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Disclaimer 

The contents of this report reflect the views of the authors (Cleveland, T.G. and Fang, Z.N.), 
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do not necessarily reflect the official view or policies of the Federal Highway Administration 
(FHWA) or the Texas Department of Transportation (TxDOT). The chapter herein titled 
“Chapter 4: Technique to estimate generalized skew coefficients of annual peak streamflow for 
natural watershed conditions in Texas, Oklahoma, and eastern New Mexico” does represent 
the views of the U.S. Geological Survey. Any use of trade, firm, or product names is for 
descriptive purposes only and does not imply endorsement by the U.S. Government. This 
report does not constitute a standard, specification, or regulation. This report is not intended 
for construction, bidding, or permit purposes. The State of Texas does not endorse products 
or manufacturers. Trade or manufacturers’ names that appear herein are solely because they 
are considered essential to the object of this report. 

The researcher in charge of this project was Dr. Theodore G. Cleveland, Ph.D., P.E., at 
Texas Tech University, Lubbock, Texas. 

There was no invention or discovery conceived or first actually reduced to practice in 
the course of or under this contract (to date), including any art, method, process, machine, 
manufacture, design, or composition of matter, or any new useful improvement thereof, or 
any variety of plant, which is or may be patentable under the patent laws of the United 
States of America or any foreign country. 



Abstract 

Research Project 0–6977, performed in joint collaboration between researchers at Texas Tech 
University, the University of Texas at Arlington, and the U.S. Geological Survey (USGS) 
Oklahoma-Texas Water Science Center, aimed to update the Texas generalized skew map 
and its mean-square error (chap. 4) for the Texas Department of Transportation (TxDOT) 
Hydraulic Design Manual. The research was conducted using at least 30 years of streamflows 
acquired from 444 USGS streamgages in Texas, Oklahoma, and eastern New Mexico. A novel 
application of a generalized additive model is used for 2-dimensional spatial regression on 
so-called station-skew values from the streamgages to create predictions of generalized skew 
on the 1-kilometer USGS National Hydrogeologic Grid clipped to the study area. 

Training materials (chap. 5) were produced from this research with examples on flood 
frequency analysis oriented around Bulletin 17C for Texas watersheds. The research also 
extended understanding of flood hydrology in the region by conducting (1) climate sensitivity 
of peak streamflows (chap. 6), (2) experimental evaluation of a USGS multiorder hydrologic 
position metrics (chap. 7), and (3) experimental accommodation of effects of regulation 
(chap. 8). 

This report along with its applicable data, archived into the Texas Digital Library 
(https://tdl.org) Texas Data Repository (Cleveland and Fang, 2021, https://doi.org/ 
10.18738/T8/SVLCOQ), and the three USGS publications resulting from Research Project 
0–6977 establish a comprehensive and well-documented update of generalized skew and set 
a foundation for future statistical research into Texas, Oklahoma, and eastern New Mexico 
flood hydrology. 
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1. Introduction 

The flood hydrology of Texas, Oklahoma, and eastern New Mexico (east of the Great 
Continental Divide) is complex because of a myriad of meteorological and physiographic 
factors, and flood hydrology is typically studied using the annual peak streamflow data 
collected by the U.S. Geological Survey (USGS) at streamgages. Hydraulic design engineers 
need standard of practice guidance for various tasks involving the analysis and application 
peak streamflow information. Analyses of this information materially influences bridge design, 
operational safety of drainage infrastructure, flood-plain management, and other decisions 
affecting society. 

Research Project 0–6977, which was performed in joint collaboration between researchers 
at Texas Tech University, the University of Texas at Arlington, and the USGS Oklahoma-
Texas Water Science Center, was tasked with a primary objective of updating the Texas 
generalized skew map and its mean-square error. Secondary objectives of the research were to 
provide, as shown in this report, training materials using Texas watershed examples on flood 
frequency analysis and example impacts of the updated generalized skew. Tertiary objectives 
of the research reported on herein further extend understanding of flood hydrology in the 
region inclusive of (1) climate sensitivity of peak streamflows, (2) experimental evaluation of 
a USGS multiorder hydrologic position (MOHP) metric that is gridded at continental scale 
and expresses stream reach position on the landscape, and (3) experimental accommodation 
of effects of regulation. 

1.1. General Approach 

The general approach was to aggregate foundational datasets of annual peak streamflows 
from the USGS National Water Information System (NWIS) (U.S. Geological Survey, 2018) 
for USGS streamgages. The research selected 1,703 streamgages in the study area as a basis 
for data retrieval. These streamgages have at least 6 years of annual peak streamflow data 
and constitute the vast majority of peak streamflow information for the study area housed in 
NWIS. Of the 1,703 streamgages, a subset of 444 streamgages was chosen for the primary 
objective of updating generalized skew. These 444 streamgages had at least 30 years of 
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data from unregulated and undeveloped watershed conditions. The term “natural watershed 
conditions” then is used elsewhere in this context. 

Extensive watershed properties were computed for all 1,703 streamgages. NWIS tradition-
ally only stores the official USGS drainage area and contributing drainage area of streamgages. 
Other watershed properties, such as mean annual precipitation or main-channel slope, though 
are useful for statistical study of flood hydrology. The USGS MOHP was determined for 
the streamgages. The MOHP is a recent advance by the USGS for depiction of position or 
drainage order of a given grid cell relative to the terrain and drainage divides. This MOHP 
has never been reviewed for its information content in statistical flood hydrology for the 
study area. 

Peak streamflow regulation by dams (reservoirs) in the study area can substantially alter 
summary statistics and in turn complicate interpretation of standard of practice methods for 
hydraulic engineering decision and decisions. This project also aggregated the U.S. Army 
Corps of Engineers National Inventory of Dams (NID) through software to bind, that is, 
associate, cumulative year-by-year reservoir storage to year-by-year annual peak streamflows. 

The academic investigators of the project team worked to assemble non-citable Technical 
Memoranda for TxDOT project managers during project tenure. These were intended 
to report on current progress towards contractual task obligations and elevate situational 
awareness of managers. Material from those technical memoranda has been abstracted and 
used as needed in this final report. This final report presents a comprehensive review of 
research conclusions for the project. 

Accompanying this final report are citations to persistent, publicly-accessible publications 
by digital object identifier (https://doi.org). The project team has made the content 
supporting this final report transparently available in a novel combination of platforms 
including this final report (through the University of Texas Center for Transportation Research 
Library, https://ctr.utexas.edu), Texas Digital Library (https://tdl.org), and USGS 
publications (data releases at https://www.sciencebase.gov and software releases at https: 
//code.usgs.gov). The research team considers this combination of information outlets 
maximally stewards for future reference the most critical content stemming from TxDOT 
research sponsorship. 

1.2. Report Structure 

The final report for Research Project 0–6977 is organized as a series of chapters. Each chapter 
contains its own bibliography and this design highlights the stand-alone features of these 
report components. Chapters 2 and 3 largely follow the workflow chronology and these 
chapters are abstracted synopses about the non-citable Technical Memoranda produced for 
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TxDOT product managers during the course of the research (2019–21). These documents are 
archived in a persistent, publicly-accessible database and maintained by the Texas Digital 
Library (https://tdl.org) Texas Data Repository (Cleveland and Fang, 2021). 

The primary objective of the project was to update the generalized skew in the current 
(September 2019) Hydraulic Design Manual (Texas Department of Transportation, 2020). 
Chapter 4 is, therefore, the main product of this research and many readers could skip to 
this chapter to learn about the generalized updated skew values, how they were obtained, 
and where the results could appear in the Hydraulic Design Manual. Many readers will 
already know how to applied generalized skew in practice using Bulletin 17C (England et al., 
2018) and USGS PeakFQ software (U.S. Geological Survey, 2020). However, for readers who 
have not previously used generalized skew, some training material specific to Texas examples 
of flood frequency analyses using the updated generalized skew (chap. 4) are presented in 
chapter 5. Finally, chapter 4 provides a suggested citation to that chapter ahead of its textual 
content; this feature is implemented because that particular chapter represents the views of 
the USGS, which means that the contents of the chapter have been peer reviewed and have 
received “bureau approval” by the Director of the USGS. 

Chapters 6, 7, and 8 report on tertiary project objectives to extend understanding of 
flood hydrology in the study area. The chapters are to be read as stand-alone “white papers” 
as it were, and possible parlance would be to use the term “yellow paper” instead because 
“[a yellow paper] is a document containing research that has not yet been formally accepted or 
published” from https://en.wikipedia.org/wiki/White_paper (accessed June 27, 2021). 

These three chapters present results of experimental or exploratory research conducted 
for this project thought to be of value related to flood hydrology in Texas, Oklahoma, and 
eastern New Mexico. These chapters have been titled as special studies; they are suitable for 
future investigation someday and represent some emergent thinking about flood hydrology 
stemming from the project. Finally, chapter 9 is the summary and conclusions for the entire 
research project. 

1.3. Data Sources 

The annual peak streamflow data used in this study reside in NWIS (U.S. Geological Survey, 
2018). These data are readily retrieved using an Internet browser or from structured computer-
based data retrievals. The authors regularly use the dataRetrieval package (DeCicco et al., 
2020) in the R language (R Core Team, 2020) for these computer-based data retrievals. 
The dataRetrieval package is published by the USGS (canonical USGS home page is https: 
//code.usgs.gov/water/dataRetrieval [accessed June 26, 2021]), is highly optimized for 
interfacing with https://waterservices.usgs.gov/ (accessed June 26, 2021), and is the 
major automation portal to public NWIS data. The following two sections identify other 
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data sources, or more precisely, the archival of data and software sources associated with 
other aspects of the research project. 

1.3.1. About Texas Data Repository Archival 

Texas Digital Library (https://tdl.org) Texas Data Repository (Cleveland and Fang, 2021) 
houses the typesetting sources for this final report. More importantly, however, is that 
Cleveland and Fang (2021) contains in a directory-structured layout copies of USGS data as 
reported on in the next section but also the functional scripts in the R language (R Core 
Team, 2020) used for statistical computations. Within this report and at critical junctures, 
references to file names along directory paths of Cleveland and Fang (2021) are made using a 
monospaced font (as shown). This references are present to foster research transparency 
and science equity at the terminal end (August, 2021) of the research project. 

1.3.2. About USGS Datasets and Software Publications 

For study of flood hydrology in Texas, Oklahoma, and eastern New Mexico, the USGS as 
a participating project team member published a data release (Yesildirek et al., 2021) on 
watershed and ancillary properties for 1,703 USGS streamgages, specialized automation 
software (scNIDaregis) (Asquith et al., 2021) for working with the NID to preprocess such 
data into watershed- and streamgage-specific time series of cumulative reservoir storages 
for statistical hydrologic study, and software (Asquith, England, and Herrmann, 2020) for 
computation of the multiple Grubbs–Beck test following Bulletin 17C guidelines (England 
et al., 2018). The three USGS publications identified in this section represent the views of 
the USGS, which means, like chapter 4, that the contents have been peer reviewed and have 
received “bureau approval” by the Director of the USGS. 

Chapter References 
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tabulation: U.S. Geological Survey software release, Reston, Va., https://doi.org/10.5066/ 
P90NJVB9. 
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outlier test: U.S. Geological Survey software release, R package, Reston, Va., accessed July 27, 
2020, at https://doi.org/10.5066/P9CW9EF0. 
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2. Literature Review 

This chapter replicates much of TM2 which is archived at at the Texas Digital Library 
dataverse repository (Cleveland and Fang, 2021) in the directory 0-6177-dataverse-
archive/technical_memos/. The chapter is repeated here for continuity with the orig-
inal research scope of work and to establish the knowledge the researchers had collectively 
accumulated circa 2019. 

2.1. Analysis Methods 

Tasker and Stedinger (1986) developed a weighted least squares (WLS) procedure for estimat-
ing regional skewness coefficients based on sample skewness coefficients for the logarithms 
of annual peak-streamflow data. Their method of regional analysis of skewness estimators 
accounts for the precision of the skewness estimator for each streamgage, which depends 
on the length of record for each streamgage and the accuracy of an ordinary least squares 
(OLS) regional mean skewness. These methods automated much of B17B process and were 
incorporated into software used for streamgage analysis. 

More recently, Reis and others (2005), Gruber et al. (2007), and Gruber and Stedinger 
(2008) developed a Bayesian generalized least squares (B-GLS) regression model for regional 
skewness analyses. Use of a generalized least squares (GLS) model allows the incorporation of 
the cross correlation of skewness estimators. Cross correlation arises, as skewness estimators 
are dependent upon concurrent cross correlation flood records. The Bayesian method allows 
for the computation of a posterior distribution of both the regression parameters and the 
model error variance. 

As shown in Reis and others (2005), for cases in which the model error variance is small 
compared to the sampling error of the at-site estimates, the Bayesian posterior distribution 
provides a more reasonable description of the model error variance than both the GLS method 
of moments and maximum likelihood point estimates (Veilleux, 2011). 

Whereas weighted least squares (WLS) regression accounts for the precision of the regional 
model and the effect of the record length on the variance of skewness coefficient estimators, 
GLS regression also considers the cross correlations among the skewness coefficient estimators. 
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The B-GLS regression procedures extend the GLS regression framework by also providing 
a description of the precision of the estimated model error variance, a pseudo analysis of 
variance, and enhanced diagnostic statistics (Griffis and Stedinger, 2009). 

Because of complications introduced by the use of the Expected Moments Algorithm 
(EMA) (Cohn et al., 1997) and large cross-correlations between annual peak streamflows 
at pairs of streamgages sites, an alternate regression procedure was developed to provide 
both stable and defensible results for regional skewness coefficient models (Veilleux, 2011). 
This alternate procedure is referred to as the B-WLS/B-GLS regression framework (Veilleux, 
2011; Veilleux et al., 2011). It uses an OLS analysis to fit an initial regional skewness model; 
that OLS model is then used to generate a stable regional skewness coefficient estimate 
for each site. That stable regional estimate is the basis for computing the variance of each 
at-site skewness coefficient estimator employed in the WLS analysis. Then, B-WLS is used 
to generate estimators of the regional skewness coefficient model parameters. Finally, B-GLS 
is used to estimate the precision of those WLS parameter estimators, to estimate the model 
error variance and the precision of that variance estimator, and to compute various diagnostic 
statistics, including Bayesian plausibility values, pseudo adjusted R squared, pseudo analysis 
of variance table, two diagnostic error variance ratios, as well as leverage and influence metrics. 
This method has been successfully used to generate regional skew estimates in various parts 
of the Nation but not the Nation as a whole. 

2.1.1. Recent Techniques within/comparable to Bulletin 17C 

In Bulletin 17C (England et al., 2018), the multiple Grubbs–Beck test (MGBT) are rec-
ommended for the detection of potentially influential low floods (PILFs) (“low outliers” 
remains the preferred term in Texas flood hydrology). The new MGBT was developed as 
an improvement to the Grubbs–Beck test (GBT) (Grubbs and Beck, 1972) used in Bulletin 
17B. The MGBT is a statistically appropriate generalization of the GBT test, and is sensitive 
to the PILFs. The MGBT also correctly evaluates cases where one or more observations 
are zero, or are below a recording threshold (partial record sites). Thus, MGBT provides a 
consistent, objective, and statistically defensible algorithm that considers whether a range of 
the smallest observations should be classified as outliers (or PILFs) for a much wider range 
of situations (England et al., 2018). 

2.1.2. Outlier Detection and Handling 

Outliers are observations that depart from the overall pattern of a distribution. The presence 
of an outlier indicates some sort of problem (from a statistical perspective), such as a case 
that does not fit the model under study (an observation form a different process—hurricane 
as compared to a synaptic storm), or an error in measurement. 
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(a) Normalized observations with the far left (b) Normalized observations with the far left 
plotting data point being influential that is plotting data point being influential and an 
not an outlier. The trend line fits all the data outlier. The trend line is leveraged away with 
. poor fit to the other data. 

Figure 2.1. Example of normalized observations in the context of outlier detection. 

Figures 2.1a and 2.1b illustrate the influence of outliers. The single value in figure 2.1b at 
the left end of the series changes the model result (the slope of the red curve is decreased). 
Outliers such as these can impact the overall analysis, and if the values are indeed outliers 
then the resulting extrapolations after distributional fitting will be suspect. 

Low outliers (as depicted above) have an effect on computed skews (PILFs in the introduc-
tory sentence of this section). High outliers also exist. The skewness coefficient is sensitive to 
extreme values, and outliers left unconsidered will exert influence on the computed coefficient. 

Figure 2.2 illustrates the analytical choices; the red curve passed through the data cloud 
is based only on the values lying above the “alternative low-outlier threshold.” Were these 
values included in the analysis, the curve would be bent even further, and to preserve fit have 
an increased average slope that would result in the extrapolated estimates (right side of the 
curve) being larger than suggested by the outlier-free series. 

Paretti et al. (2014) evaluated the EMA and a multiple low-outlier test on streamgage 
stations in Arizona (one such streamgage is depicted in the illustrative figure). The authors 
concluded that that EMA-MGB performed as well or better than B17B-GBT, especially when 
low outliers were present and (or) historical information was available. In addition, EMA-
MGB properly addresses PILFs using MGBT to ensure that zero and low-flow peaks that 
depart from the trend of the data have remarkably little influence on the frequency fit. Finally, 
the findings support those of previous studies that indicate the efficacy of EMA-MGBT and 
that EMA-MGBT is a suitable successor to traditional B17B-GBT methods. 
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Figure 2.2. Results of low-outlier analysis for annual peak streamflows. Bulletin 17B 
(Grubbs–Beck) would only conditionally remove a single lowest value. An 
experienced practitioner would likely choose a threshold between 30 and 200 cubic 
feet per second. Bulletin 17C (multiple Grubbs–Beck test) automatically selects a 
threshold as alternatively shown that truncates the lowest five peak streamflows. Fit 
in the upper (right-hand) tail of the fitted Pearson type III distribution is enhanced 
and often the effect is that the skewness of the distribution is reduced as 
low-outliers are removed. 

The substantial effort in Paretti et al. (2014) and other prior studies is embedded in the 
Bulletin 17C tools to identify both low- and high-outliers within a data series and provide 
mechanisms to censor or replace these values with values that honor the existence of the 
observation, but reduce its potential influence on the estimated distributional characteristics. 

Because EMA allows for the censoring of low outliers, as well as the use of estimated interval 
peak streamflows for missing, censored, and historic data, it complicates the computations of 
effective record length (and effective concurrent record length) used to describe the precision 
of sample estimators because the peak streamflows are no longer solely represented by single 
values (Veilleux et al., 2012). 
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2.2. Texas Flood Distributions 

The distribution shapes of Texas flood distributions might be expected to show complex 
interaction between space as in a conventional skew map (Judd et al., 1996) and ancillary 
watershed properties (Asquith, 2001). Regulation (discussed below) is one of these ancillary 
properties that are to be addressed. 

2.2.1. Effects of Regulation by Dams and Reservoirs 

Historically, a natural watershed in Texas has been defined by the USGS as a watershed 
with less than 10-percent impervious cover, with less than 10 percent of its drainage area 
controlled by reservoirs, and no other human-related factors that would affect peak streamflow. 
Benson (1962, 1964) determined that about 100 acre-feet per square mile (acre-ft/mi2) of 
flood storage in the drainage area reduces the annual peak streamflow by about 10 percent 
in humid areas, and that about 50 acre-ft/mi2 of flood storage reduces the annual peak 
streamflow by about 10 percent in arid areas. Such criteria serve as loose guidance for 
assessing whether a watershed is regulated or not. 

The degree of actual control (regulation) in a given part of a watershed is more use-
fully assessed on a more qualitative than quantitative basis, because regulation in reality 
encompasses a wide spectrum of human influences on annual peak streamflow. For example, 
a specific reservoir or suite of reservoirs might dramatically alter low flows and midrange 
flows, but leaves higher flows, such as the annual peaks, largely unaffected. The exclusion of 
higher flows from records at streamgages in the watershed will bias frequency analysis for that 
watershed—in essence, categorization as regulated potentially excludes valuable information. 

Peak streamflow in regulated watersheds is affected by runoff from the unregulated part of 
the watershed and by runoff from the regulated part of the watershed. The regulated runoff 
is affected by discharges from or retarded by dams or reservoirs and by the quantity, type, 
and spatial distribution of flood-detention or flood-retention structures, commonly termed 
“small floodwater-retarding structures.” 

Asquith (2001) quantified, and predicted effects of regulation on annual peak streamflow 
in Texas through changes in the L-moment statistics of the annual peak streamflow. The 
change in the L-moments of the streamflow was related to changes in reservoir characteristics 
(therefore, degree of regulation). Analysis of the relations between the L-moment and the 
variables representing regulation indicated that L-moments other than the mean are negligibly 
affected by regulation, and that as potential flood storage in a watershed increases, the mean 
annual peak streamflow decreases nonlinearly. The effect on the mean supports the conjecture 
above of a bias on the frequency analysis at a streamgage, and the non-liner behavior suggests 
a strong geographic influence is contained in the data. 
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The designation of a watershed as natural, urban (a type of regulation) or regulated (though 
impoundment) is not sufficient to accurately express the degree of regulation because of the 
presence of complex arrangements of flow altering structures in the majority of watersheds 
across the entire range of drainage areas in Texas. Such structures include contour-plowing 
of agricultural lands for erosion control and enhanced water retention, bulldozed earthen 
embankments on the smallest of usually dry tributaries forming “Texas stock tanks,” low-head 
dams built nearly as high as the tops of stream banks, small floodwater-retarding structures, 
constant-level recreational and water-supply reservoirs, and colossal flood-control reservoirs on 
many of the rivers in Texas. Peak streamflows from reservoirs represent controlled discharges 
(releases) and uncontrolled discharges through pipes, spillways, or other structures. Controlled 
releases often are dictated by flood-management practices and water-supply concerns, which 
might have opposing objectives. There are more than 200 major reservoirs in Texas—those 
having maximum storage capacities in excess of 10,000 acre-feet (acre-ft). This total also 
includes a few off-channel and diversion-oriented reservoirs. 

Until recently, the ability to use this information was not well articulated so the censoring 
in the streamflow records was a logical—however most tools and analyses ignore these records 
as part of routine analysis. Recent concepts and tools may allow the extension of records (for 
skew analysis) using geographic information systems to extract the portion of a watershed that 
is unregulated, as well as use the distance from the regulatory structure to the streamgage as 
a regionalization tool to extend the utility of existing databases by accounting for regulation, 
and its associated covariation. 

2.2.2. Distal Tail Shape or Distribution Curvature 

The general purpose for fitting a probability distribution is to represent the magnitude of 
floods across a wide spread of annual exceedance probabilities, and a reasonable probability 
distribution is especially important when extrapolations of the fitted frequency curve are to 
be made. 

To illustrate, consider figure 2.3, which is a screen capture from a streamgage. The figure 
displays about 100 annual peaks. Of these 100 values, 86 values plot within the range of 
10,000 to 30,000 cubic feet per second. Some 7 values plot above 30,000 cubic feet per second, 
and 7 values plot below 10,000 cubic feet per second. 

The extrapolation of these observations for high flow tendencies relies on the 7 high 
values; the 7 low values also influence the analysis, whereas the 86 values between 10,000 and 
30,000 cubic feet per second explain the mean behavior and variability with respect to 
±2 sample standard deviations. 

