
MATERIAL TRANSFER DEVICE SHOWCASE IN EL PASO, TEXAS

REDA

DHT-47

DEPARTMENTAL RESEARCH

TEXAS DEPARTMENT OF TRANSPORTATION

REP

Technical Report Documentation Page 3. Recipient's Catalog No. 1. Report No. 2. Government Accession No. DHT-47 4. Title and Subtitle 5. Report Date MATERIAL TRANSFER DEVICE SHOWCASE IN EL PASO, TEXAS December 1999 6. Performing Organization Code 8. Performing Organization Report No. 7. Author(s) Maghsoud Tahmoressi, P.E.; David Head, P.E.; Tomas Saenz, P.E.; and Sekhar Rebala, Research Report DHT-47 E.I.T. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Texas Department of Transportation Materials and Tests Division 11. Contract or Grant No. 39th and Jackson, BLDG 5 Austin, Texas 78731 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Demonstration project conducted Texas Department of Transportation in October 1999 Research and Technology Transfer Section, Construction Division P. O. Box 5080 14. Sponsoring Agency Code Austin, Texas 78763-5080 15. Supplementary Notes This demonstration project was conducted in cooperation with Dan Williams Company and Jobe Concrete Products, Inc. 16. Abstract Material transfer devices (MTD) are used to transfer HMAC from the haul truck to the paver without segregation and at a uniform temperature. Different MTDs use different techniques to accomplish this task. A Material Transfer Device Showcase was conducted in El Paso, Texas. The project was to build a Type A asphalt concrete base for a continuously reinforced concrete pavement on IH 10. The showcase was sponsored by the East El Paso Area Office, El Paso District of the Texas Department of Transportation in cooperation with Dan Williams Company and Jobe Concrete Products, Inc. The demonstration project was conducted for five days and involved five different MTDs. The five MTDs that participated were: 1) Barber-Greene, Model BG-650; 2) Blaw-Knox. Model MC-330; 3) Cedarapids, Model CR 461; 4) Lincoln, Model 880-HP; 5) Roadtec, Model SB-2500B. The primary objectives of the showcase were to evaluate the effectiveness of the MTDs in reducing segregation in HMAC and to compare the effectiveness of the different techniques to measure and to quantify segregation. Four different methods were used to quantify segregation in this showcase: 1) In-Place Density; 2) Infrared Thermal Imaging; 3) Visual Rating; and 4) Smoothness or Ride Data. Some of the findings were that MTDs alone cannot cure all problems related to segregation, that ground penetrating radar has the potential to identify and to quantify segregation, and that infrared thermal imaging was found to be an excellent quality control tool. 17. Key Words 18. Distribution Statement asphalt, segregation, material transfer device, No restrictions. This document is available to the MTD, material transfer vehicle, MTV, HMAC, public through the Texas Department of quality control Transportation Research Library, P.O. Box 5080, Austin, TX, 78763-5080. 20. Security Classif. (of this page) 19. Security Classif. (of this report) 21. No. of Pages 22. Price Unclassified 172 Unclassified

MATERIAL TRANSFER DEVICE SHOWCASE IN EL PASO, TEXAS

By:

Maghsoud Tahmoressi, P.E. David Head, P.E. Tomas Saenz, P.E. Sekhar Rebala, E.I.T

DEMONSTRATION PROJECT CONDUCTED In El Paso, Texas October 18,1999 – October 22, 1999

CONDUCTED BY: TEXAS DEPARTMENT OF TRANSPORTATION El PASO DISTRICT

> IN COOPERATION WITH DAN WILLIAMS COMPANY AND JOBE CONCRETE PRODUCTS, INC.,

> > December 1999

ACKNOWLEDGEMENTS

Texas Department of Transportation appreciates assistance of the following individuals and organizations in conducting this demonstration project. In particular Dan Williams Company and Jobe Concrete Products Inc. are commended for their willingness to take part in this demonstration project.

Mr. Dan Williams Mr. Jackie McFarland Mr. Levi Hardy Mr. Jesse Forester **Dan Williams Company** 4730 Ripley El Paso Texas, 79922

Mr. Jon Abrams J. D. Abrams Inc., 111 Congress Ave., Ste 2400 Austin, TX 78701

Ms. Maria Teran **Sierra Machinery** 939 Hawkins El Paso, TX 79915

Mr. Stanley Jobe Mr. Ned Finney Mr. Sam Kikela Jobe Concrete Products Inc., 1 McKelligan Canyon Road El Paso, TX 78701

Mr. Bennett Closner Closner Equipment Co. Inc., PO Box 7328 1415 W. Poplar Street San Antonio, TX 78207

Mr. Terry Leber Roadtec 800 Manufacturers Road Chattanooga, TN 37405

Mr. Bob Begley Ingersoll-Rand Company 750 Broadway Ave East Matton, IL 61938

Mr. Sergio Olguin Ingersoll-Rand Company 101 E. Huitt Road Euless, TX 76040 Mr. Michael Kavch Cederapids Inc. 916 16th Street, NE Cedar Rapids, IA 52402

Mr. Terry P. Humphrey Mr. Rick James Caterpiller Paving Co. 9401 85th Avenue North Brooklyn Park, Minnesota 55445

Ms. Maribel Chavez, P.E. Mr. Ray Guerra Mr. Louie Rendon Ms. Becky Grado Mr. Thomas Hughes El Paso District **Texas Department of Transportation** 212 North Clark Dr., El Paso, TX 79994

Dr. Soheil Nazarian, Ph.D, P.E. Department of Civil Engineering **University of Texas, El Paso** El Paso, TX 79968

Mr. Tom Scullion, P.E. **Texas Transportation Institute** Texas A&M University College Station, TX 77843-3135

Mr. Joe Leidy, P.E. Design Division – Pavements Section **Texas Department of Transportation** 125 E. 11th Street Austin, TX 78701

Mr. Dale Rand, P.E. **Texas Hot Mix Association** 9407 Brown Lane Bldg. 1 Austin, TX 78754

EXECUTIVE SUMMARY

A Material Transfer Device (MTD) showcase was conducted in El Paso, Texas. The project was to build a Type A asphalt concrete base for a Continuously Reinforced Concrete Pavement on IH10. The showcase was sponsored by the East El Paso Area Office, El Paso District of the Texas Department of Transportation in cooperation with Dan Williams Company and Jobe Concrete Products Inc. The demonstration project was conducted for the duration of five (5) days in October 1999.

Material Transfer Devices (MTD) or Material Transfer Vehicles (MTV) are gaining popularity as a means for reducing segregation. This is especially true in the case of reducing truck-end segregation. The showcase involved five different MTDs by five different manufacturers.

The five MTDs, which participated in the showcase, are:

- 1. Barber-Greene, Model BG-650
- 2. Blaw-Knox, Model MC-330
- 3. Cedarapids, Model CR 461
- 4. Lincoln, Model 880-HP
- 5. Roadtec, Model SB-2500B

The Material Transfer Device (MTD) is used to transfer the HMAC from the haul truck to the paver. Different MTDs use different techniques to accomplish this task. Most MTDs remix the asphalt concrete in the process of transferring the mixture to the paver. The remixing process is believed to ensure that the asphalt concrete that might have been segregated at the plant and/or during transport is a uniform mixture of coarse and fine aggregate. Re-mixing also ensures the temperature of the HMAC is uniform at time of discharge into the paver hopper. Uniform temperatures result in relatively uniform density. MTDs can potentially provide a mix with reduced aggregate particle segregation and a uniform temperature.

The primary objectives of this showcase are to evaluate the effectiveness of the MTDs in reducing segregation in HMAC and compare the effectiveness of the different techniques to measure and quantify segregation.

The four different techniques/methods utilized to quantify segregation in this study are:

- 1. In-Place Density
 - Density profiles using Nuclear Density Gauge
 - Road Cores
 - Ground Penetrating Radar (GPR)
- 2. Infrared Thermal Imaging
- 3. Visual Rating

- 4. Smoothness or Ride Data
 - Profilograph
 - Profiler

Data was collected utilizing all the above techniques and in accordance with standard test methods and procedures. The summary of the data analyzed is listed below.

- None of the MTDs eliminated all segregation-related problems.
- The screed extensions in the paver caused segregation in this project. There was also centerline segregation caused by the paver.
- MTDs with larger on-board mix storage capacity are more effective in reducing truck-end segregation.
- The proposed test method for identifying segregation by establishing density profiles does not appear to be a very effective tool. Additional research is needed to make a more precise conclusion.
- Ground penetrating radar has the potential to identify and quantify segregation.
- The Infrared thermal imaging technique was found to be an excellent Quality Control tool.
- All four thermal cameras used in this study appear to yield the same result.
- MTDs alone cannot cure all problems related to segregation.

TABLE OF CONTENTS

Chapter 1	Introduction
Chapter 2	Density Profiles
Chapter 3	Infrared Thermal Imaging
Chapter 4	Ground Penetrating Radar to Detect Segregation
Chapter 5	Visual Rating
Chapter 6	Ride Quality
Chapter 7	Evaluation of Thermal Cameras
Chapter 7	Summary and Conclusions
Appendix A	Test Method for Determination of Mat Segregation Using Nuclear Density Gauge Special Provision to Special Specification QC/QA of HMA Laboratory Road Core Densities Nuclear Density Profile Field Reports
Appendix B	Thermal Images By Manufactures
Appendix C	Report from TTI - Detecting Segregation Using Ground Penetrating Radar (GPR)
Appendix D	Images for Evaluating Thermal Cameras
Appendix E	Information on Barber Greene MTD
Appendix F	Information on Blaw-Knox MTD
Appendix G	Information on Cederapids MTD
Appendix H	Information on Lincoln MTD
Appendix I	Information on Roadtec MTD

CHAPTER 1 INTRODUCTION

A Material Transfer Device (MTD) demonstration project was conducted in El Paso District of Texas Department of Transportation on a section of IH10. The demonstration project was conducted by El Paso District of TxDOT in cooperation with Dan Williams Company and Jobe Concrete Products. Several manufacturers of MTD's were invited to participate in the demonstration project. The project was to build asphalt concrete base, Type A, for a Continuously Reinforced Concrete Pavement on IH10. The demonstration project was started on October 18th and concluded on October 22nd 1999.

The objectives of demonstration project were:

- 1. Evaluate the effectiveness of various MTDs' in reducing segregation, and
- 2. To compare the effectiveness of different techniques to quantify segregation.

A brief background on segregation and Material Transfer Devices is provided in this Chapter.

Segregation

Segregation can be defined as the separation of coarse and fine aggregate particles in the hot mix asphalt concrete mixture (HMAC). Segregation has a direct impact on the long-term performance of the asphalt concrete pavement by increasing the air void content of the mix, thus increasing the potential for moisture damage. Segregated locations are susceptible to raveling and total disintegration of the mix.

Segregation can primarily take place when the mix is delivered from asphalt plant to surge silo or when the mix is deposited from the surge silo to the haul truck or when the mix is transferred from the haul truck to the paver hopper. Segregation that is evident behind the paver screed generally takes one of the following three forms.

- i. randomly occurring pockets of coarse aggregate
- ii. longitudinally on the sides and center of the paver and
- iii. transversely across the lane (at the end-of-the-truck-load).

Material Transfer Devices (MTD) or Material Transfer Vehicles (MTV) are gaining popularity as means for reducing segregation. This is especially true in the case of reducing truck-end segregation.

Material Transfer Devices

The Material Transfer Device (MTD) is used to transfer the HMAC from the haul truck to the paver. Different MTDs use different techniques to accomplish this task. Most MTDs remix the asphalt concrete in the process of transferring the mixture to the paver. The remixing process is believed to ensure that the asphalt concrete that might have been segregated at the plant and/or during transport is a uniform mixture of coarse and fine aggregate. Re-mixing also ensures the temperature of the HMAC is uniform at time of discharge into the paver hopper. Uniform temperatures result in relatively uniform density. MTDs can potentially offer dual advantage of reducing aggregate particle segregation as well as yielding a mix with uniform temperature.

At the present time several companies that manufacture and market MTDs. Table 1.1 lists the manufacturers represented in this project.

Manufacturer	MTD Model Number*	
Barber-Greene	BG-650	
Blaw-Knox	MC-330	
Cedarapids	CR 461 (MS-2)	
Lincoln	880-HP	
Roadtec	SB-2500B	

Table 1.1: List of Manufacturers Participated in the Showcase

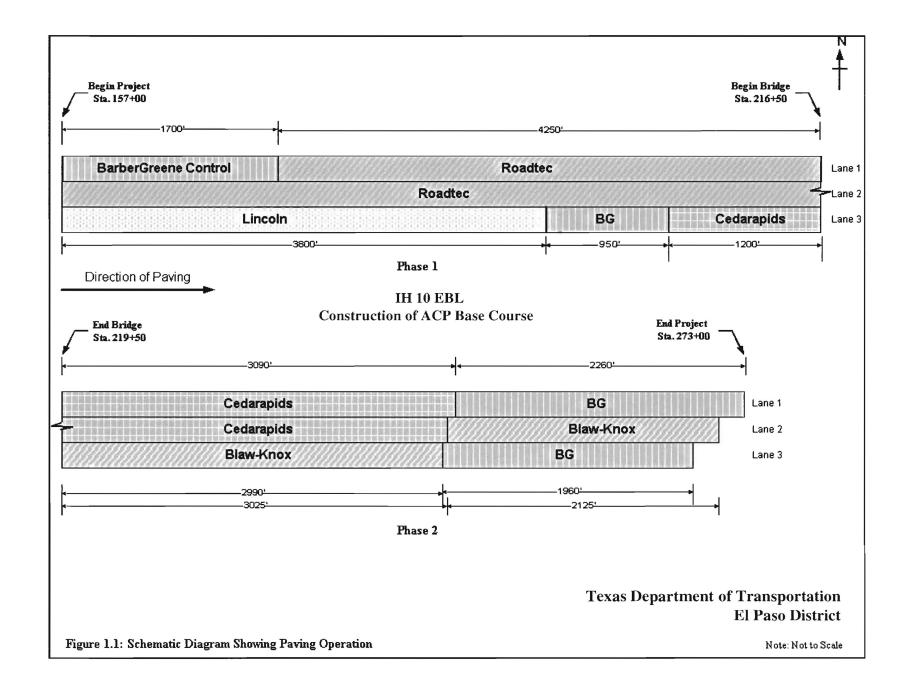
* - Specifications of the MTDs participated in this study are enclosed in the Appendices.

Figure 1.1 shows the paving operation using the above mentioned five (5) MTDs. Barber-Greene Model 260C paver was used in combination with all the above mentioned MTDs. The project started at Station 157+00 and ended at Sta. 273+00. The construction of the project was done in two phases. Phase one consisted of paving all three lanes West of the Bridge and Phase two consisted of paving all three lanes East of the Bridge.

In this five-day demonstration project, each day was dedicated to one MTD. Table 1.2 lists the day and MTD used. As seen in Figure 1.1, the length of paving is not uniform for all the MTDs. This is primarily because of the inclement weather and/or MTD breakdown.

Day of Construction	MTD
1 (Date - 10/18/199)	Barber-Greene
2 (Date - 10/19/199)	Roadtec
3 (Date - 10/20/199)	Lincoln
4 (Date - 10/21/199)	Cedarapids
5 (Date - 10/22/199)	Blaw-Knox

Table 1.2: Day of Construction with Individual MTDs


Evaluating the Effectiveness of MTD

MTDs were evaluated primarily in two aspects – ability to reduce material segregation and ability to produce a uniform temperature profile and to reduce temperature segregation.

There are several different methods/techniques available to evaluate material or temperature segregation. The methods used in this study are:

- 1. In-place density densities were obtained using the following three methods.
 - a) Nuclear Gauge density plots as per Test Method Tex-207-F Part V
 - b) Road Cores
 - c) Ground Penetrating Radar
- 2. InfraRed Thermal Imaging
- 3. Profilograph Data
- 4. Visual Rating

Each of these methods were performed for all 5 MTDs. All the methods are explained in detail in the following Chapters. Test results and analysis of the data are also discussed. Along with evaluating MTDs, four different InfraRed Thermal Cameras were also evaluated for their ability to detect the thermal segregation. Results of these are also discussed.

CHAPTER 2 DENSITY PROFILES

Several attempts have been made in the past to identify and quantify segregation during and after the lay down process of Hot Mix Asphalt Concrete (HMAC). One method to identify/quantify segregation is to measure in-place density and generate density profiles during the lay down process. Kansas Department of Transportation uses a test procedure to identify segregation using density profiles. Texas DOT is evaluating this procedure (Texas Test Method Tex-207-F Part V, Appendix A) with some minor variations. This method is explained briefly in this Chapter and the test results for all the MTDs are tabulated and presented in Appendix A.

Description

The purpose of establishing density profiles is to provide a means to identify segregation in HMAC after placement and compaction. A density profile is established behind the paver by taking multiple readings within 50' section using a nuclear density gauge. Results from the readings are used to plot a density profile, which is used to check for a reduction in density caused by segregation. In addition, the roadway location is visually inspected for segregation.

A segregation profile starting point is established at a point location where the screed stops. Any visibly identifiable segregated areas are also profiled. Nuclear density gauge readings are taken approximately every 5' in the longitudinal direction. The first reading is located approximately 10' behind the screed. Readings are taken at a uniform transverse offset from the centerline for the complete length of a single profile section. The transverse offset is more than 2' from either edge of placement and at a location believed to be most likely to detect segregation. If there is no visible segregation, then transverse offset distance is randomly selected. With the nuclear density gauge in the backscatter mode, three oneminute readings are taken and the average of these 3 readings is taken as the density for that point. Nuclear density readings are taken at a minimum of 10 locations along the profile section.

The drop in density caused by segregation is calculated by subtracting the lowest density from the average profile density. The average density is calculated using all density determinations in the profile section. The density range is calculated by subtracting the lowest from the highest profile density. A copy of the special provision and the test procedure are included in Appendix-A.

Discussion of Test Results

Density profiles were established using TxDOT Standard Test Method Tex-207-F Part V. A minimum of six (6) density profiles were established for each MTD that participated in the demonstration project. Road cores were taken to measure density in the laboratory for comparison purposes. Three (3) cores were taken in each profile to measure density in the laboratory. Test results for each MTD is discussed separately in the following paragraphs.

Nuclear Density

Nuclear density profiles were established as described in the previous sections. All the locations selected for density profile exhibited low to severe segregation with few exceptions. A summary of the nuclear profile data for each MTD is discussed below. Detailed field Nuclear Density Profile Data Collection forms are attached in Appendix A.

Based on TxDOT proposed special provision (Appendix A) for the type of mix used in this project, maximum allowable density range is 8.0lb./c.f. and the maximum allowable decrease in density is 5.0lb./c.f.

Barber-Greene (Model BG-650)

As shown in Table 2.1, all six locations selected for testing were visually segregated. Only in one location (Location 6) both proposed specification criteria for density range and decrease in density were exceeded. In other five (5) locations the procedure did not detect segregation.

Profile #	0	Low (lbs./cf)	Average (lbs./cf)	Visible Segregation	Density Range High-Low (lbs./c.f.)	Decrease in Density Average-Low (lbs./c.f.)
1	149.3	141.6	144.5	Yes	7.7	2.9
2	145.3	140.0	143.3	Yes	5.3	3.3
3	149.0	144.3	147.3	Yes	4.7	3.0
4	149.2	144.4	147.1	Yes	4.8	2.7
5	148.8	144.3	146.7	Yes	4.5	2.4
6	147.2	130.8	140.9	Yes	16.4	10.1
	Specifica	tion Maxi	mum Allo	wable	8.0	5.0

Table 2.1: Summary of Nuclear Density Profile Data for Barber-Greene MTD

Roadtec (Model SB-2500B)

As shown in Table 2.2, four out of eight locations (Locations 1, 3, 7 and 8) met the specification requirement for decrease in density due to segregation and density range even though all of these locations exhibit some level of visible segregation.

Profile #	High (lbs/cf)	Low (lbs/cf)	Average (lbs/cf)	Visible Segregation	Density Range High-Low (lbs/cft)	Decrease in Density Average-Low (lbs/cf)
1	149.4	145.9	147.3	Yes	3.5	1.4
2	151.9	141.4	144.7	Yes	10.5	3.3
3	146.9	141.3	143.6	Yes	5.6	2.3
4	144.2	137.5	141.3	No	6.7	3.8
5	144.4	134.1	138.9	Yes	10.3	4.8
6	145.9	135.4	142.4	Yes	10.5	7.0
7	146.7	141.5	144.1	Yes	5.2	2.6
8	145.2	142.3	143.3	Yes	2.9	1.0
S	pecificat	ion Max	imum Allo	owable	8.0	5.0

 Table 2.2: Summary of Nuclear Density Profile Data for Roadtec MTD

Lincoln (Model 880-HP)

As shown in Table 2.3, five of the six locations the density profile procedure correctly identified the segregated spots.

Profile #	0	Low (lbs/cf)	Average (lbs/cf)	Visible Segregation	Density Range High-Low (lbs/cft)	Decrease in Density Average-Low (lbs/cf)
1	145.7	136.8	141.8	Yes	8.9	5.0
2	143.9	134.9	139.0	Yes	9.0	4.1
3	148.3	139.9	143.2	Yes	8.4	3.3
4	145.3	133.6	140.6	Yes	11.7	7.0
5	144.4	139.2	142.5	Yes	5.2	3.3
6	145.1	133.4	139.4	Yes	11.7	6.0
S	pecifica	tion Max	imum All	owable	8.0	5.0

Table 2.3: Summary of Nuclear Density Profile Data for Linclon MTD

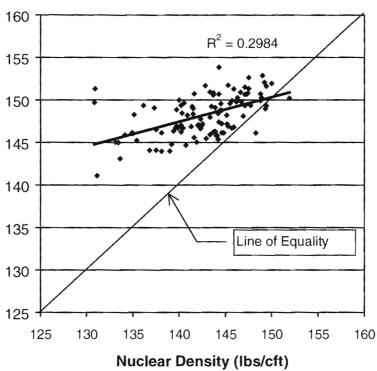
Cedarapids (Model CR-461 (MS-2))

As shown in Table 2.4, four of the six locations (Locations 4 and 5) that had visible segregation passed the specification requirements for drop in density.

Profile #	High (lbs/cf)	Low (lbs/cf)	Average (lbs/cf)	Visible Segregation	Density Range High-Low (lbs/cft)	Decrease in Density Average-Low (lbs/cf)
1	145.1	133.4	139.4	Yes	11.7	6.0
2	144.6	135.0	140.7	Yes	9.6	5.7
3	142.3	133.1	139.6	Yes	9.2	6.5
4	147.1	141.6	144.5	Yes	5.5	2.9
5	147.2	139.7	143.4	Yes	7.5	3.7
6	150.0	137.3	144.2	Yes	12.7	6.9
5	Specifica	tion Max	imum Allo	owable	8.0	5.0

Table 2.4: Summary of Nuclear Density Profile Data for Cedarapids MTD

Blaw-Knox (Model MC-330)


As shown in Table 2.5, three of the six locations that had visible segregation passed the specification requirements.

Profile #	High (lbs/cf)	Low (lbs/cf)	Average (lbs/cf)	Visible Segregation	• 0	Drop in Density Average-Low (lbs/cf)
1	147.1	139.7	144.0	Yes	7.4	4.3
2	149.4	140.5	145.7	Yes	8.9	5.2
3	147.5	143.7	145.6	Yes	3.8	1.9
4	143.3	134.5	140.3	Yes	8.8	5.8
5	142.5	137.5	140.0	Yes	5.0	2.5
6	140.4	126.0	131.5	Yes	14.4	5.5
S	Specifica	tion Max	imum Allo	owable	8.0	5.0

Table 2.5: Summary of Nuclear Density Profile Data for Blaw-Knox MTD

Road Core Density

Road core densities were determined in the laboratory according to TxDOT test procedure Tex-207-F, Part I. Core densities from all the density profile locations are shown in Appendix A. Core densities from all the locations for all the MTDs that participated in this study are compared to the corresponding Nuclear Gauge Densities and are plotted in Figure 2.1. From Figure 2.1, there does not appear to be a good correlation between the lab core density and field nuclear density at the same location. This is likely due to the fact that nuclear density gauge was not calibrated for the type of mix which was placed on the project.

Comparison of Lab Densities with Nuclear Densities for All MTDs

Figure 2.1: Comparison of Lab Densities with Nuclear Densities for all MTDs.

Summary

The following Table summarizes the findings.

MTD	No of Density Profiles	Number of Visible Segregated Spots				
		Identified By the	Not Identified By	Success		
		Density Profile	the Density Profile	Rate		
Barber Greene	6	1	5	17%		
Roadtec	8	3	5	38%		
Lincoln	6	5	1	83%		
Cederapids	6	4	2	67%		
Blaw-Knox	6	3	3	50%		

Table 2.6: Summary of Findings from Nuclear Density Profiles

Success rate is defined as the percentage of times the density profile procedure correctly identified segregated spots.

CHAPTER 3 INFRARED THERMAL IMAGING

Infrared thermal imaging technique has a wide range of applications and has extensively been used in industrial engineering and medical fields for several decades. Thermal imaging has been used in Civil Engineering for almost two decades primarily in the construction of bridge decks to detect delaminations, asphalt concrete overlay de-bonding and defects in portland cement concrete. In recent years, there has been an increasing interest in utilizing this technique to identify thermal segregation in the construction of asphalt concrete pavements. A brief background on this infrared thermography is explained in the following paragraphs.

All objects emit infrared radiation in the form of heat that can be detected using an infrared scanner. These natural impulses are converted and processed to create an image of the object's thermal energy. Colors are used to represent the thermal image. These colors can be selected from an array of color bands to represent the surface temperatures.

Today, there are wide varieties of thermal cameras available to be used for different purposes and applications. Three essential components in any thermal imaging system are:

- 1. Optical scanner to detect radiation in infrared spectrum
- 2. Display monitor to display images
- 3. Computer and Software for data acquisition and analysis

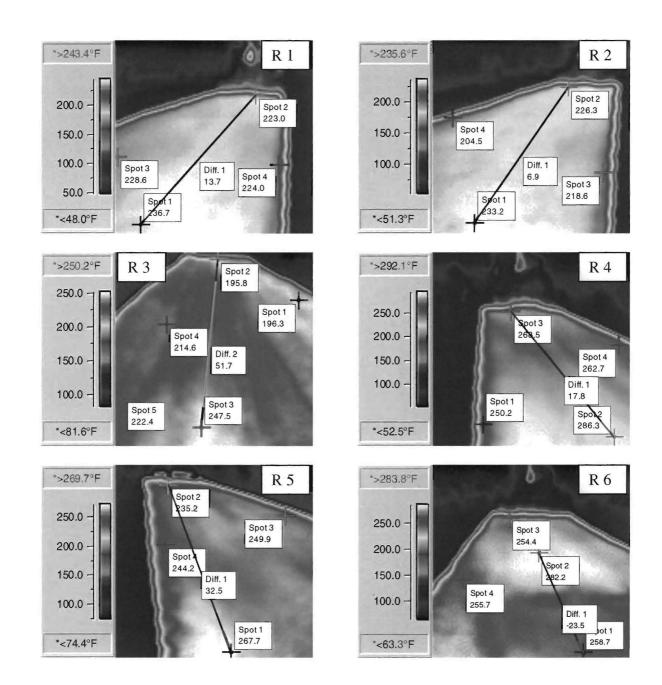
Past research studies in this area suggest that infrared thermography appears to have potential to detect and measure segregation. Several research studies are underway at the present time to utilize infrared thermography. In this demonstration project, infrared thermal imaging is one of the tools utilized to evaluate the effectiveness of Material Transfer Devices (MTD). Research performed by National Center for Asphalt Technology suggests that the areas with temperature differentials greater than 38°F are likely to have high levels of segregation. Low levels of segregation can be expected for the temperature differential between 18 °F to 29 °F and medium levels of segregation for temperature differential of 29 °F to 38 °F.

One of the objectives of this study is to evaluate different MTDs' ability to produce a uniform mix temperature behind the paver. In this project, Inframetrics' ThermaSnap type infrared thermal camera was used by TxDOT to capture thermal images. Several thermal images were taken during this weeklong demonstration project. These images were analyzed using TherMonitor Lite 95 Software. Figures 3.1 through 3.6 are representative of the thermal images that were captured for 5 different MTDs.

Equipment manufacturers were also present and they also obtained thermal images using their own equipment. Some of the manufacturers made their thermal images available to TxDOT and those images are presented in Appendix B.

Roadtec MTD

Pictures R1 through R6 shown in Figure 3.1 are representative thermal images of the lay down process using RoadTec MTD. The following preliminary observations may be made from these pictures.


- 1. Temperature distribution in the longitudinal direction is relatively uniform.
- 2. Temperature distribution in transverse direction is uniform for a given location on the mat.
- 3. Individual low temperature spots on the mat were observed very rarely.

Temperature variations observed from these seven thermal images are summarized and listed in Table 3.1. The maximum and minimum temperatures were selected from the total mat area.

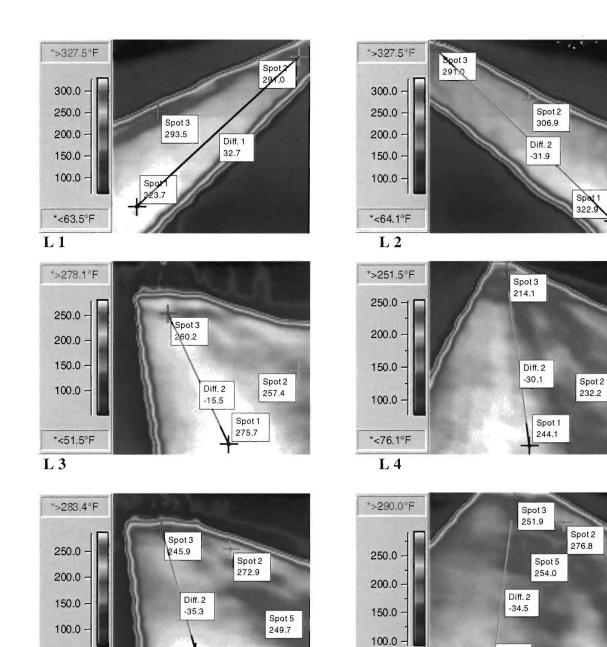
Picture	Maximum (°F)	Minimum (°F)	Range (°F)	Segregation*
R1	236.7	223.0	13.7	None
R2	233.2	204.5	28.7	Low
R3	247.5	195.8	51.7	High
R4	286.3	255.7	30.6	Medium
R5	267.7	235.2	32.5	Medium
R6	258.7	254.4	4.3	None
Average	255.0	228.1	26.9	Low

 Table 3.1: Temperature Variations Observed from Figure 3.1

* - Segregation as defined by NCAT criteria.

Lincoln MTD

Pictures L1 through L6 shown in Figure 3.2 are representative thermal images of the lay down process using Lincoln MTD. The following preliminary observations may be made from these pictures.


- 1. Temperature distribution in the longitudinal direction is relatively uniform.
- 2. Temperature distribution in transverse direction is variable.
- 3. Occasional low temperature spots in the mat are observed.

Temperature variations observed from these six thermal images are summarized and listed in Table 3.2.

Picture	Maximum (°F)	Minimum (°F)	Range (°F)	Segregation*
L1	323.7	291.0	32.7	Medium
L2	322.9	291.0	31.9	Medium
L3	275.7	257.4	18.3	Low
L4	244.1	214.1	30.0	Medium
L5	281.2	245.9	35.3	Medium
L6	286.3	251.9	34.4	Medium
Average	289.0	258.6	30.4	Medium

Table 3.2: Temperature Variations Observed from Figure 3.2

* - Segregation as defined by NCAT criteria.

Spot 1

281.2

Figure 3.2: Representative Thermal Images for Lincoln MTD

*<66.8°F

L 5

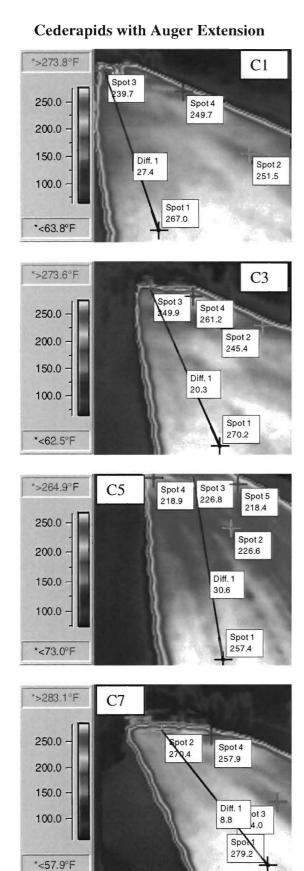
*<91.1°F

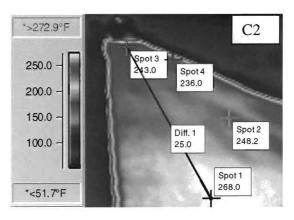
L 6

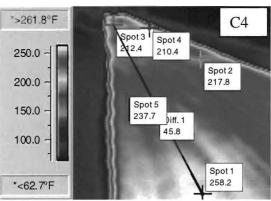
Spot 1 286.3

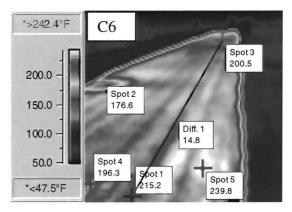
Cederapids MTD

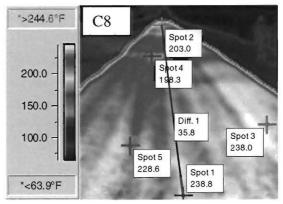
Pictures C1 through C20 shown in Figure 3.3 are representative thermal images of the lay down process using Cedarapids MTD. The following preliminary observations may be made from these pictures.

