and quality assurance of the 
software development. The negative time values in the graphs represent a need specific to the output routines of 
the software to accommodate the database. Of interest for this report are the �IA

��CL values; these are shown in 
the Copt field at the bottom of the tabular material on the upper-left corner of the figures. Red lines represent the 
results of the modeled runoff hydrograph, and green lines represent observed data. 

The May 4, 1969, storm in figure 1.1 (shown to right of Copt) has �IA = 0.495 watershed inch and �CL = 0.606 
watershed inch per hour (the figure shows �CL = 0.0505 in units of inch per 5 minutes). This storm is characterized 
as a single-peaked event (green line, second plot from bottom on right). The modeled runoff hydrograph (red 
line) using K�Tp -GUH and the �IA

��CL values is in remarkably good agreement with the observed data given 
that the unit hydrograph is constrained as a gamma distribution, the IA and CL values are physically meaningful, 
and storm volume is matched (see top plot on left). In general, this figure represents an excellent demonstration 

pof software operation for a well-configured storm. Although not considered in the computations, the T Qmodel 

papproximates T Qobs
. 

The June 3, 1973, storm (fig. 1.2) has �IA = 1.24 watershed inches and �CL = 0.588 watershed inch per 
hour. This storm is characterized by about four temporal clusters of rainfall; hence, about four substantial Qobs 

p 

occurred. The K�Tp -GUH and the �IA
��CL modeling can produce a reasonable overall fit to complex observed 

runoff hydrographs. The K�Tp -GUH was defined by data analysis of generally discrete peaks (Asquith and 
others, 2005); in contrast the �IA

��CL software, as demonstrated by the second example, operated on the actual 
file structure of the database (Asquith, Thompson, and others, 2004). 
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RUN #49
STAID−DATE: sta08042700_1969_0504
DATA DIR: d:\txdot_databases\smallruralsheds\TrinityBasin\North\
AREA [mi 2] ............................... 21.6
−−−−−−−−−−−−−−−−−−−−− PRECIPITATION −−−−−−−−−−−−−−−−−−−−−−−
TOTAL RAIN VOLUME [inches] ............... 2.7051
EXCESS RAIN VOLUME [inches] .............. 0.86965
PECENT RAIN VOLUME LOSS .................. 67.8515
−−−−−−−−−−−−−−−−−−−−−−− DISCHARGE −−−−−−−−−−−−−−−−−−−−−−−−−
MEAN OBS Q [CFS] ......................... 252.7402
MEAN SIM Q [CFS] ......................... 254.1201
RMS Q RESIDUALS [CFS] .................... 183.4764
Q RELATIVE BIAS .......................... 0.0054598
Q NASH−SUTCLIFFE EFFICIENCY .............. 0.87734
Q SIM vs OBS R 2 .......................... 0.89426
Q SIM vs OBS SLOPE ....................... 0.8791
Q SIM vs OBS INTERCEPT ................... 29.343
−−−−−−−−−−−−−−−−−−−−−−−−− VOLUME −−−−−−−−−−−−−−−−−−−−−−−−−−
MEAN OBS V [CFS] ......................... 0.36322
MEAN SIM V [CFS] ......................... 0.35553
RMS V RESIDUALS [CFS] .................... 0.044732
V RELATIVE BIAS .......................... −0.021173
V NASH−SUTCLIFFE EFFICIENCY .............. 0.98686
V SIM vs OBS R 2 .......................... 0.98842
V SIM vs OBS SLOPE ....................... 0.96665
V SIM vs OBS INTERCEPT ................... 0.019546
−−−−−−−−−−−−−−−−− OPTIMIZATION RESULTS −−−−−−−−−−−−−−−−−−−−
SIM/OBS TOTAL VOLUME RATIO ............... 1.0041
MINIMIZED OBJECTIVE FUNCTION VALUE ....... 19221900.8894
C
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Figure 1.1. Graphs showing selected graphical output from �IA
��CL software for storm of May 4, 1969. 
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RUN #111
STAID−DATE: sta08048530_1973_0603
DATA DIR: d:\txdot_databases\fortworth\Sycamore\
AREA [mi 2] ............................... 0.97
−−−−−−−−−−−−−−−−−−−−− PRECIPITATION −−−−−−−−−−−−−−−−−−−−−−−
TOTAL RAIN VOLUME [inches] ............... 5.0133
EXCESS RAIN VOLUME [inches] .............. 1.6641
PECENT RAIN VOLUME LOSS .................. 66.8057
−−−−−−−−−−−−−−−−−−−−−−− DISCHARGE −−−−−−−−−−−−−−−−−−−−−−−−−
MEAN OBS Q [CFS] ......................... 22.0059
MEAN SIM Q [CFS] ......................... 21.7651
RMS Q RESIDUALS [CFS] .................... 39.3913
Q RELATIVE BIAS .......................... −0.010942
Q NASH−SUTCLIFFE EFFICIENCY .............. 0.51973
Q SIM vs OBS R 2 .......................... 0.72327
Q SIM vs OBS SLOPE ....................... 0.6534
Q SIM vs OBS INTERCEPT ................... 7.7847
−−−−−−−−−−−−−−−−−−−−−−−−− VOLUME −−−−−−−−−−−−−−−−−−−−−−−−−−
MEAN OBS V [CFS] ......................... 1.1733
MEAN SIM V [CFS] ......................... 1.2182
RMS V RESIDUALS [CFS] .................... 0.097602
V RELATIVE BIAS .......................... 0.038201
V NASH−SUTCLIFFE EFFICIENCY .............. 0.96505
V SIM vs OBS R 2 .......................... 0.97353
V SIM vs OBS SLOPE ....................... 0.96737
V SIM vs OBS INTERCEPT ................... −0.0050784
−−−−−−−−−−−−−−−−− OPTIMIZATION RESULTS −−−−−−−−−−−−−−−−−−−−
SIM/OBS TOTAL VOLUME RATIO ............... 0.98976
MINIMIZED OBJECTIVE FUNCTION VALUE ....... 889109.1751
C
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Figure 1.2. Graphs showing selected graphical output from �IA
��CL software for storm of June 3, 1973. 



38 An Initial-Abstraction, Constant-Loss Model for Unit Hydrograph Modeling for Applicable Watersheds in Texas 

Selected Watershed Characteristics and IA and CL Values 

For each of the 92 watersheds the results of K�Tp -GUH and the �IA
��CL estimation are listed in table 1.1 

on a watershed-specific basis. Listed in the table are the number of suitable storms processed by the �IA
��CL 

software. This number provided a basis for weight factors for the regressions described in the text. The most 
salient watershed characteristics also are listed. The R and CN values are specific to this report. The D values 
derive from Asquith and others (2005, table 1), and the remaining three watershed characteristics (A, L, and S) 
derive from Asquith and others (2005, table 2). Finally, the two columns on the far right of the table list the 
watershed-specific values (IA and CL, respectively; see eqs. 17 and 18) of the �IA and �CL values. The IA and CL 

values provide the basis for the four techniques and the combined IA
�CL model described in the report. 

Table 1.1. Selected watershed characteristics and IA and CL values for the 92 watersheds. 
[R, rock classification (no = 0, yes = 1); D, development classification (no = 0, yes = 1); CN, curve number; A, contributing drainage 
area; L, main-channel length; S, dimensionless main-channel slope; IA, watershed-mean initial abstraction; CL, watershed-mean constant 
loss; --, dimensionless; mi2, square miles; mi, miles; in., watershed inches; in./hr, watershed inches per hour] 

Station 
number 

Number of 
suitable 
storms 

R 

(yes/no) 

D 

(yes/no) 

CN 

(--) 

A 

(mi2) 

L 

(mi) 

S 

(--) 

IA 

(in.) 

CL 

(in./hr) 

08042650 14 0 0 63.4 6.82 4.632 0.01378 1.322 0.866 
08042700 57 0 0 62.5 21.6 11.57 .006025 .766 .800 
08048520 24 0 1 82.3 17.7 7.530 .005081 .494 .381 
08048530 27 0 1 86.7 .97 1.700 .01181 .243 1.134 
08048540 23 0 1 88.0 1.35 2.370 .01119 .100 .802 
08048550 25 0 1 91.2 1.08 2.017 .004507 .563 .548 
08048600 27 0 1 84.3 2.15 3.845 .004729 .742 .522 
08048820 19 0 1 83.4 5.64 6.027 .005970 1.115 .067 
08048850 25 0 1 83.0 12.3 9.397 .005059 .928 .249 
08050200 33 0 0 79.6 .77 2.643 .01068 .661 .301 
08052630 29 0 0 85.4 2.10 3.298 .006489 .435 .183 
08052700 57 0 0 84.1 75.5 23.23 .002201 .877 .146 
08055580 7 0 1 85.2 1.94 2.997 .007204 .015 .754 
08055600 10 0 1 86.1 7.51 6.742 .006012 .345 1.020 
08055700 39 0 1 85.5 10.0 7.766 .005048 .492 .520 
08056500 41 0 1 85.8 7.98 6.365 .006338 .408 .259 
08057020 7 0 1 85.5 4.75 5.092 .009707 .564 .569 
08057050 3 0 1 85.7 9.42 6.206 .007812 .176 .532 
08057120 5 0 0 80.2 6.77 5.187 .007412 .650 .383 
08057130 7 0 1 82.9 1.22 2.629 .009077 .343 .235 
08057140 6 0 1 86.8 8.50 7.466 .005758 .286 .630 
08057160 8 0 1 90.3 4.17 5.343 .006380 .259 .405 
08057320 5 0 1 85.7 6.92 5.416 .005595 .280 .121 
08057415 8 0 1 87.8 1.25 1.884 .006333 .187 .580 
08057418 7 0 1 79.1 7.65 5.649 .007879 .375 .593 
08057420 10 0 1 81.0 13.2 8.334 .006454 .354 .519 
08057425 10 0 1 82.9 11.5 6.155 .007877 .458 .455 
08057435 4 0 1 81.1 5.91 4.122 .008684 .843 .078 
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Table 1.1. Selected watershed characteristics and IA and CL values for the 92 watersheds—Continued. 