Figure 2.4 is representative of the same type of information plotted on a cumulative relative 
frequency versus a normalized (about the mean value) magnitude axis. The information 
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Figure 2.3. Annual peak streamflows at U.S. Geological Survey streamgage 01400500 Raritan 
River at Manville, New Jersey, used by Asquith et al. (2017) in study of several 
parameter estimation methods and distributions for modeling flood frequency within 
which much background of peak streamflow data in the USGS National Water 
Information System (NWIS) (U.S. Geological Survey, 2018) is also provided. 

used to extrapolate and estimate streamflows for low annual exceedance probability (rare 
events, large magnitudes) is contained in the upper right-hand corner indicated by the circle 
on the figure. The lower left-hand corner of the figure contains low flow information. In the 
figure, both these regions of the cumulative distribution are in locations with substantial 
curvature, which itself presents much of the analytical challenge. The central portion contains 
information about the mean annual streamflow (central location on the real-number line). 

Asquith et al. (2017) studied shape and distributions going deep into the distribution 
tail (the upper right hand corner of fig. 2.4). This low annual exceedance probability, high 
magnitude portion lies beyond the typical design requirements (in probability space), but is 
of immense policy importance for extremely rare events of large magnitude and destructive 
capability. Asquith et al. used data from two selected USGS streamgages, and invented a 
framework to quantify uncertainty in analyses of peak-streamflow frequency attributable 
to two sources: (1) the choice of the distribution to which the frequency curve is fit and 
(2) sampling error with respect to a chosen quantile and distribution. Emphasis was placed 
on the distribution choice uncertainty as a means to express or further explain however much 
uncertainty in extreme flood quantiles exists. The distribution choice is important because its 
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Figure 2.4. Representative probability density function and cumulative distribution function 
schematically derived from a time series of annual peak streamflows with a high light 
as to the relative position and mean of the rail tail (upper tail) of the distribution. 

shape and behavior in the curved portions of the plot determines the extrapolated behavior 
value (yet one has only 7 percent of whatever sample population to assess the “fit” in this 
region). 

Asquith et al. (2017) performed parameter estimation using product moments (EMA if 
historical information is present) by USGS PeakFQ software 7.2 (U.S. Geological Survey, 2020), 
and L-moments, resulting in frequency curves for the distributions. The effort considered 
alternative and complementary methods to fit probability distributions include product 
moments, maximum likelihood (MLE), expected moments algorithm (EMA), L-moments, 
and maximum product of spacings (MPS). 
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Asquith et al. (2017) concluded that estimation of at-site peak-streamflow frequency for 
very low annual exceedance probability is a difficult problem; in part because event rarity 
may be so extreme that the actual presence of such events in observational datasets will be 
extremely unusual. They further conclude that distribution choice uncertainty is considerably 
larger than sampling uncertainty for very low annual exceedance probabilities. However, the 
choices of the practically useful distributions within EMA, USGS PeakFQ software produce 
useful and comparable results at typical design probabilities of interest to Departments of 
Transportation. 

2.3. Regionalization Methods 

The third moment of the log-Pearson type III distribution (or other appropriate distribution) 
is the skewness coefficient, which is sensitive to extreme events, such as large floods. Thus, 
an accurate estimate of the skewness coefficient is important in flood frequency analysis 
because the majority of the interest is focused on the large flood events. However, short 
record lengths at gaged sites make a regional estimate of skew valuable in determining flood 
frequency estimates. 

Historically, regional regression analysis used an OLS framework that considers the residual 
errors to be homoscedastic and independently distributed. However, the estimates of the 
variable of interest at different gaged sites have different precision because of differences in 
record length and possible differences in the precision of measurements and their variability 
Tasker and Stedinger (1989). Tasker and Stedinger (1986) and Tasker and Stedinger (1989) 
developed a Generalized Least Squares (GLS) framework, which considers both differences in 
record lengths and precisions, as well as cross-correlation among station estimators because 
station estimators are generally correlated. 

Asquith, and Thompson (2008) and Asquith and Roussel (2009) developed regression 
equations for Texas borrowing these regionalization techniques and building an extension 
using a non-linear residuals minimization technique (PRESS) that incorporated locational, 
and geomorphic characteristics (expressed as a single geospatial residual correction parameter 
referred to as “OmegaEM”). Asquith et al. (2013) used regionalization techniques and 
generalized additive modeling (a type of regression technique) to develop from an extensive 
streamflow database to produce predictive models of important hydraulic variables for Texas 

Veilleux et al. (2011) developed statistical techniques for estimating regional skewness 
coefficients for flood frequency analysis in the United States using a Bayesian generalized least 
squares (B-GLS) regression framework. In that framework, a normalized distance was used to 
determine the likelihood that two drainage watersheds are nested, whereas the drainage-area 
ratio method is used to determine if two nested watersheds are sufficiently similar in size 
that they are essentially or are at least in large part the same watershed for the purposes 
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of developing a regional hydrologic model. Asquith, Roussel, and Vrabel (2006) describe 
applications of the drainage-area ratio method based on Texas hydrology. 

2.4. Chapter Conclusions 

EMA-MGB is a clearly suitable successor to traditional B17B-GB methods and is to be 
employed (within B17C using PeakFQ) for outlier handling in the present research. An 
analytical framework (within B17C) allows for comparison and selection of distributional 
choice and should be leveraged for the present research to select an appropriate distributional 
model for Texas. Recent work using independent tools allows for a measure of quality 
control/quality assurances that did not exist two decades prior. 

Recent regionalization tools will support the development of a new skewness coefficient for 
Texas, and longstanding concerns of “out of the box” B17B procedures (too few low outliers 
identified as a rule) for hydrology in the study area should be mitigated with presence of 
MGBT and the revised skewness coefficient. Bulletin 17C, an updated tool that incorporates 
methods (including those listed above) developed in the three decades since the Bulletin 17B 
and is the primary tool to be used in the present research. Data from otherwise regulated 
effected streamgages appears to be extractable and should further extend the capabilities of 
the B17C results and produce longer effective record lengths, that in-turn, lead to improved 
estimates of flood-frequency curves. 
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3. Foundational Data Assembly 

This chapter summarizes contents of interim reports TM3A, TM3B, TM4A, and TM4B. 
The interim reports are archived in Cleveland and Fang (2021) located in the directory 
0-6177-dataverse-archive/technical_memos/. File paths in those documents, then con-
temporaneously sent to TxDOT, refer to contents of a repository within the physical Texas 
Tech University data center, which was decommissioned by the lead author on August 31, 
2021. 

TM3 reports details the foundational data assembly for streamflow and watershed proper-
ties and TM4 reports the preparatory data processing applied to streamflow records, leveraged 
with associated watershed properties, to produce the derivative databases used for skew 
regionalization. The results of these two activities comprise the foundational data set and 
subsequent analysis for method development. 

3.1. Synopsis of TM3A 

TM3A presents the process used to identify suitable U.S. Geological Survey (USGS) stream-
gages in Texas and neighboring states and prepare datasets for further analysis (as well as 
archival tables). Research into extending the utility of streamgages, or more specifically, their 
annual peak streamflows, that are coded as regulated is included. The scope included: 

1. Research into suitability of streamgages in the research area, Texas and proximal to 
borders, Oklahoma and New Mexico east of the Great Continental Divide. Stream-
gages in association with special circumstances, reservoir side weirs, canals, and 
springs are identified and removed from consideration. Remaining streamgages 
with at least 6 years of record are retained for further consideration. A list of USGS 
streamgage identification numbers and summaries of periods of record was produced; 
and 

• The relevant data files from this step are at the Texas Digital Library dataverse 
repository Cleveland and Fang (2021) at: 0-6177-dataverse-archive/final_ 
report/src/GenSkew/sitetable/GenSkewMasterSiteList.txt and discussed later 
in chapter 4. 
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2. The annual peak streamflow data for the streamgages are segregated into undevel-
oped (urban watersheds are given a code “C” in USGS databases) and unregulated 
(regulated watersheds are given a code “6” in USGS databases). Wagner et al. (2017) 
provide background on the USGS peak streamflow database. This segregation pro-
duced two collections of data: one in the “WATSTORE” format for USGS PeakFQ 
software 7.3 (U.S. Geological Survey, 2020), another in ASCII format and simpler 
tab-delimited peak streamflows. These formats are both ASCII (plain-text) but orga-
nized differently. Special manual adjustments were performed to discharge qualifica-
tion codes to ensure that each streamgage has at least two years of non-code 6 or C 
(Wagner et al., 2017) regardless of the original data because the USGS PeakFQ soft-
ware 7.3 (U.S. Geological Survey, 2020) requires at least two data points to generate 
an output screen, otherwise the program exits with an error code. 

• The relevant data files from this step are also in Cleveland and Fang (2021) 
located in the directory: 0-6177-dataverse-archive/final_report/src/GenSkew/ 
data/pkfq/... and therein are individual directories titled in the pattern .../ 
07148350d/ for the first streamgage with the identification number 07148350 and 
so on for the remaining 444 steamgages ultimately retained for constructing the 
regional skew estimates discussed in chapter 4. 

3.2. Synopsis of TM3B 

TM3B presents the watershed properties assembled to support subsequent regionalization for 
the Texas generalized skew update. The scope included: 

1. Determine relevant watershed metrics such as contributing drainage area, main-
channel slope, 10-85 percent (between 10 to 85 percent of the channel length) slope, 
shape (as in the definition of main-channel length squared divided by area), mean 
annual precipitation, centroid (of watershed) location, and solar radiation as explana-
tory variables for regionalization of skew and other distribution shapes for Texas. 
Most of these properties already exist in some content in the USGS National Water 
Information System (NWIS) (U.S. Geological Survey, 2018) of the related stream-
gages and the effort was to extract these values and organize them is a fashion specif-
ically useful to the present project; 

2. Aggregate non-sensitive dam (reservoir) information related to peak streamflow from 
the United States Army Corps of Engineers (USACE) National Inventory of Dams 
(NID) (U.S. Army Corps of Engineers, 2020). The relations are based on hydraulic 
and hydrologic principles and specifically deal with storage information, pool eleva-
tions, and release behavior. Stemming from Research Project 0–6977, the USGS has 
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published software to process the NID for purposes of statistical analyses of USGS 
annual peak streamflow (Asquith et al., 2021); 

3. Derived properties including the functional drainage area (FA) and functional dis-
tance (FD) for streamgages identified as containing regulatory structure (for exam-
ple, the intersection of streamgage drainage area polygons and reservoir locations); 

4. Relevant watershed hydrologic properties classified as morphometric, hydrologic 
(other than the common metrics), pedologic (soils)/geologic/land use, and climatic. 

• The relevant data files for steps 1, 3, and 4 above are containted in Cleveland and 
Fang (2021) located at: 0-6177-dataverse-archive/data/1703gages/; for step 2 
the relevant data are located in the directory: 0-6177-dataverse-archive/data/ 
scNIDaregis_1703/rawdata/. 1 

3.3. Synopsis of TM4A 

TM4A presents results of trend analyses performed on the streamflow databases built during 
the data assembly steps of the previous chapter. The research scope included: 

1. Perform a simple trend analysis to produce a table of streamgage identification num-
ber, total years of record, record range, Kendall’s Tau and attained significance 
(p-value), and potentially other salient trend testing results, such as change point 
analyses (PELT or Pettit test), a temporal integration of the construction of dams 
in the NID (Asquith et al., 2021): streamgage, water year, and cumulative reservoir 
storage details; 

• The results for this step were reported in TM4A and incorporated into 
other databases used herein. A copy is archived in Cleveland and Fang (2021) 
located at 0-6177-dataverse-archive/data/various_interim_results/ 
gagesIIIrecordSummary_alltail.txt;2 

2. Build and deploy a multiple Grubbs–Beck Test (MGBT) software for outlier identifi-
cation software tool for independent, meaning separate from Bulletin 17C, code base 
as implemented in USGS PeakFQ software 7.3 (U.S. Geological Survey, 2020), for 

1The enclosing directory scNIDaregis 1703/ contains the scripts to process the data files and is a copy 
of the v1.0.0 release of Asquith et al. (2021), which is the canonical homepage of that USGS released 
software. 

2 File is included in Cleveland and Fang (2021) for completeness, its contents are not used as-is, but 
instead were incorporated into other database files used in subsequent processing; the README.md file in 
the enclosing directory has an explanation of the purpose of file retention. 
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comparative estimation of low-outlier thresholds. A software package (Asquith, Eng-
land, and Herrmann, 2020) was developed and approved by the USGS in September 
2019 and was used in evaluating streamgage data as a prelude to skew regionaliza-
tion to form a generalized skew estimate; and 

3. Process annual peak streamflow of site-specific skew for the 444 streamgages using 
B17C-EMA+MGBT methodology in the PeakFQ software 7.3 (U.S. Geological 
Survey, 2020) to produce the primary generalized skew estimates from data in the 
NWIS at the time of processing (peak streamflows up to water year 2017).3 Results 
germane to this step are major components of chapters 4 and 5, and discussion is 
deferred to those chapters. Listing this step here is to set some context to workflow 
chronology. 

3.4. Synopsis of TM4B 

TM4B discussed the application of Asquith, England, and Herrmann (2020) to the 444 long-
record streamgages that formed the basis for the regional skew study as well as exploratory 
investigation into climate state classification (wet or dry) starting from the 1,703 master 
streamgage list for this study. The research scope included: 

1. Coordinate with contemporaneous studies by USGS New Mexico and Oklahoma 
for those respective state-based Departments of Transportation that are either on-
going or contemporaneous; the coordination provided a quality assessment relative to 
adjacent states and these are reported in chapter 4; 

2. Explore use of a wet or dry climate classification state with such a binary classifica-
tion based on monthly climate indices aligning with the months of the annual peak 
streamflows that approximately bifurcate each streamgage record into halves. This 
effort is reported herein as chapter 6; and 

3. Use MGBT estimates from Asquith, England, and Herrmann (2020) to process 
annual peak streamflow of site-specific skew for the systematic record of the 1,703 
streamgages to generate skew and higher moment (shape) estimates using various 
methods and skew estimation procedures. The results of this step help inform the 
generalized additive modeling effort reported in chapter 4. 

3 There is a couple of year gap from 2017 to about the time PeakFQ analyses were started for this 
project because peak streamflows for 2018 and 2019 where not accessible from public USGS data 
interfaces because the USGS was is transition from one enterprise software system supporting the 
National Water Information System to another. Internal to the USGS, the so-called PKENTRY program 
(entry of peak streamflows into the database) was disabled. 
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3.5. Persistent Archives of Applicable Data 

The watershed and ancillary property databases compiled for TM3A and TM3B were 
synthesized into the USGS data release by Yesildirek et al. (2021). Figure 3.1 is a screen 
capture of the public facing web-landing page (https://doi.org/10.5066/P9A91W4Z) for 
the data release providing a persistent (long-term support) location for the data that was 
used in the research describe herein. 

The reservoir storage data compiled for TM3A and TM3B were synthesized into the 
USGS software release by Asquith et al. (2021) as shown in figure 3.2. This software was 
used to support experimental research reported in chapter 8. As always and forever, the peak 
streamflow data are acquirable from NWIS (or future derivatives) (U.S. Geological Survey, 
2018). 

For purposes of archival data immediately associated with the 0–6977 Research Project, 
the aforementioned data are placed into the project archive in Cleveland and Fang (2021) along 
the file path: 0-6177-dataverse-archive/data/peaks props NID 1703.feather.zip. The file 
contains records for 1,703 USGS streamgages with 185 columns of information and the number 
of peak streamflows represented equals 59,663 through about the 2020 water year. This 
datafile was used in experimental research described in chapters 7 and 8 in this report. 

It is useful to conclude this chapter through a depiction of the relative frequency of peak 
streamflows by water year, which is shown in figure 3.3. The figure caption credits TxDOT 
for responsibility for part of the streamgage increase beginning about the 2006 water year 
with a small-watershed streamgaging program with the USGS (Asquith and others, 2018; 
Asquith and Harwell, 2018; Harwell and Asquith, 2011). 
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Figure 3.1. Web-landing page screenshot for U.S. Geological Survey (USGS) data release by 
Yesildirek et al. (2021) comprehensively listing watershed properties and ancillary 
data for the 1,703 USGS streamgages of this study. There exists possibility to 
augment this master list of streamgages for study of Texas flood hydrology with 
more USGS streamgages as future USGS streamgages come online or other agency 
gages are incorporated and stakeholder interest exists. The title of the data release 
was chosen to not state a date range, which opens the possibility for expansion as 
TxDOT is currently (2021) sponsoring unrelated research activities, to the project 
that this report represents, involving additional and now (summer 2021) operational 
USGS streamgages specific to TxDOT needs that are not in the 1,703 streamgage 
count. 
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Figure 3.2. Web-landing page screenshot for U.S. Geological Survey (USGS) software release by 
Asquith et al. (2021) that facilitates temporal integration (accumulation) of the U.S. 
Army Corps of Engineers National Inventory of Dams (NID) for arbitrary watershed 
polygons and optional binding of year-by-year cumulative reservoir storages to 
USGS annual peak streamflow data from the USGS National Water Information 
System (U.S. Geological Survey, 2018). The software contains state-based, text-file 
copies of the NID with minor preparation to be used by the software. Updating the 
NID components therein or software revision as needed is possible. 
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Figure 3.3. Density estimation showing relative frequency of annual peak streamflows for U.S.
Geological Survey streamgages by water year represented in data archived in
Cleveland and Fang (2021). This includes Texas, Oklahoma, and eastern New
Mexico. The long-term persistent decline in number of peak streamflows from
about water year 1970 to about water year 2000 represents a decline in the number
of operational USGS streamgages. The decline was reversed at the beginning of the
21st century with increased stakeholder sponsorship of streamgages along with
about 50 streamgages sponsored by the Texas Department of Transportation
starting in about 2006 (Asquith and others, 2018; Asquith and Harwell, 2018;
Harwell and Asquith, 2011) and that are still operational as of 2021. The density is
only an approximation and the rapid fall off about 2020 is synthetic (artificial) by
the mathematics of the curve, which means it is not presentative of the exact count
of USGS streamgages in operation.
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Abstract 

Reliable information about the frequency of annual peak streamflow is needed for floodplain 
management, objective assessment of flood risk, and cost-effective design of dams, levees, 
other flood-control structures, and roads, bridges, and culverts. Generalized skew coefficients 
are among the data needed for log-Pearson type III peak-streamflow frequency analyses of 
annual peak streamflows. A technique is presented to estimate generalized skew coefficients 
used for log-Pearson type III peak-streamflow frequency analyses of annual peak streamflow 
from natural watersheds (minimal regulation and minimal impervious cover). The estimation 
of generalized skew coefficients was based on annual and historical peak streamflow data 
from an initial set of 444 selected USGS streamgaging stations (streamgages) with at least 
30 years of recorded annual peak streamflows from natural watersheds in Texas, Oklahoma, 
and the part of New Mexico east of the Great Continental Divide. The primary focus was 
to obtain information that could be used to update previously published generalized skew 
coefficients in Texas. 

31 



Of the 444 candidate streamgages, 341 were used in the final construction of statistical 
models. Two generalized additive models (GAMs) were used to predict generalized skew 
based on a 2-dimensional smooth on projected Albers equal area coordinates of either (1) the 
locations of the centroids of the gaged watersheds or (2) the streamgage locations. To create 
maps of generalized skew coefficients, predictions were made on a 1-kilometer grid and contour 
lines were superimposed. The centroid-location map, with a mean-squared error (MSE) of 
0.216, is preferred. Generalized skew coefficients from the centroid-location map, along with 
the MSE, are useful for computing weighted-skew values when conducting frequency analyses 
of annual peak streamflow following the guidelines set forth in Bulletin 17C. Based on the 
results of the study, text revision of the TxDOT Hydraulic Design Manual could be made. 

4.1. Introduction 

Reliable information about the frequency of annual peak streamflow is needed for flood-plain 
management, objective assessment of flood risk, and cost-effective design of dams, levees, 
other flood-control structures, and roads, bridges, and culverts. In 2019, the U.S. Geological 
Survey (USGS), in cooperation with the Texas Department of Transportation (TxDOT) and 
research colleagues at Texas Tech University and the University of Texas at Arlington, began 
a 3-year investigation into the statistical properties of floods in Texas; Oklahoma and the part 
of New Mexico east of the Great Continental Divide were included in the analysis because 
watersheds important for the analysis of generalized skew coefficients in Texas cross state 
boundaries. This chapter presents the specific results of the study, the goals of which were to 
update the 1996 generalized skew coefficients (generalized skews) in Texas (Judd et al., 1996) 
and the current (September 2019) TxDOT Hydraulic Design Manual (Texas Department 
of Transportation, 2020). An update is deemed useful because 25 years of additional data 
collection has occurred, and Federal guidance and governing mathematical steps on flood-
frequency analyses have been updated (England et al., 2018). Also, the inclusion of annual 
peak-flow records from eastern New Mexico and all of Oklahoma yielded a more rectangular-
like study area relative to that used in the 1996 analysis (Judd et al., 1996). All germane data 
and data-processing workflows are documented in Cleveland and Fang (2021) and Yesildirek et 
al. (2021). A top-level directory 0-6177-dataverse-archive/final report/src/GenSkew/ 
in Cleveland and Fang (2021) contains the archival material supporting this chapter. 

4.1.1. Physical Setting 

The climate and physiography of Texas vary considerably across the State (Carr, 1967). 
Accordingly, climatic and physiographic factors typically cause the annual peak streamflows 
at individual streamgages to be generally non-lognormally distributed and range by as much 
as five orders of magnitude. The non-lognormality and extreme range in peak streamflow 
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values make it difficult to estimate the frequency of annual peak streamflow (Asquith et al., 
2017). Climatic variability in Texas contributes substantially to the non-lognormality and 
extreme range of annual peak streamflow at streamgages in the State. Many near world-record 
precipitation events have occurred in Texas (Asquith, 1998; Watson et al., 2018). Long-term 
droughts that result in small annual peak streamflows referred to as low floods (low outliers) 
(England et al., 2018) at streamgages also can occur statewide (Winters, 2013). 

Much of the western one-half of the State contains alluvial basins, where high rates of 
evapotranspiration can cause substantial reduction of the smaller, more frequent annual peak 
streamflows than substantial floods; thus, the observed range in annual peak streamflow 
can be large at many streamgages. In contrast, many streams in the eastern half of the 
State gain streamflow from shallow groundwater. Additionally, in south-central Texas, the 
range in observed annual peak streamflow for streamgages can be large because of the loss of 
streamflow into fractured limestone bedrock during drought and because of extraordinarily 
large streamflows resulting from periods of abundant precipitation in conjunction with runoff 
from thin soils and steep slopes of the surrounding terrain (Asquith et al., 1995; O’Connor 
and Costa, 2018). 

4.1.2. Importance of Generalized Skew Coefficients 

Generalized skew coefficients are an important component of peak-streamflow frequency 
analyses of observed annual peak streamflows. The skew coefficient of the observed annual 
peak streamflows from a streamgage (station skew) is weighted with generalized skew to yield 
a more accurate estimate of skew (Interagency Committee on Water Data, 1982; England et 
al., 2018) and attendant enhancement of peak streamflow reliability. 

