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Regression Equations for Estimation of Annual 
Peak-Streamflow Frequency for Undeveloped Watersheds 
in Texas Using an L-moment-Based, PRESS-Minimized, 
Residual-Adjusted Approach
 

By William H. Asquith and Meghan C. Roussel 

Abstract 

Annual peak-streamflow frequency estimates are 
needed for flood-plain management; for objective assess
ment of flood risk; for cost-effective design of dams, 
levees, and other flood-control structures; and for design of 
roads, bridges, and culverts. Annual peak-streamflow fre
quency represents the peak streamflow for nine recurrence 
intervals of 2, 5, 10, 25, 50, 100, 200, 250, and 500 years. 
Common methods for estimation of peak-streamflow 
frequency for ungaged or unmonitored watersheds are 
regression equations for each recurrence interval developed 
for one or more regions; such regional equations are the 
subject of this report. The method is based on analysis 
of annual peak-streamflow data from U.S. Geological 
Survey streamflow-gaging stations (stations). Beginning 
in 2007, the U.S. Geological Survey, in cooperation 
with the Texas Department of Transportation and in 
partnership with Texas Tech University, began a 3-year 
investigation concerning the development of regional 
equations to estimate annual peak-streamflow frequency 
for undeveloped watersheds in Texas. The investigation 
focuses primarily on 638 stations with 8 or more years 
of data from undeveloped watersheds and other criteria. 
The general approach is explicitly limited to the use 
of L-moment statistics, which are used in conjunction 
with a technique of multi-linear regression referred to 
as PRESS minimization. The approach used to develop 
the regional equations, which was refined during the 
investigation, is referred to as the “L-moment-based, 
PRESS-minimized, residual-adjusted approach.” For the 
approach, seven unique distributions are fit to the sample 
L-moments of the data for each of 638 stations and 
trimmed means of the seven results of the distributions 
for each recurrence interval are used to define the station-

specific, peak-streamflow frequency. As a first iteration of 
regression, nine weighted-least-squares, PRESS-minimized, 
multi-linear regression equations are computed using the 
watershed characteristics of drainage area, dimensionless 
main-channel slope, and mean annual precipitation. The 
residuals of the nine equations are spatially mapped, and 
residuals for the 10-year recurrence interval are selected 
for generalization to 1-degree latitude and longitude 
quadrangles. The generalized residual is referred to as 
the OmegaEM parameter and represents a generalized 
terrain and climate index that expresses peak-streamflow 
potential not otherwise represented in the three watershed 
characteristics. The OmegaEM parameter was assigned 
to each station, and using OmegaEM, nine additional 
regression equations are computed. Because of favorable 
diagnostics, the OmegaEM equations are expected to be 
generally reliable estimators of peak-streamflow frequency 
for undeveloped and ungaged stream locations in Texas. 
The mean residual standard error, adjusted R-squared, and 
percentage reduction of PRESS by use of OmegaEM are 
0.30log10, 0.86, and −21 percent, respectively. Inclusion 
of the OmegaEM parameter provides a substantial reduc
tion in the PRESS statistic of the regression equations and 
removes considerable spatial dependency in regression 
residuals. Although the OmegaEM parameter requires 
interpretation on the part of analysts and the potential 
exists that different analysts could estimate different values 
for a given watershed, the authors suggest that typical 
uncertainty in the OmegaEM estimate might be about 
±0.10log10. Finally, given the two ensembles of equations 
reported herein and those in previous reports, hydrologic 
design engineers and other analysts have several different 
methods, which represent different analytical tracks, to 
make comparisons of peak-streamflow frequency estimates 
for ungaged watersheds in the study area. 



2 Regression Equations for Estimation of Annual Peak-Streamflow Frequency in Texas 

Introduction 

Annual peak-streamflow frequency estimates are 
needed for flood-plain management; for objective assess
ment of flood risk; for cost-effective design of dams, levees, 
and other flood-control structures; and for design of roads, 
bridges, and culverts. Annual peak-streamflow frequency 
represents the peak streamflow for nine recurrence intervals 
of 2, 5, 10, 25, 50, 100, 200, 250, and 500 years. Common 
methods for estimation of peak-streamflow frequency for 
ungaged or unmonitored stream watersheds are regression 
equations for each recurrence interval developed for one 
or more regions (not strictly geographic); such regional 
equations are the subject of this report. The method 
is based on analysis of annual peak-streamflow data 
from U.S. Geological Survey (USGS) streamflow-gaging 
stations (stations). 

Beginning in 2007, the USGS, in cooperation with 
the Texas Department of Transportation (Research Project 
0–5521) and in partnership with Texas Tech University, 
began a 3-year investigation concerning the development 
of regional equations to estimate annual peak-streamflow 
frequency for undeveloped watersheds in Texas. The gen
eral approach was explicitly limited to use of L-moment 
statistics, which are used in conjunction with a technique 
of multi-linear regression referred to as PRESS minimiza
tion (Asquith and Thompson, 2008). The approach used to 
develop the regional equations, which was refined during 
the investigation, is referred to as the “L-moment-based, 
PRESS-minimized, residual-adjusted approach.” 

The study area for this investigation includes Texas and 
selected parts of neighboring states and essentially is the 
same as that considered by Asquith and Slade (1997, 1999). 
These two studies also represent previous research concern
ing estimation of peak-streamflow frequency for ungaged 
watersheds in Texas. Asquith (2001) provides analysis of 
peak-streamflow frequency in Texas using L-moment statis
tics and primarily reports the effects of regulation (flood 
control) on those statistics. 

The background and discussion provided by Asquith 
and Thompson (2008), which is based heavily on Asquith 
and Thompson (2005), represents applicable discussion, 
analysis, and ideas that greatly influenced the line of 
research described in this report. To establish context, 
the major new contributions of this report relative to 
Asquith and Thompson (2005, 2008) are the additions of 
L-moment statistics, with subsequent use of numerous 
probability distributions, and the residual adjustment. 
These additions (topics or themes) are described in the “An 
L-moment-Based, PRESS-Minimized, Residual-Adjusted 
Approach” section of this report. 

Purpose and Scope 

The purpose of this report is to present regression 
equations from the L-moment-based, PRESS-minimized, 
residual-adjusted approach for estimation of annual peak
streamflow frequency for undeveloped watersheds in Texas 
and restricted mainly to ungaged watersheds. The approach, 
which required a complex computational framework, has 
three thematic components: 

• L-moment statistics of the annual peak-streamflow 
data, by station, are used to fit seven probability dis
tributions to the data. From these seven distributions, 
representative values (estimates) of station-specific, 
peak-streamflow frequency were extracted for each of 
the nine recurrence intervals; 

• Weighted-least-squares, multi-linear regression analy
sis using the station-specific, peak-streamflow fre
quency and selected watershed characteristics is 
used to develop regression equations. The regres
sion included a technique to minimize the PRediction 
Error Sum of Squares (PRESS) statistic by power 
transformation of drainage area; and 

• An adjustment based on regression residuals is cre
ated that represents a generalized correction for 
climate, terrain, and other variables not otherwise 
expressed by the selected watershed characteristics. 

The report is limited to the annual peak-streamflow 
data for 677 and 638 selected stations. Two distinct 
station counts are used in this report as explained in 
the next section. The data for these watersheds are 
provided in the two text files Appendix1_677annpks.txt 

and Appendix1_638annpks.txt, which are described in 
appendix 1. The report also is limited to three selected 
watershed characteristics (contributing drainage area, 
dimensionless main-channel slope, and mean annual 
precipitation), which previously have been shown to be 
important predictors of peak-streamflow frequency in 
Texas (Asquith and Slade, 1997; Asquith and Thompson, 
2008) and are identified in the next section. 

Identification of Annual Peak-Streamflow 
Data 

From an initial candidate station count of 1,030 sta
tions that had 1 or more years of annual peak-streamflow 
data in the study area, the number of stations used for this 
report were reduced by review of the data, watershed con
ditions, and a minimum record-length criterion. 



3 Introduction 

Assessment of undeveloped conditions by peak
streamflow qualification codes in the authoritative USGS 
“peak value” database (U.S. Geological Survey, 2008) for 
the 1,030 stations was made along with historical and 
retrospective analysis concerning development in each 
watershed (such as the years of construction of substantial 
flood-control reservoirs or growth of municipalities). The 
assessment was further augmented by graphical depiction 
and review of a time series for each of the 1,030 stations. 
To complete the assessment, intervals of acceptable record 
from the beginning of record through a station-specific 
terminal year were identified. 

Stations considered for this report include those with 
at least 8 years (through the 2006 water year1) of annual 
peak-streamflow data that are representative of undevel
oped streamflow conditions in Texas (acceptable record 
in the previous paragraph). Undeveloped conditions, in 
regard to annual peak streamflow, are watershed conditions 
representative of ideals such as natural, rural, unregulated, 
and unurbanized. Furthermore, surface-water diversions or 
return flows are anticipated to be unsubstantial relative to 
the typical magnitude of individual annual peak-streamflow 
values. 

After the assessment of undeveloped conditions, time 
series, and minimum record-length criterion, 677 stations 
remained. The data for these 677 stations were used 
for a specific component of the analysis described in 
the “Sampling Error” section of this report. The annual 
peak-streamflow data for these stations are available in 
text file Appendix1_677annpks.txt, which is described in 
appendix 1. 

The selected watershed characteristics, which will be 
important in later regression analysis, are derived from 
Asquith and Slade (1997) and augmented with digital pro
cessing and verification (David B. Thompson and Lucia S. 
Barbato, Texas Tech University, written commun., 2007). 
The watershed characteristics of contributing drainage area 
(drainage area), dimensionless main-channel slope, and 
mean annual precipitation are used. Assessments of the 
reliability of these watershed characteristics, which were 
obtained in early stages of this investigation, were made. 

The primary watershed characteristics used for this 
investigation are summarized as follows: 

• DRAINAGE AREA is the horizontal projection of 
the area that directs water to the streamflow-gaging 
station and is measured in square miles; 

1A water year is the 12-month period between October 1 and September 30 and 
is designated by the calendar year in which it ends. Thus, the year ending September 
30, 2006, is the “2006 water year.” 

• DIMENSIONLESS MAIN-CHANNEL SLOPE is defined 
as the magnitude of the change in elevation in feet 
between the two end points of the main channel 
divided by the MAIN-CHANNEL LENGTH in feet. 
Main-channel length is defined as the length in 
stream-course miles of the longest defined channel 
from the approximate watershed headwaters to the 
outlet. Although not used directly in the regression 
equations, these lengths are needed for computation 
of dimensionless main-channel slope. Because of 
the wide range in drainage area, various methods for 
length estimation have been used and are represented 
in the database. Asquith and Slade (1997) provide 
a specific definition based on 1:100,000-scale maps. 
For this investigation digital verification, through 
30-meter or 90-meter digital elevation models and 
digital line graphs, was used to define the main chan
nel. Manual techniques were occasionally used as 
station-specific circumstances required; and 

• MEAN ANNUAL PRECIPITATION is the arithmetic 
mean of a suitably long period of time of total annual 
precipitation in inches. The mean annual precipita
tion was assigned based on the approximate center of 
the watersheds. Asquith and Slade (1997) generally 
provide the values used for this report. The period 
1951–80 was used by Asquith and Slade because 
those authors felt that most of the data (measured in 
then active stations) in the database were within this 
time period. Given the many sources of uncertainty, 
the authors of the current (2009) report consider 
that any general and authoritative source of mean 
annual precipitation for any suitably long period (per
haps 30 years) is sufficient for substitution into the 
regional regression equations reported here. 

Another assessment or restriction for the purpose of the 
regression analysis is that stations with drainage areas less 
than 10,000 square miles were used. This threshold was 
chosen from review of diagnostics of exploratory regres
sion analysis—most watersheds having drainage areas this 
large are currently (modern times) considered regulated— 
and most design needs of the Texas Department of Trans
portation are for much smaller watersheds in Texas. 

After the assessment of watershed characteristics and 
the less-than-10,000-square-mile criterion, 638 stations 
remained. The watershed characteristics for these sta
tions are available in file Appendix1_638wtrshdchr.txt, 
which is described in appendix 1. The annual peak
streamflow data for these stations are available in file 
Appendix1_638annpks.txt, which also is described in 
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Table 1. Summary statistics of the watershed characteris
tics for 638 U.S. Geological Survey streamflow-gaging sta
tions used to develop regional equations for estimation of 
peak-streamflow frequency. 

[A, drainage area in square miles; S, dimensionless main-channel 
slope; and P, mean annual precipitation in inches] 

Char
acter
istic 

Mini
mum 

1st 
quartile Median 

3rd 
quartile 

Maxi
mum 

A 0.100 6.403 97.40 499 9,329 
100 × S .023 .152 .269 .657 7.03 

P 8 23 31 41 57 

appendix 1. Summary statistics of the selected watershed 
characteristics for the 638 stations are listed in table 1. 

Acknowledgments 

The authors recognize the contributions of many 
Texas Department of Transportation engineers including 
Amy Ronnfeldt, Design Division, 0–5521 Project Director; 
David Zwernemann, Project Advisor; and George Herr
mann, San Angelo District, former Project Director and 
Advisor. The authors also acknowledge the contributions 
of our three research supervisors for this project at Texas 
Tech University: Professors David B. Thompson (formerly 
Texas Tech University, 2007), Ken Rainwater (2008), and 
Theodore G. Cleveland (2009). The authors also acknowl
edge the geographic information system contributions of 
Lucia S. Barbato, Center for Geospatial Technology, Texas 
Tech University. 

An L-moment-Based, PRESS-
Minimized, Residual-Adjusted 
Approach 

A generalized overview of the L-moment-based, 
PRESS-minimized, residual-adjusted approach (referred to 
as the “Approach”) used for this investigation is described 
in this section. The Approach is complex, highly technical, 
and challenging to succinctly describe. Furthermore, 
the Approach relied on numerous single-purpose, highly 
specialized scripts, computer programs, and integration 
with features of the host-operating system as well as 
considerable judgement and iterative refinement on the 
part of the authors. The computational framework was 
ultimately implemented as a relatively turnkey process 

from start to finish, but nearly 6 months of effort were 
required to build, test, and refine the process to produce 
the equations reported in the “Regression Equations in 
Texas Using an L-moment-Based, PRESS-Minimized, 
Residual-Adjusted Approach” section of this report. 

The generalized overview of the Approach consists 
of three thematic elements. Furthermore, several R code 
listings are presented to demonstrate critical computa
tions. First, the method of computing station-specific, 
peak-streamflow frequency estimates using L-moment 
statistics is described as well as methods of obtaining 
estimates of uncertainty. Second, the use of weighted-least
squares, multi-linear regression in the context of PRESS 

minimization is described. Third and finally, the residual 
adjustment and subsequent recomputation of the regression 
equations incorporating a special watershed characteristic 
known as the Ω parameter (also the term “OmegaEM”2)f

is described. 

L-moment-Based, Station-Specific Peak-
Streamflow Frequency Estimates 

L-moments (Hosking, 1990) summarize samples and 
can be used to fit probability distributions. L-moments are 
based on linear combinations of differences of the expec
tations of order statistics as opposed to the more familiar 
product moments, which are based on powers (exponents) 
of differences from the mean. This distinction results in 
favorable sampling properties including unbiasness, robust
ness, and reliable measures of distribution shape. The 
mathematical theory and comparisons between L-moments 
and product moments are available in several sources and 
the references therein (Hosking, 1990; Stedinger and oth
ers, 1993; Hosking and Wallis, 1997; Asquith, 2001, 2006; 
Asquith and others, 2006). Furthermore, in a peak stream-
flow application, treatment for low outliers caused by 
typical log10 transformation (Stedinger and others, 1993, 
p. 18.5) of the data prior to statistical processing is not 
needed. Hosking (2006, p. 194) reports that L-moments 
“are now widely used in hydrology to summarize data and 
fit flood frequency [peak-streamflow frequency] distribu
tions” and provides several citations of such practice. 