Number of 
Station 

suitable R D CN A L S IA CL 
number 

storms (yes/no) (yes/no) (--) (mi2) (mi) (--) (in.) (in./hr) 

08057440 3 0 1 79.1 2.53 3.517 .008347 1.221 .073 
08057445 8 0 1 86.5 9.03 8.416 .003623 1.604 .170 
08057500 29 0 0 78.2 2.14 2.070 .01061 .769 .448 
08058000 26 0 0 80.1 1.26 2.087 .01025 .672 .548 
08061620 8 0 1 85.0 8.05 5.522 .003876 .133 .436 
08061920 9 0 1 86.0 13.4 7.645 .003890 .691 .032 
08061950 31 0 1 85.3 23.0 12.65 .003070 .963 .034 
08063200 33 0 0 79.4 17.6 8.730 .004013 1.109 .184 
08094000 29 0 0 78.4 3.34 3.350 .008705 1.124 .408 
08096800 47 0 0 80.0 5.25 4.493 .01117 .764 .890 
08098300 18 0 0 80.5 22.2 13.73 .002635 .531 .191 
08108200 20 0 0 79.9 48.60 19.96 .002524 .594 .187 
08111025 7 0 1 70.0 1.33 2.548 .007061 .520 .102 
08111050 7 0 0 70.0 1.94 2.453 .005792 1.133 .025 
08136900 22 0 0 75.8 21.8 12.42 .007657 1.126 .311 
08137000 37 0 0 74.5 4.02 4.404 .004730 1.046 .480 
08137500 5 0 0 76.5 70.4 19.39 .005549 1.665 .221 
08139000 29 0 0 74.6 3.42 3.357 .01518 1.160 .614 
08140000 29 0 0 74.4 5.41 5.908 .009265 1.041 .823 
08154700 14 1 0 68.9 22.3 10.04 .01069 1.248 .748 
08155200 6 1 0 70.7 89.7 28.50 .004844 1.009 .793 
08155300 8 1 0 69.8 116 45.07 .004030 .908 .490 
08155550 10 1 1 87.3 3.12 3.660 .01258 1.001 1.217 
08156650 13 1 1 83.6 2.79 2.999 .01150 .797 .671 
08156700 16 1 1 86.6 7.03 4.527 .009245 .575 .986 
08156750 14 1 1 86.8 7.56 5.130 .008750 .528 .851 
08156800 23 1 1 87.0 12.3 10.58 .007481 .789 .493 
08157000 40 1 1 88.3 2.31 4.119 .009794 .659 .516 
08157500 39 1 1 89.1 4.13 5.164 .009425 .540 .646 
08158050 10 1 1 83.9 13.1 7.361 .007925 1.635 .157 
08158100 15 1 0 72.6 12.6 5.669 .009120 1.317 1.573 
08158200 17 1 0 75.6 26.2 10.92 .006628 .950 1.035 
08158380 2 1 1 88.9 5.22 4.015 .006982 .946 .155 
08158400 10 1 1 85.6 5.57 4.477 .006726 .507 .288 
08158500 14 1 1 76.7 12.1 8.590 .006769 .479 .565 
08158600 21 1 1 74.5 51.3 19.47 .004951 1.000 .508 
08158700 6 1 0 73.3 124 33.28 .004513 1.119 .430 
08158800 2 1 0 69.8 166 48.94 .003916 1.731 .218 
08158810 7 1 0 67.9 12.2 6.287 .01109 1.447 .638 
08158820 2 1 0 67.2 24.0 14.85 .007462 1.757 .285 
08158825 1 1 0 69.8 21.0 12.53 .006649 1.813 2.883 
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Table 1.1. Selected watershed characteristics and IA and CL values for the 92 watersheds—Continued. 

Station 
number 

Number of 
suitable 
storms 

R 

(yes/no) 

D 

(yes/no) 

CN 

(--) 

A 

(mi2) 

L 

(mi) 

S 

(--) 

IA 

(in.) 

CL 

(in./hr) 

08158840 10 1 0 68.0 8.24 4.960 .01191 .787 .968 
08158860 2 1 0 79.4 23.1 12.79 .007875 1.902 .533 
08158880 13 1 0 79.4 3.58 4.404 .01127 .336 1.373 
08158920 13 1 1 77.5 6.30 4.974 .01173 1.449 .633 
08158930 17 1 1 75.2 19.0 10.40 .008850 1.133 .609 
08158970 16 1 1 77.7 27.6 17.61 .006454 1.910 .308 
08159150 27 1 0 78.8 4.61 3.739 .008156 1.110 .333 
08177600 13 1 1 84.8 .33 1.305 .01437 1.206 .641 
08177700 22 1 1 72.0 21.2 10.96 .006584 1.141 .841 
08178300 30 1 1 85.7 3.26 3.584 .01665 .462 .802 
08178555 10 1 1 84.2 2.43 4.052 .002431 .418 .517 
08178600 12 1 0 79.7 9.54 7.051 .01254 1.168 .475 
08178620 3 1 1 60.0 4.05 3.608 .01197 1.325 1.061 
08178640 8 1 0 78.4 2.45 3.044 .01960 1.675 .325 
08178645 6 1 0 78.2 2.33 3.958 .01627 1.727 .160 
08178690 41 1 1 84.4 .26 1.172 .004040 .239 1.026 
08178736 12 1 1 92.3 .45 1.670 .009415 .944 .347 
08181000 9 1 0 79.2 5.57 5.421 .01569 1.126 .936 
08181400 15 1 0 79.8 15.0 9.821 .01215 1.741 .591 
08181450 30 1 1 87.3 1.19 3.130 .003207 .796 .406 
08182400 23 1 0 80.0 7.01 4.867 .005721 1.202 .382 
08187000 30 1 0 83.8 3.29 2.780 .009742 .786 .835 
08187900 17 1 0 73.3 8.43 4.869 .005251 1.010 1.272 

Statistical Relation Between Main-Channel Length and Contributing Drainage Area for 
the 92 Watersheds 

Several of the watershed characteristics listed in table 1.1 would be expected to be correlated such as S and L 
or A and L. In particular, the correlation, or more precisely, the relation between L and A might be of interest 
because only L is used in the IA

�CL equations (eqs. 23 and 29). Some users might want to compare the limits of 
equations 23 and 29 in terms of L to the expected size of the watershed given L. The relation between L and A is 
defined by equation 1.1: 

Apred = 10−0.439L1.66 = 0.364L1.66, (1.1) 

where L is main-channel length in miles and Apred is predicted contributing drainage area in square miles. 
Regression statistics for the relation are shown in figure 1.3. The values −0.439 and 1.66 in the equation are the 
regression coefficients listed in the figure. 

http:0.364L1.66
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# The usual syntax highlighting in this report is purposefully suppressed in the figure.


summary(lm(log10(A)~log10(L)))


Call:


lm(formula = log10(A) ~ log10(L))


Residuals: 

Min 1Q Median 3Q Max 

-0.375570 -0.090104 0.006886 0.100678 0.287949 

Coefficients: 

Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.43902 0.03748 -11.71 <2e-16 *** 
log10(L) 1.66076 0.04510 36.82 <2e-16 *** 

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 

Residual standard error: 0.1402 on 90 degrees of freedom 

Multiple R-Squared: 0.9378, Adjusted R-squared: 0.9371 

F-statistic: 1356 on 1 and 90 DF, p-value: < 2.2e-16 

Figure 1.3. Listing of R code for computation equation 1.1. 
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For purposes of archival and verification of report content, this appendix documents some of the final steps 
used in the development of the IA

�CL equations and IA
�CL trees. This appendix also includes a summary of 

critical values for the t-distribution pertinent to IA
�CL equations. Finally, the appendix ends with an example 

evaluation of IA
�CL equations. The data used for regression analysis are listed in table 1.1 of appendix 1. 

Summary of the IA
�CL Equations 

The development of the IA
�CL equations required considerable exploratory analysis and judgement. In turn 

this knowledge influenced IA
�CL tree development. This section highlights selected code and summary output 

from the R environment as a means to archive the final regression process. For the discussion here, assume that 
the regression weights (W) are available and are based on the number of suitable storms per watershed (column 2 
of table 1.1). The data objects are the IA.final and CL.final list objects, and each object contains the final 
regression models. Figure 6 provides an example of a list for the IA and CL list objects, respectively. 

The R environment requires rescaling of regression weights so their sum equals the number of data points 
for appropriate computation of the residual standard error (σ ). This computation was made using the code in 
figure 2.1. The code was used to compute W. This vector of weights also is shown in figure 6. 

MLRweights <- function(avector) { 

tmp = length(avector)/sum(avector) 

return (tmp*avector) 

} 

Figure 2.1. Listing of R code for computation of regression weights. 

The R function summary provides a compact and complete summary of an arbitrary regression model. 
However, this function lacks a report of the inverted covariance matrix and the maximum leverage, which 
are needed to compute prediction limits or evaluate equation applicability, respectively. These computations 
require matrix operations. Therefore, the PostRegressComps function was written to report this information. 
The PostRegressComps function is shown in figure 2.2. The code shown in figure 2.1 was used to compute 
the W shown in figure 2.2. The next two sections summarize the regression output for the IA

�CL equations 
(eqs. 23 and 29). The last section of this appendix describes some analysis of the regression residuals. 

PostRegressComps <- function(themodel) { 

print(summary(themodel)) 

WGT <- diag(W) # convert weight vector to diagonal of matrix 

X <- model.matrix(themodel) 

Xt <- t(X) # transposition of matrix X 

invcov <- chol2inv(chol(Xt %*% WGT %*% X)) 

hat.max <- max(diag(X %*% invcov %*% Xt)) # the maximum leverage 

cat(c("Inverted Covariance Matrix =\n")) 

print(invcov) 

cat(c("Max hat =",hat.max,"\n")) 

} 

Figure 2.2. Listing of R code for summary of major regression computations shown in figures 2.3 and 2.4. 
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Computation of the IA Equation 

The R environment output used for the IA equation and ancillary results in the text is listed in figure 2.3. The 
IA.final$EQUATION was provided by the makeIAeq function shown in figure 6. For the context here, the vectors 
W, RK, DU, CN, L, and IA were derived from columns 2–5, 7, and 9 of table 1.1 in appendix 1. 