Bulletin 17C (England et al., 2018) is the most recent update to Federal guidance for 
frequency analysis of annual peak streamflow and supersedes Bulletin 17B (Interagency 
Committee on Water Data, 1982). Bulletin 17C recommends frequency analysis of annual 
peak streamflow using a Pearson type III (PE3) distribution fit to the logarithms of annual 
peak streamflow at a particular streamgage using parameter estimation. A skew value near 
zero for this distribution means that generally a lognormal-like distribution form predominates. 

The USGS computer program PeakFQ (U.S. Geological Survey, 2020a) often is used 
to compute frequency analysis of annual peak streamflow and compute station skew 
for each of the 444 streamgages included in this study. The canonical list of stream-
gages and basic identification information is presented by Cleveland and Fang (2021) 
along the file path: 0-6177-dataverse-archive/final report/src/GenSkew/sitetable/ 
GenSkewMasterSiteList.txt. The PeakFQ input and output information also is in Cleve-
land and Fang (2021) along the file path: 0-6177-dataverse-archive/final report/ 
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src/GenSkew/data/ and therein are individual directories titled in the pattern 
pkfq/07148350d/ for the first streamgage with the identification number 07148350. 

PeakFQ follows the Bulletin 17C guidelines for frequency analysis of annual peak stream-
flows, including incorporation of the expected moments algorithm (EMA) to compute the PE3 
distribution and the multiple Grubbs–Beck test (MGBT) for identifying low outliers referred 
to as “potentially influential low floods” (PILFs). Both annual and historical peak-streamflow 
records for each streamgage are used; a historical peak streamflow represents a major flood 
that occurred before, after, or during a gap in the gaged period of record that can be used to 
define an extended period during which the largest floods, either recorded or historical, are 
known. 

The station skew influences the shape or curvature of the final PE3 distribution for a 
frequency analysis. A skew value of zero for a fitted PE3 distribution results in a symmetrical 
distribution or linear plot on log-probability graphing scales. All other statistical parameters 
being equal, estimates of annual peak streamflow corresponding to small annual exceedance 
probabilities (less than 0.10) will be larger for positively skewed distributions and smaller for 
negatively skewed distributions (Asquith et al., 2017). 

Station skew computed for a streamgage with a period of record less than about 30 years 
tends to be less reliable for use in frequency analysis of annual peak streamflow than station 
skew computed for a streamgage having a longer period of record (greater than about 30 years). 
Therefore, Bulletin 17C recommends using a weighted skew in frequency analysis of annual 
peak streamflow (England et al., 2018, eq. 7.20). The weighted skew is computed by weighting 
the station skew with a generalized skew representative of the surrounding region, resulting 
in the weighted skew. The weights are based on the inverse of the respective mean-squared 
errors (MSEs) of the station skew and generalized skew. More thorough discussion of the 
weighted skew and its effects on the computations is available in Cohn et al. (2019) and 
England et al. (2018). 

4.1.3. Peak Streamflow Data 

This study estimates generalized skews based on station skews computed using annual and 
historical peak streamflow data from 444 selected USGS streamgages with at least 30 years of 
gaged records of annual peak streamflow that are also unaffected by regulation or urbanization 
in Texas, Oklahoma, and the part of New Mexico east of the Great Continental Divide. 
Streamgages in Oklahoma and part of New Mexico were deemed to provide information useful 
for determining generalized skews for Texas. It is a critical part of introductory information 
related to original data sources that this geographic area be mentioned because it pertains to 
how certain metadata are treated in historically separate databases. 
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A “natural” watershed is defined as having less than 10 percent of the drainage area 
controlled by reservoirs (a measure of regulation) (U.S. Army Corps of Engineers, 2020; 
Asquith et al., 2021) and less than 10-percent impervious cover (a measure of urbanization). 
This definition is a legacy germane to streamgages in Texas. Conversely, for Oklahoma, Lewis 
et al. (2019, p. 4) states “substantial regulation is defined as a contributing drainage area 
where 20 percent or more of the drainage area is upstream from dams and floodwater-retarding 
structures.” Wagner et al. (2017) reviewed “discharge qualification codes” assigned to annual 
peak streamflows by the USGS in the National Water Information System (NWIS) database 
(U.S. Geological Survey, 2018). The qualification codes are not always clear on a peak-by-peak 
basis regarding the usefulness of the respective peak for a particular application. 

Regulation or urbanization qualification codes applied to peak streamflow values stored 
in NWIS require consideration in the determination of station skews and are discussed in 
brief. The USGS does not provide authoritative metrics for regulation or urbanization in the 
qualification codes. From information contained within the peak-flow files for streamgages in 
NWIS, it is not possible to definitively assess whether individual gaged peak streamflows are, 
in fact, even semi-quantitatively affected by regulation or urbanization. However, a general 
metric to identify periods of record unaffected by urbanization or regulation is the absence of 
qualification codes 6 (regulation) and C (urbanization) assigned to annual peak streamflows 
(Wagner et al., 2017). Qualification code 5 (affected to unknown degree by regulation or 
diversion) was ignored; peak streamflows were included because the default setting of the 
USGS PeakFQ software is to treat code 5 as “unregulated.” 

After retrieval of the streamflow data from NWIS (U.S. Geological Survey, 2018), software 
(Asquith, England, and Herrmann, 2020) designed to identify systematic records of peak 
streamflow or gaged annual peak streamflows was used. Systematic record was considered 
any sequence of water-year records where two or more peaks form a continuous one-year 
incrementing set. As a result, the entirety of systematic record for a streamgage is composed 
of one or more of such sets. These data were then reviewed for the presence or absence of 
qualification codes 6 and C, and some streamgage-by-streamgage judgment was required to 
identify streamgage-specific systematic record used in PeakFQ analysis for the purposes of 
this study. Detailed investigation of the effects of regulation on annual peak streamflows is 
complex, although some insight was gained by the use of large-scale statistical binding of 
annual peak streamflows to temporal cumulative storage (regulation) (Asquith et al., 2021). 
The watersheds for some streamgages became regulated and (or) urbanized during their 
period of record (according to discharge qualification codes 6 and C), and the data for such 
periods were systematically excluded from this study with few exceptions. 
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4.1.4. Purpose and Scope 

The purpose of this chapter is to present a technique for estimating generalized skews of 
annual peak streamflow values for Texas as part of a larger study area that also includes 
Oklahoma and part of New Mexico. Although Oklahoma and the part of New Mexico east of 
the Great Continental Divide were included in the analysis, the primary focus was to obtain 
information that could be used to update previously published generalized skews in Texas. 
Generalized additive modeling was used for the analysis of station skew from long-term 
USGS streamgages where the streamflow is derived from natural watersheds. Long-term 
streamgages are defined as those having at least 30 years of annual peak streamflows from 
natural watersheds. Annual peak data through the 2016 water year were used, if available. 

4.2. Methods 

The steps used in the computation of station skew and related statistics for use in the 
determination of generalized skews for Texas were as follows: 

1. Retrieve annual peak streamflow data for 444 long-term streamgages in Texas, Okla-
homa, and part of New Mexico from NWIS (444 streamgages in the study area that 
met the 30-year criterion and formed the core dataset for the initial analysis) (U.S. 
Geological Survey, 2018). Of the 444 streamgages initially considered for use in the 
study, 341 streamgages were used in the final construction of statistical models. To 
clarify and be consistent with later statements herein, this 341 streamgage count 
represents the number of streamgages used in statistical modeling but not necessarily 
the computation of a specific statistical error that would have implications for the 
end user of generalized skew values documented herein. The USGS station number, 
name, and other pertinent information for each streamgage can be found in Cleve-
land and Fang (2021) and Yesildirek et al. (2021). 

2. Plot the annual time series of peak streamflow for each streamgage to find unusual 
observations that require further investigation. In addition to identifying the PILFs 
by statistical means, the MGBT::plotPeaks() function (Asquith, England, and Herr-
mann, 2020) enables the visualization of annual peak streamflow and graphical depic-
tion of USGS discharge qualification codes (Wagner et al., 2017). 

3. Evaluate if there are statistically significant trends in annual peak streamflows using 
the Kendall’s tau statistic (Helsel et al., 2020), visualization, and regional context. 
It is sometimes possible to isolate a suitable subperiod within the greater period of 
record available for purposes of seeking at least 30 years of annual peak streamflow 
unaffected by trends considered attributable to nonnatural watershed conditions. 
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4. Set lower and upper bounds of streamflows intervals assigned to missing years of 
record (data gaps) when possible and set streamflow perception thresholds for histor-
ical and gaged period(s) of streamgage operation. Perception thresholds are defined 
and discussed in detail by England et al. (2018), but in short, perception thresholds 
define the range of streamflow for which a flood event could have been observed. The 
inherent assumption and consequence is that any year for which an event was not 
observed and recorded must have had a peak streamflow outside of (usually below) 
the perception threshold. 

5. Run the EMA/MGBT analyses using version 7.3 of PeakFQ software with the sta-
tion skew option set. Verify that here have not been major land-use changes (urban-
ization) altering the watershed from natural conditions. This verification is qualita-
tive and was done for only a few locations by inspection of aerial imagery collected 
over time because urban watersheds with streamgages are generally self evident; 
they are within the major metropolitan areas of the study area. The study area is 
predominantly rural and at the time of data preparation (U.S. Geological Survey, 
2018), the 30-year criterion automatically removed the many streamgages used in 
urban studies of hydrology. The trend detection in step 3 assists in whole-streamgage 
rejection or isolation of a particular record of 30 or more years in early time. These 
decisions are augmented by the PeakFQ interface simultaneously plotting the peak 
streamflow time series. Consider the following example. There are 60 years of record 
at a given streamgage but only the first 30 years appear representative of natural 
conditions. Urban expansion into the watershed of the streamgage has not occurred 
in those first 30 years, and trend analyses of the streamflow record or visual cues 
in the time series of streamflow indicate the streamflow record in most recent 30 
years is different from the first 30 years of record. In this example only the first 30 
years of record would be used in this study. Finally, obtain the mean, standard devi-
ation, skew, and MSE of the skew from PeakFQ output. For technical completeness, 
the MSE is the “EMA ESTIMATE OF MSE OF SKEW WITHOUT REG SKEW” 
result lines in the PeakFQ output file. 

6. Review the peak-streamflow frequency curve to consider if the curve adequately fits 
the annual peak streamflow data and evaluate low outliers (low peak streamflows 
associated with drought conditions) using the MGBT function followed by incorpora-
tion of a user-specified low-outlier threshold as deemed necessary. 

7. Keep a record of streamgages for which valid PE3 analyses could not be computed 
because of fatal software errors caused by too many censored values or for which the 
PE3 analyses were otherwise deemed unreliable because of trends in annual peak 
streamflows or major land-use changes. 
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8. Assess redundancy (streamgage pairs not collecting independent information from 
each other) and keep a record of these streamgages for potential removal from the 
final analysis to facilitate the “best estimate” of uncertainty in generalized skew. 

9. Compute generalized skew and its MSE as part of the regional statistical analysis. 
Steps 1–8 resulted in the removal of certain streamgages from the final statistical 
analysis. Of the 444 candidate streamgages, 341 were retained. 

4.2.1. Individual Streamgage Analyses 

The current (2021) Federal guidance for the estimation of peak-streamflow frequency statistics 
is described in Bulletin 17C (England et al., 2018). Version 7.3 of USGS PeakFQ software 
was used to perform these computations (U.S. Geological Survey, 2020a). 

For purposes of computing station skew, the analyst is required to select the “station 
skew” option within the PeakFQ software in order to not weight the estimate of station skew 
with an estimate of generalized skew. The EMA is a method for fitting the PE3 distribution 
that has been shown effective at incorporating information about historical annual peak 
streamflows into the frequency analysis. EMA is an improvement over the methodology 
recommended by Bulletin 17B (Interagency Committee on Water Data, 1982) because it 
correctly accounts for uncertainty in estimates of the frequency of annual peak streamflow 
related to uncertainty in the skew as computed during software operation and the shape 
parameter (the skew coefficient) of the fitted PE3 distribution (Asquith et al., 2017). The 
uncertainty in the skew of the fitted PE3 distribution is represented by the MSE of that skew, 
which is related to the variance of the skew estimate and reported in the output files of the 
PeakFQ software. 

The EMA can accommodate interval data, which simplifies analysis of datasets containing 
nongaged historical data, and PILFs (low outliers) (Asquith et al., 1995; Asquith, England, 
and Herrmann, 2020; Cohn et al., 2013) and uncertain data points while simultaneously 
providing enhanced confidence intervals on estimated peak streamflows. The PeakFQ software 
(Veilleux et al., 2014; U.S. Geological Survey, 2020a) version 7.2 (for this study, spring 2019) 
and subsequent audit and secondary check using version 7.3 (for this study, spring 2020) was 
used to compute peak-streamflow frequency for the 444 long-term streamgages previously 
defined in step 1 of the Methods section (sec. 4.2). 

PeakFQ automates many of the procedures for peak-streamflow frequency analysis, 
including identifying and adjusting for low outliers and historical periods and fitting the 
PE3 distribution to the logarithms of annual peak streamflow data. The program includes 
the EMA procedure for frequency analysis and MGBT screening for PILFs. The Bulletin 
17C method uses gaged peaks (observed or estimated annual peak streamflows that occurred 
during the gaged period at a streamgage) and historical peaks (annual peak streamflows 
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observed outside the gaged period). Flow intervals are used to describe the knowledge of 
the peak flow in each year, and perception thresholds are used to describe the range of 
measurable streamflow in each year. When possible, historical peaks are used to define the 
upper threshold of annual peak streamflow for missing years (years without peak streamflow 
data) by using perception thresholds to accommodate missing data in either the historical 
record (for example, miscellaneous records of large floods) or from the gaged record. Adjusting 
the settings in PeakFQ to skip years of missing record becomes necessary when missing 
years cannot be adequately canvased with perception thresholds. PeakFQ also executes the 
Mann–Kendall test for Kendall’s Tau and reports the Kendall’s tau, p-value, and Sen Slope 
for the detection of monotonic trends in peak streamflows found in the gaged period of record. 

4.2.2. Regional Statistical Methods and Provisional Study 

Three methods for the development of generalized skews by regional analysis are suggested 
by the authors of Bulletin 17C: (1) plot station skews on a map and construct skew isolines, 
(2) use multiple linear regression techniques to develop a skew-prediction equation relating 
station skews to selected watershed characteristics, or (3) use the arithmetic mean of station 
skews from long-term streamgages in the region. Two generalized additive models (GAMs) 
were used (a centroid-location GAM and a streamgage-location GAM) to explore all three 
methods within one unified statistical framework. A GAM is a type of regression model that 
also has features for 2-dimensional smoothing to construct isolines (fig. 4.1); the use of a 
GAM in a 2-dimensional context is described by Asquith (2020). 

Method 1 (maps of skew isolines), method 2 (regression modeling), a hybrid of methods 
1 and 2, and method 3 (arithmetic mean) were assessed through GAMs by using the dataset 
of 341 streamgages. The modeling weights for the response variable (station skew) were 
the inverses of the MSEs of the station skews, and the explanatory variables for method 
2 were watershed characteristics, including drainage area, main-channel slope, watershed-
averaged mean annual precipitation, mean land-surface elevation of the watershed, land-surface 
elevation of the location of the streamgage, mean annual solar radiation at the location of 
the streamgage, the location of the streamgage, and the location of the watershed centroid 
(Yesildirek et al., 2021). The GAM framework (fig. 4.1) provides the analyst the ability to 
assess a hybrid of method 1 (spatial mapping) and method 2 (regression modeling) using the 
additive 2-dimensional smooth on easting and northing coordinates of the streamgage and 
watershed centroids. The availability of analyst-led choice of incorporating the locations of 
the streamgages or the centroids of their watersheds permitted testing different easting and 
northing coordinates using the smoothing function. 
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A generalized additive model (GAM) uses relations 
between a response variable and an additive combination 
of various parametric terms and smooth terms (smooth 
functions) (Wood, 2017). A GAM is a type of regression, but the 
inclusion of smooth functions can be an advantage to GAMs over 
multi-linear regression because such functions provide linearly 
additive terms of nonlinear relations in the data. The algorithms 
of the mgcv package (Wood, 2020) were used by default parameters 
(arguments) of the gam() function in the R language (R Core Team, 2020). 
Furthermore, the additive components can be analyzed simultaneously in two 
or more dimensions, which is not really a feature of multi-linear regression. 

The general form of the GAMs considered for this study is 

yi = XiΘ+ f(xi; Ψ) + · · · + s(Ei, Ni; η) + �i, 

where 

• yi is the response variable (station skew) for the ith streamgage record; 

• Xi is a model vector including an optional intercept for strictly para-
metric and suitably transformed predictor variables, 

• Θ is a parameter matrix; 

• f(xi; Ψ) is a smooth function of the jth predictor variable xi,j con-
trolled by smoothing settings Ψi; 

• · · · represent additional smooth terms as needed; 

• s(Ei, Ni; η) is the smooth on the easting (Ei) and northing (Ni) Albers-
Equal Area projected coordinates of the respective longitude and lati-
tude and optional smoothing parameters η; and 

• �i are random errors following a declared error distribution (for exam-
ple, Gaussian). 

The XiΘ term is the familiar multi-linear (parametric) regression component 
of a GAM, and the Θ are regression coefficients (conventional slope terms). 
Finally, weights for each record can optionally be include, and for this study, 
the inverses of MSEs of the individual station skews were used. 

Figure 4.1. Description of a generalized additive model (GAM) that encompasses schemes 
evaluated in this study and specific workflow details for the purposes of this study 
are available in Cleveland and Fang (2021). Any use of trade, firm, or product 
names is for descriptive purposes only and does not imply endorsement by the U.S. 
Government. 
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4.3. Generalized Skew Coefficients for Texas, Oklahoma, and 
eastern New Mexico 

In the study area, method 1, a hybrid of method 1 and method 2, and method 2 yielded 
superior statistical performance to method 3; therefore, method 3 (arithmetic mean) was not 
further considered. Iterative analysis of generalized skews was accomplished using various 
combinations of the aforementioned explanatory variables. In general, prediction performance 
approaching that achieved by the 2-dimensional smooth on spatial positions exists with the 
supposedly non-spatial variables, such as main-channel slope. It is hypothesized that sufficient 
cross correlation exists between variables (for example, elevations increasing with distance 
from the coast and main-channel slopes increasing with mean land-surface elevation) such that 
it is more straightforward to use the spatial model generated using method 1 than method 2. 
The predictive performance of the GAM was not sufficiently enhanced by adding explanatory 
variables, such as drainage area or mean land-surface elevation, to the 2-dimensional smooth 
on the projected Albers equal area coordinates of either the centroids of the watersheds or 
streamgages. 

The station skews derived from the 341 streamgages that were retained were used to 
develop the centroid-location GAM and the streamgage-location GAM. The results of these 
two GAMs are shown in figures 4.2 and 4.3. The GAMs discussed here are deemed more 
applicable than methods and results available in Judd et al. (1996) because additional annual 
peak streamflows, updated statistical methods for estimation of peak-streamflow frequency, 
and GAMs were used. The GAMs were weighted using the inverses of MSEs of the station 
skews. For each GAM, streamgages that were removed for reasons including insufficient 
(processable) record or redundancy, which are also within the depicted counties, are shown 
on the maps. 

Rejected watersheds include those with fatal errors in peak-flow frequency analysis occur-
ring within the PeakFQ software (6 streamgages), those with less than 30 years of unregulated 
or nonurbanized record lacking monotonic trends in annual peak streamflows (24 streamgages), 
those with possible mislabeling of discharge qualification codes (3 streamgages), and those 
having a high degree of redundancy (56 streamgages). After removal of these streamgages 
from the analysis, those having drainage areas less than 1 square mile (7 streamgages) or 
greater than 35,000 square miles (7 streamgages) were eliminated prior to computing the 
GAM. This minor trimming of the input data was deemed useful to remove a few small 
watersheds in New Mexico with a preponderance of censored peak streamflows. A few of 
the largest riverine systems were removed because they represent major transport corridors 
through the region and are quite regulated in modern times for which the concept of general-
ized skew is implicitly less applicable. As a result, the records of annual peak streamflow 
for 444 − 6 − 24 − 3 − 56 − 7 − 7 = 341 streamgages were used in the final GAMs and are 
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Figure 4.2. Map of generalized skew coefficients determined by using centroid location 
generalized additive modeling techniques (centroid-location GAM) with 
2-dimensional smooth function on projected Albers equal area coordinates, Texas, 
Oklahoma, and eastern New Mexico. 

expected to yield updated predictions of generalized skews in the State of Texas compared to 
those available in Judd et al. (1996). 

The generalized skew map created using the GAM based on the locations of the centroids 
of the watersheds (fig. 4.2) is presented first. The streamgage-location skew map is also 
included because the locations of the streamgages were previously used by Judd et al. (1996). 
A quick comparison between figures 4.2 and 4.3 shows that much similarity exists and the 
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Figure 4.3. Map of generalized skew coefficients determined by using streamgage location 
generalized additive modeling techniques (the streamgage-location GAM) with 
2-dimensional smooth function on projected Albers equal area coordinates, Texas, 
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choice to reference the location of the centroid of the watershed or the streamgage makes 
little difference. 

In order to develop a grid on which the contour lines could be drawn, both maps used 
a 1-kilometer grid spacing and an Albers equal area projection (Clark et al., 2018) clipped 
to the boundary of the counties depicted on the two maps. The depicted counties do not 
include the entire State of New Mexico or even the entire extent of New Mexico east of the 
Great Continental Divide; this mapping style is deliberate to emphasize that, by design of 
the study, the generalized skews are intended primarily for use in Texas. (The generalized 
skews also have some applicability in Oklahoma and eastern New Mexico). The counties in 
New Mexico shown correspond to those used in Asquith et al. (2006) in a study of storm 
statistics focused on Texas. 

The unweighted MSEs corresponding to each GAM are indicated on the maps, and it is 
noted that the MSEs are computed using only centroid and streamgage locations within the 
extent of the depicted counties. This means that the sample sizes for MSE computations are 
not going to equal 341 but will be smaller and are reported as follows. There are 293 centroid 
locations (fig. 4.2) and 306 streamgage locations (fig. 4.3) within the depicted counties in 
Texas, Oklahoma, and the part of New Mexico east of the Great Continental Divide (figs. 4.2 
and 4.3). These two counts are the respective sample sizes used to compute the reported 
MSEs of 0.216 (centroid locations) and 0.214 (streamgage locations). The respective MSEs 
are published on the maps because they are required in the weighted-skew computation in 
PeakFQ and thus are important to document. Conversely, the weighted MSE of the centroid-
location map is 0.174, and the weighted MSE of the streamgage-location map is 0.172. These 
values are based on the MSEs of the station skews themselves. The weighted MSEs are not 
appropriate for use in weighted-skew computations and are not further mentioned in this 
chapter. 