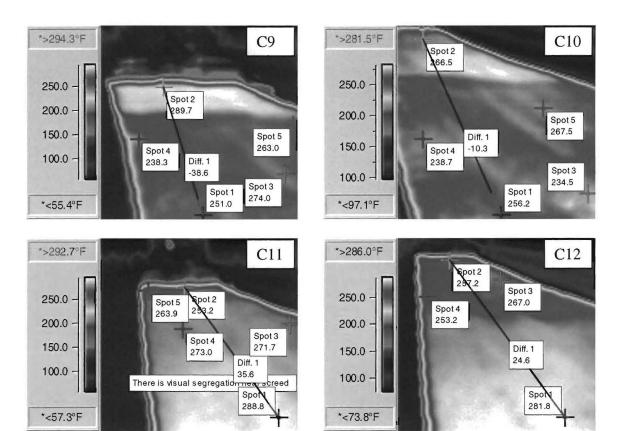

- 1. Temperature distribution in the longitudinal direction is relatively uniform.
- 2. Temperature distribution in transverse direction shows significant variation.
- 3. Several low temperature spots in the mat are observed.


Temperature variations observed from these twenty thermal images are summarized and listed in Table 3.3. The maximum and minimum temperatures were selected from the total mat area to calculate the range.


Picture	Maximum (°F)	Minimum (°F)	Range (°F)	Segregation*
Cederapid	s with Auger Extens	tion		
Cl	267.0	239.7	27.3	Low
C2	268.0	236.0	32.0	Medium
C3	270.2	245.4	24.8	Low
C4	258.2	210.4	47.8	High
C5	257.4	218.9	38.5	High
C6	215.2	176.6	38.6	High
C7	279.2	257.9	21.3	Low
C8	238.8	198.3	40.5	High
C9	289.7	238.3	51.4	High
C10	267.5	234.5	33.0	Medium
C11	288.8	253.2	35.6	Medium
C12	281.8	257.2	24.6	Low
Cederapid	s without Auger Exte	enstion		
C13	291.0	267.7	23.3	Low
C14	266.0	242.3	23.7	Low
C15	266.7	243.0	23.7	Low
C16	286.8	241.8	45.0	High
C17	287.0	274.0	13.0	None
C18	279.5	242.7	36.8	Medium
C19	268.0	234.3	33.7	Medium
C20	260.0	249.4	10.6	None
Average	269.3	238.1	31.3	Medium


 Table 3.3: Temperature Variations Observed from Figure 3.3


* - Segregation as defined by NCAT criteria.



-

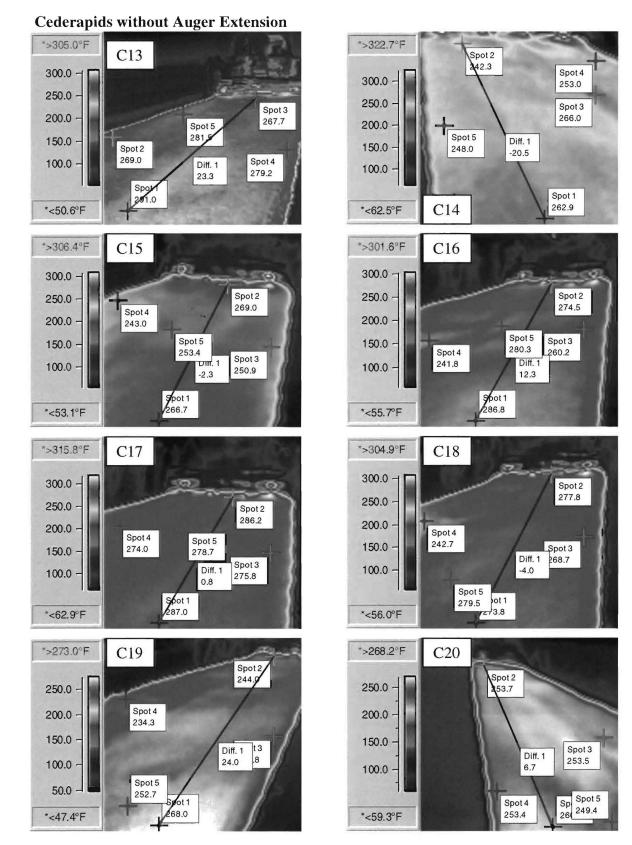
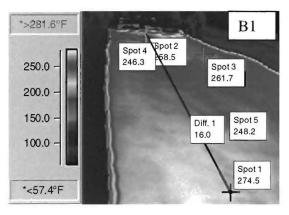


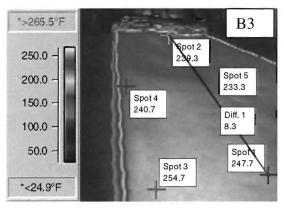
Figure 3.3: Representative Thermal Images for Cederapids MTD

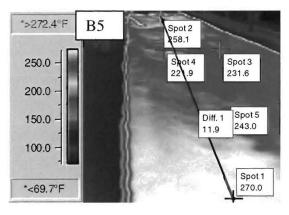
BarberGreene MTD

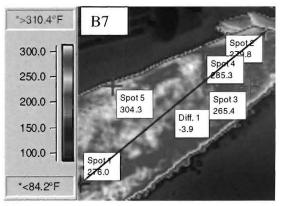
Pictures B1 through B19 shown in Figure 3.4 are representative thermal images of the lay down process using BarberGreen MTD. The following preliminary observations may be made from these pictures.

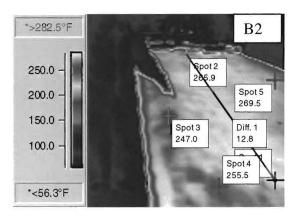
- 1. Temperature distribution in the longitudinal direction is relatively uniform.
- 2. Temperature distribution in transverse direction is variable.
- 3. Individual low temperature spots on the mat were observed.

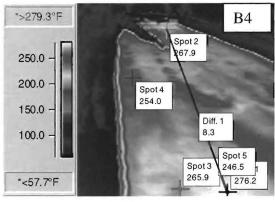

Temperature variations observed from these nineteen thermal images are summarized and listed in Table 3.4. The maximum and minimum temperatures were selected from the total mat area.

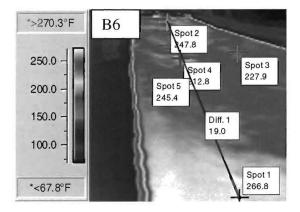

Picture	Maximum (°F)	Minimum (°F)	Range (^o F)	Segregation*
Control 1				
1	274.0	246.3	27.7	Low
2	269.5	247.0	22.5	Low
3	254.7	233.3	21.4	Low
4	276.2	246.5	29.7	Medium
5	270.0	221.9	48.1	High
6	266.8	212.8	54.0	High
7	304.3	265.4	38.9	High
8	265.4	229.0	36.4	Medium
9	265.4	229.0	36.4	Medium
10	264.7	247.7	17.0	None
11	259.1	227.5	31.6	Medium
12	241.4	207.1	34.3	Medium
13	228.3	188.1	40.2	High
14	234.5	187.6	46.9	High
Control 2				
15	283.5	255.0	28.5	Low
16	274.9	243.0	31.9	Medium
17	285.8	236.6	49.2	High
18	259.2	216.9	42.3	High
19	305.8	278.7	27.1	Low
Average	267.6	232.6	35.0	Medium

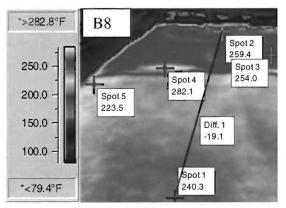

 Table 3.4: Temperature Variations Observed from Figure 3.4

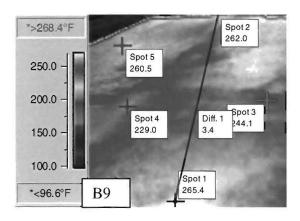

* - Segregation as defined by NCAT criteria.

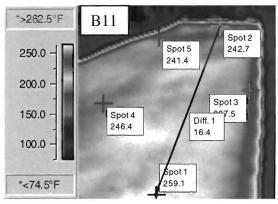

BarberGreene Control 1

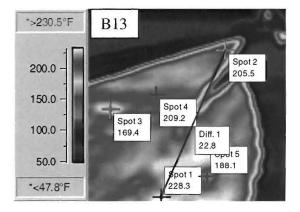


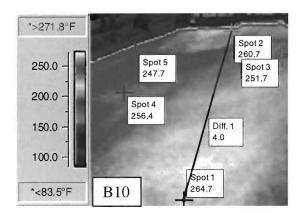


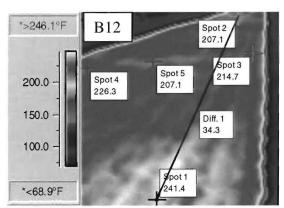


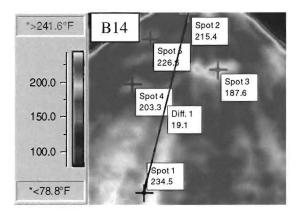


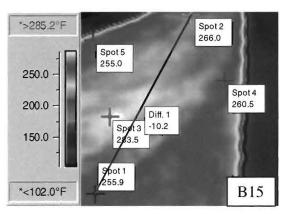


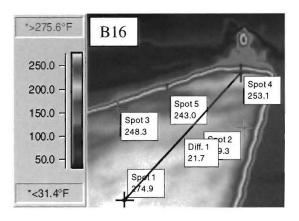


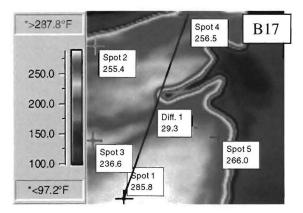


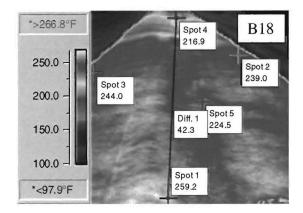


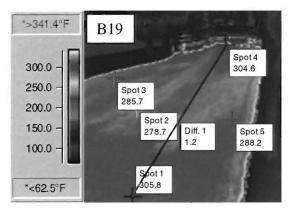






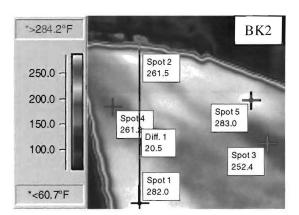


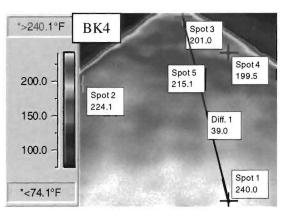


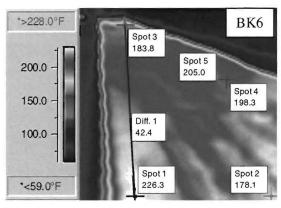

BarberGreene Control 2

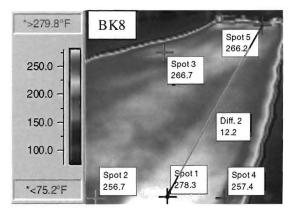
Blaw-Knox MTD

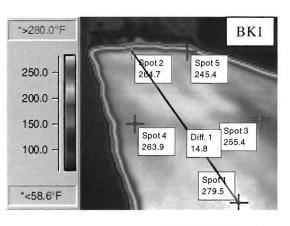
Pictures BK1 through BK14 shown in Figure 3.5 are representative thermal images of the lay down process using Blaw-Knox MTD. The following preliminary observations may be made from these pictures.

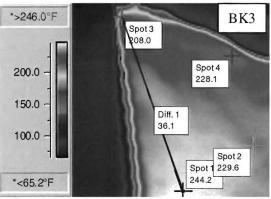

- 1. Temperature distribution in the longitudinal direction is relatively uniform.
- 2. Temperature distribution in transverse direction is variable.
- 3. Individual low temperature spots on the mat were observed.

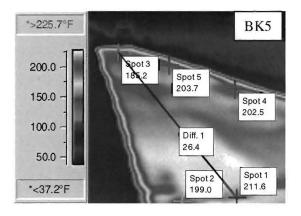

Temperature variations observed from these fourteen thermal images are summarized and listed in Table 3.5. The maximum and minimum temperatures were selected from the total mat area.

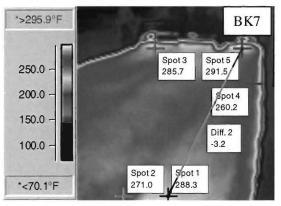

Picture	Maximum (°F)	Minimum (°F)	Range (°F)	Segregation*
1	279.5	245.4	34.1	Medium
2	282.0	252.4	29.6	Medium
3	244.2	208.0	36.2	Medium
4	240.0	199.5	40.5	High
5	211.6	185.2	26.4	Low
6	226.3	183.8	42.5	High
7	291.5	260.5	31.0	Medium
8	278.3	256.7	21.6	Low
9	296.0	271.9	24.1	Low
10	312.7	246.3	66.4	High
11	291.1	274.8	16.3	None
12	287.7	262.9	24.8	Low
13	282.7	262.9	19.8	Low
14	284.5	263.2	21.3	Low
Average	272.0	241.0	31.0	Medium


 Table 3.5: Temperature Variations Observed from Figure 3.5


* - Segregation as defined by NCAT criteria.







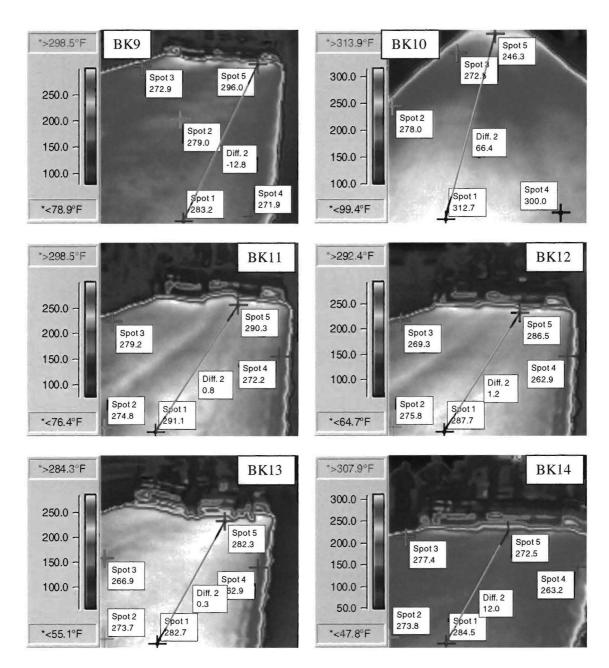


Figure 3.5: Representative Thermal Images for Blaw-Knox MTD

CHAPTER 4 GROUND PENETRATING RADAR TO DETECT SEGREGATION

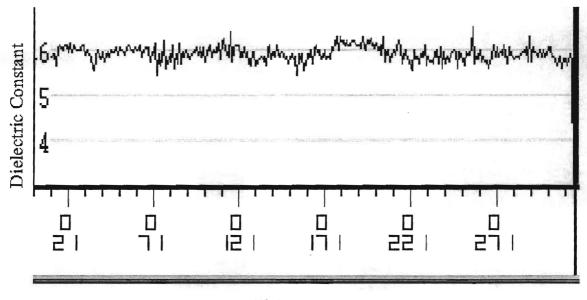
Ground Penetrating Radar (GPR) has been used extensively in the past several years. GPR has been a valuable tool in detecting voids, excess moisture, layer thickness etc., in the pavement structures. An attempt has been made by the Texas Transportation Institute (TTI) to estimate and quantify the amount of segregation and the extent of segregation using GPR. This chapter describes a brief background on GPR and the data collected is presented. A full report by TTI is found in Appendix C.

Ground Penetrating Radar

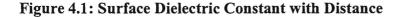
Ground Penetrating Radar (GPR) system sends discrete pulses of radar energy into the pavement system and captures the reflections from each layer interface within the pavement structure. GPR units operate at highway speeds (approx. 60mph), transmit and receive 50 pulses per second, and can effectively penetrate to a depth of 2 feet.

Amplitudes of reflection and the time delays between reflections are used to calculate both layer dielectrics and layer thickness. The dielectric constant of a material is an electrical property which is most influenced by moisture content and density. If the moisture content for a layer increases, then the dielectric of the layer will increase which will result in an increase in the energy reflected from the top of the layer. An increase in air voids would have the opposite effect. If the amount of air in a layer increased, the energy reflected and the resulting dielectric would decrease.

TTI has established a range of typical dielectric constants for most paving materials. For example, HMA layers normally have dielectric value between 4.5 and 6.5, depending on the coarse aggregate type. Measured values significantly higher than this would indicate the presence of excessive moisture. Lower values indicate a density problem or indicate that unusual aggregate, such as lightweight aggregate in the mix.


Results and Discussion

Results discussed in this section mostly are excerpts from the report submitted by TTI. In this study, plots of surface dielectric are produced for each of the Material Transfer Devices (MTD) used in the demonstration project.


It is proposed that variations in surface dielectric are indicators of variations in the air void content of the top layer. For a homogeneous well-compacted surface layer the dielectric plot versus distance should be a relatively flat horizontal line as shown in Figure 4.1. Recent studies at the TTI have found that the sharp localized decreases in the surface dielectric are associated with areas of low density in surface layer. Therefore the quality of the mat is judged in terms of the overall variations in the surface dielectric and the absence of sudden dips.

Representative surface dielectric plots from each of the 5 MTD's are shown in Figures 4.2 through 4.7. Note two different Barber-Greene sections (Figure 4.2 and 4.3) were established and tested. Each section was approximately 1490 ft long and the distance scale is shown as the x-axis in each figure. The dips are marked on the Figures and correspond to segregated areas.

Based on this criteria the best performer was the Roadtec MTD shown in Figure 4.4. The plot shows some variation in dielectric but no major localized dips. The high dielectric measured in the middle of the section should be ignored, it was attributed to a thin piece of metallic foil placed on the surface of the pavement for the profile measuring equipment. The next best performer was Barber-Greene 1 shown in Figure 4.2, which had a major problem area at one end of the section but this was a transition point between MTD devices. A few minor dips are marked on Figure 4.2. The surface dielectric plots shown in Figures 4.5, 4.6 and 4.7, all show major periodic dips in the surface dielectric plots.

Distance

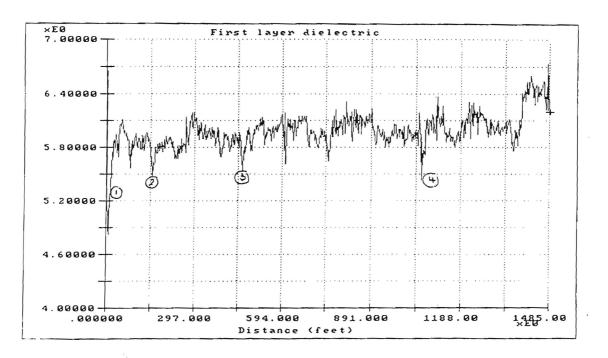


Figure 4.2 Surface Dielectric Plot of BARBER-GREENE 1 MTD. (Note: Very low values at start of section, this was a transition area. Dips marked throughout section).

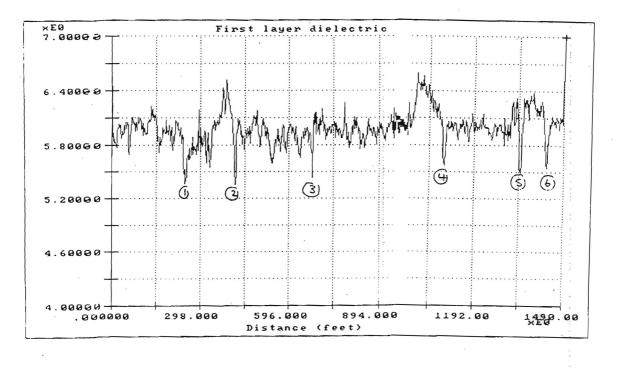


Figure 4.3 Surface Dielectric Plot of BARBER-GREENE 2 MTD. (Note: Periodic dips marked, 1, 2, etc.)

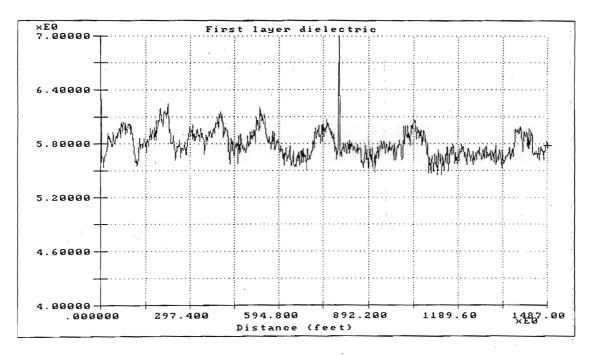


Figure 4.4 Surface Dielectric Plot of ROAD TECH MTD.

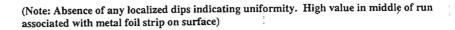
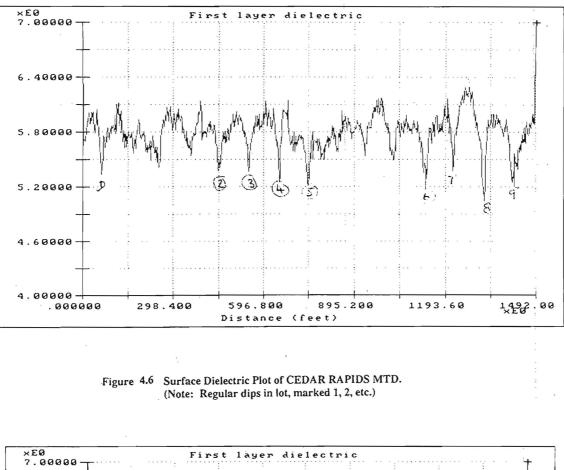
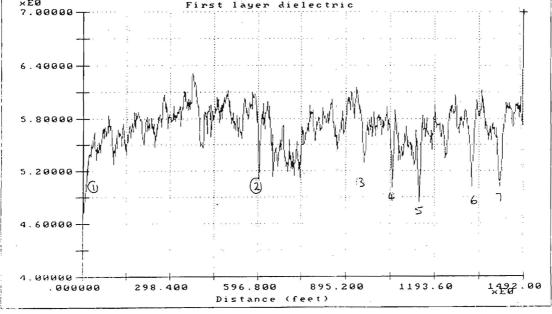




Figure 4.5 Surface Dielectric Plot for LINCOLN MTD. (Note: Regular dips in plot, marked 1, 2, etc.)

Conclusions and Recommendations

The conclusions and recommendations listed here are excerpts from the report submitted by TTI, which can found in its entirety in Appendix C.

- 1. Based on the laboratory densities there appears to be a good correlation between surface dialectics computed from the GPR reflections and the laboratory measured core densities. As expected from theory, low surface dielectric correlate to low density.
- 2. The quality of a HMA mat can be related to the uniformity of the surface dielectric plot and the number of segregated areas can be estimated from the number of sudden localized dips in surface dielectric.

CHAPTER 5 VISUAL RATING

Visual rating was conducted to detect all three forms of segregation described in Chapter 1. Visual rating is a subjective process. It can still be an effective tool when used with caution. In this instance care was taken so that all raters use similar rating protocol. Five individuals from TxDOT, FHWA and Industry participated in the visual rating process.

All five raters rated 5 different MTDs. Data from all the raters were collected, tabulated and analyzed. Table 5.1 lists the segregated areas by each of the raters for all 5 MTDs. The data was normalized to account for different lengths of each section. Table 5.2 shows the number of segregated areas detected by each individual rater per 1000' section of the lane. This is plotted for all 5 MTDs. Figure 5.1 shows the average number of segregated areas for each MTD.

From Table 5.2, the following preliminary observations can be made. There is quite a bit of variation among individual raters. Even with the variation in the number of segregated areas a trend can be seen in the performance of different MTDs. As shown in Figure 5.1 that the performance of Roadtec in two different locations is very similar and is better than other MTDs.

Distance Paved (ft)	Rater 1	Rater 2	Rater 3	Rater 4	Rater 5
1,700	16	10	16	9	8
4,200	9	3	9	10	7
4,800	8	3	6	12	12
1,100	7	8	7	9	5
2,100	10	10	7	15	24
3,100	17	33	36	19	33
3,800	26	25	18	18	13
3,100	28	29	28	22	- 0
3,100	27	20	_	24	11
	Paved (ft) 1,700 4,200 4,800 1,100 2,100 3,100 3,800 3,100	Paved (ft)11,700164,20094,80081,10072,100103,100173,800263,10028	Paved (ft)121,70016104,200934,800831,100782,10010103,10017333,80026253,1002829	Paved (ft)1231,7001610164,2009394,8008361,1007872,100101073,1001733363,8002625183,100282928	Paved (ft)1234 $1,700$ 1610169 $4,200$ 93910 $4,800$ 83612 $1,100$ 7879 $2,100$ 1010715 $3,100$ 17333619 $3,800$ 26251818 $3,100$ 28292822

Table 5.1: Number of Segregated Areas for 5 MTDs

BG - Barber-Greene

W/o - without

W/ - with

AE – Auger Extension

MTV	Rater 1	Rater 2	Rater 3	Rater 4	Rater 5	Average
BG Control 1	9.4	5.9	9.4	5.3	4.7	6.9
Roadtec 1	2.1	0.7	2.1	2.4	1.7	1.8
Roadtec 2	1.7	0.6	1.3	2.5	2.5	1.7
Ceder Rapids w/o AE	6.4	7.3	6.4	8.2	4.5	6.6
Ceder Rapids w AE	4.8	4.8	3.3	7.1	11.4	6.3
Ceder Rapids w AE	8.7	6.5		7.7	3.5	6.6
Loncoln	6.8	6.6	4.7	4.7	3.4	5.2
BG Control 2	9.0	9.4	9.0	7.1		8.6
Blow Knox w/o AE	5.5	10.6	11.6	6.1	10.6	8.9

Table 5.2: Number of Segregated Areas for 5 MTDs - Normalized for 1000'

BG - Barber-Greene

W/o-without

W/ - with

AE - Auger Extension

Average Number of Segregated Areas

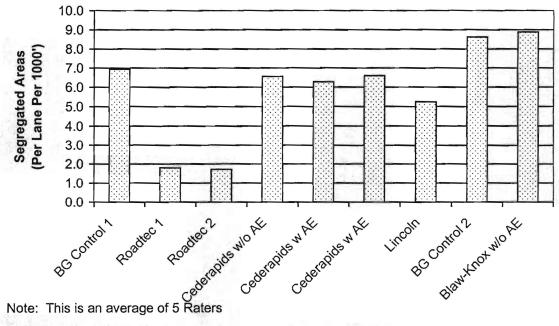


Figure 5.1: Variation of Average Number of Segregated Areas

CHAPTER 6 RIDE QUALITY

Ride quality or Surface Smoothness for this project was measured using a Profilograph. In addition, an alternative Ride measurement was made using a surface Profiler. Ride data collected from both of these test methods are presented here.

Profilograph

Ride quality was measured using the profilograph method. The test was conducted in accordance with TxDOT Standard Test Method Tex-1000-S. In this test method, the Profile Index (PI) is used as a measure of surface smoothness. PI is calculated by summing all the vertical deviations in excess of a 0.2 inches blanking band from the profilograph trace obtained during testing. Lower PI values indicate better ride quality. In addition, a bump template is used to detect the bumps in excess of 0.3" over a 25' base length. The number of bumps detected were normalized to account for the different lengths of paved sections using the different MTDs. Table 6.1 lists the Profile Index (PI) and the number of bumps greater than 0.3" detected per mile. Figures 6.1 and 6.2 show the Profile Index and Number of bumps for different MTDs respectively.

MTD	PI (inch/mile)	No. of Bumps >0.3" Per mile
Barber Greene	2.8	5
Roadtec Location 1	10.1	15
Roadtec Location 2	7.2	17
Lincoln	35.6	38
Cedarapids	11.4	16
Blaw-Knox	16.9	29

Table 6.1: Profile Index and No. Of Bumps Excess of 0.3 Inches

Comaprison of Profile Index

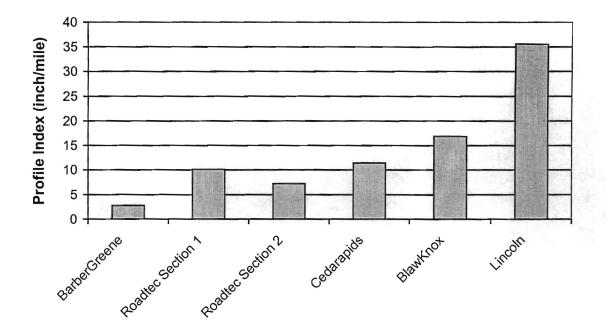
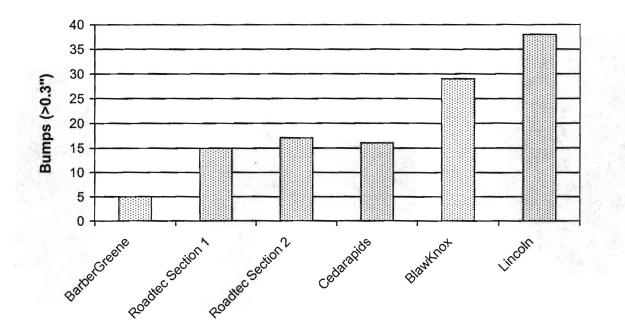



Figure 6.1: Variation in Profile Index

Comparision of No. of Bumps

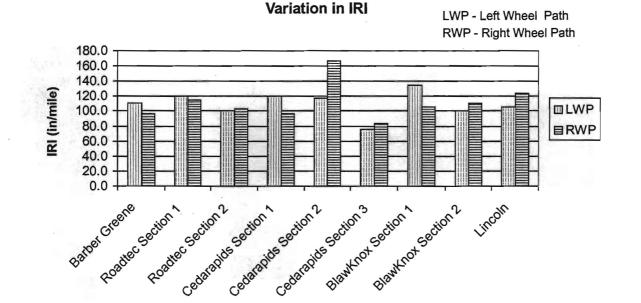
Figure 6.2: Variation in Bumps Greater Than 0.3"

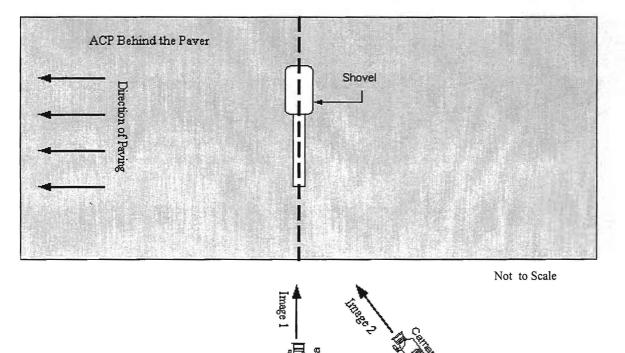
Profiler

Surface Profiler is a tool used in Pavement Management Information Systems (PMIS). Profiler uses lasers and accelerometers to measure the inertial profile of each wheel path. Roughness is measured along the longitudinal profile of the roadway. The test is performed 3 times and average of these 3 measurements is considered for the acceptance purposes. The two parameters measured using this method are: International Roughness Index (IRI) and Present Serviceability Index (PSI). Table 6.2 lists the average IRI and PSI for the five MTDs for the sections listed. Lower IRIs indicate better ride while higher PSI values are better. Figure 6.3 shows the variation of IRI for left and right wheel path.

MTD	Length IRI (inch/mile)		ich/mile)	PSI
	(Feet)	Left Wheel Path	Right Wheel Path	
Barber Greene	1450	110.6	96.6	3.6
Roadtec Section 1	3000	120.7	115.6	3.4
Roadtec Section 2	3750	101.1	103.3	3.6
Cedarapids Section 1	1000	120.1	96.6	3.5
Cedarapids Section 2	2000	117.2	166.6	3.4
Cedarapids Section 3	2640	75.4	83.1	4.1
BlawKnox Section 1	2650	134.8	105.6	3.3
BlawKnox Section 2	1900	100.4	111.5	3.6
Lincoln	2800	105.4	123.9	3.5

Table 6.2: International H	Roughness Index (IRI) and Present	Serviceability	v Index (PSD
A GOAC OIL AMOUT MERCIONERA	to a function the out it	AALL, MAAGE ALOUVIAU	NOR TROUGHTER	A THE CALLE	




Figure 6.3: Variation in IRI

CHAPTER 7 EVALUATION OF THERMAL CAMERAS

As Part of this study four different thermal Infrared Cameras were evaluated for their ability to measure temperature precisely for a given location. Background on these cameras was explained in Chapter 5. Four cameras evaluated in this study are:

- 1. Inframetrics ThermaSnap
- 2. IR SnapShot Model # 525
- 3. Flir Agema Model # 550
- 4. Inframetrics Thermacam Model PM 280

Three locations were selected to evaluate the cameras. At each location, a shovel was placed in the transverse direction on the freshly laid asphalt concrete mat. At each location two images were taken. The following figure illustrates the angles for the two images.

Figure 7.1: Angle of Images

As shown in Figure 7.1, Image 1 is perpendicular to the mat and Image 2 is at an angle to the mat. Care was taken such that a given image at all the three locations was captured from the same spot by all four individuals.

The images captured by all four cameras were analyzed. All the images are attached in Appendix D. The objective of this analysis is to compare the maximum, minimum and

average temperatures along the dashed line shown in Figure 7.1 for both angles for all four cameras. Temperatures for Location 1, 2 and 3 are listed in Tables 7.1, 7.2 and 7.3 respectively.