# The usual syntax highlighting in this report is purposefully suppressed in the figure.


PostRegressComps(IA.final$EQUATION)


Call:


lm(formula = IA ~ L + DU + RK + CN, weights = W)


Residuals:


Min 1Q Median 3Q Max 

-0.669438 -0.181769 -0.006319 0.190959 0.869198 

Coefficients: 

Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.044544 0.466631 4.382 3.31e-05 *** 
L -0.549662 0.192485 -2.856 0.005383 ** 
D -0.194257 0.079413 -2.446 0.016476 * 
R 0.241418 0.065870 3.665 0.000427 *** 
CN -0.013542 0.006151 -2.202 0.030359 * 

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 

Residual standard error: 0.3025 on 86 degrees of freedom 

Multiple R-Squared: 0.374, Adjusted R-squared: 0.3448 

F-statistic: 12.84 on 4 and 86 DF, p-value: 3.064e-08 

Inverted Covariance Matrix = 

[,1] [,2] [,3] [,4] [,5] 

[1,] 2.37999804 0.175708102 0.212563891 -0.0451175500 -0.0310582490 

[2,] 0.17570810 0.404970626 0.005791072 -0.0107367190 -0.0034822895 

[3,] 0.21256389 0.005791072 0.068930682 -0.0114055443 -0.0030351045 

[4,] -0.04511755 -0.010736719 -0.011405544 0.0474242713 0.0004221009 

[5,] -0.03105825 -0.003482289 -0.003035104 0.0004221009 0.0004134964 

Max hat = 0.272324981146127 

Figure 2.3. Listing of R code for computation of IA equation (eq. 23). 
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Computation of the CL Equation 

The R environment output used for the CL equation and ancillary results in the text is listed in figure 2.4. 
The CL.final$EQUATION was provided by a makeCLeq function (not shown in this report) that is analogous to 
makeIAeq shown in figure 6. The difference between the two functions is the absence of D in the makeCLeq. For 
the context here, the vectors W, RK, CN, L, and CL were derived from columns 2–3, 5, 7, and 10 of table 1.1 in 
appendix 1. 

# The usual syntax highlighting in this report is purposefully suppressed in the figure.


PostRegressComps(CL.final$EQUATION)


Call:


lm(formula = CL ~ L + RK + CN, weights = W)


Residuals:


Min 1Q Median 3Q Max 

-0.56178 -0.17150 -0.04103 0.11943 0.73977 

Coefficients: 

Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.534955 0.442787 5.725 1.45e-07 *** 
L -0.482038 0.112350 -4.290 4.61e-05 *** 
R 0.227130 0.056436 4.025 0.000121 *** 
CN -0.016763 0.004444 -3.772 0.000295 *** 

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 

Residual standard error: 0.2649 on 87 degrees of freedom 

Multiple R-Squared: 0.3241, Adjusted R-squared: 0.3008 

F-statistic: 13.9 on 3 and 87 DF, p-value: 1.742e-07 

Inverted Covariance Matrix = 

[,1] [,2] [,3] [,4] 

[1,] 2.79335601 -0.450888349 -0.0155384759 -0.0259975911 

[2,] -0.45088835 0.179840242 0.0037527131 0.0022169510 

[3,] -0.01553848 0.003752713 0.0453789744 -0.0001118594 

[4,] -0.02599759 0.002216951 -0.0001118594 0.0002814360 

Max hat = 0.183227906877118 

Figure 2.4. Listing of R code for computation of CL equation (eq. 29). 
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Abbreviated Residual Analysis for the IA
�CL Equations 

An abbreviated analysis of the residuals of the IA
�CL equations is shown in this section. A listing of R code 

for computation of the residuals for the IA
�CL equations is shown in figure 2.5, and the residual plots for IA and 

CL, which were produced directly from the R environment, are shown in figures 2.6 and 2.7. Figure 2.6 shows 
that some asymmetry in the IA residuals is present; there is a tendency for more large positive residuals, which 
indicates some chance of underestimation of IA. Figure 2.7 shows some evidence for increasing variance with 
increasing CL. The extreme outlier in the upper right of figure 2.7 represents station 08158825, which was not 
used to develop either of the IA

�CL equations. It is concluded that the residual plots are acceptable. 

getFittedIAvalues <- function(model) { 

thepower <- model$POWER; coes <- model$WLS$coefficients 

myfitted <- coes[1] + coes[2]*L^thepower + coes[3]*DU + coes[4]*RK + coes[5]*CN 

return(myfitted) 

} 

getFittedCLvalues <- function(model) { 

thepower <- model$POWER; coes <- model$WLS$coefficients 

myfitted <- coes[1] + coes[2]*L^thepower + coes[3]*RK + coes[4]*CN 

return(myfitted) 

} 

IA.fit <- getFittedIAvalues(IA.outlier); 

CL.fit <- getFittedCLvalues(CL.outlier) 

pdf("ia_residual_plot.pdf") 

plot(IA.fit,ia-IA.fit, 

xlim=c(0.3,1.3),


ylim=c(-1,1),


xlab="FITTED INITIAL ABSTRACTION, IN INCHES",


ylab="RESIDUAL (Observed - Modeled), IN INCHES")


abline(0,0)


dev.off()


pdf("cl_residual_plot.pdf")


plot(CL.fit,cl-CL.fit,


xlim=c(0.1,1.1),


ylim=c(-2,2)


xlab="FITTED CONSTANT LOSS, IN INCHES PER HOUR",


ylab="RESIDUAL (Observed - Modeled), IN INCHES PER HOUR")


abline(0,0) 

dev.off() 

Figure 2.5. Listing of R code for computations of the residuals for the IA
�CL equations shown in figures 2.6 and 2.7. 
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Figure 2.6. Residual plot for the 92 watersheds of IA 

equation. 
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Figure 2.7. Residual plot for the 92 watersheds of CL 

equation. 

Computation of Selected Upper-Tail Values of t-Distribution 

The upper-tail values of the t-distribution are used to compute the prediction intervals for the K�Tp equations 
(eqs. 5 and 11) and for the IA

�CL equations (eqs. 23 and 29). The prediction intervals are shown in equations 7 
and 8 (for K), equations 13 and 14 (for Tp), equations 25 and 26 (for IA), and equations 31 and 32 (for CL). Three 
unique degrees of freedom (df) are required: 86, 87, and 88. Prediction intervals in percent were selected, and the 
upper-tail probabilities (α/2) were computed. The upper-tail values for the t-distribution are listed in table 2.1; 
the values were derived from computations made 
by R environment code shown in figure 2.8. 

Table 2.1. Selected upper-tail values of t-distribution 
for three degrees of freedom. 
[α , 100× (1− α) prediction interval of a regression 
equation; t[α/2,df], upper-tail values of t-distribution for the 
degree of freedom (df)] 

Prediction 

interval α/2 t[α/2,86] t[α/2,87] t[α/2,88] 

(percent) 

99 0.005 2.6342 2.6335 2.6329 

98 .010 2.3705 2.3700 2.3695 

95 .025 1.9879 1.9876 1.9873 

90 .050 1.6628 1.6626 1.6624 

80 .100 1.2915 1.2914 1.2912 

75 .125 1.1582 1.1581 1.1580 

50 .250 .6774 .6773 .6773 

options(digits=4) # four decimals on output �←
� table→ 

pinterval <- c(99, 98, 95, 90, 80, 75, 50) # �←
� in percent→ 

zero.p5.alpha <- (1-(pinterval/100))/2 

data.frame(INTERVAL=pinterval,ALPHAdiv2=zero �←
� .p5.alpha, T86=qt(zero.p5.alpha,86, �→ ←
� lower.tail=FALSE), T87=qt(zero.p5. �→ ←
� alpha,87,lower.tail=FALSE), T88=qt( �→ ←
� zero.p5.alpha,88,lower.tail=FALSE))→ 

INTERVAL ALPHAdiv2 T86 T87 T88 

1 99 0.005 2.6342 2.6335 2.6329 

2 98 0.010 2.3705 2.3700 2.3695 

3 95 0.025 1.9879 1.9876 1.9873 

4 90 0.050 1.6628 1.6626 1.6624 

5 80 0.100 1.2915 1.2914 1.2912 

6 75 0.125 1.1582 1.1581 1.1580 

7 50 0.250 0.6774 0.6773 0.6773 

Figure 2.8. Listing of R code for computation of selected 
values of t-distribution for use in prediction-interval computa
tions. 

http:T87=qt(zero.p5
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Summary of the IA
�CL Trees 

The purpose of this section is to archive some of the final steps used in the development of the IA
�CL trees 

(figs. 7 and 8). A listing of R code for computation of the IA
�CL trees and the residuals of the trees is shown in 

figures 2.9 and 2.10 for IA and CL, respectively. The same watershed characteristics as used for the respective 
regression equation were used. For example, L, D, R, and CN were statistically significant for the IA equation and 
therefore used for the tree construction. However, the tree regression did not identify D as useful for IA prediction. 
Thus, D was not used for the CL tree construction. 

For purposes of archival and verification of report content, the raw output of the R environment of the trees is 
shown in figures 2.11 and 2.12. These figures subsequently were redrafted for the report to become figures 7 and 
8 with the addition of the residual standard error σ and the sample size n. The residual standard error and sample 
size are produced by the summary(ia.tree.prune) and summary(cl.tree.prune). The residuals are shown in 
figures 2.13 and 2.14. For these examples, the vectors W, RK, DU, CN, L, IA, and CL were derived from columns 2–5, 
7, and 9–10 of table 1.1. Additional directives and details regarding the R code are listed throughout figures 2.9 
and 2.10. 

library(rpart) # load library for tree building 

Outliers <- c(69) # remove station 08158825 

ia.tree <- rpart(IA[-Outliers]~L[-Outliers]+ 

DU[-Outliers]+RK[-Outliers]+CN[-Outliers], 

weights=MLRweights(W[-Outliers])) 

#plot(ia.tree,branch=.4) # hide this plot


#text(ia.tree)


#mtext("Initial Abstraction--no prune")


# printcp(ia.tree) # commented out to save space


ia.tree.prune <- prune.rpart(ia.tree,0.032) # prune a limb


# summary(ia.tree.prune) # commented out to save space


pdf("ia_tree.pdf") 

plot(ia.tree.prune,branch=.4) 

text(ia.tree.prune) 

mtext("Initial Abstraction") 

dev.off() 

pdf("ia_tree_residual_plot.pdf") 

plot(IA[-Outliers]-residuals(ia.tree.prune), 

residuals(ia.tree.prune), 

xlab="FITTED VALUES, IN INCHES", 

ylab="RESIDUAL (Observed - Model), IN INCHES", 

xlim=c(0.3,1.3), 

ylim=c(-1,1)) 

points(1.17,IA[69]-1.17) # add marker for station 08158825


abline(0,0)


dev.off()


Figure 2.9. Listing of R code for computation of the IA tree and residual plot. 
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library(rpart) # load library for tree building 