There are other informative metrics to report. The intercept of the centroid-location 
GAM is −0.204, and the intercept of the streamgage-location GAM intercept is −0.207; these 
are conceptually similar to an arithmetic mean. Therefore, a “rule-of-thumb” for the greater 
study area (including the locations shown in New Mexico east of the Great Continental 
Divide) is that the generalized skew value is −0.206 before spatial adjustment in the additive 
structure of the GAMs. The adjusted R-squared (coefficient of determination) (Helsel et 
al., 2020) is 0.11 for both GAMs. This demonstrates that, although the maps presented 
herein are deemed reliable, there is inherently much unexplained (and perhaps unexplainable) 
variance in skews across the region, which is the core justification for recommending the use 
of a weighted skew computation in peak-flow frequency analysis (England et al., 2018). 
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4.3.1. Comparison of Texas Results to 1996 Texas Results 

Qualitative comparison of the skew maps presented in this study to those from a previous 
1996 study (Judd et al., 1996) can be made. Therefore, it is useful to reproduce the map 
from the previous 1996 study in this chapter as figure 4.4. In the previous 1996 study, the 
estimation of generalized skews were based on station skews from 255 streamgages having at 
least 20 years of annual peak streamflow data from natural watersheds exclusively in Texas. 
A form of kriging (Papritz and Stein, 1999) was used as the statistical basis for producing 
the 1996 skew map that has an MSE of 0.35. 

The contours are similar between the studies (compare contours of figs. 4.2 and 4.3 to 
those in fig. 4.4) with the exception of the more negative skew in northwestern Texas in this 
study relative to the previous 1996 study (Judd et al., 1996). A region of large negative 
skew in south-central Texas is thus common between the studies. Both studies indicate a 
spatial trend towards positive skew in extreme southeastern Texas. Finally, both studies 
show similar magnitudes and sign of skew in north-central and northeastern Texas. 

The boundaries of the 1996 study by Judd et al. (1996) were exclusively those of Texas, 
whereas the boundaries for this study were expanded beyond the state. This was done 
to avoid “faults” in generalized skews at the state boundaries and alleviate confusion for 
end-users working in watersheds that are near to or extend outside of the state boundaries. 
Also because of the irregular shape of Texas and the inclusion of streamgages in Oklahoma 
and eastern New Mexico, the more rectangular shape of this study area results in more 
authoritative statistical mapping. Streamgages in eastern New Mexico and western Oklahoma 
help the GAM span the more sparsely gaged part of the region in western Texas. Because of 
differences in geographic areas and streamgages used in each investigation, the MSEs from 
this study and those from Judd et al. (1996) are not directly comparable and cannot be 
used to judge one study as “better” than the other. The greater number of streamgages and 
longer annual peak-flow records available for use in this study are expected to provide more 
accurate estimates of generalized skew for Texas than those presented by Judd et al. (1996). 

4.3.2. Comparison of Generalized Skew Coefficients in Texas to 
Generalized Skew Coefficients Published for Other States 

A comparison of generalized skews in Texas to generalized skews in Arkansas and Louisiana 
(not geographically depicted herein, but immediately east of Oklahoma and Texas) can 
be made. Using Bayesian weighted least squares/Bayesian generalized least-squares (B-
WLS/B-GLS) regression, Wagner et al. (2016) concluded that neither a map nor regression 
equations were appropriate to estimate generalized skews. Rather, the generalized skews for 
Arkansas and Louisiana were estimated to be the constant value of −0.17 with an MSE of 
0.12. Inspection of the skew maps for this study indicates, from latitudes of about 32° to 33° 
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Figure 4.4. Map of generalized skew coefficients for Texas. Reproduced from figure 3 in Judd et 
al. (1996). Note: This figure is reproduced from a U.S. Geological Survey (USGS) 
series report. By convention in USGS series reports, longitude values are reported as 
positive values. 
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North, that the mapped skew value of approximately −0.15 (figs. 4.2 and 4.3) is similar to the 
skew value of −0.17 developed by Wagner et al. (2016). This provides evidence of the general 
compatibility of the GAM models of generalized skew in Texas with the B-WLS/B-GLS 
model of constant skew for the neighboring states to the east. 

Comparisons of generalized skews in Texas to generalized skew in eastern New Mexico 
can also be made. The median of station skew values computed in prior skew investigations 
in New Mexico ranged from −0.220 to +0.297 for eight different flood regions in the state 
(Waltemeyer, 1986). It is noted from Waltemeyer (1986, table 2) that the northwest plains 
(median skew value of −0.220) and southwest plains (median skew value of −0.166) regions 
in that study align well with the similar magnitude negative skews in western Texas shown 
in figures 4.2 and 4.3. More than 20 years later, Waltemeyer (2008) used a generalized skew 
value of zero for the entire state of New Mexico with an MSE of 0.31. It is difficult to make 
direct comparisons of the results from these previous studies in New Mexico to the results 
of this study because the computation methods available in “PeakFQ equivalent software” 
(then a program on USGS mainframe computers) in the mid-1980s (Interagency Committee 
on Water Data, 1982) are different from those available in PeakFQ versions 7.1 and later 
(England et al., 2018). 

Generalized skews in Texas and Oklahoma can be compared because the study area fully 
encompasses Oklahoma. The generalized skew map for Oklahoma (Lewis et al., 2019, fig. 2), 
which is reproduced herein as figure 4.5, was created using station skew computed following 
methods detailed in Bulletin 17C (England et al., 2018) and by “iterative interpolation” 
of the values across Oklahoma using geographic information system tools for interpolating 
and smoothing isolines. The interpolation and smoothing process was iterated four times, 
progressively refining the skew map by eliminating outlying skews and adjusting skew contours. 
The Oklahoma generalized skew has an MSE of about 0.148. The Oklahoma skew map is 
similar to this study’s skew maps (figs. 4.2 and 4.3) in the magnitude of skew west of about 
−99° longitude. 

The central part of Oklahoma is a region of very positive skew value (approximately 
+0.6) and much of Oklahoma shows positive skew (fig. 4.5). The results reported by Lewis et 
al. (2019) contrast with the results reported in this study. The two studies were conducted 
independently, with differences in streamgage selection methods, data retrieval, setup of 
peak-streamflow frequency analyses, and terminal statistical processing. 

The results reported here are potentially affected by the approach that was used; stream-
gages with trends in annual peak streamflows were removed, the requirement for at least 
30 years of annual peak streamflow record (the Oklahoma study by [Lewis et al., 2019] 
used a 20-year minimum period of record), mitigation for high cross-correlation of annual 
peak streamflows (redundancy), and the general avoidance of using annual peak streamflows 
assigned code 6 (regulated peaks) or C (urban peaks). It is also possible that differences in 
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the suite of streamgages used for the maps presented herein contribute to the differences 
between skews from the Oklahoma study and this study. 

4.3.3. Generalized Skew Map 

The maps presented in figures 4.2 and 4.3 depict generalized skews for the study area along 
with a summary of the supporting data locations. To reveal subtle differences in region skew 
values, it is useful to show an alternative representation of figure 4.2 with the locations of the 
watershed centroids removed and major physiographic provinces (Fenneman and Johnson, 
1946; U.S. Geological Survey, 2020) shown instead (fig. 4.6). 

For this analysis, the western Basin and Range physiographic province was combined 
with the Colorado Plateaus physiographic province (Fenneman and Johnson, 1946) in the 
western part of the study area. The Ouachita and Ozark Plateaus physiographic provinces 
were combined in the northeastern part of the study area. The Southern Rocky Mountains 
physiographic province extends into north-central New Mexico (fig. 4.6) (Fenneman and 
Johnson, 1946) and serves as a reminder of the common effects of major mountain ranges 
on streamflow (Fonstad, 2003) near the distal northeastern part of the contoured area and 
of the extreme precipitation events found in mountain ranges that can contribute to large 
floods (such as rain on snow events) (Li et al., 2019). 

Insights into generalized skews for different parts of Texas were gained by analyzing skew 
patterns. An overview of the implications of different skew values, including the effect of the 
extremes, will help frame the discussion (England et al., 2018; Asquith et al., 2017). First, 
large negative skews result in PE3 distributions with upper bounds or finite upper limits; 
this implies that the peak streamflow producible by a watershed with negative skew has 
an asymptotic upper limit. Second, zero to positive skews result in PE3 distributions with 
infinite upper bounds meaning that the peak streamflow producible from a watershed with a 
positive skew has no apparent upper limit. 

Consider the subregion of negative skew values of <−0.30 in the central part of the 
study area, which is in an area that generally aligns with the Great Plains physiographic 
province with <−0.40 skew values in northwestern Texas and of <−0.50 skew values in 
central Texas. The authors suggest that the nearly flat main-channel slopes of streams in 
the high plains of northwestern Texas, along with scant regional precipitation (interrupted 
only rarely by large storms), result in watersheds having finite upper bounds on their annual 
peak streamflows. In contrast, the upland, steep, incised-limestone bedrock watersheds of 
central Texas produce some of the largest peak streamflows per unit area in the United States 
(Asquith and Slade, 1995; O’Connor and Costa, 2018), yet skew values are quite negative 
(the largest negative values in Texas) (fig. 4.6) and substantiated by a large amount of data 
from many streamgages. 
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Figure 4.5. Map of generalized skew coefficients for Oklahoma. Reproduced from figure 2 in 
Lewis et al. (2019). Note: This figure is reproduced from a U.S. Geological Survey 
(USGS) series report. By convention in USGS series reports, longitude values are 
reported as positive values. 
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In south-central Texas, sufficient peak-streamflow records exist and perhaps did at least 
as early as 1996 (Judd et al., 1996) to indicate that upper limits to streamflow have in 
large part have been defined. The distal upper tail of empirical distributions of annual peak 
streamflow for the longest-record streamgages in central Texas often indicate the rate of 
increase in peak streamflows becomes small as the annual exceedance probability becomes 
small as seen in Asquith et al. (1996, table 1). Phenomenologically, this relation between 
the rate of increase in peak streamflows and the annual exceedance probability implies that 
annual peak streamflows reach an upper limit as the annual exceedance probability nears zero. 
Perhaps in south-central Texas the watersheds are so efficient in converting precipitation to 
peak streamflow that additional precipitation inputs relative to the timing of peak streamflow 
in the watersheds cannot increase streamflow because a portion of the flood water is always 
rapidly exiting the watershed in this part of Texas where channel slopes can exceed 100 feet 
per mile (Asquith et al., 1996; Asquith and Slade, 1997). 

The −0.30 skew contour in far western Texas generally aligns with the boundary between 
the Basin and Range and Great Plains physiographic provinces. It is not that the magnitude 
−0.30 is expected to align with the boundary between these physiographic provinces but that 
coincidentally the contour takes on similar curvature for almost 400 miles from the southern 
Texas border near the −102.5° longitude. Skew becomes less negative in far southwestern 
Texas, similar to the better monitored and climatically similar montane regions of eastern 
New Mexico. Skew appears to become increasingly less negative in the northwestern Great 
Plains and Southern Rocky Mountains physiographic provinces. The general increase in skew 
values from negative values to about zero from north-central Texas northeast into Oklahoma 
appears coincident and aligned with the transition into the Central Lowlands physiographic 
province. 

Skew contours along the southeastern coast of Texas are subparallel to the coastline. 
Phenomenologically, the authors note that, for many coastal streamgages, one or two high 
outliers (large historical floods) are present in the streamgage records, and these appear to 
be the result of major tropical cyclones. In the low-slope region near the Gulf Coast, major 
tropical cyclones could represent either a unique population of annual peak streamflows 
resulting from the abnormally large amounts of precipitation produced by such storms or 
that watershed boundaries in the region become irrelevant during such extreme region-
wide precipitation events. The Coastal Plain province (Fenneman and Johnson, 1946; U.S. 
Geological Survey, 2020) seems a bit too large (extends too far inland to the north) for 
purposes of interpreting skew near the coast of Texas. The authors suggest that skew values 
>−0.15 might be more suitable for this part of Texas where tropical cyclones affect the 
distribution of annual peak streamflows. 

A skew contour of 0.0 extends into southeastern Texas and appears congruent in shape to 
a region of rapidly enlarging multi-day precipitation frequency values, especially 100-year, 
10-day storm depths (National Oceanic and Atmospheric Administration, 2020a) or other 
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extreme precipitation contours (Asquith and Roussel, 2004). The paucity of streamgages 
in the southern part of Texas (south of about 28° North latitude where the Texas coast 
bends sharply) contributes to extrapolation concerns of statistical methods. The contoured 
results for the extreme southern tip of Texas were manually decreased to skew values of about 
+0.10 in an effort provide consistency across the remainder of coastal Texas. South of about 
28° North latitude, the southern part of Texas is where the skew values are about zero; this 
area is also a part of the Texas coast that appears to have a lower probability of tropical 
cyclone landfall relative to either extreme south Texas or the Texas coast east of about 
−97° longitude (National Oceanic and Atmospheric Administration, 2020b). Tropical cyclones 
also make landfall less frequently near the sharp bend in the Texas coast (approximate latitude 
28° North) relative to the rest of the Texas Gulf Coast, and that difference in tropical-cyclone 
landfall contributes to less positive skews near this sharp bend in the coast. 

The prior discussion on skew patterns in Texas has implications for peak-streamflow 
distribution behavior as measured by the PE3 distribution fit by EMA and MGBT-based 
removal of low outliers (small annual peak streamflows). For the generalized skews to be most 
applicable and produce reliable peak-streamflow frequency computations, future analysis of 
annual peak streamflow in Texas would need to generally adhere to MGBT or otherwise 
aggressively truncate parts of the left-hand (non-flood) tail of the distribution of the annual 
peak streamflows. Generalized skews are inherently coupled to left-tail truncation of low 
outliers using MGBT. 

√ 
The MSE of the centroid-location map is 0.216. This value corresponds to 0.216 = 0.465 

so it can be said that generalized skews have an uncertainty in their native units (though 
dimensionless) of about ±0.465. There is conceptually much uncertainty in skew that remains 
purely statistical, which means that the uncertainty is a function of sample size (number 
of annual peak streamflows at any given streamgage). For example, the square root of the 
mean of the MSEs of station skews for a subgroup 293 streamgages (corresponding to the 293 
centroid locations) used in the study is about 0.371; this supports that uncertainty in skew 
is fundamental to peak-streamflow frequency analysis. The mean systematic record length 
is about 57 years for the streamgages within the depicted counties on the centroid-location 
map (fig. 4.2). 

4.4. Chapter Conclusions 

Reliable information about the frequency of annual peak streamflow is needed for floodplain 
management, objective assessment of flood risk, and cost-effective design of dams, levees, 
other flood-control structures, and roads, bridges, and culverts. This chapter presents the 
results of a study to update the 1996 generalized skew coefficients (generalized skews) in 
Texas (Judd et al., 1996) and the current (September 2019) TxDOT Hydraulic Design 
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Manual (Texas Department of Transportation, 2020). Generalized skews are a vital element 
of frequency analysis of observed annual peak streamflows, and are used, along with station 
skews computed for USGS streamgages to provide weighted (and hence more accurate) 
estimates of individual skew values (England et al., 2018). 

A technique is presented for estimating generalized skews of annual peak streamflow for 
streamgages in Texas. The technique is based on analysis of station skews from long-term 
USGS streamgages (minimum 30-year period of record from natural watersheds with minimal 
regulation and minimal impervious cover). Annual peak streamflow data through the 2016 
water year were used, if available. A total of 444 streamgages in Texas, Oklahoma, and eastern 
New Mexico study area, were identified that met the regulation and impervious cover criteria 
and formed the core dataset for initial analysis. Of the 444 streamgages, 341 were used in 
the final skew model. Generalized skews were modeled using the centroids of the watersheds 
of the streamgages as the positions in generalized additive modeling (centroid-location GAM) 
using a 2-dimensional smooth on projected coordinates (Albers Equal Area projection). 

The geographic boundaries of this study area are more extensive than in prior work in an 
effort to avoid state-line faults in the skew and confusion for end-users working in watersheds 
that extend outside of Texas. The inclusion of annual peak-flow records from eastern New 
Mexico and all of Oklahoma yielded a more rectangular-like study area relative to that used 
in the previous 1996 study (Judd et al., 1996). A more rectangular-like boundary facilitated 
more authoritative statistical mapping than in the 1996 study. Streamgages in both Oklahoma 
and eastern New Mexico help the GAM span the more sparsely gaged watersheds in west and 
northwestern Texas. The larger number of streamgages and longer periods of record used in 
the mapping are expected to provide more reliable estimates of generalized skews for Texas 
than those presented by Judd et al. (1996). 

Figure 4.6 in this chapter could be considered as a replacement for figure 4.4 within 
the current (September 2019) TxDOT Hydraulic Design Manual (Texas Department of 
Transportation, 2020). The following text accompanying figure 4.4 in the Hydraulic Design 
Manual reads: 

“MSEG = mean square error of G [generalized skew] for Texas is = 0.123 
(RMSE = 0.35) [root-mean-square error] (Judd et al., 1996), which replaces 
the value of 0.302 (RMSE = 0.55) presented in Bulletin 17B [(Interagency 
Committee on Water Data, 1982)].” 

That verbatim text could be replaced with the following text to align to this study and 
figure 4.6: 

“MSEG = mean square error of G [generalized skew] for Texas is = 0.216 
(RMSE = 0.465) [root-mean-square error], which replaces the value of 0.123 
(RMSE = 0.35) presented in Judd et al. (1996).” 
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5. Using the Generalized Skew 
Coefficients of Annual Peak Streamflow 
for Natural Basins in Texas—A Training 
Framework 

5.1. Introduction 

Reliable peak-streamflow frequency information is needed for floodplain management, objec-
tive assessment of flood risk, and cost-effective design of dams, levees, other flood-control 
structures, and roads, bridges, and culverts. The generalized skew map shown in chapter 4 is 
proposed to update the current (September 2019) TxDOT Hydraulic Design Manual (Texas 
Department of Transportation, 2020). Should that map be adopted, it is informative to 
demonstrate the use of this “new” generalized skew with some Texas-based streamgages. 
The purpose of this chapter is to demonstrate the use of generalized skew coefficients in 
Texas. The chapter is semi-tutorial in nature, and is intended as a framework for stand-alone 
training materials. 

5.1.1. When to Apply the Updated Generalized Skew 

The use of generalized skew coefficients and the USGS PeakFQ software 7.3 (U.S. Geological 
Survey, 2020) arises when the designer intends to estimate peak discharges for TxDOT 
design and evaluation, and the facility site is near the streamgage on the same stream and 
watershed (direct application of flood frequency results); or if the facility site is on the same 
stream, but not nearby the streamgage, transposition of the streamgage analysis results 
may be used (Texas Department of Transportation, 2020, section 9). The generalized skew 
is based on analysis of natural watershed conditions. Complete suitability or extension of 
this skew to watersheds otherwise remains unknown though application of generalized skew 
for streamgages with short (fewer than about 15 years) to modest records (less than about 
20–30 years) likely has some benefit towards achieving some stability in the distal upper tail. 
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The discussion hereinafter largely follows guidelines for statistical analyses of stream-
gage data in England et al. (2018). The Hydraulic Design Manual (Texas Department of 
Transportation, 2020)) stipulates that application of B17C in Texas should: 

1. Obtaining a sufficiently large sample of streamflow data for statistical analysis. 
Chapter 3 largely satisfies this requirement and much of the work in these chap-
ters reflect this goal. The databases produced and archived for this research provide 
an extensive collection of gages already examined and meeting minimum record 
length criteria. Facility sites located on these streams and watersheds could use the 
databases immediately; 

2. Using the Pearson type III distribution fitting procedure, which is implicit in the use 
of PeakFQ 7.3, and chapter 4 adheres to this requirement; 

3. Using a weighted skew value—The weighted skew value is computed using Equa-
tion 5.1, which is structurally identical to eq. 4-6 in the Hydraulic Design Manual 

¯(Texas Department of Transportation, 2020), with the term GGAM replacing G and 
the values sourced from figure 4.6; 

(MSEGGAM )(GST A) + (MSEGST A )(GGAM )
GW = (5.1)

MSEGGAM + MSEGST A 

PeakFQ 7.3 makes the requisite computation in eq. 5.1 if the designer supplies 
MSEGGAM and GGAM both of which are obtained from figure 4.6; 

4. Accommodating outliers—Outliers are identified directly in the PeakFQ 7.3 software 
and the designer is relieved of manual computations to identify and censor low- and 
high-outlier thresholds; 

5. Transposing streamgage analysis results, if necessary and appropriate—Transposition 
is unchanged using the tools herein; if streamgage data are not available at the 
design location, discharge values can be estimated by transposition if a flood-
frequency curve is available at a nearby gaged location (from PeakFQ 7.3). Trans-
position is appropriate for hydrologically similar watersheds that differ in area by 
less than 50 percent with outlet locations less than 100 miles apart (Asquith, and 
Thompson, 2008). eq. 5.2 relates the gaged result to the design estimate. The equa-
tion is structurally identical to eqs. 4-10 and 4-11 in the Hydraulic Design Manual 
(Texas Department of Transportation, 2020); and � �e

Aestimate
Qestimate = Qgage (5.2)

Agage 
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where Qestimate is the estimated annual exceedance probability streamflow at the 
ungaged watershed, Qgage is the known annual exceedance probability streamflow at 
the gaged watershed, Aestimate is the drainage area associated with the assessment 
point of the ungaged watershed, Agage is the drainage area associated with the assess-
ment point of the gaged watershed, e is an exponent ranging from 1/2 (eq. 4-10) up 
to 9/10 (eq. 4-11). Values for e are sourced from Asquith, Roussel, and Vrabel (2006) 
and Asquith, and Thompson (2008). 

5.1.2. How to Apply These Tools—Illustrative Example 1 

Suppose there is intent to evaluate the transportation infrastructure facility relatively near 
USGS streamgage 08167000 Guadalupe River at Comfort, Texas, as shown in figure 5.1, 
hence a need to estimate discharge at a specific annual recurrence interval. The pin in the 
image is approximately at the stream thalweg, which is located at about latitude 29o57054.86” 
and longitude −98o53049.80”. 

Figure 5.1. Google Earth image near USGS streamgage 08167000 Guadalupe River at Comfort, 
Texas. 

This location is ideal for direct application of flood-frequency tools herein because the 
facility is proximal to the streamgage. The designer can access the USGS National Water 
Information System (NWIS) (U.S. Geological Survey, 2018) for the streamgage as shown in 
figure 5.2. 
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Figure 5.2. USGS National Water Information System landing page for USGS streamgage 
08167000 Guadalupe River at Comfort, Texas. 

The designer would then select the indicated link and choose to download the annual 
peak streamflows from figure 5.3. After the download is complete the designer would then 
start PeakFQ 7.3 and proceed as illustrated in the following figures: 
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Figure 5.3. USGS National Water Information System annual peak streamflow data selection 
for USGS streamgage 08167000 Guadalupe River at Comfort, Texas. 
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Figure 5.4 depicts selecting the file (either just downloaded or from the previously 
downloaded research database). 

Figure 5.4. Loading of USGS streamgage 08167000 Guadalupe River at Comfort, Texas, annual 
peak streamflows in the so-called “WATSTORE” format to USGS PeakFQ 
software 7.3. 

Figure 5.5. Station specification screen of USGS PeakFQ software 7.3 showing setting (default) 
to weighted skew computation along with the yellow highlighting that the 
generalized skew and its standard error needs input by the user. 
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Figure 5.5 depicts PeakFQ 7.3 after loading the file into the program and presenting 
the default tab sheet Station Specifications. The designer will select the Weighted 
Skew option (column 7) and then will enter values in the Regional Skew (column 9) and 
Regional Skew Standard Error (column 10) entry cells.1 

Figure 5.6. Estimating regional skew from map (fig. 4.6 of chapter 4) for USGS streamgage 
08167000 Guadalupe River at Comfort, Texas. 