Camera	Image 1			Image 2		
	(Perpe	endicular to	the Mat)	(At an	Angle to th	e Mat)
	Min (°F)	Max (° F)	Mean (°F)	Min (°F)	Max (° F)	Mean (°F)
Inframetrics ThermaSnap	123.8	290.0	258.0	228.0	271.0	263.0
IR SnapShot Model # 525	117.8	282.2	256.9	165.6	260.7	244.3
Flir Agema Model # 550	131.5	293.2	271.0	158.7	273.3	258.2
Inframertrics Thermacam	*	293.2		*	283.7	

Table 7.1: Comparison of Temperatures at Location 1

* - Minimum value was out of the spectrum, so minimum value and mean could not be obtained.

Table 7.2: Comparison of Temperatures at Location 2

Camera	Image 1 (Perpendicular to the Mat)			Image 2 (At an Angle to the Mat)		
and the second	Min (°F)	Max (° F)	Mean (°F)	Min (°F)	Max (°F)	Mean (°F)
Inframetrics ThermaSnap	135.7	291.1	265.8	217.8	276.0	262.9
IR SnapShot Model # 525	161.8	287.6	274.8	161.3	273.7	255.3
Flir Agema Model # 550	138.1	294.0	251.1	172.8	283.8	271.9
Inframertrics Thermacam	*	288.9		*	267.2	

* - Minimum value was out of the spectrum, so minimum value and mean could not be obtained.

Table 7.3: Comparison of Temperatures at Location 3

Camera	Image 1 (Perpendicular to the Mat)			Image 2 (At an Angle to the Mat)		
and the second	Min (°F)	Max (°F)	Mean (°F)	Min (°F)	Max (° F)	Mean (°F)
Inframetrics ThermaSnap	143.1	292.0	271.0	211.9	280.8	267.3
IR SnapShot Model # 525	135.4	295.6	266.4	175.6	271.1	251.5
Flir Agema Model # 550	145.1	285.7	251.0	170.8	286.5	270.1
Inframertrics Thermacam	*	288.0		*	283.3	

* - Minimum value was out of the spectrum, so minimum value and mean could not be obtained.

Discussion

From the temperature data listed in Tables 7.1, 7.2 and 7.3 the following observations can be made:

- Maximum temperatures recorded by the four cameras are reasonable close.
- The maximum temperature is less for pictures taken at an angle versus perpendicular.
- There is a large variability in minimum temperatures. This is most likely due to the slight differences in times when pictures were taken and the shovel getting hot on the mat.
- All four cameras appear to yield the same results.

Comparison of Thermal Cameras

CHAPTER 8 SUMMARY AND CONCLUSIONS

A Material Transfer Device (MTD) showcase was conducted on a section of IH10 in El Paso, Texas. This demonstration project was conducted for the duration of five (5) days in October 1999. The showcase involved five different MTDs by five different manufacturers. The two primary objectives for this showcase are to evaluate the effectiveness of the MTDs in reducing segregation in HMAC and compare the effectiveness of the different techniques to measure and quantify segregation.

The five MTDs, which participated in the showcase, are:

- 1. Barber-Greene, Model BG-650
- 2. Blaw-Knox, Model MC-330
- 3. Cedarapids, Model CR 461
- 4. Lincoln, Model 880-HP
- 5. Roadtec, Model SB-2500B

The four different techniques/methods utilized to quantify segregation in this study are:

- 1. In-Place Density
 - Density profiles using Nuclear Density Gauge
 - Road Cores
 - Ground Penetrating Radar (GPR)
- 2. Infrared Thermal Imaging
- 3. Visual Rating
- 4. Smoothness or Ride Data
 - Profilograph
 - Profiler

Conclusions

Data from the above mentioned test methods and techniques were collected and analyzed. The following preliminary conclusions can be drawn from the data collected during this MTD showcase.

- 1. None of the MTDs eliminated all segregation-related problems.
- 2. The screed extensions in the paver caused segregation in this project. There was also centerline segregation caused by the paver.
- 3. MTDs with larger on-board mix storage capacity are more effective in reducing truck-end segregation.
- 4. The proposed test method to identifying segregation by establishing density profiles does not appear to be a very effective tool. Additional research is needed to make a more precise conclusion.
- 5. Ground penetrating radar has the potential to identify and quantify segregation.

- 6. The Infrared thermal imaging technique was found to be an excellent Quality Control tool.
- 7. All four thermal cameras used in this study appear to yield the same result.
- 8. MTDs alone cannot cure all segregated related problems.

APPENDIX – A

- 1. TEST METHOD FOR DETERMINATION OF MAT SEGREGATION USING NUCLEAR DENSITY GAUGE
- 2. SPECIAL PROVISION TO SPECIAL SPECIFICATION QC/QA OF HOT MIX ASPHALT
- 3. LABORATORY ROAD CORE DENSITIES
- 4. NUCLEAR DENSITY PROFILE FIELD REPORTS

Tex-207-F - Part V Determination of Mat Segregation Using a Nuclear Density Gauge

Overview

This test method is to provide a means of identifying segregation in hot-mix asphalt pavement after placement on the roadway.

Apparatus

- Thin Lift Density Gauge
- Measuring Tape (Optional)
- Forms

Steps	Actions
1.	Refer to gauge manufacturer's recommendations for operating the gauge. It is not necessary that the gauge be calibrated to the mix.
2.	A profile section is defined as a 50-foot length of mat with readings taken approximately every five feet. Additional longitudinal readings may be taken along the transverse offset where visible segregation is noticed.
3.	Identify a location where the lay-down machine has stopped paving. Mark and record this location as the beginning of the profiled section, also called the zero point. The first reading location should be approximately ten feet behind the zero point. When profiling a section where the location that the paver stopped is unknown, a randomly selected area may be picked. It is intended that an area with visible segregation be chosen.
4.	Determine the transverse offset two feet or more from the pavement edge. Do not vary from this line. Visually observe the mat and note surface texture in the section to be profiled. Make note of areas that appear to be segregated. Visually segregated areas, if any, must be included in the section to be profiled.
5.	Take three one-minute readings with the nuclear density gauge in the same location and record.
6.	Before moving the gauge, average the three readings. Compare each individual reading to the average. Discard any single readings that vary more than 1 lb./c.f. from the average. Take additional readings to replace any that are discarded until three readings have been obtained that are within 1 lb./c.f. of the average.
7.	Move the gauge approximately 5 feet forward in the direction of the paving operation. If a segregated are is visible in between the 5-ft. distance, take an additional set of readings at that location.
8.	Repeat steps 5, 6 and 7. Continue to take readings until a minimum of ten sets of three readings has been completed.
9.	Determine the average density from all the locations.
10.	Determine the difference between the highest and lowest average density
11.	Determine the difference between the average and lowest average density.
12.	Record and plot the data. Report.

PROPOSED

SPECIAL PROVISION

ΤO

SPECIAL SPECIFICATION

ITEM 3146

QUALITY CONTROL/QUALITY ASSURANCE OF HOT MIX ASPHALT

For this project, Special Specification Item 3146, "Quality Control/Quality Assurance of Hot Mix Asphalt", is hereby amended with respect to the clauses cited below and no other clauses or requirements of this Item are waived or changed hereby.

Article 3146.7 <u>Construction Methods</u>, Subarticle (6), <u>Placing</u>. The first paragraph is supplemented by the following:

If segregation or irregularities occur in the pavement surface, the contractor shall review the plant, hauling and paving operations and take corrective action. A "Segregation Check Points" list is available from the Engineer. Segregation may be identified visually or in accordance with Test Method Tex-207-F, Part V "Determination of Mat Segregation Using a Nuclear Density Gauge".

At the start of the project, the paving unit will be allowed to pave for a distance of 1,000 linear feet with each individual mix designation before implementing a profile analysis. The Contractor shall perform a minimum of four segregation checks each day for each mix type used on the project. The density profile must meet the criteria shown in Table 1 to be considered acceptable. The profile location shall be recorded to permit future evaluation of the segregation section. A segregation profile starting point shall be established at each location where the screed stops due to discontinuous mix delivery and at visibly segregated areas as directed by the Engineer. If the lay down operation continues to progress without stopping and no visible segregation is noted and four consecutive profiles are within established tolerances, then the test frequency will be reduced to one profile per placement lot. The Engineer may further reduce the frequency of testing at the Contractor's request. If both the Contractor and the Engineer agree that segregation exists and the Contractor agrees to immediate mitigation of the problem, then the density profile will not be required.

Nominal Max. Aggregate Size	Maximum Allowable Density Range (highest to lowest)	Maximum Allowable Density Range (average to lowest)
5/8" or less	6.0 lbs./c.f.	3.0 lbs./c.f.
5/8" or greater	8.0 lbs./c.f.	5.0 lbs./c.f.

Table 1: Density Profile Acceptance Criteria

The Engineer will be provided results of the segregation profiles as they are completed. Whenever one of the profiles fails the acceptance criteria, the contractor will be allowed to make changes to the operations before the next profile evaluation is made. Any changes must be made within the first hour of production following determination of a failing evaluation. Production of the hot mix asphalt shall cease whenever two consecutive profiles fail unless otherwise approved by the Engineer. The Contractor shall make changes to the mix or process before production is restarted. The Contractor may produce enough mixture to place approximately 2,000 linear feet of pavement one paver width wide. Two segregation profiles shall be taken within these 2,000 linear feet of production and if both profiles meet the acceptance criteria, the Contractor may resume normal operations. However, if one or both of the segregation profiles fail, the Contractor shall make additional changes as approved by the Engineer and an additional 2000 linear feet of pavement shall be laid and evaluated as before. This procedure of placing and evaluating 2,000 linear feet sections will be continued until both segregation profiles pass. The Engineer may require the Contractor to provide specialized mixing or material transfer devices for remixing of the mixture prior to placement if the segregation has not been eliminated through plant and process adjustments. Normal production and segregation checks will resume when both profile results pass. Although it will be the Contractor's responsibility to perform the segregation check described above using the nuclear density gauge, the Engineer may make as many independent or confirmation nuclear density checks as deemed necessary. The Engineer's results will be used to determine segregated sections when available.

Specimen #	Sta.	Distance from	Bulk Density	Density	(lbs/c.ft.)
		0	(%)	Core	Nuclear
1		50	97.7	152.7	147.5
2	165+60	25	97.1	151.7	142.8
3		5	96.9	151.3	130.9
6		50	96.0	149.9	145.7
4	167+00	40	97.4	152.1	149.2
5		10	95.3	148.8	144.4
9		30	96.0	150.0	140.0
8	168+00	10	96.7	151.0	143.3
7		5	97.2	151.8	145.3
12		50	96.0	150.0	148.8
11	171+00	40	96.5	150.7	144.3
10		30	96.2	150.3	146.3
15		50	96.3	150.2	151.9
14	189+00	20	95.9	149.5	144.5
13		0	95.7	149.2	141.4
18		30	96.0	149.8	146.2
17	163+30	5	95.5	149.0	149.3
16		Ō	94.4	147.2	144.6
21		25	97.2	151.7	149.4
20	184+00	10	97.0	151.3	145.9
19		5	96.7	150.8	147.4
24		40	98.0	152.9	149.0
23	165+00	15	98.6	153.8	144.3
22		-10	97.1	151.5	147.1

Table A.1: Laboratory Road Core Densities for Barber Greene MTD

Table A.2: Laboratory Road Core Densities for RoadTec MTD

1

Specimen #	Sta.	Distance from 0	Bulk	Densi	ty (lbs/cft)
			Density (%)	Core	Nuclear
3		50	95.3	148.8	144.6
2	193+50	10	95.0	148.4	141.5
1		-10	95.9	149.8	146.7
4		10	93.0	145.3	135.4
5	186+50	5	94.6	147.7	142.3
6		-10	94.0	146.8	145.9
7	182+00	50	93.4	145.9	134.1
8		30	92.2	144.0	138.1
9		20	93.6	146.1	138.1
10		30	92.3	144.1	137.5
11	167+00	20	92.9	145.0	141.9
12	1	5	93.1	145.4	144.2
13	·	50	94.1	147.0	140.2
14	200+00	15	94.2	147.2	145.2
15		0	94.7	148.0	143.3
16		50	94.0	146.9	141.3
17	204+00	20	94.8	148.1	146.9
18		10	95.6	149.3	143.5

Specimen #	Sta.	Distance from 0	Bulk	Densit	y (lbs/cft)
			Density (%)	Core	Nuclear
1		50	92.3	144.0	139.0
2	194+00	20	93.3	145.6	141.6
3		-10	93.2	145.5	142.9
6		20	94.0	146.7	145.7
5	160+00	10	94.3	147.1	142.1
4		-10	92.3	144.1	136.8
7		40	91.7	143.1	133.6
8	185+00	15	92.7	144.7	140.7
9		5	94.2	146.9	145.3
10		50	93.5	145.8	144.0
11	181+00	40	92.8	144.8	139.2
12		15			144.4
15		25	94.0	146.7	139.6
14	163+00	20	93.7	146.1	134.9
13		-10	93.8	146.3	143.9
16		50	93.7	146.1	148.3
17	170+00	5	94.0	146.7	139.9
18		-10	95.2	148.5	140.3

Table A.3: Laboratory Road Core Densities for Lincoln MTD

Table A.4: Laboratory Road Core Densities for Cederapids

C #	Ct-	Distance Group 0		Density (lbs/cft)		
Specimen #	Sta.	Distance from 0	Bulk Density (%)	Core	Nuclear	
1		0	94.3	148.3	135.1	
2	267+00	5	95.2	149.7	130.8	
3		-10			147.2	
6		30	96.6	151.9	150.0	
5	246+50	5	94.8	149.1	137.3	
4		-10	94.4	148.4	144.2	
9		25	95.9	150.7	141.6	
8	214+00	0	92.9	146.1	144.8	
7	2.4	-10	95.8	150.7	147.1	
12		30	93.7	147.4	144.3	
11	246+00	10	95.0	149.4	147.7	
10	1.3 N. 1 N. 1	5	95.0	149.4	140.2	
13		30	94.3	148.2	145.1	
14	206+50	10	95.0	149.4	136.1	
15		5	92.2	145.0	133.4	
18		25	93.4	446.9	142.4	
17	224+00	20	93.0	146.2	143.7	
16		15	93.4	146.9	139.7	
21		30	95.9	150.7	148.8	
20	240+00	25	94.8	149.0	141.5	
19		10	95.6	150.3	148.9	
23		30	93.3	146.6	142.3	
22	213+00	25	92.2	145.0	133.1	
24		0	93.1	146.3	139.4	
27		50	92.7	145.8	144.1	
26	236+00	10	95.9	150.8	143.7	
25		-10	95.8	150.7	147.3	
30		40	93.0	146.2	144.6	
29	209+50	20	94.2	148.2	140.9	
28		10	92.9	146.1	135.0	

Specimen #	Sta.	Distance from 0	Bulk	Densit	y (lbs/cft)
		(ft) Density (%)		Core	Nuclear
1		30	93.5	147.0	142.0
2	229+50	25	93.6	147.2	142.5
3	and the second	10	93.2	146.5	137.5
4	Colorise Colorise	40	95.1	149.6	145.5
6	252+30	25	95.8	150.6	143.7
5		0	96.2	151.3	147.5
7	1.	50			134.5
8	250+00	25	93.0	146.2	140.2
9		0	92.8	145.9	143.3
10		30	89.7	141.1	131.1
11	222+00	10		Dist.	126.0
12		-10	93.3	146.7	140.4
2		15	95.0	149.1	147.1
1	264+75	10	94.8	149.3	143.9
3		5	94.7	148.9	139.7
4		50	95.1	149.6	140.5
5	255+00	15	96.0	150.9	146.6
6		-10	94.9	149.3	149.4

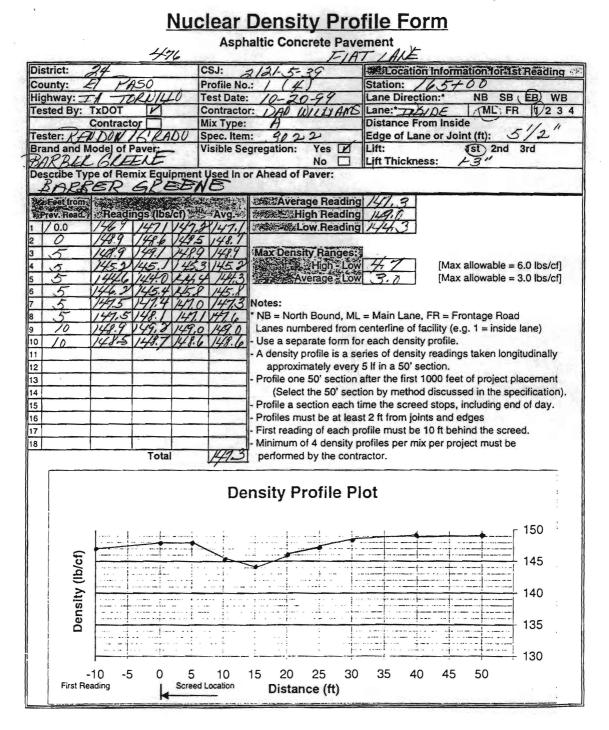
Table A.5 Laboratory Road Core Densities for Blaw-Knox MTD

TXDOT Construction Division Dess Collection Form July 1999 Ange. Jalan Jalan Jalan Jalan Jalan Jalan

Nuclear Density Profile Form

ZVARY 4:31 9M FINISH 5:23 p.H.

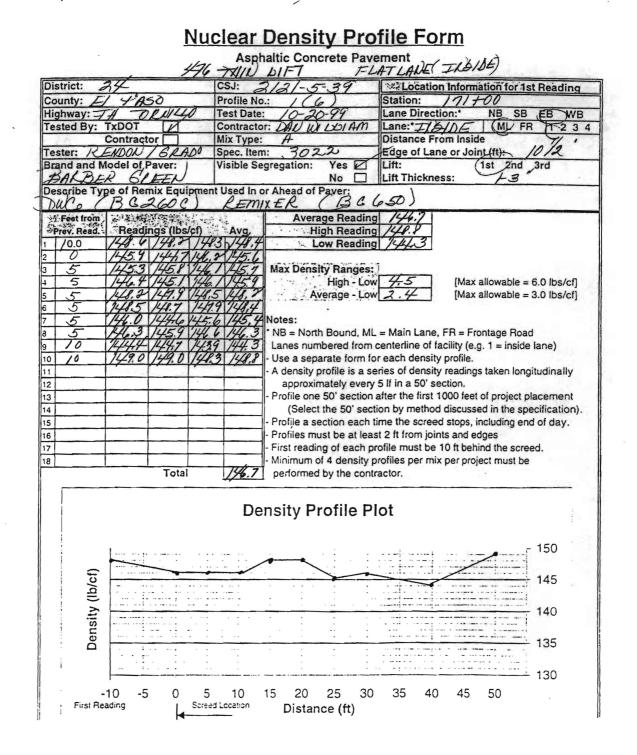
V


2.50	476 TAIN L	
District: 24	CSJ: 2/2/-5-31	Location Information for a st Reading
County: E/ PHSe	Profile No.:	Station: /63730
Highway: FX TORULLO	Test Date: 10-18-94	Lane Direction:* NB SB EB WB
Tested By: TxDOT	Contractor: DAU WIIIANS	Lane: THEIDE (ML)FR (1)2 3
	Mix Type: #	Distance From Inside
Tester: RENDIN 6LADO Brand and Model of Paver:/	Spec. Item: 3022 Visible Segregation: Yes	Edge of Lane or Joint (ft): 5/2 Lift: (1st, 2nd 3rd
BAREIR CLIENE	No	Lift: (1st 2nd 3rd Lift Thickness: 43
Describe Type of Remix Equipme		Ent Thickness.
BATBER GREET	VE	
Feet from State and State	Average Readin	1445 1001 1000 EV
	Avg. High Readin	
1/0.0 14331436144	38 1431 Weadin	14/16 NITHIN
0 141.2 141.2 14	16 141.6	NIC CC T
5 1485.19.2 14	1/4.3 Max Density Ranges	
5 146.1 146. 4 146	9/46/ High Lo	W 4.8 [Max allowable = 6.0 lbs/cf]
5 144.0.144.0.144	43 /44./ Average - Lo	W 7.7 [Max allowable = 3.0 lbs/cf]
5 1434 144.4 144	0 143.9	
5 144.3144.0143	5 43.9 Notes:	
		IL = Main Lane, FR = Frontage Road
10 143. 4143.6142		n centerline of facility (e.g. 1 = inside lane)
0 10 142.41436 14		for each density profile.
1		series of density readings taken longitudinally
2		ry 5 If in a 50' section.
3		n after the first 1000 feet of project placement
4		ction by method discussed in the specification). time the screed stops, including end of day.
6 -		ast 2 ft from joints and edges
7		profile must be 10 ft behind the screed.
8		profiles per mix per project must be
Total	1445 performed by the cor	
	17770 performed by the con	
UniAC STACY		
SI 151+00	Density Profile F	Plot
	,	
1		150
5		145
Density (lb/cf		
×		140
tig tig		140
ä – – – – – – – – – – – – – – – – – – –		
ŏ		135
	e e per la calada de la composición de	a anny the analysis of the second
		a sense a ser a ser a sense a sense a ser a s
		130
-10 -5 0 5	10 15 20 25 30 ed Location Distance (ft)	

Nuclear Density Profile Form Asphaltic Concrete Pavement 121-5 **District:** Location Information for alst Reading 24 CSJ: -39 Station: County: Profile No.: 168400 YAS Test Date: 10-1999 Lane Direction: SB EB WB Highway: NB TOR Th Tested By: TxDOT Contractor: DAI / WILL Lane: IBINE ME FR 1234 Contractor Mix Type: **Distance From Inside** 31/2 702 EUDO/ BRAI Edge of Lane or Joint (ft): Spec. Item: Tester: Brand and Model of Paver: BALBEL 6 LEEN (st)2nd 3rd Visible Segregation: Yes Lift: Lift Thickness: No Describe Type of Remix Equipment Used In or Ahead of Paver: BARBER GREENE Readings (lbs/cl) Average Reading ///3 # Feet from Prev. Rea K High Reading 145 1449 1436 1441 1442 1443 1441 1454 1441 1446 1451 1451 1453 Low Reading 1 /0.0 Max Density Ranges: High - Low Average - Low 143.51453 [Max allowable = 6.0 lbs/cf] 5.3 14.6 141.9 R 5 [Max allowable = 3.0 lbs/cf] 1436 1442 5 THI 5 1445 Notes: 14.3 139.7 140.0 NB = North Bound, ML = Main Lane, FR = Frontage Road 20 5 Lanes numbered from centerline of facility (e.g. 1 = inside lane) 10 1435 1421 Use a separate form for each density profile. 10 10 A density profile is a series of density readings taken longitudinally 11 approximately every 5 If in a 50' section. 12 Profile one 50' section after the first 1000 feet of project placement 13 (Select the 50' section by method discussed in the specification). 14 15 Profile a section each time the screed stops, including end of day. Profiles must be at least 2 ft from joints and edges 16 First reading of each profile must be 10 ft behind the screed. 17 Minimum of 4 density profiles per mix per project must be 18 Total H33 performed by the contractor. **Density Profile Plot** 150 Density (Ib/cf) 145 140 -----135 ---------_____ -_+ -----.... 130 -10 -5 0 5 10 15 20 25 30 35 40 45 50 **First Reading** Screed Location Distance (ft)

50

-SVALY B: 3UAN. FINISH 9:20 AM



Nuclear Density Profile Form Asphaltic Concrete Pavement

		476 TX/1N/2	
District:	04	CSJ: 2121-5-39	Location Information for 1st Reading
county: ET	MASO	Profile No.: / (5)	Station: 167400
lighway:	11 -TORDILLA	Test Date: 10-20-94	Lane Direction:* NB SB ,EB) WB
ested By:	TXDOT	Contractor: DAN WILLIAME	Lane: MISDIE ME FR 1234
	Contractor	Mix Type: A	Distance From Inside
ester: KE	NDON GRADO	Spec. Item: 3022	Edge of Lane or Joint (ft): 9
	lodel of Paver:)	Visible Segregation: Yes	Lift: (1st 2nd 3rd
	ER GLEEN	No 🗆	Lift Thickness: -3
	pe of Remix Equipme	nt Used In or Ahead of Paver:	
RARD	BER GREE	the second s	
Feet from	······································	Average Readi	
Prev. Read.			
/ 0.0		5.5/457 State Low Reading	1g /44.4
<u> </u>	145.8 146.4 14	1457	17:22
5	145. 145.7 14	6.0 145 7 Max Density Range	
5	145 445 44	44 144 44	
5	14. TV44.3 V4	9 1449 Average - Lt	W 2.7 [Max allowable = 3.0 lbs/cf]
5	1107 1107 14	D THE L Notes	
5	110 110 - 11	0 1449 / Notes:	AL - Main Lana ER - Frontana Road
	1/07 105 14		AL = Main Lane, FR = Frontage Road n centerline of facility (e.g. 1 = inside lane)
10	16. 149.5 49		for each density profile.
10	42.0 VTV. 7 43		series of density readings taken longitudinally
			ry 5 If in a 50' section.
			n after the first 1000 feet of project placement
·			action by method discussed in the specification).
5			time the screed stops, including end of day.
3			ast 2 ft from joints and edges
7			profile must be 10 ft behind the screed.
3			profiles per mix per project must be
	Total	147. 1 performed by the co	
		· · · · · · · · · · · · · · · · · · ·	
			.
		Density Profile I	Plot
			г 1 50
			130
t)			
/c	···· • • • • • • • • • • • • • •		145
(F			
5	• • • • • • • • • • • • • • • • • • •	er i er þræmte som som þær e	
si			
Density (Ib/cf)			105
Ω	•••••••••••••••••••••••••••••••••••••••		135
1			
i			
-	10 5 0 1		0 05 40 45 50
-	10 -5 0 -		0 35 40 45 50
- First Re		5 10 15 20 25 3 eed Location Distance (ft)	0 35 40 45 50

START 10:53 FINISH 11:50

TXDOT Construction Division Data Collection Form July 1999

JVAR 12:14 FINISX 1:11

Ø	u/1/		Iclear Density Pr Asphaltic Concrete Pa ノロ・ユユ・ディー・ナメール	
Distr	rict:	24	CSJ: 2131 05 0.39	Location Information for a st Reading
Cour	nty:	EI PASO	Profile No.: 5	Station: 26.77-00
ligh	way:I		Test Date: 10-25-99	Lane Direction:* NB_SB_EB WB
est	ed By:	TXDOT	Contractor: DAL WILLIA	
		Contractor	Mix Type: A	Distance From Inside
		LHON GRADU		Edge of Lane or Joint (ft):
BA	PBE	R GREENE	Visible Segregation: Yes 🔽 No 🗔	Lift: <u>1st</u> 2nd 3rd Lift Thickness: <u>- 3</u>
	ribe Ty		ent Used In or Ahead of Paver:	
Pre	eet from v. Fread 0.0 0 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7	12:3 131, 5, 12 139, 133, 412 142.0 142.1 14 126.8 12.7 19 146.7 146.7 14 142.1 143.2 14 142.1 143.2 14 142.1 143.2 14	7.1 7.1 2 Low Readi 5.1 7.2 Max Density Range 7.1 7.9 1 High L 7.2 7.9 Average L Average L 7.4 7.4 7.4 Average L 7.4 7.4 7.4 Average L 7.4 7.4 7.4 Notes: 7.4 7.4 7.4 Notes: 7.4 7.4 7.4 Notes: 7.4 7.4 7.4 Notes: 7.4 7.4 1.4 Notes: 7.4 7.4 1.4 Notes: 7.4 1.4 1.4 Notes: 7.4 1.4 1.4 1.4 7.4 1.4 1.4 1.4 7.5 .5 .5 .5 .5 9.7 .5 .5 .5 .5 9.7 .5 .5 .5 .5 9.7 .5 .5 .5 .5 9.7 .5 .5 .5 .5	$\frac{1}{130} \frac{1}{130} \frac{1}$
			Density Profile	Plot
	(j.			150
	ty (Ib/cf)			145
	Density (I			135
İ			/	130

=79RA 11:10 am F. 1013N TXDOT Construction Division Data Collection Form July 1999 **Nuclear Density Profile Form** Asphaltic Concrete Pavement District: CSJ: Location Information for 1st Reading a TASO Station: 264+75 County: Profile No.: NB SB (EB,)WB Highway: Test Date: Lane Direction:* 10 TURN ML FR 1234 Tested By: TxDOT Contractor: Lane: MIDDIE 1111 V Mix Type: Contractor **Distance From Inside** Tester: DANNY CRA Edge of Lane or Joint (ft): Spec. Item: Brand and Model of Paver: Visible Segregation: Ust 2nd 3rd Lift: Yes T Г Lift Thickness: No 2 Describe Type of Remix Equipment Used In or Ahead of Paver: *INGELSIL* BIC KNOX Avg. == Feet from Average Reading 144.0 Readings (Ibs/cf) And High Reading 147.1 rev. Read. 142.8 143.6 43.3 143.2 Low Reading 10.0 139.7 142.8 143.7 143.4 143.3 139.9 139.6 139.5 139.7 144.0 143.8 143.8 143.9 1 Max Density Ranges: High - Low Average - Low 5 [Max allowable = 6.0 lbs/cf] 5 U 147.4 147.7 147.1 [Max allowable = 3.0 lbs/cf] 1 146.3 146.0 147.3 146.6 5 146.5 146.0 146.2 145.8 146.0 Notes: 5 142.8 142.5 "NB = North Bound, ML = Main Lane, FR = Frontage Road 5 142.6 142.0 143.7 143.7 143.3 Lanes numbered from centerline of facility (e.g. 1 = inside lane) 142.5 10 144.7 144,5 144.4 Use a separate form for each density profile. 10 144.0 10 A density profile is a series of density readings taken longitudinally 11 approximately every 5 If in a 50' section. 12 13 Profile one 50' section after the first 1000 feet of project placement (Select the 50' section by method discussed in the specification). 14 15 Profile a section each time the screed stops, including end of day. Profiles must be at least 2 ft from joints and edges 16 First reading of each profile must be 10 ft behind the screed. 17 Minimum of 4 density profiles per mix per project must be 18 Total performed by the contractor. **Density Profile Plot** 150 Density (Ib/cf) 145 140 135 130 5 25 -10 -5 0 10 15 20 30 35 40 45 50 First Reading Screed Location Distance (ft)

TXDOT Data Colk

10

11

12

13

14

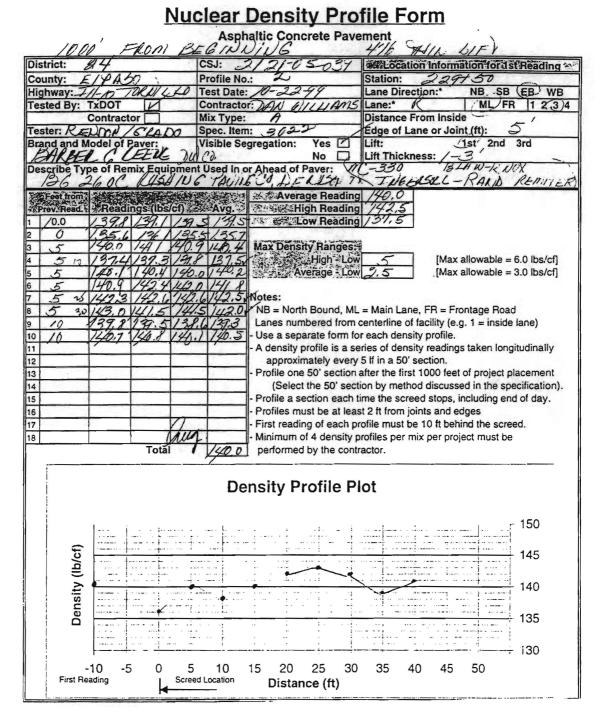
15 16

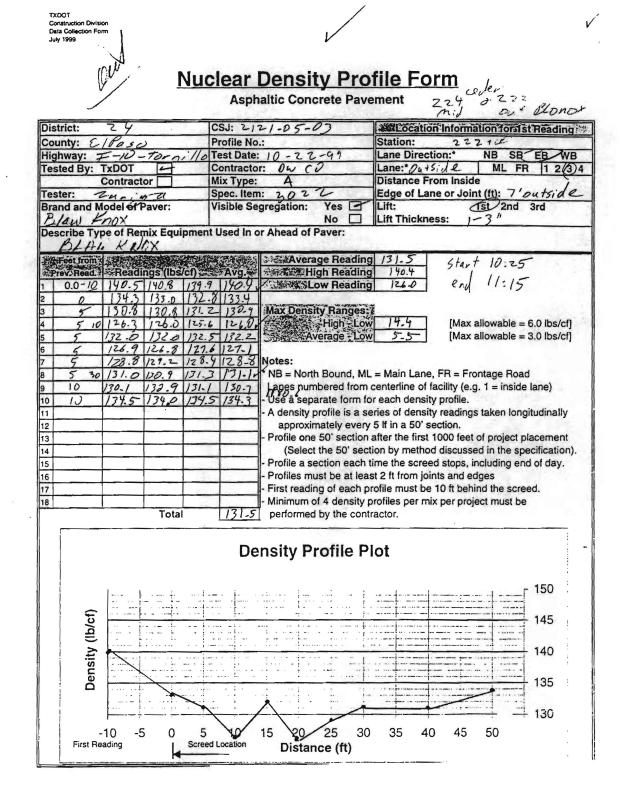
17 18

JUNIV 11-22 FINISH 12'10

Nuclear Density Profile Form Asphaltic Concrete Pavement 10 -22 St Location Information for 1st Reading District: CSJ: 05-039 212 **Profile No.:** Station: 255700 County: Lane Direction:* Highway: **Test Date:** 5-99 NB SB , EB WB **Tested By:** Contractor: Lane: MICISIE ML FR TxDO V 1(2)3 4 Contractor Mix Type: **Distance From Inside** 2 Edge of Lane or Joint (ft): Tester: EDDONI LADO Spec. Item: : Brand and Model of Paver: Visible Segregation: Lift: 1st 2nd 3rd Yes P 11 BARBER GLEE No Lift Thickness: 2 Describe Type of Remix Equipment Used In or Ahead of Paver: BIANKINX RELSOU * Average Reading eet from Readings (lbs/cf) High Reading Low Reading 1.8 149,4 149,4 /0.0 14 9 14361428143. 0 5 Max Density Ranges: High = Lo 5 [Max allowable = 6.0 lbs/cf] [Max allowable = 3.0 lbs/cf] 5 1466 Average Low 1 11/8 5 3 Notes: 149 146.6 5 NB = North Bound, ML = Main Lane, FR = Frontage Road 147 0 Lanes numbered from centerline of facility (e.g. 1 = inside lane) 10 40.7 140.4 Use a separate form for each density profile. 10 140 A density profile is a series of density readings taken longitudinally approximately every 5 If in a 50' section. Profile one 50' section after the first 1000 feet of project placement (Select the 50' section by method discussed in the specification). Profile a section each time the screed stops, including end of day. Profiles must be at least 2 ft from joints and edges First reading of each profile must be 10 ft behind the screed. Minimum of 4 density profiles per mix per project must be Total/ performed by the contractor. **Density Profile Plot** 150