Outliers <- c(69) # remove station 08158825 

cl.tree <- rpart(CL[-Outliers]~L[-Outliers]+ 

RK[-Outliers]+CN[-Outliers],


weights=MLRweights(W[-Outliers]))


#plot(cl.tree,branch=.4)


#text(cl.tree)


#mtext("Constant Loss--no prune")


printcp(cl.tree) # commented out to save space 

cl.tree.prune <- prune.rpart(cl.tree,0.03) # prune a limb 

summary(cl.tree.prune) # commented out to save space 

pdf("cl_tree.pdf") 

plot(cl.tree.prune,branch=.4) 

text(cl.tree.prune) 

mtext("Constant Loss") 

dev.off() 

pdf("cl_tree_residual_plot.pdf") 

plot(CL[-Outliers]-residuals(cl.tree.prune), 

residuals(cl.tree.prune), 

xlab="FITTED VALUES, IN INCHES PER HOUR", 

ylab="RESIDUAL (Observed - Model), IN INCHES PER HOUR", 

xlim=c(0.1,1.1), 

ylim=c(-2,2)) 

points(0.248,CL[69]-0.248,col=2) # The residual equals 2.64 inches per hour for station �←
� 08158825 and is beyond graph limits, but the limits are set to match those of the �→ ←
� residual plot for the CL equation → 

abline(0,0) 

dev.off() 

Figure 2.10. Listing of R code for computation of the CL tree and residual plot. 
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|
CN[-Outliers]>=80.05

L[-Outliers]< 8.05

CN[-Outliers]>=84.35

R[-Outliers]< 0.5
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Initial Abstraction
|
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Figure 2.11. Diagram showing raw IA tree from R environ- Figure 2.12. Diagram showing raw CL tree from R envi
ment for the 92 watersheds used to generate figure 7. ronment for the 92 watersheds used to generate figure 8. 
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Figure 2.13. Graph showing residual plot for the 92 water- Figure 2.14. Graph showing residual plot for the 92 water
sheds of IA tree. sheds of CL tree. 
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Example of Graphical Output From Modified �IA
��CL Software for Evaluation of the IA

�CL 

Equations 

An example of direct graphical output from the modified �IA
��CL software (Joseph Vrabel, U.S. Geological 

Survey, written commun., 2007; source code is available from report web site) is shown in this section. The 
“original” �IA

��CL software was modified so that IA and CL values from each of the four techniques (introduced 
on page 22) and the combined IA

�CL model (introduced on page 23) could be evaluated. The modified software 
pcomputed the Qmodel, V model, and T Qmodel 

so that the residuals εQp , εV , and εTQp could be computed. p 

This section provides an example output from the modified software in which the IA and CL for one of the 92 
watersheds were estimated by the IA

�CL equations (one of the four techniques). The software then computed 
a model of the runoff hydrograph from the input rainfall. It is important to emphasize the modeled runoff 

phydrograph has not been constrained to match Qobs , V obs, and T Qobs 
. The output for a storm that occurred on p 

May 9, 1965, for station 08137000 is shown in figure 2.15. The numerous intermediate results are shown in the 
upper-left corner of the figure. These results are legacy output from the �IA

��CL software. Red lines represent 
the results of the modeled runoff hydrograph, and green lines represent observed data. For this example, the 
IA
�CL equations and K�Tp -GUH produce six distinct peaks. Some peaks (for example, second from left) are 

well modeled; whereas other peaks (for example, second from right) are entirely absent in the modeled runoff 
hydrograph. The example, although unusual in the database because of complexity and length (temporal duration), 
provides an essentially worst-case example. For comparative purposes, an essentially best-case example for a 
storm that occurred on May 30, 1976, for station 08048550 is shown in figure 2.16. 
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RUN #872
STAID−DATE: sta08137000_1965_0509
DATA DIR: d:\txdot_databases\smallruralsheds\ColoradoBasin\Mukewater\
AREA [mi 2] ............................... 4.02
−−−−−−−−−−−−−−−−−−−−− PRECIPITATION −−−−−−−−−−−−−−−−−−−−−−−
TOTAL RAIN VOLUME [inches] ............... 9.635
EXCESS RAIN VOLUME [inches] .............. 1.9219
PECENT RAIN VOLUME LOSS .................. 80.0528
−−−−−−−−−−−−−−−−−−−−−−− DISCHARGE −−−−−−−−−−−−−−−−−−−−−−−−−
MEAN OBS Q [CFS] ......................... 35.9751
MEAN SIM Q [CFS] ......................... 17.9428
RMS Q RESIDUALS [CFS] .................... 57.5994
Q RELATIVE BIAS .......................... −0.50124
Q NASH−SUTCLIFFE EFFICIENCY .............. 0.30903
Q SIM vs OBS R 2 .......................... 0.38453
Q SIM vs OBS SLOPE ....................... 0.87547
Q SIM vs OBS INTERCEPT ................... 20.2667
−−−−−−−−−−−−−−−−−−−−−−−−− VOLUME −−−−−−−−−−−−−−−−−−−−−−−−−−
MEAN OBS V [CFS] ......................... 1.8029
MEAN SIM V [CFS] ......................... 1.0791
RMS V RESIDUALS [CFS] .................... 1.0292
V RELATIVE BIAS .......................... −0.40147
V NASH−SUTCLIFFE EFFICIENCY .............. 0.41485
V SIM vs OBS R 2 .......................... 0.96022
V SIM vs OBS SLOPE ....................... 2.0674
V SIM vs OBS INTERCEPT ................... −0.42802
−−−−−−−−−−−−−−−−− OPTIMIZATION RESULTS −−−−−−−−−−−−−−−−−−−−
SIM/OBS TOTAL VOLUME RATIO ............... 0.49876
MINIMIZED OBJECTIVE FUNCTION VALUE ....... NaN
C

opt
: 0.89177    0.050585
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Figure 2.15. Graphs showing selected worst-case graphical output showing multiple peaks from the modified �IA
��CL 

software using the IA
�CL equations. 
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RUN #172
STAID−DATE: sta08048550_1976_0530
DATA DIR: d:\txdot_databases\fortworth\DryBranch\
AREA [mi2] ............................... 1.08
−−−−−−−−−−−−−−−−−−−−− PRECIPITATION −−−−−−−−−−−−−−−−−−−−−−−
TOTAL RAIN VOLUME [inches] ............... 3.0167
EXCESS RAIN VOLUME [inches] .............. 1.601
PECENT RAIN VOLUME LOSS .................. 46.927
−−−−−−−−−−−−−−−−−−−−−−− DISCHARGE −−−−−−−−−−−−−−−−−−−−−−−−−
MEAN OBS Q [CFS] ......................... 24.4024
MEAN SIM Q [CFS] ......................... 23.1444
RMS Q RESIDUALS [CFS] .................... 20.3869
Q RELATIVE BIAS .......................... −0.051553
Q NASH−SUTCLIFFE EFFICIENCY .............. 0.90495
Q SIM vs OBS R2 .......................... 0.94484
Q SIM vs OBS SLOPE ....................... 0.83021
Q SIM vs OBS INTERCEPT ................... 5.1878
−−−−−−−−−−−−−−−−−−−−−−−−− VOLUME −−−−−−−−−−−−−−−−−−−−−−−−−−
MEAN OBS V [CFS] ......................... 0.78731
MEAN SIM V [CFS] ......................... 0.76878
RMS V RESIDUALS [CFS] .................... 0.05897
V RELATIVE BIAS .......................... −0.023532
V NASH−SUTCLIFFE EFFICIENCY .............. 0.99446
V SIM vs OBS R2 .......................... 0.99572
V SIM vs OBS SLOPE ....................... 1.0275
V SIM vs OBS INTERCEPT ................... −0.0026127
−−−−−−−−−−−−−−−−− OPTIMIZATION RESULTS −−−−−−−−−−−−−−−−−−−−
SIM/OBS TOTAL VOLUME RATIO ............... 0.94874
MINIMIZED OBJECTIVE FUNCTION VALUE ....... NaN
C
opt

: 0.32375    0.036606
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Figure 2.16. Graphs showing selected best-case graphical output from the modified �IA
��CL software using the IA

�CL 

equations. 
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The R environment (R Development Core Team, 2006) is a multi-platform, open-source, statistical, and 
programming environment that is well suited for demonstration of computational topics discussed in this report. 
Therefore, this appendix contains several topical and useful code listings to aid in implementation of this report. 

Computation of qp From Tp and K Values of Gamma Unit Hydrograph 

The K�Tp equations define the GUH; however, the value for qp requires computation. A code listing for 
computation of qp from Tp and K values using equation 4 is provided in figure 3.1. The code example shows that 
qp for K = 3.56 and Tp = 6.5 hours is about 0.113 watershed inch per hour. 

getqp <- function(K,Tp) { 

Vfunc.qp <- function(qp) { return( abs(qp Tp gamma(K) (exp(1)/K)^K - 1) ) } * * * 
root <- optimize( Vfunc.qp, interval = c(0.001,20) ) 

return(root$minimum) 

} 

K <- 3.56; Tp <- 6.5; # hours 

qp <- getqp(K,Tp) 

print(qp) 

[1] 0.113133 

Figure 3.1. Listing of R code for solution of equation 4 given qp and K values. 

Computation of Excess Rainfall for IA
�CL Model 

Computation of excess rainfall from rainfall using the IA
�CL model is shown by the algorithm listed in 

figure 3.2. The code provides the useIACL function that takes a vector of rainfall (rain), the interval in seconds 
of time (delT), the IA (IA), and CL (CL). Example output from the useIACL function for arbitrary rainfall and 
selected input parameters is shown at the bottom of figure 3.2. Algorithmic description for a 1-hour delT=3600 

follows: 

1.	 Compute the cumulative sum of rain. If rain = c(1,2,3), then sumrain = c(1,3,6). 

2.	 Substract IA from sumrain If IA = 1.25, then

(tmp.rain = sumrain-IA) tmp.rain = c(-0.25,1.75,4.75).


3.	 Correct tmp.rain to non-negative values. Then tmp.rain = c(0,1.75,4.75). 

4.	 Compute

excess.rain[i] = tmp.rain[i]-tmp.rain[i-1]. Then excess.rain = c(0,1.75,3).


5.	 Compute excess rainfall excess.rain by subtraction If CL = 1.85, then excess.rain = excess.rain

of CL CL and excess.rain = c(0,-0.10,1.15). 