Figure 5.6 depicts reading the skew value from the map for the particular streamgage 
location, which in this case is a value of −0.48 to be entered into the Regional Skew 
(column 9) entry cell. The mean square error is also reported in the map legend as 0.216; the√ 
square root of this value ( 0.216 = 0.465) is supplied to the Regional Skew Standard 
Error (column 10) entry cell. 

1 The values for these entires are sourced from figure 4.6. 
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Figure 5.7 depicts the entry of the regional skew and its standard error; upon completion, 
the designer would check the dates, choose the EMA option, and address any warnings or 
error messages then proceed to the Input/View tab. 

Figure 5.7. Station specification screen of USGS PeakFQ software 7.3 showing setting of the 
generalized skew and its standard error by the user for USGS streamgage 08167000 
Guadalupe River at Comfort, Texas. 

Figure 5.8. Input/View screen of USGS PeakFQ software 7.3 showing that a 1937–38 gap in 
record has been detected and accommodation by the user is needed and the setting 
of the output graphic format for USGS streamgage 08167000 Guadalupe River at 
Comfort, Texas. 
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Figure 5.8 depicts the Input/View tab, an important input control dialog that presents 
a graphical representation of peak streamflows loaded from the file (annotation in the figure), 
and explicitly identifies missing dates. The expected moments algorithm (EMA) requires 
temporally contiguous data, hence missing dates must be explicitly addressed. 

In this example, a choice was made to substitute the 1978 annual peak and declare it as a 
lower bound for any missing dates, essentially distributing the empirical probability of the 
observed maximum among those missing years. 

Figure 5.9. Input/View screen of USGS PeakFQ software 7.3 showing the accommodation for 
the gap in record by treating the 1978 peak as the perception threshold for the 
1937–38 gap for USGS streamgage 08167000 Guadalupe River at Comfort, Texas. 

Figure 5.9 depicts such an entry. Other choices could have been implemented. The 
decision to use the largest observed accounts for the likelihood (colloquial, not statistical) 
that had those years been historical maxima, there would have been some notation to that 
effect, hence these years probably did not exceed that value—and this is the source of the 
term “perception threshold” in the the expected moments algorithm. 

On this input control dialog box, one chooses graphical output file type of .png portable 
network graphics, a common image format that most operating systems can render, and more 
importantly most browsers can render. 

Figure 5.10 is the Output Options tab. Here we also exercise control of output conditions, 
after these various inputs are set, the designer runs the analysis from here. Upon completion 
of the analysis (less than a few seconds) the designer can examine results using the Results 
tab. 
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Figure 5.10. Output options screen of USGS PeakFQ software 7.3 showing a setting of the 
output graphic format and the button to perform the analysis for USGS 
streamgage 08167000 Guadalupe River at Comfort, Texas. 

Figure 5.11 is a screen capture of the results tab; it is informative to examine the software 
generated flood-frequency curve, by selecting the appropriate curve (in this case there is only 
one, but multiple stations can be analyzed in a single instantiation of PeakFQ) 

Figure 5.11. Results screen of USGS PeakFQ software 7.3 showing the selection of the site to 
show using the view button (see fig. 5.12) for USGS streamgage 08167000 
Guadalupe River at Comfort, Texas. 
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Figure 5.12. Results of flood-frequency analysis for USGS streamgage 08167000 using 81 peak 
streamflows where the 2018 and 2019 water year peak streamflows were 
“accidentally” not used for USGS streamgage 08167000 Guadalupe River at 
Comfort, Texas. 

Figure 5.12 is the software generated flood-frequency curve. The red curve is the fitted 
curve (the Pearson type III [log] model); the markers are the annual peak magnitudes and their 
plotting position using the Weibull plotting formula (handled in the software) (technically 
Hirsch–Stedinger plotting positions are used when historical information is included). Open 
markers are low-outliers identified by the software, closed markers are peak streamflows 
that are used in the EMA analysis. The blue curves are the 90-percent confidence interval 
estimates. 

The two missing years perception thresholds are shown as grey vertical bars that partition 
the probability axis into three equal parts—the perception thresholds themselves are stationed 
at ≈ 34-percent and ≈ 68-percent. If there were more missing years, the partition count 
increases proportional to the number of perception thresholds applied. 

Additional output information is supplied in an ASCII file (extension is .prt) as shown 
in figure 5.13. The beginning of the file repeats or echos the input settings used. 

Further into the file, a tabular representation of the flood-frequency curve is presented as 
shown in Figure 5.14. The portion of the file shown lists the station skew and the weighted 
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Figure 5.13. Inspection of the PRT output (text) file of USGS PeakFQ software 7.3 showing 
81 peak streamflows used and confirmation that generalized skew settings were 
correct for USGS streamgage 08167000 Guadalupe River at Comfort, Texas. 

skew based on the input values sourced from figure 4.6. The annotations in the figure highlight 
and show the result of using regional skew in contrast to individual station skew. 
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Figure 5.14. Inspection of the PRT output (text) file of USGS PeakFQ software 7.3 showing 
the flood-frequency values (see fig. 5.12) with emphasis on the 100-year 
recurrence interval with water years 2018 and 2019 omitted by accident for USGS 
streamgage 08167000 Guadalupe River at Comfort, Texas. 

The MGBT code (Asquith, England, and Herrmann, 2020) developed as part of this 
research can read and parse NWIS files, and produces an informative graphic to guide designer 
use of PeakFQ. Figure 5.15 demonstrates and example for the example streamgage. The 
script produces a plot of recorded peak streamflows versus water year; missing years are 
displayed as a vertical dashed line segment, and specific NWIS discharge qualification codes 
are displayed with the respective water year where included in the data file. However, PeakFQ 
has its own overprint of discharge code nomenclature and documentation provides more 
detail. 
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Figure 5.15. Using RStudio to dynamically retrieve USGS peak streamflow data and pass those 
data into the plotPeaks() function by Asquith, England, and Herrmann (2020) 
to illustrate the time series with sophisticated markup of the codes and other 
features of the data for the streamgage not visible in USGS PeakFQ software 7.3 
graphics for USGS streamgage 08167000 Guadalupe River at Comfort, Texas. 
This method of visualizing annual peak streamflow data with features for viewing 
all discharge qualification codes and other features of the data is powerful and is a 
one-of-a-kind capability developed from this research project. 

In the current example, water years 2018 and 2019 are coded as “6,” which is considered 
as a flag for regulated discharge, which is incorrect for this location and the interest in the 
flood distribution and demonstrates potential weaknesses in USGS communications in NWIS 
concerning regulation. More details about discharge qualification codes are in Wagner et al. 
(2017) and chapter 8 of this report. Figure 5.16 shows the same result in the .prt file in a 
tabular format. 

The designer can either edit the local copy of the NWIS file (generally not recommended) 
or select the Urban/Reg Peaks option on the Station Specifications tab in PeakFQ as 
shown in figure 5.17. Upon re-running of the analysis, the urban/regulated peak streamflows 
are included. Those that are above the low-outlier threshold are identified by a different 
marker type and color, as shown in figure 5.19. 
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Figure 5.16. Inspection of the PRT output (text) file of USGS PeakFQ software 7.3 showing 
that the peak streamflows for water years 2018 and 2019 were not used in the 
analysis on “accident” because PeakFQ default settings are to ignore discharge 
qualification code 6 (these two years) or discharge qualification code C peak 
streamflows (see fig. 5.15) for USGS streamgage 08167000 Guadalupe River at 
Comfort, Texas. 
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Figure 5.17. Station specifications screen of USGS PeakFQ software 7.3 showing change of 
setting to Yes to use regulated and(or) urban peak streamflows in the analysis for 
USGS streamgage 08167000 Guadalupe River at Comfort, Texas. 
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Figure 5.18. Results of flood-frequency analysis for USGS streamgage 08167000 Guadalupe 
River at Comfort, Texas, using 81 peak streamflows where the 2018 and 2019 
water year peak streamflows were used in contrast to results in figure 5.12. 
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Figure 5.19. Inspection of the PRT output (text) file of USGS PeakFQ software 7.3 for USGS 
streamgage 08167000 Guadalupe River at Comfort, Texas, showing the 
flood-frequency values (see fig. 5.18) with emphasis on the 100-year return period 
with water years 2018 and 2019 included in contrast to results in figure 5.14 with 
those years omitted by accident. 
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5.2. Prototype On-Line Training Environment 

A prototype on-line implementation of PeakFQ software 7.3 was developed as a training 
tool, as well as a usable map lookup tool (directly extracts regional skew estimates from 
figure 4.6 using designer supplied latitude and longitude values). The pre-configured training 
prototype is a Windows-like desktop running on an Amazon Web Services virtual private 
server, presented here as an example common tool. To the practicing engineer it functions 
like an ordinary workstation, but it is already populated with the relevant data files from 
this research.2 

5.2.1. Connecting to the Remote Tools 

As presented here, the on-line implementation uses Microsoft Remote Desktop client, which 
is available in the Windows operating system by default.3 The necessary credentials that will 
be requested in a designer’s connection using RDP are: 

• PC Name :: kittyinthewindow.ddns.net, which is a pre-configured Windows 2019 
server running on Amazon Web Services. 

• User Name :: texas-skew 

• Password :: peakfq73$hare 

Figure 5.20 is a screen capture depicting a user search for the remote desktop connection 
client. Simply search for RDP (remote desktop protocol) and the OS returns the link to the 
installed software. Upon finding the application, the user starts the application and will be 
immediately prompted for the remote server name; in this example it is kittyinthewindow. 
ddns.net. 4 Figure 5.21 is a screen capture depicting the interaction with the RDP client 
where the remote name has been entered. 

Next, the user will supply the remaining credentials to the remote server as depicted in 
figure 5.22. 

2 Moving files to/from the remote workstation is elaborate; it is intended for training in a preconfigured 
environment. For routine use, a design engineer would find the various tools would work faster and files 
immediately accessible if the USGS software (PeakFQ) are downloaded and installed on their local 
workstation, and similarly the scripts (and entire repository) downloaded from Cleveland and Fang (2021). 

3 Other operating systems; MacOS, Chromium, Linux will require installation of Microsoft RDC which is 
freely available from Microsoft. The authors believe that the tools can be adapted to work through a web 
interface so the engineer could train/use the tools from any device with a browser and internet connection. 

4 This server is not long-term persistent, however the authors maintain it for other experiments, and it can 
be expected to operate until calendar year 2023. The virtual machine files are transferrable (or buildable 
quite quickly) to the department (TxDOT) for long-term training use or even routine use. 
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Figure 5.20. Find the RDP client in host operating system. 

Figure 5.21. Start the RDP connection to the remote (AWS) server. 

78 



Figure 5.22. Send the credentials to the remote (AWS) server. 

And then the user has to set an exception because the remote server does not use a 
third-party certificate authority.5 The user will select “YES” to connect to the server as 
depicted in figure 5.23. 

Figure 5.23. Accept the self-signed certificate on the remote (AWS) server. 

5 This step can be eliminated if the remote server subscribes to a certificate authority—however for this 
research prototype a self-signed certificate was used; hence the correct security warning. 
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Upon connection a bit of time elapses (usually a few seconds), and then the user is 
presented with a desktop that looks like figure 5.24 (without the annotations). 

Figure 5.24. Windows desktop on the remote (AWS) server. 

The annotations identify two important components that are pre-configured: (1) A 
symbolic link to the R-Scripts collection from Cleveland and Fang (2021) in the correct 
directory structure, (2) A folder named PeakFQ-Files that is a convenient place to store 
work, and has a copy of the PeakFQ files used on the 444 long-term streamgage list, and a 
link to start the PeakFQ software.6 

5.2.2. Using the Remote Tools to Analyze a Streamgage 

The next several pages present a use case to analyze streamgage 08070000 East Fork of 
San Jacinto River near Cleveland, Texas. The streamgage was part of the 444 long-record 
streamgages used in this study. The example will access the NWIS database and download a 
current streamgage annual peak streamflow file. 

6 The PeakFQ software has a restricted filename length; the file copy was an expedient solution for readers 
who wish to examine the behavior of the software using the identical files that the researchers employed. 
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Figure 5.25. USGS NWIS interface after navigation to the streamgage and selection of peak 
streamflow data. 

Figure 5.26. USGS PeakFQ software 7.3 interface but the user will need to use manual latitude 
and longitude (negative values are required) to look up the generalized (regional) 
skew from this study. To clarify, the PeakFQ software 7.3 does not have the 
updated skew from this project embedded into its subsystems. 

On the remote server, open the web browser and navigate to the NWIS as in figure 5.25 
and download streamgage data. Then start PeakFQ as in figure 5.26. 
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Next open the symbolic link to the R-scripts (or use figure 4.6 directly). Select the 
demo03 latlongTOgenskew.R and open the script using RStudio (R and RStudio are pre-
installed in the training prototype environment). 

Figure 5.27. Launch script in R language to look up regional skew directly from a 1-kilometer 
gridded representation of predicted generalized skew. It takes awhile to load on 
the remote, so a short delay is typical. 

The script takes a short time to start on the remote machine (about 10 seconds) and 
will appear similar to figure 5.28 (without the annotations or graphics). The script is run by 
selecting the Source icon to run the entire script that appears in the code window in the 
upper left panel.7 

The console (lower left panel in RStudio) prompts for longitude and latitude, which are 
read/copied copied from PeakFQ. Input format is longitude, latitude in decimal degrees 
(the comma is important and is the delimiter for the input). Upon completion, pressing 
return instructs the script to access the GAM-built raster (predicted by the generalized 
additive model) and recover the values of skew based on location. These are then reported in 
the output (centroid value and streamgage location value as described in chapter 4, and a 
graphic is rendered that is useful to verify the location; the graphic is helpful to the engineer 
to verify that the geographic location used is the anticipated location. 

7 The prototype is pre-configured so the script traverses the correct file paths; users who download the 
entire dataverse should be able to use the script exactly as depicted in these figures. 
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Figure 5.28. Input the decimal latitude and longitude into the console, copy-and-paste from 
USGS PeakFQ software 7.3 works fine, when inputs are complete, press return and 
the script demo03 latlongTOgenskew.R from Cleveland and Fang (2021) reads 
the 1-kilometer gridded representation of figure 4.6 in chapter 4 and a map is 
rendered to help confirm that the latitude and longitude (negative values are 
required) are in the user’s anticipated location. 

In this example, the values returned that will be put into the regional skew cells in PeakFQ 
software for streamgage 08070000 are generalized skew of watershed centroid of 0.0 and a 
standard error of 0.465. 

Figure 5.29 depicts the appearance of the interface after the values from the script are 
supplied, the remainder of the configuration for the analysis is the same as the introductory 
example. After running the analysis the results can be displayed as in figure 5.30. 

Inspection of PeakFQ output results for the station-skew option show that the 100-year 
return period estimate is 84,950 cubic feet per second with 90-percent prediction interval 
bounds of [55,180; 167,300], whereas weighting the station skew with the regional skew produce 
a 100-year estimate of 87,100 cubic feet per second with 90-percent prediction interval bounds 
of [57,080; 164,800]. 

For this particular streamgage, the 100-year return period estimate increases by about 
2-percent when using the weighted skew estimate, and the multiple between the prediction 
intervals bounds decreases from 3.03 to 2.88 showing uncertainty contraction attributed 
to weighted skew being closer to zero than the station skew and about 25-percent smaller 
(station skew is −0.113; weighted skew is −0.085). 
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Figure 5.29. PeakFQ interface ready to analyze streamgage 08070000 East Fork of San Jacinto 
River near Cleveland, Texas. 

Figure 5.30. PeakFQ flood-frequency plot for streamgage 08070000 East Fork of San Jacinto 
River near Cleveland, Texas. 

Nearby (in the sense of in same part of Texas) streamgage 08067000 Trinity River at 
Liberty, Texas is a streamgage with a positive regional skew value of 0.062, a station skew of 
−0.623, and weighted skew of −0.229. The resulting 100-year estimate using station skew is 

84 



128,100 cubic feet per second with 90-percent prediction interval bounds of [109,800; 165,600]. 
The resulting 100-year return period estimate using the weighted skew is 144, 700 cubic feet 
per second with 90-percent prediction interval bounds of [120,000; 193,900]. 

For this particular streamgage the 100-year return period estimate increases by about 
12-percent when using the weighted skew estimate, and the multiple between the prediction 
intervals bounds increases from 1.51 to 1.61 showing some uncertainty expansion. 

Whereas section was presented simply to illustrate use of the tools, a few more examples 
follow that illustrate interesting behavior and impacts of using weighted skew. 

5.3. Selected Flood-Frequency Analyses Demonstrating Impact 
of the Updated Generalized Skew 

5.3.1. Streamgage 08080750 Callahan Draw near Lockney, Texas 

Streamgage 08080750 Callahan Draw near Lockney, Texas, was selected for another example of 
flood-frequency analysis using the generalized skew developed from this study to demonstrate 
potentially impacts on the 100-year return period streamflow in particular. The input data 
for this streamgage are shown in figure 5.31 and a gap of about 30 years is evident. This is a 
streamgage that was operated by the USGS for TxDOT (then Texas Highway Department) 
in the late 1960s and early 1970s (just 9 years of record). The streamgage was reactivated 
and again operated for TxDOT beginning in 2006 and ongoing to the present (2021) (Asquith 
and Harwell, 2018; Asquith and others, 2018; Harwell and Asquith, 2011). Reactivation of a 
streamgage such as this capitalizes on the earlier record so that now (2021) the record length 
is 24 years and growing. This streamgage was not part of the 444 long-record streamgages 
used in the development of generalized skew in this study; however, the streamgage is present 
in other analyses described in this report. 

The flood-frequency results for a station-skew option operation of the PeakFQ software 
and then again using the weighted-skew option is shown in the top and bottom, respectively, 
of figure 5.32. The generalized skew was set to −0.355 (watershed-centroid location skew 
map). The differences in the figure curves are subtle and the differences progressively increase 
deep into the upper tail (the right side of the plots). It is important to note that the lower 
part of the upper tail (say annual exceedance probabilities from 0.5 to 0.10) has effectively 
the same predictions from the two curves. 

Inspection of PeakFQ output results for the station-skew option show that the 100-year 
estimate is 648 cubic feet per second with 90-percent confidence bounds of [384; 2,410] cubic 
feet per second. Conversely, inspection of PeakFQ output results for the weighted-skew option 
show that the 100-year estimate is 534 cubic feet per second with 90-percent confidence bounds 
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Figure 5.31. Input data plot from USGS PeakFQ software 7.3 for USGS streamgage 08080750 
Callahan Draw near Lockney, Texas. 

of [351; 1,900] cubic feet per second. So, for this example, the 100-year estimate decreases 
and the multiple between the confidence bounds goes from 6.27 to 5.41 (or 2,410/384 and 
1,900/351, respectively), which shows contraction of the uncertainty bounds when information 
from generalized skew is incorporated into the analysis. However, part of the decrease in 
the 100-year estimate and the contraction of the bounds is also attributable to the fact 
that the skew in the computations of the frequency curve went from slightly positive for 
the station-skew option to negative for the weight-skew option as shown by the change in 
curvature direction of the frequency curves between the plots. 

5.3.2. Streamgage 08148500 North Llano River near Junction, Texas 

Streamgage 08148500 North Llano River near Junction, Texas, was selected for another 
example of flood-frequency analysis using the generalized skew developed from this study to 
demonstrate potentially impacts on the 100-year return period streamflow in particular. The 
input data for this streamgage are shown in figure 5.33. This streamgage was used in the 
development of the generalize skew product of this report because it has more than 30 years 
of record for natural watershed conditions. 

The flood-frequency results for a station-skew option operation of the PeakFQ software 
and then again using the weighted-skew option is shown in the top and bottom, respectively, 
of figure 5.34. The generalized skew was set to −0.444 (watershed-centroid location skew 
map). The differences in the figure curves are readily seen for annual exceedance probabilities 
less than about 5 percent. 
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Figure 5.32. Flood-frequency plots using station skew (top) and weighted skew (bottom) based 
on a generalized skew value from this study from USGS PeakFQ software 7.3 for 
USGS streamgage 08080750 Callahan Draw near Lockney, Texas. 

Inspection of PeakFQ output results for the station-skew option show that the 100-year 
estimate is 131,000 cubic feet per second with 90-percent confidence bounds of [96,300; 201,000] 
cubic feet per second. Conversely, inspection of PeakFQ output results for the weighted-skew 
option show that the 100-year estimate is 186,000 cubic feet per second with 90-percent 
confidence bounds of [120,000; 327,000] cubic feet per second. So, for this example, the 
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Figure 5.33. Input data plot from USGS PeakFQ software 7.3 for USGS streamgage 08148500 
North Llano River near Junction, Texas. 

100-year estimate increase and the multiple between the confidence bounds goes from 2.09 to 
2.72 (or 201,000/96,300 and 327,000/120,000, respectively), which shows slight expansion 
of the uncertainty bounds when information from generalized skew is incorporated into the 
analysis. However, part of the increase in the 100-year estimate and the contraction of the 
bounds is also attributable to the fact that the skew in the computations of the frequency 
curves become less negative with the incorporation of the generalized skew. 

5.4. Chapter Conclusions 

The generalized skew suggested for updating the Hydraulic Design Manual is readily used in 
USGS PeakFQ software for flood-frequency analysis. All that is needed is for the user to 
select the generalized skew applicable to the streamgage. There is a slight author preference 
for use of the watershed-centroid location generalized skew map of chapter 4 and figure 4.6. 
The user manually inserts the generalized skew into the PeakFQ interface and inserts as 
well the root-mean-square error (RMSE) of 0.465. PeakFQ brands the generalized skew as 
Regional Skew in the interface and the brands the RMSE as Regional Skew St[an]d[ard] 
Error. PeakFQ will then automatically compute in the PeakFQ interface the square of 
the RMSE (mean-square error) but brands this value as Mean Sq[ua]r[e] Error. There 
is acknowledged confusion in the interface by both errors being stated, but only the error 
in native skew units (though dimensionless) of 0.465 requires entry. The user use chose the 
“Weighted” option for the Skew Option in order to use a weighted skew in the computations 
or “Regional” option for only the generalized skew to be used. Logic for reading a 1-kilometer 
gridded representation of the generalized skew is provided within Cleveland and Fang (2021) 
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Figure 5.34. Flood-frequency plots using station skew (top) and weighted skew (bottom) based 
on a generalized skew value from this study from USGS PeakFQ software 7.3 for 
USGS streamgage 08148500 North Llano River near Junction, Texas. 

along the file path: 0-6177-dataverse-archive/demo/demo03 latlongTOgenskew.R. Finally, 
several examples are presented illustrating the use of the updated generalized skew, as is a 
prototype on-line training environment, and a tutorial-like presentation of its use. 
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6. Special Studies—Wet or Dry 
Classification of Annual Peak 
Streamflows 

6.1. Background 

The sensitivities of annual peak streamflows in a Texas, Oklahoma, and New Mexico east of 
the Great Continental Divide to measures of climate state are evaluated in this chapter. The 
working premise is that the peak streamflows are coupled to climate state, as expressed by 
the well-known Palmer Drought Severity Index (PDSI). The PDSI is one of many climate 
indices that measure the relative dryness or wetness of a region; however, the PDSI was 
explicitly the only index extensively reviewed for this study. 