Density (lb/cf) 145 140 135 11 130 -10 -5 0 5 10 15 20 25 30 35 40 45 50 First Reading Screed Location Distance (ft)


JVARU 9:17 A.M. FINISKI 9:58 on Di **Data Collection Form Nuclear Density Profile Form** Asphaltic Concrete Pavement 10-22-99 OGAZIAE LANE Se Location Information for 1st Reading District: CSJ: 21-0503, 2 Station: 252730 Lane Direction: NB County: 450 Profile No .: SB (EB) WB Highway: --// Test Date: TORVILL Lane:* RT MIDMA ML FR 1 2(3)4 Distance From Inside Tested By: TxDOT Contractor: WILLI Contractor Mix Type: ENDON GRADO Edge of Lane or Joint (ft):, Spec. Item: 302 Tester: / Brand and Model of Paver: BARBER CREEN (1st 2nd 3rd Visible Segregation: Yes V Lift: BARBER Lift Thickness: No Describe Type of Remix Equipment Used In or Ahead of Paver: 500 NGER 1º UXX (Asti Average Reading /4.5 Feet from ev. Read Re adings (lbs/cf) High Reading 2 9 Low Reading 0.0 .2. 0 Max Density Ranges: High - Low Average - Low [Max allowable = 6.0 lbs/cf] [Max allowable = 3.0 lbs/cf] Notes: NB = North Bound, ML = Main Lane, FR = Frontage Road 8 Lanes numbered from centerline of facility (e.g. 1 = inside lane) 9 Use a separate form for each density profile. 10 10 11 A density profile is a series of density readings taken longitudinally 12 approximately every 5 If in a 50' section. Profile one 50' section after the first 1000 feet of project placement 13 (Select the 50' section by method discussed in the specification). 14 15 Profile a section each time the screed stops, including end of day. 16 Profiles must be at least 2 ft from joints and edges 17 First reading of each profile must be 10 ft behind the screed. Minimum of 4 density profiles per mix per project must be 18 145.6 performed by the contractor. Total **Density Profile Plot** 150 Density (Ib/cf) 145 140 135 130 -10 30 -5 0 5 10 15 20 25 35 40 45 50 First Reading Screed Location Distance (ft)


TXDOT

+

TXDOT Construction Div Data Collection July 1999		L	SHARY 8:20 FINDON 9:05
	Nu	clear Density Pro Asphaltic Concrete Pave	
	Dur.	10.22-99	
District:	24	CSJ: 21211-39	Location Information for ist Reading
County:	> PASO	Profile No.:	Station: 250+00
Highway	FH TORNILLO	Test Date: 10-25-99	Lane Direction:" NB SB (EB WB
Tested By:	TxDOT	Contractor: DAN WIIIIAMS	Lane: ROUTS/DEMU FR 12(3)4
\square	Contractor	Mix Type: H	Distance From Inside
Tester: K	ENDN/ GRADO	Spec. Item: 3022	Edge of Lane or Joint-(ft):
PALS.	Model of Paver:	Visible Segregation: Yes D No	Lift: 1st 2nd 3rd Lift Thickness: -3
	ype of Remix Equipment	nt Used in or Ahead of Paver:	
Sector Feet from 1 / 0.0 2 0 3 -5 - - 4 -5 - - 5 -5 - - 6 -5 - - 7 -5 - - 8 -5 - - 9 / 0 10 10 111 - - - 12 - - - 13 - - - 14 - - - 15 - - - 18 - - -	Fileadings (lbs/cf) /4/2 ·/ /4/2.7 /4/0 /4/2 ·/ /4/2.7 /4/0 /4/2 ·/ /4/2.7 /4/0 /4/3 ·/ /4/2.7 /4/0 /4/3 ·/ /4/2.7 /4/0 /4/3 ·/ /4/2.0 /4/2 /4/3 ·/ /4/2 /4/2 /4/3 ·/ /4/2 /4/2 /29.8 /4/2.1 /4/2 /39.0 /31.5 /2/2 /39.0 /37.8 /3 /39.0 /37.8 /3 /34.5 /24 /3 /35.7 /37.8 /3 /35.7 /37.8 /3 /35.7 /37.8 /3 /35.7 /37.8 /3 /35.7 /37.8 /3 /35.7 /37.8 /3 /37.8 /37.8 /3 /37.8 /37.8 /3 /37.8 /37.8 /3 /37.8 /37.8 /3 /37.8 /37.8 /38 /37.8 /37.	3/493 12/42.1 Max Density Ranges 12/42.1 Max Density Ranges 19/44.2 Average - Low 4/32.1 13/44.2 13/44.2 NB = North Bound, ML Lanes numbered from for -A density profile is a section for -A density profile is a section -Profile one 50' section -Profile a section each the - Profiles must be at lease - First reading of each p	Image: Ward of the second s
		Density Profile P	lot
Density (Ib/cf)			145 140
Densit			135
First F	-10 -5 0 5 Reading Scree	10 15 20 25 30	35 40 45 50

31AL1 9:55 FINISN 10:40

JVARY 2:40 FINISH 3:44 **Nuclear Density Profile Form** prix Asphaltic Concrete Pavement +16 24 AcLocation Information for st Reading District: CSJ: 5-39 Station: <u>206750</u> Lane Direction:* NB_SB_EB) WB 7) 21-99 County: MASS Profile No.: Highway: 7/10 Test Date: TORNIL Contractor: DAN WILLAN Lane:* /P+ (ML) FR 1 234 TXDOT Tested By: 12 Mix Type: Contractor **Distance From Inside** A 10 Tester: KEINON GRADO Edge of Lane or Joint (ft): Spec. Item: 3022 1st 2nd Brand and Model of Paver: Visible Segregation: Yes Lift: 3rd V CEDARAFIN ery No Lift Thickness: REMIX HUTI SEGLEGATION SUSTE Describe Type of Remix Equipment Used In or Ahead of Paver: LAY DOWN ENAROPIDS GRAVIEUNA MASUNE Feet from Average Reading / rev. Read. Readings (lbs/cf) High Reading 41.2 Low Reading 10.0 ,6 0 134.4 5 5 133.6 13.3.4 Max Density Ranges: High - Low 13 [Max allowable = 6.0 lbs/cf] 13/ 5 4 10 15 Average - Low [Max allowable = 3.0 lbs/cf] 140.3 * Notes: 12.6 NB = North Bound, ML = Main Lane, FR = Frontage Road 5 145.3 144.7 14/5. 144.51456 Lanes numbered from centerline of facility (e.g. 1 = inside lane) 9 10 Use a separate form for each density profile. 10 10 6 A density profile is a series of density readings taken longitudinally 11 approximately every 5 If in a 50' section. 12 Profile one 50' section after the first 1000 feet of project placement 13 (Select the 50' section by method discussed in the specification). 14 Profile a section each time the screed stops, including end of day. 15 Profiles must be at least 2 ft from joints and edges 16 First reading of each profile must be 10 ft behind the screed. 17 Minimum of 4 density profiles per mix per project must be 18 Total 139.4 performed by the contractor. **Density Profile Plot** 150 Density (Ib/cf) 145 140 ÷ 135 1 ------130 -5 0 15 20 25 30 35 40 45 50 -10 5 10 First Reading Screed Location Distance (ft)

nu

Nuclear Density Profile Form Asphaltic Concrete Pavement

L

.

L

District: 24		2121-05-03	Location Information for 1st.Reading	
County: ElPaso		No.:	Station: 209+50 9 Lane Direction: NB SB (EB) WE	
Highway: I- 10 7	Tornillo Test D			
Tested By: TxDOT	the second se	ictor: DW CO	Lane: middle (ML) FR 1(2)	
Contracto	and the second s		Distance From Inside	
Tester: Zuniga	Spec.		Edge of Lane or Joint (ft): 17 iside eu	
Brand and Model of P Lever Apids Describe Type of Rem		Segregation: Yes V No	Lift: $(1st)$ 2nd 3rd Lift Thickness: $(-3)^{"}$	
Celarapides	iix Equipment Osed	March March March		
Prev. Read + Readin	gs(lbs/cf)	Average Reading		
and the second s	144.7 144.4 144		135.0 01 2:32	
	140.8 140.6 14		kny cont	
	1355 135.5 135	and a second sec	3	
	135-0 134.9 135	C. S.		
- 1/20 / 1	137.8 134- 138.			
6 6 9 110	141.2 141.0 140	and the second s		
have been and the second secon	43.5 143.4 143			
	141.7 142.3 142		= Main Lane, FR = Frontage Road	
10 10 40 144 1	1451 144.7 144	- INE C	centerline of facility (e.g. 1 = inside lane)	
	142.5 142-7 142			
11			eries of density readings taken longitudinally	
12		approximately every		
13			after the first 1000 feet of project placemen	
14			tion by method discussed in the specificatio	
15	1225		time the screed stops, including end of day.	
15			st 2 ft from joints and edges	
17			rofile must be 10 ft behind the screed.	
18	100		profiles per mix per project must be	
	Total 140			
	<u></u>			
	1	Density Profile P	lot	
		Jensky Prome P		
1	i		150	
5		· · · · · · · · · · · · · · · · · · ·	145	
<u>a</u>				
Density (lb/cf)				
1 £			140	
su			· · · · · · · · · · · · · · · · · · ·	
8			135	
			130	
-10 -5	0 5 10	15 20 25 30	35 40 45 50	
First Reading	Screed Locatio	Distance (ft)		

Oriv

Nuclear Density Profile Form

347169 1:33 4. FINSXI 2:20 ;

Asphaltic Concrete Pavement	Anti	211
	204-150	-216+50

			204-130 -216-730
District:	24	CSJ: 2121-5-39	Location Information for Ast Reading
County:	EIVASO.	Profile No.: / (6)	Station: 213+00
Highway:		Test Date: 10-21-99	Lane Direction:* NB_SB (EB W
Tested By:	the second se	Contractor: DAN WILLIAMS	
The A	Contractor	Mix Type: A	Distance From Inside
Tester: // A	TUNDN/6RADO	Spec. Item: 2022 Visible Segregation: Yes	Edge of Lane or Joint (ft): 6/2 20 Lift: (1st 2nd 3rd
· SEDE	Model of Paver:	No	Lift Thickness: /-3"
Describe T	voe of Remix Equipme	nt Used In or Ahead of Paver: Re	MN ANTI SEGUITION SUSA
CEDAI	LAPIDO B	RAYHOULD LAY DOWN IN	acture)
Fileethom		Average Readin	
Prev. Read.	Readings (lbs/cf)		
1 7/0.0	146.00/39.7 139	7 / 39.8 Low Readin	9/33.1
200	139.2 139.5 13	9.4/39.4	
3 5	136.2136.7 13	19/3/3 Max Density Ranges	
4 5	141.7 141.7 14	4.1/44.5 High - Lo	$\frac{9}{2}$ [Max allowable = 6.0 lbs/cf
5 5	140.8 141.9 14	1.6/4/4 Average - Lov	W 6.5 [Max allowable = 3.0 lbs/cf
6 5	138.4 139.0 131	7 /39.0	
7 52	and the second s	/ /33. / Notes:	Main Loss FD Frankris David
8 5 3	42.1 42.3 42		L = Main Lane, FR = Frontage Road
9 10	42,242.0 141	2 /4/ / Lanes numbered from	centerline of facility (e.g. 1 = inside lane)
10 /0	141.1 141.0 141		eries of density profile.
12			y 5 If in a 50' section.
13			after the first 1000 feet of project placement
14			ction by method discussed in the specification
15			time the screed stops, including end of day.
16			ast 2 ft from joints and edges
17	1	- First reading of each p	profile must be 10 ft behind the screed.
18	4	- Minimum of 4 density	profiles per mix per project must be
	Total	1396 performed by the con	tractor.
		Density Profile P	Plot
Ì		Density Frome F	iot
			·
ļ	Louis de complete e se d	la suitana taan taan taan ta	г 150 Г
i .			
G Co	·		145
/q	· · · · · · · · · · · · ·		
Sit,			140
Density (Ib/cf)		$Z = \{1, 2, 3\}$	
De		X/	135
i			130
	10 5 0 5		
First F	-10 -5 0 5 leading 1 Scre	5 10 15 20 25 30 ed Location Distance (ft)	0 35 40 45 50

Nuclear Density Profile Form Asphaltic Concrete Pavement

(0ⁿ,) · · ·

District: 24		CS	SJ: 21	21-05-03 ALLOCATION Information for 1st Reading
County: 21Pa	50		ofile No	
Highway: I-1		116 Te	st Date:	
Tested By: TxDC			ontracto	
Cont	ractor	Mi	ix Type:	A Distance From Inside
Tester: Zun	ina	Sp	bec. Item	1: 3022 Edge of Lane or Joint (ft): Toutsile
Brand and Model		Vi	sible Se	gregation: Yes 🕢 Lift: 150 2nd 3rd
Celerapid.	5	1	march	No 🔲 Lift Thickness: /- 3 4
Describe Type of	Remix Equi	pment U	sed in c	or Ahead of Paver:
Cedarapio	13	1.646		
Feet from				Average Reading 144.5
				147.1 5to, + Z:48
				end 3.30
2 0 144		145.4	144-8	
3 5 146		176-7	146.7	Max Density Ranges:
	1.4 145.6	15-1	145.4	High Low $5 \cdot 5$ [Max allowable = 6.0 lbs/cf] $4 \cdot 2 \cdot 4$ $2 \cdot 9$ [Max allowable = 3.0 lbs/cf]
5 7 14	- 110-1	144-6	145.3	Average - Low Z-9 [Max allowable = 3.0 lbs/cf]
	2 141.7	143.9	143.7	Notes: 1014-6
7 5 22 4		1432	142.4	* NB = North Bound, ML = Main Lane, FR = Frontage Road
9 10 1/43		142.7	143	Lanes numbered from centerline of facility (e.g. 1 = inside lane)
10 10 145			145.3	- Use a separate form for each density profile.
11 10 10		113-1	10-0	- A density profile is a series of density readings taken longitudinally
12				approximately every 5 If in a 50' section.
13				- Profile one 50' section after the first 1000 feet of project placement
14				(Select the 50' section by method discussed in the specification).
15		1.16	- 3.3	- Profile a section each time the screed stops, including end of day.
16				- Profiles must be at least 2 ft from joints and edges
17				- First reading of each profile must be 10 ft behind the screed.
18			1	- Minimum of 4 density profiles per mix per project must be
	Total		1445	performed by the contractor.
ſ 				
			De	naity Drofile Diet
			De	nsity Profile Plot
			;	с
	· · · · · · ·			
÷ •				
o/o				145
E				
<u></u>				140
Jsi				
Density (lb/cf)				135
			t.	
				130
-10	-5 0	5	10	15 20 25 30 35 40 45 50
First Reading	1.	Screed Lo	ocation	Distance (ft)

Pr.

10-9 √ 20 21

Nuclear Density Profile Form Asphaltic Concrete Pavement

OK

District: 24	CSJ: 2/2/-	25-07	Location Information for 1st Reading	
County: ElPaso	Profile No.:	05-05	Station: 224 +00	
	the second se	10-22-99	Lane Direction:* NB SB (EB) WB	
ighway: TiO tor AillO Test Date: ested By: TxDOT Contracto		DWCO	Lane:" middle. ML FR 1(2/3 4	
Contractor	Mix Type:	A	Distance From Inside	
Tester: Zunig A		3022	Edge of Lane or Joint (ft): 21f+ outsid	
Brand and Model of Pave			Lift: 1st 2nd 3rd	
Cedara Dides	riobic orgi	No 🗆	Lift Thickness:	
Describe Type of Remix E				
Feet from a sector and		Average Reading	143.4 1. + 1172	
Prev. Read. Readings		Set St High Reading		
		Low Reading	139.7 end 12:02	
	3.9 192 7 143,4			
5 143.9 14		lax Density Ranges:		
5 142.7 143	21 1417 147.5	High - Low	7-5 [Max allowable = 6.0 lbs/cf]	
5 15 140.2 139	6 39.3 39.7	Average - Low	3.7 [Max allowable = 3.0 lbs/cf]	
5 26/43,8 143				
5 15147.1 146		otes:		
5 142.5 142			= Main Lane, FR = Frontage Road	
			centerline of facility (e.g. 1 = inside lane)	
		Jse a separate form fo		
1			ries of density readings taken longitudinally	
2		approximately every		
3	- F		after the first 1000 feet of project placement	
4			ion by method discussed in the specification).	
5	- F		ime the screed stops, including end of day.	
16			at 2 ft from joints and edges	
17			ofile must be 10 ft behind the screed.	
18			rofiles per mix per project must be	
T		performed by the contr		
	Dens	sity Profile Pl	ot	
		· .	г 1 50	
5			145	
p p				
sity (lb/cf)				
Ê —	· · · · · · · · · · · · · · · · · · ·			
c				
Dei				
			120	
-10 -5	0 5 10 15		35 40 45 50	
First Reading	Screed Location	Distance (ft)		

65

oK / Nuclear Density Profile Form FINGEN 10:20 Asphaltic Concrete Pavement

Dis	trict: [/	Pasu		10	CSJ: 2/2	1-05-03	Location	Informa	ation for A	st Reading
-		1 Par	3		Profile No		and the second division in the second division division in the second division di division division division division divis	46+50		S. S. K. M
-		I-ID				10-22-99	Lane Directi			EB WB
	ted By:		17	the second s	the state of the s	r: DWCD.	Lane:" Mid		MLF	
		Contract	or		Aix Type:		Distance Fro		and the second se	,
Tes	ter:	Zun,	and the second se	_	Spec. Item	the second se	Edge of Lan	e or Join	at (ft): / Y	Center
Bra	nd and N	lodel of)	aver:			gregation: Yes			Ist 2nd	3rd
	edar					No 🗆	Lift Thicknes	ss: / -	-3 "	
Des	scribe Ty	pe of Rei	nix Egui	pment	Used In c	or Ahead of Paver:				
5	eka	, Ma	ned 1	A			and the first of the			
	Feet from rev.'Read.			STARLES		Average Reading		stu.	+ 9:20	7
1	0.0-10					Low Reading		211		
+	0.0-10	1791	139.9	139.8	10	A A A A A A A A A A A A A A A A A A A	ig/ 07.0			
2	5	136.5	127 7	1277	1273	Max Density Range	4946			
	5	1441	1454	1441	144.1	High - Lo		Max	allowabla -	= 6.0 lbs/cf]
5	5	11/1/3	1450	Kyd	6/44/6	Average - Lo				= 3.0 lbs/cf]
5	5	146 -	1.1.1	14	14/2			[wax a	anomable -	- 0.0 105/01
7	5	149.5	149 5	147	147.0	Notes: 476 4X	IN DIF			
3 1	5	149 5	157.3	150.5	150.0.	NB = North Bound, M	Al = Main Lane	FB = Fro	ntage Roa	d
	10	1450	112.2	142		Lanes numbered from				
10	10	11119	1453	145	145.1	- Use a separate form				e laite,
11		The	1122	I.N.	4~1	- A density profile is a			taken lon	oitudinally
12					1.1	approximately eve				ground
13						- Profile one 50' sectio			of project	placement
14						(Select the 50' se				and the second se
15					1	- Profile a section eacl				
16		1				- Profiles must be at le	ast 2 ft from join	ts and ec	iges	
17			- F			- First reading of each	profile must be	10 ft behi	nd the scre	eed.
18						- Minimum of 4 density				
			Total		144.2	performed by the co				
					De	naity Drafile I				
					De	nsity Profile I	-101			
		1					Land in a set			__ 150
			urarra dian	·		the second se			1	-
	cf)									145
	p/q			88 - 20 - 100 - 20 - 2	1/11/1	and a state of the second s	\sim			1
	isity (Ib/cf)	1			/		· · · · · · · · · · · · · · · · · · ·			140
	E I			/		· · · · · · · · · · · · · ·	•		1	- 140
	i C				· · · ·			. Trilin	· •	
	Dei	· · · · · · · · · · · · · · · · · · ·	·····					<u> </u>		- 135
		1	· · · · · · · ·					•		-
	1	1	• • •• •• •	· · · ·						120
	1									+ 130
		-10 -5	5 0	5	10	15 20 25 3	0 35 40	45	50	
	First Re		1.		Location	Distance (ft)				
	1		M				Contraction of the second			

TXDOT on Di Data Co on Form

1

V

10

11

12

13

14

15

16

17 18

TXDOT Construction Division Data Collection Form	\checkmark	9900 1:15 pm F-11254 2:10 pm
July 1999		<i>y i i i i i i i i i i</i>
NU NU	clear Density Pro	ofile Form
oixi	Asphaltic Concrete Pav	
District: 24	CSJ: 212105-001	Location Information for dist Reading
County: El PASA	Profile No.: /	Station: 160+00
Highway: 7-H TERVILLO	Test Date: 10-20-99	Lane Direction:* NB SB EB WB
Tested By: TxDOT	Contractor: DAL hilling	Lane: OUTSIDE ML FR 1 2(3)4
Contractor	Mix Type: H	Distance From Inside
Tester: KEDMI GRALO	Spec. Item: 3122	Edge of Lane or Joint (tt): 3/2
Brand and Model of Paver;	Visible Segregation: Yes D No	Lift: 1st 2nd 3rd Lift Thickness: 3 1/2
Describe Type of Remix Equipme	ent Used In or Ahead of Paver: UG MAID AUGEL TVC	46
SPRACE Reads (VBeadings (bS/cf)	Average Readin	

Prev. Re adings (lbs/cf) 136 12% 4 1373 136.0 4 Low Reading 1/ 0.0 8 0 0 138.0 .5 1325 13 6 141.2 141.4 14 Max Density Ranges: 2.0 142.3 142.1 High - Low Average - Low [Max allowable = 6.0 lbs/cf] 3/143,0 8 - 6 [Max allowable = 3.0 lbs/cf] 11455 145.7 4 3.3 143.3 143.3 Notes: 142.2 142.2 142.1 142.7 1429 142.9 2.0 NB = North Bound, ML = Main Lane, FR = Frontage Road Lanes numbered from centerline of facility (e.g. 1 = inside lane) 10 5 142.9 143.0 142.6 Use a separate form for each density profile. 16 A density profile is a series of density readings taken longitudinally approximately every 5 If in a 50' section. Profile one 50' section after the first 1000 feet of project placement (Select the 50' section by method discussed in the specification). Profile a section each time the screed stops, including end of day. Profiles must be at least 2 ft from joints and edges First reading of each profile must be 10 ft behind the screed. Minimum of 4 density profiles per mix per project must be Total 141.8 performed by the contractor.

Ken Drevel Dyna Mac Density Profile Plot Reller -150 Density (Ib/cf) 145 140 .t. --- 135 --+ -----130 -10 5 15 20 25 30 35 40 45 50 -5 0 10 First Reading Screed Location Distance (ft)

TXDOT Construct Data Coll on Di July 1990

ad

25

F

Tested By: TxDOT

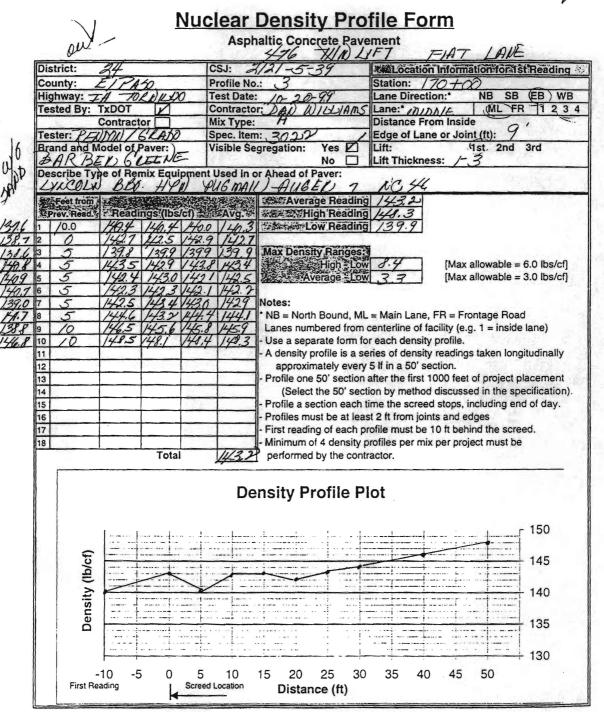
District:

County:

0

CH

Highway:


SVALY 2:15 pm. FINSX 3:15 pm **Nuclear Density Profile Form** Asphaltic Concrete Pavement 474 X/II) 4FV FIAN LAIE Location Information for Ist Reading CSJ: 12+05-039 Station: 163+00 Lane Direction: NE Profile No .: AS NB SB EB WB TORVIL Test Date: Contractor: LAN AIILIAM (ML) FR 1 2(3)4 Lane: ILSINE **Distance From Inside** Contractor [Mix Type: 3922 Edge of Lane or Joint (ft): 11/2 Tester: RENDONIBRAD. Spec. Item: (1st_2nd 3rd Visible Segregation: Yes P Lift: No 🗆 Lift Thickness:

Brand and Model of Paver: BARBER GREET Describe Type of Remix Equipment Used In or Ahead of Paver:

	-	A A ALEST	Contract less	Person in the second	Part and the second	Carit Augure Deciding 12411
	Feet from					Average Reading 799 0 High Reading 793 1
-	ATPrev. Head.s	ARREADI	ngs (los	CI	Avg.	
/	1 / 0.0	1441	143.8	141:0	V43.1	Low Reading /24,9
3	2 0	136.3	137.6	1.37.0	125?	
4	3 5	135.2	135.9	137.1	136.1	Max Density Ranges:
1	4 5	125.1	134.9	135.2	1953	High - Low 9.0 [Max allowable = 6.0 lbs/cf]
ol	5 5	137.1	1319	1370	137.3	Average - Low 4/ [Max allowable = 3.0 lbs/cf]
7	6 5	134.4	V.35.0.	35.2	1/349	
1	1 5	139.4	1398	139.6	139.6	Notes:
5	8 5	1412	V41.4	1410	V41.3	* NB = North Bound, ML = Main Lane, FR = Frontage Road
5	9 10	11/4 D	1425	144.7	1441	Lanes numbered from centerline of facility (e.g. 1 = inside lane)
피	10 10	140.2	141.4	1111	140.9	- Use a separate form for each density profile.
T	11	1		1	1100	- A density profile is a series of density readings taken longitudinally
l	12				1	approximately every 5 If in a 50' section.
ł	13					- Profile one 50' section after the first 1000 feet of project placement
- H-	14					(Select the 50' section by method discussed in the specification).
- H-						- Profile a section each time the screed stops, including end of day.
- Ib	15					
- H-	16					- Profiles must be at least 2 ft from joints and edges
	17		2		-	- First reading of each profile must be 10 ft behind the screed.
	18				1	 Minimum of 4 density profiles per mix per project must be
ſ			Total		139.0	performed by the contractor.

Density Profile Plot 150 Density (Ib/cf) 145 ____ 1. 140 1. 135 ----.... - ----. . . . 130 -10 20 25 30 40 45 50 -5 0 5 10 15 35 First Reading Screed Location Distance (ft)

2)AL) 3:34 ym FILLSH 4:40 ym

STALL J: 1/3-AN FINISAS 11:00 AA TXDOT Division Construct Data Colle July 1999 **Nuclear Density Profile Form** Asphaltic Concrete Pavement WIF ? TXIIN Location Information for a st Reading 24 District: CSJ: Profile No.: County: F Station: 185400 Lane Direction:* Test Date: NB_SB (EB/WB Highway: Rhill Lane:* RTAUTSIDE (ML)FR 1 2(3)4 WILLAM Tested By: TxDOT Contractor: YAIN Mix Type: **Distance From Inside** Contractor 5' 20 Edge of Lane or Joint (ft): Tester: A ENDED/GRADO Spec. Item: Brand and Model of Paver: Lift: 1st) 2nd 3rd Visible Segregation: Yes L × 11 Lift Thickness: No Describe Type of Remix Equipment Used In or Ahead of Paver: LINDLN BAD-VIW FUG MAIL HUGEN :/0 AND 1NC Average Reading High Reading 1935 Low Reading 10.0 1/2 36 Max Density Ranges: 5 High Lo [Max allowable = 6.0 lbs/cf] - 2 4 [Max allowable = 3.0 lbs/cf] Notes: * NB = North Bound, ML = Main Lane, FR = Frontage Road 131 61315 143.2 40 6133.2 123.4 Lanes numbered from centerline of facility (e.g. 1 = inside lane) 10 37.7 135 1353 1211 Use a separate form for each density profile. 1300 10 10 A density profile is a series of density readings taken longitudinally 11 approximately every 5 If in a 50' section. 12 Profile one 50' section after the first 1000 feet of project placement 13 (Select the 50' section by method discussed in the specification). 14 15 Profile a section each time the screed stops, including end of day. Profiles must be at least 2 ft from joints and edges 16 First reading of each profile must be 10 ft behind the screed. 17 Minimum of 4 density profiles per mix per project must be 18 14 Total 140 performed by the contractor. 6 Λ ITTSUI LA 9 64 **Density Profile Plot** UNY 114.1 1150 150 Density (Ib/cf) 145 140 135 ł 130 5 35 40 45 50 -10 -5 0 10 15 20 25 30 First Reading Screed Location Distance (ft)

DYARY 9:13 0 11 V FILV-3X1 9:26

Nuclear Density Profile Form Asphaltic Concrete Pavement

District:	24	CSJ: 2/2/ 5-27	OUTSIDE FIAT LAVE
	1 2000	Profile No.:	Station: / //
County: /-		Test Date: //?- 21.99	Lane Direction:* NB SB EB
Tested By:		Contractor; DA1 1/11/11	
	Contractor	Mix Type: A	Distance From Inside
	DON GPANO		Edge of Lane or Joint (ft):
Brand and M	lodel of Paver:	Visible Segregation: Yes No	Lift: 1st/2nd 3rd
	pe of Remix Equipme	ent Used In or Ahead of Paver	
11101	BBO- HP	W PHEMAIL AUGE	
E Feet from	Readings (lbs/cf)	Avg.	
1 / 0.0	1/21 K/25 14	3.0 143.4 Low Re	
2 0	1409 1415 14	10 141.1	dunig // // //
3 /	143,81423 14	2.3 / 3.5 Max Density Rai	iges:
4 5	141.7 141.3 13		Low 5. 2 [Max allowable = 6.0 lb
5 ~ 15	144.2. 143.8 14	1 /44/.4 Average	
6 5	143.5 144.5 14	4.0 144.0	
7 5		11.0 141.6 Notes:	
8 5	142.1 142.4 1		nd, ML = Main Lane, FR = Frontage Road
9 10 to	1-12 1-12		from centerline of facility (e.g. 1 = inside lane)
	144.1 144.1 14		orm for each density profile.
11			is a series of density readings taken longitudin
12			every 5 If in a 50' section. ection after the first 1000 feet of project placem
13			D' section by method discussed in the specifica
15			each time the screed stops, including end of di
16			at least 2 ft from joints and edges
17			ach profile must be 10 ft behind the screed.
18	11		nsity profiles per mix per project must be
	Total	1 1425 performed by the	e contractor.
		Density Profil	e Plot
	I	i <u>i i i i i i i i i i i i i i i i i i </u>	150
cf)		• • • • • • • • • • • • • • • • • • •	145
nsity (lb/cf)		\sim	
Sit			140
ű			
U 1 U	· · · · ·	· · · · · · · · · · · · · · · · · · ·	
	10 5 0	E 10 1E 00 05	20 25 40 45 50
		5 10 15 20 25 reed Location Distance (f	30 35 40 45 50