6.	 Correct excess.rain to non-negative values Then excess.rain = c(0,0,1.15). 

http:Vfunc.qp
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useIACL <- function(rain,delT,IA,CL) { 
# rain is a vector of incremental rainfall in inches.

# delT is the time step in seconds; Ia is in inches; Cl is in watershed inches per hour.

CL.per.unittime <- CL*delT/3600 # unit conversion

n <- length(rain) # how many items in the vector.


# Push a zero onto the vector and recompute n; a "seq(2,n)" is used later.

if(n == 1) {


rain <- c(rain,0)

n <- length(rain)


} 

# Compute a vector of the cumulative sum of rainfall. 
sumrain <- cumsum(rain) 

# If length 0 (not a vector?) just return whatever was passed to the function 
if(length(sumrain) == 0) { return(rain) } 

# If the total rainfall (last index) is zero return the vector of no rainfall 
if(sumrain[length(sumrain)] == 0) { return(rain) } 

# From the cumulative sum, substract (offset) the vector by the initial abstraction. 
tmp.rain <- sumrain - IA 

# Now make tmp.rain physically meaningful; < 0 become 0. 
tmp.rain <- sapply(tmp.rain, function(x) { if(x	 < 0) { return(0) }


else { return(x) } })


excess.rain <- vector(mode = "numeric") # declare new vector

excess.rain[1] <- tmp.rain[1] # initialize first index


# The excess.rain is to become incremental rainfall

# (recall that tmp.rain is cumulative).

for(i in seq(2,n)) { excess.rain[i] <- tmp.rain[i] - tmp.rain[i-1] } 

# Now apply the constant loss in the correct units 
for(i in seq(1,n)) { excess.rain[i] <- excess.rain[i]	 - CL.per.unittime } 

# Now make the excess vector physically meaningful; <	 0 become 0. 
excess.rain <- sapply(excess.rain, function(x) { if(x	 < 0) { return(0) }


else { return(x) } })

return(excess.rain) # return the excess rainfall vector to the user 

} 
useIACL(c(1,1,1,1),900,1.5,0) 
# [1] 0.0 0.5 1.0 1.0 

useIACL(c(1,1,1,1),900,0,2) 
# [1] 0.5 0.5 0.5 0.5 

useIACL(c(1,2,4,0,.4,0),300,.76,.45) 
# [1] 0.2025 1.9625 3.9625 0.0000 0.3625 0.0000 

Figure 3.2. Listing of R code for computation of excess rainfall using an initial-abstraction, constant-loss (IA
�CL) model. 
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Computation of Gamma Unit Hydrograph Ordinates 

A listing of code for computation of individual ordinates of the GUH (eq. 2) when values for qp, Tp, and K 
are available, or when only qp and Tp are available, is provided in figure 3.3. A demonstration of code usage 
also is provided. The code produces a GUHt object, which retains the t, q(t), qp, Tp, and K values. The GUH is 
constrained to unit volume (V = 1) according to equation 4 when qp and Tp are given (as done in the listing). 
However, the GUH function does not verify that V = 1 when qp, Tp, and K are given. This is done purposefully 
and with the intent of the GUH fitting into a larger algorithmic framework. Processing efficiency is increased 
because the uniroot function is bypassed. The code example shows that for t = 2.5 hours into the event, the unit 
hydrograph ordinate q(2.5) = 0.276 watershed inch per hour. 

GUH <- function(tt, qp, Tp, K=NULL) { 

if(is.null(K)) { 

Vfunc.K <- function(K) { return(1 - qp Tp gamma(K) (exp(1)/K)^K ) } * * * 
root <- uniroot(Vfunc.K, c(0.001,20)) # K on range [0.001,20] 

K <- root$root # extract K 

} 

ttp <- tt/Tp # compute once, then use twice 

guh <- qp ( ttp exp(1 - ttp) )^K; # definitive equation for gamma hydrograph * * 
return( list(Time=tt, qT=guh, 

qp=qp, Tp=Tp, K=K) ) 

} 

# demonstrate usage 

qp <- 0.3 # watershed inches per hour 

Tp <- 3 # hours 

GUHt <- GUH(2.5,qp,Tp) # 2.5 hours into event 

str(GUHt) # nice listing follows 

List of 5 

$ Time: num 2.5


$ qT : num 0.276


$ qp : num 0.3


$ Tp : num 3


$ K : num 5.25


Figure 3.3. Listing of R code for computation of an ordinate of a gamma unit hydrograph (GUH) as defined by equation 2. 
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At the request of the cooperator, the Texas Department of Transportation, a derivation of the gamma 
hydrograph equation (eq. 2) is provided in this appendix. The probability density function of the gamma 
distribution is 

1 
� 

x 
�c−1 � 

−x 
� 

f (x) = exp , (4.1)
bΓ(c) b b 

where b is a scale parameter greater than zero, c is a shape parameter greater than zero, Γ(x) is the gamma 
function with argument c, and x is a whole number. An alternative formulation of the gamma distribution in the 
context of a runoff hydrograph with a watershed functioning as a system of cascading reservoirs of water storage 
is 

q(t) = 
1 

� 
t 
�n−1

exp 
� 
−t 

� 

, (4.2)
τΓ(n) τ τ 

where n is the number of reservoirs modeling the watershed, τ is a storage coefficient (or the residence time of a 
reservoir), Γ(u) is the gamma function of n, t represents time, and q(t) is the streamflow at time t. Because of the 
importance of peak streamflow Qp and time of Qp occurrence T Qp , it is useful to express q(t) and t in terms of 
qp(TP) and Tp. The gamma hydrograph can then be written as 

qp(Tp) = 
1 

� 
Tp 

�n−1

exp 
� 
−Tp 

� 

. (4.3)
τΓ(n) τ τ 

The first step in deriving the gamma hydrograph equation is to find τ in terms of t and n. The derivation of Tp 

in terms of t and n is made by taking the first derivative of q(t) and setting the derivative equal to zero. The 
maximum of the function is produced. The derivative is � � � � � � �� 

dq
d
p

T
(T

p 

p) = 
τΓ

1 
(n)

(n − 1)Tp
n−2 exp 

−
τ 
Tp + Tp

n−1 −
τ 
1 

exp 
−

τ 
Tp , (4.4) 

dq
d
p

T
(T

p 

p) = 0 = (n − 1)T n−2 exp 
−

τ 
Tp − 

τ 
1

T n−1 exp 
−

τ 
Tp , (4.5)p p 

1
Tp

n−1 exp 
−Tp = (n − 1)T n−2 exp 

−Tp , (4.6)
τ τ p 

τ 
1

T n−1 = (n − 1)T n−2, (4.7)
τ p p 

T n−1 

T
p
n−2 = τ(n − 1), (4.8) 
p 

Tp = τ(n − 1), (4.9) 

τ = 
Tp . (4.10)

n − 1
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The gamma hydrograph equation is produced by the ratio 

q(t) 1 
� 

t 
�n−1 � 

−t 
�� 

1 
� 

Tp 
�n−1 � 

−Tp 
� 

qp(Tp)
= 

τΓ(n) τ 
exp 

τ τΓ(n) τ 
exp 

τ 
, (4.11) 

= �Tp 

τ 
t � 

exp � −τ 
t � . (4.12)−Tp 

τ exp 
τ 

Next, τ is substituted in terms of Tp and n 

q(t) 
� 

t 
�n−1 exp 

� −t (n − 1) 
� 

Tp 

qp(Tp)
= 

Tp exp 
�−Tp (n − 1) 

� , (4.13) 
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T
t
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� 
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t Tp , (4.14)
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T
t

p 
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−
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t 
(n − 1) − (1− n) 

�� 

, (4.15) � 
t 

�n−1� � �−t ��� 

= 
Tp 

exp (n − 1) 
Tp 

+ 1 , (4.16) � �n−1t � t � 
= 

Tp 
exp 1− 

Tp 
. (4.17) 

Let K = n − 1, and finally the gamma hydrograph equation results after dropping the (Tp) term for qp because qp 

occurs at Tp and “exp” is replaced with the more conventional “e”: 

q(t) 
� 

t 1−( t ) 
�K 

= e Tp . (4.18)
qp Tp 
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This appendix shows example computations of the prediction limits for the K�Tp and IA
�CL equations. 

Suppose that a hypothetical watershed has the following characteristics: L⊕ = 7.8 miles, S⊕ = 0.003, D⊕ = 0, 
R = 1, and CN = 75. Suppose that the analyst needs the 90-percent prediction limits of the K (eq. 5), Tp⊕ ⊕ 

(eq. 11), IA (eq. 23), and CL (eq. 29) equations. 
The 90-percent prediction limits require the 100 × (1− α) limits and thus α = 0.10. The leverage h⊕ for 

each of the four equations requires matrix computations, and the h are shown in the following sections. The ⊕ 

residual standard error σ of the four equations are σ [K] = 0.2052 (log10), σ [Tp] = 0.1383 (log10), σ [IA] = 0.3025 
watershed inch, and σ [CL] = 0.2649 watershed inch per hour. The degrees of freedom (df) of the four equations 
are df[K] = 88, df[Tp] = 87, df[IA] = 86, and df[CL] = 87. These values along with α are used to compute the value 
t[α/2,df] for the t-distribution (see table 2.1). The three unique values for the t-distribution for the four prediction 
limits given α = 0.10 and df are t[0.050,86] = 1.6628 (IA equation), t[0.050,87] = 1.6626 (Tp and CL equations), and 
t[0.050,88] = 1.6624 (K equation). 

The 100 × (1− α) prediction limits have a specific interpretation. The prediction limits define an interval 
for which an expression of probability is made—in the examples here, the 90-percent prediction interval. This 
interval is interpreted as follows (Good and Hardin, 2003, p. 101): For a large number of prediction limits, there 
is a 90-percent chance that the true value of K, Tp, IA, or CL for a given watershed is between the limits. It is not 
correct to conclude that the probability of the true value being included in the 90-percent interval is 90 percent 
for any single prediction. As a result, for 10 percent of these limits, the true value is either less than or greater 
than the lower and upper limits, respectively. 

A summary of the results of the computations for the hypothetical watershed shown in the following four 
sections follows: (1) The 90-percent prediction limits for the K⊕ are 2.19 and 10.8 with a prediction of 4.86. 
(2) The limits for the TP⊕ are 3.2 and 9.56 hours with a prediction of 5.53 hours. (3) The limits for IA⊕ are 0.68 
and 1.70 watershed inches with a prediction of 1.19 watershed inches. (4) The limits for CL⊕ are 0.28 and 1.18 
watershed inches per hour with a prediction of 0.73 watershed inch per hour. 