A national perspective of PDSI for May 2015 is shown in figure 6.1 that was acquired 
on July 3, 2019 at https://www.ncdc.noaa.gov/sotc/drought/201505#det-pdi, and at 
the time much of Texas was in extreme wet conditions and many floods were produced that 
month. The various regions shown throughout the United States and Texas are the climatic 
regions for which monthly climate indices are available. 

Climate indices are aggregated on monthly time steps and traditionally are available for 
climatic regions throughout the United States dating back to about January 1895. There has 
been some recent (circa 2019) interest in sensitivity of Texas peak streamflows to climate 
indices within the Interagency Flood Risk Management initiative (https://webapps.usgs. 
gov/infrm/ [accessed July 3, 2019]). 

Experimental efforts with Texas peak streamflows (not otherwise reported here) and 
drought indices show that PDSI in the month of an annual peak had higher correlation 
with the peak streamflows than other climate indices for the same month. PDSI and 
other climate indices (Heddinghaus and Sabol, 1991; Heim, 2002; Palmer, 1965) include, 
and quoting from https://www.ncdc.noaa.gov/temp-and-precip/drought/historical-
palmers/overview (accessed July 3, 2019), the following: 

• Palmer Z Index—Measures short-term drought on a monthly scale; 
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Figure 6.1. Example of the Palmer Drought Severity Index for May 2015, which is a month 
known to have produced many historically large peak streamflows at many 
streamgages in Texas. 

• Palmer Drought Severity Index—Attempts to measure the duration and inten-
sity of the long-term drought-inducing circulation patterns. Long-term drought is 
cumulative, so the intensity of drought during the current month is dependent on the 
current weather patterns plus the cumulative patterns of previous months. Because 
weather patterns can change almost literally overnight from a long-term drought 
pattern to a long-term wet pattern, the PDSI can respond fairly rapidly; 

• Palmer Modified Drought Index—Operational version of the PDSI (Hedding-
haus and Sabol, 1991); and 

• Palmer Hydrological Drought Index—Measures hydrological impacts of drought 
(e.g., reservoir levels, groundwater levels, and others) that take longer to develop 
and longer to recover from. This long-term drought index was developed to quantify 
these hydrological effects, and it responds more slowly to changing conditions than 
the PDSI. 

Preparatory analyses were organized around a data linkage that included assigning to 
each peak the various drought indices of the month of the peak. The climatic region in which 
the streamgage exists was used as the climatic region on which to perform table joins between 
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the drought indices and the annual peak streamflows. Study of lagging an index back from 
the month of a peak streamflow was not studied. 

The analyses indicated that using the PDSI assigned to the peak streamflows for a 
streamgage, can be chosen such that a PDSI threshold (magnitude) bifurcates the peak 
streamflows into two classifications, referred to respectively as wet and dry peak streamflows 
that produces the maximal separation in the classification-specific mean of the logarithms 
of the peak streamflows.1 The resulting mean of the logarithms of wet-classified peak 
streamflows is almost universally maximally larger than the mean of the logarithms of the 
dry-classified peak streamflows. The premise for PDSI to produce a maximum separation in 
peak streamflows is that the “PDSI can respond fairly rapidly” to changes in climate state, 
which is consistent with the time scales on which annual peak streamflows are generated by 
watersheds and precipitation inputs. 

A brief synopsis of key strengths and weaknesses of the PDSI have been summarized by 
Dai and National Center for Atmospheric Research (2017), and listed verbatim below. The 
key strengths of the PDSI are 

• Effective in determining long-term drought, especially over low and middle latitudes; 

• By using surface air temperature and a physical water balance model, the PDSI 
takes into account the basic effect of global warming through potential evapotranspi-
ration; and 

• Takes precedent (prior month) conditions into account. 

In converse, the key weaknesses of the PDSI are 

• Not as comparable across regions as the Standardized Precipitation Index (SPI), but 
this can be alleviated by using the self-calibrating PDSI; 

• Lacks multi-timescale features of indices like the SPI, making it difficult to correlate 
with specific water resources like runoff, snowpack, reservoir storage, and other; and 

• Does not account for snow or ice (delayed runoff); assumes precipitation is immedi-
ately available 

Given this background, in early stages of this research, it was decided to exclusively retain 
use of PDSI for the month of the annual peak streamflow and proceed with data processing 
and analysis as described in this chapter. 

1 PSDI outperforms the other indices with respect bifurcation, and maximal separation is important in 
classification to avoid ambiguity over short intervals. 
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6.1.1. Climate Index Data Sources and Preprocessing 

The data sources and preprocessing are comparatively short in the number of steps achieved. 
Using various Internet portals of the National Oceanic and Atmospheric Administration 
(NOAA), the aforementioned climate indices were acquired. Subsequently for each streamgage 
in the greater database of this project, the climatic regions for each streamgage in which the 
latitude and longitude of the streamgage exist were identified. This step implies that the 
centroid of a polygon matching or approximating the delineation of the watershed was used, 
which also implies that a weighted mean representation of the watersheds should they span 
multiple climatic regions was not used. The final stage in preprocessing for this study was 
matching to each of the peak streamflows possessing the year and month of the peak, the 
PDSI for the corresponding year and month. 

These data reside are archived by Cleveland and Fang (2021) in file: data/1703gages/ 
pdsi with peak flows 1698.feather. The streamgage count therein does not match the 
parent count of 1,703 stated elsewhere in this report because of lack of data availability for a 
few streamgages. There are 55,737 peak streamflows in the listed file. 

6.1.2. Bifurcation of the Peak Streamflows by the Palmer Drought Severity Index 

Figure 6.2 shows a box plot of the distribution of the PSDI values at bifurcation. For each of 
the streamgages (1,698 streamgages had PDSI assignments from which 1,884 site tags exist), 
the PDSIs amongst those for the systematic record that approximately splits the record of a 
given site tag into halves were computed. A site tag is a colon delimited extension to the 
USGS streamgage number to indicate yes/no for code 6 and code C. This coding has an effect 
of potentially isolating distinct gaged record within gaged record. These codes are further 
discussed in chapters 4 and 8. 

Annual peak streamflows that are part of the systematic record, but lack a month 
associated with some peak streamflows make such streamflows implicitly eliminated from 
the analysis reported here. To clarify the structure of the data, each site tag has its own 
streamgage-specific PDSI value that split the record. Algorithmically, the computation is 
simple; the median PDSI was computed for each site tag. The mean record length for the 
site tags is about 29.5 years and the quartiles are 11 and 45 years. The bifurcation results in 
a classification of each peak as either wet or dry. 

The PDSI by definition has a central tendency of zero and hence negative PDSI are 
associated with drought and positive PDSI are associated with periods of abundant rainfall. 
The bifurcation of the peak streamflows by PDSI does not imply that the median PDSI will 
be zero or approximately so. In general, the researchers have found that the PDSI bifurcating 
peak streamflow records has about a median of 1.2 and a quartile range of PSDI 0.54–1.64. 
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Figure 6.2. Distribution of PDSI values that bifurcate the systematic record for all 738 
streamgages in the study area that have at least 15 peak streamflows in the wet 
and 15 peak streamflows in the dry classification. The results show that a median 
PDSI of about 1.2 for the month of occurrence of peak streamflows would split the 
records in half. 

6.1.3. Spatial Distribution of the PDSI Bifurcating the Record 

Spatial distribution was inferred from a surrogate that is by elevation bands. Figure 6.3 
is a box plot by elevation band of the bifurcation PDSI for the study area. The PDSI is 
above 1.0 for elevations up to 2,000 feet, then declines to below 1.0 at higher elevations. 
Interpretations of this result is unclear, perhaps higher elevations are normally drier anyway 
and with somewhat less variability. 

6.1.4. Frequency Curve Changes between Wet and Dry Classes 

Frequency curves for each study station were examined to interpret the climatic influence, a 
few representative examples follow. Figure 6.4 (top) is an example of a streamgage where 
the wet or dry classification has little predictive value for the frequency behavior; the flood 
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Figure 6.3. Distribution of PDSI values that bifurcate the systematic record for all 738 
streamgages in the study region with distinction according to seven elevation classes 
from left to right (0–200; 200–500; 500–1,000; 1,000–2,000; 2,000–4,000; 
4,000–6,000; and 6,000+feet). 

frequency curves are essentially the same. The dry classification (red) has lower magnitudes 
at higher probability (left side of chart), and projected high magnitudes a bit larger than the 
equivalent wet (blue) classification. 

These lower magnitudes are further identified as below the low-outlier threshold, whereas 
the climate classified wet values have no low outliers in this example. The large circles on the 
plot represent the projected (fitted log-Pearson type III distribution using station skew) 2-, 5-, 
10-, 25-, 50-, 100-, 200-, and 500-year return period streamflow estimates for this streamgage. 

Figure 6.4 (bottom) is an example of a streamgage where the wet and dry classification 
has predictive value; the wet climate state flood frequency curve lies above and nearly parallel 
to the dry curve. The wet classification (blue) has a low outliers identified, whereas the 
dry state all the values are useable for the flood frequency curve construction. For this 
streamgage, climate state matters, and wet climate streamflows are greater than dry state 
for the same probability. In the following maps, this streamgage would plot as a red marker 
for the mean values, and red or brown for the standard deviation. The skew difference is not 
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Figure 6.4. Example frequency curves for wet (blue) and dry (red) classified peak streamflows 
for U.S. Geological Survey streamgage 07308200 Pease River near Vernon, Texas 
(top) and 08022500 Sabine River at Logansport, Louisiana (bottom). 
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easily inferred from this plot. The large circles on the plot represent the projected (fitted 
log-Pearson type III using station skew) 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year return 
period streamflow estimates for this streamgage. 

Figure 6.5 (top) is an example of a streamgage where the wet and dry classification shows 
a cross-over; the wet climate state flood frequency curve lies above the dry curve at sub 
2-year return period, and crosses over at a 5-year return period. Neither classification has 
low outliers identified. In the following maps, this streamgage would plot as a green marker 
for the mean values, and green or olive for the standard deviation. The skew difference is not 
easily inferred from this plot. The large circles on the plot represent the projected (fitted 
log-Pearson type III using station skew) 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year return 
period streamflow estimates for this streamgage. 

Figure 6.5 (bottom) is an example of a streamgage where the wet/dry state has some 
predictive value. Both classification states have low outliers identified. In the following maps, 
this streamgage would plot as a red or brown marker for the mean values, and dark green or 
green for the standard deviation. The skew difference will likely plot as a red marker in this 
case. The large circles on the plot represent the projected (fitted log-Pearson type III using 
station skew) 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year return period streamflow estimates 
for this streamgage. 

Figures 6.6 and 6.7 provide four additional examples of wet and dry flood-frequency curves 
for four selected USGS streamgages. These are included to simply provide examples of the 
types of offsets and differences of frequency curves by the PDSI wet and dry peak streamflow 
classification. 
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Figure 6.5. Example frequency curves for wet (blue) and dry (red) classified peak streamflows 
for U.S. Geological Survey streamgage 08052700 Little Elm Creek near Aubrey, 
Texas (top) and 08063800 Waxahachie Creek near Bardwell, Texas (bottom). 
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Figure 6.6. Example frequency curves for wet (blue) and dry (red) classified peak streamflows 
for streamgages 08065200 Upper Keechi Creek near Oakwood, Texas (top) and 
08096500 Brazos River at Waco, Texas (bottom). 
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Figure 6.7. Example frequency curves for wet (blue) and dry (red) classified peak streamflows 
for streamgages 08142000 (top) Hords Creek near Coleman, Texas and 08158000 
Colorado River at Austin, Texas (bottom). 

103 



diff mean

<= 0.10 mean
0.10 to 0.22 mean
0.22 to 0.32 mean
0.32 to 0.45 mean
>= 0.045 mean

Geographic coordinates used for plotting

Explanation

Figure 6.8. Spatial distribution of the difference of the wet to dry means of the log-Pearson 
type III from PDSI bifurcation for 738 streamgages with at least 30 years of 
systematic record, where color break points chosen from quintiles (0.10 [green], 
0.22, 0.32, and 0.45 [red]) from the overall dataset (all elevations). 

6.1.5. Spatial Effects on Distribution Parameter Differences 

Exploratory analysis of the effects of the wet and dry classifications by PDSI bifurcation and 
the change in the moments (parameters) of the log-Pearson type III distribution are shown in 
this section. In particular, the wet or dry bifurcation of mean, standard deviation, and station 
skew as a function of location is displayed in figures 6.8–6.10. The reasoning for showing this 
information is to assess how distribution geometry (shape) changes in semi-quantified sense 
across the study area. Efforts to interpret these figures are made. 

Comparison of the Means—The color scheme in figure 6.8 shows differences in the 
means. Red locations show a comparatively large difference (wet compared to dry is quite 
different in the mean) whereas green locations the differences in means are small, implying 
wet minus dry differences are not evident in the peak flows. In terms of location, the Texas 
coastal bend and central Texas are sensitive to wet and dry classification, as are central 
Oklahoma, and Northern New Mexico. 
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Figure 6.9. Spatial distribution of the difference of the wet to dry standard deviations of the 
log-Pearson type III from PDSI bifurcation for 738 streamgages with at least 30 
years of systematic record present, where color break points chosen from quintiles 
(−0.17 [green], −0.08, −0.02, and +0.04 [red]) from the overall dataset (all 
elevations). 

So, for figure 6.8, the redder colors indicate that the peak distribution associated with 
large PDSI (greater than median PDSI as seen in fig. 6.1), from a rule-of-thumb, is about 
1/3 log10-cycles greater and the greener colors shown that the difference is only about 1/10 
log10-cycles greater. Perhaps of most interest to hydrologic engineering practice in Texas is 
the preponderance of a large climate effect in the mean of the flood frequency distribution in 
central Texas southeast to the coastal bend. 

Comparison of Standard Deviations—The color scheme in figure 6.9 is that red 
markers indicate variability differences are positive, that is variability (expressed as standard 
deviation) in wet conditions is greater than variability in dry conditions for the same location. 
The steepness of the frequency curve increases from the dry to the wet classification for 
positive values of the differences shown in the figure. The remaining colors, brown to green 
are progressively decreasing magnitudes of negative differences, that is variability (again, 
expressed as standard deviation) in wet conditions is smaller than variability in dry conditions 
for the same location. 
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The map shows that positive differences in variability between wet to dry are detected 
over the entire study area. The identifiable areas with large positive differences (variability 
is greater in wet classification) are the Harris County area in Texas, North Central Texas, 
most of Oklahoma, the Guadalupe Mountains in South East New Mexico, and Northern 
New Mexico. Perhaps of most interest to hydrologic engineering practice in Texas is the 
preponderance of a large climate effect then in the mean of the flood frequency distribution 
in central Texas southeast to the coastal bend. However, the effect at first glance might 
be counterintuitive to that for the mean in figure 6.8. The effect is negative, that is, the 
standard deviation relatively decreases from dry to wet conditions, in central Texas, but this 
in the context of the mean having increased in the region. 

Comparison of Skews—The color scheme in figure 6.10 is that red markers indicate 
skew differences that are positive, that is skew in wet conditions is greater than skew in 
dry conditions for the same location. Green markers indicate skew differences are negative, 
that is skew in wet conditions is smaller than skew in dry conditions for the same location. 
The remaining colors, brown to dark green are progressively decreasing magnitudes of skew 
differences. The olive markers represent locations where skew differences are small and include 
zero, and these locations are not sensitive to wet and dry classification. There does not 
appear to be much of a spatial signal or trend to highlight. There is much inter-scattering of 
the redder colors with the greener colors. 

6.2. Chapter Conclusions 

The wet and dry classification of annual peak streamflows by the PDSI bifurcation shown 
by a streamgage-to-streamgage comparisons that many interesting patterns and different 
frequency curves exist. The flood distribution is clearly conditionally influenced by PDSI. 
Spatially as a general rule, the wet and dry classification shows considerable differences in 
the first two parameters of the log-Pearson type III distribution. Skew is not sensitive to the 
wet and dry classification. 

Whereas the results shown in this chapter are certainly of curiosity to flood hydrology 
and the fact that the frequency curves seem to increase for wetter conditions as conditioned 
by PDSI for the month of a peak streamflow, it is not clear how this information could be 
used for purposes of hydrologic engineering design. The researchers suggest that the content 
of the analysis in this chapter would be difficult to integrate into the TxDOT Hydraulic 
Design Manual (September 2019) (Texas Department of Transportation, 2020), and at least, 
refinement of the generalized skew discussed in chapter 4 by the wet and dry classification, is 
not likely to improve design practice appreciably. There might be a place for climate state as 
a covariate in an algorithm discussed in chapter 8. 
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Figure 6.10. Spatial distribution of the difference of the wet to dry skews of the log-Pearson 
type III from PDSI bifurcation for 738 streamgages with at least 30 years of 
systematic record present, where color break points chosen from quintiles 
(−0.54 [green], −0.09, +0.32, and +0.83 [red]) from the overall dataset (all 
elevations). 

Last remarks are needed. The analysis herein clearly shows that annual peak streamflow 
magnitudes are sensitive to the “state of climate” as represented by PDSI. This means that 
the conditional probability of peak streamflows is a function of PDSI. From a perspective of 
bivariate joint probability, months of high PDSI in contemporaneous time could be indicative 
that a watershed is potentially primed for larger than usual floods than in months of low 
PDSI (drought conditions). It was outside the scope of this research to define joint probability 
behavior, such as by bivariate copula (Salvadori et al., 2007), between peak streamflow and 
PDSI. Further statistical study as shown here could be useful for enhancing operational 
hydrologic or public safety concerns as a contrast to traditional needs and stakeholders in 
hydraulic design from regional statistical models. 
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7. Special Studies—Multiorder Hydrologic 
Position (MOHP) Analysis 

7.1. Introduction 

Increasing the number of potential predictor variables for annual peak streamflow statistical 
analyses is necessary to improve upon predictive hydrologic flood models in the future. 
An example being considered is the use of the U.S. Geological Survey (USGS) Multiorder 
Hydrologic Position (MOHP), which includes lateral position and distance from stream to 
divide (Yesildirek et al., 2021). Lateral position (dimensionless) is the relative position of a 
point between the stream and its watershed divide. Distance from stream to divide (units of 
length) is an indicator of position within a watershed: generally small near a confluence and 
generally large in headwater areas. MOHP was incorporated into the Research Project 0–6977 
because of the predictive value of MOHP for groundwater-flow and groundwater-quality 
modeling (Belitz et al., 2019) is favorable, and it appears to have value in surface water settings. 
MOHP metrics are used as explanatory factors in random forest machine learning models, 
an emerging technology to create useable prediction and classification engines. Whereas 
investigation into the importance or usefulness of MOHP for annual peak streamflows needs 
further exploration, early investigation for this project and previous use by others within 
groundwater-flow and groundwater-water quality statistical models indicate there is value in 
using machine learning to evaluate these relations for potential use in predictive models of 
surface-water hydrology including floods. 

7.2. Previous MOHP Research 

The MOHP is the ensemble of hydrologic positions on the landscape within the drainage 
network pattern including distance from stream to divide (DSD) and lateral position (LP). 
MOHP raster datasets including DSD and LP have been produced nationally for the 48 con-
tiguous United States (CONUS) at 30-meter and 90-meter cell resolution for stream orders 
1 through 9. For a given hydrologic order, DSD and LP are defined based on horizontal 
distance to the nearest stream and horizontal distance to the nearest divide. The detailed 
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steps of computing the hydrologic position ensemble can be found in Belitz et al. (2019) and 
the raster datasets can be acquired from Moore et al. (2019). Hydrologic order 1 consists 
of all streams, hydrologic order 2 includes streams with order 2 and higher, and hydrologic 
order n includes streams with order n and higher, with stream order being earlier defined 
by Strahler (1957). Instead of only considering the nearest stream, MOHP provides the 
possibility that the position of a point within a high-order watershed can be as relevant to the 
prediction of hydrologic characteristics as the position of that point within its local first-order 
watershed. 

Several studies have used MOHP data as predictor variables for groundwater level tree-
based machine learning. In case studies of Central Valley geomorphic provinces and U.S. 
physiographic provinces (Fenneman and Johnson, 1946; U.S. Geological Survey, 2020), MOHP 
metrics were found informative in predicting landscape classes using the Random Forest 
Classification model (Kuhn and Johnson, 2016) and the higher-order MOHP metrics were 
more influential than the lower order metrics (Belitz et al., 2019). For case studies in the Fox– 
Wolf–Peshtigo area in Wisconsin, the higher-order MOHP metrics were found not necessarily 
more influential than the lower order metrics on the application of the simulated/observed 
depth to the water table using the Random Forest Regression model (Belitz et al., 2019). 
Overall, results indicate that MOHP metrics have prediction utility on groundwater-level 
machine learning applications. Whereas groundwater studies have shown predictive value 
using the MOHP (Knierim and others, 2020), the use in flood peak and regionalization 
analyses have not been thoroughly investigated. 

7.3. Development of MOHP Covariates 

For this report, a variety of hydrologic positions were explored including LP and DSD for 
stream orders 1 through 9. The values for DSD and LP were extracted using the location of 
the streamgage along with the means and standard deviations for DSD and LP of the main 
flow line within a watershed (Yesildirek et al., 2021). The addition of DSD and LP statistics 
for flow lines is a novel data preparation step unique to this project. The MOHP datasets 
(DSD and LP at 90-meter cell resolution for stream orders 1 through 9) were obtained from 
Moore et al. (2019). In total, 18 rasters (MOHP DSDn for n ∈ 1 · · · 9 and MOHP LPn n ∈ 1 · · · 9) 
were used to assign values to the 1,703 streamgaging stations in a geographical information 
system (Yesildirek et al., 2021). The aforementioned “18” means that there are 18 MOHP 
covariates associated with each streamgage and with the flow-line statistics, another 36 MOHP 
covariates.1 These MOHP assignments by streamgage are a major product of Research Project 
0–6977. 
1 The term “covariate” is basically a term for a “column” of a potential predictor variable in a input table 
for a statistical method. The most important covariate in surface-water problems like floods is the 
contributing drainage area, for example. 
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Figure 7.1. Maps of distance from stream to divide (DSD): (a) DSD1, (b) DSD2, (c) DSD3, 
(d) DSD4, (e) DSD5, (f) DSD6, (g) DSD7, (h) DSD8, (i) DSD9, and the numeric 
subscript indicates hydrologic order. 

Example maps of DSD for just part of the study area focuses on the eastern half or so of 
Texas including the Gulf of Mexico, from order 1 through order 9, are shown in figure 7.1. 
This spatial extent was chosen so that intricacies of each order can be seen. The DSD unit 
is in length and values are relatively small near stream confluences. For hydrologic orders 
from 1 to 5, values of DSD range from 0 to 100 kilometers (km) with the shades of red and 
yellow in most areas (figs. 7.1a–7.1e). For hydrologic orders from 6 to 9, most areas have 
DSD values on the order of 100 to 1,000 km with the shades of green. To aid in potential 
meaning or usefulness of the DSD, inspection of the maps in the figure suggests that DSD of 
different orders will function similar to the “[Texas] hydrologic regions” in the spirit of that 
concept used in Asquith and Slade (1997) for regional equations to estimate flood frequency 
for Texas. 