Nuclear Density Profile Form Asphaltic Concrete Pavement

V

Di	strict: 24	163	CSJ:		tion Information for 1 st Reading
-	ounty: ElVase)	Profile No		194+00
	ghway: T-10 1	acnillo		10-21-99 Lane Dire	
Te	sted By: TxDOT	1	Contracto		
-	Contractor		Mix Type:		From Inside / Ft.
	ster: Zunig 1 and and Model of Par	Vor		r: 2,022 Edge of L gregation: Yes L Lift:	ane or Joint (ft): 6 7.
7	APREP GP	ENE	VISIBle Se	No Lift Thick	
De	scribe Type of Remin	Equipmen	t Used In (
	LIDACLA	4		and the second second second	
	Feet from a lice and		No. of Street,	Average Reading 141.5	1 7.20 140.7
	Prev. Read.	s (lbs/cf)	Avg.	High Reading 142.9	Stort 8:00 140.7
1	.00-10 143.4 1	42.3 143.1	142.91	Low Reading 139.0	end 4:00 1mm
2		43.4 142.	7 113.2		ела
3		43.6 142.		Max Density Ranges:	-
4		40.5 141		High Low 3_9	[Max allowable = 6.0 lbs/cf]
5		42.0 141.		Average Low 2-5	[Max allowable = 3.0 lbs/cf] a
6		41.3 143		Notes:	
8		40 4 139.		* NB = North Bound, ML = Main La	ne FB = Frontage Boad
8			21414	Lanes numbered from centerline of	
9 10	111-211	39.6 129.		- Use a separate form for each den	
10	DV10 120-C12	11.0 151-	15	- A density profile is a series of den	
12			1	approximately every 5 If in a 50	
13			1000	- Profile one 50' section after the fin	st 1000 feet of project placement
14				(Select the 50' section by meth	hod discussed in the specification).
15				- Profile a section each time the scr	
16				- Profiles must be at least 2 ft from	•
17			-	- First reading of each profile must	
18		7-4-1	6	- Minimum of 4 density profiles per	mix per project must be
		Total	1	performed by the contractor.	
			De	nsity Profile Plot	
					c 150
			1		
	C				
	i i				
11	8		$\lesssim 1$		
	₹				140
	i i i i i i i i i i i i i i i i i i i	and a second			135
) jen				
	Density (lb/cf)				
	De		-		100
	D		-		130
	-10 -5 First Reading	0 5	10 d Location		40 45 50

V

Nuclear Density Profile Form ROLLIDC Mague Magnetic Concrete Pavement autordi kane Asphaltic Concrete Pavement neved, away toniha CSJ: 2121-05-39 District: Location Information for 1st Reading Station: 184+00 Profile No.: County: 45 Highway: 7 10-19-9 Lane Direction:* NB_SB EB WB Test Date: Contractor: DAN WIUDIAMS Tested By: TxDOT Lane: OUT SIGLE ML FR (1)234 **Distance From Inside** Mix Type: Contractor 3022 Edge of Lane or Joint (ft): Tester: MELINON/GRADO Spec. Item: (Brand and Model of Paver: Visible Segregation: Yes 🗹 Lift: 1st/ 2nd 3rd 11 BarberGreene No Lift Thickness: 2 Describe Type of Remix Equipment blsed In or Ahead of Paver: Iroadtec Feet from Readings (lbs/cf) Avg Average Reading Prev. Read. High Reading 146.6 147.2 141.5 14. 146.3 146.5 146.5 14 Low Reading / 0.0 1 0 Max Density Ranges: 5 High - Low [Max allowable = 6.0 lbs/cf] 5 Average - Low [Max allowable = 3.0 lbs/cf] 7.0 5 0 5 6 6 Notes: 5 14 NB = North Bound, ML = Main Lane, FR = Frontage Road 1 149.0 1 в 5 Lanes numbered from centerline of facility (e.g. 1 = inside lane) 6 10 9 Use a separate form for each density profile. 10 10 A density profile is a series of density readings taken longitudinally 11 approximately every 5 If in a 50' section. 12 Profile one 50' section after the first 1000 feet of project placement 13 (Select the 50' section by method discussed in the specification). 14 15 Profile a section each time the screed stops, including end of day. Profiles must be at least 2 ft from joints and edges 16 First reading of each profile must be 10 ft behind the screed. 17 Minimum of 4 density profiles per mix per project must be 18 Total 147.3 performed by the contractor. 184+20 140.3 SA **Density Profile Plot** 40 145.5 150 Density (Ib/cf) 145 _____ 140 135 -----. 130 -10 -5 5 20 25 30 35 40 50 0 10 15 45 First Reading Screed Location Distance (ft)

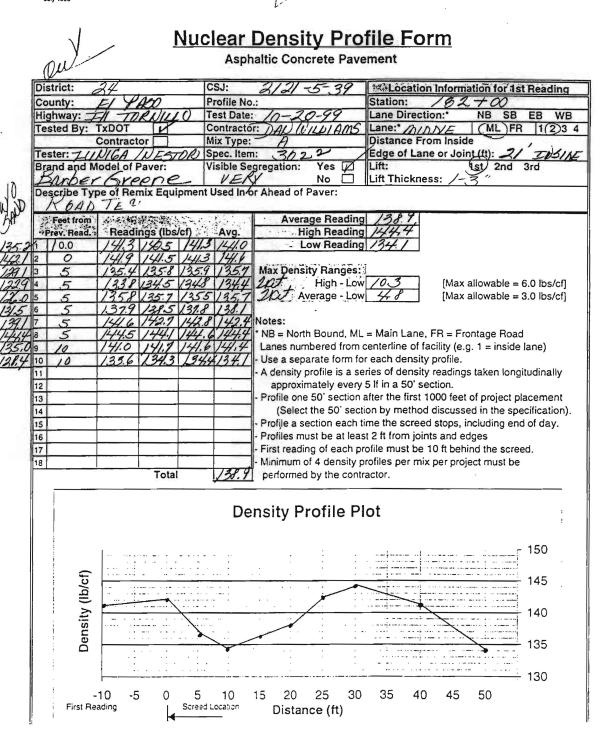
TXDOT Construction Division July 1999

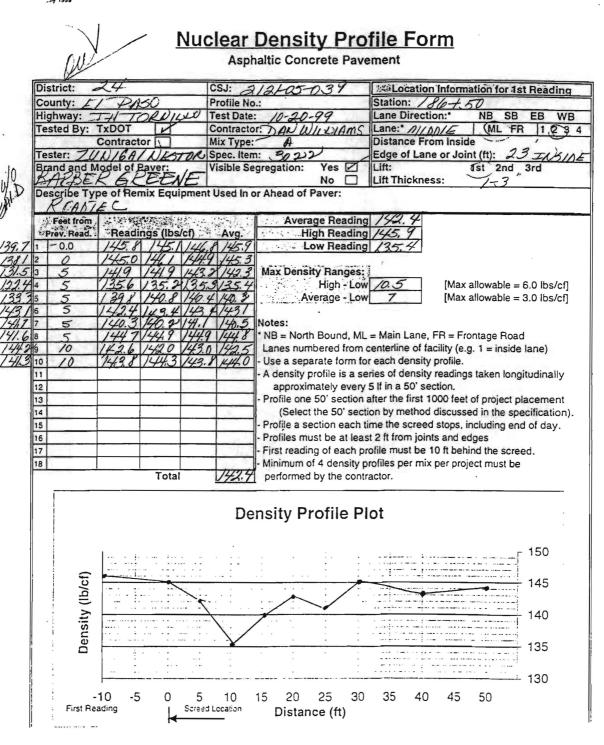
BIAN 12:00 %. FINEX 12:52 pn

Nuclear Density Profile Form

VI Junto

	ou!	Aspl	naltic Concrete Pave	
District:	34	CSJ:	416 TX	IN DIFT
County: /	1 PASO	Profile No	101	Station: 189+00
lighway:	TORNILO	Test Date		Lane Direction:* NB SB(EB) WB
ested By:	and the second se	Contracto		Lane: OUTSIDE ML FR (1)2 3
	Contractor	Mix Type:	17110 0. 1.5.0. / 1.1. 2	Distance From Inside
	NDON/ GRAND	Spec. Iten		Edge of Lane or Joint (ft): 3/2
Brand and M	CAPEENE	2	gregation: Yes 💋 No 🗍	Lift: (1st) 2nd, 3rd Lift Thickness: - 3
PA-1	pe of Remix Equipm	ent Used in d	of Ahead of Paver:	
Feet from	人名英格兰斯 医马马克尔 化	A. 197. 19. 24	· Average Reading	1447
Prev. Read.	Readings (lbs/cf)	Avq.	High Reading	
/0.0		132 144.2	Low Reading	
0	141.2 141.8 14	1.3 14.4		
5	142.2 142.2814	12.8 142.4	Max Density Ranges:	
5	142.2 142.4 14	3.0142.5	High - Low	10.5 [Max allowable = 6.0 lbs/cf]
5	144.0 143.2 14	36 1436	Average - Low	33 [Max allowable = 3.0 lbs/cf]
5	1443 144.514	481445	•	
5	145.1 146.0 14	5.3 45.5	Notes:	
5	144.0144.314	4.5 144.3		= Main Lane, FR = Frontage Road
10	147.2147.014	1.6 147.3		centerline of facility (e.g. 1 = inside lane)
10	152.7 151.5 15	15 151.9	- Use a separate form for	
		-		ries of density readings taken longitudinally
			approximately every	after the first 1000 feet of project placement
			(Select the 50' section a	on by method discussed in the specification).
			- Profile a section each ti	me the screed stops, including end of day.
-				t 2 ft from joints and edges
				ofile must be 10 ft behind the screed.
				rofiles per mix per project must be
······································	Total	144.7	performed by the contra	
[• · · · · · · · · · · · · · · · · · · ·	
	,	De	nsity Profile Pl	ot
i				- 150
5			_	
/c1			A STATE OF A STATE	145
(I)			and a second	
Σ		<u></u> -	· · · ·	140
Density (Ib/cf)				
e u			· · · · · · · · · · · · · · · · · · ·	
D	Frank en er			135
		•		
				130
	10 -5 0	5 10	15 20 25 30	35 40 45 50
First Rea		eed Location	Distance (ft)	
	₩			1


Nuclear Density Profile Form Asphaltic Concrete Pavement


District:	24	CSJ: 2/2/-05-039	Station Information for 1st Reading
	EL PASO	Profile No.: 3	Station: 204 + 00
Highway:		Test Date: 10-19-99	Lane Direction: NB SB (EB) WB
Tested By:		Contractor: DAN WILDELAMS	
	Contractor	Mix Type: A	Distance From Inside // //
	ADDI RENTON	Spec. Item: 3022	Edge of Lane or Joint (ft): 3/2
	lodel of Paver: BG	Visible Segregation: Yes	Lift: (st) 2nd 3rd
BARBER	C CLEEN 2600	No D	Lift Thickness: 7.3
Describe Tv	pe of Remix Equipme	nt Used In or Ahead of Paver:	25 TON CAPACITY
POAN TH	C.SR 200BCS	MIXING HOPPER WHTRIPIC	PITCH ADTI SEGRATION AUCE
Feet from		Average Readir	ng /49.6
Prev. Read.	Readings (lbs/cf)	Avg. High Readin	
1 / 0.0	144 28 144 8 144	7 144.6 Low Readin	
2 0	111. 1 111. 5 141	9 144 2	90720
3 5	112 1 1111111	4 44.2 Max Density Ranges	
4 5	11/20 11/2 4 11		
	1125 1120 11		
5 5	170,0 140.0 Mar	3/42. 6 Average - Lo	W 2.3 [Max allowable = 3.0 lbs/cf]
6 5	141.5 14	146.	
7 5	171.0 14.0 42	.1 144.7 Notes:	Main Long FD Freetran David
3 5	42.3 1469 141		IL = Main Lane, FR = Frontage Road
9 10			centerline of facility (e.g. 1 = inside lane)
10 16	141. 2 141.1 14.		for each density profile.
11			series of density readings taken longitudinally
12			y 5 If in a 50' section.
13			n after the first 1000 feet of project placement
14		(Select the 50' see	ction by method discussed in the specification).
15			time the screed stops, including end of day.
16		- Profiles must be at lea	ast 2 ft from joints and edges
17		- First reading of each	profile must be 10 ft behind the screed.
18		- Minimum of 4 density	profiles per mix per project must be
	Total	153.6 performed by the con	itractor.
1			N1 - 1
		Density Profile F	'10t
•			
			- 150
÷			150
6			
(ct .			145
lp	1		
· · · ·			
ity			140
us			
Density (lb/cf)		····	135
-			
			130
_	10 -5 0 5	10 15 20 25 30	0 35 40 45 50
First Rea		Ed Location Distance (ft)	

ant

Nuclear Density Profile Form Asphaltic Concrete Pavement

District:	24	CSJ: 21215-39	Selection Information for Ist Reading
County: 2	1 PASO	Profile No.:	Station: 167400
Highway:	TH TORNILLO	Test Date: 10-20-99	Lane Direction:* NB SB EB WE
Tested By:	TXDOT V	Contractor: DAL WILLIAM	
	Contractor	Mix Type: A	Distance From Inside
	WGAI NESTON	2 Spec. Item: 302.2	Edge of Lane or Joint (ft): 21
Brand and	Model of Paver:	Visible Segregation: Yes	Lift: 1st 2nd 3rd
Barba	rbreene	- No	Lift Thickness: 7-3"
		ent Used In or Ahead of Paver:	
	ATEC		
Feet from		Average Re	
Prev. Read	Readings (lbs/cf)		
1 / 0.0	142.9 149.2 1	12.2 1427 SLow Res	ading 1.37.5
2 0	141.7 141.8 14	25 142.0	
3 5	144.5 144.7 14	3.5 449 Max Density Ran	
4 5	141.5 42.3 4	2. 1/42.0 0.6/44.6 Average	Low 6.7 [Max allowable = 6.0 lbs/cf]
5 5	171.0 150.1 3	a 2 mile Average	Low 3 P [Max allowable = 3.0 lbs/cf]
6 5	171.0 14.0 9	12 0 14.7 Natas	
7 5	141.4 12.4 14	13, 21/42,5 Notes:	d ML - Moin Long ED - Frantage Dead
8 5			d, ML = Main Lane, FR = Frontage Road
9 10			from centerline of facility (e.g. 1 = inside lane)
10 10	140.6 40.6 14		orm for each density profile.
11			s a series of density readings taken longitudinally
12			every 5 If in a 50' section.
13			ction after the first 1000 feet of project placement
14			' section by method discussed in the specification
15			each time the screed stops, including end of day.
16			at least 2 ft from joints and edges
17			ach profile must be 10 ft behind the screed. Insity profiles per mix per project must be
18	Total		
	Total	144.3 performed by the	contractor.
		Density Profile	e Plot
		Benoty i form	
			150
_			
ct			145
/q			
			140
i i			140
Density (lb/cf)			
De			
			130
	-10 -5 0	5 10 15 20 25	30 35 40 45 50
First	Reading So	Distance (ft)
1			

APPENDIX – B

,

THERMAL IMAGES BY MANUFACTURERS

Notes About Attachments:

Attached as an enclosure to this summary, analysis pages can be found for each of the figures included in this report. Each analysis page contains the figure in the report referenced by the specific figure number. On each thermal image there are three lines of analysis (LI01, LI02, and LI03) and a single spot (SP01). In a table below the image there is a summary of each line with its max, min, average, and cursor temperatures. The cursor temperature is simply the temperature at the location along the line where the hash mark crosses the line. A very important point of interest is the fact that for all of the images a single temperature differential of 140F was used. Though the max and mins might vary between images, the 140F ΔT is constant throughout. The varying max and mins is a function of the fact the temperature of the mix coming from the plant varied from one day to the next and often from one hour to the next. By utilizing the 140F differential, this allows the observer to see how the color variances correspond to every other image in the report. Listed below and on the following page, is a summary of each image in the report and what is of particular interest in that image.

Barber Greene Images:

- BG-Fig 1 Clear indication of a truck exchange/end of load. Notice the >30F DT along LI01.
- BG-Fig 2 Indication of a truck exchange/end of load. As before, notice >25F DT along LI02.
- BG-Fig 3 Indication of longitudinal streaking. Notice that this streak introduced a mat temperature differential of >20F along LI02.
- BG-Fig 4 Example of isolated cold spots which randomly appeared from this equipment arrangement. Observe >50F DT along LI02. Small blue area on the far right hand side of the image is caused by compactor path.
- BG-Fig 5 Example of the Barber-Greene arrangement laying a fairly consistent mat. Observe <20F DT along lines LI01, LI02 and LI03.

BG-Fig 6 This image illustrates the effects of having to start and stop the paving process. The waiting period between trucks for this image was nearly 11 minutes. Notice there is no less than a 74F differential along each of the lines of analysis.

Roadtec Images:

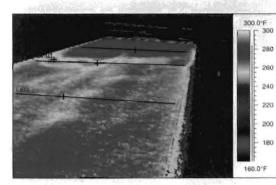
- SB-Fig 1 Clear example of end of load. Notice that there is a 30F DT along LI01, and nearly a 20F DT along LI02.
- SB-Fig 2 Longitudinal streaking in mat which exhibits a 40F DT along LI01.
- SB-Fig 3 Cold spot in middle of mat laid by paver utilizing the Roadtec SB-2500B. Notice >25F DT along each line of analysis.
- SB-Fig 4 Image which illustrates effects of starting and stopping while paving. Lower blue region of image has been sitting for about 8 minutes. Notice large cold slug of material in middle of mat which was allowed to cool while waiting.
- SB-Fig 5 Image of mat with wide variety of temperature damage. There appears to be no set pattern to differences.
- SB-Fig 6 Image of good mat laid while paving at low speeds and a width of 12 ft.
- SB-Fig 7 Image of good mat laid while paving at higher speeds and at a width of 15 ft. Notice that compared to SB-Fig 6, this mat does not look as consistent with respect to minimizing temperature variance.

Lincoln Images:

- LN-Fig 1 Obvious indication of truck exchange/end of load. Notice >40F DT along LI01.
- LN-Fig 2 Gross indication of end of load. This image illustrates a dramatic example of how a difference in truck temperatures can be conveyed into the mat.
- LN-Fig 3 Longitudinal streaking in center of mat. A >30F DT along LI01.
- LN-Fig 4 Cold spot in mat that follows the pulling off of a joint. A >60F DT along LI03.
- LN-Fig 5 Effects of stopping and starting during paving process.
- LN-Fig 6 Best image of temperature consistent mat for this arrangement. Notice still a >20F DT along two of the three lines of analysis.

Cedarapids Images:

- CR-Fig 1 Glaringly obvious indication of end of load. Notice >40F DT between average temperature along LI01 and LI02.
- CR-Fig 2 Indication of end of load. Nearly 30F DT along LI02.
- CR-Fig 3 Effects of stopping and starting paving process. This image illustrates effects of a 6 minute wait.
- CR-Fig 4 Example of longitudinal streaking which was often encountered behind this arrangement.
- CR-Fig 5 Another example of longitudinal streaking. In both cases there appeared not to be a set pattern the streaking was not more favored on one side of the other, nor was the streaking of any sort of uniform width.


- CR-Fig 6 Large random cold spot in mat which did not appear to be caused by end of load.
- CR-Fig 7 Example of one of the better sections of mat from the Cedarapids combination. Notice <30F DT along all three lines of analysis.
- CR-Fig 8 Another example of a good stretch of mat.

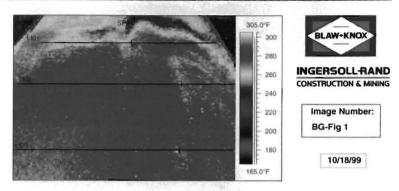
Blaw-Knox Images:

- BK-Fig 1 Clearly visible occurrence of end of load while paving the first lane at higher paving speeds and with pug mills not operating properly. Nearly a 30F DT along LI01.
- BK-Fig 2 Another indication of end of load. Notice >20F DT along LI01.
- BK-Fig 3 Cold spot in mat which occurred when pulling off from a joint. This is consistent with all other machines which had difficulty laying a mat of even temperature when pulling of from a new joint.
- BK-Fig 4 Example of longitudinal streaking in mat. Streaking was a for a short duration and did not introduce temperature variances as large as some seen earlier in the week.
- BK-Fig 5 Example of Blaw-Knox MC-330 combination laying a mat of even temperature distribution while paving first lane at higher speeds.
- BK-Fig 6 Example of Blaw-Knox MC-330 combination laying a mat of even temperature distribution while paving first lane at higher speeds.
- BK-Fig 7 Example of Blaw-Knox MC-330 combination laying a mat of even temperature distribution while paving second lane at slower speeds.
- BK-Fig 8 Example of Blaw-Knox MC-330 combination laying a mat of even temperature distribution while paving second lane at slower speeds. Notice more temperature distribution when paving at slower speeds and with properly functioning pug mills.

RWB 11/4/99

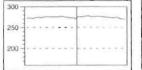
300

200



Temp Profile of LI03

300


200

El Paso, TX: Barber-Greene 260C with a BG-650 Pick Up Machine

Temp Profile of LI01

Temp Profile of LI02

	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	274.4°F	278.4°F	269.3°F	274.7°F
L102	243.1°F	268.1°F	241.1°F	256.6°F
L103	266.3°F	272.1°F	257.6°F	265.3°F
SP01	247 4°E			

Temp	Profile	of LI01	

300 -

250 -

200 -

Temp Profile of LI02

300 --

200

Temp Profile of LI03 300 -----

300 -	-	4	3	Ň	a,J	5	÷	3	A	i.	,	N	5	~	4,	N.
													ſ			
200 -	-	-	-18	+		-			-	-	*	-	-		-	
	-	-	-	-	-	-	-	-	-	-	-	-		_	-	-

	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	273.9°F	281.0°F	250.9°F	267.1°F
L102	270.3°F	291.7°F	269.2°F	279.5°F
L103	274.2°F	300.4°F	272.1°F	286.7°F
SP01	237.0°F			

El Paso, TX: Barber-Greene 260C El Paso, TX: Barber-Greene 260C with a BG-650 Pick Up Machine with a BG-650 Pick Up Machine 290.0°F 300.0°F BLAW+KNOX 300 E 280 BLAW-KNOX 280 260 **INGERSOLL**-RAND 260 INGERSOLL-RAND 240 CONSTRUCTION & MINING CONSTRUCTION & MINING 240 220 Image Number: 220 Image Number: 200 BG-Fig 4 BG-Fig 3 200 180 180 160 10/18/99 10/18/99 150.0°F 160.0°F Temp Profile of LI03

Temp Profile of LI02

250 200 -

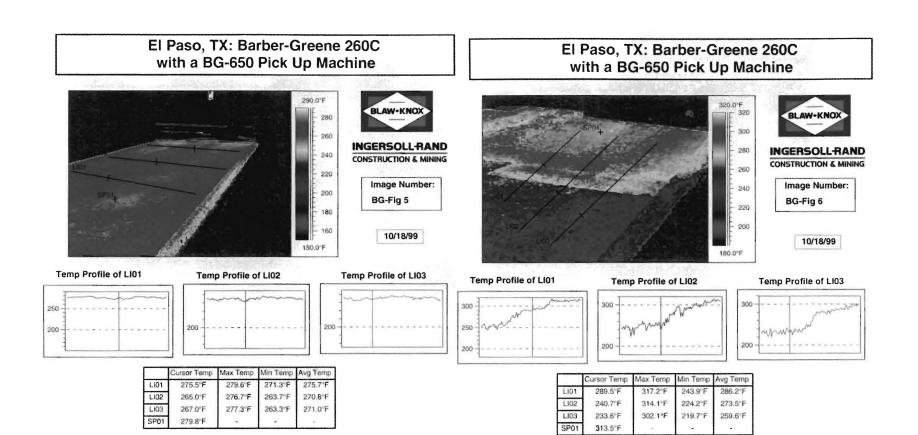
> LI01 LI02 L103 SP01

200		 	- 200
1	1		
		 _	

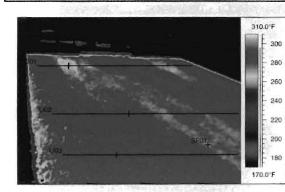
250 200

300

Temp Profile of LI01


Temp Profile of LI02

Temp Profile of LI03 300 200 -


	Cursor Temp	Max Temp	Min Temp	Avg Temp
L101	275.6°F	287.5°F	267.3°F	278.2°F
L102	234.1°F	283.6°F	232.5°F	265.3°F
L103	273.6°F	280.7°F	251.3°F	270.6°F
SP01	237.6°F	-		

300

C	ursor Temp	Max Temp	Min Temp	Avg Temp
	264.3°F	278.6°F	260.2°F	272.5°F
	253.8°F	275.1°F	252.4°F	267.9°F
	268.1°F	280.3°F	261.2°F	273.6°F
	256.0°F			

El Paso, TX: Barber-Greene 260C with a Roadtec SB-2500B and Integrated Pick Up Machine

Cursor Temp

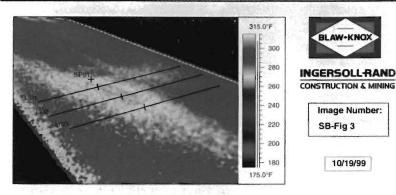
260.5°F

284.0°F

286.5°F

270.2°F

L101


L102

L103

SP01

El Paso, TX: Barber-Greene 260C with a Roadtec SB-2500B and Integrated Pick Up Machine

Temp Profile of LI01

Temp Profile of LI02

Max Temp

295.3°F

290.8°F

291.5°F

300 -	Es	5		-	-	2	1 7		-	~	-	-	-	-	ž	300
250 -	-		h	1	-	+		æ	4			-	-	-	-	
200 -	-	-	-		-	-			-	-	-	-			-	200

300-

Min Temp Avg Temp

282.0°F

283.6°F

286.0°F

-

255.3°F

272.8°F

275.5°F

200

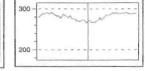
Temp Profile of LI03

Temp Profile of LI01

300

250

200


Temp Profile of LI02

And 1

300 -

200

e of LI02 Temp Profile of LI03

	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	264.3°F	289.3°F	263.7°F	277.8°F
L102	263.3°F	293.3°F	262.1°F	279.4°F
L103	269.8°F	292.2°F	266.0°F	281.9°F
SP01	276.4°F			

El Paso, TX: Barber-Greene 260C with a Roadtec SB-2500B and Integrated Pick Up Machine

200 -

Cursor Temp

264.3°F

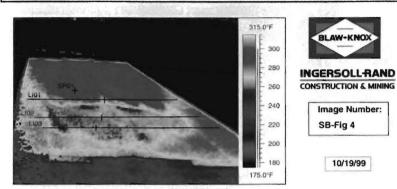
263.3"F

269.8°F

276.4°F

LIOI

L102


L103

SP01

10/19/99

El Paso, TX: Barber-Greene 260C with a Roadtec SB-2500B and Integrated Pick Up Machine

Temp Profile of LI01

250

300

Min Temp Avg Temp

277.8°F

279.4°F

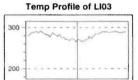
281.9°F

263.7°F

262.1°F

266.0°F

.