Computation of Unit Hydrograph Shape and Prediction Limits 

For the hypothetical watershed, K is computed by substitution of D and L into equation 5: ⊕ ⊕ ⊕ 

K = 100.560−0.249D⊕ L0.142,⊕ ⊕ 

K⊕ = 100.560−0.249(0)(7.8)0.142, and 

K = 4.86 dimensionless. ⊕ 

The leverage h[K] is computed by substitution of D⊕ and L⊕ into equation 9: ⊕ 

h[K] 
⊕ = 1 log10(7.8) 0 ×
⎡
 ⎤


0.10599 −0.10349 −0.03134

−0.10349 0.13156 0.00859


⎢⎣

⎥⎦
×


−0.03134
⎤

0.00859 0.04502
⎡


1
⎢⎣
log10(7.8)
⎥⎦
,


0
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which results in h[K] = 0.02604. R code demonstrating the matrix multiplications and the resulting h[K] is shown ⊕ ⊕
in figure 5.1. 

cv <- c(1, log10(7.8), 0) # a column vector 

rv <- t(cv) # transpose the vector into a row vector 

h <- matrix(c( 0.10599, -0.10349, -0.03134, 

-0.10349, 0.13156, 0.00859, 

-0.03134, 0.00859, 0.04502),nrow=3,ncol=3) 

rv %*% h %*% cv # perform matrix multiplications 

[,1] 

[1,] 0.02604402 

Figure 5.1. Listing of R code for computation of leverage for K equation. 

Finally, the lower (eq. 7) and upper (eq. 8) 90-percent prediction limits are computed by 

= 10log10(4.86)−1.6624×0.2052
√

1+0.02604↓K = 2.19 and ⊕ 

= 10log10(4.86)+1.6624×0.2052
√

1+0.02604↑K = 10.8 .⊕ 

Computation of Unit Hydrograph Time to Peak and Prediction Limits 

For the hypothetical watershed, Tp⊕ is computed by substitution of D⊕, L⊕, and S⊕ into equation 11: 

Tp⊕ = 10−1.49−0.354D⊕ L0.602S−0.672 
⊕ ⊕ , 

Tp⊕ = 10−1.49−0.354(0)(7.8)0.602(0.003)−0.672, and 

Tp⊕ = 5.53 hours. 

The leverage h[Tp] is computed by substitution of D , and S into equation 15: ⊕ ⊕, L⊕ ⊕ 

h[Tp] 
⊕ = 1 log10(7.8) log10(0.003) 0 × ⎤⎡ ⎢⎢⎢⎣


1.34775 0.16646 0.67709 −0.01451

0.16646 0.19025 0.14719 0.01225

0.67709 0.14719 0.36919 0.00918


⎥⎥⎥⎦

×


−0.01451
 0.01225 0.00918 0.04524
⎡
 ⎤
⎢⎢⎢⎣


1

log10(7.8)


log10(0.003)

0


⎥⎥⎥⎦

,


which results in h[TP] = 0.06704. R code demonstrating the matrix multiplications and the resulting h[Tp] is shown ⊕ ⊕
in figure 5.2. 
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cv <- c(1, log10(7.8), log10(0.003), 0) # a column vector 

rv <- t(cv) # transpose the vector into a row vector 

h <- matrix(c( 1.34775, 0.16646, 0.67709, -0.01451, 

0.16646, 0.19025, 0.14719, 0.01225, 

0.67709, 0.14719, 0.36919, 0.00918, 

-0.01451, 0.01225, 0.00918, 0.04524),nrow=4,ncol=4) 

rv %*% h %*% cv # perform matrix multiplications 

[,1] 

[1,] 0.06703983 

Figure 5.2. Listing of R code for computation of leverage for Tp equation. 

Finally, the lower (eq. 13) and upper (eq. 14) prediction limits are computed by 

↓Tp⊕ = 10log10(5.53)−1.6626×0.1383
√

1+0.06704 = 3.20 hours and 
↑Tp⊕ = 10log10(5.53)+1.6626×0.1383

√
1+0.06704 = 9.56 hours. 

Computation of Initial Abstraction and Prediction Limits 

For the hypothetical watershed, IA⊕ is computed by substitution of L⊕, D⊕, R⊕, and CN⊕ into equation 23: 

IA = 2.045 − 0.5497L−0.9041 − 0.1943D⊕ + 0.2414R⊕− 0.01354CN⊕ ⊕,


IA = 2.045 − 0.5497(7.8)−0.9041 − 0.1943(0)+ 0.2414(1) − 0.01354(75), and


IA = 1.19 inches.


The leverage h[IA] is computed by substitution of L , and CN into equation 27: ⊕ ⊕, D⊕, R⊕ ⊕ 

h[IA] 1 (7.8)−0.9041= 0 1 75 ⊕ ×
⎡
 ⎤

2.38000 0.17571 0.21256 −0.04512 −0.03106

0.17571 0.40497 0.00579 −0.01074 −0.00348

0.21256 0.00579 0.06893 −0.01141 −0.00304


⎢⎢⎢⎢⎢⎢⎣


⎥⎥⎥⎥⎥⎥⎦


×


−0.04512 −0.01074 −0.01141 0.04742 0.00042 
−0.00348−0.03106
 −0.00304 0.00042 0.00041
⎡
 ⎤ ⎥⎥⎥⎥⎥⎥⎦


,


1 
(7.8)−0.9041 

0 
1

75


⎢⎢⎢⎢⎢⎢⎣


which results in h[IA] = 0.02732. R code demonstrating the matrix multiplications and the resulting h[IA] is shown ⊕ ⊕
in figure 5.3. 
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cv <- c(1, (7.8)^-0.9041, 0, 1, 75) # a column vector 

rv <- t(cv) # transpose the vector into a row vector 

h <- matrix(c( 2.38000, 0.17571, 0.21256, -0.04512, -0.03106, 

0.17571, 0.40497, 0.00579, -0.01074, -0.00348, 

0.21256, 0.00579, 0.06893, -0.01141, -0.00304, 

-0.04512, -0.01074, -0.01141, 0.04742, 0.00042, 

-0.03106, -0.00348, -0.00304, 0.00042, 0.00041),nrow=5,ncol=5) 

rv %*% h %*% cv # perform matrix multiplications 

[,1] 

[1,] 0.02731614 

Figure 5.3. Listing of R code for computation of leverage for IA equation. 

Finally, the lower (eq. 25) and upper (eq. 26) prediction limits are computed by 

↓IA⊕ = 1.19− 1.6628 × 0.3025
√

1+ 0.02732 = 0.68 inch, and 
↑IA⊕ = 1.19+ 1.6628 × 0.3025

√
1+ 0.02732 = 1.70 inches. 

Computation of Constant Loss and Prediction Limits 

For the hypothetical watershed, CL⊕ is computed by substitution of L⊕, R⊕, and CN⊕ into equation 29: 

CL = 2.535 − 0.4820L0.2312 + 0.2271R⊕− 0.01676CN⊕ ⊕,


CL = 2.535 − 0.4820(7.8)0.2312 + 0.2271(1) − 0.01676(75), and


CL = 0.73 watershed inch per hour.


The leverage h[CL] is computed by substitution of L , and CN into equation 33: ⊕ ⊕, R⊕ ⊕ 

h[CL] 1 (7.8)0.2312= 1 75 ⊕ ⎡

×
 ⎤
⎢⎢⎢⎣


2.79336 −0.45089 −0.01554 −0.02600 
−0.45089 0.17984 0.00375 0.00222 
−0.01554 0.00375 0.04538 −0.00011


⎥⎥⎥⎦

×


−0.02600
 0.00222 −0.00011 0.00028
⎡
 ⎤
⎢⎢⎢⎣


1 
(7.8)0.2312 

1

75


⎥⎥⎥⎦

,


which results in h[CL] = 0.02863. R code demonstrating the matrix multiplications and the resulting h[CL] is shown ⊕ ⊕
in figure 5.4. 
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cv <- c(1, (7.8)^0.2312, 1, 75) # a column vector 

rv <- t(cv) # transpose the vector into a row vector 

h <- matrix(c( 2.79336, -0.45089, -0.01554, -0.02600, 

-0.45089, 0.17984, 0.00375, 0.00222,


-0.01554, 0.00375, 0.04538, -0.00011,


-0.02600, 0.00222, -0.00011, 0.00028),nrow=4,ncol=4)


rv %*% h %*% cv # perform matrix multiplications 

[,1] 

[1,] 0.02862544 

Figure 5.4. Listing of R code for computation of leverage for CL equation. 

Finally, the lower (eq. 31) and upper (eq. 32) prediction limits are computed by 

↓CL⊕ = 0.73− 1.6626 × 0.2649
√

1+ 0.02863 = 0.28 watershed inch per hour, and 
↑CL⊕ = 0.73+ 1.6626 × 0.2649

√
1+ 0.02863 = 1.18 watershed inches per hour. 
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Glossary 

Acronyms 

AIC — Akaike Information Criterion is a measure 
of information content of a regression model in 
which a tradeoff between number of parameters 
and the fit of the model is made. 

GLD — The generalized lambda distribution defined 
in equation 19. 

GUH — The gamma unit hydrograph as generally 
specified by equation 2 and particularly defined 
by K�Tp equations. 

GUHAS — The Gamma Unit Hydrograph Analysis 
System: Custom-built, analyst-directed software 
(Asquith and others, 2005) for estimation of K 
and Tp values from observed rainfall and runoff 
data. 

PRESS — The PREdiction Sum of Squares statistic 
for a regression, which is regarded as a measure 
of performance when a regression equation is 
used to predict new data (see fig. 6). 

Symbols 

| — Represents “or” and for this report represents 
the distinction between watershed development 
(D = 0 | D = 1). 

⊕ — Represents the ⊕-vector of the watershed char
acteristics or regressor variables used to make a 
prediction for a given regression equation. 

� — Represents an approximate “greater than” in
equality for the quantities on the left of the sym
bol. 

� — Represents an approximate “less than” inequal
ity for the quantities on the left of the symbol. 
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Hebrew and Greek Alphabet 

ℵ — A quantity defined in item 3 on page 27 for the 
algorithm to compensate for the influence of 
modeling time step that begins on page 27. 