In brief, L-moments were used for this investigation 
for station-specific computations of peak-streamflow fre
quency because the method removes or at least relaxes 
the need to consider concepts such as low-outlier thresh
olds, high-outlier thresholds, historical information, and 

2A textual representation of the mathematical nomenclature also is needed (actu
ally required) by the portable document format (PDF) standard for the headings, 
bookmarks, and other features of the PDF version of this report. 
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generalized skew as described in other methods for peak
streamflow frequency computation such as those in the 
Interagency Advisory Committee on Water Data (1982) 
guidelines. 

For this report, the algorithms of Asquith (2008) were 
used within the R environment (R Development Core Team, 
2008). These algorithms are based on many years of itera
tive development from various authentic and authoritative 
sources such as Hosking (1990, 1996) and Hosking and 
Wallis (1997). Specific functions from Asquith (2008) are 
identified in the following sections. The use of function 
names in the description of the L-moment-based portion 
of the Approach permits the exclusion of mathematics and 
succinct demonstration or examples of critical-to-document 
computations. 

Sample L-moments 

The sample L-moments represent specific metrics of 
“distribution geometry” for lack of a better term. The first 
L-moment is the arithmetic mean and the second L-moment 
is analogous, but not numerically equal, to the standard 
deviation. Higher-order L-moments are measures of distri
bution skewness (symmetry), kurtosis, and other concepts. 

For the Approach, the first five sample L-moments 
were computed for each of the 677 stations using the 
lmoms() function of Asquith (2008). These L-moments, 
respectively, are the mean, L-scale, L-skew, L-kurtosis, and 
Tau5. The coefficient of L-variation or L-CV is defined as 
the ratio of L-scale to the mean. The sample L-moments 
by station were considered results of intermediate compu
tations and are not reported here. 

An example of the computation method of the 
sample L-moments for station 07153500 Dry Cimarron 
River near Guy, New Mex., is shown in the following 
R code listing. This station is the first listed in file 
Appendix1_677annpks.txt and has 33 years of annual 
peak-streamflow data identified for this investigation. This 
station will be used repeatedly in the example computations 
described herein. 

> library(lmomco) # load in the lmoms() function 
# annual peaks in cubic feet per second for 
# station 07153500 
> peaks <- c( 8200, 7120, 1440, 2960, 3000, 

980, 2140, 6880, 4350, 3350, 
1330, 3950, 2800, 8100, 8500, 
5200, 1820, 1610, 1190, 3270, 
4920, 475, 3930, 2070, 46100, 

22500, 4310, 3660, 987, 962, 
2890, 723, 510) # the peaks 

> length(peaks) # returns 33 years as the total 
# count of annual peak streamflow 
[1] 33 

> lmr <- lmoms(peaks) # compute sample L-moments 
> str(lmr) # show the sample L-moments 
List of 6 
$ lambdas : num [1:5] 5219 3011 1782 1463 1261 
$ ratios : num [1:5] NA 0.577 0.592 0.486 0.419 
$ trim : num 0 
$ leftrim : NULL 
$ rightrim: NULL 
$ source : chr "lmoms" 

The listing shows that the mean and L-scale values are 
about 5,219 and 3,011 cubic feet per second, respectively. 
The listing also shows that the L-skew, L-kurtosis, and 
Tau5 values (dimensionless) are 0.592, 0.486, and 0.419, 
respectively. (The value 0.577 is L-CV.) These sample 
L-moments also will be used in the “Probability Distri
butions for Peak-Streamflow Frequency Curves” of this 
report. 

Sampling Error 

For the weighted-least-squares regression analysis, 
weight factors representing sampling error and modeling 
errors as distinct components of uncertainty are used. In 
this section, the concept and method of computation of 
a sampling error of peak streamflow for each recurrence 
interval by station is described. It is favorable to have 
stations with more record (smaller sampling error, more 
certainty) to have more weight in regression analysis. 

For this report, sampling error is the concept that the 
peak-streamflow frequency for a given station is dependent 
on the number of years of available record. Stations hav
ing long periods of record (measured in many decades) 
have more defined and presumably more reliable peak
streamflow frequency values than the values for stations 
having short periods of record (measured in less than about 
2 decades). Thus, sample size in years for a station acts to 
progressively decrease sampling error. 

For this report, weighted.mean() values of the first five 
dimensionless sample L-moments of the 677 stations were 
computed by the so-named function in R. The years of 
record for each station in file Appendix1_677annpks.txt 

were used as weight factors.3 The term dimensionless in 
this context implies a unit mean and the second L-moment 
equal to the L-CV. The weighted-mean, dimensionless 
L-moments are 1, 0.5055, 0.3939, 0.2496, and 0.1590 for 
the mean, L-scale, L-skew, L-kurtosis, and Tau5, respec
tively. These L-moments are referred to as the dimension
less regional L-moments, and these weighted-mean values 
provide an approximation of the geometry of the “parent” 
peak-streamflow frequency distribution for the study area. 

3These weights are not to be confused with the weight factors used in the regres
sion analysis reported herein. 
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The dimensionless regional L-moments were used 
to estimate a dimensionless regional Wakeby distribution 
(Landwehr and others, 1979) using the parwak() function of 
Asquith (2008). This fitted Wakeby distribution, because 
of its immense flexibility with five parameters, is assumed 
to provide a reasonable first-order approximation to the 
underlying (dimensionless) structure of peak-streamflow 
frequency for the study area. The use of the dimensionless 
regional Wakeby distribution is described in the remainder 
of this section. 

Using statistical simulation and the genci() function of 
Asquith (2008) for each unique number of years of record 
for the 677 stations and the dimensionless regional Wakeby 
distribution, the L-CV for each of the nine recurrence 
intervals were estimated. An example of the computation 
method for station 07153500, which has 33 years of record, 
and the 2-year recurrence interval is shown in the following 
R code listing: 

> library(lmomco) # load the vec2lmom(), 
# parwak(), T2prob(), and genci() functions 

# Manually set the dimensionless regional 
# L-moments 
> L <- vec2lmom(c(1,0.505,0.394,0.250,0.159)) 

# Fit a dimensionless Wakeby distribution to 
# the regional L-moments in variable L 
> W <- parwak(L) 
# the algebraic form of distribution is shown 
# in the text 

# Compute nonexceedance probability (0.5) 
# for 2-year event 
> F <- T2prob(2) 

> n <- 33; # sample size, years of record 
> nsim <- 10000 # the num. of simulations and 
# a large value to gain numerical accuracy 
> genci(W, n, F=F, nsim=nsim) 
nonexceed_prob lower true upper 

lscale lcv 
1	 0.500 0.4725784 0.6667878 0.9042445 

0.07403137 0.1110269 

The regional dimensionless Wakeby distribution fit to 
the L-moments shown in the previous R code listing is 

1.10
(1− (1− F)6.10)Q(F) = −0.0266 + 

6.10
0.692 

(1− (1− F)−0.206),−	 (1)
0.206 

where Q(F) is dimensionless peak streamflow (unit mean) 
for nonexceedance probability F = 1− 1/T for recurrence 
interval T . 

In brief, the simulation process is as follows: For 
a simulation run of 10,000 iterations, a random sample 
of size n (33 years for the example) for each iteration 

was drawn from the regional dimensionless Wakeby dis
tribution. Subsequently, for each iteration, “new” sample 
L-moments of the random sample were computed and a 
“new” Wakeby distribution fit to the new L-moments. If 
a Wakeby could not be fit, a generalized Pareto distribu
tion was used instead; Hosking and Wallis (1997) provide 
details of the algorithm. The value of the distribution at a 
given T -year recurrence interval (2-year for the example) 
is stored. After the completion of the 10,000 iterations, the 
L-CV of the 10,000 stored estimates of the 2-year event 
was computed. This value represents the model error for a 
sample of size n = 33. 

The previous R code listing shows that the number 
of interest is the value listed under the lcv heading. For 
the example, this value is about 0.111 (the last value in 
the output). Conceptually this value represents the rela
tive (dimensionless) uncertainty in the estimation of the 
2-year peak-streamflow value. Considerable computational 
effort was expended to estimate the L-CV values for each 
of nine selected recurrence intervals and 71 unique sam
ple sizes (number of years of record) for the 677 stations. 
Thus, a total of 6.39 million simulations were conducted 
(9× 71× 10,000). The computation of modeling error was 
based on statistics of the 677 stations. From this point for
ward in the discussion of the Approach and results, the 
638 stations become the subject. 

In summary, these 639 L-CV values (9× 71) represent 
the relative uncertainty in the peak-streamflow estimate at a 
given recurrence interval and for a given sample size. The 
uncertainty is relative to the “mean” estimate of the peak
streamflow magnitude. Discussion of this mean estimate is 
provided in the next section. 

Probability Distributions for Peak-Streamflow 
Frequency Curves 

For this report, as many as seven probability distri
butions are fit to the sample L-moments for each station 
and resultant frequency curves were graphically depicted 
and inspected by the authors in real and log10-transformed 
space. 

The authors explicitly chose to avoid selection of a sin
gle form of a probability distribution to model the station
specific, peak-streamflow frequency through simultaneous 
use of a substantial number of three-parameter and more 
distributions. Further, by use of more than one probability 
distribution, estimates for modeling error (see next section) 
could be obtained. 

The probability distributions considered and parame
ter and quantile functions of Asquith (2008) used for this 
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report are as follows: 

• Generalized extreme value distribution—supported 
by functions pargev() and quagev(); 

• Generalized logistic distribution—supported by func
tions parglo() and quaglo(); 

• Generalized normal distribution—supported by func
tions pargno() and quagno(); 

• Generalized Pareto distribution—supported by func
tions pargpa() and quagpa(); 

• Kappa distribution (if solution available), other
wise the generalized lambda distribution (if solu
tion available)—supported by functions parkap() 

and quakap() for kappa and functions pargld() and 
quagld() for generalized lambda; 

• Pearson Type III distribution—supported by func
tions parpe3() and quape3(); and 

• log-Pearson Type III distribution, which is the same 
as Pearson Type III but the L-moments of the log10 
values of data are used instead to fit the distribution. 

The seven quantile functions for the itemized probabil
ity distributions are internally called from the qlmomco() 

function, which technically was used in algorithms by the 
authors. 

In summary, for almost all stations, seven distributions 
were fit and seven estimates of peak streamflow for each 
of the nine recurrence intervals were stored for later use. 
An example of the computation method for only the gener
alized extreme value and generalized logistic distributions 
(two of the seven distributions), which are accessed using 
the qlmomco() function, for station 07153500 is shown in 
the following R code listing: 

> library(lmomco) # load the lmoms(), qlmomco(), 
# and lmom2par() functions 

# The variable peaks was generated in the section 
# ‘‘Sample L-moments’’ 
> lmr <- lmoms(peaks) # compute sample L-moments 

# Compute the 2-year peak streamflow using two 
# probability distributions: generalized extreme 
# value and generalized logistic distributions 
> Q2gev <- qlmomco(0.5, lmom2par(lmr, type="gev")) 
> Q2glo <- qlmomco(0.5, lmom2par(lmr, type="glo")) 

# Show the estimates in cubic feet per second 
> print(Q2gev) # 2-year generalized extreme value 
[1] 2724.746 
> print(Q2glo) # 2-year generalized logistic 
[1] 2754.674 

The listing shows that the 2-year peak streamflow from the 
generalized extreme value is about 2,725 cubic feet per sec
ond, and the 2-year peak streamflow from the generalized 
logistic distribution is about 2,755 cubic feet per second. 
The difference is a natural and an expected result of the 
form of the fitted distributions. Generally, as recurrence 
interval increases, differences in estimates from different 
distributions tend to increase. These two values will be 
used with five others from five additional distributions in 
the next section. 

For station 07153500, the seven probability distribu
tions are shown in figure 1. Each graph depicts the peak
streamflow frequency curves in real and logarithmic units 
(A and B, respectively). The horizontal axis is rendered in 
standard normal deviates4 and hence is a normal probability 
axis although not labeled in units of probability. Also on the 
figure, the individual plots are rendered with the respective 
station number to ensure consistency with the figure cap
tion. The seven estimates, by distribution, by recurrence 
interval, and by station were considered results of interme
diate computations and are not reported here. However, the 
more than 677-page, portable document format (PDF) file 
Appendix1_677freqcurves.pdf described in appendix 1 is 
available. This file provides graphical documentation of the 
computations described in this section and repeats figure 1 
for completeness. 

Trimmed Mean Estimates of Peak-
Streamflow Frequency 

For each of the nine recurrence intervals, a symmetri
cally trimmed L-moment (trimmed mean) was computed 
using the TLmoms(QT,trim=1) function of Asquith (2008) 
based on trimmed L-moments (Elamir and Seheult, 2003; 
Hosking, 2007), where QT is a vector that represents as 
many as (generally) seven unique values of peak stream-
flow for a given recurrence interval. The use of trimming, 
which computationally is more complex than simply drop
ping the largest and smallest values and computing an arith
metic mean, is anticipated to provide a more robust mea
sure of central location for the formal estimation of station
specific, peak-streamflow frequency. It is important to note 
that log10 transformation of the peak-streamflow estimates 
was not made prior to computation of the trimmed mean. 

The computation of the trimmed mean is demonstrated 
using results for station 07153500 for the 2-year peak 
streamflow. In the following R code listing, the estimates 
for each of the seven distributions are set into variables and 

4Standard normal deviate—A normally distributed random variable (or nonex
ceedance probability for the plots) with an expected value of 0 and a variance of 1. 
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EXPLANATION

Pearson Type III distribution

Generalized extreme value distribution (if solution available)

Generalized normal distribution (if solution available)

Kappa distribution (if solution available)

Annual peak-streamflow value

Generalized logistic distribution

log-Pearson Type III distribution

Generalized Pareto distribution

Figure 1. Example of peak-streamflow frequency curves with superimposed axis labels and explanation in real and logarithmic 
space rendered from the R environment (R Development Core Team, 2008) using functions of Asquith (2008) for seven probability 
distributions fit to sample L-moments of annual peak-streamflow data available in file Appendix1_677annpks.txt for station 
07153500 Dry Cimarron River near Guy, New Mexico. 
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then concatenated into the variable Q2. The arithmetic and 
trimmed means are computed using the TLmoms() function 
of Asquith (2008). The values for gev and glo were com
puted in the “Probability Distributions for Peak-Streamflow 
Frequency Curves” section of this report. 

> library(lmomco) # load the TLmoms() function 
# Seven unique estimates for 2-year recurrence 
# interval in cubic feet per second 
> gev <- 2725 # from generalized extreme value 
> glo <- 2755 # from generalized logistic 
> gno <- 2507 # from generalized normal 
> gpa <- 2590 # from generalized pareto 
> kap <- 3023 # from kappa 
> pe3 <- 2037 # from pearson type III 
> pe3log <- 2820 # from log-pearson type III 
> Q2 <- c(gev,glo,gno,gpa,kap,pe3,pe3log) 

# Now compute the usual mean (not used) 
> TLmoms(Q2,nmom=1, trim=0) 
$lambdas 
[1] 2636.714 

# Now compute the symmetrically trimmed mean 
> TLmoms(Q2,nmom=1, trim=1) 
$lambdas 
[1] 2683.429 

The listing shows that the usual arithmetic mean of the 2
year peak streamflow for the station is about 2,637 cubic 
feet per second. The trimmed mean is about 2,683 cubic 
feet per second and was used. The authors experimented 
with the arithmetic mean, median, and trimmed mean in the 
iterative development of the Approach; the authors judged 
that the trimmed mean provided an appropriate statistic to 
estimate station-specific, peak-streamflow frequency. 

In summary, the trimmed mean was used to estimate 
the station-specific peak streamflow for each of the nine 
recurrence intervals. The trimmed means are used in 
the regression analysis described in the “Weighted-Least-
Squares, Multi-Linear Regression Analysis and PRESS Min
imization” section of this report. The trimmed means by 
recurrence interval and by station were considered inter
mediate computations, but these results are available in 
file Appendix1_677trimmedQTs.txt, which is described in 
appendix 1. 