Temp Profile of LI02

Max Temp

289.3°F

293.3°F

292.2°F

Temp Profile of LI01

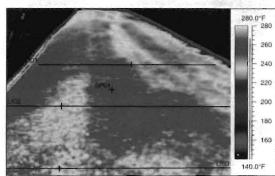
300 -

250

200-

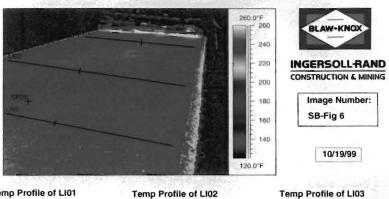
3

Temp Profile of LI02


~~~~	300
	man
	200

300

200 -----


1	Cursor Temp	Max Temp	Min Temp	Avg Temp
L101	276.9°F	295.3°F	260.0°F	282.4°F
L102	264.6°F	284.5°F	253.7°F	265.7°F
L103	261.5°F	287.6°F	244.1°F	267.5°F
SP01	295.0°F			

#### El Paso, TX: Barber-Greene 260C with a Roadtec SB-2500B and Integrated Pick Up Machine





#### El Paso, TX: Barber-Greene 260C with a Roadtec SB-2500B and Integrated Pick Up Machine

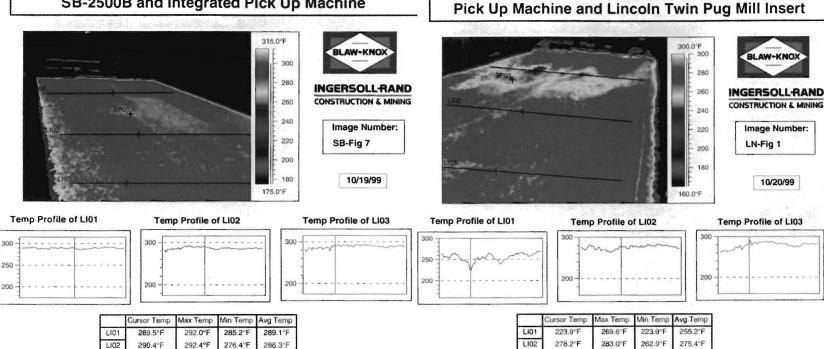


#### Temp Profile of LI01

Temp Profile of LI02

200 -

250 -	1	~	5	-	-	4	SX	2	*	5	-	7	-	5	2	ñ	
200 -	-			~	-	*	-	-	+	a.	-			-	-	-	2
150 -	1			+	_							-					1


	Cursor Temp	Max Temp	Min Temp	Avg Temp
L101	247.3°F	256.6°F	236.4°F	247.9°F
L102	228.5°F	265.2°F	227.9°F	250.1°F
L103	228.1°F	254.1°F	225.0°F	243.1°F
SP01	254.3°F		1.	

#### Temp Profile of LI03 Temp Profile of LI01

250 -----200 200 150 -

Temp	Profile	of	l

	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	244.8°F	245.9°F	239.7°F	242.6°F
L102	239.8°F	245.5°F	233.2°F	239.9°F
L103	243.3°F	246.7°F	232.1°F	240.3°F
SP01	230.3°F	-		-



L103

SP01

284.4°F

247.1°F

290,9°F

262.2°F

278.8°F

#### El Paso, TX: Barber-Greene 260C with a Roadtec SB-2500B and Integrated Pick Up Machine

277.5°F

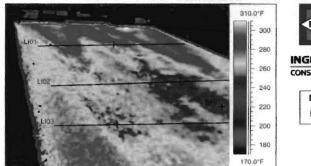
294.7°F

289.0°F

-

L103

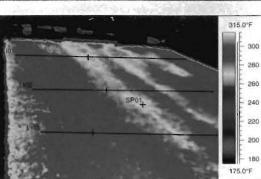
SP01


291.4°F

280.6°F

#### El Paso, TX: Barber-Greene 260C with a Lincoln 880 Pick Up Machine and Lincoln Twin Pug Mill Insert

El Paso, TX: Barber-Greene 260C with a Lincoln 880 Pick Up Machine and Lincoln Twin Pug Mill Insert


#### El Paso, TX: Barber-Greene 260C with a Lincoln 880 Pick Up Machine and Lincoln Twin Pug Mill Insert



300 -

200 -







Temp Profile of LI01

300

250

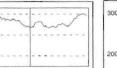
200

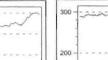
Temp Profile of LI02

**Temp Profile of LI03** 

300 -

200


Temp Profile of LI01


300

250

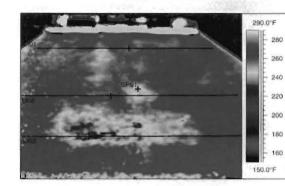
200 -

Temp Profile of LI02



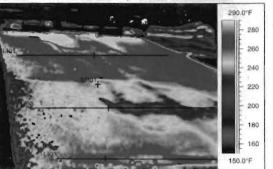


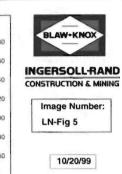
300 200


Temp Profile of LI03

	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	268.4°F	300.5°F	266.7°F	281.2°F
L102	279.3°F	297.5°F	270.4°F	286.8°F
L103	296.4°F	300.2°F	266.0°F	289.4°F
SP01	269.8°F	-	-	

	Cursor Temp	Max Temp	Min Temp	Avg Temp
LIO1	273.4°F	297.4°F	250.2°F	279.8°F
L102	233.9°F	273.1°F	233.5°F	257.8°F
L103	250.8°F	277.8°F	250.5°F	261.1°F
SP01	236.8°F		-	-


El Paso, TX: Barber-Greene 260C with a Lincoln 880 Pick Up Machine and Lincoln Twin Pug Mill Insert


#### El Paso, TX: Barber-Greene 260C with a Lincoln 880 Pick Up Machine and Lincoln Twin Pug Mill Insert



200 -







Temp Profile of LI01

250 -

200 -

Temp Profile of LI02

Temp Profile of LI03

200

Temp Profile of LI01

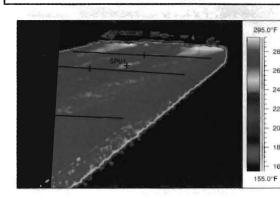
250 -

200

#### Temp Profile of LI02






	w	~	1	4	~	-			5	÷	-	~	-
0-				-	-					2	i.	- 10	1

Temp Profile of LI03

	Cursor Temp	Max Temp	Min Temp	Avg Temp
LIO1	263.2°F	274.3°F	253.3°F	264.5°F
L102	240.3°F	251.2°F	206.9°F	232.0°F
L103	268.2°F	287.2°F	246.6°F	270.1°F
SP01	250.5°F			

	Cursor Temp	Max Temp	Min Temp	Avg Temp
L101	258.5°F	264.3°F	251.0°F	259.1°F
L102	262.3°F	267.2°F	237.3°F	259.6°F
L103	232.3°F	270.6°F	219.0°F	250.9°F
SP01	240.4°F			

El Paso, TX: Barber-Greene 260C with a Lincoln 880 Pick Up Machine and Lincoln Twin Pug Mill Insert



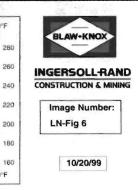
200

Cursor Temp

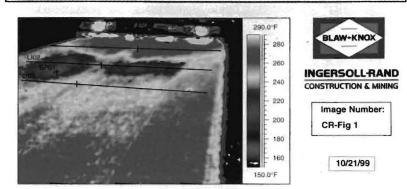
273.9°F

269.2°F

277.7°F


258.2°F

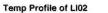
LI01


L102

LI03

SP01




#### El Paso, TX: Cedarapids CR-461 AntiSegregation Remix Paver with Cedarapids MS-2 Pick Up Machine



Temp Profile of LI01

250

200



Max Temp

286.3°F

282.5°F

285.5°F

Temp Profile of LI03

200 -

Min Temp Avg Temp

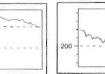
276.4°F

273.8°F

277.4°F

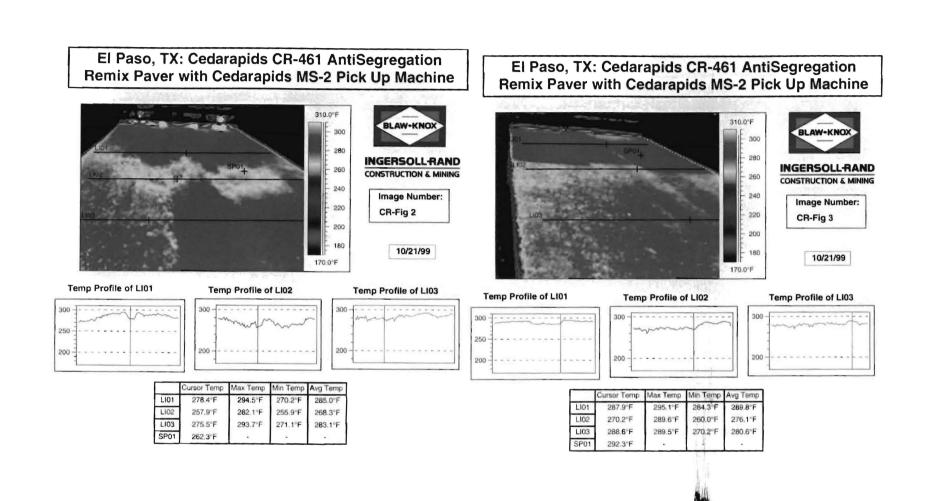
260.3°F

262.3°F

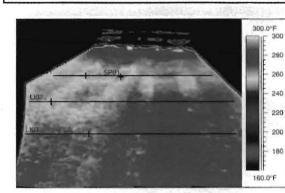

271.5°F

Temp Profile of LI01

250


200 -

Temp Profile of LI02




	Te	mp	P	ro	of	ile	9	01	I		0:	3	_	_
		N	_	-	-	~	~	~	2	~~	,	-	v	N.
200 -				-	-	7	2	9	÷		i.	1		1

	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	256.0°F	275.5°F	224.2°F	260.2°F
L102	234.4°F	251.8°F	208.3°F	228.6°F
L103	251.3°F	258.7°F	228.1°F	245.2°F
SP01	211.2°F			



El Paso, TX: Cedarapids CR-461 AntiSegregation Remix Paver with Cedarapids MS-2 Pick Up Machine



Cursor Temp

248.7°F

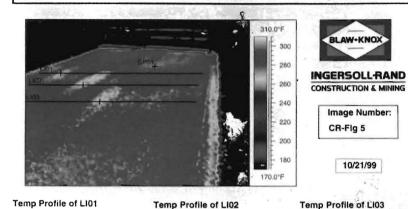
253.2°F

265.6°F

249.9°F

LIOI

L102


L103

SP01



Temp Profile of LI03

#### El Paso, TX: Cedarapids CR-461 AntiSegregation Remix Paver with Cedarapids MS-2 Pick Up Machine



Temp Profile of LI01

Temp Profile of LI02

Max Temp

266.9°F

273.6°F

276.4°F

Min Temp Avg Temp

259.0°F

265.1°F

268.9°F

248.1°F

252.0°F

261.1°F

300
200

300	-
 200	4

300

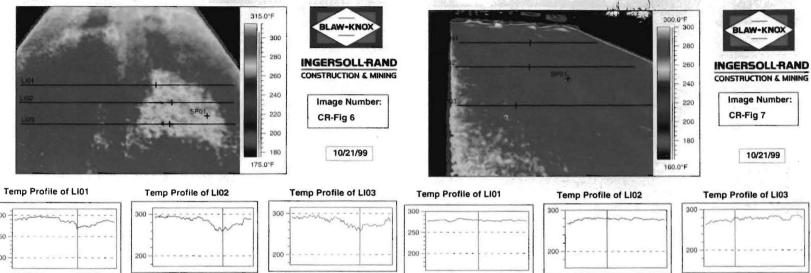
Temp Treme of Elot

300 -	-		E	-	-	-	1	 2	2	i?	~	3	1	~	-
250 -	-	a.	ľ	-	-	-	-	•				-		-	-
200 -		×,	ŀ		-			-	-	~	3	4	-	-	

		1	en	np	Pr	OTI	le	C
-	5	-		-		-	-	-

300 -

200 -


-	300	~~~
-	200	

	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	272.2°F	296.3°F	267.1°F	284.5°F
L102	270.2°F	290.3°F	264.9°F	282.0°F
L103	267.5°F	292.0°F	265.8°F	281.6°F
SP01	299.8°F			U.

-----

El Paso, TX: Cedarapids CR-461 AntiSegregation Remix Paver with Cedarapids MS-2 Pick Up Machine

#### El Paso, TX: Cedarapids CR-461 AntiSegregation Remix Paver with Cedarapids MS-2 Pick Up Machine



	Cursor Temp	Max Temp	Min Temp	Avg Temp
LIO1	267.7°F	298.1°F	266.6°F	287.0°F
L102	259.0°F	298.0°F	259.0°F	283.6°F
L103	259.2°F	297.0°F	258.6°F	281.4°F
SP01	265.0°F			

	Cursor Temp	Max Temp	Min Temp	Avg Temp
L101	279.0°F	283.3°F	274.7°F	278.2°F
L102	279.5°F	282.4°F	266.3°F	278.0°F
L103	281.1°F	286.1°F	263.2°F	277.4°F
SP01	285.3°F	-		-

94

300 -

250

200 -

El Paso, TX: Cedarapids CR-461 AntiSegregation Remix Paver with Cedarapids MS-2 Pick Up Machine

#### 300.0°F J.F 300 280 Port+ 260 240 220 200 180 160.0°F

300

200

Cursor Temp

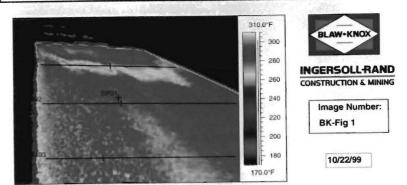
277.4°F

277.0°F

281.8°F

269.2°F

L101


L102

L103

SP01



#### El Paso, TX: Barber-Greene 260C Using an MC-330 with BG-650 Pick Up and BK Twin Pug Mill Hopper Insert



Temp Profile of LI01

300

250

200

Temp Profile of LI02

Max Temp

287.2°F

281.5°F

291.0°F

Temp Profile of LI03

300 -

200

Min Temp Avg Temp 280.0°F

276.8°F

280.6°F

2

270.9°F

270.6°F

266.4°F

Temp Profile of LI01

300 -----

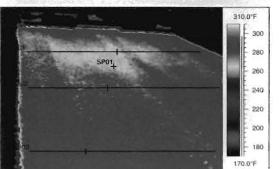
250

200

**Temp Profile of LI02** 

. . . .

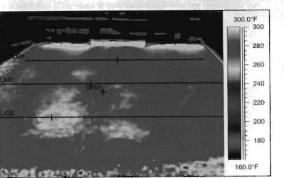
-------


300 -	-	*	-	-	-	-		-	4	-
	~	1	~	-	-		w	5		
	-			-	-	-		-	-	2
200 -	-									-

	Temp Profile of LI03
300	
	The shine we

	-			1											4
	1														4
	4														
200		+	-	-	-	-	~	-	-	-	-	-	-	-	-
	-			. 1											

	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	272.6°F	283.3°F	254.3°F	270.8°F
L102	277.5°F	289.4°F	271.8°F	281.6°F
L103	277.2°F	285.3°F	269.7°F	277.9°F
SP01	281.4°F		-	


#### El Paso, TX: Barber-Greene 260C Using an MC-330 with BG-650 Pick Up and BK Twin Pug Mill Hopper Insert



300 -

200 -





300

200



Temp Profile of LI01

Temp Profile of LI02

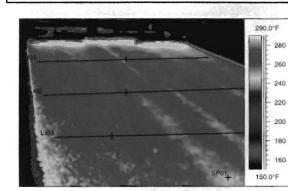
Temp Profile of LI03

Temp Profile of LI01

Temp Profile of LI02

Cemp Profile of LI03

300 -				3		1		-			-
250 -	-	-	 -	~			-		-	-	
200 -	1	-	 ~	-	_	-					 


	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	265.8°F	287.0°F	262.2°F	272.1°F
L102	278.2°F	290.1°F	272.3°F	281.8°F
L103	294.3°F	294.3°F	279.4°F	287.6°F
SP01	266.3°F			

300 -	24	~	ū	2	-	vi	2	-	-	2	+	15	1 5	+		300 -
																250 -
200 -			-	-		3		÷				-14	-		-	200 -

~	C	-	~	1	-	-	-	1	-	-	-	-	-
	1	~	(m		~	-	-	•	i.				-
		-		-					æ	1		1	-

	Temp Profile of LI0
5	300
11	200

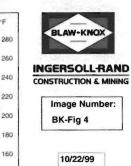
	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	281.1°F	286.1°F	271.7°F	279.8°F
L102	273.3°F	280.5°F	264.1°F	273.6°F
L103	249.4°F	281.5°F	247.3°F	270.3°F
SP01	271.4°F			



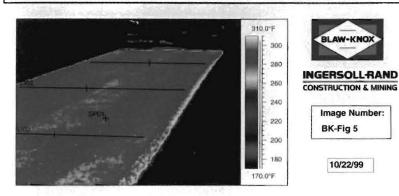
Cursor Temp

275.5°F

266.5°F


267.4°F

250.3°F


L101 L102

L103

SP01



#### El Paso, TX: Barber-Greene 260C Using an MC-330 with BG-650 Pick Up and BK Twin Pug Mill Hopper Insert



Temp Profile of LI01


Temp Profile of LI02

Max Temp

281.5°F

278.7°F

271.1°F



le of LI02	Temp Profile of LI03
	- p

Min Temp Avg Temp 275.5°F

269.0°F

262.6°F

.

268.1°F

256.4°F

252.8°F

200

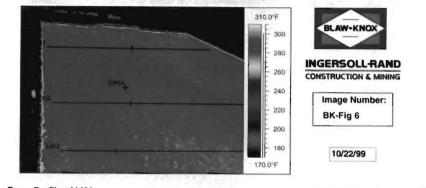
	Temp Profile of LIC	)1
- and the second	300	-

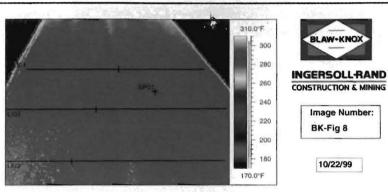
250 -

200

 1	-	-	+	-	5	+ (	2	F	-	3	1	-	1	-	-
	5	1	-	÷		-	-	ł		-	-	-		-	
	4						-	ŀ		- 8-				-	-

**Temp Profile of LI02** 300-----


200 -


Temp Profile of LI03

www	300
	200

	Cursor Temp	Max Temp	Mill Temp	Avg Temp
LI01	293.5°F	296.5°F	282.6°F	289.7°F
L102	287.8°F	299.0°F	279.3°F	290.5°F
L103	291.0°F	298.5°F	277.7°F	291.0°F
SP01	284.4°F	-		-

El Paso, TX: Barber-Greene 260C Using an MC-330 with BG-650 Pick Up and BK Twin Pug Mill Hopper Insert





Temp Profile of LI01

300 250

200 -

**Temp Profile of LI02** 

Temp Profile of LI03

**Temp Profile of LI01** 

Temp Profile of LI02

Temp Profile of LI03

300	300 - anti- topoceno
200	200

-	Cursor Temp	Max Temp	Min Temp	Avg Temp
L101	292.1°F	295.5°F	283.3°F	291.2°F
L102	296.3°F	297.1°F	284.4°F	291.9°F
L103	287.3°F	300.2°F	281.8°F	293.9°F
SP01	288.0°F	-		

300 -	ve	-	~	-	-	-	-	-	-	-	-	-	-	-
250 -			•	1	~	2	-	-	-			-	-	
200 -			1			ÿ,	-	-	1			1	-	

300	 	 	 300 -	1-15
200	 	 	 200 -	

1	1			 	
1					
+					
	 	-	 -		-

	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	288.0°F	291.7°F	284.2°F	288.4°F
L102	289.0°F	297.6°F	285.8°F	291.3°F
L103	297.4°F	303.4°F	287.8°F	294.0°F
SP01	288.6°F	1 -	•	

# 310.0 F 170.0 F

т...

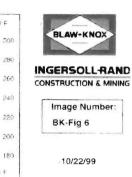
200

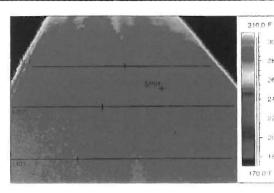
ursor Temp

292 1 F

296.3 F

287.3 F


288 U F


1101

L102

L103

SP01







10/22/99

Temp Profile of LI01

300

150

remp		rome	01	LIUZ	
 	-				-
Pre-					

Max Temp

295.5 F

297 I F

300 2 F

Drafile of LIO2

Temp Profile o	f LI <b>0</b> 3
----------------	-----------------

300

500

Min Temp Avg Temp

291.2 F

291 9 F

293.9 F

283.3 F

284.4 F

281 8 F

		1

Tem	p Pr	ofile	of L	.101	
 1000	-			-	-
			1		

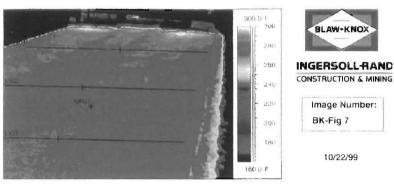
0.025

200

L101	Temp Pro	Temp Profile of	
	300	-	
	200	1	

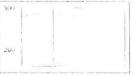
le of LI02	Temp Profile of L103		
1	300		
· · · ·	1		

300 280


240

200 180

	Cursor Temp	Max Temp	Min Temp	Avg Temp
L101	288.0 F	291 7 F	284 2 F	288 4 F
L102	289.0 F	297 6 F	285.8 F	291.3.5
L103	297.4 F	303 4 F	287.8 F	294 U F
SP01	288.6 F			


El Paso, TX: Barber-Greene 260C Using an MC-330 with

BG-650 Pick Up and BK Twin Pug Mill Hopper Insert



Temp Profile of L101	ofile of LI01 Temp Profile of LI02	
100	300	
6.267		
	200	

Temp	Profile	e of	1103	
------	---------	------	------	--



	Cursor Temp	Max Temp	Min Temp	Avg Temp
LIÜ1	285 0 F	290.4 F	282 5 F	286.0 F
1.102	283.3 F	285.6 F	271.5 F	281.0 F
LI03	285.8 F	288.3 F	273.5 F	282 6 F
SP01	284.2 F			2

### **APPENDIX – C**

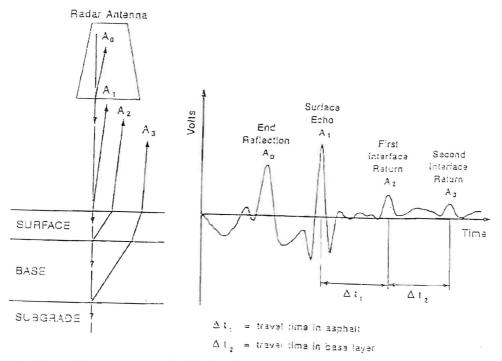
### **REPORT FROM TTI DETECTING SEGREGATION USING GROUND PENETRATING RADAR (GPR)**

#### **GROUND PENETRATING RADAR RESULTS FROM THE MTD RODEO IN EL PASO**

1. BACKGROUND

#### 1.1. Basics of Ground Penetrating Radar

The Texas Transportation Institute s Ground Penetrating Radar (GPR) unit is shown in Figure 1a. This system sends discrete pulses of radar energy into the pavement system and captures the reflections from each layer interface within the structure. This particular GPR unit operates at highway speed (60 mph), transmits and receives 50 pulses per second, and can effectively penetrate to a depth of 2 feet. A typical plot of captured reflected energy versus arrival time for one pulse is shown in Figure 1b, as a graph of volts versus time in nanoseconds.

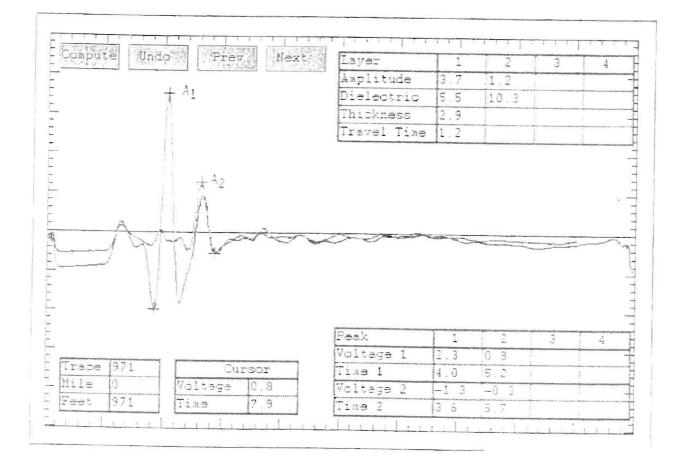

In Figure 1b, the reflection  $A_1$  is the energy reflected from the surface of the pavement and  $A_2$  and  $A_3$  are from the top of the base and subgrade respectively. As described in Section 1.3, these amplitudes of reflection and the time delays between reflections are used to calculate both layer dielectrics and thickness. The dielectric constant of a material is an electrical property which is most influenced by moisture content and density. If the moisture content for a layer increases, then the dielectric of the layer will increase which will result in an increase in the energy reflected from the top of the layer. An increase in air voids would have the opposite effect if the amount of air in a layer increases the energy reflected and the resulting dielectric would decrease.

TTI has established a range of typical dielectrics for most paving materials. For example HMA layers normally have a dielectric value between 4.5 and 6.5, depending on the coarse aggregate type. Measured values significantly higher than this would indicate the presence of excessive moisture. Lower values could indicate a density problem or indicate that an unusual aggregate, such as lightweight, had been used.

In this study plots of surface dielectric are produced for each of the Material Transfer Devices (MTD s) used in the El Paso study. It is proposed that variations in surface dielectric are indicators of variations in the air void content of the top layer. For a homogeneous well compacted surface layer the dielectric plot versus distance should be a relatively flat horizontal line. Recent studies at the Texas Transportation Institute have found that sharp localized decreases in the surface dielectric are associated with areas of low density in the surface layer.



a. TTI GPR Equipment.




 Principles of Ground Penetrating Radar. The Incident Wave is Reflected at Each Layer Interface and Plotted as Return Voltage Against Time of Arrival in Nanoseconds.

Figure 1. GPR Equipment and Principles of Operation.

#### 1.2. GPR Reflections from a New HMA Surface

Figure 2 shows the reflection from a thin three inch thick HMA layer over a thick granular base. As the base typically has significantly more moisture than the HMA, there is often a large reflection from the top of the base. The amplitude of reflection from the top of the base is related to the moisture content of the base. However, with thin surface layers the reflections from both the surface and base reflections overlap. In order to measure the true amplitude of reflection from the top of the base, it is necessary to apply the surface removal technique developed in earlier studies at TTI. In figure 2 the blue line is the raw data and the red line represents the reflections remaining after the surface is removed.



Reflections  $A_1$  and  $A_2$  are from the Surface and top of Base Respectively. The Red Line is Obtained After Surface Removal.

# Figure 2. Typical GPR Reflection from a Newly Constructed Pavement Consisting of a Thick Granular Base and Thin Surfacing.

#### 1.3. Computation of Layer Thickness and Dielectrics

By automatically monitoring the amplitudes and time delays between peaks, it is possible to calculate layer dielectrics, layer thicknesses, and to estimate the moisture content of granular base material. The surface dielectric is used extensively in this study, it is calculated using Equation 1 shown below;

$$\sqrt{\epsilon_a} = \frac{A_m + A_1}{A_m - A_1} \tag{1}$$

where

- $\varepsilon_a$  = the dielectric of the surface layer
- $A_1$  = the amplitude of reflection from the HMA surface in volts
- $A_m$  = the amplitude of reflection from a large metal plate in volts (this represents the 100% reflection case)

The GPR trace can also be used to calculate surface and base thicknesses using the equations given below;

$$h_1 = \frac{C \times \Delta t_1}{\sqrt{e_a}}$$
(2)

where

 $h_1 =$  the thickness of HMA layer

c = (normally 5.9 ins/ns) the speed of travel of a GPR wave in free space (ins/ns) as measured by the system. For two-way travel this value is 5.9 inches per nanosecond. The speed as measured by the GPR unit can be computed using a height calibration procedures

 $\Delta t_1$  = the time delay between peaks A₁ and A₂ of Figure 2

$$\sqrt{\epsilon_b} = \sqrt{\epsilon_a} \left[ \frac{1 - \left[\frac{A_1}{A_m}\right]^2 - \left[\frac{A_2}{A_m}\right]}{1 - \left[\frac{A_1}{A_m}\right]^2 - \left[\frac{A_2}{A_m}\right]} \right]$$
(3)

where

 $\varepsilon_b =$  the dielectric of the base layer

 $A_2 =$  the amplitude of reflection from the top of the base layer in volts

Using the amplitude and time delay data presented in Figure 2,  $A_1 = 3.7$  volts,  $A_2 = 1.3$  volts,  $\Delta t_1 = 1.2$  nanoseconds, and given  $A_m = 9.14$  volts. Calculate the following dielectrics and layer thicknesses:

Using Equation 1,

$$\sqrt{\epsilon_a} = \frac{A_m + A_o}{A_m - A_o} = \frac{9.14 + 3.7}{9.14 - 3.7} = 2.36$$
$$\epsilon_a = 5.5$$

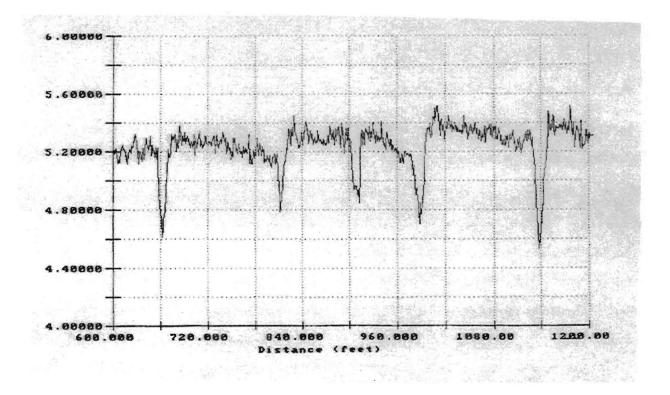
Using Equation 2,

$$h_a = \frac{5.9 \times \Delta t_1}{\sqrt{\epsilon_a}} = \frac{5.9 \times 1.2}{2.36} = 3.0 \text{ ins}$$

Using Equation 3,

$$\sqrt{\epsilon_{b}} = 2.36 \left[ \frac{1 - \left(\frac{3.7}{9.14}\right)^{2} + \left(\frac{1.2}{9.14}\right)}{1 - \left(\frac{3.7}{9.14}\right)^{2} + \left(\frac{1.2}{9.14}\right)} \right]$$
$$= 3.23$$
$$\epsilon_{b} = 10.4$$

The computed layer dielectrics and thickness are shown in the box in the upper right hand corner of Figure 2. The slight differences with those values calculated above is attributed to rounding errors.


#### **1.4. Relating the Computed Dielectrics to Engineering Properties**

The engineering properties of most interest to highway engineers are the air void content of the HMA layer and the moisture content of the granular base. Both of these impact the computed layer dielectrics. The computed dielectric for any layer is a function of the volumetric ratios of the components and their individual dielectric values. For example, the major components of a dry HMA layer are aggregate, asphalt, and air. For a granular base the components are aggregate, air, and water. The typical component dielectrics are tabulated below:

Material	Dielectric
Air	1.0
Water	81.0
Aggregate	5.5 (range 4 to 8 depending on rock type)

Asphalt 2.2

Therefore, the addition of more air to a HMA surface layer will cause a significant reduction in its dielectric value. Consequently, the addition of moisture to a granular base layer will cause a significant increase in its dielectric value. Continuous surface and base dielectric plots can be computed from a GPR survey as the vehicle passes over the newly constructed HMA layer. A typical surface dielectric plot from a newly placed Type B material which contained visual segregation is shown in Figure 3. The sharp decreases in the surface dielectric were correlated to segregated areas in the new mat.



# Figure 3. Surface Dielectric Plot Obtained on a HMA Layer which Contained Truck-End Segregation(Type B Material, IH 20 Odessa).

The relationship between surface dielectric and HMA air voids was studied extensively in Finland in the early 1990s by Timo Saarenketo of the Finnish National Roads Administration. As part of these studies, a laboratory test was performed to relate the surface dielectric measured with a probe to the air void content of the material. The researchers performed tests on both laboratory molded and field samples. Figure 4 shows a typical set of results from the laboratory samples. There is scatter in the data but it is noted that the results are for a range of mixes with different aggregate types. The work of the Finnish researchers found that the exponential relationship shown in Figure 4 is reasonable for both field and lab samples. The conclusion from the earlier studies in Texas and Finland is that the air void content of a HMA layer is directly related to that layers surface dielectric value. This will be evaluated further in the section 3 and 4 of this report.

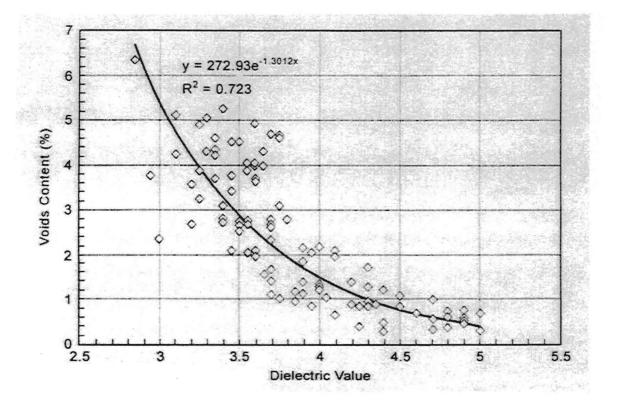



Figure 4. Laboratory Test Results Relating Air Void Content of HMA Samples to Measured Dielectric Values. (Saarenketo 1996)

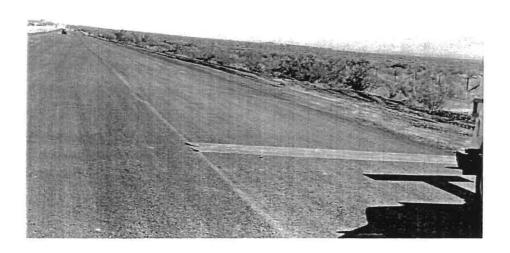
#### 2. DATA COLLECTION PLAN IN EL PASO

Photographs of the GPR equipment used in the El Paso study and the test site layout are shown in Figure 5. The aluminum foil shown in the top photograph was used to ensure that the same starting location was used while performing multiple passes over the section. The lower photo shows the start location of the lane paved with the Lincoln MTD, the center lane was paved with the RoadTec device and the inside lane used the Barber-Greene MTD.

Figure 6 presents a single GPR trace from one location from the Lincoln section. The pavement structure originally consisted of several inches of HMA over a flexible base. Prior to placing the new material the section was milled leaving a variable thickness layer of old HMA. The nominal thickness of the new HMA layer was 3 ins. From Figure 6 the reflection marked as  $A_1$  is from the surface of the pavement, the two peaks to the right of the surface reflection are reflections from the top of the old HMA layer and the top of the flexible base. The box in the upper right corner shows the measured amplitudes and time delays between peaks as well as the computed layer dielectrics and thicknesses. In evaluating the uniformity of the HMA surfacings it is the variation in the amplitude of surface reflection which is of prime interest in this study.

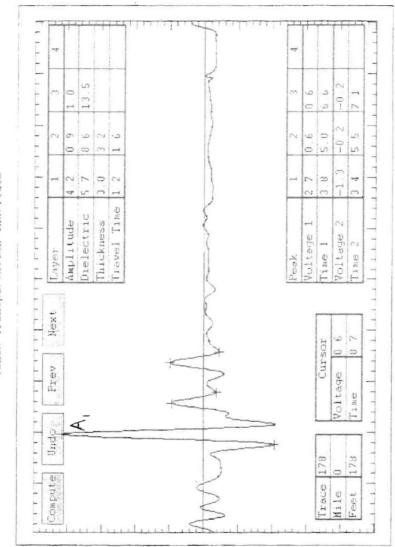
GPR testing of the experimental sections was conducted in two phases as described below;

#### 1) Density Control Locations


For each MTD the Texas DOT selected 6 locations to performed field density measurements and to take validation cores. These were locations where either the paver stopped or where segregated areas were visually apparent in the mat. At each location a series of nuclear density measurements were performed over a distance of approximately 60 ft and three cores were taken for lab testing. At each of these sites a GPR survey was conducted while traveling at 10 mph over the site with a GPR trace collected at 1 foot intervals. Markers were placed in the GPR data file to denote the beginning and ending of these test areas. A comparison of the GPR and lab densities is given in Section 3 of this report.