α — The 100 × (1− α) prediction interval of a 
regression equation and also the scale parameter 
of the GLD. 

δ — A quantity defined in item 3 on page 27 for the 
algorithm to compensate for the influence of 
modeling time step that begins on page 27. 

ΔE — The change in elevation in feet between the 
two end points of L. 

εQp — The Qp error (eq. 37) in log10(cubic feet per 
second) that is defined as εQp = log10(Q

obs 
p ) −

log10(Q
model ).p 

εV — The V error in watershed inches that is defined 
as εV = V obs −V model, where V obs is observed V 
in watershed inches and V model is modeled V in 
watershed inches. 

ε
TQp — The T Qp error (time difference in peak 

streamflow) in hours that is defined as εTQp = 
T Qobs − T Qmodel 

p p . 

η — The second of two dimensionless shape parame
ters of the GLD (eq. 19). 

η [CL] — A dimensionless shape parameter of GLD 

(eq. 19) for CL (eq. 21 and table 4). 

η [IA] — A dimensionless shape parameter of GLD 

(eq. 19) for IA (eq. 20 and table 3). 

Γ(u) — The complete gamma function is expressed �∞
as an infinite integral: Γ(u) = uk−1e−u du. The 

0 
Γ(u) is in equation 4 and figure 2. 
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κ — The first of two dimensionless shape parameters 
of the GLD (eq. 19). 

κ [CL] — A dimensionless shape parameter of GLD 

(eq. 19) for CL (eq. 21 and table 4). 

κ [IA] — A dimensionless shape parameter of GLD 

(eq. 19) for IA (eq. 20 and table 3). 

λ1 — The first L-moment, which is the arithmetic 
mean and a measure of location on the real-
number line of a distribution, in units of the data. 
The symbol is not actually represented in this 
report as the preference is to use “mean.” Values 
are listed in table 2. 

λ2 — The second L-moment, which is a measure of 
the variability of a distribution, in units of the 
data. The symbol is not actually represented in 
this report as the preference is to use “L-scale.” 
Values are listed in table 2. 

ϕ — The power coefficient on L for regression equa
tion 22. 

ϕ [CL] — The power coefficient on L for CL equation 
(eq. 29). 

ϕ [IA] — The power coefficient on L for IA equation 
(eq. 23). 

ψ — The scale parameter of the GLD (eq. 19). 

ψ [CL] — Scale parameter of GLD (eq. 19) for CL 

(eq. 21 and table 4). The parameter has units of 
watershed inches per hour. 

ψ [IA] — Scale parameter of GLD (eq. 19) for IA 

(eq. 20 and table 3). The parameter has units 
of watershed inches. 

σ — The standard error for an individual terminal 
node in the IA tree (fig. 7) or CL tree (fig. 8). 

σ [K] — The standard error of equation 5. 

σ [Tp] — The standard error of equation 11. 

σ [IA] — The standard error of equation 23. 

σ [CL] — The standard error of equation 29. 

τ3 — L-skew is a dimensionless L-moment statistic 
of a distribution and measures of distribution 
skewness (shape). Values are listed in table 2. 

τ4 — L-kurtosis is a dimensionless L-moment statis
tic of a distribution and can be thought of as a 
measure of distribution peakedness. Values are 
listed in table 2. 

τ5 — A dimensionless L-moment statistic of a dis
tribution with no unique conceptualization of 
distribution shape. Values are listed in table 2. 

ξ — The location parameter of the GLD (eq. 19). 

ξ [CL] — Location parameter of GLD (eq. 19) for CL 

(eq. 21 and table 4) in watershed inches per hour. 

ξ [IA] — Location parameter of GLD (eq. 19) for IA 

(eq. 20 and table 3) in watershed inches. 

Latin Alphabet 

A — Contributing drainage area in square miles. Val
ues for the 92 watersheds are listed in appendix 1 
(table 1.1). 

Apred — Contributing drainage area in square miles 
predicted by equation 1.1 in appendix 1. 

CL(F) — The quantile function of the GLD (eq. 21) 
fit to the L-moments (table 2) of the 92 CL val
ues, which are listed in appendix 1 (table 1.1). 

CL — Constant loss of a watershed after IA has been 
satisfied, in watershed inches per hour. 

CL⊕ — CL estimated by equation 29. 

�CL — Storm-specific CL based on analysis described 
in this report. 

CL — Watershed-specific mean CL based on analysis 
described in this report. This symbol also is used 
in the context of overall mean of the 92 CL val
ues listed in appendix 1 (table 1.1). Also see the 
glossary entry for IA

�CL model. 



ČL — Overall median of the 92 watershed-specific 
mean constant-loss values based on analysis 
described in this report. Also see glossary entry 
for ǏA

�ČL model. 

↓CL
α

⊕ 
/2 and ↑CL

α

⊕ 
/2 — The lower (↓) and upper (↑) 

100 × (1− α) prediction interval limits of CL 

(eq. 29). 

CN — The CN is a parameter used in the Curve 
Number (CN) method to estimate the maximum 
potential retention of rainfall in a watershed (Nat
ural Resources Conservation Service, 2006) and 
reportedly accounts for differences between soil 
types, land-cover classifications, and other hy
drologic conditions of the land surface that affect 
watershed storage of rainfall. Values for the 92 
watersheds are listed in appendix 1 (table 1.1). 

CN — A watershed-specific CN value. ⊕ 

df — Degrees of freedom of a regression equation, 
which in the context of this report are used to 
determine the value of the t-distribution (see 
table 2.1 in appendix 2) for computations of 
prediction limits. 

df[CL] — Degrees of freedom of the CL equa
tion (eq. 29). 

df[IA] — Degrees of freedom of the IA equa
tion (eq. 23). 

df[K] — Degrees of freedom of the K equation (eq. 5). 

df[Tp] — Degrees of freedom of the Tp equa
tion (eq. 11). 

D — The binary watershed development classifica
tion: D = 0 for undeveloped watersheds and 
D = 1 for developed watersheds. Values of D 
for the 92 watersheds are listed in appendix 1 
(table 1.1). 

D⊕ — A watershed-specific D value. 

F — Nonexceedance probability (eqs. 19, 20, 
and 21). 

Glossary 77 

h⊕ — The leverage statistic for a specific prediction, 
which is made from the ⊕-vector of the water
shed characteristics or regressor variables. 

h[CL] 
⊕ — The leverage for a CL⊕ prediction for the 

watershed from equation 29. 

h[CL] 
max — The maximum leverage value of data on


which equation 29 is based.


h[IA] — The leverage for a IA⊕ prediction for the ⊕ 

watershed from equation 23. 

h[IA] — The maximum leverage value of data on max 

which equation 23 is based. 

h[K] — The leverage for a K prediction for the water⊕ ⊕ 

shed from equation 5. 

h[K] 
max — The maximum leverage value of data on


which equation 5 is based.


h[Tp] — The leverage for a Tp⊕ prediction for the ⊕ 

watershed from equation 11. 

h[Tp] — The maximum leverage value of data on max 

which equation 11 is based. 

IA(F) — The quantile function of the GLD (eq. 20) 
fit to the L-moments (table 2) of the 92 IA values 
listed in appendix 1 (table 1.1). 

IA — Initial abstraction of a watershed and is mea
sured in watershed inches. 

IA⊕ — IA estimated by equation 23. 

�IA — Storm-specific IA based on analysis described 
in this report. 

IA — Watershed-specific mean IA based on analysis 
described in this report. This symbol also is used 
in the context of overall mean of the 92 IA values 
listed in appendix 1 (table 1.1). Also see glossary 
entry for IA

�CL model. 

ǏA — Overall median of the 92 watershed-specific 
mean initial-abstraction values based on analysis 
described in this report. Also see glossary entry 
for ǏA

�ČL model. 
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I[CN] — Initial abstraction estimated by the CN A 

method (eq. 35). 

IA
�CL — The collective reference to the initial-

abstraction, constant-loss model with the specific 
context of the model as a “representation” of 
losses of rainfall. 

IA
�CL model — The watershed-loss model using 

the mean values of IA and CL with consid
eration of watershed development (table 1): 
IA = 1.106 0.690|

CL = 0.617 0.512| 

ǏA
�ČL model — The watershed-loss model using 

the median values of IA and CL with consid
eration of watershed development (table 1): 
ǏA = 1.111 0.564|

ČL = 0.481 0.520| 

�IA
��CL — The collective reference to the initial-

abstraction, constant-loss model when set to 
storm-specific (�) values of IA and CL. These 
values were computed by specialized software 
(see the next entry). 

�IA
��CL software — Custom-built, analyst-directed 

software for estimation of �IA and �CL values 
from observed rainfall and runoff data and 
K�Tp -GUH. 

↓IA
α

⊕ 
/2 and ↑IA

α

⊕ 
/2 — The lower (↓) and upper (↑) 

100 × (1− α) prediction interval limits 
of IA (eq. 23). 

K — The shape parameter of GUH defined by 
equation 2. 

K — The K of a GUH in hours that is defined in 
item 5 on page 27 for the algorithm to compen
sate for the influence of modeling time step that 
begins on page 27. 

K — The shape parameter of the GUH for a specific ⊕ 

prediction, which is made from the ⊕-vector 
of the watershed characteristics or regressor 
variables. 

K�Tp — The collective reference to the K and Tp 

equations (eqs. 5 and 11 of this report) by 
Asquith and others (2005). 

K�Tp -GUH — Reference to a GUH set by the K and 
Tp equations from Asquith and others (2005). 

↓Kα/2 and ↑Kα/2 — The lower ( ) and upper ( )⊕ ⊕ ↓ ↑
100 × (1− α) prediction interval limits

of K (eq. 5).


L — Main-channel length: The L is defined as the 
length in stream-course miles of the longest 
defined channel shown in a 30-meter digital 
elevation model from the approximate water
shed headwaters to the outlet. Values for the 92 
watersheds are listed in appendix 1 (table 1.1). 

L — A watershed-specific L value. ⊕ 

n — The number of samples (watersheds) for an indi
vidual terminal node in the IA tree (fig. 7) or CL 

tree (fig. 8). 

Pm — The mth value of excess rainfall in watershed 
inches for convolution with the unit hydrograph 
Un−m+1 (eq. 1). 

q — Watershed-depth streamflow in watershed inches 
per hour. 

q(t) — The watershed-depth streamflow in watershed 
inches per hour at time t of the GUH defined by 
equation 2. 

qp — The watershed-depth peak streamflow in water
shed inches per hour of the GUH defined by 
equation 2. 