Modeling Error 

Because seven distributions (models) were fit for each 
station, seven unique estimates of peak streamflow were 
obtained for each recurrence interval. For a given recur
rence interval, these estimates have a distribution; the rel
ative variability of this distribution is treated as a measure 
of modeling error. Stations with more variability in peak
streamflow estimates, which is attributable to distribution 

choice, have more uncertainty than those stations with less 
variability. Therefore, it is favorable for stations with more 
uncertainty to have less weight in regression analysis. 

The computation of the modeling error is demonstrated 
using results for station 07153500 for the 2-year peak 
streamflow. In the following R code listing, the estimates 
for each of the seven distributions are available in the vari
able Q2 set in the previous code listing. The L-moments 
(not trimmed) are computed using the lmoms() function of 
Asquith (2008). 

> library(lmomco) # to access lmoms() function 
# Compute sample L-moments of seven distributions 
# for the 2-year recurrence interval 
> lmoms(Q2,nmom=2) # no trimming 
$lambdas 
[1] 2636.7143 178.5238 
$ratios 
[1] NA 0.06770692 
# Thus, after rounding off the decimal 
# Lambda_1 (mean) = 2637; Lambda_2 (L-scale) = 179 

The listing shows that the L-scale of the seven fits is about 
179 cubic feet per second. An approximate variance in R 
code for the model fit, and representative of model error, is 
thus (179*sqrt(pi))^2 or 100,660. (The sqrt() function is 
the square root.) 

Combining Sampling and Modeling Errors 

Combination of the modeling error with sampling 
error is straightforward. The standard deviation of a peak
streamflow frequency estimate can be estimated by the 
Pythagorean distance of the variances of the sampling and 
modeling errors. 

In the “Sampling Error” section of this report, station 
07153500 has a sampling error measured in L-CV of about 
0.111. If the trimmed mean estimate for the station is 
2,683 cubic feet per second for the 2-year event (see sec
tion “Trimmed Mean Estimates of Peak-Streamflow Fre
quency”), then the sampling error has an approximate vari
ance in R code of (0.111*(2683)*sqrt(pi))^2 or 278,636. 
The previous section shows that the modeling error vari
ance is about 100,660. 

These two variances can be aggregated in R code 
by sqrt(278636 + 100660) for a combined error of about 
616 cubic feet per second. Hence, the standard deviation of 
the 2,683 cubic feet per second estimate of the 2-year peak 
streamflow for station 07153500 is 616 cubic feet per sec
ond, which can be expressed as a relative variability as the 
ratio 616/2683 or about 0.230. This relative error, actually 
its inverse, was used as one of the 5,742 weight factors in 
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weighted-least-squares regression analysis. The weight fac
tor count is the product of 638 stations and nine recurrence 
intervals (638 × 9). 

Weighted-Least-Squares, Multi-Linear 
Regression Analysis and PRESS Minimiza
tion 

For this report, weighted-least-squares, multi-linear 
regression analysis is used to develop the statistical rela
tion between the station-specific, trimmed-mean, T -year 
peak-streamflow values and the three watershed character
istics (explanatory variables previously described). The 
sampling and modeling errors for each station were com
bined as described in the “Combining Sampling and Model 
Errors” section of this report. The combined error is used to 
derive weight factors for the weighted-least-squares regres
sion between peak-streamflow frequency and the water
shed characteristics of drainage area, dimensionless main-
channel slope, mean annual precipitation, and, when used, 
the fΩ parameter described in the next section. 

PRESS minimization is formally described by Asquith 
and Thompson (2008) and is only summarized in this report. 
The PRESS computation used for this investigation was 
not weighted by the regression weight factors as used by 
Asquith and Thompson (2008). The PRESS statistic gen
erally is regarded as a measure of regression performance 
when the model is used to predict new data (Montgomery 
and others, 2001, p. 153). Prediction of new data is what 
analysts and hydrologic engineers do when they estimate 
peak streamflow from a regression equation. Regression 
equations with small PRESS values are desirable; thus, 
PRESS minimization is an appropriate goal. Helsel and 
Hirsch (2002, p. 247) state that, “Minimizing PRESS means 
that the equation produces the least error when making new 
predictions.” Conceptually, PRESS minimization identifies 
the appropriate transformation of drainage area to “press” 
the bias (residual curvature) out of the equations. 

Other variables were not “pressed” because curvature 
in the residuals is sufficiently removed by use of drainage 
area. Further, considerable computational complexities are 
introduced in investigation of simultaneous multi-transform 
optimization. 

Because the PRESS statistic is an overall measure of 
regression fit (like residual standard error) and is a valida
tion statistic (unlike residual standard error), minimization 
of PRESS is desirable. The most “valid” regression is pro
duced when the PRESS statistic is minimized. The follow

ing transformation on drainage area was used: 

A� = Aλ , (2) 

where A� is the transformed value of drainage area for 
the regression, A is drainage area, and λ is a real num
ber. For this report specific values of λ were determined 
by exhaustive search to three significant figures for each 
regression equation. Thus, values for λ can be thought 
of as regression-specific parameters, but are not formally 
counted as such in diagnostic statistics of the regression. 
The λ values computed by the PRESS minimization are 
reported in the “Regression Equations in Texas Using an 
L-moment-Based, PRESS-Minimized, Residual-Adjusted 
Approach” section of this report. 

Residual-Adjusted Regression and the 
OmegaEM Parameter 

The terminal steps towards computation of the final 
(preferred by authors) regression equations reported here 
involved an iterative reprocessing through the development 
of a generalization of regression residuals. The generalized 
regression residual has been previously identified herein as 
the f fΩ parameter, and Ω can be thought of as a special 
watershed characteristic, which is analogous to some other 
unknown, but spatially varying variable that expresses peak
streamflow potential in the study area. 

The residual-adjusted, regression process comprises 
the following steps: 

1. For each of the nine recurrence intervals, weighted-
least-squares regression analysis using PRESS mini
mization was made using only the watershed char
acteristics of drainage area, dimensionless main-
channel slope, and mean annual precipitation for 
the 638 stations. The raw outputs from scripts oper
ating in the R environment for each recurrence 
interval are shown in appendix 2. The information 
contained therein is interpreted and formally pre
sented in the “Regression Equations in Texas Using 
an L-moment-Based, PRESS-Minimized, Residual-
Adjusted Approach” section of this report; 

2. The residuals for each of the nine regression equa
tions were computed. Maps depicting the spatial 
variation of the residuals with symbols determined 
by the magnitude and direction of the residual were 
created and are formally presented in appendix 1 
of this report. Spatial dependency is evident for all 
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recurrence intervals. For each recurrence interval, the 
median residual was computed for each square of 
1-degree quadrangle of latitude and longitude in the 
study area containing at least one station; 

3. The authors, through exploratory analysis and judge
ment, selected the median values of the residuals to 
pool or combine into 1-degree quadrangles for the 
10-year recurrence interval. The authors, through 
manual smoothing, consultation of various geo
logic and ecological region maps, interpretation of 
regional topographic maps, and resident familiarity 
with the study area, estimated the magnitude and 
sign of the 10-year recurrence interval residuals for 
each 1-degree quadrangle in the study area. These 
estimates are referred to as the fΩ parameter, are in 
units of log10(streamflow), and are formally in the 
“OmegaEM Parameter” section of this report; 

f4. For each station, the Ω parameter was assigned 
based on the 1-degree quadrangle containing the sta
tion. In practice, the Ω parameter could be assigned f

similarly or by judgement considering the location 
and spatial extent of the watershed in question; 

5. For each of the nine recurrence intervals, weighted
least-squares regression using PRESS minimization is 
made using the watershed characteristics of drainage 
area, dimensionless main-channel slope, mean annual 
precipitation, and fΩ parameter for the 638 stations. 
The raw output from scripts operating in the R envi
ronment for each recurrence interval are shown in 
appendix 3. The information contained therein is 
interpreted and formally presented in the “Regres
sion Equations in Texas Using an L-moment-Based, 
PRESS-Minimized, Residual-Adjusted Approach” of 
this report. New power transformations by recurrence 
interval on drainage area are computed by the PRESS 

minimization. Further, for each recurrence interval a 
separate regression coefficient on the fΩ parameter is 
computed; and 

6. As in the second step, the residuals of the regressions 
using the fΩ parameter were computed and mapped. 
Considerable reduction in spatial dependency is evi
dent. The authors interpret that the residuals from the 
regressions using the fΩ parameter are reasonably 
spatially invariant. 

Introduction of a final regression diagnostic is needed. 
Akaike Information Criterion (AIC) statistic is reported here 
and is a measure of information content of a regression 

model. The statistic accounts for a tradeoff between num
ber of parameters and the fit of the model; small values are 
sought. 

Regression Equations in Texas 
Using an L-moment-Based, PRESS-
Minimized, Residual-Adjusted 
Approach 

The final results of the L-moment-based, PRESS-
minimized, residual-adjusted approach are described in 
this section. This section is organized as follows. First, 
the regional equations using drainage area, dimensionless 
main-channel slope, and mean annual precipitation are 
formally presented and discussed. Second, maps that 

fdepict the Ω parameter are presented and discussed. Third, 
the regional equations using drainage area, dimensionless 
main-channel slope, mean annual precipitation, and the 
fΩ parameter also are formally presented and discussed. 
Fourth, example computations and comparison to estimates 
from the regression equations to those of previous studies is 
provided and interpretations are made. Finally, this section 
ends with example computations and discussion about 
considerations for application of the regional equations to 
gaged and ungaged watersheds. 

Regression Equations without OmegaEM 
Parameter 

Nine weighted-least-squares, PRESS-minimized regres
sion equations were computed using the watershed char
acteristics of drainage area, dimensionless main-channel 
slope, and mean annual precipitation and each of the 638 
trimmed-mean, peak-streamflow estimates for each of the 
nine recurrence intervals. The multi-linear regression was 
made using the lm() function of R Development Core Team 
(2008). The weights for the regression equations were 
derived from the sampling and modeling errors described 
in previous sections. The PRESS-minimization was made 
using a user-guided search algorithm. Separate PRESS-
minimizations are made and a unique exponent on drainage 
area is determined for each recurrence interval. 

The final regression equations are listed in table 2 with 
important diagnostic statistics. Additional computational 
details for each equation are listed in appendix 2, in which 
potentially informative statistics that should be archived 
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include summary statistics of the residuals, the p-values 
for the coefficients, maximum leverage statistics, and the 
inverted-covariance matrix. Finally, the residuals for each 
station and for each 1-degree quadrangle by recurrence 
interval are available in file Appendix1_residualmaps.pdf 

described in appendix 1. 

Several general observations about the equations listed 
in table 2 can be made. First, there are 634 degrees of free
dom in each equation—this is a substantially large number 
relative to many other hydrologic equations such as those 
by Asquith and Slade (1997), Asquith (2001), or Asquith 
and Roussel (2007). The mean of the nine residual stan
dard errors is 0.34log10. The residual standard errors are 
generally larger than about 1/3log10, which by the authors’ 
experience is difficult to eclipse in many hydrostatological 
models. The adjusted R-squared values are substantially 
large, which indicate that a reasonably large amount of 
collective variation in peak-streamflow frequency for the 
638 stations is explained by the equations. The exponent 
on drainage area increases with increasing recurrence inter
val, which suggests that increasing curvature in the relation 
between T -year peak streamflow and drainage area exists 
(Asquith and Thompson, 2005, 2008). 

OmegaEM Parameter 

fThe Ω parameter represents a generalized terrain 
and climate index that expresses relative differences in 
peak-streamflow potential across the study area. The 
f parameter is interpreted as an expression of peakΩ 
streamflow potential not represented in the watershed 
characteristics of drainage area, dimensionless main-
channel slope, and mean annual precipitation. Maps 
depicting, by 1-degree quadrangle and plotted at the quad
rangle center, the Ω parameter superimposed on maps f

of hill-shade relief, Texas rivers (U.S. Geological Survey, 
2003), and ecoregions (Commission for Environmental 
Cooperation, 1997), respectively, are shown in figures 2–4. 

The fΩ parameter was derived from interpretive anal
ysis of the spatial distributions of residuals from the first 
regression analysis (table 2). The spatial interpretation of 
the residuals, in particular, was focused on those for the 
10-year recurrence interval. The 10-year recurrence inter
val was chosen because either the PRESS statistic is at a 
minimum or the residual standard error is at a minimum 
(see table 2). This is not a new finding because the authors 
observe similar patterns in other studies (Asquith and Slade, 
1997). 

The authors interpret the minimum (PRESS = 297) at 
the 10-year recurrence interval as representing maximum 
predictability of peak-streamflow potential in relation to the 
three watershed characteristics. In particular, for recurrence 
intervals greater than about 10 years the authors envision 
that such peak streamflows are produced by storms of suf
ficient size (depth, volume, duration) that the watershed 
characteristics used in this study (dominated by drainage 
area) explain a maximum fraction of the variability of peak 
streamflow. 

As recurrence interval increases beyond 10 years, the 
three watershed characteristics still play a primary role 
in production of peak streamflow; however the increas
ing magnitude of the PRESS statistics (decreasing adjusted 
R-squared, increasing residual standard error) is explained 
by increasing error in the peak-streamflow frequency esti
mates because quantile estimations are being made in 
increasingly more distal, right-hand regions of the proba
bility distributions. In other words, regional equations for 
the 10-year recurrence interval represent a situation of some 
sort of maximum of information content. 

The median residuals by 1-degree quadrangle are 
shown in file Appendix1_residualmaps.pdf described in 
appendix 1. These medians subsequently were spatially 
interpreted and further generalized through “moving” 
weighted-mean values—that is, overlapping averaging—of 
two or more neighboring 1-degree quadrangles. When 
weighted means were computed, the number of stations for 
each quadrangle were used as weights. These averaged or 
generalized residuals are plotted in figures 2–4 and labeled 
as the fΩ parameter. The {30–31°, 104–105°} quadrangle 
shows two Ω Because of the mountainous f values. 
region in the approximately northern one-half of the quad, 
separate values were selected as better representation of 
the parameter than a single value. 

The authors explicitly acknowledge that the develop
fment of the Ω parameter represents an ad hoc process and 

that alternative and potentially more optimal means of resid
ual generalization could exist. As shown in the next section, 
the use of the fΩ parameter as another variable in regional 
regression development provides a marked reduction in 
the PRESS statistic with associated increases (decreases) in 
adjusted R-squared and residual standard error. 

Regression Equations with OmegaEM 
Parameter 

Nine weighted-least-squares, PRESS-minimized regres
sion equations were computed using the watershed char
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Figure 2. Hill-shade relief in Texas with superimposed values of OmegaEM parameter that represents a generalized terrain 
and climate index for regionalization of peak-streamflow frequency. 
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Figure 3. Rivers in Texas with superimposed values of OmegaEM parameter that represents a generalized terrain and climate 
index for regionalization of peak-streamflow frequency. 
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Figure 4. Level II and III ecoregions in Texas with superimposed values of OmegaEM parameter that represents a generalized 
terrain and climate index for regionalization of peak-streamflow frequency. 
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Table 2. Summary of weighted-least-squares, PRESS-minimized, regional regression equations using drainage area, dimension
less main-channel slope, and mean annual precipitation. 