#### 2) Multiple Passes of representative sections

The GPR provides subsurface information from a longitudinal strip of pavement which is about 8 inches wide. To gain information on the variability of these mats in the transverse direction multiple passes were made over representative section placed with each MTD device. Sections approximately 1490 ft long were selected. GPR data was collected at 5 transverse locations (outer edge, outer wheel path, middle, inside wheel path and inside edge). The results obtained are presented in Section 4 and in the Appendix to this report.




A. GPR Equipment



B. Start of Lincoln Test Site (Outside Lane)

Figure 5. El Paso Test Site.



Texas Transportation Institute

Figure 6. Typical GPR Trace from the Test Section Placed with the Lincoln MTD.

#### 3. CORRELATING GPR SURFACE DIELECTRICS WITH MEASURED LAB DENSITIES

Figure 7 shows the computed surface dielectrics from one of the 60 ft long test areas selected by TxDOT for nuclear density measurements and coring. This is from location #5 (Sta. 185) for the section paved with the Lincoln MTD. The 3 coring locations are marked in figure 7. At each core location the computed surface dielectric and measured lab density (lbs/cuft) are given. The trend is that as the HMA density decreases the computed surface dielectric decreases. This is consistent with the discussion presented earlier in this report.

Figure 8 presents the correlation between the computed surface dielectric and the laboratory determined densities for the Lincoln MTD section. Again the trend is promising as the surface dielectric increases the lab density increases. The shape of the curve is reasonable, the relationship appears curvilinear heading towards an asymptote on the density scale.

The results shown in Figures 7 and 8 are the best documentation available evaluating the relationship between the computed surface dielectric and measured lab density. More work is needed in this area. There is some scatter in the data which may be partially attributed to the manner in which the data was collected. The GPR data was collected while traveling over the section at 10 mph, and placing marks in the data file noting the start and end of each section. The core locations were estimated from the offset distance provided by TxDOT. Therefore there may be some inaccuracies in exactly matching GPR data to the core locations.

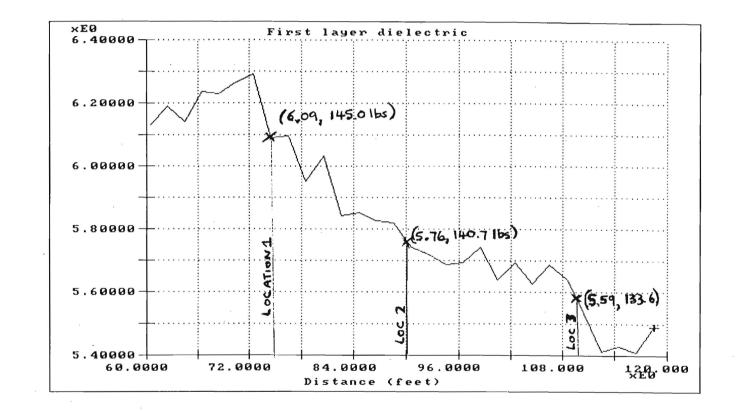



Figure 7. Surface Dielectric Plot for Lab Validation Test Area 5 (Sta 185 + 00) from Lincoln Section. At Each of the 3 Coring Locations the Computed Surface Dielectric and Measured Laboratory Density is Shown.

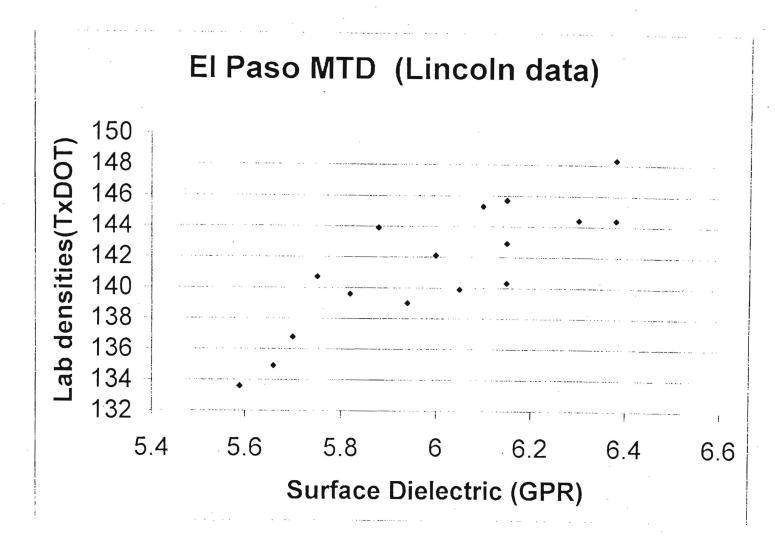



Figure 8. Summary Data from the Lincoln Section.

#### 4. SURFACE DIELECTRIC PLOTS FROM DIFFERENT MTD'S

Representative surface dielectric plots from each of the 5 MTD's are shown in Figures 9 thru 14. Note two different Barber-Greene sections (Figure 10 and 11) were established and tested. Each section was approximately 1490 ft long and the distance scale is shown as the x-axis in each figure. As discussed earlier, sudden localized dips in the surface dielectric have been found to correlate with areas of segregation. Therefore the quality of the mat is judged in terms of both the overall variations in the surface dielectric and the absence of sudden dips.

Based on this criteria the best performer was the RoadTec MTD shown in Figure 12. The plot shows some variation in dielectric but no major localized dips. The high dielectric measured in the middle of the section should be ignored, it was attributed to a thin piece of metallic foil placed on the surface of the pavement for the profile measuring equipment. The next best performer was Barber-Greene 1 shown in Figure 10, which had a major problem area at one end of the section but this was a transition point between MTD devices. A few minor dips are marked on Figure 10. The performance of the other 3 devices (Lincoln, Cedar Rapids and Blaw Knox) was judged as inferior to the RoadTec MTD. The surface dielectric plots shown in Figures 9, 13 and 14, all show major periodic dips in the surface dielectric plots.

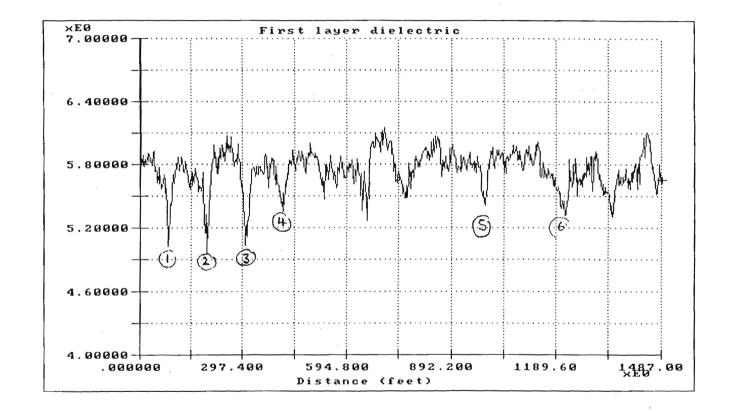



Figure 9. Surface Dielectric Plot for LINCOLN MTD. (Note: Regular dips in plot, marked 1, 2, etc.)

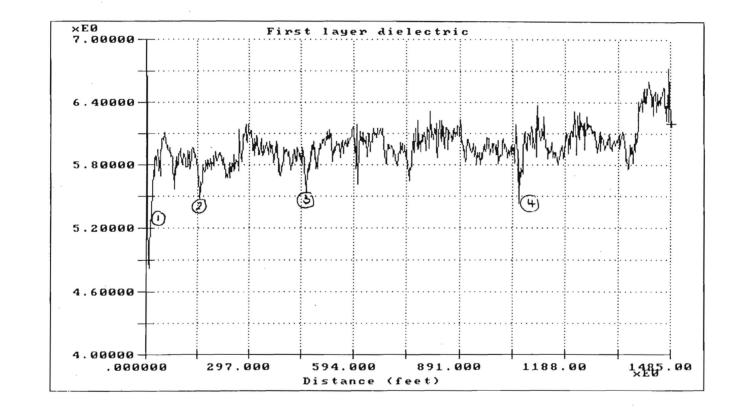



Figure 10. Surface Dielectric Plot of BARBER-GREENE 1 MTD. (Note: Very low values at start of section, this was a transition area. Dips marked throughout section).

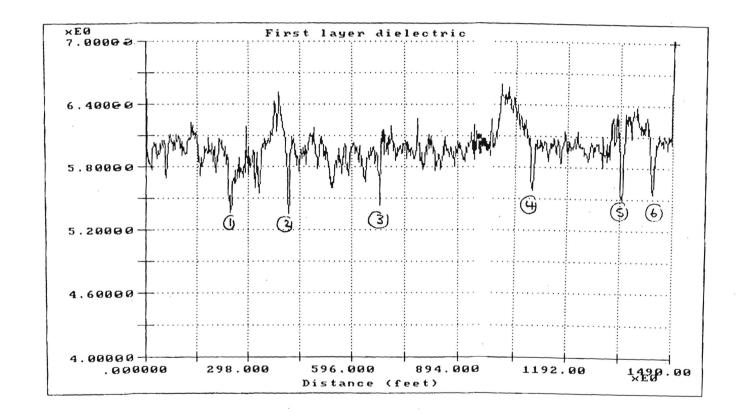



Figure 11. Surface Dielectric Plot of BARBER-GREENE 2 MTD. (Note: Periodic dips marked, 1, 2, etc.)

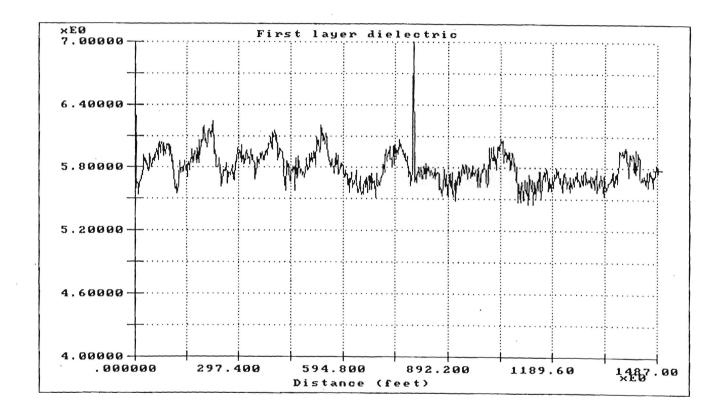



Figure 12. Surface Dielectric Plot of ROAD TECH MTD.

(Note: Absence of any localized dips indicating uniformity. High value in middle of run associated with metal foil strip on surface)

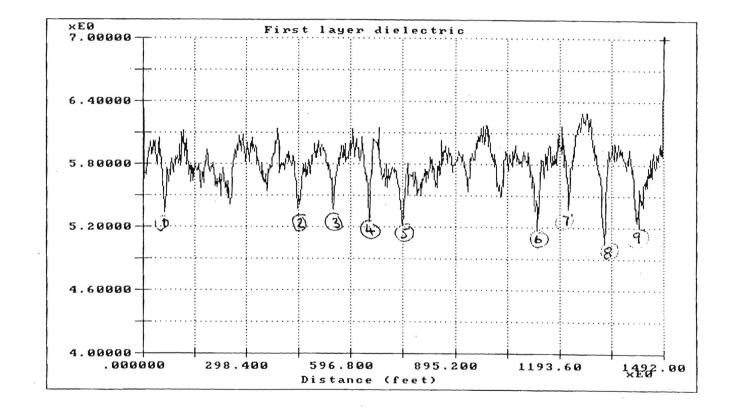



Figure 13. Surface Dielectric Plot of CEDAR RAPIDS MTD. (Note: Regular dips in lot, marked 1, 2, etc.)

,

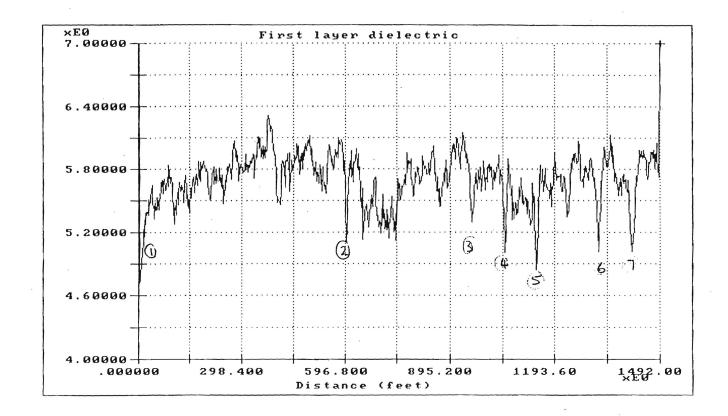



Figure 14. Surface Dielectric Plot of BLAW-KNOX 1 MTD.

,

#### 5. CONCLUSIONS AND RECOMMENDATIONS

- 1. Based on the laboratory densities there appears to be a good correlation between surface dielectrics computed from the Ground Penetrating Radar reflections and the laboratory measured core densities. As expected from theory low surface dielectric correlate to low density.
- 2. GPR with its ability to rapidly scan an entire section and provide continuous results provides a very promising tool for quality control evaluations of new HMA surfaces.
- 3. The quality of the HMA mat can be related to the uniformity of the surface dielectric plot and the number of segregated areas can be estimated from the number of sudden localized dips in surface dielectric.
- 4. For the mix used in El Paso the RoadTec MTD is judged to provide the most uniform defect-free HMA layer.
- 5. The Barber-Greene MTD provided reasonable performance on the first test area (Figure 10) but poorer performance in the second area (Figure 11)
- 6. The other three MTD's (Lincoln, Blaw-Knox and Cedar-Rapids) were judged as inferior to the RoadTec device.

### Appendix 1

#### SURFACE DIELECTRIC PLOTS FOR ENTIRE LANE

As discussed a total of 5 longitudinal passes were made over each 1500 ft by 12 ft test area. In order to present a"birds-eye" view of the potential problem areas a color coded plot was developed. These are shown in Figures 15 thru 19. Each figure shows a plan view of the test area. It is a composite of the information collected in each of the 5 passes (outer edge, outer wheel path, middle, inner wheel path and inner edge). In each Figure the red areas are locations of reasonable dielectric, the low dielectric areas have different colors. The lowest dielectric (lowest density) are the areas colored blue.

Each Figure is discussed below;

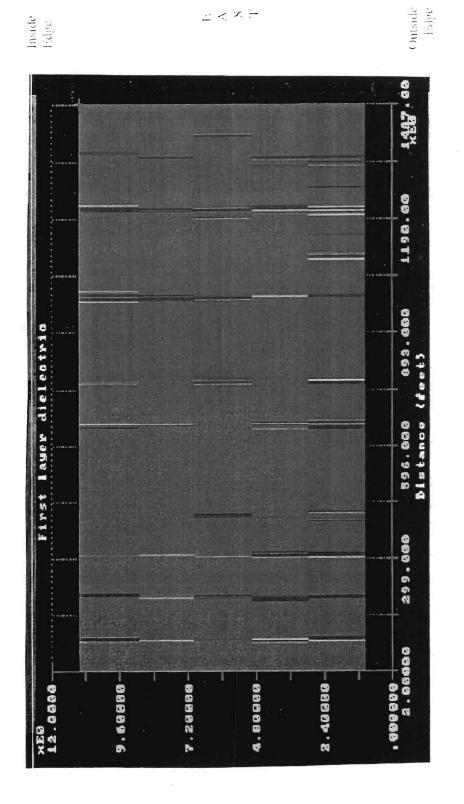
#### Figure 15 Lincoln MTD

The low dielectric (low density) areas line up across the mat. The low density area are at approximately 100 ft spacing. This appears to be the classical "truck-end" segregation pattern.

#### Figure 16 Barber-Greene MTD

This data was collected in the East to West direction. The major defect is at the beginning of the section, this is actually a transition areas. The other problem area was in the inside (free) edge of the mat.

#### Figure 17 RoadTec MTD


No major problems. Minor problems found in on one edge. This appears to be the most uniform section in the study.

#### Figure 18 Cedar Rapids MTD

Problems mostly on inside edge and in the last few hundred feet of the section. Towards the end the segregated areas cover the full width of the mat.

#### Figure 19 Blaw-Knox

Major problems in many areas, particularly in both wheel paths.





 $\exists \exists s \in$ 

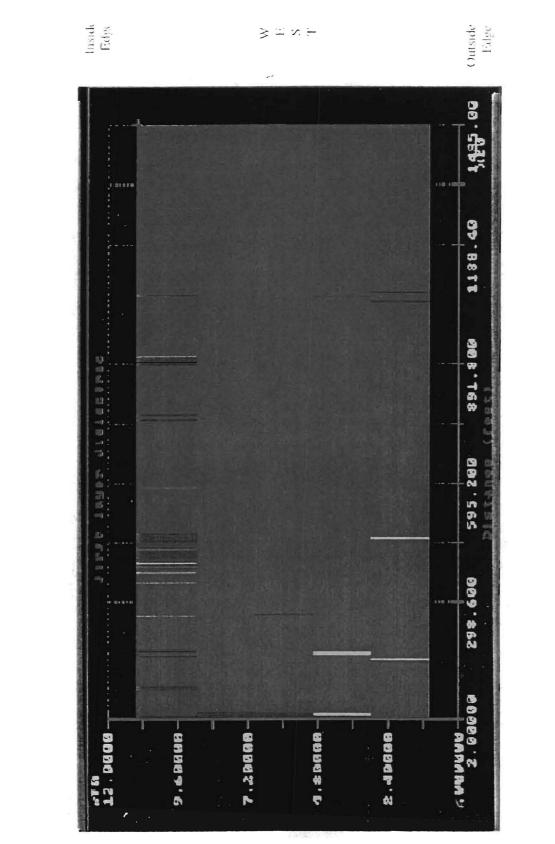



Figure 16. Plan View of Barber Greene Section. (1485 ft by 12 ft). Blue Areas Indicate Low Dielectric.

E A S E

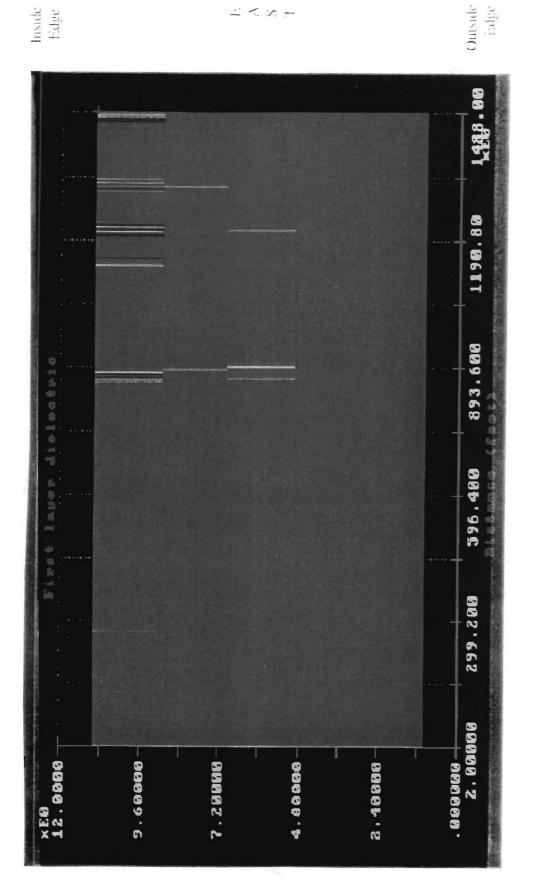



Figure 17. Plan View of Road Tec Section. (1488 ft by 12 ft). Blue Areas Indicate Low Dielectric.

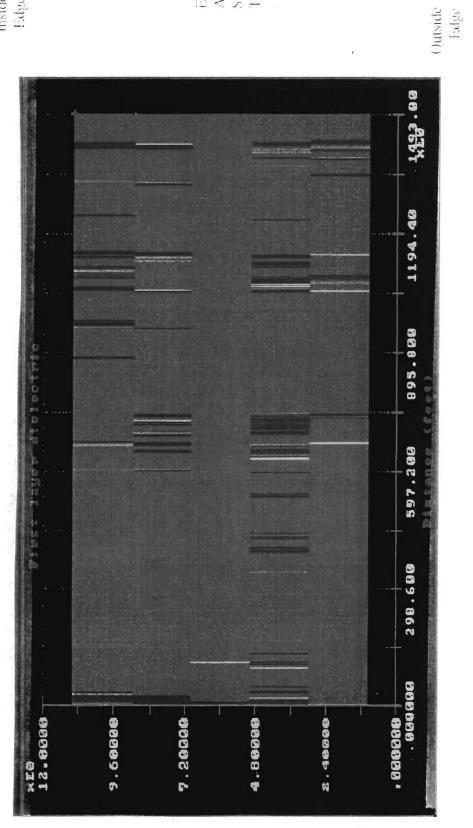




Figure 18. Plan View of Cedar Rapids Section. (1493 ft by 12 ft). Blue Areas Indicate Low Dielectric.

 $\Xi < x +$ 

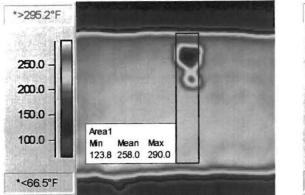
Inside. Edge

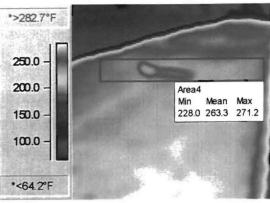
×□×⊢



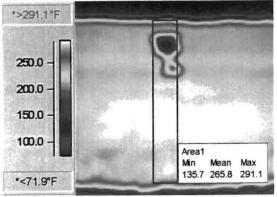
 $\square < \infty \vdash$ 

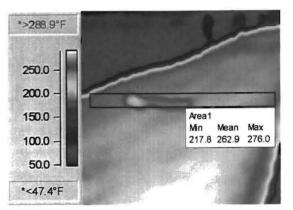



128 A III N II

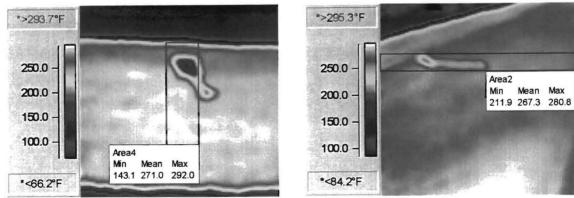

Inside Edge

## APPENDIX – D


### IMAGES FOR EVALUATING THERMAL CAMERAS


### IMAGES BY INFRAMETRICS THERMASNAP

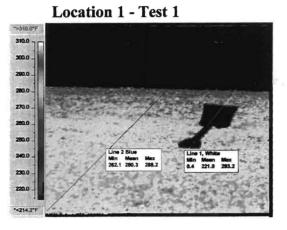





**Location 1** 






Location 2



Location 3

#### **IMAGES BY INFRAMETRICS THERMACAM MODEL PM-280**

Location: I-10, Exit 55 East Bound, El Paso Texas Paver: Barber Greene 260C, 10B Extendable Screed MTD: Blaw-Knox MC 330 with Mixing Hopper Insert Mix: Type 1 Binder, 1 1/4" Stone Paving Width: 15' Paving Depth: 3" Haul Distance: 30 Miles, 45 Minutes Date: October 22, 1999



Location 2 - Test 1

>309.2°F

305.0 -300.0 -295.0 -295.0 -295.0 -275.0 -275.0 -275.0 -275.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295.0 -295

214 27

>310,0°F

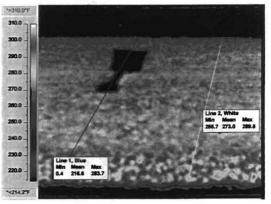
310.0 -

300.0

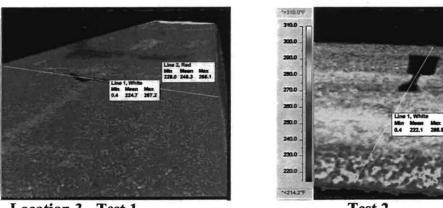
290.0

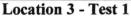
200.0

270.0


280.0

240.0

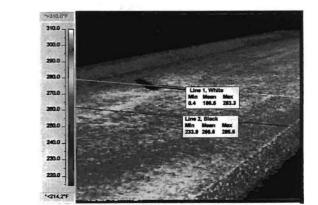

230.0


*214.2"F

Test 2



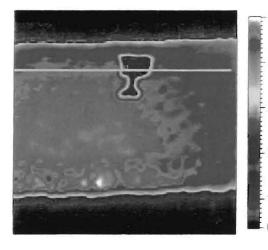
Test 2






Min Mean Max 250.1 273.5 298.4

Min Mean Max 0.4 217.5 288.0


Test 2



Min Meen Mex 258.1 274.8 290.4

*Where line passes across the target shovel, temperature readings will read "0" because the target temperature is less than 210 degrees

## IMAGES BY IR SNAPSHOT MODEL PM-525 Test 1

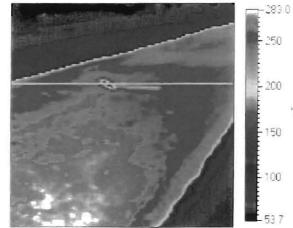




R00202.ISI

#### Info:

Image Path	DWR IMAGESIDAY 5 BKIR00202 ISI
Image Date/Time	Friday, October 22, 1999, 9:47:55 AM.
Report Date/Time	Monday, October 25, 1999, 8 53:09 AM
Temp Unit	Fahrenheit
User	Rick James
Location	El Pasc I-10
Target	


#### Data:

Label	Emissivity	Background	Average	Std Dev	Max	Min
L1	0 93	83 93	256.87	47.08	282.2	117.8

#### Comments:

D: 1 000	0 0 1 100011	
Picture #:202	Paving Speed: 40FPM	Stopped J Time Stopped J Windrow Length
Head of Material: 1/2 Auger		
Auger speed: Erratic 🖵	Estimated Speed : 5-40	RPM Auger height low
Plant Output Temperature:	340	Temperature Input at Paver 320
Visual Segregation:	Other: Open textu	ired mat
Ambient at 7:30 am 44 degr	ees F wind N 5 left to righ	t across windrow
Type A mix 3" depth 14 wi	ab	
The Burns o debuil in the		

10.25 00 8.65 AM





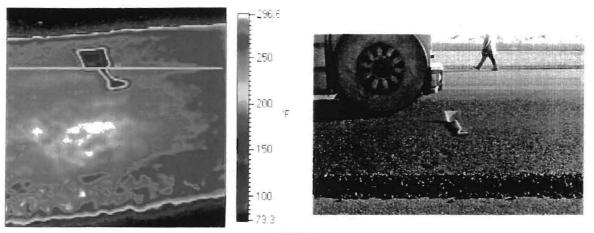
R00203.ISI

### Info:

Image Path	DNR IMAGES\DAY 5 BK\IR00203.ISI
Image Date/Time	Friday, October 22, 1999, 9:49:27 AM
Report Date/Time	Monday, October 25, 1999 8:56:27 AM
Temp Unit	Fahrenheit
User	Rick James .
Location	El Paso I-10
Target	

#### Data:

Label	Emissivity	Background	Average	Std Dev	Max	Min
L1	0.93	83.93	244.26	18.58	260.7	165.6


#### Comments:

Picture #:202	Paving Speed: 40FPM S	topped 🔄 Time Stopped 🗳 Windrow Length
Head of Material: 1/2 Auger		
Auger speed: Erratic 🔟	Estimated Speed : 5-40 RPM	Auger height low
Plant Output Temperature:	340 Tem	perature Input at Paver 320
Visual Segregation:	Other: Open textured ma	it

Type A mix 3" depth 14 wide

1900203 doc

10.25/99 8:57 AM 1 0* 1

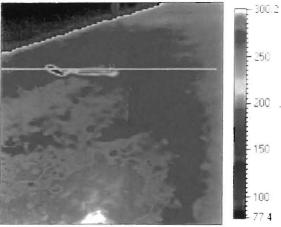


R00204 ISI

#### Info:

Image Path	D'\IR IMAGES\DAY 5 BK\IR00204 ISI
Image Date/Time	Friday, October 22, 1999 9:52:06 AM
Report Date/Time	Monday, October 25, 1999 B:58:43 AM
Temp Unit	Fahrenneit
User	Rick James
Location	El Paso I-10
Target	

#### Data:


Label	Emissivity	Background	Average	Std Dev	Max	Min
L1	0.93	83.93	274.82	22.38	287.6	161.8

#### Comments:

Picture #:202	Paving Speed: 40FPM	Stopped 🗋 Time Stopped 🗉 Windrow Length
Head of Material: 1/2 Auger		
Auger speed: Erratic ]	Estimated Speed : 5-40 RPM	Auger height low
Plant Output Temperature:	340 Ter	mperature Input at Paver 320
Visual Segregation	Other: Open textured m	lat
Ambient at 7:30 am 44 degi	ees F wind N 5 left to right acro	ss windrow
Type A mix 3" depth 14' w	de	

H00204 1 K

10/25/99 9:00 AM 1 of 1



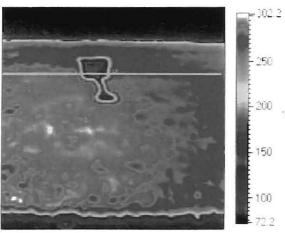
£ 200 .-- 150 -100 E 77 4

1R00205 ISI

#### Info:

Image Path	D.VIR IMAGES/DAY 5 BKV/R00205.ISI
Image Date/Time	Friday, October 22, 1999. 9:53:07 AM
Report Date/Time	Monday, October 25, 1999 9:01:20 AM
Temp Unit	Fahrenheit
User	Rick James
Location	El Paso I-10
Target	

#### Data:


Label	Emissivity	Background	Average	Std Dev	Max	Min
L1	0.93	83.93	255.32	23.77	273.7	161.3

#### Comments:

Picture #:202	Paving Speed:	40FPM	Stopped	1	Time Stopped J Windrow Length
Head of Material: 1/2 Auger					
Auger speed: Erratic	Estimated Spe	ed : 5-40 RP	M Au	ger	height low
Plant Output Temperature:	340 Temperature Input at Paver 320			out at Paver 320	
Visual Segregation:	Other: (	open textured	mat		
Ambient at 7:30 am 44 degr	ees F wind N 5	eft to right ad	ross windro	w	
Type A mix 3" depth 14' wi		en lo right ac	TOSS WINGTO	W	

Pi00205 tox.

15/25/99/9:02 AM 1 of 1



F 250 ₽200 °F - 150 -100 - 72.2

R00206 ISI

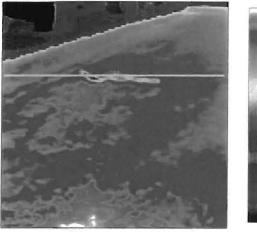
#### Info:

Image Path	DIVIR IMAGESIDAY 5 BKVIR00206.ISI
Image Date/Time	Friday, October 22, 1999, 9:55:39 AM
Report Date/Time	Monday, October 25, 1999 9:03:02 AM
Temp Unit	Fahrenheit
User	Rick James
Location	El Paso I-10
Target	

#### Data:

Label	Emissivity	Background	Average	Std Dev	Max	Min	Sec.d.
L1	0.93	83 93	266.42	41.26	295.6	135.4	

#### Comments:


Picture #:202	Paving Speed: 40FPM	Stopped J Time Stopped J Windrow Length		
Head of Material: 1/2 Auger				
Auger speed: Erratic J	Estimated Speed : 5-40 RPM	Auger height low		
Plant Output Temperature:	340 Temperature Input at Paver 320			
Visual Segregation:	Other: Open textured	mat		
Ambient at 7:30 am 44 degr	ees F wind N 5 left to right acr	oss windrow		
Type A mix 3" depth 14' wi	de			

R00206 doc

10/25/99 9/03 AM 1/11 1

### Test 6

r-297.0



-250 -200 'F -150 -100 -75 1

IR00207 ISI

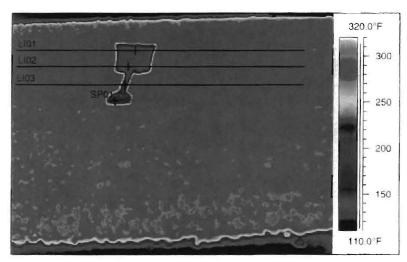
### Info:

Image Path	D'\IR IMAGES\DAY 5 BK\IR00207.ISI
Image Date/Time	Friday, October 22, 1999 9:56:45 AM
Report Date/Time	Monday. October 25, 1999-9:04:17 AM
Temp Unit	Fahrenneit
User	Rick James
Location	El Paso I-10
Target	

### Data:

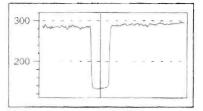
Label	Emissivity	Background	Average	Std Dev	Max	Min
L1	0.93	83.93	251.49	20.78	271 1	175.6

### Comments:


Paving Speed: 40FPM	Stopped J Time Stopped J Windrow Length
Estimated Speed : 5-40 RPM	Auger height low
340 Te	emperature Input at Paver 320
Other: Open textured i	nat
ees F wind N 5 left to right acro	oss windrow
	Estimated Speed : 5-40 RPM 340 To Other: Open textured o ees F wind N 5 left to right acro

IH00207_doc

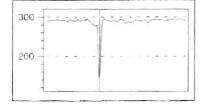
10.25.99.9.C4 AM 1 of 1


### **IMAGES BY FLIR AGEMA MODEL PM-550**

### El Paso, TX: Barber-Greene 260C Using an MC-330 with BG-650 Pick Up and BK Twin Pug Mill Hopper Insert

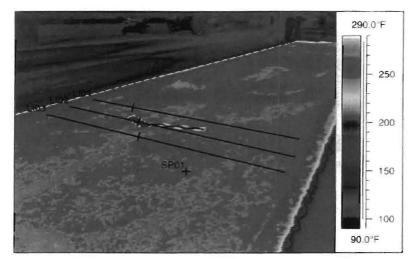





### Temp Profile of LI01

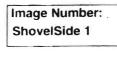


### Temp Profile of Ll02


300	1.1	-	~	-	1	7	-	ſ	5	-	1	~	-	-	-	2
200			-		-	-	+				-	÷	-	0		
	t			- 1	_	1	+	1		_			_	_		_

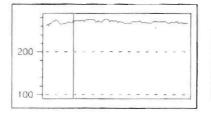
### **Temp Profile of LI03**



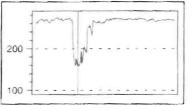

	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	133.6°F	296.5°F	131.5°F	269.0°F
L102	133.3°F	293,2°F	131.5°F	271.0°F
L103	144.8°F	295.9°F	144.8°F	287.9°F
SP01	166.2°F	-	-	-

### Summary:

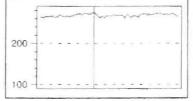





INGERSOLL-RAND



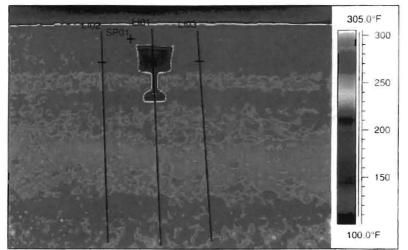

10/22/99


### Temp Profile of LI01



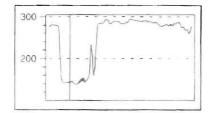
### Temp Profile of LI02



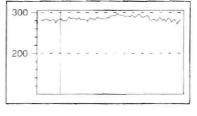

### **Temp Profile of Ll03**



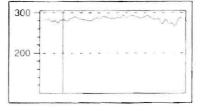
	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	273.8°F	277.5°F	260.1°F	270.4°F
L102	159.6°F	273.3°F	158.7°F	258.2°F
L103	274.4°F	274.4°F	260.0°F	268.0°F
SP01	265.6°F		-	


### Summary:





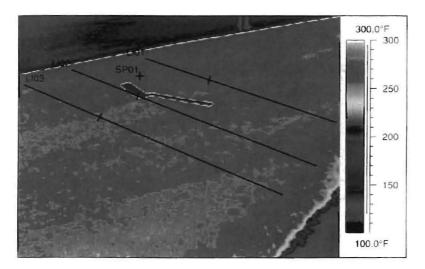




### Temp Profile of LI01



#### **Temp Profile of LI02**

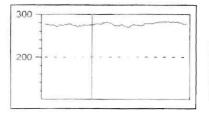



#### Temp Profile of LI03

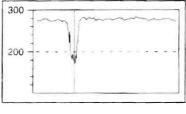


	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	144.6°F	294.0°F	138.1°F	251.1°F
L102	284.9°F	297.8°F	270.8°F	285.1°F
L103	283.9°F	294.9°F	268.2°F	284.5°F
SP01	280.5°F			

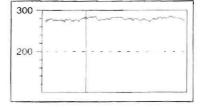
### Summary:__


140



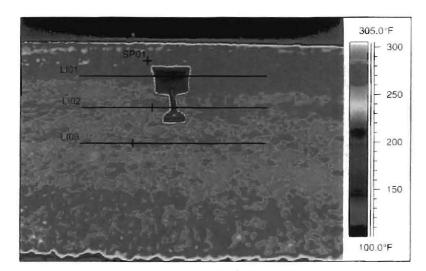



10/22/99


### Temp Profile of LI01



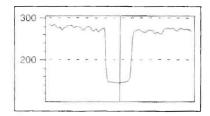
### Temp Profile of Ll02



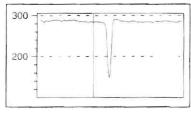

### Temp Profile of LI03



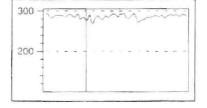
	Cursor Temp	Max Temp	Min Temp	Avg Temp
L101	274.7°F	283.4°F	268.5°F	276.7°F
L102	181.5°F	283.8°F	172.8°F	271.9°F
L103	283.0°F	286.2°F	270.8°F	279.4°F
SP01	276.8 ⁻ F		-	


### Summary:_



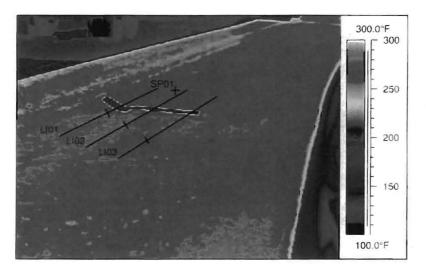



10/22/99


Temp Profile of LI01



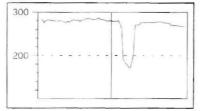
Temp Profile of LI02



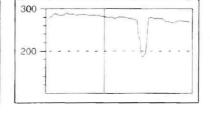

**Temp Profile of Ll03** 



	Cursor Temp	Max Temp	Min Temp	Avg Temp
L101	145.6°F	285.7°F	145.1°F	251.0°F
L102	283.8°F	291.0°F	148.3°F	281.6°F
L103	276.6°F	294.7°F	268.1°F	286.2°F
SP01	278.5°F	-	-	


### Summary:






10/22/99


#### Temp Profile of LI01



#### Temp Profile of Ll02



### Temp Profile of LI03



	Cursor Temp	Max Temp	Min Temp	Avg Temp
LI01	280.3°F	286.5°F	170.8°F	270.1°F
L102	281.3°F	290.8°F	186.0°F	274.3°F
L103	273.0°F	284.1°F	184.0°F	272.0°F
SP01	269.7°F			

### Summary:

### APPENDIX – E

### **BARBER-GREENE EQUIPMENT**

## BARBER-GREENE

Page 7105 Release 102

# **BG-650**

### STANDARD FEATURES AND BENEFITS

Swing out front support wheels with hydraulic height adjustment to control pickup head height.

Foot shaft mounted combining augers (737 mm/29 in. diameter) provide a wide throat (2997 mm/118 in.) for pick up of off-center and extra wide windrows.

High capacity slat conveyor, with 1473 mm/58 in. wide by 178 mm/7 in. deep slats mounted to roller flight chain, provide long life and low maintenance.

A clean wheel path for the paver is maintained by, height adjustable, scrapers mounted behind the combining augers.

Swing up towing frame with pintle hook.

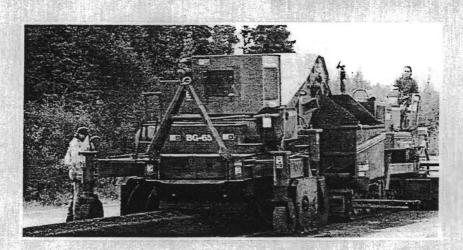
Three point suspension allows machine to closely follow road contours.

Break-away scrapers protect machine against accidental damage from obstructions in roadway.

Front idler design provides a high, rearward directed slat entry into windrow to help propel the unit into the windrow and to minimize vibration.

### WIDE THROAT WINDROW ELEVATOR

Machines shown may have optional equipment.


Dual operating stations allow full control, at ground level, from either side of machine.

1905 mm/75 in. conveyor discharge height for full paver hopper loading.

Easy attachment to paver without removing push roller or truck hitch.



## FEATURES



The Model BG-650 Windrow Elevator is a new generation of windrow elevator that provides greater productivity and flexibility than previously available designs. This machine has the capability to handle off-center or wide windrows with no loss of productivity. It can handle windrows laid by conventional end dump trucks as well as those laid by belly dumps. Steering and tracking is accurate, and it can easily and quickly be re-positioned on the job site.

#### Engine

Caterpillar[®] 3054DIT turbo-charged, four stroke/ cycle diesel engine with four cylinders, 100 mm/3.94 in. bore, 127 mm/5.00 in. stroke and 4,0 liter/243 cu. in. displacement. Gross horsepower @ 2200 rpm: 80 kw/107 hp. 12 volt electric starting system with 115 amp alternator and one 12 volt battery. 176 l/40 gallon fuel tank.

#### Elevating Conveyor

Inlet opening is 2997 mm/118 in. wide. Conveyor slats are 1473 mm/58 in. wide by 179 mm/7 in. deep. Discharge height is 1905 mm/75 in. Front idler design provides a high, rearward-directed slat entry into the windrow to help propel the unit into the windrow and minimize vibration. Flight chain is heavy-duty roller bushed. Replaceable abrasion resistant liner. Heavy-duty head and tail shafts with heavy-duty anti-friction bearings.

#### Suspension

Two 559 mm/22 in. x 179 mm/7 in. solid rubber tires on front casters. Two  $8:25 \times 15$  tires on rear casters. All wheels have heavy-duty caster assem-

blies. Caster wheels pinned for towing. Front casters mounted to swing arms, allow unit to be loaded on 2438 mm/8 ft. trailer, or spread to 4318 mm/170 in. (track) to clear wide windrows.

#### Hydraulic Drive System

Variable displacement pump is direct connected to the engine and drives a fixed displacement hydraulic motor directly connected to conveyor head shaft. Gear-type pump provides hydraulic pressure to suspension system.

### Controls

Control panels on both sides of unit include: Emergency stop, engine throttle, conveyor on/off, hydraulic raise/lower front and rear wheels. Engine instrument panel includes: Oil pressure gauge, water temperature gauge, voltmeter, fuel gauge, and hour meter.

### Hydraulic lift system

Hydraulic cylinders raise and lower rear caster assemblies together and front caster assemblies individually.

- Swing up towing frame
- Attaching Adaptor

Designed to fit most pavers, without removing the push roller or truck hitch.



© 1993 Caterpillar Printed in U.S.A.

**QEHQ9362** 

### **APPENDIX – F**

### **BLAW-KNOX EQUIPMENT**

## **BLAW+KNOX** Specifications

**MC-30** 

The MC-30 Mobile Conveyor is a self-propelled, wheel mounted, bulk material handling/delivery system with a built-in surge storage capacity of approximately 30 tons (27.2 T). A proven economical alternative to current methods and equipment, the MC-30's application potential includes in-line or offset paving, road widening and milling operations with either bituminous, aggregate or concrete materials.

Functioning as a material tender for hot mix asphalt paving operations, the MC-30 has proven to reduce material hauling cost and increase paver laydown production, all while improving the overall quality and smoothness of the new asphalt pavement.

Standard end-dump haul units deposit material into the front receiving hopper of the MC-30. This matenal is then transported, undisturbed, rearward via a high capacity, live bottom, belt conveyor to be discharged as required for smooth, continuous, undisturbed operation of the paver performing the laydown operation. Material discharge is direct from the rear or, with the addition of the optional rear swing conveyor, at any point up to a 90° angle on either side of the unit.