Example maps of LP for the partial of Texas including the Gulf of Mexico, from order 
1 through order 9, are shown in figure 7.2. LP is dimensionless with values ranging from zero 
at a stream reach to one at a drainage divide. It can be seen that the number of watersheds 
decreases as hydrologic order increases. The pattern of LP9 (fig. 7.2i) near the Gulf of Mexico 
can be taken as a general indicator of distance from the coast (Belitz et al., 2019). For 
example, the pattern in LP7 (fig. 7.2g) is nearly perpendicular to LP9 (fig. 7.2i) near the 
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Figure 7.2. Maps of lateral position (LP): (a) LP1, (b) LP2, (c) LP3, (d) LP4, (e) LP5, (f) LP6, 
(g) LP7, (h) LP8, (i) LP9, and the numeric subscript indicates hydrologic order. 

Gulf of Mexico. Belitz et al. (2019) mentioned that LP7 can be taken as an indicator of 
distance from streams which are aligned approximately orthogonal to the gulf coast. So, LP9 
and LP7 together can serve as an indicator of distance from the coast and distance from a 
major river. As with DSD, inspection of the figure suggests too that LP could function as a 
type of hydrologic region in statistical modeling. 

7.4. Data for MOHP Flood Regionalization Studies 

The specific fields related to MOHP for streamgages in Yesildirek et al. (2021) are 

• site no—The USGS streamgage identification number; 

• dec lat va—The decimal latitude in the North American (horizontal) Datum of 
1983 (NAD83) from the USGS National Water Information System (NWIS) (U.S. 
Geological Survey, 2018); 

• dec long va—The decimal longitude in the North American (horizontal) Datum of 
1983 (NAD83) from the USGS NWIS (U.S. Geological Survey, 2018); 
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• GAGE DSDn (n is from 1 to 9)—The cell values equal to the sum of the shortest dis-
tance to the stream with hydrologic order n plus the shortest distance to the match-
ing Thiessen divide; 

• GAGE LPn (n is from 1 to 9)—The cell values equal to the shortest distance to the 
stream with hydrologic order n divided by the DSD; 

• FL DSDn MEAN (n is from 1 to 9)—The mean of DSD cell values along the flow line by 
hydrologic order n. These covariates are not evaluated in this chapter; 

• FL LPn MEAN (n is from 1 to 9)—The mean of LP cell values along the flow line by 
hydrologic order n. These covariates are not evaluated in this chapter; 

• FL DSDn SD (n is from 1 to 9)—The standard deviation of DSD cell values along the 
flow line by hydrologic order n. These covariates are not evaluated in this chapter; 
and 

• FL LPn SD (n is from 1 to 9)—The standard deviation of LP cell values along the 
flow line by hydrologic order n. These covariates are not evaluated in this chapter. 

7.5. Exploratory Evaluation of MOHP in a Regional 
Statistical Model 

The watershed properties, MOHP, other watershed features associated with each 
peak streamflow originally sourcing from U.S. Geological Survey (2018) are in the 
project archive for this report in Cleveland and Fang (2021) along the file path: 
0-6177-dataverse-archive/data/peaks props NID 1703.feather.zip. This file contains over 
58,000 years of systematic annual peak streamflows, watershed properties, and temporally 
integrated reservoir storages on a water-year by water-year basis. This file contains, therefore, 
data especially suitable for the exploratory research of MOHP as an explanatory variable on 
distributional properties of floods in the study area. The watershed properties and MOHP 
canonically source from Yesildirek et al. (2021). 

A Cubist machine learning model (Kuhn and Johnson, 2016; Kuhn et al., 2020) using 
33 covariates (18 are MOHP values for the streamgages) was assembled and is in Cleveland 
and Fang (2021) along the file path: 0-6177-dataverse-archive/demo/demo04 mohp.R. This 
script uses the regulation covariates discussed in chapter 8 as means in this case to adjust for 
the effects of regulation within the Cubist model. 

A Cubist model is a tree-based form of machine learning in which branches of the tree 
are rolled into a concept known as “rules,” which logically are just a sequence of “if” and 
“and” statements using some or all of the covariates. The simplest description for say the first 
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rule would be “Rule 1: if drainage area (A) exceeds 1,000 square miles, use Linear Model 1.” 
At the end of each rule, is a linear model (in concept, a linear regression equation); these 
each-rule-specific linear models use some or all of the covariates to make a prediction and 
need not match those covariates used in the rule itself. Continuing the simplest description, 
“Linear Model 1: log10(Q) = 0.5× log10(A)+0.8× log10(S)−0.3” for streamflow (Q), drainage 
area (A) and main-channel slope (S) and the listed numbers are coefficients and intercept. 

The Cubist model made by the script is simple and only for reporting on some exploratory 
results. The model has 58,000 years of peaks for 1,634 streamgages. The objective of the 
Cubist model is to estimate the mean annual peak in log10 space given basic watershed 
properties, the conditional inclusion of the regulation covariates (for example, cumulative 
flood storage in the watershed for a given annual peak streamflow), and the 9 DSD and 9 LP 
MOHP covariates. Spatial location of the streamgage is not involved, which means that 
projected coordinates of the streamgage are not used as predictor variables. 

The Cubist model summarized in this chapter is not tuned up. For sake of documentation, 
the number of “rules” was set to 500, the number of “committees” was set to 10, and the 
number of “neighbors” in prediction phase was set to zero. These are difficult to succinctly 
explain control features of Cubist but are set so that an instinctive feel for the what the 
model might be formally capable of is available to a first order approximation. 

7.5.1. Standard Model Diagnostics and Comparison to Related Work 

The normalized Nash–Sutcliffe Efficiency (NNSE) and root-mean-square error (RMSE) of 
the Cubist model fully training on the entire dataset, respectively, are NNSE=0.654 and 
RMSE=0.558 (log10 cubic feet per second). The RMSE in particular is a statement that the 
standard error for an estimated mean annual peak streamflow at least 1/2 log10-cycle and 
such error then in real-space is approximately a multiple or divisor of three. 

The mean annual peak and 2-year peak are phenomenologically not the same but for rough 
comparison are loosely in the same realm of the flood regime. The 1/2 log10 error from the 
Cubist model can be compared to about the 1/3 log10 error for say the 2-year return period 
flood equation using on drainage area in Asquith, and Thompson (2008, tables 6 and 9). By 
itself in isolation, error comparisons are not reflective of either model superiority at this time 
and are provided in order to satiate curiosity. The 1/3 log10 error stems from Asquith, and 
Thompson (2008) using 656 streamgages in Texas and peak streamflow records restricted to 
natural conditions (meaning unregulated and unurbanized). The 1/2 log10 error from the 
Cubist is from a massively larger data set—almost 1,000 more streamgages—and unrestricted 
in watershed conditions (natural, regulated, urban). In essence, machine learning, such as 
Cubist, permits wholesale consumption of peak streamflow information into a general model. 
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Of interest to the exploratory evaluation of MOHP usefulness for the purposes of this 
chapter, is the question: “How relatively important are the MOHP for flood regionalization?” 
The Cubist model provides for a review of relative impact or “information presence” of each of 
the 33 covariates in the model on a scale from 0 to 100. For example, the top three covariates 
in decreasing order of importance are drainage area, mean elevation of the watershed, and 
mean annual precipitation. The fourth most important variable is MOHP DSD9 (fig. 7.1i). 
An interpretation then is that DSD9 is functioning somewhat like a hydrologic region—study 
closely the color banding in figure 7.1i, for example. The next five most important covariates 
are related to regulation covariates (see chap. 8). Further evaluation of the Cubist model 
itself is left unstated hereinafter. 

7.5.2. Importance of MOHP in a Machine Learning Model 

This chapter concerns the usefulness of MOHP for statistical flood hydrology. To this end, the 
DSD and LP covariates in terms of the 0 to 100 scale of relative importance were isolated and 
their order number extracted. Figure 7.3 shows that the importance of MOHP is nontrivial 
and providing some type of information into the regionalization of peak streamflows. 

More specific interpretations can be made using figure 7.3. The DSD is relatively more 
important than LP because on the LP data plotting to the left of the DSD. The higher 
the MOHP order, the relatively more informative those data are than the very local scales 
presented by MOHP order 1. The results in the figure, in order for simplification of a 
production model, of peak streamflow, suggest that the MOHP DSD 7, 8, and 9 are quite 
important. Recalling from early discussion here, the DSD 9 is the fourth most important 
variable in the model, so retaining DSD 9 in further model development seems logical. 

The LP is a bit more difficult to interpret because the importance measures are much 
lower and cluster in the 10 to 30 range. It is important to now that in general both DSD 
and LP show increasing contribution of information in the regionalization process as the 
order increases. Perhaps for LP, the MOHP orders to focus on would also be 7, 8, and 9 
(even though fig. 7.3 shows a “wobble” in the third most important LP order). A figure of 
relative importance such as shown naturally changes as some orders, clearly the lower orders 
of MOHP, were removed as part of model simplification expected in more rigorous modeling 
efforts than reported here. 

7.6. Chapter Conclusions 

Advances in watershed processing and machine learning create an opportunity to explore a 
variety of explanatory variables for distributional properties of floods, including MOHP. Prior 
studies have indicated the importance of MOHP as groundwater-flow and groundwater quality 
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Figure 7.3. Relation between the MOHP order number and the relative importance metric for a 
Cubist model predicting base-10 logarithm of mean annual peak streamflow from 
1,634 U.S. Geological Survey streamgages; 58,000 years of annual peak streamflows; 
and 33 covariates including the 9 distance from stream to divide (DSD) and 
9 lateral position metrics from the multiorder hydrologic position (MOHP) data. 

predictors. In this report, 18 MOHP covariates for streamgage location are investigated for 
their predictive value potential of mean annual peak streamflow (logarithmic). Results of an 
exploratory study are presented based on a Cubist machine learning model. Of particular 
interest from Cubist, is the relative importance of the 18 MOHP covariates and a diagnostic 
plot created. The results show that the higher order MOHP, in particular, orders 7, 8, and 
9, are more influential than the lowest orders of MOHP. The distances to stream divide 
(DSD7, DSD8, and DSD9) and likely these same orders for LP (LP7, LP8, and LP9) are the 
most influential in statistical modeling of peak streamflows. MOHP is therefore of interest in 
regional models of flood hydrology in Texas, Oklahoma, and eastern New Mexico because 
indicated modeling diagnostics because MOHP seamlessly, in gridded form (an attractive 
attribute), represents fundamental stream network and terrain relations. Further study of 
MOHP in peak streamflow statistical analyses is justified. 
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8. Special Studies—Accommodation of 
Effects of Regulation 

8.1. Introduction 

Whereas the primary objective of this study was to update (chap. 4) the generalized skew 
map in the TxDOT Hydraulics Design Manual (Texas Department of Transportation, 2020), 
an opportunity was afforded to study the potential effects or impacts of regulation on the 
distributional properties of annual peak streamflows. The opportunity arose because of the 
extensive watershed property computations provided in Yesildirek et al. (2021) in conjunction 
with specialized software (scNIDaregis) by Asquith et al. (2021) that were both recently 
(2021) published products of Research Project 0–6977. The watershed properties listed by 
Yesildirek et al. (2021) identify 1,703 U.S. Geological Survey (USGS) streamgages that are 
presentative of most of the annual peak streamflow information of both current (2021) and 
historical USGS data collection in the study area. Peak streamflow data are provided by 
the USGS National Water Information System (NWIS) U.S. Geological Survey (2018). The 
study area includes Oklahoma, Texas, and New Mexico east of the Great Continental Divide. 
The aforementioned term “regulation” is used here in represent aggregate information from 
the U.S. Army Corps of Engineers National Inventory of Dams (NID) database (U.S. Army 
Corps of Engineers, 2020), for which greater context of these data to this study are within 
the scNIDaregis software documentation of Asquith et al. (2021). 

Background to USGS peak-streamflow data and associated discharge qualification codes 
are summarized by Wagner et al. (2017). Discharge qualification codes “6” and “C” are 
the most germane with peak streamflow analyses. The code 6 definition states “Streamflow 
is affected by regulation or diversion,” and the code C definition states “All or part of the 
record is affected by urbanization, mining, agricultural changes, channelization, or other 
anthropogenic activity.” The USGS PeakFQ software 7.3 (U.S. Geological Survey, 2020) by 
default ignores peaks with code 6 and(or) code C—though settings in the software can be 
used to permit such data to enter into analysis. There is also a code 5 that states “Streamflow 
affected to an unknown degree by regulation or diversion.” These statements are statements 
of qualification alone. Urbanization (development) (code C) is outside the scope of this 
chapter and a side note is made about development in a later section within this chapter. 
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A summary of the code 6 and its relation to the study of generalized skew is described in 
another chapter of this report (chap. 4). Suffice to say here that presence or absence and(or) 
of code 6s and Cs by the USGS for the study are not statements of individual peaks not 
being suitable or contrarily not suitable for statistical study. However, the USGS in Texas 
and is seems for the broader region of the study area has tried to make the code 6 as a flag, 
as it were, that careful and deliberate application should be made by the engineer studying 
flood hydrology. 

The code 6 in NWIS, incidentally, is assigned during the data acquisition and review 
process by USGS hydrographers and not influenced by the needs of end practitioners of 
flood hydrology. For some streamgages, the code 6 truly reflect some major change in the 
watershed because of one or more major reservoirs self-evidently change the distributional 
properties of streamflow. Such streamgages then might have a type of “before” and “after” 
subset of data in the collective record (Asquith, 2001). Other times the effects of regulation 
by reservoirs, inclusive of small impoundments and exclusive of major flood control activities, 
are much more nuanced. For example, perhaps only the lower end of peaks are effects but 
the upper end, the right tail or flood tail, which is of interest to the engineer, are unaffected 
by the impoundments. Alternatively, major flood control reservoirs could be so far upstream 
from a streamgage or watershed outlet that the effects of regulation are no longer a factor 
because of copious unregulated intervening drainage area (Herrmann, 2013). As can be seen, 
understanding and applying what the USGS is communicating to the data consumer by the 
peak discharge qualification coding is difficult. 

8.1.1. Data for Study of Effects of Regulation 

The advent of the scNIDaregis permits the “binding” of each annual peak streamflow 
to a temporal aggregation of cumulative storages by overlaying a polygon representa-
tive of the watershed for a given streamgage. The polygons for 1,703 streamgages are 
available from Yesildirek et al. (2021), the NID available in Asquith et al. (2021), and 
peak streamflows from U.S. Geological Survey (2018). These collective data are combined 
into the project archive for this report in Cleveland and Fang (2021) along the file path: 
0-6177-dataverse-archive/data/peaks props NID 1703.feather.zip. This file contains over 
58,000 years of systematic annual peak streamflows, watershed properties, and temporally 
integrated reservoir storages on a water-year by water-year basis. This file contains, therefore, 
data especially suitable for the exploratory research of the effects of regulation on distribu-
tional properties described hereinafter in this chapter. These data afford a chance to greatly 
extend from the earlier TxDOT sponsored research described by Asquith (2001). 

120 



8.1.2. Previous Research and Interests of the Engineer 

The TxDOT Research Program has had historical interest in the statistical nature of regulation 
of peak streamflows in Texas. More than 20 years ago, Asquith (2001) investigated, in 
cooperation with TxDOT, for about 325 streamgages in Texas, the changes in the L-moments 
(distribution summary statistics including mean, variation, skewness) by regulation. The 2001 
study focused on hand-picked streamgages with major jumps (change points) in the temporal 
aggregation (accumulation) of upstream normal, maximum, and flood storage capacities of 
reservoirs. In short, the study depicted percent changes in the mean by cumulative flood 
capacity per unit drainage area and demonstrated that higher dimensionless moments of the 
peak streamflow distribution were unaffected. The study though used periods or plateaus of 
static cumulative flood capacity and statistically summarized changes in the peaks. Flood 
capacity was defined as the summation of maximum storages minus the summation of normal 
storages of reservoirs as listed in the NID. 

There are several remarks to make in the interests of the engineer involved in flood 
frequency analysis for streamgages and (or) using regional methods to estimate flood frequency 
at ungaged (unmonitored) locations in Texas. Using the aforementioned data file in the 
previous section, there are 1,333 annual peak streamflows that appear as systematic record 
with the water year equalling or exceeding 2019. These data stem from 722 streamgages. 
Some 547 of the 1,333 peaks are coded as 6. This means that the USGS is stating, in a 
difficult to interpret way, that about 40 percent of the USGS annual peak streamflow data 
collected today (circa 2021) within the study area (Texas, Oklahoma, and New Mexico east 
of the Great Continental Divide) is “regulated” to a degree that the USGS considers the 
peak streamflows as influenced. 

The fact that about 40 percent of all currently acquired USGS peak streamflow data are 
said to be “Streamflow is affected by regulation or diversion” has major ramifications for the 
interpretation and uses of peak streamflow data in the region. Further details to this definition 
are provided in chap. 4. For this chapter, these interpretations directly influence how in many 
watersheds from the USGS could be used, how hydrology and hydraulic models for watersheds 
can be compared to USGS data, and how statistical regional methods and other aspects 
of the TxDOT Hydraulic Design Manual should be applied inclusive of uncertainties in 
computations. At present (2021), there is no standard of practice available for the engineering 
community formulated to quantify or accommodate the effects of regulation in statistical 
hydrology. 

As stated at the chapter beginning, the primary purpose of this study was to update 
the generalized skew map for the TxDOT Hydraulics Design Manual, and repeating, this is 
accomplished in chapter 4. The data analyses leading to those results deliberately focused on 
early-in-time records though most applicable to “natural watershed” conditions (unregulated 
watersheds in other words) when code 6s or other qualitative questions in whether regulation 
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of the peak streamflow records are thought to contaminate the peak streamflow data for 
purposes for establishing a generalized skew for natural watershed conditions. Left unsaid in 
that chapter and ultimately also unresolved for this chapter is guidance how to accommodate 
effects of regulation from the very many thousands of reservoirs constructed in Texas (Asquith 
et al., 2021, documentation). 

The objective of this chapter is to report on exploratory research towards understanding 
how the effects of regulation could be rigorously quantified with an eye towards end-user 
applications. This chapter ends with short discussion on potential future research directions 
with a perspective of implementation. 

8.2. Exploratory Research on Effects of Regulation 

A component of the greater study was to make evaluations of the effects of regulation on 
distributional properties of peak streamflows. To this end, exploratory research on the effect of 
regulation of annual peak streamflows was made, and the results reported in this chapter. The 
report includes description of an algorithm and identification of experimental implementation 
of the algorithm in the R programming language (R Core Team, 2021). A demonstration 
for a selected streamgage is provided from which visual depiction of results produce clarity 
that the algorithm might be viable and certainly an avenue for further investigation of Texas 
flood hydrology is presented. 

8.2.1. Step-by-Step Algorithmic Description 

The basic algorithm for comprehensive inclusion of reservoir storage is describe step-
by-step in this section. This algorithm is absolutely unique to this study and rep-
resents the culmination of long-duration discernment on generally under studied and 
thus unimplemented accommodation of reservoir regulation in a statistical sense into 
regional hydrologic models in Texas and the greater study area. The algorithm so 
described is experimentally implemented in Cleveland and Fang (2021) along the file path: 
0-6177-dataverse-archive/demo/demo02 effreg quantreg.R and an elementary introduction 
to quantile regression for at least a reader with basic R knowledge is along the file path: 
0-6177-dataverse-archive/demo/demo basic quantreg.R. The two figures provided in this 
section stem from the former script. Both of these scripts are designed “run out of the box” 
(circa summer 2021) given compatibility of R and external R libraries (packages). Steps of 
the algorithm are shown in the following enumerated list. 

1. Start with an annual peak streamflow dataset for many streamgages of contribut-
ing drainage area, mean annual precipitation, main-channel slope, watershed mean 
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elevation, and other covariates that included water-year-specific temporal integra-
tion of normal, maximum, and flood storages (maximum storage minus normal stor-
ages as cumulated year over year). Definitions of the maximum and normal storage 
terms are available within file zUSACE NID DataDictionary2018.pdf within the 
scNIDaregis software (Asquith et al., 2021). However, these storages do not rep-
resent storages in the real-world contemporaneous with peak streamflows; these 
are “as constructed storages” for purposes of the inventorying dams in the United 
States. For the algorithm, these storages represent the regulation covariates and use 
an inverse distance weighted version also of these storages; For this demonstration, 
1,634 streamgages with a combined total of 58,000 years of peaks (1,703 was the 
original count but some streamgages were removed for some missing information); 

2. Select appropriate variable transformations (herein base-10 logarithmic transforma-
tion [log10] was used with one unit of positive offset to accommodate zero values 
for a covariate [here that would be the regulation]). Logarithmic transformation is 
common in regional study of flood frequency; 

3. Compute a linear model (conventional regression, conditional response on the mean 
annual peak discharge) using a formula to be repeated in the quantile regression 
step described later. This model is simply a regional equation to estimate the mean 
annual peak streamflow conditioned on the aforementioned watershed properties 
including the regulation covariates; 

4. Compute the residuals of the linear model in the previous step; 

5. Compute a generalized additive model (GAM) on the residuals in the previous step 
using the projected coordinates of the streamgage locations in an Albers equal area 
projection on which a 2-dimensional smooth function by the GAM is the only pre-
dictor term. Predictions from this GAM are labeled in a vector “Omega.” A map 
of this Omega, in kilometers of Albers projected coordinates, is shown in figure 8.1. 
This step effectively creates a map of a geospatial residual correction much in the 
same spirit as the “OmegaEM” parameter as a spatial residual correction described 
by Asquith and Roussel (2009); 

6. Compute quantile regression for the 2-, 5-, 10-, 25-, and 50-year return period quan-
tiles using the same model structure as used for the linear model of the annual mean 
peak streamflow as previously described but include another term, the Omega term 
of the previous step. For each quantile, a linear equation of conventional slopes (coef-
ficients) and an intercept is created. Each of these five equations (for the five quan-
tiles selected) produce, for a given combination of watershed properties and regula-
tion covariates, five quantiles in the upper or right tail of the distribution of annual 
peak streamflows. Readers should notice that the distribution form is not named for 
at this step, the quantiles represent the flood distribution non-parametrically, and 
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the quantile regression is focused on predicting the upper tail only because this tail 
is of universal interest in flood hydrology; 

7. Select the Pearson type III distribution as the assumed correct parent form of the 
upper tail. This distribution is selected for the primary reason of its basic familiarity 
and application in many peak streamflow analyses. Other distributions could be 
used; 

8. Using the five quantile predictions stemming from the quantile regression step, fit the 
Pearson type III by the method of percentiles. (The method of percentiles is simply 
choosing distribution parameters by a multidimensional optimization by minimiza-
tion of available quantiles of the fitted distribution to the specified quantiles of some 
sample or other prediction. For the circumstances here, a sample does not exist, but 
through quantile regression, parts of the distribution tail are predicted and whose 
percentiles are known—specified as part of the regression.) The key point to make is 
that the analyst does not have to have product moments or L-moments of a random 
sample to fit the distribution by conventional methods; and 

9. Study the effects of regulation by adjusting the regulation covariates. The effects of 
regulation are expressed as a “logarithms of regulation effects” by taking for exam-
ple the frequency curve from the previous step (in log10 space) and subtracting that 
curve from a new one using updated regulation covariates (see discussion that fol-
lows). 