[RSE, residual standard error in log10-units of cubic feet per second; Adj., adjusted; AIC, Akaike Information Criterion; PRESS, PRedic
tion Error Sum of Squares; QT , peak streamflow for T -year recurrence interval in cubic feet per second; P, mean annual precipitation in 
inches; S, dimensionless main-channel slope; and A, drainage area in square miles] 

Regression equation RSE Adj. R-squared AIC statistic PRESS statistic 

Q2 = P1.562 S0.385 × 10[38.64−37.94A−0.0080 ] 0.32 0.81 396 77.4 

Q5 = P1.491 S0.500 × 10[16.35−15.04A−0.0228 ] .30 .84 314 65.2 

Q10 = P1.377 S0.530 × 10[13.67−11.99A−0.0299 ] .30 .85 297 63.7← minimum 

Q25 = P1.316 S0.574 × 10[12.00−9.992 A−0.0380 ] .31 .84 348 67.1 

Q50 = P1.285 S0.608 × 10[11.40−9.195 A−0.0429 ] .33 .83 414 73.5 

Q100 = P1.257 S0.640 × 10[11.07−8.673 A−0.0470 ] .35 .82 493 82.8 

Q200 = P1.221 S0.665 × 10[10.86−8.282 A−0.0506 ] .37 .80 586 95.3 

Q250 = P1.209 S0.676 × 10[10.83−8.181 A−0.0517 ] .38 .79 617 100 

Q500 = P1.181 S0.705 × 10[10.67−7.846 A−0.0554 ] .41 .77 713 117 

acteristics of drainage area, dimensionless main-channel 
slope, mean annual precipitation, and fΩ (figs. 2–4) as well 
as each of the 638 trimmed-mean, peak-streamflow esti
mates for each of the nine recurrence intervals. The weights 
for the regression equations were the same as those used for 
the regression equations listed in table 2. Separate PRESS-
minimizations were made for each recurrence interval and 
a unique exponent on drainage area was determined. These 
exponents differ from those listed in table 2. 

The final regression equations are listed in table 3 with 
important diagnostic statistics. Additional computational 
details for each equation are listed in appendix 3, in which 
potentially informative statistics that should be archived 
include the summary statistics of the residuals, p-values for 
the coefficients, maximum leverage statistics, and inverted-
covariance matrix. The residuals for each station and for 
each 1-degree quadrangle for each recurrence interval are 
available in file Appendix1_residualmaps.pdf. 

Several general observations about the equations listed 
in table 2 can be made and are similar to those made 
for the equations listed in table 3. The mean of the nine 
residual standard errors is 0.30log10. The mean adjusted 
R-squared is about 0.86, and the mean percentage reduc
tion in PRESS is about −21 percent. The residual standard 
errors are arguably smaller than 1/3log10, which was a pro
fessional goal of the authors for the Approach. The adjusted 
R-squared values are substantially large, which indicate a 
reasonably large amount of variation in peak-streamflow 
frequency for the 638 stations is explained. The exponent 
on drainage area increases with increasing recurrence inter
val, which suggests that increasing curvature in the relation 

between T -year peak streamflow and drainage area exists 
(Asquith and Thompson, 2005, 2008). 

Of the two suites of regional equations shown in this 
report, the authors prefer the use of those based on fΩ . Fur
ther, by noting the spatial dependence of residuals for the 
equations in table 2 (equations not based on fΩ ) and, by 
generality, such dependence for the equations in Asquith 
and Thompson (2005, 2008) must exist, the authors con
clude that equations in table 3 are preferred over those in the 
two reports (Asquith and Thompson) because the equations 
in table 3 generally lack substantial spatial dependency in 
their residuals. 

Example Computations for a Single Station 
and Comparison to Estimates from Previ
ously Published Equations 

This section provides example computations that 
demonstrate how the regional regression equations 
(tables 2 and 3) could be used in practice, and a compar
ison to estimates from previously published equations. 
The focus of the computations is on the 100-year peak 
streamflow, but application to other recurrence intervals 
is straightforward. For the computations, the watershed 
represented by station 08190000 Nueces River at Laguna, 
Tex., was arbitrarily chosen. 

The suggested equation for estimation of the 100-year 
peak streamflow (see table 3) has the form 

Ω +a+bAλ ]Q100 = Pc Sd × 10[e� , (3) 
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Table 3. Summary of weighted-least-squares, PRESS-minimized, regional regression equations using drainage area, dimension
less main-channel slope, mean annual precipitation, and OmegaEM. 

[RSE, residual standard error in log10-units of cubic feet per second; Adj., adjusted; AIC, Akaike Information Criterion; PRESS, PRedic
tion Error Sum of Squares; Percent change, percent change from PRESS in table 2 to PRESS listed to the left; QT , peak streamflow for 
T -year recurrence interval in cubic feet per second; P, mean annual precipitation in inches; S, dimensionless main-channel slope; Ω ,�
OmegaEM parameter in figures 2–4; and A, drainage area in square miles] 

Regression equation RSE Adj. R-squared AIC statistic PRESS statistic Percent change 
Ω +50.98−50.30A−0.0058 ]= P1.398 S0.270 × 10[0.776�Q2 0.29 0.84 273 64.6 −16.5 
Ω +16.62−15.32A−0.0215 ]= P1.308 S0.372 × 10[0.885�Q5 .26 .88 122 49.1 −24.7 
Ω +13.62−11.97A−0.0289 ]Q10 = P1.203 S0.403 × 10[0.918� .25 .89 86.5 46.6 −26.8 
Ω +11.79−9.819A−0.0374 ]Q25 = P1.140 S0.446 × 10[0.945� .26 .89 140 49.5 −26.2 
Ω +11.17−8.997A−0.0424 ]Q50 = P1.105 S0.476 × 10[0.961� .28 .87 220 55.6 −24.4 
Ω +10.82−8.448A−0.0467 ]= P1.071 S0.507 × 10[0.969�Q100 .30 .86 320 64.8 −21.7 
Ω +10.61−8.058A−0.0504 ]= P1.034 S0.531 × 10[0.975�Q200 .33 .84 436 77.2 −19.0 
Ω +10.56−7.943A−0.0516 ]= P1.021 S0.541 × 10[0.977�Q250 .34 .83 474 81.9 −18.1 
Ω +10.40−7.605A−0.0554 ]= P0.988 S0.569 × 10[0.976�Q500 .37 .81 591 98.7 −15.6 

where a, b, c, d, and e are regression coefficients (listed 
in this sentence in the order as produced by the R soft
ware) specific for the 100-year recurrence interval, λ is 
a power determined by iterative PRESS-minimization for 
the 100-year recurrence interval, P is mean annual precip
itation in inches, S is dimensionless main-channel slope, 
A is drainage area in square miles, and the fΩ parameter is 
a generalized terrain and climate index (figs. 2–4), which 
was derived from the residuals of the 10-year equation in 
table 2. 

For the example computations, the 100-year regression 
equation (table 3) is 

= P1.071 S0.50710[0.969�Q100 
Ω +10.82−8.448A−0.0467], (4) 

for which the residual standard error is 0.30log10 and 
adjusted R-squared is 0.86. 

Station 08190000 has a latitude and longitude of 
29°25'42" and 99°59'49", respectively, with the following 
estimates from Asquith and Slade (1997, table 1) of 
the three watershed characteristics: P = 24.5 inches, 
S = 0.00326 (or about 17.21 feet per mile), A = 737 square 
miles. The value of f = 0.33 is derived from figures 2–4 Ω 
given the latitude and longitude of the station. 

Solving the equation for Q100 produces an estimate of 
Ωabout 145,000 cubic feet per second (Q�100). Using the Q100 

equation without the fΩ parameter in table 2, the Q100 is 
about 73,400 cubic feet per second (QAR 

100). For reference, 
the station-specific, trimmed-mean, Q100 streamflow for 
this station is about 302,000 cubic feet per second (QLM 

100). 

Using the Asquith and Thompson (2005, table 5; 2008, 
table 7) equation for Q100, which is 

= P0.9883 S0.6295 × 107.307−6.714A−0.0601
Q100 , 

and solved for the watershed characteristics 

= 24.50.9883 × 17.210.6295Q100 (5) 

× 107.307−6.714×737−0.0601 
, 

or about 139,000 cubic feet per second (QAT 
100). 

Asquith and Slade (1997, table 1) report for station 
08190000 that the Q100 streamflow was then (circa 1997) 
estimated as 336,000 cubic feet per second (Q17B 

100 ). This 
station resides in region 5 of Asquith and Slade (1997) and 
the regional equation provided by those authors (Asquith 
and Slade, 1997, table 2) is Q100 = 9180 A0.594 H−0.420 , 
which when solved for the watershed characteristics5 is 
Q100 = 9180 × 7370.594 × 5.8−0.420 or about 223,000 cubic 
feet per second (QAS 

100). 

A discussion of the example computations for the arbi
trarily selected watershed follows; unfortunately, the scope 
of the investigation is far too large for an effective discus
sion to be provided for other watersheds. However, the 
discussion is intended to help guide analysts in making 
comparisons between various methods of peak-streamflow 
frequency estimation. 

5The basin-shape factor is H = 5.80 as reported by Asquith and Slade (1997, 
table 1). 

http:about17.21
http:R-squaredis0.86
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The example computations can be summarized accord
ing to two different analytical tracks. Each track is summa
rized in separate itemized lists: 

ANALYTICAL TRACK 1—For the results using station
specific, peak-streamflow frequency based on broad inter
pretation of Interagency Advisory Committee on Water 
Data (1982) made by Asquith and Slade (1997), the three 
Q100 estimates are: 

• The station-specific Q17B 
100 estimate from Asquith and 

Slade (1997, table 1) using data through about 1994 
for the station is about 336,000 cubic feet per second; 

• The regional-equation QAS 
100 estimate from Asquith 

and Slade (1997, table 2) is about 223,000 cubic feet 
per second; and 

• The regional-equation QAT 
100 estimate from alterna

tive interpretation of the regional regression method 
based on PRESS minimization, drainage area, dimen
sionless main-channel slope, and mean annual pre
cipitation by Asquith and Thompson (2005, 2008) is 
about 139,000 cubic feet per second. 

ANALYTICAL TRACK 2—For the results using 
station-specific, peak-streamflow frequency based on the 
L-moment approach described in this report, the Q100 

estimates are: 

• The station-specific QLM 
100 estimate from the current 

investigation by the trimmed mean of the seven distri
butions using data through about 2006 for the station 
is about 302,000 cubic feet per second; 

• The regional-equation QAR 
100 estimate (table 2) from 

the current investigation using the equation lacking 
the fΩ parameter is about 73,400 cubic feet per sec
ond; and 

Ω• The regional-equation Q�100 estimate (table 3) from 
the current investigation using the equation with the 
fΩ parameter is about 145,000 cubic feet per second. 

The computations of the first analytical track can be 
compared or interpreted in several ways. First, QAS 

100 and 
QAT are each smaller than the station-specific estimate 
of Q17B Hence, the watershed represented by station 100 . 
08190000 has larger peak-streamflow frequency relative to 
many other stations in either region 5 (QAS 

100) or statewide 
(QAT 

100). The QAS The QAS 
100 estimate is larger than QAT 

100. 100 
is closer to the Q17B than QAT 

100 is. These differences can 100 
be attributed in part to the many fewer degrees of freedom 

for the regressions used in region 5 of Asquith and Slade 
(1997) than in Asquith and Thompson (2008). 

The computations of the second analytical track also 
can be interpreted in several ways. First, QAR Ω 

100 and Q�100 are 
each less than QLM 

100. Hence, again, it can be concluded that 
the watershed represented by station 08190000 has greater 
peak-streamflow frequency relative to many other stations. 
The differences between the estimates appear substantial 
but can be generally said to be within about 0.40log10. 

The conclusion that the station has greater peak
streamflow frequency than estimated by the regional 
models considered can be stated in another way—the 
peak-streamflow data for this station appear to represent 
comparatively greater peak values for the watershed char
acteristics relative to similarly characterized watersheds 
in the study area. In fact, many of the watersheds in the 
general region of Texas containing the station are well 
known to produce some of the largest peak-streamflow 
values for their respective drainage areas in Texas as well 
as the nation (Burnett, 2008). The fΩ maps in figures 2–4 
clearly support this conclusion by the positive values for 
the fΩ parameter. 

Continuing, the values for Q17B and QLM 
100 are within 100 

0.05log10 of each other—some validation of the basic com
putational steps used in this report thus is provided. This is 
an important observation, which is generalized in the next 
section. 

Comparison of Regional Equations to Those 
of Previous Studies 

A comparison of the regional equations reported in 
tables 2 and 3 to those of previous studies is made in this 
section. Two substantially important questions must be 
asked to further frame the comparisons and are answered 
in succession in the following two sections: 

1. How are the station-specific, peak-streamflow esti
mates based on the trimmed mean of the seven dis
tributions fit to the sample L-moments comparable 
and applicable to more established estimates based 
on broad interpretation of Interagency Advisory Com
mittee on Water Data (1982) and documented by 
Asquith and Slade (1997)? 

2. Should the fΩ equations in table 3 (authors prefer 
those in table 3 over those lacking fΩ in table 2) 
be preferred over equations in Asquith and Slade 
(1997)? Asquith and Thompson (2005, 2008) did 

100 
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not directly ask this question of their equations in 
comparison to those of Asquith and Slade (1997), but 
only identify the Asquith and Thompson equations as 
“alternative.” 

Comparability and Applicability of Peak-
Streamflow Estimates from OmegaEM and 
Previous Equations 

To facilitate the comparisons, the watershed character
istics of the 638 stations will be used to make computations. 
To explore the answer to the first question, the relations 
between estimates of peak streamflow for the 2-, 5-, 10-, 
25-, 50-, and 100-year recurrence intervals using the equa
tions in table 2 and the equations in Asquith and Thompson 
(2005, table 5) are shown in figure 5. The vertical axis in 
the plots represents the regional model-derived features of 
the Approach including L-moments, weights based on sam
pling and modeling errors, and PRESS minimization. The 
horizontal axis in the plots represents a similarly parame
terized regional model by Asquith and Thompson (2005) 
using equivalent years of record as weights (Asquith and 
Slade, 1997) based on broad interpretation of the Intera
gency Advisory Committee on Water Data (1982) guide
lines. An equal value line is superimposed on the plots. 

By inspection of figure 5, the estimates are close to 
parallel—that is, show remarkable similarity—to the equal 
value line and generally show increasing divergence (offset 
to the right) as recurrence interval increases. 

An encompassing conclusion can be drawn, but 
unfortunately it is dependent on technical familiarity with 
peak-streamflow frequency analysis. The conclusion is 
that the use of L-moments, multiple distributions, and 
trimmed mean produces a regional model (table 2) of 
peak-streamflow frequency that is congruent6 with the 
regional model (Asquith and Thompson, 2005, 2008) hav
ing a foundation on broad interpretation of the Interagency 
Advisory Committee on Water Data (1982) guidelines. 
Several natural extensions to this conclusion can be drawn 
and address long-held research questions of the senior 
author (Asquith) that date back to the senior author’s lead 
in application of the Interagency Advisory Committee on 
Water Data (1982) guidelines for the Asquith and Slade 
(1997) report. These extensions are: 

1. LOW-OUTLIER THRESHOLDS—The authors of 
Asquith and Slade (1997) had a first priority to use 

6Congruent—in agreement or harmony. 

a custom equation7 to estimate low-outlier thresh
olds, which have the effect of adjusting the fit of the 
log-Pearson Type III distribution. For many fits of the 
distribution, the authors then abandoned their own 
equation and selected low-outlier thresholds in an ad 
hoc fashion to improve the visual fit of the distribu
tion. The use of low-outlier thresholds to make the 
procedures of Interagency Advisory Committee on 
Water Data (1982) work for Texas data was judged 
critical for Asquith and Slade (1997) to produce reli
able estimates. 