Width-Overall (hopper sides up)	
	10'6% (3.20 m)
Gage Width (center to center of drive wheels)	
Wheelbase	256" (6502 mm)
Turning Radius (inside)	
Loading Ramp Angle	
Length-Overali (standard machine)	40'0" (12.19 m)
Length-Overall (w/optional swing conveyor retracted)	48'6" (14.78 m)



Length-Overall (w/optional swing conveyor extended)	56'10" (17,32 m
Height-Overall (upper conveyor sides removed)	. 10'9" (3.28 m
Height-Overall (upper conveyor sides installed)	12'4' (3.76 m
	7'6" (2.29 m
Ground Clearance-Optional Swing Conveyor (max.)	10°1° (3.07 m
(min.).	8'0" (2.44 m
Weight-Total (standard machine)	43.000# (19.545 kg
Weight-Total (w/optional swing conveyor)	54 100# (24.590 kg

### **KEY FEATURE COMPARISON**

Improves the Quality and Smoothness of Hot Mix Asphalt Pavements ......

- Eliminates truck contact/bumping of the paver.
- Non-stop operation produces a more consistent flow of material for smoother, more uniform pavements.
- The undisturbed transfer of material from the haul unit to the paver helps eliminate mix segregation
- Optional Mixer/Agitator re-mixes paying material to minimize end-of-load segregation
- Optional Twin Pug Tub virtually eliminates all material segregation.
- · Protects new or tack coated bases by receiving and delivering paving material from the adjacent lane.

#### Increases Paving Productions.....

- Feeds mix to paver as required to produce a continuous, non-stop paving operation
- Infinitely variable discharge rate up to a maximum of 32 tons (29 T) per minute

Reduces Material Hauling Costs .....

- Cycles trucks guicker...reduces total number of trucks required by up to 25%.
- Permits the efficient use of larger trucks.
- Eliminates truck waiting bottleneck at the paver.
- Provides an on-site material surge storage capability of 30 ton: (27.2 T)... 50 tons (45.4 T) using the optional paver hopper insert

An Alternative to Current Methods and Equipment.....

- Simplicity in design employs field proven componentry for greater reliability.
- Fewer moving parts reduce maintenance time & costs.
- Better operator visibility fore & aft.
- Compact width renders easier, safer operation in traffic.
- More flotation . better maneuverability
- Easy service access to all systems.
- New conveyor configuration reduces clean-up time to 30 minutes or less



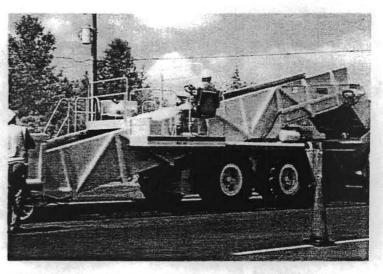
Engine: Cummins 6 cylinder, turbo-charged diesel model 6BT 5.9...359 cubic inch (5 88 L) displacement, 150 hp (113 kW) @ 2200 rpm. Engine is equipped with an oil cooler, replaceable oil filter and replaceable air cleaner element.

#### Cooling System: 26 gts (25 L)

Fuel System: 50 gal. (189.3 L) fuel tank with replaceable filter provides an onboard diesel fuel supply for the engine and pressurized washdown system. A 35: (10.67 m) washdown hose with spray valve/nozzle, mounted on a self-storing, spring retracting hose reel is standard.

Electrical System: 12 volt, negative ground with 105 amp alternator. Wiring is color coded, number impregnated and harness wrapped in polyethylene looms for maximum durability and easy servicing. All circuits tie to a central, easy access junction box equipped with automatic reset circuit breakers.

Hydraulic System: 42 gal. (159 L1 reservoir capacity. Primary filtration is accomplished with 5.0 micron variable depth "Fiberglas" filters on the suction side of the traction and main conveyor drive pumps. Secondary filtration is accomplished with 100 mesh strainers on the suction side of the general purpose and auxiliary drive pump circuits.



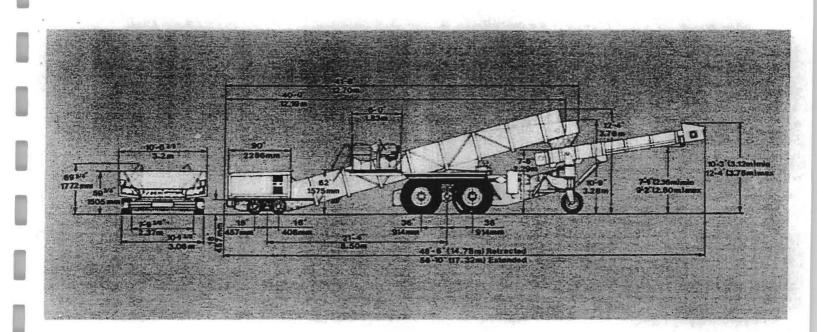

Traction Drive: An electrically controlled, variable displacement hydrostatic pump drives a fixed displacement hydrostatic motor which in turn drives an electric over hydraulic 3-speed reduction transmission connected to an electrically shifted 2-speed differential axle. There is no neutral position in the 3-speed reduction transmission since the electric/hydraulic shift arrangement has one motor transmission since the electric/hydraulic shift arrangement has one differential axle. Low Range/Lo Axle Low Range/Hi Axle Mid Range/Lo Axle Mid Range/Hi Axle High Range/Lo Axle High Range/Hi Axle Reverse . 0-141 fpm (43.0 m/min 0-196 fpm (59.8 m/min 0-294 fpm (89.6 m/min 0-409 fpm (124.7 m/min 0-10.7 mph (17.1 km/hr 0-14.7 mph (23.5 km/hr Full reverse in any of the six speed ranges A back-up alarm is standard equipment

Rear Suspension: Four 16:00 x 24 heavy-duty G2 grader tires inflates to 60-6 psi (448 Kpa).

Front Suspension: Four steerable solid rubber fired wheels. [two 12" (30 mm) wide x 22" (559 mm) diameter front and two 14" (356 mm) wide x 22 (559 mm) diameter rear], mounted on an offset tandem bogie frame, from machine weight is proportionally split 40-60% between the front and rear set of bogies for optimum weight distribution. The rod synchronized cylinders (on on each side) are mounted on the outside of the bogie frame for easy servic access

**Controls:** Dual control stations, each with 90° rotation of the operator's set and console, provide the operator with optimum view and control in eithe operating or transport mode. Control functions provided on each operator console include main power switch, starter, throttle, steering direction spee selection, electrical shifting of the 3-speed transmission and 2-speed axie; mai conveyor function, speed and direction; folding hopper, horn and parking braki Electric switch controls for the optional swing conveyor and truck hitch are als included if the unit is so equipped.




The main control console, located at the left side control station, serves as the main electrical junction box. Additionally, operator control/reference f left/right console selector switch, tachometer/hour meter, parking brake war ing light and LCD instrument readout with warning light for engine oil pressu and coolant temperature, hydraulic oil temperature and voltmeter are located ( this main console. On-off control of the optional generator set is also includif the unit is so equipped.

Brakes: Primary braking is accomplished through the dynamics of the hydr static traction drive system. Foot actuated, hydraulic caliper/disc seconda brakes, mounted on the output ends of the axle provide secondary/back-i brake control. An independent, spring applied parking brake is automatica actuated when the ignition switch is turned off or electrical power is lost. T parking brake can also be manually applied via an electrical switch on eith operator's control console.

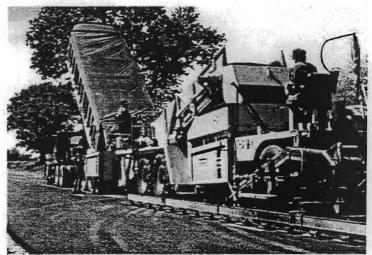
Front End: Choice of either Oscillating Push Rollers or Truck Hitch.

**Oscillating Push Rollers:** Two bearing equipped push rollers mounted on 111.75" (2839 mm) wide, oscillating frame; compensates for minor direction misalignment of the truck with the MC-30.

Truck Hitch: Two bearing equipped push rollers mounted on an oscillati frame with electric/hydraulic actuated roller equipped clamp arms quickly gri and secures a truck in proper attitude for unloading material into the machin hopper automatically compensates for both minor lateral and direction



Maximum Arm Opening			. 130" (3302 mm)
Minimum Arm Opening		8 F	72" (1829 mm)
Degree of Swivel		a.	±8°
Drift from Center (right or left)			 12" (305 mm)
Automatically Self-Centering			


Hopper: 14 ton (12.5 T) [225 ft.' (6.4 m²) struck] capacity, hydraulically folding sides with Tivar' polymer retaining lip. Adjustable side extensions are provided to increase hopper capacity and prevent side spill over.

Truck Entry Width	 			120° (3048 mm)
Truck Dump Clearance			4.57	26" (660 mm)

Main Conveyor: Heat and oil resistant rubber belt attached to steel cross bars which in turn are welded to special, neat treated steel roller chain equipped with an automatic lube system

Belt Width				,					. 61	115	24 mr	n)
Belt Thickness									. – ,	3/1 (	10 mr	n)
Side Height											83 mr	
Angle of Incline	8 - 34 - 14										. 1	5°
Speeds unfinitely var	lable)							0-61	1pm	(18.6	m/mi	n}
Discharge Rate		up	to a	maxim	num	of	32	tons	(29	T) per	minu	te

Neoprene flashing, along both sides of the conveyor belt, retards material migration into the interior of the conveyor structure. Two easily removable trays, located under the main conveyor, shield the engine and drive componentry from any material carry-over, and provide for quick, easy clean-out of any material



accumulation. Access doors, located along both sides of the conveyor structur facilitate quick easy inspection and servicing of the conveyor track and chains

Main Conveyor Drive: Independent, variable speed hydrostatic drive from electrically controlled, variable displacement pump through dual orbital moto and planetary final reduction drives on the upper conveyor shaft, powers the I bottom conveyor either forward or rearward. On-off operation, speed and dire tion are controlled from either operator's console.



### **APPENDIX – G**

### **CEDERAPIDS EQUIPMENT**

### **Cedarapids** CR MS-1 & CR MS-2 Pickup Machines

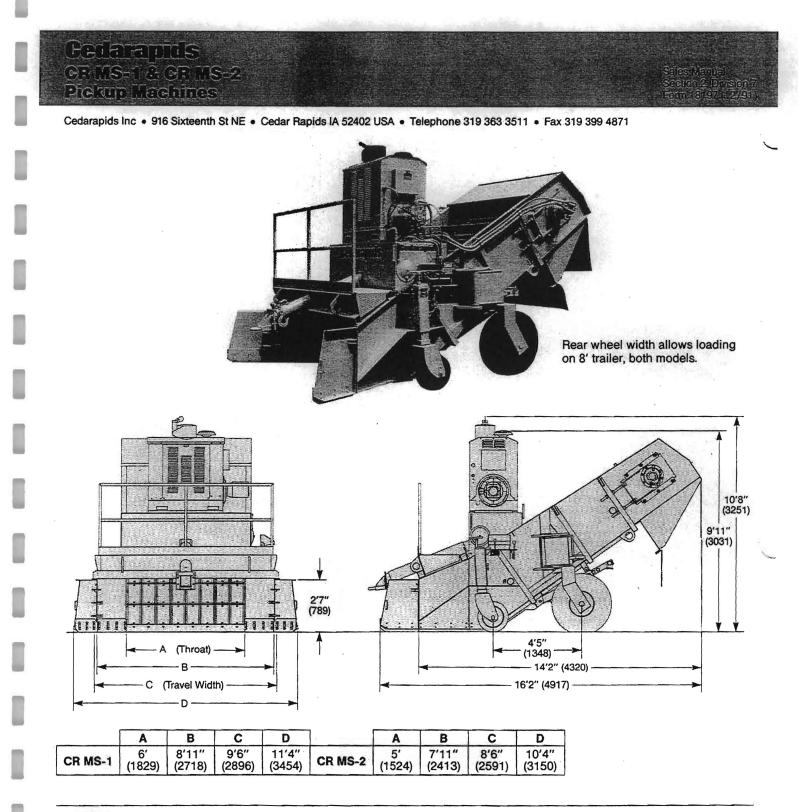
Form 18197 (12/91)



Cedarapids windrow pickup machine with John Deere 4039T engine, direct variable hydraulic elevator drive, hydraulic leveling, adjustable front scraper blade, rear wheel caster pin lock, telescoping pintle hitch, adjustable-length paver attachment and engine access platform.

#### **Standard Features**

Dual elevator roller chains with bolt-on flights Variable hydrostatic drive with two planetary gear boxes and drive motors on head shaft John Deere engine High alloy floor liners Segmented head shaft sprockets and tail shaft idlers Reversible elevator to clear obstructions Double seal on head shaft gearbox Adjustable front scraper blade Rear wheel width allows loading on 8' trailer 3-point suspension with hydraulic front leveling Super heavy-duty pivots, front and rear Solid rubber front tires, pneumatic rear tires


Quick-tach, telescoping style, paver attachment

Pintle hook with telescoping pull hitch

Elevator rear discharge hood removable for easy maintenance and service

Engine instrumentation at ground level Optional field kit diesel spray down system

### **Cedaranide**



#### **CR MS-1** Specifications

 Weight (approx)
 16,000 lbs (7258 kg)

 Capacity (max - theoretical)
 1586 tph (1440 tonnes/hr)

 Elevator
 72" (1829 mm)

 Bolt-on flights
 6"  $\times$  4"  $\times$  ½" (152  $\times$  102  $\times$  13 mm)

 B1 roller chain
 5.51" pitch

 High alloy liners
 %" (10 mm)

 John Deere 4039T engine
 100 hp @ 2000 rpm

 Front tires
 18" × 9" (457 × 229 mm) solid

 Rear tires
 10.00 × 15 18-ply

### **CR MS-2 Specifications**

err me a epoterroutione	
Weight (approx)	14,500 lbs (6577 kg)
Capacity (max - theoretical)	
Elevator	
Width	60" (1524 mm)
Bolt-on flights 6"	× 4" × ¾" (152 × 102 × 10 mm)
B1 roller chain	5.51" pitch
High alloy liners	¾" (10 mm)
John Deere 4039T engine	
Front tires	. 18" × 9" (457 × 229 mm) solid
Rear tires	

Design & specifications subject to change without notice.

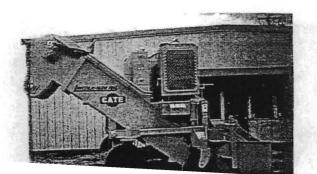
### **APPENDIX – H**

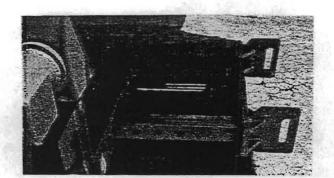
### LINCOLN EQUIPMENT

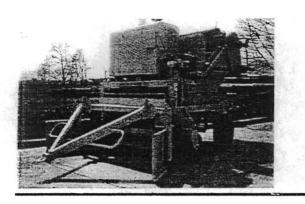
## LINCOLN

## 1600 AXL Windrow Elevator




The Lincoln windrow elevator will provide a continuous flow of material to the paver resulting in increased production and improved material handling, continuous paver operation without stopping for truck exchanges, and reduced trucking costs. Continuous operation improves ride quality by eliminating stops and starts and problems associated with truck exchanges.


The unique remixing auger reblends asphalt materials just before they are delivered to the paver hopper eliminating segregation and ensuring a uniform mix temperature.


### STANDARD FEATURES

- · Proven reliable design
- · Hydrostatic drive system
- 72" wide high capacity slat conveyor
- Remixing auger to rebiend asphart materials to eliminate segregation
- 6'-2" discharge height for full hopper load

- High speed raise and lower to clear obstructions and speed setup
- · Rear whee! width allows loading on trailer
- Hydraulic telescoping paver attachment for ease of hookup







### ENGINE

John Deere Power Tech 6068 diesel engine 170 hp @ 2400 rpm 50 gallon fuel tank

### ELEVATING CONVEYOR

 72° wide throat
 (.829 mm)

 6'-2" discharge height
 (1880 mm)

 Heavy duty roller flight chain
 Heat treated flight wear edges

 Replaceable two-segment drive chain sprockets
 Replaceable hardened floor liner

 Heavy duty head and tail shafts with heavy duty bearings

#### **REMIXING AUGER**

¹4" diameter cast Ni-Hard Hemi segments Left and right-hand segments feed to the center for remixing Hydraulic motor coupled to auger shaft Variable speed control for optimum remixing

### PAYER ATTACHING ADAPTOR

Hydraulic telescoping paver attachment (Quickie Hook) Adjustable up to 24" with hydraulic cylinder to position dump point Fully extended to hook up paver then retract to operating position Adapter fits most pavers

#### CONTROLS

Control panels on both sides of the machine include: Emergency Stop Engine increase/decrease Pump increase/decrease Cylinders up/down

## Specifications Lincoln 1600 AXL

### SUSPENSION

Four wheels have heavy duty caster assemblies Rear caster assemblies bin for towing or swivel inside for loading on trailer

Two  $8.25 \times 15 - 18$  ply pneumatic rear tires Two  $6.90 \times 9 - 10$  ply foam filled front tires Swing up towing frame with pintle ring

### HYDROSTATIC DRIVE SYSTEM

Variable displacement pump is directly connected to the engine and drives two fixed displacement hydraulic motors with planetary gear boxes directly connected to conveyor head shaft.

Auxiliary mounted vane pump drives remixing auger and powers controls

50 gallon reservoir with large capacity heat exchanger

### HYDRAULIC LIFT SYSTEM

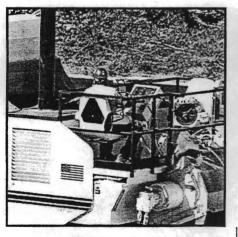
High speed raise & lower up to 10° at the front cutting edge to clear obstructions Left and right height locking screws

### DIMENSIONS

Length (with wings folded in) 13' - 0' (3962 mm) Height 10' - 2" (3099 mm) Travel Width 9' - 6" (2896 mm) Rear tires width outside / outside of tread in loading position 106" Front tires stationary width outside to outside of tread 113" Operating Width 11' - 0" (3352mm) Weight 16,000 lbs. (7258 kg)

Clark's Welding & Machine Works 3030 Power Inn Road Sacramento, CA 95826 Telephone 916-452-2487 Toll Free 877-762-5460 Fax 916-452-7862 Sold and serviced by:

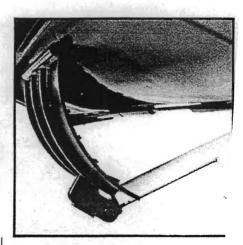
### APPENDIX – I


### **ROADTEC EQUIPMENT**

The Shuttle Buggy material transfer vehicle has revolutionized the asphalt laydown industry. If used properly it can eliminate three to four trucks from the job. Contractors who own the machines have found the greatest savings in smaller work. One contractor recently reported that he went from using seven trucks to using three trucks on intersection work, and did twice as many intersections. When trucks arrive at the job, they can immediately dump into the Shuttle Buggy which can then load the payer hopper. The payer is considerably more maneuverable because it never has to come into contact with the truck. This allows the mechanical placing of pavement that was previously done by hand. Anywhere the payer can be driven, mix can be laid. Not only does this eliminate handwork. but the quality of the mat is considerably enhanced in small areas such as intersections, parking lots, rest areas, etc.

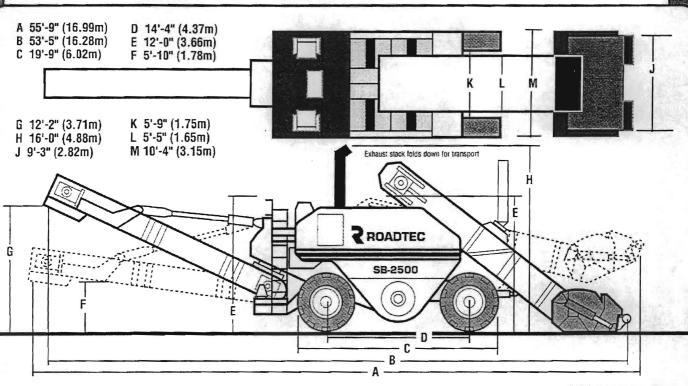
Aside from the economics, perhaps the most important contribution made by the Shuttle Buggy is the ability to insure the highest quality and smoothest pavement with no segregation, even when placing difficult mixes. Most of all a quality mix can be produced without the extreme care now required in the operation of the plant, in trucking, and in the paving operation. The machine takes the sensitivity out of the entire operation while giving all involved needed relief in the terribly competitive environment that exists in our industry.

# **SB 2500** MATERIAL TRANSFER VEHICLE


The SB-2500 Shuttle Buggy[®] material transfer vehicle can move great distances away from the paver, receive 25 tons of hot mix and then return and transfer the mix without interfering with the paver's continuous speed. A triple-pitch Ni-Hard segmented anti-segregation auger remixes the asphalt, eliminating temperature and aggregate segregation and cold truck ends. The continuous paving operation creates pavement smoothness levels previously unattainable.



The operator's station is equipped with operator positions on both sides of the machine. The control panel swivels for use from either station. This allows same lane or adjacent lane operation from either side.




The truck unloads into a front dump hopper. Vibrators enhance the feed into a Ni-hard segmented converging auger which keeps material moving onto the conveyor. The conveyor capacity is rated at 1000 TPH (907 MTPH). A fixed push roller is standard



A clean-out door is located on the un derside of the front dump hopper. It hydraulically actuated by a switch ( the side of the dump hopper and co trolled by the ground operator.





#### SHIPPING WEIGHT: 76,000 Lbs. (34,473Kg)

#### ENGINE:

Cummins 6 CTA8.3 260 diesel, 505 cu in (8.28 l), 6-cylinder engine, 276 HP (206 kw) @ 1,900 rpm. Engine instrumentation includes tach/hour meter, oil pressure, voltage and emergency shutdown system.

#### **OPERATOR'S STATION:**

Operator positions on both sides. Control panel swivels for use from either station allowing for same-lane or adjacent-lane operation from either side. Inside turning radius 26'6" (8.1 m).

#### **GROUND DRIVE:**

All hydrostatic for continuously variable speed control with two speed ranges. Electric shift-on-the-go control between high and low. Hydraulic shift between working and transport ranges. Maximum speed (working range) 3.0 mph (4.8 kph). Maximum speed (travel range) 9 mph (14.5 kph).

#### TIRES:

Large, high-flotation - 21:00 x 25' (53.3 m x 635 mm). ELECTRICAL SYSTEM:

Standard system includes heavy-duty alternator, battery, and circuit breaker protection of all systems

#### FUME EXTRACTION SYSTEM:

Two blowers. Fold-down 10' (254 mm) exhaust pipes.

Performances may vary according to materials.

#### SLAT CONVEYORS

#### **TRUCK UNLOADING (C-1):**

High-capacity truck unloading system with low deck height, 9'2" (2.8 m) side truck opening and 29" (737 mm) o.d. x 7" (178 mm) deep Ni-Hard segmented converging auger for quick material flow. Conveyor has weld-on flights 5/8" (16 mm) thick, 7 (178 mm) wide x 58" (1,473 mm) long. Ni-Hard liner plates are removable. Power dump front hopper has a vibrator on the bottom that helps keep material moving. Fixed push roller is standard. Conveyor capacity is rated at 1,000 TPH (907 MTPH).

#### SURGE BIN (C-2):

Unloads the surge bin with a multi-pitch 29° (737 mm) o.d. x 7° (178 mm) deep Ni-Hard segmented anti-segregation auger in the hopper. Conveyor system has weld-on flights 5/8" (16 mm) thick, 7" (178 mm) wide x dual 16" (406 mm) long. Liner plates are Ni-Hard and removable. Conveyor capacity is 600 TPH (544 MTPH). PAVER LOADING (C-3):

Conveyor swings 55 degrees to either side of center. Maximum conveyor discharge height is 12' 2' (3.7 m) from ground level. Conveyor flights welded to the chain are 5/8' (16 mm) thick, 3'' (76.2 mm) wide and 30'' (762 mm) long. Conveyor has bolted 1/2' (12.7 mm) T-1 replaceable floor plates and doors. C-2 and C-3 conveyors have on/off controls that are interlocked. Conveyor capacity is 600 TPH (544 MTPH). HOPPER INSERT:

A mass-flow paver hopper insert is used to increase the hopper capacity of a conventional paver when used with the SB-2500.

CAPACITIES:	
Fuel tank	
Hopper	
material	
WEIGHTS:	
Shipping weight	
	(34,473 kg)
OPTIONS:	
Spray down system	
Hydraulic generator set	
Windrow attachment	

Road widener attachment

**800 MANUFACTURERS ROAD** 

CHATTANOOGA, TN 37405-7515

**TELEPHONE 423-265-0600** 

an Astec company

Specifications subject to change without notice.

2/98

REON



CONSTRUCTION DIVISION, RESEARCH AND TECHNOLOGY TRANSFER SECTION P.O. Box 5080 Austin, Texas 78763-5080 Phone: 512-465-7403, FAX 512-465-7486

RED +

### MATERIAL TRANSFER DEVICE SHOWCASE IN EL PASO, TEXAS

By:

Maghsoud Tahmoressi, P.E. David Head, P.E. Tomas Saenz, P.E. Sekhar Rebala, E.I.T



DEMONSTRATION PROJECT CONDUCTED In El Paso, Texas October 18,1999 – October 22, 1999

CONDUCTED BY: TEXAS DEPARTMENT OF TRANSPORTATION El PASO DISTRICT

> IN COOPERATION WITH DAN WILLIAMS COMPANY AND JOBE CONCRETE PRODUCTS, INC.,

> > December 1999

### ACKNOWLEDGEMENTS

Texas Department of Transportation appreciates assistance of the following individuals and organizations in conducting this demonstration project. In particular Dan Williams Company and Jobe Concrete Products Inc. are commended for their willingness to take part in this demonstration project.

Mr. Dan Williams Mr. Jackie McFarland Mr. Levi Hardy Mr. Jesse Forester **Dan Williams Company** 4730 Ripley El Paso Texas, 79922

Mr. Jon Abrams J. D. Abrams Inc., 111 Congress Ave., Ste 2400 Austin, TX 78701

Ms. Maria Teran **Sierra Machinery** 939 Hawkins El Paso, TX 79915

Mr. Stanley Jobe Mr. Ned Finney Mr. Sam Kikela Jobe Concrete Products Inc., 1 McKelligan Canyon Road El Paso, TX 78701

Mr. Bennett Closner Closner Equipment Co. Inc., PO Box 7328 1415 W. Poplar Street San Antonio, TX 78207

Mr. Terry Leber Roadtec 800 Manufacturers Road Chattanooga, TN 37405

Mr. Bob Begley Ingersoll-Rand Company 750 Broadway Ave East Matton, IL 61938

Mr. Sergio Olguin Ingersoll-Rand Company 101 E. Huitt Road Euless, TX 76040 Mr. Michael Kavch Cederapids Inc. 916 16th Street, NE Cedar Rapids, IA 52402

Mr. Terry P. Humphrey Mr. Rick James Caterpiller Paving Co. 9401 85th Avenue North Brooklyn Park, Minnesota 55445

Ms. Maribel Chavez, P.E. Mr. Ray Guerra Mr. Louie Rendon Ms. Becky Grado Mr. Thomas Hughes El Paso District **Texas Department of Transportation** 212 North Clark Dr., El Paso, TX 79994

Dr. Soheil Nazarian, Ph.D, P.E. Department of Civil Engineering **University of Texas, El Paso** El Paso, TX 79968

Mr. Tom Scullion, P.E. **Texas Transportation Institute** Texas A&M University College Station, TX 77843-3135

Mr. Joe Leidy, P.E. Design Division – Pavements Section **Texas Department of Transportation** 125 E. 11th Street Austin, TX 78701

Mr. Dale Rand, P.E. **Texas Hot Mix Association** 9407 Brown Lane Bldg. 1 Austin, TX 78754