A demonstration of the results of the algorithm, named for this report as “QR-Pearson III,” 
is shown visually later in this chapter. For the immediate present, it is important to make 
more statements about the algorithm itself before describing the demonstration figure in a 
following section. 

The second to last step, in brief, is a regional scheme for estimation of flood frequency 
in Texas and the greater study area that ? ? ? fully digests nearly the entire USGS peak 
streamflow database and seamlessly accommodates the wide spectrum of peak streamflow 
regulation by the many thousands of reservoirs ? ? ?. This scheme is mostly a variable 
substitution computation in the same manner as regional regression equations for flood 
frequency already available in Texas with just a minor complication of numerical optimization 
to back fit the Pearson type III by the method of percentiles. The numerical aspects of 
such optimization are straightforward and implementation as a web page form and ancillary 
graphics should be readily achievable using long-standard, web-programming functionality 
(https://en.wikipedia.org/wiki/LAMP_(software_bundle), accessed June 28, 2021). 

The last step in the algorithm might or might not be of general interest. The last step 
involving “updated regulation covariates” permits changing of the regulation covariates and 
seeing how the regional frequency curve changes. The last step though does permit the 
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unwinding of “current” regulation conditions to some original or assumed “true” natural 
watershed conditions (zeros for all the regulation covariates). 

Closing remarks about the chosen quantiles for the fitting are needed. Though the 
2-, 5-, 10-, 25-, and 50-year return period are commonly used in applications of hydraulic 
design, the authors at present think that perhaps the 50-year period is too deep into the 
tail to be expecting the quantile regression to perform satisfactorily. Remembering that the 
2-year return period is the median (50th percentile) and the 5-year return period is the 80th 
percentile, it could be prudent to pick a quantile between the 50th and 80th percentiles, such 
as the 65th percentile. Different choices in quantiles are easily used in the algorithm but not 
considered herein—more study is justified. 

8.2.2. Regulation Covariates are Used in the Algorithm 

To reiterate algorithm described is experimentally implemented in Cleveland and Fang (2021) 
along the file path: 0-6177-dataverse-archive/demo/demo02 effreg quantreg.R. That script 
uses specific notation for the inclusion of watershed properties and regulation covariates into 
the quantile regression. The purpose of this subsection is to name the regulation covariates 
used and provide definitions as provided within the Asquith et al. (2021) software. Six 
regulation covariates are in the following list. 

• NRM SUM—The summation up through the corresponding year of normal storage, in 
acre-feet per square mile, using the MINMAXNOR column of the NID from Asquith et 
al. (2021, script makeNIDtrim.R). The area comes from the polygon watershed area. 

• MAX SUM—The summation up through the corresponding year of maximum storage, 
in acre-feet per square mile, using the MAXMAXNOR column of the NID from Asquith et 
al. (2021, script makeNIDtrim.R). The area comes from the polygon watershed area. 

• FLD SUM—The summation up through the corresponding year of flood storage, in 
acre-feet per square mile, using the FLD STOR column of the NID from Asquith et al. 
(2021, script makeNIDtrim.R). The drainage area is that of the polygon representing 
the drainage watershed. 

• NRM WGT—The inverse-distance weighted summation up through the corresponding 
year of normal storage, in acre-feet per square mile-kilometer, using the MINMAXNOR 
column of the NID from Asquith et al. (2021, script makeNIDtrim.R). The area 
comes from the polygon watershed area. Further unit conversion is made to can-
cel units and return the NRM WGT as a dimensionless coefficient that is then multiplied 
by 1E6. 
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Figure 8.1. Map showing a residual adjustment from a 2-dimensional smooth within a 
generalized additive model (GAM) on the projected coordinates of streamgage from 
a linear model to estimate annual peak streamflow using the same structural form of 
the model later used in the quantile regression and this map is a general depiction 
of the Omega parameter described. Notes: The horizontal axis is an Albers equal 
area in standard USGS form of easting in kilometers, similarly, the vertical axis is 
northing in kilometers. The aspect ratio of this particular map is not geospatially 
correct in aspect ratio because the built-in diagnostic utility for GAM model plotting 
is not computationally aware that geospatial data are present. To help orient some 
readers, the lower right-hand corner (white region) is the Gulf of Mexico. 
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• MAX WGT—The inverse-distance weighted summation up through the correspond-
ing year of maximum storage, in acre-feet per square mile-kilometer, using the 
MINMAXNOR column of the NID from Asquith et al. (2021, script makeNIDtrim.R). 
The area comes from the polygon watershed area. Further unit conversion is made 
to cancel units and return the MAX WGT as a dimensionless coefficient that is then 
multiplied by 1E6. 

• FLD WGT—The inverse-distance weighted summation up through the corresponding 
year of flood storage, in acre-feet per square mile-kilometer, using the MINMAXNOR col-
umn of the NID from Asquith et al. (2021, script makeNIDtrim.R). The area comes 
from the polygon watershed area. Further unit conversion is made to cancel units 
and return the FLD WGT as a dimensionless coefficient that is then multiplied by 1E6. 

For the purposes of this chapter, it is useful to note that the first three listed regulation 
covariates are computed without regard to the straight-line distance from the reservoir (dam) 
to the streamgage (or watershed outlet). The final three (weighted, WGT) storages involved 
inverse distance weighting of each dam’s contribution to the whole. So, with these six 
covariates in hand, the algorithm is attempting to insert relative position of the storage as a 
context to effect of peak streamflow. For example, if a major reservoir is hundreds of river 
miles upstream from the streamgage (or watershed outlet) then its impact on annual peak 
streamflows is likely quite different if the major reservoir is just 1 kilometer upstream. The 
data available in the NID and implemented by the scNIDaregis have no operational rules or 
storage history of the reservoirs themselves available. Further study of inclusion or exclusion 
choices in the six regulation covariates is justified. 

8.2.3. Remarks on Urbanization Covariates 

It is informative to discuss urban development as an aside. If urbanization or watershed 
development, by one or more metrics, could be assembled and then temporally integrated 
or interpolated to bind such metrics to each annual peak as done for regulation by Asquith 
et al. (2021), then in principle, it would be possible to simultaneously accommodate within 
QR-Pearson III covariates for the effects of urbanization. As prototyped in this chapter, 
USGS streamgages that are in metropolitan areas were not removed. A perspective of a 
development land-use category is shown in figure 8.2. 

8.2.4. QR-Pearson III Algorithm Demonstrated for a Streamgage 

A demonstration of the algorithm for addressing the effects of regulation for USGS streamgage 
08171000 Blanco River near Wimberley, Texas (fig. 8.3) is provided in this section. The 
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Figure 8.2. Map showing distribution of selected land-cover classifications including “Developed” 
that is especially pertinent to flood hydrology (annual peak streamflows) Texas, 
Oklahoma, and New Mexico east of the Great Continental Divide. 
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Figure 8.3. Remote camera photograph of location of USGS streamgage 08171000 Blanco 
River near Wimberley, Texas derived from USGS current conditions webpage for the 
streamgage (https://waterdata.usgs.gov/nwis/uv?site_no=08171000). 

purpose not only is to described results of the algorithm but to also converse in details the 
demonstrate the future potential for implementation in practical circumstances. Various 
frequency curves from both the observational data from the streamgage and those from the 
algorithm are shown in figure 8.4. 

Piece-by-piece, the content of the QR-Pearson III demonstration in figure 8.4 is described. 
First, the streamgage was selected because it has very long record from what it deemed a 
rural and undeveloped watershed—a natural watershed. The flood hydrology of the Blanco 
River is of general interested to students of Texas flood hydrology (see Burnett, 2008). The 
figure shows 94 annual peak streamflows from the observational record. These were used to 
fit a Pearson type III to the logarithms of the peaks using L-moments, and this distribution 
is depicted by the solid blue line. This will be the reference frequency curve for purposes of 
evaluation of the quantile regression method. 

Second, for each of the 94 years of record (water years, 1925 to 2020 with 1927 and 
1928 missing), there exist water-year-specific regulation covariates. Even though this is a 
rural watershed without either limited or major flood regulation, there have been small 
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Demonstration of 'logarithms of regulation effects'

Figure 8.4. Demonstration of a flood-frequency curves, and in particular, using “logarithms of 
regulation effects,” using quantile regression on 2-, 5-, 10-, 25-, and 50-year return 
period estimates along with a geospatial residual adjustment (fig. 8.1) and method 
of percentiles to back fit the Pearson type III distribution. Note: For design 
applications, interests are entirely for standard normal variates greater than zero. 

impoundments or low-head run of the river dams constructed in the past 100 years or so. As 
a result, there are nonzero cumulative normal, maximum, and flood storages. For each of the 
years, the five quantiles for each year from the quantile regression model were computed and 
preserved for the next step. 

For each of the years, a Pearson type III distribution was back fit to the water-year-specific 
quantiles and each of the distributions where drawn. These are the 93 solid grey frequency 
curves shown on the figure. Obviously, not all curves for 93 distributions can be visually 
counted and many years have static regulation covariates so the curves are plotted on top 
of each other. The 94th and last year (water year 2020) is plotted on top and plotted in a 
red color, and this red curve, therefore, represents the most contemporaneous. Some minor 
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reservoir construction has occurred; it is satisfactory, therefore, that the red curve appears to 
plot below or on top of the other 93 curves in the upper tail. 

The first and second parts of the figure can be compared. The solid blue curve certainly 
represents a preferred site-specific estimate of flood frequency for this watershed because a 
USGS streamgage is monitoring the watershed. But in the vast majority of stream reach 
and the upstream watershed, streamgages do not exist with observational record. Hence, 
a regional statistical model is needed. The algorithm described in effect is such a regional 
model much in the same spirit as the equations in Asquith and Roussel (2009). The ability 
exists, therefore, with the quantile regression and Pearson type III back fit by the method of 
percentiles, to acquire regional flood-frequency curves. These curves are shown by the solid 
grey and solid red lines as previously described. 

A comparison between the solid blue and solid red curves indicates that for the right half 
of the distribution (greater than the median or 2-year event that is the standard normal 
variate of zero) that the QR-Pearson III is quite similar. Much better than order of magnitude 
consistency exists. This streamgage is located in one of the highest unit discharge per unit 
watershed area regions in the United States; the fact that the blue curve does plot above the 
red curve is consistent with intuitive expectation of a regional model. At least for this one 
demonstration, therefore, it seems in principle that the QR-Pearson III is viable—a major 
“bug” in logic does not appear to exist. 

Third, because the quantile regression has digested in effect all data for all time from the 
USGS and has the conditioning terms for regulation, scenarios can be studied. For example, 
if all the storages are turned to zero, then the upper, that is, largest most, solid grey curve 
would be representative of presumably true unregulated conditions. 

Another experiment can now be conducted. What if all the reservoir storage terms in 
the quantile regression were increased to the non-joint maximums of each term from the 
database? If this were done, then hypothetically colossal amounts of storage in the watershed 
would have been emplaced. 

The flood-frequency curve for such a hypothetical situation is depicted as the dashed red 
line, and this curve is by quick eyeball estimation about one order of magnitude (one log10 
cycle) smaller than the solid red line. The doubled-headed red arrow highlights the differences 
between the two curves. This difference or more specifically the vector in log10 difference of 
the dashed red curve minus the solid red curve would result then in a scale-free representation 
of the effects of the regulation. This vector of differences between the two curves is termed 
herein the “logarithms of regulation effects,” and for this example is uniformly negative for 
which the negative sign means regulation reduces the flood-frequency curve. 

Fourth, with the aforementioned logarithms of regulation effects in hand, one can then 
offset other estimates of the flood frequency for the location. For example this vector is 
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subtracted from the solid blue curve to form then an estimate of the impact of colossal 
hypothetical regulation in the watershed yet be considered enhanced from just the QR-Pearson 
III estimate because the solid blue curve from the observation data formed a type of base 
line. This new frequency curve is the dashed blue line shown and the blue, downward-facing, 
arrow depicts this difference. 

With then a visual description of the algorithm now described, general comments are 
offered. Recalling that about 40 percent of modern data collection (by streamgage) has 
the USGS reporting code 6s in NWIS and the fact that the USGS only has at best vague 
qualification that a given water year for a given streamgage has (or might have) regulated 
record, the QR-Pearson III scheme described could be immensely important for future 
considerations of Texas, Oklahoma, and eastern New Mexico flood hydrology. There exists 
little guidance, including Federal guidance (England et al., 2018), the TxDOT Hydraulic 
Design Manual (Texas Department of Transportation, 2020), or the USGS in Asquith et al. 
(2017) and particularly therein Wagner et al. (2017) on the treatment or accommodation of 
regulated peak streamflow records. 

Complicating effect of regulation further is the fact that regulation of annual flood peaks 
itself exists on a broad spectrum. One watershed might seemingly have only the lowest of 
the low floods (the left tail, less than the 2-year event) modified by regulation of streamflow, 
and another watershed might have wholesale removal of what would be considered a “flood 
signal” from the watershed. When analysis is done on long record streamgages with record 
before reservoir construction, then potentially some site-specific interpretations of the effects 
of regulation could be attained from statistical or graphical trend analyses. Relatively young 
streamgages (a streamgage with relatively modest record lengths) will only provide annual 
peak streamflow data without deep temporal knowledge of what the natural flood frequency 
distribution might have looked like. 

A comprehensive statistical model as experimented with for this chapter, provides a 
mechanism to incorporate all the modern data collection from the USGS along with all 
historical information as well into a single whole. Scenario exercises, as described for 
figure 8.4, provide for utility of function that currently (2021) is otherwise nonexistent within 
the TxDOT Hydraulic Design Manual as well as either prior academic or USGS studies of 
flood hydrology in the study area. 

Lastly, nonstationarity as a rule is an assumption that is often made by practitioners of 
flood frequency for there are few alternatives. An experienced practitioner might chose to 
not include or include records based on local knowledge, but this assumes that a streamgage 
has record spanning periods of major change in a watershed. Speaking from a statistical 
perspective, implementation of nonstationary statistical methods in streamflow time series 
frequency analysis is difficult. For example, it is difficult to accommodate in site-specific 
analysis of data with trends inclusive of drift or change points along the real number line 
or changes in variance or shape (skewness) because the record lengths for a streamgage are 
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generally short for modeling much more complicated than a few parameters. A comprehensive 
statistical model as demonstrated could be useful for the nonstationarity question because 
additional covariates related to climate state could be included in the quantile regression. 

8.3. Chapter Conclusions 

The results in the chapter show that it might be possible to have a regional model of flood 
frequency purposed for Texas that accommodates the effects of regulation. The idea is to 
use as much of the USGS peak streamflow data as possible. Quantile regression using linear 
equations can be used to predict specific upper-tail quantiles of the frequency curve without 
yet making an assumption of distributional form. A geospatial residual correction term can 
be added to the quantile regression following the ideas of Asquith and Roussel (2009) to 
enhance the model. Then with the quantile predictions in hand along with the nonexceedance 
probabilities defining each, a Pearson type III distribution can be back fit to these quantiles 
to form a Pearson type III distribution specific to the watershed properties and regulation 
covariates provided. This is the reasoning for abbreviating the approach as as QR-Pearson III. 

The QR-Pearson III after training on gaged watersheds can be applied for both gaged 
and ungaged watersheds. Scenarios of regulation covariates could be studied to establish 
statistically-based estimates in log10-cycle offsets of the effects of regulation. Key products 
of this project that were absolutely foundational to have reached this juncture are the 
availability of watershed properties for 1,703 streamgages by Yesildirek et al. (2021) and the 
scNIDaregis software that provides an engine for temporally integrating reservoir storages 
from the National Inventory of Dams and binds results to USGS annual peak streamflow 
series. These streamgages present over 58,000 years in aggregate of annual peak streamflow 
information from what constitutes nearly the entirety of the USGS streamgage network 
in Texas, Oklahoma, and eastern New Mexico. Extending a study area beyond just the 
geographic borders of Texas is important because the quantile regression is inherently data 
intensive. The data intensity topic is important because interest is in upper tail alone of 
the flood frequency distribution so half the data at each streamgage (the lower tail, usually 
nonfloods) are not really used in principle. 

The authors are not aware of prior literature suggesting this type of statistical approach. 
The approach appears capable of accommodating the effects of regulation in flood frequency 
analyses and by extension effects of urbanization and(or) climate state. Though some of 
the most elementary concepts herein are a logical extension of results of Asquith (2001) and 
the spatial residual correction motivated by Asquith and Roussel (2009), the 2001 study, in 
particular, represents the full extent of prior involvement by TxDOT sponsored research into 
the realm of regulated streamflow. 
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An attractive aspect of the QR-Pearson III and demonstration in this chapter, though 
further study of the modeling form for the quantile regression is needed, is that implementation 
of the QR-Pearson III (once trained or fit) to a type of cloud-hosted service is plausible given 
the relatively straightforward technicals of the mathematics behind the scenes. The most 
complex numerical criteria are access to an incomplete and complete gamma function (or 
high quality linear-series approximations) and a multi-dimensional optimizer (root solver) 
to back fit a Pearson III distribution by method of percentiles. For concluding emphasis, 
the demonstration herein is documented in Cleveland and Fang (2021) along the file path: 
0-6177-dataverse-archive/demo/demo02 effreg quantreg.R. 
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9. Report Summary 

The flood hydrology of Texas, Oklahoma, and eastern New Mexico (east of the Great 
Continental Divide) is complex because of a myriad of meteorological and physiographic 
factors, and flood hydrology is typically studied using the annual peak streamflow data 
collected by the U.S. Geological Survey (USGS) at streamgages. Hydraulic design engineers 
need standard of practice guidance for various tasks involving the analysis and application 
peak streamflow information. Analyses of this information materially influence bridge design, 
operational safety of drainage infrastructure, flood-plain management, and other decisions 
influencing society. 

Common tasks for the Texas hydraulic/hydrologic engineer are flood frequency analyses 
using streamgage data. The Research Project 0–6977, which was performed in joint collabora-
tion between researchers at Texas Tech University, the University of Texas at Arlington, and 
the USGS Oklahoma-Texas Water Science Center, was tasked with a primary objective of 
updating the Texas generalized skew map and its mean-square error (chap. 4) for the Texas 
Department of Transportation (TxDOT) Hydraulic Design Manual. The current (September 
2019) generalized skew in the Design Manual was last updated for TxDOT in 1996. Justifica-
tion for a 2021 update is the fact that since 1996: (1) the mathematics in Federal guidance 
(Bulletin 17C) (England and others, 2018, https://doi.org/10.3133/tm4B5) have been 
updated (2018) after about 40 years and result in more accurate estimation of skew and the 
attendant error of skew for streamgages and (2) about 22 years more annual peak streamflow 
data from USGS streamgages data are available. 

Generalized skew is important because it helps to reliably shape the probability distribution 
used in flood frequency analyses and particularly improve flood estimation and narrow 
confidence limits for rare events beyond about the 25-year return period. This final project 
report provides for update of generalized skew in the Hydraulic Design Manual. The 
generalized skew though is most applicable (but not uniquely so) to watersheds that are 
considered unregulated and undeveloped (not urbanized). As a foundational basis, the update 
used at least 30 years of streamflows acquired by 444 USGS long-term (30 years or more 
of record) streamgages representing such watersheds in Texas, Oklahoma, and eastern New 
Mexico. Data from outside of Texas, in particular from Oklahoma and eastern New Mexico, 
greatly enhances statistical methods in general, and in particular, many drainages in or 
pertinent to Texas extend upstream into these states. A novel application of a generalized 
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additive model is used for 2-dimensional spatial regression on so-called station-skew values 
from the streamgages to create predictions of generalized skew on the 1-kilometer USGS 
National Hydrogeologic Grid clipped to the study area. 

Secondary objectives of the project were to provide as shown in this report training 
materials (chap. 5) using Texas watershed examples on flood frequency analysis oriented 
around Bulletin 17C, the use and example impacts of the updated generalized skew, and 
describe nuances with using USGS peak streamflow data that are not well represented by the 
Design Manual. Tertiary objectives of the Research Project and reported on herein further 
extend understanding of flood hydrology in the region inclusive of (1) climate sensitivity of 
peak streamflows (chap. 6), (2) experimental evaluation of a USGS multiorder hydrologic 
position (MOHP) metric that is gridded at continental scale and expresses stream reach 
position on the landscape (chap. 7), and (3) experimental accommodation of effects of 
regulation (chap. 8). The MOHP evaluation results semi-quantitative description of the 
information that MOHP could bring to statistical estimation of flood-frequency at ungaged 
(unmonitored) locations. The MOHP evaluation is cross-linked, but separately executed study, 
to the experimental effort towards how stakeholders in flood hydrology might accommodate 
the effects of regulation by reservoirs into statistical methods. The approach therein is based 
on quantile regression of the upper tail of flood magnitudes and back fitting of Pearson 
type III distributions. The accommodation of regulation effects is designed with deliberate 
views towards implementation constraints of information-technology-mathematical structures 
suitable for end users (engineers and other practitioners). 

The USGS published persistent, publicly-accessible, Federal archival of three products 
stemming from this project. First, Yesildirek and et al. (2021, https://doi.org/10.5066/ 
P9A91W4Z) provide extensive watershed properties and ancillary metadata for 1,703 USGS 
streamgages (inclusive of the aforementioned 444) in Texas, Oklahoma, and eastern New 
Mexico. These streamgages have at least 6 years of peak streamflows and also include 
the 50 odd streamgages currently (2021) sponsored by TxDOT in other program funding 
activity (2006–present [2021]). Many of these streamgages, including the aforementioned 
those of sponsored by TxDOT, have never had systematic watershed properties available until 
completion of this project. Geospatial polygons of the watersheds (the “Yesildirek watershed 
polygons”) are also published. 

Second, Asquith, Cleveland, et al. (2021, https://doi.org/10.5066/P90NJVB9) pub-
lished software to be used the Yesildirek watershed polygons, overlay them on the U.S. 
Army Corps of Engineers National Inventory of Dams (NID), and the temporally integrate 
cumulative storages of dams (reservoirs) in the watershed, and finally, bind (associate) on 
a year-by-year basis peak streamflows to cumulative reservoir storages. This NID-related 
software provides for a large leap forward from TxDOT sponsored research into effects of 
regulation of peak streamflows at the end of the 20th century. 
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Third, Asquith et al. (2020, https://doi.org/10.5066/P9CW9EF0) published software 
for computation of the multiple Grubbs–Beck test for “low outliers” in annual peak series 
following Bulletin 17C; this software could be useful in semi-automated, large-scale, statistical 
studies by conditionally truncating nonfloods from the peak streamflow data, which is an 
area particularly prone to drought signals entering peak streamflow databases. 

Finally, this report along with its applicable data archival into the Texas Digital Library 
(tdl.org) Texas Data Repository (Cleveland and Fang, 2021, https://doi.org/10.18738/ 
T8/SVLCOQ) and the three USGS publications resulting from the project establish a compre-
hensive and well-documented update of generalized skew and set a foundation for future 
statistical research into Texas, Oklahoma, and eastern New Mexico flood hydrology. Data 
preparation efforts, in particular, for future researchers are immensely streamlined by the 
publicly-accessible publications and information archival completed as part of TxDOT 
Research Project 0–6977. 
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