The effect of the low-outlier threshold often is to 
twist or rotate the fitted distribution to acquire gen
erally reduced values of peak streamflow in the right 
tail of the distribution. The senior author (Asquith) 
and associates have long held concerns about the 
arbitrary and capricious application of a low-outlier 
threshold. Yet, Texas peak-streamflow analysis gen
erally requires low-outlier treatment when compu
tations occur within the Interagency Advisory Com
mittee on Water Data (1982) framework. The use of 
the L-moments, which avoid log10 transformation of 
the data and the resultant magnification of low out
liers on peak-streamflow frequency relations can be 
thought of as a technique to avoid low-outlier treat
ment altogether; 

2.	 HIGH OUTLIERS AND HISTORICAL RECORD—The 
Interagency Advisory Committee on Water Data 
(1982) guidelines provide considerable emphasis on 
refinement of statistical computations using historical 
information. For example, a historical peak stream-
flow is a peak that has a historically documented 
nonexceedance interval greater than the period of 
record represented by the station. Such historical 
information can be difficult to interpret but can also 
enhance peak-streamflow estimation at particular sta
tions. For the use of the L-moments as implemented 
in the Approach, such adjustment was not performed. 

The effect of historical adjustment, when available, 
is to dilate or stretch the far right-hand side (large 
recurrence interval) of the peak-streamflow relation 
and thus generally reduce values of peak streamflow. 
A conclusion, based on the fact that the two regional 
models in figure 5 are so similar, is that historical 
peak-streamflow information as represented for the 
study area through Asquith and Slade (1997) and 

7The equation is log10(L) = 1.09µ − 0.584σ + 0.14γ − 0.799, where L is the 
low-outlier threshold in cubic feet per second; and µ , σ , and γ are the respective 
product moment mean, standard deviation, and skew of the annual peak streamflow 
for a given station in log10(cubic feet per second) with exception of γ (dimension
less). 
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Figure 5. Comparison by recurrence interval of peak-streamflow frequency estimates for the 638 stations using equations 
listed in table 2 (vertical axis) and using equations originally shown in Asquith and Thompson (2005, table 5) (horizontal axis, 
AT2005) that are based on station-specific, peak-streamflow frequency based from broad interpretation of Interagency Advisory 
Committee on Water Data (1982) (17B). 
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references therein provides little overall information 
to the regional model of peak-streamflow frequency 
for the study area. The authors consider this conclu
sion to be consistent with the opinion of Hosking and 
Wallis (1997, p. 161), who, although in the context of 
a structurally different regional model (index-flood 
procedure), are “skeptical about the practical utility 
of historical information;” and 

3. GENERALIZED SKEW—For the use of the 
L-moments, the skewness (and kurtosis) of the 
distribution were estimated solely on the data on 
a per station basis. There was no treatment for a 
spatially varying parameter (generalized skew) 
supposedly representing distribution symmetry (Judd 
and others, 1996). The authors interpret, should 
generalized skew exist, that the influence of this 
skew as well as other characteristics influencing 
peak-streamflow potential of the watershed have been 
lumped into the fΩ parameter. 

On further interpretation of figure 5, it is seen that 
the divergence from the equal value line is offset to the 
right as opposed to the left. This suggests that the Asquith 
and Thompson (2005) equations (those based on Asquith 
and Slade [1997] results) produce larger estimates of peak 
streamflow, up to about 0.10log10, more than those derived 
from table 2. Thus, the equations in table 2 produce 
slightly smaller estimates. The authors ask further ques
tions: Are the Asquith and Slade (1997) estimates of 
station-specific, peak-streamflow frequency then too large? 
Are the L-moment estimates too low? Are the differ
ences related to sample size? The apparently larger val
ues occur even with the considerable treatment of low out
liers and high outliers in the Asquith and Slade (1997) 
analysis. However, the differences could be thought of 
as slight. Specifically, what differences in station-specific, 
peak-streamflow frequency can be attributed to the addi
tion of more record between about 1994 and 2006 for some 
stations? The two suites of regional equations represented 
in figure 5 differ slightly by degrees of freedom—that is, 
stations included in the regression analysis—does this con
tribute to the divergence (or accidental convergence) in the 
figure? The answers to these questions are not known and 
exploration is beyond the scope of this report. 

Preference for OmegaEM Equations over 
Previous Equations 

The discussion of the first question provides an authori
tative account that the trimmed mean L-moment-based esti

mates of station-specific, peak-streamflow frequency are 
reliable. 

The regional regression equations listed in this report 
that are preferred by the authors are the fΩ equations listed 
in table 3 and thus use of the fΩ parameter is suggested. 
These equations should be preferred over the equations 
listed in table 2 as justified in part by the large percentage 
reduction in the PRESS statistics. 

To have some parallelism with the discussion in the 
previous section, a comparison of the 638 estimates from 
the fΩ equations to those in Asquith and Thompson (2005, 
table 5) is made in figure 6. The data points scatter around 
the equal value line. In part, this shows that the inclusion 
of the fΩ parameter does not have a deleterious8 effect on 
the regression analysis. The scatter does not represent and 
should not be interpreted as a lack-of-fit, but rather demon
strates that the fΩ parameter has the effect of pulling the 
data points in the vertical direction according to the sign of 
the parameter. 

Perhaps the most important question, which will 
undoubtedly be asked of the authors and many of the 
acknowledged colleagues, deserves repeating: Should the 
fΩ	 equations in table 3 be preferred over equations in 
Asquith and Slade (1997)? 

The authors suggest that the “OmegaEM equations” 
listed in table 3 should be preferred over the equations and 
procedures of Asquith and Slade (1997) for the following 
reasons and supporting ancillary discussion: 

1. The fΩ equations have solutions for 200-, 250-, and 
500-year recurrence intervals, which are not available 
in Asquith and Slade (1997); 

2. The fΩ equations have nearly 18 times more degrees 
of freedom than those in Asquith and Slade (1997). 
The equations would be expected to have broader 
applicability across a wider range of watersheds; 

f3. There are six Ω equations compared to 96 in 
Asquith and Slade (1997)—the three greater than 
100-year recurrence intervals in table 3 cannot be 
included in this particular comparision; 

4. The use of L-moment statistics for the fΩ equations 
has removed: 

(a)	 the largely ad hoc process of low-outlier adjust
ment to station-specific, peak-streamflow fre
quency estimates; 

8Deleterious—causing harm or damage. 
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Figure 6. Comparison by recurrence interval of peak-streamflow frequency estimates for the 638 stations using equations 
listed in table 3 (vertical axis) and using equations originally shown in Asquith and Thompson (2005, table 5) (horizontal axis, 
AT2005) that are based on station-specific, peak-streamflow frequency based from broad interpretation of Interagency Advisory 
Committee on Water Data (1982) (17B). 
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(b) the need to use the sometimes difficult-to
interpret or inconsistent station-to-station histor
ical record; and 

(c)	 the concept of generalized skew, at least as 
implemented in the Approach. 

5. The fΩ equations generally have similar residual stan
dard errors and adjusted R-squared values as those in 
Asquith and Slade (1997), but more importantly, the 
fΩ equations have minimal PRESS statistics; 

6. The minimization of PRESS for the fΩ equations 
should be expected to have enhanced extrapolation 
characteristics to small watersheds (Asquith and 
Thompson, 2005, 2008); 

7. The maps in figures 2–4 of the fΩ parameter supplant 
the need for separate and sometimes arbitrary regions 
of Asquith and Slade (1997). Although it certainly 
can be argued that the 1-degree quadrangles of the 
fΩ parameter have themselves become “microre
gions of arbitrary size and extent,” the authors fully 
acknowledge that complications and ambiguities to 
the selection of the fΩ will arise. The authors con
clude that the smoother regional structure of the map 
relative to the regions of Asquith and Slade (1997) 
elucidates9 previously suspected, but inadequately 
documented, relative peak-streamflow potential in 
Texas. All other variables being equal (drainage area, 
dimensionless main-channel slope, mean annual pre
cipitation), peak-streamflow potential is relatively 
less in far east Texas and far west Texas, greater 
in a swath through much of the central part of the 
state (the region demarked by positive Ω values), f

and highest along the Balcones escarpment in south
central Texas. O’Connor and Costa (2003, p. 9) iden
tify this region (Balcones escarpment) of the nation 
as having “concentrations of large floods.” 

In conclusion, the fΩ equations are expected to be reli
able estimators of peak-streamflow frequency for undevel
oped and ungaged stream locations in Texas with watershed 
characteristics within the distribution of those characteris
tics used to develop the equations. Although the fΩ param
eter requires interpretation on the part of analysts and the 
potential exists that different analysts could estimate dif
ferent values for a given watershed, the authors suggest 
that typical uncertainty in the fΩ estimate might be about 
±0.10log10, which is small relative to other uncertain
ties, such as those measured by residual standard error, in 

9Elucidates—makes (something) clear; explains. 

hydrostatological models. Finally, given the two ensembles 
of equations reported herein and those in previous reports, 
hydrologic design engineers and other analysts in Texas 
now have several different methods, which were derived 
from differing analytical tracks, to make comparisons of 
peak-streamflow frequency estimates for ungaged stream 
locations in Texas. 

Considerations for Application of Regres
sion Equations to Gaged and Ungaged 
Watersheds 

There are three remaining aspects of regional equation 
use in practice that require discussion: (1) application to 
“gaged” watersheds, (2) practice of watershed subdivision, 
and (3) estimation of prediction limits. 

The first aspect is that the authors observe that the 
equations reported herein will occasionally be applied at 
stream locations coincident with an operational streamflow
gaging station or locations with historical annual peak
streamflow data. Further these locations could also have 
peak-streamflow frequency estimates from combinations of 
synthetic or calibrated rainfall and runoff models or other 
hydrologic methods. Procedures or suggestions for com
bining the various estimates of peak-streamflow frequency 
from two or more methods explicitly are not provided in 
this report. 

The second aspect has not been previously discussed in 
either Asquith and Slade (1997), Asquith (2001), Asquith 
and Thompson (2005), or Asquith and Thompson (2008); 
although the authors have had considerable communica
tion with practitioners on the following topic. Occasionally, 
some users, who often are concerned with equation applica
bility for “unusual” watersheds, (1) subdivide watersheds 
into one or more subbasins of more “typical” characteris
tics relative to those used to develop the equations, (2) com
pute peak-streamflow frequency from regional regression 
equations for each ungaged subbasin, and (3) then com
bine the estimated values by summation. The authors sug
gest that users are seeking to enhance prediction accuracy 
by reducing extrapolation to watershed characteristics not 
well represented in the equations. (This is a particular issue 
with the limited degree-of-freedom equations in Asquith 
and Slade[1997].) Such a practice is not optimal. 

The authors observe that annual peak-streamflow 
data from stations represent aggregate or integrated peak
streamflow potential (information) of whole watersheds. 
The regression process seeks to explain the variability of 
peak-streamflow frequency for whole watersheds and not 
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the distributed processes within subbasins. The authors 
suggest that the summation explicitly assumes that the 
joint probability of contemporaneous peak-streamflow 
occurrence within each subbasin is 100 percent. Logical 
extension suggests that the practice of subdivision could 
yield peak-streamflow frequency curves that are generally 
too large and hence poorly reflect the risk level as specified 
by the T -year recurrence interval. 

The third aspect is that the prediction limits can be 
useful for expressing uncertainty when a equation is used. 
A 100 × (1− α) prediction interval for QT is given by the 
probability 

Pr{↓QT ≤ QT ≤ ↑QT } ≥ 1− α , (6) 

where the down (up) arrow signifies the lower (upper) pre
diction limit for QT at the α significance level. The lower 
and upper limits are computed by 

 
[QT ] 

= 10log10(QT )−t[α/2,df] σ [QT ] 1+ho↓QT , and (7)  
[QT ] 

= 10log10(QT )+t[α/2,df] σ [QT ] 1+ho↑QT , (8) 

where QT is the prediction from a T -year equation, t[α/2,df] 

is the upper tail of the t-distribution for df[QT ] degrees of 
freedom at the α significance level, σ [QT ] is the residual 
standard error of the T -year equation, and h[

o
QT ] is the lever

age of the prediction for the watershed. The h[
o
QT ] requires 

matrix multiplication—the requisite matrixes are listed 
in appendixes 2 and 3 under the INVERTED-COVARIANCE 

MATRIX headings. 

The authors observe that a rapid method for estima
tion of prediction limits can be conceived because of the 
large degrees of freedom for the regressions. The rapid 
method is more straightforward than the method involving 
matrix computation described in Asquith and Slade (1997) 
and mathematically outlined in Asquith and Roussel (2007). 
Other observations follow. First, the number of stations in 
the equations is n = 638 and the number of parameters (vari
ables plus 1 for the regression intercept) are either p = 4 
(table 2) or p = 5 (table 3). Second, the average leverage for 
a regression is about p/n so for this investigation, this ratio 
is less than 0.008. The authors suggest that h[QT ] ≈ 0.008.√ o 

Thus, the term 1+ 0.008 ≈ 1. Third, again because the 
degrees of freedom (df = n− p) is large, t[α/2,df] can be well 
approximated by the quantile function10 of the standard nor

10The quantile function of the standard normal distribution for nonexceedance 
probability F could be approximated for the purposes of this report by Q(F) = 
5.063[F0.135 − (1− F)0.135]. 

mal distribution N(F) for nonexceedance probability F . 

= 10log10(QT )−N(1−α/2) σ [QT ]↓QT , and (9) 

= 10log10(QT )+N(1−α/2) σ [QT ]↑QT . (10) 

The rapid method is demonstrated in the following 
example. Suppose that the 90th-percentile prediction lim
its need rapid estimation for the 100-year peak streamflow 
estimate by the respective equation in table 3. The estimate 
is QT = 9,000 cubic feet per second and σ [Q100] = 0.30. 
The N(0.95) = 1.6 where 0.95 = (1− α/2) = (1− (1− 
0.90)/2) for the 90th-percentile (two-tailed) limits. (In R 
code, the quantity 1.6 is qnorm(0.95).) As a result, the 
90th-percentile prediction limits are estimated as 

= 10log10(9,000)−1.6×0.30↓QT = 2,980, and (11) 

= 10log10(9,000)+1.6×0.30↑QT = 27,200. (12) 

Thus, the prediction limits for the 100-year peak streamflow 
estimate of Q100 = 9,000 cubic feet per second can be writ
ten as 2,980 ≤ Q(90th) ≤ 27,200 cubic feet per second. The 100 
authors, however, suggest the more compact notation of 
Q(90th) 

100 = 9,000 ± 0.48log10 cubic feet per second be used 
instead where the quantity 0.48 is 1.6× 0.30. Finally, the 
authors observe that prediction limits constructed as shown 
will be generally too small (narrow) because of inherent 
uncertainties of the fΩ parameter, which are difficult to 
propagate through the preceding computations. 

Summary 

Annual peak-streamflow frequency estimates are 
needed for flood-plain management; for objective assess
ment of flood risk; for cost-effective design of dams, levees, 
and other flood-control structures; and for design of roads, 
bridges, and culverts. Annual peak-streamflow frequency 
represents the peak streamflow for nine recurrence intervals 
of 2, 5, 10, 25, 50, 100, 200, 250, and 500 years. Common 
methods for estimation of peak-streamflow frequency for 
ungaged or unmonitored stream watersheds are regression 
equations for each recurrence interval developed for one 
or more regions (not strictly geographic); such regional 
equations are the subject of this report. The method is 
based on statistical analysis of annual peak-streamflow data 
from U.S. Geological Survey (USGS) streamflow-gaging 
stations (stations). 

Beginning in 2007, the USGS, in cooperation with 
the Texas Department of Transportation and in partnership 
with Texas Tech University, began a 3-year investigation 

http:10log10(9,000)+1.6�0.30
http:10log10(9,000)�1.6�0.30
http:qnorm(0.95


concerning the development of regional equations to esti
mate annual peak-streamflow frequency for undeveloped 
watersheds in Texas. The general approach was explicitly 
limited to the use of L-moment statistics, which are used 
in conjunction with a technique of multi-linear regression 
referred to as PRESS minimization. The approach used to 
develop the regional equations, which was refined during 
the investigation, is referred to as the “L-moment-based, 
PRESS-minimized, residual-adjusted approach.” The study 
area for this investigation includes Texas and selected parts 
of neighboring states and essentially is the same as that 
considered in previous studies. 