— The qp of a GUH in hours that is defined in 
item 2 on page 27 for the algorithm to compen
sate for the influence of modeling time step that 

qp 

begins on page 27. 

Q — Streamflow in cubic feet per second. 

Qn — The nth value of streamflow in cubic feet per 
second from convolution of the unit hydrograph 
with excess rainfall (eq. 1). 



Qp — The peak or maximum instantaneous stream-
flow in cubic feet per second. 

Q̊p — The Qp from the combined IA
�CL model 

(eq. 38). 

Qmodel — The Qp of a modeled runoff hydrograph. p 

As context requires, an equivalent symbol is 
Qa model 

p . 

Qobs — The Qp of an observed runoff hydrograph. p 

QIA
�CL model — The Qp from the IA

�CL model p 

(eq. 38). 

QǏA
�ČL model — The Qp from the ǏA

�ČL model p 

(eq. 38). 

QIA
�CL equations 

p — The Qp from the IA
�CL equa


tions (eq. 38).


QIA
�CL trees — The Qp from the IA

�CL trees (eq. 38). p 

R — The binary classification of watersheds that are 
rock-dominated with thin soils, rock channels, 
and karstic features: R = 0 for non-rocky water
sheds and R = 1 for rocky watersheds. Values 
for the 92 watersheds are listed in appendix 1 
(table 1.1). 

R — A watershed-specific R value. ⊕ 

S — Dimensionless main-channel slope: The S is 
defined as the change in elevation in feet (ΔE) 
between the two end points of L divided by L in 
feet: S = ΔE/(5,280 × L). A 30-meter digital 
elevation model was used to compute S for this 
report. Values for the 92 watersheds are listed in 
appendix 1 (table 1.1). 

S — A watershed-specific S value. ⊕ 

Smax — Maximum potential retention for the CN 
method (eq. 36). 

t — The time in hours from inception of streamflow 
of the GUH defined by equation 2. 
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t[α/2,df] — The t-distribution for α and degrees of 
freedom df. The t-distribution is used to compute 
prediction limits of a regression equation. 

Tb — The time base of a runoff hydrograph or the 
overall width in time of a runoff hydrograph. 

Tp — The time to qp of a GUH in hours, which is 
defined by equation 2. 

— The Tp of a GUH in hours that is defined in 
item 4 on page 27 for the algorithm to compen
sate for the influence of modeling time step that 

Tp 

begins on page 27. 

Tp⊕ — The Tp of a GUH in hours, for a specific pre
diction, which is made from the ⊕-vector of the 
watershed characteristics or regressor variables. 

↓Tp
α

⊕ 
/2 and ↑Tp

α

⊕ 
/2 — The lower (↓) and upper (↑) 

100 × (1− α) prediction interval limits of Tp 

(eq. 11). 

T Qp — The time of Qp occurrence. 

T̊ Qp — The T Qp from the combined IA
�CL model 

(eq. 40). 

T Qmodel 
p — The T Qp for a modeled runoff hydrograph; 
represents the actual date and time that Qp of a 
modeled runoff hydrograph occurs. 

T Qobs 
p — The T Qp for an observed runoff hydrograph; 
represents the actual date and time that Qp of an 
observed runoff hydrograph occurs. 

Tp
IA
�CL model — The T Qp from the IA

�CL model 
(eq. 40). 

T ǏA
�ČL model — The T Qp from the ǏA

�ČL model p 

(eq. 40). 

T IA
�CL equations 

p — The T Qp from the IA
�CL equa


tions (eq. 40).


Tp
IA
�CL trees — The T Qp from the IA

�CL trees (eq. 40). 

Un−m+1 — The n − m + 1th value of the unit hydro
graph in cubic feet per second for convolution 
with excess rainfall Pm (eq. 1). 
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V — The volume in watershed depth of a runoff 
hydrograph and for a unit hydrograph V = 1. 

V̊ — The V from the combined IA
�CL model (eq. 39). 

V model — The V of a modeled runoff hydrograph in 
watershed inches. 

V obs — The V of an observed runoff hydrograph in 
watershed inches. 

Vp
IA
�CL model — The V from the IA

�CL model (eq. 39). 

V ǏA
�ČL model — The V from the ǏA

�ČL model (eq. 39). p 

Vp
IA
�CL equations — The V from the IA

�CL equa
tions (eq. 39). 

Vp
IA
�CL trees — The V from the IA

�CL trees (eq. 39). 

wi — The number of suitable storms processed for 
a given watershed (i). The values are listed in 
appendix 1 (table 1.1). 

x — A quantile value of the GLD (eq. 19). 

x(F) — The quantile x as a function of F . 



Technical Notes 

[a] A hydrograph is the temporal distribution of stream-
flow at a given stream location following substantial 
rainfall on a watershed; specifically, rainfall that pro
duces a comparatively distinct rise and recession of 
streamflow over durations of hours to a couple of days. 
A runoff hydrograph also is referred to as stormflow, 
storm runoff, and other similar terms. 

[b]	 Design in this context emphasizes the connection 
between the model results reported and the criteria used 
to guide and constrain the design of drainage infrastruc
ture. A design storm is a hypothetical storm having a 
specified duration and depth. The depth of a design 
storm is specified by risk criteria (design criteria) such 
as an annual nonexceedance probability. Annual nonex
ceedance probability commonly is expressed as annual 
recurrence interval such as the “25-year event,” which 
has a 0.96 annual nonexceedance probability. The depth 
and duration of design storms in Texas is considered by 
Asquith and Roussel (2004). 

[c] The authors express specific semantic intent with the 
term “applicable watersheds.” The analyses and sub
sequent results reported here are founded on only 92 
watersheds located in a central north-to-south swath 
through Texas. Whereas these watersheds represent 
what are believed to be a generally diverse set of water
sheds, and they nearly represent the collective extent 
of USGS data in Texas suitable for the purposes of this 
report, the 92 watersheds represent a minute fraction 
of potential watershed types throughout Texas. The 
results reported here are most applicable to watersheds 
similar to the 92 watersheds; however, determination 
of the applicability of the results reported here is a site-
specific, hydrologic-engineering decision, which is best 
left to analysts. This report provides comprehensive dis
cussion to help guide decisions regarding applicability. 

[d]	 Excess rainfall is rainfall that is not retained or stored 
and represents the volume of runoff per unit area of the 
watershed. An excess rainfall hyetograph is the tempo
ral distribution of the rainfall that will become a runoff 
hydrograph after being “processed” by the watershed. 
Excess rainfall also is referred to as effective rainfall in 
some hydrologic literature. 

Technical Notes 81 

[e]	 A design storm hyetograph is the hypothetical time 
distribution of rainfall intensity (a hyetograph) for the 
design storm. Rainfall hyetographs in the context 
of Texas hydrology are considered by Asquith, Rous
sel, and others (2004) and Williams-Sether and others 
(2004). 

[f]	 A suitable storm is a storm (pair of rainfall and runoff 
data files) that could actually be processed by the 
�IA

��CL software. An example of an unsuitable storm 
is one that has more observed (recorded) runoff than 
observed rainfall. Other, less-easily described situations 
occurred for a comparatively small number of storms 
compared to the more than 1,600 storms available for 
processing. 

[g]	 Although it is physically meaningless to have either �IA 

or �CL less than zero, statistically optimal solutions, as 
measured by minimization of squared residuals, can 
exist at �IA < 0 or �CL < 0 with the volume of the 
observed and modeled runoff hydrographs being equal. 
Conceptual causes for such a situation might be poor 
estimation of the observed runoff hydrograph, inade
quate representation of the rainfall hyetograph for the 
watershed, or violations of fundamental assumptions 
of unit hydrograph theory. For ideal processing, the 
rainfall hyetograph in terms of depth simultaneously 
at every time step must be “uniformly distributed” and 
the percentage of the watershed actually contributing 
runoff is 100 percent. (The unit hydrograph method 
assumes that 100 percent of the watershed contributes to 
runoff.) Spatial and temporal rainfall estimation likely 
is the greatest source of error because generally few 
(and commonly just one) rain gages are operated in a 
watershed. Thus, the negative values for �IA and �CL 

have the effect of generating “rainfall” to compensate 
for misspecification of the excess rainfall hyetograph. 

[h]	 Percentage impervious cover was calculated by using 
delineated drainage areas and intersecting them with 
the 1992 version of the National Land Cover Dataset 
(NLCD) (U.S. Geological Survey, 2006). After the 
two datasets were combined, the NLCD classification 
system was used to determine which codes were devel
oped, areas characterized by a high percentage of con
structed materials including asphalt, concrete, and build
ings. The area associated with each developed clas
sification type within each hand-delineated drainage 
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area was then used to calculate the percentage imper
vious cover within each classification. For example, 
classification-type 21 includes areas with a mixture of 
constructed materials and vegetation. Constructed mate
rials account for 30–80 percent of the cover. Therefore, 
for all areas designated with a classification code 21, 
50 percent (approximate average) of the area was desig
nated as impervious cover. The three codes designated 
as developed were 21 (low intensity residential), 22 
(high intensity residential), and 23 (commercial/indus
trial/transportation). For each drainage area, and each 
code designated as developed, impervious cover was 
calculated and summed to obtain the total approximate 
impervious cover per hand-delineated drainage area. 
The percentage impervious cover analyzed were gen
eral averages of what the impervious cover was for each 
drainage area in 1992. 

[i]	 Karst is defined (Bates, 1987, p. 356) as a type of terrain 
associated with limestone and other readily dissolved 
rock, which is characterized by sinkholes, caves, and 
considerable underground drainage. The limestone and 
karst-like watersheds in and around the Austin and San 
Antonio areas also have an abundance of fractures and 
faults. These R = 1 watersheds therefore are expected to 
have considerable capacity to abstract an absolute value 
of rainfall and substantially affect losses after initial 
abstraction is satisfied. 

[j]	 The watershed scale dependency of this conclusion is 
not explored in this report. Whereas, about 15 minutes 
is the mean εTQp , as a percentage of T Qp for a given 
watershed, 15 minutes might represent a substantial tim
ing error (for small watersheds or those with small L) 
or an unsubstantial timing error (for large watersheds or 
those with large L). 

Prepared by the USGS Lafayette Publishing Service Center. 

Information regarding water resources in Texas is available at 
http: //tx.usgs.gov/ 
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