The primary purpose of this report is to present 
regression equations from the L-moment-based, PRESS-
minimized, residual-adjusted approach for estimation 
of annual peak-streamflow frequency for undeveloped 
watersheds in Texas and primarily restricted to ungaged 
watersheds. 

The primary scope of the report is limited to the 
annual peak-streamflow data for 677 and 638 selected 
stations. The scope of the report also is limited to three 
selected watershed characteristics, which have previously 
been shown as important predictors of peak-streamflow 
frequency in Texas. The watershed characteristics are 
drainage area, dimensionless main-channel slope, and 
mean annual precipitation. 

From an initial candidate station count of 1,030 sta
tions that had 1 or more years of annual peak-streamflow 
data in the study area, the number of stations used for 
this report were reduced by review of the data, watershed 
conditions, reliability of watershed characteristics, and a 
minimum record-length criteria (8 years), leaving 677 sta
tions. The data for these 677 stations are used for a specific 
component of the analysis. Another assessment or restric
tion for the purpose of the regression analysis is that sta
tions with drainage areas less than 10,000 square miles are 
used. After further assessment of watershed characteristics 
and the less-than-10,000-square-mile criterion, 638 stations 
remained. 

The L-moment-based, PRESS-minimized, residual-
adjusted approach (Approach) used for this investigation is 
complex and highly technical. Furthermore, the Approach 
relied on numerous single-purpose, highly specialized 
scripts, computer programs, and integration with features 
of the host-operating system as well as considerable 
judgement and iterative refinement on the part of the 
authors. 

L-moments are used for station-specific computations 
of peak-streamflow frequency with no consideration for 
concepts such as low-outliers, high-outliers, historical infor-
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mation, and generalized skew as described in other meth
ods for peak-streamflow frequency computation. For the 
Approach, the first five sample L-moments were computed 
for each of the 677 stations. These L-moments, respec
tively, are the mean, L-scale, L-skew, L-kurtosis, and Tau5. 

For the weighted-least-squares regression analysis, 
weight factors representing sampling error and modeling 
errors as distinct components of uncertainty are used. It 
is favorable to have stations with more record (smaller 
sampling error, more certainty) to have more weight in 
regression analysis. 

Sampling error estimates were based on dimensionless 
regional L-moments, which are weighted-mean values for 
the study area, and these weighted-mean values provide 
an approximation of the geometry of the “parent” peak
streamflow frequency distribution for the study area. The 
dimensionless regional L-moments were used to estimate 
a dimensionless regional Wakeby distribution. This fitted 
Wakeby distribution is assumed to provide a reasonable 
first-order approximation to the underlying (dimensionless) 
structure of peak-streamflow frequency for the study area. 

For this report, as many as seven probability distribu
tions are fit to the sample L-moments for each station. The 
authors explicitly chose to avoid selection of a single form 
of a probability distribution to model the station-specific, 
peak-streamflow frequency through use of a substantial 
number of three-parameter and more distributions. For 
almost all stations, seven distributions were fit and seven 
estimates of peak streamflow for each of the nine recurrence 
intervals were computed. 

Because seven distributions were fit for each station, 
seven unique values of peak streamflow were obtained for 
each recurrence interval. At a given recurrence interval, 
these values have a distribution; the relative variability of 
this distribution is treated as a measure of modeling error. 
It is favorable for stations with more variability in peak
streamflow frequency estimates by distribution to have less 
weight in regression analysis because more uncertainty 
exists at such stations. 

For each of the nine recurrence intervals, a symmetri
cally trimmed L-moment (trimmed mean) was computed 
from each of seven unique values of peak streamflow for 
a given recurrence interval. The use of trimming, which 
computationally is more complex than simply dropping the 
largest and smallest values and computing an arithmetic 
mean, is anticipated to provide a more robust measure of 
central location for the formal estimation of station-specific, 
peak-streamflow frequency. The trimmed mean was used 
to estimate the station-specific, peak streamflow for each of 
the nine recurrence intervals. 
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For this report, weighted-least-squares, multi-linear 
regression analysis is used to develop the statistical rela
tion between the station-specific, trimmed-mean, T -year 
peak-streamflow values and the three watershed charac
teristics (explanatory variables). The sampling and mod
eling errors are combined and are used to derive weight 
factors for the weighted-least-squares regression between 
peak-streamflow frequency and the watershed characteris
tics of drainage area, dimensionless main-channel slope, 
mean annual precipitation, and, when used, the fΩ parame
ter. 

Nine weighted-least-squares, PRESS-minimized regres
sion equations are computed using the watershed char
acteristics of drainage area, dimensionless main-channel 
slope, and mean annual precipitation and each of the 638 
trimmed-mean, peak-streamflow estimates for each of the 
nine recurrence intervals. The PRESS-minimization was 
made using a user-guided search algorithm. Separate 
PRESS-minimizations were made and a unique exponent 
on drainage area is determined for each recurrence interval. 

The residuals for each of the nine regression equations 
were computed. Maps depicting the spatial distribution of 
the residuals with symbols determined by the magnitude 
and direction of the residual are shown. Spatial dependency 
is evident for all recurrence intervals. For each recurrence 
interval, the median residual for each square of 1-degree 
quadrangle of latitude and longitude in the study area was 
computed. 

The median values of the residuals were computed for 
1-degree quadrangles for the 10-year recurrence interval 
for generalization. The authors, through manual smooth
ing, consultation of various geologic and ecological region 
maps, interpretation of regional topographic maps, and res
ident familiarity with the study area, estimated the mag
nitude and sign of the 10-year recurrence interval residu
als for each 1-degree quadrangle in the study area. These 
estimates, referred to as the fΩ parameter, are in units of 
log10(streamflow); maps of the study area depicting, by 
1-degree quadrangle, the Ω parameter superimposed onf

hill-shade relief, Texas rivers, and ecoregions are provided. 
For each station, thefΩ parameter was assigned based 

on the 1-degree quadrangles containing the station. The 
fΩ parameter represents a generalized terrain and climate 
index that expresses relative differences in peak-streamflow 
potential across the study area. The fΩ parameter is inter
preted as an expression of peak-streamflow potential not 
represented in the watershed characteristics of drainage 
area, main-channel slope, and mean annual precipitation. 

Nine weighted-least-squares, PRESS-minimized regres
sion equations were computed using the watershed char
acteristics of drainage area, dimensionless main-channel 

fslope, mean annual precipitation, and Ω as well as each 
of the 638 trimmed-mean, peak-streamflow estimates for 
each of the nine recurrence intervals. The weights for 
the regression equations were the same as those used for 
the nine regression equations not including Ω . Separate f

PRESS-minimizations were made for each recurrence inter
val and a unique exponent on drainage area was determined. 
The mean residual, standard error, adjusted R-squared, and 

fmean percentage reduction in PRESS by use of Ω are 
0.30log10, 0.86, and about −21 percent, respectively. 

Example computations are provided to demonstrate 
how the regional regression equations could be used in prac
tice. A comparison of the regression equations to results 
from a previous study is made, and the results are discussed. 
In brief, a similar regional model or structure of the relation 
between peak-streamflow frequency and the three water
shed characteristics in Texas results from the Approach. 

The fΩ equations are expected to be reliable estima
tors of peak-streamflow frequency for undeveloped and 
ungaged stream locations in Texas. Although the fΩ param
eter requires interpretation on the part of analysts and the 
potential exists that different analysts could estimate dif
ferent values for a given watershed, the authors suggest 
that typical uncertainty in the fΩ estimate might be about 
±0.10log10, which is small relative to other uncertain
ties, such as those measured by residual standard error, in 
hydrostatological models. Finally, given the two ensem
bles of equations reported herein and those in previous 
reports, hydrologic design engineers and other analysts in 
Texas now have several different methods, which represent 
different analytical tracks, to make comparisons of peak
streamflow frequency estimates for ungaged stream loca
tions in the study area. 

References 

Asquith, W.H., 2001, Effects of regulation on L-moments 
of annual peak streamflow in Texas: U.S. Geological 
Survey Water-Resources Investigations Report 01–4243, 
66 p. [http://pubs.usgs.gov/wri/wri014243/ ] 

Asquith, W.H., 2006, L-moments and TL-moments of the 
generalized lambda distribution: Computational Statis
tics and Data Analysis, v. 51, p. 4,484–4,496. 

Asquith, W.H., 2008, lmomco—L-moments, Trimmed 
L-moments, L-comoments, and many distribu
tions: R package version 0.93.3, February 2, 2008. 
[http://www.cran.r-project.org/package=lmomco ] 

http://pubs.usgs.gov/wri/wri014243/
http://www.cran.r-project.org/package=lmomco
http:0.30log10,0.86


Asquith, W.H., and Roussel, M.C., 2007, An 
initial-abstraction, constant-loss model for unit 
hydrograph modeling for applicable water
sheds in Texas: U.S. Geological Survey Sci
entific Investigations Report 2007–5243, 82 p. 
[http://pubs.usgs.gov/sir/2007/5243 ] 

Asquith, W.H., Roussel, M.C., Cleveland, T.G., 
Fang, Xing, and Thompson, D.B., 2006, Sta
tistical characteristics of storm interevent time, 
depth, and duration for eastern New Mexico, Okla
homa, and Texas: U.S. Geological Survey Profes
sional Paper 1725, ISBN 1–411–31041–1, 299 p. 
[http://pubs.usgs.gov/pp/pp1725/ ] 

Asquith, W.H., and Slade, R.M., 1997, Regional equa
tions for estimation of peak-streamflow frequency 
for natural basins in Texas: U.S. Geological Survey 
Water-Resources Investigations Report 96–4307, 68 p. 
[http://pubs.usgs.gov/wri/wri964307/ ] 

Asquith, W.H., and Slade, R.M., 1999, Site-specific 
estimation of peak-streamflow frequency using 
generalized least-squares regression for natural 
basins in Texas: U.S. Geological Survey Water-
Resources Investigations Report 99–4172, 19 p. 
[http://pubs.usgs.gov/wri/wri994172/ ] 

Asquith, W.H., and Thompson, D.B., 2005, Alternative 
regression equations for estimation of annual peak
streamflow frequency for undeveloped watersheds 
in Texas using PRESS minimization: Lubbock, Texas 
Tech Center for Multidisciplinary Research in Trans
portation, Texas Tech University, Texas Department 
of Transportation Research Report 0–4405–2, 27 p. 
[http://library.ctr.utexas.edu/pdf/4405-2.pdf ] 

Asquith, W.H., and Thompson, D.B., 2008, Alternative 
regression equations for estimation of annual peak
streamflow frequency for undeveloped watersheds in 
Texas using PRESS minimization: U.S. Geological Sur
vey Scientific Investigations Report 2008–5084, 40 p. 
[http://pubs.usgs.gov/sir/2008/5084 ] 

Burnett, Jonathan, 2008, Flash floods in Texas: College 
Station, Texas A&M Univesity Press, 330 p. 

Commission for Environmental Cooperation, 1997, Eco
logical regions of North America—Toward a common 
perspective: Montreal, Quebec, Canada, 71 p. 

Elamir, E.A., and Seheult, A.H., 2003, Trimmed 
L-moments: Computational Statistics and Data Anal
ysis, v. 43, p. 299–314. 

References 27 

Helsel, D.R., and Hirsch, R.M., 2002, Statistical methods 
in water resources: U.S. Geological Survey Techniques 
of Water-Resources Investigations, book 4, chap. A3, 
510 p. [http://pubs.usgs.gov/twri/twri4a3/ ] 

Hosking, J.R.M., 1990, L-moments—Analysis and estima
tion of distributions using linear combinations of order 
statistics: Journal Royal Statistical Society B, v. 52, 
no. 1, p. 105–124. 

Hosking, J.R.M., 1996, FORTRAN routines for use 
with the method of L-moments, version 3: Yorktown 
Heights, N.Y., IBM Research Division, T.J. Watson 
Research Center, Research Report RC20525. 

Hosking, J.R.M., 2006, On the characterization of dis
tributions by their L-moments: Journal of Statistical 
Planning and Inference, v. 136, p. 193–198. 

Hosking, J.R.M., 2007, Some theory and practical uses 
of trimmed L-moments: Journal of Statistical Planning 
and Inference, v. 137, p. 3,024–3,039. 

Hosking, J.R.M., and Wallis, J.R., 1997, Regional fre
quency analysis—An approach based on L-moments: 
Cambridge, Cambridge University Press, ISBN 0–521– 
43045–3, 224 p. 

Interagency Advisory Committee on Water Data, 1982, 
Guidelines for determining flood flow frequency: 
Reston, Va., U.S. Geological Survey, Office of Water 
Data Coordination, Hydrology Subcommittee Bulletin 
17B [variously paged]. 

Judd, L.J., Asquith, W.H., and Slade, R.M., 1996, Tech
niques to estimate generalized skew coefficients of 
annual peak streamflow for natural basins in Texas: 
U.S. Geological Survey Water-Resources Investigations 
Report 96–4117, 28 p. 

Landwehr, J.M., Matalas, N.C., and Wallis, J.R., 1979, 
Estimation of parameters and quantiles of Wakeby 
distributions: Water Resources Research, v. 15, no. 5, 
p. 1,362–1,379. 

Montgomery, D.C., Peck, E.A., and Vining, G.G., 2001, 
Introduction to linear regression analysis (3rd ed.): New 
York, Wiley, 641 p. 

O’Connor, J.E., and Costa, J.E., 2003, Large floods in the 
United States—Where they happen and why: U.S. Geo
logical Survey Circular 1245, ISBN 0–607–89380–X, 
13 p. 

R Development Core Team, 2008, R—A language and 
environment for statistical computing: Vienna, Aus

http://pubs.usgs.gov/sir/2007/5243
http://pubs.usgs.gov/pp/pp1725/
http://pubs.usgs.gov/wri/wri964307/
http://pubs.usgs.gov/wri/wri994172/
http://library.ctr.utexas.edu/pdf/4405-2.pdf
http://pubs.usgs.gov/sir/2008/5084
http://pubs.usgs.gov/twri/twri4a3/
http:distributions:WaterResourcesResearch,v.15
http:SocietyB,v.52
http:book4,chap.A3


28 Regression Equations for Estimation of Annual Peak-Streamflow Frequency in Texas 

tria, R Foundation for Statistical Computing, ISBN 3– 
900051–07–0, version 2.7.0, http://www.R-project.org 

Stedinger, J.R., Vogel, R.M., and Foufoula-Georgiou, E., 
1993, Frequency analysis of extreme events, chapter 18,
 
in Maidment, D.A., ed., Handbook of hydrology: New
 
York, McGraw-Hill, p. 18.1–18.66. 

U.S. Geological Survey, 2003, The national atlas of the 

United States of America—Streams and waterbodies 
of the United States: Available for download at http: 

//nationalatlas.gov/atlasftp.html?openChapters=

chpwater#chpwater

U.S. Geological Survey, 2008, National Water Infor-
mation System: accessed on various dates in 2007 at 
http://nwis.waterdata.usgs.gov/usa/nwis/peak 

http://www.R-project.org
http://nationalatlas.gov/atlasftp.html?openChapters=chpwater#chpwater
http://nationalatlas.gov/atlasftp.html?openChapters=chpwater#chpwater
http://nationalatlas.gov/atlasftp.html?openChapters=chpwater#chpwater
http://nwis.waterdata.usgs.gov/usa/nwis/peak
http:18.1�18.66


Appendix 1—Supplemental Information and 
External Data Files 



 Blank Page 



Appendix 1 31 

The purpose of this appendix is to provide a central reference to several text or portable document format (PDF) files that 
accompany this report and are referenced. Each of these are listed below and available from the report Web site: 

1. Appendix1_638annpks.txt—This text file is a comma-delimited file, which lists by station, the annual peak
streamflow values used for statistical computation as described in the text. The number of stations is 638 and the 
criteria leading to this count are described in the report in the “Identification of Annual Peak Streamflow Data” sec
tion of this report; 

2. File Appendix1_638wtrshdchr.txt—This text file is a comma-delimited file, which lists by station, the watershed 
characteristics of drainage area, dimensionless main-channel slope, and mean annual precipitation that are used for 
regression analyses as described in the text. The number of stations is 638 and the criteria leading to this count are 
described in the report in the “Identification of Annual Peak-Streamflow Data” section of this report. A statistical 
summary of the selected watershed characteristics in this file is provided in table 1 on page 4; 

3. File Appendix1_677annpks.txt—This text file is a comma-delimited file, which lists by station, the annual peak
streamflow values used for statistical computation as described in the text. The number of stations is 677 and the 
criteria leading to this count are described in the report in the “Identification of Annual Peak-Streamflow Data” sec
tion of this report; 

4. File Appendix1_677trimmedQTs.txt—This text file is a comma-delimited file, which lists by station, the annual 
peak-streamflow values used for statistical computation as described in the text. The number of stations is 677 and 
the criteria leading to this count are described in the report in the “Trimmed Mean Estimates of Peak-Streamflow 
Frequency” section of this report; 

5. File Appendix1_677freqcurves.pdf—This PDF file provides a graphical archive of the L-moments fits of as many 
as seven probability distributions to the annual peak-streamflow data listed in file Appendix1_677annpks.txt. The 
results reported in this file were used to compute the trimmed mean estimates of station-specific, peak-streamflow 
frequency reported in file Appendix1_677trimmedQTs.txt; and 

6. File Appendix1_residualmaps.pdf—This PDF file provides a graphical archive of the spatial distribution of the 
residuals from the regression equations reported in tables 2 and 3. 

Each file also contains either a heading (text files) or, for the PDF files, a file-specific “Introduction” and “References” 
section. These headings or sections provide further documentation of the respective contents of each file. The file 
Appendix1_677freqcurves.pdf is listed before the other PDF file; therefore, the figures within that file are numbered 
with a “1A” prepended to the sequential figure number. Similarly, figures in file Appendix1_residualmaps.pdf are num
bered with a “1B” prepended to the sequential figure number. 
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# START NEW EQUATION 
[1] "Doing 2 year" 
The power is -0.008 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S), weights = mywgts)
 

Residuals:
 
Min 1Q Median 3Q Max 

-1.230070 -0.198423 -0.000294 0.202798 1.059189 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 38.63528 1.01911 37.911 < 2e-16 *** 
CDA1 -37.94274 1.03466 -36.672 < 2e-16 *** 
log10(P) 1.56157 0.10683 14.617 < 2e-16 *** 
log10(S) 0.38458 0.05262 7.308 8.17e-13 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.3191 on 634 degrees of freedom 
Multiple R-Squared: 0.8099, Adjusted R-squared: 0.809 
F-statistic: 900.6 on 3 and 634 DF, p-value: < 2.2e-16 

PRESS= 77.3954345522906 
[1] "LATEX:$Q_{2} = P^{1.562},S^{0.385}\times 10^{[38.635-37.943,A^{-0.008]}},$ & 0.32 & 0.81 & 77.4 & 395.8\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] 
[1,] 10.2015098 -10.2857298 0.55103002 0.42527734 
[2,] -10.2857298 10.5152921 -0.64343158 -0.42570485 
[3,] 0.5510300 -0.6434316 0.11210399 0.03740539 
[4,] 0.4252773 -0.4257049 0.03740539 0.02719925 
[1] "MAXIMUM LEVERAGE" 
[1] 0.05328113 

# START NEW EQUATION 
[1] "Doing 5 year" 
The power is -0.0228 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S), weights = mywgts)
 

Residuals:
 
Min 1Q Median 3Q Max 

-1.04803 -0.18715 0.02627 0.19603 0.96727 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 16.34951 0.35560 45.98 <2e-16 *** 
CDA1 -15.03710 0.35712 -42.11 <2e-16 *** 
log10(P) 1.49059 0.09973 14.95 <2e-16 *** 
log10(S) 0.49965 0.04934 10.13 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.3029 on 634 degrees of freedom 
Multiple R-Squared: 0.8373, Adjusted R-squared: 0.8365 
F-statistic: 1087 on 3 and 634 DF, p-value: < 2.2e-16 

PRESS= 65.1550224898523 
[1] "LATEX:$Q_{5} = P^{1.491},S^{0.5}\times 10^{[16.35-15.037,A^{-0.0228]}},$ & 0.3 & 0.84 & 65.2 & 313.5\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] 
[1,] 1.3781673 -1.3125511 0.13748791 0.15309923 
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[2,] -1.3125511 1.3899001 -0.22737095 -0.15251351 
[3,] 0.1374879 -0.2273710 0.10839049 0.03579911 
[4,] 0.1530992 -0.1525135 0.03579911 0.02653628 
[1] "MAXIMUM LEVERAGE" 
[1] 0.05091717 

# START NEW EQUATION 
[1] "Doing 10 year" 
The power is -0.0299 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S), weights = mywgts)
 

Residuals:
 
Min 1Q Median 3Q Max 

-1.05995 -0.17900 0.04071 0.19795 0.95176 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 13.67349 0.27797 49.19 <2e-16 *** 
CDA1 -11.98655 0.27300 -43.91 <2e-16 *** 
log10(P) 1.37713 0.09827 14.01 <2e-16 *** 
log10(S) 0.52954 0.04838 10.95 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.2996 on 634 degrees of freedom 
Multiple R-Squared: 0.8465, Adjusted R-squared: 0.8458 
F-statistic: 1165 on 3 and 634 DF, p-value: < 2.2e-16 

PRESS= 63.6909387784546 
[1] "LATEX:$Q_{10} = P^{1.377},S^{0.53}\times 10^{[13.673-11.987,A^{-0.0299]}},$ & 0.3 & 0.85 & 63.7 & 297.4\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] 
[1,] 0.86102385 -0.7734697 0.08289624 0.11796275 
[2,] -0.77346969 0.8305043 -0.17342680 -0.11704920 
[3,] 0.08289624 -0.1734268 0.10760071 0.03496131 
[4,] 0.11796275 -0.1170492 0.03496131 0.02607787 
[1] "MAXIMUM LEVERAGE" 
[1] 0.04964972 

# START NEW EQUATION 
[1] "Doing 25 year" 
The power is -0.038 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S), weights = mywgts)
 

Residuals:
 
Min 1Q Median 3Q Max 

-1.10198 -0.18766 0.03567 0.19749 0.92946 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 11.9959 0.2389 50.22 <2e-16 *** 
CDA1 -9.9918 0.2286 -43.72 <2e-16 *** 
log10(P) 1.3156 0.1021 12.89 <2e-16 *** 
log10(S) 0.5740 0.0500 11.48 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.3107 on 634 degrees of freedom 
Multiple R-Squared: 0.8415, Adjusted R-squared: 0.8408 
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F-statistic: 1122 on 3 and 634 DF, p-value: < 2.2e-16 

PRESS= 67.1310969481496 
[1] "LATEX:$Q_{25} = P^{1.316},S^{0.574}\times 10^{[11.996-9.992,A^{-0.038]}},$ & 0.31 & 0.84 & 67.1 & 347.8\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] 
[1,] 0.59101965 -0.49267483 0.04866039 0.09480674 
[2,] -0.49267483 0.54106276 -0.14043067 -0.09393455 
[3,] 0.04866039 -0.14043067 0.10786137 0.03469492 
[4,] 0.09480674 -0.09393455 0.03469492 0.02589693 
[1] "MAXIMUM LEVERAGE" 
[1] 0.04922661 

# START NEW EQUATION 
[1] "Doing 50 year" 
The power is -0.0429 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S), weights = mywgts)
 

Residuals:
 
Min 1Q Median 3Q Max 

-1.13394 -0.20740 0.02724 0.20993 0.92946 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 11.40360 0.23024 49.53 <2e-16 *** 
CDA1 -9.19510 0.21648 -42.48 <2e-16 *** 
log10(P) 1.28501 0.10730 11.98 <2e-16 *** 
log10(S) 0.60823 0.05255 11.57 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.3265 on 634 degrees of freedom 
Multiple R-Squared: 0.8309, Adjusted R-squared: 0.8301 
F-statistic: 1039 on 3 and 634 DF, p-value: < 2.2e-16 

PRESS= 73.514894167704 
[1] "LATEX:$Q_{50} = P^{1.285},S^{0.608}\times 10^{[11.404-9.195,A^{-0.0429]}},$ & 0.33 & 0.83 & 73.5 & 414.2\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] 
[1,] 0.49734992 -0.39486813 0.03482157 0.08539406 
[2,] -0.39486813 0.43964842 -0.12689784 -0.08455224 
[3,] 0.03482157 -0.12689784 0.10801117 0.03469890 
[4,] 0.08539406 -0.08455224 0.03469890 0.02590499 
[1] "MAXIMUM LEVERAGE" 
[1] 0.04914469 

# START NEW EQUATION 
[1] "Doing 100 year" 
The power is -0.047 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S), weights = mywgts)
 

Residuals:
 
Min 1Q Median 3Q Max 

-1.18887 -0.21895 0.02182 0.23338 0.95608 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 11.07336 0.23019 48.10 <2e-16 *** 
CDA1 -8.67252 0.21349 -40.62 <2e-16 *** 
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log10(P) 1.25687 0.11400 11.03 <2e-16 *** 
log10(S) 0.64039 0.05591 11.45 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.3462 on 634 degrees of freedom 
Multiple R-Squared: 0.8159, Adjusted R-squared: 0.815 
F-statistic: 936.7 on 3 and 634 DF, p-value: < 2.2e-16 

PRESS= 82.8434210751132 
[1] "LATEX:$Q_{100} = P^{1.257},S^{0.64}\times 10^{[11.073-8.673,A^{-0.047]}},$ & 0.35 & 0.82 & 82.8 & 493.4\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] 
[1,] 0.44212745 -0.33758804 0.02658168 0.07958441 
[2,] -0.33758804 0.38029216 -0.11876646 -0.07889804 
[3,] 0.02658168 -0.11876646 0.10844215 0.03500918 
[4,] 0.07958441 -0.07889804 0.03500918 0.02608425 
[1] "MAXIMUM LEVERAGE" 
[1] 0.04942995 

# START NEW EQUATION 
[1] "Doing 200 year" 
The power is -0.0506 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S), weights = mywgts)
 

Residuals:
 
Min 1Q Median 3Q Max 

-1.25427 -0.23860 0.01366 0.24947 1.01623 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 10.8633 0.2359 46.059 <2e-16 *** 
CDA1 -8.2818 0.2154 -38.444 <2e-16 *** 
log10(P) 1.2209 0.1221 9.996 <2e-16 *** 
log10(S) 0.6647 0.0600 11.078 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.3712 on 634 degrees of freedom 
Multiple R-Squared: 0.7975, Adjusted R-squared: 0.7965 
F-statistic: 832.3 on 3 and 634 DF, p-value: < 2.2e-16 

PRESS= 95.3359086701712 
[1] "LATEX:$Q_{200} = P^{1.221},S^{0.665}\times 10^{[10.863-8.282,A^{-0.0506]}},$ & 0.37 & 0.8 & 95.3 & 586.4\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] 
[1,] 0.40368172 -0.29668113 0.01974134 0.07508040 
[2,] -0.29668113 0.33676662 -0.11169444 -0.07431564 
[3,] 0.01974134 -0.11169444 0.10824824 0.03499739 
[4,] 0.07508040 -0.07431564 0.03499739 0.02612667 
[1] "MAXIMUM LEVERAGE" 
[1] 0.04934428 

# START NEW EQUATION 
[1] "Doing 250 year" 
The power is -0.0517 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S), weights = mywgts)
 

Residuals:
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Min 1Q Median 3Q Max 
-1.25699 -0.23952 0.01588 0.25038 1.05275 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 10.82773 0.23832 45.433 <2e-16 *** 
CDA1 -8.18108 0.21707 -37.689 <2e-16 *** 
log10(P) 1.20879 0.12510 9.662 <2e-16 *** 
log10(S) 0.67555 0.06145 10.993 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.3797 on 634 degrees of freedom 
Multiple R-Squared: 0.7903, Adjusted R-squared: 0.7893 
F-statistic: 796.5 on 3 and 634 DF, p-value: < 2.2e-16 

PRESS= 100.050979279010 
[1] "LATEX:$Q_{250}	 = P^{1.209},S^{0.676}\times 10^{[10.828-8.181,A^{-0.0517]}},$ & 0.38 & 0.79 & 100.1 & 

617.2\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] 
[1,] 0.39397766 -0.28676632 0.01822596 0.07395883 
[2,] -0.28676632 0.32683298 -0.11041327 -0.07332429 
[3,] 0.01822596 -0.11041327 0.10856462 0.03515585 
[4,] 0.07395883 -0.07332429 0.03515585 0.02619725 
[1] "MAXIMUM LEVERAGE" 
[1] 0.04953543 

# START NEW EQUATION 
[1] "Doing 500 year" 
The power is -0.0554 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S), weights = mywgts)
 

Residuals:
 
Min 1Q Median 3Q Max 

-1.29275 -0.26326 0.01617 0.26951 1.11027 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 10.67132 0.24615 43.35 <2e-16 *** 
CDA1 -7.84563 0.22150 -35.42 <2e-16 *** 
log10(P) 1.18100 0.13451 8.78 <2e-16 *** 
log10(S) 0.70541 0.06626 10.65 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.4073 on 634 degrees of freedom 
Multiple R-Squared: 0.7669, Adjusted R-squared: 0.7658 
F-statistic: 695.2 on 3 and 634 DF, p-value: < 2.2e-16 

PRESS= 116.921491737753 
[1] "LATEX:$Q_{500}	 = P^{1.181},S^{0.705}\times 10^{[10.671-7.846,A^{-0.0554]}},$ & 0.41 & 0.77 & 116.9 & 

712.7\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] 
[1,] 0.36529409 -0.25706556 0.01343282 0.07057228 
[2,] -0.25706556 0.29580421 -0.10558462 -0.07012783 
[3,] 0.01343282 -0.10558462 0.10909026 0.03560090 
[4,] 0.07057228 -0.07012783 0.03560090 0.02646788 
[1] "MAXIMUM LEVERAGE" 
[1] 0.05004109 
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# START NEW EQUATION 
[1] "Doing 2 year" 
The power is -0.0058 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S) + OMEGAEM,
 

weights = mywgts) 

Residuals: 
Min 1Q Median 3Q Max 

-1.117311 -0.164565 -0.003824 0.156962 1.112398 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 50.97508 1.27640 39.936 < 2e-16 *** 
CDA1 -50.29910 1.29205 -38.930 < 2e-16 *** 
log10(P) 1.39817 0.09800 14.266 < 2e-16 *** 
log10(S) 0.27018 0.04874 5.543 4.36e-08 *** 
OMEGAEM 0.77587 0.06629 11.705 < 2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.2896 on 633 degrees of freedom 
Multiple R-Squared: 0.8437, Adjusted R-squared: 0.8427 
F-statistic: 854.1 on 4 and 633 DF, p-value: < 2.2e-16 

PRESS= 64.601770644145 
[1] "LATEX:$Q_{2} = P^{1.398},S^{0.27}\times 0.776OmegaEMs]10^{[50.975-50.299,A^{-0.0058} + }$ & 0.29 & 0.84 & 

64.6 & 273.2\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] [,5] 
[1,] 19.4253954 -19.5922208 0.81164439 0.597916940 -0.109309193 
[2,] -19.5922208 19.9044211 -0.90384486 -0.598196650 0.108244879 
[3,] 0.8116444 -0.9038449 0.11451891 0.039052288 -0.011122022 
[4,] 0.5979169 -0.5981967 0.03905229 0.028323546 -0.007694694 
[5,] -0.1093092 0.1082449 -0.01112202 -0.007694694 0.052392588 
[1] "MAXIMUM LEVERAGE" 
[1] 0.05358737 

# START NEW EQUATION 
[1] "Doing 5 year" 
The power is -0.0215 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S) + OMEGAEM,
 

weights = mywgts) 

Residuals: 
Min 1Q Median 3Q Max 

-0.99501 -0.13423 0.01847 0.14796 0.83026 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 16.61519 0.32417 51.255 <2e-16 *** 
CDA1 -15.31993 0.32617 -46.968 <2e-16 *** 
log10(P) 1.30764 0.08662 15.096 <2e-16 *** 
log10(S) 0.37159 0.04327 8.588 <2e-16 *** 
OMEGAEM 0.88461 0.05897 15.000 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.2604 on 633 degrees of freedom 
Multiple R-Squared: 0.8799, Adjusted R-squared: 0.8791 
F-statistic: 1159 on 4 and 633 DF, p-value: < 2.2e-16 
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PRESS= 49.1241230911915 
[1] "LATEX:$Q_{5} = P^{1.308},S^{0.372}\times 0.885OmegaEMs]10^{[16.615-15.32,A^{-0.0215} + }$ & 0.26 & 0.88 & 

49.1 & 121.6\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] [,5] 
[1,] 1.54962628 -1.48774667 0.15709427 0.16635099 -0.03302225 
[2,] -1.48774667 1.56885660 -0.24679239 -0.16563232 0.03206169 
[3,] 0.15709427 -0.24679239 0.11064184 0.03735295 -0.01066574 
[4,] 0.16635099 -0.16563232 0.03735295 0.02760925 -0.00742009 
[5,] -0.03302225 0.03206169 -0.01066574 -0.00742009 0.05128716 
[1] "MAXIMUM LEVERAGE" 
[1] 0.05118202 

# START NEW EQUATION 
[1] "Doing 10 year" 
The power is -0.0289 

Call: 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S) + OMEGAEM, 

weights = mywgts) 

Residuals: 
Min 1Q Median 3Q Max 

-1.05107 -0.12910 0.01404 0.13987 0.81665 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 13.62460 0.24348 55.957 <2e-16 *** 
CDA1 -11.96593 0.23971 -49.917 <2e-16 *** 
log10(P) 1.20257 0.08398 14.320 <2e-16 *** 
log10(S) 0.40314 0.04175 9.657 <2e-16 *** 
OMEGAEM 0.91773 0.05794 15.838 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.2537 on 633 degrees of freedom 
Multiple R-Squared: 0.89, Adjusted R-squared: 0.8893 
F-statistic: 1281 on 4 and 633 DF, p-value: < 2.2e-16 

PRESS= 46.6043351340521 
[1] "LATEX:$Q_{10} = P^{1.203},S^{0.403}\times 0.918OmegaEMs]10^{[13.625-11.966,A^{-0.0289} + }$ & 0.25 & 0.89 

& 46.6 & 86.5\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] [,5] 
[1,] 0.92075433 -0.83429385 0.092911995 0.124886828 -0.023884308 
[2,] -0.83429385 0.89247573 -0.183156553 -0.123763614 0.022313589 
[3,] 0.09291200 -0.18315655 0.109537106 0.036345323 -0.009971505 
[4,] 0.12488683 -0.12376361 0.036345323 0.027067908 -0.007181418 
[5,] -0.02388431 0.02231359 -0.009971505 -0.007181418 0.052145254 
[1] "MAXIMUM LEVERAGE" 
[1] 0.04984506 

# START NEW EQUATION 
[1] "Doing 25 year" 
The power is -0.0374 

Call: 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S) + OMEGAEM, 

weights = mywgts) 

Residuals: 
Min 1Q Median 3Q Max 
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-1.09229 -0.14103 0.02173 0.15698 0.78448 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 11.79063 0.20629 57.16 <2e-16 *** 
CDA1 -9.81896 0.19772 -49.66 <2e-16 *** 
log10(P) 1.13976 0.08735 13.05 <2e-16 *** 
log10(S) 0.44556 0.04322 10.31 <2e-16 *** 
OMEGAEM 0.94541 0.06013 15.72 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.2637 on 633 degrees of freedom 
Multiple R-Squared: 0.886, Adjusted R-squared: 0.8853 
F-statistic: 1230 on 4 and 633 DF, p-value: < 2.2e-16 

PRESS= 49.4591620341938 
[1] "LATEX:$Q_{25} = P^{1.14},S^{0.446}\times 0.945OmegaEMs]10^{[11.791-9.819,A^{-0.0374} + }$ & 0.26 & 0.89 & 

49.5 & 139.5\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] [,5] 
[1,] 0.61180545 -0.51351782 0.054197182 0.098699053 -0.018955130 
[2,] -0.51351782 0.56202692 -0.145648642 -0.097592316 0.017195210 
[3,] 0.05419718 -0.14564864 0.109693565 0.036021717 -0.009706565 
[4,] 0.09869905 -0.09759232 0.036021717 0.026858442 -0.007064779 
[5,] -0.01895513 0.01719521 -0.009706565 -0.007064779 0.051983466 
[1] "MAXIMUM LEVERAGE" 
[1] 0.04938781 

# START NEW EQUATION 
[1] "Doing 50 year" 
The power is -0.0424 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S) + OMEGAEM,
 

weights = mywgts) 

Residuals: 
Min 1Q Median 3Q Max 

-1.11420 -0.16605 0.02835 0.17509 0.87985 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 11.17250 0.20031 55.78 <2e-16 *** 
CDA1 -8.99737 0.18862 -47.70 <2e-16 *** 
log10(P) 1.10458 0.09286 11.90 <2e-16 *** 
log10(S) 0.47647 0.04593 10.37 <2e-16 *** 
OMEGAEM 0.96111 0.06364 15.10 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.2801 on 633 degrees of freedom 
Multiple R-Squared: 0.8757, Adjusted R-squared: 0.8749 
F-statistic: 1115 on 4 and 633 DF, p-value: < 2.2e-16 

PRESS= 55.6054009326601 
[1] "LATEX:$Q_{50} = P^{1.105},S^{0.476}\times 0.961OmegaEMs]10^{[11.172-8.997,A^{-0.0424} + }$ & 0.28 & 0.87 & 

55.6 & 219.9\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] [,5] 
[1,] 0.51122238 -0.40861290 0.039403326 0.08863528 -0.017386707 
[2,] -0.40861290 0.45333014 -0.131154457 -0.08755453 0.015615535 
[3,] 0.03940333 -0.13115446 0.109858491 0.03603858 -0.009718802 
[4,] 0.08863528 -0.08755453 0.036038576 0.02687713 -0.007077780 
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[5,] -0.01738671 0.01561553 -0.009718802 -0.00707778 0.051603573 
[1] "MAXIMUM LEVERAGE" 
[1] 0.04930603 

# START NEW EQUATION 
[1] "Doing 100 year" 
The power is -0.0467 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S) + OMEGAEM,
 

weights = mywgts) 

Residuals: 
Min 1Q Median 3Q Max 

-1.15429 -0.19251 0.03230 0.18716 0.98946 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 10.81851 0.20276 53.36 <2e-16 *** 
CDA1 -8.44803 0.18823 -44.88 <2e-16 *** 
log10(P) 1.07107 0.10032 10.68 <2e-16 *** 
log10(S) 0.50665 0.04968 10.20 <2e-16 *** 
OMEGAEM 0.96895 0.06848 14.15 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.302 on 633 degrees of freedom 
Multiple R-Squared: 0.8601, Adjusted R-squared: 0.8593 
F-statistic: 973.2 on 4 and 633 DF, p-value: < 2.2e-16 

PRESS= 64.7959688613551 
[1] "LATEX:$Q_{100} = P^{1.071},S^{0.507}\times 0.969OmegaEMs]10^{[10.819-8.448,A^{-0.0467} + }$ & 0.3 & 0.86 & 

64.8 & 320\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] [,5] 
[1,] 0.45078440 -0.34598773 0.030317559 0.082225298 -0.016017361 
[2,] -0.34598773 0.38848667 -0.122200320 -0.081320632 0.014418496 
[3,] 0.03031756 -0.12220032 0.110351187 0.036377618 -0.009880846 
[4,] 0.08222530 -0.08132063 0.036377618 0.027065505 -0.007100056 
[5,] -0.01601736 0.01441850 -0.009880846 -0.007100056 0.051424464 
[1] "MAXIMUM LEVERAGE" 
[1] 0.04958827 

# START NEW EQUATION 
[1] "Doing 200 year" 
The power is -0.0504 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S) + OMEGAEM,
 

weights = mywgts) 

Residuals: 
Min 1Q Median 3Q Max 

-1.20847 -0.21382 0.02703 0.20050 1.08574 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 10.60993 0.21114 50.251 <2e-16 *** 
CDA1 -8.05788 0.19298 -41.756 <2e-16 *** 
log10(P) 1.03433 0.10945 9.451 <2e-16 *** 
log10(S) 0.53118 0.05428 9.786 <2e-16 *** 
OMEGAEM 0.97538 0.07474 13.051 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 
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Residual standard error: 0.3298 on 633 degrees of freedom 
Multiple R-Squared: 0.8404, Adjusted R-squared: 0.8394 
F-statistic: 833.5 on 4 and 633 DF, p-value: < 2.2e-16 

PRESS= 77.1727531680508 
[1] "LATEX:$Q_{200} = P^{1.034},S^{0.531}\times 0.975OmegaEMs]10^{[10.61-8.058,A^{-0.0504} + }$ & 0.33 & 0.84 & 

77.2 & 436.3\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] [,5] 
[1,] 0.40989959 -0.30259286 0.022951245 0.077351356 -0.014780835 
[2,] -0.30259286 0.34242026 -0.114612001 -0.076376797 0.013236336 
[3,] 0.02295124 -0.11461200 0.110139892 0.036347426 -0.009837713 
[4,] 0.07735136 -0.07637680 0.036347426 0.027090365 -0.007032369 
[5,] -0.01478084 0.01323634 -0.009837713 -0.007032369 0.051356645 
[1] "MAXIMUM LEVERAGE" 
[1] 0.04948925 

# START NEW EQUATION 
[1] "Doing 250 year" 
The power is -0.0516 

Call: 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S) + OMEGAEM, 

weights = mywgts) 

Residuals: 
Min 1Q Median 3Q Max 

-1.22113 -0.22338 0.02842 0.20574 1.13024 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 10.55893 0.21427 49.279 <2e-16 *** 
CDA1 -7.94317 0.19520 -40.693 <2e-16 *** 
log10(P) 1.02134 0.11271 9.061 <2e-16 *** 
log10(S) 0.54069 0.05591 9.671 <2e-16 *** 
OMEGAEM 0.97717 0.07685 12.716 <2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.3391 on 633 degrees of freedom 
Multiple R-Squared: 0.833, Adjusted R-squared: 0.8319 
F-statistic: 789.2 on 4 and 633 DF, p-value: < 2.2e-16 

PRESS= 81.8535513717814 
[1] "LATEX:$Q_{250} = P^{1.021},S^{0.541}\times 0.977OmegaEMs]10^{[10.559-7.943,A^{-0.0516} + }$ & 0.34 & 0.83 

& 81.9 & 474.1\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] [,5] 
[1,] 0.39917437 -0.29156312 0.02125209 0.076122309 -0.014815036 
[2,] -0.29156312 0.33128176 -0.11313034 -0.075265114 0.013195683 
[3,] 0.02125209 -0.11313034 0.11046049 0.036517920 -0.009856940 
[4,] 0.07612231 -0.07526511 0.03651792 0.027175928 -0.007087477 
[5,] -0.01481504 0.01319568 -0.00985694 -0.007087477 0.051347383 
[1] "MAXIMUM LEVERAGE" 
[1] 0.04968222 

# START NEW EQUATION 
[1] "Doing 500 year" 
The power is -0.0554 

Call:
 
lm(formula = log10(Q) ~ CDA1 + log10(P) + log10(S) + OMEGAEM,
 



---
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weights = mywgts) 

Residuals: 
Min 1Q Median 3Q Max 

-1.27882 -0.23558 0.02474 0.22946 1.23151 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 10.40251 0.22475 46.284 < 2e-16 *** 
CDA1 -7.60456 0.20224 -37.601 < 2e-16 *** 
log10(P) 0.98824 0.12329 8.016 5.3e-15 *** 
log10(S) 0.56851 0.06132 9.272 < 2e-16 *** 
OMEGAEM 0.97583 0.08382 11.643 < 2e-16 *** 

Signif. codes: 0:"***", 0.001:"**", 0.01:"*", 0.05:".", 0.1:" ", 1 

Residual standard error: 0.3699 on 633 degrees of freedom 
Multiple R-Squared: 0.808, Adjusted R-squared: 0.8068 
F-statistic: 666 on 4 and 633 DF, p-value: < 2.2e-16 

PRESS= 98.6828845882508 
[1] "LATEX:$Q_{500} = P^{0.988},S^{0.569}\times 0.976OmegaEMs]10^{[10.403-7.605,A^{-0.0554} + }$ & 0.37 & 0.81 

& 98.7 & 590.9\\" 
[1] "INVERTED-COVARIANCE MATRIX" 

[,1] [,2] [,3] [,4] [,5] 
[1,] 0.36919005 -0.26055941 0.01622655 0.072556520 -0.014143283 
[2,] -0.26055941 0.29893745 -0.10809000 -0.071907268 0.012683503 
[3,] 0.01622655 -0.10809000 0.11109360 0.037023770 -0.010141912 
[4,] 0.07255652 -0.07190727 0.03702377 0.027478471 -0.007203266 
[5,] -0.01414328 0.01268350 -0.01014191 -0.007203266 0.051343459 
[1] "MAXIMUM LEVERAGE" 
[1] 0.05019887 

Prepared by the USGS Lafayette Publishing Service Center. 

Information regarding water resources in Texas is available at 
http: //tx.usgs.gov/ 

http:tx.usgs.gov


              
                 

                 
                

             
                

              
                 

                  
               

                  
               

                
        

             
             

             
        

     
  

              

Back cover: O.H. IVIE RESERVOIR: The O.H. Ivie Reservoir, once called Stacy Reservoir, is impounded 
by the S.W. Freese Dam at the Concho-Coleman county line. It is located in Concho, Coleman, and 
Runnels Counties. In 1938 the U.S. Army Corps of Engineers expressed a desire for a reservoir site near 
the confluence of the Concho and Colorado Rivers. An agreement was finally reached in 1985, when the 
Texas Water Commission granted permission to impound 554,000 acre-feet of water on the Colorado 
River at Stacy, 16 miles below the confluence. The project was delayed by negotiations to preserve the 
endangered Concho water snakes, and to relocate several local family cemeteries. The reservoir was to 
be named for the Stacy settlement, but it was later decided instead to honor the water district’s general 
manager, O.H. Ivie, and to name the dam for Simon W. Freese, a Fort Worth engineer whose firm had 
worked on major reservoir projects since 1949. The lake waters are used for domestic and municipal 
water supply for a number of West Texas cities and towns. The conservation surface area of the lake is 
20,000 surface acres. The reservoir and its 2-mile rolled earthfill dam, constructed by Brown and Root 
USA, were dedicated in 1990 and are owned and operated by the Colorado River Municipal Water 
District. The reservoir is surrounded by a recreation area. 

Bibliography: Dallas Morning News, April 10, 1989. John Peterson, “Trouble Rising behind Stacy Dam,” 
Texas Observer, December 10, 1982. Robert Thomas, “Stacy Dam Gets Approval,” Ranch Magazine, July 
1985. Ed Todd, Cultural Resource Inventory and Assessment of the Proposed Stacy Reservoir, Concho, 
Coleman, and Runnels Counties, Texas (3 volumes, Austin, 1980). 

Handbook of Texas Online, http://www.tshaonline.org/handbook/online/articles/OO/roogh.html (accessed 
April 15, 2009). 

The Handbook of Texas Online is a project of the Texas State Historical Association, 
http://www.tshaonline.org 

http:http://www.tshaonline.org
http://www.tshaonline.org/handbook/online/articles/OO/roogh.html
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